WorldWideScience

Sample records for bamboo phyllostachys viridi-glaucescens

  1. Development of fibre and parenchyma cells in the bamboo Phyllostachys viridi-glaucescens

    CERN Document Server

    Crow, E

    2000-01-01

    The development of the shoot apex and the ontogeny of fibre and parenchyma cells in elongating shoots of the bamboo Phyllostachys viridi-glaucescens (Carr.) Riv. and Riv., seen under the light microscope is described. Fibre cells differentiated from cells of the procambium, whilst the parenchyma cells differentiated from cells of the primary thickening meristem which surround the procambium strands. Three stages of early fibre and parenchyma cell development were identified and these are referred to in subsequent studies of cell wall development. The cytology of developing internodal fibre and parenchyma cells seen under the transmission electron microscope (TEM) is described. There were few ultrastructural features to distinguish the two cell types. Thiery's PATAg test was performed to identify organelles which may be associated with the synthesis of polysaccharides destined for the cell wall. The ultrastructural results are discussed in terms of the process of cell wall deposition. Observations were made of...

  2. Analysis of Phyllostachys pubescens bamboo residues for liquefaction: chemical components, infrared spectroscopy, and thermogravimetry

    Science.gov (United States)

    Jinqiu Qi; Chung-Yun Hse; Todd F. Shupe

    2013-01-01

    Residues of Phyllostachys pubescens bamboo obtained from central Louisiana, USA, were comprehensively investigated for use in liquefaction. The results showed that bamboo branches had the highest Klason lignin and ash content, about 26% and 2.75%, respectively. The epidermis layer sample had relatively higher carbohydrate content, while the wax layer sample had the...

  3. Surface runoff and phosphorus (P) loss from bamboo (Phyllostachys ...

    African Journals Online (AJOL)

    Jane

    2011-08-24

    Aug 24, 2011 ... The average bioavailable phosphorus (BAP) concentration of the runoff was 0.23 mg/l and the various phosphorus ... Key words: Phyllostachys pubescens, ecosystem, surface runoff, phosphorus (P) loss. INTRODUCTION .... runoff samples were used for total P (TP) determination following perchloric acid ...

  4. Effect of bamboo (Phyllostachys pubescens) extract on broiler ...

    African Journals Online (AJOL)

    p2492989

    wood vinegar compounds to diets induced significant increases in hen-day egg production and feed conversion ratio, and in broiler hatchability. Bamboo extract ... could assist in protecting birds exposed to cold stress to maintain body weight gain and serum enzymatic activity in chickens. Materials and Methods. Bamboo ...

  5. Water vapour diffusion resistance factor of Phyllostachys edulis (Moso bamboo)

    OpenAIRE

    Huang, P.; Latif, E.; Chang, W.-S.; Ansell, M.P.; Lawrence, M.

    2017-01-01

    This study measured the water vapour diffusion resistance factor of the Moso bamboo specimens in all directions of the cylindrical coordinate system at both internode parts and node parts. The measurement was conducted by the dry cup method. Major findings included three aspects. The water vapour diffusion resistance factor results of Moso bamboo specimens present a decreasing trend from the external surface to the internal surface in the radial directions. This fact may be attributed to the ...

  6. Characterization of moso bamboo (Phyllostachys edulis) Dof transcription factors in floral development and abiotic stress responses.

    Science.gov (United States)

    Cheng, Zhanchao; Hou, Dan; Liu, Jun; Li, Xiangyu; Xie, Lihua; Ma, Yanjun; Gao, Jian

    2018-03-01

    The Dof transcription factor (TF) family belongs to a class of plant-specific TFs and is involved in plant growth, development, and response to abiotic stresses. However, there are only very limited reports on the characterization of Dof TFs in moso bamboo (Phyllostachys edulis). In the present research, PheDof TFs showed specific expression profiles based on RNA-seq data analyses. The co-expression network indicated that PheDof12, PheDof14, and PheDof16 might play vital roles during flower development. Cis-regulatory element analysis of these PheDof genes suggested diverse functions. Expression patterns of 12 selected genes from seven different classes under three abiotic stresses (cold, salt, and drought) are further investigated by quantitative real-time PCR. This work will provide useful information for functional analysis and regulation mechanisms of Dof TFs in moso bamboo.

  7. Bamboo (Phyllostachys pubescens) as a Natural Support for Neutral Protease Immobilization.

    Science.gov (United States)

    Cao, Lei-Peng; Wang, Jing-Jing; Zhou, Ting; Ruan, Roger; Liu, Yu-Huan

    2018-03-06

    Lignin polymers in bamboo (Phyllostachys pubescens) were decomposed into polyphenols at high temperatures and oxidized for the introduction of quinone groups from peroxidase extracted from bamboo shoots and catalysis of UV. According to the results of FT-IR spectra analysis, neutral proteases (NPs) can be immobilized on the oxidized lignin by covalent bonding formed by amine group and quinone group. The optimum condition for the immobilization of NPs on the bamboo bar was obtained at pH 7.0, 40 °C, and duration of 4 h; the amount of immobilized enzyme was up to 5 mg g -1 bamboo bar. The optimal pH for both free NP (FNP) and INP was approximately 7.0, and the maximum activity of INP was determined at 60 °C, whereas FNP presented maximum activity at 50 °C. The K m values of INP and FNP were determined as 0.773 and 0.843 mg ml -1 , respectively; INP showed a lower K m value and V max, than FNP, which demonstrated that INP presented higher affinity to substrate. Compared to FNP, INP showed broader thermal and storage stability under the same trial condition. With respect to cost, INP presented considerable recycling efficiency for up to six consecutive cycles.

  8. Soil hypoxia induced by an organic-material mulching technique stimulates the bamboo rhizome up-floating of Phyllostachys praecox.

    Science.gov (United States)

    Xu, Mengjie; Zhuang, Shunyao; Gui, Renyi

    2017-10-30

    Phyllostachys praecox bamboo stands significantly recede after 3 or 4 years using an organic-material mulching technique consecutively. We hypothesized that the bamboo recession is caused by the up-floating of underground rhizome stimulated by soil hypoxia through the mulching technique. This study aimed to validate this hypothesis by field investigation. Bamboo underground rhizome distribution in the soil profile of P. praecox subjected to various mulching times was investigated. Results showed that bamboo rhizome weights and lengths increased with increased mulching time. However, after 4 years of mulching, the number of fresh rhizomes decreased significantly, and more than 50% of rhizomes floated upward to the shallow soil layer (0-10 cm). Moreover, the 0-10 cm soil layer suffered severe acidification that severely impeded bamboo-rhizome growth. The soil hypoxia induced by the mulching technique must be responsible for the bamboo rhizome up-floating. We confirmed that bamboo rhizome up-floating was the critical factor that caused the bamboo growth to recede under the mulching technique. Therefore, managing this bamboo rhizome up-floating is the key to sustainable bamboo production. The effect of soil hypoxia in the absence of flooding or waterlogging on plant root growth also warrants further and extensive study.

  9. Carbon stock of Moso bamboo (Phyllostachys pubescens) forests along a latitude gradient in the subtropical region of China.

    Science.gov (United States)

    Xu, Mengjie; Ji, Haibao; Zhuang, Shunyao

    2018-01-01

    Latitude is an important factor that influences the carbon stock of Moso bamboo (Phyllostachys pubescens) forests. Accurate estimation of the carbon stock of Moso bamboo forest can contribute to sufficient evaluation of forests in carbon sequestration worldwide. Nevertheless, the effect of latitude on the carbon stock of Moso bamboo remains unclear. In this study, a field survey with 36 plots of Moso bamboo forests along a latitude gradient was conducted to investigate carbon stock. Results showed that the diameter at breast height (DBH) of Moso bamboo culms increased from 8.37 cm to 10.12 cm that well fitted by Weibull model, whereas the bamboo culm density decreased from 4722 culm ha-1 to 3400 culm ha-1 with increasing latitude. The bamboo biomass carbon decreased from 60.58 Mg C ha-1 to 48.31 Mg C ha-1 from north to south. The total carbon stock of Moso bamboo forests, which comprises soil and biomass carbon, ranged from 87.83 Mg C ha-1 to 119.5 Mg C ha-1 and linearly increased with latitude. As a fast-growing plant, Moso bamboo could be harvested amounts of 6.0 Mg C ha-1 to 7.6 Mg C ha-1 annually, which indicates a high potential of this species for carbon sequestration. Parameters obtained in this study can be used to accurately estimate the carbon stock of Moso bamboo forest to establish models of the global carbon balance.

  10. Diversity and antimicrobial activity of culturable fungi from fishscale bamboo (Phyllostachys heteroclada) in China.

    Science.gov (United States)

    Zhou, Ying-Ke; Shen, Xiao-Ye; Hou, Cheng-Lin

    2017-06-01

    An important and useful bamboo species, fishscale bamboo (Phyllostachys heteroclada Oliver), is broadly distributed in Southeast China and has multiple purposes, including uses in cuisine, weaving, Chinese medicine and ecological protection. However, no previous studies have focused on the endophytes of this plant. In our article, a total of 127 fungal strains were first isolated from the healthy branches and leaves of common P. heteroclada. These endophytic fungi could be directly categorized into 50 morphotypes according to their culture characteristics, and their internal transcribed spacer (ITS) regions were analyzed for molecular identification. Using the BLAST search tool of the NCBI database and phylogenetic tree analysis, these isolates were divided into two phyla, Ascomycota (95.28%) and Basidiomycota (4.72%), including at least six orders (Xylariales, Capnodiales, Pleosporales, Hypocreales, Chaetothyriales and Polyporales) and fourteen genera (Arthrinium, Pestalotiopsis, Epicoccum, Cladosporium, Nigrospora, Setophoma, Didymella, Calcarisporium, Preussia, Nemania, Creosphaeria, Ophiobolus, Phialophora and Perenniporia). It is fascinating that four genera, Calcarisporium, Preussia, Creosphaeria and Phialophora were isolated from bamboos for the first time. The inhibitory effects against clinical pathogens were also preliminarily screened, and four isolates FB43 (Calcarisporium arbuscula), FB06 (Preussia minima), FB16 (Setophoma sp.) and FB21 (Perenniporia medulla-pains) among the candidate strains displayed broad-spectrum activities according to the agar diffusion method and the disk diffusion assay. Strain FB16 (Setophoma sp.) especially indicated high bioactivity against both clinical bacteria and yeast. This study is the first report on the diversity and antimicrobial activity of the endophytic fungi associated with P. heteroclada, which could be regarded as a potential source of drug precursors and could be used in biocontrol development.

  11. Organic acid compounds in root exudation of Moso Bamboo (Phyllostachys pubescens) and its bioactivity as affected by heavy metals.

    Science.gov (United States)

    Chen, Junren; Shafi, Mohammad; Wang, Ying; Wu, Jiasen; Ye, Zhengqian; Liu, Chen; Zhong, Bin; Guo, Hua; He, Lizhi; Liu, Dan

    2016-10-01

    Moso bamboo (Phyllostachys pubescens) has great potential as phytoremediation material in soil contaminated by heavy metals. A hydroponics experiment was conducted to determine organic acid compounds of root exudates of lead- (Pb), zinc- (Zn), copper- (Cu), and cadmium (Cd)-tolerant of Moso bamboo. Plants were grown in nutrients solution which included Pb, Zn, Cu, and Cd applied as Pb(NO 3 ) 2 (200 μM), ZnSO 4 ·7H 2 O (100 μM), CuSO 4 ·5H 2 O (25 μM), and CdCl 2 (10 μM), respectively. Oxalic acid and malic acid were detected in all treatments. Lactic acid was observed in Cu, Cd, and control treatments. The oxalic was the main organic acid exudated by Moso bamboo. In the sand culture experiment, the Moso bamboo significantly activated carbonate heavy metals under activation of roots. The concentration of water-soluble metals (except Pb) in sand were significantly increased as compared with control. Organic acids (1 mM mixed) were used due to its effect on the soil adsorption of heavy metals. After adding mixed organic acids, the Cu and Zn sorption capacity in soils was decreased markedly compared with enhanced Pb and Cd sorption capacity in soils. The sorption was analyzed using Langmuir and Freundlich equations with R 2 values that ranged from 0.956 to 0.999 and 0.919 to 0.997, respectively.

  12. Characterization of the floral transcriptome of Moso bamboo (Phyllostachys edulis at different flowering developmental stages by transcriptome sequencing and RNA-seq analysis.

    Directory of Open Access Journals (Sweden)

    Jian Gao

    Full Text Available BACKGROUND: As an arborescent and perennial plant, Moso bamboo (Phyllostachys edulis (Carrière J. Houzeau, synonym Phyllostachys heterocycla Carrière is characterized by its infrequent sexual reproduction with flowering intervals ranging from several to more than a hundred years. However, little bamboo genomic research has been conducted on this due to a variety of reasons. Here, for the first time, we investigated the transcriptome of developing flowers in Moso bamboo by using high-throughput Illumina GAII sequencing and mapping short reads to the Moso bamboo genome and reference genes. We performed RNA-seq analysis on four important stages of flower development, and obtained extensive gene and transcript abundance data for the floral transcriptome of this key bamboo species. RESULTS: We constructed a cDNA library using equal amounts of RNA from Moso bamboo leaf samples from non-flowering plants (CK and mixed flower samples (F of four flower development stages. We generated more than 67 million reads from each of the CK and F samples. About 70% of the reads could be uniquely mapped to the Moso bamboo genome and the reference genes. Genes detected at each stage were categorized to putative functional categories based on their expression patterns. The analysis of RNA-seq data of bamboo flowering tissues at different developmental stages reveals key gene expression properties during the flower development of bamboo. CONCLUSION: We showed that a combination of transcriptome sequencing and RNA-seq analysis was a powerful approach to identifying candidate genes related to floral transition and flower development in bamboo species. The results give a better insight into the mechanisms of Moso bamboo flowering and ageing. This transcriptomic data also provides an important gene resource for improving breeding for Moso bamboo.

  13. Developing genome-wide microsatellite markers of bamboo and their applications on molecular marker assisted taxonomy for accessions in the genus Phyllostachys.

    Science.gov (United States)

    Zhao, Hansheng; Yang, Li; Peng, Zhenhua; Sun, Huayu; Yue, Xianghua; Lou, Yongfeng; Dong, Lili; Wang, Lili; Gao, Zhimin

    2015-01-26

    Morphology-based taxonomy via exiguously reproductive organ has severely limitation on bamboo taxonomy, mainly owing to infrequent and unpredictable flowering events of bamboo. Here, we present the first genome-wide analysis and application of microsatellites based on the genome of moso bamboo (Phyllostachys edulis) to assist bamboo taxonomy. Of identified 127,593 microsatellite repeat-motifs, the primers of 1,451 microsatellites were designed and 1,098 markers were physically mapped on the genome of moso bamboo. A total of 917 markers were successfully validated in 9 accessions with ~39.8% polymorphic potential. Retrieved from validated microsatellite markers, 23 markers were selected for polymorphic analysis among 78 accessions and 64 alleles were detected with an average of 2.78 alleles per primers. The cluster result indicated the majority of the accessions were consistent with their current taxonomic classification, confirming the suitability and effectiveness of the developed microsatellite markers. The variations of microsatellite marker in different species were confirmed by sequencing and in silico comparative genome mapping were investigated. Lastly, a bamboo microsatellites database (http://www.bamboogdb.org/ssr) was implemented to browse and search large information of bamboo microsatellites. Consequently, our results of microsatellite marker development are valuable for assisting bamboo taxonomy and investigating genomic studies in bamboo and related grass species.

  14. Genome-wide analysis and expression characteristics of small auxin-up RNA (SAUR) genes in moso bamboo (Phyllostachys edulis).

    Science.gov (United States)

    Bai, Qingsong; Hou, Dan; Li, Long; Cheng, Zhanchao; Ge, Wei; Liu, Jun; Li, Xueping; Mu, Shaohua; Gao, Jian

    2017-04-01

    Moso bamboo (Phyllostachys edulis) is well known for its rapid shoot growth. Auxin exerts pleiotropic effects on plant growth. The small auxin-up RNA (SAUR) genes are early auxin-responsive genes involved in plant growth. In total, 38 SAUR genes were identified in P. edulis (PheSAUR). A comprehensive overview of the PheSAUR gene family is presented, including the gene structures, phylogeny, and subcellular location predictions. A transcriptome analysis indicated that 37 (except PheSAUR18) of the PheSAUR genes were expressed during shoot growth process and that the PheSAUR genes were differentially expressed. Furthermore, quantitative real-time PCR analysis indicated that all of the PheSAUR genes could be induced in different tissues of seedlings and that 37 (except PheSAUR41) of the PheSAUR genes were up-regulated after indole-3-acetic acid (IAA) treatment. These results reveal a comprehensive overview of the PheSAUR gene family and may pave the way for deciphering their functions during bamboo development.

  15. Transcriptome Sequencing and Analysis of the Fast Growing Shoots of Moso Bamboo (Phyllostachys edulis)

    Science.gov (United States)

    Zhang, Ying; Hu, Tao; Mu, Shaohua; Li, Xueping; Gao, Jian

    2013-01-01

    Background The moso bamboo, a large woody bamboo with the highest ecological, economic, and cultural value of all bamboos, has one of the highest growth speeds in the world. Genetic research into moso bamboo has been scarce, partly because of the lack of previous genomic resources. In the present study, for the first time, we performed de novo transcriptome sequencing and mapped to the moso bamboo genomic resources (reference genome and genes) to produce a comprehensive dataset for the fast growing shoots of moso bamboo. Results The fast growing shoots mixed with six different heights and culms after leaf expansion of moso bamboo transcriptome were sequenced using the Illumina HiSeq™ 2000 sequencing platform, respectively. More than 80 million reads including 65,045,670 and 68,431,884 clean reads were produced in the two libraries. More than 81% of the reads were matched to the reference genome, and nearly 50% of the reads were matched to the reference genes. The genes with log 2 ratio > 2 or plant hormones, cell cycle regulation, cell wall metabolism and cell morphogenesis genes were further analyzed and they may form a network that regulates the fast growth of moso bamboo shoots. Conclusion Firstly, our data provides the most comprehensive transcriptomic resource for moso bamboo to date. Candidate genes have been identified and they are potentially involved in the growth and development of moso bamboo. The results give a better insight into the mechanisms of moso bamboo shoots rapid growth and provide gene resources for improving plant growth. PMID:24244391

  16. Genome-wide identification and expression analysis of SBP-like transcription factor genes in Moso Bamboo (Phyllostachys edulis).

    Science.gov (United States)

    Pan, Feng; Wang, Yue; Liu, Huanglong; Wu, Min; Chu, Wenyuan; Chen, Danmei; Xiang, Yan

    2017-06-27

    The SQUAMOSA promoter binding protein-like (SPL) proteins are plant-specific transcription factors (TFs) that function in a variety of developmental processes including growth, flower development, and signal transduction. SPL proteins are encoded by a gene family, and these genes have been characterized in two model grass species, Zea mays and Oryza sativa. The SPL gene family has not been well studied in moso bamboo (Phyllostachys edulis), a woody grass species. We identified 32 putative PeSPL genes in the P. edulis genome. Phylogenetic analysis arranged the PeSPL protein sequences in eight groups. Similarly, phylogenetic analysis of the SBP-like and SBP proteins from rice and maize clustered them into eight groups analogous to those from P. edulis. Furthermore, the deduced PeSPL proteins in each group contained very similar conserved sequence motifs. Our analyses indicate that the PeSPL genes experienced a large-scale duplication event ~15 million years ago (MYA), and that divergence between the PeSPL and OsSPL genes occurred 34 MYA. The stress-response expression profiles and tissue-specificity of the putative PeSPL gene promoter regions showed that SPL genes in moso bamboo have potential biological functions in stress resistance as well as in growth and development. We therefore examined PeSPL gene expression in response to different plant hormone and drought (polyethylene glycol-6000; PEG) treatments to mimic biotic and abiotic stresses. Expression of three (PeSPL10, -12, -17), six (PeSPL1, -10, -12, -17, -20, -31), and nine (PeSPL5, -8, -9, -14, -15, -19, -20, -31, -32) genes remained relatively stable after treating with salicylic acid (SA), gibberellic acid (GA), and PEG, respectively, while the expression patterns of other genes changed. In addition, analysis of tissue-specific expression of the moso bamboo SPL genes during development showed differences in their spatiotemporal expression patterns, and many were expressed at high levels in flowers and

  17. Copper induced oxidative stresses, antioxidant responses and phytoremediation potential of Moso bamboo (Phyllostachys pubescens)

    Science.gov (United States)

    Chen, Junren; Shafi, Mohammad; Li, Song; Wang, Ying; Wu, Jiasen; Ye, Zhengqian; Peng, Danli; Yan, Wenbo; Liu, Dan

    2015-09-01

    Moso bamboo is recognized as phytoremediation plant due to production of huge biomass and high tolerance in stressed environment. Hydroponics and pot experiments were conducted to investigate mechanism of copper tolerance and to evaluate copper accumulation capacity of Moso bamboo. In hydroponics experiment there was non significant variation in MDA contents of leaves compared with control. SOD and POD initially indicated enhancing trend with application of 5 μM Cu and then decreased consistently with application of 25 and 100 μM Cu. Application of each additional increment of copper have constantly enhanced proline contents while maximum increase of proline was observed with application of 100 μM copper. In pot experiment chlorophyll and biomass initially showed increasing tendency and decreased gradually with application of each additional increment of Cu. Normal growth of Moso bamboo was observed with application of 100 mg kg-1 copper. However, additional application of 300 or 600 mg kg-1 copper had significantly inhibited growth of Moso bamboo. The concentration of Cu in Moso bamboo has attained the levels of 340, 60, 23 mg kg-1 in roots, stems and leaves respectively. The vacuoles were the main organs which accumulated copper and reduced toxicity of copper as studied by TEM-DEX technology.

  18. Copper induced oxidative stresses, antioxidant responses and phytoremediation potential of Moso bamboo (Phyllostachys pubescens).

    Science.gov (United States)

    Chen, Junren; Shafi, Mohammad; Li, Song; Wang, Ying; Wu, Jiasen; Ye, Zhengqian; Peng, Danli; Yan, Wenbo; Liu, Dan

    2015-09-04

    Moso bamboo is recognized as phytoremediation plant due to production of huge biomass and high tolerance in stressed environment. Hydroponics and pot experiments were conducted to investigate mechanism of copper tolerance and to evaluate copper accumulation capacity of Moso bamboo. In hydroponics experiment there was non significant variation in MDA contents of leaves compared with control. SOD and POD initially indicated enhancing trend with application of 5 μM Cu and then decreased consistently with application of 25 and 100 μM Cu. Application of each additional increment of copper have constantly enhanced proline contents while maximum increase of proline was observed with application of 100 μM copper. In pot experiment chlorophyll and biomass initially showed increasing tendency and decreased gradually with application of each additional increment of Cu. Normal growth of Moso bamboo was observed with application of 100 mg kg(-1) copper. However, additional application of 300 or 600 mg kg(-1) copper had significantly inhibited growth of Moso bamboo. The concentration of Cu in Moso bamboo has attained the levels of 340, 60, 23 mg kg(-1) in roots, stems and leaves respectively. The vacuoles were the main organs which accumulated copper and reduced toxicity of copper as studied by TEM-DEX technology.

  19. Interactions between shoot age structure, nutrient availability and integration in the giant bamboo Phyllostachys pubescens

    NARCIS (Netherlands)

    Li, R.; Werger, M.J.A.; Kroon, de H.; During, H.J.; Zhong, Z.C.

    2000-01-01

    The age structure of adult shoots, the nutrient availability of the habitat, and their interaction, are important factors influencing the productivity of bamboo groves. In a field fertilization experiment over two years we examined the impact of physiological integration on the emergence, growth,

  20. Detecting latitudinal and altitudinal expansion of invasive bamboo Phyllostachys edulis and Phyllostachys bambusoides (Poaceae) in Japan to project potential habitats under 1.5°C-4.0°C global warming.

    Science.gov (United States)

    Takano, Kohei Takenaka; Hibino, Kenshi; Numata, Ayaka; Oguro, Michio; Aiba, Masahiro; Shiogama, Hideo; Takayabu, Izuru; Nakashizuka, Tohru

    2017-12-01

    Rapid expansion of exotic bamboos has lowered species diversity in Japan's ecosystems by hampering native plant growth. The invasive potential of bamboo, facilitated by global warming, may also affect other countries with developing bamboo industries. We examined past (1975-1980) and recent (2012) distributions of major exotic bamboos ( Phyllostachys edulis and P. bambusoides ) in areas adjacent to 145 weather stations in central and northern Japan. Bamboo stands have been established at 17 sites along the latitudinal and altitudinal distributional limit during the last three decades. Ecological niche modeling indicated that temperature had a strong influence on bamboo distribution. Using mean annual temperature and sun radiation data, we reproduced bamboo distribution (accuracy = 0.93 and AUC (area under the receiver operating characteristic curve) = 0.92). These results infer that exotic bamboo distribution has shifted northward and upslope, in association with recent climate warming. Then, we simulated future climate data and projected the climate change impact on the potential habitat distribution of invasive bamboos under different temperature increases (i.e., 1.5°C, 2.0°C, 3.0°C, and 4.0°C) relative to the preindustrial period. Potential habitats in central and northern Japan were estimated to increase from 35% under the current climate (1980-2000) to 46%-48%, 51%-54%, 61%-67%, and 77%-83% under 1.5°C, 2.0°C, 3.0°C, and 4.0°C warming levels, respectively. These infer that the risk areas can increase by 1.3 times even under a 1.5°C scenario and expand by 2.3 times under a 4.0°C scenario. For sustainable ecosystem management, both mitigation and adaptation are necessary: bamboo planting must be carefully monitored in predicted potential habitats, which covers most of Japan.

  1. Biochar amendment decreases soil microbial biomass and increases bacterial diversity in Moso bamboo (Phyllostachys edulis) plantations under simulated nitrogen deposition

    Science.gov (United States)

    Li, Quan; Lei, Zhaofeng; Song, Xinzhang; Zhang, Zhiting; Ying, Yeqing; Peng, Changhui

    2018-04-01

    Biochar amendment has been proposed as a strategy to improve acidic soils after overuse of nitrogen fertilizers. However, little is known of the role of biochar in soil microbial biomass carbon (MBC) and bacterial community structure and diversity after soil acidification induced by nitrogen (N) deposition. Using high-throughput sequencing of the 16S rRNA gene, we determined the effects of biochar amendment (BC0, 0 t bamboo biochar ha‑1 BC20, 20 t bamboo biochar ha‑1 and BC40, 40 t bamboo biochar ha‑1) on the soil bacterial community structure and diversity in Moso bamboo plantations that had received simulated N deposition (N30, 30 kg N ha‑1 yr‑1 N60, 60 kg N ha‑1 yr‑1 N90, 90 kg N ha‑1 yr‑1 and N-free) for 21 months. After treatment of N-free plots, BC20 significantly increased soil MBC and bacterial diversity, while BC40 significantly decreased soil MBC but increased bacterial diversity. When used to amend N30 and N60 plots, biochar significantly decreased soil MBC and the reducing effect increased with biochar amendment amount. However, these significant effects were not observed in N90 plots. Under N deposition, biochar amendment largely increased soil bacterial diversity, and these effects depended on the rates of N deposition and biochar amendment. Soil bacterial diversity was significantly related to the soil C/N ratio, pH, and soil organic carbon content. These findings suggest an optimal approach for using biochar to offset the effects of N deposition in plantation soils and provide a new perspective for understanding the potential role of biochar amendments in plantation soil.

  2. Analysis of MADS-Box Gene Family Reveals Conservation in Floral Organ ABCDE Model of Moso Bamboo (Phyllostachys edulis).

    Science.gov (United States)

    Cheng, Zhanchao; Ge, Wei; Li, Long; Hou, Dan; Ma, Yanjun; Liu, Jun; Bai, Qingsong; Li, Xueping; Mu, Shaohua; Gao, Jian

    2017-01-01

    Mini chromosome maintenance 1, agamous, deficiens, and serum response factor (MADS)-box genes are transcription factors which play fundamental roles in flower development and regulation of floral organ identity. However, till date, identification and functions of MADS-box genes remain largely unclear in Phyllostachys edulis . In view of this, we performed a whole-genome survey and identified 34 MADS-box genes in P. edulis , and based on phylogeny, they were classified as MIKC C , MIKC ∗ , Mα, and Mβ. The detailed analysis about gene structure and motifs, phylogenetic classification, comparison of gene divergence and duplication are provided. Interestingly, expression patterns for most genes were found similar to those of Arabidopsis and rice, indicating that the well-established ABCDE model can be applied to P. edulis . Moreover, we overexpressed PheMADS15 , an AP1 -like gene, in Arabidopsis , and found that the transgenic plants have early flowering phenotype, suggesting that PheMADS15 might be a regulator of flowering transition in P. edulis . Taken together, this study provides not only insightful comprehension but also useful information for understanding the functions of MADS-box genes in P. edulis .

  3. Analysis of MADS-Box Gene Family Reveals Conservation in Floral Organ ABCDE Model of Moso Bamboo (Phyllostachys edulis

    Directory of Open Access Journals (Sweden)

    Zhanchao Cheng

    2017-05-01

    Full Text Available Mini chromosome maintenance 1, agamous, deficiens, and serum response factor (MADS-box genes are transcription factors which play fundamental roles in flower development and regulation of floral organ identity. However, till date, identification and functions of MADS-box genes remain largely unclear in Phyllostachys edulis. In view of this, we performed a whole-genome survey and identified 34 MADS-box genes in P. edulis, and based on phylogeny, they were classified as MIKCC, MIKC∗, Mα, and Mβ. The detailed analysis about gene structure and motifs, phylogenetic classification, comparison of gene divergence and duplication are provided. Interestingly, expression patterns for most genes were found similar to those of Arabidopsis and rice, indicating that the well-established ABCDE model can be applied to P. edulis. Moreover, we overexpressed PheMADS15, an AP1-like gene, in Arabidopsis, and found that the transgenic plants have early flowering phenotype, suggesting that PheMADS15 might be a regulator of flowering transition in P. edulis. Taken together, this study provides not only insightful comprehension but also useful information for understanding the functions of MADS-box genes in P. edulis.

  4. Dynamic allocation and transfer of non-structural carbohydrates, a possible mechanism for the explosive growth of Moso bamboo (Phyllostachys heterocycla)

    Science.gov (United States)

    Song, Xinzhang; Peng, Changhui; Zhou, Guomo; Gu, Honghao; Li, Quan; Zhang, Chao

    2016-01-01

    Moso bamboo can rapidly complete its growth in both height and diameter within only 35–40 days after shoot emergence. However, the underlying mechanism for this “explosive growth” remains poorly understood. We investigated the dynamics of non-structural carbohydrates (NSCs) in shoots and attached mature bamboos over a 20-month period. The results showed that Moso bamboos rapidly completed their height and diameter growth within 38 days. At the same time, attached mature bamboos transferred almost all the NSCs of their leaves, branches, and especially trunks and rhizomes to the “explosively growing” shoots via underground rhizomes for the structural growth and metabolism of shoots. Approximately 4 months after shoot emergence, this transfer stopped when the leaves of the young bamboos could independently provide enough photoassimilates to meet the carbon demands of the young bamboos. During this period, the NSC content of the leaves, branches, trunks and rhizomes of mature bamboos declined by 1.5, 23, 28 and 5 fold, respectively. The trunk contributed the most NSCs to the shoots. Our findings provide new insight and a possible rational mechanism explaining the “explosive growth” of Moso bamboo and shed new light on understanding the role of NSCs in the rapid growth of Moso bamboo. PMID:27181522

  5. Genome-wide identification of PHD-finger genes and expression pattern analysis under various treatments in moso bamboo (Phyllostachys edulis).

    Science.gov (United States)

    Gao, Yameng; Liu, Huanlong; Wang, Yujiao; Li, Fei; Xiang, Yan

    2018-02-01

    Plant homeodomain (PHD)-finger proteins are a class of important zinc-finger transcription factors responsible for regulating transcription and the chromatin state and responsive to various stresses. The family genes have been reported in many plants, but there is little information about PHD-finger genes in moso bamboo. In this study, 60 PHD-finger genes (PePHD1-60) were identified in moso bamboo and classified into 11 subfamilies (A-K) based on phylogenetic analysis. Gene structure and conserved motif analysis showed that these genes contained different numbers of introns but had similar motif organizations within each subfamily. Multiple sequence alignment revealed that the PHD-finger proteins possessed conserved structural domain sequences. In addition, the family underwent purifying selection during evolution and experienced a large-scale duplication event around 7.69-15.4 million years ago. Most importantly, the expression profiles of young leaves (YL), mature leaves (L), roots (R), stems (S), shoots (Sh) and rhizomes (Rh) displayed that they might involve in the formation of these tissues. Based on promoter analysis of 16 putative stress-related genes, quantitative real-time PCR assays were performed using moso bamboo leaves and showed that these genes were differentially regulated under abscisic acid (ABA), drought, low temperature and NaCl treatments. Therefore, the results reveal that PePHD genes play crucial roles in organ formation and response to multiple environmental stress conditions of moso bamboo, which will make for further function analysis of PHD-finger genes in plants. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Comparison of bamboo green, timber and yellow in sulfite, sulfuric acid and sodium hydroxide pretreatments for enzymatic saccharification

    Science.gov (United States)

    Zhiqiang Li; Zehui Jiang; Benhua Fei; Zhiyong Cai; Xuejun Pan

    2014-01-01

    The response and behavior of bamboo green, timber, and yellow of moso bamboo (Phyllostachys heterocycla) to three pretreatments, sulfite (SPORL), dilute acid (DA), and alkali (NaOH), were investigated and compared with varied chemical loadings at 180

  7. Thermal and hygroscopic expansion characteristics of bamboo

    OpenAIRE

    Huang, Puxi; Chang, Wen-shao; Ansell, Martin P.; Bowen, Chris R.; Chew, John Y. M.; Adamak, Vana i

    2017-01-01

    The expansion and contraction of bamboo caused by temperature and moisture variations must be evaluated\\ud if bamboo is to be utilised as a building material. However, detailed expansion data, especially data in the ascent and\\ud descent processes of temperature and moisture are unexplored. The aim of this study is to investigate the expansion\\ud characteristics of Phyllostachys edulis (Moso bamboo) in ascent and descent processes of temperature and moisture.\\ud The measurement of linear ther...

  8. The pyrolysis characteristics of moso bamboo

    Science.gov (United States)

    Zehui Jiang; Zhijia Liu; Benhua Fei; Zhiyong Cai; Yan Yu; Xing’e. Liu

    2012-01-01

    In the research, thermogravimetry (TG), a combination of thermogravimetry and Fourier transform infrared spectrometer (TG–FTIR) and X-ray diffraction (XRD) were used to investigate pyrolysis characteristics of moso bamboo (Phyllostachys pubescens). The Flynn–Wall–Ozawa and Coats–Redfern (modified) methods were used to determine the apparent activation energy (

  9. The delignification effects of white-rot fungal pretreatment on thermal characteristics of moso bamboo.

    Science.gov (United States)

    Zeng, Yelin; Yang, Xuewei; Yu, Hongbo; Zhang, Xiaoyu; Ma, Fuying

    2012-06-01

    Moso bamboo (Phyllostachys pubesescens) is a major bamboo species which is widely used for temporary scaffolding in China. Its fast growing and low ash content make moso bamboo a potential renewable energy resource. In present work, thermal behaviors of moso bamboo and its lignocellulosic fractions were investigated using thermogravimetric analysis. Furthermore, to understand whether the delignification effect of white-rot fungi can promote the thermal decomposition of bamboo especially the lignin component, the changes in lignocellulose components as well as thermal behaviors of bamboo and acid detergent lignin were investigated. The results showed that the white-rot fungal pretreatment is advantageous to thermal decomposition of lignin in bamboo. The weight losses of ADL samples became greater and the thermal processes were accelerated after biopretreatment. The total pyrolysis weight loss increased from 57.14% to 65.07% for Echinodontium taxodii 2538 treated bamboo ADL sample. Copyright © 2011. Published by Elsevier Ltd.

  10. PLANTATION MANAGEMENT AND BAMBOO RESOURCE ECONOMICS IN CHINA

    Directory of Open Access Journals (Sweden)

    Fidel Antonio Troya Mera

    2014-12-01

    Full Text Available Bamboos constitute a very important and versatile resource worldwide. A lot of Asian, African and South American people rely on bamboo products for their housing and farming tools. Meanwhile, the shoots of these plants are regarded as vegetables in East and South-East Asian nations. China has the greatest bamboo forest area (extension and the largest number of bamboo species (more than 590 species, many of them with significant economic importance, being Moso bamboo (Phyllostachys edulis, the most important bamboo species in China, due to its usage not only as timber but also for food. China has paid unprecedented attention in recent decades to bamboo forest management. The vast economic profits derived from silviculture have contributed much to rural development and poverty alleviation. Bamboo industry has become the pillar of economy in mountainous areas. Besides being a tool for poverty alleviation in rural areas, bamboo plantations are also a significant carbon sink and a key option to mitigate land degradation. This paper highlights such aspects as bamboo silviculture (fertilization, pruning, thinning, irrigation, shoot and timber harvesting its domestic and international applications (timber, plywood, food, paper, fuel, housing, etc. in daily life, and  its current role in Chinese industry and economy, without particular reference to any of its species.

  11. Bamboo Diversity in Sumba Island

    Directory of Open Access Journals (Sweden)

    KARSONO

    2005-04-01

    Full Text Available Bamboo is one of the economic plant which grow widely in the villages and have been used by the local people in the villages. Indonesia has about 10% of the world bamboo, 50% among them was endemic to Indonesia. According Widjaja (2001 Lesser Sunda Island which consists of Lombok, Sumbawa, Flores, Timor, Sumba and other small island eastern of Flores has 14 bamboo species, however, the information from the Sumba Island was lacking because of lacking data from this area except one species which was proposed by S. Soenarko in 1977 where the type specimens was collected by Iboet 443 in 1925. To fullfill data from the Sumba Island, an exploration to this area has been conducted on July 2003. The observation was done in West Sumba and East Sumba District, especially in two natioal parks at both districts. According to this inventory study in the Sumba Island, there were 10 bamboo species in Sumba Island, 1 species among them (Dinochloa sp. was a new species which has not been collected before, whereas the other species (Dinochloa kostermansiana has a new addition record from this area. The bamboo species in Sumba Island were Bambusa blumeana, Bambusa vulgaris, Dendocalamus asper, Dinochloa kostermansiana, Dinochloa sp., Gigantochloa atter, Nastus reholtumianus, Phyllostachys aurea, Schisotachyum brachycladum and Schizostachyum lima. From 10 recorded species, the genera Dinochloa and Nastus grow wild in the forest, whereas another species grow widly or cultivated in the garden. Furthermore, the genus Dinochloa was the only genus grow climbing. The endemic species found in Sumba Island was Nastus reholttumianus, whereas Dinochloa kostermansiana was also found in Flores Island.

  12. Radiocesium distribution in bamboo shoots after the Fukushima nuclear accident.

    Directory of Open Access Journals (Sweden)

    Takumi Higaki

    Full Text Available The distribution of radiocesium was examined in bamboo shoots, Phyllostachys pubescens, collected from 10 sites located some 41 to 1140 km from the Fukushima Daiichi nuclear power plant, Japan, in the Spring of 2012, 1 year after the Fukushima nuclear accident. Maximum activity concentrations for radiocesium ¹³⁴Cs and ¹³⁷Cs in the edible bamboo shoot parts, 41 km away from the Fukushima Daiichi plant, were in excess of 15.3 and 21.8 kBq/kg (dry weight basis; 1.34 and 1.92 kBq/kg, fresh weight, respectively. In the radiocesium-contaminated samples, the radiocesium activities were higher in the inner tip parts, including the upper edible parts and the apical culm sheath, than in the hardened culm sheath and underground basal parts. The radiocesium/potassium ratios also tended to be higher in the inner tip parts. The radiocesium activities increased with bamboo shoot length in another bamboo species, Phyllostachys bambusoides, suggesting that radiocesium accumulated in the inner tip parts during growth of the shoots.

  13. Current and potential carbon stocks in Moso bamboo forests in China.

    Science.gov (United States)

    Li, Pingheng; Zhou, Guomo; Du, Huaqiang; Lu, Dengsheng; Mo, Lufeng; Xu, Xiaojun; Shi, Yongjun; Zhou, Yufeng

    2015-06-01

    Bamboo forests provide important ecosystem services and play an important role in terrestrial carbon cycling. Of the approximately 500 bamboo species in China, Moso bamboo (Phyllostachys pubescens) is the most important one in terms of distribution, timber value, and other economic values. In this study, we estimated current and potential carbon stocks in China's Moso bamboo forests and in their products. The results showed that Moso bamboo forests in China stored about 611.15 ± 142.31 Tg C, 75% of which was in the top 60 cm soil, 22% in the biomass of Moso bamboos, and 3% in the ground layer (i.e., bamboo litter, shrub, and herb layers). Moso bamboo products store 10.19 ± 2.54 Tg C per year. The potential carbon stocks reach 1331.4 ± 325.1 Tg C, while the potential C stored in products is 29.22 ± 7.31 Tg C a(-1). Our results indicate that Moso bamboo forests and products play a critical role in C sequestration. The information gained in this study will facilitate policy decisions concerning carbon sequestration and management of Moso bamboo forests in China. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Bamboo composite materials for low-cost housing

    Science.gov (United States)

    Dagilis, Trevor David

    Investigation into the use of bamboo in composite panels for low-cost housing is presented. Information on the housing situation, the state of the forest resources, and the needs for low-cost housing are given for Ecuador, which is seen as representative of countries with a history of bamboo use, and potential for further development. Specifically bamboo particleboard using Guadua angustifolia, Dendrocalamus strictus, Phyllostachys pubescens, and Bambusa vulgaris manufactured with steam injection pressing is presented. High strength panels including waferboard made from randomly placed and oriented Bambusa vulgaris wafers, bamboo particleboard overlaid with woven bamboo mats, and "picada panels" were developed. Emphasis was given to short press times, low resin contents, and low product densities in comparison with previous technology to ensure economic viability. This investigation is a unique contribution to the science of composite products and has developed a number of panel products that are both technically and economically feasible. A discussion of economic, social and environmental issues surrounding bamboo industrialisation is also presented.

  15. Evaluation of bamboo genetic diversity using morphological and SRAP analyses.

    Science.gov (United States)

    Zhu, S; Liu, T; Tang, Q; Fu, L; Tang, Sh

    2014-03-01

    Bamboo is an important member of the giant grass subfamily Bambusoideae of Poaceae. In this study, 13 bamboo accessions belonging to 5 different genera were subjected to morphological evaluation and sequence-related amplified polymorphism (SRAP) analysis. Unweighted pair-group method of arithmetic averages (UPGMA) cluster analysis was used to construct a dendrogram and to estimate the genetic distances among accessions. On the basis of morphological characteristics, the 13 accessions were distinctly classified into 2 major clusters; 3 varieties, PPYX, PGNK, and PLYY were grouped as cluster A, and 10 accessions were categorized under cluster B. Similarity coefficients ranging from 0.23 to 0.96 indicated abundant genetic variation among bamboo varieties. Approximately 38 SRAP primer combinations generated 186 bands, with 150 bands (80.65%) showing polymorphisms among the 13 accessions. Based on SRAP analysis, 13 bamboo accessions were grouped into 3 major clusters. Five species comprised Cluster I (PASL, PLYY, PTSC, SCNK, and BMAK), which belongs to genus Phyllostachys. Cluster II consisted of 5 varieties, PASL, PLYY, PTSC, SCNK, and BMAK; Cluster III included 3 varieties, PGNK, PLSY, and BMRS. Comparison of the results generated by morphological and SRAP analyses showed that the classification based on SRAP markers was more concordant to the taxonomic results of Gamble than that performed using morphological characters, thus suggesting that SRAP analysis is more efficient in evaluating genetic diversity in bamboos compared to morphological analysis. The SRAP technique serves as an alternative method in assessing genetic diversity within bamboo collections.

  16. Diversity and Utilization of Bamboo Plants in The Area of Hotel in Kedewatan Village, Ubud, Bali

    Science.gov (United States)

    Utami, N. W. F.; Pradnyawathi, N. L. M.

    2017-10-01

    Bamboo or tiying (Balinese language) is a widely used non-timber plant in Indonesia especially in Bali. The presence of bamboo appertains to its ethno-botanical function of bamboo especially for rituals. However, there are other utilization of bamboo which is naturally grown or intentionally planted. Kedewatan as a famous place in northern Ubud, Bali have many lavish hotels with its natural environment and appealing place. The aims of this study is to invent bamboo species diversity and bamboo utilization on private areas of hotel in Kedewatan. Methods used in this study was field survey with observation and interview technic. Observation was implemented by purposive sampling methods by selecting hotel which adjacent to Ayung and Wos rivers. Interview was conducted with some key persons in charge on managing hotel garden. In addition, bamboo species identification was established through literature study. The results show that there are eleven bamboo species found on the survey area with most commonly employed species in the area were tiying tali (Gigantochloa apus (J.A. & J.H. Schultes) Kurz.) and tiying gading (Phyllostachys sulphurea (Carr.) A. e.t. C. Riv.) which were belong to exotic species. The areas which bamboo cultivated were welcome area as a hedgerow and near hotel lobby, between, outside and inside villa buildings, and naturally grown in the riverbanks with a good landscaping arrangement. Bamboo plantations were utilized to adorn and support the quality of the hotel building as well as to conserve soil and water along Ayung and Wos river canyons. The other utilization of bamboo was to facilitate ritual activity in Kedewatan village. They are allowed to ask for limited amount of bamboo culms with condition not to damage the physical appearance and function that desired by the hotel manager or hotel owner.

  17. 3D printed structures for modeling the Young's modulus of bamboo parenchyma.

    Science.gov (United States)

    Dixon, P G; Muth, J T; Xiao, X; Skylar-Scott, M A; Lewis, J A; Gibson, L J

    2018-03-01

    Bamboo is a sustainable, lightweight material that is widely used in structural applications. To fully develop micromechanical models for plants, such as bamboo, the mechanical properties of each individual type of tissue are needed. However, separating individual tissues and testing them mechanically is challenging. Here, we report an alternative approach in which micro X-ray computed tomography (µ-CT) is used to image moso bamboo (Phyllostachys pubescens). The acquired images, which correspond to the 3D structure of the parenchyma, are then transformed into physical, albeit larger scale, structures by 3D printing, and their mechanical properties are characterized. The normalized longitudinal Young's moduli of the fabricated structures depend on relative density raised to a power between 2 and 3, suggesting that elastic deformation of the parenchyma cellular structure involves considerable cell wall bending. The mechanical behavior of other biological tissues may also be elucidated using this approach. Bamboo is a lightweight, sustainable engineering material widely used in structural applications. By combining micro X-ray computed tomography and 3D printing, we have produced bamboo parenchyma mimics and characterized their stiffness. Using this approach, we gained insight into bamboo parenchyma tissue mechanics, specifically the cellular geometry's role in longitudinal elasticity. Copyright © 2017 Acta Materialia Inc. All rights reserved.

  18. Bamboo tea: reduction of taxonomic complexity and application of DNA diagnostics based on rbcL and matK sequence data

    Directory of Open Access Journals (Sweden)

    Thomas Horn

    2016-12-01

    Full Text Available Background Names used in ingredient lists of food products are trivial and in their nature rarely precise. The most recent scientific interpretation of the term bamboo (Bambusoideae, Poaceae comprises over 1,600 distinct species. In the European Union only few of these exotic species are well known sources for food ingredients (i.e., bamboo sprouts and are thus not considered novel foods, which would require safety assessments before marketing of corresponding products. In contrast, the use of bamboo leaves and their taxonomic origin is mostly unclear. However, products containing bamboo leaves are currently marketed. Methods We analysed bamboo species and tea products containing bamboo leaves using anatomical leaf characters and DNA sequence data. To reduce taxonomic complexity associated with the term bamboo, we used a phylogenetic framework to trace the origin of DNA from commercially available bamboo leaves within the bambusoid subfamily. For authentication purposes, we introduced a simple PCR based test distinguishing genuine bamboo from other leaf components and assessed the diagnostic potential of rbcL and matK to resolve taxonomic entities within the bamboo subfamily and tribes. Results Based on anatomical and DNA data we were able to trace the taxonomic origin of bamboo leaves used in products to the genera Phyllostachys and Pseudosasa from the temperate “woody” bamboo tribe (Arundinarieae. Currently available rbcL and matK sequence data allow the character based diagnosis of 80% of represented bamboo genera. We detected adulteration by carnation in four of eight tea products and, after adapting our objectives, could trace the taxonomic origin of the adulterant to Dianthus chinensis (Caryophyllaceae, a well known traditional Chinese medicine with counter indications for pregnant women.

  19. Chemical Constituents and Antioxidant Properties of Phyllostachys ...

    African Journals Online (AJOL)

    INTRODUCTION. Bamboo is a perennial plant of the Gramineae family that grows in China, Korea, Japan, and other parts of Southeast Asia, and represents an .... 13C-NMR analyses. Their chemical structures are displayed in Figure 1. O. O. OH. O. O. OH. H. H. O. H. OH. HO. O. O. A. B. C. 1. 2. 3. 4. 5. 6. 7. 8. 9. 2'. 1'. 3'. 4'.

  20. [Species-abundance distribution patterns along succession series of Phyllostachys glauca forest in a limestone mountain].

    Science.gov (United States)

    Shi, Jian-min; Fan, Cheng-fang; Liu, Yang; Yang, Qing-pei; Fang, Kai; Fan, Fang-li; Yang, Guang-yao

    2015-12-01

    To detect the ecological process of the succession series of Phyllostachys glauca forest in a limestone mountain, five niche models, i.e., broken stick model (BSM), niche preemption model (NPM), dominance preemption model (DPM), random assortment model (RAM) and overlap- ping niche model (ONM) were employed to describe the species-abundance distribution patterns (SDPs) of 15 samples. χ² test and Akaike information criterion (AIC) were used to test the fitting effects of the five models. The results showed that the optimal SDP models for P. glauca forest, bamboo-broadleaved mixed forest and broadleaved forest were DPM (χ² = 35.86, AIC = -69.77), NPM (χ² = 1.60, AIC = -94.68) and NPM (χ² = 0.35, AIC = -364.61), respectively. BSM also well fitted the SDP of bamboo-broadleaved mixed forest and broad-leaved forest, while it was unsuitable to describe the SDP of P. glauca forest. The fittings of RAM and ONM in the three forest types were all rejected by the χ² test and AIC. With the development of community succession from P. glauca forest to broadleaved forest, the species richness and evenness increased, and the optimal SDP model changed from DPM to NPM. It was inferred that the change of ecological process from habitat filtration to interspecific competition was the main driving force of the forest succession. The results also indicated that the application of multiple SDP models and test methods would be beneficial to select the best model and deeply understand the ecological process of community succession.

  1. Asymmetric flexural behavior from bamboo's functionally graded hierarchical structure: underlying mechanisms.

    Science.gov (United States)

    Habibi, Meisam K; Samaei, Arash T; Gheshlaghi, Behnam; Lu, Jian; Lu, Yang

    2015-04-01

    As one of the most renewable resources on Earth, bamboo has recently attracted increasing interest for its promising applications in sustainable structural purposes. Its superior mechanical properties arising from the unique functionally-graded (FG) hierarchical structure also make bamboo an excellent candidate for bio-mimicking purposes in advanced material design. However, despite its well-documented, impressive mechanical characteristics, the intriguing asymmetry in flexural behavior of bamboo, alongside its underlying mechanisms, has not yet been fully understood. Here, we used multi-scale mechanical characterizations assisted with advanced environmental scanning electron microscopy (ESEM) to investigate the asymmetric flexural responses of natural bamboo (Phyllostachys edulis) strips under different loading configurations, during "elastic bending" and "fracture failure" stages, with their respective deformation mechanisms at microstructural level. Results showed that the gradient distribution of the vascular bundles along the thickness direction is mainly responsible for the exhibited asymmetry, whereas the hierarchical fiber/parenchyma cellular structure plays a critical role in alternating the dominant factors for determining the distinctly different failure mechanisms. A numerical model has been likewise adopted to validate the effective flexural moduli of bamboo strips as a function of their FG parameters, while additional experiments on uniaxial loading of bamboo specimens were performed to assess the tension-compression asymmetry, for further understanding of the microstructure evolution of bamboo's outer and innermost layers under different bending states. This work could provide insights to help the processing of novel bamboo-based composites and enable the bio-inspired design of advanced structural materials with desired flexural behavior. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Application of bamboo for flexural and shear reinforcement in concrete beams

    Science.gov (United States)

    Schneider, Nathan Alan

    As the developing world is industrializing and people migrate to cities, the need for infrastructure is growing quickly and concrete has become one of the most widely used construction materials. One poor construction practice observed widely across the developing world is the minimal use of reinforcement for concrete structures due to the high cost of steel. As a low-cost, high-performance material with good mechanical properties, bamboo has been investigated as an alternative to steel for reinforcing concrete. The goal of this research is to add to the knowledge base of bamboo reinforced concrete (BRC) by investigating a unique stirrup design and testing the lap-splicing of flexural bamboo reinforcement in concrete beams. Component tests on the mechanical properties of Moso bamboo (Phyllostachys edulis) were performed, including tensile tests and pull-out tests. The results of the component tests were used to design and construct 13 BRC beams which were tested under monotonic gravity loading in 3 and 4-point bending tests. Three types of beams were designed and tested, including shear controlled, flexure controlled, and lap-spliced flexure controlled beams. The test results indicated that bamboo stirrups increased unreinforced concrete beam shear capacities by up to 259%. The flexural bamboo increased beam capacities by up to 242% with an optimal reinforcement ratio of up to 3.9%, assuming sufficient shear capacity. Limitations of the bamboo reinforcement included water absorption as well as poor bonding capability to the concrete. The test results show that bamboo is a viable alternative to steel as tensile reinforcement for concrete as it increases the ultimate capacity of the concrete, allows for high deflections and cracks, and provides warning of impending structural failure.

  3. The bamboo in Colombia

    Directory of Open Access Journals (Sweden)

    Ximena Londoño

    2011-07-01

    Full Text Available Bamboo is a self-sustaining plant of fast growing which works in network. With the bamboo can be solved the environmental, social and economic problems affecting a place, a country or region. Colombia is the second country in America in bamboo, after Brazil, with 18 genera, 105 species. This paper describes the development of bamboo / guadua in Colombia over the past 25 years, noting the factors that have contributed positively to its development. This paper describes the diversity of Bambusoideae in Colombia and highlights the priority species with emphasis in Guadua angustifolia Kunth, the most used and promising species. Key words: Bambusoideae, Guadua angustifolia

  4. [Effects of intensive management on abundance and composition of soil N2-fixing bacteria in Phyllostachys heterocycla stands].

    Science.gov (United States)

    He, Dong-hua; Chen, Jun-hui; Xu, Qiu-fang; Shen, Qiu-lan; Li, Yong-chun; Mao, Xin-wei; Cheng, Min

    2015-10-01

    Denaturing gradient-gel electrophoresis and real-time quantitative PCR (qPCR) were employed to determine the effects of intensive management on soil N2-fixing bacteria in a moso bamboo (Phyllostachys heterocycla) plantation. Soil samples were collected from the moso bamboo stands receiving 0 (CK), 10, 15, 20, and 25 years of intensive management. It was found that intensive management caused a strong decrease in soil pH but a general increase in soil available nutrients. The structure of the N2-fixing bacterial communities in the soils having received 10 and 25 years of intensive management were quite similar to that from the CK; however, those from 15 and 20 years of intensification differed from the CK. With increasing time of intensive management, the abundance and diversity of the nifH gene at first decreased and then increased, with the minimum values being observed after 15 years of intensive management, indicating the eventual resiliency of N2-fixing bacteria to disturbance induced by intensive management. Redundancy analysis indicated that soil available potassium, available nitrogen, nitrite nitrogen, and ammonium nitrogen were more closely related to the changes of N2-fixing bacterial community structure compared with the other soil indices measured. In conclusion, the soil N2-fixing bacterial community was negatively affected by intensive management in the short term, but could recover in the long term.

  5. [Influence of mulching management on the relationships between foliar non-structural carbohydrates and N, P concentrations in Phyllostachys violascens stand].

    Science.gov (United States)

    Guo, Zi-wu; Hu, Jun-jing; Yang, Qing-ping; Li, Ying-chun; Chen, Shuang-lin; Chen, Wei-jun

    2015-04-01

    To understand the physiological adaptive mechanism of Phyllostachys violascens to intensive mulching management, the effect of mulching management (CK, 1, 3 and 6 years) on the concentrations and ratios of non-structural carbohydrates (NSC), nitrogen (N) and phosphorus (P) in bamboo foliage, and their stoichiometry was investigated. The results showed the concentrations of NSC and soluble sugar increased, while the starch content and N/P decreased markedly in bamboo stand with 1-year mulching, compared to CK stand, which suggested the N limitation to bamboo growth was strengthened. Foliar soluble sugar content decreased significantly, while the starch content increased dramatically, and the NSC content by per unit mass of N and P reached the maximum in the bamboo stand with 3-year mulching, compared to all other treatments. Foliar NSC and soluble sugar contents decreased significantly, while foliar starch content and N/P increased dramatically in the stand with 6-year mulching, which suggested the P limitation to bamboo growth was strengthened. Foliar NSC content was positively correlated with N and P concentrations in a short-term mulching management stand (≤ 3 years), while showed negative relationship with N/P. The foliar starch content in the stand with 6-year mulching was negatively correlated with N and P contents, while was positively correlated with N/P. The results indicated that short-term mulching management accelerated the accumulation of soluble sugar and decomposition of starch in foliage, thus the growth and activity of Ph. violascens was enhanced greatly. Long-term mulching management promoted the starch accumulation, which led to the transition from N limitation to P limitation for bamboo growth. In summary, long-term (6 years) mulching management caused the decrease of growth and activity of Ph. violascens dramatically, thus enhancing the bamboo stand degradation. The utilization efficiency of N and P reached the highest in the stand with 3-year

  6. Study on bamboo gluing performance numerical simulation

    Science.gov (United States)

    Zhao, Z. R.; Sun, W. H.; Sui, X. M.; Zhang, X. F.

    2018-01-01

    Bamboo gluing timber is a green building materials, can be widely used as modern building beams and columns. The existing bamboo gluing timber is usually produced by bamboo columns or bamboo bundle rolled into by bamboo columns. The performance of new bamboo gluing timber is decided by bamboo adhesion character. Based on this, the cohesive damage model of bamboo gluing is created, experiment results are used to validate the model. The model proposed in the work is agreed on the experimental results. Different bamboo bonding length and bamboo gluing performance is analysed. The model is helpful to bamboo integrated timber application.

  7. Effects of Carbonization Parameters of Moso-Bamboo-Based Porous Charcoal on Capturing Carbon Dioxide

    Directory of Open Access Journals (Sweden)

    Pei-Hsing Huang

    2014-01-01

    Full Text Available This study experimentally analyzed the carbon dioxide adsorption capacity of Moso-bamboo- (Phyllostachys edulis- based porous charcoal. The porous charcoal was prepared at various carbonization temperatures and ground into powders with 60, 100, and 170 meshes, respectively. In order to understand the adsorption characteristics of porous charcoal, its fundamental properties, namely, charcoal yield, ash content, pH value, Brunauer-Emmett-Teller (BET surface area, iodine number, pore volume, and powder size, were analyzed. The results show that when the carbonization temperature was increased, the charcoal yield decreased and the pH value increased. Moreover, the bamboo carbonized at a temperature of 1000°C for 2 h had the highest iodine sorption value and BET surface area. In the experiments, charcoal powders prepared at various carbonization temperatures were used to adsorb 1.854% CO2 for 120 h. The results show that the bamboo charcoal carbonized at 1000°C and ground with a 170 mesh had the best adsorption capacity, significantly decreasing the CO2 concentration to 0.836%. At room temperature and atmospheric pressure, the Moso-bamboo-based porous charcoal exhibited much better CO2 adsorption capacity compared to that of commercially available 350-mesh activated carbon.

  8. A Study of Phytolith-occluded Carbon Stock in Monopodial Bamboo in China

    Science.gov (United States)

    Yang, Jie; Wu, Jiasen; Jiang, Peikun; Xu, Qiufang; Zhao, Peiping; He, Shanqiong

    2015-08-01

    Bamboo plants have been proven to be rich in phytolith-occluded carbon (PhytOC) and play an important role in reducing atmospheric concentrations of CO2. The object of this paper was to obtain more accurate methods for estimation of PhytOC stock in monopodial bamboo because previous studies may have underestimated it. Eight monopodial bamboo species, widely distributed across China, were selected and sampled for this study in their own typical distribution areas. There were differences (P  branch > culm. The average PhytOC stored in aboveground biomass and PhytOC production flux contributed by aboveground biomass varied substantially, and they were 3.28 and 1.57 times corresponding dates in leaves, with the highest in Phyllostachys glauca McClure and lowest in Indocalamus tessellatus (Munro) Keng f. It can be concluded that it could be more accurate to estimate PhytOC stock or PhytOC production flux by basing on whole aboveground biomass rather than on leaf or leaf litter only. The whole biomass should be collected for more estimation of bamboo PhytOC sequestration capacity in the future.

  9. Effects of carbonization parameters of Moso-bamboo-based porous charcoal on capturing carbon dioxide.

    Science.gov (United States)

    Huang, Pei-Hsing; Jhan, Jhih-Wei; Cheng, Yi-Ming; Cheng, Hau-Hsein

    2014-01-01

    This study experimentally analyzed the carbon dioxide adsorption capacity of Moso-bamboo- (Phyllostachys edulis-) based porous charcoal. The porous charcoal was prepared at various carbonization temperatures and ground into powders with 60, 100, and 170 meshes, respectively. In order to understand the adsorption characteristics of porous charcoal, its fundamental properties, namely, charcoal yield, ash content, pH value, Brunauer-Emmett-Teller (BET) surface area, iodine number, pore volume, and powder size, were analyzed. The results show that when the carbonization temperature was increased, the charcoal yield decreased and the pH value increased. Moreover, the bamboo carbonized at a temperature of 1000(°)C for 2 h had the highest iodine sorption value and BET surface area. In the experiments, charcoal powders prepared at various carbonization temperatures were used to adsorb 1.854% CO2 for 120 h. The results show that the bamboo charcoal carbonized at 1000(°)C and ground with a 170 mesh had the best adsorpt on capacity, significantly decreasing the CO2 concentration to 0.836%. At room temperature and atmospheric pressure, the Moso-bamboo-based porous charcoal exhibited much better CO2 adsorption capacity compared to that of commercially available 350-mesh activated carbon.

  10. Biobased bamboo composite development

    Energy Technology Data Exchange (ETDEWEB)

    Vaidya, Uday Kumar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-10-01

    Resource Fiber LLC identified that bamboo fiber could be integrated with synthetic materials to create stronger, lighter weight and “greener” products. In this Phase I work, Resource Fiber collaborated with the Manufacturing Demonstration Facility of Oak Ridge National Laboratory and the University of Tennessee (MDF). The goal of the collaboration was to conduct proof of concept studies on bamboo fibers with thermoset and thermoplastic resins with a view to create commercial products.

  11. Fine root dynamics in moso bamboo and Japanese cedar forest by scanner method in central Taiwan

    Science.gov (United States)

    Chen, Zhi-Wei; Lin, Po-Hsuan; Kume, Tomonori

    2017-04-01

    Phyllostachys pubescens is one of the most important economic plant in the world. Phyllostachys pubescens originates from China and it had been introduced to neighbor countries about three hundred ago due to its economic value. But substantial bamboo forests were abandoned due to declines in demand. These unmanaged bamboo forests have been expanding to adjacent original forests in northern Taiwan. This vegetation alternation may not only decrease the local biodiversity but also affect the carbon cycle. Fine roots are responsible for water and nutrients acquisition and forming the most active part of the whole root system. The characteristics of fine roots are non-woody, small diameter and short lifespan. When roots keep producing new roots and replacing old roots, carbon and nutrients was transported into soil. Consequently, fine root production is one of the important component to understand the below-ground carbon cycle. However, there is few studies about fine root production in moso bamboo forests. We still lack effective method to obtain quantitative and objective data in Taiwan. It severely limits us to understand the below-ground carbon dynamics there. Minirhizotrons method has been used to investigate fine root dynamics by inserting transparent tubes into soil and by comparing changes in root length in images taken by micro-camera. But this method has some shortcomings; i.e. Most of image analysis are conducted manually and time-consuming. And it is difficult to estimate the stand level fine root production from small observation view. A new method "scanner method", which collect A4-size image (bigger than minirhizotrons) can overcome some parts of the shortcoming of minirhizotrons. The transparent acrylic box with A4-box view is inserted into soil and the interface between soil and box is scanned by commercial scanner. We can monitor the total projected root area, growth and decomposition separately by series of images. The primary objective of this study

  12. Variation in Vegetation Structure and Soil Properties, and the Relation Between Understory Plants and Environmental Variables Under Different Phyllostachys pubescens Forests in Southeastern China

    Science.gov (United States)

    Zhang, Changshun; Xie, Gaodi; Fan, Shaohui; Zhen, Lin

    2010-04-01

    Biodiversity maintenance and soil improvement are key sustainable forestry objectives. Research on the effects of bamboo forest management on plant diversity and soil properties are therefore necessary in bamboo-growing regions, such as southeastern China’s Shunchang County, that have not been studied from this perspective. We analyzed the effects of different Phyllostachys pubescens proportions in managed forests on vegetation structure and soil properties using pure Cunninghamia lanceolata forests as a contrast, and analyzed the relation between understory plants and environmental variables (i.e., topography, stand and soil characteristics) by canonical correspondence analysis (CCA). The forest with 80% P. pubescens and 20% hardwoods (such as Phoebe bournei, Jatropha curcas, Schima superba) maintained the highest plant diversity and best soil properties, with significantly higher plant diversity than the C. lanceolata forest, and better soil physicochemical and biological properties. The distribution of understory plants is highly related to environmental factors. Silvicultural disturbance strongly influenced the ability of different bamboo forests to maintain biodiversity and soil quality under extensive management, and the forest responses to management were consistent with the intermediate-disturbance hypothesis (i.e., diversity and soil properties were best at intermediate disturbance levels). Our results suggest that biodiversity maintenance and soil improvement are important management goals for sustainable bamboo management. To achieve those objectives, managers should balance the inputs and outputs of nutrients and protect understory plants by using appropriate fertilizer (e.g., organic fertilizer), adjusting stand structure, modifying utilization model and the harvest time, and controlling the intensity of culms and shoots harvests.

  13. Diversity and antimicrobial activity of culturable endophytic fungi isolated from moso bamboo seeds.

    Directory of Open Access Journals (Sweden)

    Xiao-Ye Shen

    Full Text Available Bamboos, regarded as therapeutic agents in ethnomedicine, have been used to inhibit inflammation and enhance natural immunity for a long time in Asia, and there are many bamboo associated fungi with medical and edible value. In the present study, a total of 350 fungal strains were isolated from the uncommon moso bamboo (Phyllostachys edulis seeds for the first time. The molecular diversity of these endophytic fungi was investigated and bioactive compound producers were screened for the first time. All the fungal endophytes were categorized into 69 morphotypes according to culturable characteristics and their internal transcriber spacer (ITS regions were analyzed by BLAST search with the NCBI database. The fungal isolates showed high diversity and were divided in Ascomycota (98.0% and Basidiomycota (2.0%, including at least 19 genera in nine orders. Four particular genera were considered to be newly recorded bambusicolous fungi, including Leptosphaerulina, Simplicillium, Sebacina and an unknown genus in Basidiomycetes. Furthermore, inhibitory effects against clinical pathogens and phytopathogens were screened preliminarily and strains B09 (Cladosporium sp., B34 (Curvularia sp., B35 (undefined genus 1, B38 (Penicillium sp. and zzz816 (Shiraia sp. displayed broad-spectrum activity against clinical bacteria and yeasts by the agar diffusion method. The crude extracts of isolates B09, B34, B35, B38 and zzz816 under submerged fermentation, also demonstrated various levels of bioactivities against bambusicolous pathogenic fungi. This study is the first report on the antimicrobial activity of endophytic fungi associated with moso bamboo seeds, and the results show that they could be exploited as a potential source of bioactive compounds and plant defense activators. In addition, it is the first time that strains of Shiraia sp. have been isolated and cultured from moso bamboo seeds, and one of them (zzz816 could produce hypocrellin A at high yield, which

  14. Diversity and antimicrobial activity of culturable endophytic fungi isolated from moso bamboo seeds.

    Science.gov (United States)

    Shen, Xiao-Ye; Cheng, Yan-Lin; Cai, Chun-Ju; Fan, Li; Gao, Jian; Hou, Cheng-Lin

    2014-01-01

    Bamboos, regarded as therapeutic agents in ethnomedicine, have been used to inhibit inflammation and enhance natural immunity for a long time in Asia, and there are many bamboo associated fungi with medical and edible value. In the present study, a total of 350 fungal strains were isolated from the uncommon moso bamboo (Phyllostachys edulis) seeds for the first time. The molecular diversity of these endophytic fungi was investigated and bioactive compound producers were screened for the first time. All the fungal endophytes were categorized into 69 morphotypes according to culturable characteristics and their internal transcriber spacer (ITS) regions were analyzed by BLAST search with the NCBI database. The fungal isolates showed high diversity and were divided in Ascomycota (98.0%) and Basidiomycota (2.0%), including at least 19 genera in nine orders. Four particular genera were considered to be newly recorded bambusicolous fungi, including Leptosphaerulina, Simplicillium, Sebacina and an unknown genus in Basidiomycetes. Furthermore, inhibitory effects against clinical pathogens and phytopathogens were screened preliminarily and strains B09 (Cladosporium sp.), B34 (Curvularia sp.), B35 (undefined genus 1), B38 (Penicillium sp.) and zzz816 (Shiraia sp.) displayed broad-spectrum activity against clinical bacteria and yeasts by the agar diffusion method. The crude extracts of isolates B09, B34, B35, B38 and zzz816 under submerged fermentation, also demonstrated various levels of bioactivities against bambusicolous pathogenic fungi. This study is the first report on the antimicrobial activity of endophytic fungi associated with moso bamboo seeds, and the results show that they could be exploited as a potential source of bioactive compounds and plant defense activators. In addition, it is the first time that strains of Shiraia sp. have been isolated and cultured from moso bamboo seeds, and one of them (zzz816) could produce hypocrellin A at high yield, which is

  15. Volatile organic compound emissions from elephant grass and bamboo cultivars used as potential bioethanol crop

    Science.gov (United States)

    Crespo, E.; Graus, M.; Gilman, J. B.; Lerner, B. M.; Fall, R.; Harren, F. J. M.; Warneke, C.

    2013-02-01

    Volatile organic compound (VOC) emissions from elephant grass (Miscanthus gigantus) and black bamboo (Phyllostachys nigra) were measured online in semi-field chamber and plant enclosure experiments during growth and harvest using proton-transfer reaction mass spectrometry (PTR-MS), proton-transfer reaction ion-trap mass spectrometry (PIT-MS) and gas chromatography-mass spectrometry (GC-MS). Both cultivars are being considered for second-generation biofuel production. Before this study, no information was available on their yearly VOC emissions. This exploratory investigation shows that black bamboo is a strong isoprene emitter (daytime 28,516 ng gdwt-1 h-1) and has larger VOC emissions, especially for wound compounds from the hexanal and hexenal families, than elephant grass. Daytime emissions of methanol, acetaldehyde, acetone + propanal and acetic acid of black bamboo were 618, 249, 351, and 1034 ng gdwt-1 h-1, respectively. In addition, it is observed that elephant grass VOC emissions after harvesting strongly depend on the seasonal stage. Not taking VOC emission variations throughout the season for annual and perennial species into account, may lead to an overestimation of the impact on local air quality in dry periods. In addition, our data suggest that the use of perennial grasses for extensive growing for biofuel production have lower emissions than woody species, which might be important for regional atmospheric chemistry.

  16. Investigating pyrolysis characteristics of moso bamboo through TG-FTIR and Py-GC/MS.

    Science.gov (United States)

    Liang, Fang; Wang, Ruijuan; Hongzhong, Xiang; Yang, Xiaomeng; Zhang, Tao; Hu, Wanhe; Mi, Bingbing; Liu, Zhijia

    2018-05-01

    This study was carried out to investigate pyrolysis characteristics of moso bamboo (Phyllostachys pubescens), including outer layer (OB), middle layer (MB) and inner layer (IB) and bamboo leaves (BL), through TG-FTIR and Py-GC/MS. The results showed that 70% of weight loss occurred at rapid pyrolysis stage with temperature of 200-400 °C. With increase in heating rate, pyrolysis process shifted toward higher temperature. IB, OB, MB and BL had a different activation energy at different conversion rates. BL had a higher activation energy than IB, OB and MB. The volatiles of bamboo was complicated with 2-30 of C atoms. IB, OB and MB mainly released benzofuran, hydroxyacetaldehyde and 2-Pentanone. BL released furan, acetic acid and phenol. The main pyrolysis products included H 2 O, CH 4 , CO 2 , CO, carboxylic acids, NO, NO 2 . Pyrolysis products of IB was the most and that of BL was the lowest. MB had the lowest pyrolysis temperature. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Effervescent Granules Prepared Using Eucommia ulmoides Oliv. and Moso Bamboo Leaves: Hypoglycemic Activity in HepG2 Cells

    Directory of Open Access Journals (Sweden)

    Xiang-Zhou Li

    2016-01-01

    Full Text Available Eucommia ulmoides Oliv. (E. ulmoides Oliv. and moso bamboo (Phyllostachys pubescens leaves are used as folk medicines in central-western China to treat diabetes. To investigate the hypoglycemic activity of the effervescent granules prepared using E. ulmoides Oliv. and moso bamboo leaves (EBEG in HepG2 cells, EBEG were prepared with 5% of each of polysaccharides and chlorogenic acids from moso bamboo and E. ulmoides Oliv. leaves, respectively. HepG2 cells cultured in a high-glucose medium were classified into different groups. The results displayed EBEG-treated cells showed better glucose utilization than the negative controls; thus, the hypoglycemic effect of EBEG was much greater than that of granules prepared using either component alone, thereby indicating that this effect was due to a synergistic action of the components. Further, glucose consumption levels in the cells treated with EBEG (156.35% at 200 μg/mL and the positive controls (metformin, 162.29%; insulin, 161.52% were similar. Thus, EBEG exhibited good potential for use as a natural antidiabetic agent. The hypoglycemic effect of EBEG could be due to the synergistic action of polysaccharides from the moso bamboo leaves and chlorogenic acids from E. ulmoides Oliv. leaves via the inhibition of alpha-glucosidase and glucose-6-phosphate displacement enzyme.

  18. Benefits from additives and xylanase during enzymatic hydrolysis of bamboo shoot and mature bamboo.

    Science.gov (United States)

    Li, Kena; Wang, Xiao; Wang, Jingfeng; Zhang, Junhua

    2015-09-01

    Effects of additives (BSA, PEG 6000, and Tween 80) on enzymatic hydrolysis of bamboo shoot and mature bamboo fractions (bamboo green, bamboo timber, bamboo yellow, bamboo node, and bamboo branches) by cellulases and/or xylanase were evaluated. The addition of additives was comparable to the increase of cellulase loadings in the conversion of cellulose and xylan in bamboo fractions. Supplementation of xylanase (1 mg/g DM) with cellulases (10 FPU/g DM) in the hydrolysis of bamboo fractions was more efficient than addition of additives in the production of glucose and xylose. Moreover, addition of additives could further increase the glucose release from different bamboo fractions by cellulases and xylanase. Bamboo green exhibited the lowest hydrolyzability. Almost all of the polysaccharides in pretreated bamboo shoot fractions were hydrolyzed by cellulases with the addition of additives or xylanase. Additives and xylanase showed great potential for reducing cellulase requirement in the hydrolysis of bamboo. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Overexpression of PvPin1, a Bamboo Homolog of PIN1-Type Parvulin 1, Delays Flowering Time in Transgenic Arabidopsis and Rice

    Directory of Open Access Journals (Sweden)

    Zhigang Zheng

    2017-09-01

    Full Text Available Because of the long and unpredictable flowering period in bamboo, the molecular mechanism of bamboo flowering is unclear. Recent study showed that Arabidopsis PIN1-type parvulin 1 (Pin1At is an important floral activator and regulates floral transition by facilitating the cis/trans isomerization of the phosphorylated Ser/Thr residues preceding proline motifs in suppressor of overexpression of CO 1 (SOC1 and agamous-like 24 (AGL24. Whether bamboo has a Pin1 homolog and whether it works in bamboo flowering are still unknown. In this study, we cloned PvPin1, a homolog of Pin1At, from Phyllostachys violascens (Bambusoideae. Bioinformatics analysis showed that PvPin1 is closely related to Pin1-like proteins in monocots. PvPin1 was widely expressed in all tested bamboo tissues, with the highest expression in young leaf and lowest in floral bud. Moreover, PvPin1 expression was high in leaves before bamboo flowering then declined during flower development. Overexpression of PvPin1 significantly delayed flowering time by downregulating SOC1 and AGL24 expression in Arabidopsis under greenhouse conditions and conferred a significantly late flowering phenotype by upregulating OsMADS56 in rice under field conditions. PvPin1 showed subcellular localization in both the nucleus and cytolemma. The 1500-bp sequence of the PvPin1 promoter was cloned, and cis-acting element prediction showed that ABRE and TGACG-motif elements, which responded to abscisic acid (ABA and methyl jasmonate (MeJA, respectively, were characteristic of P. violascens in comparison with Arabidopsis. On promoter activity analysis, exogenous ABA and MeJA could significantly inhibit PvPin1 expression. These findings suggested that PvPin1 may be a repressor in flowering, and its delay of flowering time could be regulated by ABA and MeJA in bamboo.

  20. Bamboo Diversity in Sumba Island

    OpenAIRE

    KARSONO; ELIZABETH A. WIDJAJA

    2005-01-01

    Bamboo is one of the economic plant which grow widely in the villages and have been used by the local people in the villages. Indonesia has about 10% of the world bamboo, 50% among them was endemic to Indonesia. According Widjaja (2001) Lesser Sunda Island which consists of Lombok, Sumbawa, Flores, Timor, Sumba and other small island eastern of Flores has 14 bamboo species, however, the information from the Sumba Island was lacking because of lacking data from this area except one species whi...

  1. Engineered bamboo for shell structures

    OpenAIRE

    Sharma, B; Konstantatou, Marina; Reynolds, M; Ramage, M

    2015-01-01

    Engineered bamboo combines the benefits of a natural material with the advantages of a laminated composite, resulting in an efficient, light material well-suited to gridshell structures. Bamboo is a rapidly renewable material that can be harvested every 4-5 years. The round culm can either be used as is or it can be processed into a variety of laminated products. Engineered bamboo is currently promoted as a structural alternative to timber and glue-laminated timber, but also has potential in ...

  2. Identification, characterization and gene expression analyses of important flowering genes related to photoperiodic pathway in bamboo.

    Science.gov (United States)

    Dutta, Smritikana; Biswas, Prasun; Chakraborty, Sukanya; Mitra, Devrani; Pal, Amita; Das, Malay

    2018-03-10

    Bamboo is an important member of the family Poaceae and has many inflorescence and flowering features rarely observed in other plant groups. It retains an unusual form of perennialism by having a long vegetative phase that can extend up to 120 years, followed by flowering and death of the plants. In contrast to a large number of studies conducted on the annual, reference plants Arabidopsis thaliana and rice, molecular studies to characterize flowering pathways in perennial bamboo are lacking. Since photoperiod plays a crucial role in flower induction in most plants, important genes involved in this pathway have been studied in the field grown Bambusa tulda, which flowers after 40-50 years. We identified several genes from B. tulda, including four related to the circadian clock [LATE ELONGATED HYPOCOTYL (LHY), TIMING OF CAB EXPRESSION1 (TOC1), ZEITLUPE (ZTL) and GIGANTEA (GI)], two circadian clock response integrators [CONSTANS A (COA), CONSTANS B (COB)] and four floral pathway integrators [FLOWERING LOCUS T1, 2, 3, 4 (FT1, 2, 3, 4)]. These genes were amplified from either gDNA and/or cDNA using degenerate as well as gene specific primers based on homologous sequences obtained from related monocot species. The sequence identity and phylogenetic comparisons revealed their close relationships to homologs identified in the temperate bamboo Phyllostachys edulis. While the four BtFT homologs were highly similar to each other, BtCOA possessed a full-length B-box domain that was truncated in BtCOB. Analysis of the spatial expression of these genes in selected flowering and non-flowering tissue stages indicated their possible involvement in flowering. The diurnal expression patterns of the clock genes were comparable to their homologs in rice, except for BtZTL. Among multiple BtCO and BtFT homologs, the diurnal pattern of only BtCOA and BtFT3, 4 were synchronized in the flower inductive tissue, but not in the non-flowering tissues. This study elucidates the photoperiodic

  3. Optimisation of pressurised liquid extraction of antioxidants from black bamboo leaves.

    Science.gov (United States)

    Shang, Ya Fang; Kim, Sang Min; Um, Byung-Hun

    2014-07-01

    To develop an efficient green extraction approach for recovering bioactive compounds from natural plants, the potential of using pressurised liquid extraction (PLE) was examined on black bamboo (Phyllostachys nigra) leaves, with ethanol/water as solvents. The superheated PLE process showed a higher recovery of most constituents and antioxidative activity, compared to reflux extraction, with a significantly improved recovery of the total phenolic (TP) and flavonoid (TF) content and DPPH radical scavenging ability. For a broad range of ethanol aqueous solutions and temperatures, 50% EtOH and 200°C (static time: 25min) gave the best performance, in terms of the TP and TF (75% EtOH) content yield and DPPH scavenging ability (25% EtOH). Under the optimised extraction conditions, eight main antioxidative compounds were isolated and identified with HPLC-ABTS(+) assay guidance and assessed for radical scavenging activity. The superheated extraction process for black bamboo leaves enhanced the antioxidant properties by increasing the extraction of the phenolic components. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Assessment of integrated process based on autohydrolysis and robust delignification process for enzymatic saccharification of bamboo.

    Science.gov (United States)

    Chen, Tian-Ying; Wen, Jia-Long; Wang, Bing; Wang, Han-Min; Liu, Chuan-Fu; Sun, Run-Cang

    2017-11-01

    In this study, bamboo (Phyllostachys pubescens) was successfully deconstructed using an integrated process (autohydrolysis and subsequent delignification). Xylooligosaccharides, high-purity lignin, and digestible substrates for producing glucose can be consecutively collected during the integrated process. The structural change and fate of lignin during autohydrolysis process was deeply investigated. Additionally, the structural characteristics and active functional groups of the lignin fractions obtained by these delignification processes were thoroughly investigated by NMR (2D-HSQC and 31 P NMR) and GPC techniques. The chemical compositions (S, G, and H) and major linkages (β-O-4, β-β, β-5, etc.) were thoroughly assigned and the frequencies of the major lignin linkages were quantitatively compared. Considering the structural characteristics and molecular weights of the lignin as well as enzymatic saccharification ratio of the substrate, the combination of autohydrolysis and organic base-catalyzed ethanol pretreatment was deemed as a promising biorefinery mode in the future based on bamboo feedstock. Copyright © 2017. Published by Elsevier Ltd.

  5. Bamboo: An Overlooked Biomass Resource?

    Energy Technology Data Exchange (ETDEWEB)

    Scurlock, J.M.O.

    2000-02-01

    Bamboo is the common term applied to a broad group (1250 species) of large woody grasses, ranging from 10 cm to 40 m in height. Already in everyday use by about 2.5 billion people, mostly for fiber and food within Asia, bamboo may have potential as a bioenergy or fiber crop for niche markets, although some reports of its high productivity seem to be exaggerated. Literature on bamboo productivity is scarce, with most reports coming from various parts of Asia. There is little evidence overall that bamboo is significantly more productive than many other candidate bioenergy crops, but it shares a number of desirable fuel characteristics with certain other bioenergy feedstocks, such as low ash content and alkali index. Its heating value is lower than many woody biomass feedstocks but higher than most agricultural residues, grasses and straws. Although non-fuel applications of bamboo biomass may be actually more profitable than energy recovery, there may also be potential for co-productio n of bioenergy together with other bamboo processing. A significant drawback is the difficulty of selective breeding, given the lack of knowledge of flowering physiology. Further research is also required on propagation techniques, establishment and stand management, and mechanized harvesting needs to be developed.

  6. Towards a new tectonics in bamboo

    DEFF Research Database (Denmark)

    Høgfeldt Hansen, Leif; Kim, Sara

    2016-01-01

    Reflective description of the unique development of three constructions in bamboo - in India, Italy and South Korea......Reflective description of the unique development of three constructions in bamboo - in India, Italy and South Korea...

  7. Bamboo Production : Livelihood Diversification for Smallholder ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    During the first phase of this project (103765), researchers conducted a market analysis for bamboo and bamboo products, compared the livelihoods of tobacco and bamboo farmers, and produced a series of community action plans for livelihood diversification. The results of the studies indicated that tobacco farming did ...

  8. Next-generation sequencing-based mRNA and microRNA expression profiling analysis revealed pathways involved in the rapid growth of developing culms in Moso bamboo

    Science.gov (United States)

    2013-01-01

    Background As one of the fastest-growing lignocellulose-abundant plants on Earth, bamboos can reach their final height quickly due to the expansion of individual internodes already present in the buds; however, the molecular processes underlying this phenomenon remain unclear. Moso bamboo (Phyllostachys heterocycla cv. Pubescens) internodes from four different developmental stages and three different internodes within the same stage were used in our study to investigate the molecular processes at the transcriptome and post-transcriptome level. Results Our anatomical observations indicated the development of culms was dominated by cell division in the initial stages and by cell elongation in the middle and late stages. The four major endogenous hormones appeared to actively promote culm development. Using next-generation sequencing-based RNA-Seq, mRNA and microRNA expression profiling technology, we produced a transcriptome and post-transcriptome in possession of a large fraction of annotated Moso bamboo genes, and provided a molecular basis underlying the phenomenon of sequentially elongated internodes from the base to the top. Several key pathways such as environmental adaptation, signal transduction, translation, transport and many metabolisms were identified as involved in the rapid elongation of bamboo culms. Conclusions This is the first report on the temporal and spatial transcriptome and gene expression and microRNA profiling in a developing bamboo culms. In addition to gaining more insight into the unique growth characteristics of bamboo, we provide a good case study to analyze gene, microRNA expression and profiling of non-model plant species using high-throughput short-read sequencing. Also, we demonstrate that the integrated analysis of our multi-omics data, including transcriptome, post-transcriptome, proteome, yield more complete representations and additional biological insights, especially the complex dynamic processes occurring in Moso bamboo culms

  9. A comparative study of regenerated bamboo, cotton and viscose ...

    African Journals Online (AJOL)

    Very little information is available about the validation of these properties through scientific research studies. It is also evident that information about natural bamboo and regenerated bamboo fibre products is often confusing. Regenerated bamboo (also referred to as bamboo viscose or bamboo rayon) is manufactured from ...

  10. Utilization of Bamboo as Lightweight Sandwich Panels

    Directory of Open Access Journals (Sweden)

    Suthon SRIVARO

    2016-05-01

    Full Text Available Lightweight sandwich panels consisting of bamboo faces and oil palm trunk core were manufactured using melamine urea formaldehyde with the resin content of 250 g/m2 (solid basis. The parameters examined were node and density of bamboo faces. Physical (board density, thickness swelling and water absorption and mechanical (modulus of elasticity and modulus of rupture properties of the sandwich board obtained were investigated and compared with other bamboo products and commercial wood based products. Result showed that this panel had better dimensional stability than those of other bamboo products but lower bending strength. Node of bamboo had no significant effect on any board properties examined. Most of board properties were influenced by bamboo face density. Comparing the properties to commercial wood based products, this panel could be used as wall/floor applications.

  11. Fractionation of bamboo culms by autohydrolysis, organosolv delignification and extended delignification: understanding the fundamental chemistry of the lignin during the integrated process.

    Science.gov (United States)

    Wen, Jia-Long; Sun, Shao-Ni; Yuan, Tong-Qi; Xu, Feng; Sun, Run-Cang

    2013-12-01

    Bamboo (Phyllostachys pubescens) was successfully fractionated using a three-step integrated process: (1) autohydrolysis pretreatment facilitating xylooligosaccharide (XOS) production (2) organosolv delignification with organic acids to obtain high-purity lignin, and (3) extended delignification with alkaline hydrogen peroxide (AHP) to produce purified pulp. The integrated process was comprehensively evaluated by component analysis, SEM, XRD, and CP-MAS NMR techniques. Emphatically, the fundamental chemistry of the lignin fragments obtained from the integrated process was thoroughly investigated by gel permeation chromatography and solution-state NMR techniques (quantitative (13)C, 2D-HSQC, and (31)P-NMR spectroscopies). It is believed that the integrated process facilitate the production of XOS, high-purity lignin, and purified pulp. Moreover, the enhanced understanding of structural features and chemical reactivity of lignin polymers will maximize their utilizations in a future biorefinery industry. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Phenological changes in bamboo carbohydrates explain the preference for culm over leaves by giant pandas (Ailuropoda melanoleuca during spring.

    Directory of Open Access Journals (Sweden)

    Katrina K Knott

    Full Text Available Seasonal changes in the foodscape force herbivores to select different plant species or plant parts to meet nutritional requirements. We examined whether the search for calorie-rich carbohydrates explained giant panda's selection for bamboo culm over leaves during spring. Leaves and culms were collected from four Phyllostachys bamboos (P. aurea, P. aureosulcata, P. glauca, and P. nuda once per month over 18-27 months. Monthly changes in annual plant part nutrients were examined, and compared to seasonal foraging behaviors of captive giant pandas. Although total fiber was greater (p<0.0001 in culm (85.6 ± 0.5% than leaves (55.3 ± 0.4% throughout the year, culm fiber was at its lowest in spring (79-85% when culm selection by giant pandas exceeded 70% of their overall diet. Culm starch also was greatest (p = 0.044 during spring (5.5 ± 1.1% and 2.5-fold the percentage of starch in leaves (2.2 ± 0.6%. The free sugars in spring culm consisted of a high proportion of glucose (35% and fructose (47%, whereas sucrose made up 42% of the total free sugar content of spring leaves. Bound sugars in culm consisted of 60% glucose and 38% xylose likely representative of hemicellulose. The concentrations of bound sugars (hemicelluloses in spring culms (543.7 ± 13.0 mg/g was greater (p<0.001 than in leaves (373.0 ± 14.8 mg/g. These data help explain a long-standing question in giant panda foraging ecology: why consume the plant part with the lowest protein and fat during the energetically intensive spring breeding season? Giant pandas likely prefer spring culm that contains abundant mono- and polysaccharides made more bioavailable as a result of reduced fiber content. These data suggest that phenological changes in bamboo plant part nutrition drive foraging decisions by giant pandas.

  13. Phenological changes in bamboo carbohydrates explain the preference for culm over leaves by giant pandas (Ailuropoda melanoleuca) during spring.

    Science.gov (United States)

    Knott, Katrina K; Christian, Amelia L; Falcone, Josephine F; Vance, Carrie K; Bauer, Laura L; Fahey, George C; Kouba, Andrew J

    2017-01-01

    Seasonal changes in the foodscape force herbivores to select different plant species or plant parts to meet nutritional requirements. We examined whether the search for calorie-rich carbohydrates explained giant panda's selection for bamboo culm over leaves during spring. Leaves and culms were collected from four Phyllostachys bamboos (P. aurea, P. aureosulcata, P. glauca, and P. nuda) once per month over 18-27 months. Monthly changes in annual plant part nutrients were examined, and compared to seasonal foraging behaviors of captive giant pandas. Although total fiber was greater (pgiant pandas exceeded 70% of their overall diet. Culm starch also was greatest (p = 0.044) during spring (5.5 ± 1.1%) and 2.5-fold the percentage of starch in leaves (2.2 ± 0.6%). The free sugars in spring culm consisted of a high proportion of glucose (35%) and fructose (47%), whereas sucrose made up 42% of the total free sugar content of spring leaves. Bound sugars in culm consisted of 60% glucose and 38% xylose likely representative of hemicellulose. The concentrations of bound sugars (hemicelluloses) in spring culms (543.7 ± 13.0 mg/g) was greater (pgiant panda foraging ecology: why consume the plant part with the lowest protein and fat during the energetically intensive spring breeding season? Giant pandas likely prefer spring culm that contains abundant mono- and polysaccharides made more bioavailable as a result of reduced fiber content. These data suggest that phenological changes in bamboo plant part nutrition drive foraging decisions by giant pandas.

  14. The Manufacturing Process of Bamboo Pellets

    Science.gov (United States)

    Zhijia Liu; Zehui Jiang; Zhiyong Cai; Benhua Fei; Xing' e Liu

    2012-01-01

    Bamboo was a kind of biomass materials and had great potential as a bio-energy resource of the future in China. The physical and combustion properties of bamboo pellets were determined and the effects of moisture content (MC) and sizes of particle on these properties were investigated in this research. The results showed that MC and sizes of particle affected these...

  15. Micropropagation of important bamboos: A review

    African Journals Online (AJOL)

    Deba

    2013-05-15

    May 15, 2013 ... Bamboo is a vernacular term for the members of subfamily Bambusoideae of the family. Poaceae, the grasses. It is an important forest tree with multifarious use in daily life, apart from having largest use in the paper and pulp industry (Varmah and Pant, 1981). One of the main problems with bamboo is that it ...

  16. Propagation Techniques for Highland Bamboo (Arundinaria alpina ...

    African Journals Online (AJOL)

    (survival rate 17-26%) primarily to strong wind and storm and most probably moisture fluctuations under .... to bamboo forests and other vegetations that can serve as wind break for established propagules and newly ..... Propagating Bamboo, Training Manual, Technology Information, Forecasting and. Assessment Council ...

  17. Bamboo Production : Livelihood Diversification for Smallholder ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    In this phase, researchers will focus on assessing cooperative marketing systems and identifying best practices; undertaking feasibility studies and developing business plans for five bamboo products; establishing bamboo nurseries; conducting an environmental audit of tobacco farming in the region and evaluating the ...

  18. Modeling Bamboo as a Functionally Graded Material

    Science.gov (United States)

    Silva, Emílio Carlos Nelli; Walters, Matthew C.; Paulino, Glaucio H.

    2008-02-01

    Natural fibers are promising for engineering applications due to their low cost. They are abundantly available in tropical and subtropical regions of the world, and they can be employed as construction materials. Among natural fibers, bamboo has been widely used for housing construction around the world. Bamboo is an optimized composite material which exploits the concept of Functionally Graded Material (FGM). Biological structures, such as bamboo, are composite materials that have complicated shapes and material distribution inside their domain, and thus the use of numerical methods such as the finite element method and multiscale methods such as homogenization, can help to further understanding of the mechanical behavior of these materials. The objective of this work is to explore techniques such as the finite element method and homogenization to investigate the structural behavior of bamboo. The finite element formulation uses graded finite elements to capture the varying material distribution through the bamboo wall. To observe bamboo behavior under applied loads, simulations are conducted considering a spatially-varying Young's modulus, an averaged Young's modulus, and orthotropic constitutive properties obtained from homogenization theory. The homogenization procedure uses effective, axisymmetric properties estimated from the spatially-varying bamboo composite. Three-dimensional models of bamboo cells were built and simulated under tension, torsion, and bending load cases.

  19. Structural elucidation of inhomogeneous lignins from bamboo.

    Science.gov (United States)

    Wen, Jia-Long; Sun, Shao-Long; Xue, Bai-Liang; Sun, Run-Cang

    2015-01-01

    A better understanding of the inhomogeneous molecular structure of lignin from bamboo is a prerequisite for promoting the "biorefinery" technologies of the bamboo feedstock. A mild and successive method for fractionating native lignin from bamboo species was proposed in the present study. The molecular structure and structural inhomogeneity of the isolated lignin polymers were comprehensively investigated by elemental analysis, carbohydrate analysis, state-of-the-art NMR and analytical pyrolysis techniques (quantitative (13)C NMR, (13)C-DEPT 135 NMR, 2D-HSQC NMR, (31)P NMR, and pyrolysis-GC-MS). The results showed that the proposed method is effective for extracting lignin from bamboo. NMR results showed that syringyl (S) was the predominant unit in bamboo lignin over guaiacyl (G) and p-hydroxyphenyl (H) units. In addition, the lignin was associated with p-coumarates and ferulates via ester and ether bonds, respectively. Moreover, various substructures, such as β-O-4, β-β, β-5, β-1, and α,β-diaryl ether linkages, were identified and quantified by NMR techniques. Based on the results obtained, a proposed schematic diagram of structural heterogeneity of the lignin polymers extracted from the bamboo is presented. In short, well-defined inhomogeneous structures of native lignin from bamboo will facilitate further applications of bamboo in current biorefineries. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Comparative Properties of Bamboo and Rice Straw Pellets

    Science.gov (United States)

    Xianmiao Liu; Zhijia Liu; Benhua Fei; Zhiyong Cai; Zehui Jiang; Xing' e Liu

    2013-01-01

    Bamboo is a potential major bio-energy resource. Tests were carried out to compare and evaluate the property of bamboo and rice straw pellets, rice straw being the other main source of biomass solid fuel in China. All physical properties of untreated bamboo pellets (UBP), untreated rice straw pellets (URP), carbonized bamboo pellets (CBP), and carbonized rice straw...

  1. Towards A Sustainable Development Of The Bamboo Industry In ...

    African Journals Online (AJOL)

    The potential role of bamboo is underscored in Ghana. This paper aims at highlighting the potential for sustainable use of bamboo in national development in Ghana. Information on sources, potential and perceived uses of bamboo as well as constraints in the bamboo sector were obtained through structured questionnaire ...

  2. Landsat analysis for improving bamboo forest mapping

    Science.gov (United States)

    Yamamoto, Y.; Suzuoki, Y.; Tsuboi, T.; Iinuma, T.; Iwashita, K.; Nishikawa, H.

    Using satellite data and field data collected periodically over the past years, the vegetation area and the underlying substrate have been mapped. Numerous methods for detecting "vegetation changes" with the aid of digital satellite data have been utilized. Among those methods , the vegetation indices such as RVI, NDVI, or SVI are the most suitable methods to estimate "the change". Vegetation indices are mathematical transformations designed to assess the spectral contribution of vegetation to multispectral observations. Bamboo grove as primary subject in this study is welknown as rapid growing plant, and, on the other hand, the expansion of bamboo grove have been discussed as a regional environmental issue. Change detection of bamboo covered area would be useful to help the preventive countermeasures for bamboo expansion in unwanted areas. As a result, to detect the accurate bamboo covered area, the optimal vegetation indices and band combinations were established through continuous Landsat data based statistical analysis.

  3. Bamboo Bicycle – Past or Future?

    Directory of Open Access Journals (Sweden)

    Suzana Jakovljević

    2016-01-01

    Full Text Available In this article the experiment was carried out to establish tensile strength values of two different bamboo species, which are obtained by the static tensile test. The tensile strength results of two tested species Tonkin Cane and Ku Zhu bamboo are presented and compared with traditional materials used for bicycle frame to determine their suitability for designing a frame. Physiology and other properties of bamboo were elaborated as well. The purpose of this study was to gain more knowledge on bamboo and prove his suitability in use as an alternative for ecologically unacceptable materials. Therefore, application of the natural materials is essential for the sustainable development. The fact that they have unlimited resources the use of bamboo has great potential and this article explains why.

  4. Experimental Research on Destruction Mode and Anchoring Performance of Carbon Fiber Phyllostachys pubescens Anchor Rod with Different Forms

    Directory of Open Access Journals (Sweden)

    Wang Yulan

    2018-01-01

    Full Text Available The anchoring technology is extensively applied in reinforcing protection of the earth relics. Now that no specification is available for different new anchor rods in earth relics protection due to diversified destruction modes of earth relics and complexity of engineering technology conditions, it is urgent to guide reinforcing design and construction with a complete detailed anchor rod research document. With the new carbon fiber Phyllostachys pubescens anchor rod as the research object, six lots of in situ tests are designed to, respectively, study the destruction mode and anchoring performance of the carbon fiber Phyllostachys pubescens anchor rod under different anchor length L, anchor rod diameter D, bore diameter H, grouting material S, rib spacing R, and inclination angle A in this paper. By studying load shift curve experiment in drawing of the anchor rod, the destruction mode and ultimate bearing capacity of the carbon fiber Phyllostachys pubescens anchor rod in different experiment lots are obtained, and the concept of permitted application value N in anchor rod design is proposed. By studying strain distribution characteristics of anchor rods in experimental lots along the length direction under action of the permitted application value N and combining the existing destruction mode and ultimate bearing capacity, this paper analyzes influences of L, D, H, S, R, and A on anchoring effect of the carbon fiber Phyllostachys pubescens anchor rod; gives the reasonable value range of L, D, H, and R when the carbon fiber Phyllostachys pubescens anchor rod is used for reinforcing design of the earth relics; and provides favorable experiment basis for reinforcing design of the earth relics based on the carbon fiber Phyllostachys pubescens anchor rod.

  5. STUDY ON BAMBOO FIBER”PROCESS OF CREATINGPROPERTIES- APPLICATION”

    OpenAIRE

    Irina Tărăboantă

    2012-01-01

    Bamboo fiber is a cellulose fiber which is extracted from naturally grown bamboo, is the fifth-largest natural fiber after cotton, linen, wool, silk. Bamboo fiber has good air permeability, water absorption, strong wear resistance and good dyeing and other features, but also has natural antibacterial, antimicrobial, mites, antiodor and anti-ultraviolet. Bamboo fiber is a real natural environment-friendly green fiber?There are two types of fiber derived from bamboo. The first is usually descri...

  6. A Review on the Use of Bamboo for Earthwork Construction

    OpenAIRE

    Ma’ruf Mokhammad Farid

    2017-01-01

    Bamboo becomes a promising engineering material widely utilized for constructions. It is likely a composite material with fibred reinforcement in one direction to make its good flexural strength. Bamboo has been traditionally made use for structural components. Recently, the applications of bamboo for earthwork constructions are reported both experimental and real project. Pile foundations for houses, bamboo pile and nail for slope stability, foundation grid for embankment, and bamboo pile-ma...

  7. Performance of wulung bamboo reinforced concrete beams

    Science.gov (United States)

    Budi, Agus Setiya; Rahmadi, A. P.

    2017-11-01

    The aim of this paper is to study the flexural strength of concrete beam with Wulung Bamboo that has been in the notch as reinforcement. The notch is expected to increase the bonding effect and minimize the slip effects. This study used experimental laboratory method. Bamboo strip are processed and shaped with the notches of the v shape with the distance between the notches are 20, 30, 40, 50, 60 and 70 mm. The specimen size used in the form of a concrete beam is 110x150x1700 mm. Static loading is done with third point loading system (ASTM C78). The experimental results showed the performance of bamboo strips notch reinforced concrete beams increased compared to bamboo reinforcement without notch and the maximum load will increase as the number of notches increases.

  8. Crack Propagation in Bamboo's Hierarchical Cellular Structure

    Science.gov (United States)

    Habibi, Meisam K.; Lu, Yang

    2014-07-01

    Bamboo, as a natural hierarchical cellular material, exhibits remarkable mechanical properties including excellent flexibility and fracture toughness. As far as bamboo as a functionally graded bio-composite is concerned, the interactions of different constituents (bamboo fibers; parenchyma cells; and vessels.) alongside their corresponding interfacial areas with a developed crack should be of high significance. Here, by using multi-scale mechanical characterizations coupled with advanced environmental electron microscopy (ESEM), we unambiguously show that fibers' interfacial areas along with parenchyma cells' boundaries were preferred routes for crack growth in both radial and longitudinal directions. Irrespective of the honeycomb structure of fibers along with cellular configuration of parenchyma ground, the hollow vessels within bamboo culm affected the crack propagation too, by crack deflection or crack-tip energy dissipation. It is expected that the tortuous crack propagation mode exhibited in the present study could be applicable to other cellular natural materials as well.

  9. Cookies of Bamboo Shoots as Functional Food

    Directory of Open Access Journals (Sweden)

    Rika Wulandari

    2010-06-01

    Full Text Available The research of cookies of bamboo shoots was as functional food carried out to increase the utilization of bamboo shoots that were very potential in West Kalimantan as functional food. The bamboo soot cookies was made from dry processing of luxuriant bamboo shoots to mamboo shoots flour, and the production of bamboo shoots cookies. Results of analysis showed luxuriant bamboo shoots contained thewater 94.4 %, ash 0.28 %, protein 1.6 % fat 4.78%, carbohydrate 0.637 %, rough fibre 2.03%, vitamin C 0,003 %, phosphor 0.120 %, calcium 114 mg/kg, and sodium 27,4 mg/kg. Dry bamboo shoots were produced through the process bleaching with the solution to salt 3% and produced bamboo shoots flour with results efficiency 6,25 % and had the content of the level of water 5,66%, the level of ash 6,44 %, protein 20.9 %, fat 3.64 %, the carbohydrate 17.9 %, rough fibre 3.97%, and vitamin C 0.0021 %. Best bamboo shoots cookies that is to the C treatment variable that was produced from the mixture of bamboo shoots flour: wheat flour: maize flour = 20:60:20. Results of the analysis were based on the standard of the quality of the biscuit (SNI-0-2973-1992 showed that the product that was produced contained the water 4,14%, ash 3.22%, protein 8.95%, fat 16.5%, carbohydrate 37,01%, rough fibre 0.379%, calorie 332,34 cal, and the Executive Board’s metal < 0,040 mg/kg, Cu 1,92 mg/kg, Hg<0,004 mg/kg, as well as Zn 27,1 mg/kg. Bamboo shoots cookies that were produced were categorised as functional food that could help the process of the digestion so as to be estimated could reduce the risk of colon cancer.

  10. Mechanical characterisation of structural laminated bamboo

    OpenAIRE

    Sharma, Bhavna; Bauer, Helene; Schickhofer, Gerhard; Ramage, Michael H.

    2017-01-01

    Low carbon construction materials are needed to reduce CO2 emissions in the built environment. Laminated bamboo is an example of such a material, however to be used in structural applications, fundamental mechanical properties are needed to establish the design values used in architecture and engineering practice. Recent studies on laminated bamboo have focused on the use of timber standards for small clear specimens, with little work published on structural scale testing. The presented work ...

  11. Preparation of Bamboo Chars and Bamboo Activated Carbons to Remove Color and COD from Ink Wastewater.

    Science.gov (United States)

    Hata, Motohide; Amano, Yoshimasa; Thiravetyan, Paitip; Machida, Motoi

    2016-01-01

    Bamboo chars and bamboo activated carbons prepared by steam activation were applied for ink wastewater treatment. Bamboo char at 800 °C was the best for the removal of color and chemical oxygen demand (COD) from ink wastewater compared to bamboo chars at 300 to 700 °C due to higher surface area and mesopore volume. Bamboo activated carbon at 600 °C (S600) was the best compared to bamboo activated carbon at 800 °C (S800), although S800 had larger surface area (1108 m(2)/g) than S600 (734 m(2)/g). S600 had higher mesopore volume (0.20 cm(3)/g) than S800 (0.16 cm(3)/g) and therefore achieved higher color and COD removal. All bamboo activated carbons showed higher color and COD removal efficiency than commercial activated carbon. In addition, S600 had the superior adsorption capacity for methylene blue (0.89 mmol/g). Therefore, bamboo is a suitable material to prepare adsorbents for removal of organic pollutants.

  12. Socio-Economic Benefits of Bamboo-Craft Entrepreneurship: The Case of Rinconada Bamboo Entrepreneurs

    Directory of Open Access Journals (Sweden)

    Seth B. Barandon

    2015-12-01

    Full Text Available –Bamboo entrepreneurship is one of the key instruments in uplifting the socio-economic status of the poor and under privileged people in Rinconada area. This study evaluated the socioeconomic benefits of bamboo craft making on the entrepreneurs of the district. Using descriptive-survey, data were obtained from 60 purposely chosen bamboo entrepreneurs from a list given by the Department of Trade of Industry. A 12-item researcher-made questionnaire was the main gathering tool supported by interview and observation. Results revealed that the social benefits derived by the bamboo entrepreneurs can able to communicate to more networks, adequate support to education of children is being provided, and television sets, while economic benefits is having their own house with sanitation. The bamboo entrepreneurs can satisfy the hierarchy of needs for shelter, security and social communication.

  13. A Review on the Use of Bamboo for Earthwork Construction

    Directory of Open Access Journals (Sweden)

    Ma’ruf Mokhammad Farid

    2017-01-01

    Full Text Available Bamboo becomes a promising engineering material widely utilized for constructions. It is likely a composite material with fibred reinforcement in one direction to make its good flexural strength. Bamboo has been traditionally made use for structural components. Recently, the applications of bamboo for earthwork constructions are reported both experimental and real project. Pile foundations for houses, bamboo pile and nail for slope stability, foundation grid for embankment, and bamboo pile-mattress for railway and reclamation project are among others of the application. This paper discusses the use of bamboo for earthwork construction. Particular discussion is addressed to bamboo pile-mattress that successfully installed for various project in Indonesia. The appropriate field characteristic for bamboo application is specified. The design step and theoretical based are discussed as well.

  14. Mechanical properties of moso bamboo treated with chemical agents

    Science.gov (United States)

    Benhua Fei; Zhijia Liu; Zehui Jiang; Zhiyong Cai

    2013-01-01

    Bamboo is a type of biomass material and has great potential as a bioenergy resource for the future in China. Surface chemical and thermal–mechanical behavior play an important role in the manufacturing process of bamboo composites and pellets. In this study, moso bamboo was treated by sodium hydrate solution and acetic acid solution. Surface chemical and dynamic...

  15. Impact performance of two bamboo-based laminated composites

    Science.gov (United States)

    Huanrong Liu; Zehui Jiang; Zhengjun Sun; Yan Yan; Zhiyong Cai; Xiubiao Zhang

    2017-01-01

    The present work aims to determine the impact performance of two bamboo-based laminated composites [bamboo/poplar laminated composite (BPLC) and bamboo/ glass fiber laminated composite (BGFLC)] using lowvelocity impact tests by a drop tower. In addition, fracture characteristics were evaluated using computed tomography (CT). Results showed that BPLC presented better...

  16. Effects of carbonization conditions on properties of bamboo pellets

    Science.gov (United States)

    Zhijia Liu; Zehui Jiang; Zhiyong Cai; Benhua Fei; Yan Yu; Xing' e Liu

    2013-01-01

    Bamboo is a biomass material and has great potential as a bio-energy resource of the future in China. Bamboo pellets were successfully manufactured using a laboratory pellet mill in preliminary work. This study was therefore carried out to investigate the effect of carbonization conditions (temperature and time) on properties of bamboo pellets and to evaluate product...

  17. Flowering of Woody Bamboo in Tissue Culture Systems

    Directory of Open Access Journals (Sweden)

    Jin-Ling Yuan

    2017-09-01

    Full Text Available Flowering and subsequent seed set are not only normal activities in the life of most plants, but constitute the very reason for their existence. Woody bamboos can take a long time to flower, even over 100 years. This makes it difficult to breed bamboo, since flowering time cannot be predicted and passing through each generation takes too long. Another unique characteristic of woody bamboo is that a bamboo stand will often flower synchronously, both disrupting the supply chain within the bamboo industry and affecting local ecology. Therefore, an understanding of the mechanism that initiates bamboo flowering is important not only for biology research, but also for the bamboo industry. Induction of flowering in vitro is an effective way to both shorten the flowering period and control the flowering time, and has been shown for several species of bamboo. The use of controlled tissue culture systems allows investigation into the mechanism of bamboo flowering and facilitates selective breeding. Here, after a brief introduction of flowering in bamboo, we review the research on in vitro flowering of bamboo, including our current understanding of the effects of plant growth regulators and medium components on flower induction and how in vitro bamboo flowers can be used in research.

  18. [Adaptive adjustment of rhizome and root system on morphology, biomass and nutrient in Phyllostachys rivalis under long-term waterlogged condition].

    Science.gov (United States)

    Liu, Yu-fang; Chen, Shuang-lin; Li Ying-chun; Guo, Zi-wu; Li, Ying-chun; Yang, Qing-ping

    2015-12-01

    The research was to approach the growth strategy of rhizome and roots based on the morphology, biomass and nutrient in Phyllostachys rivalis under long-term waterlogged conditions, and provided a theoretical basis for its application for vegetation restoration in wetland and water-level fluctuation belts. The morphological characteristics, physiological and biochemical indexes of annual bamboo rhizome and roots were investigated with an experiment using individually potted P. rivalis which was treated by artificial water-logging for 3, 6, and 12 months. Accordingly the morphological characteristics, biomass allocation, nutrient absorption and balance in rhizome and roots of P. rivalis were analyzed. The results showed that there was no obvious impact of long-term water-logging on the length and diameter of rhizomes, diameter of roots in P. rivalis. The morphological characteristics of rhizome had been less affected generally under water-logging for 3 months. And less rhizomes were submerged, while the growth of roots was inhibited to some extent. Furthermore, with waterlogging time extended, submerged roots and rhizomes grew abundantly, and the roots and rhizomes in soil were promoted. Moreover for ratios of rhizome biomass in soil and water, there were no obvious variations, the same for the root biomass in soil to total biomass. The ratio of root biomass in water to total biomass and the ratio of root biomass in water to root biomass in soil both increased significantly. The results indicated that P. rivalis could adapt to waterlogged conditions gradually through growth regulation and reasonable biomass distribution. However, the activity of rhizome roots in soil decreased and the nutrient absorption was inhibited by long-term water-logging, although it had no effect on stoichiometric ratios of root nutrient in soil. The activity of rhizome root in water increased and the stoichiometric ratios adjusted adaptively to waterlogged conditions, the ratio of N

  19. A comparison of soil respiration, carbon balance and root carbon use efficiency in two managed Moso bamboo forests in subtropical China

    Directory of Open Access Journals (Sweden)

    Xiaolu Tang

    2016-06-01

    Full Text Available Moso bamboo forest (Phyllostachys heterocycla [Carr.] Mitford cv. Pubescens is an important forest type in subtropical China and comprises an important pool in the global carbon cycle. Understanding the effects of the stand management, such as understory removal, on soil respiration (RS will help to provide a more accurate estimation of carbon cycling and predict future climate change. The study aimed to compare RS and net ecosystem production (NEP in two Moso bamboo forests managed by the application of herbicide (AH and conventional hand-weeded (HW treatment, and further examine their root carbon use efficiency (RCUE. Trenching and litter removal were used to partition the source components of RS and one-year field measurement was conducted. Maximum-minimum approach was used to estimate fine root production. NEP was determined by the balance between NPP of vegetation and heterotrophic respiration (RH of soil. RCUE was calculated using an indirect method. In both stands, soil temperature and soil moisture at 5 cm depth were the main driving forces to the seasonality of RS. Annual RS was 31.6 t CO2 ha-1 for the stand AH and 33.9 t CO2 ha-1 for the stand HW, while net ecosystem production (NEP were 21.9 and 21.1 t CO2 ha-1, respectively, indicating that the both Moso bamboo stands acted as carbon sinks in the scenarios of current climate change. The RCUE was 30.6% for the stand AH, which was significantly lower than that for the stand HW (58.8%. This result indicates that different stand management practices can alter RCUE and the assumed constant universal carbon use efficiency (CUE of 50% is not appropriate in Moso bamboo forests. This study highlight the importance of partition the source components of RS and accurate estimation of RCUE in modelling carbon cycling in Moso bamboo forests.

  20. Bamboo and Wood in Musical Instruments

    Science.gov (United States)

    Wegst, Ulrike G. K.

    2008-08-01

    Over centuries and millennia, our ancestors worldwide found the most appropriate materials for increasingly complex acoustical applications. In the temperate climate of Europe, where the instruments of the Western symphony orchestra were developed and perfected, instrument makers still primarily take advantage of the unique property combination and the aesthetic appeal of wood. In all other continents, one material dominates and is frequently chosen for the manufacture of wind, string, and percussion instruments: the grass bamboo. Here, we review from a materials science perspective bamboo's and wood's unique and highly optimized structure and properties. Using material property charts plotting acoustic properties such as the speed of sound, the characteristic impedance, the sound radiation coefficient, and the loss coefficient against one another, we analyze and explain why bamboo and specific wood species are ideally suited for the manufacture of xylophone bars and chimes, flutes and organs, violins and zithers, violin bows, and even strings.

  1. Biomonitoring of Urban Pollution Using Silicon-Accumulating Species, Phyllostachys aureosulcata 'Aureocaulis'

    Czech Academy of Sciences Publication Activity Database

    Morina, Filis; Vidovic, M.; Streckovic, T.; Radovic, V.; Veljovic-Jovanovic, S.

    2017-01-01

    Roč. 99, č. 6 (2017), s. 706-712 ISSN 0007-4861 R&D Projects: GA MŠk EF15_003/0000336 Institutional support: RVO:60077344 Keywords : bamboo * phytoliths * carbon * stress * rice Subject RIV: BO - Biophysics OBOR OECD: Plant sciences, botany Impact factor: 1.412, year: 2016

  2. Effects if 60Co γ rays radiation on seed vigor and young seedling growth of phyllostachys edulis

    International Nuclear Information System (INIS)

    Cai Chunju; Gao Jian; Mu Shaohua

    2007-01-01

    The dry seeds of Phyllostachys edulis were irradiated by different doses of 60 Co γ rays, the effects of the radiation on seed vigor and seedling growth characters were investigated by four testing methods, i.e. germination testing indoor, electrical conductivity, TTC vigor testing and growth classification of saddling. Results showed that the germination process and germination rate could be accelerated by doses of 60 Co γ rays (≤100 Gy), and higher doses of 60 Co γ rays (>100 Gy) could obviously inhibit the germination process and reduce seed vigor, while induce seed embryo broken, cell division, growth restrained, the height of young seedling and length of root decreasing. The inhibition effects were significantly increased with radiation dose increase. The optimal range of radiation dose for radiation breeding of Phyllostachys edulis dry seeds was 100 to 175 Gy. Linear relationships were existed in electrical conductivity after dipping in water for 24h in germination rate (G), germination index (GI), vigor index (VI), height of seedlings and length of root. EC after 24h and height of seedlings were chosen to test the change of seeds vigor and the effect of the radiation of 60 Co γ rays on Phyllostachys edulis. (authors)

  3. VEGETATIVE PROPAGATION OF THREE SPECIES OF BAMBOO

    Directory of Open Access Journals (Sweden)

    Jesús Vargas-Hernández

    2011-05-01

    Full Text Available The obtaining of good quality plants for mass production of bamboo is an important factor due to the conventional methods of spreading have been little studied and limited their spreading. The present paper was carried out under green house conditions, with the purpose of evaluating the effect on spreading method factors, species of bamboo (CH, V y SN, (Ga, Bo y Bv and substrate (ATC, TCE y SIC about the surviving (SPV, number of shoots (NH, number of roots (NR, length of roots (LR, number of leaves by seedlings (NHA, height (AL and diameter of stalk (DI of the first shoot of plants of de bamboo in pots of black polyethylene The treatments were random established with three fold repetition The results were evaluated at the end of the experiment.( DDT. The method by chusquin is better. than varetas and nodal segments for the variants under study. The vareta and nodal segment offer less surviving and less number of shoots. Meantime the Guadua angustifolia and Bambusa vulgaris are the best species in relation to Bambusa oldhamii for bamboo spreading , regardless the substrate used.

  4. Insights on predominant edible bamboo shoot proteins

    African Journals Online (AJOL)

    hp pc

    KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 39:316-322. Yang Q, Duan Z, Wang Z, He K., Sun Q, Peng, Z (2008).Bamboo resources, utilization and ex-situ conservation in Xishuangbanna,. South-Eastern China. J. For. Res. 19:79-83. Zhou C, Zhang L, ...

  5. Understory bamboo discrimination using a winter image

    NARCIS (Netherlands)

    Wang, T.; Skidmore, A.K.; Toxopeus, A.G.; Liu, X.

    2009-01-01

    In this study, a new approach is presented that combines forest phenology and Landsat vegetation indices to estimate evergreen understory bamboo coverage in a mixed temperate forest. It was found that vegetation indices, especially the normalized difference vegetation index (NDVI) derived from

  6. Different carbonization process of bamboo charcoal using Gigantochloa Albociliata

    Science.gov (United States)

    Isa, S. S. M.; Ramli, M. M.; Halin, D. S. C.; Anhar, N. A. M.; Hambali, N. A. M. A.

    2017-09-01

    Bamboo charcoal has attracted a lot of interests due to their microporous structure, high surface area and great adsorption properties. Some of the applications utilizing this material focused on these advantages such as water purification, electromagnetic wave absorber and blood purification. However, these advantages really depend on the carbonization and activation process of bamboo charcoal. The production must be carried out in properly control environment with precise temperatures and timing. This paper report the production of bamboo charcoal using Gigantochloa Albociliata in controlled environment at 500 °C for 1 hour (lab-prepared). Then the material was characterized for their dispersibility and adsorption behaviour. Furthermore, the bamboo charcoal that was produced commercially, by company, was also characterized and compared. The results show, bamboo charcoal produced by lab-prepared has similar qualities with the commercial bamboo charcoal.

  7. Adsorption Properties and Potential Applications of Bamboo Charcoal: A Review

    OpenAIRE

    Isa S.S.M.; Ramli M.M.; Hambali N.A.M.A.; Kasjoo S.R.; Isa M.M.; Nor N.I.M.; Khalid N.; Ahmad N.

    2016-01-01

    Bamboo charcoal was produced by pyrolysis or carbonization process with extraordinary properties such as high conductivity, large surface area and adsorption property. These properties can be improved by activation process that can be done thermally or chemically. In this paper, carbonization and activation process of bamboo, its structural and adsorption properties will be presented. Herein, the adsorption properties of bamboo charcoal that has fully utilized in solar cell as the electrode, ...

  8. Can't see the (bamboo) forest for the trees: examining bamboo's fit within international forestry institutions.

    Science.gov (United States)

    Buckingham, Kathleen Carmel; Wu, Liangru; Lou, Yiping

    2014-10-01

    Over the centuries, governments and international agencies have developed a wide range of institutions to manage timber resources and conserve values provided by treed lands. Concerns regarding the sustainable supply of timber have provided opportunities for the development of substitute resources; however, bamboo and other non-timber forest resources have not been a part of the development of these institutions. Bamboo is a unique Non-Timber Forest Product, as it is often classified as forest or timber, and therefore must adhere to the same regulations as timber. Given the recent global expansion of bamboo, it is timely to examine the interplay between bamboo and the traditional institutions of forest governance. This paper aims to contribute to debates regarding cognitive institutional constraints on the development of substitute natural resources using bamboo as a case study, with specific focus on the applicability of Forest Stewardship Council certification, timber legality verification and Reducing Emissions from Deforestation and Forest Degradation to bamboos.

  9. Effects of silicon and copper on bamboo grown hydroponically.

    Science.gov (United States)

    Collin, Blanche; Doelsch, Emmanuel; Keller, Catherine; Panfili, Frédéric; Meunier, Jean-Dominique

    2013-09-01

    Due to its high growth rate and biomass production, bamboo has recently been proven to be useful in wastewater treatment. Bamboo accumulates high silicon (Si) levels in its tissues, which may improve its development and tolerance to metal toxicity. This study investigates the effect of Si supplementation on bamboo growth and copper (Cu) sensitivity. An 8-month hydroponic culture of bamboo Gigantocloa sp. "Malay Dwarf " was performed. The bamboo plants were first submitted to a range of Si supplementation (0-1.5 mM). After 6 months, a potentially toxic Cu concentration of 1.5 μM Cu(2+) was added. Contrary to many studies on other plants, bamboo growth did not depend on Si levels even though it absorbed Si up to 218 mg g(-1) in leaves. The absorption of Cu by bamboo plants was not altered by the Si supplementation; Cu accumulated mainly in roots (131 mg kg(-1)), but was also found in leaves (16.6 mg kg(-1)) and stems (9.8 mg kg(-1)). Copper addition did not induce any toxicity symptoms. The different Cu and Si absorption mechanisms may partially explain why Si did not influence Cu repartition and concentration in bamboo. Given the high biomass and its absorption capacity, bamboo could potentially tolerate and accumulate high Cu concentrations making this plant useful for wastewater treatment.

  10. Phylogenetic variation of phytolith carbon sequestration in bamboos.

    Science.gov (United States)

    Li, Beilei; Song, Zhaoliang; Li, Zimin; Wang, Hailong; Gui, Renyi; Song, Ruisheng

    2014-04-16

    Phytoliths, the amorphous silica deposited in plant tissues, can occlude organic carbon (phytolith-occluded carbon, PhytOC) during their formation and play a significant role in the global carbon balance. This study explored phylogenetic variation of phytolith carbon sequestration in bamboos. The phytolith content in bamboo varied substantially from 4.28% to 16.42%, with the highest content in Sasa and the lowest in Chimonobambusa, Indocalamus and Acidosasa. The mean PhytOC production flux and rate in China's bamboo forests were 62.83 kg CO2 ha(-1) y(-1) and 4.5 × 10(8)kg CO2 y(-1), respectively. This implies that 1.4 × 10(9) kg CO2 would be sequestered in world's bamboo phytoliths because the global bamboo distribution area is about three to four times higher than China's bamboo. Therefore, both increasing the bamboo area and selecting high phytolith-content bamboo species would increase the sequestration of atmospheric CO2 within bamboo phytoliths.

  11. Lithological control on phytolith carbon sequestration in moso bamboo forests.

    Science.gov (United States)

    Li, Beilei; Song, Zhaoliang; Wang, Hailong; Li, Zimin; Jiang, Peikun; Zhou, Guomo

    2014-06-11

    Phytolith-occluded carbon (PhytOC) is a stable carbon (C) fraction that has effects on long-term global C balance. Here, we report the phytolith and PhytOC accumulation in moso bamboo leaves developed on four types of parent materials. The results show that PhytOC content of moso bamboo varies with parent material in the order of granodiorite (2.0 g kg(-1)) > granite (1.6 g kg(-1)) > basalt (1.3 g kg(-1)) > shale (0.7 g kg(-1)). PhytOC production flux of moso bamboo on four types of parent materials varies significantly from 1.0 to 64.8 kg CO₂ ha(-1) yr(-1), thus a net 4.7 × 10(6) -310.8 × 10(6) kg CO₂ yr(-1) would be sequestered by moso bamboo phytoliths in China. The phytolith C sequestration rate in moso bamboo of China will continue to increase in the following decades due to nationwide bamboo afforestation/reforestation, demonstrating the potential of bamboo in regulating terrestrial C balance. Management practices such as afforestation of bamboo in granodiorite area and granodiorite powder amendment may further enhance phytolith C sequestration through bamboo plants.

  12. Exporing bamboo products from Vietnam to Finland

    OpenAIRE

    Nguyen, Dieu

    2016-01-01

    The objectives of this thesis were to create a suitable export plan for the company Spring Bamboo and its potential on the Finnish market. In order to assess this potential, a market analysis and an online survey were conducted. The data was collected by case study method. While data about the company was provided by the employees of the company, information about Finnish market was gathered through a PESTLE analysis and a survey for Finnish customers. Several conclusions were reach...

  13. Prelude: the future of structural bamboo

    OpenAIRE

    Ramage, Michael Hector; Sharma, B; Gatoo, A; Konstantatou, Marina; Reynolds, T; Fereday, G; Fleming, P; Shah, Darshil Upendra; Wageman, E

    2015-01-01

    Prelude demonstrates the possibilities for engineered bamboo in structural applications. Our pavilion is composed of a spiral pathway that cantilevers from the base and embodies the function of the Muziekgebouw through a lightweight design that mirrors a musical prelude in structure, concept and form. Inspired by Guastavino´s masonry vaults, the structure evokes the image of a spiral staircase originally constructed from thin tiles, transformed in a novel material with properties distinct fro...

  14. Electrical valorization of bamboo in Africa

    International Nuclear Information System (INIS)

    Kerlero De Rosbo, Guillaume; Bussy, Jacques de

    2012-01-01

    ENEA releases a technical benchmark of small-scale woody biomass-to-electricity technologies, as well as its application to a project to valorize bamboo in Rwanda and Burundi. Within the framework of its voluntary consulting action, ENEA has provided technical and project management support to help INBAR (International Network for Bamboo and Rottin) evaluate the technical feasibility of its project and assess what would be the best available technology to fit with the project's objectives and local context. This report thus includes up-to-date description of combustion, gasification and pyrolysis technologies as well as associated power-generation engines. For each, principle, advantages and drawbacks, technical maturity, adaptation to small-scale, flexibility to a change in biomass, scale-up feasibility, economical aspects or else environmental impacts are described and compared. Unit's integration within its environment, electricity use and associated business models are also addressed, and needed bamboo crop surfaces to meet power supply objectives are assessed

  15. Homogenate-assisted Vacuum-powered Bubble Extraction of Moso Bamboo Flavonoids for On-line Scavenging Free Radical Capacity Analysis.

    Science.gov (United States)

    Sun, Yinnan; Yang, Kui; Cao, Qin; Sun, Jinde; Xia, Yu; Wang, Yinhang; Li, Wei; Ma, Chunhui; Liu, Shouxin

    2017-07-11

    A homogenate-assisted vacuum-powered bubble extraction (HVBE) method using ethanol was applied for extraction of flavonoids from Phyllostachys pubescens (P. pubescens) leaves. The mechanisms of homogenate-assisted extraction and vacuum-powered bubble generation were discussed in detail. Furthermore, a method for the rapid determination of flavonoids by HPLC was established. HVBE followed by HPLC was successfully applied for the extraction and quantification of four flavonoids in P. pubescens , including orientin, isoorientin, vitexin, and isovitexin. This method provides a fast and effective means for the preparation and determination of plant active components. Moreover, the on-line antioxidant capacity, including scavenging positive ion and negative ion free radical capacity of different fractions from the bamboo flavonoid extract was evaluated. Results showed that the scavenging DPPH ˙ free radical capacity of vitexin and isovitexin was larger than that of isoorientin and orientin. On the contrary, the scavenging ABTS⁺ ˙ free radical capacity of isoorientin and orientin was larger than that of vitexin and isovitexin.

  16. Material compósito - propriedades do aglomerado de gesso e partículas fragmentadas de bambu (phyllostachys edulis)

    OpenAIRE

    Machado, Luís Miguel Ferreira Leite de Novaes

    2011-01-01

    Neste trabalho estudou-se um compósito de gesso FGD reforçado com fibras vegetais. As fibras utilizadas neste estudo são provenientes de bambu da espécie Phyllostachys edulis e foram trituradas até se obter uma granulometria apropriada à composição de uma pasta de gesso que permitisse a execução de placas de gesso laminado. As placas produzidas foram ensaiadas à flexão e posteriormente submetidas à análise de humidade para aferir a percentagem de água de cristalização nas amostras. Foram a...

  17. non-woven fabrics treated with bamboo activated charcoal

    African Journals Online (AJOL)

    ajl4

    2012-06-21

    Jun 21, 2012 ... abrasion strength and tensile strength; and reduced the tear strength of the treated non-woven fabrics. The bamboo activated charcoal concentration exhibited no effect on the physical properties of the treated non-woven fabrics. Key words: Poly-ethylene terephthalate (PET), non-woven fabrics, bamboo ...

  18. Antibacterial activity of water-phase extracts from bamboo shavings ...

    African Journals Online (AJOL)

    hope&shola

    2010-11-08

    Nov 8, 2010 ... Key words: Water-phase extract of bamboo shavings (WEBS), antimicrobial activity, natural preservative. INTRODUCTION .... 7712 Afr. J. Biotechnol. Table 1. Antibacterial activity of extract from bamboo shavings (WEBS). Microorganism. Inhibition zone. (mm). Blank control. (distilled water). Positive control.

  19. Effect of Bamboo ( Bambusa valgaris ) and Elephant grass ...

    African Journals Online (AJOL)

    Antioxidant potential of bamboo and elephant grass leaf extracts were evaluated in cooked and raw broiler meat stored under refrigeration at 3±20C. To a separate 350g of minced broiler meat, 1.5% bamboo leaf extract (BLE) or elephant grass extract (EGE) was added. There was a negative control without additive while a ...

  20. production of particleboards using polystyrene and bamboo wastes

    African Journals Online (AJOL)

    HOD

    This investigation was able to produce incredibly strong particleboards using bamboo and resinous material obtained from Polystyrene wastes. The particleboards were prepared by mixing the bamboo fibres and Polystyrene based resin. (PBR) followed by flat press process at different ratio (v/v). Physical properties were ...

  1. Potentials of Bamboo in Nigeria's Industrial Sector | Ogunwusi ...

    African Journals Online (AJOL)

    This will also lead to reduction in plant biodiversity loss as bamboo will save forests by replacing traditional wood and other plant species being exploited and converted to a number of industrial products. Also, with a 10 to 30% annual increase in biomass compared to 2 to 5% for trees, bamboo offers greater biomass for ...

  2. Micropropagation of important bamboos: A review | Mudoi | African ...

    African Journals Online (AJOL)

    ... tissue culture mediated biotechnological interventions made in bamboo for large scale micropropagation, that being the need of the hour. Keywords: Bamboo, micropropagation, somatic embryogenesis, in vitro flowering, macroproliferation, field performance, clonal fidelity. African Journal of Biotechnology Vol. 12(20), pp.

  3. A comparative study of regenerated bamboo, cotton and viscose ...

    African Journals Online (AJOL)

    Apart from the claimed “cool feeling”, the comfort properties referred to in the promotion of bamboo viscose fabrics can generally be ascribed to most cellulose fibres or fabrics. The purpose of this study was to investigate whether the moisture management and thermo-physiological properties of regenerated bamboo fabrics ...

  4. Insights on predominant edible bamboo shoot proteins | Sayanika ...

    African Journals Online (AJOL)

    Importantly, MS/MS data revealed that abundant peptides in bamboo shoots are histone-like related (H2A, H3 and H4) which generally form the nucleosome core and can participate in defense, stress and development. This study is the first qualitative data on protein components of bamboo shoots which harmonize the ...

  5. Effectiveness of Nigerian Bamboo Activated with Different Activating ...

    African Journals Online (AJOL)

    The effectiveness of Nigerian Bamboo activated with different activating agents on the adsorption of BTX was investigated. A series of activated carbons was prepared from Nigerian bamboo, carbonized at 400oC – 500oC and impregnated with different concentrations of four acids at 800oC in a muffle furnace for 2 hours.

  6. Using bamboo (Bambusa vulgaris) as a field drainage material in ...

    African Journals Online (AJOL)

    Bamboo (Bambusa vulgaris), one of the most widespread member of its genus, was used as field drainage material in Akure, Nigeria. Pre-determined sizes of bamboo with uniform lengths and diameters were installed as sub-drains in agricultural field for drainage purposes, especially in developing countries like Nigeria.

  7. Utilization of vast Nigeria's bamboo resources for economic growth ...

    African Journals Online (AJOL)

    Bamboo is recognized as an industrial raw material globally and has tremendous potentials for the economic development of the nations. This paper reviewed the potentials of the abundant Nigeria's bamboo resources used for house construction, household items, biofuel, charcoal, pulp and paper, irrigation and drainage ...

  8. Bamboo may be the answer to Ethiopia's growing housing needs ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    However, modernization, the decreasing availability of bamboo resources, increased rural populations, and lack of adequate processing skills and modern designs threaten the sustainability of Ethiopian bamboo architecture. Despite these challenges, the authors call for further support from the Ethiopian government to ...

  9. Experimental Study On Lateral Load Capacity of Bamboo RC Beam Column Joints Strengthened By Bamboo Mechanical Anchors

    Directory of Open Access Journals (Sweden)

    Sri Umniati B.

    2017-01-01

    Full Text Available In this paper, the prospective of bamboos which available abundantly especially in Indonesia as rebars and mechanical anchors are studied. And also the endurance of the bamboos mechanical anchors to withstand cyclic loading were observed. Nine classes of bamboos bar were evaluated: consist of 3 different anchors (0, 4 and 8 anchors and 3 different compressive strength (19.19 MPa, 29.61 MPa and 37.96 MPa means 3 × 3 parameters. The results show that the lateral load capacity increased significantly with the present of bamboo anchors specimens: 26.04 % for 4 anchors specimens (C2 and 25 % for the 8 anchors specimens (C3 compared to zero anchor specimens (C1. On the other hand, the compressive strength of concrete have no significant effects to the lateral load capacity. Overall it can be concluded that, bamboo can be used as mechanical anchorage to strengthen beam column joint.

  10. Effect of compatibilizer, bamboo fiber size and content on the mechanical properties of PP-g-MA compatibilized polypropylene/bamboo fiber composites; Estudo da influencia dos teores de fibra, agente compatibilizante e tamanho de fibra nas propriedades de compositos de polipropileno com fiobra de bambu

    Energy Technology Data Exchange (ETDEWEB)

    Caranti, Lilian R.A.; Bonse, Baltus C.; Costa, Ricardo A. da, E-mail: prebbonse@fei.edu.br [Dept. da Engenharia dos Materiais, Centro Universitario de FEI, Sao Bernardo do Campo, SP (Brazil)

    2011-07-01

    The contemporary need for ecological preservation is a challenge to the realms of science to develop environmentally sustainable materials and processes. Research on composites reinforced with natural cellulosic fibers seeks to meet that need. An investigation was performed on the mechanical and thermal behavior of a composite comprising a polypropylene thermoplastic matrix and bamboo fibers (Phyllostachys Edulis). Interfacial adhesion between the two materials was achieved by the addition of compatibilizer maleic anhydride grafted polypropylene PPg- MA. An investigation was carried out with 8 compositions by varying the average fiber size (lower level = 0.94 mm and upper level = 2.19 mm), fiber content (20 and 40 weight %) and compatibilizer PP-g-MA (1 and 4 weight %). The mechanical behavior of the composites was studied by carrying out tensile, flexural, impact and fatigue tests. Thermal behavior was investigated by heat deflection temperature tests. Crystallinity was measured by means of X Ray diffraction and fractured surfaces were observed and analyzed by scanning electron microscopy. (author)

  11. New conceptual design of portable bamboo bridge for emergency purposes

    Science.gov (United States)

    Musthaffa, A. A.; Nor, N. M.; Yusof, M. A.; Yuhazri, M. Y.

    2018-02-01

    Portable bridges serve as routes for troops during the military operations and the disaster relief operation. Nowadays, bamboo has been regarded as one of the alternative construction materials for building and bridge structures. This paper presents the conceptual design of the portable bridge. Several types of portable bridges and bamboo bridges are reviewed in the current work. The characteristics, capability and method of construction of each bridge are discussed. Finally, the conceptual of the portable bamboo bridge for emergency purposes is presented. The idea of producing portable bridge is proposed in the current work as it is crucial for providing route for communities affected by natural disasters.

  12. Evaluation and comparison of a lightweight bamboo composite

    Science.gov (United States)

    Loth, Andreas; Berwing, Michael; Förster, Ralf

    2016-10-01

    The demand for fast changing production lines and other facilities needs new lightweight and stable systems for partitioning walls. There is also a need for ecological products for this application. The wood like grass bamboo provides a wide potential to substitute conventional wood. A composite lightweight honeycomb like bamboo board was developed and compared with reinforced and unreinforced plywood specimen. The acquired mechanical properties gave a promising result for the usability of bamboo as basis material for wide span boards. It can be manufactured with minimal technical investments, that suits also well for regions with little industry. The ecological assessment of the structure is very positive.

  13. Adsorption Properties and Potential Applications of Bamboo Charcoal: A Review

    Directory of Open Access Journals (Sweden)

    Isa S.S.M.

    2016-01-01

    Full Text Available Bamboo charcoal was produced by pyrolysis or carbonization process with extraordinary properties such as high conductivity, large surface area and adsorption property. These properties can be improved by activation process that can be done thermally or chemically. In this paper, carbonization and activation process of bamboo, its structural and adsorption properties will be presented. Herein, the adsorption properties of bamboo charcoal that has fully utilized in solar cell as the electrode, adsorbent for water purification and electromagnetic wave absorber are reviewed.

  14. Sarawak Bamboo Craft: Symbolism and Phenomenon

    Directory of Open Access Journals (Sweden)

    Arshad Mohd Zaihidee

    2014-04-01

    Full Text Available The relationship between human beings and their environment has stirred reactions between nature and the development of mind and actions that can be discussed using interdisciplinary approaches such as psychology, sociology, anthropology and history, in understanding human thinking and behavior. A psychological approach is intended to evaluate the individual choices and needs in society. A sociological approach details the various patterns in the social organization. An anthropological approach is tied with culture and belief to fulfil human needs which are based on their habitat, while a historical approach looks at the development which is related to the past. Dimensions of experiences, order and logic, selective elaboration and expressions are used to analyze the bamboo craft of Iban, Melanau and Bidayuh societies in Sarawak long-houses. The existence of constitutive, moral, expressive and cognitive symbols has been interpreted based on a theoretical framework that has been developed by Langer Art Theory, Parsons Social Theory and Kaplan Culture Theory. The values and meaning formed are interpreted to understand matters related to the lives of villagers and the finding suggests that bamboo craft expresses the multi-ethnic mind and character in the socio-culture of long- houses in Sarawak.

  15. Ecology of litterfall production of giant bamboo Dendrocalamus asper in a watershed area

    Directory of Open Access Journals (Sweden)

    A.G. Toledo Bruno

    2017-12-01

    Full Text Available Giant bamboo Dendrocalamus asper is recommended in environmental and livelihood programs in the Philippines due to its various ecological, economic and social benefits. However, there are limited data on the ecology of giant bamboo litterfall production, which contributes to soil nutrient availability. Bamboo also contributed in carbon sequestration. The study was conducted within the Taganibong Watershed in Bukidnon, Philippines. Nine litterfall traps measuring 1mx1m were established within the giant bamboo stand in the study area. Results show that giant bamboo litterfall is dominated by leaves. Biological characteristics of bamboo litterfall do no not influence litterfall production but temperature, wind speed and humidity correlate with the amount of litterfall. Findings of the study further revealed that fresh giant bamboo tissue contains high carbon content and the soil in the bamboo stand has higher organic matter than the open clearing. These data indicate the role of giant bamboo in carbon sequestration and soil nutrient availability.

  16. The Nutritional Facts of Bamboo Shoots and Their Usage as Important Traditional Foods of Northeast India.

    Science.gov (United States)

    Nongdam, P; Tikendra, Leimapokpam

    2014-01-01

    Bamboo shoots are considered as one of the useful health foods because of their rich contents of proteins, carbohydrates, vitamins, fibres, and minerals and very low fat. Though bamboo shoots provide lots of health benefits, their consumption is confined mostly to Southeast Asian and East Asian countries. The acceptability of bamboo shoots as popular vegetable crop is very less due to their high pungent smell and bitter acidic taste. The use of bamboo as food in India is mainly restricted to Northeastern part of the country where they form an indispensable part of several traditional speciality dishes. The different ethnic communities take fresh or fermented bamboo shoot as one of most preferred traditional food items. Some of the important bamboo based traditional foods are ushoi, soibum, rep, mesu, eup, ekhung, hirring, and so forth. Bamboo shoots should be properly processed before they are consumed as freshly harvested shoots have high content of toxic cyanogenic glycosides which may pose serious health problems. The prospect of bamboo shoot industry in Northeast India is bright due to its rich genetic resources of bamboos. However, habitat destruction and extensive use of bamboos for food, handicraft, and construction purposes have resulted in severe depletion of natural bamboo resources. This review stresses upon the high nutritive values and health benefits of bamboo shoots and their usage as important traditional foods in Northeast India. The bamboo market potential of the region and use of in vitro plant micropropagation methods as effective means of bamboo conservation are also emphasized in this paper.

  17. Investigating co-combustion characteristics of bamboo and wood.

    Science.gov (United States)

    Liang, Fang; Wang, Ruijuan; Jiang, Changle; Yang, Xiaomeng; Zhang, Tao; Hu, Wanhe; Mi, Bingbing; Liu, Zhijia

    2017-11-01

    To investigate co-combustion characteristics of bamboo and wood, moso bamboo and masson pine were torrefied and mixed with different blend ratios. The combustion process was examined by thermogravimetric analyzer (TGA). The results showed the combustion process of samples included volatile emission and oxidation combustion as well as char combustion. The main mass loss of biomass blends occurred at volatile emission and oxidation combustion stage, while that of torrefied biomass occurred at char combustion stage. With the increase of bamboo content, characteristic temperatures decreased. Compared with untreated biomass, torrefied biomass had a higher initial and burnout temperature. With the increase of heating rates, combustion process of samples shifted to higher temperatures. Compared with non-isothermal models, activation energy obtained from isothermal model was lower. The result is helpful to promote development of co-combustion of bamboo and masson pine wastes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Bars to jars: bamboo value chains in Cameroon.

    Science.gov (United States)

    Ingram, Verina; Tieguhong, Julius Chupezi

    2013-04-01

    Bamboo is a well know and versatile material, which is a common sight across Cameroon's diverse ecosystems, from dry to humid tropical and Afromontane forests. Its numerous uses range from storage jars to decorating restaurant-bars, beehives to knives, fences, fodder, and fuel. Responding to the paucity of data on species and uses, the value chain for bamboo in Cameroon was analyzed. Based on 171 interviews and field observations, two African indigenous species (alpine Yushania alpina and savannah Oxytenanthera abyssinica) and exotic (Bambusa vulgaris spp.) bamboos were identified as most utilized. They were tracked from major production zones to final consumers. The ecological, socio-economic, institutional, and governance contexts and impacts are described and analyzed. Issues for research, conservation, and development are highlighted. These include the ambiguous regulatory status, the relationship between tenure and management, threats and conservation of African species and options to increase the sustainable livelihoods for stakeholders dependent upon bamboo.

  19. The potential of bamboo in the design of polymer composites

    Directory of Open Access Journals (Sweden)

    Patrícia Santos Delgado

    2012-08-01

    Full Text Available Bamboo is an alternative sustainable material for use in product design and has been incorporated into the concepts of eco-design. Here, we investigated the mechanical properties and morphologies of low density polyethylene (LDPE/bamboo flour (BF composites that were modified with polyethylene-graft-maleic anhydride (PE-g-MA and glycerol. Scanning electron microscopy (SEM and tensile tests of the composites demonstrated poor adhesion between the filler and matrix. Contact angle measurement showed that the surface of LDPE was modified by the presence of the load. The thermal stability of the composites was studied by measuring the oxidation induction time (OIT. Preliminary bacterial penetration tests were performed using culture inoculums of E. coli and S. aureus to investigate the natural antibacterial and bacteriostatic properties attributed to bamboo. Furthermore, bamboo may have interesting antioxidant activity with potential for use in food packaging applications.

  20. Development and mechanical characterization of green bamboo composites

    Science.gov (United States)

    Ali, Aidy; Ng, W. K.; Arifin, F.; Rassiah, K.; Othman, F.; Hazin, M. S.; Ahmad, M. M. H. Megat

    2018-02-01

    In this study, a bamboo composite is developed using specific bamboo species known as Gigantochloa Scortechinii (Buluh Semantan) which can be found in Malaysia. In precise, the woven bamboo (WB) was formed from the culm fier composite with an average of 0.5 mm thickness and 5.0 mm width strip is laminated with Wowen E Glass (WEG) and reinforced with epoxy (EP). The laminated was using a hand lay-up technique. The developed bamboo composites are then characterized comprehensively in the term of tensile, hardness, impact, fatigue and fracture test. It is found that the strength was equivalent with the existing steel alloy in term of tensile and fracture properties.

  1. Developing characteristics and relationships of Shiraia bambusicola with Bamboo

    Directory of Open Access Journals (Sweden)

    Zuoyi Liu

    2012-02-01

    Full Text Available Growth of Shiraia bambusicola was observed in the wild during its developing process, and its morphologicalcharacteristics and relationships with bamboo tissue were observed by light microscopy and SEM. The fungal stromata werefound only on top stalks of the previous year branches. Parasitic relationship of the fungus with the bamboo could not beindicated from the morphological evidence. The fungus grew around the interspace of bamboo leaf sheaths, showed thetissue specificity on leaf sheath of several bamboo genera. A possible life cycle of S. bambusicola was proposed and discussed.The fungus was confirmed to have bitunicate asci with pseudoparaphyses thus should be placed in the Pleoporalesorder and not in the Dothidiales. Asexual and sexual developments of S. bambusicola were observed and for the first timefour stages of ascus and ascospore development were described. The four stages consisted of ascus primordium formation,ascus elongation, young ascospore formation, and ascospore maturation.

  2. Managing woody bamboos for carbon farming and carbon trading

    Directory of Open Access Journals (Sweden)

    Arun Jyoti Nath

    2015-01-01

    Full Text Available Research on identifying cost-effective managed ecosystems that can substantially remove atmospheric carbon-dioxide (CO2 while providing essential societal benefits has gained momentum since the Kyoto Protocol of 1997. Carbon farming allows farmers and investors to generate tradable carbon offsets from farmlands and forestry projects through carbon trading. Carbon trading is pertinent to climate negotiations by decelerating the climate change phenomenon. Thus, the objective of this article is to describe the potential of woody bamboos in biomass carbon storage and as an option for carbon farming and carbon trading. Bamboo is an important agroforestry and forest plant managed and used by the rural communities in several countries of the Asia-Pacific region for generating diverse economic and socio-environmental needs. Mean carbon storage and sequestration rate in woody bamboos range from 30–121 Mg ha−1 and 6–13 Mg ha−1  yr−1, respectively. Bamboo has vigorous growth, with completion of the growth cycle between 120 and 150 days. Because of its rapid biomass accumulation and effective fixation of CO2, it has a high carbon sequestration capacity. Over and above the high biomass carbon storage, bamboo also has a high net primary productivity (12–26 Mg ha−1  yr−1 even with regular selective harvesting, thus making it a standing carbon stock and a living ecosystem that continues to grow. Despite its high potential in carbon storage and sequestration and its important role in livelihood of millions of rural poor’s worldwide, prospects of bamboo ecosystems in CDM (Clean Development Mechanism and REDD (Reduced Emission from Deforestation and Forest Degradation schemes remain to be explored. Thus, there is an urgent need to recognize ecosystem services that woody bamboo provides for well-being of rural communities and nature conservancy. Present synthesis suggests that bamboo offers tremendous opportunity for carbon farming and

  3. Dowelled structural connections in laminated bamboo and timber

    OpenAIRE

    Reynolds, Thomas Peter; Sharma, Bhavna; Harries, Kent; Ramage, Michael Hector

    2015-01-01

    Structural sections of laminated bamboo can be connected using methods common in timber engineering, however the different material properties of timber and laminated bamboo suggest that the behaviour of connections in the two materials would not be the same. This study investigates the dowelled connection, in which a connector is passed through a hole in the material, and load is resisted by shear in the connector and embedment into the surrounding material. Steel dowels were used in a conne...

  4. Relationship of structure and stiffness in laminated bamboo composites

    OpenAIRE

    Penellum, Matthew; Sharma, Bhavna; Shah, Darshil Upendra; Foster, Robert; Ramage, Michael Hector

    2018-01-01

    Laminated bamboo in structural applications has the potential to change the way buildings are constructed. The fibrous microstructure of bamboo can be modelled as a fibre-reinforced composite. This study compares the results of a fibre volume fraction analysis with previous experimental beam bending results. The link between fibre volume fraction and bending stiffness shows that differences previously attributed to preservation treatment in fact arise due to strip thickness. Composite t...

  5. Adsorptive Removal of Fluoroquinolone Antibiotics Using Bamboo Biochar

    Directory of Open Access Journals (Sweden)

    Yanbin Wang

    2015-09-01

    Full Text Available The occurrence of fluoroquinolone antibiotics in wastewater has drawn great attention. Adsorption of widely used fluoroquinolone antibiotics (enrofloxacin and ofloxacin in wastewater using bamboo biochar was investigated. More than 99% of fluoroquinolone antibiotics were removed from the synthetic wastewater through adsorption. Adsorption capacities of bamboo biochar slightly changed when pH increased from 3.0 to 10.0. The adsorption capacity of bamboo biochar increased sharply when the initial concentration of enrofloxacin or ofloxacin increased from 1 to 200 mg L−1 and then began to plateau with further increases in initial concentration. The maximum adsorption capacity (45.88 ± 0.90 mg·g−1 was observed when the ratio of bamboo biochar to fluoroquinolone antibiotics was 10. The enrofloxacin adsorption capacity of bamboo biochar decreased from 19.91 ± 0.21 mg·g−1 to 14.30 ± 0.51 mg·g−1 while that of ofloxacin decreased from 19.82 ± 0.22 mg·g−1 to 13.31 ± 0.56 mg·g−1 when the NaCl concentrations increased from 0 to 30 g·L−1. The adsorptions of fluoroquinolone on bamboo biochar have isotherms that obeyed the Freundlich model (r2 values were in the range of 0.990–0.991.

  6. Performance Using Bamboo Fiber Ash Concrete as Admixture Adding Superplasticizer

    Science.gov (United States)

    Vasudevan, Gunalaan

    2017-06-01

    The increasing demand on natural resources for housing provisions in developing countries have called for sourcing and use of sustainable local materials for building and housing delivery. Natural materials to be considered sustainable for building construction should be ‘green’ and obtained from local sources, including rapidly renewable plant materials like palm fronds and bamboo, recycled materials and other products that are reusable and renewable. Each year, tens of millions of tons of bamboo are utilized commercially, generating a vast amount of waste. Besides that, bamboo fiber is easy availability, low density, low production cost and satisfactory mechanical properties. One solution is to activate this waste by using it as an additive admixture in concrete to keep it out of landfills and save money on waste disposal. The research investigates the mechanical and physical properties of bamboo fiber powder in a blended Portland cement. The structural value of the bamboo fiber powder in a blended Portland cement was evaluated with consideration for its suitability in concrete. Varied percentage of bamboo fiber powder (BFP) at 0%, 5%, 10%, 15%, and 20% as an admixture in 1:2:4 concrete mixes. The workability of the mix was determined through slump; standard consistency test was carried on the cement. Compressive strength of hardened cured (150 x 150 x 150) mm concrete cubes at 7days, 14days and 28days were tested.

  7. Surface chemical composition analysis of heat-treated bamboo

    International Nuclear Information System (INIS)

    Meng, Fan-dan; Yu, Yang-lun; Zhang, Ya-mei; Yu, Wen-ji; Gao, Jian-min

    2016-01-01

    Highlights: • Investigate the detailed chemical components contents change of bamboo due to heating. • Chemical analysis of bamboo main components during heating. • Identify the connection between the oxygen to carbon atomic ratio changes and chemical degradation. - Abstract: In this study, the effect of heat treatment on the chemical composition of bamboo slivers was studied. The chemical properties of the samples were examined by chemical analysis. Results showed a decrease in the contents of holocellulose and α-cellulose, as well as an increase in the contents of lignin and extractives. Changes in the chemical structure of bamboo components were analyzed by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). FTIR spectroscopy results indicated that hemicellulose contents decrease, whereas lignin contents increase after heat treatment. Ester formation linked to lignin decreased the hygroscopicity of the bamboo samples and consequently improved their dimensional stability and durability. XPS spectroscopy results showed that hemicelluloses and celluloses are relatively more sensitive to the heating process than lignin. As a consequence, hemicellulose and cellulose contents decreased, whereas lignin contents increased during heat treatment. The results obtained in this study provide useful information for the future utilization of heat-treated bamboo.

  8. Morphology and properties of recycled polypropylene/bamboo fibers composites

    Science.gov (United States)

    Phuong, Nguyen Tri; chuong, Bui; Guinault, Alain; Sollogoub, Cyrille

    2011-05-01

    Polypropylene (PP) is among the most widely used thermoplastics in many industrial fields. However, like other recycled polymers, its properties usually decrease after recycling process and sometimes are degraded to poor properties level for direct re-employment. The recycled products, in general, need to be reinforced to have competitive properties. Short bamboo fibers (BF) have been added in a recycled PP (RPP) with and without compatibilizer type maleic anhydride polypropylene (MAPP). Several properties of composite materials, such as helium gas permeability and mechanical properties before and after ageing in water, were examined. The effects of bamboo fiber content and fiber chemical treatment have been also investigated. We showed that the helium permeability increases if fiber content is higher than 30% because of a poor adhesion between untreated bamboo fiber and polymer matrix. The composites reinforced by acetylated bamboo fibers show better helium permeability due to grafting of acetyl groups onto cellulose fibers surface and thus improves compatibility between bamboo fibers and matrix, which has been shown by microscopic observations. Besides, mechanical properties of composite decrease with ageing in water but the effect is less pronounced with low bamboo fiber content.

  9. The physical and mechanical properties of treated and untreated Gigantochloa Scortechinii bamboo

    Science.gov (United States)

    Daud, Norhasliya Mohd; Nor, Norazman Mohamad; Yusof, Mohammed Alias; Bakhri, Azrul Affandhi Mustaffa Al; Shaari, Amalina Aisyah

    2018-02-01

    Bamboo's advantages such as fast growing, renewable and easily available raw material meets the demand of sustainable material in construction. Bamboo act as reinforcement to enhance strength in structural members. This paper investigated on the properties of Gigantochloa Scortechinii bamboo (moisture content, density, compression, shear and bending) by referring to ISO 22157. Moisture content for both untreated and treated bamboo high at the bottom section while density is high at the top section. Compression strength for untreated bamboo were between 19.96 to 23.80 MPa and treated bamboo were between 31.74 to 36.60 MPa. High compression was at the top section which have the greatest wall thickness. Shear strength recorded between 4.28 to 5.69 MPa for untreated bamboo with node and 3.67 to 5.21 MPa for treated bamboo with node. The shear strength of samples with node recorded high strength compared to internode. Untreated bamboo recorded the MOR between 53.64 to 73.66 MPa and 58.23 to 62.86 MPa for treated bamboo. MOE of untreated bamboo were between 26.70 GPa to 36.31 GPa while treated bamboo were between 28.83 to 33.41 GPa. By replacing bamboo to the conventional building material, cost of materials will be reduced and sustainability will be enhanced.

  10. A mass cyanide poisoning from pickling bamboo shoots.

    Science.gov (United States)

    Sang-A-Gad, Pensiriwan; Guharat, Suriya; Wananukul, Winai

    2011-11-01

    Bamboo shoots contain cyanogenic glycosides named taxiphyllin. Cyanide poisoning from cyanogenic glycosides commonly occurs following ingestion. However, toxicity caused by inhalation of hydrogen cyanide gas (HCN) produced from pickled shoots has never been reported. To describe cyanide poisoning in eight victims who were exposed to HCN produced in a well containing pickling bamboo shoots. Due to a series of botched rescue attempts, a total of eight patients entered into a 27 m(3) well containing pickled bamboo shoots and immediately lost consciousness. After rescue, two patients developed cardiac arrest, metabolic acidosis and died. Four other patients suffered metabolic acidosis, but recovered after supportive care. The remaining two regained consciousness and recovered soon after the event. Ambient air study and cyanide content of bamboo shoots helped confirm the diagnosis. All patients had high anion gap metabolic acidosis with normal oxygenation. Blood cyanide levels ranged from 2.66 to 3.30 mcg/ml (taken after about 18 h of incident). Ambient air study (21 h after incident) revealed oxygen 20.9%, and sulfur dioxide 19.4 ppm. The instrument was unfortunately not equipped to detect HCN. A simulation study revealed HCN and sulfur dioxide in the ambient air at 10 ppm and 7.5 ppm, respectively. Cyanide content in the bamboo shoots ranged from 39 to 434 mg/kg in the wet shoots. This series of patients developed sudden onset of alteration of consciousness and metabolic acidosis upon exposure, and cyanide was confirmed in all victims. The simulation study confirmed the presence of HCN in the ambient air of the well containing bamboo shoots. We have reported mass acute cyanide poisoning with two fatalities. The source of HCN was unusual as it was produced from pickling bamboo shoot.

  11. Isolation and evaluation of endophytic fungi with antimicrobial ability from Phyllostachys edulis

    Directory of Open Access Journals (Sweden)

    Xiaoye Shen

    2012-12-01

    Full Text Available Endophytic fungi (30 isolates from bamboo branches were categorized into 12 genera, based on the blast analyses of ITS nrDNA sequence in GenBank and microscopic examination. The aim of this work was to investigate the antibacterial and antifungal activities of endophytic fungi. Inhibitory effects against clinical pathogens and phytopathogens have been screened for all the isolates preliminarily and strains tentatively identified as Cladosporium sphaerospermum (PE106, Simplicillium lanosoniveum (PE120, Curvularia sp. (PE127, Didymella sp. (PE128 and Penicillium cf. raistrickii (PE130 presented bioactivity against at least four tested pathogens using the agar diffusion method. Crude extracts of PE106, PE120, PE127 and PE130 displayed broad-spectrum activity against plant pathogenic fungi by mycelial radial growth test. All of the four isolates were found to have high bioactivity against the frequent plant pathogenic fungus Botryotinia fuckeliana, and two of the isolates (PE120 and PE130 also inhibited the growth of phytopathogen Thanatephorus cucumeris noteworthily. This study is the first report on the antimicrobial activity of endophytic fungi associated with branches of Ph. edulis.

  12. The Environmental Impact of Industrial Bamboo Products : Life-cycle Assessment and Carbon Sequestration

    NARCIS (Netherlands)

    Vogtlander, J.G.; Van der Lugt, P.

    2014-01-01

    This report gives a Life-Cycle Assessment (LCA) and carbon footprint analysis on a selection of industrial bamboo products. The LCA is made for cradle-to-gate, plus the end-of-life stages of the bamboo products. For end-of-life it is assumed that 90% of the bamboo products are incinerated in an

  13. Improved understorey bamboo cover mapping using a novel hybrid neural network and expert system

    NARCIS (Netherlands)

    Wang, T.; Skidmore, A.K.; Toxopeus, A.G.

    2009-01-01

    The giant panda is an obligate bamboo grazer. Therefore, the availability and abundance of understorey bamboo determines the quantity and quality of panda habitat. However, there is little or no information about the spatial distribution or abundance of bamboo underneath the forest canopy, due to

  14. Evaluation of Torrefied Bamboo for Sustainable Bioenergy Production

    Energy Technology Data Exchange (ETDEWEB)

    Daza Montano, C.; Pels, J.; Fryda, L.; Zwart, R. [ECN Biomass and Energy Efficiency, Petten (Netherlands)

    2012-04-15

    Bamboo is a potential sustainable biomass source for renewable heat and power production. Bamboo presents common fuel characteristics with other biomass feedstocks regarding heating value and chemical composition. Up to date, there are no studies on fuel properties of the bamboo specie Guadua angustifolia. Bamboo is a difficult fuel and most thermal conversion processes have stringent fuel specifications, which are challenging to fulfil with biomass streams. Bamboo is tenacious and fibrous which makes it difficult and expensive to grind. Furthermore, the characteristics with regard to handling, storage and degradability are not favourable for biomass in general. The thermal pre-treatment torrefaction is a promising upgrading technology that can enhance the fuel quality by addressing these issues. During torrefaction, biomass is heated to 250-320C in the absence of oxygen. At the end of the process the material is milled and compressed into pellets. In this way, the biomass becomes easy to grind, more hydrophobic and has a high energy density. Alternatively, wet torrefaction (Torwash) allows for combined torrefaction and washing of the feedstock. Wet torrefaction, a form of hydro-thermal treatment, in addition to dry torrefaction removes salts and minerals from biomass, improving even more the quality of the product. This is in particular interesting for feedstock containing significant amounts of undesirable alkali components for combustion or gasification, as is the case of bamboo. This paper presents an evaluation of the use of Guadua angustifolia as a fuel for heat and power applications. The results of biomass fuel properties and characteristics and quality improvement via dry and wet torrefaction are assessed. Torrefaction clearly shows the improvement of fuel properties and grindability of biomass. Wet-torrefied Guadua angustifolia is chemically an attractive fuel, with favourable fuel properties, e.g. the results showed a 98% of alkali removal, and the

  15. Preliminary Evaluation of Potassium Extraction from Bamboo Ash

    Directory of Open Access Journals (Sweden)

    Samadhi Tjokorde W.

    2018-01-01

    Full Text Available Bamboo is a potentially economical fuel crop that has not been utilized at a substantial extent for energy generation in Indonesia. As a thermal conversion waste, bamboo ash is particularly interesting due to its high potassium content. This paper discusses the determination of several key parameters of a simple batchwise extraction process to recover potassium in the form of weak solution from bamboo ash. To produce the ash, black bamboo (Gigantochloa atroviolaceae is charred in a fixed bed combustor. The bamboo char is ground and ashed at 500 °C in an electric furnace. The ash yield is 3.3 %-mass relative to as-received ash, with an ash K2O content of 12.9 %-mass. The ash is ground until passing 100-mesh standard sieve, and extracted by deionized water on a 2-stage laboratory-scale batchwise extractor battery. Process variables include extractror battery configuration (counter-current and co-current, temperature (nominal setting at 45-80 °C, and contact period of 1-6 hours. The concentration of extracted K2O increases asymptotically with temperature and contact time. Counter-current extraction yields more than twice the extract K2O concentration compared to cross-current extraction. The optimum conditions for the counter-current extraction is identified as a temperature of 78 °C and contact time of 4 hours, resulting in a 0.70 %-mass K2O solution concentration. Spot sampling of commercial liquid fertilizer products in Indonesia indicates an equivalent K2O content of 0.08-13.6 %-mass, suggesting the potential of the bamboo ash extract as an intermediate for fertilizer product.

  16. Experimental Investigation and Analysis of Mercerized and Citric Acid Surface Treated Bamboo Fiber Reinforced Composite

    Science.gov (United States)

    De, Jyotiraman; Baxi, R. N., Dr.

    2017-08-01

    Mercerization or NaOH fiber surface treatment is one of the most popular surface treatment processes to make the natural fibers such as bamboo fibers compatible for use as reinforcing material in composites. But NaOH being a chemical is hazardous and polluting to the nature. This paper explores the possibility of use of naturally derived citric acid for bamboo fiber surface treatment and its comparison with NaOH treated Bamboo Fiber Composites. Untreated, 2.5 wt% NaOH treated and 5 wt% citric acid treated Bamboo Fiber Composites with 5 wt% fiber content were developed by Hand Lay process. Bamboo mats made of bamboo slivers were used as reinforcing material. Mechanical and physical characterization was done to compare the effects of NaOH and citric acid bamboo fiber surface treatment on mechanical and physical properties of Bamboo Fiber Composite. The experiment data reveals that the tensile and flexural strength was found to be highest for citric acid and NaOH treated Bamboo Fiber Composite respectively. Water absorption tendency was found more than the NaOH treated Bamboo Fiber Composites. SEM micrographs used to analyze the morphology of fracture surface of tensile test specimens confirm improvement in fiber-matrix interface bonding due to surface treatment of bamboo fibers.

  17. Microwave-assisted deposition of silver nanoparticles on bamboo pulp fabric through dopamine functionalization

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Linghui [College of Light Industry, Textile and Food Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu (China); Guo, Ronghui, E-mail: ronghuiguo214@126.com [College of Light Industry, Textile and Food Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu (China); Lan, Jianwu [College of Light Industry, Textile and Food Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu (China); Jiang, Shouxiang [Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China); Lin, Shaojian [Institute for Technical and Macromolecular Chemistry, University of Hamburg Bundesstrasse 45, D-20146 Hamburg (Germany)

    2016-11-15

    Highlights: • Silver nanoparticles were synthesized on bamboo pulp fabric using dopamine as an adhesive and reducing agent under microwave radiation. • Silver coated bamboo pulp fabric modified with dopamine has good UV protection and hydrophobic property. • Silver nanoparticles can be strongly fixed on dopamine modified bamboo pulp fabric. - Abstract: Silver nanoparticles were synthesized on bamboo pulp fabric with dopamine as the adhesive and reducing agent under microwave radiation. The silver nanoparticle coated bamboo pulp fabrics were characterized by X-ray photoelectron spectroscopy, scanning electron microscope and X-ray diffraction. Ultraviolet (UV) protection, color and water contact angles of the silver nanoparticle coated bamboo pulp fabrics were evaluated. In addition, the influences of concentrations of dopamine and treatment time on color strength (K/S values) of the silver nanoparticle coated fabric were investigated. Fastness to washing was employed to evaluate the adhesive strength between the silver coating and the bamboo pulp fabric modified with dopamine. The results show that the dopamine modified bamboo pulp fabric is evenly covered with silver nanoparticles. The silver nanoparticle coated bamboo pulp fabric modified with dopamine shows the excellent UV protection with an ultraviolet protection factor of 157.75 and the hydrophobicity with a water contact angle of 132.4°. In addition, the adhesive strength between the silver nanoparticles and bamboo pulp fabric is significantly improved. Silver nanoparticles coating on bamboo pulp fabric modified with dopamine is environmentally friendly, easy to carry out and highly efficient.

  18. Distribution of radiocesium in bamboo leaves, roots and shoots. Application of an imaging plate

    International Nuclear Information System (INIS)

    Minowa, Haruka; Ogata, Yoshimune; Satou, Yukihiko

    2012-01-01

    When radiocesium is taken into a wild plant accidentally, it will circulate for a certain period of time. Bamboo is that in some cases relative high concentration of radiocesium have been reported. Radiocesium is considered to be concentrated in bamboo shoot by translocation in plants from bamboo leaves or roots. In this study, to investigate the behavior of radiocesium, shoots, roots, branches and leaves of bamboo (Phyllostadhys edulis) were collected at Yamakiya area, Kawamata-machi, Date-gun, Fukushima Prefecture. Radiation image analysis was conducted using an imaging plate BAS 2040 (Fujifilm) and an image analyzer Typhoon FLA7000 (GE Healthcare Japan Corp.). The content of radiocesium was about 500 Bq for 134 Cs and 700 Bq for 137 Cs per the bamboo shoot (500 g approximately). In the edible parts of bamboo shoots, the skin of bamboo shoots and leaves of newly-grown, radiocesium uptake was in high concentration, especially at the tip. (author)

  19. Comparison of cadmium and lead sorption by Phyllostachys pubescens biochar produced under a low-oxygen pyrolysis atmosphere.

    Science.gov (United States)

    Zhang, Chao; Shan, Baoqing; Tang, Wenzhong; Zhu, Yaoyao

    2017-08-01

    Phyllostachys pubescens (PP) biochars produced under a low oxygen pyrolysis atmosphere (oxygen content 1-4%) were prepared as sorbents for investigating the mechanisms of cadmium and lead sorption. A low-oxygen pyrolysis atmosphere increased biochar ash and specific surface area, promoting heavy metal precipitation and complexation. The maximum sorption capacity (Q m ) of Pb 2+ obtained from the Langmuir model was 67.4mg·g -1 , while Q m of Cd 2+ was 14.7mg·g -1 . The contribution of each mechanism varied with increasing oxygen content at a low pyrolysis temperature. Mineral precipitation with Pb 2+ was the predominant mechanism for Pb 2+ removal and the contribution proportion significantly increased from 17.2% to 71.7% as pyrolysis oxygen atmosphere increased from 0% to 4%. The results showed that cadmium sorption primarily involved coordination with π electrons, at 54.1-82.6% of the total adsorption capacity. The PP biochar shows potential for application in removing heavy metal contaminants, especially Pb 2+ . Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Microstructural study of pre-treated and enzymatic hydrolyzed bamboo

    Directory of Open Access Journals (Sweden)

    Funsho O. KOLAWOLE

    2016-07-01

    Full Text Available Bamboo was used as biomass feedstock which was pre-treated using dilute acid hydrolysis followed by enzymatic hydrolysis. The bamboo was mechanical ground to particle sizes 212–500µm, followed by pre-treatment with dilute sulfuric acid at a concentration of 0.5 and 1.0 (%v/v at temperatures of 25, 110, 120, 150 and 200°C with time intervals of 2 and 4 hours. Pre-hydrolyzate was later analyzed for reducing sugar using UV-Vis spectrophotometry. Under the above conditions, a maximum glucose yield of 153.1 mg/g was obtained at 200°C and acid concentrations of 1% for 4 hours. Water insoluble solids obtained were subsequently hydrolyzed with Celluclast (Trichoderma reesi and β-glucosidase (Novozyme 188 for 72 hours. Optical Microscope and ESEM images of bamboo samples were obtained at various stages of pre-treatment and enzymatic hydrolysis. Result reveals a breakdown in the ligno-cellulosic structure of the bamboo during exposure to dilute acid and enzymatic hydrolysis.

  1. Deployable bamboo structure project: A building life-cycle report

    Science.gov (United States)

    Firdaus, Adrian; Prastyatama, Budianastas; Sagara, Altho; Wirabuana, Revian N.

    2017-11-01

    Bamboo is considered as a sustainable material in the world of construction, and it is vastly available in Indonesia. The general utilization of the material is increasingly frequent, however, its usage as a deployable structure-a recently-developed use of bamboo, is still untapped. This paper presents a report on a deployable bamboo structure project, covering the entire building life-cycle phase. The cycle encompasses the designing; fabrication; transportation; construction; operation and maintenance; as well as a plan for future re-use. The building is made of a configuration of the structural module, each being a folding set of bars which could be reduced in size to fit into vehicles for easy transportation. Each structural module was made of Gigantochloa apus bamboo. The fabrication, transportation, and construction phase require by a minimum of three workers. The fabrication and construction phase require three hours and fifteen minutes respectively. The building is utilized as cafeteria stands, the operation and maintenance phase started since early March 2017. The maintenance plan is scheduled on a monthly basis, focusing on the inspection of the locking mechanism element and the entire structural integrity. The building is designed to allow disassembly process so that it is reusable in the future.

  2. Preparation, characterization of chitosan/bamboo charcoal/poly ...

    Indian Academy of Sciences (India)

    2017-09-22

    Sep 22, 2017 ... Bamboo charcoal/chitosan/polymethacrylate; composite beads; characterization; pH point of zero charge; creatinine ... materials [9]. Vital to the development of adsorbent materials for various applications is the understanding of their proper- ties as this information feeds into the fabrication and design.

  3. Bars to Jars: Bamboo Value Chains in Cameroon

    NARCIS (Netherlands)

    Ingram, V.J.; Tieguhong, C.

    2013-01-01

    Bamboo is a well know and versatile material, which is a common sight across Cameroon's diverse ecosystems, from dry to humid tropical and Afromontane forests. Its numerous uses range from storage jars to decorating restaurant-bars, beehives to knives, fences, fodder, and fuel. Responding to the

  4. Bars to jars: bamboo value chains in Cameroon

    NARCIS (Netherlands)

    Ingram, V.; Tieguhong, J.C.

    2013-01-01

    Bamboo is a well know and versatile material, which is a common sight across Cameroon's diverse ecosystems, from dry to humid tropical and Afromontane forests. Its numerous uses range from storage jars to decorating restaurant-bars, beehives to knives, fences, fodder, and fuel. Responding to the

  5. Prefabricated Engineered Bamboo Housing for East Africa | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    ... material and fuel for brick-making kilns. Moreover, it also provides an alternative to monocultures such as tobacco for smallholder income-generation. Researchers will support the transfer of modern prefabricated bamboo housing production from China to Ethiopia, and demonstrate the technology in Kenya and Uganda.

  6. Resilient bamboo and rattan anchor environmental revival | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2010-10-28

    Oct 28, 2010 ... Bamboo and rattan are at the centre of major initiatives in Asia, Africa, and Latin America that are combatting global warming, fighting soil erosion, protecting forests, and enhancing communities' access to water. When IDRC first supported pioneering research on these plants in 1979, the world knew little of ...

  7. Durability of Ethiopian bamboo culms and alternative damage ...

    African Journals Online (AJOL)

    Tanalith preservative, borax-boric acid solution, used motor oil, kerosene and common table salt were used to treat the bamboo stakes. Graveyard studies were conducted for five years at Pawe, Bako, Adami Tulu and Addis Ababa research stations. The non-ground contact test was conducted in Addis Ababa station under ...

  8. production of particleboards using polystyrene and bamboo wastes

    African Journals Online (AJOL)

    HOD

    PRODUCTION OF PARTICLEBOARDS USING POLYSTYRENE AND BAMBOO WASTES. S. A. Abdulkareem & A. G. Adeniyi. Nigerian Journal of Technology. Vol. 36, No. 3, July 2017 793. Properties of resin bonded particleboards; Maderas. Ciencia y Tecnología,:13(1) 49-58, 2011. [13] Laemsak, N., & Kungsuwan, ...

  9. The durability and mechanical strenght properties of bamboo in ...

    African Journals Online (AJOL)

    The durability and mechanical strenght properties of bamboo in reinforced concrete. GA Alade, FA Olutoge, AA Alade. Abstract. No Abstract. Journal of Applied Science, Engineering and Technology Vol. 4(2) 2004: 35-40. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  10. Safety evaluation of polyphenol-rich extract from bamboo shavings ...

    African Journals Online (AJOL)

    Safety evaluation of polyphenol-rich extract from bamboo shavings. ... (i) Acute toxicity test: The oral maximum tolerated dose (MTD) of EEBS was above 20 g/kg body weight for mice, thus the amount can be seen as practically non-toxic ... In conclusion, EEBS is safe and the results support the use of EEBS for various foods.

  11. Investigations on gradient a.c. conductivity characteristics of bamboo ...

    Indian Academy of Sciences (India)

    Unknown

    Variation of dielectric constant with moisture content is reported in literature and it was found that all untreated woods had higher dielectric constant than their polymer composites (Chia et al 1986). They concluded that the presence of polymers led to decrease in the number of pola- rizable units to use bamboo for insulating ...

  12. Preparation, characterization of chitosan/bamboo charcoal/poly ...

    Indian Academy of Sciences (India)

    2017-09-22

    Sep 22, 2017 ... Furthermore, dynamic adsorption revealed that CTS/BC/PMAA composite beads can be used to capture a polar substance, such as creatinine. Keywords. Bamboo charcoal/chitosan/polymethacrylate; composite beads; characterization; pH point of zero charge; creatinine; column adsorbent. 1. Introduction.

  13. Weight loss in bamboo ( Bambusa vulgaris ) treated with neem seed ...

    African Journals Online (AJOL)

    Split-bamboo samples conditioned to 11.76% moisture content were converted to test specimens for Percentage Weight Loss (PWL) and treated with mechanically extracted neem seed oil at two different treatment temperature regimes by completely soaking a set in oil at ambient room temperature of 25 ± 2oC for 24 hours ...

  14. One laminated bamboo-frame house per hectare per year

    NARCIS (Netherlands)

    Flander, De K.; Rovers, R.

    2009-01-01

    This paper presents an outline of a quantitative analysis that demonstrates the global potential of bamboo as a "modern" construction material. The underlying goal is to contribute to a real shift in resource management by focussing on renewable resources in general and on the high brow, modern use

  15. Prefabricated Engineered Bamboo Housing for East Africa | CRDI ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Because bamboo can be used in construction after 2-6 years of growth, compared to 25 years for trees, the project addresses the problem (deforestation) of harvesting timber for building material and fuel for brick-making kilns. Moreover, it also provides an alternative to monocultures such as tobacco for smallholder ...

  16. Comparing simulated carbon budget of a Lei bamboo forest with flux tower data

    Science.gov (United States)

    Li, Xuehe; Jiang, Hong; Liu, Jinxun; Sun, Cheng; Wang, Ying; Jin, Jiaxin

    2014-01-01

    Bamboo forest ecosystem is the part of the forest ecosystem. The distribution area of bamboo forest is limited, but in somewhere, like south China, it has been cultivate for a long time with human management. As the climate change has been take great effect on forest carbon budget, many researchers pay attention to the carbon budget in bamboo forest. Moreover cultivative management had a significant impact on the bamboo forest carbon budget. In this study, we modified a terrestrial ecosystem model named Integrated Biosphere Simulator (IBIS) according the management of Lei bamboo forest. Some management, like fertilization, shoots harvesting and organic mulching in winter, had been incorporated into model. Then we had compared model results with the observation data from a Lei bamboo flux tower. The simulated and observed results had achieved good consistency. Our simulated Lei bamboo forest yearly net ecosystem productivity (NEP) was 0.41 kgC a-1 of carbon, which is very close to the observation data 0.45 kgC a-1 of carbon. And the monthly simulated results can take the change of carbon budget in each month, similar to the data we got from flux tower. It reflects that the modified IBIS model can characterize the growth of bamboo forest and perform the simulation well. And then two groups of simulations were set to evaluate effects of cultivative managements on Lei bamboo forests carbon budget. And results showed that both fertilization and organic mulching had taken positive effects on Lei bamboo forests carbon sequestration.

  17. Changes of foraging patch selection and utilization by a giant panda after bamboo flowering.

    Science.gov (United States)

    Li, Guochun; Song, Huadong; Altigani, Latifa A A; Zheng, Xueli; Bu, Shuhai

    2017-07-01

    The bamboo flowering leads to the habitat fragmentation and food quality decline of a giant panda. Few empirical research has been conducted about the giant panda's response to the bamboo flowering. Here, we investigated the characteristics of bamboo stands, giant panda's activity, and selection and utilization of bamboo stands by giant panda in Taibaishan National Nature Reserve, China, over a 3-year period (September 2013-May 2016) during the Fargesia qinlingensis flowering period. Our results indicated that the proportion of whole bamboo stands flowering has gradually expanded from 26.7% in 2013 and 33.9% in 2014 to 52.3% in 2015. Although the flowering bamboo has lower crude protein and higher crude fiber than a non-flowering bamboo, the giant panda still fed on flowering bamboo from the evidence of droppings. The giant panda left its feeding sites and moved to the high elevation along river when the proportion of flowering reached 69.2% at elevation of 2350-2450 m in the third year. With the decline of the quality of bamboo stand of Fargesia qinlingensis, the giant panda abandoned its feeding sites when the threshold value of bamboo flowering reached 56.9-69.2%. Flexibility in foraging strategy and spatial behavior can help the giant panda to better adapt to the environment.

  18. Bamboo-Polylactic Acid (PLA) Composite Material for Structural Applications.

    Science.gov (United States)

    Pozo Morales, Angel; Güemes, Alfredo; Fernandez-Lopez, Antonio; Carcelen Valero, Veronica; De La Rosa Llano, Sonia

    2017-11-09

    Developing an eco-friendly industry based on green materials, sustainable technologies, and optimum processes with low environmental impact is a general societal goal, but this remains a considerable challenge to achieve. Despite the large number of research on green structural composites, limited investigation into the most appropriate manufacturing methodology to develop a structural material at industrial level has taken place. Laboratory panels have been manufactured with different natural fibers but the methodologies and values obtained could not be extrapolated at industrial level. Bamboo industry panels have increased in the secondary structural sector such as building application, flooring and sport device, because it is one of the cheapest raw materials. At industrial level, the panels are manufactured with only the inner and intermediate region of the bamboo culm. However, it has been found that the mechanical properties of the external shells of bamboo culm are much better than the average cross-sectional properties. Thin strips of bamboo (1.5 mm thick and 1500 mm long) were machined and arranged with the desired lay-up and shape to obtain laminates with specific properties better than those of conventional E-Glass/Epoxy laminates in terms of both strength and stiffness. The strips of bamboo were bonded together by a natural thermoplastic polylactic acid (PLA) matrix to meet biodegradability requirements. The innovative mechanical extraction process developed in this study can extract natural strip reinforcements with high performance, low cost, and high rate, with no negative environmental impact, as no chemical treatments are used. The process can be performed at the industrial level. Furthermore, in order to validate the structural applications of the composite, the mechanical properties were analyzed under ageing conditions. This material could satisfy the requirements for adequate mechanical properties and life cycle costs at industrial sectors such

  19. Effect of carbonization temperatures on biochar formation of bamboo leaves

    Science.gov (United States)

    Pattnaik, D.; Kumar, S.; Bhuyan, S. K.; Mishra, S. C.

    2018-03-01

    Bamboo is a typical plant native in Asia, been used in many sectors, which also produces a large volume of leaves which goes waste and not find its application for any useful purposes; is often considered as a bio-waste and normally incinerated or dumped; as its applications are not yet fully explored. However, some research work done on bamboo fibers for use as a reinforcement in making polymer matrix composite. In the present piece of research work, the influence of burning/carbonization of bamboo leaves (at different temperatures) have been studied and characterized. Proximate analysis gave the fixed carbon content (of ~nearly21%). X-Ray diffraction results revealed the presence of various phases viz. cristobalite (SiO2), Calcite (Ca2O3) etc. accompanied with changes in crystal structures. Fourier transform infrared spectroscopy results showed various modes of vibrations viz. O-H stretching bending of other bonds; (for aromatic benzene derivatives) etc. Scanning Electron Microscopic observation (of morphology) showed irregular stacking arrangements between the randomly spaced lamellae structure, with variation in carbonizing temperature. Results revealed the advantages of pyrolysis process in biochar production/formation. It appears that, the bamboo biochar can have suitable properties for its use as an alternative energy source and also for agricultural applications. Its high porosity and carbon content suggest its application as activated carbon also; after physical or chemical treatments. The present research focuses on extending the frontiers of use of bamboo leaves from being an unutilized biowaste to its conversion into a value added product, which can be compassed in terms of sustainable applications.

  20. Bamboo vs. crops: An integrated emergy and economic evaluation of using bamboo to replace crops in south Sichuan Province, China

    Science.gov (United States)

    Based on long-term monitoring conducted in Chang-ning county, a pilot site of the ‘Grain for Green Program’ (GFGP), an integrated emergy and economic method was applied to evaluate the dynamic ecological-economic performance of 3 kinds of bamboo systems planted on slo...

  1. Isolation, structural characterization, and potential applications of hemicelluloses from bamboo: a review.

    Science.gov (United States)

    Peng, Pai; She, Diao

    2014-11-04

    Bamboo is one of the mostly fast growing natural resources and has great potential to be used as a valuable feedstock for biorefinery. The hemicelluloses, next to cellulose, represent a diverse group of polysaccharides in plant cell wall. Elucidation and understanding of the hemicelluloses from bamboo play an important role in the efficient conversion of bamboo into biofuels and bioproducts. This review summarized the recent reports on hemicelluloses from bamboo, including immunohistochemical localization, focused on extraction and purification methods, chemical components, characterization of structural features, as well as physicochemical properties. In addition, attention was also paid to derivatives prepared from bamboo hemicelluloses and to potential applications of bamboo hemicelluloses in a variety of areas such as biomaterials, biofuel, and food. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Effect of Bamboo Viscose on the Wicking and Moisture Management Properties of Gauze

    Science.gov (United States)

    Akbar, Abdul R.; Su, Siwei; Amjad, Bilal; Cai, Yingjie; Lin, Lina

    2017-12-01

    Bamboo viscose or regenerated cellulose fibers were used to check their absorbency properties effect on the wicking and moisture management in gauzes. Bamboo viscose and cotton fibers were spun into five different yarn samples with different fiber proportion by ring spinning. Fifteen different gauze samples were made of these yarn samples. The gauze samples were subjected to wicking test to check the wicking ability. Water vapor transmission test was applied to check the vapor transmission rate. These tests were applied to measure the effectiveness of bamboo viscose, cotton and blended gauze samples in wound healing. Pure bamboo gauzes and gauzes with high content of bamboo fiber, i.e. 75B:25C and 50B:50C, shows better wicking and vapor transmission properties. It makes gauzes with high bamboo viscose suitable for wound care applications because of moisture absorbency.

  3. Energy digestibility of giant pandas on bamboo-only and on supplemented diets.

    Science.gov (United States)

    Finley, Tommy G; Sikes, Robert S; Parsons, Jennifer L; Rude, Brian J; Bissell, Heidi A; Ouellette, John R

    2011-01-01

    Endangered giant pandas (Ailuropoda melanoleuca) are bears (Family Ursidae), within the order Carnivora. They specialize on an herbivorous diet of bamboo yet retain a gastrointestinal tract typical of their carnivorous ancestry. The evolutionary constraints of their digestive tract result in a low extraction efficiency from bamboo (giant pandas used in digestibility trials and through subsequent analyses with bomb calorimetry. Seven digestibility trials were conducted (three with bamboo-only diets and four with supplemental diets). Energy digestibilities ranged from 7.5-38.9% for mixed diets and 9.2-34.0% for bamboo-only diets. The bamboo-only trials summarized here represent, to our knowledge, the first empirical data available for energy digestibility on a bamboo diet for giant pandas. © 2010 Wiley-Liss, Inc.

  4. Physical and mechanical properties of particleboard manufactured from wood, bamboo and rice husk

    OpenAIRE

    Melo, Rafael Rodolfo de; Stangerlin, Diego Martins; Santana, Ricardo Robinson Campomanes; Pedrosa, Talita Dantas

    2014-01-01

    In this work, the physical-mechanical properties of particleboards manufactured with wood (Eucalyptus grandis), bamboo (Bambusa vulgaris) and/or rice husk (Oryza sativa) particles, combined or not, were assessed. They were produced in the following proportions: 100% wood; 100% bamboo; 100% rice; 50% wood and 50% bamboo; 50% wood and 50% rice husk. In order to characterize the manufactured particleboards, their physical (density; moisture content; water absorption and thickness swelling) and m...

  5. High Per?formance and Flexible Supercapacitors based on Carbonized Bamboo Fibers for Wide Temperature Applications

    OpenAIRE

    Zequine, Camila; Ranaweera, C. K.; Wang, Z.; Singh, Sweta; Tripathi, Prashant; Srivastava, O. N.; Gupta, Bipin Kumar; Ramasamy, K.; Kahol, P. K.; Dvornic, P. R.; Gupta, Ram K.

    2016-01-01

    High performance carbonized bamboo fibers were synthesized for a wide range of temperature dependent energy storage applications. The structural and electrochemical properties of the carbonized bamboo fibers were studied for flexible supercapacitor applications. The galvanostatic charge-discharge studies on carbonized fibers exhibited specific capacity of ~510F/g at 0.4?A/g with energy density of 54?Wh/kg. Interestingly, the carbonized bamboo fibers displayed excellent charge storage stabilit...

  6. Effect of clonal integration on nitrogen cycling in rhizosphere of rhizomatous clonal plant, Phyllostachys bissetii, under heterogeneous light.

    Science.gov (United States)

    Li, Yang; Chen, Jing-Song; Xue, Ge; Peng, Yuanying; Song, Hui-Xing

    2018-07-01

    Clonal integration plays an important role in clonal plant adapting to heterogeneous habitats. It was postulated that clonal integration could exhibit positive effects on nitrogen cycling in the rhizosphere of clonal plant subjected to heterogeneous light conditions. An in-situ experiment was conducted using clonal fragments of Phyllostachys bissetii with two successive ramets. Shading treatments were applied to offspring or mother ramets, respectively, whereas counterparts were treated to full sunlight. Rhizomes between two successive ramets were either severed or connected. Extracellular enzyme activities and nitrogen turnover were measured, as well as soil properties. Abundance of functional genes (archaeal or bacterial amoA, nifH) in the rhizosphere of shaded, offspring or mother ramets were determined using quantitative polymerase chain reaction. Carbon or nitrogen availabilities were significantly influenced by clonal integration in the rhizosphere of shaded ramets. Clonal integration significantly increased extracellular enzyme activities and abundance of functional genes in the rhizosphere of shaded ramets. When rhizomes were connected, higher nitrogen turnover (nitrogen mineralization or nitrification rates) was exhibited in the rhizosphere of shaded offspring ramets. However, nitrogen turnover was significantly decreased by clonal integration in the rhizosphere of shaded mother ramets. Path analysis indicated that nitrogen turnover in the rhizosphere of shaded, offspring or mother ramets were primarily driven by the response of soil microorganisms to dissolved organic carbon or nitrogen. This unique in-situ experiment provided insights into the mechanism of nutrient recycling mediated by clonal integration. It was suggested that effects of clonal integration on the rhizosphere microbial processes were dependent on direction of photosynthates transport in clonal plant subjected to heterogeneous light conditions. Copyright © 2018 Elsevier B.V. All rights

  7. Bamboo mapping of Ethiopia, Kenya and Uganda for the year 2016 using multi-temporal Landsat imagery

    Science.gov (United States)

    Zhao, Yuanyuan; Feng, Duole; Jayaraman, Durai; Belay, Daniel; Sebrala, Heiru; Ngugi, John; Maina, Eunice; Akombo, Rose; Otuoma, John; Mutyaba, Joseph; Kissa, Sam; Qi, Shuhua; Assefa, Fiker; Oduor, Nellie Mugure; Ndawula, Andrew Kalema; Li, Yanxia; Gong, Peng

    2018-04-01

    Mapping the spatial distribution of bamboo in East Africa is necessary for biodiversity conservation, resource management and policy making for rural poverty reduction. In this study, we produced a contemporary bamboo cover map of Ethiopia, Kenya and Uganda for the year 2016 using multi-temporal Landsat imagery series at 30 m spatial resolution. This is the first bamboo map generated using remotely sensed data for these three East African countries that possess most of the African bamboo resource. The producer's and user's accuracies of bamboos are 79.2% and 84.0%, respectively. The hotspots with large amounts of bamboo were identified and the area of bamboo coverage for each region was estimated according to the map. The seasonal growth status of two typical bamboo zones (one highland bamboo and one lowland bamboo) were analyzed and the multi-temporal imagery proved to be useful in differentiating bamboo from other vegetation classes. The images acquired in September to February are less contaminated by clouds and shadows, and the image series cover the dying back process of lowland bamboo, which were helpful for bamboo identification in East Africa.

  8. THE EFFECT OF HEAT TREATMENT ON THE DURABILITY OF BAMBOO Gigantochloa scortechinii

    Directory of Open Access Journals (Sweden)

    Norashikin Kamarudin

    2012-07-01

    Full Text Available Bamboo signifies as one of the fastest growing plants and it can be used for various products. In tropical countries such as Indonesia and Malaysia, bamboo is abundantly available at reasonable prices, therefore it is used for numerous purposes. However, as lignocellulosic material, bamboo is susceptible to fungal and insect attacks. Heat treatment is an option to improve bamboo's durability. The objective of this study was to improve the durability of bamboo using hot oil palm treatment. A Malaysian grown bamboo species, Buluh Semantan (Gigantochloa scortechinii, as a study material was soaked in hot oil palm for various temperatures and soaking time, before being inoculated with the basidiomycete Coriolus versicolor in an agar block test. The results demonstrated that the longer the heating time, the more improved the durability of bamboo. Altering the temperature in the palm oil treatment produced varying results. Bamboo blocks that heated in hot oil palm at 100°C for 60 minutes shows considerably less weight eduction that indicates less fungal attack. Overall, the higher the temperature, the better the durability of bamboo. Please indicates what the meaning of heat treatment in this experiment, it is not clear.

  9. The use of bamboo fiber in reinforced concrete beam to reduce crack

    Science.gov (United States)

    Dewi, Sri Murni; Wijaya, Ming Narto; Christin Remayanti, N.

    2017-09-01

    This study presents the evaluation of the use of bamboo fiber to improve the performance of bamboo reinforced concrete at the tension crack area. To achieve this objective, a series of tests were conducted. The size object of concrete beam is 15 cm × 20 cm × 160 cm with reinforcement of bamboo and pumice stone aggregate. Bamboo reinforcement was coated with sand to become rough of the surface. The type of bamboo obtained from skewer producers in the Cemoro Kandang Malang is called Ori bamboo. The fiber were used vary in length. The fiber coated with paint and covered with sand to prevent the hygroscopic properties and increased the weight to prevent the float of bamboo fibers when mixed in the concrete mixer. The results were showed that bamboo fiber can reduce crack-width and deflection of concrete and increase beam post-cracking load-carrying capacity. The amount of fiber has effect on workability and quality of concrete. However, bamboo fiber can prevent the growth and propagation of cracks.

  10. Improvement of acoustical characteristics : wideband bamboo based polymer composite

    Science.gov (United States)

    Farid, M.; Purniawan, A.; Rasyida, A.; Ramadhani, M.; Komariyah, S.

    2017-07-01

    Environmental friendly and comfortable materials are desirable for applications in the automobile interior. The objective of this research was to examine and develop bamboo based polymer composites applied to the sound absorption materials of automobile door panels. Morphological analysis of the polyurethane/bamboo powder composite materials was carried out using scanning electron microscope to reveal the microscopic material behavior and followed by the FTIR and TGA testing. The finding demonstrated that this acoustical polymer composite materials provided a potential wideband sound absorption material. The range of frequency can be controlled between 500 and 4000 Hz with an average of sound absorption coefficient around 0.411 and it met to the door panels criteria.

  11. Dadih bamboo ampel (bambusa vulgaris) and bamboo gombong (gigantochloa verticilata) 2 and 3 days fermented : effect on salad dressing hedonic quality

    Science.gov (United States)

    Ginting, Nurzainah

    2018-03-01

    The study aims to find time of fermentation of dadih and hedonic quality of dadih salad dressing. Goat milk was fermented in two kinds of bamboo: bamboo Ampel (Bambusa vulgaris) and bamboo Gombong (Gigantochloa verticilata) with different days; i.e. 2 and 3 days which will then became dadih while the dadih then were used as a raw material for making salad dressing. In Indonesia today there is an increasing on vegetable salad demand due to understanding of the benefits of consuming vegetables. One form of vegetable preparation is vegetable salad that is generally used as non local dressings. This research was conducted from April to May 2017 using Factorial Completely Randomized Design with 2 factors; i.e factor 1 (2 and 3 days fermented dadih) and factor 2 (bamboo types : bamboo Ampel and bamboo Gombong) with 4 replications. The parameters were flavor, color, aroma and texture (hedonic evaluation) where there were 25 panelists in doing evaluation. The results showed that 2 days fermented in bamboo ampel significantly (P <0.05) were preferred.

  12. Bamboo Fibre Reinforced Cement Used as a Roofing Sheet | Alade ...

    African Journals Online (AJOL)

    ... bamboo fibre-roofing sheet could be used as a low cost roofing sheet. It is however imperative that the roofing system should be at slope of 45o – 60o to ensure speedy flow of water down the slope and also reduce the shock effect when a lateral load falls on it. Journal of Civil Engineering Research and Practice Vol.1(2)

  13. Effect of Board Type on Some Properties of Bamboo Strandboard

    Directory of Open Access Journals (Sweden)

    Ihak Sumardi

    2015-03-01

    Full Text Available The objective of this study was to evaluate the properties of bamboo strandboard (OSB by comparing different board types and strand-lengths. Bamboo strandboards with nominal dimensions of 37 mm by 37 mm by 12 mm and target density 0.65 g/cm3 were manufactured using moso bamboo (Pyllostachys pubescent Mezel and MDI resin to produce two types of strandlength. Two types of strand length and MDI resin were used to produce three types of strandboard. The bending properties and dimensional stability of the strandboards were evaluated according to the Japanese Industrial Standard (JIS for particleboard. The results of this experiment indicate that the bending properties and internal bond strength were affected by both board type and strand-length. The distribution of resin inside the 80 mm strandboard was less homogenous than in the 50 mm strandboard, which affects the internal bond strength. Thickness swelling of the RAND board was the highest and linear stability was affected substantially by strand alignment. The RAND board and cross-oriented 3LAY board effectively restrained linear expansion in the direction perpendicular to the strand alignment. A cross-oriented core may be the most effective way to reduce dimensional change and bending property values in perpendicular directions.

  14. Resource potential of bamboo, challenges and future directions towards sustainable management and utilization in Ethiopia

    Directory of Open Access Journals (Sweden)

    Getachew Desalegn

    2014-08-01

    Full Text Available Aim of study: Bamboo, the fastest growing and high yielding perennial plant of the world has more than 1500 species and 1500 versatile socio-economic uses and ecological services. Ethiopia has two indigenous bamboo species namely Yushania alpina and Oxytenantheria abyssinica, covering about one million ha with a wide distribution. The objective of this paper is to highlight the potential of bamboo resources, challenges including biodeterioration damage, opportunities and future research directions towards its sustainable management and rational utilization.Area of study: Bamboo resources of EthiopiaMaterial and Methods: Reconnaissance survey was done to some parts of the bamboo growing potential areas in Ethiopia besides the literature review. Main results: The bamboo resource, despite its socio-economic and environmental benefits, currently, in most areas has been under high pressure due to land use changes, bamboo mass- flowering, poor processing with low value addition, and damage by biodeteriorating agents (termites, beetles and fungi. The preservative tests on Ethiopian bamboos revealed low natural durability and highlighted the paramount importance of appropriate protection measures such as Tanalith and vehicles used motor oil to increase durability, service life and rational utilization of bamboo-based products and structures as potential alternative construction and furniture material.Research highlights: Therefore, integrated research and development interventions involving different propagation and managements techniques, harvesting season, processing, value addition including proper seasoning and preservation technologies and marketing are recommended to fill the information and technological gaps on sustainable management and rational utilization of this fast growing and multipurpose bamboo resources in Ethiopia.Key words: Bamboo; challenges; management; socio-economic and environmental significance; utilization.

  15. Bamboo thickets alter the demographic structure of Euterpe edulis population: A keystone, threatened palm species of the Atlantic forest

    Science.gov (United States)

    Rother, Débora Cristina; Rodrigues, Ricardo Ribeiro; Pizo, Marco Aurélio

    2016-01-01

    The rapid spread of bamboos can strongly affect forest structure by interfering plant regeneration and reducing local biodiversity. Considering that bamboos exert a negative influence on the plant community, our main goal was to investigate how this influence manifests at the population level. We compared the demographic structure of the threatened palm Euterpe edulis between bamboo and non-bamboo dominated patches within the Atlantic forest. In the study site, the native bamboo Guadua tagoara has created a marked patchiness and heterogeneity in the vegetation. Plots were set up randomly in bamboo and non-bamboo patches and the heights of all E. edulis individuals were measured. Data from canopy openness and litter depth were collected for both patches. Greater number of E. edulis was recorded in bamboo patches. However, frequency distribution of the height classes differed between patches revealing a predominance of seedling and sapling I classes in bamboo patches, in comparison to a more evenly distribution of height classes in non-bamboo patches. The canopy in bamboo patches was more open and the litter depth was thicker. Our analyses evidenced G. tagoara is functioning as a demographic bottleneck of natural population of E. edulis by arresting its later stages of regeneration and in high densities that bamboos may limit recruitment of this palm species.

  16. A bamboo braced frame system for tropical climates

    Directory of Open Access Journals (Sweden)

    Echeverria, J.

    2014-12-01

    Full Text Available A low-cost housing system was developed for use in tropical countries, specifically Haiti, with the aims of minimizing environmental impact (including carbon emissions, maximizing use of local and preferably recycled materials, and using local labor. The housing system integrates low-strength concrete blocks (made using recycled concrete aggregate, an innovative seismically-resistant bamboo frame, earthen plasters, bamboo trusses, and metal deck roofs. The bamboo frame relies on flexural yielding of a short rebar dowel to provide ductile performance at a controlled strength level. The plinth walls below the frame and short rebar dowel protects the bamboo from moisture. The top of a plastic soda bottle is used to protect the rebar from moisture and to seal the base of the bamboo culm, allowing mortar to be introduced into the culm above. This paper focuses on the experimental and analytical results of the flexural yielding of the rebar dowel to establish the structural design of this critical component of the system for resisting wind and seismic loads.En este artículo se presenta un sistema de construcción de viviendas de bajo coste para países tropicales en los cuales existe riesgo sísmico. Los objetivos de este trabajo son generar bajo impacto medioambiental (incluyendo las emisiones de carbono, empleo de materiales locales, preferiblemente reciclados, y mano de obra local. Para esta construcción se han empleado bloques de hormigón de baja resistencia (con agregado reciclado junto con un innovador sistema de pórticos de bambú, botellas de plástico, vigas de bambú y cubiertas de chapa. El comportamiento dúctil de la estructura se garantiza introduciendo una barra de acero en la base del pórtico de bambú. Para proteger el bambú de la humedad, el pórtico se monta sobre un zócalo. Los resultados experimentales y analíticos obtenidos se utilizan para el diseño estructural del sistema frente a cargas de viento y sísmicas.

  17. The Complete Chloroplast Genome of Guadua angustifolia and Comparative Analyses of Neotropical-Paleotropical Bamboos.

    Directory of Open Access Journals (Sweden)

    Miaoli Wu

    Full Text Available To elucidate chloroplast genome evolution within neotropical-paleotropical bamboos, we fully characterized the chloroplast genome of the woody bamboo Guadua angustifolia. This genome is 135,331 bp long and comprises of an 82,839-bp large single-copy (LSC region, a 12,898-bp small single-copy (SSC region, and a pair of 19,797-bp inverted repeats (IRs. Comparative analyses revealed marked conservation of gene content and sequence evolutionary rates between neotropical and paleotropical woody bamboos. The neotropical herbaceous bamboo Cryptochloa strictiflora differs from woody bamboos in IR/SSC boundaries in that it exhibits slightly contracted IRs and a faster substitution rate. The G. angustifolia chloroplast genome is similar in size to that of neotropical herbaceous bamboos but is ~3 kb smaller than that of paleotropical woody bamboos. Dissimilarities in genome size are correlated with differences in the lengths of intergenic spacers, which are caused by large-fragment insertion and deletion. Phylogenomic analyses of 62 taxa yielded a tree topology identical to that found in preceding studies. Divergence time estimation suggested that most bamboo genera diverged after the Miocene and that speciation events of extant species occurred during or after the Pliocene.

  18. evaluation of bamboo porous pipe as line source emitter in trickle ...

    African Journals Online (AJOL)

    CHRISTY

    This paper attempts to evaluate the use of bamboo as porous pipe (line source) emitter in trickle ... KEY WORDS: Trickle irrigation, Bamboo, emitter, Porous-pipe. INTRODUCTION. Trickle irrigation system also known as drip irrigation is one of the examples of localized ... period of time to maintain part of the soil at or.

  19. Effective of Microwave-KOH Pretreatment on Enzymatic Hydrolysis of Bamboo

    Science.gov (United States)

    Zhiqiang Li; Zehui Jiang; Yan Yu; Zhiyong Cai

    2012-01-01

    Bamboo, with its advantages of fast growth, short renovation, easy propagation and rich in cellulose and hemicellulose, is a potential feedstock for bioethanol or other biofuels production. The objective of this study was to examine the fea- sibility of microwave assistant KOH pretreatments to enhance enzymatic hydrolysis of bamboo. Pretreatment was car- ried out by...

  20. Improvement in the biochemical and chemical properties of badland soils by thorny bamboo

    Science.gov (United States)

    Shiau, Yo-Jin; Wang, Hsueh-Ching; Chen, Tsai-Huei; Jien, Shih-Hau; Tian, Guanglong; Chiu, Chih-Yu

    2017-01-01

    Badland soils—which have high silt and clay contents, bulk density, and soil electric conductivity— cover a large area of Southern Taiwan. This study evaluated the amelioration of these poor soils by thorny bamboo, one of the few plant species that grows in badland soils. Soil physiochemical and biological parameters were measured from three thorny bamboo plantations and nearby bare lands. Results show that bamboo increased microbial C and N, soil acid-hydrolysable C, recalcitrant C, and soluble organic C of badland soils. High microbial biomass C to total organic C ratio indicates that soil organic matter was used more efficiently by microbes colonizing bamboo plantations than in bare land soils. High microbial respiration to biomass C ratio in bare land soils confirmed environmentally induced stress. Soil microbes in bare land soils also faced soil organic matter with the high ratio of recalcitrant C to total organic C. The high soil acid-hydrolysable C to total organic C ratio at bamboo plantations supported the hypothesis that decomposition of bamboo litter increased soil C in labile fractions. Overall, thorny bamboo improved soil quality, thus, this study demonstrates that planting thorny bamboo is a successful practice for the amelioration of badland soils.

  1. Detection of understory bamboo in giant panda habitats using an indirect remote sensing approach

    NARCIS (Netherlands)

    Bian, B.M.; Wang, T.; Liu, Y.F.; Fei, T.; Skidmore, A.K.

    2007-01-01

    The bamboo is the exclusive food of the wild giant pandas. Detection of the bamboo forest in giant panda habitat will help scientists further understand the spatial distribution pattern of giant pandas and their habitats. Moreover, it provides crucial scientific evidence for estimating habitat

  2. Environmental and social life cycle assessment of bamboo bicycle frames made in Ghana

    NARCIS (Netherlands)

    Agyekum, Eric Ofori; Fortuin, K.P.J.; Harst-Wintraecken, van der E.J.M.

    2017-01-01

    This case study assessed the environmental and social impact of bicycle frames made from wild Ghanaian bamboo. The environmental life cycle assessment (LCA) of the bamboo frame was compared to the LCA results of an aluminium frame and a steel frame. The results show that the overall environmental

  3. Water absorption and tensile strength degradation of Petung bamboo (Dendrocalamus asper) fiber-reinforced polymeric composites

    NARCIS (Netherlands)

    Judawisastra, H.; Sitohang, Ramona; Rosadi, M. S.

    2017-01-01

    Bamboo fibers have attracted great interest and are believed to have the potential as natural fiber for reinforcing polymer composites. This research aims to study water absorption behavior and its effect to tensile strength of the composites made from petung bamboo fiber, which is one of the most

  4. Anti-tumor activity of triterpenoid-rich extract from bamboo shavings ...

    African Journals Online (AJOL)

    Bamboo shavings are a kind of Chinese traditional medicine, which have been certificated as a material of functional food by the Ministry of Health in China. The anti-tumor activities of a triterpenoid-rich extract of bamboo shavings (EBS) and its main component, friedelin were evaluated in the present study. It was proved ...

  5. Development of a Bamboo-Based Composite as a Sustainable Green Material for Wind Turbine Blades

    DEFF Research Database (Denmark)

    Holmes, John W.; Brøndsted, Povl; Sørensen, Bent F.

    2009-01-01

    Bamboo has many engineering and environmental attributes that make it an attractive material for utilization in wind turbine blades. This paper examines the mechanical properties of a novel bamboo-poplar epoxy laminate which is being developed for wind turbine blades. Information provided...

  6. Important properties of bamboo pellets to be used as commercial solid fuel in China

    Science.gov (United States)

    Zhijia Liu; Benhua Fei; Zehui Jiang; Zhiyong Cai; Xing' e Liu

    2014-01-01

    Bamboo is a type of biomass material and has great potential as a bioenergy resource of the future in China. Some properties of bamboo pellets, length, diameter, moisture content (MC), particle density, bulk density, durability, fine content, ash, gross calorific value, combustion rate and heat release rate, were determined and the effects of MC and particle size (PS)...

  7. Preparation of sago starch-based biocomposite reinforced microfibrillated cellulose of bamboo assisted by mechanical treatment

    Science.gov (United States)

    Silviana, S.; Hadiyanto, H.

    2017-06-01

    The utilization of green composites by using natural fibres is developed due to their availability, ecological benefits, and good properties in mechanical and thermal. One of the potential sources is bamboo that has relative high cellulose content. This paper was focused on the preparation of sago starch-based reinforced microfribrillated cellulose of bamboo that was assisted by mechanical treatment. Microfibrillated cellulose of bamboo was prepared by isolation of cellulose with chemical treatment. Preparation of bamboo microfibrillated cellulose was conducted by homogenizers for dispersing bamboo cellulose, i.e. high pressure homogenizer and ultrasonic homogenizer. Experiments were elaborated on several variables such as the concentration of bamboo microfibrillated cellulose dispersed in water (1-3 %w) and the volume of microfibrillated cellulose (37.5-75%v). Four %w of sago starch solution was mixed with bamboo microfibrillated cellulose and glycerol with plasticizer and citric acid as cross linker. This paper provided the analysis of tensile strength as well as SEM for mechanical and morphology properties of the biocomposite. The results showed that the preparation of sago starch-based biocomposite reinforced bamboo microfibrillated cellulose by using ultrasonic homogenizer yielded the highest tensile strength and well dispersed in the biocomposite.

  8. Liquefaction behaviors of bamboo residues in a glycerol-based solvent using microwave energy

    Science.gov (United States)

    Jiulong Xie; Chung-Yun Hse; Todd F. Shupe; Jinqiu Qi; Hui Pan

    2014-01-01

    Liquefaction of bamboo was performed in glycerol–methanol as co-solvent using microwave energy and was evaluated by characterizing the liquefied residues. High efficiency conversion of bamboo was achieved under mild reaction conditions. Liquefaction temperature and time interacted to affect the liquefaction reaction. Fourier transform infrared analyzes of the residues...

  9. Antimicrobial Bamboo Materials Functionalized with ZnO and Graphene Oxide Nanocomposites

    Science.gov (United States)

    Zhang, Junyi; Zhang, Bo; Chen, Xiufang; Mi, Bingbing; Wei, Penglian; Fei, Benhua; Mu, Xindong

    2017-01-01

    Bamboo materials with improved antibacterial performance based on ZnO and graphene oxide (GO) were fabricated by vacuum impregnation and hydrothermal strategies. The Zn2+ ions and GO nanosheets were firstly infiltrated into the bamboo structure, followed by dehydration and crystallization upon hydrothermal treatment, leading to the formation of ZnO/GO nanocomposites anchored in the bulk bamboo. The bamboo composites were characterized by several techniques including scanning electron microscopy (SEM), Fourier transform infrared spectra (FTIR), and X-ray diffraction (XRD), which confirmed the existence of GO and ZnO in the composites. Antibacterial performances of bamboo samples were evaluated by the bacteriostatic circle method. The introduction of ZnO/GO nanocomposites into bamboo yielded ZnO/GO/bamboo materials which exhibited significant antibacterial activity against Escherichia coli (E. coli, Gram-negative) and Bacillus subtilis (B. subtilis, Gram-positive) bacteria and high thermal stability. The antimicrobial bamboo would be expected to be a promising material for the application in the furniture, decoration, and construction industry. PMID:28772597

  10. Evaluation of Bamboo Porous Pipe as Line Source Emitter in Trickle ...

    African Journals Online (AJOL)

    This paper attempts to evaluate the use of bamboo as porous pipe (line source) emitter in trickle irrigation at the Cross River University of Technology Teaching and Research Farm Obubra. Two sets of bamboo laterals: opened and plugged ends were used for the trial. The experiment was conducted using four different ...

  11. Rational synthesis of zerovalent iron/bamboo charcoal composites with high saturation magnetization

    Science.gov (United States)

    Mingshan Wu; Jianfeng Ma; Zhiyong Cai; Genlin Tian; Shumin Yang; Youhong Wang; Xing' e Liu

    2015-01-01

    The synthesis of magnetic biochar composites is a major new research area in advanced materials sciences. A series of magnetic bamboo charcoal composites (MBC800, MBC1000 and MBC1200) with high saturation magnetization (Ms) was fabricated in this work by mixing bamboo charcoal powder with an aqueous ferric chloride solution and subsequently...

  12. New and Improved Method of Bamboo cultivation in Semi Arid Areas ...

    African Journals Online (AJOL)

    pc

    2012-10-18

    Oct 18, 2012 ... Thar desert. In the present work, Guggul (Commiphora wightii Arnott.) which is a resident plant of Thar desert has been proved as a potential intercrop in bamboo cultivation. Improved growth was observed in bamboo with plant height (8.92 to 20.74 feet), number of culms (19 to 38), culm diameter (2.2 to 4.3.

  13. Withered on the stem: is bamboo a seasonally limiting resource for giant pandas?

    Science.gov (United States)

    Li, Youxu; Swaisgood, Ronald R; Wei, Wei; Nie, Yonggang; Hu, Yibo; Yang, Xuyu; Gu, Xiaodong; Zhang, Zejun

    2017-04-01

    In response to seasonal variation in quality and quantity of available plant biomass, herbivorous foragers may alternate among different plant resources to meet nutritional requirements. Giant pandas (Ailuropoda melanoleuca) are reliant almost exclusively on bamboo which appears omnipresent in most occupied habitat, but subtle temporal variation in bamboo quality may still govern foraging strategies, with population-level effects. In this paper, we investigated the possibility that temporal variation in the quality of this resource is involved in population regulation and examined pandas' adaptive foraging strategies in response to temporal variation in bamboo quality. Giant pandas in late winter and early spring consumed a less optimal diet in Foping Nature Reserve, as the availability of the most nutritious and preferred components and age classes of Bashania fargesii declined, suggesting that bamboo may be a seasonally limiting resource. Most panda mortalities and rescues occurred during the same period of seasonal food limitation. Our findings raised the possibility that while total bamboo biomass may not be a limiting factor, carrying capacity may be influenced by subtle seasonal variation in bamboo quality. We recommend that managers and policy-makers should consider more than just the quantity of bamboo in the understory and that carrying capacity estimates should be revised downward to reflect the fact that all bamboos are not equal.

  14. Potential Medicinal Application and Toxicity Evaluation of Extracts from Bamboo Plants.

    Science.gov (United States)

    Panee, Jun

    2015-06-01

    Bamboo plants play a significant role in traditional Asian medicine, especially in China and Japan. Biomedical investigations on the health-benefiting effects as well as toxicity of different parts and species of bamboo have been carried out worldwide since the 1960s, and documented a wide range of protective effects of bamboo-derived products, such as protection against oxidative stress, inflammation, lipotoxicity, cancer, and cardiovascular disease. Some of these products may interfere with male and female reproductive function, thyroid hormone metabolism, and hepatic xenobiotransformation enzymes. The diversity of bamboo species, parts of the plants available for medicinal use, and different extraction methods suggest that bamboo has great potential for producing a range of extracts with functional utility in medicine.

  15. Pharmacokinetics of cefovecin (Convenia) in white bamboo sharks (Chiloscyllium plagiosum) and Atlantic horseshoe crabs (Limulus polyphemus).

    Science.gov (United States)

    Steeil, James C; Schumacher, Juergen; George, Robert H; Bulman, Frank; Baine, Katherine; Cox, Sherry

    2014-06-01

    Cefovecin was administered to six healthy adult white bamboo sharks (Chiloscyllium plagiosum) and six healthy adult Atlantic horseshoe crabs (Limulus polyphemus) to determine its pharmacokinetics in these species. A single dose of cefovecin at 8 mg/kg was administered subcutaneously in the epaxial region of the bamboo sharks and in the proximal articulation of the lateral leg of the horseshoe crabs. Blood and hemolymph samples were collected at various time points from bamboo sharks and Atlantic horseshoe crabs. High performance liquid chromatography was performed to determine plasma levels of cefovecin. The terminal halflife of cefovecin in Atlantic horseshoe crabs was 37.70 +/- 9.04 hr and in white bamboo sharks was 2.02 +/- 4.62 hr. Cefovecin concentrations were detected for 4 days in white bamboo sharks and for 14 days in Atlantic horseshoe crabs. No adverse effects associated with cefovecin administration were seen in either species.

  16. [Relationships among Cyrtotrachelus buqueti larval density and wormhole number and bamboo shoot damage degree].

    Science.gov (United States)

    Yang, Yao-Jun; Wang, Shu-Fang; Gong, Jia-Wen; Liu, Chao; Mu, Chi; Qin, Hong

    2009-08-01

    In August of 2007 and 2008, a field investigation was made to study the relationships among Cyrtotrachelus buqueti larval density and wormhole number and bamboo shoot damage degree in Sichuan Province. The three pairs of variables, i. e., C. buqueti larval density and wormhole number, C. buqueti larval density and bamboo shoot damage degree, and C. buqueti wormhole number and bamboo shoot damage degree, fitted cubic equations well, with the correlation coefficients at P = 0.001. Based on these mathematical models, the forecast tables for C. buqueti larval density and bamboo shoot damage degree were established, and the thresholds of C. buqueti larval density and wormhole number were 0.13 and 0.40 individual per bamboo, respectively.

  17. Experimental research on friction coefficient between grain bulk and bamboo clappers

    Science.gov (United States)

    Tang, Gan; Sun, Ping; Zhao, Yanqi; Yin, Lingfeng; Zhuang, Hong

    2017-12-01

    A silo is an important piece of storage equipment, especially in the grain industry. The internal friction angle and the friction coefficient between the grain and the silo wall are the main parameters needed for calculating the lateral pressure of the silo wall. Bamboo is used in silo walls, but there are no provisions about the friction coefficient between bulk grain and bamboo clappers in existing codes. In this paper, the material of the silo wall is bamboo. The internal friction of five types of grain and the friction coefficient between the grain and the bamboo clappers were measured with an equal-strain direct shear apparatus. By comparing the experimental result values with the code values, the friction coefficient between the grain bulk and bamboo clappers is lower than that between grain and steel wall and that between grain and concrete wall. The differences in value are 0.21 and 0.09, respectively.

  18. Water Use Patterns of Four Tropical Bamboo Species Assessed with Sap Flux Measurements.

    Science.gov (United States)

    Mei, Tingting; Fang, Dongming; Röll, Alexander; Niu, Furong; Hendrayanto; Hölscher, Dirk

    2015-01-01

    Bamboos are grasses (Poaceae) that are widespread in tropical and subtropical regions. We aimed at exploring water use patterns of four tropical bamboo species (Bambusa vulgaris, Dendrocalamus asper, Gigantochloa atroviolacea, and G. apus) with sap flux measurement techniques. Our approach included three experimental steps: (1) a pot experiment with a comparison of thermal dissipation probes (TDPs), the stem heat balance (SHB) method and gravimetric readings using potted B. vulgaris culms, (2) an in situ calibration of TDPs with the SHB method for the four bamboo species, and (3) field monitoring of sap flux of the four bamboo species along with three tropical tree species (Gmelina arborea, Shorea leprosula, and Hevea brasiliensis) during a dry and a wet period. In the pot experiment, it was confirmed that the SHB method is well suited for bamboos but that TDPs need to be calibrated. In situ, species-specific parameters for such calibration formulas were derived. During field monitoring we found that some bamboo species reached high maximum sap flux densities. Across bamboo species, maximal sap flux density increased with decreasing culm diameter. In the diurnal course, sap flux densities in bamboos peaked much earlier than radiation and vapor pressure deficit (VPD), and also much earlier than sap flux densities in trees. There was a pronounced hysteresis between sap flux density and VPD in bamboos, which was less pronounced in trees. Three of the four bamboo species showed reduced sap flux densities at high VPD values during the dry period, which was associated with a decrease in soil moisture content. Possible roles of internal water storage, root pressure and stomatal sensitivity are discussed.

  19. Comparing Simulated Carbon Budget of a Lei Bamboo Forest with Flux Tower Data

    Directory of Open Access Journals (Sweden)

    Xuehe Lu

    2014-01-01

    Full Text Available Bamboo forest ecosystem is the part of the forest ecosystem. The distribution area of bamboo forest is limited, but in somewhere, like south China, it has been cultivate for a long time with human management. As the climate change has been take great effect on forest carbon budget, many researchers pay attention to the carbon budget in bamboo forest. Moreover cultivative management had a significant impact on the bamboo forest carbon budget. In this study, we modified a terrestrial ecosystem model named Integrated Biosphere Simulator (IBIS according the management of Lei bamboo forest. Some management, like fertilization, shoots harvesting and organic mulching in winter, had been incorporated into model. Then we had compared model results with the observation data from a Lei bamboo flux tower. The simulated and observed results had achieved good consistency. Our simulated Lei bamboo forest yearly net ecosystem productivity (NEP was 0.41 kgC a-1 of carbon, which is very close to the observation data 0.45 kgC a-1 of carbon. And the monthly simulated results can take the change of carbon budget in each month, similar to the data we got from flux tower. It reflects that the modified IBIS model can characterize the growth of bamboo forest and perform the simulation well. And then two groups of simulations were set to evaluate effects of cultivative managements on Lei bamboo forests carbon budget. And results showed that both fertilization and organic mulching had taken positive effects on Lei bamboo forests carbon sequestration.

  20. From basic raw material goods to cultural and environmental services: the Chinese bamboo sophistication path

    Directory of Open Access Journals (Sweden)

    Manuel Ruiz Pérez

    2014-12-01

    Full Text Available Bamboo has deep cultural and economic roots in China, the country with the largest bamboo resources in the world. Over the last three decades bamboo has evolved from a supply of raw material for basic goods into the material base of an increasingly diversified array of products and, more recently, into a potentially important source of cultural and environmental services. Based on a general literature review and the lessons learned from detailed case studies in different regions of China, we explored the changing roles of bamboo, and its effects on local economies and farmers' livelihood strategies. As the country develops and new economic activities continue to appear, bamboo production has shifted from a superior income-generating opportunity that largely benefited the better-off to a less attractive option left for those who have no other choice. The nature of the work has also changed, from families working directly on their bamboo plots to an emphasis on hired labor, with prosperous bamboo owners devoting most of their time to more lucrative activities. A similar process can be observed in bamboo processing in counties where previous industrial structures hinged around raw material harvests, but which have now entered into other secondary and tertiary industry activities. At the same time, bamboo has attracted new opportunities as a source of cultural, aesthetic, and leisure-related activities, as well as some potentially important climatic, watershed, and biodiversity functions. We analyze the complementarity between goods and services provided by bamboo and discuss some research issues and future trends that may help in overcoming these conflicts.

  1. The effect of alkali treatment of bamboo on the physical and mechanical properties of particleboard made from bamboo - industrial wood particles

    Directory of Open Access Journals (Sweden)

    vahid vaziri

    2018-02-01

    Full Text Available In this study, physical and mechanical properties of single layer particleboard made from bamboo powder (with and without alkali treatment and wood particles were investigated. Bamboo powder (30 mesh particles was treated with 5% hydroxide sodium for 120 minutes. Industrial wood chips from Sanate Choube Shomal Company were used.The variable in this research were the ratio of bamboo powder (with and without alkali treatment to wood chips (at four levels; 0:100, 10:90, 20:80, 30:70. Urea formaldehyde resin used at 10 percent level of dry weight of raw material as well as ammonium chloride was used as a catalyst at 2 percent level of the dry weight of adhesive. Physical and mechanical properties of panels measured according to EN Standard. Mechanical properties of the particleboards made from treated bamboo was superior to the relevant untreated bamboo. Water absorption and thickness swelling after 2 and 24 hours immersion in water decreased with alkali treatment. Mercerization, or treating cellulose fibers in alkaline solution, because of fibrillation, the removal of lignin and hemicellulose enhances the mechanical properties and dimension stability of the particleboard by promoting resin-fiber mechanical interlocking at the interface. Results showed, there was usability of the treated bamboo up to 30 percent for general purpose boards for use in dry conditions.

  2. Amido a partir de bambu Starch from bamboo culm

    Directory of Open Access Journals (Sweden)

    Anísio Azzini

    1984-01-01

    Full Text Available Em colmos de bambu da espécie tida como Guadua flabellata, determinaram-se os teores de amido e das frações fibrosa, parenquimatosa e solúvel em água. O comprimento e o diâmetro dos colmos processados foram também determinados. Os resultados mostraram que o teor médio de amido extraído foi 8,53% (base seca, representando cerca de 59% da fração solúvel em água e 32% do total de amido existente no colmo. Os teores médios das frações fibrosa, parenquimatosa e solúvel em água foram, respectivamente, 61,76%, 23,05% e 15,18%, Quanto às dimensões do colmo, a espécie em estudo pode ser considerada de porte mediano, em comparação com as espécies mais difundidas em nossas condições.In bamboo culms of the species reported as Guadua flabellata were determined the contents of starch, fibrous fraction, parenchymatous fractions and water soluble fractions. The height and diameter of the bamboo culms were also determined. The results showed that the average content of extracted starch was 8.53% (over dry material. This content corresponds to about 59% of the fractions and 32% of the total starch present in the bamboo culm. The fibrous fractions and water soluble fractions were, respectively 61.76% and 23.05%. Regarding to culm dimensions, this species can be considered as a middle sized culm.

  3. Utilization of Bamboo Charcoal as Additives in Cakes

    Directory of Open Access Journals (Sweden)

    Ronald O. Ocampo

    2015-12-01

    Full Text Available Charcoal has been used for healing various diseases, as antidote to poisoning and as purifying agent to filtered water. This study is conducted to utilize charcoal as additives in making cakes. Specifically, it is intended to determine the acceptable level of charcoal when used as additives in the production of brownies, dark brown chocolate, and chiffon cakes. It can be concluded that an addition of 1 tablespoon of bamboo charcoal gave the highest sensory evaluation to brownies and 3 tablespoon to dark brown chocolate .The control ( no charcoal added is still the best treatment for chiffon cake.

  4. Fuel properties and combustion kinetics of hydrochar prepared by hydrothermal carbonization of bamboo.

    Science.gov (United States)

    Yang, Wei; Wang, Hui; Zhang, Meng; Zhu, Jiayu; Zhou, Jie; Wu, Shengji

    2016-04-01

    Hydrothermal carbonization, an environmental friendly treatment method was employed to pretreat bamboo for hydrochar preparation in the present study. Hydrothermal carbonization could elevate the fuel properties and combustion behavior of bamboo. The combustion kinetic parameters of raw bamboo and hydrochars were calculated by a simple Arrhenius equation based on the thermogravimetric curves. Two distinct zones were observed for raw bamboo and hydrochars. The activation energies of raw bamboo in zone 1 and zone 2 were 109.5kJ/mol and 46.6kJ/mol, respectively, in the heating rate of 20°C/min. The activation energy of hydrochar in zone 1 increased at the hydrothermal carbonization temperature under 220°C and then decreased at higher hydrothermal carbonization temperature, due to the decomposition of relative reactive compounds in bamboo, and destruction of cellulose and hemicellulose structures, respectively. The activation energies of hydrochars in zone 2 were among 52.3-57.5kJ/mol, lower than that of lignin extracted from bamboo. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Compressive strength and ductility of short concrete columns reinforced by bamboo

    Directory of Open Access Journals (Sweden)

    Satjapan Leelatanon

    2010-08-01

    Full Text Available The paper presents the structural and environmentally sustainable aspects of bamboo as a reinforcing material insteadof steel reinforcement in concrete columns. Seven small-scale short columns (125 mm x 125 mm x 600 mm with different typeof reinforcements were tested under concentric loading to investigate strength capacity and ductility. The results showedthat the strength capacity of short columns reinforced by bamboo without surface treatment could resist the axial load asstructurally required by ACI318-05, but ductility was rather low especially the column that was reinforced by 1.6 percent ofreinforcing bamboo which showed brittle behavior similar to that of plain concrete column. This was thought to be an effectof water absorption and a loss of bonding strength between concrete and bamboo. On the other hand, columns reinforcedby bamboo treated with water-repellent substance, Sikadur-31CFN, showed higher strength and ductility than columnsreinforced by untreated bamboo. The result also showed that 1.6 % of steel reinforcement, in relation to the column crosssection,could be replaced by 3.2% of treated reinforcing bamboo, for similar behavior, strength and ductility.

  6. Giant panda foraging and movement patterns in response to bamboo shoot growth.

    Science.gov (United States)

    Zhang, Mingchun; Zhang, Zhizhong; Li, Zhong; Hong, Mingsheng; Zhou, Xiaoping; Zhou, Shiqiang; Zhang, Jindong; Hull, Vanessa; Huang, Jinyan; Zhang, Hemin

    2018-03-01

    Diet plays a pivotal role in dictating behavioral patterns of herbivorous animals, particularly specialist species. The giant panda (Ailuropoda melanoleuca) is well-known as a bamboo specialist. In the present study, the response of giant pandas to spatiotemporal variation of bamboo shoots was explored using field surveys and GPS collar tracking. Results show the dynamics in panda-bamboo space-time relationships that have not been previously articulated. For instance, we found a higher bamboo stump height of foraged bamboo with increasing elevation, places where pandas foraged later in spring when bamboo shoots become more fibrous and woody. The time required for shoots to reach optimum height for foraging was significantly delayed as elevation increased, a pattern which corresponded with panda elevational migration patterns beginning from the lower elevational end of Fargesia robusta distribution and gradually shifting upward until the end of the shooting season. These results indicate that giant pandas can respond to spatiotemporal variation of bamboo resources, such as available shoots. Anthropogenic interference of low-elevation F. robusta habitat should be mitigated, and conservation attention and increased monitoring should be given to F. robusta areas at the low- and mid-elevation ranges, particularly in the spring shooting season.

  7. Bamboo as sustainable material for furniture design in disaster and remote areas in Indonesia

    Science.gov (United States)

    Sofiana, Yunida; Wahidiyat, Mita; Caroline, Octaviana Sylvia

    2018-03-01

    Bamboo has been known as a sustainable material for architecture, but only used on a small scale for furniture. However, even though it a sustainable resource, many people considered Bamboo as outcast material for furniture because of its appearance. Evidently, the use of bamboo is often used to make simple tools with similar traditional designs for everyday life. The tradition of using bamboo was not further explored with respect to the ongoing development of creative design and function in the era of today’s modern technology. In retrospect to the above issues, this study is aimed to introduce the used of bamboo for material furniture in disaster and remote areas in Indonesia to increases their quality of life. It uses a research by a method of collecting data through surveys, literature review, interviews and training to determine the types of bamboo used for material furniture in disaster and remote territories. The results of this study is intended to show that the use of bamboo can be further developed into furniture for disaster and remote territory to create higher values of the products and increase the quality of life.

  8. PARIWISATA KREATIF DAN KEGIATAN EKSTRAKURIKULER BERBASIS BAMBU DALAM PENGEMBANGAN MODEL BISNIS CV SURATIN BAMBOO

    Directory of Open Access Journals (Sweden)

    Dewa Ayu Tenara Kardinia Cidhy

    2016-09-01

    Full Text Available The objective of this study was to design a prototype of a future business model which would be adopted to achieve balance between the aspects of new business opportunities and competitive advantages of CV Suratin Bamboo. The analytical method utilized in the study was the business model canvas approach (BMC supported by the blue ocean strategy and SWOT.  The results revealed that through this business model development, bamboo workshop is expected to provide information regarding bamboo derived products, raise awareness of preserving the indigenous bamboo culture, increase sense of belonging to domestic products, as well as become the primary support of innovation and ideas in constructing Indonesia as a nation. Meanwhile, for businesses actors, besides increasing revenue, conducting bamboo workshops is expected to increase the company growths for the long term. The opportunity to maneuver in the development of bamboo-based business model demonstrates that bamboo business with high quality products has both tangible and intangible potentials to be developed further.Keywords: bamboo, blue ocean strategy, business model canvas, creative tourism, extracurricularABSTRAKTujuan penelitian ini adalah merancang prototype model bisnis masa depan yang akan digunakan untuk menemukan keseimbangan antara aspek peluang bisnis yang baru dan aspek keuntungan kompetitif CV Suratin Bamboo. Metode analisis yang digunakan adalah dengan pendekatan kanvas model bisnis (BMC dilengkapi dengan blue ocean strategy serta SWOT. Hasil penelitian menunjukkan melalui pengembangan model bisnis ini, pelatihan bambu diharapkan mampu memberikan informasi tentang produk turunan bambu, meningkatkan kesadaran melestarikan kearifan lokal budaya bambu, meningkatkan rasa cinta produk dalam negeri, serta menjadi pendorong lahirnya inovasi dan gagasan yang membangun bangsa Indonesia. Sementara bagi pelaku usaha, selain peningkatan revenue, pelatihan bambu diharapkan mampu meningkatkan

  9. Thermal and Ash Characterization of Indonesian Bamboo and Its Potential for Solid Fuel and Waste Valorization

    Directory of Open Access Journals (Sweden)

    Aprilina Purbasari

    2016-08-01

    Full Text Available Bamboo has been widely used in Indonesia for construction, handicrafts, furniture and other uses. However, the use of bamboo as a biomass for renewable energy source has not been extensively explored. This paper describes the thermal and ash characterization of three bamboo species found in Indonesia, i.e. Gigantochloa apus, Gigantochloa levis and Gigantochloa atroviolacea. Characterization of bamboo properties as a solid fuel includes proximate and ultimate analyses, calorific value measurement and thermogravimetric analysis. Ash characterization includes oxide composition analysis and phase analysis by X-Ray diffraction. The selected bamboo species have calorific value comparable with wood with low nitrogen and sulphur contents, indicating that they can be used as renewable energy sources. Bamboo ash contains high silicon so that bamboo ash has potential to be used further as building materials or engineering purposes. Ash composition analysis also indicates high alkali that can cause ash sintering and slag formation in combustion process. This implies that the combustion of bamboo requires the use of additives to reduce the risk of ash sintering and slag formation. Article History: Received May 15, 2016; Received in revised form July 2nd, 2016; Accepted July 14th, 2016; Available online How to Cite This Article: Purbasari, A., Samadhi, T.W. & Bindar, Y. (2016 Thermal and Ash Characterization of Indonesian Bamboo and its Potential for Solid Fuel and Waste Valorization. Int. Journal of Renewable Energy Development, 5(2, 95-100. http://dx.doi.org/10.14710/ijred.5.2.96-100 

  10. The Bending Strength, Internal Bonding and Thickness Swelling of a Five Layer Sandwiched Bamboo Particleboard

    Science.gov (United States)

    Jamaludin, M. A.; Bahari, S. A.; Nordin, K.; Soh, T. F. T.

    2010-03-01

    The demand for wood based material is increasing but the supply is decreasing. Therefore the price of these raw materials has increased. Bamboo provides an economically feasible alternative raw material for the wood based industry. Its properties are comparable to wood. It is also compatible with the existing processing technology. Bamboo is in abundance, easy to propagate and of short maturation period. Bamboo provides a cheaper alternative resource for the wood based industry. The development of new structural components from bamboo will widen its area of application from handicrafts to furniture and building components. In this study, five layer sandwiched bamboo particleboard were manufactured. The sandwiched Bamboo PB consists of a bamboo PB core, oil palm middle veneers and thin meranti surface veneers. The physical and mechanical properties of the bamboo sandwiched particleboards were tested in accordance to the BS-EN 317:1993 [1] and BS-EN 310:1993 [2], respectively. All the samples passed the standards. The modulus of elasticity was about 352% higher than the value specified in the BS standard, BS-EN 312-4:1996 [3]. The Internal bonding was about 23% higher than the general requirements specified in the standard. On the other hand, the thickness swelling was about 6% lower than the standard. No glue line failure was observed in the strength tests. Critical failures in the IB tests were observed in the particleboards. Tension failures were observed in the surface veneers in the bending tests. The five layer sandwiched bamboo particleboard can be used for light weight construction such as furniture, and wall and door panels in buildings.

  11. Bamboo as a substitute for steel in reinforced concrete wall panels

    Science.gov (United States)

    Himasree, P. R.; Ganesan, N.; Indira, P. V.

    2017-07-01

    The paper presents a review of the works done by various researchers on different types of reinforced concrete wall panels. Full scale bamboo reinforced concrete wall panels of three different aspect ratios of 1, 1.204 and 1.515 subjected to one way in-plane loading are considered in this study. Also an attempt is made to compare the ultimate loads estimated using the available equations with the experimental values of bamboo reinforced concrete wall panels. The investigation indicates that steel reinforcement could be replaced by bamboo in concrete wall panels.

  12. A novel method for preparing microfibrillated cellulose from bamboo fibers

    Science.gov (United States)

    Dat Nguyen, Huu; Thanh Thuy Mai, Thi; Bich Nguyen, Ngoc; Duy Dang, Thanh; Loan Phung Le, My; Dang, Tan Tai; Tran, Van Man

    2013-03-01

    The bamboo fiber is a potential candidate for biomass and power source application. In this study, microfibrillated cellulose (MFC) is prepared from raw fibers of bamboo tree (Bambusa Blumeana J A & J H Schultes) by an alkali treatment at room temperature in association with a bleaching treatment followed by a sulfuric acid hydrolysis. Field-emission scanning electron microscopy (FESEM) images indicated that final products ranged from 20 to 40 nm in diameter. The chemical composition measurement and Fourier transform infrared (FTIR) spectroscopy showed that both hemicellulose and lignin are mostly removed in the MFC. The x-ray diffraction (XRD) results also show that MFC has crystallinity of more than 70%. The thermogravimetric analysis (TGA) curves revealed that cellulose microfibers have a two-step thermal decomposition behavior owing to the attachment of sulfated groups onto the cellulose surface in the hydrolysis process with sulfuric acid. The obtained MFCs may have potential applications in alternative power sources as biomass, in pharmaceutical and optical industries as additives, as well as in composite fields as a reinforcement phase.

  13. Tod's & United Bamboo + Toyo Ito & Vito Acconci + Omotesando & Daikanyama = Tokyo / Sergio Pirrone

    Index Scriptorium Estoniae

    Pirrone, Sergio

    2005-01-01

    Toyo Ito projekteeritud Itaalia jalatsi- ja kotifirmale kuuluvast Tod'si hoonest ning Vito Acconci kujundatud rõivakauplusest United Bamboo, mille interjöör meenutab kangast, Tokyos. Ill.: 8 värv. fotot, 9 korruste plaani

  14. Synthesis and application of dual functionalized task specific ionic liquid for bamboo dissolution

    Directory of Open Access Journals (Sweden)

    Hameed Sultan Nor Shahroon

    2017-01-01

    Full Text Available A new class of dual functionalized imidazolium based ionic liquid (IL namely 3-(2-cyano-ethyl-1-(2-ethoxy-ethyl-3-imidazolium bromide [CNEIM][Br], was synthesized and characterized to study their potential in bamboo dissolution. The chemical structure for the IL was characterized using NMR (1H and 13C. Thermal properties, surface morphology and functional group of the native bamboo and IL treated bamboo were analyzed by Thermal Gravimetric Anaylysis (TGA, Scanning Electron Microscopy (SEM and Fourier Transform Infrared Spectroscopy (FTIR respectively. The new IL was able to dissolve up to 5wt% of bamboo biomass within 48 hours and 100°C.

  15. Self-adaptive formation of uneven node spacings in wild bamboo

    Science.gov (United States)

    Shima, Hiroyuki; Sato, Motohiro; Inoue, Akio

    2016-02-01

    Bamboo has a distinctive structure wherein a long cavity inside a cylindrical woody section is divided into many chambers by stiff diaphragms. The diaphragms are inserted at nodes and thought to serve as ring stiffeners for bamboo culms against the external load; if this is the case, the separation between adjacent nodes should be configured optimally in order to enhance the mechanical stability of the culms. Here, we reveal the hitherto unknown blueprint of the optimal node spacings used in the growth of wild bamboo. Measurement data analysis together with theoretical formulations suggest that wild bamboos effectively control their node spacings as well as other geometric parameters in accord with the lightweight and high-strength design concept.

  16. Physiological traits contributing to carbon storage variation in Monastery bamboo and Pai Liang in northeastern Thailand

    Directory of Open Access Journals (Sweden)

    Nisa Leksungnoen

    2017-04-01

    Full Text Available This study aims at comparing the carbon storage ability of Monastery bamboo (Thyrsostachys siamensis Gamble and Pai Liang (Dendrocalamus membranaceus × Thyrsostachys siamensis in terms of the different physiological responses to the microclimate. The stomatal conductance, leaf-to-air vapor pressure deficit (LAVPD, chlorophyll content, and water use efficiency (WUE were measured. Pai Liang had a greater dry biomass per culm than Monastery bamboo, resulting in more carbon storage. Monastery bamboo kept opening its stomata even when LAVPD increased, resulting in the loss of more water and a lower WUE leading to a lower rate of growth and carbon storage. Pai Liang contained higher amount of carbon and nitrogen in the leaf tissue, indicating a better WUE. With regards to the climate change, Pai Liang is recommended owing to a greater carbon fixation and more rapid growth rate compared to the Monastery bamboo.

  17. Synthesis and Characterization of Cellulose from Green Bamboo by Chemical Treatment with Mechanical Process

    Directory of Open Access Journals (Sweden)

    Fui Kiew Liew

    2015-01-01

    Full Text Available Bamboo cellulose was prepared by chemical process involving dewaxing, delignification, and mercerization process. Four samples namely, green bamboo fiber (GBF, dewaxed bamboo fiber (DBF, delignified bamboo fiber (DLBF, and cellulose fiber (CF had been analysed. FTIR and TGA analysis confirmed the removal of hemicellulose and lignin at the end stage of the process. FTIR results reveal that the D-cellulose OH group occurred at 1639 cm−1 region. SEM micrograph showed that mercerization leads to fibrillation and breakage of the fiber into smaller pieces which promote the effective surface area available for contact. Barrer, Joiyner, and Halenda (BJH method confirmed that the effective surface area of CF is two times larger compared to GBF. CF showed the highest activation energy compared to GBF. It indicates that CF was thermally stable.

  18. Measuring and modeling the spatial pattern of understory bamboo across landscapes: Implications for giant panda habitat

    Science.gov (United States)

    Linderman, Marc Alan

    We examined an approach to classifying understory bamboo, the staple food of the giant panda (Ailuropoda melanoleuca), from remote sensing imagery in the Wolong Nature Reserve, China. We also used these data to estimate the landscape-scale distribution of giant panda habitat, and model the human effects on forest cover and the spatio-temporal dynamics of bamboo and the resulting implications for giant panda habitat. The spatial distribution of understory bamboo was mapped using an artificial neural network and leaf-on remote sensing data. Training on a limited set of ground truth data and using widely available Landsat TM data as input, a non-linear artificial neural network achieved a classification accuracy of 80% despite the presence of co-occurring mid-story and understory vegetation. Using information on the spatial distribution of bamboo in Wolong, we compared the results of giant panda habitat analyses with and without bamboo information. Total amount of habitat decreased by 29--56% and overall habitat patch size decreased by 16--48% after bamboo information was incorporated into the analyses. The decreases in the quantity of panda habitat and increases in habitat fragmentation resulted in decreases of 41--60% in carrying capacity. Using a spatio-temporal model of bamboo dynamics and human activities, we found that local fuelwood collection and household creation will likely reduce secondary habitat relied upon by pandas. Human impacts would likely contribute up to an additional 16% loss of habitat. Furthermore, these impacts primarily occur in the habitat relied upon by giant pandas during past bamboo die-offs. Decreased total area of habitat and increased fragmentation from human activities will likely make giant pandas increasingly sensitive to natural disturbances such as cyclical bamboo die-offs. Our studies suggest that it is necessary to further examine approaches to monitor understory vegetation and incorporate understory information into wildlife

  19. A geometrical model for testing bilateral symmetry of bamboo leaf with a simplified Gielis equation.

    Science.gov (United States)

    Lin, Shuyan; Zhang, Li; Reddy, Gadi V P; Hui, Cang; Gielis, Johan; Ding, Yulong; Shi, Peijian

    2016-10-01

    The size and shape of plant leaves change with growth, and an accurate description of leaf shape is crucial for describing plant morphogenesis and development. Bilateral symmetry, which has been widely observed but poorly examined, occurs in both dicot and monocot leaves, including all nominated bamboo species (approximately 1,300 species), of which at least 500 are found in China. Although there are apparent differences in leaf size among bamboo species due to genetic and environmental profiles, bamboo leaves have bilateral symmetry with parallel venation and appear similar across species. Here, we investigate whether the shape of bamboo leaves can be accurately described by a simplified Gielis equation, which consists of only two parameters (leaf length and shape) and produces a perfect bilateral shape. To test the applicability of this equation and the occurrence of bilateral symmetry, we first measured the leaf length of 42 bamboo species, examining >500 leaves per species. We then scanned 30 leaves per species that had approximately the same length as the median leaf length for that species. The leaf-shape data from scanned profiles were fitted to the simplified Gielis equation. Results confirmed that the equation fits the leaf-shape data extremely well, with the coefficients of determination being 0.995 on average. We further demonstrated the bilateral symmetry of bamboo leaves, with a clearly defined leaf-shape parameter of all 42 bamboo species investigated ranging from 0.02 to 0.1. This results in a simple and reliable tool for precise determination of bamboo species, with applications in forestry, ecology, and taxonomy.

  20. Life Cycle Assessment of bamboo (guadua angustifolia stems) as building material for structural applications

    OpenAIRE

    Ruiz, Diego; San Miguel Alfaro, Guillermo; Corona Bellostas, Blanca; González, Isaac

    2015-01-01

    Bamboo products have been proven to be a good altemative to hardwoods in the production of building materials, thus reducing the risk of deforestation primarily in tropical areas. Furthermore, bamboo also benefits from a very fast growing capacity when cultivated under adequate conditions, the ability to grow in non-productive land (e.g. eroded slopes) and the capacity to resprout from its stump due to its resilient root structure. Furthennore, its extensive root network promotes carbon seque...

  1. Effect of processing methods on the mechanical properties of engineered bamboo

    OpenAIRE

    Sharma, Bhavna; Gatóo, Ana; Ramage, Michael H.

    2015-01-01

    Engineered bamboo is increasingly explored as a material with significant potential for structural applications. The material is comprised of raw bamboo processed into a laminated composite. Commercial methods vary due to the current primary use as an architectural surface material, with processing used to achieve different colours in the material. The present work investigates the effect of two types of processing methods, bleaching and caramelisation, to determine the effect on the mechanic...

  2. Non-Destructive Infrared Evaluation of Thermo-Physical Parameters in Bamboo Specimens

    Directory of Open Access Journals (Sweden)

    Juan Esteban Ospina-Borras

    2017-12-01

    Full Text Available The estimation of heat conduction properties has considerable importance in the characterization of bamboo with respect to its potential use as an alternative construction material. Even though traditional methods such as hot plates have successfully measured thermal parameters, like thermal diffusivity and conductivity in bamboo samples, it is still necessary to transform the cylindrical bamboo specimen into a piece with special geometry and size. This requirement makes this method impractical in applications where several bamboo specimens need to be measured in their original cylindrical shape. This paper presents the estimation of thermo-physical parameters k and ρ c p in Guadua angustifolia kunth (Guadua a.k. bamboo through nonlinear least square optimization and infrared thermography. A sensitivity analysis was carried out to determine how the temperature on the bamboo surface is affected by changes in the convection coefficient h, thermal conductivity k, and volumetric heat capacity ρ c p . In spite of the nonlinearity and high correlation in the parameters of the inverse heat conduction problem (IHCP, the estimation of such parameters is robust and consistent with those reported in the literature.

  3. PHYSICAL AND MECHANICAL BEHAVIOR OF PANELS MANUFACTURED WITH BAMBOO (Bambusa vulgaris Schr.-WOOD COMBINATION

    Directory of Open Access Journals (Sweden)

    Leandro Calegari

    2007-03-01

    Full Text Available Considering the importance of derived products from bamboo for some countries and the wood shortage in some areas of Brazil, this work analyzed the quality of boards composed by particles of Eucalyptus sp. and bamboo strips (Bambusa vulgaris Schr.. The panels were produced with a density of 0.60 g/cm³ and 10% of urea-formaldehyde adhesive. The influence of the epidermis on the properties of the panels was also evaluated. The panels were constituted by five layers: core (Eucalyptus sp. or bamboo particles, layers of reinforcement (bamboo strips and finish faces (particles of same nature as the core. The press time was 8 minutes, at 120ºC. None of the treatments satisfied the quality patterns established by A208.1 (ANSI, 1987 and DIN 68761 (1-1961, (3-1971 (GERMAN STANDARDS COMMITTEE, 1971 codes. However, particleboards produced exclusively by bamboo or combined with wood presented a similar behavior to those produced exclusively of wood, showing to be a viable alternative. The modulus of rupture (MOR and elasticity (MOE were approximately the same in all treatments due to the irregular distribution of the layers in the mattress. The absence of epidermis tended to reduce the thickness swelling (2 and 24 hours and internal bond strength, however, without significant statistical difference. Therefore, other parameters of production of boards using bamboo, such as density and adhesive content, should be investigated in order to check whether the removal of epidermis is a really advantageous procedure.

  4. Development of the BIOME-BGC model for the simulation of managed Moso bamboo forest ecosystems.

    Science.gov (United States)

    Mao, Fangjie; Li, Pingheng; Zhou, Guomo; Du, Huaqiang; Xu, Xiaojun; Shi, Yongjun; Mo, Lufeng; Zhou, Yufeng; Tu, Guoqing

    2016-05-01

    Numerical models are the most appropriate instrument for the analysis of the carbon balance of terrestrial ecosystems and their interactions with changing environmental conditions. The process-based model BIOME-BGC is widely used in simulation of carbon balance within vegetation, litter and soil of unmanaged ecosystems. For Moso bamboo forests, however, simulations with BIOME-BGC are inaccurate in terms of the growing season and the carbon allocation, due to the oversimplified representation of phenology. Our aim was to improve the applicability of BIOME-BGC for managed Moso bamboo forest ecosystem by implementing several new modules, including phenology, carbon allocation, and management. Instead of the simple phenology and carbon allocation representations in the original version, a periodic Moso bamboo phenology and carbon allocation module was implemented, which can handle the processes of Moso bamboo shooting and high growth during "on-year" and "off-year". Four management modules (digging bamboo shoots, selective cutting, obtruncation, fertilization) were integrated in order to quantify the functioning of managed ecosystems. The improved model was calibrated and validated using eddy covariance measurement data collected at a managed Moso bamboo forest site (Anji) during 2011-2013 years. As a result of these developments and calibrations, the performance of the model was substantially improved. Regarding the measured and modeled fluxes (gross primary production, total ecosystem respiration, net ecosystem exchange), relative errors were decreased by 42.23%, 103.02% and 18.67%, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. [Effects of bamboo charcoal on the growth of Trifolium repens and soil bacterial community structure].

    Science.gov (United States)

    Li, Song-Hao; He, Dong-Hua; Shen, Qiu-Lan; Xu, Qiu-Fang

    2014-08-01

    The effects of addition rates (0, 3% and 9%) and particle sizes (0.05, 0.05-1.0 and 1.0-2.0 mm) of bamboo charcoal on the growth of Trifolium repens and soil microbial community structure were investigated. The results showed that bamboo charcoal addition greatly promoted the early growth of T. repens, with the 9% charcoal addition rate being slightly better than the 3% charcoal addition rate. The effects of different particle sizes of bamboo charcoal on the growth of T. repens were not different significantly. Growth promotion declined with time during 120 days after sowing, and disappeared completely after 5 months. DGGE analysis of the bacterial 16S rDNA V3 fragment indicated that bamboo charcoal altered the soil bacterial community structure. The amount and Shannon diversity index of bacteria in the bamboo charcoal addition treatments increased compared with CK. The quantitative analysis showed that the amount of bacteria in the treatment with bamboo charcoal of fine particle (D charcoal had a great effect on soil bacteria amount compared with the charcoal of other sizes at the same addition rate.

  6. In vitro Propagation of Giant Bamboo (Dendrocalamus giganteus) and Arudinaria alpina

    International Nuclear Information System (INIS)

    Machua, J.; Sigu, G. Gathura M.; Nyingi, J

    2007-01-01

    The giant bamboo (Dendrocalamus giganteus) is a multipurpose tree with uses and it has been widely cultivated in Asia while the indigenous bamboo (Arudinaria alpina) has a very low rate of domestication. The propagation and establishment of bamboo species is hampered by infrequent flowering, insufficient and irregular supply of seeds and inadequate knowledge of propagation technologies. The study aimed at developing in vitro techniques for mass propagation of the bamboo. Bamboo explant material was collected and and sterilized in a permutation of sterilizers over varying durations. The explants were further inoculated into matrix of hormonal concentrations. Successful sterilization of both Dendrocalamous giganteous and Arudinaria alpina was achieved in 25% v/v formaldehyde for 20 minutes resulting in a 75% survival. On the other hand sterilization with sodium hypochlorite was found to be ineffective for both species. Root initiation was not achieved after six weeks in varying concentrations of IBA (indolebutyric acid), NAA (+ n aphthalene acetic acid) and a blanket application of 0.3mgl -1 BAP, by which time most microshoots had overgrown the culture tubes. In conclusion, 25% v/v formaldehyde for 20 minutes is adequate for bamboo explant sterilization while microshoots induction could be achieved though varying BAP concentrations while the culture conditions were optimal for toot initiation

  7. Bamboo shoot preservation for enhancing its business potential and local economy: a review.

    Science.gov (United States)

    Bal, Lalit M; Singhal, Poonam; Satya, Santosh; Naik, S N; Kar, Abhijit

    2012-01-01

    Bamboo shoot as food has been used in traditional ways by the tribal community the world over. For enhancing its business potential, research on various aspects of bamboo shoot as food is being carried out in Japan, Taiwan, Thailand, and Asian countries and several products are available in the market. Bamboo shoots are used as a delicacy in human food, are a good source of dietary fiber, low in fat and calories. The research studies included in this review paper focus on post-harvest preservation of bamboo shoot. In view of the seasonal availability of bamboo shoot, the post-harvest preservation system for handling cynogenic toxicity in raw shoot while keeping nutrients intact and enhancement of shelf life of the value added products assume great significance for the business potential of this natural product. A yardstick of assessing the "Shelf life-Quality Matrix" developed in this review paper would give a new perspective of quality control in case of preservation of bamboo shoot. Also, knowledge gaps identified in this paper would give impetus to new academic and R&D activities, in turn generating an innovative job profile in the food industry as well as rural entrepreneurship.

  8. Consideration on the delay of radiocesium concentration decrease in bamboo shoots

    International Nuclear Information System (INIS)

    Tagami, Keiko; Uchida, Shigeo

    2012-01-01

    After the large releases of radionuclides due to the nuclear power plant accident in March 2011, trees in wide areas were directly contaminated. The contaminated leaves (mostly ever green trees) fell in the late spring to early summer, newly emerged leaves contained some radiocesium which were translocated from tree branches and trunks, and from soil through roots. The concentrations of radiocesium in tree leaves are decreasing due to dilution effect. However, for the case of bamboo shoots, decrease in radiocesium concentration was not observed in some areas when 2011 and 2012 samples were compared. In order to understand the fate of radiocesium in bamboos, 137 Cs concentration changes in leaves and branches from bamboos and litter layer and soil samples in a bamboo forest were measured. It was found that the concentration was higher in the following order: litter > leaves > branches > soil on 9 May 2011, however, the order changed to litter > soil >> leaves, branches on 20 October 2011. Removal of contaminated leaves from the bamboo trees and decomposition of the litter layer to soil organic matter was suggested from the results. Since the root zone of bamboo shoots was in the soil organic layer, radiocesium was taken up through roots to the shoots, and thus the concentration would be high. (author)

  9. Effect of 60Co radiation-induced grafting of methyl methacrylate on mechanical properties of bamboo

    International Nuclear Information System (INIS)

    Zhang Hao; Zhou Liang; Liu Shengquan; Qian Liangcun; Fei Benhua; Jiang Zehui

    2011-01-01

    In order to investigate the effect of radiation grafting on mechanical properties of bamboo, the original and carbonized bamboo soaked with monomer MMA were radiation grafted by 60 Co γ rays with the doses of 60-220 kGy. The results showed that compared with original blanks, treated with MMA and irradiated with the dose of 180 kGy the specific gravity, bending strength modulus of elasticity of original bamboo increased by 6.7%, 4.4%, and 28%, meanwhile its oven-dried radial, tangential and volumetric shrinkage decreased by 38.9%, 47.4%, and 32.9%, respectively. What is more, treated with MMA and irradiated with the doses of 140 kGy the specific gravity and modulus of elasticity of carbonized bamboo increased by 6.8% and 20%, while its oven-dried radial, tangential, volumetric shrinkage decreased by 11%, 4.6% and 12%, respectively. The study reveals that mechanical properties of original and carbonized bamboo can be enhanced by radiation grafting copolymerization with suitable absorbed doses, which may be valuable for the further research of developing new bamboo plastic composites. (authors)

  10. Limitations, progress and prospects of application of biotechnological tools in improvement of bamboo-a plant with extraordinary qualities.

    Science.gov (United States)

    Singh, Sharbati R; Singh, Rohtas; Kalia, Sanjay; Dalal, Sunita; Dhawan, A K; Kalia, Rajwant K

    2013-01-01

    Bamboos (family Poaceae) are the most beautiful and useful plants on the Earth, mainly found in the tropical and sub-tropical regions of the world. Bamboos are fast growing and early maturing, but lack of proper management of bamboo resources is leading to rapid reduction of the existing bamboosetum. Bamboo propagation through seeds is limited due to long flowering cycle of upto 120 years, seed sterility and short seed viability. Infrequent and unpredictable flowering events coupled with peculiar monocarpic behaviour i.e. flowering once before culm death, and extensive genome polyploidization are additional challenges for this woody group. Similarly, vegetative propagation by cuttings, offsets and rhizomes are also inadequate to cope up with the demand of planting stock due to large propagule size, limited availability, seasonal dependence, low multiplication rate and rooting percentage. Therefore, attempts have been made to propagate bamboos through in vitro techniques. In vitro flowering has also been achieved successfully in some bamboo species. Classification systems proposed to date need further support, as taxonomic delineation at lower levels is still lacking sufficient resolution. Tremendous advancement in molecular markers holds the promise to address the needs of bamboo taxonomy (systematics and identification) and diversity studies. Successful application of molecular marker techniques has been achieved in several bamboo species although, more studies are required to understand the population structure and genetic diversity of bamboos in a better way. In addition, some efforts have also been made to clone important genes from bamboos and also for genetic transformation using Agrobacterium and particle bombardment methods. An overview of the recent developments made in improvement of bamboos through in vitro propagation, molecular marker technologies, cloning, and transformation and transgenics has been presented. The future potential of improvement of

  11. Radionuclide analysis on bamboos following the Fukushima nuclear accident.

    Directory of Open Access Journals (Sweden)

    Takumi Higaki

    Full Text Available In response to contamination from the recent Fukushima nuclear accident, we conducted radionuclide analysis on bamboos sampled from six sites within a 25 to 980 km radius of the Fukushima Daiichi nuclear power plant. Maximum activity concentrations of radiocesium (134Cs and (137Cs in samples from Fukushima city, 65 km away from the Fukushima Daiichi plant, were in excess of 71 and 79 kBq/kg, dry weight (DW, respectively. In Kashiwa city, 195 km away from the Fukushima Daiichi, the sample concentrations were in excess of 3.4 and 4.3 kBq/kg DW, respectively. In Toyohashi city, 440 km away from the Fukushima Daiichi, the concentrations were below the measurable limits of up to 4.5 Bq/kg DW. In the radiocesium contaminated samples, the radiocesium activity was higher in mature and fallen leaves than in young leaves, branches and culms.

  12. Economic analysis of a hypothetical bamboo-biochar plant in Zhejiang province, China.

    Science.gov (United States)

    Zhang, Tao; Liang, Fang; Hu, Wanhe; Yang, Xiaomeng; Xiang, Hongzhong; Wang, Ge; Fei, Benhua; Liu, Zhijia

    2017-12-01

    Significant quantities of bamboo waste are generated in Zhejiang province, China. Many small businesses in this area convert this waste to biochar for use as a cooking fuel (in residential barbecues). This case study was conducted to evaluate the potential economic benefits of building and operating an industrial-sized plant in this province, yielding 500 tonnes per year. The researchers developed a conceptual design for a hypothetical biochar plant and then calculated net present value (NPV), investment payback period (PBP), internal rate of return (IRR), and sensitivity analysis. Results show that the static investment PBP would be 2.58 years, the IRR would be 38.8%, and the NPV would be US$ 486,700. The IRR would be higher than the forestry industry benchmark (11%), indicating that a production line of bamboo-biochar with the stated yield not only could generate higher profits, but also could achieve a better return on investment. Thus, this study indicates that there are good market prospects for the bamboo-biochar industry in this region. The influence of sales prices on the IRR was more than that of operational costs, indicating that a large-scale plant should be designed to produce a high-quality bamboo-biochar. Supply chain issues such as transportation distances between locations where bamboo wastes are generated and the biochar plant should be considered in advance when siting new bamboo-biochar plants. The results from this research provide guidance to those considering development of bamboo-biochar plants in other parts of China.

  13. Diversity and biogeography of neotropical bamboos (Poaceae: Bambusoideae Diversidade e biogeografia de bambus (Poaceae: Bambusoideae

    Directory of Open Access Journals (Sweden)

    Lynn G Clark

    1990-07-01

    Full Text Available The present paper analyses the distribution of bamboos in New World. For convenience, bamboos are divided into two broad groups, the woody bamboos and the herbaceous bamboos. These categories do not necessarily reflect phylogenetic relationships among bamboo groups. The Bambuseae includes all of the woody bamboos and is probably monophyletic, whereas the herbaceous bamboos are classified into eight tribes. In the New World (including underscribed taxa, 45-46 genera and approximately 515 species are represented; only two genera: Arundinaria and Streptogyna are not exclusively neotropical. The area of greatest endemism and diversity is the humid coastal forests of Bahia, Brazil. 22 genera have been found in this relatively small area, representing 48% of all New World genera. Five of the 22 genera are endemic to the Bahia coastal forests.O presente trabalho analisa a distribuição geográfica dos bambus do Novo Mundo. Por questões práticas, os bambus foram divididos em dois grupos: os bambus lenhosos e os herbáceos, essas categorias entretanto, nem sempre refletem relacionamentos filogenéticos, pois embora as Bambuseae incluam todos os bambus lenhosos, sendo portanto provavelmetne monofiléticos, os bambus herbáceos são classificados em oito tribos. No Novo Mundo, (incluindo os taxa ainda não descritos existem cerca de 45-46 gêneros e aproximadamente 515 espécies. Desses gêneros, apenas dois: Arundinaria e Streptogyna não são exclusivamente neotropicais. A área de maior endemismo e diversidade do grupo, está nas florestas costeiras da Bahia, Brasil. Nesta região são encontrados 22 gêneros, representando 48% de todos os gêneros neotropicais e desses, 5 são exclusivos desta região da Bahia.

  14. Desulphurization characteristics of bamboo charcoal from sulfur solution

    Directory of Open Access Journals (Sweden)

    Shengbo Ge

    2017-01-01

    Full Text Available Sulfur powder and sulfur dioxide (SO2 often floated in air, produced acid rain and algal blooms, and could cause diseases. Bamboo charcoal could have adsorption and filtration properties. In order to figure out the optimal adsorption condition and the intrinsic change of the bamboo charcoal, five chemicals were adsorbed by bamboo charcoal and were analyzed by FT-IR. Fe2(SO43’s, Na2SO4’s, Na2S2O8’s, S’s, and Na2SO3’s optimal adsorption condition was the concentration of 19 g/1000 g and stir time of 20 min, 21 g/1000 g and stir time of 60 min, 7 g/1000 g and stir time of 120 min, 11 g/1000 g and stir time of 120 min, 21 g/1000 g and stir time of 60 min, respectively. FT-IR spectra showed that for FT-IR spectra of Fe2(SO43, the transmissivity of the peaks at 3435 cm−1 and 2925 cm−1 achieved the maximum for 60 min and the concentration was 19 g/1000 g, the transmissivity of the peaks at 1630 cm−1, 1060 cm−1 and 660 cm−1 achieved the maximum for 60 min and the concentration was 7 g/1000 g. For FT-IR spectra of Na2SO4, the transmissivity of the peaks at 1630 cm−1, 1060 cm−1 and 660 cm−1 achieved the maximum for 20 min and the concentration was 13 g/1000 g. For FT-IR spectra of Na2S2O8, the transmissivity of the peaks at 3435 cm−1, 2925 cm−1, 1630 cm−1 and 1060 cm−1 achieved the maximum for 120 min and the concentration was 19 g/1000 g. For FT-IR spectra of S, the transmissivity of the peaks at 3435 cm−1, 2925 cm−1, 1630 cm−1 and 1060 cm−1 achieved the maximum for 20 min and the concentration was 11 g/1000 g, 17 g/1000 g and 21 g/1000 g. For FT-IR spectra of Na2SO3, the transmissivity of the peaks at 3435 cm−1 achieved the maximum for 120 min and the concentration was 5 g/1000 g, the transmissivity of the peaks at 2925 cm−1, 1630 cm−1 and 1060 cm−1 achieved the maximum for 120 min and the concentration was 11 g/1000 g. In these states, the

  15. Obtenção de amido a partir do colmo de bambu Starch from bamboo culm

    Directory of Open Access Journals (Sweden)

    Anísio Azzini

    1981-01-01

    Full Text Available Bamboo chips (Guadua flabellata Fournier was desintegrated in presence of cold water (25°C. The starch was isolated by decantation from the material soluble in water. Regarding color, the bamboo starch is similar to the soluble potato starch but its average dimension is smaller.

  16. An Efficient Plant Regeneration and Transformation System of Ma Bamboo (Dendrocalamus latiflorus Munro Started from Young Shoot as Explant

    Directory of Open Access Journals (Sweden)

    Shanwen Ye

    2017-07-01

    Full Text Available Genetic engineering technology has been successfully used in many plant species, but is limited in woody plants, especially in bamboos. Ma bamboo (Dendrocalamus latiflorus Munro is one of the most important bamboo species in Asia, and its genetic improvement was largely restricted by the lack of an efficient regeneration and transformation method. Here we reported a plantlet regeneration and Agrobacterium-mediated transformation protocol by using Ma bamboo young shoots as explants. Under our optimized conditions, embryogenic calluses were successfully induced from the excised young shoots on callus induction medium and rapidly grew on callus multiplication medium. Shoots and roots were regenerated on shoot induction medium and root induction medium, respectively, with high efficiency. An Agrobacterium-mediated genetic transformation protocol of Ma bamboo was established, verified by PCR and GUS staining. Furthermore, the maize Lc gene under the control of the ubiquitin promoter was successfully introduced into Ma bamboo genome and generated an anthocyanin over-accumulation phenotype. Our methods established here will facilitate the basic research as well as genetic breeding of this important bamboo species.Key achievements: A stable and high efficiency regeneration and Agrobacterium-mediated transformation protocol for Ma bamboo from vegetative organ is established.

  17. Isolation and characterization of cellulose nanofibers from bamboo using microwave liquefaction combined with chemical treatment and ultrasonication

    Science.gov (United States)

    Jiulong Xie; Chung Hse; Cornelis F. De Hoop; Tingxing Hu; Jinqiu Qi; Todd F. Shupe

    2016-01-01

    Cellulose nanofibers were successfully isolated from bamboo using microwave liquefaction combinedwith chemical treatment and ultrasonic nanofibrillation processes. The microwave liquefaction couldeliminate almost all the lignin in bamboo, resulting in high cellulose content residues within 7 min, andthe cellulose enriched residues could be readily purified by...

  18. Environmental behaviors of phoxim with two formulations in bamboo forest under soil surface mulching.

    Science.gov (United States)

    Liu, Yihua; Ni, Zhanglin; Mo, Runhong; Shen, Danyu; Zhong, Donglian; Tang, Fubin

    2015-09-01

    Phoxim (emulsifiable concentrate (EC) and granules (G)) has been widely used in bamboo forests. The persistence and magnitude of phoxim residues in the crop and soil must be investigated to ensure human and environmental safety. The environmental behaviors of the two formulations were investigated in a bamboo forest under soil surface mulching conditions (CP) and non-covered cultivation conditions (NCP). The half-lives of phoxim in soil under the two conditions in soil were 4.1-6.2days (EC) and 31.5-49.5days (G), respectively. Phoxim in EC could be leached from the topsoil into the subsoil. A minimized leaching effect was observed for G under NCP. Inversely, an enhanced leaching effect was observed for G under CP. The G formulation resulted in more parent compound (in bamboo shoots) and metabolite (in soil) residues of phoxim than in the case of EC, especially under CP conditions. In addition, the intensity and duration of the formulation effect on soil pH adjustment from G were more obvious than that from EC. Results showed that the environmental behaviors (distribution, degradation, residue) of phoxim in the bamboo forest were significantly influenced by the type of formulation. The prolongation effect from phoxim G might cause persistence and long-term environmental risk. However, bamboo shoot consumption could be considered relatively safe after applying the recommended dose of the two phoxim formulations. Copyright © 2015. Published by Elsevier B.V.

  19. Structural behavior of lightweight bamboo reinforced concrete slab with EPS infill panel

    Science.gov (United States)

    Wibowo, Ari; Wijatmiko, Indradi; Nainggolan, Christin Remayanti

    2017-09-01

    Eco-friendly, green, and natural materials have become increasingly important issues in supporting sustainable development, for the substitution of nonrenewable materials such as steel. Bamboo has been considered in many studies to replace steel in reinforced concrete elements. Further investigation has been carried out to obtain lightweight and eco-friendly reinforced concrete slabs by using bamboo bars as reinforcement and recycled materials such as EPS (expanded polystyrene) as infill panel. The flexural loading test on full scale one-way slabs test has been conducted. The results showed that the flexural strength of specimens decreased marginally of about 6% but with the weight advantage of 27% less compared with those of steel rebar reinforced concrete slab with the same dimension. Two type shear-connectors comprising of concrete and bamboo studs were also investigated which showed that the bamboo stud provided better ductility compared to that of slab with concrete as shear connector. Overall, the reinforced concrete slab with bamboo reinforcement and EPS infill panel showed reasonably good performance compared to slabs with steel rebar.

  20. Bamboo Waste as Part of The Aggregate Pavement The Way Green Infrastructure in The Future

    Directory of Open Access Journals (Sweden)

    Sri Wiwoho Mudjanarko

    2017-01-01

    Full Text Available Paving block pavement is already widely used in Indonesia. Materials made of concrete paving blocks are easy to make and easy to implement. Currently the manufacture of paving blocks SNI 03-0691-1996 refers to a method that consists of a mixture of cement, sand/gravel: water. Our research uses bamboo pieces of waste material as a substitute for gravel. Comparison of the composition of the bamboo pieces that are used to dry conditions weighing 10 kg, 20 kg and 30 kg. Based on compressive strength testing performed at the age of 7, 14 and 28 days can be known ability paving block receives compressive strength. The research using bamboo fiber material at 28 days had compressive strength 171 kg/cm2, 190 kg/cm2, and 199 kg/cm2. While using bamboo fiber material and fly ash at 28 days have compressive strength 231 kg / cm2, 176 kg/cm2, 252 kg/cm2. Test results meet the quality of type C, D and the use of bamboo waste as aggregate paving can support green infrastructure in the future.

  1. Engineering bamboo-type TiO2 nanotube arrays to enhance their photocatalytic property.

    Science.gov (United States)

    Guan, Dongsheng; Hymel, Paul J; Zhou, Chengjun; Wang, Ying

    2014-06-01

    Bamboo-type TiO2 nanotube arrays with high surface area can be synthesized by alternating voltage (AV) anodization for their important use as photocatalytic medium. Their morphologies are highly dependent on preparation parameters including anodization time and electrolyte composition. Minimum time of high-voltage steps required for forming desired bamboo ridge spacing on these nanotubes can be calculated from current-time profiles recorded during potentiostatic anodization at the voltage. Water content in NH4F-containing ethylene glycol (EG) electrolytes is optimized simply from analyses of current transients or current-voltage relations for anodization in EG electrolytes with different amount of water, in order to achieve efficient electrochemical growth of TiO2 nanotubes for large ridge density and long tube length. Two types of bamboo-type TiO2 nanotubes with the same length of 5.46 microm but different ridge spacing are synthesized for photocatalytic degradation of methylene blue (MB) under UV radiation. Both of the bamboo-type nanotube arrays show improved photo catalysis compared to smooth TiO2 nanotubes of the same length, due to their larger surface area favorable for heterogeneous catalytic processes. In particular, the apparent rate constant of photocatalytic degradation on bamboo-type nanotubes is up to 29.4% higher than that for degradation on smooth ones.

  2. A Study of Polishing Feature of Ultrasonic-Assisted Vibration Method in Bamboo Charcoal

    Directory of Open Access Journals (Sweden)

    Hsin-Min Lee

    2017-01-01

    Full Text Available Focusing on the feature of porosity in bamboo charcoal, this study applies the ultrasonic-assisted vibration method to perform surface polishing of the silicon wafer workpiece. The self-developed bamboo charcoal polishing spindle and ultrasonic- assisted vibration mechanism are attached to a single lapping machine. In the machining process, ultrasonic vibration enables the diamond slurry to smoothly pass through the microscopic holes of bamboo charcoal; the end of the bamboo charcoalis able to continue machining on the surface of the workpiece through the grasping force which exists in the microscopic holes. Under the polishing and machining parameters of ultrasonic-assisted vibration, with a diamond slurry concentration of 0.3%, the experimental results show a polishing time of 20 min, a loading of 25 N on the workpiece surface, a spindle speed of 1200 rpm, a vibration frequency of 30 kHz and the original surface roughness value of Ra 0.252 μm equals that of a mirror-like surface at Ra 0.017 μm. These research results prove that by using bamboo charcoal and ultrasonic-assisted vibration for polishing, a very good improvement can be achieved on the workpiece surface.

  3. Effects of thermal treatment on the physicochemical characteristics of giant bamboo

    Directory of Open Access Journals (Sweden)

    Wandivaldi Antonio Colla

    2011-09-01

    Full Text Available Despite countless use possibilities for bamboo, this material has two major disadvantages. One drawback is the low natural durability of most bamboo species due to presence of starch in their parenchyma cells. The other equally important drawback is the tendency bamboo has to present dimensional variations if subjected to environmental change conditions. In an attempt to minimize these inconveniences, strips (laths of Dendrocalamus giganteus Munro were taken from different portions of the culm and subjected to several temperatures, namely 140 °C, 180 °C, 220 °C, 260 °C and 300 °C under laboratory conditions, at the ESALQ-USP college of agriculture. The thermal treatment process was conducted in noninert and inert atmospheres (with nitrogen, depending on temperature Specimens were then subjected to physicomechanical characterization tests in order to determine optimum thermal treatment conditions in which to preserve to the extent possible the original bamboo properties. Results revealed that there is an optimum temperature range, between 140 ° and 220 °C, whereby thermally treated bamboo does not significantly lose its mechanical properties while at the same time showing greater dimensional stability in the presence of moisture.

  4. High Per formance and Flexible Supercapacitors based on Carbonized Bamboo Fibers for Wide Temperature Applications

    Science.gov (United States)

    Zequine, Camila; Ranaweera, C. K.; Wang, Z.; Singh, Sweta; Tripathi, Prashant; Srivastava, O. N.; Gupta, Bipin Kumar; Ramasamy, K.; Kahol, P. K.; Dvornic, P. R.; Gupta, Ram K.

    2016-08-01

    High performance carbonized bamboo fibers were synthesized for a wide range of temperature dependent energy storage applications. The structural and electrochemical properties of the carbonized bamboo fibers were studied for flexible supercapacitor applications. The galvanostatic charge-discharge studies on carbonized fibers exhibited specific capacity of ~510F/g at 0.4 A/g with energy density of 54 Wh/kg. Interestingly, the carbonized bamboo fibers displayed excellent charge storage stability without any appreciable degradation in charge storage capacity over 5,000 charge-discharge cycles. The symmetrical supercapacitor device fabricated using these carbonized bamboo fibers exhibited an areal capacitance of ~1.55 F/cm2 at room temperature. In addition to high charge storage capacity and cyclic stability, the device showed excellent flexibility without any degradation to charge storage capacity on bending the electrode. The performance of the supercapacitor device exhibited ~65% improvement at 70 °C compare to that at 10 °C. Our studies suggest that carbonized bamboo fibers are promising candidates for stable, high performance and flexible supercapacitor devices.

  5. Climate-change impacts on understorey bamboo species and giant pandas in China's Qinling Mountains

    Science.gov (United States)

    Tuanmu, Mao-Ning; Viña, Andrés; Winkler, Julie A.; Li, Yu; Xu, Weihua; Ouyang, Zhiyun; Liu, Jianguo

    2013-03-01

    Climate change is threatening global ecosystems through its impact on the survival of individual species and their ecological functions. Despite the important role of understorey plants in forest ecosystems, climate impact assessments on understorey plants and their role in supporting wildlife habitat are scarce in the literature. Here we assess climate-change impacts on understorey bamboo species with an emphasis on their ecological function as a food resource for endangered giant pandas (Ailuropoda melanoleuca). An ensemble of bamboo distribution projections associated with multiple climate-change projections and bamboo dispersal scenarios indicates a substantial reduction in the distributional ranges of three dominant bamboo species in the Qinling Mountains, China during the twenty-first century. As these three species comprise almost the entire diet of the panda population in the region, the projected changes in bamboo distribution suggest a potential shortage of food for this population, unless alternative food sources become available. Although the projections were developed under unavoidable simplifying assumptions and uncertainties, they indicate potential challenges for panda conservation and underscore the importance of incorporating interspecific interactions into climate-change impact assessments and associated conservation planning.

  6. Molecular Phylogeny of the Bamboo Sharks (Chiloscyllium spp.

    Directory of Open Access Journals (Sweden)

    Noor Haslina Masstor

    2014-01-01

    Full Text Available Chiloscyllium, commonly called bamboo shark, can be found inhabiting the waters of the Indo-West Pacific around East Asian countries such as Malaysia, Myanmar, Thailand, Singapore, and Indonesia. The International Union for Conservation of Nature (IUCN Red List has categorized them as nearly threatened sharks out of their declining population status due to overexploitation. A molecular study was carried out to portray the systematic relationships within Chiloscyllium species using 12S rRNA and cytochrome b gene sequences. Maximum parsimony and Bayesian were used to reconstruct their phylogeny trees. A total of 381 bp sequences’ lengths were successfully aligned in the 12S rRNA region, with 41 bp sites being parsimony-informative. In the cytochrome b region, a total of 1120 bp sites were aligned, with 352 parsimony-informative characters. All analyses yield phylogeny trees on which C. indicum has close relationships with C. plagiosum. C. punctatum is sister taxon to both C. indicum and C. plagiosum while C. griseum and C. hasseltii formed their own clade as sister taxa. These Chiloscyllium classifications can be supported by some morphological characters (lateral dermal ridges on the body, coloring patterns, and appearance of hypobranchials and basibranchial plate that can clearly be used to differentiate each species.

  7. Production and characterization of charcoal from species and varieties of bamboos; Producao e caracterizacao do carvao vegetal de especies e variedades de bambu

    Energy Technology Data Exchange (ETDEWEB)

    Brito, J.O.; Tomazello Filho, M. [Sao Paulo Univ., Piracicaba, SP (Brazil). Escola Superior de Agricultura Luiz de Queiroz; Barros Salgado, A.L. de [Instituto Agronomico de Campinas, SP (Brazil)

    1987-12-31

    Samples of bamboo culms (B. vulgaris var. vittata, B vulgaris, B. tuldoides. Dendrocalamus, Guandua angustifolia) were collected in three longitudinal positions from adult culms and carbonized in laboratory conditions. Eucalypt (E. urophilla hybrid) wood was used as a comparative parameter. Differences between the charcoal from the bamboo species and Eucalypt were observed. The bamboo culms presented higher values of lignin and holorcelulose in relation to wood samples. The bamboo culms provided higher charcoal yields and non-condensable gases.The bamboo charcoal was denser and with higher ash content in relation to wood charcoal. (author). 17 refs., 5 tabs

  8. Effect of iron(III) ion on moso bamboo pyrolysis under microwave irradiation.

    Science.gov (United States)

    Dong, Qing; Li, Xiangqian; Wang, Zhaoyu; Bi, Yanhong; Yang, Rongling; Zhang, Jinfeng; Luo, Hongzhen; Niu, Miaomiao; Qi, Bo; Lu, Chen

    2017-11-01

    The effect of iron(III) ion on microwave pyrolysis of moso bamboo was investigated. Hydrofluoric acid washing was used as a pilot process to demineralize moso bamboo in order to eliminate the influences of the other inorganics contained in moso bamboo itself. The results indicated that the addition of iron(III) ion increased the maximal reaction temperatures under microwave condition dependent on the amount of the added iron(III) ion. The production of the non-condensable gases was promoted by the addition of iron(III) ion mainly at the expense of liquid products. Iron(III) ion exhibited the positive effect for syngas production and inhibited the formation of CO 2 and CH 4 . The formation of Fe 2 O 3 and Fe 3 O 4 was found during microwave pyrolysis and the mechanism of the two metallic oxides formation was described in this work. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Assessment of hydrothermal carbonization and coupling washing with torrefaction of bamboo sawdust for biofuels production.

    Science.gov (United States)

    Zhang, Shuping; Su, Yinhai; Xu, Dan; Zhu, Shuguang; Zhang, Houlei; Liu, Xinzhi

    2018-06-01

    Two kinds of biofuels were produced and compared from hydrothermal carbonization (HTC) and coupling washing with torrefaction (CWT) processes of bamboo sawdust in this study. The mass and energy yields, mass energy density, fuel properties, structural characterizations, combustion behavior and ash behavior during combustion process were investigated. Significant increases in the carbon contents resulted in the improvement of mass energy density and fuel properties of biofuels obtained. Both HTC and CWT improved the safety of the biofuels during the process of handling, storing and transportation. The ash-related issues of the biofuels were significantly mitigated and combustion behavior was remarkably improved after HTC and CWT processes of bamboo sawdust. In general, both HTC and CWT processes are suitable to produce biofuels with high fuel quality from bamboo sawdust. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. The influence of bamboo-packed configuration to mixing characteristics in a fixed-bed reactor

    Science.gov (United States)

    Detalina, M.; Pradanawati, S. A.; Widyarani; Mamat; Nilawati, D.; Sintawardani, N.

    2018-03-01

    Fixed-bed reactors are commonly used as bioreactors for various applications, including chemicals production and organic wastewater treatment. Bioreactors are fixed with packing materials for attaching microorganisms. Packing materials should have high surface area and enable sufficient fluid flow in the reactor. Natural materials e.g. rocks and fibres are often used as packing materials. Commercially, packing materials are also produced from polymer with the advantage of customizable shapes. The objective of this research was to study the mixing pattern in a packed-bed reactor using bamboo as packing material. Bamboo was selected for its pipe-like and porous form, as well as its abundant availability in Indonesia. The cut bamboo sticks were installed in a reactor in different configurations namely vertical, horizontal, and random. Textile dye was used as a tracer. Our results show that the vertical configuration gave the least liquid resistant flow. Yet, the random configuration was the best configuration during mixing process.

  11. The production of Malaysia bamboo charcoal (Gigantochloa albociliata) as the potential absorbent

    Science.gov (United States)

    Isa, Siti S. Mat; Ramli, Muhammad M.; Hambali, N. A. M. A.; Abdullah, M. M. A. B.; Murad, S. A. Z.

    2017-09-01

    Bamboo charcoal was successfully carbonized at 500 °C and 800 °C using Malaysia buluh madu (Gigantochloa albociliata). Structural analysis was done using Atomic Force Microscopy (AFM) in two different solvents; ethanol and DI water. The functional groups of bamboo charcoal were confirmed using Fourier Transform Infrared Spectroscopy (FTIR). The adsorption property of bamboo charcoal solution was investigated at different concentrations of 0.2, 0.4 and 0.7 mg/mL, using methylene blue test and characterized using UV-Vis Spectroscopy. Based on the adsorption investigation, it shows that the adsorption was increased as the concentration increased. It was also shown that at higher temperature and longer duration time, the adsorption process is improved.

  12. Bamboo Fibre-reinforced Semi-Metallic Brake Friction Materials for Automotive Applications

    Directory of Open Access Journals (Sweden)

    Talib R. J.

    2016-01-01

    Full Text Available Three friction material formulations composed of bamboo fiber along with binder, friction modifiers and filler have been prepared through powder metallurgy process. Sample F1 and F2 are composed of 10 wt. % of copper and barium, respectively, while the other ingredients in both formulations have the same wt. %. The wt. % of bamboo fiber in sample F3 is, however, increased by 100%, while the compositions of the other ingredients are proportionally decreased. The samples were examined for their porosity, hardness, and friction and wear properties using hot bath, Rockwell hardness tester, and CHASE friction dynamometer, respectively. The test results are compared with those of a commercial sample as the benchmark. Normal and hot frictions of all the three samples developed comply with the requirements specified by Automotive Manufacturer Equipment Companies Agency (AMECA. However, sample F3 which is composed of 20 wt. % of bamboo fiber does not comply with the minimum requirement of friction coefficient. Whereas, sample F2, which is composed of 10 wt. % of bamboo fiber and 10 wt. % of barium, has lower friction coefficient than the commercial sample, and has a sudden drop in friction coefficient at a temperature of 500°F. Out of three developed samples, sample F1, which is composed of 10 wt. % of bamboo fiber and 10 wt. % of copper, complies with all the requirements and has higher friction coefficient than the commercial sample, and has higher fade resistance. Thus, it could be postulated that bamboo fiber could be used as a reinforcing fiber with composition of 10 wt. %.

  13. Effect of Bamboo Flour Grafted Lactide on the Interfacial Compatibility of Polylactic Acid/Bamboo Flour Composites

    Directory of Open Access Journals (Sweden)

    Xin-yu Song

    2017-07-01

    Full Text Available Bamboo flour (BF was grafted onto lactide (LA in the molten state using stannous octoate as a catalyst to form BF-g-LA. Then, polylactic acid (PLA was blended with BF (PLA/BF, 85/15 wt % to prepare PLA/BF/BF-g-LA composites using BF-g-LA as a compatibilizer. The grafting rate of BF was characterized using infrared testing and elemental analysis. To investigate the effect of BF-g-LA on the performance of PLA/BF/BF-g-LA composites, the phase morphology, thermal stability, and mechanical properties of the composites were characterized using scanning electron microscopy, thermogravimetric analysis, and universal material testing, respectively. The addition of BF-g-LA improved the interface compatibility between PLA and BF. When the BF-g-LA content was 2 phr, the tensile and impact strengths of PLA/BF/BF-g-LA composites were 55.3 MPa and 9.56 kJ/m2, representing 30% and 27% increases, respectively, relative to corresponding values for PLA/BF composites.

  14. Research on Bamboo Charcoal Bonded Grinding Wheel and Its Mechanical Properties

    International Nuclear Information System (INIS)

    Li, Wei; Xu, Minjie; Zhan, Fangyong; Jin, Mingsheng

    2014-01-01

    In this paper, a new type of grinding wheel and its manufacturing production process are introduced. The new BCB (Bamboo Charcoal Bond) grinding wheel was made of bamboo charcoal, phenolic resin and abrasive powder with higher press and temperature. To investigate its mechanical features, such as Rockwell hardness, resistance to abrasion, and resistance to pressure, some experiments on three BCB samples with different Resin weight ratios 20%, 25%, 30%, were carried out. The results showed that the BCB sample with proper moulding process and Resin weight ratio had better performance

  15. Research on Bamboo Charcoal Bonded Grinding Wheel and Its Mechanical Properties

    Science.gov (United States)

    Li, Wei; Xu, Minjie; Zhan, Fangyong; Jin, Mingsheng

    2014-08-01

    In this paper, a new type of grinding wheel and its manufacturing production process are introduced. The new BCB (Bamboo Charcoal Bond) grinding wheel was made of bamboo charcoal, phenolic resin and abrasive powder with higher press and temperature. To investigate its mechanical features, such as Rockwell hardness, resistance to abrasion, and resistance to pressure, some experiments on three BCB samples with different Resin weight ratios 20%, 25%, 30%, were carried out. The results showed that the BCB sample with proper moulding process and Resin weight ratio had better performance.

  16. Effect of Heating Time to Density, Hardness, and Resistivity Againt Fungus of Yellow Bamboo (Bambusa Vulgaris Var Schard. Vitata)

    Science.gov (United States)

    Dawam Abdullah, A. H.; Nasution, Saukani

    2018-01-01

    It has been studied the influence of heating process to the density, hardness and resistivity againt fungus of Yellow bamboo (Bambusa Vulgaris Var Schard. Vitata). Structure of bamboo is identified by optical microscope. Bamboo is heated at 100 °C with variation of heating time: 0, 1, 2, 3 and 4 hours. Density of bamboo is measured by using pycnometer, whereas hardness is measured by using a Rockwell Hardness Type-R (HRR). Resistivity againt fungus is observed by naked eye. OM image shows that bamboo consist of hollow structures wherein the water is stored. The diameter of vascular at inner part (∼ 150 μm) is quite larger than outer part (∼50 μm). Heating time of one hour caused density decrease by about 39%, whereas heating four hours will decrease by 52%. The longer heating time, the hardness of bamboo is increased. For the longitudinal side, two hours heating increased hardness up to 31%. For tangential side, four hours heating time increased hardness until 82%. Furthermore, heating time 3-4 hours will persist bamboo from fungus attack more than 14 days.

  17. Bamboo-dominated forests of the southwest Amazon: detection, spatial extent, life cycle length and flowering waves.

    Directory of Open Access Journals (Sweden)

    Anelena L de Carvalho

    Full Text Available We map the extent, infer the life-cycle length and describe spatial and temporal patterns of flowering of sarmentose bamboos (Guadua spp in upland forests of the southwest Amazon. We first examine the spectra and the spectral separation of forests with different bamboo life stages. False-color composites from orbital sensors going back to 1975 are capable of distinguishing life stages. These woody bamboos flower produce massive quantities of seeds and then die. Life stage is synchronized, forming a single cohort within each population. Bamboo dominates at least 161,500 km(2 of forest, coincident with an area of recent or ongoing tectonic uplift, rapid mechanical erosion and poorly drained soils rich in exchangeable cations. Each bamboo population is confined to a single spatially continuous patch or to a core patch with small outliers. Using spatial congruence between pairs of mature-stage maps from different years, we estimate an average life cycle of 27-28 y. It is now possible to predict exactly where and approximately when new bamboo mortality events will occur. We also map 74 bamboo populations that flowered between 2001 and 2008 over the entire domain of bamboo-dominated forest. Population size averaged 330 km(2. Flowering events of these populations are temporally and/or spatially separated, restricting or preventing gene exchange. Nonetheless, adjacent populations flower closer in time than expected by chance, forming flowering waves. This may be a consequence of allochronic divergence from fewer ancestral populations and suggests a long history of widespread bamboo in the southwest Amazon.

  18. Improvement of the computing speed of the FBR fuel pin bundle deformation analysis code 'BAMBOO'

    International Nuclear Information System (INIS)

    Ito, Masahiro; Uwaba, Tomoyuki

    2005-04-01

    JNC has developed a coupled analysis system of a fuel pin bundle deformation analysis code 'BAMBOO' and a thermal hydraulics analysis code ASFRE-IV' for the purpose of evaluating the integrity of a subassembly under the BDI condition. This coupled analysis took much computation time because it needs convergent calculations to obtain numerically stationary solutions for thermal and mechanical behaviors. We improved the computation time of the BAMBOO code analysis to make the coupled analysis practicable. 'BAMBOO' is a FEM code and as such its matrix calculations consume large memory area to temporarily stores intermediate results in the solution of simultaneous linear equations. The code used the Hard Disk Drive (HDD) for the virtual memory area to save Random Access Memory (RAM) of the computer. However, the use of the HDD increased the computation time because Input/Output (I/O) processing with the HDD took much time in data accesses. We improved the code in order that it could conduct I/O processing only with the RAM in matrix calculations and run with in high-performance computers. This improvement considerably increased the CPU occupation rate during the simulation and reduced the total simulation time of the BAMBOO code to about one-seventh of that before the improvement. (author)

  19. Seasonal Variations of the Antioxidant Composition in Ground Bamboo Sasa argenteastriatus Leaves

    Directory of Open Access Journals (Sweden)

    Youzuo Zhang

    2012-02-01

    Full Text Available Sasa argenteastriatus, with abundant active compounds and high antioxidant activity in leaves, is a new leafy bamboo grove suitable for exploitation. To utilize it more effectively and scientifically, we investigate the seasonal variations of antioxidant composition in its leaves and antioxidant activity. The leaves of Sasa argenteastriatus were collected on the 5th day of each month in three same-sized sample plots from May 2009 to May 2011. The total flavonoids (TF: phenolics (TP and triterpenoid (TT of bamboo leaves were extracted and the contents analyzed by UV-spectrophotometer. Our data showed that all exhibited variations with the changing seasons, with the highest levels appearing in November to March. Antioxidant activity was measured using DPPH and FRAP methods. The highest antioxidant activity appeared in December with the lowest in May. Correlation analyses demonstrated that TP and TF exhibited high correlation with bamboo antioxidant activity. Eight bamboo characteristic compounds (orientin, isoorientin, vitexin, homovitexin and p-coumaric acid, chlorogenic acid, caffeic acid, ferulic acid were determined by RP-HPLC synchronously. We found that chlorogenic acid, isoorientin and vitexin are the main compounds in Sasa argenteastriatus leaves and the content of isovitexin and chlorogenic acid showed a similar seasonal variation with the TF, TP and TT. Our results suggested that the optimum season for harvesting Sasa argenteastriatus leaves is between autumn and winter.

  20. Adsorption of malachite green dye from aqueous solution on the bamboo leaf ash

    Science.gov (United States)

    Kuntari, Priwidyanjati, Dessyntha Anggiani

    2017-12-01

    Bamboo leaf ash has been developed as an adsorbent material for removal malachite green from aqueous solution. Adsorption parameters have studied are contact time and initial pH. The effect of contact time and pH were examined in the batch adsorption processes. The physicochemical characters of bamboo leaf ash were investigated by using X-Ray Diffraction (XRD) and FT-IR spectroscopy. Malachite green concentration was determined by UV-Vis spectrophotometer. FT-IR spectrogram of bamboo leaf ash shows that typical fingerprint of adsorbent material with Si-O-Si or Al-O-Al group. The X-ray diffractograms of bamboo leaf ash show that adsorbent material has a highly amorphous nature. The percentage of adsorption was showed raised with increasing contact time. The optimum removal of malachite green when the initial dye concentration, initial pH, weight of adsorbent and contact time was 20 mg/L, 7, 0.25 g and 75 minutes respectively.

  1. Early resistance change and stress/electromigration evolution in near bamboo interconnects

    NARCIS (Netherlands)

    Petrescu, V.; Mouthaan, A.J.; Dima, G.; Govoreanu, B.; Mitrea, O.; Profirescu, M.

    1997-01-01

    A complete description for early resistance change and mechanical stress evolution in near-bamboo interconnects, related to the electromigration, is given in this paper. The proposed model, for the first time, combines the stress/vacancy concentration evolution with the early resistance change of

  2. New and improved method of bamboo cultivation in semi arid areas ...

    African Journals Online (AJOL)

    Bamboo (Dendrocalamus strictus Roxb.) is widely utilized in construction, pulp and paper, furniture, food and medicine, fuel and handicrafts for a long time. Due to its wider application, a field experiment was carried out to check its cultivation requirements besides its success rate in semi arid area of Indian Thar desert.

  3. Effect of oral supplementation of bamboo grass leaves extract on cellular immune function in dairy cows

    Directory of Open Access Journals (Sweden)

    Hiromichi Ohtsuka

    2014-01-01

    Full Text Available Beta glucans extracted from bamboo (Sasa sensanensis grass leaves are known to have an immune-modulatory effect in animals. These glucans have been used for the treatment of diseases such as viral infections, inflammation, and cancer. The aim of this study was to evaluate the immuno-modulatory effect of SanSTAGETM (pure compounds obtained from the bamboo grass leaves; 25% of bamboo grass extract and 75% of dextrin on peripheral blood leukocyte population and mRNA expression of immune related molecules of 20 dairy cows. Ten cows were orally administered 30 mg/kg/day of SanSTAGETM for first two weeks; the other 10 cows were control without supplementation. The blood samples were collected in tubes containing dipotassium-EDTA for analysis of leukocyte population, and in tubes containing heparin for analysis of cytokine production. Cows supplemented with SanSTAGETM showed an increased number of CD8+ T cells and expression of perforin (cytotoxicity factor to virally infected cells and MX-2 (anti-virus factor. The study describes for the first time that oral administration of supplement extracted from Kumaizasa bamboo grass leaves affects cellar immune function of dairy cows, and can be recommended as part of diet for prevention of infectious diseases.

  4. Effects of Walking in Bamboo Forest and City Environments on Brainwave Activity in Young Adults

    Directory of Open Access Journals (Sweden)

    Ahmad Hassan

    2018-01-01

    Full Text Available Background. In Japan, “Shinrin-yoku” or forest bathing (spending time in forests is a major practice used for relaxation. However, its effects on promoting human mental health are still under consideration. The objective of this study was to investigate the physiological and psychological relaxation effects of forest walking on adults. Sixty participants (50% males; 50% females were trained to walk 15-minute predetermined courses in a bamboo forest and a city area (control. The length of the courses was the same to allow comparison of the effects of both environments. Blood pressure and EEG results were measured to assess the physiological responses and the semantic differential method (SDM and STAI were used to study the psychological responses. Blood pressure was significantly decreased and variation in brain activity was observed in both environments. The results of the two questionnaires indicated that walking in the bamboo forest improves mood and reduces anxiety. Moreover, the mean meditation and attention scores were significantly increased after walking in a bamboo forest. The results of the physiological and psychological measurements indicate the relaxing effects of walking in a bamboo forest on adults.

  5. Impact Resistance Behaviour of Light Weight Rice Husk Concrete with Bamboo Reinforcement

    Science.gov (United States)

    Che Muda, Zakaria; Beddu, Salmia; Syamsir, Agusril; Sigar Ating, Joshua; Liyana Mohd Kamal, Nur; Nasharuddin Mustapha, Kamal; Thiruchelvam, Sivadass; Usman, Fathoni; Ashraful Alam, Md; Birima, Ahmed H.; Zaroog, O. S.

    2016-03-01

    This paper investigate the performance of lightweight rice husk concrete (LWRHC) with varied bamboo reinforcement content for the concrete slab of 300mm × 300mm size reinforced with varied slab thickness subjected to low impact projectile test. A self-fabricated drop-weight impact test rig with a steel ball weight of 1.236 kg drop at 0.65 m height has been used in this research work. The main variables for the study is to find the relationship of the impact resistance against the amount of bamboo reinforcement and slab thickness. A linear relationship has been established between first and ultimate crack resistance against bamboo diameters and slab thickness by the experiment. The linear relationship has also been established between the service (first) crack and ultimate crack resistance against the bamboo reinforcement diameter and slab thickness. 5% RH content exhibit better first and ultimate crack resistance up to 1.80 times and up to 1.72 times respectively against 10% RH content.

  6. Optimization for microwave-assisted direct liquefaction of bamboo residue in glycerol/methanol mixtures

    Science.gov (United States)

    Jiulong Xie; Jinqiu Qi; Chungyun Hse; Todd F. Shupe

    2015-01-01

    Bamboo residues were liquefied in a mixture of glycerol and methanol in the presence of sulfuric acid using microwave energy. We investigated the effects of liquefaction conditions, including glycerol/methanol ratio, liquefaction temperature, and reaction time on the conversion yield. The optimal liquefaction conditions were under the temperature of 120

  7. Influence of solvent type on microwave-assisted liquefaction of bamboo

    Science.gov (United States)

    Jiulong Xie; Chung Hse; Todd F. Shupe; Tingxing Hu

    2016-01-01

    Microwave-assisted liquefaction of bamboo in glycerol, polyethylene glycerol (PEG), methanol, ethanol, and water were comparatively investigated by evaluating the temperature-dependence for conversion and liquefied residue characteristics. The conversion for the liquefaction in methanol, ethanol, and water increased with an increase in reaction temperature, while that...

  8. Characteristics of Ampel bamboo as a biomass energy source potential in Bali

    Science.gov (United States)

    Sucipta, M.; Putra Negara, D. N. K.; Tirta Nindhia, T. G.; Surata, I. W.

    2017-05-01

    Currently, non-renewable fossil energy dominates utilization of the world energy need for many applications. Efforts has been developed to find alternative renewable energy sources, due to fossil energy availability is diminishing. And one of renewable energy source is from biomass. The aim of this research is to determine characteristics of the Ampel bamboo (Bambusa vulgaris) as an energy potential of biomass. The Ampel bamboo’s characteristics possessed are evaluated based on its chemical composition; moisture, volatile, ash, and fixed carbon through proximate analysis; and also carbon, hydrogen and nitrogen content through ultimate analysis. From the Thermo-gravimetric analysis (TGA) indicates that Ampel bamboo contains of about 18.10% hemicelluloses, 47.75% cellulose and 18.86% lignin. While from the ultimate analysis results in the content of carbon, hydrogen, and Nitrogen of Ampel bamboo are 39.75%, 5.75% and 0% respectively. With such characteristics, it indicates that Ampel bamboo has an attractive potential as a renewable energy source.

  9. Holocellulase activity from Schizophyllum commune grown on bamboo: a comparison with different substrates.

    Science.gov (United States)

    Arboleda Valencia, Jorge William; Valencia Jiménez, Arnubio; Gonçalves de Siqueira, Félix; Dussan Medina, Kelly; Restrepo Franco, Gloria M; Filho, Edivaldo Ximenes Ferreira; Siegfried, Blair D; Grossi-de-Sa, Maria Fatima

    2011-12-01

    The natural biodiversity that is found in tropical areas offers countless biotechnological opportunities; especially if we take in account that many biomolecules from several microorganisms have supported for many years, different industrial applications in areas such as pharmacology, agro-industry, bioprocess, environmental technology, and bioconversion. In order to find new lignocellulolytic enzymes and evaluate bamboo fibers as substrate, Schizophyllum commune a fungus with broad distribution was isolated and grown during 15 days in liquid culture medium containing 1% lignocellulosic fibers from bamboo, banana stem, and sugarcane bagasse. The enzymatic activity of xylanase, mannanase, polygalacturonase, CMCase, FPase, and avicelase were evaluated. Sugarcane bagasse and banana stem showed to induce higher hollocellulase activity when compared with bamboo as the main carbon source. The physical mechanism that the fungus uses to degrade bamboo was observed not only in fibers naturally infected but also in healthy fibers that were treated and untreated with enzyme solution. SEM analysis showed the structural disruption and invasion of the vascular bundles, parenchyma cells, and parenchymatous tissues as a consequence of the presence of this fungus and the catalytic action of its enzymes into the plant tissue.

  10. Structural Solutions for Low-Cost Bamboo Frames: Experimental Tests and Constructive Assessments

    Science.gov (United States)

    Sassu, Mauro; De Falco, Anna; Giresini, Linda; Puppio, Mario Lucio

    2016-01-01

    Experimental tests and constructive assessments are presented for a simple bamboo framed structure with innovative low-cost and low technology joints, specifically conceived for small buildings in developing countries. Two full scale one-storey bamboo frames have been designed by using the simplest joints solution among three different tested typologies. The entire building process is based on low-technology and natural materials: bamboo canes, wooden cylinders, plywood plates and canapé rods. The first full scale specimen (Unit A) is a one-storey single deck truss structure subjected to monotonic collapse test; the second full scale specimen (Unit B) is a one-storey double deck truss structure used to evaluate the construction time throughout assembling tests. The first full scale specimen showed ductility in collapse and ease in strengthening; the second one showed remarkable ease and speed in assembling structural elements. Finally several constructive solutions are suggested for the design of simple one-storey buildings; they are addressed to four purposes (housing, school, chapel, health center) by the composition of the proposed full scale bamboo frames. Ease of use and maintenance with a low level of technology contribute to application in developing countries although not exclusively. PMID:28773472

  11. Batchwise dyeing of bamboo cellulose fabric with reactive dye using ultrasonic energy.

    Science.gov (United States)

    Larik, Safdar Ali; Khatri, Awais; Ali, Shamshad; Kim, Seong Hun

    2015-05-01

    Bamboo is a regenerated cellulose fiber usually dyed with reactive dyes. This paper presents results of the batchwise dyeing of bamboo fabric with reactive dyes by ultrasonic (US) and conventional (CN) dyeing methods. The study was focused at comparing the two methods for dyeing results, chemicals, temperature and time, and effluent quality. Two widely used dyes, CI Reactive Black 5 (bis-sulphatoethylsulphone) and CI Reactive Red 147 (difluorochloropyrimidine) were used in the study. The US dyeing method produced around 5-6% higher color yield (K/S) in comparison to the CN dyeing method. A significant savings in terms of fixation temperature (10°C) and time (15 min), and amounts of salt (10 g/L) and alkali (0.5-1% on mass of fiber) was realized. Moreover, the dyeing effluent showed considerable reductions in the total dissolved solids content (minimum around 29%) and in the chemical oxygen demand (minimum around 13%) for the US dyebath in comparison to the CN dyebath. The analysis of colorfastness tests demonstrated similar results by US and CN dyeing methods. A microscopic examination on the field emission scanning electron microscope revealed that the US energy did not alter the surface morphology of the bamboo fibers. It was concluded that the US dyeing of bamboo fabric produces better dyeing results and is a more economical and environmentally sustainable method as compared to CN dyeing method. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Three large-stature bamboo species of Dendrocalamus (Poaceae: Bambusoideae) from northern Vietnam

    NARCIS (Netherlands)

    Nguyen, Van Tho; Xia, Nian-he; Nguyen, Hoang Nghia; Le, Viet Lam

    2012-01-01

    Three large bamboo species of genus Dendrocalamus from northern Vietnam are described and discussed: D. cauhaiensis, D. multiflosculus and D. taybacensis. All three species belong to subgenus Sinocalamus, with large culms, basal nodes without branches, and bearing 5–10 perfect flowers.

  13. Strength properties of bamboo and steel reinforced concrete containing manufactured sand and mineral admixtures

    Directory of Open Access Journals (Sweden)

    S. Karthik

    2017-10-01

    Full Text Available In a quest to ensure sustainability of the future generation, various research attempts are focusing on the use of alternative materials for construction. In this study, bamboo strips were used as reinforcement in a concrete that was made with supplementary cementitious materials and partial replacement of river sand with manufactured sand (m-sand. Cement was partially replaced by 25% of combination of admixtures such as fly ash and Ground Granulated Blast Furnace Slag (GGBS. In alignment with standard requirements, concrete samples such as cubes, cylinders and beams were produced and tested at stipulated periods. Micro scale analysis was performed on the bamboo using SEM and FTIR, and its tensile strength was also determined. The results of the micro scale and tensile strength tests revealed that bamboo is a strong and ductile material. The study showed that a combination of fly ash, GGBS and m-sand used as alternative materials in concrete improves the compressive and split tensile strengths. Under flexural loading, performance of bamboo reinforced concrete (BRC made with alternative materials (fly ash, GGBS, and m-sand was significantly low compared to BRC containing conventional materials. In addition, BRC made with conventional materials developed more flexural strength than the SRC, with a variation representing 6.5% strength gain.

  14. Optimisation of mechanical properties of bamboo fibre reinforced-PLA biocomposites

    Science.gov (United States)

    Nurnadia M., J.; Fazita, M. R. Nurul; Abdul Khalil H. P., S.; Mohamad Haafiz M., K.

    2017-12-01

    The majority of the raw materials that have been widely used in industries are petroleum-based. Growing environmental awareness, the depletion of fossil fuels, and climate change are the key drivers to seek more ecologically friendly materials, such as natural fibres to replace synthetic fibres in polymeric composite. Among the natural fibres available, bamboo fibre has relatively high strength. Poly (lactic) acid (PLA), one of the well-known biopolymers, has been used as a matrix in order to produce totally biodegradable biocomposites. In this study, bamboo fibres were compounded with PLA by a twin screw extruder. The bamboo fibre reinforced PLA composites were then manufactured via the compression moulding method. The influences of screw speed and die temperature during extrusion on the mechanical properties, the tensile and flexural of the biocomposites, were studied. The effects of fibre content and fibre length were also investigated. Taguchi experimental design approach was adopted to determine the optimum set of conditions to achieve the "best" mechanical properties of the composites. Tensile and flexural properties were characterised based on the D638-10 and D790-10 standards, respectively. It was observed that the fibre aspect ratio and fibre content significantly affected the mechanical performance of bamboo fibres reinforced PLA composites.

  15. Sustainable value chains for bamboo working communities : Integrating the tenets of sustainability through the Rhizome Approach

    NARCIS (Netherlands)

    Reubens, R.R.R.; Brezet, J.C.; Christiaans, H.H.C.M.

    2010-01-01

    There is a growing demand globally for products which impact sustainability positively. Bamboo fulfills these criteria, since it is a highly renewable timber replacement material which does not cause deforestation. It simultaneously has the potential to create livelihood opportunities for both the

  16. Structural Solutions for Low-Cost Bamboo Frames: Experimental Tests and Constructive Assessments

    Directory of Open Access Journals (Sweden)

    Mauro Sassu

    2016-05-01

    Full Text Available Experimental tests and constructive assessments are presented for a simple bamboo framed structure with innovative low-cost and low technology joints, specifically conceived for small buildings in developing countries. Two full scale one-storey bamboo frames have been designed by using the simplest joints solution among three different tested typologies. The entire building process is based on low-technology and natural materials: bamboo canes, wooden cylinders, plywood plates and canapé rods. The first full scale specimen (Unit A is a one-storey single deck truss structure subjected to monotonic collapse test; the second full scale specimen (Unit B is a one-storey double deck truss structure used to evaluate the construction time throughout assembling tests. The first full scale specimen showed ductility in collapse and ease in strengthening; the second one showed remarkable ease and speed in assembling structural elements. Finally several constructive solutions are suggested for the design of simple one-storey buildings; they are addressed to four purposes (housing, school, chapel, health center by the composition of the proposed full scale bamboo frames. Ease of use and maintenance with a low level of technology contribute to application in developing countries although not exclusively.

  17. Comparative genomics reveals convergent evolution between the bamboo-eating giant and red pandas.

    Science.gov (United States)

    Hu, Yibo; Wu, Qi; Ma, Shuai; Ma, Tianxiao; Shan, Lei; Wang, Xiao; Nie, Yonggang; Ning, Zemin; Yan, Li; Xiu, Yunfang; Wei, Fuwen

    2017-01-31

    Phenotypic convergence between distantly related taxa often mirrors adaptation to similar selective pressures and may be driven by genetic convergence. The giant panda (Ailuropoda melanoleuca) and red panda (Ailurus fulgens) belong to different families in the order Carnivora, but both have evolved a specialized bamboo diet and adaptive pseudothumb, representing a classic model of convergent evolution. However, the genetic bases of these morphological and physiological convergences remain unknown. Through de novo sequencing the red panda genome and improving the giant panda genome assembly with added data, we identified genomic signatures of convergent evolution. Limb development genes DYNC2H1 and PCNT have undergone adaptive convergence and may be important candidate genes for pseudothumb development. As evolutionary responses to a bamboo diet, adaptive convergence has occurred in genes involved in the digestion and utilization of bamboo nutrients such as essential amino acids, fatty acids, and vitamins. Similarly, the umami taste receptor gene TAS1R1 has been pseudogenized in both pandas. These findings offer insights into genetic convergence mechanisms underlying phenotypic convergence and adaptation to a specialized bamboo diet.

  18. Giant panda (Ailuropoda melanoleuca) population dynamics and bamboo (subfamily Bambusoideae) life history: a structured population approach to examining carrying capacity when the prey are semelparous

    Science.gov (United States)

    Carter, J.; Ackleh, A.S.; Leonard, B.P.; Wang, Hongfang

    1999-01-01

    The giant panda, Ailuropoda melanoleuca, is a highly specialized Ursid whose diet consists almost entirely of various species of bamboo. Bamboo (Bambusoideae) is a grass subfamily whose species often exhibit a synchronous semelparity. Synchronous semelparity can create local drops in carrying capacity for the panda. We modeled the interaction of pandas and their bamboo food resources with an age structured panda population model linked to a natural history model of bamboo biomass dynamics based on literature values of bamboo biomass, and giant panda life history dynamics. This paper reports the results of our examination of the interaction between pandas and their bamboo food resource and its implications for panda conservation. In the model all panda populations were well below the carrying capacity of the habitat. The giant panda populations growth was most sensitive to changes in birth rates and removal of reproductive aged individuals. Periodic starvation that has been documented in conjunction with bamboo die-offs is probably related to the inability to move to other areas within the region where bamboo is still available. Based on the results of this model, giant panda conservation should concentrate on keeping breeding individuals in the wild, keep corridors to different bamboo species open to pandas, and to concentrate research on bamboo life history.

  19. Surface properties, solubility and dissolution kinetics of bamboo phytoliths

    Science.gov (United States)

    Fraysse, Fabrice; Pokrovsky, Oleg S.; Schott, Jacques; Meunier, Jean-Dominique

    2006-04-01

    Although phytoliths, constituted mainly by micrometric opal, exhibit an important control on silicon cycle in superficial continental environments, their thermodynamic properties and reactivity in aqueous solution are still poorly known. In this work, we determined the solubility and dissolution rates of bamboo phytoliths collected in the Réunion Island and characterized their surface properties via electrophoretic measurements and potentiometric titrations in a wide range of pH. The solubility product of "soil" phytoliths ( pKsp0=2.74 at 25 °C) is equal to that of vitreous silica and is 17 times higher than that of quartz. Similarly, the enthalpy of phytoliths dissolution reaction (ΔHr25-80°C=10.85kJ/mol) is close to that of amorphous silica but is significantly lower than the enthalpy of quartz dissolution. Electrophoretic measurements yield isoelectric point pH IEP = 1.2 ± 0.1 and 2.5 ± 0.2 for "soil" (native) and "heated" (450 °C heating to remove organic matter) phytoliths, respectively. Surface acid-base titrations allowed generation of a 2-p K surface complexation model. Phytoliths dissolution rates, measured in mixed-flow reactors at far from equilibrium conditions at 2 ⩽ pH ⩽ 12, were found to be intermediate between those of quartz and vitreous silica. The dissolution rate dependence on pH was modeled within the concept of surface coordination theory using the equation: R=k1·{>SiOH2+}n+k2·{>SiOH0}+k3·{>SiO-}m, where {> i} stands for the concentration of the surface species present at the SiO 2-H 2O interface, ki are the rate constants of the three parallel reactions and n and m represent the order of the proton- and hydroxy-promoted reactions, respectively. It follows from the results of this study that phytoliths dissolution rates exhibit a minimum at pH ˜ 3. This can explain their good preservation in the acidic soil horizons of Réunion Island. In terms of silicon biogeochemical cycle, phytoliths represent a large buffering reservoir

  20. Removal of microcystin-LR from drinking water using a bamboo-based charcoal adsorbent modified with chitosan.

    Science.gov (United States)

    Zhang, Hangjun; Zhu, Guoying; Jia, Xiuying; Ding, Ying; Zhang, Mi; Gao, Qing; Hu, Ciming; Xu, Shuying

    2011-01-01

    A new kind of low-cost syntactic adsorbent from bamboo charcoal and chitosan was developed for the removal of microcystin-LR from drinking water. Removal efficiency was higher for the syntactic adsorbent when the amount of bamboo charcoal was increased. The optimum dose ratio of bamboo charcoal to chitosan was 6:4, and the optimum amount was 15 mg/L; equilibrium time was 6 hr. The adsorption isotherm was non-linear and could be simulated by the Freundlich model (R2 = 0.9337). Adsorption efficiency was strongly affected by pH and natural organic matter (NOM). Removal efficiency was 16% higher at pH 3 than at pH 9. Efficiency rate was reduced by 15% with 25 mg/L NOM (UV254 = 0.089 cm(-1)) in drinking water. This study demonstrated that the bamboo charcoal modified with chitosan can effectively remove microcystin-LR from drinking water.

  1. Response of a Wild Edible Plant to Human Disturbance: Harvesting Can Enhance the Subsequent Yield of Bamboo Shoots.

    Directory of Open Access Journals (Sweden)

    Noboru Katayama

    Full Text Available Wild edible plants, ecological foodstuffs obtained from forest ecosystems, grow in natural fields, and their productivity depends on their response to harvesting by humans. Addressing exactly how wild edible plants respond to harvesting is critical because this knowledge will provide insights into how to obtain effective and sustainable ecosystem services from these plants. We focused on bamboo shoots of Sasa kurilensis, a popular wild edible plant in Japan. We examined the effects of harvesting on bamboo shoot productivity by conducting an experimental manipulation of bamboo shoot harvesting. Twenty experimental plots were prepared in the Teshio Experimental Forest of Hokkaido University and were assigned into two groups: a harvest treatment, in which newly emerged edible bamboo shoots were harvested (n = 10; and a control treatment, in which bamboo shoots were maintained without harvesting (n = 10. In the first year of harvesting (2013, bamboo shoot productivities were examined twice; i.e., the productivity one day after harvesting and the subsequent post-harvest productivity (2-46 days after harvesting, and we observed no difference in productivity between treatments. This means that there was no difference in original bamboo shoot productivity between treatments, and that harvesting did not influence productivity in the initial year. In contrast, in the following year (2014, the number of bamboo shoots in the harvested plots was 2.4-fold greater than in the control plots. These results indicate that over-compensatory growth occurred in the harvested plots in the year following harvesting. Whereas previous research has emphasized the negative impact of harvesting, this study provides the first experimental evidence that harvesting can enhance the productivity of a wild edible plant. This suggests that exploiting compensatory growth, which really amounts to less of a decline in productivity, may be s a key for the effective use of wild edible

  2. Functional traits enhance invasiveness of bamboos over co-occurring tree saplings in the semideciduous Atlantic Forest

    Science.gov (United States)

    Montti, Lía; Villagra, Mariana; Campanello, Paula I.; Gatti, M. Genoveva; Goldstein, Guillermo

    2014-01-01

    Many woody bamboo species are forest understory plants that become invasive after disturbance. They can grow rapidly forming a dense, nearly monospecific understory that inhibits tree regeneration. The principal aim of this study was to understand what functional traits of bamboos allow them to outcompete tree seedlings and saplings and become successful species in the semideciduous Atlantic Forests of northeastern Argentina. We studied leaf and whole-plant functional traits of two bamboo species of the genus Chusquea and five co-occurring saplings of common tree species growing under similar solar radiation and soil nutrient availabilities. Nutrient addition had no effect on bamboo or tree sapling survival and growth after two years. Tree species with high-light requirements had higher growth rates and developed relatively thin leaves with high photosynthetic capacity per unit leaf area and short leaf life-span when growing in gaps, but had lower survival rates in the understory. The opposite pattern was observed in shade-tolerant species that were able to survive in the understory but had lower photosynthetic capacity and growth than light-requiring species in gaps. Bamboos exhibited a high plasticity in functional traits and leaf characteristics that enabled them to grow rapidly in gaps (e.g., higher photosynthetic capacity per unit dry mass and clonal reproduction in gaps than in the understory) but at the same time to tolerate closed-canopy conditions (they had thinner leaves and a relatively longer leaf life-span in the understory compared to gaps). Photosynthetic capacity per unit dry mass was higher in bamboos than in trees. Bamboo plasticity in key functional traits, such as clonal reproduction at the plant level and leaves with a relatively low C cost and high photosynthesis rates, allows them to colonize disturbed forests with consequences at the community and ecosystem levels. Increasing disturbance in some forests worldwide will likely enhance bamboo

  3. Response of a Wild Edible Plant to Human Disturbance: Harvesting Can Enhance the Subsequent Yield of Bamboo Shoots.

    Science.gov (United States)

    Katayama, Noboru; Kishida, Osamu; Sakai, Rei; Hayakashi, Shintaro; Miyoshi, Chikako; Ito, Kinya; Naniwa, Aiko; Yamaguchi, Aya; Wada, Katsunori; Kowata, Shiro; Koike, Yoshinobu; Tsubakimoto, Katsuhiro; Ohiwa, Kenichi; Sato, Hirokazu; Miyazaki, Toru; Oiwa, Shinichi; Oka, Tsubasa; Kikuchi, Shinya; Igarashi, Chikako; Chiba, Shiho; Akiyama, Yoko; Takahashi, Hiroyuki; Takagi, Kentaro

    2015-01-01

    Wild edible plants, ecological foodstuffs obtained from forest ecosystems, grow in natural fields, and their productivity depends on their response to harvesting by humans. Addressing exactly how wild edible plants respond to harvesting is critical because this knowledge will provide insights into how to obtain effective and sustainable ecosystem services from these plants. We focused on bamboo shoots of Sasa kurilensis, a popular wild edible plant in Japan. We examined the effects of harvesting on bamboo shoot productivity by conducting an experimental manipulation of bamboo shoot harvesting. Twenty experimental plots were prepared in the Teshio Experimental Forest of Hokkaido University and were assigned into two groups: a harvest treatment, in which newly emerged edible bamboo shoots were harvested (n = 10); and a control treatment, in which bamboo shoots were maintained without harvesting (n = 10). In the first year of harvesting (2013), bamboo shoot productivities were examined twice; i.e., the productivity one day after harvesting and the subsequent post-harvest productivity (2-46 days after harvesting), and we observed no difference in productivity between treatments. This means that there was no difference in original bamboo shoot productivity between treatments, and that harvesting did not influence productivity in the initial year. In contrast, in the following year (2014), the number of bamboo shoots in the harvested plots was 2.4-fold greater than in the control plots. These results indicate that over-compensatory growth occurred in the harvested plots in the year following harvesting. Whereas previous research has emphasized the negative impact of harvesting, this study provides the first experimental evidence that harvesting can enhance the productivity of a wild edible plant. This suggests that exploiting compensatory growth, which really amounts to less of a decline in productivity, may be s a key for the effective use of wild edible plants.

  4. Effect of Red Mud and Copper Slag Particles on Physical and Mechanical Properties of Bamboo-Fiber-Reinforced Epoxy Composites

    OpenAIRE

    Sandhyarani Biswas; Amar Patnaik; Ritesh Kaundal

    2012-01-01

    In the present work, a series of bamboo-fiber-reinforced epoxy composites are fabricated by using red mud and copper slag particles as filler materials. A filler plays an important role in determining the properties and behavior of particulate composites. The effects of these two fillers on the mechanical properties of bamboo-epoxy composites are investigated. Comparative analysis shows that with the incorporation of these fillers, the tensile strength of the composites increases significantl...

  5. Grappling the High Altitude for Safe Edible Bamboo Shoots with Rich Nutritional Attributes and Escaping Cyanogenic Toxicity

    Directory of Open Access Journals (Sweden)

    Sayanika Devi Waikhom

    2013-01-01

    Full Text Available Consumption of bamboo species with high level of total cyanogenic content (TCC in Asia by many ethnic groups is significantly associated with food poisoning and occasionally Konzo (a neurological disorder. Adequate characterization of edible bamboo species with low level of TCC and high nutritious attributes is required for consumer’s safety as well as for the conservation of the gene pool. Here, we employed morphological descriptors, atomic absorption spectrophotometer, RAPD, and trnL-F intergenic spacer to characterize 15 indigenous edible bamboo species of north-east India. The study indicates that morphologically and genetically evolved edible bamboo species having large and robust bamboo-shoot texture and growing at low altitude contain high level of TCC, low antioxidant properties, and low levels of beneficial macronutrients and micronutrients. Importantly, Dendrocalamus species are shown to be rich in TCC irrespective of the growing altitude while Bambusa species are found to have moderate level of TCC. The findings clearly demonstrated that Chimonobambusa callosa growing at high altitude represents safe edible bamboo species with nutritious attributes.

  6. Influences of charcoal and bamboo charcoal amendment on soil-fluoride fractions and bioaccumulation of fluoride in tea plants.

    Science.gov (United States)

    Gao, Hongjian; Zhang, Zhengzhu; Wan, Xiaochun

    2012-10-01

    High levels of fluoride in tea plants pose a potential health risk to humans who drink tea. It has been demonstrated that tea plant fluoride is closely related to the available fluoride in soil. But approaches that could be used to regulate the availability of fluoride in soil have been rarely seen. This study aims to investigate how the addition of charcoal and bamboo charcoal affected soil fluoride availability and bioaccumulation of fluoride in tea plants. In a microcosm experiment, tea plants were grown in the tea garden soil mixed with different amounts of charcoal and bamboo charcoal [that is, 0.5, 1.0, 2.5, and 5.0 % (w/w)]. Soil-fluoride fractions and fluoride accumulated in tea plants were determined using the sequential extraction and ion selective electrode method. Obtained results showed that both charcoal and bamboo charcoal additions significantly enhanced the concentrations of Fe/Mn oxide-bound fluoride, but significantly reduced the concentrations of water-soluble and exchangeable fluoride (p Charcoal and bamboo charcoal additions also significantly decreased the amounts of fluoride in tea roots and tea leaves (p charcoal and bamboo charcoal had no impacts on the tea quality, as indexed by the concentrations of polysaccharides, polyphenols, amino acids, and caffeine in tea leaves. These results suggested that application of charcoal and bamboo charcoal may provide a useful method to reduce the availability of fluoride in soil and the subsequent fluoride uptake by tea plants.

  7. Effect of Red Mud and Copper Slag Particles on Physical and Mechanical Properties of Bamboo-Fiber-Reinforced Epoxy Composites

    Directory of Open Access Journals (Sweden)

    Sandhyarani Biswas

    2012-01-01

    Full Text Available In the present work, a series of bamboo-fiber-reinforced epoxy composites are fabricated by using red mud and copper slag particles as filler materials. A filler plays an important role in determining the properties and behavior of particulate composites. The effects of these two fillers on the mechanical properties of bamboo-epoxy composites are investigated. Comparative analysis shows that with the incorporation of these fillers, the tensile strength of the composites increases significantly, whereas the flexural strength and impact strength decrease with increase in filler content (red mud and copper slag fillers in the epoxy-bamboo fiber composites. The density and hardness are also affected by the type and content of filler particles. It is found that the addition of copper slag filler improves the hardness of the bamboo-epoxy composites, whereas the addition of red mud filler reduces the hardness value of bamboo-epoxy composites. The study reveals that the addition of copper slag filler in bamboo-epoxy composites shows better physical and mechanical properties as compared to the red-mud-filled composites.

  8. Silica distribution in various bamboos species and its effects on plant growth

    Science.gov (United States)

    Collin, B.; Meunier, J.; Keller, C.; Doelsch, E.; Panfili, F.

    2010-12-01

    Bamboos are distributed throughout the world’s temperate, tropical and subtropical regions. They are widely used in industry, as fresh edible shoots, paper maker, building and even in medicine. Bamboos also play multiple ecologic functions such as soil and water conservation and erosion control. Bamboos have generally high silicon (Si) content. Silicon is known to have beneficial effects on plants and alleviate various stresses. The aim of this study is to quantify the Si uptake and distribution in various bamboos species and to investigate the effects of Si on the plant growth. Two complementary studies were carried out, one under natural conditions and one under controlled conditions. First of all, we performed an inventory of Si tissue content in 16 bamboos species growing in a non-polluted tropical soil at the Reunion Island (France, Indian ocean). We determined Si content in leaf and in stem tissues sampled at several heights for each plant. One of these species Gigantocloa sp « Malay Dwarf » was grown for 3 months in nutrient solution at five Si concentrations (0, 0.25, 0.75, 1.15, 1.5 mM Si). Silica deposition was examined in leaves using a cryo-SEM equipped with EDS. The Si concentration varies significantly between species, depending on rhizome morphology. Bamboos having leptomorph rhizomes show significantly higher leaf and stem Si content than that of species having pachymorph rhizomes. The distribution of Si in the plant has the same trends for all species. Leaves are the most concentrated organs (10.9 %), and within the stem Si concentration significantly increases from the bottom (0.32%) to the top of the plant (2.1%). Plant Si content increases with the Si supply. Leaves of Gigantocloa sp « Malay Dwarf » accumulate 15.2 % of Si under natural conditions and up to 24 % when exposed to the highest Si treatment. Unlike previous studies, our experiment shows that the concentration of Si had no significant effect on nutrient uptake and biomass

  9. Ionic liquids-lithium salts pretreatment followed by ultrasound-assisted extraction of vitexin-4″-O-glucoside, vitexin-2″-O-rhamnoside and vitexin from Phyllostachys edulis leaves.

    Science.gov (United States)

    Hou, Kexin; Chen, Fengli; Zu, Yuangang; Yang, Lei

    2016-01-29

    An efficient method for the extraction of vitexin, vitexin-4″-O-glucoside, and vitexin-2″-O-rhamnoside from Phyllostachys edulis leaves comprises heat treatment using an ionic liquid-lithium salt mixture (using 1-butyl-3-methylimidazolium bromide as the solvent and lithium chloride as the additive), followed by ultrasound-assisted extraction. To obtain higher extraction yields, the effects of the relevant experimental parameters (including heat treatment temperature and time, relative amounts of 1-butyl-3-methylimidazolium bromide and lithium chloride, power and time of the ultrasound irradiation, and the liquid-solid ratio) are evaluated and response surface methodology is used to optimize the significant factors. The morphologies of the treated and untreated P. edulis leaves are studied by scanning electron microscopy. The improved extraction method proposed provides high extraction yield, good repeatability and precision, and has wide potential applications in the analysis of plant samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Antioxidant Capacities of Fractions of Bamboo Shaving Extract and Their Antioxidant Components.

    Science.gov (United States)

    Gong, Jinyan; Huang, Jun; Xiao, Gongnian; Chen, Feng; Lee, Bolim; Ge, Qing; You, Yuru; Liu, Shiwang; Zhang, Ying

    2016-07-30

    This research was conducted for evaluation of antioxidant activities of four fractions from bamboo shavings extract (BSE) and their antioxidant components. The antioxidant capacities of BSE and four fractions on ABTS, DPPH, FRAP and total antioxidant capacity assays exhibited the following descending order: DF > n-butanol fraction (BF) > BSE ≈ ethyl acetate fraction (AF) > water fraction (WF). Among the identified phenolic compounds, caffeic acid exhibited the highest antioxidant capacities on DPPH, FRAP and total antioxidant capacity assays. An extremely significant positive correlation between the antioxidant activities with the contents of total flavonoids, total phenolic acids, or total phenolics was observed in this study. The result indicated that the bamboo shaving extract and its solvent fractions could act as natural antioxidants in light of their potent antioxidant activities.

  11. Bamboo reinforced concrete slab with styrofoam lamina filler as solution of lightweight concrete application

    Directory of Open Access Journals (Sweden)

    Wibowo Ari

    2017-01-01

    Full Text Available Energy resilience is becoming more important nowadays especially in the field of building sustainability. Some implementations can be carried out including using recycled materials instead of nonrenewable materials such as steel. Hence, one of the investigation conducted in this paper is replacing steel reinforcement with bamboo bars and using recycled materials such as Styrofoam with the aim of producing a concrete element structure that is lighter and more economical. In this research stage, flexural strength test on bamboo reinforced concrete slab with Styrofoam lamination filler was conducted. The results showed that the flexural strength of specimens decreased by 15% but with the weight advantage of 20% less compared with those of normal reinforced concrete slab with the same dimension. It is considered good performance in practical design context, since the nominal flexural capacity of RC slab when designed with minimum reinforcement are usually much higher than the required moment.

  12. [A brief introduction to the disease-syndrome names in bamboo slips of Qin Dynasty].

    Science.gov (United States)

    Yu, Y; Wang, Y L; Ma, Y D

    2016-05-01

    There are plenty of names of disease-syndrome from the four kinds of unearthed Qin bamboo slips, namely Fangmatan, Shuihudi, Zhoujiatai, and Liye. Altogether, these names number to 85. According to statistics, nomenclature of 34 disease-syndromes are derived from the location of the lesion, 8 from symptoms, 1 from etiology, 12 from location of lesion plus symptom, 3 from location plus etiology, and 25 are for special diseases. Through comparison of these names, with those from oracle bones and Han bamboo slips, Prescriptions for Hundred Kinds of Disease, it is summarized that, as time passes, nomenclature simply named by the location of the lesion was gradually reduced, and named by etiology and special diseases gradually increased. To some extent, it reflects the historical process of knowledge of the disease gradually deepened in ancient times.

  13. Characterization of compressive and short beam shear strength of bamboo opened cell foam core sandwich composites

    Energy Technology Data Exchange (ETDEWEB)

    Setyawan, Paryanto Dwi, E-mail: paryanto-ds@yahoo.com; Sugiman,; Saputra, Yudhi [Department of Mechanical Engineering, Faculty of Engineering, University of Mataram, Mataram, West Nusa Tenggara (Indonesia)

    2016-03-29

    The paper presents the compressive and the short beam shear strength of a sandwich composite with opened cell foam made of bamboo fiber as the core and plywood as the skins. The core thickness was varied from 10 mm to 40 mm keeping the volume fraction of fiber constant. Several test s were carried out including the core density, flatwise compressive and the short beam shear testing in three point bending. The results show that the density of bamboo opened cell foam is comparable with commercial plastic foam, such as polyurethane foam. The compressive strength tends to increase linearly with increasing the core thickness. The short beam shear failure load of the sandwich composite increases with the increase of core thickness, however on the contrary, the short beam shear strength which tends to sharply decrease from the thickness of 10 mm to 30 mm and then becomes flat.

  14. Thermal and magnetic behavior of Angustifolia Kunth bamboo fibers covered with Fe3O4 particles

    International Nuclear Information System (INIS)

    Calvo, S.; Arias, N.P.; Giraldo, O.; Rosales-Rivera, A.; Moscoso, O.

    2012-01-01

    Several Angustifolia Kunth bamboo fibers, which have been previously treated with an alkaline solution, were coated with magnetite particles. The coating of the fibers was achieved by an in-situ co-precipitation method with Fe 2+ and Fe 3+ in NaOH or NH 4 OH. The fibers were evaluated by chemical analysis using atomic absorption (A.A.) technique, structural characterization by X-ray diffraction (XRD), thermal stability with thermo-gravimetric analysis (TGA) in nitrogen at temperature range between 23 °C and 800 °C and magnetic behavior using vibrating sample magnetometry (VSM) applying a magnetic field between -27 KOe and 27 KOe at room temperature. We found that the thermal stability and magnetization depend of the synthesis method used to cover the Angustifolia Kunth bamboo fibers. In addition, an improved magnetic response was observed when NaOH solution is used to generate the magnetite coating on the fiber surface.

  15. Motion interference analysis and optimal control of an electronic controlled bamboo-dance mechanism

    Science.gov (United States)

    Liu, Xiaohong; Xu, Liang; Hu, Xiaobin

    2017-08-01

    An electric bamboo-dance mechanism was designed and developed to realize mechanism of automation and mechanization. For coherent and fluent motion, ANSYS finite element analysis was applied on movement interference. Static structural method was used for analyzing dynamic deflection and deformation of the slender rod, while modal analysis was applied on frequency analysis to avoid second deformation caused by resonance. Therefore, the deformation in vertical and horizontal direction was explored and reasonable optimization was taken to avoid interference.

  16. Synthesis of Composit From Bamboo Fiber, Zeolite and Epoxy for Room Separation

    Science.gov (United States)

    Raihan Muhammad, Dhany; Basuki, Kris Tri; Wasito, Bangun; Suroso

    2018-01-01

    This research aims is to search a subtitute of the asbestos for the separator rontgen room using bamboo fiber filled with zeolite; which harden using epoxy it is all caused because the hazard of the asbestos to the human body. Bamboo stem degenerated using NaOH (20%) to get the bamboo fiber. Bamboo fiber added with CS2 (10 mL) to form xanthate cellulose. Xanthate Cellulose mixed with filler zeolite and harden of epoxy, layer by layer until getting the right width. The variant of the mass composition is 3: 0:1; 3: 0.25:0.75; 3 :0.5:0.5; 3: 0.75:0.25; 3: 1:0, and the variant of the temperature 28 °C 40 °C 60 °C 80 °C and 100 °C. The sample tested using microscopic method, impact test with Charpy method, corrosivity method, Electricity conduct method, thermal conduct method, and radiation resistance or attenuation method. The result shown the optimum composition of the composite it is at the variant 3 :0.5:0.5, with the optimum temperature is 40°C with the density of the sample is 1.5789 g/cm3. Impact resistance of the sample is 44 Joule. The Radiation resistance is 0.46, with the thermal conductivity of the sample is 0.016 Kkal/m.s.c. it shown that the sample is isolator. From the result is shown that the sample is can be a substitute for asbestos as material of the separator in the Rontgen room.

  17. Crashworthiness Design for Bionic Bumper Structures Inspired by Cattail and Bamboo

    OpenAIRE

    Xu, Tao; Liu, Nian; Yu, Zhenglei; Xu, Tianshuang; Zou, Meng

    2017-01-01

    Many materials in nature exhibit excellent mechanical properties. In this study, we evaluated the bionic bumper structure models by using nonlinear finite element (FE) simulations for their crashworthiness under full-size impact loading. The structure contained the structural characteristics of cattail and bamboo. The results indicated that the bionic design enhances the specific energy absorption (SEA) of the bumper. The numerical results showed that the bionic cross-beam and bionic box of t...

  18. Nitrogen Removal Characteristics of Two Kinds of Water Quality by Bamboo Biological Membrane Reactor

    Science.gov (United States)

    Sun, Ling; Cao, Wenping; Zhang, Huifang

    2017-12-01

    The effect of nitrogen removal was investigated using a Bamboo filament bioreactor to treat wastewater with high organic load and low C/N ratio. Results showed that total nitrogen removal efficiency was 26.6∼96.95%, effluent BOD/COD ratio was 0.07∼0.74 when influent COD was 790∼5000 mg/L, BOD 60.0∼1100mg/L and the BOD/COD ratio was respectively 0.02∼0.44. When COD was 130.0∼278.0 mg/L, BOD was 42.5∼96.7mg/L, NH4 +-N was 16.2∼98.1mg/L, TN was 28.7∼103.8 mg/L, COD/TN was 1.6∼4.7, TN removal rate was 29.4%∼58.8%. This indicated that good TN removal efficiency can be achieved when using a Bamboo filament bioreactor to treat wastewater with high organic load and low C/N ratio; Nitrogen removal fluctuated was due to secretion of bamboo juice secreted from the cavity of filamentous bamboo. The distribution characteristics of the main bacteria was investigated to show that total number of bacteria at inlet and outlet were same roughly during the wastewater treatment, while bacteria, nitrifying bacteria were distributed in outlet, and Nitrifying bacteria accounted for 1.57% of total bacteria, while denitrifying bacteria evenly distributed in the reactor.

  19. [The bamboo Merostachys fischeriana (Bambusoideae: Bambuseae) as a canopy habitat for ants of Neotropical Montane Forest].

    Science.gov (United States)

    Fagundes, Roberth; Terra, Gilberto; Ribeiro, Sérvio P; Majer, Jonathan D

    2010-01-01

    Although Merostachys fischeriana is very abundant in the Brazilian Atlantic Rainforest, little attention has been paid to the biological interactions with other animals. The present study describes some of the interactions between ants and this bamboo species. The experiment was carried out in a fragment of a montane tropical forest in the Parque Estadual do Itacolomi, near Ouro Preto, MG, Brazil. Thirty culms of bamboo were randomly collected. The ants were obtained by direct collection from nodes and internodes. Morphometric variables of the bamboo were recorded for characterization of potential ant habitat. Merostachys fischeriana grows in rosettes as a thin bamboo (average = 1,0 cm; se = 0,27; n = 20) and is tall enough to reach the upper canopy of this low forest (average = 9,1 m; se = 2,72; n = 20). Fifteen ant species were sampled. Brachymyrmex heeri Forel was the most abundant in the nodes, while Camponotus crassus Mayr (Hymenoptera: Formicidae) was the most abundant in the internodes. The composition of the species that inhabit the internodes was different from the composition in the node (Q-test: Q = 3,76; P = 0,05). The level of occupation was defined by the number of holes (F = 10,33; P < 0,01), the number of internodes in the canopy (F = 6,84; P = 0,01) and the length of the culm (F = 7,52; P = 0,01). The plant's morphology allowed the occurrence of additional species of ants in the canopy and influenced the composition of the entire ant assemblage.

  20. Identification of putative orthologous genes for the phylogenetic reconstruction of temperate woody bamboos (Poaceae: Bambusoideae).

    Science.gov (United States)

    Zhang, Li-Na; Zhang, Xian-Zhi; Zhang, Yu-Xiao; Zeng, Chun-Xia; Ma, Peng-Fei; Zhao, Lei; Guo, Zhen-Hua; Li, De-Zhu

    2014-09-01

    The temperate woody bamboos (Arundinarieae) are highly diverse in morphology but lack a substantial amount of genetic variation. The taxonomy of this lineage is intractable, and the relationships within the tribe have not been well resolved. Recent studies indicated that this tribe could have a complex evolutionary history. Although phylogenetic studies of the tribe have been carried out, most of these phylogenetic reconstructions were based on plastid data, which provide lower phylogenetic resolution compared with nuclear data. In this study, we intended to identify a set of desirable nuclear genes for resolving the phylogeny of the temperate woody bamboos. Using two different methodologies, we identified 209 and 916 genes, respectively, as putative single copy orthologous genes. A total of 112 genes was successfully amplified and sequenced by next-generation sequencing technologies in five species sampled from the tribe. As most of the genes exhibited intra-individual allele heterozygotes, we investigated phylogenetic utility by reconstructing the phylogeny based on individual genes. Discordance among gene trees was observed and, to resolve the conflict, we performed a range of analyses using BUCKy and HybTree. While caution should be taken when inferring a phylogeny from multiple conflicting genes, our analysis indicated that 74 of the 112 investigated genes are potential markers for resolving the phylogeny of the temperate woody bamboos. © 2014 John Wiley & Sons Ltd.

  1. Experimental study of bamboo using banana and linen fibre reinforced polymeric composites

    Directory of Open Access Journals (Sweden)

    Ramachandran M.

    2016-09-01

    Full Text Available The application of natural fibres such as bamboo, jute, banana, coir, linen and the like in Fibre Reinforced Polymeric (FRP composites have become so vital due to their high effective stiffness and strength, availability, low cost, specific strength, better dimensional stability and mechanical properties, eco-friendly and biodegradable as compared with synthetic fibres. The interest in natural fibre reinforced polymeric composites is rapidly springing up in terms of research and industrial applications. The increased applications of these natural fibres in such composites are a proof to this claim. The paper deals with the detailed study of bamboo fibre, banana fibre and linen fibre cut into 2−4 mm of length with epoxy resin having random orientations. Various tests like Impact test (IZOD and CHARPY test, Fourier Transform Infra-Red (FTIR test and Rockwell Hardness test were conducted on 10 specimens of bamboo epoxy resin composite, bamboo−banana epoxy resin composite and bamboo−linen epoxy resin composite. It is analysed and proved that bamboo−banana epoxy resin composite shows better results in Impact test with values of 4 Joules for Izod test and 5 Joules for Charpy test and in FTIR test, compatibility of fibres with polymers in bamboo−banana epoxy resin composite are the best while bamboo−linen epoxy resin composite shows better result in Rockwell hardness test with value of 40 RHN.

  2. Potential role of masting by introduced bamboos in deer mice (Peromyscus maniculatus population irruptions holds public health consequences.

    Directory of Open Access Journals (Sweden)

    Melissa C Smith

    Full Text Available We hypothesized that the ongoing naturalization of frost/shade tolerant Asian bamboos in North America could cause environmental consequences involving introduced bamboos, native rodents and ultimately humans. More specifically, we asked whether the eventual masting by an abundant leptomorphic ("running" bamboo within Pacific Northwest coniferous forests could produce a temporary surfeit of food capable of driving a population irruption of a common native seed predator, the deer mouse (Peromyscus maniculatus, a hantavirus carrier. Single-choice and cafeteria-style feeding trials were conducted for deer mice with seeds of two bamboo species (Bambusa distegia and Yushania brevipaniculata, wheat, Pinus ponderosa, and native mixed diets compared to rodent laboratory feed. Adult deer mice consumed bamboo seeds as readily as they consumed native seeds. In the cafeteria-style feeding trials, Y. brevipaniculata seeds were consumed at the same rate as native seeds but more frequently than wheat seeds or rodent laboratory feed. Females produced a median litter of 4 pups on a bamboo diet. Given the ability of deer mice to reproduce frequently whenever food is abundant, we employed our feeding trial results in a modified Rosenzweig-MacArthur consumer-resource model to project the population-level response of deer mice to a suddenly available/rapidly depleted supply of bamboo seeds. The simulations predict rodent population irruptions and declines similar to reported cycles involving Asian and South American rodents but unprecedented in deer mice. Following depletion of a mast seed supply, the incidence of Sin Nombre Virus (SNV transmission to humans could subsequently rise with dispersal of the peridomestic deer mice into nearby human settlements seeking food.

  3. Above ground standing biomass and carbon storage in village bamboos in North East India

    Energy Technology Data Exchange (ETDEWEB)

    Jyoti Nath, Arun; Das, Ashesh Kumar [Department of Ecology and Environmental Science, Assam University, Silchar 788011, Assam (India); Das, Gitasree [Department of Statistics, North Eastern Hill University, Shillong 793022, Meghalaya (India)

    2009-09-15

    Bamboo forms an important component in the traditional landscape of North East India. For biomass estimation of village bamboos of Barak Valley, North East India, allometric relationships were developed by harvest method describing leaf, branch and culm biomass with DBH as an independent variable using a log linear model. The culm density of the stand was 8950 culms ha{sup -1} during 2005 of which 67% of growing stock was represented by Bambusa cacharensis, 17.88% by Bambusa vulgaris and 15.12% by Bambusa balcooa. Above ground stand biomass was 121.51 t ha{sup -1} of which 86% was contributed by culm component followed by branch (10%) and leaf (4%). With respect to species, B. cacharensis made up to 46% of total stand biomass followed by B. vulgaris (28%) and B. balcooa (26%). Carbon storage in the above ground biomass was 61.05 t ha{sup -1}. Allocation of C was more in culm components (53.05 t ha{sup -1}) than in branch (5.81 t ha{sup -1}) and leaf (2.19 t ha{sup -1}). Carbon storage in the litter floor mass was 2.40 t ha{sup -1}, of which leaf litter made up the highest amount (1.37 t ha{sup -1}) followed by sheath (0.86 t ha{sup -1}) and branch (0.17 t ha{sup -1}). Carbon stock in the soil up to 30 cm depth was 57.3 t ha{sup -1}. Gross C stock in the plantation was estimated to be 120.75 t ha{sup -1}. Carbon storage estimated in the bamboo stand of present study offers insights into the opportunity of village bamboos in the rural landscape for carbon storage through carbon sequestration. Management and utilization of village bamboos as a potential source of carbon sink by smallholder farmers are discussed in the context of their livelihood security and the Millennium Development Goals of the United Nations. (author)

  4. Adsorption characteristics of sulfur powder by bamboo charcoal to restrain sulfur allergies

    Directory of Open Access Journals (Sweden)

    Wanxi Peng

    2017-01-01

    Full Text Available Exposures to particulate matter with a diameter of 2.5 μm or less (PM2.5 may influence the risk of birth defects and make you allergic, which causes serious harm to human health. Bamboo charcoal can adsorb harmful substances,that was of benefitto people’s health. In order to figure out the optimal adsorbtion condition and the intrinsic change of bamboo charcoal, five chemicals were adsorbed by bamboo charcoal and were analyzed by FT-IR. The optimal blast time was 80 min of Na2SO3, 100 min of Na2S2O8, 20 min of Na2SO4, 120 min of Fe2(SO43 and 60 min or 100 min of S. FT-IR spectra showed that bamboo charcoal had five characteristic peaks of SS stretch, H2O stretch, OH stretch, CO stretch or CC stretch, and NO2 stretch at 3850 cm−1, 3740 cm−1, 3430 cm−1, 1630 cm−1 and 1530 cm−1, respectively. For Na2SO3, the peaks at 3850 cm−1, 3740 cm−1, 3430 cm−1, 1630 cm−1 and 1530 cm−1 achieved the maximum at 20 min. For Na2S2O8, the peaks at 3850 cm−1, 3740 cm−1, 3430 cm−1 and 1530 cm−1 achieved the maximum at 40 min. For Na2SO4, the peaks at 3850 cm−1, 3740 cm−1 and 1530 cm−1 achieved the maximum at 40 min. For Fe2(SO43, the peaks at 3850 cm−1, 3740 cm−1, 1630 cm−1 and 1530 cm−1 achieved the maximum at 120 min. For S, the peaks at 3850 cm−1 and 3740 cm−1 achieved the maximum at 40 min, the peaks at 1630 cm−1 and 1530 cm−1 achieved the maximum at 40 min. It proved that bamboo charcoal could remove sulfur powder from air to restrain sulfur allergies.

  5. Transcriptome Sequencing and Analysis for Culm Elongation of the World's Largest Bamboo (Dendrocalamus sinicus.

    Directory of Open Access Journals (Sweden)

    Kai Cui

    Full Text Available Dendrocalamus sinicus is the world's largest bamboo species with strong woody culms, and known for its fast-growing culms. As an economic bamboo species, it was popularized for multi-functional applications including furniture, construction, and industrial paper pulp. To comprehensively elucidate the molecular processes involved in its culm elongation, Illumina paired-end sequencing was conducted. About 65.08 million high-quality reads were produced, and assembled into 81,744 unigenes with an average length of 723 bp. A total of 64,338 (79% unigenes were annotated for their functions, of which, 56,587 were annotated in the NCBI non-redundant protein database and 35,262 were annotated in the Swiss-Prot database. Also, 42,508 and 21,009 annotated unigenes were allocated to gene ontology (GO categories and clusters of orthologous groups (COG, respectively. By searching against the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG, 33,920 unigenes were assigned to 128 KEGG pathways. Meanwhile, 8,553 simple sequence repeats (SSRs and 81,534 single-nucleotide polymorphism (SNPs were identified, respectively. Additionally, 388 transcripts encoding lignin biosynthesis were detected, among which, 27 transcripts encoding Shikimate O-hydroxycinnamoyltransferase (HCT specifically expressed in D. sinicus when compared to other bamboo species and rice. The phylogenetic relationship between D. sinicus and other plants was analyzed, suggesting functional diversity of HCT unigenes in D. sinicus. We conjectured that HCT might lead to the high lignin content and giant culm. Given that the leaves are not yet formed and culm is covered with sheaths during culm elongation, the existence of photosynthesis of bamboo culm is usually neglected. Surprisedly, 109 transcripts encoding photosynthesis were identified, including photosystem I and II, cytochrome b6/f complex, photosynthetic electron transport and F-type ATPase, and 24 transcripts were characterized

  6. Penelitian Pembuatan Arang Bambu (Bamboo Charcoal pda Suhu Rendah untuk Produk Kerajinan

    Directory of Open Access Journals (Sweden)

    Dwi Suheryanto

    2016-04-01

    Full Text Available AbstrakProses pengarangan terjadi bila ada suatu benda yang dipanasi sampai mencapai titik bakarnya sehingga benda terlihat membara, kemudian pemasukan oksigen dihentikan atau dibatasi agar benda tersebut tidak terbakar menjadi abu. Untuk melakukan uji coba penelitiaan pengarangan bambu menggunakan 2 jenis tungku, yaitu: tungku Tipe-1 tungku pengarangan suhu rendah (<120°C, dan tungku Tipe-2 tungku pengarangan suhu menengah 120°C -260°C, yang terbuat dari drum dengan Ǿ 35 cm. Bahan bambu yang digunakan terdiri dari 3 jenis bambu, yaitu; bambu cendani, petung, dan legi, dan produk bambu setengan jadi. Prosedur pengerjaan meliputi, penyiapan bahan (pemotongan dan seleksi, pengeringan, pengukuanr kandungan air awal, pengarangan, pengamatan proses pengarangan, dan identifikasi tingkat keberhasilan pengarangan. Adapun tujuan dari penelitian ini adalah mengetahui faktor yang mempengaruhi proses pengarangan dan kinerja tungku suhu rendah dan menengah. Dari hasil pengukuran kandungan air awal dari ke 3 jenis bambu yaitu dibawah 15%, sedangkan dari hasil pengamatan dan identifikasi pengarangan, pengarangan dengan menggunakan tungku Tipe-1, temperatur tertinggi rata-rata yang dapat dicapai 107,4 ºC dalam waktu 5 jam, dengan tingkat keberhasilan pengarang antara 60 % - 90 %, atau rata-rata 73 %;  dengan tungku Tipe-2, temperatur tertinggi rata-rata yang dapat dicapai 112,8 ºC dalam waktu 3,5 jam, dengan tingkat keberhasilan pengarang antara 50 % - 90 %, atau rata-rata 81 %. Kata kunci: arang bambu (bamboo charcoal, pengarangan, suhu, tungku pengarangan ABSTRACTA charcoal formation process occurs when an object is being heated until it reaches its burning point and smoldered, then the oxygen intake is stopped or restricted, so the object will not get burned into ashes. In this research, there are two tipes of furnaces being used, those are: Furnace Tipe-1, with low temperature (120°C and Furnace Tipe-2, with medium temperature (120°C 260

  7. Comparative life cycle assessment of ghana-made bamboo-frame bicycle and conventional bicycles assembled and used in the Netherlands

    NARCIS (Netherlands)

    Agyekum, E.O.; Fortuin, K.P.J.; Harst, van der E.J.M.

    2014-01-01

    In order to assess the sustainability of bamboo-framed bicycles produced in Ghana, an environmental and social life cycle assessments (LCA) were performed. For the environmental LCA, a bamboo-frame bicycle was compared with aluminium- and steel-frame bicycles, focussing on processes related to the

  8. Phytosterols elevation in bamboo shoot residue through laboratorial scale solid-state fermentation using isolated Aspergillus niger CTBU.

    Science.gov (United States)

    Zheng, X X; Chen, R S; Shen, Y; Yin, Z Y

    2014-04-01

    Aspergillus niger CTBU isolated from local decayed bamboo shoot residue was employed to solid-state fermentation (SSF) of bamboo shoot residue to elevate the content of phytosterols. Strain acclimatization was carried out under the fermentation condition using bamboo shoot as substrate for fermentation performance improvement. The optimal fermentation temperature and nitrogen level were investigated using acclimatized strain, and SSF was carried out in a 500-ml Erlenmeyer flask feeding 300-mg bamboo shoot residue chips under the optimal condition (33 °C and feeding 4 % urea), and 1,186 mg (100 g)(-1) of total phytosterol was attained after 5-day fermentation, in comparison, only 523 mg (100 g)(-1) of phytosterol was assayed in fresh shoots residue. HPLC analysis of the main composition of total phytosterols displays that the types of phytosterols and composition ratio of main sterols keep steady. This laboratorial scale SSF unit could be scaled up for raw phytosterols production from discarded bamboo shoot residue and could reduce its cost.

  9. Preparation and Flame Retardant and Smoke Suppression Properties of Bamboo-Wood Hybrid Scrimber Filled with Calcium and Magnesium Nanoparticles

    Directory of Open Access Journals (Sweden)

    Bin Fu

    2014-01-01

    Full Text Available The physical and mechanical properties of bamboo-wood hybrid scrimber filled with different loadings of nanoparticles were studied. The effects of nanoparticles on flame retardant and smoke suppression properties of bamboo-wood hybrid scrimber were studied by means of thermogravimetric analysis (TGA, cone calorimeter (CONE, and scanning electron microscope (SEM. The results showed that the physical and mechanical properties of bamboo-wood hybrid scrimber were improved by adding a moderate loading of nanoparticles; the optimal loading of nanoparticles was 10%. The heat transfer in bamboo-wood hybrid scrimber was prevented and the escaping channel of combustible gas was blocked by the uniformly filling effect of nanoparticles. The gas concentration was diluted by the noncombustible gas produced by pyrolysis of nanoparticles; the combustion chain reaction was suppressed by highly reactive free radicals produced by pyrolysis of nanoparticles. The residual mass of bamboo-wood hybrid scrimber filled with nanoparticles in thermogravimetric (TG curve at 900 s and burned by method of cone calorimeter (CONE at 600 s was increased compared to that of untreated one, which showed that inorganic mineral powder has the effect of catalytic charring.

  10. Flexural Properties of PVC/Bamboo Composites under Static and Dynamic-Thermal Conditions: Effects of Composition and Water Absorption

    Directory of Open Access Journals (Sweden)

    Shahril Anuar Bahari

    2017-01-01

    Full Text Available Polyvinyl chloride (PVC/bamboo composites have been prepared and assessed for their use in interior and exterior load-bearing applications. PVC composites were formed by compounding PVC with different bamboo particle sizes and loadings. The mechanical properties of these composites were determined at both ambient and elevated temperatures and after long-term water soaking. Analysis revealed that bamboo incorporation improved the PVC composite flexural modulus which was also observed with dynamic mechanical-thermal analysis on heating composites to ca. 70°C. Addition of 25% and 50% bamboo particles increases flexural modulus by 80% with dependency on whether fine (<75 μm or coarse (<1 mm particles were used. On water soaking to saturation, composites had water weight uptakes of 10%, with reduced flexural properties obtained for all water-soaked composites. Nonetheless, the results of this study show that PVC/bamboo composites achieve the minimum flexural performance of ASTM D 6662, indicating potential for their use in exterior applications.

  11. Silicon Conversion From Bamboo Leaf Silica By Magnesiothermic Reduction for Development of Li-ion Baterry Anode

    Directory of Open Access Journals (Sweden)

    Silviana Silviana

    2018-01-01

    Full Text Available Silicon (Si is a promising alternative material for the anode Lithium ion Battery (LIB. Si has a large theoretical capacity about 3579 mA hg-1, ten times greater than the commercial graphite anode (372 mA hg-1. Bamboo is a source of organic silica (bio-silica. Most part biogenetic content of SiO2 is obtained in bamboo leaves. This paper aims to investigate the synthesis nano Si from bamboo leaves through magnesiothermic reduction after silica extraction using sol–gel method and to observe nano Si of bamboo leaf as mixed material for lithium ion baterry. Silica and silicon content was determined using XRF. Silica product has 96,3 wt. % yield of extraction from bamboo leaf, while silicon yield was obtained 61.2 wt. %. The XRD pattern revealed that silica and silicon product were amourphous. The extracted silica and silicon from bambo leaf has spherical shape and agglomerated form. As anoda material for LIB, silicon product achieved 0,002 mAh capacity for 22 cycle.

  12. Fabrication of Robust Superhydrophobic Bamboo Based on ZnO Nanosheet Networks with Improved Water-, UV-, and Fire-Resistant Properties

    Directory of Open Access Journals (Sweden)

    Jingpeng Li

    2015-01-01

    Full Text Available Bamboo with water-resistant, UV-resistant, and fire-resistant properties was desirable in modern society. In this paper, the original bamboo was firstly treated with ZnO sol and then hydrothermally the ZnO nanosheet networks grow onto the bamboo surface and subsequently modified with fluoroalkyl silane (FAS-17. The FAS-17 treated bamboo substrate exhibited not only robust superhydrophobicity with a high contact angle of 161° but also stable repellency towards simulated acid rain (pH = 3 with a contact angle of 152°. Except for its robust superhydrophobicity, such a bamboo also presents superior water-resistant, UV-resistant, and fire-resistant properties.

  13. [Effect of seasonal high temperature and drought on carbon flux of bamboo forest ecosystem in subtropical region].

    Science.gov (United States)

    Chen, Xiao-feng; Jiang, Hong; Niu, Xiao-dong; Zhang, Jin-meng; Liu, Yu-li; Fang, Cheng-yuan

    2016-02-01

    The carbon flux of subtropical bamboo forest ecosystem was continuously measured using eddy covariance technique in Anji County of Zhejiang Province, China. The monthly net ecosystem productivity (NEP), ecosystem respiration (Re) and gross ecosystem productivity (GEP) data from 2011 to 2013 were selected to analyze the impacts of seasonal high temperature and drought on the carbon flux of bamboo forest ecosystem. The results showed that there were big differences among annual NEP of bamboo forest from 2011 to 2013. Because of the asynchronization of precipitation and heat, the seasonal high temperature and drought in July and August of 2013 caused significant decline in NEP by 59.9% and 80.0% when compared with the same months in 2011. Correlation analysis of the NEP, Re, GEP and environmental factors suggested that the atmosphere temperatures were significantly correlated with Re and GEP in 2011 and 2013 (Pecosystem in Anji, from July to August in 2013.

  14. No rainbow for grey bamboo sharks: evidence for the absence of colour vision in sharks from behavioural discrimination experiments.

    Science.gov (United States)

    Schluessel, V; Rick, I P; Plischke, K

    2014-11-01

    Despite convincing data collected by microspectrophotometry and molecular biology, rendering sharks colourblind cone monochromats, the question of whether sharks can perceive colour had not been finally resolved in the absence of any behavioural experiments compensating for the confounding factor of brightness. The present study tested the ability of juvenile grey bamboo sharks to perceive colour in an experimental design based on a paradigm established by Karl von Frisch using colours in combination with grey distractor stimuli of equal brightness. Results showed that contrasts but no colours could be discriminated. Blue and yellow stimuli were not distinguished from a grey distractor stimulus of equal brightness but could be distinguished from distractor stimuli of varying brightness. In addition, different grey stimuli were distinguished significantly above chance level from one another. In conclusion, the behavioural results support the previously collected physiological data on bamboo sharks, which mutually show that the grey bamboo shark, like several marine mammals, is a cone monochromate and colourblind.

  15. Time-dependent movement and distribution of chlorpyrifos and its metabolism in bamboo forest under soil surface mulching.

    Science.gov (United States)

    Liu, Yihua; Shen, Danyu; Zhong, Donglian; Mo, Runhong; Ni, Zhanglin; Tang, Fubin

    2014-07-16

    The dissipation and distribution of chlorpyrifos (CHP) granule formulation in bamboo forest under soil surface mulching conditions (CP) and noncovered cultivation conditions (NCP) from soil to product were investigated. In the CP treatment, the CHP granule with slow-release effect leached from the topsoil to the subsoil. Conversely, the CHP was fixed in the topsoil (0-5 cm layer) in the NCP treatment, and no obvious leaching effect could be observed. The residue of CHP could be found in bamboo shoots from CP treatment, mainly at the bottom part (5 cm length). CHP could be degraded into 3,5,6-trichloro-2-pyridinol (TCP) in the soil and bamboo shoots. In addition, the straw used as the mulching material with higher OM and pH had some regulatory role in changing the pH and OM characteristics of the soil. Thus the straw could indirectly affect the adsorption and degradation behavior of CHP and TCP in the soil.

  16. Cross-Linked ZnO Nanowalls Immobilized onto Bamboo Surface and Their Use as Recyclable Photocatalysts

    Directory of Open Access Journals (Sweden)

    Chunde Jin

    2014-01-01

    Full Text Available A novel recyclable photocatalyst was fabricated by hydrothermal method to immobilize the cross-linked ZnO nanowalls on the bamboo surface. The resultant samples were characterized by using scanning electron microscopy (SEM, X-ray diffraction (XRD, energy dispersive spectroscopy (EDS, and Fourier transformation infrared (FTIR techniques. FTIR spectra demonstrated that the cross-linked wurtzite ZnO nanowalls and bamboo surface were interconnected with each other by hydrogen bonds. Meanwhile, the cross-linked ZnO nanowalls modified bamboo (CZNB presented a superior photocatalytic ability and could be recycled at least 3 times with a photocatalytic efficiency up to 70%. The current research provides a new opportunity for the development of a portable and recycled biomass-based photocatalysts which can be an efficiently degraded pollutant solution and reused several times.

  17. Evaluation on the feasibility of using bamboo fillers in plastic gear manufacturing via the Taguchi optimization method

    Science.gov (United States)

    Mehat, N. M.; Kamaruddin, S.

    2017-10-01

    An increase in demand for industrial gears has instigated the escalating uses of plastic-matrix composites, particularly carbon or glass fibre reinforced plastics as gear material to enhance the properties and limitation in plastic gears. However, the production of large quantity of these synthetic fibres reinforced composites has posed serious threat to ecosystem. Therefore, this work is conducted to study the applicability and practical ability of using bamboo fillers particularly in plastic gear manufacturing as opposed to synthetic fibres via the Taguchi optimization method. The results showed that no failure mechanism such as gear tooth root cracking and severe tooth wear were observed in gear tested made of 5-30 wt% of bamboo fillers in comparing with the unfilled PP gear. These results indicated that bamboo can be practically and economically used as an alternative filler in plastic material reinforcement as well as in minimizing the cost of raw material in general.

  18. Anatomy and muscle activity of the dorsal fins in bamboo sharks and spiny dogfish during turning maneuvers.

    Science.gov (United States)

    Maia, Anabela; Wilga, Cheryl D

    2013-11-01

    Stability and procured instability characterize two opposing types of swimming, steady and maneuvering, respectively. Fins can be used to manipulate flow to adjust stability during swimming maneuvers either actively using muscle control or passively by structural control. The function of the dorsal fins during turning maneuvering in two shark species with different swimming modes is investigated here using musculoskeletal anatomy and muscle function. White-spotted bamboo sharks are a benthic species that inhabits complex reef habitats and thus have high requirements for maneuverability. Spiny dogfish occupy a variety of coastal and continental shelf habitats and spend relatively more time cruising in open water. These species differ in dorsal fin morphology and fin position along the body. Bamboo sharks have a larger second dorsal fin area and proportionally more muscle insertion into both dorsal fins. The basal and radial pterygiophores are plate-like structures in spiny dogfish and are nearly indistinguishable from one another. In contrast, bamboo sharks lack basal pterygiophores, while the radial pterygiophores form two rows of elongated rectangular elements that articulate with one another. The dorsal fin muscles are composed of a large muscle mass that extends over the ceratotrichia overlying the radials in spiny dogfish. However, in bamboo sharks, the muscle mass is divided into multiple distinct muscles that insert onto the ceratotrichia. During turning maneuvers, the dorsal fin muscles are active in both species with no differences in onset between fin sides. Spiny dogfish have longer burst durations on the outer fin side, which is consistent with opposing resistance to the medium. In bamboo sharks, bilateral activation of the dorsal in muscles could also be stiffening the fin throughout the turn. Thus, dogfish sharks passively stiffen the dorsal fin structurally and functionally, while bamboo sharks have more flexible dorsal fins, which result from a

  19. Effects of application of composted water-bamboo leaves on soil nutrients and vegetable quality

    Science.gov (United States)

    Luo, Zhi-Qing; Hu, Xue-Feng; Lu, Xinzhe; Luo, Fan

    2017-04-01

    Liantang Town of Qingpu District in the western suburbs of Shanghai is known as a land of water-bamboo, where the cultivation of water-bamboo attains more than 2000 ha in area. A huge amount of water-bamboo leaves, approximately 1.5×108 kg, are produced annually in the town and become a headachy agricultural waste. The leaves of water-bamboo are difficult to be biodegraded, and will adversely affect the growth of next crops if being directly returned to the fields due to its high C/N ratio. We transformed these water-bamboo leaves into organic manure through fermenting and composting. Total N, total P and total K of this fermented manure are 23.7 g kg-1, 6.39 g kg-1 and 44.3 g kg-1, respectively. To study the fertilizer efficiency of this organic manure, four field experiments on vegetables were carried out in the suburb of Shanghai. Each experiment designed the same four treatments of fertilization, including a lower amount of the fermented manure (LM), 3750 kg ha-1; a higher amount of the manure (HM), 7500 kg ha-1; synthetic chemical fertilizer (CF), 750 kg ha-1; non-fertilized CK. Each treatment has three replicate plots, and each plot was 9 m2 in area. The results indicated that the application of the fermented manure increased the contents of organic matter and nutrients in the soils significantly. Compared with CK, the content of organic matter in the soils treated with HM increased by 16.0%, and those of alkali-hydrolyzable N, available P, available K, total N, total P and total K in the soils increased by 14.5%, 4.8%, 12.8%, 16.7%, 48.0% and 9.1%, respectively. Compared with CF and CK, the application of the fermented manure, both LM and HM, increased the numbers of bacteria, fungi and actinomycetes and improved the activities of urease and phosphatase in the soils significantly. The study also indicated that the contents of soluble sugar and Vitamin C in green peppers and tomatoes treated with HM increased by 62.8% and 14.8%, respectively, compared with

  20. A Mathematical Model with Pulse Effect for Three Populations of the Giant Panda and Two Kinds of Bamboo

    Directory of Open Access Journals (Sweden)

    Xiang-yun Shi

    2013-01-01

    Full Text Available A mathematical model for the relationship between the populations of giant pandas and two kinds of bamboo is established. We use the impulsive perturbations to take into account the effect of a sudden collapse of bamboo as a food source. We show that this system is uniformly bounded. Using the Floquet theory and comparison techniques of impulsive equations, we find conditions for the local and global stabilities of the giant panda-free periodic solution. Moreover, we obtain sufficient conditions for the system to be permanent. The results provide a theoretical basis for giant panda habitat protection.

  1. Temperature and vital effect controls on Bamboo coral (Isididae) isotopegeochemistry: A test of the "lines method"

    Energy Technology Data Exchange (ETDEWEB)

    Hill, T M; Spero, H J; Guilderson, T P; LaVigne, M; Clague, D; Macalello, S; Jang, N

    2011-03-01

    Deep-sea bamboo corals hold promise as long-term climatic archives, yet little information exists linking bamboo coral geochemistry to measured environmental parameters. This study focuses on a suite of 10 bamboo corals collected from the Pacific and Atlantic basins (250-2136 m water depth) to investigate coral longevity, growth rates, and isotopic signatures. Calcite samples for stable isotopes and radiocarbon were collected from the base the corals, where the entire history of growth is recorded. In three of the coral specimens, samples were also taken from an upper branch for comparison. Radiocarbon and growth band width analyses indicate that the skeletal calcite precipitates from ambient dissolved inorganic carbon and that the corals live for 150-300 years, with extension rates of 9-128 {micro}m/yr. A linear relationship between coral calcite {delta}{sup 18}O and {delta}{sup 13}C indicates that the isotopic composition is influenced by vital effects ({delta}{sup 18}O:{delta}{sup 13}C slope of 0.17-0.47). As with scleractinian deep-sea corals, the intercept from a linear regression of {delta}{sup 18}O versus {delta}{sup 13}C is a function of temperature, such that a reliable paleotemperature proxy can be obtained, using the 'lines method.' Although the coral calcite {delta}{sup 18}O:{delta}{sup 13}C slope is maintained throughout the coral base ontogeny, the branches and central cores of the bases exhibit {delta}{sup 18}O:{delta}{sup 13}C values that are shifted far from equilibrium. We find that a reliable intercept value can be derived from the {delta}{sup 18}O:{delta}{sup 13}C regression of multiple samples distributed throughout one specimen or from multiple samples within individual growth bands.

  2. Preparation of Cellulose Nanofibrils from Bamboo Pulp by Mechanical Defibrillation for Their Applications in Biodegradable Composites.

    Science.gov (United States)

    Guimarães, Mario; Botaro, Vagner Roberto; Novack, Kátia Monteiro; Neto, Wilson Pires Flauzino; Mendes, Lourival Marin; Tonoli, Gustavo H D

    2015-09-01

    There is a growing interest in cellulose nanofibrils from renewable sources for various industrial applications. However, there is a lack of information on cellulose arising from bamboo pulps. Nanofibrils from refined bamboo pulps, including bleached, unbleached, and unrefined/unbleached, were obtained by mechanical defibrillation for use in biodegradable composites. The influence of industrial processes, such as pulping and refining of unbleached pulps, as well as of alkali pretreatments and bleaching of refined pulps, on the chemical composition of the samples was analyzed. Morphological, structural, thermal, optical and viscometric properties were investigated as a function of the number of passages of refined/bleached suspensions through a defibrillator. For the unbleached suspensions, the effects of refining and bleaching on the properties of nanofibrils were evaluated, fixing the number of passages through the defibrillator. Microscopic studies demonstrated that nanoscale cellulose fibers were obtained from both pulps, with a higher yield for the refined/bleached and refined/unbleached pulp, at the expense of the unbleached/unrefined pulps. The study showed that, in addition to the effectiveness of the pre-treatments, there was an increase in the production efficiency of nanofibrils, as well as in the transparency of the bleached suspensions, while viscosity, thermal stability and crystallinity had reduced levels as the number of passages through the defibrillator increased, showing a gradual improvement in the transition from the micro- to the nano-scale. The present study contributed to the different methods that are available for the production of bamboo cellulose nanofibrils, which can be used in the production of biodegradable composites for various applications.

  3. Characterization and pollutant removal efficiency of biochar derived from baggase, bamboo and tyre.

    Science.gov (United States)

    Ramola, S; Mishra, T; Rana, G; Srivastava, R K

    2014-12-01

    Conversion of broad-spectrum organic waste into carbonaceous biochar has gained enormous interest in past few years. The present study aims to characterize feedstock (FS), i.e. bagasse (Bg), bamboo (Bm) and biochar (BC), i.e. baggase biochar (BBg), bamboo biochar (BBm) and tyre biochar (Ty). Significant changes in elemental composition, atomic ratio, proximate analyses, mineral content and heavy metal content were observed which was well supported by Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) analysis. Impregnation with ferric hydroxide was done, and resultant modified biochars (MBC), i.e. iron-impregnated baggase biochar (FeBBg), iron-impregnated bamboo biochar (FeBBm) and iron-impregnated tyre biochar (FeTy), along feedstock and biochar were used for PO4 (3-), Pb, Hg and Cu adsorption. In general, BBg, FeBBg, BBm, FeBBm, Ty and FeTy were found to adsorb PO4 (3-), Pb, Hg and Cu better than Bg and Bm, except in few cases. Results from adsorption experiments were fitted into Langmuir, Freundlich and Temkin models of isotherms and pseudo-first-order, pseudo-second-order and Elovich models of kinetics. Result of batch study adsorption revealed that maximum adsorption of PO4 (3-), Pb, Hg and Cu was done by FeBBg (adsorption mechanism explained by Freundlich model), FeTy (Temkin model), Ty (Langmuir model) and BBm (Langmuir model) respectively. According to R (2) values, pseudo-first-order reaction was well suited to PO4 (3-), Pb, Hg and Cu adsorption. The optimum pH for maximum adsorption was observed to be 7.4 for PO4 (3-), 5 for Cu and 6 for Pb and Hg respectively.

  4. A Case of endoscopic retrieval of a long bamboo stick from a Humboldt penguin (Spheniscus humboldti).

    Science.gov (United States)

    Jung, Woo-Sung; Ko, Minho; Cho, Hyun Kee; Kang, Byung-Jae; Choi, Jung Hoon; Chung, Jin-Young

    2017-02-28

    An eighteen-month-old female Humboldt penguin (Spheniscus humboldti) that was 50 cm in length and 4.5 kg in weight was presented with anorexia and vomiting. The hematological and blood biochemical profiles revealed no remarkable findings, and no Salmonella, Shigella or Vibrio spp. were isolated from the fecal culture. However, radiographic imaging revealed a long linear foreign body presenting from the lower esophagus to the stomach. To retrieve this foreign body, flexible endoscopic extraction was performed using flexible rat tooth grasping forceps. A long bamboo stick (29 × 1 cm) was removed from the stomach, and the penguin fully recovered.

  5. Field studies on populations of Aedes albopictus and Toxorhynchites species in bamboo pots in Malaysia.

    Science.gov (United States)

    Sulaiman, S; Jeffery, J

    1994-09-01

    Between April 1987 and March 1988, populations of immature Aedes albopictus and Toxorhynchites spp. in bamboo pots were sampled weekly. Populations of Ae. albopictus and rainfall varied from month to month. During the heavy rainfall months of September and October 1987, larval counts of Ae. albopictus were high, between 30.8 and 49.2 larvae per week compared to 16 larvae per week during the low rainfall month of January 1988. A higher population of Toxorhynchites spp. was associated with a low population of the vector.

  6. Study on the compatibility of unbleached and bleached bamboo-fiber with LLDPE matrix

    CSIR Research Space (South Africa)

    Kumar, S

    2010-10-01

    Full Text Available -fibers Neutralization,washing and drying Maintain pH of 3–4 and boil for 1 h UBF (1 gm) HCOOH 4% NaClO2Liquor (H2O)40 ml BBF Fig. 2 Method for getting bleached bamboo-fibers S. Kumar et al. 123 strength. Food-processing companies use it for washing fruits... characterization Figure 8 shows the SEM photographs at 9100 magnifi- cation, of BF extracted by the delignification and bleaching methods. This photograph clearly indicates that the bundles were effectively separated into unbundled fibers and a very small...

  7. Phenol Adsorption on Nitrogen-enriched Activated Carbon Prepared from Bamboo Residues

    OpenAIRE

    Ji Zhang; Xiao-Juan Jin; Jian-Min Gao; Xiu-Dong Zhang

    2013-01-01

    Nitrogen-enriched activated carbons prepared from bamboo residues were characterized by means of BET, XPS, and elemental analysis. Then adsorption experiments were carried out to study the effects of various physicochemical parameters such as contact time, temperature, pH, and initial concentration. Adsorption equilibrium was achieved within 120 min at a phenol concentration of 250 mg/L. When the pH was 4 and 0.1 g of the carbon absorbent and 100 mL of phenol solution at 250 mg/L were used, t...

  8. Hydrodynamic function of dorsal fins in spiny dogfish and bamboo sharks during steady swimming.

    Science.gov (United States)

    Maia, Anabela; Lauder, George V; Wilga, Cheryl D

    2017-11-01

    A key feature of fish functional design is the presence of multiple fins that allow thrust vectoring and redirection of fluid momentum to contribute to both steady swimming and maneuvering. A number of previous studies have analyzed the function of dorsal fins in teleost fishes in this context, but the hydrodynamic function of dorsal fins in freely swimming sharks has not been analyzed, despite the potential for differential functional roles between the anterior and posterior dorsal fins. Previous anatomical research has suggested a primarily stabilizing role for shark dorsal fins. We evaluated the generality of this hypothesis by using time-resolved particle image velocimetry to record water flow patterns in the wake of both the anterior and posterior dorsal fins in two species of freely swimming sharks: bamboo sharks ( Chiloscyllium plagiosum ) and spiny dogfish ( Squalus acanthias ). Cross-correlation analysis of consecutive images was used to calculate stroke-averaged mean longitudinal and lateral velocity components, and vorticity. In spiny dogfish, we observed a velocity deficit in the wake of the first dorsal fin and flow acceleration behind the second dorsal fin, indicating that the first dorsal fin experiences net drag while the second dorsal fin can aid in propulsion. In contrast, the wake of both dorsal fins in bamboo sharks displayed increased net flow velocity in the majority of trials, reflecting a thrust contribution to steady swimming. In bamboo sharks, fluid flow in the wake of the second dorsal fin had higher absolute average velocity than that for first dorsal fin, and this may result from a positive vortex interaction between the first and second dorsal fins. These data suggest that the first dorsal fin in spiny dogfish has primarily a stabilizing function, while the second dorsal fin has a propulsive function. In bamboo sharks, both dorsal fins can contribute thrust and should be considered as propulsive adjuncts to the body during steady

  9. Analysis of trace elements in the giant panda and arrow bamboo

    Science.gov (United States)

    Wang, Nengming; Chen, Suqing; Chen, Jianxuan; Zhang, Dazhong; Feng, Wenhe

    1987-04-01

    Trace elements from the giant panda including hair, liver, kidney, ovary and testis, were determined by PIXE. Comparative studies of the elemental contents in hair, liver and kidney from epileptic and normal giant pandas were performed respectively. The differences in the elemental contents of leaf, stalk, and bamboo shoots from normal and withered arrows were determined. For this research work a Van de Graaff electrostatic accelerator and a Si(Li) semiconductor spectrometer at the Institute of Nuclear Science and Technology of Sichuan University were employed.

  10. Comparative Study of the Resistance of Six Hawaii-Grown Bamboo Species to Attack by the Subterranean Termites Coptotermes formosanus Shiraki and Coptotermes gestroi (Wasmann (Blattodea: Rhinotermitidae

    Directory of Open Access Journals (Sweden)

    J. Kenneth Grace

    2011-11-01

    Full Text Available Bamboo is widely grown and utilized as a construction material around the world, particularly in the tropics. At present, there are about 70 bamboo species and varieties recorded from Hawaii. The objective of our study was to determine the relative resistance of six Hawaii-grown bamboo species to attack by Coptotermes formosanus Shiraki and Coptotermes gestroi (Wasmann. Four-week laboratory feeding trials were performed as described in standard E1-09 of the American Wood Protection Association (AWPA 2009. Samples of each of the six bamboo species were individually exposed to 200 termites (with 10% soldiers; and termite mortality, wood mass loss, and visual appearance of the samples (on a scale of 0–10 were recorded at the conclusion of the trail. Mean mass losses of the six species as a result of termite feeding ranged from 13–29%; with the two most resistant bamboo species, Gigantocholoa pseudoarundinacea and Bambusa oldhamii, demonstrating significantly greater resistance to termite attack than the most susceptible bamboo species, Guadua anguistifolia, with both termite species. Dendrocalamus brandisii, Dendrocalamus latiflorus, and Bambusa hirose were intermediate in their termite resistance. Overall, we observed very little difference in wood preference between C. formosanus and C. gestroi. Although bamboo is a very promising construction material, and species clearly differ in their susceptibility to termite attack, all six species evaluated in the present study would require additional protection for use under conditions of high termite pressure.

  11. Production and optimization of bamboo hydrochars for adsorption of Congo red and 2-naphthol.

    Science.gov (United States)

    Li, Yin; Meas, Arun; Shan, Shengdao; Yang, Ruiqin; Gai, Xikun

    2016-05-01

    Twelve hydrochars were produced from bamboo sawdust for adsorption of Congo red and 2-naphthol. The bamboo hydrochars have Brunauer-Emmett-Teller (BET) surface areas ranging from 2.63m(2)/g to 43.07m(2)/g, average pore diameters from 3.05nm to 3.83nm, pore volumes between 0.02cm(3)/g and 0.53cm(3)/g, and the surfaces of the hydrochars have diverse functional groups. The physico-chemical properties of the hydrochars critically depend on the hydrothermal conditions. All the hydrochars can adsorb Congo red and 2-naphthol from aqueous solutions, the largest adsorption capacity for Congo red is 33.7mg/g at the equilibrium concentration of 0.1mg/mL at 25°C, and the highest adsorption amount for 2-naphthol is 12.2mg/g at 25°C and 0.1mg/mL. Freundlich model can describe the adsorption isotherms of the both adsorbates slightly better than Langmuir model. These results provide a reference to the production and use of hydrochars as potential adsorbents in wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Formation of bamboo-shaped carbon nanotubes on carbon black in a fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Dasgupta, Kinshuk, E-mail: kdg@barc.gov.in [Bhabha Atomic Research Centre, Materials Group (India); Sen, D. [Bhabha Atomic Research Centre, Solid State Physics Division (India); Mazumdar, T. [Bhabha Atomic Research Centre, Research Reactor Services Division (India); Lenka, R. K.; Tewari, R. [Bhabha Atomic Research Centre, Materials Group (India); Mazumder, S. [Bhabha Atomic Research Centre, Solid State Physics Division (India); Joshi, J. B., E-mail: jb.joshi@ictmumbai.edu.in [Institute of Chemical Technology, Department of Chemical Engineering (India); Banerjee, S. [Homi Bhabha National Institute (India)

    2012-03-15

    For the first time, bamboo-shaped multiwalled carbon nanotubes, having diameter of the order of 50 nm, have been grown on carbon black in a fluidized bed in bulk amount. The activation energy for the synthesis of the product was found out to be around 33 kJ/mol in the temperature range of 700-900 Degree-Sign C. The carbon nanotubes were separated from the carbon black by preferential oxidation of the later, the temperature of which was determined by thermogravimetry. The transmission electron microscopy revealed different features of the nanotubes such as 'Y' junction, bend, and catalyst filling inside the nanotubes. Small angle neutron scattering was performed on the nanotubes synthesized at different temperatures. The data were fitted into a suitable model in order to find out the average diameter, which decreases with increase in synthesis temperature. The Monte Carlo simulation predicts the same behavior. Based on the above observations, a possible growth mechanism has been predicted. The oscillation in carbon saturation value inside the catalyst in the fluidized bed has been indicated as the responsible factor for the bamboo-shaped structure.

  13. Induction and inhibition of film yeast from fermented bamboo shoot by seasoning plants

    Directory of Open Access Journals (Sweden)

    Jaruwan Maneesri

    2007-07-01

    Full Text Available Three samples of fermented bamboo shoot taken from a village in Amphur Kokpho, Pattani Province, were microbiologically examined. Total viable count was between at 104-105 cfu/ml while pH range was between 3.4-4.4. Isolation and identification of film yeast on surface of fermented liquid revealed Saccharomyces cerevisiae J1, Candida krusei J2 and Candida krusei J3. When film yeast was cultivated in liquid culture with different NaCl concentrations (0, 2.5, 5 and 7.5% (w/v, all species tolerated 2.5% NaCl addition. However, growth decreased depending on NaCl concentration. S. cerevisiae J1 grew faster than C. krusei J2 and C. krusei J3. The cultivation of film yeast in medium with different agar concentrations (0.3, 0.5, 1 and 1.5% (w/v within 24 h showed that 0.3% was the optimal agar concentration. Seasoning plants (garlic, ginger, galangal, lemon grass, lesser galangal, clove, kaffir lime, garcinia and shallot were extracted with water (3% (w/v and tested for growth inhibition. Results showed the clove extract inhibited all yeast strains within 12 h and after that the efficiency of inhibition was decreased. At low concentration of 0.75% (w/v clove extract could inhibit film yeast in fermented bamboo shoot.

  14. Formation of bamboo-shaped carbon nanotubes on carbon black in a fluidized bed

    Science.gov (United States)

    Dasgupta, Kinshuk; Sen, D.; Mazumdar, T.; Lenka, R. K.; Tewari, R.; Mazumder, S.; Joshi, J. B.; Banerjee, S.

    2012-03-01

    For the first time, bamboo-shaped multiwalled carbon nanotubes, having diameter of the order of 50 nm, have been grown on carbon black in a fluidized bed in bulk amount. The activation energy for the synthesis of the product was found out to be around 33 kJ/mol in the temperature range of 700-900 °C. The carbon nanotubes were separated from the carbon black by preferential oxidation of the later, the temperature of which was determined by thermogravimetry. The transmission electron microscopy revealed different features of the nanotubes such as "Y" junction, bend, and catalyst filling inside the nanotubes. Small angle neutron scattering was performed on the nanotubes synthesized at different temperatures. The data were fitted into a suitable model in order to find out the average diameter, which decreases with increase in synthesis temperature. The Monte Carlo simulation predicts the same behavior. Based on the above observations, a possible growth mechanism has been predicted. The oscillation in carbon saturation value inside the catalyst in the fluidized bed has been indicated as the responsible factor for the bamboo-shaped structure.

  15. Formation of bamboo-shaped carbon nanotubes on carbon black in a fluidized bed

    International Nuclear Information System (INIS)

    Dasgupta, Kinshuk; Sen, D.; Mazumdar, T.; Lenka, R. K.; Tewari, R.; Mazumder, S.; Joshi, J. B.; Banerjee, S.

    2012-01-01

    For the first time, bamboo-shaped multiwalled carbon nanotubes, having diameter of the order of 50 nm, have been grown on carbon black in a fluidized bed in bulk amount. The activation energy for the synthesis of the product was found out to be around 33 kJ/mol in the temperature range of 700−900 °C. The carbon nanotubes were separated from the carbon black by preferential oxidation of the later, the temperature of which was determined by thermogravimetry. The transmission electron microscopy revealed different features of the nanotubes such as “Y” junction, bend, and catalyst filling inside the nanotubes. Small angle neutron scattering was performed on the nanotubes synthesized at different temperatures. The data were fitted into a suitable model in order to find out the average diameter, which decreases with increase in synthesis temperature. The Monte Carlo simulation predicts the same behavior. Based on the above observations, a possible growth mechanism has been predicted. The oscillation in carbon saturation value inside the catalyst in the fluidized bed has been indicated as the responsible factor for the bamboo-shaped structure.

  16. Palladium-free catalytic electroless copper deposition on bamboo fabric: Preparation, morphology and electromagnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Lu Yinxiang, E-mail: yxlu@fudan.edu.cn [Department of Materials Science, Fudan University, Shanghai 200433 (China); Liang Qian; Xue Longlong [Department of Materials Science, Fudan University, Shanghai 200433 (China)

    2012-03-01

    Bamboo fabric is subjected to solvent treatment with 3-mercaptopropyltrimethoxysilane (MPTS) before metal deposition. Raman and IR analyses indicate that MPTS is successfully grafted on the fabric. Copper is deposited on the pretreated fabric by a palladium-free catalytic electroless process, and then copper/bamboo fabric (Cu/BF) composite is obtained. SEM (scanning electron microscopy) observation reveals that copper is uniformly covered on the fabric. Chemical composition and crystal structure of the composite are detected by EDX (energy-dispersive X-ray analysis), XPS (X-ray photoelectron spectroscopy) and XRD (X-ray diffraction) measurements, peaks for Cu{sup 0} are found in these patterns. The water absorption ratio for the title composite is about 162% by immersion in water, or 8.9% by putting in an environmental condition (humidity of 65 {+-} 2%). The Cu/BF composite is firm and can pass a Scotch{sup Registered-Sign }-tape peel adhesion test. The electromagnetic interference (EMI) shielding effectiveness (SE) of the composite (copper on fabric: 39 g/m{sup 2}) is more than 48 dB at frequency ranging from 0.2 to1000 MHz.

  17. Palladium-free catalytic electroless copper deposition on bamboo fabric: Preparation, morphology and electromagnetic properties

    Science.gov (United States)

    Lu, Yinxiang; Liang, Qian; Xue, Longlong

    2012-03-01

    Bamboo fabric is subjected to solvent treatment with 3-mercaptopropyltrimethoxysilane (MPTS) before metal deposition. Raman and IR analyses indicate that MPTS is successfully grafted on the fabric. Copper is deposited on the pretreated fabric by a palladium-free catalytic electroless process, and then copper/bamboo fabric (Cu/BF) composite is obtained. SEM (scanning electron microscopy) observation reveals that copper is uniformly covered on the fabric. Chemical composition and crystal structure of the composite are detected by EDX (energy-dispersive X-ray analysis), XPS (X-ray photoelectron spectroscopy) and XRD (X-ray diffraction) measurements, peaks for Cu0 are found in these patterns. The water absorption ratio for the title composite is about 162% by immersion in water, or 8.9% by putting in an environmental condition (humidity of 65 ± 2%). The Cu/BF composite is firm and can pass a Scotch®-tape peel adhesion test. The electromagnetic interference (EMI) shielding effectiveness (SE) of the composite (copper on fabric: 39 g/m2) is more than 48 dB at frequency ranging from 0.2 to1000 MHz.

  18. Flexible architecture: bamboo as a tool for children to play in urban kampung

    Science.gov (United States)

    Susanto, D.; Widyarko; Ilmiani, A. N.

    2018-03-01

    Due to the dense population and increase of development, urban kampung in Indonesia is facing a problem of limited children’s play spaces. Flexible architecture with its movable principle is expected to be a solution by creating children’s playing tool that is built among the dense urban kampung. Bamboo is the staple material because it is local, able to regenerate quickly, lightweight, and affordable. By using the exploratory method, this research tries to reveal the previously hidden aspects by evaluating all processes of design-build of three created children’s playing tools. These playing tools can be built in the kampung after three processes of apart-and-reassemble. However, there are several questions which need to be discussed further; the right configuration between the component and the joint of the bamboo, to make apart-and-reassemble process more effective in a dense urban kampung, and also how to make bamboo’s structure able to survive better under rainy seasons and surface humidity.

  19. The characteristic changes of betung bamboo (Dendrocalamus asper pretreated by fungal pretreatment

    Directory of Open Access Journals (Sweden)

    Widya Fatriasari

    2014-05-01

    Full Text Available Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 The fungal pretreatment effect on chemical structural and morphological changes of Betung Bamboo was evaluated based on its biomass components after being cultivated by white rot fungi, Trametes versicolor. Betung bamboo powder (15 g was exposed to liquid inoculum of white rot fungi and incubated at 270C for 15, 30 and 45 days. The treated samples were then characterized by FT-IR spectroscopy, X-Ray diffraction and SEM-EDS analyses. Cultivation for 30 days with 5 and 10% loadings retained greater selectivity compared to that of the other treatments. FTIR spectra demonstrated that the fungus affected the decreasing of functional group quantities without changing the functional groups. The decrease in intensity at wave number of 1246 cm-1 (guaiacyl of lignin was greater than that at wave number of 1328 cm-1 (deformation combination of syringyl and xylan after fungal treatment. X-ray analysis showed the pretreated samples had a higher crystallinity than the untreated ones which might be due to the cleavage of amorphous fractions of cellulose. The pretreated samples have more fragile than the untreated ones confirmed by SEM. Crystalline allomorph calculated by XRD analysis showed that fungus pretreatment for 30 days has transformed triclinic structure of cellulose to monoclinic structure.

  20. Microwave-assisted catalytic pyrolysis of moso bamboo for high syngas production.

    Science.gov (United States)

    Dong, Qing; Niu, Miaomiao; Bi, Dongmei; Liu, Weiyu; Gu, Xuexin; Lu, Chen

    2018-02-06

    Microwave-assisted pyrolysis of moso bamboo with the activated carbon-supported iron(III) ion catalyst was carried out with the aim of obtaining high quality and quantity syngas(H 2  + CO). The effect of the catalyst on moso bomboo pyrolysis involving the temperature-rising characteristics, product distribution, tar conversion and gas compositions were investigated. The results indicated that the catalyst improved the microwave-absorption capability and increased the maximum reaction temperatures. The formation of gases was promoted by the catalyst mainly at the expense of the tar, indicating the catalyst had an excellent activity for the tar conversion .The catalyst had the positive influence on the formation of syngas with the maximum content reaching up to 81.14 vol% with H 2 /CO being 1.04 and inhibited the production of CH 4 and CO 2 . The loading of iron(III) ion into activated carbon exerted a significant influence on bamboo pyrolysis. The addition of the catalyst increased the thermal efficiency of the reaction system. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Morphological Responses Explain Tolerance of the Bamboo Yushania microphylla to Grazing

    Directory of Open Access Journals (Sweden)

    Kesang Wangchuk

    2014-01-01

    Full Text Available Mechanisms of tolerance of the bamboo Y. microphylla to ungulate herbivory were investigated by measuring above- and belowground morphogenetic traits and biomass allocation patterns of the bamboo Y. microphylla under grazed and ungrazed conditions in a Himalayan mixed conifer forest. Data were collected from 5 populations consisting of 10 ramets each in adjacent grazed and ungrazed plots. Compared with ungrazed ramets, the aboveground morphological modifications of grazed ramets were higher culm density, shorter and thinner culms, shorter internode, and shorter top leaf. The belowground morphological modifications for the grazed ramets were thinner rhizomes, lower rhizome biomass and dry matter, more nodes, and shorter internodes. Despite the lower biomass and dry matter, the root-to-shoot ratio was higher for grazed ramets. Results suggest that Y. microphylla subjected to herbivory shows aboveground overcompensation in terms of densification at the cost of belowground biomass, but at the same time maintains a higher proportion of belowground reserves, as compared to ungrazed conditions. These responses provide adequate evidence to conclude that Y. microphylla tolerates ungulate herbivory through above- and belowground morphological modifications.

  2. Effect of chitosan coating and bamboo FSC (fruit storage chamber) to expand banana shelf life

    Science.gov (United States)

    Pratiwi, Aksarani'Sa; Dwivany, Fenny M.; Larasati, Dwinita; Islamia, Hana Cahya; Martien, Ronny

    2015-09-01

    Chitosan has been widely used as fruit preserver and proven to extend the shelf life of many fruits, such as banana. However, banana producers and many industries in Indonesia still facing storage problems which may lead to mechanical damage of the fruits and ripening acceleration. Therefore, we have designed food storage chamber (FSC) based on bamboo material. Bamboo was selected because of material abundance in Indonesia, economically effective, and not causing an autocatalytic reaction to the ethylene gas produced by the banana. In this research, Cavendish banana that has reached the maturity level of mature green were coated with 1% chitosan and placed inside the FSC. As control treatments, uncoated banana was also placed inside the FSC as well as uncoated banana that were placed at open space. All of the treatments were placed at 25°C temperature and observed for 9 days. Water produced by respiration was reduced by the addition of charcoal inside a fabric pouch. The result showed that treatment using FSC and chitosan can delay ripening process.

  3. Study of the Thermal Properties of Raffia Bamboo Vinifera L. Arecaceae

    Directory of Open Access Journals (Sweden)

    E. Foadieng

    2017-01-01

    Full Text Available Raffia is a kind of fast-growing palm tree, from the family of Arecaceae, encountered in marshy areas and along rivers. In this study, the “Raffia Bamboo” is the stalk of a palm, made of a fragile marrow inside a thin shell, smooth and hard to protect the latter. In our region, this material is widely used to build all the low-cost traditional houses and furniture, to make granaries storage of dry products, to build chicken coops, to make decoration. Thus, various jobs are organized around this material, with the fight against poverty. To our knowledge, information on its thermal properties is almost nonexistent. The experimental determination of the transverse thermal properties of the dry shell, the dry marrow, and the whole dry bamboo helped to find, for each, a specific heat, a thermal diffusivity, a thermal conductivity, and finally a thermal effusivity. From the analysis of results, we deduce that the thermal properties of raffia bamboo vinifera L. Arecacea make it a very good thermal insulator.

  4. A lucrative chemical processing of bamboo leaf biomass to synthesize biocompatible amorphous silica nanoparticles of biomedical importance

    Science.gov (United States)

    Rangaraj, Suriyaprabha; Venkatachalam, Rajendran

    2017-06-01

    Synthesis of silica nanoparticles from natural resources/waste via cost effective route is presently one of the anticipating strategies for extensive applications. This study reports the low-cost indigenous production of silica nanoparticles from the leftover of bamboo (leaf biomass) through thermal combustion and alkaline extraction, and examination of physico-chemical properties and yield percentage using comprehensive characterization tools. The outcome of primed silica powder exhibits amorphous particles (average size: 25 nm) with high surface area (428 m2 g-1) and spherical morphology. Despite the yield percentage of silica nanoparticles from bamboo leave ash is 50.2%, which is less than rice husk ask resources (62.1%), the bamboo waste is only an inexpensive resource yielding high purity (99%). Synthesis of silica nanoparticles from natural resources/waste with the help of lucrative route is at present times one of the anticipating strategies for extensive applications. In vitro study on animal cell lines (MG-63) shows non-toxic nature of silica nanoparticles up to 125 µg mL-1. Hence, this study highlights the feasibility for the mass production of silica nanoparticles from bamboo leave waste rather using chemical precursor of silica for drug delivery and other medical applications.

  5. Effect of lignin derivatives in the bio-polyols from microwave liquefied bamboo on the properties of polyurethane foams

    Science.gov (United States)

    Jiulong Xie; Jinqiu Qi; Chung-Yun Hse; Todd F. Shupe

    2014-01-01

    Bamboo residues were subjected to a microwave-assisted liquefaction process for the production of crude bio-polyols (CBP). The fractionated bio-polyols (FBP) were obtained by the removal of lignin derivatives from the crude bio-polyols (CBP) using a simple method. Polyurethane (PU) foams were successfully prepared from both CBP and FBP. The object of this study was to...

  6. Adsorption of cadmium (II) ions from aqueous solution by a new low-cost adsorbent--bamboo charcoal.

    Science.gov (United States)

    Wang, Fa Yuan; Wang, Hui; Ma, Jian Wei

    2010-05-15

    Batch adsorption experiments were conducted for the adsorption of Cd (II) ions from aqueous solution by bamboo charcoal. The results showed that the adsorption of Cd (II) ions was very fast initially and the equilibrium time was 6h. High pH (>or=8.0) was favorable for the adsorption and removal of Cd (II) ions. Higher initial Cd concentrations led to lower removal percentages but higher adsorption capacity. As the adsorbent dose increased, the removal of Cd increased, while the adsorption capacity decreased. Adsorption kinetics of Cd (II) ions onto bamboo charcoal could be best described by the pseudo-second-order model. The adsorption behavior of Cd (II) ions fitted Langmuir, Temkin and Freundlich isotherms well, but followed Langmuir isotherm most precisely, with a maximum adsorption capacity of 12.08 mg/g. EDS analysis confirmed that Cd (II) was adsorbed onto bamboo charcoal. This study demonstrated that bamboo charcoal could be used for the removal of Cd (II) ions in water treatment. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  7. Caterpillar assembalges on Chusquea bamboos in southern Ecuador: abundance, guild structure, and the influence of host plant quality

    Czech Academy of Sciences Publication Activity Database

    Seifert, Carlo Lutz; Lehner, L.; Bodner, F.; Fiedler, K.

    2016-01-01

    Roč. 41, č. 6 (2016), s. 698-706 ISSN 0307-6946 Institutional support: RVO:60077344 Keywords : bamboo * feeding guild * Lepidoptera Subject RIV: EH - Ecology, Behaviour Impact factor: 1.771, year: 2016 http://onlinelibrary.wiley.com/doi/10.1111/een.12345/abstract

  8. Interaction of Alginate/Copper System on Cotton and Bamboo Fabrics: The Effect on Antimicrobial Activity and Thermophysiological Comfort Properties

    Directory of Open Access Journals (Sweden)

    Muhammet UZUN

    2013-09-01

    Full Text Available Antimicrobialagent treated materials have been widely used clinically as medical devices and articles, in which the active substances, such as antimicrobial molecules, are present on or in the matrix of the surface of the devices and articles.This study aims to treat a selection of fabrics with alginate/copper, and then determine the treated fabrics’antimicrobial activity against two common Gram-positive and Gram-negative bacteria. It is also aimed to analyse and evaluate the thermophysiological properties of the treated fabrics. Cotton, organic cotton and bamboo woven fabrics were employed. The fabrics were applied in 1 %, 3 % and 5 %w/v copper solutions andsubsequentlyspecimens were subjected to 10 min and 20 min ultrasonic energy treatment. The results clearly demonstrated that the cotton and organic cotton fabrics were successfully treatedwith the alginate/copper and the treated fabrics showed considerable zone of inhibitions. The bamboo fabric did not appear to bond effectively with the copper alginate, andas the result,the fabrics did not display any improved bacterial protection against the chosen bacteria. In fact the bamboo fabric lost its natural antimicrobialproperties after the alginate and copper treatment.The thermophysiological comfort properties of the treated cotton fabrics changed significantly; on the other hand, the treated bamboo fabrics were not affected by the copper treatment.  DOI: http://dx.doi.org/10.5755/j01.ms.19.3.1217

  9. [The Use of FTIR Coupled with Partial Least Square for Quantitative Analysis of the Main Composition of Bamboo/Polypropylene Composites].

    Science.gov (United States)

    Lao, Wan-li; He, Yu-chan; Li, Gai-yun; Zhou, Qun

    2016-01-01

    The biomass to plastic ratio in wood plastic composites (WPCs) greatly affects the physical and mechanical properties and price. Fast and accurate evaluation of the biomass to plastic ratio is important for the further development of WPCs. Quantitative analysis of the WPC main composition currently relies primarily on thermo-analytical methods. However, these methods have some inherent disadvantages, including time-consuming, high analytical errors and sophisticated, which severely limits the applications of these techniques. Therefore, in this study, Fourier Transform Infrared (FTIR) spectroscopy in combination with partial least square (PLS) has been used for rapid prediction of bamboo and polypropylene (PP) content in bamboo/PP composites. The bamboo powders were used as filler after being dried at 105 degrees C for 24 h. PP was used as matrix materials, and some chemical regents were used as additives. Then 42 WPC samples with different ratios of bamboo and PP were prepared by the methods of extrusion. FTIR spectral data of 42 WPC samples were collected by means of KBr pellets technique. The model for bamboo and PP content prediction was developed by PLS-2 and full cross validation. Results of internal cross validation showed that the first derivative spectra in the range of 1 800-800 cm(-1) corrected by standard normal variate (SNV) yielded the optimal model. For both bamboo and PP calibration, the coefficients of determination (R2) were 0.955. The standard errors of calibration (SEC) were 1.872 for bamboo content and 1.848 for PP content, respectively. For both bamboo and PP validation, the R2 values were 0.950. The standard errors of cross validation (SECV) were 1.927 for bamboo content and 1.950 for PP content, respectively. And the ratios of performance to deviation (RPD) were 4.45 for both biomass and PP examinations. The results of external validation showed that the relative prediction deviations for both biomass and PP contents were lower than ± 6

  10. The Effect of Graphite on the Water Uptake, Mechanical Properties, Morphology, and EMI Shielding Effectiveness of HDPE/Bamboo flour composites

    OpenAIRE

    Jianbin Song; Wenbin Yang; Feng Fu; Yanhua Zhang

    2014-01-01

    This goal of this work was to study the effect of graphite on the water uptake, mechanical properties, morphology, and electromagnetic interference shielding effectiveness (EMI SE) of HDPE/Bamboo flour composites using the material mechanical testing machine, scanning electron microscopy (SEM), and EMI shielding apparatus. The water uptake of the composites was improved by graphite. Compared with the neat HDPE/bamboo composites, the flexural strength of the graphite-filled composites showed a...

  11. Records of thrips on bamboo, take and sasa (Poaceae: Bambusoideae) in the Kyoto Botanical Garden, with a special reference to ovoviviparity in Phlaeothripinae (Insecta: Thysanoptera)

    OpenAIRE

    NAKAO, Shiro; MASUMOTO, Masami

    2017-01-01

    Thrips on the bamboo, take, and sasa plants in the Kyoto Botanical Garden at Shimogamo in Kyoto City were collected in May and July of 2016. A total of 9 species was collected, five species were reported here for the first time from Kyoto Prefecture, and four of them seem to have close association with various bamboo, take, and sasa plants. Several species of thrips recorded here are predators of small arthropods. We mentioned that some predaceous or omnivorous tuburiferan thrips in Phlaeothr...

  12. Understanding the Nonproductive Enzyme Adsorption and Physicochemical Properties of Residual Lignins in Moso Bamboo Pretreated with Sulfuric Acid and Kraft Pulping.

    Science.gov (United States)

    Huang, Caoxing; He, Juan; Min, Douyong; Lai, Chenhuan; Yong, Qiang

    2016-12-01

    In this work, to elucidate why the acid-pretreated bamboo shows disappointingly low enzymatic digestibility comparing to the alkali-pretreated bamboo, residual lignins in acid-pretreated and kraft pulped bamboo were isolated and analyzed by adsorption isotherm to evaluate their extents of nonproductive enzyme adsorption. Meanwhile, physicochemical properties of the isolated lignins were analyzed and a relationship was established with non-productive adsorption. Results showed that the adsorption affinity and binding strength of cellulase on acid-pretreated bamboo lignin (MWLa) was significantly higher than that on residual lignin in pulped bamboo (MWLp). The maximum adsorption capacity of cellulase on MWLp was 129.49 mg/g lignin, which was lower than that on MWLa (160.25 mg/g lignin). When isolated lignins were added into the Avicel hydrolysis solution, the inhibitory effect on enzymatic hydrolysis efficiency of MWLa was found to be considerably stronger than that with MWLp. The cellulase adsorption on isolated lignins was correlated positively with hydrophobicity, phenolic hydroxyl group, and degree of condensation but negatively with surface charges and aliphatic hydroxyl group. These results suggest that the higher nonproductive cellulase adsorption and physicochemical properties of residual lignin in acid-pretreated bamboo may be responsible for its disappointingly low enzymatic digestibility.

  13. SQUAMOUS CELL CARCINOMA OF THE ROSTRAL MAXILLA IN AN ADULT CAPTIVE WHITESPOTTED BAMBOO SHARK (CHILOSCYLLIUM PLAGIOSUM).

    Science.gov (United States)

    Culp, Betsy E; Haulena, Martin; Britt, Kelly; Evans, Hannah; Raverty, Stephen

    2017-09-01

    An approximately 10-yr-old adult female whitespotted bamboo shark (Chiloscyllium plagiosum) presented with a smooth, white, irregular, ulcerated, and expansile lesion on the left lateral aspect of the maxillary rostrum. The lesion had short periods of abrupt and rapid proliferation and then remained static for several months. Cytology and culture were nonspecific and did not reveal any discernible etiologic agents or cellular atypia. The lesion was nonresponsive to parenteral antibiotics. One year after the initial onset of the lesion, the ulcer was 10 cm in diameter, a percentage increase in size of 455%. Due to a protracted clinical course and lack of response to medication and supportive care, coupled with an acute onset of neurologic signs and self-inflicted trauma, the shark was euthanized. Histopathology of the mass disclosed a locally invasive squamous cell carcinoma with no evidence of metastasis.

  14. Crashworthiness Design for Bionic Bumper Structures Inspired by Cattail and Bamboo

    Directory of Open Access Journals (Sweden)

    Tao Xu

    2017-01-01

    Full Text Available Many materials in nature exhibit excellent mechanical properties. In this study, we evaluated the bionic bumper structure models by using nonlinear finite element (FE simulations for their crashworthiness under full-size impact loading. The structure contained the structural characteristics of cattail and bamboo. The results indicated that the bionic design enhances the specific energy absorption (SEA of the bumper. The numerical results showed that the bionic cross-beam and bionic box of the bionic bumper have a significant effect on the crashworthiness of the structure. The crush deformation of bionic cross-beam and box bumper model was reduced by 33.33%, and the total weight was reduced by 44.44%. As the energy absorption capacity under lateral impact, the bionic design can be used in the future bumper body.

  15. Crashworthiness Design for Bionic Bumper Structures Inspired by Cattail and Bamboo.

    Science.gov (United States)

    Xu, Tao; Liu, Nian; Yu, Zhenglei; Xu, Tianshuang; Zou, Meng

    2017-01-01

    Many materials in nature exhibit excellent mechanical properties. In this study, we evaluated the bionic bumper structure models by using nonlinear finite element (FE) simulations for their crashworthiness under full-size impact loading. The structure contained the structural characteristics of cattail and bamboo. The results indicated that the bionic design enhances the specific energy absorption (SEA) of the bumper. The numerical results showed that the bionic cross-beam and bionic box of the bionic bumper have a significant effect on the crashworthiness of the structure. The crush deformation of bionic cross-beam and box bumper model was reduced by 33.33%, and the total weight was reduced by 44.44%. As the energy absorption capacity under lateral impact, the bionic design can be used in the future bumper body.

  16. Instrumental neutron activation analysis data for cloud-water particulate samples, Mount Bamboo, Taiwan

    Science.gov (United States)

    Lin, Neng-Huei; Sheu, Guey-Rong; Wetherbee, Gregory A.; Debey, Timothy M.

    2013-01-01

    Cloud water was sampled on Mount Bamboo in northern Taiwan during March 22-24, 2002. Cloud-water samples were filtered using 0.45-micron filters to remove particulate material from the water samples. Filtered particulates were analyzed by instrumental neutron activation analysis (INAA) at the U.S. Geological Survey National Reactor Facility in Denver, Colorado, in February 2012. INAA elemental composition data for the particulate materials are presented. These data complement analyses of the aqueous portion of the cloud-water samples, which were performed earlier by the Department of Atmospheric Sciences, National Central University, Taiwan. The data are intended for evaluation of atmospheric transport processes and air-pollution sources in Southeast Asia.

  17. [On the etiological concept in the literature from unearthed documents of bamboo slips and silk scrolls].

    Science.gov (United States)

    Ding, Yuan; Zhang, Ruqing

    2014-03-01

    There is a substantial number of medical literature in the unearthed bamboo slips and silk scroll literature, the vast majority of which came into being earlier than medical books handed down from the ancient time, and are the documents of the origin of Chinese medicine dated back to the earliest time known thus far. In these documents, the contents of not a few of them deals with the etiology of disease which, by textual criticism and analysis, can be classified into seven different aspects, namely, six climatic pathogenic factors, emotional factors, injury caused by falling, traumatic damage; frostbite and burns, insect or animal bites, drug poisoning, evil spirit haunting, and constitutional factors, reflecting the contemporary etiological concept truthfully.

  18. Multi-response parametric optimization in drilling of bamboo/Kevlar fiber reinforced sandwich composite

    Science.gov (United States)

    Singh, Thingujam Jackson; Samanta, Sutanu

    2016-09-01

    In the present work an attempt was made towards parametric optimization of drilling bamboo/Kevlar K29 fiber reinforced sandwich composite to minimize the delamination occurred during the drilling process and also to maximize the tensile strength of the drilled composite. The spindle speed and the feed rate of the drilling operation are taken as the input parameters. The influence of these parameters on delamination and tensile strength of the drilled composite studied and analysed using Taguchi GRA and ANOVA technique. The results show that both the response parameters i.e. delamination and tensile strength are more influenced by feed rate than spindle speed. The percentage contribution of feed rate and spindle speed on response parameters are 13.88% and 81.74% respectively.

  19. Oxidation of lignin-carbohydrate complex from bamboo with hydrogen peroxide catalyzed by Co(salen

    Directory of Open Access Journals (Sweden)

    Zhou Xue-Fei

    2014-01-01

    Full Text Available The reactivity of salen complexes toward hydrogen peroxide has been long recognized. Co(salen was tested as catalyst for the aqueous oxidation of a refractory lignin-carbohydrate complex (LCC isolated from sweet bamboo (Dendrocalamushamiltonii in the presence of hydrogen peroxide as oxidant. Co(salen catalyzed the reaction of hydrogen peroxide with LCC. From the spectra analyses, lignin units in LCC were undergoing ring-opening, side chain oxidation, demethoxylation, β-O-4 cleavage with Co(salen catalytic oxidation. The degradation was also observed in the carbohydrate of LCC. The investigation on the refractory LCC degradation catalyzed by Co(salen may be an important aspect for environmentally-oriented biomimetic bleaching in pulp and paper industry.

  20. Characteristics and supercapacitive performance of nanoporous bamboo leaf-like CuO

    Science.gov (United States)

    Yang, Feng; Zhang, Xiaofeng; Yang, Ying; Hao, Shijie; Cui, Lishan

    2018-01-01

    Based on the thermal decomposition and phase transition at elevated temperature, the Cu4(SO4)(OH)6 precursor synthesized by a hydrothermal method could be converted into 3D nanoporous CuO. The nanoporous CuO retained the bamboo leaf-like shape and was composed of nanocrysals with grain size of 50-80 nm. The CuO electrode was very stable and exhibited a specific capacitance of 269.6 F g-1 at a current density of 0.25 A g-1. The CuO electrode could be cycled at least 500 cycles, and the capacitance retention ratio was as 88.79% at the current density of 2 A g-1.

  1. Preparation and application of bamboo-like carbon nanotubes in lithium ion batteries

    Science.gov (United States)

    Zou, Lin; Lv, Ruitao; Kang, Feiyu; Gan, Lin; Shen, Wanci

    CNTs with bamboo-like structure (B-CNTs) has been prepared via a CVD process with novel carbon precursor. The potential application of B-CNTs as electric conductive additive and anode materials for lithium ion batteries was explored. The EIS spectra prove that it is better electric conductive additive than multiwalled CNTs and traditional carbon black (CB). The electric resistance of the electrode is decreased around 20 Ω when B-CNTs is used instead of CB. The cycle stability is also enhanced. However, the test cell with B-CNTs as anode material shows low reversible capacity of 135 mAh g -1 and very low initial cycle efficiency of 17.3%, which indicates that so-prepared B-CNTs is not suitable for anode material.

  2. Pyrolysis characteristics and kinetics of lignin derived from enzymatic hydrolysis residue of bamboo pretreated with white-rot fungus.

    Science.gov (United States)

    Yan, Keliang; Liu, Fang; Chen, Qing; Ke, Ming; Huang, Xin; Hu, Weiyao; Zhou, Bo; Zhang, Xiaoyu; Yu, Hongbo

    2016-01-01

    The lignocellulose biorefinery based on the sugar platform usually focuses on polysaccharide bioconversion, while lignin is only burned for energy recovery. Pyrolysis can provide a novel route for the efficient utilization of residual lignin obtained from the enzymatic hydrolysis of lignocellulose. The pyrolysis characteristics of residual lignin are usually significantly affected by the pretreatment process because of structural alteration of lignin during pretreatment. In recent years, biological pretreatment using white-rot fungi has attracted extensive attention, but there are only few reports on thermal conversion of lignin derived from enzymatic hydrolysis residue (EHRL) of the bio-pretreated lignocellulose. Therefore, the study investigated the pyrolysis characteristics and kinetics of EHRL obtained from bamboo pretreated with Echinodontium taxodii in order to evaluate the potential of thermal conversion processes of EHRL. Fourier transform infrared spectroscopy spectra showed that EHRL of bamboo treated with E. taxodii had the typical lignin structure, but aromatic skeletal carbon and side chain of lignin were partially altered by the fungus. Thermogravimetric analysis indicated that EHRL pyrolysis at different heating rates could be divided into two depolymerization stages and covered a wide temperature range from 500 to 900 K. The thermal decomposition reaction can be well described by two third-order reactions. The kinetics study indicated that the EHRL of bamboo treated with white-rot fungus had lower apparent activation energies, lower peak temperatures of pyrolysis reaction, and higher char residue than the EHRL of raw bamboo. Pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS) was applied to characterize the fast pyrolysis products of EHRL at 600 ℃. The ratios of guaiacyl-type to syringyl-type derivatives yield (G/S) and guaiacyl-type to p-hydroxy-phenylpropane-type derivatives yield (G/H) for the treated sample were increased by 33.18 and

  3. Physicochemical Characterization of various Vietnamese Biomass Residue-derived Biochars (wood, bamboo and risk husk)

    Science.gov (United States)

    Nguyen, Hien

    2016-04-01

    This study compares the physico-chemical characteristics of various biocchars produced from biomass residues in Vietnam such as fired wood, rice husk, and bamboo. Wood biochar (WBC), rice husk biochar (RHBC), and bamboo biochar (BBC) were produced under limited oxygen conditions using equipment available locally in Vietnam, known as a Top-Lift Updraft Drum (TLUD). The three biochars are alkaline with pH around 10, but were found to have quite significantly different physico-chemical characteristics. Surface areas (measured by BET) were found to be very significantly higher for WBC and BBC with 479.34 m2/g and 434.53 m2/g, respectively, compared to RHBC (3.29 m2/g). The SEM images correspond with the BET surface area, showing a smooth surface for RHBC, a hollow surface for BBC, and a rough surface for WBC. Total carbon (TC) of WBC and BBC are above 80%, while RHBC has only 47.95% TC. Despite having different TC, the content of hydrogen among the biochars is similar, ranging from 2.07% to 2.34%, and the ratio of H/C also follows the same trend. Thus, although the biochars are produced by the same method, the various feedstocks lead to different physico-chemical properties. Ongoing work is linking these physico-chemical properties to fertiliser efficiencies in terms of nitrate and ammonia adsorption and retention capacities, in order to design optimal biochar properties for use in fertilisation. Key words: physico-chemical characteristic, biochar, surface area, SEM, total carbon, feedstock

  4. Correlations and adsorption mechanisms of aromatic compounds on a high heat temperature treated bamboo biochar

    International Nuclear Information System (INIS)

    Yang, Kun; Yang, Jingjing; Jiang, Yuan; Wu, Wenhao; Lin, Daohui

    2016-01-01

    Adsorption of aromatic compounds, including polycyclic aromatic hydrocarbons, nitrobenzenes, phenols, and anilines, on a bamboo biochar produced at 700 °C (Ba700) was investigated with the mechanism discussion by isotherm fitting using the Polanyi-theory based Dubinin–Ashtakhov (DA) model. Correlations of adsorption capacity (Q 0 ) of organic compounds with their molecular sizes and melting points, as well as correlations of adsorption affinity (E) with their solvatochromic parameters (i.e., π* and α m ), on the biochar, were developed and indicating that adsorption is captured by the pore filling mechanism and derived from the hydrophobic effects of organic compounds and the forming of π-π electron donor-acceptor (EDA) interactions and hydrogen bonding interactions of organic molecules with surface sites of the biochar. The effects of organic molecular sizes and melting points on adsorption capacity are ascribed to the molecular sieving effect and the packing efficiency of the organic molecules in the biochar pores, respectively. These correlations can be used to quantitatively estimate the adsorption of organic compounds on biochars from their commonly physicochemical properties including solvatochromic parameters, melting points and molecular cross-sectional area. The prediction using these correlations is important for assessing the unknown adsorption behaviors of new organic compounds and also helpful to guide the surface modification of biochars and make targeted selection in the environmental applications of biochars as adsorbents. - Highlights: • Adsorption of organic chemicals on biochars are captured by pore filling mechanism. • Adsorption is derived from Van der Waals force, π-π EDA and H-bonding interactions. • Adsorption capacity is negatively correlated with organic molecular sizes/melting points. • Adsorption capacity is restricted by molecular sieving effect and packing efficiency. • Adsorption affinity has a LSER with chemical

  5. Metabolic rate of the red panda, Ailurus fulgens, a dietary bamboo specialist.

    Directory of Open Access Journals (Sweden)

    Yuxiang Fei

    Full Text Available The red panda (Ailurus fulgens has a similar diet, primarily bamboo, and shares the same habitat as the giant panda, Ailuropoda melanoleuca. There are considerable efforts underway to understand the ecology of the red panda and to increase its populations in natural reserves. Yet it is difficult to design an effective strategy for red panda reintroduction if we do not understand its basic biology. Here we report the resting metabolic rate of the red panda and find that it is higher than previously measured on animals from a zoo. The resting metabolic rate was 0.290 ml/g/h (range 0.204-0.342 in summer and 0.361 ml/g/h in winter (range 0.331-0.406, with a statistically significant difference due to season and test temperature. Temperatures in summer were probably within the thermal neutral zone for metabolism but winter temperatures were below the thermal neutral zone. There was no difference in metabolic rate between male and female red pandas and no difference due to mass. Our values for metabolic rate were much higher than those measured by McNab for 2 red pandas from a zoo. The larger sample size (17, more natural conditions at the Panda Base and improved accuracy of the metabolic instruments provided more accurate metabolism measurements. Contrary to our expectations based on their low quality bamboo diet, the metabolic rates of red pandas were similar to mammals of the same size. Based on their metabolic rates red pandas would not be limited by their food supply in natural reserves.

  6. Experimental and Theoritical Analysis of Thermal Properties in Zephyr Bamboo Tali (Gigantochloa apus Kurz

    Directory of Open Access Journals (Sweden)

    Sri Mudiastuti

    2011-10-01

    Full Text Available Specific heat, thermal conductivity and thermal diffusivity of Bamboo panel are usable to support the Programming of Design and Planning in the Structure of the Agricultural Building Construction. The Specific heat of Bamboo’s fiber, sheet and panel using the method of mixtures varied from 1.585-2.789 J/gr oC, with a mean value of 2.227 J/gr oC in the temperature difference range of 9 ± 0.1oC . It was found it will increase linearly with an increase in the sample temperature. Thermal conductivity values of Bamboo’s fiber based on the transient line heat source technique varied from 0.1035 x 10-3-0.1322 x10-3 J/ cm2 sec oC in the sample temperature 22 to 30 oC on thermal diffusivity of bamboo fiber in 22-30 oC was found to be 0.0823 x 10-3J/cm secoC. The sorption Isotherm and the water activity in the bamboo’s panel is depend on the chemical composition, glue laminated, additive and the porosity. There are related with the absorbing of the water into the bounded water and the diffusivity of the water in and out the panel. The moisture equilibrium range are 7.89 to 19.22 percent in the control of the circumstances and 11 to 75 % of the environment.relative humidity.

  7. Metabolic rate of the red panda, Ailurus fulgens, a dietary bamboo specialist

    Science.gov (United States)

    Fei, Yuxiang; Hou, Rong; Paladino, Frank V.; Qi, Dunwu; Zhang, Zhihe

    2017-01-01

    The red panda (Ailurus fulgens) has a similar diet, primarily bamboo, and shares the same habitat as the giant panda, Ailuropoda melanoleuca. There are considerable efforts underway to understand the ecology of the red panda and to increase its populations in natural reserves. Yet it is difficult to design an effective strategy for red panda reintroduction if we do not understand its basic biology. Here we report the resting metabolic rate of the red panda and find that it is higher than previously measured on animals from a zoo. The resting metabolic rate was 0.290 ml/g/h (range 0.204–0.342) in summer and 0.361 ml/g/h in winter (range 0.331–0.406), with a statistically significant difference due to season and test temperature. Temperatures in summer were probably within the thermal neutral zone for metabolism but winter temperatures were below the thermal neutral zone. There was no difference in metabolic rate between male and female red pandas and no difference due to mass. Our values for metabolic rate were much higher than those measured by McNab for 2 red pandas from a zoo. The larger sample size (17), more natural conditions at the Panda Base and improved accuracy of the metabolic instruments provided more accurate metabolism measurements. Contrary to our expectations based on their low quality bamboo diet, the metabolic rates of red pandas were similar to mammals of the same size. Based on their metabolic rates red pandas would not be limited by their food supply in natural reserves. PMID:28306740

  8. Metabolic rate of the red panda, Ailurus fulgens, a dietary bamboo specialist.

    Science.gov (United States)

    Fei, Yuxiang; Hou, Rong; Spotila, James R; Paladino, Frank V; Qi, Dunwu; Zhang, Zhihe

    2017-01-01

    The red panda (Ailurus fulgens) has a similar diet, primarily bamboo, and shares the same habitat as the giant panda, Ailuropoda melanoleuca. There are considerable efforts underway to understand the ecology of the red panda and to increase its populations in natural reserves. Yet it is difficult to design an effective strategy for red panda reintroduction if we do not understand its basic biology. Here we report the resting metabolic rate of the red panda and find that it is higher than previously measured on animals from a zoo. The resting metabolic rate was 0.290 ml/g/h (range 0.204-0.342) in summer and 0.361 ml/g/h in winter (range 0.331-0.406), with a statistically significant difference due to season and test temperature. Temperatures in summer were probably within the thermal neutral zone for metabolism but winter temperatures were below the thermal neutral zone. There was no difference in metabolic rate between male and female red pandas and no difference due to mass. Our values for metabolic rate were much higher than those measured by McNab for 2 red pandas from a zoo. The larger sample size (17), more natural conditions at the Panda Base and improved accuracy of the metabolic instruments provided more accurate metabolism measurements. Contrary to our expectations based on their low quality bamboo diet, the metabolic rates of red pandas were similar to mammals of the same size. Based on their metabolic rates red pandas would not be limited by their food supply in natural reserves.

  9. Mimicking the nanostructure of bamboo leaves (backside) for hydrophobicity using polydimethylsiloxane moulding and nano-imprint lithography.

    Science.gov (United States)

    Hwang, Jaeyeon; Hong, Sung-Hoon; Lee, Heon

    2009-06-01

    Extensive studies have revealed that various kinds of plant leaf have a hydrophobic property which arises from the micro- and nano-scale structure of the leaves. As the self-cleaning capability of plant leaves, termed the lotus effect, is based on their micro- and nano-scale structure, this hydrophobic property can be obtained on various other surfaces by duplication of the leaves' structure. In this study, the hydrophobic structure on bamboo leaves (Pseudosasa japonica) was successfully replicated on a glass substrate using polydimethylsiloxane (PDMS) molding technique and UV nano-imprint lithography. The replicated nano structure, made of perfluorinated acrylate imprint resin, was characterized by scanning electron microscopy (SEM) and its hydrophobicity was evaluated by contact angle measurements which confirmed that the hydrophobic nature and self-cleaning capability of the original bamboo leaves were also replicated.

  10. Optimizing selective cutting strategies for maximum carbon stocks and yield of Moso bamboo forest using BIOME-BGC model.

    Science.gov (United States)

    Mao, Fangjie; Zhou, Guomo; Li, Pingheng; Du, Huaqiang; Xu, Xiaojun; Shi, Yongjun; Mo, Lufeng; Zhou, Yufeng; Tu, Guoqing

    2017-04-15

    The selective cutting method currently used in Moso bamboo forests has resulted in a reduction of stand productivity and carbon sequestration capacity. Given the time and labor expense involved in addressing this problem manually, simulation using an ecosystem model is the most suitable approach. The BIOME-BGC model was improved to suit managed Moso bamboo forests, which was adapted to include age structure, specific ecological processes and management measures of Moso bamboo forest. A field selective cutting experiment was done in nine plots with three cutting intensities (high-intensity, moderate-intensity and low-intensity) during 2010-2013, and biomass of these plots was measured for model validation. Then four selective cutting scenarios were simulated by the improved BIOME-BGC model to optimize the selective cutting timings, intervals, retained ages and intensities. The improved model matched the observed aboveground carbon density and yield of different plots, with a range of relative error from 9.83% to 15.74%. The results of different selective cutting scenarios suggested that the optimal selective cutting measure should be cutting 30% culms of age 6, 80% culms of age 7, and all culms thereafter (above age 8) in winter every other year. The vegetation carbon density and harvested carbon density of this selective cutting method can increase by 74.63% and 21.5%, respectively, compared with the current selective cutting measure. The optimized selective cutting measure developed in this study can significantly promote carbon density, yield, and carbon sink capacity in Moso bamboo forests. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Response of a Wild Edible Plant to Human Disturbance: Harvesting Can Enhance the Subsequent Yield of Bamboo Shoots

    OpenAIRE

    Katayama, Noboru; Kishida, Osamu; Sakai, Rei; Hayakashi, Shintaro; Miyoshi, Chikako; Ito, Kinya; Naniwa, Aiko; Yamaguchi, Aya; Wada, Katsunori; Kowata, Shiro; Koike, Yoshinobu; Tsubakimoto, Katsuhiro; Ohiwa, Kenichi; Sato, Hirokazu; Miyazaki, Toru

    2015-01-01

    Wild edible plants, ecological foodstuffs obtained from forest ecosystems, grow in natural fields, and their productivity depends on their response to harvesting by humans. Addressing exactly how wild edible plants respond to harvesting is critical because this knowledge will provide insights into how to obtain effective and sustainable ecosystem services from these plants. We focused on bamboo shoots of Sasa kurilensis, a popular wild edible plant in Japan. We examined the effects of harvest...

  12. Bamboo Nodes on a Series of 15 Patients: Vocal Fold Lesion as a Sign of Autoimmune Disease and Microphonotrauma.

    Science.gov (United States)

    Oker, Natalie; Julien-Laferrière, Aude; Herman, Philippe; Chevaillier, Gérard

    2017-12-11

    Bamboo nodes are band-like submucosal deposits of the middle third of the vocal fold. They are often related to connective tissue disorders, but can also precede them. The aim of this study was to report our experience with conservative treatment of those rare lesions. This is a retrospective series of 15 patients consulting for hoarseness and presenting bamboo nodes from 2010 to 2016. All patients were women of mean age of 38 years with a moderate or high degree of daily vocal effort. Nine patients (60%) presented with known autoimmune disease at the phoniatric appointment. The other patients (40%) benefited from a systematic biological research for autoimmune disease, which retrieved two poorly symptomatic connective tissue disorders. Patients were clinically improved by speech therapy (53%) or by an optimization or introduction of immunosuppressive treatment (46%). A spontaneous improvement was observed for three patients after voice rest (one after retirement, one after professional change, and last one after resuming professional singing). In our series, no phonosurgery was performed. The vocal profile at last appointment found a moderate Voice Handicap Index at 35.3/120, a low maximum time of phonation at 13.6 seconds, and a high jitter at 1.4, sign of instability of the vibrator. This series emphasizes the importance of diagnosing bamboo nodes in middle-aged female presenting an autoimmune disease. Vice versa for each patient with bamboo nodes, a systematic autoimmune check-up has to be realized to detect a biological asymptomatic autoimmune disease. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  13. Nitrogen distribution and cycling through water flows in a subtropical bamboo forest under high level of atmospheric deposition.

    Science.gov (United States)

    Tu, Li-hua; Hu, Ting-xing; Zhang, Jian; Huang, Li-hua; Xiao, Yin-long; Chen, Gang; Hu, Hong-ling; Liu, Li; Zheng, Jiang-kun; Xu, Zhen-Feng; Chen, Liang-hua

    2013-01-01

    The hydrological cycle is an important way of transportation and reallocation of reactive nitrogen (N) in forest ecosystems. However, under a high level of atmospheric N deposition, the N distribution and cycling through water flows in forest ecosystems especially in bamboo ecosystems are not well understood. In order to investigate N fluxes through water flows in a Pleioblastus amarus bamboo forest, event rainfall/snowfall (precipitation, PP), throughfall (TF), stemflow (SF), surface runoff (SR), forest floor leachate (FFL), soil water at the depth of 40 cm (SW1) and 100 cm (SW2) were collected and measured through the whole year of 2009. Nitrogen distribution in different pools in this ecosystem was also measured. Mean N pools in vegetation and soil (0-1 m) were 351.7 and 7752.8 kg ha(-1). Open field nitrogen deposition at the study site was 113.8 kg N ha(-1) yr(-1), which was one of the highest in the world. N-NH4(+), N-NO3(-) and dissolved organic N (DON) accounted for 54%, 22% and 24% of total wet N deposition. Net canopy accumulated of N occurred with N-NO3(-) and DON but not N-NH4(+). The flux of total dissolved N (TDN) to the forest floor was greater than that in open field precipitation by 17.7 kg N ha(-1) yr(-1), due to capture of dry and cloudwater deposition net of canopy uptake. There were significant negative exponential relationships between monthly water flow depths and monthly mean TDN concentrations in PP, TF, SR, FFL and SW1. The open field nitrogen deposition through precipitation is very high over the world, which is the main way of reactive N input in this bamboo ecosystem. The water exchange and N consume mainly occurred in the litter floor layer and topsoil layer, where most of fine roots of bamboo distributed.

  14. Nitrogen distribution and cycling through water flows in a subtropical bamboo forest under high level of atmospheric deposition.

    Directory of Open Access Journals (Sweden)

    Li-hua Tu

    Full Text Available BACKGROUND: The hydrological cycle is an important way of transportation and reallocation of reactive nitrogen (N in forest ecosystems. However, under a high level of atmospheric N deposition, the N distribution and cycling through water flows in forest ecosystems especially in bamboo ecosystems are not well understood. METHODOLOGY/PRINCIPAL FINDINGS: In order to investigate N fluxes through water flows in a Pleioblastus amarus bamboo forest, event rainfall/snowfall (precipitation, PP, throughfall (TF, stemflow (SF, surface runoff (SR, forest floor leachate (FFL, soil water at the depth of 40 cm (SW1 and 100 cm (SW2 were collected and measured through the whole year of 2009. Nitrogen distribution in different pools in this ecosystem was also measured. Mean N pools in vegetation and soil (0-1 m were 351.7 and 7752.8 kg ha(-1. Open field nitrogen deposition at the study site was 113.8 kg N ha(-1 yr(-1, which was one of the highest in the world. N-NH4(+, N-NO3(- and dissolved organic N (DON accounted for 54%, 22% and 24% of total wet N deposition. Net canopy accumulated of N occurred with N-NO3(- and DON but not N-NH4(+. The flux of total dissolved N (TDN to the forest floor was greater than that in open field precipitation by 17.7 kg N ha(-1 yr(-1, due to capture of dry and cloudwater deposition net of canopy uptake. There were significant negative exponential relationships between monthly water flow depths and monthly mean TDN concentrations in PP, TF, SR, FFL and SW1. CONCLUSIONS/SIGNIFICANCE: The open field nitrogen deposition through precipitation is very high over the world, which is the main way of reactive N input in this bamboo ecosystem. The water exchange and N consume mainly occurred in the litter floor layer and topsoil layer, where most of fine roots of bamboo distributed.

  15. [Retrieval of leaf net photosynthetic rate of moso bamboo forests using hyperspectral remote sen-sing based on wavelet transform].

    Science.gov (United States)

    Sun, Shao-bo; Du, Hua-qiangl; Li, Ping-heng; Zhou, Guo-mo; Xu, Xiao-juni; Gao, Guo-long; Li, Xue-jian

    2016-01-01

    This study focused on retrieval of net photosynthetic rate (Pn) of moso bamboo forest based on analysis of wavelet transform on hyperspectral reflectance data of moso bamboo forest leaf. The result showed that the accuracy of Pn retrieved by the ideal high frequency wavelet vegetation index ( VI) was higher than that retrieved by low frequency wavelet VI and spectral VI. Normalized difference vegetation index of wavelet (NDVIw), simple ratio vegetation index of wavelet (SRw) and difference vegetation index of wavelet (Dw) constructed by the first layer of high frequency coefficient through wavelet decomposition had the highest relationship with Pn, with the R² of 0.7 and RMSE of 0.33; low frequency wavelet VI had no advantage compared with spectral VI. Significant correlation existed between Pn estimated by multivariate linear model constructed by the ideal wavelet VI and the measured Pn, with the R² of 0.77 and RMSE of 0.29, and the accuracy was significantly higher than that of using the spectral VI. Compared with the fact that sensitive spectral bands of the retrieval through spectral VI were limited in the range of visible light, the wavelength of sensitive bands of wavelet VI ranged more widely from visible to infrared bands. The results illustrated that spectrum of wavelet transform could reflect the Pn of moso bamboo more in detail, and the overall accuracy was significantly improved than that using the original spectral data, which provided a new alternative method for retrieval of Pn of moso bamboo forest using hyper spectral remotely sensed data.

  16. Characterization of microwave liquefied bamboo residue and its potential use in the generation of nanofibrillated cellulosic fiber

    Science.gov (United States)

    Jiulong Xie; Chung Hse; Chunjie Li; Todd F. Shupe; Tingxing Hu; Jinqiu Qi; Cornelis F. De Hoop

    2016-01-01

    Bamboo raw feedstocks with large particle size (20−80 mesh) were subjected to a microwave liquefaction system, and the liquefied products were separated into biopolyols and liquefied residues. Biopolyols were first analyzed by gas chromatography mass spectrometry (GC−MS), and the main components were sugar derivatives with 2−4 hydroxyl groups and phenolic compounds...

  17. Effect of fermented bamboo shoot on the quality and shelf life of nuggets prepared from desi spent hen

    Directory of Open Access Journals (Sweden)

    Ankur Das

    Full Text Available Aim: An investigation was carried out to prepare nuggets from the relatively tough and fibrous meat of desi spent hen using fermented bamboo shoot as a phytopreservative in order to enhance the physico-chemical, microbiological and keeping quality of the nuggets. Materials and Methods: Lean meat of desi spent hen was minced and blended along with other non-meat ingredients and fermented bamboo shoot @10%. The emulsion was filled in metallic moulds and steam cooked and cut into pieces. Ready-toeat nuggets thus prepared were packed in sterilized LDPE zip bags and stored at 4±1°C up-to 15 days for quality evaluation. Emulsion stability (%, cooking yield (%, a and proximate composition were studied on the day of preparation, while estimation of pH, TBA values, microbial load and sensory evaluation were carried out at 5 days interval and up-to 15th day of storage. Results: The emulsion stability (%, cooking yield (%, moisture (%, crude protein (% and total ash (% of FBS treated nuggets differed significantly (p<0.01 from the control products. Storage studies revealed significantly lower (p<0.01 pH, TBA value, total plate count, psychrophillic count and counts for yeast and moulds in FBS treated nuggets in comparison to control products. Both control and treated nuggets exhibited gradual loss of panel ratings during the storage period (4±1°C for 15 days, however, nuggets containing fermented bamboo shoot revealed significantly higher (p<0.01 mean sensory scores in terms of flavour, texture, juiciness and overall acceptability. Conclusion: Nuggets with better physico-chemical and shelf life can be prepared with incorporation of fermented bamboo shoot @10% (w/w to the nugget emulsion. [Vet World 2013; 6(7.000: 419-423

  18. Multi-locus plastid phylogenetic biogeography supports the Asian hypothesis of the temperate woody bamboos (Poaceae: Bambusoideae).

    Science.gov (United States)

    Zhang, Xian-Zhi; Zeng, Chun-Xia; Ma, Peng-Fei; Haevermans, Thomas; Zhang, Yu-Xiao; Zhang, Li-Na; Guo, Zhen-Hua; Li, De-Zhu

    2016-03-01

    In this paper we investigate the biogeography of the temperate woody bamboos (Arundinarieae) using a densely-sampled phylogenetic tree of Bambusoideae based on six plastid DNA loci, which corroborates the previously discovered 12 lineages (I-XII) and places Kuruna as sister to the Chimonocalamus clade. Biogeographic analyses revealed that the Arundinarieae diversified from an estimated 12 to 14Mya, and this was followed by rapid radiation within the lineages, particularly lineages IV, V and VI, starting from c. 7-8Mya. It is suggested that the late Miocene intensification of East Asian monsoon may have contributed to this burst of diversification. The possibilities of the extant Sri Lankan and African temperate bamboo lineages representing 'basal elements' could be excluded, indicating that there is no evidence to support the Indian or African route for migration of temperate bamboo ancestors to Asia. Radiations from eastern Asia to Africa, Sri Lanka, and to North America all are likely to have occurred during the Pliocene, to form the disjunct distribution of Arundinarieae we observe today. The two African lineages are inferred as being derived independently from Asian ancestors, either by overland migrations or long-distance dispersals. Beringian migration may explain the eastern Asian-eastern North American disjunction. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Effects of climate and forest structure on palms, bromeliads and bamboos in Atlantic Forest fragments of Northeastern Brazil

    Directory of Open Access Journals (Sweden)

    R. R. Hilário

    Full Text Available Abstract Palms, bromeliads and bamboos are key elements of tropical forests and understanding the effects of climate, anthropogenic pressure and forest structure on these groups is crucial to forecast structural changes in tropical forests. Therefore, we investigated the effects of these factors on the abundance of these groups in 22 Atlantic forest fragments of Northeastern Brazil. Abundance of bromeliads and bamboos were assessed through indexes. Palms were counted within a radius of 20 m. We also obtained measures of vegetation structure, fragment size, annual precipitation, precipitation seasonality and human population density. We tested the effects of these predictors on plant groups using path analysis. Palm abundance was higher in taller forests with larger trees, closed canopy and sparse understory, which may be a result of the presence of seed dispersers and specific attributes of local palm species. Bromeliads were negatively affected by both annual precipitation and precipitation seasonality, what may reflect adaptations of these plants to use water efficiently, but also the need to capture water in a regular basis. Bamboos were not related to any predictor variable. As climate and forest structure affected the abundance of bromeliads and palms, human-induced climatic changes and disturbances in forest structure may modify the abundance of these groups. In addition, soil properties and direct measurements of human disturbance should be used in future studies in order to improve the predictability of models about plant groups in Northeastern Atlantic Forest.

  20. Fabrication and tribological response of aluminium 6061 hybrid composite reinforced with bamboo char and boron carbide micro-fillers

    Science.gov (United States)

    Chethan, K. N.; Pai, Anand; Keni, Laxmikant G.; Singhal, Ashish; Sinha, Shubham

    2018-02-01

    Metal matrix composites (MMCs) have a wide scope of industrial applications and triumph over conventional materials due to their light weight, higher specific strength, good wear resistance and lower coefficient of thermal expansion. The present study aims at establishing the feasibility of using Bamboo charcoal particulate and boron carbide as reinforcements in Al-6061 alloy matrix and to investigate their effect on the wear of composites taking into consideration the interfacial adhesion of the reinforcements in the alloy. Al-6061 alloy was chosen as a base metallic alloy matrix. Sun-dried bamboo canes were used for charcoal preparation with the aid of a muffle furnace. The carbon content in the charcoal samples was determined by EDS (energy dispersive spectroscopy). In present study, stir casting technique was used to prepare the samples with 1%, 2%, and 3% weight of bamboo charcoal and boron carbide with Al-6061. The fabricated composites were homogenised at 570°C for 6 hours and cooled at room temperature. Wear studies were carried out on the specimens with different speed and loads. It was found that wear rate and coefficient of friction decreased with increase in the reinforcement content.

  1. Adsorptive Removal of Formaldehyde by Chemically Bamboo Activated Carbon with addition of Ag nanoparticle: Equilibrium and Kinetic

    Directory of Open Access Journals (Sweden)

    Pita Rengga Wara Dyah

    2016-01-01

    Full Text Available Carbon was prepared from dried waste bamboo (Dendrocalamus asper using chemical activation with KOH. The carbon was prepared with the activating agent in a mass ratio of KOH and dried bamboo (3:1 at 800oC. Using impregnation technique, the bamboo-based activated carbon has developed with modified Ag nanoparticle (Ag-AC to capture formaldehyde. The Ag-AC has characteristics of moderate surface area of 685 m2/g and average pore size of 2.7 nm. The adsorption equilibriums and kinetics of formaldehyde on Ag-AC measured. The influences of initial formaldehyde on adsorption performance have measured in a batch system. The equilibrium data were evaluated by isotherm models of Langmuir, Freundlich, and Temkin. The Langmuir model well describes the adsorptive removal of formaldehyde on Ag-AC in this study. Pseudo-first-order and pseudo-second-order kinetic equations were applied to test the experimental data. The pseudo-second-order exhibited the best fit for kinetic study.

  2. Effect of variations in overlap length and stirrup spacing on flexural capacity of bamboo reinforcement concrete beams

    Science.gov (United States)

    Nindyawati, Rosalia, Devita; Yusron, Fadhlillah Akmal

    2017-09-01

    The purpose of this study was to determine the effect of variations in overlap length and stirrup spacing of Apus bamboo on (1) the flexural capacity, (2) deflection, (3) crack behavior of reinforced concrete beams. The design of this study was experimental, and the data obtained from the test results were described. The parameters measured in this study could be determined by testing the specimens of 12 bamboo reinforced concrete beam models with an overlap length of one-fifth of the total stirrup length and stirrup spacing of 2.5 cm (A1, A2, and A3), 5 cm (B1, B2, and B3), 8 cm (C1, C2, C3), and an overlap length of one-half of the total stirrup length with a stirrup spacing of 5 cm (BY1, BY2, and BY3) and 8 cm in width, 10 cm in height and 80 cm in length. The concrete quality was f'c = 25 MPa. The research results showed that (1) the bamboo reinforced concrete beams with a stirrup spacing of 2.5 cm, 5 cm, and 8 cm had a flexural capacity of 1153.33 kg, 1280 kg, 1152.33 kg and 1270 kg, (2) a maximum deflection of 6.76 mm, 7.95 mm, 7.83 mm and 8.75 mm, and 3) flexure-shear cracks occurring in all beams.

  3. FIBER QUALITIES OF PRETREATED BETUNG BAMBOO (Dendrocalamusasper BY MIXED CULTURE OF WHITE-ROT FUNGI WITH RESPECT TO ITS USE FOR PULP/PAPER

    Directory of Open Access Journals (Sweden)

    Widya Fatriasari

    2013-10-01

    Full Text Available Previous research on anatomical structures of pretreated large (betung bamboo (Dendrocalamusasper using single culture of white-rot fungi has been investigated, which revealed that the pretreatment caused the decrease in the Runkel ratioas well as the coefficient rigidity and the increase in the flexibility ratio of their corresponding bamboo fibers. However, there is no study reported on the anatomical structure changes of them caused by pretreatment using mixed culture of white-rot fungi. This paper reports the results of the research on paper/pulp quality after different treatments. Pretreatment that used Trametes versicolor fungi and lasted for 45 days inflicted intensive fiber damages compared with those of untreated bamboo (control. Fresh and barkless large (betung bamboo chips of 2 year's old, and 1.6 cm in length, were inoculated by 10% of mixed culture of white-rot fungi inoculums stock for 30 and 45 days in room temperature. There were four treatment groups of mixed culture, i.e T. versi color and P. ostreatus (TVPO; P. ostreatus and P. chrysosporium (POPC; P. chrysosporium and T.versi color (PCTV; and P.chrysosporium,  T.versicolorand  P.ostreatus  (TVPCPO.After  the  inoculation  period,  the  chips  weremacerated into separate fibers using Scultze method to analyze the fiber dimension and its derived values. The fibers were then observed regarding their macro and microscopic structures by optical microscope. Mixed culture pretreatment of white-rot fungi accelerated improvement of fiber morphology and fiber derived value characteristics, except for Muhlsteph ratio. The fiber derived values oftreated bamboo tended to improve compared to those of untreated bamboo, there by requiring milder pulping conditions. Accordingly, the treated bamboo would indicatively produce a good quality pulp (grade I based on FAO and LPHH (Forest Product Research Report requirements. Co-culture treatment using P. chrysosporium and P. ostreatus for

  4. Chloroplast phylogenomic analyses resolve deep-level relationships of an intractable bamboo tribe Arundinarieae (poaceae).

    Science.gov (United States)

    Ma, Peng-Fei; Zhang, Yu-Xiao; Zeng, Chun-Xia; Guo, Zhen-Hua; Li, De-Zhu

    2014-11-01

    The temperate woody bamboos constitute a distinct tribe Arundinarieae (Poaceae: Bambusoideae) with high species diversity. Estimating phylogenetic relationships among the 11 major lineages of Arundinarieae has been particularly difficult, owing to a possible rapid radiation and the extremely low rate of sequence divergence. Here, we explore the use of chloroplast genome sequencing for phylogenetic inference. We sampled 25 species (22 temperate bamboos and 3 outgroups) for the complete genome representing eight major lineages of Arundinarieae in an attempt to resolve backbone relationships. Phylogenetic analyses of coding versus noncoding sequences, and of different regions of the genome (large single copy and small single copy, and inverted repeat regions) yielded no well-supported contradicting topologies but potential incongruence was found between the coding and noncoding sequences. The use of various data partitioning schemes in analysis of the complete sequences resulted in nearly identical topologies and node support values, although the partitioning schemes were decisively different from each other as to the fit to the data. Our full genomic data set substantially increased resolution along the backbone and provided strong support for most relationships despite the very short internodes and long branches in the tree. The inferred relationships were also robust to potential confounding factors (e.g., long-branch attraction) and received support from independent indels in the genome. We then added taxa from the three Arundinarieae lineages that were not included in the full-genome data set; each of these were sampled for more than 50% genome sequences. The resulting trees not only corroborated the reconstructed deep-level relationships but also largely resolved the phylogenetic placements of these three additional lineages. Furthermore, adding 129 additional taxa sampled for only eight chloroplast loci to the combined data set yielded almost identical

  5. THE EFFECT OF MAXIMUM PHYSICAL ACTIVITY AND MANGGONG BAMBOO (Gigantochloa manggong LEAF EXTRACT ON CATALASE ACTIVITY IN LIVER ORGAN OF RATS (Rattus norvegicus

    Directory of Open Access Journals (Sweden)

    . Supriyatin

    2017-04-01

    Full Text Available Gigantochloa manggong, one of endemic bamboo plant in Indonesia is suspected to have exogenous antioxidant potential. Exogenous antioxidant can help the activity of endogenous antioxidant in the body when overtraining occurs. Antioxidant can be measured by catalase enzymes activity. This study was carried out to determine the effect of maximum physical activity and leaf bamboo extract on catalase activity in liver organ of rats. This research used experimental method with completely randomized design (CRD. The test groups were the control rats (E0R0, leaf extract induced rats (E1R0, swimming activity treated rats (E0R1 and leaf extract induced and swimming activity treated rats (E1R1. Data were analyzed by the two-way ANOVA statistical test. Bamboo leaf extract non-toxic and leaf extract contained flavonoids, alkaloids, triterpenoids dan saponins. Catalase units in the control group is 1.00 unit/ml, the induced leaf extract group is 0.89 unit/ml, the maximum physical activity group is 0.78 unit/ml and the maximum physical activity treated and induced leaf extract group is 0.56 unit/ml. Based on statistical test, catalase activity has no effect (p>0,05 on rats. It was concluded that maximum physical activity could not reduce catalase activity. Manggong bamboo leaves extract could not increase catalase activity and there was no effect between maximum physical activity and manggong bamboo leaf extract on catalase activity in liver organ of rats.

  6. Bamboo Classification Using WorldView-2 Imagery of Giant Panda Habitat in a Large Shaded Area in Wolong, Sichuan Province, China

    Directory of Open Access Journals (Sweden)

    Yunwei Tang

    2016-11-01

    Full Text Available This study explores the ability of WorldView-2 (WV-2 imagery for bamboo mapping in a mountainous region in Sichuan Province, China. A large area of this place is covered by shadows in the image, and only a few sampled points derived were useful. In order to identify bamboos based on sparse training data, the sample size was expanded according to the reflectance of multispectral bands selected using the principal component analysis (PCA. Then, class separability based on the training data was calculated using a feature space optimization method to select the features for classification. Four regular object-based classification methods were applied based on both sets of training data. The results show that the k-nearest neighbor (k-NN method produced the greatest accuracy. A geostatistically-weighted k-NN classifier, accounting for the spatial correlation between classes, was then applied to further increase the accuracy. It achieved 82.65% and 93.10% of the producer’s and user’s accuracies respectively for the bamboo class. The canopy densities were estimated to explain the result. This study demonstrates that the WV-2 image can be used to identify small patches of understory bamboos given limited known samples, and the resulting bamboo distribution facilitates the assessments of the habitats of giant pandas.

  7. Bamboo Forest Water Use Efficiency in the Yangtze River Delta Region, China

    Directory of Open Access Journals (Sweden)

    Fan Wang

    2016-01-01

    Full Text Available An eddy covariance technique was used to measure the gross primary productivity (GPP, evapotranspiration (ET, and water use efficiency (WUE during the 2011 - 2014 period over a moso bamboo forest at a site in Anji (AJ, China. WUE declined during the severe summer drought of 2013 when the vapor pressure deficit (VPD was above 15 hPa, and was significantly higher than the average value. At AJ the average annual GPP, ET, and WUE were 1522 ± 73 C m-2 year-1, 693 ± 41 kg H2O m-2 year-1, and 2.21 ± 0.23 g C kg-1 H2O, respectively. GPP and ET were closely correlated at AJ, with R2 equal to 0.64. The monthly GPP and ET showed strong positive linear, exponential or quadratic polynomial correlations to meteorological variables, including air temperature (Ta, net radiation (Rn, and VPD. WUE was negatively correlated to VPD, with 36.3% of the variation in WUE explained by VPD. This study contributes to the understanding of the carbon and water cycle response mechanisms in forest ecosystems in the climate change context and is significant in relation to forest carbon sequestration management.

  8. Dual function of the pectoral girdle for feeding and locomotion in white-spotted bamboo sharks.

    Science.gov (United States)

    Camp, Ariel L; Scott, Bradley; Brainerd, Elizabeth L; Wilga, Cheryl D

    2017-07-26

    Positioned at the intersection of the head, body and forelimb, the pectoral girdle has the potential to function in both feeding and locomotor behaviours-although the latter has been studied far more. In ray-finned fishes, the pectoral girdle attaches directly to the skull and is retracted during suction feeding, enabling the ventral body muscles to power rapid mouth expansion. However, in sharks, the pectoral girdle is displaced caudally and entirely separate from the skull (as in tetrapods), raising the question of whether it is mobile during suction feeding and contributing to suction expansion. We measured three-dimensional kinematics of the pectoral girdle in white-spotted bamboo sharks during suction feeding with X-ray reconstruction of moving morphology, and found the pectoral girdle consistently retracted about 11° by rotating caudoventrally about the dorsal scapular processes. This motion occurred mostly after peak gape, so it likely contributed more to accelerating captured prey through the oral cavity and pharynx, than to prey capture as in ray-finned fishes. Our results emphasize the multiple roles of the pectoral girdle in feeding and locomotion, both of which should be considered in studying the functional and evolutionary morphology of this structure. © 2017 The Author(s).

  9. Variability in hematology of white-spotted bamboo sharks (Chiloscyllium plagiosum) in different living environments.

    Science.gov (United States)

    Parkinson, Lily A; Alexander, Amy B; Campbell, Terry W

    2017-07-01

    Elasmobranch hematology continues to reveal new peculiarities within this specialized field. This report compares total hematologic values from the same white-spotted bamboo sharks (Chiloscyllium plagiosum) housed in different environments. We compared the hemograms one year apart, using a standardized Natt-Herrick's technique. The total white blood cell (WBC) counts of the sharks were statistically different between the two time points (initial median total WBC count = 18,920 leukocytes/μl, SD = 8,108; 1 year later total WBC count = 1,815 leukocytes/μl, SD = 1,309). The packed cell volumes were additionally found to be statistically different (19%, SD = 2.9 vs. 22%, SD = 2.0). Analysis revealed the only differences between the time points were the temperature and stocking densities at which these sharks were housed. This report emphasizes the need for a thorough understanding of the husbandry of an elasmobranch prior to interpretation of a hemogram and suggests that reference intervals should be created for each environment. © 2017 Wiley Periodicals, Inc.

  10. World in motion: Perception and discrimination of movement in juvenile grey bamboo sharks (Chiloscyllium griseum.

    Directory of Open Access Journals (Sweden)

    Theodora Fuss

    2017-08-01

    Full Text Available The aim of the present study was to test juvenile grey bamboo sharks (Chiloscyllium griseum for their ability to perceive and discriminate simple and complex motion patterns. Experiments were carried out as two-alternative forced choice experiments; choosing the designated positive stimulus was rewarded with food. Individuals were first trained to differentiate between two videos of circles moving at different velocities surrounded by squared reference frames. All tasks were successfully mastered within 3–30 training sessions. Transfer tests revealed whether the training stimulus was still successfully detected if velocity or direction of movement were changed. In a second task, individuals were presented with more complex motion patterns in form of videos of different organisms such as eel vs. trout, eagle vs. bat and dolphin vs. shark. A series of transfer tests elucidated whether sharks could still recognize these stimuli when shown (a without a reference frame, (b from a different perspective (front or sideways, (c enlarged or downsized or (d as point displays (PDs. Results were rather surprising, as sharks discriminated easily between circles moving in different directions as well as between differently moving organisms but failed in two out of three experiments to apply the acquired information to new situations as provided by transfer tests. Nonetheless, PD videos of ‘eel’ and ‘trout’ were recognized by all sharks (N = 7, suggesting that the ability to spontaneously recognize an organism based on its biological motion alone is present in elasmobranchs.

  11. Effects of heating rate on slow pyrolysis behavior, kinetic parameters and products properties of moso bamboo.

    Science.gov (United States)

    Chen, Dengyu; Zhou, Jianbin; Zhang, Qisheng

    2014-10-01

    Effects of heating rate on slow pyrolysis behaviors, kinetic parameters, and products properties of moso bamboo were investigated in this study. Pyrolysis experiments were performed up to 700 °C at heating rates of 5, 10, 20, and 30 °C/min using thermogravimetric analysis (TGA) and a lab-scale fixed bed pyrolysis reactor. The results show that the onset and offset temperatures of the main devolatilization stage of thermogravimetry/derivative thermogravimetry (TG/DTG) curves obviously shift toward the high-temperature range, and the activation energy values increase with increasing heating rate. The heating rate has different effects on the pyrolysis products properties, including biochar (element content, proximate analysis, specific surface area, heating value), bio-oil (water content, chemical composition), and non-condensable gas. The solid yields from the fixed bed pyrolysis reactor are noticeably different from those of TGA mainly because the thermal hysteresis of the sample in the fixed bed pyrolysis reactor is more thorough. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. High-Density Polyethylene and Heat-Treated Bamboo Fiber Composites: Nonisothermal Crystallization Properties

    Directory of Open Access Journals (Sweden)

    Yanjun Li

    2015-01-01

    Full Text Available The effect of heat-treated bamboo fibers (BFs on nonisothermal crystallization of high-density polyethylene (HDPE was investigated using differential scanning calorimetry under nitrogen. The Avrami-Jeziorny model was used to fit the measured crystallization data of the HDPE/BF composites and to obtain the model parameters for the crystallization process. The heat flow curves of neat HDPE and HDPE/heat-treated BF composites showed similar trends. Their crystallization mostly occurred within a temperature range between 379 K and 399 K, where HDPE turned from the liquid phase into the crystalline phase. Values of the Avrami exponent (n were in the range of 2.8~3.38. Lamellae of neat HDPE and their composites grew in a three-dimensional manner, which increased with increased heat-treatment temperature and could be attributed to the improved ability of heterogeneous nucleation and crystallization completeness. The values of the modified kinetic rate constant (KJ first increased and then decreased with increased cooling rate because the supercooling was improved by the increased number of nucleating sites. Heat-treated BF and/or a coupling agent could act as a nucleator for the crystallization of HDPE.

  13. Delimiting species boundaries within the Neotropical bamboo Otatea (Poaceae: Bambusoideae) using molecular, morphological and ecological data.

    Science.gov (United States)

    Ruiz-Sanchez, Eduardo; Sosa, Victoria

    2010-02-01

    Species delimitation is a task that has engaged taxonomists for more than two centuries. Recently, it has been demonstrated that molecular data and ecological niche modeling are useful in species delimitation. In this paper multiple data sets (molecular, morphological, ecological) were utilized to set limits for the species belonging to the Neotropical bamboo Otatea, because there is disagreement about species circumscriptions and also because the genus has an interesting distribution, with most of its populations in Mexico and a single disjunct population in Colombia. Molecular and morphological phylogenetic analyses recovered trees with conflicting topologies. Tree-based morphological and character-based analyses recognized the same entities. Ecological niche models and PCA/MANOVAS agreed with the recognition of the same entities that resulted from the morphological analyses. Morphological analyses retrieved clades supported by diagnostic characters and coherent geographical distributions. Based on these results seven entities should be recognized in Otatea, instead of the three previously described species. Copyright (c) 2009. Published by Elsevier Inc.

  14. Waste water purification using new porous ceramics prepared by recycling waste glass and bamboo charcoal

    Science.gov (United States)

    Nishida, Tetsuaki; Morimoto, Akane; Yamamoto, Yoshito; Kubuki, Shiro

    2017-12-01

    New porous ceramics (PC) prepared by recycling waste glass bottle of soft drinks (80 mass%) and bamboo charcoal (20 mass%) without any binder was applied to the waste water purification under aeration at 25 °C. Artificial waste water (15 L) containing 10 mL of milk was examined by combining 15 mL of activated sludge and 750 g of PC. Biochemical oxygen demand (BOD) showed a marked decrease from 178 to 4.0 (±0.1) mg L-1 in 5 days and to 2.0 (±0.1) mg L-1 in 7 days, which was equal to the Environmental Standard for the river water (class A) in Japan. Similarly, chemical oxygen demand (COD) decreased from 158 to 3.6 (±0.1) mg L-1 in 5 days and to 2.2 (±0.1) mg L-1 in 9 days, which was less than the Environmental Standard for the Seawater (class B) in Japan: 3.0 mg L-1. These results prove the high water purification ability of the PC, which will be effectively utilized for the purification of drinking water, fish preserve water, fish farm water, etc.

  15. Effect of Operating Conditions on Catalytic Gasification of Bamboo in a Fluidized Bed

    Directory of Open Access Journals (Sweden)

    Thanasit Wongsiriamnuay

    2013-01-01

    Full Text Available Catalytic gasification of bamboo in a laboratory-scale, fluidized bed reactor was investigated. Experiments were performed to determine the effects of reactor temperature (400, 500, and 600°C, gasifying medium (air and air/steam, and catalyst to biomass ratio (0 : 1, 1 : 1, and 1.5 : 1 on product gas composition, H2/CO ratio, carbon conversion efficiency, heating value, and tar conversion. From the results obtained, it was shown that at 400°C with air/steam gasification, maximum hydrogen content of 16.5% v/v, carbon conversion efficiency of 98.5%, and tar conversion of 80% were obtained. The presence of catalyst was found to promote the tar reforming reaction and resulted in improvement of heating value, carbon conversion efficiency, and gas yield due to increases in H2, CO, and CH4. The presence of steam and dolomite had an effect on the increasing of tar conversion.

  16. Effects of nano bamboo charcoal on PAHs-degrading strain Sphingomonas sp. GY2B.

    Science.gov (United States)

    She, Bojia; Tao, Xueqin; Huang, Ting; Lu, Guining; Zhou, Zhili; Guo, Chuling; Dang, Zhi

    2016-03-01

    Nano bamboo charcoal (NBC) has been commonly used in the production of textiles, plastics, paint, etc. However, little is known regarding their effects towards the microorganisms. The effects of NBC on phenanthrene degrading strain Sphingomonas sp. GY2B were investigated in the present study. Results showed that the addition of NBC could improve the phenanthrene removal by Sphingomonas sp. GY2B, with removal efficiencies increased by 10.29-18.56% in comparison to the control at 24h, and phenanthrene was almost completely removed at 48h. With the presence of low dose of NBC (20 and 50mgL(-1)), strain GY2B displayed a better growth at 6h, suggesting that NBC was beneficial to the growth of GY2B and thus resulting in the quick removal of phenanthrene from water. However, the growth of strain GY2B in high dose of NBC (200mgL(-1)) was inhibited at 6h, and the inhibition could be attenuated and eliminated after 12h. NBC-effected phenanthrene solubility experiment suggested that NBC makes a negligible contribution to the solubilization of phenanthrene in water. Results of electronic microscopy analysis (SEM and TEM) indicated NBC may interact with the cell membrane, causing the enhanced membrane permeability and then NBC adsorbed on the membrane would enter into the cells. The findings of this work would provide important information for the future usage and long-term environmental risk assessment of NBC. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Ethanol production from bamboo using mild alkaline pre-extraction followed by alkaline hydrogen peroxide pretreatment.

    Science.gov (United States)

    Yuan, Zhaoyang; Wen, Yangbing; Kapu, Nuwan Sella

    2018-01-01

    A sequential two-stage pretreatment process comprising alkaline pre-extraction and alkaline hydrogen peroxide pretreatment (AHP) was investigated to convert bamboo carbohydrates into bioethanol. The results showed that mild alkaline pre-extraction using 8% (w/w) sodium hydroxide (NaOH) at 100°C for 180min followed by AHP pretreatment with 4% (w/w) hydrogen peroxide (H 2 O 2 ) was sufficient to generate a substrate that could be efficiently digested with low enzyme loadings. Moreover, alkali pre-extraction enabled the use of lower H 2 O 2 charges in AHP treatment. Two-stage pretreatment followed by enzymatic hydrolysis with only 9FPU/g cellulose led to the recovery of 87% of the original sugars in the raw feedstock. The use of the pentose-hexose fermenting Saccharomyces cerevisiae SR8u strain enabled the utilization of 95.7% sugars in the hydrolysate to reach 4.6%w/v ethanol titer. The overall process also enabled the recovery of 62.9% lignin and 93.8% silica at high levels of purity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Sound absorption properties of kenaf bamboo particleboard at various mixing ratio and density

    Science.gov (United States)

    Wong, J. W.; Yeo, W. S.; Paridah, M. T.

    2017-11-01

    This study investigated the acoustic properties made by various different ratio of kenaf core (KC) and bamboo betung (BB). The particleboard were manufactured at density of 400 kg/m3 and 600 kg/m3 with four different mixing ratio of 100:0 (KC:BB), 70:30 (KC:BB), 50:50 (KC:BB) and 0:100 (KC:BB) respectively. The absorption coefficient of the samples was measured using the standing wave method. The characteristic curves of sound absorption coefficients of the samples demonstrated a linear increment with frequency, peak at 2000 Hz and decreased gradually thereafter. The sound absorption properties were investigated by comparing the noise reduction coefficient (NRC). Overall, particleboard with density of 400 kg/m3 exhibited better sound absorption properties as compared with 600 kg/m3 density of particleboard for all mixing ratio. Also, particleboard made with higher amount of BB particles exhibited better sound absorption properties. In addition, results showed a consistent reduction of NRC values with the amount of BB used.

  19. [Study on the bamboo slips of Maishu in the Han Dynasty excavated in Laoguanshan].

    Science.gov (United States)

    Huang, Longxiang

    2018-01-12

    The bamboo slips of medicine, from No. 361 to No. 628, unearthed in Laoguanshan are of the same specification, which shall be the same one as Maishu (《》) of the Han Dynasty from Zhangjiashan in terms of the basic constitution and style. Hence, the medical slips, from No. 361 to No. 628, unearthed in Laoguanshan shall be titled as Maishu of Laoguanshan version, in which, the text on the "twelve meridians" is the combination and adaption from Y inyang Shiyi Mai Jiujiang (《》 Moxibustion Therapy on the Eleven Meridians of Yin and Yang ) and Zubi Shiyimai Jiujing (《》 Moxibustion Therapy on the Eleven Meridians of Legs and Arms ) in the slips of Maishu of the Han Dynasty from Zhangjiashan. The two chapters on "derived meridians" have compiled the names, running courses and differentiated disorders of the 12 meridians in the different eras at the early stage, and in the 9 of these 12 meridians, the prescriptions for moxibustion therapy have been attached for the treatment of the differentiated disorders, which reflexes the characteristics of mai (meridian) at different evolution stages before the formation of the concept of meridian. Regarding the descriptions on "pulse diagnostic method", two different methods are included, one is relevant with the decision of survival span, and another is with the localization of disorders.

  20. Effects of Bamboo Shoot Dietary Fiber on Mechanical Properties, Moisture Distribution, and Microstructure of Frozen Dough

    Directory of Open Access Journals (Sweden)

    Hua Zhang

    2017-01-01

    Full Text Available In this paper, the effects of Bamboo shoot dietary fiber (BSDF on the mechanical properties, moisture distribution, and microstructure of frozen dough were investigated. The state and distribution of water in frozen dough was determined by differential scanning calorimetry (DSC and low-field nuclear magnetic resonance (LNMR spectroscopy. The microstructure of frozen dough was studied. The structure of the gluten protein network found in wheat flour dough was studied by scanning electron microscopy (SEM. The result showed that the BSDF could significantly improve the viscoelasticity and extensibility of frozen dough after thawing in a dose-dependent manner. It was significantly improved with the increase in the addition amount of BSDF (P<0.05. DSC analysis showed that the freezable water content and thermal stability of frozen dough were increased after the addition of BSDF. LNMR analysis showed that the appropriate (<0.1% addition amount of BSDF could significantly (P<0.05 decline the contents of bound water. Meanwhile, the loose bound water and free water were raised significantly (P<0.05 after the addition of BSDF. Moreover, the addition of BSDF induces arrangement of starch granule and gluten network in frozen dough. BSDF can be used as a novel quality improver of frozen dough.

  1. Wildfires in bamboo-dominated Amazonian forest: impacts on above-ground biomass and biodiversity.

    Directory of Open Access Journals (Sweden)

    Jos Barlow

    Full Text Available Fire has become an increasingly important disturbance event in south-western Amazonia. We conducted the first assessment of the ecological impacts of these wildfires in 2008, sampling forest structure and biodiversity along twelve 500 m transects in the Chico Mendes Extractive Reserve, Acre, Brazil. Six transects were placed in unburned forests and six were in forests that burned during a series of forest fires that occurred from August to October 2005. Normalized Burn Ratio (NBR calculations, based on Landsat reflectance data, indicate that all transects were similar prior to the fires. We sampled understorey and canopy vegetation, birds using both mist nets and point counts, coprophagous dung beetles and the leaf-litter ant fauna. Fire had limited influence upon either faunal or floral species richness or community structure responses, and stems <10 cm DBH were the only group to show highly significant (p = 0.001 community turnover in burned forests. Mean aboveground live biomass was statistically indistinguishable in the unburned and burned plots, although there was a significant increase in the total abundance of dead stems in burned plots. Comparisons with previous studies suggest that wildfires had much less effect upon forest structure and biodiversity in these south-western Amazonian forests than in central and eastern Amazonia, where most fire research has been undertaken to date. We discuss potential reasons for the apparent greater resilience of our study plots to wildfire, examining the role of fire intensity, bamboo dominance, background rates of disturbance, landscape and soil conditions.

  2. Fungal garden making inside bamboos by a non-social fungus-growing beetle.

    Directory of Open Access Journals (Sweden)

    Wataru Toki

    Full Text Available In fungus-growing mutualism, it is indispensable for host animals to establish gardens of the symbiotic fungus as rapidly as possible. How to establish fungal gardens has been well-documented in social fungus-farming insects, whereas poorly documented in non-social fungus-farming insects. Here we report that the non-social, fungus-growing lizard beetle Doubledaya bucculenta (Coleoptera: Erotylidae: Languriinae transmits the symbiotic yeast Wickerhamomyces anomalus from the ovipositor-associated mycangium into bamboo internode cavities and disperses the yeast in the cavities to make gardens. Microbial isolation and cryo-scanning electron microscopy observation revealed that W. anomalus was constantly located on the posterior ends of eggs, where larvae came out, and on the inner openings of oviposition holes. Direct observation of oviposition behavior inside internodes revealed that the distal parts of ovipositors showed a peristaltic movement when they were in contact with the posterior ends of eggs. Rearing experiments showed that W. anomalus was spread much more rapidly and widely on culture media and internodes in the presence of the larvae than in the absence. These results suggest that the ovipositors play a critical role in vertical transmission of W. anomalus and that the larvae contribute actively to the garden establishment, providing a novel case of fungal garden founding in non-social insect-fungus mutualism.

  3. A sequential pretreatment of lignocelluloses in bamboo biomass to fermentable sugars by acid/enzymatic hydrolysis.

    Science.gov (United States)

    Jagannathan, Praveenkumar; Muthukumaran, Chandrasekaran; Tamilarasan, Krishnamurthi

    2017-08-01

    A sequential pretreatment method for hydrolyzing rigid hemicelluloses and cellulose content in the bamboo biomass was investigated in this study. The effects of different parameters, such as nature of biomass, type of acid, acid and biomass concentration, were studied. Under the optimum condition of 5% (v/v) HCl-treated biomass and biomass concentration (8%, w/v), the maximum yield of sugar (619 mg/g of biomass) was obtained. The enzymatic hydrolysis parameter conditions were further optimized by response surface methodology-based central composite method. According to the results, the highest yield of sugar (515 mg/g of biomass) was obtained at hydrolysis temperature 50 °C, biomass concentration 8.9%, w/v, enzyme concentration (199.8 mg/g of biomass) and time 60 h, respectively. The effects of untreated, pretreated and enzymatically hydrolyzed biomass structure and complexity were investigated by field emission scanning electron microscopy and X-ray diffraction techniques.

  4. The high performance of tungsten carbides/porous bamboo charcoals supported Pt catalysts for methanol electrooxidation

    Science.gov (United States)

    Ma, Chun-an; Xu, Chenbin; Shi, Meiqin; Song, Guanghui; Lang, Xiaoling

    2013-11-01

    In this paper, a kind of environmental friendly and cost-effective bamboo charcoal (BC) is used as catalyst support in DMFCs instead of carbon nanotubes (CNTs), which is toxic and expensive. After special treatments, we obtain a sponge-like three-dimensional (3D) BC, which can provide high specific surface area (1264.5 m2 g-1) and porous matrices. Then, tungsten carbide (WC) and Pt are loaded on the BCs with microwave-assisted technique and 3D structural Pt/WC/BCs electro-catalyst is finally fabricated. Subsequently, the catalyst is characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). In the further electrochemical investigation, it was found that Pt/WC/BCs catalyst has higher performance (2.76 mA cm-2) and better CO-tolerance for methanol oxidation compared with Pt/WC/CNTs and commercial Pt/C. Herein, we believe that the as-synthesized 3D Pt/WC/BCs catalyst has great promising application in DMFCs.

  5. Electrical conductivity of oxidized-graphenic nanoplatelets obtained from bamboo: effect of the oxygen content

    Science.gov (United States)

    Gross, K.; Prías Barragán, J. J.; Sangiao, S.; De Teresa, J. M.; Lajaunie, L.; Arenal, R.; Ariza Calderón, H.; Prieto, P.

    2016-09-01

    The large-scale production of graphene and reduced-graphene oxide (rGO) requires low-cost and eco-friendly synthesis methods. We employed a new, simple, cost-effective pyrolytic method to synthetize oxidized-graphenic nanoplatelets (OGNP) using bamboo pyroligneous acid (BPA) as a source. Thorough analyses via high-resolution transmission electron microscopy and electron energy-loss spectroscopy provides a complete structural and chemical description at the local scale of these samples. In particular, we found that at the highest carbonization temperature the OGNP-BPA are mainly in a sp2 bonding configuration (sp2 fraction of 87%). To determine the electrical properties of single nanoplatelets, these were contacted by Pt nanowires deposited through focused-ion-beam-induced deposition techniques. Increased conductivity by two orders of magnitude is observed as oxygen content decreases from 17% to 5%, reaching a value of 2.3 × 103 S m-1 at the lowest oxygen content. Temperature-dependent conductivity reveals a semiconductor transport behavior, described by the Mott three-dimensional variable range hopping mechanism. From the localization length, we estimate a band-gap value of 0.22(2) eV for an oxygen content of 5%. This investigation demonstrates the great potential of the OGNP-BPA for technological applications, given that their structural and electrical behavior is similar to the highly reduced rGO sheets obtained by more sophisticated conventional synthesis methods.

  6. Comparative phylogeography of bamboo bats of the genus Tylonycteris (Chiroptera, Vespertilionidae in Southeast Asia

    Directory of Open Access Journals (Sweden)

    Vuong Tan Tu

    2017-02-01

    Full Text Available In Southeast Asia, bats of the genus Tylonycteris Peters, 1872 have traditionally been classified into two wide-ranging species, T. pachypus (Temminck, 1840 and T. robustula Thomas, 1915. Our comparative phylogeographic analyses based on two mitochondrial and seven nuclear genes, combined with our multivariate morphological analyses, show that these species actually represent cryptic species complexes that share a similar biogeographic history in three major regions, i.e., Sundaland, southern Indochina, and northern Indochina. Our molecular dating estimates suggest that Pleistocene climatic oscillations and sea level changes have repeatedly isolated ancestral populations of Tylonycteris spp. in distant bamboo forest refugia. The analyses indicate, however, that populations of the T. pachypus complex were less affected by forest fragmentation in mainland Southeast Asia than those of the T. robustula complex. Accordingly, we propose several taxonomic changes within the genus Tylonycteris: the species T. fulvida and T. malayana are revalidated, and a new species, T. tonkinensis Tu, Csorba, Ruedi & Hassanin sp. nov., endemic to northern Indochina, is described.

  7. Wildfires in bamboo-dominated Amazonian forest: impacts on above-ground biomass and biodiversity.

    Science.gov (United States)

    Barlow, Jos; Silveira, Juliana M; Mestre, Luiz A M; Andrade, Rafael B; Camacho D'Andrea, Gabriela; Louzada, Julio; Vaz-de-Mello, Fernando Z; Numata, Izaya; Lacau, Sébastien; Cochrane, Mark A

    2012-01-01

    Fire has become an increasingly important disturbance event in south-western Amazonia. We conducted the first assessment of the ecological impacts of these wildfires in 2008, sampling forest structure and biodiversity along twelve 500 m transects in the Chico Mendes Extractive Reserve, Acre, Brazil. Six transects were placed in unburned forests and six were in forests that burned during a series of forest fires that occurred from August to October 2005. Normalized Burn Ratio (NBR) calculations, based on Landsat reflectance data, indicate that all transects were similar prior to the fires. We sampled understorey and canopy vegetation, birds using both mist nets and point counts, coprophagous dung beetles and the leaf-litter ant fauna. Fire had limited influence upon either faunal or floral species richness or community structure responses, and stems wildfires had much less effect upon forest structure and biodiversity in these south-western Amazonian forests than in central and eastern Amazonia, where most fire research has been undertaken to date. We discuss potential reasons for the apparent greater resilience of our study plots to wildfire, examining the role of fire intensity, bamboo dominance, background rates of disturbance, landscape and soil conditions.

  8. Reduction in environmental impact of sulfuric acid hydrolysis of bamboo for production of fuel ethanol.

    Science.gov (United States)

    Sun, Zhao-Yong; Tang, Yue-Qin; Morimura, Shigeru; Kida, Kenji

    2013-01-01

    Fuel ethanol can be produced from bamboo by concentrated sulfuric acid hydrolysis followed by continuous ethanol fermentation. To reduce the environmental impact of this process, treatment of the stillage, reuse of the sulfuric acid and reduction of the process water used were studied. The total organic carbon (TOC) concentration of stillage decreased from 29,688 to 269 mg/l by thermophilic methane fermentation followed by aerobic treatment. Washing the solid residue from acid hydrolysis with effluent from the biological treatment increased the sugar recovery from 69.3% to 79.3%. Sulfuric acid recovered during the acid-sugar separation process was condensed and reused for hydrolysis, resulting in a sugar recovery efficiency of 76.8%, compared to 80.1% when fresh sulfuric acid was used. After acetate removal, the condensate could be reused as elution water in the acid-sugar separation process. As much as 86.3% of the process water and 77.6% of the sulfuric acid could be recycled. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Weibull statistical analysis of tensile strength of vascular bundle in inner layer of moso bamboo culm in molecular parasitology and vector biology.

    Science.gov (United States)

    Le, Cui; Wanxi, Peng; Zhengjun, Sun; Lili, Shang; Guoning, Chen

    2014-07-01

    Bamboo is a radial gradient variation composite material against parasitology and vector biology, but the vascular bundles in inner layer are evenly distributed. The objective is to determine the regular size pattern and Weibull statistical analysis of the vascular bundle tensile strength in inner layer of Moso bamboo. The size and shape of vascular bundles in inner layer are similar, with an average area about 0.1550 mm2. A statistical evaluation of the tensile strength of vascular bundle was conducted by means of Weibull statistics, the results show that the Weibull modulus m is 6.1121 and the accurate reliability assessment of vascular bundle is determined.

  10. Comportamento estrutural de vigas de concreto reforçadas com ripas de bambu cravejadas de pinos Structural behavior of concrete beams reinforced with pinned bamboo-splints

    Directory of Open Access Journals (Sweden)

    Antonio C. Braga Filho

    2010-10-01

    Full Text Available Uma das deficiências do bambu reforçando vigas de concreto armado está relacionada com deslocamentos relativos entre os dois materiais. A investigação aqui reportada teve como objetivo avaliar experimentalmente a possibilidade de se melhorar o trabalho conjunto bambu-concreto, através do cravejamento de pinos nas ripas de bambu usadas como reforço. Para tanto, oito vigas de concreto foram ensaiadas, das quais seis foram reforçadas com ripas de bambu Dendrocalamus giganteus Munro cravejadas de pinos e duas armadas com ripas de bambu sem a presença dos pinos, como referência. Usaram-se dois tipos de pino: de aço ou de bambu, em número de dois, três ou quatro pinos entre nós. Curvas força-deslocamento e força-deformação dos materiais são apresentadas e discutidas, em que os resultados mostraram que a cravação dos pinos produziu um aumento de rigidez das vigas; contudo, o furo feito para colocação do pino reduziu localmente a seção transversal da ripa de bambu e, consequentemente, a resistência última das vigas. Finalmente, resultados similares foram obtidos em vigas reforçadas com pino de aço ou de bambu.One drawback of bamboo as concrete reinforcement beams is the relative displacement between the two materials. The research reported in this paper aimed to experimentally investigate the improvement of bamboo-concrete-bond by means of nailing. Eight concrete beams were tested, six of them reinforced with Dendrocalamus giganteus Munro nailed bamboo-splints and two reference beams, reinforced with bamboo-splints without pins. Steel pins or bamboo pins were used. Two, three and four pins were nailed between bamboo nodes. Load-displacement and load-strain curves are presented and discussed. The results showed that the pins improved the beam stiffness; nevertheless, they reduced locally the transversal section of the bamboo splint and, consequently, the ultimate load. Finally, similar results were showed by beams reinforced

  11. "Diminishing returns" in the scaling of leaf area vs. dry mass in Wuyi Mountain bamboos, Southeast China.

    Science.gov (United States)

    Sun, Jun; Fan, Ruirui; Niklas, Karl J; Zhong, Quanlin; Yang, Fuchun; Li, Man; Chen, Xiaoping; Sun, Mengke; Cheng, Dongliang

    2017-07-01

    Leaf area and dry mass are crucial for plant metabolic performance. The "diminishing returns" hypothesis predicts that leaf area will scale less than one with respect to leaf dry mass, indicating that the cost of light interception increases with leaf area. However, it remains unclear whether and how this scaling relationship varies among species growing in different environments. More than 2000 measurements from five bamboo species adapted to high and low light and growing at different elevations in Wuyi Mountains, Southeast China, were used to explore how the leaf area vs. dry mass scaling relationship was affected by light and elevation. The data indicate that (1) the normalization constants for leaf area vs. dry mass were positively but not significantly correlated with increasing leaf size and that (2) the scaling exponents remained numerically invariant among all five bamboo species, with a common slope of 0.85. Standardized major axis (SMA) analyses and comparisons of 95% confidence intervals also showed that the numerical values of the scaling exponents did not differ regardless of elevation and were similar between shaded and unshaded adapted species, whereas the numerical values of the normalization constants increased with decreasing light. The data collected for all five bamboo species are consistent with the "diminishing returns" hypothesis, i.e., the scaling exponents governing the leaf area vs. dry mass scaling relationship are less than one within and across species and are insensitive to light conditions or elevation. © 2017 Sun et al. Published by the Botanical Society of America. This work is licensed under a Creative Commons Attribution License (CC-BY).

  12. Bifunctional bamboo-like CoSe2 arrays for high-performance asymmetric supercapacitor and electrocatalytic oxygen evolution

    Science.gov (United States)

    Chen, Tian; Li, Songzhan; Gui, Pengbin; Wen, Jian; Fu, Xuemei; Fang, Guojia

    2018-05-01

    Bifunctional bamboo-like CoSe2 arrays are synthesized by thermal annealing of Co(CO3)0.5OH grown on carbon cloth in Se atmosphere. The CoSe2 arrays obtained have excellent electrical conductivity, larger electrochemical active surface areas, and can directly serve as a binder-free electrode for supercapacitors and the oxygen evolution reaction (OER). When tested as a supercapacitor electrode, the CoSe2 delivers a higher specific capacitance (544.6 F g‑1 at current density of 1 mA cm‑2) compared with CoO (308.2 F g‑1) or Co3O4 (201.4 F g‑1). In addition, the CoSe2 electrode possesses excellent cycling stability. An asymmetric supercapacitor (ASC) is also assembled based on bamboo-like CoSe2 as a positive electrode and active carbon as a negative electrode in a 3.0 M KOH aqueous electrolyte. Owing to the unique stucture and good electrochemical performance of bamboo-like CoSe2, the as-assembled ACS can achieve a maximum operating voltage window of 1.7 V, a high energy density of 20.2 Wh kg‑1 at a power density of 144.1 W kg‑1, and an outstanding cyclic stability. As the catalyst for the OER, the CoSe2 exhibits a lower potential of 1.55 V (versus RHE) at current density of 10 mA cm‑2, a smaller Tafel slope of 62.5 mV dec‑1 and an also outstanding stability.

  13. Use of Solid Waste (Foundry Slag) Mortar and Bamboo Reinforcement in Seismic Analysis for Single Storey Masonry Building

    Science.gov (United States)

    Ahmad, S.; Husain, A.; Ghani, F.; Alam, M. N.

    2013-11-01

    were observed up to the table force of 4.25 kN (1,300 rpm), whereas for fixed base failure started at 800 rpm.To strengthen the fixed base model, bamboo reinforcement were used for economical point of view. Another model of same dimension with same mortar ratio was fabricated on the shake table with bamboo reinforcement as plinth band and lintel band. In addition another four round bamboo bars of 3 mm diameter were placed at each of the four corners of the model. The building model was tested and found very encouraging and surprising results. The model failure started at 1,600 rpm, which means that this model is surviving the double force in comparison with the non-bamboo reinforcement.

  14. Drinking water decontamination by biological denitrification using fresh bamboo as inoculum source.

    Science.gov (United States)

    Bucco, Samuel; Padoin, Natan; Netto, Willibaldo Schmidell; Soares, Hugo Moreira

    2014-10-01

    Groundwater contamination is becoming a serious problem in many Brazilian regions. European countries started to deal with this issue in the 1980s, mainly caused by the extensive usage of nitrogenous fertilizers and the absence of domestic wastewater treatment. Due to its high solubility, nitrate readily passes through the soil and reaches the aquifer. Thereafter, this ion moves, following groundwater flow, and can be found several kilometers from the area where the pollution occurred. Concern about nitrate contamination is due to the link found between this contaminant and various human health diseases, such as methemoglobin and cancer. Studies carried out in France enabled the design and implementation of several biological denitrification plants throughout the country, in order to remove nitrate from its contaminated groundwater. Heterotrophic denitrification facilities shown to be adequate to treat high water flows with satisfactory nitrate removal efficiency, especially when static media supports are employed. The objective of this research was to evaluate the existence of denitrifying microorganisms in bamboo (Bambusa tuldóides) and verify the feasibility of their use to inoculate a pilot-scale fixed-bed bioreactor. The support material selected to fill the bioreactor bed was commercial polypropylene Pall rings, since such support has a high porosity associated with a wide superficial area. The bioreactor was able to produce and retain a large amount of cells. Using ethanol as carbon source, nitrate (N-NO3(-)) removal efficiency of the bioreactor stood around 80 % for a maximum nitrogen loading rate of approximately 6.5 mg N-NO3 (-) L(-1) h(-1).

  15. Lemang (Rice bamboo as a representative of typical Malay food in Indonesia

    Directory of Open Access Journals (Sweden)

    Bertha Araminta Wahyudi

    2017-03-01

    Full Text Available Traditional food as foods typical of the region is one of the cultural elements in various regions of Indonesia. The food is very closely related to customs, indicating that it is very characteristic of each region and ethnicity. Indonesia consists of various ethnic groups. Ethnic Malay is one of the dominant tribe in Indonesia. Malay is spread throughout Indonesia, especially in Sumatra and Borneo. Malay has influenced Indonesia's culture in terms of food. Lemang is a traditional Malay delicacy, which has become a part of Indonesia's culture. Several regions in Indonesia use lemang for traditional ceremonies, such as Bengkulu, Jambi, West Sumatra, North Sumatra, and South Borneo. Each region has a different variation, function, and manner of presentation of lemang but same method of cooking. Local residents use the traditional method to cook lemang using open fire. This method has been passed down from ancestors and has a social value. Cooking lemang by the traditional method involves family members and neighbors so that it can improve kinship. By using the traditional method, local residents can reduce the operational cost. However, the traditional method needs longer cooking time and the quality of products is not uniform due to difficulty in controlling heat. Therefore, researchers have developed new methods of cooking lemang to get uniform quality and to reduce the cooking time. The new methods involve the use of lemang oven and stainless steel mold. Cooking lemang in an oven and replacing bamboo stalk with stainless steel mold can reportedly reduce the cooking time with the same quality as that obtained using the traditional method.

  16. Development of ion-exchange properties of bamboo charcoal modified with concentrated nitric acid

    Science.gov (United States)

    Khandaker, S.; Kuba, T.; Toyohara, Y.; Kamida, S.; Uchikawa, Y.

    2017-08-01

    The surface chemistry and the structural properties of activated carbon can be altered by the acidic modification. The objective of this study is to investigate the changes occurring in bamboo charcoal (BC) during activation with concentrated nitric acid. Low temperature (500°C) carbonized BC has been prepared and oxidized with 70% concentrated boiling nitric acid (BC-AC). The porous properties of the BC are analyzed with nitrogen adsorption isotherm at 77 K. The surface structure is observed by Field emission scanning electronic microscope (FESEM) and the surface functional groups are examined by Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and the pH of the point of zero charge (pHPZC). The results reveal that severe oxidation with HNO3 considerably decreases the surface area of BC with enhanced pore widening and FESEM observation demonstrates the erosive effect of oxidation. The FTIR analysis detects that some absorption bands are assigned for carboxyl, aldehyde and ketone groups on BC-AC. The XPS analysis also clearly shows that the ratio of oxygen and acidic functional groups has been enriched significantly on the BC-AC. The low pHPZC value of BC-AC confirms that the surface is highly acidic for the fixation of acidic functional groups on surface. In general, the existence of the abundant amount of acidic functional groups on adsorbents enhances the sorption of heavy metals ions in aqueous solution. Therefore, it is strongly expected that the modified BC, activated under the proposed conditions would be a promising ion exchanger in aqueous solution and can be applied for the adsorption of different heavy metal ions and radioactive materials from effluent.

  17. Effects of bamboo charcoal on antibiotic resistance genes during chicken manure composting.

    Science.gov (United States)

    Li, Haichao; Duan, Manli; Gu, Jie; Zhang, Yajun; Qian, Xun; Ma, Jun; Zhang, Ranran; Wang, Xiaojuan

    2017-06-01

    Composting is widely used for animal waste disposal, and bamboo charcoal (BC) can be used for nitrogen conservation during composting. However, the effects of BC on antibiotic resistance genes (ARGs) during chicken manure composting are still unclear. This study investigated the effects on ARGs of adding different proportions of BC (0%, 5%, 10%, and 20% w/w) to chicken manure compost. After 26 days, the relative abundances (RAs) of most ARGs (tetC, tetG, tetW, tetX, sul2, drfA1, drfA7, ermB, ermF, ermQ, and ermX) and intI1 declined by 21.6-99.5%, whereas sul1 increased by 7.5-17.7 times. The average RAs reductions with 0%, 5%, 10%, and 20% BC were 0.85, 1.05, 1.08, and 1.15 logs, respectively. The most important environmental factor for the ARG profiles was temperature according to redundancy analysis. Furthermore, BC significantly decreased the bio-Cu and bio-Zn levels, thereby reducing the co-selection pressure from heavy metals. Different proportions of BC had no significant effects on the removal of tetG, tetW, tetX, sul2, drfA1, and ermB. Supplementation with 10% BC was more effective at removing tetC and drfA7 compared with the other treatments. The results suggested that 10% BC supplementation is appropriate for reducing ARGs in chicken manure compost. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Characterization of the trunk neural crest in the bamboo shark, Chiloscyllium punctatum.

    Science.gov (United States)

    Juarez, Marilyn; Reyes, Michelle; Coleman, Tiffany; Rotenstein, Lisa; Sao, Sothy; Martinez, Darwin; Jones, Matthew; Mackelprang, Rachel; De Bellard, Maria Elena

    2013-10-01

    The neural crest is a population of mesenchymal cells that after migrating from the neural tube gives rise to structure and cell types: the jaw, part of the peripheral ganglia, and melanocytes. Although much is known about neural crest development in jawed vertebrates, a clear picture of trunk neural crest development for elasmobranchs is yet to be developed. Here we present a detailed study of trunk neural crest development in the bamboo shark, Chiloscyllium punctatum. Vital labeling with dioctadecyl tetramethylindocarbocyanine perchlorate (DiI) and in situ hybridization using cloned Sox8 and Sox9 probes demonstrated that trunk neural crest cells follow a pattern similar to the migratory paths already described in zebrafish and amphibians. We found shark trunk neural crest along the rostral side of the somites, the ventromedial pathway, the branchial arches, the gut, the sensory ganglia, and the nerves. Interestingly, C. punctatum Sox8 and Sox9 sequences aligned with vertebrate SoxE genes, but appeared to be more ancient than the corresponding vertebrate paralogs. The expression of these two SoxE genes in trunk neural crest cells, especially Sox9, matched the Sox10 migratory patterns observed in teleosts. Also of interest, we observed DiI cells and Sox9 labeling along the lateral line, suggesting that in C. punctatum, glial cells in the lateral line are likely of neural crest origin. Although this has been observed in other vertebrates, we are the first to show that the pattern is present in cartilaginous fishes. These findings demonstrate that trunk neural crest cell development in C. punctatum follows the same highly conserved migratory pattern observed in jawed vertebrates. © 2013 Wiley Periodicals, Inc.

  19. The Visual Poetry of Chinese Bamboo: Some Notes on Traditional Chinese Xieyi Painting

    Directory of Open Access Journals (Sweden)

    Maningning C. Miclat

    2000-06-01

    Full Text Available Chinese painting (Huo Hua which dates back to the Han Dynasty (25 A.D.-135 A.D. has two traditions: the Xieyi and the Gong Pi. Xieyi means "writing the meaning down" and its practitioners are literati artists who execute expressionistic and gestural strokes. Gong Pi painting is known for its application of colors and fine strokes. It is a naturalistic rendition of the subject that imitates the superficial likeness of the world. While Xieyi painting aims to capture the Qi or the vital spirit in the practice of painting and calligraphy,1 the naturalistic rendition of Gong Pi painting exhibits the dexterity of the artist. However, capturing the Qi is a more sophisticated preoccupation as far as the Chinese scholars of the classical times are concerned.Xieyi painting is associated with literati paintings or the Wen Ren Hua practiced by scholars. It includes mainly landscapes, flora and fauna, human figures, and the Si Jun Zi Hua2 or the Four Noblemen Painting. In the Si Jun Zi Hua painting of the Bamboo, the different brushstrokes of Chinese calligraphy are applied.3 Unlike Gong Pi painting, which takes many days or weeks to finish,4 the Xieyi painting is finished in one sitting. A Xieyi painting is composed by the artist on the spot. The blank paper signifies Yin and the brush strokes signify Yang. To balance a composition is to achieve harmony and wholeness. A good composition is achieved when the spirit or the essence of the subject is captured with the masterful brush strokes and a good sense of balance in the composition.In this paper, I will examine the history of Chinese literati painting, its materials, its tradition and milieu, the symbolism of its themes, and its practice in post-Cultural Revolution China.

  20. Co-combustion performance of coal with rice husks and bamboo

    Energy Technology Data Exchange (ETDEWEB)

    Kwong, P.C.W.; Chao, C.Y.H.; Wang, J.H.; Cheung, C.W.; Kendall, G. [Hong Kong University of Science & Technology, Kowloon (China). Dept. of Mechanical Engineering

    2007-11-15

    Biomass has been regarded as an important form of renewable energy due to the reduction of greenhouse gas emission such as carbon dioxide. An experimental study of co-combustion of coal and biomass was performed in a laboratory-scale combustion facility. Rice husks and bamboo were the selected biomass fuels in this study due to their abundance in the Asia-Pacific region. Experimental parameters including the biomass blending ratio in the fuel mixture, relative moisture content and biomass grinding size were investigated. Both energy release data and pollutant emission information were obtained. Due to the decrease in the heating value from adding biomass in the fuel mixture, the combustion temperature and energy output from the co-firing process were reduced compared with coal combustion. On the other hand, gaseous pollutant emissions including carbon monoxide (CO), carbon dioxide (CO{sub 2}), nitrogen oxides (NOx) and sulfur dioxide (SO{sub 2}) were reduced and minimum energy-based emission factors were found in the range of 10-30% biomass blending ratio. With an increase in the moisture content in the biomass, decreases in combustion temperature, SO{sub 2}, NOx and CO{sub 2} emissions were observed, while an increase in CO emissions was found. It has also been observed that chemical kinetics may play an important role compared to mass diffusion in the co-firing process and the change in biomass grinding size does not have much effect on the fuel burning rate and pollutant emissions tinder the current experimental conditions.

  1. Preparation and characterization of bio-nanocomposite films based on cassava starch or chitosan, reinforced with montmorillonite or bamboo nanofibers.

    Science.gov (United States)

    Llanos, Jaiber H R; Tadini, Carmen C

    2018-02-01

    In this study, films based on two different polysaccharides (chitosan and cassava starch) were produced by casting technique and nanostructured by montmorillonite (MMTNPs) or bamboo nanofibers (BNFs) at two different concentrations: 0.5g/100g and 1.0g/100g of polymer, using glycerol as plasticizer at concentration of 30g/100g of polymer. The particle size and surface charge of the MMTNPs and BNFs nanoparticles were 315±14nm and 60±3nm and -31.78mV and -20.77mV, respectively. In relation to the mechanical properties, the nanofibers increased the tensile strength in 50% of starch films, while the elongation at break shows a similar increase (66%) for both types of nanoparticles at concentration of 1.0g/100g. Cassava starch films showed a better response to nanostructure process, noticed through by the mechanical properties. XRD analyses showed good interaction between the polymer matrix and bamboo nanofibers. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Optimization of the bamboo guadua angustifolia kunth in the elaboration of glued laminated elements for constructive use

    International Nuclear Information System (INIS)

    Díaz, G A; Cruz, R A; Chávez, A M

    2013-01-01

    Bamboo is considered one of the best timber resources in the world because for its mechanical properties and high sustainability; this research aims to improve the mechanical properties of the laminated glued bamboo Guadua Angustifolia Kunth (GAK) for use as structural elements, starting from de very manufacture process; this is important because it is possible to observe variations in the flexural strength and the elastic modulus in GAK samples taken from different heights and thickness of the culm. In order to analyze the influence of these final mechanical properties variations in the laminated, the height of the culm where samples are extracted (cepa, basa and sobrebasa) it is taken as a variable from where different types of laminated were manufactured, seeking to make optimal the configuration based in the transversal section area and the material strength. Three assemblies were designed varying the overlap of the adhesion lines and it concluded that the highest strength average values were obtained in the laminated composites manufactured with samples taken from the bottom of the culm (basa), which is possible because in these elements there are less adhesion lines than the other ones (middle, top and mixed) or the better matching of themselves

  3. The use of bamboo and autoclaved aerated concrete block to reduce the weight of precast concrete beam

    Science.gov (United States)

    Dewi, Sri Murni; Simatupang, Roland Martin; Waluyohadi, Indra

    2017-09-01

    The lightweight structure is important for precast beam to reduce the dead loads and the handling loads. Steel reinforcement substitution with bamboo can be used to reduce the weight. For reinforced concrete beams, the concrete in tension side does not need a high compressive strength, hence it can be replaced with Autoclaved Aerated Concrete (AAC) Block. Purpose of this research is to study the strength and density behavior of the bamboo reinforced concrete beam substitute with the AAC block in tension area. The research variable was the portion of the AAC block height to the total beam height. The beam dimension was 16 cm × 20 cm × 200 cm. The concrete strength varied between 20 MPa and 25 MPa. Two variation of AAC block height were 6.5 cm and 8 cm. The beam tested in simple supported and two point loads. The control beam was made without AAC block, and 20 MPa concrete strength, and was used to compare the strength and the density of the beam. The experiment results show that the density of the beam varied between 1900 kg /m3 and 2000 kg/m3 and no significant decrease of the strength.

  4. Potent Anti-Inflammatory and Antiadipogenic Properties of Bamboo (Sasa coreana Nakai) Leaves Extract and Its Major Constituent Flavonoids.

    Science.gov (United States)

    Yang, Ji Hye; Choi, Moon-Hee; Yang, Seung Hwa; Cho, Sam Seok; Park, Su Jung; Shin, Hyun-Jae; Ki, Sung Hwan

    2017-08-09

    The pro-inflammatory response and recruitment of macrophages into adipose tissue contribute to metabolic dysfunction. Here, we reported the anti-inflammatory and antiadipogenic effects of the methanol (MeOH) extract and ethyl acetate (EtOAc) fraction of bamboo leaf and its molecular mechanism in RAW264.7 cells and 3T3-L1 adipocytes, respectively. Functional macrophage migration assays also were performed. Surprisingly, the EtOAc fraction of MeOH extracts from native Korean plant species Sasa coreana Nakai (SCN) has shown potent anti-inflammatory properties; SCN pretreatment inhibited nitric oxide (NO) production (p 0.05). Similar to leaf extracts of other bamboo species, we identified that SCN contained several flavonoids including orientin, isoorientin, and vitexin; these compounds inhibited LPS-induced NO production (p flavonoids of SCN also inhibited adipogenesis. Furthermore, conditioned medium obtained from adipocytes stimulated macrophage chemotaxis, whereas medium from adipocytes treated with SCN significantly inhibited macrophage migration. Therefore, SCN is a potential therapeutic agent for the prevention of inflammation and obesity.

  5. Structural and electrical characterization of bamboo-shaped C-N nanotubes-poly ethylene oxide (PEO) composite films

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Ram Manohar, E-mail: rmanohar28@yahoo.co.in; Dobal, Pramod S. [VSSD College, Department of Physics (India)

    2012-10-15

    We have prepared bamboo-shaped C-N nanotubes-polyethylene oxide (PEO) composite films by solution cast technique and investigated their structural/microstructural and electrical properties and developed a correlation between them. The formation of clean compartmentalized bamboo-shaped C-N nanotubes was confirmed by TEM. SEM investigations revealed a homogeneous dispersion of nanotubes in PEO matrix. Enhanced electrical conductivity was observed for the C-N nanotubes-PEO composites than bare PEO. The conductivity measurements on the C-N nanotubes-PEO composite films with {approx}20 wt % concentration of C-N nanotubes showed an increase of eight orders ({approx}7.5 Multiplication-Sign 10{sup -8} to 6.2 S cm{sup -1}) of magnitude in conductivity from bare PEO film. Raman spectra showed the stress-free nature of the composites and established the bonding of nanotubes with PEO, which resulted in the variation of Raman parameters. The Raman data of composites corroborate the findings of variation in electrical conductivity.

  6. Disposal Options of Bamboo Fabric-Reinforced Poly(Lactic Acid Composites for Sustainable Packaging: Biodegradability and Recyclability

    Directory of Open Access Journals (Sweden)

    M.R. Nurul Fazita

    2015-08-01

    Full Text Available The present study was conducted to determine the recyclability and biodegradability of bamboo fabric-reinforced poly(lactic acid (BF-PLA composites for sustainable packaging. BF-PLA composite was recycled through the granulation, extrusion, pelletization and injection processes. Subsequently, mechanical properties (tensile, flexural and impact strength, thermal stability and the morphological appearance of recycled BF-PLA composites were determined and compared to BF-PLA composite (initial materials and virgin PLA. It was observed that the BF-PLA composites had the adequate mechanical rigidity and thermal stability to be recycled and reused. Moreover, the biodegradability of BF-PLA composite was evaluated in controlled and real composting conditions, and the rate of biodegradability of BF-PLA composites was compared to the virgin PLA. Morphological and thermal characteristics of the biodegradable BF-PLA and virgin PLA were obtained by using environment scanning electron microscopy (ESEM and differential scanning calorimetry (DSC, respectively. The first order decay rate was found to be 0.0278 and 0.0151 day−1 in a controlled composting condition and 0.0008 and 0.0009 day−1 in real composting conditions for virgin PLA and BF-PLA composite, respectively. Results indicate that the reinforcement of bamboo fabric in PLA matrix minimizes the degradation rate of BF-PLA composite. Thus, BF-PLA composite has the potential to be used in product packaging for providing sustainable packaging.

  7. RNA-sequencing analysis of fungi-induced transcripts from the bamboo wireworm Melanotus cribricollis (Coleoptera: Elateridae larvae.

    Directory of Open Access Journals (Sweden)

    Bi-Huan Ye

    Full Text Available Larvae of Melanotus cribricollis, feed on bamboo shoots and roots, causing serious damage to bamboo in Southern China. However, there is currently no effective control measure to limit the population of this underground pest. Previously, a new entomopathogenic fungal strain isolated from M. cribricollis larvae cadavers named Metarhizium pingshaense WP08 showed high pathogenic efficacy indoors, indicated that the fungus could be used as a bio-control measure. So far, the genetic backgrounds of both M. cribricollis and M. pingshaense WP08 were blank. Here, we analyzed the whole transcriptome of M. cribricollis larvae, infected with M. pingshaense WP08 or not, using high-throughput next generation sequencing technology. In addition, the transcriptome sequencing of M. pingshaense WP08 was also performed for data separation of those two non-model species. The reliability of the RNA-Seq data was also validated through qRT-PCR experiment. The de novo assembly, functional annotation, sequence comparison of four insect species, and analysis of DEGs, enriched pathways, GO terms and immune related candidate genes were operated. The results indicated that, multiple defense mechanisms of M. cribricollis larvae are initiated to protect against the more serious negative effects caused by fungal infection. To our knowledge, this was the first report of transcriptome analysis of Melanotus spp. infected with a fungus, and it could provide insights to further explore insect-fungi interaction mechanisms.

  8. Germination Ecology of Arundinaria alpina (K. Schum. and Oxytenanthera abyssinica (A. Rich. Munro Seeds: Indigenous Bamboo Species in Ethiopia

    Directory of Open Access Journals (Sweden)

    Tinsae Bahru

    2015-01-01

    Full Text Available Highland bamboo (Arundinaria alpina and lowland bamboo (Oxytenanthera abyssinica are indigenous to Ethiopia and endemic to Africa. Seeds of A. alpina were collected from Dawa Wereda (District, while O. abyssinica seeds were collected from Pawe and Sherkole Weredas. In this study, seed presowing treatments, effects of dry heat, moist heat, and light/dark treatments on the germination of seeds were tested. The averages were of 59,416 and 8,393 seeds contained within 1 kg of A. alpina and O. abyssinica seeds within 86 and 91% pure seeds, respectively. From 1 kg of pure seeds 37,301 and 7,168 seedlings are raised in the laboratory in their respective orders. The result revealed that control seeds of A. alpina and O. abyssinica showed the best germination of 73 and 98%. Germination of both dry and moist heat treatments of O. abyssinica seeds was significantly improved at 60 and 80°C. Unlike A. alpina seeds, seeds of O. abyssinica had better germination for light treatment compared to dark. For effective large scale plantation and raising of A. alpina and O. abyssinica seedlings from its seeds for laboratory, control seeds supply to necessary light source (for O. abyssinica seeds is recommended.

  9. Thermal and magnetic behavior of Angustifolia Kunth bamboo fibers covered with Fe{sub 3}O{sub 4} particles

    Energy Technology Data Exchange (ETDEWEB)

    Calvo, S. [Laboratorio de Magnetismo y Materiales Avanzados, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Colombia, Sede Manizales, Manizales (Colombia); Arias, N.P. [Laboratorio de Materiales Nanoestructurados y Funcionales, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Colombia, Sede Manizales, Manizales (Colombia); Departamento de Ingenieria Electrica, Electronica y Computacion, Facultad de Ingenieria y Arquitectura, Universidad Nacional de Colombia, Sede Manizales, Manizales (Colombia); Giraldo, O., E-mail: ohggiraldo@hotmail.com [Laboratorio de Materiales Nanoestructurados y Funcionales, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Colombia, Sede Manizales, Manizales (Colombia); Rosales-Rivera, A.; Moscoso, O. [Laboratorio de Magnetismo y Materiales Avanzados, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Colombia, Sede Manizales, Manizales (Colombia)

    2012-08-15

    Several Angustifolia Kunth bamboo fibers, which have been previously treated with an alkaline solution, were coated with magnetite particles. The coating of the fibers was achieved by an in-situ co-precipitation method with Fe{sup 2+} and Fe{sup 3+}in NaOH or NH{sub 4}OH. The fibers were evaluated by chemical analysis using atomic absorption (A.A.) technique, structural characterization by X-ray diffraction (XRD), thermal stability with thermo-gravimetric analysis (TGA) in nitrogen at temperature range between 23 Degree-Sign C and 800 Degree-Sign C and magnetic behavior using vibrating sample magnetometry (VSM) applying a magnetic field between -27 KOe and 27 KOe at room temperature. We found that the thermal stability and magnetization depend of the synthesis method used to cover the Angustifolia Kunth bamboo fibers. In addition, an improved magnetic response was observed when NaOH solution is used to generate the magnetite coating on the fiber surface.

  10. RNA-sequencing analysis of fungi-induced transcripts from the bamboo wireworm Melanotus cribricollis (Coleoptera: Elateridae) larvae.

    Science.gov (United States)

    Ye, Bi-Huan; Zhang, Ya-Bo; Shu, Jin-Ping; Wu, Hong; Wang, Hao-Jie

    2018-01-01

    Larvae of Melanotus cribricollis, feed on bamboo shoots and roots, causing serious damage to bamboo in Southern China. However, there is currently no effective control measure to limit the population of this underground pest. Previously, a new entomopathogenic fungal strain isolated from M. cribricollis larvae cadavers named Metarhizium pingshaense WP08 showed high pathogenic efficacy indoors, indicated that the fungus could be used as a bio-control measure. So far, the genetic backgrounds of both M. cribricollis and M. pingshaense WP08 were blank. Here, we analyzed the whole transcriptome of M. cribricollis larvae, infected with M. pingshaense WP08 or not, using high-throughput next generation sequencing technology. In addition, the transcriptome sequencing of M. pingshaense WP08 was also performed for data separation of those two non-model species. The reliability of the RNA-Seq data was also validated through qRT-PCR experiment. The de novo assembly, functional annotation, sequence comparison of four insect species, and analysis of DEGs, enriched pathways, GO terms and immune related candidate genes were operated. The results indicated that, multiple defense mechanisms of M. cribricollis larvae are initiated to protect against the more serious negative effects caused by fungal infection. To our knowledge, this was the first report of transcriptome analysis of Melanotus spp. infected with a fungus, and it could provide insights to further explore insect-fungi interaction mechanisms.

  11. Adsorption characteristics of trace levels of bromate in drinking water by modified bamboo-based activated carbons.

    Science.gov (United States)

    Chen, Ho-Wen; Chuang, Yen Hsun; Hsu, Cheng-Feng; Huang, Winn-Jung

    2017-09-19

    This study was undertaken to investigate the adsorption kinetics and isotherms of bromate (BrO 3 - ) on bamboo charcoals that are activated with nitrogen and water vapor. Bamboo-based activated carbon (AC) was dipped in acid and oxidized in a mixture of potassium permanganate and sulfuric acid. Oxidation treatment considerably improved the physicochemical properties of AC, including purity, pore structure and surface nature, significantly enhancing BrO 3 - adsorption capacity. AC with many oxygenated groups and a high mesopore volume exhibited a particularly favorable tendency for BrO 3 - adsorption. Its adsorption of BrO 3 - is best fitted using Langmuir isotherm, and forms a monolayer. A kinetic investigation revealed that the adsorption of BrO 3 - by the ACs involved chemical sorption and was controlled by intra-particle diffusion. The competitive effects of natural organic matter (NOM) on AC were evaluated, and found to reduce the capacity of carbon to adsorb BrO 3 - . Residual dissolved ozone reacted with AC, reducing its capacity to absorb BrO 3 - . Proper dosing and staging of the ozonation processes can balance the ozone treatment efficiency, BrO 3 - formation, and the subsequent removal of BrO 3 - .

  12. Reproductive Behavior and Basic Biology of the Oriental Bamboo-Inhabiting Anoplomus rufipes and a Comparison with Frugivorous Dacinae Fruit Flies

    Science.gov (United States)

    Kovac, Damir

    2015-01-01

    The reproductive behaviors and mating systems of the fruit-infesting species of the Dacinae tribes Ceratitidini and Dacini are increasingly well understood, while in the non-frugivorous tribe Gastrozonini, data are lacking. In the present study, the reproductive behavior of Anoplomus rufipes from North Thailand was studied in the field, other behaviors also in the laboratory. A. rufipes mated on young bamboo plants growing in areas destroyed by fire. Exudates of extrafloral nectaries produced by the young bamboo plants provided food for the females. Factors affecting the choice of the mating site were favorable microclimatic conditions and food. Courtship behavior was performed on the upper sides of bamboo leaves and included pheromone calling (abdominal elevation, anal pouch eversion, abdominal pleural distention), anal dabbing, looping flights and a specific lofting/body swaying behavior. The males searched individually for females or formed leks containing up to four males. The reproductive behaviors and lek formation of A. rufipes are compared to other Dacinae (Ceratitis, Bactrocera), and their functions are discussed. Hitherto unknown data on the general biology of A. rufipes are also included. A. rufipes larvae infested living bamboo shoots of Cephalostachyum pergracile, and the observed behaviors of the adults included locomotion, grooming, feeding, oral droplet deposition, bubbling and agonistic behavior. PMID:26512699

  13. Molecular phylogeny of 21 tropical bamboo species reconstructed by integrating non-coding internal transcribed spacer (ITS1 and 2) sequences and their consensus secondary structure.

    Science.gov (United States)

    Ghosh, Jayadri Sekhar; Bhattacharya, Samik; Pal, Amita

    2017-06-01

    The unavailability of the reproductive structure and unpredictability of vegetative characters for the identification and phylogenetic study of bamboo prompted the application of molecular techniques for greater resolution and consensus. We first employed internal transcribed spacer (ITS1, 5.8S rRNA and ITS2) sequences to construct the phylogenetic tree of 21 tropical bamboo species. While the sequence alone could grossly reconstruct the traditional phylogeny amongst the 21-tropical species studied, some anomalies were encountered that prompted a further refinement of the phylogenetic analyses. Therefore, we integrated the secondary structure of the ITS sequences to derive individual sequence-structure matrix to gain more resolution on the phylogenetic reconstruction. The results showed that ITS sequence-structure is the reliable alternative to the conventional phenotypic method for the identification of bamboo species. The best-fit topology obtained by the sequence-structure based phylogeny over the sole sequence based one underscores closer clustering of all the studied Bambusa species (Sub-tribe Bambusinae), while Melocanna baccifera, which belongs to Sub-Tribe Melocanneae, disjointedly clustered as an out-group within the consensus phylogenetic tree. In this study, we demonstrated the dependability of the combined (ITS sequence+structure-based) approach over the only sequence-based analysis for phylogenetic relationship assessment of bamboo.

  14. Reproductive Behavior and Basic Biology of the Oriental Bamboo-Inhabiting Anoplomus rufipes and a Comparison with Frugivorous Dacinae Fruit Flies

    Directory of Open Access Journals (Sweden)

    Damir Kovac

    2015-10-01

    Full Text Available The reproductive behaviors and mating systems of the fruit-infesting species of the Dacinae tribes Ceratitidini and Dacini are increasingly well understood, while in the non-frugivorous tribe Gastrozonini, data are lacking. In the present study, the reproductive behavior of Anoplomus rufipes from North Thailand was studied in the field, other behaviors also in the laboratory. A. rufipes mated on young bamboo plants growing in areas destroyed by fire. Exudates of extrafloral nectaries produced by the young bamboo plants provided food for the females. Factors affecting the choice of the mating site were favorable microclimatic conditions and food. Courtship behavior was performed on the upper sides of bamboo leaves and included pheromone calling (abdominal elevation, anal pouch eversion, abdominal pleural distention, anal dabbing, looping flights and a specific lofting/body swaying behavior. The males searched individually for females or formed leks containing up to four males. The reproductive behaviors and lek formation of A. rufipes are compared to other Dacinae (Ceratitis, Bactrocera, and their functions are discussed. Hitherto unknown data on the general biology of A. rufipes are also included. A. rufipes larvae infested living bamboo shoots of Cephalostachyum pergracile, and the observed behaviors of the adults included locomotion, grooming, feeding, oral droplet deposition, bubbling and agonistic behavior.

  15. A durable, superhydrophobic, superoleophobic and corrosion-resistant coating with rose-like ZnO nanoflowers on a bamboo surface

    Science.gov (United States)

    Jin, Chunde; Li, Jingpeng; Han, Shenjie; Wang, Jin; Sun, Qingfeng

    2014-11-01

    Bamboo remains a vital component of modern-day society; however, its use is severely limited in certain applications because of its hydrophilic and oleophilic properties. In this work, we present a method to render bamboo surfaces superamphiphobic by combining control of ZnO nanostructures and fluoropolymer deposition while maintaining their corrosion resistance. Large-scale rose-like ZnO nanoflowers (RZN) were planted on the bamboo surface by a hydrothermal method. After fluoroalkylsilane (FAS) film deposition to lower the surface energy, the resulting surface showed superamphiphobicity toward water, oil, and even certain corrosive liquids, including salt solutions and acidic and basic solutions at all pH values. The as-prepared superamphiphobic bamboo surface was durable and maintained its superhydrophobic property with water contact angles >150° when stored under ambient condition for two months or immersed in a hydrochloric acid solution of pH 1 and a sodium hydroxide solution of pH 14 for 3 h at 50 °C.

  16. Effect of Soda-Anthraquinone Pulping Conditions and Beating Revolution on the Mechanical Properties of Paper made from Gigantochloa scortechinii (Semantan Bamboo)

    International Nuclear Information System (INIS)

    Nurul Husna Mohd Hassan; Suhaimi Muhammed

    2013-01-01

    The effect of soda-AQ pulping conditions and beating revolution on the mechanical properties of paper made from Semantan bamboo (Gigantochloa scortechinii) was studied. The bamboo chips were pulped using MK digester pulping unit with 10 to 20 % alkali charge and 150 to 170 degree Celsius cooking temperature. The screened yield varies from 38.7 to 48.4 %, and each yield went through beating process at 1000 or 8000 beating revolutions. The bamboo pulp was then made into 60 g/ m 2 laboratory scale papers and their mechanical properties were assessed conforming to TAPPI standards. The results revealed that tensile index, bursting index, tearing index and folding endurance ranged from 42.04 to 91.09 Nm/ g, 2.68 to 7.10 kPa.m 2 /g, 11.03 to 26.64 mN.m 2 /g and 30 to 1127 double folds, respectively. The highest paper properties were found from pulping condition of 15 % alkali charge and 150 degree Celsius cooking temperature based on the fibre bonding index, with tensile index at 87.71 Nm/g, bursting index at 6.94 kPa.m 2 / g, tearing index at 12.72 mN.m 2 / g and folding endurance at 613 double folds. Such findings indicate that comparable high strength mechanical properties of paper can be produced from Semantan bamboo pulp with more environmentally friendly pulping process compared to the kraft pulping process that had been used in bamboo pulping. (author)

  17. Effects of phosphorus application on photosynthetic carbon and nitrogen metabolism, water use efficiency and growth of dwarf bamboo (Fargesia rufa) subjected to water deficit.

    Science.gov (United States)

    Liu, Chenggang; Wang, Yanjie; Pan, Kaiwen; Jin, Yanqiang; Li, Wei; Zhang, Lin

    2015-11-01

    Dwarf bamboo (Fargesia rufa Yi), one of the staple foods for the endangered giant pandas, is highly susceptible to water deficit due to its shallow roots. In the face of climate change, maintenance and improvement in its productivity is very necessary for the management of the giant pandas' habitats. However, the regulatory mechanisms underlying plant responses to water deficit are poorly known. To investigate the effects of P application on photosynthetic C and N metabolism, water use efficiency (WUE) and growth of dwarf bamboo under water deficit, a completely randomized design with two factors of two watering (well-watered and water-stressed) and two P regimes (with and without P fertilization) was arranged. P application hardly changed growth, net CO2 assimilation rate (P(n)) and WUE in well-watered plants but significantly increased relative growth rate (RGR) and P(n) in water-stressed plants. The effect of P application on RGR under water stress was mostly associated with physiological adjustments rather than with differences in biomass allocation. P application maintained the balance of C metabolism in well-watered plants, but altered the proportion of nitrogenous compounds in N metabolism. By contrast, P application remarkably increased sucrose-metabolizing enzymes activities with an obvious decrease in sucrose content in water-stressed plants, suggesting an accelerated sucrose metabolism. Activation of nitrogen-metabolizing enzymes in water-stressed plants was attenuated after P application, thus slowing nitrate reduction and ammonium assimilation. P application hardly enlarged the phenotypic plasticity of dwarf bamboo in response to water in the short term. Generally, these examined traits of dwarf bamboo displayed weak or negligible responses to water-P interaction. In conclusion, P application could accelerate P(n) and sucrose metabolism and slow N metabolism in water-stressed dwarf bamboo, and as a result improved RGR and alleviated damage from soil

  18. Oviposition responses of Aedes mosquitoes to bacterial isolates from attractive bamboo infusions.

    Science.gov (United States)

    Ponnusamy, Loganathan; Schal, Coby; Wesson, Dawn M; Arellano, Consuelo; Apperson, Charles S

    2015-09-23

    The mosquitoes Aedes aegypti and Aedes albopictus are vectors of pathogenic viruses that cause major human illnesses including dengue, yellow fever and chikungunya. Both mosquito species are expanding their geographic distributions and now occur worldwide in temperate and tropical climates. Collection of eggs in oviposition traps (ovitraps) is commonly used for monitoring and surveillance of container-inhabiting Aedes populations by public health agencies charged with managing mosquito-transmitted illness. Addition of an organic infusion in these traps increases the number of eggs deposited. Gravid females are guided to ovitraps by volatile chemicals produced from the breakdown of organic matter by microbes. We previously isolated and cultured 14 species of bacteria from attractive experimental infusions, made from the senescent leaves of canebrake bamboo (Arundinaria gigantea). Cultures were grown for 24 h at 28 °C with constant shaking (120 rpm) and cell densities were determined with a hemocytometer. Behavioral responses to single bacterial isolates and to a mix of isolates at different cell densities were evaluated using two-choice sticky-screen bioassay methods with gravid Ae. aegypti and Ae. albopictus. In behavioral assays of a mix of 14 bacterial isolates, significantly greater attraction responses were exhibited by Ae. aegypti and Ae. albopictus to bacterial densities of 10(7) and 10(8) cells/mL than to the control medium. When we tested single bacterial isolates, seven isolates (B1, B2, B3, B5, B12, B13 and B14) were significantly attractive to Ae. aegypti, and six isolates (B1, B5, B7, B10, B13 and B14) significantly attracted Ae. albopictus. Among all the isolates tested at three different cell densities, bacterial isolates B1, B5, B13 and B14 were highly attractive to both Aedes species. Our results show that at specific cell densities, some bacteria significantly influence the attraction of gravid Ae. aegypti and Ae. albopictus females to

  19. Pedobacter seoulensis sp. nov., isolated from soil of a bamboo field.

    Science.gov (United States)

    Ngo, Hien T T; Son, Heung-Min; Park, Sang-Yong; Kim, Ki-Young; Yi, Tae-Hoo

    2014-05-01

    A Gram-stain negative, strictly aerobic, motile by gliding, rod-shaped and yellow pigmented strain THG-G12T was isolated from soil of a bamboo field in Seoul, Republic of Korea. Strain THG-G12T was observed to grow well at 20–28 °C and pH 7.0–7.5 in the absence of NaCl on nutrient agar. Based on 16S rRNA gene sequence comparisons, strain THG-G12T was found to be most closely related to Pedobacter ginsengisoli Gsoil 104T (97.5 % sequence similarity), Pedobacter steynii WB2.3-45T (97.4 %), Pedobacter metabolipauper WB2.3-71T (97.2 %), Pedobacter nyackensis NWG-II14T (97.2 %), Pedobacter caeni LMG 22862T (97.1 %) and Pedobacter duraquae WB2.1-25T (97.0 %), but DNA relatedness between strain THG-G12T and its phylogenetically closest neighbours was below 9.5 %. The G+C content of the genomic DNA was determined to be 39.9 mol%. The only isoprenoid quinone detected in strain THG-G12T was menaquinone-7 (MK-7). The major component in the polyamine pattern was sym-homospermidine. The major polar lipids were found to be phosphatidylethanolamine, unidentified phosphoglycolipids, unidentified aminophosphoglycolipids, unidentified aminolipids and unidentified lipids. Strain THG-G12T showed the presence of two ceramide phosphorylethanolamines (CerPE-2′ and CerPE-2″), dihydrosphingosines and an unidentified ceramide as the major ceramide. The major fatty acids were identified as summed feature 3 (as defined by the MIDI system; C16:1 ω7c and/or C16:1 ω6c) and iso-C15:0. These data support the affiliation of strain THG-G12T to the genus Pedobacter. The results of physiological and biochemical tests enabled strain THG-G12T to be differentiated genotypically and phenotypically from the recognized species of the genus Pedobacter. Therefore, the novel isolate represents a novel species, for which the name Pedobacter seoulensis sp. nov. is proposed, with THG-G12T as the type strain (=KACC 17529T =JCM 19363T).

  20. Chemical Constituents and Antioxidant Properties of Phyllostachys ...

    African Journals Online (AJOL)

    Plant extract components were identified by ultraviolet spectroscopy (UV), mass spectrometry (MS), and nuclear magnetic resonance spectroscopy (NMR). DPPH (1,1-diphenyl 2-picrylhydrazyl) assay was used to measure the radical scavenging activity of the compounds . Results: We isolated fourteen compounds including ...

  1. Multifunctional properties of Ag/TiO2/bamboo charcoal composites: Preparation and examination through several characterization methods

    Science.gov (United States)

    Laohhasurayotin, Kritapas; Pookboonmee, Sudarat

    2013-10-01

    Composite materials consisting of silver, titanium dioxide, and bamboo charcoal have been prepared from stepwise methods including sol-gel synthesis, wet impregnation, and electrochemical deposition. These as-fabricated composites are investigated for the possibility in multi-application that includes adsorption, photocatalysis, and anti-microorganism. Characterization methods such as scanning electron microscope, transmission electron microscope, gas adsorption, and X-ray diffraction are employed to prove the existence of all three components and their hybrid structure. The adsorption and photocatalysis are determined as the methylene blue molecules are removed continually under the absence and presence of 366 nm UV light. Bactericidal efficacy is also studied to demonstrate the disinfection potential for hygienic purpose.

  2. Effect of Growth Temperature on Bamboo-shaped Carbon–Nitrogen (C–N Nanotubes Synthesized Using Ferrocene Acetonitrile Precursor

    Directory of Open Access Journals (Sweden)

    Dobal PramodSingh

    2008-01-01

    Full Text Available Abstract This investigation deals with the effect of growth temperature on the microstructure, nitrogen content, and crystallinity of C–N nanotubes. The X-ray photoelectron spectroscopic (XPS study reveals that the atomic percentage of nitrogen content in nanotubes decreases with an increase in growth temperature. Transmission electron microscopic investigations indicate that the bamboo compartment distance increases with an increase in growth temperature. The diameter of the nanotubes also increases with increasing growth temperature. Raman modes sharpen while the normalized intensity of the defect mode decreases almost linearly with increasing growth temperature. These changes are attributed to the reduction of defect concentration due to an increase in crystal planar domain sizes in graphite sheets with increasing temperature. Both XPS and Raman spectral observations indicate that the C–N nanotubes grown at lower temperatures possess higher degree of disorder and higher N incorporation.

  3. Evaluate the Invasion of dwarf bamboo to alpine snow-meadow in northern Japan based on ground measurement and L-band microwave backscatter

    Science.gov (United States)

    Yonemori, Maino; Buho, Hoshino; Kudo, Gaku; Kaneko, Masami; Yabuki, Tetsuo

    Dwarf bamboo (Sasa kurilensis) is extensively increasing the distribution area in the alpine snow-meadow within the wilderness area of the Taisetsu Mountains, northern Japan. This rapid change may be related to the soil desiccation and expansion of annual growing period caused by the recent acceleration of snowmelt time (Kudo et al., 2010). Control the expansion of the dwarf bamboo, first it is necessary to identify spatial distribution of the soil moisture. However, Soil moisture is highly variable both spatially and temporally. In order to estimate soil moisture, extrapolation of much point's ground measurements has been necessary (Wood et al., 1993, Hall, 1996). The theoretical basis for measuring soil moisture by backscattering coefficient (dB) of microwave satellite is based on the large contrast between the dielectric properties of liquid water and of dry soil (Hoshino et al., 2009). The following variables affect the measurement of soil moisture: surface roughness, soil texture, vegetation canopy effects and instrument parameters such as incidence angle, frequency and polarization. With this study, we made a correlation model between backscattering coefficient (dB) and Volumetric Water Content (VWC, %) based extrapolation of point's ground measurements and PALSAR L-band backscatter. However, it did not shows good correlation in the place where dwarf bamboo high density area. Probably it is because the dwarf bamboo cover (surface roughness) plays a dominant role compared to the soil moisture in this case. The degree to which vegetation, both dwarf bamboo and alpine, affects the determination of soil moisture depends on the mass of vegetation and the wavelength. The effect of a rough surface is to increase the surface emissivity and thus to decrease the sensitivity to soil moisture, and, as mentioned earlier, whether or not a surface is smooth depends on the wavelength. But, the microwave backscatter very effectively method for the Taisetuzan Mountains area

  4. Avaliação físico-mecânica de colmos de bambu tratados Physico-mechanical evaluation of treated bamboo culms

    Directory of Open Access Journals (Sweden)

    Jean C. C. Espelho

    2008-12-01

    Full Text Available O bambu é um material renovável e de baixo custo, encontrado em abundância em regiões tropicais e subtropicais; no entanto, a maior parte das espécies de bambu é altamente suscetível ao ataque de fungos e insetos. Basicamente, pode-se aumentar a durabilidade dos colmos de bambu; de duas maneiras: por procedimentos culturais (naturais e pelo tratamento dos colmos com produtos químicos. Neste trabalho, testou-se a eficiência da aplicação do Método de Boucherie Modificado, comparando-se o aumento na durabilidade das amostras tratadas (taliscas de bambu com amostras não tratadas ou testemunhas. Para tal, avaliaram-se os efeitos de algumas variáveis, tais como: posição da amostra no colmo, tipos de preservativo e sua concentração, duração do tratamento e tempo de exposição das taliscas em dois ambientes (protegido e exposto e se realizaram ensaios não destrutivos - END (visual, pesagem das amostras e de ultra-som e destrutivo (flexão estática. Verificou-se a ineficiência do uso de soluções com baixa concentração, principalmente quando elas foram combinadas com tratamentos de curta duração. Os ensaios de ultra-som e de flexão estática foram suficientemente sensíveis para detectar a melhor combinação do efeito dos parâmetros avaliados.Bamboo is a renewable raw material and is available in tropical and subtropical regions, where it is considered as an inexpensive material. Nevertheless, most bamboo species are highly susceptible to insect and fungi attacks. Basically, bamboo culm protection can be obtained by means of two types of treatment: natural protection and chemical protection. In this study the performance of a Boucherie Modified Method was evaluated, comparing treated bamboo samples (bamboo splits with untreated samples (control. The effects of the sample position in the culm, chemical solution type and its concentration, treatment duration and the exposition period in two environments (protected and

  5. Vigas de concreto reforçadas com bambu Dendrocalamus giganteus. I: análise experimental Concrete beams reinforced with bamboo (Dendrocalamus giganteus. I: experimental analysis

    Directory of Open Access Journals (Sweden)

    Humberto C. Lima Júnior

    2005-12-01

    Full Text Available Neste trabalho, apresenta-se e se discute um estudo experimental sobre o comportamento estrutural de vigas de concreto reforçadas com bambu. Ensaiaram-se dez vigas de concreto armado, sendo oito vigas armadas longitudinalmente com varas de bambu Dendrocalamus giganteus e duas vigas de referência, armadas com barras de aço. Duas variáveis foram estudadas: a taxa de armadura longitudinal (1,6 e 3,2% e a relação área/perímetro das varas de bambu (0,25 e 0,33 cm. Para cada combinação de variáveis foram confeccionadas duas vigas. Curvas força vs. deslocamento e força vs. deformação dos materiais são apresentadas e discutidas. Constatou-se que o comportamento estrutural das vigas de concreto reforçadas com bambu segue a teoria de flexão de Bernoulli-Kirchoff, sendo possível a aplicação dos procedimentos usuais de dimensionamento do concreto armado no projeto desses elementos. Observou-se, também, que a capacidade de carga dessas vigas se assemelha à das vigas de aço; contudo, estas são mais rígidas que aquelas.In this paper, an experimental study about bamboo reinforced concrete beams is presented and discussed. Ten reinforced concrete beams were tested, where eight of them were reinforced with Dendrocalamus giganteus bamboo-splint and two reference beams were reinforced with steel bars. Two factors were studied: the longitudinal reinforcement ratio (1.6 and 3.2% and the area/perimeter ratio of the bamboo-splint (0.25 and 0.33 cm. For each factor combination, two beams were cast. Force vs. displacement and force vs. strain curves are presented and discussed. It was found out that the structural behaviour of bamboo-concrete beams follow the Bernoulli-Kirchoff bending theory. Therefore, the usual design procedures of reinforced concrete can be used to design the bamboo-concrete beams. The load capacity of the bamboo-concrete beams is almost the same as that of reinforced with steel; nevertheless, are more stiffer than those

  6. Reverse chemical ecology: Olfactory proteins from the giant panda and their interactions with putative pheromones and bamboo volatiles.

    Science.gov (United States)

    Zhu, Jiao; Arena, Simona; Spinelli, Silvia; Liu, Dingzhen; Zhang, Guiquan; Wei, Rongping; Cambillau, Christian; Scaloni, Andrea; Wang, Guirong; Pelosi, Paolo

    2017-11-14

    The giant panda Ailuropoda melanoleuca belongs to the family of Ursidae; however, it is not carnivorous, feeding almost exclusively on bamboo. Being equipped with a typical carnivorous digestive apparatus, the giant panda cannot get enough energy for an active life and spends most of its time digesting food or sleeping. Feeding and mating are both regulated by odors and pheromones; therefore, a better knowledge of olfaction at the molecular level can help in designing strategies for the conservation of this species. In this context, we have identified the odorant-binding protein (OBP) repertoire of the giant panda and mapped the protein expression in nasal mucus and saliva through proteomics. Four OBPs have been identified in nasal mucus, while the other two were not detected in the samples examined. In particular, AimelOBP3 is similar to a subset of OBPs reported as pheromone carriers in the urine of rodents, saliva of the boar, and seminal fluid of the rabbit. We expressed this protein, mapped its binding specificity, and determined its crystal structure. Structural data guided the design and preparation of three protein mutants bearing single-amino acid replacements in the ligand-binding pocket, for which the corresponding binding affinity spectra were measured. We also expressed AimelOBP5, which is markedly different from AimelOBP3 and complementary in its binding spectrum. By comparing our binding data with the structures of bamboo volatiles and those of typical mammalian pheromones, we formulate hypotheses on which may be the most relevant semiochemicals for the giant panda.

  7. Bamboo-like 3C-SiC nanowires with periodical fluctuating diameter: Homogeneous synthesis, synergistic growth mechanism, and their luminescence properties

    Science.gov (United States)

    Zhang, Meng; Zhao, Jian; Li, Zhenjiang; Yu, Hongyuan; Wang, Yaqi; Meng, Alan; Li, Qingdang

    2016-11-01

    Herein, bamboo-like 3C-SiC nanowires have been successfully fabricated on homogeneous 6H-SiC substrate by a simple chemical vapor reaction (CVR) approach. The obtained 3C-SiC nanostructure with periodical fluctuating diameter, is composed of two alternating structure units, the typical normal-sized stem segment with perfect crystallinity and obvious projecting nodes segment having high-density stacking faults. The formation of the interesting morphology is significantly subjected to the peculiar growth condition provided by the homogeneous substrate as well as the varying growth elastic energy. Furthermore, the photoluminescence (PL) performance measured on the bamboo-like SiC nanowire shows an intensive emission peaks centered at 451 nm and 467 nm, which has been expected to make a positive progress toward the optical application of the SiC-based one-dimensional (1D) nanostructures, such as light emission diode (LED).

  8. Optimal concentration of local well brine groundwater irrigation for Bamboo willow introduced to the arid areas in northern Xinjiang province, China

    Science.gov (United States)

    Han, Wei; Cao, Ling; Zhang, Ya; Cui, Kaiqiang; Wu, Shengli

    2015-04-01

    The adaptation and survive of introduced plants to local well brine groundwater irrigation is an important issue, while people introduce some plants to improve the local environment in the construction of urban greening oases in arid areas, north China. We measured some of the photosynthetic characteristics of introduced Bamboo willow irrigated by different local well brine groundwater in the wild controlled experiments, in May 2014 in Kelamayi city in north China, which to seek the most appropriate irrigation concentration of underground saline water, and to clarify the physiological ecological adaptation to the local habitat. The parameters, measured by Li-6400XT, a portable photosynthesis system, include the following ones, net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), the internal CO2 concentration (Ci) and efficiency of water application (WUE) of one-year old introduced Bamboo willow irrigated by set salinity groundwater gradient, as 0 g/L, 5 g/L and 10 g/L. the results showed that (1) In each salt water concentration, the diurnal variation curve of net photosynthetic rate showed as "bimodal curve" style, and obvious "midday depression". (2) The parameter Pn of Bamboo willow irrigated by salt water of 5g/L was highest compared with the other two, and the value Pn irrigated by salt water concentration of 10g/L down. The net photosynthetic rate would increase in the salt concentration of 10g/L. In conclusion, the salt groundwater concentration of 10g/L was the optimal concentration of local well brine groundwater irrigation for Bamboo willow introduced to the arid areas in northern Xinjiang province, China.

  9. In Vitro Inhibition of Cytopathic Effect of Influenza Virus and Human Immunodeficiency Virus by Bamboo Leaf Extract Solution and Sodium Copper Chlorophyllin.

    Science.gov (United States)

    Ito, Akiko; Tsuneki, Akeno; Yoshida, Yu; Ryoke, Kazuo; Kaidoh, Toshiyuki; Kageyama, Seiji

    2016-03-01

    Although the link between oral and oropharyngeal health status and susceptibility to infection has long been recognized, there is a limit to the selection of antiseptics for oral care. Madin-Darby canine kidney (MDCK) cells were exposed to influenza virus and cultured in the presence or absence of test reagents: bamboo leaf extract solution and sodium copper chrolophyllin. MDCK cells were pre-incubated with the reagents to assess the inhibitory activity at adsorption (viral attachment). Similarly, anti-HIV activity and the inhibitory mechanism at adsorption were assessed by MT-2 cell culture system. Mixture of HIV and bamboo leaf extract solution was fixed and examined by transmission electron microscopy. The 50% inhibitory concentration (IC50) of bamboo leaf extract solution against influenza virus and the 50% cytotoxic concentration (CC50) in MDCK cells of the solution lay between 0.0313-0.0625% and 0.5-1.0%. The solution inhibited the influenza virus adsorption at the concentration of 0.5% (P copper chlorophyllin lay between 50-100 µM and 200-400 µM, respectively. This inhibited the virus adsorption at 200 µM (P extract solution showed values of IC50 against HIV and CC50 in MT-2 cells at around 0.0313% and between 0.25-0.5%, respectively. This solution inhibited HIV adsorption at 1.25% (P copper chlorophyllin lay between 50-100 µM and 200-400 µM, respectively. Sodium copper chlorophyllin inhibited HIV adsorption at 2.5 mM (P extract solution. Sodium copper chlorophyllin exerted antiviral activities against influenza virus and HIV as the major ingredient of bamboo leaf extract solution by blocking adsorption. This mechanism of action is different completely from the one of povidone-iodine.

  10. A Flexible and Wearable Lithium-Oxygen Battery with Record Energy Density achieved by the Interlaced Architecture inspired by Bamboo Slips.

    Science.gov (United States)

    Liu, Qing-Chao; Liu, Tong; Liu, Da-Peng; Li, Zhong-Jun; Zhang, Xin-Bo; Zhang, Yu

    2016-10-01

    A flexible and wearable lithium-oxygen (air) battery inspired by Chinese bamboo slips is constructed. In this novel battery, cathodes and anodes are woven without an air diffusion layer and any outer packaging; besides, the woven structure allows oxygen to access the cathodes from both sides freely, endowing the battery with a record energy density of over 523 W h kg -1 . © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Effects of dwarf-bamboo understory on tree seedling emergence and survival in a mixed-oak forest in northern Japan: a multi-site experimental study

    Czech Academy of Sciences Publication Activity Database

    Doležal, Jiří; Matsuki, S.; Hara, T.

    2009-01-01

    Roč. 10, č. 2 (2009), s. 225-235 ISSN 1585-8553 R&D Projects: GA ČR GA206/05/0119; GA AV ČR IAA600050802 Institutional research plan: CEZ:AV0Z60050516 Keywords : Dwarf-bamboo understory * Forest regeneration * Seedling recruitment and survival Subject RIV: EF - Botanics Impact factor: 0.792, year: 2009

  12. ISSR Marker Based Population Genetic Study of Melocanna baccifera (Roxb. Kurz: A Commercially Important Bamboo of Manipur, North-East India

    Directory of Open Access Journals (Sweden)

    Heikrujam Nilkanta

    2017-01-01

    Full Text Available Melocanna baccifera (Roxb. Kurz is an economically important bamboo of North-East India experiencing population depletion in its natural habitats. Genetic variation studies were conducted in 7 populations sampled from 5 districts of Manipur using ISSR molecular markers. The investigation was carried out as a primary step towards developing effective conservation strategies for the protection of bamboo germplasm. ISSR marker analysis showed significant level of genetic variation within the populations as revealed by moderately high average values of Nei’s genetic diversity (H 0.1639, Shannon’s diversity index (I 0.2563, percentage of polymorphic bands (PPB 59.18, total genetic variation (Ht 0.1961, and genetic diversity within population (Hs 0.1639. The study also divulged a high genetic variation at species level with Shannon’s diversity index (I, Nei’s genetic diversity (H, and percentage of polymorphic band (PPB% recorded at 0.3218, 0.1939, and 88.37, respectively. Genetic differentiation among the populations (Gst was merely 19.42% leaving 80.58% of genetic variation exhibited within the populations. The low genetic diversity between populations was consistent with AMOVA. The low genetic differentiation among populations coupled with existence of significantly high genetic diversity at species level indicated the urgent necessity of preserving and protecting all the existing natural bamboo populations in the region.

  13. ISSR Marker Based Population Genetic Study of Melocanna baccifera (Roxb.) Kurz: A Commercially Important Bamboo of Manipur, North-East India

    Science.gov (United States)

    Nilkanta, Heikrujam; Amom, Thoungamba; Rahaman, Hamidur

    2017-01-01

    Melocanna baccifera (Roxb.) Kurz is an economically important bamboo of North-East India experiencing population depletion in its natural habitats. Genetic variation studies were conducted in 7 populations sampled from 5 districts of Manipur using ISSR molecular markers. The investigation was carried out as a primary step towards developing effective conservation strategies for the protection of bamboo germplasm. ISSR marker analysis showed significant level of genetic variation within the populations as revealed by moderately high average values of Nei's genetic diversity (H 0.1639), Shannon's diversity index (I 0.2563), percentage of polymorphic bands (PPB 59.18), total genetic variation (Ht 0.1961), and genetic diversity within population (Hs 0.1639). The study also divulged a high genetic variation at species level with Shannon's diversity index (I), Nei's genetic diversity (H), and percentage of polymorphic band (PPB%) recorded at 0.3218, 0.1939, and 88.37, respectively. Genetic differentiation among the populations (Gst) was merely 19.42% leaving 80.58% of genetic variation exhibited within the populations. The low genetic diversity between populations was consistent with AMOVA. The low genetic differentiation among populations coupled with existence of significantly high genetic diversity at species level indicated the urgent necessity of preserving and protecting all the existing natural bamboo populations in the region. PMID:28168084

  14. Genome-Wide Transcriptional Profiling to Elucidate Key Candidates Involved in Bud Burst and Rattling Growth in a Subtropical Bamboo (Dendrocalamus hamiltonii)

    Science.gov (United States)

    Bhandawat, Abhishek; Singh, Gagandeep; Seth, Romit; Singh, Pradeep; Sharma, Ram K.

    2017-01-01

    Bamboo, one of the fastest growing plants, can be a promising model system to understand growth. The study provides an insight into the complex interplay between environmental signaling and cellular machineries governing initiation and persistence of growth in a subtropical bamboo (Dendrocalamus hamiltonii). Phenological and spatio-temporal transcriptome analysis of rhizome and shoot during the major vegetative developmental transitions of D. hamiltonii was performed to dissect factors governing growth. Our work signifies the role of environmental cues, predominantly rainfall, decreasing day length, and high humidity for activating dormant bud to produce new shoot, possibly through complex molecular interactions among phosphatidylinositol, calcium signaling pathways, phytohormones, circadian rhythm, and humidity responses. We found the coordinated regulation of auxin, cytokinin, brassinosteroid signaling and cell cycle modulators; facilitating cell proliferation, cell expansion, and cell wall biogenesis supporting persistent growth of emerging shoot. Putative master regulators among these candidates were identified using predetermined Arabidopsis thaliana protein-protein interaction network. We got clues that the growth signaling begins far back in rhizome even before it emerges out as new shoot. Putative growth candidates identified in our study can serve in devising strategies to engineer bamboos and timber trees with enhanced growth and biomass potentials. PMID:28123391

  15. An investigation of the use of discriminant analysis for the classification of blade edge type from cut marks made by metal and bamboo blades.

    Science.gov (United States)

    Bonney, Heather

    2014-08-01

    Analysis of cut marks in bone is largely limited to two dimensional qualitative description. Development of morphological classification methods using measurements from cut mark cross sections could have multiple uses across palaeoanthropological and archaeological disciplines, where cutting edge types are used to investigate and reconstruct behavioral patterns. An experimental study was undertaken, using porcine bone, to determine the usefulness of discriminant function analysis in classifying cut marks by blade edge type, from a number of measurements taken from their cross-sectional profile. The discriminant analysis correctly classified 86.7% of the experimental cut marks into serrated, non-serrated and bamboo blade types. The technique was then used to investigate a series of cut marks of unknown origin from a collection of trophy skulls from the Torres Strait Islands, to investigate whether they were made by bamboo or metal blades. Nineteen out of twenty of the cut marks investigated were classified as bamboo which supports the non-contemporaneous ethnographic accounts of the knives used for trophy taking and defleshing remains. With further investigation across a variety of blade types, this technique could prove a valuable tool in the interpretation of cut mark evidence from a wide variety of contexts, particularly in forensic anthropology where the requirement for presentation of evidence in a statistical format is becoming increasingly important. © 2014 Wiley Periodicals, Inc.

  16. The enhancement of the hydrolysis of bamboo biomass in ionic liquid with chitosan-based solid acid catalysts immobilized with metal ions.

    Science.gov (United States)

    Cheng, Jie; Wang, Nan; Zhao, Dezhou; Qin, Dandan; Si, Wenqing; Tan, Yunfei; Wei, Shun'an; Wang, Dan

    2016-11-01

    Three kinds of sulfonated cross-linked chitosan (SCCR) immobilized with metal ions of Cu(2+), Fe(3+) and Zn(2+) individually were synthesized and firstly used as solid acid catalysts in the hydrolysis of bamboo biomass. FTIR spectra showed that metal ions had been introduced into SCCR and the N-metal ions coordinate bound was formed. The particle sizes of these catalysts were about 500-1000μm with a pore size of 50-160μm. All of the three kinds of catalysts performed well for bamboo hydrolysis with 1-butyl-3-methyl-imidazolium chloride used as solvent. The most effective one was sulfonated cross-linked chitosan immobilized with Fe(3+) (Fe(3+)-SCCR). TRS yields were up to 73.42% for hydrolysis of bamboo powder in [C4mim]Cl with Fe(3+)-SCCR at 120°C and 20RPM after 24h. These novel chitosan-based metal ions immobilized solid acid catalysts with ionic liquids as the solvent might be promising to facilitate cost-efficient conversion of biomass into biofuels and bioproducts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Análise mecânica de pilares mistos bambu-concreto Mechanical analysis of hybrid bamboo-concrete columns

    Directory of Open Access Journals (Sweden)

    Humberto C. Lima Júnior

    2010-05-01

    Full Text Available O objetivo deste trabalho foi avaliar o comportamento de pilares de bambu da espécie Dendrocalamus giganteus com e sem o preenchimento interior de concreto. Foram ensaiados, a compressão axial, 18 pilares com comprimentos de 1, 1,5 e 2 m e, para cada comprimento, tal como 6 pilares, sendo 3 mistos de bambu-concreto e 3 formados apenas por colmos de bambu. Os resultados foram analisados através da teoria da instabilidade de casca cilíndrica e das propriedades mecânicas dos materiais. Curvas força vs. deformação, teóricas e experimentais, são apresentadas e a influência do comprimento dos pilares sobre as últimas forças resistentes foi avaliada por meio de análise de variância. Os pilares mistos bambu-concreto apresentaram comportamento não-linear e, em média, suas últimas forças resistentes mostraram valor da ordem de 50% da obtida pela Teoria da Resistência dos Materiais; já os pilares formados apenas por colmos de bambu, indicaram comportamento linear e suas últimas forças diferiram apenas 5% das teóricas, calculadas pela Teoria da Resistência dos Materiais. Verifica-se que a utilização de pilares de bambu sem preenchimento de concreto apresenta maior viabilidade estrutural e econômica, podendo ser utilizada em obras de pequeno porte e de baixo custo.This work aimed to investigate the mechanical behaviour of Dendrocalamus giganteus bamboo columns filled with concrete. Eighteen columns were tested under axial compression. The columns were 1, 1.5 and 2 m high and, for each height, 6 columns were studied, in which three were filled with concrete and three were made only with the bamboo culms. The results were analysed by the instability theory of cylindrical shell and by the mechanical properties of the material. Theoretical and experimental load versus strain curves are presented and the influence of column height on the columns load capacity were evaluated by variance analysis. The bamboo-concrete columns presented a

  18. Effects of bamboo vinegar powder on growth performance and mRNA expression levels of interleukin-10, interleukin-22, and interleukin-25 in immune organs of weaned piglets

    Directory of Open Access Journals (Sweden)

    Yongjiu Huo

    2016-06-01

    Full Text Available The aim of this study was to explore the effects of bamboo vinegar powder on growth performance, diarrhea situation and mRNA expression levels of cytokines i.e., interleukin-10 (IL-10, interleukin-22 (IL-22, and interleukin-25 (IL-25 in immune organs of weaned piglets, and to accumulate theoretical data for the application of bamboo vinegar powder in weaned piglet production. Forty-five crossbred (Duroc × Landrace × Yorkshire, all male weaned piglets with similar body weight (6.74 ± 0.17 kg at 31 days of age were randomly assigned to 5 treatments with 3 replicates per treatment and 3 piglets in each replicate. The five treatments were as follows: CON (a basal diet, ANT (the basal diet + 0.12% antibiotics, BV1 (the basal diet + 0.1% bamboo vinegar powder, BV5 (the basal diet + 0.5% bamboo vinegar powder, BV10 (the basal diet + 1.0% bamboo vinegar powder. This experiment lasted 35 days. The growth performance and diarrhea situation were recorded. The relative mRNA expression levels of IL-10, IL-22 and IL-25 in liver, spleen, duodenum and mesenteric lymph nodes were detected by real-time PCR. Feed: gain of BV5 was significantly lower than that of CON (P < 0.05. In comparison with CON, diarrhea rate and diarrhea index of BV1 and BV5 all tended to decrease (P < 0.1. Compared with CON, mRNA expression level of IL-10 in liver of ANT tended to be lower (P < 0.1 and these of BV1, BV5 and BV10 were significantly reduced (P < 0.05. The mRNA expression levels of IL-10 in duodenum of ANT, BV1, BV5 and BV10 were all lower than those of CON, of which BV10 had significantly decreased IL-10 mRNA expression in duodenum (P < 0.05. The mRNA expression levels of IL-22 in duodenum of ANT, BV1, BV5 and BV10 all tended to be inhibited compared with CON (P < 0.1. With the increase of bamboo vinegar powder dosage, mRNA expression levels of IL-25 in spleen and mesenteric lymph nodes of BV1, BV5 and BV10 tended to be up-regulated. Overall

  19. Determinação da tensão de aderência do bambu-concreto Determination of the bamboo-concrete bond stress

    Directory of Open Access Journals (Sweden)

    Ligia P. Mesquita

    2006-06-01

    Full Text Available Apresenta-se e se discute, neste trabalho, o estudo da aderência entre o bambu e o concreto; através de dois estudos baseados em uma programação estatística de experimento, em que no primeiro se investigaram as influências da dimensão da seção transversal das varetas de bambu e da resistência do concreto na aderência bambu-concreto e, no segundo, avaliou-se o efeito da colocação de pinos artificiais nas varetas de bambu. Em cada estudo realizaram-se 10 réplicas para cada combinação de fatores, resultando no total de 159 ensaios de arrancamento. Curvas tensão de aderência versus deslocamento relativo bambu-concreto, são apresentadas e discutidas, e a tensão de aderência de cálculo é calculada e comparada com os valores sugeridos por normas internacionais para barras lisas de aço. Constatou-se, na primeira fase da investigação, que apenas a resistência do concreto influencia na aderência bambu-concreto e que esta tensão é apenas 20% inferior que a do aço liso-concreto; já na segunda fase verificou-se que os pinos de bambu e de aço elevam a capacidade de transferência de tensões bambu-concreto, de forma significativa.This paper presents and discusses a study about the bamboo-concrete bond stress. Based on a statistical design of experiment, the investigation was divided in two steps: the first one, where the effects of the concrete compressive strength and the dimensions of the bamboo-splint cross-section were investigated; and the second, where the effect of artificial pins studding in the bamboo splints were evaluated. In both steps, ten replicates for each factor combination were done, resulting in 159 push-out tests. Bond stress versus relative displacement curves were presented and discussed. In addition, the design bond stresses of bamboo-concrete were calculated and their values were compared with those specified by International Building Codes for smooth steel and concrete. In the first step, it was

  20. The developmental transcriptome of the bamboo snout beetle Cyrtotrachelus buqueti and insights into candidate pheromone-binding proteins.

    Directory of Open Access Journals (Sweden)

    Hua Yang

    Full Text Available Cyrtotrachelus buqueti is an extremely harmful bamboo borer, and the larvae of this pest attack clumping bamboo shoots. Pheromone-binding proteins (PBPs play an important role in identifying insect sex pheromones, but the C. buqueti genome is not readily available for PBP analysis. Developmental transcriptomes of eggs, larvae from the first instar to the prepupal stage, pupae, and adults (females and males from emergence to mating were built by RNA sequencing (RNA-Seq in the present study to establish a sequence background of C. buqueti to help understand PBPs. Approximately 164.8 million clean reads were obtained and annotated into 108,854 transcripts. These were assembled into 24,338, 21,597, 24,798, 21,886, 24,642, and 83,115 unigenes for eggs, larvae, pupae, females, males, and the combined datasets, respectively. Unigenes were annotated against NCBI non-redundant protein sequences, NCBI non-redundant nucleotide sequences, Gene Ontology (GO, Protein family, Clusters of Orthologous Groups of Proteins/ Clusters of Eukaryotic Orthologous Groups (KOG, Swiss-Prot, and KEGG Orthology databases. A total of 17,213 unigenes were annotated into 55 sub-categories belonging to three main GO categories; 10,672 unigenes were classified into 26 functional categories by KOG classification, and 8,063 unigenes were classified into five functional KEGG categories. RSEM software for RNA sequencing showed that 4,816, 3,176, 3,661, 2,898, 4,316, 8,019, 7,273, 5,922, 5,844, and 4,570 genes were differentially expressed between larvae and males, larvae and eggs, larvae and pupae, larvae and females, males and females, males and eggs, males and pupae, females and eggs, females and pupae, and eggs and pupae, respectively. Of these, three were confirmed to be significantly differentially expressed between larvae, females, and males. Furthermore, PBP Cbuq7577_g1 was highly expressed in the antenna of males. A comprehensive sequence resource of a desirable quality was

  1. The bamboo-eating giant panda harbors a carnivore-like gut microbiota, with excessive seasonal variations.

    Science.gov (United States)

    Xue, Zhengsheng; Zhang, Wenping; Wang, Linghua; Hou, Rong; Zhang, Menghui; Fei, Lisong; Zhang, Xiaojun; Huang, He; Bridgewater, Laura C; Jiang, Yi; Jiang, Chenglin; Zhao, Liping; Pang, Xiaoyan; Zhang, Zhihe

    2015-05-19

    The giant panda evolved from omnivorous bears. It lives on a bamboo-dominated diet at present, but it still retains a typical carnivorous digestive system and is genetically deficient in cellulose-digesting enzymes. To find out whether this endangered mammalian species, like other herbivores, has successfully developed a gut microbiota adapted to its fiber-rich diet, we conducted a 16S rRNA gene-based large-scale structural profiling of the giant panda fecal microbiota. Forty-five captive individuals were sampled in spring, summer, and late autumn within 1 year. Significant intraindividual variations in the diversity and structure of gut microbiota across seasons were observed in this population, which were even greater than the variations between individuals. Compared with published data sets involving 124 gut microbiota profiles from 54 mammalian species, these giant pandas, together with 9 captive and 7 wild individuals investigated previously, showed extremely low gut microbiota diversity and an overall structure that diverged from those of nonpanda herbivores but converged with those of carnivorous and omnivorous bears. The giant panda did not harbor putative cellulose-degrading phylotypes such as Ruminococcaceae and Bacteroides bacteria that are typically enriched in other herbivores, but instead, its microbiota was dominated by Escherichia/Shigella and Streptococcus bacteria. Members of the class Clostridia were common and abundant in the giant panda gut microbiota, but most of the members present were absent in other herbivores and were not phylogenetically related with known cellulolytic lineages. Therefore, the giant panda appears not to have evolved a gut microbiota compatible with its newly adopted diet, which may adversely influence the coevolutionary fitness of this herbivore. The giant panda, an endangered mammalian species endemic to western China, is well known for its unique bamboo diet. Unlike other herbivores that have successfully evolved

  2. Molecular characterization of a CpTRIM35-like protein and its splice variants from whitespotted bamboo shark (Chiloscyllium plagiosum)

    International Nuclear Information System (INIS)

    Zhang, Xinshang; Zhao, Heng; Chen, Yeyu; Luo, Huiying; Yao, Bin

    2014-01-01

    Highlights: • A TRIM gene and three splice variants were firstly cloned from elasmobranch fish. • The genes were constitutively expressed with high levels in spleen and kidney. • The gene products were distributed in cytoplasm alone or cytoplasm and nucleus. • As E3 ubiquitin ligases, the proteins differed in immune responses to challenges. - Abstract: The tripartite motif (TRIM) proteins play important roles in a broad range of biological processes, including apoptosis, cell proliferation and innate immunity response. In this study, a TRIM gene and its three splice variants were cloned from an elasmobranch fish—whitespotted bamboo shark (Chiloscyllium plagiosum Bennett). Phylogenetic analysis indicated that the gene was closely related to TRIM35 homologs, thus termed CpTRIM35-like. Deduced CpTRIM35 has a RBCC-PRY/SPRY structure typical of TRIM proteins, and its splice variants (CpTRIM35-1–3) have different truncations at the C-terminus. The gene products were constitutively expressed in adult sharks with the highest levels in spleen and kidney. The different subcellular locations, upregulation upon LPS and poly I:C stimulation, and significant E3 ubiquitin ligase activities suggested their different roles in immune responses as an E3 ubiquitin ligase. This is the first TRIM protein ever characterized in elasmobranch fish

  3. Molecular characterization of a CpTRIM35-like protein and its splice variants from whitespotted bamboo shark (Chiloscyllium plagiosum)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xinshang, E-mail: sanmaosound@163.com; Zhao, Heng, E-mail: hengzhao2000@gmail.com; Chen, Yeyu, E-mail: cyyleaf@126.com; Luo, Huiying, E-mail: luohuiying@caas.cn; Yao, Bin, E-mail: binyao@caas.cn

    2014-10-24

    Highlights: • A TRIM gene and three splice variants were firstly cloned from elasmobranch fish. • The genes were constitutively expressed with high levels in spleen and kidney. • The gene products were distributed in cytoplasm alone or cytoplasm and nucleus. • As E3 ubiquitin ligases, the proteins differed in immune responses to challenges. - Abstract: The tripartite motif (TRIM) proteins play important roles in a broad range of biological processes, including apoptosis, cell proliferation and innate immunity response. In this study, a TRIM gene and its three splice variants were cloned from an elasmobranch fish—whitespotted bamboo shark (Chiloscyllium plagiosum Bennett). Phylogenetic analysis indicated that the gene was closely related to TRIM35 homologs, thus termed CpTRIM35-like. Deduced CpTRIM35 has a RBCC-PRY/SPRY structure typical of TRIM proteins, and its splice variants (CpTRIM35-1–3) have different truncations at the C-terminus. The gene products were constitutively expressed in adult sharks with the highest levels in spleen and kidney. The different subcellular locations, upregulation upon LPS and poly I:C stimulation, and significant E3 ubiquitin ligase activities suggested their different roles in immune responses as an E3 ubiquitin ligase. This is the first TRIM protein ever characterized in elasmobranch fish.

  4. Place learning prior to and after telencephalon ablation in bamboo and coral cat sharks (Chiloscyllium griseum and Atelomycterus marmoratus).

    Science.gov (United States)

    Fuss, Theodora; Bleckmann, Horst; Schluessel, Vera

    2014-01-01

    This study assessed complex spatial learning and memory in two species of shark, the grey bamboo shark (Chiloscyllium griseum) and the coral cat shark (Atelomycterus marmoratus). It was hypothesized that sharks can learn and apply an allocentric orientation strategy. Eight out of ten sharks successfully completed the initial training phase (by locating a fixed goal position in a diamond maze from two possible start points) within 14.9 ± 7.6 sessions and proceeded to seven sets of transfer tests, in which sharks had to perform under altered environmental conditions. Transfer tests revealed that sharks had oriented and solved the tasks visually, using all of the provided environmental cues. Unintentional cueing did not occur. Results correspond to earlier studies on spatial memory and cognitive mapping in other vertebrates. Future experiments should investigate whether sharks possess a cognitive spatial mapping system as has already been found in several teleosts and stingrays. Following the completion of transfer tests, sharks were subjected to ablation of most of the pallium, which compromised their previously acquired place learning abilities. These results indicate that the telencephalon plays a crucial role in the processing of information on place learning and allocentric orientation strategies.

  5. Litter Production and Nutrient Dynamic on a Moso Bamboo Plantation following an Extreme Disturbance of 2008 Ice Storm

    Directory of Open Access Journals (Sweden)

    Xiaogai Ge

    2014-01-01

    Full Text Available Ice storm is known to play a role in determining forest succession and litter dynamics constitute an important aspect of nutrient cycling in forest ecosystems. However, ice storm effects on amount and pattern of litterfall are not clearly understood. We investigated litter production and litter leaf nutrient dynamic in a moso bamboo plantation in China following an extreme disturbance of ice storm in 2008. The litterfall in on-years was significantly lower than in off-years. Ice storm caused total litterfall increasing from 16.68% to 35.60% and greatly disturbed the litterfall peak rhythm especially in the on-year. The litter leaf nutrient concentrations at two latitudes significantly fluctuated after ice-snow disaster in 2008, litter leaf stoichiometric traits indicated that litter leaf chemistry showed more easily decomposition with higher C/P ratio, N/P ratio, and lower C/N ratio. It is clear from this study that litterfall restoration dynamic would result in long-term changes in litter nutrient cycling and may help predicting below ground carbon dynamic in future research as well as subtropical forest inventories following extreme disturbance.

  6. Removal of Pb (II from Aqueous Solutions Using Mixtures of Bamboo Biochar and Calcium Sulphate, and Hydroxyapatite and Calcium Sulphate

    Directory of Open Access Journals (Sweden)

    Ahmed Hassan

    2016-01-01

    Full Text Available Sorption characteristics of Pb(II from aqueous solutions through a low-cost adsorbent mixture comprising of Bamboo biochar (BB and Calcium Sulphate (CS, and a more expensive mixture of Hydroxyapatite (HAP and Calcium Sulphate (CS, were investigated. The effects of equilibrium contact time, and adsorbate concentration conducted in batch experiments were studied. Adsorption equilibrium was established in 40 (min. The adsorption mechanism of Pb(II from these two adsorbent mixtures was carried out through a kinetic rate order. A pseudo second-order kinetic model was applied for the adsorption processes. The model yielded good correlation (R2 >0.999 of the experimental data. Adsorption of Pb(II using (BB&CS and (HAP&CS correlated well (R2 >0.99 with both the Langmuir and Freundlich isotherm equations under the concentration range studied. Hence, the effectiveness of an inexpensive natural material (BB&CS mixture in Pb(II removal is established, and is promising for use in other heavy metal adsorptions.

  7. Why does the giant panda eat bamboo? A comparative analysis of appetite-reward-related genes among mammals.

    Directory of Open Access Journals (Sweden)

    Ke Jin

    Full Text Available BACKGROUND: The giant panda has an interesting bamboo diet unlike the other species in the order of Carnivora. The umami taste receptor gene T1R1 has been identified as a pseudogene during its genome sequencing project and confirmed using a different giant panda sample. The estimated mutation time for this gene is about 4.2 Myr. Such mutation coincided with the giant panda's dietary change and also reinforced its herbivorous life style. However, as this gene is preserved in herbivores such as cow and horse, we need to look for other reasons behind the giant panda's diet switch. METHODOLOGY/PRINCIPAL FINDINGS: Since taste is part of the reward properties of food related to its energy and nutrition contents, we did a systematic analysis on those genes involved in the appetite-reward system for the giant panda. We extracted the giant panda sequence information for those genes and compared with the human sequence first and then with seven other species including chimpanzee, mouse, rat, dog, cat, horse, and cow. Orthologs in panda were further analyzed based on the coding region, Kozak consensus sequence, and potential microRNA binding of those genes. CONCLUSIONS/SIGNIFICANCE: Our results revealed an interesting dopamine metabolic involvement in the panda's food choice. This finding suggests a new direction for molecular evolution studies behind the panda's dietary switch.

  8. Parametric and non-parametric species delimitation methods result in the recognition of two new Neotropical woody bamboo species.

    Science.gov (United States)

    Ruiz-Sanchez, Eduardo

    2015-12-01

    The Neotropical woody bamboo genus Otatea is one of five genera in the subtribe Guaduinae. Of the eight described Otatea species, seven are endemic to Mexico and one is also distributed in Central and South America. Otatea acuminata has the widest geographical distribution of the eight species, and two of its recently collected populations do not match the known species morphologically. Parametric and non-parametric methods were used to delimit the species in Otatea using five chloroplast markers, one nuclear marker, and morphological characters. The parametric coalescent method and the non-parametric analysis supported the recognition of two distinct evolutionary lineages. Molecular clock estimates were used to estimate divergence times in Otatea. The results for divergence time in Otatea estimated the origin of the speciation events from the Late Miocene to Late Pleistocene. The species delimitation analyses (parametric and non-parametric) identified that the two populations of O. acuminata from Chiapas and Hidalgo are from two separate evolutionary lineages and these new species have morphological characters that separate them from O. acuminata s.s. The geological activity of the Trans-Mexican Volcanic Belt and the Isthmus of Tehuantepec may have isolated populations and limited the gene flow between Otatea species, driving speciation. Based on the results found here, I describe Otatea rzedowskiorum and Otatea victoriae as two new species, morphologically different from O. acuminata. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Effects of bamboo charcoal on fouling and microbial diversity in a flat-sheet ceramic membrane bioreactor.

    Science.gov (United States)

    Zhang, Wenjie; Liu, Xiaoning; Wang, Dunqiu; Jin, Yue

    2017-11-01

    Membrane fouling is a problem in full-scale membrane bioreactors. In this study, bamboo charcoal (BC) was evaluated for its efficacy in alleviating membrane fouling in flat-sheet membrane bioreactors treating municipal wastewater. The results showed that BC addition markedly improved treatment performance based on COD, NH 4 + -N, total nitrogen, and total phosphorus levels. Adding BC slowed the increase in the trans-membrane pressure rate and resulted in lower levels of soluble microbial products and extracellular polymeric substances detected in the flat-sheet membrane bioreactor. BC has a porous structure, and a large quantity of biomass was detected using scanning electron microscopy. The microbial community analysis results indicated that BC increased the microbial diversity and Aminomonas, Anaerofustis, uncultured Anaerolineaceae, Anaerolinea, and Anaerotruncus were found in higher abundances in the reactor with BC. BC addition is an effective method for reducing membrane fouling, and can be applied to full-scale flat-sheet membrane bioreactors to improve their function. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Preparation and characterization of a novel degradable nano-hydroxyapatite/poly(lactic-co-glycolic) composite reinforced with bamboo fiber.

    Science.gov (United States)

    Jiang, Liuyun; Li, Ye; Xiong, Chengdong; Su, Shengpei

    2017-06-01

    It is a promising and challenging to achieve an ideal poly (lactic-co-glycolic) (PLGA)-based composite. In this paper, bamboo fiber (BF) was firstly designed to incorporate into nano-hydroxyapatite/PLGA (n-HA/PLGA) composite, and a series of novel biodegradable BF/n-HA/PLGA ternary composites with different BF amounts (0wt%, 5wt%, 10wt% and 20wt%) were prepared by solution mixing method. The effect of BF content on the crystallization behavior, interface structure and mechanical property of BF/n-HA/PLGA ternary composite was investigated by X-ray diffraction pattern (XRD), differential scanning calorimeter (DSC) and scanning electron microscope (SEM), comparing with pure PLGA and n-HA/PLGA composite. The results showed that BF further promoted the crystallization of PLGA acting as a heterogeneous nucleation agent, and the addition of 10wt% BF was the best benefit to promote the crystallization. However, the higher addition content of BF caused more agglomeration in n-HA/PLGA matrix, which decreased gradually the mechanical properties of the BF/n-HA/PLGA composite. In conclusion, the addition content of 5wt% BF to n-HA/PLGA matrix was an appropriate proportion, which can achieved the best mechanical reinforce effectiveness, suggesting that BF/n-HA/PLGA composite had more potential in biomedical application than n-HA/PLGA composite. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Facilitating the enzymatic saccharification of pulped bamboo residues by degrading the remained xylan and lignin-carbohydrates complexes.

    Science.gov (United States)

    Huang, Caoxing; He, Juan; Li, Xin; Min, Douyong; Yong, Qiang

    2015-09-01

    Kraft pulping was performed on bamboo residues and its impact on the chemical compositions and the enzymatic digestibility of the samples were investigated. To improve the digestibility of sample by degrading the xylan and lignin-carbohydrates complexes (LCCs), xylanase and α-L-arabinofuranosidase (AF) were supplemented with cellulase. The results showed more carbohydrates were remained in the samples pulped with low effective alkali (EA) charge, compared to conventional kraft pulping. When 120 IU/g xylanase and 15 IU/g AF were supplemented with 20 FPU/g cellulase, the xylan degradation yield of the sample pulped with 12% EA charge increased from 68.20% to 88.35%, resulting in an increased enzymatic saccharification efficiency from 58.98% to 83.23%. The amount of LCCs in this sample decreased from 8.63/100C9 to 2.99/100C9 after saccharification with these enzymes. The results indicated that degrading the remained xylan and LCCs in the pulp could improve its enzymatic digestibility. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Structural behaviour of bamboo-reinforced foamed concrete slab containing polyvinyl wastes (PW as partial replacement of fine aggregate

    Directory of Open Access Journals (Sweden)

    Efe Ikponmwosa

    2017-10-01

    Full Text Available This paper reports the findings of experimental study to investigate the structural behaviour of bamboo-reinforced foamed concrete slab with polyvinyl waste as partial replacement of fine aggregates. The structural properties studied were: compressive strength, density, crack development pattern and propagation, failure pattern, load–deflection characteristics and the ultimate moment. Compressive strength and the density tests were also conducted using 150 × 150 × 150 cube specimens. The flexural behaviour was investigated by using 1300 × 500 × 100 mm slab specimens. The results showed that: (i partial replacement of sand with polyvinyl waste (PW improved the compressive strength of the foamed aerated concrete specimens, (ii that slab specimens with polyvinyl waste as partial replacement sand exhibited shear bending failure, (iii all the slab specimens with polyvinyl waste as partial replacement sand recorded lower values of deflection for the same loading, as the level of sand replacement with polyvinyl wastes increased, and (iv increase in the amount of sand replaced with polyvinyl wastes resulted in improved bending performance of the slab specimens.

  13. Anodic formation of ordered and bamboo-type TiO2 anotubes arrays with different electrolytes

    International Nuclear Information System (INIS)

    Zhang Fen; Chen Shougang; Yin Yansheng; Lin Chan; Xue Chaorui

    2010-01-01

    TiO 2 nanotubes with a highly ordered structure on titanium were grown by a self-organized electrochemical anodization in viscous organic electrolytes. Field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM) were used to investigate the structure and morphology of the TiO 2 nanotubes. The results show that the nanotubes morphology is much different obtained in different electrolytes under the constant 20 V. The aligned nanotubes with a 'honeycomb' shape were obtained in ethylene glycol/water, but that of the 'bamboo-type' nanotubes of 50 nm spacing obtained in glycerol/water. The nanotubes morphology is apparently influenced both by the viscosity and the water content of the electrolytes based on the experimental results, and the possible formation mechanism of different shape nanotubes was also further explored. It is found that TiO 2 nanotubes are polycrystalline with anatase phase observed by the analysis of selected area electron diffraction (SAED) and HRTEM.

  14. Effects of steam activation on the pore structure and surface chemistry of activated carbon derived from bamboo waste

    Science.gov (United States)

    Zhang, Yan-Juan; Xing, Zhen-Jiao; Duan, Zheng-Kang; Li, Meng; Wang, Yin

    2014-10-01

    The effects of steam activation on the pore structure evolution and surface chemistry of activated carbon (AC) obtained from bamboo waste were investigated. Nitrogen adsorption-desorption isotherms revealed that higher steam activation temperatures and/or times promoted the creation of new micropores and widened the existing micropores, consequently decreasing the surface area and total pore volume. Optimum conditions included an activation temperature of 850 °C, activation time of 120 min, and steam flush generated from deionized water of 0.2 cm3 min-1. Under these conditions, AC with a BET surface area of 1210 m2 g-1 and total pore volume of 0.542 cm-3 g-1was obtained. Changes in surface chemistry were determined through Boehm titration, pH measurement, Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). Results revealed the presence of a large number of basic groups on the surface of the pyrolyzed char and AC. Steam activation did not affect the species of oxygen-containing groups but changed the contents of these species when compared with pyrolyzed char. Scanning electron microscopy was used to observe the surface morphology of the products. AC obtained under optimum conditions showed a monolayer adsorption capacity of 330 mg g-1 for methylene blue (MB), which demonstrates its excellent potential for MB adsorption applications.

  15. Oriented particleboard made from tali bamboo (Gigantochloa Apus): effect of particle length on physical and mechanical properties

    Science.gov (United States)

    Iswanto, A. H.

    2018-02-01

    Strength properties are one of the problems of particleboard. The objective of this research was to analyze the effect of particle length on physical and mechanical properties oriented particleboard (OPB). The variation particle length size in this experiment namely 3, 5, and 7 cm. The width and thickness size of all bamboo particles were 1 and 0.1 cm respectively. 12% mixed resin of UF and MDI (70/30 %w/w) used for binding. Board size fabricated in 25 by 25 cm2 with thickness and density target of 1 cm and 0.75 gcm-3. The OPB layers for face and back layers aligned perpendicular to the core layer. The weight ratio of the face-to-core-to-back layers were set at 1:2:1. Mat was pressed at 160 °C under 30 kgcm-2 as the pressure for 10 minutes. The results showed that 7 cm length particle produced of the best strength and dimensional stability. The increase of particle length resulted in increasing of strength properties. Over all the parameters of physical and mechanical properties fulfill requirements of JIS A 5908 (2003) excepted of thickness swelling and modulus of elasticity.

  16. Understory Dwarf Bamboo Affects Microbial Community Structures and Soil Properties in a Betula ermanii Forest in Northern Japan.

    Science.gov (United States)

    Kong, Bihe; Chen, Lei; Kasahara, Yasuhiro; Sumida, Akihiro; Ono, Kiyomi; Wild, Jan; Nagatake, Arata; Hatano, Ryusuke; Hara, Toshihiko

    2017-06-24

    In order to understand the relationships between understory bamboo and soil properties, we compared microbial community structures in the soil of a Betula ermanii boreal forest with Sasa kurilensis present and removed using high-throughput DNA sequencing. The presence of understory S. kurilensis strongly affected soil properties, including total carbon, total nitrogen, nitrate, and the C:N ratio as well as relative soil moisture. Marked differences were also noted in fungal and bacterial communities between plots. The relative abundance of the fungal phylum Ascomycota was 13.9% in the Sasa-intact plot and only 0.54% in the Sasa-removed plot. Among the Ascomycota fungi identified, the most prevalent were members of the family Pezizaceae. We found that the abundance of Pezizaceae, known to act as mycorrhizal fungi, was related to the amount of total carbon in the Sasa-intact plot. The relative abundance of Proteobacteria was significantly higher, whereas those of Planctomycetes and Actinobacteria were lower in the Sasa-intact plot than in the Sasa-removed plot. Furthermore, the results obtained suggest that some species of the phylum Planctomycetes are more likely to occur in the presence of S. kurilensis. Collectively, these results indicate that the presence of S. kurilensis affects microbial communities and soil properties in a B. ermanii boreal forest.

  17. Multisource Remote Sensing Imagery Fusion Scheme Based on Bidimensional Empirical Mode Decomposition (BEMD and Its Application to the Extraction of Bamboo Forest

    Directory of Open Access Journals (Sweden)

    Guang Liu

    2016-12-01

    Full Text Available Most bamboo forests grow in humid climates in low-latitude tropical or subtropical monsoon areas, and they are generally located in hilly areas. Bamboo trunks are very straight and smooth, which means that bamboo forests have low structural diversity. These features are beneficial to synthetic aperture radar (SAR microwave penetration and they provide special information in SAR imagery. However, some factors (e.g., foreshortening can compromise the interpretation of SAR imagery. The fusion of SAR and optical imagery is considered an effective method with which to obtain information on ground objects. However, most relevant research has been based on two types of remote sensing image. This paper proposes a new fusion scheme, which combines three types of image simultaneously, based on two fusion methods: bidimensional empirical mode decomposition (BEMD and the Gram-Schmidt transform. The fusion of panchromatic and multispectral images based on the Gram-Schmidt transform can enhance spatial resolution while retaining multispectral information. BEMD is an adaptive decomposition method that has been applied widely in the analysis of nonlinear signals and to the nonstable signal of SAR. The fusion of SAR imagery with fused panchromatic and multispectral imagery using BEMD is based on the frequency information of the images. It was established that the proposed fusion scheme is an effective remote sensing image interpretation method, and that the value of entropy and the spatial frequency of the fused images were improved in comparison with other techniques such as the discrete wavelet, à-trous, and non-subsampled contourlet transform methods. Compared with the original image, information entropy of the fusion image based on BEMD improves about 0.13–0.38. Compared with the other three methods it improves about 0.06–0.12. The average gradient of BEMD is 4%–6% greater than for other methods. BEMD maintains spatial frequency 3.2–4.0 higher than

  18. Características hidráulicas de tubos de bambu gigante Hydraulic parameters of bamboo pipes

    Directory of Open Access Journals (Sweden)

    José Adolfo de Almeida Neto

    2000-04-01

    Full Text Available Tendo em vista a falta de estudos e pesquisas que possibilitem o desenvolvimento de tecnologias para o aproveitamento de bambu gigante (Dendrocalamus giganteus como conduto de água procurou-se, com este trabalho, verificar a validade das equações de Darcy-Weisbach, Hazen-Williams e Manning, na estimativa da perda de carga em tubulações de bambu submetidos a dois processos de remoção de nós dos colmos: ao método de impacto por lâminas circulares e ao de um dispositivo mecânico desenvolvido especialmente para este fim, foram estimados os seguintes parâmetros hidráulicos: coeficientes das equações de Hazen-Williams (C, Manning (η, e rugosidade absoluta (ε, estimada através das equações de Hopf e Colebrook. A análise foi realizada sob as seguintes condições operacionais: pressão de trabalho variando de 146,6 a 195,5 kPa, intervalo de vazão de 3 a 12,9 L s-1 e diâmetros de tubulação de 90 a 130 mm, cujos resultados demonstraram que a remoção dos nós pelo processo mecânico proporcionou melhor acabamento no tubo e, conseqüentemente, menor perda de carga por atrito. Os valores obtidos para os parâmetros hidráulicos foram: ε = 0,0013 m (Hopf, ε= 0,0022 m (Colebrook, C = 89 e η= 0,014, para os tubos perfurados mecanicamente, e, C = 43 e η = 0,027 para os tubos perfurados por impacto. Não se constatou diferença significativa na estimativa da perda de carga para os tubos perfurados mecanicamente, pelas equações de Darcy-Weisbach, Hazen-Williams e Manning.The present study reviewed the available information about pressurized and non-pressurized bamboo pipes. A mechanical node-removing process was developed to perforate stalks of giant bamboo (Dendrocalamus giganteus, which allowed an analysis of some hydraulic parameters required by a water conveyance system. Two node-removing processes were studied: a traditional one - a circular steel blade impact method, and a new developed system - the mechanical perforator

  19. Rapid sequencing of the bamboo mitochondrial genome using Illumina technology and parallel episodic evolution of organelle genomes in grasses.

    Directory of Open Access Journals (Sweden)

    Peng-Fei Ma

    Full Text Available BACKGROUND: Compared to their counterparts in animals, the mitochondrial (mt genomes of angiosperms exhibit a number of unique features. However, unravelling their evolution is hindered by the few completed genomes, of which are essentially Sanger sequenced. While next-generation sequencing technologies have revolutionized chloroplast genome sequencing, they are just beginning to be applied to angiosperm mt genomes. Chloroplast genomes of grasses (Poaceae have undergone episodic evolution and the evolutionary rate was suggested to be correlated between chloroplast and mt genomes in Poaceae. It is interesting to investigate whether correlated rate change also occurred in grass mt genomes as expected under lineage effects. A time-calibrated phylogenetic tree is needed to examine rate change. METHODOLOGY/PRINCIPAL FINDINGS: We determined a largely completed mt genome from a bamboo, Ferrocalamus rimosivaginus (Poaceae, through Illumina sequencing of total DNA. With combination of de novo and reference-guided assembly, 39.5-fold coverage Illumina reads were finally assembled into scaffolds totalling 432,839 bp. The assembled genome contains nearly the same genes as the completed mt genomes in Poaceae. For examining evolutionary rate in grass mt genomes, we reconstructed a phylogenetic tree including 22 taxa based on 31 mt genes. The topology of the well-resolved tree was almost identical to that inferred from chloroplast genome with only minor difference. The inconsistency possibly derived from long branch attraction in mtDNA tree. By calculating absolute substitution rates, we found significant rate change (∼4-fold in mt genome before and after the diversification of Poaceae both in synonymous and nonsynonymous terms. Furthermore, the rate change was correlated with that of chloroplast genomes in grasses. CONCLUSIONS/SIGNIFICANCE: Our result demonstrates that it is a rapid and efficient approach to obtain angiosperm mt genome sequences using

  20. Morphological and functional alterations of female reproduction after regular exposure of bamboo shoots of North East India

    Directory of Open Access Journals (Sweden)

    Deotima Sarkar

    2017-07-01

    Full Text Available Objective: To evaluate the effect of daily consumption of bamboo shoots (BS on the morphological features and functional status of the female reproductive system in adult with respect to thyroid. Methods: Adult female rats were divided into control and experimental groups of six each. Control group was given normal diet while experimental group was fed BS by 1/3rd replacement of 180 g of their food i.e. 60 g of BS containing 35 g of goitrogens of cyanogenic origin such that each rat likely consumed 6 mg/100 g of body weight per day for a period of 45 d. Morphological features like changes in body weight and organ weight were noted. Key steroidogenic enzyme levels viz Δ5 3β hydroxysteroid dehydrogenase (HSD and 17β HSD along with serum estradiol, estriol and progesterone levels were measured. Estrous cyclicity of the animals monitored regularly followed by histological analysis of thyroid, ovary and uterus at the end of experimentation. Results: Increase in body weight, thyroid gland weight and thyroid stimulating hormone, decrease in serum triiodothyronine and thyroxine, a decrease in ovarian as well as uterine weight and the activity of steroidogenic enzymes Δ5 3β HSD and 17β HSD along with diminished serum estradiol, estriol and progesterone levels were noted; while histological plates showed prominent degenerative changes in both the ovary and uterus. Estrous cyclicity of the treated animals were irregular and almost stopped at diestrous stage of the cycle in the latter stage of the treatment as compared to control. Conclusions: Overall results indicates that BS rich in cyanogenic constituents induces biochemical hypothyroidism in the experimental animals that acts in corroboration to cause morphological and functional alteration of reproductive organs indicating its likely impact in fertility on continued use.