WorldWideScience

Sample records for balloon borne apparatus

  1. Observations of cosmic ray positrons during the 1993 flight of the NMSU/WiZard-TS93 balloon borne apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Basini, G. [INFN, Laboratori Nazionali di Frascati, Rome (Italy); Bellotti, R.; Cafagna, F.; Circella, M.; De Cataldo, G.; De Marzo, C.N. [Bari Univ. (Italy)]|[INFN, Bari (Italy); Brunetti, M.T.; Codini, A. [Perugia Univ. (Italy)]|[INFN, Perugia (Italy); De Pascale, M.P. [Rome Univ. `Tor Vergata` (Italy)]|[INFN, Rome (Italy); Aversa, F. [Trieste Univ. (Italy)]|[INFN, Trieste (Italy)

    1995-09-01

    As a part of a series of experiments to search for antimatter in the primary cosmic ray, the NMSU balloon borne apparatus was configured for a flight dedicated to the search of positrons. Two completely new instruments were added to the magnetic spectrometer: a transition radiation detector (TRD) and a silicon-tungsten tracking calorimeter. The function of these two instruments complemented one another and the combined action provided a proton rejection factor better than 5x10{sup 5}. The paper shows the results from the analysis on the complete set of data. All the presented spectra are at the level of the spectrometer.

  2. Planetary Science with Balloon-Borne Telescopes

    Science.gov (United States)

    Kremic, Tibor; Cheng, Andy; Hibbitts, Karl; Young, Eliot

    2015-01-01

    of the residual motion from the gondola that was not addressed by the gondolas coarse pointing systems. The mission met its primary science and engineering objectives. The results of the BOPPS mission will feed into the body of science knowledge but also feed into future planning for more science from balloon-borne platforms. A notional platform called Gondola for High-Altitude Planetary Science (GHAPS) has been explored and this concept platform can address a number of important decadal questions. This paper provides a summary of the assessment of potential balloon borne observations for planetary science purposes including where potential science contributions can be expected, the necessary performance characteristics of the platform, and other features required or desired. The BOPPS mission is summarized including descriptions of the main elements and key science and engineering results. The paper then briefly describes GHAPS, and the salient features that can make it a valuable tool for future planetary observations.

  3. The MIPAS balloon borne trace constitutent experiment

    Science.gov (United States)

    Oelhaf, H.; Vonclarmann, TH.; Fischer, H.; Friedl-Vallon, F.; Fritzsche, CHR.; Piesch, CHR.; Rabus, D.; Seefeldner, M.; Voelker, W.

    1994-01-01

    A novel cryogenic Fourier transform spectrometer (FTS) has been developed for limb emission measurements in the mid IR-region from balloon-borne platforms. The FTS is a rapid scanning interferometer using a modified Michelson arrangement which allows a spectral resolution of 0.04 cm(exp -1) to be achieved. Solid carbon-dioxide cooling of the spectrometer and liquid-helium cooling of the detectors provide adequate sensitivity. The line of sight can be stabilized in terms of azimuth and elevation. A three-mirror off-axis telescope provides good vertical resolution and straylight rejection. Calibration is performed by high elevation and internal blackbody measurements. Four balloon flights were performed, two of them during spring turn-around 1989 and 1990 over mid-latitudes (Aire sur L'Adour, France, 44 deg N) and two near the northern polar circle in winter 1992 (Esrange, Sweden, 68 deg N). Limb emission spectra were collected from 32 km to 39 km floating altitudes covering tangent heights between the lower troposphere and the floating altitude. The trace gases CO2, H2O, O3, CH4, N2O, HNO3, N2O5, ClONO2, CF2Cl2, CFCl3, CHF2Cl, CCl4, and C2H6 have been identified in the measured spectra. The 1989 data have been analyzed to retrieve profiles of O3, HNO3, CFCl3 and CF2Cl2. The flights over Kiruna have provided the first ever reported profile measurements of the key reservoir species ClONO2 and N2O5 inside the polar vortex.

  4. Beam Tests of the Balloon-Borne ATIC Experiment

    Science.gov (United States)

    Ganel, O.; Adams, J. H., Jr.; Ahn, E. J.; Ampe, J.; Bashindzhagyan, G.; Case, G.; Chang, J.; Ellison, S.; Fazely, A.; Gould, R.

    2003-01-01

    The Advanced Thin Ionization Calorimeter (ATIC) balloon-borne experiment is designed to perform cosmic-ray elemental spectra measurement from 50 GeV to 100 TeV for nuclei from hydrogen to iron. These measurements are expected to provide crucial hints about some of the most fundamental questions in astroparticle physics today. ATTIC'S design centers on an 18 radiation length (X(sub Omnicron)) deep bismuth germanate (BGO) calorimeter, preceded by a 0.75 lambda(sub int) graphite target. In September 1999 the ATIC detector was exposed to high-energy beams at CERN's SPS accelerator, within the framework of the development program for the Advanced Cosmic-ray Composition Experiment for the Space Station (ACCESS). In December 2000 - January 2001, ATIC flew on the first of a series of long duration balloon (LDB) flights from McMurdo Station, Antarctica. We present here results from the 1999 beam-tests, including energy resolutions for electrons and protons at several beam energies from 100 GeV to 375 GeV, as well as signal linearity and collection efficiency estimates. We show how these results compare with expectations based on simulations, and their expected impacts on mission performance.

  5. Beam tests of the balloon-borne ATIC experiment

    CERN Document Server

    Ganel, O; Ahn, H S; Ampe, J; Bashindzhagian, G L; Case, G; Chang, H; Ellison, S; Fazely, A; Gould, R; Granger, D; Gunasingha, R M; Guzik, T G; Han, Y J; Isbert, J; Kim, H J; Kim, K C; Kim, S K; Kwon, Y; Panasyuk, M Y; Panov, A; Price, B; Samsonov, G; Schmidt, W K H; Sen, M; Seo, E S; Sina, R; Sokolskaya, N; Stewart, M; Voronin, A; Wagner, D; Wang, J Z; Wefel, J P; Wu, J; Zatsepin, V

    2005-01-01

    The Advanced Thin Ionization Calorimeter (ATIC) balloon-borne experiment is designed to perform cosmic-ray elemental spectra measurements from 50 GeV to 100 TeV for nuclei from hydrogen to iron. These measurements are expected to provide information about some of the most fundamental questions in astroparticle physics today. ATIC's design centers on an 18 radiation length (X0) deep bismuth germanate (BGO) calorimeter, preceded by a 0.75λint graphite target. In September 1999, the ATIC detector was exposed to high-energy beams at CERN's SPS accelerator within the framework of the development program for the Advanced Cosmic-ray Composition Experiment for the Space Station (ACCESS). In December 2000–January 2001 and again in December 2002–January 2003, ATIC flew on the first two of a series of long-duration balloon (LDB) flights from McMurdo Station, Antarctica. We present here results from the 1999 beam tests, including energy resolutions for electrons and protons at several beam energies from 100 to 375 G...

  6. Balloon Borne Arc-Second Pointer Feasibility Study

    Science.gov (United States)

    Ward, Philip R.; DeWeese, Keith D.

    2003-01-01

    For many years scientists have been utilizing stratospheric balloons as low-cost platforms on which to conduct space science experiments. A major hurdle in extending the range of experiments for which these vehicles are useful has been the imposition of the gondola dynamics on the accuracy with which an instrument can be kept pointed at a celestial target. A significant number of scientists have sought the ability to point their instruments with jitter in the arc-second range. This paper presents the design and analysis of a stratospheric balloon borne pointing system that is able to meet this requirement. The foundation for a high fidelity controller simulation is presented. The flexibility of the flight train is represented through generalized modal analysis. A multiple controller scheme is introduced for coarse and fine pointing. Coarse azimuth pointing is accomplished by an established pointing system, with extensive flight history, residing above the gondola structure. A pitch-yaw gimbal mount is used for fine pointing, providing orthogonal axes when nominally on target. Fine pointing actuation is from direct drive dc motors, eliminating backlash problems. An analysis of friction nonlinearities and a demonstration of the necessity in eliminating static fiction are provided. A unique bearing hub design is introduced that eliminates static fiction from the system dynamics. A control scheme involving linear accelerometers for enhanced disturbance rejection is also presented. Results from a linear analysis of the total system and the high fidelity simulation are given. This paper establishes that the proposed control strategy can be made robustly stable with significant design margins. Also demonstrated is the efficacy of the proposed system in rejecting disturbances larger than those considered realistic. Finally, we see that sub arc-second pointing stability can be achieved for a large instrument pointing at an inertial target.

  7. Infrared spectroscopy with a balloon borne Michelson interferometer. Pt. 2

    International Nuclear Information System (INIS)

    Moorwood, A.F.M.; Salinari, P.; Furniss, I.; Jennings, R.E.; King, K.J.

    1980-01-01

    Observations of the [O III] ionic fine structure lines at 52 μm and 88 μm, made at a resolution of 0.05 cm -1 with a balloon borne telescope and Michelson interferometer, are presented for the H II regions W 51, G33.6-0.2. M 17 S, M 17 N, NGC 6357, and NGC 6334. This is the first time that both [O III] lines have been measured simultaneously. Values for the electron density deduced from the line ratios are found to agree with the radio data, while the O ++ abundances indicate a lower excitation than expected in many cases. The [O I] line at 63 μm was also detected in NGC 6357. In addition, we report the first detection of the [N III] line at 57 μm which was observed from both sources in M 17 and gives the abundance ratio N/O = 0.13. This line was also marginally detected on W 51. (orig.)

  8. Balloon-Borne Electric-Field Observations Relevant to Models for Sprites and Jets

    National Research Council Canada - National Science Library

    Beasley, William

    1999-01-01

    We designed and built a new balloon-borne electric-field-change instrument and launched five of them into thunderstorms to observe changes in the vertical component of electric field caused by lightning...

  9. The Balloon-borne Large Aperture Telescope for Polarization - BLASTPol

    Science.gov (United States)

    Devlin, Mark

    We are proposing a comprehensive program to study the link between Galactic magnetic fields and star formation. After decades of study, the physical processes regulating star formation still remain poorly understood. Large-scale observations of star forming regions provide counts of the number of dense clouds each of which will eventually evolve into tens to hundreds of stars. However, when simple models of gravitational collapse are applied to the clouds they yield a Galactic star formation rate (SFR) which is many times what is actually observed. Some process or combination of processes must be slowing the collapse of the clouds. The two prevailing theories involve turbulence which prevents the effective dissipation of energy and Galactic magnetic fields which are captured and squeezed by the collapsing cloud provide a mechanism for mechanical support. Understanding these effects fits very well the SMD 2010 Science Plan's Cosmic Origins program. The Balloon-borne Large Aperture Telescope - BLAST was originally designed to conduct confusion-limited and wide-area extragalactic and Galactic surveys at submillimeter wavelengths from a long-duration balloon (LDB) platform. These wavelengths are impossible or very difficult to observe from even the best groundbased telescope sites. After a series of successful flights (Ft. Sumner 2003, Sweden 2005, and Antarctica 2006) resulting in over 25 publications, BLAST was converted to BLASTPol. The combination of a polarizing grid in front of each of the 266 feed horns at 250, 350 and 500 micron with a stepped Half Wave Plate (HWP) provided a quick and inexpensive way to make initial measurements of polarized dust emission in star forming regions. By mapping polarization from dust grains aligned with respect to their local magnetic field, the field orientation (projected on the sky) can be traced. The development of the Next Generation BLASTPol instrument is now complete. It has increased spatial resolution (22 arcseconds at

  10. Arc-Second Pointer for Balloon-Borne Astronomical Instrument

    Science.gov (United States)

    Ward, Philip R.; DeWeese, Keith

    2004-01-01

    A control system has been designed to keep a balloon-borne scientific instrument pointed toward a celestial object within an angular error of the order of an arc second. The design is intended to be adaptable to a large range of instrument payloads. The initial payload to which the design nominally applies is considered to be a telescope, modeled as a simple thin-walled cylinder 24 ft (approx.= 7.3 m) long, 3 ft (approx.= 0.91 m) in diameter, weighing 1,500 lb (having a mass of .680 kg). The instrument would be mounted on a set of motor-driven gimbals in pitch-yaw configuration. The motors on the gimbals would apply the control torques needed for fine adjustments of the instrument in pitch and yaw. The pitch-yaw mount would, in turn, be suspended from a motor mount at the lower end of a pair of cables hanging down from the balloon (see figure). The motor in this mount would be used to effect coarse azimuth control of the pitch-yaw mount. A notable innovation incorporated in the design is a provision for keeping the gimbal bearings in constant motion. This innovation would eliminate the deleterious effects of static friction . something that must be done in order to achieve the desired arc-second precision. Another notable innovation is the use of linear accelerometers to provide feedback that would facilitate the early detection and counteraction of disturbance torques before they could integrate into significant angular-velocity and angular-position errors. The control software processing the sensor data would be capable of distinguishing between translational and rotational accelerations. The output of the accelerometers is combined with that of angular position and angular-velocity sensors into a proportional + integral + derivative + acceleration control law for the pitch and yaw torque motors. Preliminary calculations have shown that with appropriate gains, the power demand of the control system would be low enough to be satisfiable by means of storage

  11. SMEX02 Balloon-borne Radiosonde Data, Iowa, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set includes radiosonde measurements of upper air temperature and pressure, relative humidity, and wind direction and speed during the balloons' ascent to...

  12. SMEX02 Balloon-borne Radiosonde Data, Iowa

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set includes radiosonde measurements of upper air temperature and pressure, relative humidity, and wind direction and speed during the balloons' ascent to...

  13. Proceedings of the 3rd workshop on balloon-borne experiments with superconducting magnet spectrometers

    International Nuclear Information System (INIS)

    Yamamoto, Akira

    1992-04-01

    The Third Work Shop on Balloon Borne Experiment with a Superconducting Magnet Spectrometer was held at National Laboratory for High Energy Physics (KEK), Tsukuba, Japan on February 24 - 25, 1992. The main effort for this workshop was focused on the progress of the BESS (Balloon Borne Experiment with a Superconducting Spectrometer) experiment and on the scope for scientific investigation with the BESS detector. The progress was reviewed and further investigation was discussed for the BESS further scientific collaboration among Univ. of Tokyo, Kobe University, KEK, ISAS and NMSU. (J.P.N.)

  14. Balloon-borne disposable radiometer for cloud detection.

    Science.gov (United States)

    Nicoll, K A; Harrison, R G

    2012-02-01

    A low cost, disposable instrument for measuring solar radiation during meteorological balloon flights through cloud layers is described. Using a photodiode detector and low thermal drift signal conditioning circuitry, the device showed less than 1% drift for temperatures varied from +20 °C to -35 °C. The angular response to radiation, which declined less rapidly than the cosine of the angle between the incident radiation and normal incidence, is used for cloud detection exploiting the motion of the platform. Oriented upwards, the natural motion imposed by the balloon allows cloud and clear air to be distinguished by the absence of radiation variability within cloud, where the diffuse radiation present is isotropic. The optical method employed by the solar radiation instrument has also been demonstrated to provide higher resolution measurements of cloud boundaries than relative humidity measurements alone.

  15. A 3D CZT hard x-ray polarimeter for a balloon-borne payload

    DEFF Research Database (Denmark)

    Caroli, E.; Alvarez, J. M.; Auricchio, N.

    2012-01-01

    be optimized also for this type of measurement. In this framework, we present the concept of a small high-performance spectrometer designed for polarimetry between 100 and 1000 keV suitable as a stratospheric balloon-borne payload dedicated to perform an accurate and reliable measurement of the polarization...

  16. Electron observation with the balloon-borne CALET prototype detector

    Science.gov (United States)

    Torii, Shoji; Ozawa, Shunsuke; Kasahara, Katsuaki; Murakami, Hiroyuki; Akaike, Yosui; Aiba, Toshihide; Ueyama, Yoshitaka; Nakai, Mikio; Kai, Yuuichirou; Tamura, Tadahisa; Yoshida, Kenji; Katayose, Yusaku; Kawada, Jiro; Mizuta, Eiichi; Marrocchesi, Pier Simone; Kim, Meyoung; Bigongiari, Gabriele

    We have been carrying out an observation of the cosmic ray electrons, using the CALET prototype detector: bCALET. After the first flight of bCALET-1, the bCALET-2 was flown in 2009 at the JAXA balloon center at Taikicho for observing the electrons in 1-100 GeV. The detector is composed IMaging Calorimeter(IMC), Total AbSorption Calorimeter(TASC). IMC has an area of 256mmx256mm, and is consisted 8 layers of scintillating fiber belts intserted below tungsten plate (3 r.l. in total) for a fine imaging of shower particles. TASC is made 6 layers of BGO scintillator logs (25mm x 25mm x 300 mm in each) with an active area of 250mm x 250mm, for measurement the total energy deposit of incoming shower particles. The observation was successfully carried out, and the basic performance of the detector was confirmed to be consistent with the expectation by simulations. We will have the third flight of the bCALET-3 in 2010 at the Balloon Launch Center of Cachoeira Paulista in Brazil, to extend the energy region up to 1000 GeV. We will present the results of the bCALET-2 and the RD of the bCALET-3 detector.

  17. A balloon borne telescope for planetary observations with a fine pointing technology

    Science.gov (United States)

    Shoji, Yasuhiro; Onishi, Tomoya; Battazzo, Steve; Yoshimura, Atsushi; Sakamoto, Yuji; Yoshida, Kazuya; Takahashi, Yukihiro; Taguchi, Makoto

    A balloon borne telescope is one of the effective observation methods for planets under space environment. A telescope is carried up to the stratosphere at an altitude of higher than 32 km where the air density is as thin as 1/100 of that at the ground. The thin atmosphere gives a telescope better observation conditions: fine seeing, stable weather, and high transmittance especially in the infrared region. Moreover there is a chance that a planet can be continuously seen for a window longer than 24 hours from the polar stratosphere. The authors have been developing a balloon borne telescope system for years to take finer images of planets in the solar system., The first object is Venus, of which atmospheric motions are derived by tracking the changes of cloud patterns with bands of UV, visible and NIR. Highly precise pointing control within the error of sub-arcseconds is required so that the balloon borne telescope achieves its diffraction-limited spatial resolution. The flight system is equipped with a three-stage attitude and pointing control system in order to realize the desired pointing control precision. In 2009, the flight system was built and tested in various ground tests and an actual balloon flight. Although the balloon experiment failed due to trouble with an onboard computer, the ground tests before the flight operation have verified that the pointing control system can achieve pointing error of less than 0.2 arcseconds. The balloon borne telescope is being redesigned for a sequential observation of Venus, Mars and Jupiter in the summer of 2011. This flight will be a step for a long-duration observation in the polar stratosphere. Additionally, an observation of the sodium tail of Mercury with a small telescope and a wide field of view has been under consideration. Mercury has very thin atmosphere called a surface-bounded exosphere. Past observations by spacecraft and ground-based telescopes revealed that one of the atmospheric components, gaseous

  18. Proliferation kinetics of paramecium tetraurelia in balloon-borne experiments

    International Nuclear Information System (INIS)

    Croute, F.; Soleilhavoup, J.P.; Vidal, S.; Rousseille, R.; Planel, H.

    1982-01-01

    Experiments were carried out to demonstrate the effect of cosmic radiation, at a balloon-flight ceiling of about 36,500 m (120,000 ft) on single-cell organism proliferation. Paramecium tetraurelia were placed in air-tight containers and maintained at 25 degrees +/- 0.1 degrees C. Cellular growth was determined by cell count, either after recovery or during the flight, by means of an automatic fixation device. Dosimetry was performed by a tissue equivalent proportional counter and was of about 0.5 mrad/h. Flight ceiling duration ranged from 48 min - 22 h. A secondary stimulating effect of growth rate, preceded by a temporary decrease, was observed after recovery. Because of the high bacterial concentration in the trans-Mediterranean flight culture medium, the temporary drop of the growth rate, due to the radiolysis products, disappears. Researchers consider that the stimulating effect can be the result of enzymatic intracellular scavenging of radiolysis products generated in the cell

  19. Results from a student built balloon-borne infrasound sensing instrument

    Science.gov (United States)

    Klein, Viliam; Young, Eliot; Bowman, Daniel; Abernathy, Robert

    2017-04-01

    Balloon-borne infrasound sensors should have two advantages over ground based counterparts: lack of wind noise, and the potential for infrasound concentration in stratospheric ducts. In this paper we present the design and results from a student-built payload for sensing infrasound waves (between 0.1Hz to 20Hz) from a NASA stratospheric balloon that reached altitudes of 37km on September 28th of 2016. The SISE (Student Infrasound Experiment) uses a unique arrangement of COTS differential pressure sensors and student designed signal conditioning to eliminate noise and sense infrasound waves below 20Hz. To calibrate the sensitivity of ground based and balloon-borne sensors, we contracted EMRTC to set off three large explosions from Socorro NM during flight, roughly 200-400 km west of the balloon position at the time of the explosions. The goal of this experiment was to detect the artificially generated infrasound waves at altitude despite the lower expected amplitudes. This presentation contains discussions of the overall design for the instrument, laboratory and in flight performance characteristics, as well as in flight observations of infrasound generated from the artificial sources. The instrument successfully detected infrasound waves of about 0.03 Pa at an altitude of 37 kilometers and a distance of 350km from the source.

  20. GSE for Balloon-Borne I.M.S.: Decommutator and D/A Units,

    Science.gov (United States)

    1982-10-01

    serial command link and relayed the messages from the balloon-borne mass spectrometer control unit, within the PCM data stream, to the HP computer. Pro...ANI 02 I 1F C’ 001:1?8 022F CA6602 JZ 1FC 0022,9 0232 tLo12 RIFC IN 10 P6 00230 0234 OP RC NEFD1T 0C231 0235 [.2202 JNC AU I 00232 02 38 07 RLC 00:133

  1. Balloon-borne match measurements of midlatitude cirrus clouds

    Science.gov (United States)

    Cirisan, A.; Luo, B. P.; Engel, I.; Wienhold, F. G.; Sprenger, M.; Krieger, U. K.; Weers, U.; Romanens, G.; Levrat, G.; Jeannet, P.; Ruffieux, D.; Philipona, R.; Calpini, B.; Spichtinger, P.; Peter, T.

    2014-07-01

    Observations of high supersaturations with respect to ice inside cirrus clouds with high ice water content (> 0.01 g kg-1) and high crystal number densities (> 1 cm-3) are challenging our understanding of cloud microphysics and of climate feedback processes in the upper troposphere. However, single measurements of a cloudy air mass provide only a snapshot from which the persistence of ice supersaturation cannot be judged. We introduce here the "cirrus match technique" to obtain information about the evolution of clouds and their saturation ratio. The aim of these coordinated balloon soundings is to analyze the same air mass twice. To this end the standard radiosonde equipment is complemented by a frost point hygrometer, "SnowWhite", and a particle backscatter detector, "COBALD" (Compact Optical Backscatter AerosoL Detector). Extensive trajectory calculations based on regional weather model COSMO (Consortium for Small-Scale Modeling) forecasts are performed for flight planning, and COSMO analyses are used as a basis for comprehensive microphysical box modeling (with grid scale of 2 and 7 km, respectively). Here we present the results of matching a cirrus cloud to within 2-15 km, realized on 8 June 2010 over Payerne, Switzerland, and a location 120 km downstream close to Zurich. A thick cirrus cloud was detected over both measurement sites. We show that in order to quantitatively reproduce the measured particle backscatter ratios, the small-scale temperature fluctuations not resolved by COSMO must be superimposed on the trajectories. The stochastic nature of the fluctuations is captured by ensemble calculations. Possibilities for further improvements in the agreement with the measured backscatter data are investigated by assuming a very slow mass accommodation of water on ice, the presence of heterogeneous ice nuclei, or a wide span of (spheroidal) particle shapes. However, the resulting improvements from these microphysical refinements are moderate and comparable in

  2. Stratospheric BrO abundance measured by a balloon-borne submillimeterwave radiometer

    Directory of Open Access Journals (Sweden)

    R. A. Stachnik

    2013-03-01

    Full Text Available Measurements of mixing ratio profiles of stratospheric bromine monoxide (BrO were made using observations of BrO rotational line emission at 650.179 GHz by a balloon-borne SIS (superconductor-insulator-superconductor submillimeterwave heterodyne limb sounder (SLS. The balloon was launched from Ft. Sumner, New Mexico (34° N on 22 September 2011. Peak mid-day BrO abundance varied from 16 ± 2 ppt at 34 km to 6 ± 4 ppt at 16 km. Corresponding estimates of total inorganic bromine (Bry, derived from BrO vmr (volume mixing ratio using a photochemical box model, were 21 ± 3 ppt and 11 ± 5 ppt, respectively. Inferred Bry abundance exceeds that attributable solely to decomposition of long-lived methyl bromide and other halons, and is consistent with a contribution from bromine-containing very short lived substances, BryVSLS, of 4 ppt to 8 ppt. These results for BrO and Bry were compared with, and found to be in good agreement with, those of other recent balloon-borne and satellite instruments.

  3. Widget: A data acquisition system for a balloon borne Si particle calorimeter

    International Nuclear Information System (INIS)

    Colavita, A.; Aversa, F.; Venkataraman, S.; Battaiotto, P.

    1993-04-01

    We describe Widget; a complete data acquisition system (DAS) designed for a balloon-borne calorimeter using silicon strip detectors. The design includes a general purpose CPU as well as five to twenty Digital Signal Processors in order to control the acquisition of the data. This local intelligence also allows the instrument to re-calibrate itself, to perform calculations on the data and to control the functionality of the instrumentation. The DSPs filter the data to avoid overflowing the radio link to ground. In principle the system could control the instruments, without direct intervention from the ground, on flights with durations of several days. (author). 7 refs, 2 figs

  4. 25 Years of Atmospheric Science with the Balloon-borne Limb Sounder MIPAS-B

    Science.gov (United States)

    Oelhaf, H.; Friedl-Vallon, F.; Wetzel, G.; Ebersoldt, A.; Hoepfner, M.; Kleinert, A.; Maucher, G.; Maurer, K.; Nordmeyer, H.; Piesch, C.; Ruhnke, R.; Sartorius, C.; Sinnhuber, B. M.; Orphal, J.; Fischer, H.

    2017-12-01

    MIPAS-B (Michelson Interferometer for Passive Atmospheric Sounding - Balloon) is a balloon-borne limb-emission sounder for atmospheric research. The heart of the instrument is a Fourier spectrometer that covers the mid-infrared spectral range (4 to 14 µm) operating at a temperature of approximately 215 K. Essential for this application is the sophisticated line of sight stabilization system, which is based on an inertial navigation system and supplemented with a star camera reference system. The major scientific benefit of the instrument is the simultaneous detection of complete trace gas families in the stratosphere, without restrictions concerning time of the day and viewing directions. MIPAS-B is an in-house development that was started in the mid-eighties. It initially served as proof of concept for the proposed space borne MIPAS instrument that was later realized and operated on the ESA satellite ENVISAT between 2002 and 2012. But actually it soon became obvious that operation from stratospheric balloons offered a number of benefits to address dedicated scientific questions in an optimal way. MIPAS-B was operated in two versions during 24 flights at tropical, mid-latitudinal and arctic latitudes between 1989 and 2014 covering the `golden era' of ozone loss research and the full operational period of ENVISAT. This paper describes briefly specifications, design considerations, technological upgrades and the characterization of the instrument. Evolving skills with respect to its remote operation from ground and to data analysis in the course of the 25 years are outlined. Scientific applications in the field of atmospheric research, spectroscopy and satellite validation are highlighted with a focus on recent research concerning bromine nitrate and age of air.

  5. A Model-Based Study of On-Board Data Processing Architecture for Balloon-Borne Aurora Observation

    Science.gov (United States)

    Lim, Chester

    2011-01-01

    This paper discusses an application of ISAAC design methodology to a balloon-borne payload electronic system for aurora observation. The methodology is composed of two phases, high level design and low level implementation, the focus of this paper is on the high level design. This paper puts the system architecture in the context of a balloon based application but it can be generalized to any airborne/space-borne application. The system architecture includes a front-end detector, its corresponding data processing unit, and a controller. VisualSim has been used to perform modeling and simulations to explore the entire design space, finding optimal solutions that meet system requirements.

  6. Observational Study of Large-Scale [CII] Emission by Balloon-Borne Infrared Telescope (BIRT)

    Science.gov (United States)

    Shibai, H.

    1992-11-01

    A far-infrared emission line of C+ ion ([CII] 158 μm) was detected in an extensive region (30o BIRT) was used. It has been developed for far-infrared astronomy by a joint project (BIRT project) between the Institute of Space and Astronautical Science (ISAS) and Kyoto University in Japan. BIRT has a 50 cm reflector telescope mounted on an alt-azimuthal pointing system actuated by a control-moment gyro (CMG) torquer in the azimuth. The pointing and tracking are accomplished by a unique offset guide system which utilizes a star tracker and a star field camera mounted on a two-axis offset gimbals. The motion of the gimbals is controlled by an on-board CPU which computes and corrects the rotation rate of the offset direction caused by the celestial diurnal motion as well as the horizontal motion of the balloon gondola. BIRT has been flown 6 times at Alice Springs, Australia in 1985 and 1986, and 2 times at Palestine, Texas in 1988. The pointing and tracking accuracies were better than I arcmin and the peak-to-peak attitude stability was sma.]ler than 30 arcsec in those fiights. The last two flights, at which liquid helium cooled Fabry-Perot spectrometer was mounted on the Nasmyth focus, were quite successful for observing far-infrared spectral lines of [CII] (158 μm) and [OI] (63 μm) over wide areas of several galactic nebulae and Milky Way. These observations have demonstrated that balloon-borne observation is a quite useful method for far-infrared spectroscopy. Chapter I is an introduction for the far-infrared spectroscopic study. Chapter 2 describes the balloon-borne infrared telescope, BIRT. Chapter 3 shows a major result of our balloon observation., that is, a detection of the diffuse photodissociation regions. Chapter 2 and 3 refer to [Shibai et al. 1990] and [Shibai et al. 1991], respectively. Appendix A is a review of the far-infrared line observations. In appendix B and C, I provide compilations of far-infrared line parameters and observational work

  7. The next generation balloon-borne large aperture submillimeter telescope (BLAST-TNG)

    Science.gov (United States)

    Dober, Bradley Jerald

    Large areas of astrophysics, such as precision cosmology, have benefited greatly from large maps and datasets, yielded by telescopes of ever-increasing number and ability. However, due to the unique challenges posed by submillimeter polarimetry, the study of molecular cloud dynamics and star formation remain stunted. Previously, polarimetry data was limited to a few vectors on only the brightest areas of molecular clouds. This made drawing statistically-driven conclusions a daunting task. However, the successful flight of the Balloon-born Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol) generated maps with thousands of independent polarization measurements of molecular clouds, and ushered in a new era of empirical modeling of molecular cloud dynamics. Now that the potential benefits from large-scale maps of magnetic fields in molecular clouds had been identified, a successor that would truly unlock the secrets must be born. The Next Generation Balloon-borne Large Aperture Submillimeter Telescope (BLAST-TNG), the successor to BLASTPol, has the ability to make larger and more detailed maps of magnetic fields in molecular clouds. It will push the field of star formation into a statistics-driven, empirical realm. With these large, detailed datasets, astronomers will be able to find new relationships between the dust dynamics and the magnetic fields. The field will surge to a new level of understanding. One of the key enabling technologies of BLAST-TNG is its three arrays of polarization-sensitive Microwave Kinetic Inductance Detectors (MKIDs). MKIDs are superconducting RLC circuits with a resonant frequency that shifts proportionally to the amount of incident radiation. The key feature of MKIDs is that thousands of detectors, each with their own unique resonant frequency, can be coupled to the same readout line. This technology will be able to drive the production of large-scale monolithic arrays, containing tens or hundreds of thousands of detectors

  8. The Asian Tropopause Aerosol Layer: Balloon-Borne Measurements, Satellite Observations and Modeling Approaches

    Science.gov (United States)

    Fairlie, T. D.; Vernier, J.-P.; Natarajan, M.; Deshler, Terry; Liu, H.; Wegner, T.; Baker, N.; Gadhavi, H.; Jayaraman, A.; Pandit, A.; hide

    2016-01-01

    Satellite observations and numerical modeling studies have demonstrated that the Asian Summer Monsoon (ASM) can provide a conduit for gas-phase pollutants in south Asia to reach the lower stratosphere. Now, observations from the CALIPSO satellite have revealed the Asian Tropopause Aerosol Layer (ATAL), a summertime accumulation of aerosols associated with ASM anticyclone, in the upper troposphere and lower stratosphere (UTLS). The ATAL has potential implications for regional cloud properties, climate, and chemical processes in the UTLS. Here, we show in situ measurements from balloon-borne instrumentation, aircraft and satellite observations, combined with trajectory and chemical transport model (CTM) simulations to explore the origin, composition, physical and optical properties of aerosols in the ATAL. In particular, we show balloon-based observations from our BATAL-2015 field campaign to India and Saudi Arabia in summer 2015, including in situ backscatter measurements from COBALD instruments, and some of the first observations of size and volatility of aerosols in the ATAL layer using optical particle counters (OPCs). Back trajectory calculations initialized from CALIPSO observations point to deep convection over North India as a principal source of ATAL aerosols. Available aircraft observations suggest significant sulfur and carbonaceous contributions to the ATAL, which is supported by simulations using the GEOS-Chem CTM. Source elimination studies conducted with the GEOS-Chem indicate that 80-90% of ATAL aerosols originate from south Asian sources, in contrast with some earlier studies.

  9. Developments of Highly Multiplexed, Multi-chroic Pixels for Balloon-Borne Platforms

    Science.gov (United States)

    Aubin, F.; Hanany, S.; Johnson, B. R.; Lee, A.; Suzuki, A.; Westbrook, B.; Young, K.

    2018-02-01

    We present our work to develop and characterize low thermal conductance bolometers that are part of sinuous antenna multi-chroic pixels (SAMP). We use longer, thinner and meandered bolometer legs to achieve 9 pW/K thermal conductance bolometers. We also discuss the development of inductor-capacitor chips operated at 4 K to extend the multiplexing factor of the frequency domain multiplexing to 105, an increase of 60% compared to the factor currently demonstrated for this readout system. This technology development is motivated by EBEX-IDS, a balloon-borne polarimeter designed to characterize the polarization of foregrounds and to detect the primordial gravity waves through their B-mode signature on the polarization of the cosmic microwave background. EBEX-IDS will operate 20,562 transition edge sensor bolometers spread over 7 frequency bands between 150 and 360 GHz. Balloon and satellite platforms enable observations at frequencies inaccessible from the ground and with higher instantaneous sensitivity. This development improves the readiness of the SAMP and frequency domain readout technologies for future satellite applications.

  10. The Half Wave Plate Rotator for the BLAST-TNG Balloon-Borne Telescope

    Science.gov (United States)

    Setiawan, Hananiel; Ashton, Peter; Novak, Giles; Angilè, Francesco E.; Devlin, Mark J.; Galitzki, Nicholas; Ade, Peter; Doyle, Simon; Pascale, Enzo; Pisano, Giampaolo; Tucker, Carole E.

    2016-01-01

    The Next Generation Balloon-borne Large Aperture Submillimeter Telescope (BLAST-TNG) is an experiment designed to map magnetic fields in molecular clouds in order to study their role in the star formation process. The telescope will be launched aboard a high-altitude balloon in December 2016 for a 4-week flight from McMurdo station in Antarctica. BLAST-TNG will measure the polarization of submillimeter thermal emission from magnetically aligned interstellar dust grains, using large format arrays of kinetic inductance detectors operating in three bands centered at 250, 350, and 500 microns, with sub-arcminute angular resolution. The optical system includes an achromatic Half Wave Plate (HWP), mounted in a Half Wave Plate rotator (HWPr). The HWP and HWPr will operate at 4 K temperature to reduce thermal noise in our measurements, so it was crucial to account for the effects of thermal contraction at low temperature in the HWPr design. It was also equally important for the design to meet torque requirements while minimizing the power from friction and conduction dissipated at the 4 K stage. We also discuss our plan for cold testing the HWPr using a repurposed cryostat with a Silicon Diode thermometer read out by an EDAS-CE Ethernet data acquisition system.

  11. Balloon-borne Infrared Telescope (BIRT) for far-infrared spectroscopy

    Science.gov (United States)

    Shibai, Hiroshi; Okuda, Haruyuki; Nakagawa, Takao; Yajima, Nobuyuki; Maihara, Toshinori; Mizutani, Kohei; Matsuhara, Hideo; Kobayashi, Yukiyasu; Hiromoto, Norihisa; Takami, Hideki

    1990-07-01

    The Japanese-made Balloon-borne Infrared Telescope (BIRT) designed for FIR astronomy is described. The BIRT system includes a 50-cm-diam telescope; an attitude-control system consisting of an attitude stabilization and a pointing and tracking subsystems; the ground support system consisting of four personal-computer systems; and electronics consisting of three small computer systems, servo circuits, power amplifiers, and other small circuits. Between 1985 and 1988, the BIRT has flown eight times, demonstrating that it is able to provide a suitable telescope observations on a stable platform with a long integration time. Structural diagrams of the BIRT overall system, the optical system, and the wobbling mechanism are presented along with a block diagram of the on-board electronics.

  12. Balloon-borne imagery of the solar granulation. II - The lifetime of solar granulation

    Science.gov (United States)

    Mehltretter, J. P.

    1978-01-01

    Phenomenological aspects of the temporal evolution of photospheric granulation are reported as derived from time series of granulation photographs obtained during a flight of a balloon-borne telescope. The distribution of granule lifetime probabilities is determined, and it is found that the data can be represented by an exponential decrease with a 'decay constant' of 5.9 min. The general properties of granular evolution are described along with the way individual granules evolve with time. The most common type of granule is shown to be a medium-sized or small fragment, and it is suggested that all granules are produced by fragmentation of preexisting granules. The relative frequencies of granule destruction by fragmentation, fading, and merging are determined to be 51%, 21%, and 28%, respectively. An average radial velocity of 0.8 km/s is computed for conglomerates with an average diameter of 2.25 arcsec.

  13. Large-Area Balloon-Borne Polarized Gamma Ray Observer (PoGO)

    Energy Technology Data Exchange (ETDEWEB)

    Blanford, R.

    2005-04-06

    We are developing a new balloon-borne instrument (PoGO), to measure polarization of soft gamma rays (25-200 keV) using asymmetry in azimuth angle distribution of Compton scattering. PoGO will detect 10% polarization in 100mCrab sources in a 6-8 hour observation and bring a new dimension to studies on gamma ray emission/transportation mechanism in pulsars, AGNs, black hole binaries, and neutron star surface. The concept is an adaptation to polarization measurements of well-type phoswich counter technology used in balloon-borne experiments (Welcome-1) and AstroE2 Hard X-ray Detector. PoGO consists of close-packed array of 397 hexagonal well-type phoswich counters. Each unit is composed of a long thin tube (well) of slow plastic scintillator, a solid rod of fast plastic scintillator, and a short BGO at the base. A photomultiplier coupled to the end of the BGO detects light from all 3 scintillators. The rods with decay times < 10 ns, are used as the active elements; while the wells and BGOs, with decay times {approx}250 ns are used as active anti-coincidence. The fast and slow signals are separated out electronically. When gamma rays entering the field-of-view (fwhm {approx} 3deg{sup 2}) strike a fast scintillator, some are Compton scattered. A fraction of the scattered photons are absorbed in another rod (or undergo a second scatter). A valid event requires one clean fast signal of pulse-height compatible with photo-absorption (> 20keV) and one or more compatible with Compton scattering (< 10keV). Studies based on EGS4 (with polarization features) and Geant4 predict excellent background rejection and high sensitivity.

  14. Computer program design specifications for the Balloon-borne Ultraviolet Stellar Spectrometer (BUSS) science data decommutation program (BAPS48)

    Science.gov (United States)

    Rodriguez, R. M.

    1975-01-01

    The Balloon-Borne Ultraviolet Stellar Spectrometer (BUSS) Science Data Docummutation Program (BAPS48) is a pulse code modulation docummutation program that will format the BUSS science data contained on a one inch PCM tracking tape into a seven track serial bit stream formatted digital tape.

  15. A Balloon-Borne Telescope System for Planetary Atmosphere and Plasma Studies

    Science.gov (United States)

    Taguchi, M.; Yoshida, K.; Sakamoto, Y.; Kanazawa, T.; Shoji, Y.; Sawakami, T.; Takahashi, Y.; Hoshino, N.; Sato, T.; Sakanoi, T.

    2007-12-01

    A telescope floating in the polar stratosphere can continuously monitor planets for more than 24 hours. Thin, clear and stable air of the stratosphere makes it possible to observe planets in a condition free from cloud with fine seeing and high atmospheric transmittance. Moreover, a balloon-borne telescope system is less expensive compared with a huge terrestrial telescope or a direct planetary probe mission. Targets of a balloon-borne telescope system will extend over various atmospheric and plasma phenomena on almost all the planets, i.e., a sodium tail of Mercury, lightning, airglow and aurora in the atmospheres of Venus, Jupiter and Saturn, escaping atmospheres of the Earth-type planets, satellite-induced luminous events in the Jovian atmosphere, etc. The first target is global dynamics of the Venusian atmosphere by detecting cloud motion in UV and NIR imagery. A decoupling mechanism and a pair of control moment gyros (CMGs) are mounted at the top of the gondola. The decoupling mechanism isolates the gondola from a balloon and also transfers an excess angular momentum of the CMGs to the balloon. The attitude of the gondola is stabilized at a constant sun azimuthal angle so that a solar cell panel faces to the sun. A 300 mm F30 Schmidt-Cassegrain telescope is installed at the bottom of the gondola. DC/DC converters, a PC, a high voltage power supply for a piezo-electrically moving mirror and digital video recorders are contained in a sealed cell. The azimuthal angle is detected by a sun-sensor. A PC processes sensor output to control DC motors used in the decoupling mechanism and CMGs with an accuracy in azimuthal attitude of about 0.5 deg. The two-axis gimbal mount of the telescope is controlled by the same PC, guiding an object within a field-of-view of a guide telescope. Residual tracking error is detected by a position sensitive photomultiplier tube and corrected by the two-axis moving mirror installed in the optical system. The optical path is divided into

  16. In Situ Balloon-Borne Ice Particle Imaging in High-Latitude Cirrus

    Science.gov (United States)

    Kuhn, Thomas; Heymsfield, Andrew J.

    2016-09-01

    Cirrus clouds reflect incoming solar radiation, creating a cooling effect. At the same time, these clouds absorb the infrared radiation from the Earth, creating a greenhouse effect. The net effect, crucial for radiative transfer, depends on the cirrus microphysical properties, such as particle size distributions and particle shapes. Knowledge of these cloud properties is also needed for calibrating and validating passive and active remote sensors. Ice particles of sizes below 100 µm are inherently difficult to measure with aircraft-mounted probes due to issues with resolution, sizing, and size-dependent sampling volume. Furthermore, artefacts are produced by shattering of particles on the leading surfaces of the aircraft probes when particles several hundred microns or larger are present. Here, we report on a series of balloon-borne in situ measurements that were carried out at a high-latitude location, Kiruna in northern Sweden (68N 21E). The method used here avoids these issues experienced with the aircraft probes. Furthermore, with a balloon-borne instrument, data are collected as vertical profiles, more useful for calibrating or evaluating remote sensing measurements than data collected along horizontal traverses. Particles are collected on an oil-coated film at a sampling speed given directly by the ascending rate of the balloon, 4 m s-1. The collecting film is advanced uniformly inside the instrument so that an always unused section of the film is exposed to ice particles, which are measured by imaging shortly after sampling. The high optical resolution of about 4 µm together with a pixel resolution of 1.65 µm allows particle detection at sizes of 10 µm and larger. For particles that are 20 µm (12 pixel) in size or larger, the shape can be recognized. The sampling volume, 130 cm3 s-1, is well defined and independent of particle size. With the encountered number concentrations of between 4 and 400 L-1, this required about 90- to 4-s sampling times to

  17. Use of Computational Fluid Dynamics for improvement of Balloon Borne Frost Point Hygrometer

    Science.gov (United States)

    Jorge, Teresa; Brunamonti, Simone; Wienhold, Frank G.; Peter, Thomas

    2017-04-01

    In the StratoClim 2016 Balloon Campaign in Nainital (India) during the Asian Summer Monsoon, balloon born payloads containing the EN-SCI CFH - Cryogenic Frost point Hygrometer - were flown to observe water vapor and cloud formation processes in the Upper Troposphere and Lower Stratosphere. Some of the recorded atmospheric water vapor profiles showed unexpected values above the tropopause and were considered contaminated. To interpret these contaminated results and in the scope of the development of a new frost point hygrometer - the Peltier Cooled Frost point Hygrometer (PCFH) - computational fluid dynamic (CFD) simulations with ANSYS Fluent software have been carried out. These simulations incorporate the fluid and thermodynamic characteristics of stratospheric air to predict airflow in the inlet tube of the instrument. An ice wall boundary layer based on the Murphy and Koop 2005 ice-vapor parametrization was created as a cause of the unexpected water vapor. Sensitivity was tested in relation to the CFD mesh, ice wall surface, inlet flow, inlet tube dimension, sensor head location and variation of atmospheric conditions. The development of the PCFH uses the results of this study and other computational fluid dynamic studies concerning the whole instrument boundary layer and heat exchanger design to improve on previous realizations of frost point hygrometers. As a novelty in the field of frost point hygrometry, Optimal Control Theory will be used to optimize the cooling of the mirror by the Peltier element, which will be described in a physical "plant model", since the cooling capacity of a cryogenic liquid will no longer be available in the new instrument.

  18. Super-TIGER: A Balloon-Borne Instrument to Probe Galactic Cosmic Ray Origins

    Science.gov (United States)

    Rauch, Brian

    2012-07-01

    Super-TIGER (Super Trans-Iron Galactic Element Recorder) is a balloon-borne instrument under construction for a long-duration flight from Antarctica in 2012. It is designed to measure the relative abundances of the ultra-heavy (UH) Galactic cosmic rays (GCR) with individual-element resolution from _{30}Zn to _{42}Mo and make exploratory measurements through _{56}Ba, as well as the energy spectra of the GCR from _{10}Ne to _{29}Cu between 0.8 and 10 GeV/nucleon. The UH measurements will test the OB association origin model of the GCR, as well as the model of preferential acceleration of refractory elements. The GCR spectrum measurements will probe for microquasars or other sources that could superpose spectral features. Super-TIGER is a ˜ 4 × larger evolution of the preceding TIGER instrument, and is comprised of two independent modules with a total area of 5.4 m^{2}. A combination of plastic scintillation detectors, acrylic and silica-aerogel Cherenkov detectors, and scintillating fiber hodoscopes are used to resolve particle charge, kinetic energy per nucleon, and trajectory. Refinements in the Super-TIGER design over TIGER, including reduced material in the beam, give it a collecting power that is ˜ 6.4× larger. This paper will report on the instrument development status, the expected flight performance, and the scientific impact of the anticipated Super-TIGER GCR measurements. This research was supported by NASA under Grant NNX09AC17G

  19. PULSAR: a balloon-borne experiment to detect variable low energy gamma-ray

    International Nuclear Information System (INIS)

    Bui-Van, N.A.; Martin, I.M.; Blanco, F.G.; Braga, J.

    1983-01-01

    The main goal of the balloon-borne 'PULSAR' experiment is to observe γ-ray photons of variable sources and pulsars in the energy range 0.1-5.0 MeV. The geometrical arrangement of the telescope has been designed according to detector sensitivity estimations for the pulsed radiation, which have been made by empirical and analytical methods. From the obtained results we expect to achieve a detection sensitivity of 3.7 x 10 -7 photons cm -2 s -1 KeV -1 (0.1 - 0.5 MeV) and 4.5 x 10 -6 photons cm -2 s -1 KeV -1 (1.0 - 5.0 MeV), for 5 hours integration time at 5 g cm -2 atmospheric depth, with 3σ statistical significance. It was developed an on-board electronics, compatible with the available telemetry capacity, that is able to process the data with a time resolution of approximatelly 4 miliseconds. (Author) [pt

  20. Low power ADC with fast zero suppression for balloon-borne experiment

    International Nuclear Information System (INIS)

    Anraku, Kazuaki; Imori, Masatosi

    1993-01-01

    The article describes a low power CAMAC ADC module with fast zero suppression. The module is developed to improve data acquisition rate for a balloon-borne detector. The module is of a single CAMAC width and includes sixteen charge-to-voltage converter (QVC) channels. Each channel has its own A/D converter. The QVC outputs are digitized simultaneously. The A/D converter continues digitization for 15 μsec at longest. Then a micro-programmed sequencer, which is installed in the module, scans the channels, comparing the outputs of the A/D converters with prescribed thresholds. The outputs are stored together with channel numbers into data memory when the outputs are greater than the thresholds. The zero suppression completes in 3 μsec, and zero-suppressed data become ready within 18 μsec. The operation of the QVC circuit is repeatedly simulated on a workstation in order that the temperature dependence of the QVC circuit could be reduced without sacrificing performance

  1. Observational study of large-scale forbidden CII emission by Balloon-Borne Infrared Telescope (BIRT)

    Science.gov (United States)

    Shibai, Hiroshi

    1992-11-01

    A far-infrared emission line of the C(+) ion (forbidden CII 158-micron transition) was detected in an extensive region (30 deg less than/equal to l less than/equal to 51 deg) along the Galactic plane. The forbidden CII line is bright and extended far from discrete luminous HII regions. The diffuse forbidden CII emission probably comes from the photodissociated C+ regions enveloping giant molecular clouds exposed to the general interstellar UV radiation field, namely, 'diffuse photodissociation regions'. The Balloon-Borne Infrared Telescope (BIRT) was used for the observations. It was developed for far-infrared astronomy by a joint project (the BIRT project) between the Institute of Space and Astronautical Science and Kyoto University in Japan. BIRT has a 50-cm reflector telescope mounted on an alt-azimuthal pointing system actuated by a control-moment gyroscope torquer in the azimuth. The pointing and tracking are accomplished by a unique offset guide system which utilizes a star tracker and a star field camera mounted on two-axis offset gimbals, controlled by an on-board CPU. Details of BIRT's design and major results of its observations are presented. In addition, compilations are presented of the far-infrared line observations, far-infrared line parameters, and observational work of the spectral lines.

  2. Performance of the CAPRICE98 balloon-borne gas-RICH detector

    CERN Document Server

    Bergström, D; Carlson, P J; Francke, T; Grinstein, S; Weber, N; Suffert, Martin; Hof, M; Kremer, J; Menn, W; Simon, M; Stephens, S A; Ambriola, M; Bellotti, R; Cafagna, F; Castellano, M G; Ciacio, F; Circella, M; De Marzo, C; Finetti, N; Papini, P; Piccardi, S; Spillantini, P; Bartalucci, S; Ricci, M; Bidoli, V; Casolino, M; De Pascale, M P; Morselli, A; Picozza, P; Sparvoli, R; Barbiellini, Guido; Schiavon, R P; Vacchi, A; Zampa, N; Mitchell, J W; Ormes, J F; Streitmatter, R E; Bravar, U; Stochaj, S J

    2001-01-01

    A RICH counter using a gas radiator of C/sub 4/F/sub 10/ and a photosensitive MWPC with pad readout has been developed, tested in particle beam at CERN and used in the CAPRICE98 balloon-borne experiment. The MWPC was operated with a TMAE and ethane mixture at atmospheric pressure and used a cathode pad plane to give an unambiguous image of the Cherenkov light. The induced signals in the pad plane were read our using the AMPLEX chip and CRAMS. The good efficiency of the Cherenkov light collection, the efficient detection of the weak signal from single UV photons together with a low noise level in the electronics of the RICH detector, resulted in a large number of detected photoelectrons per event. For beta approximately=1 charge one particles, an average of 12 photoelectrons per event were detected. The reconstructed Cherenkov angle of 50 mrad for a beta approximately=1 particle had a resolution of 1.2 mrad (rms). The RICH was flown with the CAPRICE98 magnetic spectrometer and was the first RICH counter ever u...

  3. Large-Area Balloon-Borne Polarized Gamma Ray Observer (PoGO)

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, V.; Chen, P.; Kamae, T.; Madejski, G.; Mizuno, T.; Ng, J.; Tajima, H.; Thurston, T.; /SLAC; Bogaert, G.; /Ecole Polytechnique; Fukazawa, Y.; /Hiroshima U.; Saito,; Takahashi, T.; /Sagamihara, Inst. Space Astron. Sci.; Barbier, L.; Bloser, P.; Harding, A.; Hunter, S.; Krizmanic, J.; Mitchell, J.; Streitmatter, R.; Fernholz, R.; Groth, E.; /NASA, Goddard /Princeton U. /Royal Inst. Tech., Kista /Stockholm U. /Tokyo Inst. Tech. /Yamagata U.

    2005-06-30

    We are developing a new balloon-borne instrument (PoGO), to measure polarization of soft gamma rays (30-200 keV) using asymmetry in azimuth angle distribution of Compton scattering. PoGO is designed to detect 10% polarization in 100mCrab sources in a 6-8 hour observation and bring a new dimension to studies on gamma ray emission/transportation mechanism in pulsars, AGNs, black hole binaries, and neutron star surface. The concept is an adaptation to polarization measurements of well-type phoswich counter consisting of a fast plastic scintillator (the detection part), a slow plastic scintillator (the active collimator) and a BGO scintillator (the bottom anti-counter). PoGO consists of close-packed array of 217 hexagonal well-type phoswich counters and has a narrow field-of-view ({approx} 5 deg{sup 2}) to reduce possible source confusion. A prototype instrument has been tested in the polarized soft gamma-ray beams at Advanced Photon Source (ANL) and at Photon Factory (KEK). On the results, the polarization dependence of EGS4 has been validated and that of Geant4 has been corrected.

  4. A new project, SPIRALE. Balloon-borne in situ multi-component measurement using infrared diode lasers

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, G.; Pirre, M.; Robert, C. [Centre National de la Recherche Scientifique (CNRS), 45 - Orleans-la-Source (France); Rosier, B.; Louvet, Y.; Ramaroson, R. [Office National d`Etudes et de Recherches Aerospatiales, 91 - Palaiseau (France); Peyret, C.C. [Universite Pierre et Marie Curie, 75 - Paris (France); Macleod, Y. [Universite Pierreet Marie Curie, 75 - Paris (France); Courtois, D. [Reims Univ., 51 (France). Faculte des Sciences

    1997-12-31

    The scientific goals and the description of a new experiment for stratospheric studies SPIRALE are presented which is a balloon-borne instrument, able to measure in situ several air components (up to 10). Infrared diode laser spectroscopy is applied for monitoring simultaneously atmospheric trace gases at high rate. Its specificity, sensitivity, and wide range of compounds to which it can be applied is described. (R.P.) 5 refs.

  5. High Energy Replicated Optics to Explore the Sun: Hard X-ray balloon-borne telescope

    Science.gov (United States)

    Gaskin, J.; Apple, J.; Chavis, K. S.; Dietz, K.; Holt, M.; Koehler, H.; Lis, T.; O'Connor, B.; Otero, M. R.; Pryor, J.; Ramsey, B.; Rinehart-Dawson, M.; Smith, L.; Sobey, A.; Wilson-Hodge, C.; Christe, S.; Cramer, A.; Edgerton, M.; Rodriguez, M.; Shih, A.; Gregory, D.; Jasper, J.; Bohon, S.

    Set to fly in the Fall of 2013 from Ft. Sumner, NM, the High Energy Replicated Optics to Explore the Sun (HEROES) mission is a collaborative effort between the NASA Marshall Space Flight Center and the Goddard Space Flight Center to upgrade an existing payload, the High Energy Replicated Optics (HERO) balloon-borne telescope, to make unique scientific measurements of the Sun and astrophysical targets during the same flight. The HEROES science payload consists of 8 mirror modules, housing a total of 109 grazing-incidence optics. These modules are mounted on a carbon-fiber - and Aluminum optical bench 6 m from a matching array of high pressure xenon gas scintillation proportional counters, which serve as the focal-plane detectors. The HERO gondola utilizes a differential GPS system (backed by a magnetometer) for coarse pointing in the azimuth and a shaft angle encoder plus inclinometer provides the coarse elevation. The HEROES payload will incorporate a new solar aspect system to supplement the existing star camera, for fine pointing during both the day and night. A mechanical shutter will be added to the star camera to protect it during solar observations. HEROES will also implement two novel alignment monitoring system that will measure the alignment between the optical bench and the star camera and between the optics and detectors for improved pointing and post-flight data reconstruction. The overall payload will also be discussed. This mission is funded by the NASA HOPE (Hands On Project Experience) Training Opportunity awarded by the NASA Academy of Program/Project and Engineering Leadership, in partnership with NASA's Science Mission Directorate, Office of the Chief Engineer and Office of the Chief Technologist.

  6. Feasibility of Balloon-Borne Optical Measurement of (C sub n) Squared.

    Science.gov (United States)

    1981-10-26

    attached to two meteorological balloons. Tether lines to the balloons are attached to a trailing package which contains a telemetry trasmitter and...R.J. Cook, Beam wander in a turbulent medium: An application of Ehrenfest’s theorem, J. Opt. Soc. Am ., 1975, 8, 942. 28 DAT FILM

  7. The atmospheric nightglow in the 300-400 nm wavelength Results by the balloon-borne experiment 'BABY'

    CERN Document Server

    Catalano, O; Biondo, B; Celi, F; Di Raffaele, R; Giarrusso, S; Linsley, J; Lo Bue, A; Mangano, A; Russo, F

    2002-01-01

    The balloon-borne experiment, named BAckground BYpass (BABY) belongs to a wider program that has as its final goal the detection and study of high-energy cosmic rays from space (satellite, Space Station). An information of fundamental importance for this class of projects concerns the nighttime background light. The instrument designed to detect fluorescence photons is basically composed of two collimated photomultipliers: a single photon-counting PMT and a charge integration PMT. We briefly report the details of the design, operation and performance of the detector, which was designed and completely built at the IFCAI-CNR Institute in Palermo. Preliminary analysis and results of the nocturnal background in the range of 300-400 nm are presented for the whole duration of the flight during the 1998 Mediterranean balloon flight campaign. A substantial part of the flight was at night over the sea.

  8. Measurement of sea-level cosmic ray with a balloon-borne multistage and multiwire proportional counter telescope

    International Nuclear Information System (INIS)

    Kuge, Akira; Sekiguchi, Hiroyuki; Kubota, Tadashi; Yanagimachi, Tomoki

    1980-01-01

    A balloon-borne, five stage and seven wire proportional counter telescope has been developed to observe high energy protons and heavy nuclei in cosmic ray. The effect of relativistic increase of ionization loss is utilized for the determination of cosmic ray energy. Lucite Cherenkov counters are used to reject low energy particles. This paper presents the measured results of the pulse height distribution of vertical muons at sea level. The fluctuation of ionization loss in a proportional counter is shown, and the FWHM of the fluctuation decreases to about 50% by selecting the minimum pulses in the five-stage proportional counter. The energy spectra of cosmic ray muons are obtained using this telescope. The launching of this telescope on a balloon is scheduled in near future. (Yoshimori, M.)

  9. B-MINE, the balloon-borne microcalorimeter nuclear line explorer

    DEFF Research Database (Denmark)

    Silver, E.; Schnopper, H.; Jones, C.

    2002-01-01

    B-MINE is a concept for a balloon mission designed to probe the deepest regions of a supernova explosion by detecting 44Ti emission at 68 keV with spatial and spectral resolutions that are sufficient to determine the extent and velocity distribution of the 44Ti emitting region. The payload introd...

  10. Diffuse gamma ray measurement above 20 MeV with a balloon borne experiment

    International Nuclear Information System (INIS)

    Parlier, B.; Forichon, M.; Montmerle, T.; Agrinier, B.; Palmeira, R.

    1975-01-01

    During two balloon flights of a spark chamber gamma ray telescope launched from Sao Jose dos Campos (Brazil) in 1973, the growth of the secondary gamma rays in function of the atmospheric pressure has been monitored. The extrapolation to zero residual atmosphere giving evidence of an extraterrestrial flux is discussed [fr

  11. Inter-comparison of stratospheric O3 and NO2 abundances retrieved from balloon borne direct sun observations and Envisat/SCIAMACHY limb measurements

    Directory of Open Access Journals (Sweden)

    A. Butz

    2006-01-01

    Full Text Available Stratospheric O3 and NO2 abundances measured by different remote sensing instruments are inter-compared: (1 Line-of-sight absorptions and vertical profiles inferred from solar spectra in the ultra-violet (UV, visible and infrared (IR wavelength ranges measured by the LPMA/DOAS (Limb Profile Monitor of the Atmosphere/Differential Optical Absorption Spectroscopy balloon payload during balloon ascent/descent and solar occultation are examined with respect to internal consistency. (2 The balloon borne stratospheric profiles of O3 and NO2 are compared to collocated space-borne skylight limb observations of the Envisat/SCIAMACHY satellite instrument. The trace gas profiles are retrieved from SCIAMACHY spectra using different algorithms developed at the Universities of Bremen and Heidelberg and at the Harvard-Smithsonian Center for Astrophysics. A comparison scheme is used that accounts for the spatial and temporal mismatch as well as differing photochemical conditions between the balloon and satellite borne measurements. It is found that the balloon borne measurements internally agree to within ±10% and ±20% for O3 and NO2, respectively, whereas the agreement with the satellite is ±20% for both gases in the 20 km to 30 km altitude range and in general worse below 20 km.

  12. LITOS – a new balloon-borne instrument for fine-scale turbulence soundings in the stratosphere

    Directory of Open Access Journals (Sweden)

    A. Theuerkauf

    2011-01-01

    Full Text Available We have developed a new compact balloon payload called LITOS (Leibniz-Institute Turbulence Observations in the Stratosphere for high resolution wind turbulence soundings in the stratosphere up to 35 km altitude. The wind measurements are performed using a constant temperature anemometer (CTA with a vertical resolution of ~2.5 mm, i.e. 2 kHz sampling rate at 5 m/s ascent speed. Thereby, for the first time, it is possible to study the entire turbulence spectrum down to the viscous subrange in the stratosphere. Including telemetry, housekeeping, batteries and recovery unit, the payload weighs less than 5 kg and can be launched from any radiosonde station. Since autumn 2007, LITOS has been successfully launched several times from the Leibniz-Institute of Atmospheric Physics (IAP in Kühlungsborn, Germany (54° N, 12° E. Two additional soundings were carried out in 2008 and 2009 in Kiruna, Sweden (67° N, 21° E as part of the BEXUS program (Balloon-borne EXperiments for University Students. We describe here the basic principle of CTA measurements and prove the validity of this method in the stratosphere. A first case study allows a clear distinction between non-turbulent regions and a turbulent layer with a thickness of some tens of meters. Since our measurements cover the transition between the inertial and viscous subrange, energy dissipation rates can be calculated with high reliability.

  13. Balloon-borne ozonesonde and rocket temperature and wind data gathered during the July 1977 intertropical convergence zone experiment

    Science.gov (United States)

    Schmidlin, F. J.; Kloos, G.

    1979-01-01

    In middle latitudes, it is possible for large concentrations of stratospheric air to be brought down to the tropopause through folds or breaks in the tropopause. The exchange of air from the tropopause into higher altitudes is not well understood. Thus, the ITCZ (Intertropical Convergence Zone) experiment, conducted from July 16 through July 31, 1977, included a series of balloon-borne ozone soundings. The results of these soundings are presented and explain in the vertical exchange of air and provide information on the short vertical scales-of-motion. Rocketsonde data was also gathered in the ITCZ experiment in support of a stratospheric scales-of-motion study. The investigation was to determine whether rocketsonde and satellite information currently used yield information on the stratospheric horizontal wave spectrum and its importance with respect to tropospheric and mesospheric interaction and transport.

  14. SMILE-II: Balloon-Borne Telescope for Background-Suppressed Soft Gamma-Ray Imaging

    Science.gov (United States)

    Sawano, T.; Tanimori, T.; Kubo, H.; Takada, A.; Parker, J. D.; Mizumoto, T.; Sonoda, S.; Mizumura, Y.; Tomono, D.; Nakamura, K.; Matsuoka, Y.; Komura, S.; Sato, Y.; Nakamura, S.; Miuchi, K.; Kabuki, S.; Kishimoto, Y.; Kurosawa, S.; Iwaki, S.; Tanaka, M.; Ikeno, M.; Uchida, T.

    We have developed an Electron-Tracking Compton Camera (ETCC) for an all-sky survey at the MeV gamma-ray band. The ETCC consists of a gaseous tracker and a position sensitive scintillation camera to measure the momentum of the Compton-recoil electron and the scattering gamma ray so that we can reconstruct the energy and momentum of the incident gamma ray photon by photon. Also the ETCC has strong background rejection methods using tracking information such as the dE/dx particle identification and theCompton kinematics test. To confirm feasibility of observing celestial objects in space, we performed a balloon experiment to successfully observe the diffuse cosmic and atmospheric gamma rays, which confirmed the effectiveness of the background rejection capability. Based on the first balloon experiment result, we are developing a large ETCC and plan to launch it for the test of the imaging property. The performance of the SMILE-II ETCC is simulated and then it will obtain an effective area of 1.1 cm2 for 200 keV by improving the electron track reconstruction efficiency by a factor of about 10, which results in the detection of Crab nebula at >5σ level for several-hour observation in the middle latitude with an altitude of 40 km.

  15. Balloon-borne hard x-ray imaging observations of non-thermal phenomena

    Science.gov (United States)

    Kunieda, Hideyo

    2006-06-01

    Non-thermal phenomena is now-a-days recognized as an important half of the energetics of the Universe. Hard X-ray emission from energetic particles is the most important clue to investigate the non-thermal phenomena. Hard X-ray imaging telescopes are known to improve the sensitivity of hard X-ray observations dramatically. Since hard X-rays above 25 keV can be observed at the altitude of 40 km, we are performing hard X-ray imaging balloon experiments as the path finders of future satellite missions of hard X-ray imaging. Major fields we are looking into are non-thermal components from SNR and Cluster of galaxies and the power law components from AGN even with thick column. The former are related to acceleration mechanisms of high energy particles responsible for hard X-ray power law components. The latter is the complete search of emission from massive blackholes which contribute most to the cosmic X-ray background. Our current balloon programs are InFOCμS experiment and SUMIT project. NeXT is the hard X-ray imaging mission proposed as the next Japanese X-ray mission.

  16. Optics Alignment of a Balloon-Borne Far-Infrared Interferometer BETTII

    Science.gov (United States)

    Dhabal, Arnab; Rinehart, Stephen A.; Rizzo, Maxime J.; Mundy, Lee; Sampler, Henry; Juanola Parramon, Roser; Veach, Todd; Fixsen, Dale; Vila Hernandez De Lorenzo, Jor; Silverberg, Robert F.

    2017-01-01

    The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is an 8-m baseline far-infrared (FIR: 30 90 micrometer) interferometer providing spatially resolved spectroscopy. The initial scientific focus of BETTII is on clustered star formation, but this capability likely has a much broader scientific application.One critical step in developing an interferometer, such as BETTII, is the optical alignment of the system. We discuss how we determine alignment sensitivities of different optical elements on the interferogram outputs. Accordingly, an alignment plan is executed that makes use of a laser tracker and theodolites for precise optical metrology of both the large external optics and the small optics inside the cryostat. We test our alignment on the ground by pointing BETTII to bright near-infrared sources and obtaining their images in the tracking detectors.

  17. A transition radiation detector for positron identification in a balloon-borne particle astrophysics experiment

    International Nuclear Information System (INIS)

    Barbarito, E.; Bellotti, R.; Cafagna, F.; Castellano, M.; Circella, M.; De Cataldo, G.; De Marzo, C.; Fusco, P.; Giglietto, N.; Mongelli, M.; Marangelli, B.; Perchiazzi, M.; Raino, A.; Sacchetti, A.; Spinelli, P.

    1995-01-01

    We have built and tested a transition radiation detector of about 76x80 cm 2 active surface to discriminate positrons from protons in an experiment performed on a balloon flight to search for primordial antimatter. The TRD is made of ten modules each consisting of a carbon fiber radiator followed by a multiwire proportional chamber. In order to achieve a proton-electron rejection factor of the order of 10 -3 with a strict limitation on power consumption to about 40 mW per chamber channel, as required by experimental constraints, we have developed a low power consumption ''cluster counting'' electronics. Different analysis procedures of calibration data are shown. In addition, comparisons of the performances of this detector are also made with a previous similar prototype equipped with standard fast electronics and similar detectors from other authors. ((orig.))

  18. Design of the Telescope Truss and Gondola for the Balloon-Borne X-ray Polarimeter X-Calibur

    Science.gov (United States)

    Kislat, Fabian; Beheshtipour, Banafsheh; Dowkontt, Paul; Guarino, Victor; Lanzi, R. James; Okajima, Takashi; Braun, Dana; Cannon, Scott; de Geronimo, Gialuigi; Heatwole, Scott; Hoorman, Janie; Li, Shaorui; Mori, Hideyuki; Shreves, Christopher M.; Stuchlik, David; Krawczynski, Henric

    X-ray polarimetry has seen a growing interest in recent years. Improvements in detector technology and focusing X-ray optics now enable sensitive astrophysical X-ray polarization measurements. These measurements will provide new insights into the processes at work in accreting black holes, the emission of X-rays from neutron stars and magnetars, and the structure of AGN jets. X-Calibur is a balloon-borne hard X-ray scattering polarimeter. An X-ray mirror with a focal length of 8m focuses X-rays onto the detector, which consists of a plastic scattering element surrounded by Cadmium-Zinc-Telluride detectors, which absorb and record the scattered X-rays. Since X-rays preferentially scatter perpendicular to their polarization direction, the polarization properties of an X-ray beam can be inferred from the azimuthal distribution of scattered X-rays. A close alignment of the X-ray focal spot with the center of the detector is required in order to reduce systematic uncertainties and to maintain a high photon detection efficiency. This places stringent requirements on the mechanical and thermal stability of the telescope structure. During the flight on a stratospheric balloon, X-Calibur makes use of the Wallops Arc-Second Pointer (WASP) to point the telescope at astrophysical sources. In this paper, we describe the design, construction, and test of the telescope structure, as well as its performance during a 25-h flight from Ft. Sumner, New Mexico. The carbon fiber-aluminum composite structure met the requirements set by X-Calibur and its design can easily be adapted for other types of experiments, such as X-ray imaging or spectroscopic telescopes.

  19. Development of the scintillator-deposited charge-coupled device and application for the balloon-borne experiment, SUMIT

    Science.gov (United States)

    Miyata, E.; Mukai, K.; Ikegami, K.; Tawa, N.; Anabuki, N.; Tsunemi, H.; Ogasaka, Y.; Tamura, K.; Furuzawa, A.; Shibata, R.; Haba, Y.; Kunieda, H.; Saito, Y.; Yamagami, T.; Miyaguchi, K.

    2006-06-01

    We report on a new photon-counting detector possessing unprecedented spatial resolution and moderate spectral resolution for 0.5-100keV X-rays. It consists of an X-ray charge-coupled device (CCD) and a scintillator. The scintillator is directly coupled to the back surface of the X-ray CCD. Low-energy X-rays below 10keV can be directly detected by the CCD. The majority of hard X-rays above 10keV pass through the CCD but can be absorbed by the scintillator, generating visible photons. We employ the needlelike CsI(Tl) in order to prevent the lateral spread of visible photons. We performed the Monte Carlo simulation with DETECT2000 both to maximize the number of visible photons detected by the CCD and to minimize the lateral spread of visible photons on the CCD. We then fabricated the optimized needlelike CsI(Tl) with 300 μm thick and coupled it on the front surface of the back-illuminated (BI) CCD. The high detection efficiency of BI CCDs in the visible band enables us to collect visible photons emitted from the CsI(Tl) efficiently, leading to the moderate spectral resolution of 30% at 59.5keV combined with the high detection efficiency for hard X-rays. We plan to perform the hard X-ray imaging balloon-borne experiment, SUMIT, in autumn of 2006 at Brazil. We also describe the details about the balloon system of the SD-CCD.

  20. Measuring ionizing radiation in the atmosphere with a new balloon-borne detector

    Science.gov (United States)

    Aplin, K. L.; Briggs, A. A.; Harrison, R. G.; Marlton, G. J.

    2017-05-01

    Increasing interest in energetic particle effects on weather and climate has motivated development of a miniature scintillator-based detector intended for deployment on meteorological radiosondes or unmanned airborne vehicles. The detector was calibrated with laboratory gamma sources up to 1.3 MeV and known gamma peaks from natural radioactivity of up to 2.6 MeV. The specifications of our device in combination with the performance of similar devices suggest that it will respond to up to 17 MeV gamma rays. Laboratory tests show that the detector can measure muons at the surface, and it is also expected to respond to other ionizing radiation including, for example, protons, electrons (>100 keV), and energetic helium nuclei from cosmic rays or during space weather events. Its estimated counting error is ±10%. Recent tests, when the detector was integrated with a meteorological radiosonde system and carried on a balloon to 25 km altitude, identified the transition region between energetic particles near the surface, which are dominated by terrestrial gamma emissions, to higher-energy particles in the free troposphere.

  1. Balloon-borne limb profiling of UV/vis skylight radiances, O3, NO2, and BrO: technical set-up and validation of the method

    Directory of Open Access Journals (Sweden)

    F. Weidner

    2005-01-01

    Full Text Available A novel light-weight, elevation scanning and absolutely calibrated UV/vis spectrometer and its application to balloon-borne limb radiance and trace gas profile measurements is described. Its performance and the novel method of balloon-borne UV/vis limb trace gas measurements has been tested against simultaneous observations of the same atmospheric parameters available from either (a in-situ instrumentation (cf., by an electrochemical cell (ECC ozone sonde also deployed aboard the gondola or (b trace gas profiles inferred from UV/vis/near IR solar occultation measurements performed on the same payload. The novel technique is also cross validated with radiative transfer modeling. Reasonable agreement is found (a between measured and simulated limb radiances and (b inferred limb O3, NO2, and BrO and correlative profile measurements when properly accounting for all relevant atmospheric parameters (temperature, pressure, aerosol extinction, and major absorbers.

  2. Calibration and performance studies of the balloon-borne hard X-ray polarimeter PoGO+

    Science.gov (United States)

    Chauvin, M.; Friis, M.; Jackson, M.; Kawano, T.; Kiss, M.; Mikhalev, V.; Ohashi, N.; Stana, T.; Takahashi, H.; Pearce, M.

    2017-07-01

    Polarimetric observations of celestial sources in the hard X-ray band stand to provide new information on emission mechanisms and source geometries. PoGO+ is a Compton scattering polarimeter (20-150 keV) optimised for the observation of the Crab (pulsar and wind nebula) and Cygnus X-1 (black hole binary), from a stratospheric balloon-borne platform launched from the Esrange Space Centre in summer 2016. Prior to flight, the response of the polarimeter has been studied with polarised and unpolarised X-rays allowing a Geant4-based simulation model to be validated. The expected modulation factor for Crab observations is found to be MCrab = (41.75 ± 0.85) % , resulting in an expected Minimum Detectable Polarisation (MDP) of 7.3% for a 7 day flight. This will allow a measurement of the Crab polarisation parameters with at least 5 σ statistical significance assuming a polarisation fraction ∼ 20 % - a significant improvement over the PoGOLite Pathfinder mission which flew in 2013 and from which the PoGO+ design is developed.

  3. Intersstellar absorption lines between 2000 and 3000 A in nearby stars observed with BUSS. [Balloon Borne Ultraviolet Spectrophotometer

    Science.gov (United States)

    De Boer, K. S.; Lenhart, H.; Van Der Hucht, K. A.; Kamperman, T. M.; Kondo, Y.

    1986-01-01

    Spectra obtained between 2000 and 3000 A with the Balloon Borne Ultraviolet Spectrophotometer (BUSS) payload were examined for interstellar absorption lines. In bright stars, with spectral types between O9V and F5V, such lines were measured of Mg I, Mg II, Cr II, Mn II, Fe II and Zn II, with Cr II and Zn II data of especially high quality. Column densities were derived and interstellar abundances were determined for the above species. It was found that metal depletion increases with increasing E(B-V); Fe was most affected and Zn showed a small depletion for E(B-V) greater than 0.3 towards Sco-Oph. The metal column densities, derived for Alpha-And, Kappa-Dra, Alpha-Com, Alpha-Aql, and 29 Cyg were used to infer N(H I). It was shown that the ratio of Mg I to Na I is instrumental in determining the ionization structure along each line of sight. The spectra of Aql stars confirms the presence of large gas densities near Alpha-Oph. Moreover, data indicated that the Rho-Oph N(H I) value needs to be altered to 35 x 10 to the 20th/sq cm, based on observed ion ratios and analysis of the Copernicus L-alpha profile.

  4. LUPUS I observations from the 2010 flight of the Balloon-borne large aperture submillimeter telescope for polarimetry

    International Nuclear Information System (INIS)

    Matthews, Tristan G.; Chapman, Nicholas L.; Novak, Giles; Ade, Peter A. R.; Hargrave, Peter C.; Nutter, David; Angilè, Francesco E.; Devlin, Mark J.; Klein, Jeffrey; Benton, Steven J.; Fissel, Laura M.; Gandilo, Natalie N.; Netterfield, Calvin B.; Chapin, Edward L.; Fukui, Yasuo; Gundersen, Joshua O.; Korotkov, Andrei L.; Moncelsi, Lorenzo; Mroczkowski, Tony K.; Olmi, Luca

    2014-01-01

    The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol) was created by adding polarimetric capability to the BLAST experiment that was flown in 2003, 2005, and 2006. BLASTPol inherited BLAST's 1.8 m primary and its Herschel/SPIRE heritage focal plane that allows simultaneous observation at 250, 350, and 500 μm. We flew BLASTPol in 2010 and again in 2012. Both were long duration Antarctic flights. Here we present polarimetry of the nearby filamentary dark cloud Lupus I obtained during the 2010 flight. Despite limitations imposed by the effects of a damaged optical component, we were able to clearly detect submillimeter polarization on degree scales. We compare the resulting BLASTPol magnetic field map with a similar map made via optical polarimetry. (The optical data were published in 1998 by J. Rizzo and collaborators.) The two maps partially overlap and are reasonably consistent with one another. We compare these magnetic field maps to the orientations of filaments in Lupus I, and we find that the dominant filament in the cloud is approximately perpendicular to the large-scale field, while secondary filaments appear to run parallel to the magnetic fields in their vicinities. This is similar to what is observed in Serpens South via near-IR polarimetry, and consistent with what is seen in MHD simulations by F. Nakamura and Z. Li.

  5. LUPUS I observations from the 2010 flight of the Balloon-borne large aperture submillimeter telescope for polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Tristan G.; Chapman, Nicholas L.; Novak, Giles [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Ade, Peter A. R.; Hargrave, Peter C.; Nutter, David [Cardiff University, School of Physics and Astronomy, Queens Buildings, The Parade, Cardiff, CF24 3AA (United Kingdom); Angilè, Francesco E.; Devlin, Mark J.; Klein, Jeffrey [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Benton, Steven J.; Fissel, Laura M.; Gandilo, Natalie N.; Netterfield, Calvin B. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street Toronto, ON M5S 3H4 (Canada); Chapin, Edward L. [XMM SOC, ESAC, Apartado 78, E-28691 Villanueva de la Cañada, Madrid (Spain); Fukui, Yasuo [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Gundersen, Joshua O. [Department of Physics, University of Miami, 1320 Campo Sano Drive, Coral Gables, FL 33146 (United States); Korotkov, Andrei L. [Department of Physics, Brown University, 182 Hope Street, Providence, RI 02912 (United States); Moncelsi, Lorenzo; Mroczkowski, Tony K. [California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Olmi, Luca [University of Puerto Rico, Rio Piedras Campus, Physics Department, Box 23343, UPR station, San Juan (Puerto Rico); and others

    2014-04-01

    The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol) was created by adding polarimetric capability to the BLAST experiment that was flown in 2003, 2005, and 2006. BLASTPol inherited BLAST's 1.8 m primary and its Herschel/SPIRE heritage focal plane that allows simultaneous observation at 250, 350, and 500 μm. We flew BLASTPol in 2010 and again in 2012. Both were long duration Antarctic flights. Here we present polarimetry of the nearby filamentary dark cloud Lupus I obtained during the 2010 flight. Despite limitations imposed by the effects of a damaged optical component, we were able to clearly detect submillimeter polarization on degree scales. We compare the resulting BLASTPol magnetic field map with a similar map made via optical polarimetry. (The optical data were published in 1998 by J. Rizzo and collaborators.) The two maps partially overlap and are reasonably consistent with one another. We compare these magnetic field maps to the orientations of filaments in Lupus I, and we find that the dominant filament in the cloud is approximately perpendicular to the large-scale field, while secondary filaments appear to run parallel to the magnetic fields in their vicinities. This is similar to what is observed in Serpens South via near-IR polarimetry, and consistent with what is seen in MHD simulations by F. Nakamura and Z. Li.

  6. A method for estimating the turbulent kinetic energy dissipation rate from a vertically pointing Doppler lidar, and independent evaluation from balloon-borne in situ measurements

    OpenAIRE

    O'Connor, Ewan J.; Illingworth, Anthony J.; Brooks, Ian M.; Westbrook, Christopher D.; Hogan, Robin J.; Davies, Fay; Brooks, Barbara J.

    2010-01-01

    A method of estimating dissipation rates from a vertically pointing Doppler lidar with high temporal and spatial resolution has been evaluated by comparison with independent measurements derived from a balloon-borne sonic anemometer. This method utilizes the variance of the mean Doppler velocity from a number of sequential samples and requires an estimate of the horizontal wind speed. The noise contribution to the variance can be estimated from the observed signal-to-noise ratio and removed w...

  7. Comparisons of temperature, pressure and humidity measurements by balloon-borne radiosondes and frost point hygrometers during MOHAVE-2009

    Directory of Open Access Journals (Sweden)

    D. F. Hurst

    2011-12-01

    Full Text Available We compare coincident, in situ, balloon-borne measurements of temperature (T and pressure (P by two radiosondes (Vaisala RS92, Intermet iMet-1-RSB and similar measurements of relative humidity (RH by RS92 sondes and frost point hygrometers. Data from a total of 28 balloon flights with at least one pair of radiosondes are analyzed in 1-km altitude bins to quantify measurement differences between the sonde sensors and how they vary with altitude. Each comparison (T, P, RH exposes several profiles of anomalously large measurement differences. Measurement difference statistics, calculated with and without the anomalous profiles, are compared to uncertainties quoted by the radiosonde manufacturers. Excluding seven anomalous profiles, T differences between 19 pairs of RS92 and iMet sondes exceed their measurement uncertainty limits (2 σ 31% of the time and reveal a statistically significant, altitude-independent bias of 0.5 ± 0.2 °C. Similarly, RS92-iMet P differences in 22 non-anomalous profiles exceed their uncertainty limits 23% of the time, with a disproportionate 83% of the excessive P differences at altitudes >16 km. The RS92-iMet pressure differences increase smoothly from −0.6 hPa near the surface to 0.8 hPa above 25 km. Temperature and P differences between all 14 pairs of RS92 sondes exceed manufacturer-quoted, reproducibility limits (σ 28% and 11% of the time, respectively. About 95% of the excessive T differences are eliminated when 5 anomalous RS92-RS92 profiles are excluded. Only 5% of RH measurement differences between 14 pairs of RS92 sondes exceed the manufacturer's measurement reproducibility limit (σ. RH measurements by RS92 sondes are also compared to RH values calculated from frost point hygrometer measurements and coincident T measurements by the radiosondes. The influences of RS92-iMet Tand P differences on RH values and water vapor mixing

  8. Off-The-Shelf and Free Software Technologies for Spacecraft Control & Command: An Example, Balloon-Borne Stabilised Gondolas

    National Research Council Canada - National Science Library

    Laurens, Andre

    2005-01-01

    Balloons are low-cost, short development time space vehicles for science missions and technology in-flight experiments that need out-of-atmosphere or in-situ measurements, thus being complementary to the satellite...

  9. Far-Infrared Photometry with an 0.4-Meter Liquid Helium Cooled Balloon-Borne Telescope. Ph.D. Thesis

    Science.gov (United States)

    Jacobson, M. R.

    1977-01-01

    A 0.4-meter aperture, liquid helium cooled multichannel far-infrared balloon-borne telescope was constructed to survey the galactic plane. Nine new sources, above a 3-sigma confidence level of 1300 Jy, were identified. Although two-thirds of the scanned area was more than 10 degrees from the galactic plane, no sources were detected in that region; all nine fell within 10 degrees and eight of those within 4 degrees of the galactic equator. Correlations with visible, compact H lines associated with radio continuum and with sources displaying spectra steeply rising between 11 and 20 microns were noted, while stellar objects were not detected.

  10. A 16 channel frequency-domain-modulation readout system with custom superconducting LC filters for the SWIPE instrument of the balloon-borne LSPE experiment

    International Nuclear Information System (INIS)

    Signorelli, G.; Baldini, A.M.; Bemporad, C.; Biasotti, M.; Cei, F.; Ceriale, V.; Corsini, D.; Fontanelli, F.; Galli, L.; Gallucci, G.; Gatti, F.; Incagli, M.; Grassi, M.; Nicolò, D.; Spinella, F.; Vaccaro, D.; Venturini, M.

    2016-01-01

    We present the design, implementation and first tests of the superconducting LC filters for the frequency domain readout of spiderweb TES bolometers of the SWIPE experiment on the balloon-borne LSPE mission which aims at measuring the linear polarization of the Cosmic Microwave Background at large angular scales to find the imprint of inflation on the B-mode CMB polarization. LC filters are designed, produced and tested at the INFN sections of Pisa and Genoa where thin film deposition and cryogenic test facilities are present, and where also the TES spiderweb bolometers are being produced.

  11. Repositioning of Somatic Golgi Apparatus Is Essential for the Dendritic Establishment of Adult-Born Hippocampal Neurons.

    Science.gov (United States)

    Rao, Sneha; Kirschen, Gregory W; Szczurkowska, Joanna; Di Antonio, Adrian; Wang, Jia; Ge, Shaoyu; Shelly, Maya

    2018-01-17

    New dentate granule cells (DGCs) are continuously generated, and integrate into the preexisting hippocampal network in the adult brain. How an adult-born neuron with initially simple spindle-like morphology develops into a DGC, consisting of a single apical dendrite with further branches, remains largely unknown. Here, using retroviruses to birth date and manipulate newborn neurons, we examined initial dendritic formation and possible underlying mechanisms. We found that GFP-expressing newborn cells began to establish a DGC-like morphology at ∼7 d after birth, with a primary dendrite pointing to the molecular layer, but at this stage, with several neurites in the neurogenic zone. Interestingly, the Golgi apparatus, an essential organelle for neurite growth and maintenance, was dynamically repositioning in the soma of newborn cells during this initial integration stage. Two weeks after birth, by which time most neurites in the neurogenic zone were eliminated, a compact Golgi apparatus was positioned exclusively at the base of the primary dendrite. We analyzed the presence of Golgi-associated genes using single-cell transcriptomes of newborn DGCs, and among Golgi-related genes, found the presence of STK25 and STRAD , regulators of embryonic neuronal development. When we knocked down either of these two proteins, we found Golgi mislocalization and extensive aberrant dendrite formation. Furthermore, overexpression of a mutated form of STRAD, underlying the disorder polyhydramnios, megalencephaly, and symptomatic epilepsy, characterized by abnormal brain development and intractable epilepsy, caused similar defects in Golgi localization and dendrite formation in adult-born neurons. Together, our findings reveal a role for Golgi repositioning in regulating the initial integration of adult-born DGCs. SIGNIFICANCE STATEMENT Since the discovery of the continuous generation of new neurons in the adult hippocampus, extensive effort was directed toward understanding the

  12. Behavioral asymmetries in ticks - Lateralized questing of Ixodes ricinus to a mechatronic apparatus delivering host-borne cues.

    Science.gov (United States)

    Benelli, Giovanni; Romano, Donato; Rocchigiani, Guido; Caselli, Alice; Mancianti, Francesca; Canale, Angelo; Stefanini, Cesare

    2018-02-01

    Ticks are considered among the most dangerous arthropod vectors of disease agents to both humans and animals worldwide. Lateralization contributes to biological fitness in many animals, conferring important functional advantages, therefore studying its role in tick perception would critically improve our knowledge about their host-seeking behavior. In this research, we evaluated if Ixodes ricinus (L.) (Ixodiidae) ticks have a preference in using the right or the left foreleg to climb on a host. We developed a mechatronic device moving a tuft of fox skin with fur as host-mimicking combination of cues. This engineered approach allows to display a realistic combination of both visual and olfactory host-borne stimuli, which is prolonged over the time and standardized for each replicate. In the first experiment, the mechatronic apparatus delivered host-borne cues frontally, to evaluate the leg preference during questing as response to a symmetrical stimulus. In the second experiment, host-borne cues were provided laterally, in an equal proportion to the left and to the right of the tick, to investigate if the host direction affected the questing behavior. In both experiments, the large majority of the tested ticks showed individual-level left-biased questing acts, if compared to the ticks showing right-biased ones. Furthermore, population-level left-biased questing responses were observed post-exposure to host-mimicking cues provided frontally or laterally to the tick. Overall, this is the first report on behavioral asymmetries in ticks of medical and veterinary importance. Moreover, the mechatronic apparatus developed in this research can be exploited to evaluate the impact of repellents on tick questing in highly reproducible standardized conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. A time domain design technique for high precision full digital pointing system in balloon-borne remote infrared sensing

    Science.gov (United States)

    Boscaleri, A.; Venturi, V.; Tronconi, A.; Colzi, R.

    1990-09-01

    The design of two motor servoloops for an azimuth stabilization of a gondola of a large telescope is described. The system uses two dc torque motors, one for any motion of the platform around the vertical axis and one placed at the interconnecting point balloon-payload for attenuating the friction bearing. Mechanical nonlinearities impose a time domain design for any settling time control whenever the gondola experiences a new step in azimuth coordinate. A simplified equations of motion in the time domain are shown which enable this settling time to be controlled. A mechanical approach using an active pivot to avoid disturbances of the balloon rotation on current tracking of the sky azimuthal target is described.

  14. Development of balloon-borne CO2 sonde: CO2 vertical profile (0-10km) observations and comparison with the air craft measurements

    Science.gov (United States)

    Ouchi, M.; Matsumi, Y.; Nakayama, T.; Machida, T.; Matsueda, H.; Sawa, Y.; Tanaka, T.; Morino, I.; Uchino, O.

    2012-12-01

    The atmospheric CO2 concentration has drastically increased since the Industrial Revolution due to the mass consumption of fossil fuels and natural gas by human activities. CO2 is considered to be a major factor of global warming; therefore it is important to measure CO2 correctly. CO2 vertical profile measurement is the key to estimate CO2 sources and sinks in high precision. However, current CO2 monitoring sites are limited and there are few CO2 vertical profile measurements. We have been developing a balloon-borne instrument that can measure the vertical distribution of CO2 in any place in the world under any kind of weather conditions (CO2 sonde). The target specifications of altitude range is from surface to 10 km. Time resolution is 1min. The CO2 sensor, originally developed for upper air sounding by our team, is based on the non-dispersed infrared absorption spectroscopy technique (NDIR) at the wavelengths of 4.0 and 4.3 micrometer. The data of the optical infrared absorption are transmitted through a GPS sonde with temperature, humidity and GPS data every second. In this study, we will show simultaneous measurement campaigns of the balloon-borne instruments and in-situ aircraft measurements in January and February 2011 in the Tokyo metropolitan area in Japan. We will present the comparisons between the results of CO2 sonde (5 flights) and two types of aircraft measurements. One is observed by the CONTRAIL (Comprehensive Observation Network for TRace gases by AIrLiner) and the other is chartered flight measurements operated by NIES/JAXA.

  15. Performance of the transition radiation detector flown on the NMSU/WIZARD TS93 balloon-borne instrument

    Energy Technology Data Exchange (ETDEWEB)

    Aversa, F.; Barbiellini, G.; Boezio, M. [Trieste Univ. (Italy). Dip. di Fisica]|[INFN, Trieste (Italy); Basini, G.; Brancaccio, F.M. [INFN, Laboratori nazionali di Frascati, Frascati, Rome (Italy); Bellotti, R. [Bari Univ. (Italy). Dip. di Fisica]|[INFN, Bari (Italy); Bidoli, V. [Rome Univ. `Tor Vergata` (Italy). Dip. di Fisica]|[INFN, Sezione Univ. `Tor Vergata` Rome (Italy); Bocciolini, M. [Florence Univ. (Italy). Dip. di Fisica]|[INFN, Florence (Italy); Bronzini, F. [Rome Univ. `La Sapienza` (Italy). Dip. di Fisica]|[INFN, Sezione Univ. `La Sapienza` Rome (Italy)

    1995-09-01

    It is built and tested a transition radiation detector (TRD) to discriminate positrons from protons in the balloon flight TS 93 experiment. It is presented the TRD performance using flight data obtaining a proton-positron rejection factor of the order of 10{sup -3}. During the 24 hour flight, the data in the momentum range 4-50 GeV/c are collected. Using the TRD together with the Silicon calorimeter, it is achieved an overall rejection factor of about 10{sup -5} of positron against the proton background over the entire momentum range.

  16. Balloon-borne experiment for observation of sub-MeV/MeV gamma-rays from Crab Nebula using an Electron Tracking Compton Camera

    Science.gov (United States)

    Komura, Shotaro

    In astronomy, the observations of gamma-ray in sub-MeV/MeV energy band is expected to provide much information of various high energy phenomena, for example, the nucleosynthesis in supernovae, the particle acceleration in active galactic nuclei, gamma-ray bursts, and the strong gravity potential of black holes. However, sufficient observation has not yet been achieved due to difficulties of Compton gamma-ray imaging and rejection of large radiation backgrounds produced by the interaction of cosmic rays with a satellite body. To advance the MeV gamma-ray astronomy, we have developed an Electron Tracking Compton Camera (ETCC) as a next-generation MeV gamma-ray telescope. In comparison with a classical Compton camera, the ETCC measures a three dimensional track of the Compton recoil electron in the gas detector, which makes it possible to restrict the arrival direction of each incident gamma-ray to arc segment and remove backgrounds strongly using the kinematics test of Compton scattering and the particle identification by energy loss rate of charged particle. We planned the balloon experiments “Sub-MeV gamma-ray Imaging Loaded-on-balloon Experiment” (SMILE) to check the performance of ETCC in space for the future satellite observation. We have already carried out the first balloon borne experiment in 2006 using a small size ETCC with a 10 times 10 times 15 cm(3) detection area (SMILE-I), and we observed successfully the fluxes of the diffuse cosmic and atmospheric gamma rays at an altitude of 35 km during a live time of 3 hours and reveal the good background rejection ability of an ETCC. As the next step of SMILE, we plan to observe bright celestial sources like Crab Nebula to verify the gamma-ray imaging ability of an ETCC (SMILE-II) at middle latitude in the northern hemisphere. We have already constructed the SMILE-II flight ETCC system using a large size ETCC with (30 cm)(3) detection area and completely upgraded data acquisition system for reducing the dead

  17. A Distributed, Real-Time Data Monitoring System as Ground Support Equipment for Balloon-Borne Astronomy Experiments

    Science.gov (United States)

    Chen, C. M. H.; Baumgartner, W. H.; Cook, W. R.; Davis, A. J.; Harrison, F. A.

    2010-12-01

    We present a real-time data-monitoring software suite that we developed for the High Energy Focusing Telescope (HEFT). HEFT was one of the first projects to develop focusing mirrors and detectors for hard X-ray astronomy. We deployed these new technologies on the scientific ballooning platform. During a balloon flight, this so-called ‘ground support equipment’ (GSE) allows us to monitor the physical condition of the payload, and to inspect preliminary science data in real time, through displays of tables of frequently updated quantities and their averages, time-series plots, histograms, spectra, and images. Unique from previous implementations of GSE s for other experiments, our system is a server-client network that utilises TCP/IP unicast and UDP multicast to enable multiple, concurrent and independent display clients. Most of the code is in Java, and thus platform-independent. We verified that the software suite works on Linux, Mac OS/X and Windows XP, deployed it in two flight campaigns for use during on-site calibration, pre-launch practice drills, and an observation flight of 24 hours. This system, and individual ideas of its implementation, can be adapted for use in future experiments requiring sophisticated real-time monitoring and data display.

  18. Inorganic iodine in the tropical upper troposphere and lower stratosphere as derived from balloon-borne solar occultation observations

    Science.gov (United States)

    Butz, A.; Dorf, M.; Kreycy, S.; Kritten, L.; Prados, C.; Pfeilsticker, K.

    2009-04-01

    The budget and photochemistry of iodine is assessed in the tropical Upper Troposphere/ Lower Stratosphere (UT/LS) where the halogen source gases enter the stratosphere and supply the stratosphere with halogen species. Two stratospheric balloon flights of the LPMA/DOAS (Limb Profile Monitor of the Atmosphere/Differential Optical Absorption Spectrometer) payload were performed from a tropical station in north-eastern Brazil (5°S, 43°W) in June 2005 and June 2008. The LPMA/DOAS payload conducted spectroscopic direct sun measurements in the UV/visible and infrared spectral range during balloon ascent/descent and in solar occultation geometry. Here we focus on the outcome of the occultation measurements during sunrise and sunset. The DOAS observations allow for the retrieval of IO and OIO from their absorption features in the visible spectral range. Neither species could be detected unambiguously with detection limits ranging between 0.01 and 0.2 ppt in the UT/LS. Constraining a stratospheric chemistry model by the inferred detection limits for IO and OIO, yields an upper limit for Iy of 0.1 to 0.3 ppt.

  19. Inorganic Iodine and Bromine in the Tropical Upper Troposphere/Lower Stratosphere Derived From Balloon Borne Observations

    Science.gov (United States)

    Dorf, M.; Butz, A.; Camy-Peyret, C.; Chipperfield, M.; Kreycy, S.; Kritten, L.; Prados-Roman, C.; Pfeilsticker, K.

    2008-12-01

    Due to the ozone destroying capabilities of bromine and iodine bearing compounds, the stratospheric budget of inorganic bromine and iodine is of major interest for modeling ozone depletion and assessing the future evolution of the ozone layer. In particular the contribution of very short lived substances (VSLS) to the bromine budget has recently been shown to enhance ozone depletion in mid-latitudes and polar regions. So far, iodine species have not been unambiguously detected in the stratosphere with upper limits for total inorganic iodine (Iy) of about 0.1 ppt. However, observations are sparse and mainly restricted to mid- and high-latitudes. Here, we assess the budget of iodine and bromine in the tropical Upper Troposphere/ Lower Stratosphere (UT/LS) where the halogen source gases enter the stratosphere and supply the stratosphere with halogen species. We report on two stratospheric balloon flights of the LPMA/DOAS (Limb Profile Monitor of the Atmosphere/Differential Optical Absorption Spectrometer) payload from a tropical station in northern Brazil (5°S, 43°W) in June 2005 and June 2008. There, the LPMA/DOAS payload conducted spectroscopic direct sun measurements in the UV/visible and infrared spectral range during balloon ascent and in solar occultation geometry. The LPMA/DOAS observations allow for the retrieval of IO and OIO from their absorption features in the visible spectral range. Neither species could be detected unambiguously with detection limits ranging between 0.01 and 0.2 ppt in the UT/LS. Constraining a stratospheric chemistry model by the inferred detection limits for IO and OIO, yields an upper limit for Iy of 0.1 to 0.3 ppt. Implications for stratospheric ozone are discussed on the basis of model studies. BrO is inferred from absorption bands in the UV spectral range yielding the first BrO vertical profile in the tropical UT/LS. For the balloon flight in June 2005, total inorganic bromine (Bry) is estimated to (21.5 ± 2.5) ppt in 4.5-year

  20. Upper limits for stratospheric H2O2 and HOCl from high resolution balloon-borne infrared solar absorption spectra

    Science.gov (United States)

    Larsen, J. C.; Rinsland, C. P.; Goldman, A.; Murcray, D. G.; Murcray, F. J.

    1985-01-01

    Solar absorption spectra from two stratospheric balloon flights have been analyzed for the presence of H2O2 and HOCl absorption in the 1230.0 to 1255.0 per cm region. The data were recorded at 0.02 per cm resolution during sunset with the University of Denver interferometer system on October 27, 1978 and March 23, 1981. Selected spectral regions were analyzed with the technique of nonlinear least squares spectral curve fitting. Upper limits of 0.33 ppbv for H2O2 and 0.36 ppbv for HOCl near 28 km are derived from the 1978 flight data while upper limits of 0.44 ppbv for H2O2 and 0.43 ppbv for HOCl at 29.5 km are obtained from the 1981 flight data.

  1. More evidence for very short-lived substance contribution to stratospheric chlorine inferred from HCl balloon-borne in situ measurements in the tropics

    Directory of Open Access Journals (Sweden)

    Y. Mébarki

    2010-01-01

    Full Text Available Volume mixing ratio (vmr vertical profiles of hydrogen chloride (HCl are retrieved from in situ measurements performed by a balloon-borne infrared tunable diode laser absorption spectrometer (SPIRALE during two balloon flights in the tropics (Teresina, Brazil, 5.1° S–42.9° W in June 2005 and June 2008. HCl vertical profiles obtained from 15 to 31 km are presented and analysed to estimate the contribution of very short-lived substances (VSLS to total stratospheric chlorine. Both retrieved vertical profiles of HCl from these flights agree very well with each other, with estimated overall uncertainties of 6% on vmr between 23 and 31 km. Upper limits of HCl vmr as low as 20 pptv in June 2008 and 30 pptv in June 2005 are inferred in the upper part of the tropical tropopause layer (TTL. Backward trajectory calculations and such low amounts suggest that the air masses sampled correspond to typical background conditions, i.e. neither influenced by recent tropospheric nor stratospheric air. Taking into account the recently reported VSL source gas measurements obtained in similar conditions (Laube et al., 2008 and the main intermediate degradation product gas COCl2 (Fu et al., 2007, a total VSLS contribution of 85±40 pptv to stratospheric chlorine is inferred. This refines the WMO (2007 estimation of 50 to 100 pptv, which was not taking into account any HCl contribution. In addition, comparisons of HCl measurements between SPIRALE and the Aura MLS satellite instrument in the tropical lower and middle stratosphere lead to a very good agreement. The previous agreement between MLS-deduced upper stratospheric total chlorine content and modelled values including 100 pptv of VSLS (Froidevaux et al., 2006 is thus supported by our present result about the VSLS contribution.

  2. Test of far-infrared atmospheric spectroscopy using wide-band balloon-borne measurements of the upwelling radiance

    International Nuclear Information System (INIS)

    Bianchini, G.; Carli, B.; Cortesi, U.; Del Bianco, S.; Gai, M.; Palchetti, L.

    2008-01-01

    The spectroscopy of the constituents of the Earth's atmosphere that are active in the far infrared spectral region, among which the water vapour is the main one, has been validated through the analysis of wide-band nadir-looking spectra acquired with the Radiation Explorer in the Far Infrared-Prototype for Applications and Development (REFIR-PAD) Fourier transform spectroradiometer. The spectra, covering from 100 to 1400cm -1 with a 0.475cm -1 unapodized resolution, were acquired during a balloon flight performed in a tropical region in 2005. Atmospheric variables, namely water vapour and temperature vertical profiles, were retrieved from the REFIR-PAD data, and the residuals of the fitting are here critically analysed for the search of systematic effects that can be ascribed to spectroscopic errors. In the spectral interval between 150 and 600cm -1 nosignificant inconsistency is detected between the residuals and the measurement uncertainty, proving the good quality of the radiative transfer model and of the HITRAN 2004 spectroscopic database. Significant difference are instead observed when the HITRAN 2000 database is used

  3. Validation of Refractivity Profiles Retrieved from FORMOSAT-3/COSMIC Radio Occultation Soundings: Preliminary Results of Statistical Comparisons Utilizing Balloon-Borne Observations

    Directory of Open Access Journals (Sweden)

    Hiroo Hayashi

    2009-01-01

    Full Text Available The GPS radio occultation (RO soundings by the FORMOSAT-3/COSMIC (Taiwan¡¦s Formosa Satellite Misssion #3/Constellation Observing System for Meteorology, Ionosphere and Climate satellites launched in mid-April 2006 are compared with high-resolution balloon-borne (radiosonde and ozonesonde observations. This paper presents preliminary results of validation of the COSMIC RO measurements in terms of refractivity through the troposphere and lower stratosphere. With the use of COSMIC RO soundings within 2 hours and 300 km of sonde profiles, statistical comparisons between the collocated refractivity profiles are erformed for some tropical regions (Malaysia and Western Pacific islands where moisture-rich air is expected in the lower troposphere and for both northern and southern polar areas with a very dry troposphere. The results of the comparisons show good agreement between COSMIC RO and sonde refractivity rofiles throughout the troposphere (1 - 1.5% difference at most with a positive bias generally becoming larger at progressively higher altitudes in the lower stratosphere (1 - 2% difference around 25 km, and a very small standard deviation (about 0.5% or less for a few kilometers below the tropopause level. A large standard deviation of fractional differences in the lowermost troposphere, which reaches up to as much as 3.5 - 5%at 3 km, is seen in the tropics while a much smaller standard deviation (1 - 2% at most is evident throughout the polar troposphere.

  4. Pool of dust particles over the Asian continent: balloon-borne optical particle counter and ground-based lidar measurements at Dunhuang, China.

    Science.gov (United States)

    Iwasaka, Y; Shi, G Y; Kim, Y S; Matsuki, A; Trochkine, D; Zhang, D; Yamada, M; Nagatani, T; Nagatani, M; Shen, Z; Shibata, T; Nakata, H

    2004-03-01

    Measurements of aerosols were made in 2001 and 2002 at Dunhuang (40 degrees 00'N, 94 degrees 30'E), China to understand the nature of atmospheric particles over the desert areas in the Asian continent. Balloon-borne measurements with an optical particle counter suggested that particle size and concentration had noticeable peaks in super micron size range not only in the boundary mixing layer but also in the free troposphere. Super-micron particle concentration largely decreased in the mid tropopause (from 5 to 10 km; above sea level, a.s.l.). Lidar measurements made during August 2002 at Dunhuang suggested the possibility that mixing of dust particles occurred from near the ground to about 6 km even under calm weather conditions, and a large depolarization ratio of particulate matter was found in the aerosol layer. The top of the aerosol layer was found at heights of nearly 6 km (a.s.l.). It is strongly suggested that nonspherical dust particles (Kosa particles) frequently diffused in the free atmosphere over the Taklamakan desert through small-scale turbulences and are possible sources of dust particles of weak Kosa events that have been identified in the free troposphere not only in spring but also in summer over Japanese archipelago. Electron microscopic experiments of the particles collected in the free troposphere confirmed that coarse and nonspherical particles observed by the mineral particle were major components of coarse mode (diameter larger than 1 microm) below about 5 km over Dunhuang, China.

  5. Using a balloon-borne accelerometer to improve understanding of the turbulent structure of the atmosphere for aviation.

    Science.gov (United States)

    Marlton, Graeme; Harrison, Giles; Nicoll, Keri; Williams, Paul

    2017-04-01

    This work describes the instrument development, characterisation and data analysis from 51 radiosondes specially equipped with accelerometers to measure atmospheric turbulence. Turbulence is hazardous to aircraft as it cannot be observed in advance. It is estimated that turbulence costs the airline industry millions of US dollars a year through damage to aircraft and injuries to passengers and crew. To avoid turbulence pilots and passengers rely on Clear Air Turbulence forecasts, which have limited skill. One limitation in this area is lack of quantitative unbiased observations. The main source of turbulence observations is from commercial airline pilot reports, which are subjective, biased by the size of aircraft and pilot experience. This work seeks to improve understanding of turbulence through a standardised method of turbulence observations amenable throughout the troposphere. A sensing package has been developed to measure the acceleration of the radiosonde as it swings in response to turbulent agitation of its carrier balloon. The accelerometer radiosonde has been compared against multiple turbulence remote sensing methods to characterise its measurements including calibration with Doppler lidar eddy dissipation rate in the boundary layer. A further relationship has been found by comparison with the spectral width of a Mesospheric, Stratospheric and Tropospheric (MST) radar. From the full dataset of accelerometer sonde ascents a standard deviation of 5 m s-2 is defined as a threshold for significant turbulence. The dataset spans turbulence generated in meteorological phenomena such as jet streams, clouds and in the presence of convection. The analysis revealed that 77% of observed turbulence could be explained by the aforementioned phenomena. In jet streams, turbulence generation was often caused by horizontal processes such as deformation. In convection, turbulence is found to form when CAPE >150 J kg-1. Deeper clouds were found to be more turbulent due to

  6. VolcLab: A balloon-borne instrument package to measure ash, gas, electrical, and turbulence properties of volcanic plumes

    Science.gov (United States)

    Airey, Martin; Harrison, Giles; Nicoll, Keri; Williams, Paul; Marlton, Graeme

    2017-04-01

    Release of volcanic ash into the atmosphere poses a significant hazard to air traffic. Exposure to appreciable concentrations (≥4 mg m-3) of ash can result in engine shutdown, air data system loss, and airframe damage, with sustained lower concentrations potentially causing other long-term detrimental effects [1]. Disruption to flights also has a societal impact. For example, the closure of European airspace following the 2010 eruption of Eyjafjallajökull resulted in global airline industry losses of order £1100 million daily and disruption to 10 million passengers. Accurate and effective measurement of the mass of ash in a volcanic plume along with in situ characterisation of other plume properties such as charge, turbulence, and SO2 concentration can be used in combination with plume dispersion modelling, remote sensing, and more sophisticated flight ban thresholds to mitigate the impact of future events. VolcLab is a disposable instrument package that may be attached to a standard commercial radiosonde, for rapid emergency deployment on a weather balloon platform. The payload includes a newly developed gravimetric sensor using the oscillating microbalance principle to measure mass directly without assumptions about particles' optical properties. The package also includes an SO2 gas detector, an optical sensor to detect ash and cloud backscatter from an LED source [2], a charge sensor to characterise electrical properties of the plume [3], and an accelerometer to measure in-plume turbulence [4]. VolcLab uses the established PANDORA interface [5], to provide data exchange and power from the radiosonde. In addition to the VolcLab measurements, the radiosonde provides standard meteorological data of temperature, pressure, and relative humidity, and GPS location. There are several benefits of using this instrument suite in this design and of using this method of deployment. Firstly, this is an all-in-one device requiring minimal expertise on the part of the end

  7. The Japanese Balloon Program

    Science.gov (United States)

    Nishimura, J.

    The Japanese scientific ballooning program has been organized by ISAS since the institute was founded in mid 1960s. Since then, the balloon group of ISAS has been engaged in the development of the balloon technologies and scientific observations in collaboration with scientists and engineers in other universities and organizations. Here, I describe several subjects of recent activities, the details of some items will also be reported in the separate papers in this meeting.Preparation of a new mobile receiving station.Balloons of made of the EVAL (Ethylene-Vinyl-Alcohol) films. EVAL film has specific Infra-red absorption bands, and is expected to be useful for saving the ballast for a long duration flight.A high altitude balloon with thin polyethylene films achieving at an altitude of above 50km. Further improvement of this type of balloons is continued by inventing how to extrude thin films less than 5 microns of thickness.Recent achievement of Antarctica Flights under the collaboration of ISAS and National Polar Institute.Other new efforts to long duration flights such as satellite link boomerang balloon systems and others.New balloon borne scientific instrumentation for observations of high energy electrons and Anti-protons in cosmic-rays.

  8. Seasonal to Decadal Variations of Water Vapor in the Tropical Lower Stratosphere Observed with Balloon-Borne Cryogenic Frost Point Hygrometers

    Science.gov (United States)

    Fujiwara, M.; Voemel, H.; Hasebe, F.; Shiotani, M.; Ogino, S.-Y.; Iwasaki, S.; Nishi, N.; Shibata, T.; Shimizu, K.; Nishimoto, E.; hide

    2010-01-01

    We investigated water vapor variations in the tropical lower stratosphere on seasonal, quasi-biennial oscillation (QBO), and decadal time scales using balloon-borne cryogenic frost point hygrometer data taken between 1993 and 2009 during various campaigns including the Central Equatorial Pacific Experiment (March 1993), campaigns once or twice annually during the Soundings of Ozone and Water in the Equatorial Region (SOWER) project in the eastern Pacific (1998-2003) and in the western Pacific and Southeast Asia (2001-2009), and the Ticosonde campaigns and regular sounding at Costa Rica (2005-2009). Quasi-regular sounding data taken at Costa Rica clearly show the tape recorder signal. The observed ascent rates agree well with the ones from the Halogen Occultation Experiment (HALOE) satellite sensor. Average profiles from the recent five SOWER campaigns in the equatorial western, Pacific in northern winter and from the three Ticosonde campaigns at Costa Rica (10degN) in northern summer clearly show two effects of the QBO. One is the vertical displacement of water vapor profiles associated with the QBO meridional circulation anomalies, and the other is the concentration variations associated with the QBO tropopause temperature variations. Time series of cryogenic frost point hygrometer data averaged in a lower stratospheric layer together with HALOE and Aura Microwave Limb Sounder data show the existence of decadal variations: The mixing ratios were higher and increasing in the 1990s, lower in the early 2000s, and probably slightly higher again or recovering after 2004. Thus linear trend analysis is not appropriate to investigate the behavior of the tropical lower stratospheric water vapor.

  9. The Second Flight of the Sunrise Balloon-borne Solar Observatory: Overview of Instrument Updates, the Flight, the Data, and First Results

    Energy Technology Data Exchange (ETDEWEB)

    Solanki, S. K.; Riethmüller, T. L.; Barthol, P.; Danilovic, S.; Deutsch, W.; Doerr, H.-P.; Feller, A.; Gandorfer, A.; Germerott, D.; Gizon, L.; Grauf, B.; Heerlein, K.; Hirzberger, J.; Kolleck, M.; Lagg, A.; Meller, R.; Tomasch, G.; Noort, M. van [Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Rodríguez, J. Blanco; Blesa, J. L. Gasent, E-mail: solanki@mps.mpg.de [Grupo de Astronomía y Ciencias del Espacio, Universidad de Valencia, E-46980 Paterna, Valencia (Spain); and others

    2017-03-01

    The Sunrise balloon-borne solar observatory, consisting of a 1 m aperture telescope that provides a stabilized image to a UV filter imager and an imaging vector polarimeter, carried out its second science flight in 2013 June. It provided observations of parts of active regions at high spatial resolution, including the first high-resolution images in the Mg ii k line. The obtained data are of very high quality, with the best UV images reaching the diffraction limit of the telescope at 3000 Å after Multi-Frame Blind Deconvolution reconstruction accounting for phase-diversity information. Here a brief update is given of the instruments and the data reduction techniques, which includes an inversion of the polarimetric data. Mainly those aspects that evolved compared with the first flight are described. A tabular overview of the observations is given. In addition, an example time series of a part of the emerging active region NOAA AR 11768 observed relatively close to disk center is described and discussed in some detail. The observations cover the pores in the trailing polarity of the active region, as well as the polarity inversion line where flux emergence was ongoing and a small flare-like brightening occurred in the course of the time series. The pores are found to contain magnetic field strengths ranging up to 2500 G, and while large pores are clearly darker and cooler than the quiet Sun in all layers of the photosphere, the temperature and brightness of small pores approach or even exceed those of the quiet Sun in the upper photosphere.

  10. Crash in Australian outback ends NASA ballooning season

    Science.gov (United States)

    Harris, Margaret

    2010-06-01

    NASA has temporarily suspended all its scientific balloon launches after the balloon-borne Nuclear Compton Tele scope (NCT) crashed during take-off, scattering a trail of debris across the remote launch site and overturning a nearby parked car.

  11. In situ measurements of desert dust particles above the western Mediterranean Sea with the balloon-borne Light Optical Aerosol Counter/sizer (LOAC) during the ChArMEx campaign of summer 2013

    Science.gov (United States)

    Renard, Jean-Baptiste; Dulac, François; Durand, Pierre; Bourgeois, Quentin; Denjean, Cyrielle; Vignelles, Damien; Couté, Benoit; Jeannot, Matthieu; Verdier, Nicolas; Mallet, Marc

    2018-03-01

    Mineral dust from arid areas is a major component of global aerosol and has strong interactions with climate and biogeochemistry. As part of the Chemistry-Aerosol Mediterranean Experiment (ChArMEx) to investigate atmospheric chemistry and its impacts in the Mediterranean region, an intensive field campaign was performed from mid-June to early August 2013 in the western basin including in situ balloon-borne aerosol measurements with the light optical aerosol counter (LOAC). LOAC is a counter/sizer that provides the aerosol concentrations in 19 size classes between 0.2 and 100 µm, and an indication of the nature of the particles based on dual-angle scattering measurements. A total of 27 LOAC flights were conducted mainly from Minorca Island (Balearic Islands, Spain) but also from Ile du Levant off Hyères city (SE France) under 17 light dilatable balloons (meteorological sounding balloons) and 10 boundary layer pressurised balloons (quasi-Lagrangian balloons). The purpose was to document the vertical extent of the plume and the time evolution of the concentrations at constant altitude (air density) by in situ observations. LOAC measurements are in agreement with ground-based measurements (lidar, photometer), aircraft measurements (counters), and satellite measurements (CALIOP) in the case of fair spatial and temporal coincidences. LOAC has often detected three modes in the dust particle volume size distributions fitted by lognormal laws at roughly 0.2, 4 and 30 µm in modal diameter. Thanks to the high sensitivity of LOAC, particles larger than 40 µm were observed, with concentrations up to about 10-4 cm-3. Such large particles were lifted several days before and their persistence after transport over long distances is in conflict with calculations of dust sedimentation. We did not observe any significant evolution of the size distribution during the transport from quasi-Lagrangian flights, even for the longest ones ( ˜ 1 day). Finally, the presence of charged

  12. Polarimetric Analysis of the Long Duration Gamma-Ray Burst GRB 160530A With the Balloon Borne Compton Spectrometer and Imager

    Energy Technology Data Exchange (ETDEWEB)

    Lowell, A. W.; Boggs, S. E; Chiu, C. L.; Kierans, C. A.; Sleator, C.; Tomsick, J. A.; Zoglauer, A. C. [Space Sciences Laboratory, University of California, Berkeley (United States); Chang, H.-K.; Tseng, C.-H.; Yang, C.-Y. [Institute of Astronomy, National Tsing Hua University, Taiwan (China); Jean, P.; Ballmoos, P. von [IRAP Toulouse (France); Lin, C.-H. [Institute of Physics, Academia Sinica, Taiwan (China); Amman, M. [Lawrence Berkeley National Laboratory (United States)

    2017-10-20

    A long duration gamma-ray burst, GRB 160530A, was detected by the Compton Spectrometer and Imager (COSI) during the 2016 COSI Super Pressure Balloon campaign. As a Compton telescope, COSI is inherently sensitive to the polarization of gamma-ray sources in the energy range 0.2–5.0 MeV. We measured the polarization of GRB 160530A using (1) a standard method (SM) based on fitting the distribution of azimuthal scattering angles with a modulation curve and (2) an unbinned, maximum likelihood method (MLM). In both cases, the measured polarization level was below the 99% confidence minimum detectable polarization levels of 72.3% ± 0.8% (SM) and 57.5% ± 0.8% (MLM). Therefore, COSI did not detect polarized gamma-ray emission from this burst. Our most constraining 90% confidence upper limit on the polarization level was 46% (MLM).

  13. Controlled weather balloon ascents and descents for atmospheric research and climate monitoring

    Science.gov (United States)

    Kräuchi, Andreas; Philipona, Rolf; Romanens, Gonzague; Hurst, Dale F.; Hall, Emrys G.; Jordan, Allen F.

    2016-03-01

    In situ upper-air measurements are often made with instruments attached to weather balloons launched at the surface and lifted into the stratosphere. Present-day balloon-borne sensors allow near-continuous measurements from the Earth's surface to about 35 km (3-5 hPa), where the balloons burst and their instrument payloads descend with parachutes. It has been demonstrated that ascending weather balloons can perturb the air measured by very sensitive humidity and temperature sensors trailing behind them, particularly in the upper troposphere and lower stratosphere (UTLS). The use of controlled balloon descent for such measurements has therefore been investigated and is described here. We distinguish between the single balloon technique that uses a simple automatic valve system to release helium from the balloon at a preset ambient pressure, and the double balloon technique that uses a carrier balloon to lift the payload and a parachute balloon to control the descent of instruments after the carrier balloon is released at preset altitude. The automatic valve technique has been used for several decades for water vapor soundings with frost point hygrometers, whereas the double balloon technique has recently been re-established and deployed to measure radiation and temperature profiles through the atmosphere. Double balloon soundings also strongly reduce pendulum motion of the payload, stabilizing radiation instruments during ascent. We present the flight characteristics of these two ballooning techniques and compare the quality of temperature and humidity measurements made during ascent and descent.

  14. Tethered Pyrotechnic Apparatus for Acquiring a Ground Sample

    Science.gov (United States)

    Jones, Jack; Zimmerman, Wayne; Wu, Jiunn Jenq; Badescu, Mircea; Sherrit, Stewart

    2009-01-01

    A proposed alternative design for the balloon-borne ground-sampling system described in the immediately preceding article would not rely on free fall to drive a harpoonlike sample-collecting device into the ground. Instead, the harpoon-like sample-collecting device would be a pyrotechnically driven, tethered projectile. The apparatus would include a tripod that would be tethered to the gondola. A gun for shooting the projectile into the ground would be mounted at the apex of the tripod. The gun would include an electronic trigger circuit, a chamber at the breech end containing a pyrotechnic charge, and a barrel. A sabot would be placed in the barrel just below the pyrotechnic charge, and the tethered projectile would be placed in the barrel just below the sabot. The tripod feet would be equipped with contact sensors connected to the trigger circuit. In operation, the tripod would be lowered to the ground on its tether. Once contact with the ground was detected by the sensors on all three tripod feet, the trigger circuit would fire the pyrotechnic charge to drive the projectile into the ground. (Requiring contact among all three tripod feet and the ground would ensure that the projectile would be fired into the ground, rather than up toward the gondola or the balloon.) The tethered projectile would then be reeled back up to the gondola for analysis of the sample.

  15. Balloon Command-Control

    Science.gov (United States)

    1977-01-07

    Continuo on reverse side Ii nocosom7’ and identify by block numnber) P cientific Balloons; Balloon flights; Telemetry; Balloon Control; plight Termination... improvements in the ground station which should result in a truly simplified operation. The final modification to the decoder board which appears... improve the sweep range nnd sweep rate, however, the wave shape is still not as good as achieved using an exter..al sine wave oscillator manually

  16. Weather Balloon Ascent Rate

    Science.gov (United States)

    Denny, Mark

    2016-05-01

    The physics of a weather balloon is analyzed. The surprising aspect of the motion of these balloons is that they ascend to great altitudes (typically 35 km) at a more or less constant rate. Such behavior is not surprising near the ground—say for a helium-filled party balloon rising from street level to the top of the Empire State building—but it is unexpected for a balloon that rises to altitudes where the air is rarefied. We show from elementary physical laws why the ascent rate is approximately constant.

  17. Clefting in pumpkin balloons

    Science.gov (United States)

    Baginski, F.; Schur, W.

    NASA's effort to develop a large payload, high altitude, long duration balloon, the Ultra Long Duration Balloon, focuses on a pumpkin shape super-pressure design. It has been observed that a pumpkin balloon may be unable to pressurize into the desired cyclically symmetric equilibrium configuration, settling into a distorted, undesired stable state instead. Hoop stress considerations in the pumpkin design leads to choosing the lowest possible bulge radius, while robust deployment is favored by a large bulge radius. Some qualitative understanding of design aspects on undesired equilibria in pumpkin balloons has been obtained via small-scale balloon testing. Poorly deploying balloons have clefts, but most gores away from the cleft deploy uniformly. In this paper, we present models for pumpkin balloons with clefts. Long term success of the pumpkin balloon for NASA requires a thorough understanding of the phenomenon of multiple stable equilibria and means for quantitative assessment of measures that prevent their occurrence. This paper attempts to determine numerical thresholds of design parameters that distinguish between properly deploying designs and improperly deploying designs by analytically investigating designs in the vicinity of criticality. Design elements which may trigger the onset undesired equilibria and remedial measures that ensure deployment are discussed.

  18. Modified Hydrogen Balloon Explosion.

    Science.gov (United States)

    Lawrence, Stephen S.

    1995-01-01

    Describes the technique of exploding an oxygen-hydrogen balloon using two balloons and having students observe the formation of water droplets. Suggests that the Socratic Method can be used to start discussions related to stochiometry, states of matter, and gas laws. (DDR)

  19. Spine immobilization apparatus

    Science.gov (United States)

    Lambson, K. H.; Vykukal, H. C. (Inventor)

    1981-01-01

    The apparatus makes use of a normally flat, flexible bladder filled with beads or micro-balloons that form a rigid mass when the pressure within the bladder is decreased below ambient through the use of a suction pump so that the bladder can be conformed to the torso of the victim and provide the desired restraint. The bladder is strapped to the victim prior to being rigidified by an arrangement of straps which avoid the stomach area. The bladder is adapted to be secured to a rigid support, i.e., a rescue chair, so as to enable removal of a victim after the bladder has been made rigid. A double sealing connector is used to connect the bladder to the suction pump and a control valve is employed to vary the pressure within the bladder so as to soften and harden the bladder as desired.

  20. Solar energy collector including a weightless balloon with sun tracking means

    Science.gov (United States)

    Hall, Frederick F.

    1978-01-01

    A solar energy collector having a weightless balloon, the balloon including a transparent polyvinylfluoride hemisphere reinforced with a mesh of ropes secured to its outside surface, and a laminated reflector hemisphere, the inner layer being clear and aluminized on its outside surface and the outer layer being opaque, the balloon being inflated with lighter-than-air gas. A heat collection probe extends into the balloon along the focus of reflection of the reflective hemisphere for conducting coolant into and out of the balloon. The probe is mounted on apparatus for keeping the probe aligned with the sun's path, the apparatus being founded in the earth for withstanding wind pressure on the balloon. The balloon is lashed to the probe by ropes adhered to the outer surface of the balloon for withstanding wind pressures of 100 miles per hour. Preferably, the coolant is liquid sodium-potassium eutectic alloy which will not normally freeze at night in the temperate zones, and when heated to 4,000.degree. R exerts a pressure of only a few atmospheres.

  1. Launching Garbage-Bag Balloons.

    Science.gov (United States)

    Kim, Hy

    1997-01-01

    Presents a modification of a procedure for making and launching hot air balloons made out of garbage bags. Student instructions for balloon construction, launching instructions, and scale diagrams are included. (DDR)

  2. Venus Altitude Cycling Balloon Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The ISTAR Group ( IG) and team mate Thin Red Line Aerospace (TRLA) propose a Venus altitude cycling balloon (Venus ACB), an innovative superpressure balloon...

  3. Design of experiments and equipment to test the ballooning characteristics of CANDU pressure tubes

    International Nuclear Information System (INIS)

    Forrest, C.F.; Stern, F.; Hart, R.G.

    1992-01-01

    Experiments have been planned and an apparatus has been designed to enable creep testing of end-of-life pressure tube specimens in a LOCA environment. Effects that could be studied include: annealing of irradiation damage during transient heating; effects of hydride blisters on pressure tube ballooning strains; and, effects of uniformly-distributed hydrogen content on pressure tube ballooning strains. The proposed experimental program will consist of separate effects creep tests on pressure tube sections under transient heating conditions

  4. Therapeutic balloon-assisted enteroscopy

    NARCIS (Netherlands)

    H. Aktas (Huseyin); P.B.F. Mensink (Peter)

    2009-01-01

    textabstractSince the introduction of the first balloon-based enteroscopic technique in 2001, therapeutic balloon-assisted enteroscopy (BAE) using either the single or double balloon enteroscopy technique (respectively SBE and DBE) has evolved rapidly. Argon plasma coagulation (APC), polypectomy,

  5. The development of coastal diffusion observation method with a captive balloon

    International Nuclear Information System (INIS)

    Fukuda, Masaaki; Yamada, Masaharu

    1980-03-01

    Apparatus whereby the dye cloud in a coastal area in diffusion experiment can be photographed was developed. It consists of a vinyl balloon two meters in diameter, a photographic device with the camera shutter released by wireless signals from the ground, and a winch to raise or lower the balloon. A maximum height of the balloon for taking photographs is 1000 m. During the single balloon flight, thirty photographs can be taken. With the balloon at a certain height, dye as the tracer in diffusion experiment is released at sea surface or a certain sea depth by dye-throwing means or pump, and then taking the photographs is started. Movement and diffusion of the dye are analyzed by means of the photographs taken. The apparatus is simple in mechanism and easy to transport. Dye experiment is possible in the surfe zone where a boat cannot enter. It is impossible, however, to raise the balloon in strong wind or sea breeze. Typical results of the dye diffusion experiment with the apparatus are given. (author)

  6. Training apparatus

    International Nuclear Information System (INIS)

    Monteith, W.D.

    1983-01-01

    Training apparatus for use in contamination surveillance uses a mathematical model of a hypothetical contamination source (e.g. nuclear, bacteriological or chemical explosion or leak) to determine from input data defining the contamination source, the contamination level at any location within a defined exercise area. The contamination level to be displayed by the apparatus is corrected to real time from a real time clock or may be displayed in response to a time input from a keyboard. In a preferred embodiment the location is defined by entering UTM grid reference coordinates using the keyboard. The mathematical model used by a microprocessor of the apparatus for simulation of contamination levels in the event of a nuclear explosion is described. (author)

  7. Adjustable continence balloons

    DEFF Research Database (Denmark)

    Kjær, Line; Fode, Mikkel; Nørgaard, Nis

    2012-01-01

    . Fourteen patients (12%) ended up with an artificial sphincter or a urethral sling. Sixty patients (63%) experienced no discomfort and 58 (61%) reported being dry or markedly improved. Overall, 50 patients (53%) reported being very or predominantly satisfied. Conclusions. Adjustable continence balloons seem...

  8. Radiography apparatus

    International Nuclear Information System (INIS)

    Sashin, D.; Sternglass, E.J.

    1982-01-01

    The apparatus of the present invention provides radiography apparatus wherein the use of a flat, generally rectangular beam or a fan-shaped beam of radiation in combination with a collimator, scintillator and device for optically coupling a self-scanning array of photodiodes to the scintillator means will permit production of images or image data with high contrast sensitivity and detail. It is contemplated that the self-scanning array of photodiodes may contain from about 60 to 2048, and preferably about 256 to 2048, individual photodiode elements per inch of object width, thereby permitting maximum data collection to produce a complete image or complete collection of image data

  9. Radiotherapy apparatus

    International Nuclear Information System (INIS)

    Leung, P.M.; Webb, H.P.J.

    1985-01-01

    This invention relates to apparatus for applying intracavitary radiotherapy. In previously-known systems radioactive material is conveyed to a desired location within a patient by transporting a chain of balls pneumatically to and from an appropriately inserted applicator. According to this invention a ball chain for such a purpose comprises several radioactive balls separated by non-radioactive tracer balls of radiographically transparent material of lower density and surface hardness than the radioactive balls. The invention also extends to radiotherapy treatment apparatus comprising a storage, sorting and assembly system

  10. Radioimmunoassay apparatus

    International Nuclear Information System (INIS)

    1981-01-01

    Apparatus for performing a quantitative radioimmunoassay comprising: a substantially spherical bead for carrying an antibody and a gripper for gripping said bead, said gripper comprising an integrally formed unit having a single elongate handle portion and a plurality of resilient fingers arranged at the base of the handle so that when said bead is secured within said fingers, said bead may be freely rotated about any diametric axis of the bead. In particular the invention relates to an apparatus for a two site immunoradiometric assay for serum ferritin in human blood samples. (author)

  11. Monitoring apparatus

    International Nuclear Information System (INIS)

    Keats, A.B.

    1981-01-01

    An improved monitoring apparatus for use with process plants, such as nuclear reactors, is described. System failure in the acquisition of data from the plant, owing to stuck signals, is avoided by arranging input signals from transducers in the plant in a test pattern. (U.K.)

  12. Prehensile apparatus

    Science.gov (United States)

    Smith, C.M.

    1993-10-12

    The present invention relates to an apparatus for handling a workpiece comprising a vessel that is longitudinally extensible and pressurizable, and a nonextensible and laterally flexible member on the vessel. The member constrains one side of the vessel to be nonextensible, causing the vessel to bend in the direction of the nonextensible member when pressurized. 8 figures.

  13. Radiography apparatus

    International Nuclear Information System (INIS)

    Redmayne, I.G.B.

    1985-01-01

    Apparatus for the inspection of pipe welds comprises a radiation source for transmitting radiation, say as X-rays, through a pipe weld and a detector in a box arranged diametrically opposite the source, with respect to the pipe, for detecting the transmitted radiation and providing electrical signals which are processed to produce an image of the weld. The source and detector are mounted on a frame which is rotatable about an inner frame clamped to the pipe. (author)

  14. Cleft formation in pumpkin balloons

    Science.gov (United States)

    Baginski, Frank E.; Brakke, Kenneth A.; Schur, Willi W.

    NASA’s development of a large payload, high altitude, long duration balloon, the Ultra Long Duration Balloon, centers on a pumpkin shape super-pressure design. Under certain circumstances, it has been observed that a pumpkin balloon may be unable to pressurize into the desired cyclically symmetric equilibrium configuration, settling into a distorted, undesired state instead. Success of the pumpkin balloon for NASA requires a thorough understanding of the phenomenon of multiple stable equilibria and developing of means for the quantitative assessment of design measures that prevent the occurrence of undesired equilibrium. In this paper, we will use the concept of stability to classify cyclically symmetric equilibrium states at full inflation and pressurization. Our mathematical model for a strained equilibrium balloon, when applied to a shape that mimics the Phase IV-A balloon of Flight 517, predicts instability at float. Launched in Spring 2003, this pumpkin balloon failed to deploy properly. Observations on pumpkin shape type super-pressure balloons that date back to the 1980s suggest that within a narrowly defined design class of pumpkin shape super-pressure balloons where individual designs are fully described by the number of gores ng and by a single measure of the bulging gore shape, the designs tend to become more vulnerable with the growing number of gores and with the diminishing size of the bulge radius rB Weight efficiency considerations favor a small bulge radius, while robust deployment into the desired cyclically symmetrical configuration becomes more likely with an increased bulge radius. In an effort to quantify this dependency, we will explore the stability of a family of balloon shapes parametrized by (ng, rB) which includes a design that is very similar, but not identical, to the balloon of Flight 517. In addition, we carry out a number of simulations that demonstrate other aspects related to multiple equilibria of pumpkin balloons.

  15. Developing Kinetic Inductance Detectors for the Balloon‐borne Large Aperture Submillimeter Telescope (BLAST)

    Data.gov (United States)

    National Aeronautics and Space Administration — As an NSTRF fellow, I will use the new Polarized Balloon-borne Large Aperture Submillimeter Telescope (Super BLASTPol) to make groundbreaking measurements of...

  16. Positioning apparatus

    Science.gov (United States)

    Vogel, Max A.; Alter, Paul

    1986-01-01

    An apparatus for precisely positioning materials test specimens within the optimum neutron flux path emerging from a neutron source located in a housing. The test specimens are retained in a holder mounted on the free end of a support pivotably mounted and suspended from a movable base plate. The support is gravity biased to urge the holder in a direction longitudinally of the flux path against the housing. Means are provided for moving the base plate in two directions to effect movement of the holder in two mutually perpendicular directions normal to the axis of the flux path.

  17. VVER ballooning experiments

    International Nuclear Information System (INIS)

    Gyoeri, Cs.; Hozer, Z.; Maroti, L.; Matus, L.

    1998-01-01

    A series of ballooning experiments was performed at the KFKI-AEKI in order to compare the mechanical behaviour and strength of Zircaloy-4 and Zr1%Nb claddings. The effects of temperature, oxidation and iodine absorption on deformation and burst pressure was investigated in almost 100 biaxial tests. Numerical post-test analyses have also been performed with the stand-alone fuel module of the French CATHARE code and the US fuel behaviour code FRAP-T6. Comparing the experimental and the analytical results, relevant differences of high temperature strength due to different α-β phase transition temperature were revealed between the investigated cladding materials. (author)

  18. Aerodynamics of a Party Balloon

    Science.gov (United States)

    Cross, Rod

    2007-01-01

    It is well-known that a party balloon can be made to fly erratically across a room, but it can also be used for quantitative measurements of other aspects of aerodynamics. Since a balloon is light and has a large surface area, even relatively weak aerodynamic forces can be readily demonstrated or measured in the classroom. Accurate measurements…

  19. Self-Calibrating Greenhouse Gas Balloon-Borne Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Understanding the sources and sinks of carbon dioxide and other greenhouse gases has been recognized as critical to predicting climate change and global warming. A...

  20. Self-Calibrating Greenhouse Gas Balloon-Borne Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Over the past decade, the importance of understanding the sources and sinks of carbon dioxide and other greenhouse gases has been recognized. In particular, airborne...

  1. Developing Instrumentation for Ground and Balloon-Borne Observing Platforms

    Data.gov (United States)

    National Aeronautics and Space Administration — In my research I will focus on developing hardware and software technology for two instruments searching for polarization in the Cosmic Microwave Background (CMB)....

  2. MEASURING APPARATUS

    Science.gov (United States)

    Kohman, T.P.; Weissbourd, B.W.

    1959-02-17

    An ion chamber assembly is presented for measuring neutron emission of a relatively slow rate from a radioactive sample. The detecting apparatus comprises a container filled with neutron slowing material and having a cavity where a neutron source may be located centrally in the container. A plurality of ion chamber units are disposed equidistantly from the source and from each other for detecting the neutron radiation. Each of the ion chamber units has an ion chamber and a second chamber of substantially the same diameter as the ion chamber and in end-to-end relationship therewith. The second chamber contains paraffin and an axially disposed lead-in conductor for the ion chamber central electrode. The preamplifier circuit whose input is connected to the lead-in conductor is housed in a third container arranged in end-to-end relationship with the second chamber.

  3. Hydrogenation apparatus

    Science.gov (United States)

    Friedman, Joseph [Encino, CA; Oberg, Carl L [Canoga Park, CA; Russell, Larry H [Agoura, CA

    1981-01-01

    Hydrogenation reaction apparatus comprising a housing having walls which define a reaction zone and conduits for introducing streams of hydrogen and oxygen into the reaction zone, the oxygen being introduced into a central portion of the hydrogen stream to maintain a boundary layer of hydrogen along the walls of the reaction zone. A portion of the hydrogen and all of the oxygen react to produce a heated gas stream having a temperature within the range of from 1100.degree. to 1900.degree. C., while the boundary layer of hydrogen maintains the wall temperature at a substantially lower temperature. The heated gas stream is introduced into a hydrogenation reaction zone and provides the source of heat and hydrogen for a hydrogenation reaction. There also is provided means for quenching the products of the hydrogenation reaction. The present invention is particularly suitable for the hydrogenation of low-value solid carbonaceous materials to provide high yields of more valuable liquid and gaseous products.

  4. Air Force Cambridge Research Laboratories balloon operations

    Science.gov (United States)

    Danaher, T. J.

    1974-01-01

    The establishment and functions of the AFCRL balloon operations facility are discussed. The types of research work conducted by the facility are defined. The facilities which support the balloon programs are described. The free balloon and tethered balloon capabilities are analyzed.

  5. 21 CFR 874.4100 - Epistaxis balloon.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Epistaxis balloon. 874.4100 Section 874.4100 Food... DEVICES EAR, NOSE, AND THROAT DEVICES Surgical Devices § 874.4100 Epistaxis balloon. (a) Identification. An epistaxis balloon is a device consisting of an inflatable balloon intended to control internal...

  6. US Air Force Balloon Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Worksheets containing pilot balloon data computed from releases at Air Force stations in the western United States. Elevation and azimuth angles are used to compute...

  7. US Daily Pilot Balloon Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Pilot Balloon observational forms for the United States. Taken by Weather Bureau and U.S. Army observers. Period of record 1918-1960. Records scanned from the NCDC...

  8. Retrieving Balloon Data in Flight

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's Ultra Long Duration Balloon (ULDB) program will soon make flights lasting up to 100 days. Some flights may generate high data rates and retrieving this data...

  9. US Monthly Pilot Balloon Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Monthly winds aloft summary forms summarizing Pilot Balloon observational data for the United States. Generally labeled as Form 1114, and then transitioning to Form...

  10. Superpressure Tow Balloon for Extending Durations and Modifying Trajectories of High Altitude Balloon Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation involves the concept of using a Superpressure Tow Balloon (STB) with existing NASA high altitude balloon designs to form a tandem balloon...

  11. Purification apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Mortenson, C.W.

    1982-04-27

    An apparatus is provided for converting sea or other undrinkable waters to drinkable water without the use of driven or moving parts. Reliance upon gradient effects is made to effect the vaporization of, for example, sea water, followed by the condensation of the vapor to form distilled water. Gradient effects are achieved through the provision of differentials in the thermal conductivity, capillary activity, adsorptive, absorptive and/or pressure characteristics of particulate materials, or combinations of such physicals. For example, a column is packed with material graded as to its conductivity, the least thermally conductive material being nearest the cold or ambient water that is to be purified. In packing the column each successive layer of material has a greater thermal conductivity than the layer beneath it with the most conductive being at the top near the outlet arm of the column. The final outlet arm or tube is unheated or is at a temperature lower than that of the topmost conductive material so that vapor reaching the outlet tube gets condensed. This tube leads to a container kept in a cool place as, for example, buried in the ground, as, for instance, at the seashore deep enough to be cooled or to be surrounded by water, thus keeping the condensate cold. Pure water so collected is removed by such means as is desired. Other impure, volatile liquids may be similarly purified.

  12. Pioneering Space Research with Balloons

    Science.gov (United States)

    Jones, W. V.

    NASA s Scientific Ballooning Planning Team has concluded that ballooning enables significant scientific discoveries while providing test beds for space instruments and training for young scientists Circumpolar flights around Antarctica have been spectacularly successful with fight durations up to 42 days Demand for participation in this Long-Duration Balloon LDB program a partnership with the U S National Science Foundation Office of Polar Programs is greater than the current capacity of two flights per campaign Given appropriate international agreements LDB flights in the Northern Hemisphere would be competitive with Antarctic flights and super-pressure balloons would allow comparable flights at any latitude The Balloon Planning Team made several recommendations for LDB flights provide a reliable funding source for sophisticated payloads extend the Antarctic capability to three flights per year and develop a comparable capability in the Arctic provide aircraft for intact-payload recovery develop a modest trajectory modification capability to enable longer flights and enhance super-pressure balloons to carry 1-ton payloads to 38 km Implementation of these recommendations would facilitate frequent access to near-space for cutting-edge research and technology development for a wide range of investigations

  13. Star camera aspect system suitable for use in balloon experiments

    International Nuclear Information System (INIS)

    Hunter, S.D.; Baker, R.G.

    1985-01-01

    A balloon-borne experiment containing a star camera aspect system was designed, built, and flown. This system was designed to provide offset corrections to the magnetometer and inclinometer readings used to control an azimuth and elevation pointed experiment. The camera is controlled by a microprocessor, including commendable exposure and noise rejection threshold, as well as formatting the data for telemetry to the ground. As a background program, the microprocessor runs the aspect program to analyze a fraction of the pictures taken so that aspect information and offset corrections are available to the experiment in near real time. The analysis consists of pattern recognition of the star field with a star catalog in ROM memory and a least squares calculation. The performance of this system in ground based tests is described. It is part of the NASA/GSFC High Energy Gamma-Ray Balloon Instrument (2)

  14. Sensor System for Super-Pressure Balloon Performance Modeling Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Long-duration balloon flights are an exciting new area of scientific ballooning, enabled by the development of large super-pressure balloons. As these balloons...

  15. Status of the NASA Balloon Program

    Science.gov (United States)

    Needleman, H. C.; Nock, R. S.; Bawcom, D. W.

    1993-01-01

    The NASA Balloon Program (BP) is examined in an overview of design philosophy, R&D activities, flight testing, and the development of a long-duration balloon for Antarctic use. The Balloon Recovery Program was developed to qualify the use of existing films and to design improved materials and seals. Balloon flights are described for studying the supernova SN1987a, and systems were developed to enhance balloon campaigns including mobile launch vehicles and tracking/data-acquisition systems. The technical approach to long-duration ballooning is reviewed which allows the use of payloads of up to 1350 kg for two to three weeks. The BP is responsible for the development of several candidate polyethylene balloon films as well as design/performance standards for candidate balloons. Specific progress is noted in reliability and in R&D with respect to optimization of structural design, resin blending, and extrusion.

  16. Acoustic Detection from Aerial Balloon Platform

    National Research Council Canada - National Science Library

    Reiff, C; Pham, T; Scanlon, M; Noble, J; Van Landuyt, A; Petek, J; Ratches, J

    2004-01-01

    ... such as unmanned aerial vehicles (UAVs) and balloons. Our most immediate collaboration focuses on the use of acoustic sensors on small balloons and/or aerostats at several elevations and on the ground with the primary goals...

  17. Mars Solar Balloon Lander, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The Mars Solar Balloon Lander (MSBL) is a novel concept which utilizes the capability of solar-heated hot air balloons to perform soft landings of scientific...

  18. Structure variations of pumpkin balloon

    Science.gov (United States)

    Yajima, N.; Izutsu, N.; Honda, H.

    2004-01-01

    A lobed pumpkin balloon by 3-D gore design concept is recognized as a basic form for a super-pressure balloon. This paper deals with extensions of this design concept for other large pressurized membrane structures, such as a stratospheric airship and a balloon of which volume is controllable. The structural modifications are performed by means of additional ropes, belts or a strut. When the original pumpkin shape is modified by these systems, the superior characteristics of the 3-D gore design, incorporating large bulges with a small local radius and unidirectional film tension, should be maintained. Improved design methods which are adequate for the above subjects will be discussed in detail. Application for ground structures are also mentioned.

  19. Complications of balloon packing in epistaxis

    NARCIS (Netherlands)

    Vermeeren, Lenka; Derks, Wynia; Fokkens, Wytske; Menger, Dirk Jan

    2015-01-01

    Although balloon packing appears to be efficient to control epistaxis, severe local complications can occur. We describe four patients with local lesions after balloon packing. Prolonged balloon packing can cause damage to nasal mucosa, septum and alar skin (nasal mucosa, the cartilaginous skeleton

  20. Gamma apparatuses for radiotherapy

    International Nuclear Information System (INIS)

    Sul'kin, A.G.

    1986-01-01

    Scientific and technical achievements in development and application of gamma therapeutic apparatuses for external and intracavity irradiations are generalized. Radiation-physical parameters of apparatuses providing usability of progressive methods in radiotherapy of onclogical patients are given. Optimization of main apparatus elements, ensurance of its operation reliability, reduction of errors of irradiation plan reproduction are considered. Attention is paid to radiation safety

  1. Simulating clefts in pumpkin balloons

    Science.gov (United States)

    Baginski, Frank; Brakke, Kenneth

    2010-02-01

    The geometry of a large axisymmetric balloon with positive differential pressure, such as a sphere, leads to very high film stresses. These stresses can be significantly reduced by using a tendon re-enforced lobed pumpkin-like shape. A number of schemes have been proposed to achieve a cyclically symmetric pumpkin shape, including the constant bulge angle (CBA) design, the constant bulge radius (CBR) design, CBA/CBR hybrids, and NASA’s recent constant stress (CS) design. Utilizing a hybrid CBA/CBR pumpkin design, Flight 555-NT in June 2006 formed an S-cleft and was unable to fully deploy. In order to better understand the S-cleft phenomenon, a series of inflation tests involving four 27-m diameter 200-gore pumpkin balloons were conducted in 2007. One of the test vehicles was a 1/3-scale mockup of the Flight 555-NT balloon. Using an inflation procedure intended to mimic ascent, the 1/3-scale mockup developed an S-cleft feature strikingly similar to the one observed in Flight 555-NT. Our analysis of the 1/3-scale mockup found it to be unstable. We compute asymmetric equilibrium configurations of this balloon, including shapes with an S-cleft feature.

  2. Balloon observations of interstellar CII (158 microns) and OI (63 microns) forbidden lines

    Science.gov (United States)

    Shibai, H.; Okuda, H.; Nakagawa, T.; Maihara, T.; Mizutani, K.; Matsuhara, H.; Kobayashi, Y.; Hiromoto, N.; Low, F. J.; Nishimura, T.

    1993-01-01

    Interstellar CII and OI forbidden lines were observed by the Balloon-Borne Infrared Telescope (BIRT) with a Fabry-Perot spectrometer. Two balloon flights were successfully made. With a method of 'frequency switching', diffuse CII forbidden-line emission was efficiently detected and mapped in extended regions around HII/molecular cloud complexes and in a wide area of the Galactic plane. It has been shown that the CII forbidden-line emission is very strong and ubiquitously distributed in interstellar space in the Galaxy.

  3. Stability of the pumpkin balloon

    Science.gov (United States)

    Baginski, Frank

    A large axisymmetric balloon with positive differential pressure, e.g., a sphere, leads to high film stresses. These can be significantly reduced by using a lobed pumpkin-like shape re-enforced with tendons. A number of schemes have been proposed to achieve a cyclically symmetric pumpkin-shape at full inflation, including the constant bulge angle (CBA) design and the constant bulge radius (CBR) design. The authors and others have carried out stability studies of CBA and CBR designs and found instabilities under various conditions. While stability seems to be a good indicator of deployment problems for large balloons under normal ascent conditions, one cannot conclude that a stable design will deploy reliably. Nevertheless, stability analysis allows one to quantify certain deployment characteristics. Ongoing research by NASA's Balloon Program Office utilizes a new design approach developed by Rodger Farley, NASA/GSFC, that takes into account film and tendon strain. We refer to such a balloon as a constant stress (CS) pumpkin design. In June 2006, the Flight 555-NT balloon (based on a hybrid CBR/CBA design) developed an S-cleft and did not deploy. In order to understand the S-cleft phenomena and study a number of aspects related to the CS-design, a series of inflation tests were conducted at TCOM, Elizabeth City, NC in 2007. The test vehicles were 27 meter diameter pumpkins distinguished by their respective equatorial bulge angles (BA). For example, BA98 indicates an equatorial bulge angle of 98° . BA90, BA55, and BA00 are similarly defined. BA98 was essentially a one-third scale version of of the Flight 555 balloon (i.e., 12 micron film instead of 38.1 micron, mini-tendons, etc.). BA90 and BA55 were Farley CS-designs. BA00 was derived from the BA55 design so that a flat chord spanned adjacent tendons. In this paper, we will carry out stability studies of BA98, BA90, BA55, and BA00. We discuss the deployment problem of pumpkin balloons in light of 2007 inflation

  4. Scientific ballooning: Past, present and future

    Science.gov (United States)

    Jones, W. Vernon

    2013-02-01

    Balloons have been used for scientific research since they were invented in France more than 200 years ago. Cosmic rays were discovered 100 years ago with an experiment flown on a manned balloon. A major change in balloon design occurred in 1950 with the introduction of the socalled natural shape balloon with integral load tapes. This basic design has been used with more or less continuously improved materials for scientific balloon flights for the past half century, including long-duration balloon (LDB) flights around Antarctica for the past two decades. The U.S. National Aeronautics and Space Administration (NASA) is currently developing a super-pressure balloon that would enable extended duration missions above 99.5% of the Earth's atmosphere at any latitude. Ultra-long-duration balloon (ULDB) flights enabled by constant-volume balloons should result in an even greater sea change in scientific ballooning than the inauguration of long-duration balloon (LDB) flights in Antarctica during the 1990-91 austral summer.

  5. Leak detection using structure-borne noise

    Science.gov (United States)

    Holland, Stephen D. (Inventor); Chimenti, Dale E. (Inventor); Roberts, Ronald A. (Inventor)

    2010-01-01

    A method for detection and location of air leaks in a pressure vessel, such as a spacecraft, includes sensing structure-borne ultrasound waveforms associated with turbulence caused by a leak from a plurality of sensors and cross correlating the waveforms to determine existence and location of the leak. Different configurations of sensors and corresponding methods can be used. An apparatus for performing the methods is also provided.

  6. Efficacy of balloon temporary occlusion and intraoperative DSA in surgically difficult aneurysm

    Energy Technology Data Exchange (ETDEWEB)

    Ezura, Masayuki; Mizoi, Kazuo; Yoshimoto, Takashi (Tohoku Univ., Sendai (Japan). Inst. of Brain Diseases); Takahashi, Akira

    1993-11-01

    A digital subtraction angiographic (DSA) apparatus has been installed in one of our operating rooms since April 1987. We performed intraoperative DSA in 42 aneurysmal surgeries in 38 patients and balloon temporary occlusion in 33 surgeries. The aneurysm was on an internal carotid artery in 26 cases and on the vertebro-basilar system in 16. A heparin-coated catheter (Anthron, Toray, Tokyo), 6 french in diameter, was inserted transfemorally and was put in a parent artery under general anesthesia. A balloon was temporarily inflated to determine inflation volume. The balloon catheter was soon deflated and was drawn back into the introducing catheter to avoid developing microembolus. The patients were not systemically heparinized but the introducing catheters were slowly flushed with heparinized saline during operation. Then a craniotomy was carried out. Next DSA was performed when temporary occlusion or confirmation of clipping was necessary. In cases of balloon temporary occlusion, the operating field was not obstructed as it is when a temporary clip is used, despite adequate flow reduction of the parent artery. After DSA for confirmation of clipping adjustment of it was performed in 12 cases out of 42. No complications occurred due to use of an introducing or a balloon catheter. We conclude that combined intravascular and neurosurgical approach, particularly for the large aneurysms with the difficulty of proximal control, can be a useful method of treatment. (author).

  7. Efficacy of balloon temporary occlusion and intraoperative DSA in surgically difficult aneurysm

    International Nuclear Information System (INIS)

    Ezura, Masayuki; Mizoi, Kazuo; Yoshimoto, Takashi; Takahashi, Akira.

    1993-01-01

    A digital subtraction angiographic (DSA) apparatus has been installed in one of our operating rooms since April 1987. We performed intraoperative DSA in 42 aneurysmal surgeries in 38 patients and balloon temporary occlusion in 33 surgeries. The aneurysm was on an internal carotid artery in 26 cases and on the vertebro-basilar system in 16. A heparin-coated catheter (Anthron, Toray, Tokyo), 6 french in diameter, was inserted transfemorally and was put in a parent artery under general anesthesia. A balloon was temporarily inflated to determine inflation volume. The balloon catheter was soon deflated and was drawn back into the introducing catheter to avoid developing microembolus. The patients were not systemically heparinized but the introducing catheters were slowly flushed with heparinized saline during operation. Then a craniotomy was carried out. Next DSA was performed when temporary occlusion or confirmation of clipping was necessary. In cases of balloon temporary occlusion, the operating field was not obstructed as it is when a temporary clip is used, despite adequate flow reduction of the parent artery. After DSA for confirmation of clipping adjustment of it was performed in 12 cases out of 42. No complications occurred due to use of an introducing or a balloon catheter. We conclude that combined intravascular and neurosurgical approach, particularly for the large aneurysms with the difficulty of proximal control, can be a useful method of treatment. (author)

  8. Development of scientific ballooning in Japan

    Science.gov (United States)

    Nishimura, Jun

    On the occasion of the 50th Anniversary Celebration of COSPAR of this year of 2008, it is worthwhile to summarize the results of the Scientific ballooning in early days in connection with the recent developments in various countries. Nishina Laboratories, Riken, had started the observations of cosmic rays with rubber balloons as early as 1942. However it was interrupted soon by the war II. After the war, new research group started in collaboration with several universities with nuclear emulsions put on the rubber balloons in 1950, and then soon after the group manufactured by themselves and launched the first plastic balloon in 1953. Based on additional technologies during a few years developed by these group, the Institute of Nuclear Study, INS, the University of Tokyo, organized the large campaign of 14 emulsion chambers and a pellicle stack with 8 plastic balloons in 1956. It is to be noted that the project was one of the largest in the world standard in those days. By the experience of this campaign, the importance of the balloon technologies was more recognized, and INS organized the group to study the balloon technologies, and had established some developments. The systematic study of scientific ballooning has started, when the scientific ballooning laboratory was founded in 1965, in the new Institute of ISAS, the University of Tokyo. The permanent balloon base of "Sanriku Balloon Center" was founded in 1971. This group has expended all efforts for the scientific ballooning, launching 10-20 balloons in each year with new inventions such as the studies of; Technologies to manufacture the reliable plastic balloons, New Balloon materials, New instrumentations for scientific ballooning, Systems of long duration flights including Antarctica flights, International collaboratiom, etc. Up to now almost 600 plastic balloons were launched during past 50 years. Then the scientific balloonings have played important and indispensable roles for the development of space

  9. PEBS - Positron Electron Balloon Spectrometer

    CERN Document Server

    von Doetinchem, P.; Kirn, T.; Yearwood, G.Roper; Schael, S.

    2007-01-01

    The best measurement of the cosmic ray positron flux available today was performed by the HEAT balloon experiment more than 10 years ago. Given the limitations in weight and power consumption for balloon experiments, a novel approach was needed to design a detector which could increase the existing data by more than a factor of 100. Using silicon photomultipliers for the readout of a scintillating fiber tracker and of an imaging electromagnetic calorimeter, the PEBS detector features a large geometrical acceptance of 2500 cm^2 sr for positrons, a total weight of 1500 kg and a power consumption of 600 W. The experiment is intended to measure cosmic ray particle spectra for a period of up to 20 days at an altitude of 40 km circulating the North or South Pole. A full Geant 4 simulation of the detector concept has been developed and key elements have been verified in a testbeam in October 2006 at CERN.

  10. Left ventricular apical ballooning syndrome

    International Nuclear Information System (INIS)

    Rahman, N.; Tai, J.; Soofi, A.

    2007-01-01

    The transient left ventricular apical ballooning syndrome, also known as Takotsubo cardiomyopathy, is characterized by transient left ventricular dysfunction in the absence of obstructive epicardial coronary disease. Although the syndrome has been reported in Japan since 1990, it is rare in other regions. Rapid recognition of the syndrome can modify the diagnostic and therapeutic attitude i.e. avoiding thrombolysis and performing catheterization in the acute phase. (author)

  11. Viscoelastic behaviour of pumpkin balloons

    Science.gov (United States)

    Gerngross, T.; Xu, Y.; Pellegrino, S.

    2008-11-01

    The lobes of the NASA ULDB pumpkin-shaped super-pressure balloons are made of a thin polymeric film that shows considerable time-dependent behaviour. A nonlinear viscoelastic model based on experimental measurements has been recently established for this film. This paper presents a simulation of the viscoelastic behaviour of ULDB balloons with the finite element software ABAQUS. First, the standard viscoelastic modelling capabilities available in ABAQUS are examined, but are found of limited accuracy even for the case of simple uniaxial creep tests on ULDB films. Then, a nonlinear viscoelastic constitutive model is implemented by means of a user-defined subroutine. This approach is verified by means of biaxial creep experiments on pressurized cylinders and is found to be accurate provided that the film anisotropy is also included in the model. A preliminary set of predictions for a single lobe of a ULDB is presented at the end of the paper. It indicates that time-dependent effects in a balloon structure can lead to significant stress redistribution and large increases in the transverse strains in the lobes.

  12. Ballooning stability of JET discharges

    International Nuclear Information System (INIS)

    Huysmans, G.T.A.; Goedbloed, J.P.; Galvao, R.M.O.; Lazzaro, E.; Smeulders, P.

    1989-01-01

    Conditions under which ballooning modes are expected to be excited have recently been obtained in two different types of discharges in JET. In the first type, extremely large pressure gradients have been produced in the plasma core through pellet injections in the current rise phase followed by strong additional heating. In the second type, the total pressure of the discharge is approaching the Troyon limit. The stability of these discharges with respect to the ideal MHD ballooning modes has been studied with the stability code HBT. The equilibria are reconstructed with the IDENTC code using the external magnetic measurements and the experimental pressure profile. The results show that the evaluated high beta discharge is unstable in the central region of the plasma. This instability is related to the low shear and not to a large pressure gradient, as expected at the Troyon limit. In the pellet discharges the regions with the large pressure gradients are unstable to ballooning modes at the time of the beta decay, which ends the period of enhanced performance. The maximum pressure gradient in these discharges is limited by the boundary of the first region of stability. The observed phenomena at the beta decay are similar to those observed at the beta limit in DIII-D and TFTR. (author)

  13. Radiative Gasification Apparatus

    Data.gov (United States)

    Federal Laboratory Consortium — This apparatus, developed at EL, determines gasification rate (mass loss rate) of a horizontally oriented specimen exposed in a nitrogen environment to a controlled...

  14. ROLLER FILTRATION APPARATUS

    DEFF Research Database (Denmark)

    2017-01-01

    a medium, comprising a plurality of press rollers, a separation chamber for receiving the medium and defined, in cross section, by the press rollers, and at least one chamber filter located inside and enclosed by the separation chamber. The apparatus is preferably configured such that a negative pressure......The present invention relates to the field of filtering, more precisely the present invention concerns an apparatus and a method for the separation of dry matter from a medium and the use of said apparatus. One embodiment discloses an apparatus for the separation of dry matter and liquid from...

  15. Planetary Balloon-Based Science Platform Evaluation and Program Implementation

    Science.gov (United States)

    Dankanich, John W.; Kremic, Tibor; Hibbitts, Karl; Young, Eliot F.; Landis, Rob

    2016-01-01

    This report describes a study evaluating the potential for a balloon-based optical telescope as a planetary science asset to achieve decadal class science. The study considered potential science achievable and science traceability relative to the most recent planetary science decadal survey, potential platform features, and demonstration flights in the evaluation process. Science Potential and Benefits: This study confirms the cost the-benefit value for planetary science purposes. Forty-four (44) important questions of the decadal survey are at least partially addressable through balloon based capabilities. Planetary science through balloon observations can provide significant science through observations in the 300 nm to 5 m range and at longer wavelengths as well. Additionally, balloon missions have demonstrated the ability to progress from concept to observation to publication much faster than a space mission increasing the speed of science return. Planetary science from a balloon-borne platform is a relatively low-cost approach to new science measurements. This is particularly relevant within a cost-constrained planetary science budget. Repeated flights further reduce the cost of the per unit science data. Such flights offer observing time at a very competitive cost. Another advantage for planetary scientists is that a dedicated asset could provide significant new viewing opportunities not possible from the ground and allow unprecedented access to observations that cannot be realized with the time allocation pressures faced by current observing assets. In addition, flight systems that have a relatively short life cycle and where hardware is generally recovered, are excellent opportunities to train early career scientists, engineers, and project managers. The fact that balloon-borne payloads, unlike space missions, are generally recovered offers an excellent tool to test and mature instruments and other space craft systems. Desired Gondola Features: Potential

  16. Titan Balloon Convection Model, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This innovative research effort is directed at determining, quantitatively, the convective heat transfer coefficients applicable to a Montgolfiere balloon operating...

  17. Current trends of balloon laryngoplasty in Thailand.

    Science.gov (United States)

    Moungthong, Greetha; Bunbanjerdsuk, Sacarin; Wright, Nida; Sathavornmanee, Thanakrit; Setabutr, Dhave

    2017-06-01

    To describe the current trend in balloon laryngoplasty usage and experience by practicing otolaryngologists in Thailand. Anonymous 11 question online and paper survey of otolaryngologists on their current balloon laryngoplasty practices. Current practices and experience in balloon laryngoplasty were queried with multiple choice and open-ended questions. Laser use is the most commonly utilized instrument to treat airway stenosis in Thailand. 86% of respondents do not have experience with balloon dilatation; yet, almost half (47.6%) report they perform a minimum of five airway surgeries per year. Most respondents had been in practice for less than 6 years (41%) and reported that they did not have exposure to balloon use during residency training. The largest barrier reported for the use of balloon instrumentation in the airway is inexperience (44.4%) followed by cost (38.3%), yet most feel that treatment in airway stenosis could benefit by usage of balloons (95.5%). Most otolaryngologists in Thailand do not have experience with the use of balloon dilatation and lack of exposure remains the largest barrier to its use. Otolaryngologists in Thailand feel that increased usage of balloons in the airway could improve airway stenosis treatment in the country.

  18. Apparatus for Teaching Physics.

    Science.gov (United States)

    Gottlieb, Herbert H., Ed.

    1981-01-01

    Describes: (1) a variable inductor suitable for an inductance-capacitance bridge consisting of a fixed cylindrical solenoid and a moveable solenoid; (2) long-range apparatus for demonstrating falling bodies; and (3) an apparatus using two lasers to demonstrate ray optics. (SK)

  19. Nuclear core baffling apparatus

    International Nuclear Information System (INIS)

    Cooper, F.W. Jr.; Silverblatt, B.L.; Knight, C.B.; Berringer, R.T.

    1979-01-01

    An apparatus for baffling the flow of reactor coolant fluid into and about the core of a nuclear reactor is described. The apparatus includes a plurality of longitudinally aligned baffle plates with mating surfaces that allow longitudinal growth with temperature increases while alleviating both leakage through the aligned plates and stresses on the components supporting the plates

  20. Polar Balloon Experiment for Astrophysics Research (Polar BEAR)

    Science.gov (United States)

    Bashindzhagyan, G.; Adams, James H., Jr.; Bashindzhagyan, P.; Chilingarian, A.; Donnelly, J.; Drury, L.; Egorov, N.; Golubkov, S.; Grebenyuk, V.; Kalinin, A.; hide

    2001-01-01

    A new balloon experiment is proposed for a long duration flight around the North Pole. The primary objective of the experiment is to measure the elemental energy spectra of high-energy cosmic rays in the region up to 10(exp 15) eV. The proposed instrument involves the combination of a large collecting area (approximately 1 x 1 square m) KLEM (Kinematic Lightweight Energy Meter) device with an ionization calorimeter having a smaller collecting area (approximately 0.5 x 0.5 square m) and integrated beneath the KLEM apparatus. This combination has several important advantages. Due to the large aperture (greater than 2 square m sr) of the KLEM device a large exposure factor can be achieved with a long duration balloon flight (2-4 weeks). The calorimeter will collect about 10% of the events already registered by KLEM and provide effective cross-calibration for both energy measurement methods. Details of the experiment and its astrophysical significance will be presented.

  1. Balloon dilatations of esophageal strictures

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jeong Jin; Juhng, Seon Kwan; Kim, Jae Kyu; Chung, Hyon De [Chonnam National University College of Medicine, Seoul (Korea, Republic of)

    1990-04-15

    Most benign esophageal strictures can be successfully dilated with conventional bougienage technique. But occasionally strictures are so tight, lengthy, or sometimes irregular that this technique fail, and surgical intervention is required. Since 1974 Gruentzig balloon catheter has succeed when used for strictures in the cardiac and peripheral vasculatures, the biliary and urinary tracts, the colon of neonates after inflammatory disease and also in the esophagus. Fluoroscopically guided balloon catheters were used to dilate 30 esophageal strictures in 30 patients over 3 years at Department of Diagnostic Radiology, Chonnam University, College of Medicine. The distribution of age was from 7 years to 71 days and the ratio of male to female was 15:15. The causes of benign stricture (23 cases) were post-operative strictures (13), chemical (4), achalasia (3), chronic inflammation (2), esophageal rupture (1) and those of malignant stricture (7 cases) were post-radiation stricture of primary esophageal cancer (6) and metastatic esophageal cancer (1). The success rate of procedure was 93% (28/30). The causes of failure were the failure of passage of stricture due to markedly dilated proximal segment of esophagus (1 case) and too long segment of stricture (1 case). Complication of procedure was the diverticular-formation of esophagus in 3 cases, but has no clinical significance in follow-up esophagography. In conclusion, fluoroscopically guided balloon dilation of esophageal stricture appears to be safe, effective treatment and may be have theoretical advantages over conventional bougienage and also should be considered before other methods of treatment are used.

  2. Balloon dilatations of esophageal strictures

    International Nuclear Information System (INIS)

    Seo, Jeong Jin; Juhng, Seon Kwan; Kim, Jae Kyu; Chung, Hyon De

    1990-01-01

    Most benign esophageal strictures can be successfully dilated with conventional bougienage technique. But occasionally strictures are so tight, lengthy, or sometimes irregular that this technique fail, and surgical intervention is required. Since 1974 Gruentzig balloon catheter has succeed when used for strictures in the cardiac and peripheral vasculatures, the biliary and urinary tracts, the colon of neonates after inflammatory disease and also in the esophagus. Fluoroscopically guided balloon catheters were used to dilate 30 esophageal strictures in 30 patients over 3 years at Department of Diagnostic Radiology, Chonnam University, College of Medicine. The distribution of age was from 7 years to 71 days and the ratio of male to female was 15:15. The causes of benign stricture (23 cases) were post-operative strictures (13), chemical (4), achalasia (3), chronic inflammation (2), esophageal rupture (1) and those of malignant stricture (7 cases) were post-radiation stricture of primary esophageal cancer (6) and metastatic esophageal cancer (1). The success rate of procedure was 93% (28/30). The causes of failure were the failure of passage of stricture due to markedly dilated proximal segment of esophagus (1 case) and too long segment of stricture (1 case). Complication of procedure was the diverticular-formation of esophagus in 3 cases, but has no clinical significance in follow-up esophagography. In conclusion, fluoroscopically guided balloon dilation of esophageal stricture appears to be safe, effective treatment and may be have theoretical advantages over conventional bougienage and also should be considered before other methods of treatment are used

  3. Simulation of stratospheric balloon environment

    International Nuclear Information System (INIS)

    Sable, C.

    1974-01-01

    The behavior of materials used for the construction of stratospheric balloons is studied at DERTS by means of irradiations performed in reals time and simulating the exact flight environment. Two chambers were designed in the laboratory and are described together with the experimental procedure. In order to reduce cost and save time, it is worth accelerating the simulation when only a preliminary evaluation of the sample's properties is required. For this reason, a systematic study was undertaken in order to evaluate the respective effects of different parameters on the material degradation. The results of this study are given [fr

  4. Balloon dilatation of iatrogenic urethral strictures

    International Nuclear Information System (INIS)

    Acunas, B.; Acunas, G.; Gokmen, E.; Celik, L.

    1988-01-01

    Balloon dilatation of the urethra was performed in five patients with iatrogenic urethral strictures. The urethral strictures were successfully negotiated and dilated in all patients. Redilatation became necessary in a period ranging from 3 to 10 months. The authors believe that balloon dilatation of the urethra can be safely and successfully performed; the procedure produces minimal trauma and immediate relief of symptoms. (orig.)

  5. Percutaneous balloon dilatation for benign hepaticojejunostomy strictures

    NARCIS (Netherlands)

    Vos, P. M.; van Beek, E. J.; Smits, N. J.; Rauws, E. A.; Gouma, D. J.; Reeders, J. W.

    2000-01-01

    BACKGROUND: Percutaneous balloon dilatation of biliary tract strictures is generally accepted as a safe and inexpensive procedure. The effectiveness in selected groups of patients remains under discussion. The purpose of this study was to evaluate the results of percutaneous balloon dilatation in

  6. Early Cosmic Ray Research with Balloons

    Energy Technology Data Exchange (ETDEWEB)

    Walter, Michael, E-mail: michael.walter@desy.de

    2013-06-15

    The discovery of cosmic rays by Victor Hess during a balloon flight in 1912 at an altitude of 5350 m would not have been possible without the more than one hundred years development of scientific ballooning. The discovery of hot air and hydrogen balloons and their first flights in Europe is shortly described. Scientific ballooning was mainly connected with activities of meteorologists. It was also the geologist and meteorologist Franz Linke, who probably observed first indications of a penetrating radiation whose intensity seemed to increase with the altitude. Karl Bergwitz and Albert Gockel were the first physicists studying the penetrating radiation during balloon flights. The main part of the article deals with the discovery of the extraterrestrial radiation by V. Hess and the confirmation by Werner Kolhörster.

  7. Mirror plasma apparatus

    International Nuclear Information System (INIS)

    Moir, R.W.

    1981-01-01

    A mirror plasma apparatus which utilizes shielding by arc discharge to form a blanket plasma and lithium walls to reduce neutron damage to the wall of the apparatus. An embodiment involves a rotating liquid lithium blanket for a tandem mirror plasma apparatus wherein the first wall of the central mirror cell is made of liquid lithium which is spun with angular velocity great enough to keep the liquid lithium against the first material wall, a blanket plasma preventing the lithium vapor from contaminating the plasma

  8. Tomographic scanning apparatus

    International Nuclear Information System (INIS)

    1981-01-01

    Details are presented of a tomographic scanning apparatus, its rotational assembly, and the control and circuit elements, with particular reference to the amplifier and multiplexing circuits enabling detector signal calibration. (U.K.)

  9. Tomographic scanning apparatus

    International Nuclear Information System (INIS)

    1981-01-01

    Details are given of a tomographic scanning apparatus, with particular reference to a multiplexer slip ring means for receiving output from the detectors and enabling interfeed to the image reconstruction station. (U.K.)

  10. Tomographic scanning apparatus

    International Nuclear Information System (INIS)

    1981-01-01

    This patent specification relates to a tomographic scanning apparatus using a fan beam and digital output signal, and particularly to the design of the gas-pressurized ionization detection system. (U.K.)

  11. Thermal Acoustic Fatigue Apparatus

    Data.gov (United States)

    Federal Laboratory Consortium — The Thermal Acoustic Fatigue Apparatus (TAFA) is a progressive wave tube test facility that is used to test structures for dynamic response and sonic fatigue due to...

  12. Light shielding apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Richard Dean; Thom, Robert Anthony

    2017-10-10

    A light shielding apparatus for blocking light from reaching an electronic device, the light shielding apparatus including left and right support assemblies, a cross member, and an opaque shroud. The support assemblies each include primary support structure, a mounting element for removably connecting the apparatus to the electronic device, and a support member depending from the primary support structure for retaining the apparatus in an upright orientation. The cross member couples the left and right support assemblies together and spaces them apart according to the size and shape of the electronic device. The shroud may be removably and adjustably connectable to the left and right support assemblies and configured to take a cylindrical dome shape so as to form a central space covered from above. The opaque shroud prevents light from entering the central space and contacting sensitive elements of the electronic device.

  13. Fuel pellet loading apparatus

    International Nuclear Information System (INIS)

    1980-01-01

    Apparatus is described for loading a predetermined amount of nuclear fuel pellets into nuclear fuel elements and particularly for the automatic loading of fuel pellets from within a sealed compartment. (author)

  14. Apparatus for drying sugar cubes

    NARCIS (Netherlands)

    Derckx, H.A.J.; Torringa, H.M.

    1999-01-01

    Device for drying sugar cubes containing a heating apparatus for heating and dehumidifying the sugar cubes, a conditioning apparatus for cooling off and possibly further dehumidifying the sugar cubes and a conveying apparatus for conveying the sugar cubes through the heating apparatus and the

  15. Test sample handling apparatus

    International Nuclear Information System (INIS)

    1981-01-01

    A test sample handling apparatus using automatic scintillation counting for gamma detection, for use in such fields as radioimmunoassay, is described. The apparatus automatically and continuously counts large numbers of samples rapidly and efficiently by the simultaneous counting of two samples. By means of sequential ordering of non-sequential counting data, it is possible to obtain precisely ordered data while utilizing sample carrier holders having a minimum length. (U.K.)

  16. Spin coating apparatus

    Science.gov (United States)

    Torczynski, John R.

    2000-01-01

    A spin coating apparatus requires less cleanroom air flow than prior spin coating apparatus to minimize cleanroom contamination. A shaped exhaust duct from the spin coater maintains process quality while requiring reduced cleanroom air flow. The exhaust duct can decrease in cross section as it extends from the wafer, minimizing eddy formation. The exhaust duct can conform to entrainment streamlines to minimize eddy formation and reduce interprocess contamination at minimal cleanroom air flow rates.

  17. Sludge recovery apparatus

    International Nuclear Information System (INIS)

    Marmo, A.R.

    1979-01-01

    An improved design of a sludge recovery apparatus used in the fabrication of nuclear fuel is described. This apparatus provides for automatic separation of sludge from the grinder coolant, drying of the sludge into a flowable powder and transfer of the dry powder to a salvage container. It can be constructed to comply with criticality-safe-geometry requirements and to obviate need for operating personnel in its immediate vicinity. (UK)

  18. X-ray apparatus

    International Nuclear Information System (INIS)

    Tomita, Chuji.

    1980-01-01

    A principal object of the present invention is to provide an X-ray apparatus which is such that the distance between the surface of the patient's table and the floor on which the apparatus is installed is sufficiently small in the horizontal position of the patient's table of the roentgenographical pedestal and that the rotation of the pedestal from the horizontal position to a tilted position and further to the vertical position of the table can be carried out smoothly. (auth)

  19. Trajectory Control For High Altitude Balloons

    Science.gov (United States)

    Aaron, K.; Nock, K.; Heun, M.; Wyszkowski, C.

    We will discuss the continuing development of the StratoSailTM Balloon Trajectory Control System presented at the 33rd COSPAR in 2000. A vertical wing suspended on a 15-km tether from a high altitude balloon uses the difference in wind velocity between the altitude of the balloon and the altitude of the wing to create an aerodynamic sideforce. This sideforce, transmitted to the balloon gondola via the tether, causes the balloon to move laterally. Although the balloon's resultant drift velocity is quite small (a few meters per second), the effect becomes significant over long periods of time (hours to days). Recently, a full-scale wing, rudder and boom assembly has been fabricated, a winch system testbed has been completed, and a lightweight tether with reduced susceptibility to ultraviolet damage has been developed. The development effort for this invention, with pending international patents, has been funded by the NASA/SBIR program in support of the Ultra Long Duration Balloon (ULDB) program.

  20. 14 CFR 61.115 - Balloon rating: Limitations.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Balloon rating: Limitations. 61.115 Section... rating: Limitations. (a) If a person who applies for a private pilot certificate with a balloon rating... operate a gas balloon. (b) If a person who applies for a private pilot certificate with a balloon rating...

  1. Accurate Determination of the Volume of an Irregular Helium Balloon

    Science.gov (United States)

    Blumenthal, Jack; Bradvica, Rafaela; Karl, Katherine

    2013-01-01

    In a recent paper, Zable described an experiment with a near-spherical balloon filled with impure helium. Measuring the temperature and the pressure inside and outside the balloon, the lift of the balloon, and the mass of the balloon materials, he described how to use the ideal gas laws and Archimedes' principal to compute the average molecular…

  2. Abdominal cavity balloon for preventing a patient's bleeding

    NARCIS (Netherlands)

    Naber, E.E.H.; Rutten, H.J.T.; Jakimowicz, J.J.; Goossens, R.H.M.; Moes, C.C.M.; Buzink, S.N.

    2007-01-01

    The invention relates to an abdominal cavity balloon for preventing a haemorrhage in a patient's pelvic region, comprising an inflatable balloon, wherein the balloon is pro vided with a smooth surface and with a strip that is flex- urally stiff and formed to follow the balloon's shape for po

  3. Looners: Inside the world of balloon fetishism

    OpenAIRE

    McIntyre, Karen E

    2011-01-01

    In the spring of 1997, Shaun had just broken up with a boyfriend, and his roommate had moved out. Living alone for the first time and relieved of the fear that someone might walk in the door, he was finally able to indulge his fantasy. The young man sat on his couch and started blowing up balloons. Shaun had loved playing with balloons since he was a child. When he hit puberty, he felt his first orgasm rubbing against a balloon. It was then that his relationship with the object took ...

  4. A comparative study of internally and externally capped balloons using small scale test balloons

    Science.gov (United States)

    Bell, Douglas P.

    1994-01-01

    Caps have been used to structurally reinforce scientific research balloons since the late 1950's. The scientific research balloons used by the National Aeronautics and Space Administration (NASA) use internal caps. A NASA cap placement specification does not exist since no empirical information exisits concerning cap placement. To develop a cap placement specification, NASA has completed two in-hangar inflation tests comparing the structural contributions of internal caps and external caps. The tests used small scale test balloons designed to develop the highest possible stresses within the constraints of the hangar and balloon materials. An externally capped test balloon and an internally capped test balloon were designed, built, inflated and simulated to determine the structural contributions and benefits of each. The results of the tests and simulations are presented.

  5. Recent Developments in Balloon Support Instrumentation at TIFR Balloon Facility, Hyderabad.

    Science.gov (United States)

    Vasudevan, Rajagopalan

    2012-07-01

    The Balloon Facility of Tata Institute of Fundamental Research has been conducting stratospheric balloon flights regularly for various experiments in Space Astronomy and Atmospheric Sciences. A continuous improvement in Balloon flight Support instrumentation by the Control Instrumentation Group to keep in space with the growing complexities of the scientific payloads have contributed to the total success of balloon flights conducted recently. Recent improvements in display of Balloon position during balloon flight by showing on real time the balloon GPS position against Google TM maps is of immense help in selecting the right spot for payload landing and safe recovery . For further speeding up the payload recovery process, a new GPS-GSM payload system has been developed which gives SMS of the payload position information to the recovery team on their cell phones. On parallel footing, a new GPS- VHF system has been developed using GPS and Radio Modems for Balloon Tracking and also for obtaining the payload impact point. On the Telecommand side, a single board Telecommand/ Timer weighing less than 2 Kg has been specially developed for use in the mesosphere balloon test flight. The interference on the existing Short Range Telemetry System has been eliminated by introducing a Band Pass Filter and LNA in the Receiving system of the modules, thereby enhancing its reliability. In this paper , we present the details of the above mentioned developments.

  6. Successful treatment of double-orifice mitral stenosis with percutaneous balloon mitral commissurotomy.

    Science.gov (United States)

    Patted, Suresh V; Halkati, Prabhu C; Ambar, Sameer S; Sattur, Ameet G

    2012-01-01

    Double-orifice mitral valve (DOMV) is an uncommon congenital anomaly, being present in 0.05% of the general population. The isolated occurrence of this anomaly is very rare and, to our knowledge, no data are currently available on the incidence of an isolated DOMV. A DOMV is characterized by a mitral valve with a single fibrous annulus with 2 orifices opening into the left ventricle (LV). Subvalvular structures, especially the tensor apparatus, invariably show various degrees of abnormality. It can substantially obstruct mitral valve inflow or cause mitral valve incompetence. We present a rare case of nineteen-year-old male who underwent percutaneous mitral balloon commissurotomy in stenotic DOMV.

  7. Deployment Instabilities of Lobed-Pumpkin Balloon

    Science.gov (United States)

    Nakashino, Kyoichi

    A lobed-pumpkin balloon, currently being developed in ISAS/JAXA as well as in NASA, is a promising vehicle for long duration scientific observations in the stratosphere. Recent ground and flight experiments, however, have revealed that the balloon has deployment instabilities under certain conditions. In order to overcome the instability problems, a next generation SPB called 'tawara' type balloon has been proposed, in which an additional cylindrical part is appended to the standard lobed-pumpkin balloon. The present study investigates the deployment stability of tawara type SPB in comparison to that of standard lobed-pumpkin SPB through eigenvalue analysis on the basis of finite element methods. Our numerical results show that tawara type SPB enjoys excellent deployment performance over the standard lobed-pumpkin SPBs.

  8. Magnetometer for Balloons and UAVs Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I SBIR project will investigate a new, low-cost approach to atomic magnetometry that is suited for operation from UAVs and research balloons. Atomic...

  9. Solid State Inflation Balloon Active Deorbiter

    Data.gov (United States)

    National Aeronautics and Space Administration — The Solid State Inflation Balloon (SSIB) is a simple, reliable, low-cost, non-propulsive system for deliberate deorbit and control of downrange point-of-impact that...

  10. Shielded Mars Balloon Launcher (SMBL) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aurora Flight Sciences, along with its partner Vertigo Industries, proposes a novel approach to deployment of balloon-based payloads into the Martian atmosphere....

  11. Test ventilation with smoke, bubbles, and balloons

    International Nuclear Information System (INIS)

    Pickering, P.L.; Cucchiara, A.L.; McAtee, J.L.; Gonzales, M.

    1987-01-01

    The behavior of smoke, bubbles, and helium-filled balloons was videotaped to demonstrate the mixing of air in the plutonium chemistry laboratories, a plutonium facility. The air-distribution patterns, as indicated by each method, were compared. Helium-filled balloons proved more useful than bubbles or smoke in the visualization of airflow patterns. The replay of various segments of the videotape proved useful in evaluating the different techniques and in identifying airflow trends responsible for air mixing. 6 refs

  12. Significance of balloon pressure recording during angioplasty

    Energy Technology Data Exchange (ETDEWEB)

    Zollikofer, C.L.; Salomonowitz, E.; Frick, M.P.; Castaneda-Zuniga, W.R.; Amplatz, K.; Bruehlmann, W.F.

    1985-05-01

    During angioplasty of artificial stenoses, atherosclerotic human cadaver arteries, and normal canine arteries, pressure and volume of the dilatation balloons were continuously recorded. We found that a sudden yield of a lesion corresponded to a sudden drop in the pressure curve and an increase of the balloon volume. Volume monitoring was insensitive, but pressure recording was very precise. Continuous pressure recording, using a non-compliant inflation system, correctly demonstrated small breaks and ruptures of atherosclerotic vessels, changes not seen on fluoroscopy.

  13. Thermal energy test apparatus

    Science.gov (United States)

    Audet, N. F.

    1991-10-01

    The Navy Clothing and Textile Research Facility (NCTRF) designed and fabricated a thermal energy test apparatus to permit evaluation of the heat protection provided by crash crew firefighter's proximity clothing materials against radiant and convective heat loads, similar to those found outside the flame zone of aircraft fuel fires. The apparatus employs electrically operated quartz lamp radiant heaters and a hot air convective heater assembly to produce the heat load conditions the materials to be subjected to, and is equipped with heat flux sensors of different sensitivities to measure the incident heat flux on the sample material as well as the heat flux transmitted by the sample. Tests of the apparatus have shown that it can produce radiant heat flux levels equivalent to those estimated to be possible in close proximity to large aircraft fuel fires, and can produce convective heat fluxes equivalent to those measured in close proximity to aircraft fuel fires at upwind and sidewind locations. Work was performed in 1974.

  14. Computed tomography apparatus

    International Nuclear Information System (INIS)

    Palermo, A.; Zupancic, A.

    1981-01-01

    A computed tomography (CT) scanner apparatus including improved arrangement for transferring high voltage electrical energy between a stationary gantry and a rotating assembly is described. The assembly carries the X-ray source and has an opening defining an aperture to receive a part of a patient. A first axis about which the assembly rotates, passes through the aperture. The apparatus includes a number of slip rings which are used for effecting the transfer of the electrical energy. Respective portions of the gantry and rotating assembly define a cavity which contains an insulating di-electric fluid in which the slip rings are immersed. The apparatus is of compact design and, further, the rotating assembly and the slip rings can be tilted about a second axis which intersects the first axis. (author)

  15. Pore roller filtration apparatus

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to the field of filtering, more precisely the present invention concerns an apparatus and a method for the separation of dry matter from a medium and the use of said apparatus. One embodiment discloses an apparatus for the separation of dry matter from a medium, comp...... of a pore roller and one other roller, means for establishing a pressure difference across the filter, means for passing filter and filter cake through the set of rollers, and a closure mechanism configured to control the transverse tension between the rollers......., comprising a pressure regulated separation chamber defined, in cross section, by a plurality of rollers mounted between opposing sidewalls, each of said rollers having a shaft adapted to be engaged with the sidewalls, a filter arranged so that it passes between at least one set of said rollers consisting...

  16. Overview Of The Scientific Balloon Activity in Sweden 2014-2016

    Science.gov (United States)

    Abrahamsson, Mattias; Lockowandt, Christian; Andersson, Kent

    2016-07-01

    SSC, formerly known as Swedish Space Corporation, is a Swedish state-owned company working in several different space related fields, including scientific stratospheric balloon launches. Esrange Space Centre (Esrange in short) located in the north of Sweden is the launch facility of SSC, where both sounding rocket launches and stratospheric balloon launches are conducted. At Esrange there are also facilities for satellite communication, including one of the largest civilian satellite data reception stations in the world. Stratospheric balloons have been launched from Esrange since 1974, when the first flights were performed together with the French space agency CNES. These balloon flights have normally flown eastward either only over Sweden or into Finland. Some flights have also had permission to fly into Russia, as far as the Ural Mountains. Normal flight times are from 4 to 12 hours. These eastward flights are conducted during the winter months (September to May). Long duration flights have been flown from Esrange since 2005, when NASA flew the BLAST payload from Sweden to north Canada. The prevailing westerly wind pattern is very advantageous for trans-Atlantic flights during summer (late May to late July). The long flight times of 4-5 days are very beneficial for astronomical payloads, such as telescopes that need long observation times. Circumpolar flights of more than two weeks are possible if Russian overflight permission exists. Typical scientific balloon payload fields include atmospheric research, including research on ozone depletion, astronomical and cosmological research, and research in technical fields such as aerodynamics. Since last COSPAR a number of interesting balloon flights have been performed from Esrange. In late 2014 parachute tests for the ExoMars programme was performed by drop-test from balloons. This was followed up on in the summer of 2015 with full end-to-end dynamic stability tests of Earth re-entry capsule shapes. Several balloon-borne

  17. Electroplating method and apparatus

    International Nuclear Information System (INIS)

    Looney, R.B.; Smith, W.E.L.

    1978-01-01

    Disclosed is an apparatus for high speed electroplating or anodizing tubular members such as nuclear reactor fuel elements. A loading arm positions the member on a base for subsequent support by one of two sets of electrical contacts. A carriage assembly positions electrodes into and around the member. Electrolyte is pumped between the electrodes and the member while electric current is applied. Programmed controls sequentially employ each of the two sets of contacts to expose all surfaces of the member to the electrolyte. The member is removed from the apparatus by an unloading arm

  18. Ultrasonic drilling apparatus

    Science.gov (United States)

    Duran, E.L.; Lundin, R.L.

    1988-06-20

    Apparatus attachable to an ultrasonic drilling machine for drilling deep holes in very hard materials, such as boron carbide, is provided. The apparatus utilizes a hollow spindle attached to the output horn of the ultrasonic drilling machine. The spindle has a hollow drill bit attached at the opposite end. A housing surrounds the spindle, forming a cavity for holding slurry. In operation, slurry is provided into the housing, and into the spindle through inlets while the spindle is rotating and ultrasonically reciprocating. Slurry flows through the spindle and through the hollow drill bit to cleanse the cutting edge of the bit during a drilling operation. 3 figs.

  19. Gondola development for CNES stratospheric balloons

    Science.gov (United States)

    Vargas, A.; Audoubert, J.; Cau, M.; Evrard, J.; Verdier, N.

    The CNES has been supporting scientific ballooning since its establishment in 1962. The two main parts of the balloon system or aerostat are the balloon itself and the flight train, comprising the house-keeping gondola, for the control of balloon flight (localization and operational telemetry & telecommand - TM/TC), and the scientific gondola with its dedicated telecommunication system. For zero pressure balloon, the development of new TM/TC system for the housekeeping and science data transmission are going on from 1999. The main concepts are : - for balloon house-keeping and low rate scientific telemetry, the ELITE system, which is based on single I2C bus standardizing communication between the different components of the system : trajectography, balloon control, power supply, scientific TM/TC, .... In this concept, Radio Frequency links are developed between the house keeping gondola and the components of the aerostat (balloon valve, ballast machine, balloon gas temperature measurements, ...). The main objectives are to simplify the flight train preparation in term of gondola testing before flight, and also by reducing the number of long electrical cables integrated in the balloon and the flight train; - for high rate scientific telemetry, the use of functional interconnection Internet Protocol (IP) in interface with the Radio Frequency link. The main idea is to use off-the-shelf IP hardware products (routers, industrial PC, ...) and IP software (Telnet, FTP, Web-HTTP, ...) to reduce the development costs; - for safety increase, the adding, in the flight train, of a totally independent house keeping gondola based on the satellite Inmarsat M and Iridium telecommunication systems, which permits to get real time communications between the on-board data mobile and the ground station, reduced to a PC computer with modem connected to the phone network. These GEO and LEO telecommunication systems give also the capability to operate balloon flights over longer distance

  20. [Coronary angioplasty using double balloon in artery of large calibre (hugging balloons)].

    Science.gov (United States)

    Centemero, M P; Cano, M N; Maldonado, G; de Almeida, J D; Sousa, A G; Sousa, J E

    1993-07-01

    In this case report the transluminal coronary angioplasty was performed in a oversized right coronary artery with a severe lesion with thrombus inside, using the Hugging balloon technique (two dilatation balloon catheters used simultaneously). This technique achieved minimal residual lesion and had a favorable clinical outcome of the patient.

  1. Positioning and locking apparatus

    Science.gov (United States)

    Hayward, M.L.; Harper, W.H.

    1985-06-19

    A positioning and locking apparatus including a fixture having a rotatable torque ring provided with a plurality of cam segments for automatically guiding a container into a desired location within the fixture. Rotation of the ring turns the container into a final position in pressure sealing relation against a hatch member.

  2. Apparatus for Teaching Physics.

    Science.gov (United States)

    Gottlieb, Herbert H., Ed.

    1979-01-01

    Six different pieces of physics apparatus are described: Telsa Coil for instant ignition of sodium arc lamps, Timekube, Magnetic Maps of the United States, a slinky with vertical mounting, a wave generator power supply, and a long-period timer power switch. Price and supplier are included. (BT)

  3. communication method and apparatus

    DEFF Research Database (Denmark)

    2005-01-01

    The present invention relates to a non-lingual communication method and apparatus, wherein a physical or physiological signal consciously created by a first subject (1) is detected and converted into a transmitted output signal presented to a second subject (7) in order to communicate information...

  4. Electrolysis apparatus and method

    International Nuclear Information System (INIS)

    1975-01-01

    A procedure in which electrolysis is combined with radiolysis to improve the reaction yield is proposed for the production of hydrogen and oxygen from water. An apparatus for this procedure is disclosed. High-energy electric pulses are applied between the anode and kathode of an electrolytical cell in such a way that short-wave electromagnetic radiation is generated at the same time

  5. Mobile lighting apparatus

    Science.gov (United States)

    Roe, George Michael; Klebanoff, Leonard Elliott; Rea, Gerald W; Drake, Robert A; Johnson, Terry A; Wingert, Steven John; Damberger, Thomas A; Skradski, Thomas J; Radley, Christopher James; Oros, James M; Schuttinger, Paul G; Grupp, David J; Prey, Stephen Carl

    2013-05-14

    A mobile lighting apparatus includes a portable frame such as a moveable trailer or skid having a light tower thereon. The light tower is moveable from a stowed position to a deployed position. A hydrogen-powered fuel cell is located on the portable frame to provide electrical power to an array of the energy efficient lights located on the light tower.

  6. Pump apparatus including deconsolidator

    Energy Technology Data Exchange (ETDEWEB)

    Sonwane, Chandrashekhar; Saunders, Timothy; Fitzsimmons, Mark Andrew

    2014-10-07

    A pump apparatus includes a particulate pump that defines a passage that extends from an inlet to an outlet. A duct is in flow communication with the outlet. The duct includes a deconsolidator configured to fragment particle agglomerates received from the passage.

  7. Building scientific apparatus

    National Research Council Canada - National Science Library

    Moore, John H; Davis, Christopher C; Coplan, Michael A; Greer, Sandra C

    2009-01-01

    ... specification of the components of apparatus, many new to this edition. Data on the properties of materials and components used by manufacturers are included. Mechanical, optical, and electronic construction techniques carried out in the laboratory, as well as those let out to specialized shops, are also described. Step-by-step instruc...

  8. LOAC: a small aerosol optical counter/sizer for ground-based and balloon measurements of the size distribution and nature of atmospheric particles - Part 2: First results from balloon and unmanned aerial vehicle flights

    Science.gov (United States)

    Renard, Jean-Baptiste; Dulac, François; Berthet, Gwenaël; Lurton, Thibaut; Vignelles, Damien; Jégou, Fabrice; Tonnelier, Thierry; Jeannot, Matthieu; Couté, Benoit; Akiki, Rony; Verdier, Nicolas; Mallet, Marc; Gensdarmes, François; Charpentier, Patrick; Mesmin, Samuel; Duverger, Vincent; Dupont, Jean-Charles; Elias, Thierry; Crenn, Vincent; Sciare, Jean; Zieger, Paul; Salter, Matthew; Roberts, Tjarda; Giacomoni, Jérôme; Gobbi, Matthieu; Hamonou, Eric; Olafsson, Haraldur; Dagsson-Waldhauserova, Pavla; Camy-Peyret, Claude; Mazel, Christophe; Décamps, Thierry; Piringer, Martin; Surcin, Jérémy; Daugeron, Daniel

    2016-08-01

    In the companion (Part I) paper, we have described and evaluated a new versatile optical particle counter/sizer named LOAC (Light Optical Aerosol Counter), based on scattering measurements at angles of 12 and 60°. That allows for some typology identification of particles (droplets, carbonaceous, salts, and mineral dust) in addition to size-segregated counting in a large diameter range from 0.2 µm up to possibly more than 100 µm depending on sampling conditions (Renard et al., 2016). Its capabilities overpass those of preceding optical particle counters (OPCs) allowing the characterization of all kind of aerosols from submicronic-sized absorbing carbonaceous particles in polluted air to very coarse particles (> 10-20 µm in diameter) in desert dust plumes or fog and clouds. LOAC's light and compact design allows measurements under all kinds of balloons, on-board unmanned aerial vehicles (UAVs) and at ground level. We illustrate here the first LOAC airborne results obtained from a UAV and a variety of scientific balloons. The UAV was deployed in a peri-urban environment near Bordeaux in France. Balloon operations include (i) tethered balloons deployed in urban environments in Vienna (Austria) and Paris (France), (ii) pressurized balloons drifting in the lower troposphere over the western Mediterranean (during the Chemistry-Aerosol Mediterranean Experiment - ChArMEx campaigns), (iii) meteorological sounding balloons launched in the western Mediterranean region (ChArMEx) and from Aire-sur-l'Adour in south-western France (VOLTAIRE-LOAC campaign). More focus is put on measurements performed in the Mediterranean during (ChArMEx) and especially during African dust transport events to illustrate the original capability of balloon-borne LOAC to monitor in situ coarse mineral dust particles. In particular, LOAC has detected unexpected large particles in desert sand plumes.

  9. Optical measurements of atmospheric particles from airborne platforms: in situ and remote sensing instruments for balloons and aircrafts

    Directory of Open Access Journals (Sweden)

    A. Adriani

    2006-06-01

    Full Text Available Multiwavelength laser backscattersondes (MAS have been widely used from a variety of airborne platforms for in situ measurements of optical properties of clouds and atmospheric particulate as well as their phase and composition. Recently, a new miniaturized LIDAR (MULID has been developed using state-of-art technology for balloon borne profiling of the same quantities. A description of the two instruments, a survey of preliminary results obtained during test flights and indications for future use are given.

  10. Innovative Born Globals

    DEFF Research Database (Denmark)

    Kraus, Sascha; Brem, Alexander; Muench, Miriam

    2017-01-01

    Internationalization is a hot topic in innovation management, whereby the phenomenon of “Born Globals” is still limited to research in the domains of Entrepreneurship and International Management. As business model design plays a key role for Born Globals, we link these two concepts. For this, we...... propose hypotheses about the influence of efficiency-centered and novelty-entered business model design on international firm performance. To test these hypotheses, we performed a quantitative survey with 252 founders of international companies in Germany, Switzerland and Liechtenstein. Additionally, we...... gained further insights through a case study analysis of 11 Born Globals. The results show that business model design matters to international firm performance and the business model design of Born Globals tends to be more efficiency-centered. Based on a multiple case study, we analyzed business models...

  11. Studies on ultraviolet inactivation of air-borne microorganisms, 1

    International Nuclear Information System (INIS)

    Adachi, Shin-ichi; Doi, Hitoshi; Yamayoshi, Takao; Nunoura, Masako; Tatsumi, Noriyuki.

    1989-01-01

    UV(254nm) inactivation of air-borne bacteria in an air-controlling apparatus was studied. The appratus was composed of a chamber for vaporizing a bacterial suspension and an irradiation duct equipped with an UV lamp(GL-30). The bacterial which passed through the irradiation duct impinged on a petri dish by an air slit sampler. Selected bacteria for the experiment were Serratia marcescens, Escherichia coli, Sarcina lutea and Bacillus subtilis(spores). The apparatus was useful for the study of the susceptibility of air-borne bacteria to UV radiation. UV dose necessary to inhibit colony formation in 90% of individual bacteria in the controlled air was as low as 27 to 35% of the dose required for the agar plate method. (author)

  12. Improvements in measuring apparatus

    International Nuclear Information System (INIS)

    Casey, W.

    1976-01-01

    Measuring apparatus is described that is suitable for gauging the wall profiles of downwardly extending channels in nuclear reactors, but which is equally applicable to channels such as pipe bores and conduits in other types of plant. The apparatus comprises a probe carrying a measuring transducer giving an electrical output. The probe support may be moved stepwise along the channel along a track between end members. An electrical conductor is provided for transmitting the electrical output of the transducer to an indicator located remote from the probe. The probe support may consist of a cable attached at one end to a winding drum, and incorporating an electrical conductor connected to the transducer. Channel engaging means are provided on the probe that permits free upward movement of the probe when the latter is suspended by the cable and moves into gripping engagement with the channel wall when the tension in the cable is relaxed. (U.K.)

  13. Portable shower apparatus

    Science.gov (United States)

    Grenier, Francis E. (Inventor)

    1993-01-01

    A multipurpose, collapsible, shower apparatus for use almost anywhere but especially adapted for use in places somewhat remote from civilization such as recreational vehicles, campers, the outdoors, space vehicles and the like where there may be a limited amount of water or other liquid. The collapsible shower apparatus includes a curtain assembly having an inner wall, an outer wall and a porous element for separating the inner and outer walls; a series of spaced hollow hoops connected by one or more sets of hollow tubes (manifolds); one or more nozzles connected to and in communication with at least one of the hollow hoops; a source of fluid under pressure in communication with at least one of the hollow hoops; and a suction pump for withdrawing fluid from the interior of the curtain assembly.

  14. Radiation guard apparatus

    International Nuclear Information System (INIS)

    Collica, C.; Epifano, L.; Farella, R.

    1976-01-01

    Radiation shielding apparatus for use in conjunction with a pad on a table. The apparatus comprises a set of units, each unit comprising a pair of joined substantially flat orthogonal flaps. The flaps are formed of a radiation shielding material and are adapted for removable placement under the pad whereby one flap contacts the table and the other flap extends vertically from an edge thereof. In a preferred embodiment of the invention the set consists of five units that provide protection around three sides of a rectangular table. In this embodiment, two of the units are identical and have asymmetrical trapezoidal flaps, and two others of the units are also identical, but have trapezoidal flaps which are of reversed orientation with respect to the first-mentioned two units. 6 claims, 4 drawing figures

  15. Advanced Onboard Energy Storage Solution for Balloons, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Balloon Programs at NASA are looking for a potential 100 day missions at mid-altitudes. These balloons would be powered by solar panels to take advantage of...

  16. Spectrum of ballooning instabilities in a stellarator

    International Nuclear Information System (INIS)

    Cooper, W.A.; Singleton, D.B.; Dewar, R.L.

    1995-08-01

    The recent revival of interest in the application of the 'ballooning formalism' to low-frequency plasma instabilities has prompted a comparison of the Wentzel-Brillouin-Kramers (WKB) ballooning approximation with an (in principle) exact normal mode calculation for a three-dimensional plasma equilibrium. Semiclassical quantization, using the ideal magnetohydrodynamic (MHD) ballooning eigenvalue to provide a local dispersion relation, is applied to a ten-field period stellarator test case. Excellent qualitative agreement, and good quantitative agreement is found with predictions from the TERPSICHORE code for toroidal mode numbers from 1 to 14 and radial mode numbers from 0 to 2. The continuum bands predicted from three-dimensional WKB theory are too narrow to resolve. (author) 3 figs., 24 refs

  17. [Intraaortic balloon pumping( IABP) in Japan].

    Science.gov (United States)

    Ono, Tomoyuki; Tanoue, Yoshihisa; Tominaga, Ryuji

    2014-07-01

    The intraaortic balloon pumping (IABP) is the most widely used circulatory assist device. IABP increases coronary perfusion in diastolic phase by the inflation of the balloon in the descending aorta (diastolic augmentation) and reduces afterload in systolic phase by the deflation of the balloon( systolic unloading). IABP improves the hemodynamic condition of patients who fall into acute heart failure and/or cardiogenic shock. Six-type IABP system can be used in Japan. The IABP-SHOCK II trial shows that there is no significant difference in mortality between optimal medical treatment with IABP and without IABP in addition to early revascularization. Clinical backgrounds in Japan are different from those in IABP-SHOCK II trial, and the further prospective studies of IABP in Japan thus called for.

  18. TLE Balloon experiment campaign carried out on 25 August 2006 in Japan

    Science.gov (United States)

    Takahashi, Y.; Chikada, S.; Yoshida, A.; Adachi, T.; Sakanoi, T.

    2006-12-01

    The balloon observation campaign for TLE and lightning study was carried out 25 August 2006 in Japan by Tohoku University, supported by JAXA. The balloon was successfully launched at 18:33 LT at Sanriku Balloon Center of JAXA located in the east coast of northern part of Japan (Iwate prefecture). Three types of scientific payloads were installed at the 1 m-cubic gondola, that is, 3-axis VLF electric filed antenna and receiver (VLFR), 4 video frame CCD cameras (CCDI) and 2-color photometer (PM). The video images were stored in 4 HD video recorders, which have 20GB memories respectively, at 30 frames/sec and VLFR and PM data were put into digital data recorder with 30 GB memory at sampling rate of 100 kHz. The balloon floated at the altitude of 13 km until about 20:30 LT, going eastward and went up to 26 km at a distance of 130 km from the coast. And it went back westward at the altitude of 26 km until midnight. The total observation period is about 5 hours. Most of the equipments worked properly except for one video recorder. Some thunderstorms existed within the direct FOV from the balloon in the range of 400-600 km and more than about 400 lightning flashes were recorded as video images. We confirmed that, at least, one sprite halo was captured by CCDI which occurred in the oceanic thunderstorm at a distance of about 500 km from balloon. This is the first TLE image obtained by a balloon-borne camera. Simultaneous measurements of VLF sferics and lightning/TLE images will clarify the role of intracloud (IC) currents in producing and/or modulating TLEs as well as cloud-to-ground discharges (CG). Especially the effect of horizontal components will be investigated in detail, which cannot be detected on the ground, to explain the unsolved properties of TLEs, such as long time delay of TLE from the timing of stroke and large horizontal displacement between CG and TLEs.

  19. Apparatus for obtaining radiographs

    International Nuclear Information System (INIS)

    Frank, L.F.

    1977-01-01

    An apparatus for making x-ray pictures by imagewise exposing a cloud chamber containing a high atomic number gas mixed with a condensate vapor is described. The gas is under sufficiently high pressure to assure substantially complete absorption of the incident x-rays. Optical means are provided so that visible x-ray tracks are viewed from a direction aligned with the tracks

  20. Automatic temperature adjustment apparatus

    Science.gov (United States)

    Chaplin, James E.

    1985-01-01

    An apparatus for increasing the efficiency of a conventional central space heating system is disclosed. The temperature of a fluid heating medium is adjusted based on a measurement of the external temperature, and a system parameter. The system parameter is periodically modified based on a closed loop process that monitors the operation of the heating system. This closed loop process provides a heating medium temperature value that is very near the optimum for energy efficiency.

  1. Wave disc engine apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Muller, Norbert; Piechna, Janusz; Sun, Guangwei; Parraga, Pablo-Francisco

    2018-01-02

    A wave disc engine apparatus is provided. A further aspect employs a constricted nozzle in a wave rotor channel. A further aspect provides a sharp bend between an inlet and an outlet in a fluid pathway of a wave rotor, with the bend being spaced away from a peripheral edge of the wave rotor. A radial wave rotor for generating electricity in an automotive vehicle is disclosed in yet another aspect.

  2. Multicusp plasma containment apparatus

    International Nuclear Information System (INIS)

    Limpaecher, R.

    1980-01-01

    It has been discovered that plasma containment by a chamber having multi-pole magnetic cusp reflecting walls in combination with electronic injection for electrostatic containment provides the means for generating magnetic field free quiescent plasmas for practical application in ion-pumps, electronic switches, and the like. 1250 ''alnico v'' magnets 1/2 '' X 1/2 '' X 1 1/2 '' provide containment in one embodiment. Electromagnets embodying toroidal funneling extend the principle to fusion apparatus

  3. Medical radiological apparatus

    International Nuclear Information System (INIS)

    1980-01-01

    With the apparatus described, images can be obtained by rotation scanning and the image formation from a three dimensional image matrix is converted into an overall picture. Detectors for both X-ray radiation and γ radiation are present and these consist of a row of detector elements, from each of which a separate read-out can be obtained. Therefore both X-ray and γ ray images emitted from the examined object can be obtained. (Th.P.)

  4. Pyrolysis process and apparatus

    Science.gov (United States)

    Lee, Chang-Kuei

    1983-01-01

    This invention discloses a process and apparatus for pyrolyzing particulate coal by heating with a particulate solid heating media in a transport reactor. The invention tends to dampen fluctuations in the flow of heating media upstream of the pyrolysis zone, and by so doing forms a substantially continuous and substantially uniform annular column of heating media flowing downwardly along the inside diameter of the reactor. The invention is particularly useful for bituminous or agglomerative type coals.

  5. Multiorder etalon sounder (MOES) development and test for balloon experiment

    Science.gov (United States)

    Hays, Paul B.; Wnag, Jinxue; Wu, Jian

    1993-12-01

    The Fabry-Perot interferometer (FPI), with its high throughput and high spectral resolution has been used in the remote-sensing measurements of the earth's atmospheric composition, winds, and temperatures. The most recent satellite instruments include the Fabry-Perot interferometer flown on the Dynamics Explorer-2 (DE-2), the High Resolution Doppler Imager (HRDI), and the Cryogenic Limb Array Etalon Spectrometer (CLAES) flown on the Upper Atmosphere Research Satellite (UARS). These instruments measure the Doppler line profiles of the emission and absorption of certain atmospheric species (such as atomic oxygen) in the visible and infrared spectral region. The successful space flight of DE-FPI, HRDI, and CLAES on UARS demonstrated the extremely high spectral resolution and ruggedness of the etalon system for the remote sensing of earth and planetary atmospheres. Recently, an innovative FPI focal plane detection technique called the Circle-to-Line Interferometer Optical (CLIO) system was invented at the Space Physics Research Laboratory. The CLIO simplifies the FPI focal plane detection process by converting the circular rings or fringes into a linear pattern similar to that produced by a conventional spectrometer, while retaining the throughput advantage of the etalon interferometer. The combination of FPI and CLIO allows the development of more sensitive Fabry-Perot interferometers in the infrared for the remote sensing of the lower atmospheres of Earth and possibly other planets. The Multiorder Etalon Sounder (MOES), a combination of the rugged etalon and the CLIO, compares very favorably to other space-borne optical instruments in terms of performance versus complexity. The new instrument is expected to be rugged, compact, and very suitable for an operational temperature and moisture sounder. With this technique, the contamination of radiance measurements by emissions of other gases is also minimized. At the Space Physics Research Laboratory (SPRL), the MOES

  6. Vortex Apparatus and Demonstrations

    Science.gov (United States)

    Shakerin, Said

    2010-05-01

    Vortex flow, from millimeter to kilometer in scale, is important in many scientific and technological areas. Examples are seen in water strider locomotion, from industrial pipe flow (wastewater treatment) to air traffic control (safe distance between aircrafts on a runway ready for takeoff) to atmospheric studies.2-5 In this paper, we focus on a particular vortex known as bathtub vortex (BTV). It occurs when water is drained from a hole at the bottom of a container such as a bathtub or a sink under the action of gravity. The vortex has a funnel shape with a central air core, resembling a tornado. We have designed a portable apparatus to demonstrate bathtub vortex on a continual basis. The apparatus consists of a clear cylinder supported by a frame over a water reservoir and a submersible pump. Young and old have been equally amazed by watching the demonstrations at various public presentations held at the University of the Pacific recently. With material cost of less than 100, the apparatus can be easily fabricated and used at other universities. With a short set-up time, it is an ideal device for promoting science to the general public, and it can be used to enhance lectures in physics courses as well.

  7. Air-cleaning apparatus

    International Nuclear Information System (INIS)

    Howard, A.G.

    1981-01-01

    An air-cleaning, heat-exchange apparatus includes a main housing portion connected by means of an air inlet fan to the kitchen exhaust stack of a restaurant. The apparatus includes a plurality of heat exchangers through which a heat-absorptive fluid is circulated, simultaneously, by means of a suitable fluid pump. These heat exchangers absorb heat from the hot exhaust gas, out of the exhaust stack of the restaurant, which flows over and through these heat exchangers and transfers this heat to the circulating fluid which communicates with remote heat exchangers. These remote heat exchangers further transfer this heat to a stream of air, such as that from a cold-air return duct for supplementing the conventional heating system of the restaurant. Due to the fact that such hot exhaust gas is heavily grease laden , grease will be deposited on virtually all internal surfaces of the apparatus which this exhaust gas contacts. Consequently, means are provided for spraying these contacted internal surfaces , as well as the hot exhaust gas itself, with a detergent solution in which the grease is soluble, thereby removing grease buildup from these internal surfaces

  8. Infra-red measurements of stratospheric composition. I - The balloon instrument and water vapour measurements

    Science.gov (United States)

    Chaloner, C. P.; Drummond, J. R.; Houghton, J. T.; Roscoe, H. K.; Jarnot, R. F.

    1978-01-01

    The design and construction of a balloon-borne instrument for remote-sensing of stratospheric composition is described. Thermal emission from the constituents is detected and the spectral selectivity of the instrument is tailored to a specific gas by the use of a cell of the same gas in the optical path of the radiometer. The pressure of the gas in the cell is cycled and the resultant transmission function is shown to be highly selective to radiation from the same gas in the atmosphere. The first flight of the instrument and the retrieval of a water vapour profile in the range 15-40 km is described.

  9. Performance of the EUSO-Balloon electronics

    International Nuclear Information System (INIS)

    Barrillon, P.; Dagoret, S.; Miyamoto, H.; Moretto, C.; Bacholle, S.; Blaksley, C; Gorodetzky, P.; Jung, A.; Prévôt, G.; Prat, P.; Bayer, J.; Blin, S.; Taille, C. De La; Cafagna, F.; Fornaro, C.; Karczmarczyk, J.; Tanco, G. Medina; Osteria, G.; Perfetto, F.; Park, I.

    2016-01-01

    The 24th of August 2014, the EUSO-Balloon instrument went for a night flight for several hours, 40 km above Timmins (Canada) balloon launching site, concretizing the hard work of an important part of the JEM-EUSO collaboration started 3 years before. This instrument consists of a telescope made of two lenses and a complex electronic chain divided in two main sub-systems: the PDM (Photo Detector Module) and the DP (Data Processor). Each of them is made of several innovative elements developed and tested in a short time. This paper presents their performances before and during the flight

  10. Exponential Growth of Nonlinear Ballooning Instability

    International Nuclear Information System (INIS)

    Zhu, P.; Hegna, C. C.; Sovinec, C. R.

    2009-01-01

    Recent ideal magnetohydrodynamic (MHD) theory predicts that a perturbation evolving from a linear ballooning instability will continue to grow exponentially in the intermediate nonlinear phase at the same linear growth rate. This prediction is confirmed in ideal MHD simulations. When the Lagrangian compression, a measure of the ballooning nonlinearity, becomes of the order of unity, the intermediate nonlinear phase is entered, during which the maximum plasma displacement amplitude as well as the total kinetic energy continues to grow exponentially at the rate of the corresponding linear phase.

  11. Ballooning behavior in the golden orbweb spider Nephilapilipes (Araneae: Nephilidae

    Directory of Open Access Journals (Sweden)

    Vanessa M.J. Lee

    2015-01-01

    Full Text Available Ballooning, a mode of aerial dispersal in spiders, is an innate behavior that requires appropriate physiological and meteorological conditions. Although only rarely reported in the golden orbweb spiders, family Nephilidae, the large geographic distributions of most nephilids—in particular of Nephila species—would imply that these spiders likely routinely disperse by ballooning in spite of giant female sizes. Here we study ballooning behavior in the golden orbweb spider Nephila pilipes (Fabricius, 1793. Specifically, we test for the propensity of spiderlings to deploy ballooning as a dispersal mechanism. We subjected a total of 59 first-instar spiderlings to a wind experiment at two wind speeds (2.17 ± 0.02 m s-1 and 3.17 ± 0.02 m s-1 under laboratory conditions. Under an average wind speed of 3.17 m s-1, none of the spiderlings exhibited pre-ballooning or ballooning behavior. However, at an average wind speed of 2.17 m s-1, 53 (89.8% spiderlings showed pre-ballooning behavior, and 17 (32.1% of the pre-ballooners ultimately ballooned. Our results concur with prior reports on spiderlings of other families that pre-ballooning behavior is a requirement for ballooning to occur. Furthermore, although we cannot rule out other dispersal mechanisms such as synanthropic spread, our findings suggest that the widespread N. pilipes uses ballooning to colonize remote oceanic islands.

  12. Outcomes of intragastric balloon placements in a private practice setting

    NARCIS (Netherlands)

    Mathus-Vliegen, Elisabeth M. H.; Alders, Peter R. H.; Chuttani, Ram; Scherpenisse, Joost

    2015-01-01

    Intragastric balloons are used as a treatment for obesity. Much of the data collected on balloons has been in the context of clinical trials in academic medical centers or as a bridge to bariatric surgery in obesity centers. The aim of this study was to investigate the efficacy and safety of balloon

  13. 21 CFR 884.5050 - Metreurynter-balloon abortion system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Metreurynter-balloon abortion system. 884.5050... Devices § 884.5050 Metreurynter-balloon abortion system. (a) Identification. A metreurynter-balloon abortion system is a device used to induce abortion. The device is inserted into the uterine cavity...

  14. [Tick borne diseases].

    Science.gov (United States)

    Holzer, B R

    2005-11-01

    It is known for many years that tick-borne diseases have worldwide a high economical impact on farming industry and veterinary medicine. But only in the last twenty years the importance of such diseases were notified in human medicine by the medical community and the public with emerging of the tick borne encephalitis virus and the description of Borrelia burgdorferi. It is often forgotten that many other infectious agents as bacteria, virus, Rickettsia or protozoa can be transmitted by ticks. Such diseases are rarely diagnosed in Europe either they are overlooked and misdiagnosed or they are connected with special professional activities. The development of new regions for tourism with different out door activities (adventure trips, trekking, hunting) leads to an exposure to different tick borne diseases, which are often misdiagnosed.

  15. Fasting and meal-suppressed ghrelin levels before and after intragastric balloons and balloon-induced weight loss

    NARCIS (Netherlands)

    Mathus-Vliegen, E. M. H.; Eichenberger, R. I.

    2014-01-01

    Intragastric balloons may be an option for obese patients with weight loss failure. Its mode of action remains enigmatic. We hypothesised depressed fasting ghrelin concentrations and enhanced meal suppression of ghrelin secretion by the gastric fundus through balloon contact and balloon-induced

  16. Viscoresistive g-modes and ballooning

    International Nuclear Information System (INIS)

    Dagazian, R.Y.; Paris, R.B.

    1980-01-01

    The resistive G-mode and its particular form, the resistive ballooning mode, are treated as limits of a single simple model. MHD theory including parallel and perpendicular viscosity, finite shear, and finite beta is employed to study their linear stability

  17. Treatment of tuberculous bronchostenosis: balloon bronchoplasty

    International Nuclear Information System (INIS)

    Ahn, Joong Mo; Im, Jung Gi; Han, Joon Koo; Park, Jae Hyung

    1993-01-01

    The purpose of this study is to evaluate the efficacy of the balloon bronchoplasty in the treatment of the tuberculous bronchostenosis. Balloon bronchoplasty was performed in thirteen patients with stenosis of the left main bronchus (two with combined left upper and lower lobar bronchostenosis) using a inflatable balloon catheter under a fluoroscopic guide. We analysed the changes in the severity of dyspnea and wheezing, serial FEV1/FVC as a parameter of the airflow obstruction, and bronchial diameter and lung volume on chest radiographs. The extent of pulmonary tuberculosis was correlated with the improvement of FEV1/ FVC. There was an improvement of dyspnea in 69% (9/13), decrease of wheezing in 69% (9/13), significant increase of FEV1/FVC in 18% (2/11). The increase of the bronchial diameter and lung volume were seen in 84% (11/13) and 53% (7/13), respectively. The significant increase of FEV1/FVC was seen in 28% (2/7) of the patients with lung involvement of tuberculous less than one third of left upper lobe, whereas there was no increase in those of more than one third. The was no complication except transient leukocytosis, fever and blood-tinged sputum. In conclusion, balloon bronchoplasty is effective in the treatment of medically intractable tuberculous bronchostenosis, and can be considered as an initial method of treatment

  18. Low dose intravaginal misoprostol versus intracervical balloon ...

    African Journals Online (AJOL)

    Background:The efficacy and safety of low dose misoprostol as a ripening agent compared to the widely used balloon catheter in developing countries is undetermined. Objective:To compare the safety and efficacy of a low dose intravaginal misoprostol and intracervical Foley's catheter for cervical ripening. Design:A ...

  19. Double-balloon endoscopy: Who needs it?

    DEFF Research Database (Denmark)

    Hendel, J.W.; Vilmann, P.; Jensen, T.

    2008-01-01

    Objective. Double-balloon endoscopy (DBE) made the small bowel accessible to inspection and therapy in its entirety. However, DBE is a time-consuming procedure that requires a highly skilled endoscopist, several nurses and - more often than not - anesthesiological support. This makes the selection...

  20. Informationization nuclear apparatus communication technique

    International Nuclear Information System (INIS)

    Yu Tiqi; Fang Zongliang; Wen Qilin

    2006-01-01

    The paper explains the request of communication ability in nuclear technique application area. Based on the actuality of nuclear apparatus communication ability, and mainly combining with the development of communication technique, the authors analyzes the application trend of communication technique applying in nuclear apparatus, for the apparatus and system needing communication ability, they need selecting suitable communication means to make them accomplish the task immediately and effectively. (authors)

  1. Pellet inspection apparatus

    Science.gov (United States)

    Wilks, Robert S.; Taleff, Alexander; Sturges, Jr., Robert H.

    1982-01-01

    Apparatus for inspecting nuclear fuel pellets in a sealed container for diameter, flaws, length and weight. The apparatus includes, in an array, a pellet pick-up station, four pellet inspection stations and a pellet sorting station. The pellets are delivered one at a time to the pick-up station by a vibrating bowl through a vibrating linear conveyor. Grippers each associated with a successive pair of the stations are reciprocable together to pick up a pellet at the upstream station of each pair and to deposit the pellet at the corresponding downstream station. The gripper jaws are opened selectively depending on the state of the pellets at the stations and the particular cycle in which the apparatus is operating. Inspection for diameter, flaws and length is effected in each case by a laser beam projected on the pellets by a precise optical system while each pellet is rotated by rollers. Each laser and its optical system are mounted in a container which is free standing on a precise surface and is provided with locating buttons which engage locating holes in the surface so that each laser and its optical system is precisely set. The roller stands are likewise free standing and are similarly precisely positioned. The diameter optical system projects a thin beam of light which scans across the top of each pellet and is projected on a diode array. The fl GOVERNMENT CONTRACT CLAUSE The invention herein described was made in the course of or under a contract or subcontract thereunder with the Department of Energy bearing No. EY-67-14-C-2170.

  2. Mechanical properties of ANTRIX balloon film and fabrication of single cap large volume balloons

    Science.gov (United States)

    Suneel Kumar, B.; Sreenivasan, S.; Subba Rao, J. V.; Manchanda, R. K.

    2008-11-01

    The zero pressure plastic balloons used for high altitude studies are generally made from polyethylene material. Tensile properties of the thin film polymer are the key parameters for material selection due to extremely low temperature of -90 °C encountered by the balloons in the tropopause region during the ascent at equatorial latitudes. The physical and structural properties of the material determine the uniformity of the stress distribution over the entire shell. Load stresses from the suspended load propagate via load tapes heat sealed along with the gore seals as per the balloon design. A balance between this heat seal strength and the film strength is a desirable property of the basic resin in terms of the bubble strength, gauge uniformity, and long-term storage properties. In addition, the design of the top shell of the balloon and its stress distribution play an important role since only a fraction of the balloon is deployed during the filling operation and the ascent. In this paper we describe the mechanical properties of the 'ANTRIX' film developed by us and the optimized design of single cap balloons, which have been successfully used in our experiments over the past 5 years.

  3. Thermal stir welding apparatus

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2011-01-01

    A welding method and apparatus are provided for forming a weld joint between first and second elements of a workpiece. The method includes heating the first and second elements to form an interface of material in a plasticized or melted state interface between the elements. The interface material is then allowed to cool to a plasticized state if previously in a melted state. The interface material, while in the plasticized state, is then mixed, for example, using a grinding/extruding process, to remove any dendritic-type weld microstructures introduced into the interface material during the heating process.

  4. Nitrogen fixation apparatus

    Science.gov (United States)

    Chen, Hao-Lin

    1984-01-01

    A method and apparatus for achieving nitrogen fixation includes a volumetric electric discharge chamber. The volumetric discharge chamber provides an even distribution of an electron beam, and enables the chamber to be maintained at a controlled energy to pressure (E/p) ratio. An E/p ratio of from 5 to 15 kV/atm of O.sub.2 /cm promotes the formation of vibrationally excited N.sub.2. Atomic oxygen interacts with vibrationally excited N.sub.2 at a much quicker rate than unexcited N.sub.2, greatly improving the rate at which NO is formed.

  5. Gas cleaning apparatus

    International Nuclear Information System (INIS)

    Wakerley, M.W.; Asquith, R.W.; Kearney, A.S.; Pratt, R.P.

    1982-01-01

    Apparatus for removing radioactive constituents from a gas flow comprises a cartridge containing iodine absorber and movable from the left-hand position into which it is inserted past a door to the right-hand position where a jacking mechanism lifts it into flow communication with gas inlet and outlet ducts. Double lid systems each comprise one lid closing the cartridge port and another closing the corresponding port leading to the duct. The lids are engaged and lifted when the cartridge is in place, to open the flow paths, and subsequently lowered and disengaged when the cartridge is to be replaced. (author)

  6. Compression test apparatus

    Science.gov (United States)

    Shanks, G. C. (Inventor)

    1981-01-01

    An apparatus for compressive testing of a test specimen may comprise vertically spaced upper and lower platen members between which a test specimen may be placed. The platen members are supported by a fixed support assembly. A load indicator is interposed between the upper platen member and the support assembly for supporting the total weight of the upper platen member and any additional weight which may be placed on it. Operating means are provided for moving the lower platen member upwardly toward the upper platen member whereby an increasing portion of the total weight is transferred from the load indicator to the test specimen.

  7. DNA Sequencing apparatus

    Science.gov (United States)

    Tabor, Stanley; Richardson, Charles C.

    1992-01-01

    An automated DNA sequencing apparatus having a reactor for providing at least two series of DNA products formed from a single primer and a DNA strand, each DNA product of a series differing in molecular weight and having a chain terminating agent at one end; separating means for separating the DNA products to form a series bands, the intensity of substantially all nearby bands in a different series being different, band reading means for determining the position an This invention was made with government support including a grant from the U.S. Public Health Service, contract number AI-06045. The U.S. government has certain rights in the invention.

  8. Tomographic scanning apparatus

    International Nuclear Information System (INIS)

    Abele, M.

    1983-01-01

    A computerized tomographic scanning apparatus suitable for diagnosis and for improving target identification in stereotactic neurosurgery is described. It consists of a base, a source of penetrating energy, a detector which produces scanning signals and detector positioning means. A frame with top and bottom arms secures the detector and source to the top and bottom arms respectively. A drive mechanism rotates the frame about an axis along which the frame may also be moved. Finally, the detector may be moved relative to the bottom arm in a direction contrary to the rotation of the frame. (U.K.)

  9. Isotope diagnostics apparatus

    International Nuclear Information System (INIS)

    Herrschaft, H.

    1976-01-01

    The invention relates to a measuring probe for an isotope diagnostics apparatus to determine the distribution of radioactive substances in a body by measuring the radiation emanating from this body by means of a multiplicity of measuring probes directed simultaneously towards areas of measuring surfae and carried in guidances of a holding block. The measuring results of the individual probes are recorded separately, thus allowing the possibility of being evaluated separately, too. Measuring probes of this kind are used in multi-channel measuring objects and are useful particularly for determining the regional cerebral blood flow. (orig./ORU) [de

  10. CRANE POSITIONING APPARATUS

    Science.gov (United States)

    Landsiedel, F.W.; Wolff, H.

    1960-06-28

    An apparatus is described for automatically accomplishing the final accurate horizontal positioning of a crane after the latter has been placed to within 1/8 in. of its selected position. For this purpose there is provided a tiltable member on the crane mast for lowering into contact with a stationary probe. Misalignment of the tiltable member, with respect to the probe as the member is lowered, causes tilting of the latter to actuate appropriate switches that energize motors for bringing the mast into proper position. When properly aligned the member is not tilted and a central switch is actuated to indicate the final alignment of the crane.

  11. Control rod testing apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Gaunt, R.R.; Ashman, C.M.

    1987-06-02

    A control rod testing apparatus is described comprising: a first guide means having a vertical cylindrical opening for grossly guiding a control rod; a second guide means having a vertical cylindrical opening for grossly guiding a control rod. The first and second guide means are supported at axially spaced locations with the openings coaxial; and a substantially cylindrical subassembly having a vertical cylindrical opening therethrough. The subassembly is trapped coaxial with and between the first and second guide means, and the subassembly radially floats with respect to the first and second guide means.

  12. Apparatus for chemical synthesis

    Science.gov (United States)

    Kong, Peter C [Idaho Falls, ID; Herring, J Stephen [Idaho Falls, ID; Grandy, Jon D [Idaho Falls, ID

    2011-05-10

    A method and apparatus for forming a chemical hydride is described and which includes a pseudo-plasma-electrolysis reactor which is operable to receive a solution capable of forming a chemical hydride and which further includes a cathode and a movable anode, and wherein the anode is moved into and out of fluidic, ohmic electrical contact with the solution capable of forming a chemical hydride and which further, when energized produces an oxygen plasma which facilitates the formation of a chemical hydride in the solution.

  13. APPARATUS FOR ARC WELDING

    Science.gov (United States)

    Lingafelter, J.W.

    1960-04-01

    An apparatus is described in which a welding arc created between an annular electrode and a workpiece moves under the influence of an electromagnetic field about the electrode in a closed or annular path. This mode of welding is specially suited to the enclosing of nuclear-fuel slugs in a protective casing. For example, a uranium slug is placed in an aluminum can, and an aluminum closure is welded to the open end of the can along a closed or annular path conforming to the periphery of the end closure.

  14. Control rod testing apparatus

    International Nuclear Information System (INIS)

    Gaunt, R.R.; Ashman, C.M.

    1987-01-01

    A control rod testing apparatus is described comprising: a first guide means having a vertical cylindrical opening for grossly guiding a control rod; a second guide means having a vertical cylindrical opening for grossly guiding a control rod. The first and second guide means are supported at axially spaced locations with the openings coaxial; and a substantially cylindrical subassembly having a vertical cylindrical opening therethrough. The subassembly is trapped coaxial with and between the first and second guide means, and the subassembly radially floats with respect to the first and second guide means

  15. Remote docking apparatus

    International Nuclear Information System (INIS)

    Dent, T.H.; Sumpman, W.C.; Wilhelm, J.J.

    1981-01-01

    The remote docking apparatus comprises a support plate with locking devices mounted thereon. The locking devices are capable of being inserted into tubular members for suspending the support plate therefrom. A vertical member is attached to the support plate with an attachment mechanism attached to the vertical member. A remote access manipulator is capable of being attached to the attachment mechanism so that the vertical member can position the remote access manipulator so that the remote access manipulator can be initially attached to the tubular members in a well defined manner

  16. NASA balloon design and flight - Philosophy and criteria

    Science.gov (United States)

    Smith, I. S., Jr.

    1993-01-01

    The NASA philosophy and criteria for the design and flight of scientific balloons are set forth and discussed. The thickness of balloon films is standardized at 20.3 microns to isolate potential film problems, and design equations are given for specific balloon parameters. Expressions are given for: flight-stress index, total required thickness, cap length, load-tape rating, and venting-duct area. The balloon design criteria were used in the design of scientific balloons under NASA auspices since 1986, and the resulting designs are shown to be 95 percent effective. These results represent a significant increase in the effectiveness of the balloons and therefore indicate that the design criteria are valuable. The criteria are applicable to four balloon volume classes in combination with seven payload ranges.

  17. Vector-borne Infections

    Centers for Disease Control (CDC) Podcasts

    2011-04-18

    This podcast discusses emerging vector-borne pathogens, their role as prominent contributors to emerging infectious diseases, how they're spread, and the ineffectiveness of mosquito control methods.  Created: 4/18/2011 by National Center for Emerging Zoonotic and Infectious Diseases (NCEZID).   Date Released: 4/27/2011.

  18. Isotope separation apparatus

    International Nuclear Information System (INIS)

    Lyon, R.K.; Eisner, P.N.; Thomas, W.R.I.

    1983-01-01

    This application discloses a method for and an apparatus in which isotopes of an element in a compared are separated from each other while that compound, i.e., including a mixture of such isotopes, flows along a predetermined path. The apparatus includes a flow tube having a beginning and an end. The mixture of isotopes is introduced into the flow tube at a first introduction point between the beginning and the end thereof to flow the mixture toward the end thereof. A laser irradiates the flow tube dissociating compounds of a preselected one of said isotopes thereby converting the mixture in an isotopically selective manner. The dissociation products are removed from the tube at a first removal point between the first introduction point and the end. The dissociation product removed at the the first removal point are reconverted back into the comound thereby providing a first stage enriched compound. This first stage enriched compound is reintroduced into the flow tube at a second introduction point between the beginning thereof and the first introduction point. Further product is removed from the flow tube at a second removal point between the second introduction point and the first introduction point. The second introduction point is chosen so that the isotope composition of the first stage enriched compound is approximately the same as that of the compound in the flow tube

  19. Radiographic scanner apparatus

    International Nuclear Information System (INIS)

    Wake, R.H.

    1980-01-01

    The preferred embodiment of this invention includes a hardware system, or processing means, which operates faster than software. Moreover the computer needed is less expensive and smaller. Radiographic scanner apparatus is described for measuring the intensity of radiation after passage through a planar region and for reconstructing a representation of the attenuation of radiation by the medium. There is a source which can be rotated, and detectors, the output from which forms a data line. The detectors are disposed opposite the planar region from the source to produce a succession of data lines corresponding to the succession of angular orientations of the source. There is a convolver means for convolving each of these data lines, with a filter function, and a means of processing the convolved data lines to create the representation of the radiation attenuation in the planar region. There is also apparatus to generate a succession of data lines indicating radiation attenuation along a determinable path with convolver means. (U.K.)

  20. Percussive arc welding apparatus

    Science.gov (United States)

    Hollar, Jr., Donald L.

    2002-01-01

    A percussive arc welding apparatus includes a generally cylindrical actuator body having front and rear end portions and defining an internal recess. The front end of the body includes an opening. A solenoid assembly is provided in the rear end portion in the internal recess of the body, and an actuator shaft assembly is provided in the front end portion in the internal recess of the actuator body. The actuator shaft assembly includes a generally cylindrical actuator block having first and second end portions, and an actuator shaft having a front end extending through the opening in the actuator body, and the rear end connected to the first end portion of the actuator block. The second end portion of the actuator block is in operational engagement with the solenoid shaft by a non-rigid connection to reduce the adverse rebound effects of the actuator shaft. A generally transversely extending pin is rigidly secured to the rear end of the shaft. One end of the pin is received in a slot in the nose housing sleeve to prevent rotation of the actuator shaft during operation of the apparatus.

  1. Apparatus for gamma radiography

    International Nuclear Information System (INIS)

    1983-06-01

    The aim of the present standard is to fix the rules for the construction of gamma radiography instrumentation without prejudice to the present regulations. These apparatus have to be fitted with only sealed sources conformable to the experimental standard M 61-002. The present standard agrees with the international standard ISO 3999 of 1977 dealing with the same subject. Nevertheless, it is different on the three main following points: it does not accept the same limits of absorbed dose rates in the air calculated on the external surface of projectors; it precribes tightness, bending, crushing and tensile tests for some components of the gamma radiography it prescribes tests of endurance and resistance to breaking for the locking systems of the gamma radiography apparatus. The present standard also specifies the following points: symbols and indications to put on projectors and on the source-holder; identification of the source contained in the projector; and, accompanying documents. The regulation references are given in annexe [fr

  2. EEG changes in children born to epileptic parents

    Directory of Open Access Journals (Sweden)

    D. V. Morozov

    2015-01-01

    Full Text Available Epileptiform EEG changes are much more common in children whose parents are epileptic than in the population. There is evidence that subclinical epileptiform activity affects children’s intellect and behavior. These changes need timely detection and therapy. Objective: to determine the specific features and rates of EEG abnormalities in children born to parents with epilepsy. Patients and methods. The brain bioelectrical activity of 47 children born to epileptic fathers, 53 children born to epileptic mothers, and 46 children born to healthy parents (a control group was evaluated via video EEG monitoring method on an Encephalan 9 apparatus (Medicom MTD, Taganrog, Russia. Results and discussion. Epileptiform EEG activity was significantly more frequently recorded in the children born to epileptic patients than in the control children. There was no significant difference in the detection rate of epileptiform activity in the groups of children, whose parents had epilepsy. EEG changes were significantly more common in children whose parents had idiopathic generalized epilepsy. The children born to epileptic mothers were more often recorded to have impaired bioelectrical activity of organic nature as a regional continued deceleration of basic activity and its deceleration in the background recording. Epileptiform activity was subclinical in the majority of cases. At the same time, it was unaccompanied by clinical manifestations in all the control children. Regional epileptiform activity was predominant in the study and control groups. 

  3. In vitro analysis of balloon cuffing phenomenon: inherent biophysical properties of catheter material or mechanics of catheter balloon deflation?

    Science.gov (United States)

    Chung, Eric; So, Karina

    2012-06-01

    To investigates the different methods of balloon deflation, types of urinary catheters and exposure to urine media in catheter balloon cuffing. Bardex®, Bard-Lubri-Sil®, Argyle®, Releen® and Biocath® were tested in sterile and E.Coli inoculated urine at 0, 14 and 28 days. Catheter deflation was performed with active deflation; passive deflation; passive auto-deflation; and excision of the balloon inflow channel. Balloon cuffing was assessed objectively by running the deflated balloon over a plate of agar and subjectively by 3 independent observers. Bardex®, Argyle® and Biocath® showed greater degree of catheter balloon cuffing (p deflation was the worst method (p 0.05). Linear regression model analysis confirmed time as the most significant factor. The duration of catheters exposure, different deflation methods and types of catheters tested contributed significantly to catheter balloon cuffing (p < 0.01).

  4. Solar polarimetry in the K I D2 line : A novel possibility for a stratospheric balloon

    Science.gov (United States)

    Quintero Noda, C.; Villanueva, G. L.; Katsukawa, Y.; Solanki, S. K.; Orozco Suárez, D.; Ruiz Cobo, B.; Shimizu, T.; Oba, T.; Kubo, M.; Anan, T.; Ichimoto, K.; Suematsu, Y.

    2018-03-01

    Of the two solar lines, K I D1 and D2, almost all attention so far has been devoted to the D1 line, as D2 is severely affected by an O2 atmospheric band. This, however, makes the latter appealing for balloon and space observations from above (most of) the Earth's atmosphere. We estimate the residual effect of the O2 band on the K I D2 line at altitudes typical for stratospheric balloons. Our aim is to study the feasibility of observing the 770 nm window. Specifically, this paper serves as a preparation for the third flight of the Sunrise balloon-borne observatory. The results indicate that the absorption by O2 is still present, albeit much weaker, at the expected balloon altitude. We applied the obtained O2 transmittance to K I D2 synthetic polarimetric spectra and found that in the absence of line-of-sight motions, the residual O2 has a negligible effect on the K I D2 line. On the other hand, for Doppler-shifted K I D2 data, the residual O2 might alter the shape of the Stokes profiles. However, the residual O2 absorption is sufficiently weak at stratospheric levels that it can be divided out if appropriate measurements are made, something that is impossible at ground level. Therefore, for the first time with Sunrise III, we will be able to perform polarimetric observations of the K I D2 line and, consequently, we will have improved access to the thermodynamics and magnetic properties of the upper photosphere from observations of the K I lines.

  5. Ballooning for Biologists: Mission Essentials for Flying Experiments on Large NASA Balloons

    Science.gov (United States)

    Smith, David J.; Sowa, Marianne

    2017-01-01

    Despite centuries of scientific balloon flights, only a handful of experiments have produced biologically-relevant results. Yet unlike orbital spaceflight, it is much faster and cheaper to conduct biology research with balloons, sending specimens to the near space environment of Earths stratosphere. Samples can be loaded the morning of a launch and sometimes returned to the laboratory within one day after flying. The National Aeronautics and Space Administration (NASA) flies large, unmanned scientific balloons from all over the globe, with missions ranging from hours to weeks in duration. A payload in the middle portion of the stratosphere (approx. 35 km above sea level) will be exposed to an environment similar to the surface of Mars: temperatures generally around -36 C, atmospheric pressure at a thin 1 kPa, relative humidity levels <1%, and a harsh illumination of ultraviolet (UV) and cosmic radiation levels (about 100 W/sq m and 0.1 mGy/d, respectively) that can be obtained nowhere else on the surface of the Earth, including environmental chambers and particle accelerator facilities attempting to simulate space radiation effects. Considering the operational advantages of ballooning and the fidelity of space-like stressors in the stratosphere, researchers in aerobiology, astrobiology, and space biology can benefit from balloon flight experiments as an intermediary step on the extraterrestrial continuum (ground, low Earth orbit, and deep space studies). Our presentation targets biologists with no background or experience in scientific ballooning. We will provide an overview of large balloon operations, biology topics that can be uniquely addressed in the stratosphere, and a roadmap for developing payloads to fly with NASA.

  6. Preferred states of the apparatus

    Indian Academy of Sciences (India)

    Abstract. A simple one-dimensional model for the system–apparatus interaction is analysed. The system is a spin-1/2 particle, and its position and momentum degrees constitute the apparatus. An analysis involving only unitary Schrödinger dynamics illustrates the nature of the correlations established in the ...

  7. Archimedes force on Casimir apparatus

    Directory of Open Access Journals (Sweden)

    Shevchenko V.

    2016-01-01

    Full Text Available The talk addresses a problem of Casimir apparatus in weak gravitational field, surrounded by a dense medium. The falling of the apparatus has to be governed by the equivalence principle, taking into account proper contributions to the weight of the apparatus from its material part and from distorted quantum fields. We discuss general ex pression for the corresponding force in terms of the effective action. By way of example we compute explicit expression for Archimedes force, acting on the Casimir apparatus of finite size, immersed into thermal bath of free scalar field. It is shown that besides universal term, proportional to the volume of the apparatus, there are non-universal quantum corrections, depending on the boundary conditions.

  8. Flexible ultrasonic pipe inspection apparatus

    Science.gov (United States)

    Jenkins, Charles F.; Howard, Boyd D.

    1998-01-01

    A flexible, modular ultrasonic pipe inspection apparatus, comprising a flexible, hollow shaft that carries a plurality of modules, including at least one rotatable ultrasonic transducer, a motor/gear unit, and a position/signal encoder. The modules are connected by flexible knuckle joints that allow each module of the apparatus to change its relative orientation with respect to a neighboring module, while the shaft protects electrical wiring from kinking or buckling while the apparatus moves around a tight corner. The apparatus is moved through a pipe by any suitable means, including a tether or drawstring attached to the nose or tail, differential hydraulic pressure, or a pipe pig. The rotational speed of the ultrasonic transducer and the forward velocity of the apparatus are coordinated so that the beam sweeps out the entire interior surface of the pipe, enabling the operator to accurately assess the condition of the pipe wall and determine whether or not leak-prone corrosion damage is present.

  9. Evolution of scientific ballooning and its impact on astrophysics research

    Science.gov (United States)

    Jones, William Vernon

    2014-05-01

    As we celebrate the centennial year of the discovery of cosmic rays on a manned balloon, it seems appropriate to reflect on the evolution of ballooning and its scientific impact. Balloons have been used for scientific research since they were invented in France more than 200 years ago. Ballooning was revolutionized in 1950 with the introduction of the so-called natural shape balloon with integral load tapes. This basic design has been used with more or less continuously improved materials for scientific balloon flights for more than a half century, including long-duration balloon (LDB) flights around Antarctica for the past two decades. The U.S. National Aeronautics and Space Administration (NASA) is currently developing the next generation super-pressure balloon that would enable extended duration missions above 99.5% of the Earth's atmosphere at any latitude. The Astro2010 Decadal Survey report supports super-pressure balloon development and the giant step forward it offers with ultra-long-duration balloon (ULDB) flights at constant altitudes for about 100 days.

  10. Radioactive waste treatment apparatus

    International Nuclear Information System (INIS)

    Abrams, R.F.; Chellis, J.G.

    1983-01-01

    Radioactive waste treatment apparatus is disclosed in which the waste is burned in a controlled combustion process, the ash residue from the combustion process is removed and buried, the gaseous effluent is treated in a scrubbing solution the pH of which is maintained constant by adding an alkaline compound to the solution while concurrently extracting a portion of the scrubbing solution, called the blowdown stream. The blowdown stream is fed to the incinerator where it is evaporated and the combustibles in the blowdown stream burned and the gaseous residue sent to the scrubbing solution. Gases left after the scrubbing process are treated to remove iodides and are filtered and passed into the atmosphere

  11. Radioactive aerosol inhalation apparatus

    International Nuclear Information System (INIS)

    Bordoni, M.E.; Lieberman, E.

    1987-01-01

    An aerosol inhalation apparatus for supplying an aerosol mist containing radioactive tagged particles to a subject is described comprising a reusable radiation-shielding container having lid means. The contents of the container are readily accessible. A radioactive aerosol inhalation device includes first and second conduit means in the container and passing therethrough, means for communicating with an air passageway of a subject connected to the first and second conduit means externally of the container. Valve means control exhalation from the second conduit means. A nebulizer is within the container connected to the first conduit means. Means are positioned at least in part within the container and in fluid communication with the nebulizer for allowing introduction of radioactive solution from outside the container into the nebulizer

  12. Multichannel Thomson scattering apparatus

    International Nuclear Information System (INIS)

    Bretz, N.; Dimock, D.; Foote, V.; Johnson, D.; Long, D.; Tolnas, E.

    1977-07-01

    A Thomson scattering apparatus for measuring the electron temperature and density along a 90 cm diameter of the PLT plasma has been built. A wide angle objective images the 3 mm x 900 mm ruby laser beam onto an image dissector which rearranges the 300 : 1 image to 20 : 1 forming the input slit of a spectrometer. The stigmatic spectrometer provides 20 wavelength elements of approximately 70 A each. A micro-channel-plate image intensifier optically coupled to a cooled SIT tube provides detection with single frame linearity and 1000 : 1 dynamic range. Spatial profiles of N/sub e/ and T/sub e/ in the range 10 13 - 10 14 cm -3 and 0.05 - 3 keV have an accuracy of 30 √10 13 /N/sub e/ (cm -3 ) percent per 1.2 cm element

  13. Exhaust gas circulation apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Shibano, K.

    1975-01-10

    An exhaust gas recirculation apparatus is described. An exhaust gas recirculation tube is connected between the exhaust pipe and the intake tube and the opening of the tube; the amount of recirculated gas is regulated by a piston-type cycle control valve which is connected to the throttle valve of the carburetor through an arm. The arm is designed in a two-step linkage so that the cycle valve closes the recirculation tube when the throttle valve is at a fully opened angle and a small angle. Therefore, no exhaust gas recirculation occurs when the automobile is in full power, idling, or low running conditions. This prevents lowered engine power at these conditions.

  14. Apparatus for stereotactic surgery

    International Nuclear Information System (INIS)

    Koslow, M.A.M.

    1982-01-01

    Apparatus for stereotactic surgery consisting of a probe and a computerized tomographic scanning system is described. The scanning system comprises a display and means for reconstructing cross-sectional images on the display using data from partial circumferential scans of source and detectors. It operates on the data with an algorithm that provides the difference between the local values of the linear attenuation coefficient and average of these values within a circle centered at each reconstruction point. The scanning system includes a means of maintaining the frames of reference of the probe and scanning system rigid with respect to one another. The position of the probe, which may be a cryogenic probe, with respect to the actual anatomical structure of the body, particularly a human head, may thus be viewed by the surgeon. (author)

  15. Retrograde prostatic urethroplasty with balloon catheter

    International Nuclear Information System (INIS)

    Castaneda, F.; Reddy, P.; Hulbert, J.; Letourneau, J.G.; Hunter, D.W.; Castaneda-Zuniga, W.R.; Amplatz, K.

    1987-01-01

    The authors performed retrograde prostatic urethroplasty in 18 patients using a 25-mm urethroplasty balloon catheter. The procedure was performed on an outpatient basis under local anesthesia. Voiding cystourethrography, retrograde urethrography, rectal US, and MRE imaging were performed before and immediately after the procedure and at 2 weeks and 3, 6, 12, and 18 months. Long-term results at 18 months and possible clinical implications are discussed

  16. Numerical Modelling Of Pumpkin Balloon Instability

    Science.gov (United States)

    Wakefield, D.

    Tensys have been involved in the numerical formfinding and load analysis of architectural stressed membrane structures for 15 years. They have recently broadened this range of activities into the `lighter than air' field with significant involvement in aerostat and heavy-lift hybrid airship design. Since early 2004 they have been investigating pumpkin balloon instability on behalf of the NASA ULDB programme. These studies are undertaken using inTENS, an in-house finite element program suite based upon the Dynamic Relaxation solution method and developed especially for the non-linear analysis and patterning of membrane structures. The paper describes the current state of an investigation that started with a numerical simulation of the lobed cylinder problem first studied by Calladine. The influence of material properties and local geometric deformation on stability is demonstrated. A number of models of complete pumpkin balloons have then been established, including a 64-gore balloon with geometry based upon Julian Nott's Endeavour. This latter clefted dramatically upon initial inflation, a phenomenon that has been reproduced in the numerical model. Ongoing investigations include the introduction of membrane contact modelling into inTENS and correlation studies with the series of large-scale ULDB models currently in preparation.

  17. Long Duration Balloon Charge Controller Stack Integration

    Science.gov (United States)

    Clifford, Kyle

    NASA and the Columbia Scientific Balloon Facility are interested in updating the design of the charge controller on their long duration balloon (LDB) in order to enable the charge controllers to be directly interfaced via RS232 serial communication by a ground testing computers and the balloon's flight computer without the need to have an external electronics stack. The design involves creating a board that will interface with the existing boards in the charge controller in order to receive telemetry from and send commands to those boards, and interface with a computer through serial communication. The inputs to the board are digital status inputs indicating things like whether the photovoltaic panels are connected or disconnected; and analog inputs with information such as the battery voltage and temperature. The outputs of the board are 100ms duration command pulses that will switch relays that do things like connect the photovoltaic panels. The main component of this design is a PIC microcontroller which translates the outputs of the existing charge controller into serial data when interrogated by a ground testing or flight computer. Other components involved in the design are an AD7888 12-bit analog to digital converter, a MAX3232 serial transceiver, various other ICs, capacitors, resistors, and connectors.

  18. Intragastric balloon for treatment-resistant obesity: safety, tolerance, and efficacy of 1-year balloon treatment followed by a 1-year balloon-free follow-up

    NARCIS (Netherlands)

    Mathus-Vliegen, Elisabeth M. H.; Tytgat, Guido N. J.

    2005-01-01

    Background: Prior efforts to treat obesity with intragastric balloons were thwarted by high complication rates. Therefore, fundamental requirements for optimal balloon designs were defined. The aim of the present study was to investigate the effectiveness, the safety; and the tolerance of a new

  19. Where was Joseph Babinski born?

    Directory of Open Access Journals (Sweden)

    H A G Teive

    2011-01-01

    Full Text Available There is controversy in the neurological literature about where Joseph Babinski was born, including a myth propounded by various important authors that he was born in Lima, Peru. However, according to the most consistent biographical data, he was in fact born in Paris, France, and became a medical celebrity there and in Poland as well as around the world.

  20. The Asian Tropopause Aerosol Layer Through Satellite and Balloon-Borne Measurements Combined With Modeling Approaches

    Science.gov (United States)

    Vernier, J.-P.; Fairlie, T. D.; Natarajan, M.; Wegner, T.; Baker, N.; Crawford, J.; Moore, J.; Deshler, T.; Gadhavi, H.; Jayaraman, A.; hide

    2016-01-01

    The Asian Tropopause Aerosol Layer-ATAL is a confined area of enhanced aerosol associated Summer Asia Monsoon spanning from the E. Med Sea to W. China. It essentially extends from top of convective outflow over much of SE Asia Existence recognize through CALIPSO observations.

  1. LEAP: A balloon-borne search for low-energy cosmic ray antiprotons

    Science.gov (United States)

    Moats, Anne Rosalie Myers

    The LEAP (Low Energy Antiproton) experiment is a search for cosmic ray antiprotons in the 120 MeV to 1.2 GeV kinetic energy range. The motivation for this project was the result announced by Buffington et al. (1981) that indicated an anomalously high antiproton flux below 300 MeV; this result has compelled theorists to propose sources of primary antiprotons above the small secondary antiproton flux produced by high energy cosmic ray collisions with nuclei in the interstellar medium. LEAP consisted of the NMSU magnet spectrometer, a time-of-flight system designed at NASA-Goddard, two scintillation detectors, and a Cherenkov counter. Analysis of flight data performed by the high energy astrophysics group at Goddard Space Flight Center revealed no antiproton candidates found in the 120 MeV to 360 MeV range; 3 possible antiproton candidate events were found in the 500 MeV to 1.2 GeV range in an analysis done here at the University of Arizona. However, since it will be necessary to sharpen the calibration on all of the LEAP systems in order to positively identify these events as antiprotons, only an upper limit has been determined at present. Thus, combining the analyses performed at the University of Arizona and NASA-Goddard, 90 percent confidence upper limits of 3.5 x 10-5 in the 120 MeV to 360 MeV range and 2.3 x 10-4 in the 500 MeV to 1.2 GeV range for the antiproton/proton ratio is indicated by the LEAP results. LEAP disagrees sharply with the results of the Buffington group, indicating a low antiproton flux at these energies. Thus, a purely secondary antiproton flux may be adequate at low energies.

  2. The TopHat experiment: A balloon-borne instrument for mapping millimeter and submillimeter emission

    DEFF Research Database (Denmark)

    Silverberg, R.F.; Cheng, E.S.; Aguirre, J.E.

    2005-01-01

    from 175 to 630 GHz. The telescope was a compact, 1 m, on-axis Cassegrain telescope designed to scan the sky at a fixed elevation of 78 degrees. The radiometer used cryogenic bolometers coupled to a single feed horn via a dichroic filter system. The observing strategy was intended to efficiently cover...

  3. Self-Calibrating Greenhouse Gas Balloon-Borne Sensor, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Understanding the sources and sinks of carbon dioxide and other greenhouse gases has been recognized as critical to predicting climate change and global warming. A...

  4. B-MINE, the balloon-borne microcalorimeter nuclear line explorer

    DEFF Research Database (Denmark)

    Silver, E; Schnopper, H; Jones, C

    2001-01-01

    introduces the concept of focusing optics and microcalorimeter spectroscopy to nuclear line emission astrophysics. B-MINE has a thin, plastic foil telescope multilayered to maximize the reflectivity in a 20 keV band centered at 68 keV and a microcalorimeter array optimized for the same energy band...

  5. Balloon-Borne Full-Column Greenhouse Gas Profiling Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Marc L [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-03-01

    The vertical distributions of CO2, CH4, and other gases provide important constraints for the determination of terrestrial and ocean sources and sinks of carbon and other biogeochemical processes in the Earth system. The DOE Biological and Environmental Research Program (DOE-BER) and the NOAA Earth System Research Laboratory (NOAA-ESRL) collaborate to quantify the vertically resolved distribution of atmospheric carbon-cycle gases (CO2, and CH4) within approximately 99% of the atmospheric column at the DOE ARM Southern Great Plains Facility in Oklahoma. In 2015, flights were delayed while research at NOAA focused on evaluating sources of systematic errors in the gas collection and analysis system and modifying the sampling system to provide duplicate air samples in a single flight package. In 2017, we look forward to proposing additional sampling and analysis at ARM-SGP (and other sites) that characterize the vertical distribution of CO2 and CH4 over time and space.

  6. Percutaneous treatment of extrahepatic bile duct stones assisted by balloon sphincteroplasty and occlusion balloon

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yong Sung; Kim, Ji Hyung; Choi, Young Woo; Lee, Tae Hee; Hwang, Cheol Mog; Cho, Young Jun; Kim, Keum Won [Konyang University Hospital, Daejeon (Korea, Republic of)

    2005-12-15

    To describe the technical feasibility and usefulness of extrahepatic biliary stone removal by balloon sphincteroplasty and occlusion balloon pushing. Fifteen patients with extrahepatic bile duct stones were included in this study. Endoscopic stone removal was not successful in 13 patients, and two patients refused the procedure due to endoscopy phobia. At first, all patients underwent percutaneous transhepatic biliary drainage (PTBD). A few days later, through the PTBD route, balloon assisted dilatation for common bile duct (CBD) sphincter was performed, and then the stones were pushed into the duodenum using an 11.5 mm occlusion balloon. Success rate, reason for failure, and complications associated with the procedure were evaluated. Eight patients had one stone, five patients had two stones, and two patients had more than five stones. The procedure was successful in 13 patients (13/15). In 12 of the patients, all stones were removed in the first trial. In one patients, residual stones were discovered on follow-up cholangiography, and were subsequently removed in the second trial. Technical failure occurred in two patients. Both of these patients had severely dilated CBD and multiple stones with various sizes. Ten patients complained of pain in the right upper quadrant and epigastrium of the abdomen immediately following the procedure, but there were no significant procedure-related complications such as bleeding or pancreatitis. Percutaneous extrahepatic biliary stone removal by balloon sphincteroplasty and subsequent stone pushing with occlusion balloon is an effective, safe, and technically feasible procedure which can be used as an alternative method in patients when endoscopic extrahepatic biliary stone removal was not successful.

  7. Percutaneous treatment of extrahepatic bile duct stones assisted by balloon sphincteroplasty and occlusion balloon

    International Nuclear Information System (INIS)

    Park, Yong Sung; Kim, Ji Hyung; Choi, Young Woo; Lee, Tae Hee; Hwang, Cheol Mog; Cho, Young Jun; Kim, Keum Won

    2005-01-01

    To describe the technical feasibility and usefulness of extrahepatic biliary stone removal by balloon sphincteroplasty and occlusion balloon pushing. Fifteen patients with extrahepatic bile duct stones were included in this study. Endoscopic stone removal was not successful in 13 patients, and two patients refused the procedure due to endoscopy phobia. At first, all patients underwent percutaneous transhepatic biliary drainage (PTBD). A few days later, through the PTBD route, balloon assisted dilatation for common bile duct (CBD) sphincter was performed, and then the stones were pushed into the duodenum using an 11.5 mm occlusion balloon. Success rate, reason for failure, and complications associated with the procedure were evaluated. Eight patients had one stone, five patients had two stones, and two patients had more than five stones. The procedure was successful in 13 patients (13/15). In 12 of the patients, all stones were removed in the first trial. In one patients, residual stones were discovered on follow-up cholangiography, and were subsequently removed in the second trial. Technical failure occurred in two patients. Both of these patients had severely dilated CBD and multiple stones with various sizes. Ten patients complained of pain in the right upper quadrant and epigastrium of the abdomen immediately following the procedure, but there were no significant procedure-related complications such as bleeding or pancreatitis. Percutaneous extrahepatic biliary stone removal by balloon sphincteroplasty and subsequent stone pushing with occlusion balloon is an effective, safe, and technically feasible procedure which can be used as an alternative method in patients when endoscopic extrahepatic biliary stone removal was not successful

  8. Superpressure Balloon Design Using Nonlinear Viscoelasticity

    Science.gov (United States)

    Rand, James; Rand, James; Wakefield, David

    Stratospheric balloon platforms are used extensively by scientists for a variety of purposes. The typical balloon used today is the zero pressure natural shape fabricated from a thin film of linear low density polyethylene. This material has been found to possess a variety of desirable characteristics suitable to this environment. This film will remain ductile at very low temperatures which will permit it to develop large strains if necessary to satisfy equilibrium considerations. However, in order to achieve long duration flight without significant changes in altitude, the balloon should be pressurized to the extent necessary to maintain constant volume during typical variations in temperature. In the past, pressurized balloons were fabricated from other materials in order to achieve significant increases in strength. Thin films of polyester or polyimide have been used to make relatively small spheres capable of long duration flight. Unfortunately, these materials do not have the ductility of polyethylene at low temperature and are somewhat more fragile and subject to damage. In recent years various organizations have attempted to use the characteristic shape of a pumpkin to limit the stresses in a balloon envelope to that which can be accommodated by laminated fabric materials. While developing the design, analysis and construction techniques for this type of system, the use of polyethylene has been successfully demonstrated to provide a reliable envelope. This shape is achieved by using high strength members in the meridional direction to carry the very high loads generated by the pressure. These so called "tendons" have very low elongation and serve to limit the deformation of the film in that direction. However, earlier designs attempted to limit the stresses in the circumferential direction by using a lobe angle to control the stress. Unfortunately this has led to a number of stability problems with this type of balloon. In order to control the stability of

  9. [Balloon cell nevi of the conjunctiva (author's transl)].

    Science.gov (United States)

    Schlageter, P E; Daicker, B

    1975-06-01

    The clinical and histological features of three cases of conjunctival balloon cell nevi are described. This peculiar form of nevus is very rare in the conjunctiva. The findings are compared with the descriptions in the literature of dermal balloon cell nevi. They demonstrate, that the conjunctival and dermal tumours are of idential histological structure. The proliferations of the conjunctival epithelium often found in conjunctival nevi do not modify the balloon cell nevi. These can not be diagnosed clinically. The problems of the pathogenesis of the balloon cell nevi are discussed.

  10. Advanced Li batteries for terrestrial balloons, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — For future advanced terrestrial balloon missions, NASA requires energy dense and power dense energy storage solutions significantly exceeding the performance of...

  11. Hyperspectral Polarimeter for Monitoring Balloon Strain, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's latest generation of superpressure, ultra long duration balloons (ULDB) extend the flight time for stratospheric experiments to levels previously unattainable...

  12. Deflation of gastric band balloon in pregnancy for improving outcomes.

    Science.gov (United States)

    Jefferys, Amanda E; Siassakos, Dimitrios; Draycott, Tim; Akande, Valentine A; Fox, Robert

    2013-04-30

    In line with the rise in the prevalence of obesity, an increasing number of women of childbearing age are undergoing laparoscopic adjustable gastric banding (LAGB), resulting in an increasing number of pregnancies with a band in place. Currently, there is no consensus on optimal band management in pregnancy. Some clinicians advocate leaving the band balloon inflated to reduce gestational weight gain and associated adverse perinatal outcomes. However, there are concerns that maintaining balloon inflation during pregnancy might increase the risk of band complications and adversely affect fetal development and/or growth as a result of reduced nutritional intake. To compare maternal and perinatal outcomes for elective gastric band balloon deflation versus intention to maintain balloon inflation during pregnancy. We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (30 September 2012) and the Web of Science database (1940 to September 2012). Randomised-controlled trials comparing elective deflation of the gastric band balloon with intention to maintain balloon inflation in pregnant women who have undergone LAGB. Two review authors independently assessed studies for inclusion. No studies met the criteria for inclusion in the review. To date no randomised controlled trials exist that compare elective deflation of the gastric band balloon in pregnancy versus intention to maintain balloon inflation. Further research is needed to define the optimum management of the gastric band balloon in pregnancy.

  13. An Overview of Current and Future Stratospheric Balloon Mission Capabilities

    Science.gov (United States)

    Smith, Michael

    The modern stratospheric balloon has been used for a variety of missions since the late 1940's. Capabilities of these vehicles to carry larger payloads, fly to higher altitudes, and fly for longer periods of time have increased dramatically over this time. In addition to these basic performance metrics, reliability statistics for balloons have reached unprecedented levels in recent years. Balloon technology developed in the United States in the last decade has the potential to open a new era in economical space science using balloons. As always, the advantage of the balloon platform is the fact that missions can be carried out at a fraction of the cost and schedule of orbital missions. A secondary advantage is the fact that instruments can be re-flown numerous times while upgrading sensor and data processing technologies from year to year. New mission capabilities now have the potential for enabling ground breaking observations using balloons as the primary platform as opposed to a stepping stone to eventual orbital observatories. The limit of very high altitude balloon missions will be explored with respect to the current state of the art of balloon materials and fabrication. The same technological enablers will also be applied to possibilities for long duration missions at mid latitudes with payloads of several tons. The balloon types and their corresponding mission profiles will be presented in a performance matrix that will be useful for potential scientific users in planning future research programs.

  14. AUTOPERFUSION BALLOON CATHETER FOR COMPLICATED CORONARY ANGIOPLASTY - A PROSPECTIVE-STUDY WITH RETROSPECTIVE CONTROLS

    NARCIS (Netherlands)

    DEMUINCK, ED; VANDIJK, RB; DENHEIJER, P; MEEDER, JG; LIE, KI

    1992-01-01

    Prolonged angioplasty balloon inflation with an autoperfusion balloon for failed conventional coronary angioplasty, was compared with emergency surgery for this condition. Restenosis was assessed 6 weeks after successful intervention with the autoperfusion balloon. Forty consecutive patients with

  15. Radiation measuring apparatus

    International Nuclear Information System (INIS)

    DiIanni, E.J.; Cooley, H.J.; Fujita, M.; Noback, C.V.

    1986-01-01

    This patent describes an apparatus for measuring radiation field strength comprising in combination, (a) biased potential radiation detector having an output circuit, the detector being of the type that is effective when biased to respond to impingement of radiation by generating an output pulse at its output circuit, and when not biased being ineffective to generate an output pulse when impinged by radiation, (b) biasing means operatively coupled to the radiation detector for selectively biasing the radiation detector to generate an output pulse in response to impingement by radiation, (c) time counting means including timing control means operable to start and terminate time counting, the radiation detector output circuit being operatively coupled to the time counting means and being effective upon generation of an output pulse to cause the time counting means to terminate time counting, (d) master control means operatively coupled to (1) the biasing means to selectively cause the biasing means to bias the radiation detector to respond to impingement by radiation, (2) the time counting means and effective to cause the time counting means to start time counting simultaneously with the operative biasing of the radiation detector, the master control means receiving a signal when the radiation detector generates an output pulse

  16. Nuclear fusion apparatus

    International Nuclear Information System (INIS)

    Nagata, Daizaburo; Yamada, Masao.

    1974-01-01

    Object: To provide a nuclear fusion apparatus in which a magnetic limiter is disposed within a vacuum vessel, said magnetic limiter being supported in such a manner so as to not to exert mechanical action upon said vacuum vessel, thereby minimizing a force applied to the vacuum vessel to easily manufacture the vacuum vessel. Structure: The magnetic limiter disposed within the vacuum vessel is connected to one end of a supporting post which extends through the wall of the vacuum vessel through a seal portion, the other end of the supporting post being secured to a structure such as a house outside the vacuum vessel. The seal portion comprises a bellows of high spring elasticity mounted on the vacuum vessel and a seal element comprised of an electric insulator such as ceramic for connecting the bellows to the supporting post, the supporting post extending through the wall of the vacuum vessel in vacuum-tight fashion, the force applied to the magnetic limiter exerting no influence upon the vacuum vessel. (Kamimura, M.)

  17. Apparatus for internal irradiation

    International Nuclear Information System (INIS)

    Hooft, E.V.

    1980-01-01

    Apparatus for internal irradiation wherein the radioactive material is applied in the shape of a ball row consisting of contiguous radioactive and neutral balls. This ball row is prepared beforehand and is pneumatically transferred to an applicator tube adapted to be introduced into a body cavity. In order that the balls may stay exactly in the right places during the irradiation, the applicator tube is provided with an internal channel having a narrow end portion, passing through a shoulder into the remaining wider portion, and a final ball is added to each ball row, this final ball having a larger diameter than the other balls, so that it is not admitted in the narrow end portion of the internal channel in the applicator tube. Thus, upon introduction of a ball row, the final ball is arrested by the shoulder and keeps the other balls in place. A plurality of applicator tubes may be applied, each of which is associated with an intermediate container in which the ball row is composed. After the irradiation, the ball row is returned through the intermediate container to a sorting device directing the balls to appropriate storage containers. However, the final ball is retained in the intermediate container, so that it may be added to the next ball row to be composed

  18. Apparatus for diffusion separation

    International Nuclear Information System (INIS)

    Nierenberg, W.A.

    1976-01-01

    A diffuser separator apparatus is described which comprises a plurality of flow channels in a single stage. Each of said channels has an inlet port and an outlet port and a constant cross sectional area between said ports. At least a portion of the defining surface of each of said channels is a diffusion separation membrane, and each of said channels is a different cross sectional area. Means are provided for connecting said channels in series so that each successive channel of said series has a smaller cross sectional area than the previous channel of said series. Also provided are a source of gaseous mixture, individual means for flowing said gaseous mixture to the inlet port of each of said channels, gas receiving and analyzing means, individual means for flowing gas passing from each of said outlet ports and means for flowing gas passing through said membranes to said receiving and analyzing means, and individual means for connecting the outlet port of each channel with the inlet port of the channel having the next smaller cross sectional area

  19. Controlled nuclear fusion apparatus

    International Nuclear Information System (INIS)

    Bussard, R.W.; Coppi, B.

    1982-01-01

    A fusion power generating device is disclosed having a relatively small and inexpensive core region which may be contained within an energy absorbing blanket region. The fusion power core region contains apparatus of the toroidal type for confining a high density plasma. The fusion power core is removable from the blanket region and may be disposed and/or recycled for subsequent use within the same blanket region. Thermonuclear ignition of the plasma is obtained by feeding neutral fusible gas into the plasma in a controlled manner such that charged particle heating produced by the fusion reaction is utilized to bootstrap the device to a region of high temperatures and high densities wherein charged particle heating is sufficient to overcome radiation and thermal conductivity losses. The high density plasma produces a large radiation and particle flux on the first wall of the plasma core region thereby necessitating replacement of the core from the blanket region from time to time. A series of potentially disposable and replaceable central core regions are disclosed for a large-scale economical electrical power generating plant

  20. Continuous steel production and apparatus

    Science.gov (United States)

    Peaslee, Kent D [Rolla, MO; Peter, Jorg J [McMinnville, OR; Robertson, David G. C. [Rolla, MO; Thomas, Brian G [Champaign, IL; Zhang, Lifeng [Trondheim, NO

    2009-11-17

    A process for continuous refining of steel via multiple distinct reaction vessels for melting, oxidation, reduction, and refining for delivery of steel continuously to, for example, a tundish of a continuous caster system, and associated apparatus.

  1. Cherry-Slush-Candling Apparatus

    Science.gov (United States)

    Stephens, James B.; Weiss, James R.; Hoover, Gordon

    1996-01-01

    Proposed infrared-scanning apparatus for use in bakeries making cherry pies detect cherry pits remaining in cherry slush after pitting process. Pits detected via their relative opacity to infrared radiation.

  2. INFLATE: INFlate Landing Apparatus Technology

    Science.gov (United States)

    Koryanov, V. V. K.; Da-Poian, V. D. P.

    2018-02-01

    Our project, named INFLATE (INFlatable Landing Apparatus Technology), aims at reducing space landing risks and constraints and so optimizing space missions (reducing cost, mass, and risk and in the same time improving performance).

  3. In-situ Balloon Measurements of Small Ice Particles in High-Latitude Cirrus

    Science.gov (United States)

    Kuhn, T.; Heymsfield, A.

    2015-12-01

    Thin cirrus clouds at high latitudes are often composed of small ice particles not larger than 100 μm. Cirrus clouds reflect incoming solar radiation, creating a cooling effect. At the same time these clouds absorb the infrared radiation from Earth, creating a greenhouse effect. The net effect, crucial for radiative transfer, depends on the cirrus microphysical properties, such as particle size distributions (PSD) and particle shapes. Knowledge of these cloud properties is also needed for calibrating/validating passive and active remote sensors. We report on a series of balloon-borne in-situ measurements that is carried out at a high-latitude location, Kiruna in northern Sweden (68N 21E). The measurements target upper tropospheric, cold cirrus clouds. The measurements are ongoing, and the method and first results are presented here. Ice particles in these clouds are predominantly very small, with a median size of measured particles of around 50 μm. Ice particles at these sizes are inherently difficult to measure with aircraft-mounted probes due to issues with resolution, sizing, and size-dependent sampling volume. These probes also suffer from problems with shattering of larger ice particles at the typically high aircraft speeds. The method used here avoids these issues. Furthermore, with a balloon-borne instrument data are collected as vertical profiles, more useful for calibrating or evaluating remote sensing measurements than data collected along horizontal traverses. Particles are collected on an oil-coated film at a sampling speed given directly by the ascending rate of the balloon, 4 m s-1. The collecting film is advanced uniformly inside the instrument so that an always un-used section of the film is exposed to ice particles, which are measured by imaging shortly after sampling. The high optical resolution of about 4 μm together with a pixel resolution of 1.65 μm allows particle detection at sizes of 10 μm and larger. For particles that are 20 μm (12

  4. Born Level Bound States

    Science.gov (United States)

    Hoyer, Paul

    2017-05-01

    Bound state poles in the S-matrix of perturbative QED are generated by the divergence of the expansion in α . The perturbative corrections are necessarily singular when expanding around free, {O}( α ^0 ) in and out states that have no overlap with finite-sized atomic wave functions. Nevertheless, measurables such as binding energies do have well-behaved expansions in powers of α (and log α ). It is desirable to formulate the concept of "lowest order" for gauge theory bound states such that higher order corrections vanish in the α → 0 limit. This may allow to determine a lowest order term for QCD hadrons which incorporates essential features such as confinement and chiral symmetry breaking, and thus can serve as the starting point of a useful perturbative expansion. I discuss a "Born" (no loop, lowest order in \\hbar ) approximation. Born level states are bound by gauge fields which satisfy the classical field equations. Gauss' law determines a distinct field A^0({\\varvec{x}}) for each instantaneous position of the charges. A Poincaré covariant boundary condition for the gluon field leads to a confining potential for q\\bar{q} and qqq states. In frames where the bound state is in motion the classical gauge field is obtained by a Lorentz boost of the rest frame field.

  5. Quantitative angiographic comparison of elastic recoil after coronary excimer laser-assisted balloon angioplasty and balloon angioplasty alone.

    Science.gov (United States)

    Strikwerda, S; van Swijndregt, E M; Melkert, R; Serruys, P W

    1995-02-01

    Coronary lumen changes during and after excimer laser-assisted balloon angioplasty were measured by quantitative coronary angiography, and the results were compared with the effects of balloon angioplasty alone. Reduction of atherosclerotic tissue mass by laser ablation in the treatment of coronary artery disease may be more effective in enlarging the lumen than balloon angioplasty alone. A series of 57 consecutive coronary lesions successfully treated by xenon chloride excimer laser-assisted balloon angioplasty were individually matched with 57 coronary artery lesions successfully treated by balloon angioplasty alone. The following variables were measured by quantitative coronary analysis: 1) ablation by laser, 2) stretch by balloon dilation, 3) elastic recoil, and 4) acute gain. Matching by stenosis location, reference diameter and minimal lumen diameter resulted in two comparable groups of 57 lesions with identical baseline stenosis characteristics. Minimal lumen diameter before excimer laser-assisted balloon angioplasty and balloon angioplasty alone were (mean +/- SD) 0.73 +/- 0.44 and 0.74 +/- 0.43 mm, respectively. Laser ablation significantly improved minimal lumen diameter by 0.56 +/- 0.44 mm before adjunctive balloon dilation. In both treatment groups, similar-sized balloon catheters (2.59 +/- 0.35 and 2.56 +/- 0.40 mm, respectively) were used. After laser-assisted balloon angioplasty, elastic recoil was 0.84 +/- 0.30 mm (32% of balloon size), which was identical to that after balloon angioplasty alone, namely, 0.82 +/- 0.32 mm (32%). Consequently, both interventions resulted in similar acute gains of 1.02 +/- 0.52 and 1.00 +/- 0.56 mm, respectively. Minimal lumen diameter after intervention was equal in both groups: 1.75 +/- 0.35 and 1.75 +/- 0.34 mm, respectively. The statistical power of this study in which a 25% difference in elastic recoil (0.2 mm) between groups was considered clinically important was 95%. In matched groups of successfully treated

  6. Apparatus Development In Maros

    Directory of Open Access Journals (Sweden)

    H. Aras Solong

    2015-03-01

    Full Text Available ABSTRACT This study aims to identify and describe 1 Development of Administrative through education and training training promotion transfer and rotation and the application of demotion system non-title under Law No. 43 of 1999 on the development of career civil servants based merit system and work performance and Government Regulation No. 101 of 2000 on Education and Training Training for Civil Servants. 2 Revealing differences in work motivation based on the intensity of the education or training training using Herzbergs Two Factor Theory of extrinsic factors hygiene and intrinsic factors motivator that influence employees motivation Maros regency government in carrying out its duties and functions as members civil in public service. This study uses a quantitative approach to date collection techniques through a questionnaire Questionnaire. Informant are civil servants who occupied echelon II III. And IV while the analysis of the date used quantitative analysis to uncover the implementation of personnel development and employees motivation difference Maros region based on the intensity of the education or training training to get job satisfaction in the public service. The results of this study will reveal that 1 Development of Apparatus for improving the knowledge ability professionalism competence skills can work as a reformer change attitude eager to work motivated to do the work get satisfaction in work and getting justice in employment. 2 The difference in work motivation Maros local government employees affected by extrinsic factors hygiene and intrinsic factor motivator is the variable gain high salary H occupies the first ranking while serving the community satisfaction variables M occupy the last ranking. That is that the satisfaction of serving the people affected by the high salaries earned by the employees to do the job.

  7. Pneumothorax, music and balloons: A case series

    Directory of Open Access Journals (Sweden)

    Shiferaw Dejene

    2013-01-01

    Full Text Available We describe two cases of spontaneous pneumothorax in young healthy adults with no underlying structural lung disease. The onset of pneumothorax was following physical activity including playing musical instruments and blowing of balloons. There is sparse data evaluating the pathophysiology of primary spontaneous pneumothorax in relation to increased mouth pressures. These cases highlight the possible physical effect of valsalva manoeuvre on transpulmonary pressures, and the potential risk of developing pneumothorax in otherwise healthy individuals. This aspect of pneumothorax development is worthy of further exploration, to better elucidate the mechanism and enhance our understanding of this common respiratory presentation.

  8. Retrograde transurethral balloon dilation of the prostate

    International Nuclear Information System (INIS)

    Castaneda, F.; Reddy, P.; Wasserman, N.F.; Lund, G.; Hulbert, J.; Hunter, D.; Castaneda-Zuniga, W.R.; Amplatz, K.

    1986-01-01

    A series of patients with documented benign prostatic hypertrophy evaluated by urodynamic studies, voiding cystourethrography, retrograde urethrography, and MR imaging underwent dilation performed using a retrograde transurethral approach with 25-mm balloon dilators inflated at a pressure of 3-4 atm for 10 minutes. Immediately after the procedure, retrograde and voiding cystourethrography as well as MR imaging were performed. A Foley catheter was left in place for 24 hours. Complete relief of symptoms has occurred in all of the patients during the follow-up period. No significant complications other than transient hematuria resulted from the procedure. Results of the comparison studies and of MR imaging are discussed

  9. Resistive G-modes and ballooning

    International Nuclear Information System (INIS)

    Dagazian, R.Y.; Mondt, J.P.; Paris, R.B.

    1980-01-01

    A unified theory of the linear stability of the Roberts and Taylor type of resistive interchange and ballooning is presented. The effects of both parallel and perpendicular viscosity as well as of finite shear and finite β are included in a MHD treatment of the problem. Kinetic effects are also studied. The hybrid kinetic model with Vlasov ions and guiding center electrons has been appropriately generalized to allow for electron-ion collisions. The geometry is that of a plane slab with magnetic shear

  10. Endoscopic Papillary Balloon Dilation with Large Balloon after Limited Sphincterotomy for Retrieval of Choledocholithiasis

    Science.gov (United States)

    Bang, Seungmin; Kim, Myoung Hwan; Park, Jeong Youp; Park, Seung Woo; Song, Si Young

    2006-01-01

    Endoscopic papillary balloon dilation (EBD) for choledocholithiasis is known to be comparable to endoscopic sphincterotomy (EST) especially in cases of small stones. With larger stones, EBD with conventional balloon, which have a diameter of 6-8 mm, was reported as less effective for extraction of stones. We evaluated the efficacy and complications of EBD with large balloons (10-15 mm) after limited EST for retrieval of choledocholithiasis. From February 2005, we have performed EBD with limited EST for retrieval of common bile duct (CBD) stones. The patients who admitted with hyperamylasemia and gallstone pancreatitis were excluded. In cases without CBD dilation, EPBD with 12 mm for 40 seconds was performed. And in cases with CBD dilation, we dilated the sphincters with 15 mm sized balloon for 40 seconds. Total 22 patients (11 of male) were performed EBD with limited EST for retrieval of CBD stones. The median diameter of the stones was 10 mm (5-25 mm). Ten cases had multiple stones and 6 cases periampullary diverticuli. Successful stone removal in the initial session of ERCP with EBD was accomplished in 16 patients (72.7%). And complete retrieval of bile duct stones was achieved in all patients with repeated ERCP. In the aspect of complications, any episodes of perforation, bleeding was not developed. Only one case of mild grade of post-procedural pancreatitis was noted. However, post-procedural hyperamylasemia was developed in 16 cases (68.2%). EBD with larger balloon seems to be a feasible and safe alternative technique for conventional EST in CBD stone extraction. PMID:17191309

  11. Simultaneous stent expansion/balloon deflation technique to salvage failed balloon remodeling.

    Science.gov (United States)

    Ladner, Travis R; He, Lucy; Davis, Brandon J; Froehler, Michael T; Mocco, J

    2016-04-01

    Herniation, with possible embolization, of coils into the parent vessel following aneurysm coiling remains a frequent challenge. For this reason, balloon or stent assisted embolization remains an important technique. Despite the use of balloon remodeling, there are occasions where, on deflation of the balloon, some coils, or even the entire coil mass, may migrate. We report the successful use of a simultaneous adjacent stent deployment bailout technique in order to salvage coil prolapse during balloon remodeling in three patients. Case No 1 was a wide neck left internal carotid artery bifurcation aneurysm, measuring 9 mm×7.9 mm×6 mm with a 5 mm neck. Case No 2 was a complex left superior hypophyseal artery aneurysm, measuring 5.3 mm×4 mm×5 mm with a 2.9 mm neck. Case No 3 was a ruptured right posterior communicating artery aneurysm, measuring 4 mm×4 mm×4.5 mm with a 4 mm neck. This technique successfully returned the prolapsed coil mass into the aneurysm sac in all cases without procedural complications. The closed cell design of the Enterprise VRD (Codman and Shurtleff Inc, Raynham, Massachusetts, USA) makes it ideal for this bailout technique, by allowing the use of an 0.021 inch delivery catheter (necessary for simultaneous access) and by avoiding the possibility of an open cell strut getting caught on the deflated balloon. We hope this technique will prove useful to readers who may find themselves in a similar predicament. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  12. Editorial ~ CIDER is Born

    Directory of Open Access Journals (Sweden)

    Terry Anderson, Canada Research Chair in Distance Education

    2004-11-01

    Full Text Available With significant male trepidation, I want to share a birth story with IRRODL readers. This month, after a seemingly endless gestation, the Canadian Institute for Distance Education Research (CIDER was born. Like most births, this new presence began with a blissful consummation, when I accepted the Canada Research Chair in Distance education at Athabasca University. After a very short honeymoon, a couple of miscarriages, and a few lover's spats that marked the relationship between the Center for Distance Education and myself, we struggled to determine the type of protégée we wanted to birth. The within the womb (in house development of the visible image and website took shape, which like all gestations, was marked by some lower backache, punctuated by a few graphic images that turned out to be false labour.

  13. Tick-borne encephalitis.

    Science.gov (United States)

    Dumpis, U; Crook, D; Oksi, J

    1999-04-01

    Tick-borne encephalitis (TBE) is a zoonotic arbovirus infection endemic to Russia and Eastern and Central Europe. Despite being a common and serious life-threatening disease for which a mass vaccination program was implemented in Austria, there is only limited reference to this disease in the English-language literature. TBE is transmitted to humans usually by the bite of a tick (either Ixodes persulcatus or Ixodes ricinus); occasionally, cases occur following consumption of infected unpasteurized milk. Transmission is seasonal and occurs in spring and summer, particularly in rural areas favored by the vector. TBE is a serious cause of acute central nervous system disease, which may result in death or long-term neurological sequelae. Effective vaccines are available in a few countries. The risk for travelers of acquiring TBE is increasing with the recent rise in tourism to areas of endemicity during spring and summer.

  14. Vector-borne diseases

    DEFF Research Database (Denmark)

    More, Simon J.; Bicout, Dominique; Bøtner, Anette

    2017-01-01

    After a request from the Europea n Commission, EFSA’s Panel on Animal Health and Welfaresummarised the main characteristics of 36 vector-borne disease s (VBDs) in 36 web-based storymaps.The risk of introduction in the EU through movement of livestock or pets was assessed for eac h of the36 VBDs...... individually, using a semiquantitative Metho d to INTegrate all relevant RISK aspects(MINTRI SK model), which was further modified to a European scale into the EFSA-VBD-RISK-m odel .Only eight of the 36 VBD-agents had an overall rate of introduction in the EU (being the combinationof the rate of entry, vector...... transmission and establishment) which was estimated to be above 0.001introductions per year. These were Crimean-Congo haemorrhagic fever virus, bluetongue virus, WestNile virus, Schmallenberg virus, Hepatozoon canis, Leishmania infantum, Bunyamwera virus andHighlands J. virus. For these eight dise ases...

  15. The Evaluation of Endoscopic Balloon Dilation Treatment for

    Directory of Open Access Journals (Sweden)

    Shokri-Shirvani Javad

    2009-10-01

    Full Text Available Balloon dilatation of stricture is one of the new treatment methods among patients with gastric outlet obstruction (GOO. However, the prevalence and underlying etiologies of GOO in various populations are different. The goal of the present study was to determine the effectiveness of endoscopic balloon dilatation and factors that would affect its success rate patients with benign etiology for GOO. Forty-five patients with the symptoms of benign GOO were randomly selected. Gastric outlet was delineated using double channel videoendoscopy. The information of initial balloon dilation was collected from recorded files. Balloon dilatation was repeated during the mean follow up of 9.9 ± 5.8 months. The severity of gastric pain was measured immediately before balloon dilatation and one month after procedure and was rated on a 10 cm visual analogue scale. The mean age of patients was 43.7 ± 18.1 years and 86.7% of them were men. Furthermore, 71.1% were H pylori positive. Response rate to endoscopic balloon dilatation was 80% and 8 patients underwent surgical resection. Weight loss was more frequent in non-responding group. The pain severity was significantly reduced more in responding subjects. No meaningful relationships were found between the responses to balloon dilatation and positive H pylori and cigarette smoking. Endoscopic balloon dilation is safe and effective for most patients with benign gastric outlet obstruction and has favorable long-term outcome.

  16. The Balloon Foot ; A Rare Presentation Of Congenital Constricting ...

    African Journals Online (AJOL)

    We present a case of a rare manifestation of congenital constricting annular band (CAB) in the lower extremity resulting in a severe excessive swelling of the foot which we have termed Balloon foot. The ballooned foot is caused by a progressive deepening of the circumferential constriction into the soft tissue of the lower ...

  17. Scientific ballooning in the 20 th century; a historical perspective

    Science.gov (United States)

    Nishimura, J.

    Hess discovered the cosmic rays in 1912. Using a manned balloon, he found the altitude variation of the radiation. After this discovery, many balloon experiments were performed to explore the most mysterious radiation coming from outside of the earth during the 1920's to the 1930's. At the end of the 1940's, balloon systems were revolutionized by the use of new plastic films and telemetry systems. At almost the same time, highly sensitive nuclear emulsions were developed. Balloon exposures of emulsions brought us new discoveries of the heavy primaries in cosmic rays. Extensive studies with nuclear emulsions discovered high-energy phenomena and new particles between the end of 1940's to the 1960's. At the same time, in various countries, experiments with more sophisticated electronic devices were begun together with ingenious work on balloon technology. Inventions were made in the areas of designing, manufacturing, materials, telemetry systems for balloons and long duration flight systems etc. Several permanent launching stations were established in various countries in the 1960's Here, I review the development of essential technologies in scientific ballooning, and their value in contributing to the growth of space physics. As the future prospect, I stress the point that scientific ballooning is indispensable and a most cost-effective way to explore space astrophysics and Earth science, in addition to the preparation of satellite and the space station experiments.

  18. Coronary artery angioplasty with a helical autoperfusion balloon catheter

    NARCIS (Netherlands)

    Gurbel, PA; Anderson, RD; vanBoven, AJ; denHeijer, P

    The initial in-hospital and long-term clinical experience with a helical autoperfusion balloon catheter in the treatment of coronary artery disease is reported, This new catheter design allows blood to flow passively around the inflated balloon through a protected helical channel molded into the

  19. External caps: An approach to stress reduction in balloons

    Science.gov (United States)

    Hazlewood, K. H.

    Recent findings of the catastrophic balloon failures investigation in the U.S.A. indicate that very large gross inflations, in balloons using present design philosophy, over-stress currently available materials. External caps are proposed as an economic approach to reducting those stresses to an acceptable level.

  20. The ballooning of fuel cladding tubes: theory and experiment

    International Nuclear Information System (INIS)

    Shewfelt, R.S.W.

    1988-01-01

    Under some conditions, fuel clad ballooning can result in considerable strain before rupture. If ballooning were to occur during a loss-of-coolant accident (LOCA), the resulting substantial blockage of the sub-channel would restrict emergency core cooling. However, circumferential temperature gradients that would occur during a LOCA may significantly limit the average strain at failure. Understandably, the factors that control ballooning and rupture of fuel clad are required for the analysis of a LOCA. Considerable international effort has been spent on studying the deformation of Zircaloy fuel cladding under conditions that would occur during a LOCA. This effort has established a reasonable understanding of the factors that control the ballooning, failure time, and average failure strain of fuel cladding. In this paper, both the experimental and theoretical studies of the fuel clad ballooning are reviewed. (author)

  1. Spectrum of the ballooning Schroedinger equation

    International Nuclear Information System (INIS)

    Dewar, R.L.

    1997-01-01

    The ballooning Schroedinger equation (BSE) is a model equation for investigating global modes that can, when approximated by a Wentzel-Kramers-Brillouin (WKB) ansatz, be described by a ballooning formalism locally to a field line. This second order differential equation with coefficients periodic in the independent variable θ k is assumed to apply even in cases where simple WKB quantization conditions break down, thus providing an alternative to semiclassical quantization. Also, it provides a test bed for developing more advanced WKB methods: e.g. the apparent discontinuity between quantization formulae for open-quotes trappedclose quotes and open-quotes passingclose quotes modes, whose ray paths have different topologies, is removed by extending the WKB method to include the phenomena of tunnelling and reflection. The BSE is applied to instabilities with shear in the real part of the local frequency, so that the dispersion relation is inherently complex. As the frequency shear is increased, it is found that trapped modes go over to passing modes, reducing the maximum growth rate by averaging over θ k

  2. THE KISSING BALLOON TECHNIQUE WITH 2 OVER-THE-WIRE BALLOON CATHETERS THROUGH A SINGLE 8-FRENCH GUIDING CATHETER

    NARCIS (Netherlands)

    DENHEIJER, P; BERNINK, PJLM; VANDIJK, RB; TWISK, SPM; LIE, KI

    Some of the newer over-the-wire coronary angioplasty catheters have shaft sizes of 3.0 French (F) or less. The inner diameter of modern 8-F guiding catheters is large enough to accommodate two of such balloon catheters. We report a kissing balloon procedure with two over-the-wire catheters through a

  3. Flexible ultrasonic pipe inspection apparatus

    Science.gov (United States)

    Jenkins, C.F.; Howard, B.D.

    1998-06-23

    A flexible, modular ultrasonic pipe inspection apparatus, comprises a flexible, hollow shaft that carries a plurality of modules, including at least one rotatable ultrasonic transducer, a motor/gear unit, and a position/signal encoder. The modules are connected by flexible knuckle joints that allow each module of the apparatus to change its relative orientation with respect to a neighboring module, while the shaft protects electrical wiring from kinking or buckling while the apparatus moves around a tight corner. The apparatus is moved through a pipe by any suitable means, including a tether or drawstring attached to the nose or tail, differential hydraulic pressure, or a pipe pig. The rotational speed of the ultrasonic transducer and the forward velocity of the apparatus are coordinated so that the beam sweeps out the entire interior surface of the pipe, enabling the operator to accurately assess the condition of the pipe wall and determine whether or not leak-prone corrosion damage is present. 7 figs.

  4. Optics of Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII): Delay Lines and Alignment

    Science.gov (United States)

    Dhabal, Arnab; Rinehart, Stephen A.; Rizzo, Maxime J.; Mundy, Lee; Fixsen, Dale; Sampler, Henry; Mentzell, Eric; Veach, Todd; Silverberg, Robert F.; Furst, Stephen; hide

    2016-01-01

    We present the optics of Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) as it gets ready for launch. BETTII is an 8-meter baseline far-infrared (30-90 microns) interferometer mission with capabilities of spatially resolved spectroscopy aimed at studying star formation and galaxy evolution. The instrument collects light from its two arms, makes them interfere, divides them into two science channels (30-50 microns and 60-90 microns), and focuses them onto the detectors. It also separates out the NIR light (1-2.5 microns) and uses it for tip-tilt corrections of the telescope pointing. Currently, all the optical elements have been fabricated, heat treated, coated appropriately and are mounted on their respective assemblies. We are presenting the optical design challenges for such a balloon borne spatio-spectral interferometer, and discuss how they have been mitigated. The warm and cold delay lines are an important part of this optics train. The warm delay line corrects for path length differences between the left and the right arm due to balloon pendulation, while the cold delay line is aimed at introducing a systematic path length difference, thereby generating our interferograms from where we can derive information about the spectra. The details of their design and the results of the testing of these opto-mechanical parts are also discussed. The sensitivities of different optical elements on the interferograms produced have been determined with the help of simulations using FRED software package. Accordingly, an alignment plan is drawn up which makes use of a laser tracker, a CMM, theodolites and a LUPI interferometer.

  5. The isotopic composition of methane in the stratosphere: high-altitude balloon sample measurements

    Directory of Open Access Journals (Sweden)

    T. Röckmann

    2011-12-01

    Full Text Available The isotopic composition of stratospheric methane has been determined on a large suite of air samples from stratospheric balloon flights covering subtropical to polar latitudes and a time period of 16 yr. 154 samples were analyzed for δ13C and 119 samples for δD, increasing the previously published dataset for balloon borne samples by an order of magnitude, and more than doubling the total available stratospheric data (including aircraft samples published to date. The samples also cover a large range in mixing ratio from tropospheric values near 1800 ppb down to only 250 ppb, and the strong isotope fractionation processes accordingly increase the isotopic composition up to δ13C = −14‰ and δD = +190‰, the largest enrichments observed for atmospheric CH4 so far. When analyzing and comparing kinetic isotope effects (KIEs derived from single balloon profiles, it is necessary to take into account the residence time in the stratosphere in combination with the observed mixing ratio and isotope trends in the troposphere, and the range of isotope values covered by the individual profile. The isotopic composition of CH4 in the stratosphere is affected by both chemical and dynamical processes. This severely hampers interpretation of the data in terms of the relative fractions of the three important sink mechanisms (reaction with OH, O(1D and Cl. It is shown that a formal sink partitioning using the measured data severely underestimates the fraction removed by OH, which is likely due to the insensitivity of the measurements to the kinetic fractionation in the lower stratosphere. Full quantitative interpretation of the CH4 isotope data in terms of the three sink reactions requires a global model.

  6. Optical fiber stripper positioning apparatus

    Science.gov (United States)

    Fyfe, Richard W.; Sanchez, Jr., Amadeo

    1990-01-01

    An optical fiber positioning apparatus for an optical fiber stripping device is disclosed which is capable of providing precise axial alignment between an optical fiber to be stripped of its outer jacket and the cutting blades of a stripping device. The apparatus includes a first bore having a width approximately equal to the diameter of an unstripped optical fiber and a counter bore axially aligned with the first bore and dimensioned to precisely receive a portion of the stripping device in axial alignment with notched cutting blades within the stripping device to thereby axially align the notched cutting blades of the stripping device with the axis of the optical fiber to permit the notched cutting blades to sever the jacket on the optical fiber without damaging the cladding on the optical fiber. In a preferred embodiment, the apparatus further includes a fiber stop which permits determination of the length of jacket to be removed from the optical fiber.

  7. The Conservation Ideological State Apparatus

    Directory of Open Access Journals (Sweden)

    Jared D Margulies

    2018-01-01

    Full Text Available This article considers Louis Althusser's theory of the ideological state apparatuses (ISAs for advancing political ecology scholarship on the functioning of the state in violent environments. I reflect on a series of events in which a state forest department in South India attempted to recast violent conflicts between themselves and local communities over access to natural resources and a protected area as a debate over human-wildlife conflicts. Through the example of conservation as ideology in Wayanad, Kerala, I show how the ISAs articulate the functioning of ideology within the state apparatuses in order for us to understand the larger mechanics of the state apparatus and the reproduction of the relations of production necessary for the reproduction of capitalism. Revisiting the ISAs as a theoretical framework for studies in political ecology and conservation is timely given the resurgence of militarised conservation tactics, the emancipatory aims of Althusser's theory, and political ecology's turn towards praxis.

  8. The PoGO+ Ballon-Borne Hard X-ray Polarimetry Mission

    Science.gov (United States)

    Friis, Mette; Kiss, Mózsi; Mikhalev, Victor; Pearce, Mark; Takahashi, Hiromitsu

    2018-03-01

    The PoGO mission, including the PoGOLite Pathfinder and PoGO+, aims to provide polarimetric measurements of the Crab system and Cygnus X-1 in the hard X-ray band. Measurements are conducted from a stabilized balloon-borne platform, launched on a 1 million cubic meter balloon from the Esrange Space Center in Sweden to an altitude of approximately 40 km. Several flights have been conducted, resulting in two independent measurements of the Crab polarization and one of Cygnus X-1. Here, a review of the PoGO mission is presented, including a description of the payload and the flight campaigns, and a discussion of some of the scientific results obtained to date.

  9. Development and performance of the advanced hard x-ray telescope for the balloon experiment

    Science.gov (United States)

    Miyazawa, Takuya; Shibata, Ryo; Ogasaka, Yasushi; Fukaya, Yoshihiro; Naitou, Masataka; Iwahara, Tomonaga; Shimoda, Kenta; Tamura, Keisuke; Furuzawa, Akihiro; Kunieda, Hideyo; Yamashita, Koujun; Yokoi, Shin; Yoshii, Takuma; Watanabe, Naoya; Namba, Yoshiharu

    2006-06-01

    Imaging observation in the hard X-ray band of 10 - 100 keV is one of the important subjects in X-ray astronomy. Though SUMIT balloon-borne experiment, we have developed thin-foil-nested hard X-ray telescope employing depth-graded Pt/C multilayer (multilayer-supermirror). We have improved production process of the replica reflector and telescope optics compared with InFOCμS-2004 telescope. The new telescope was measured at synchrotron radiation facility, SPring-8. The image quality and throughtput were estimated to be 2.06 arcmin (half power diameter) and 85 % at 30 keV, respectively. These values were about 24 % and 30 % improvement compared to InFOCμS-2004, respectively. Limiting factors of its performance are also investigated. Based on such an investigation we are now continuously developing hard X-ray telescope for SUMIT 2006 flight.

  10. [Children born of ICSI].

    Science.gov (United States)

    Epelboin, S

    2007-12-01

    Studies on children born as a result of IVF or ICSI present significant methodological differences and have been conducted on highly heterogeneous populations. Regarding perinatal data, there is a consensus of opinion on the increased risk of prematurity, growth retardation and perinatal mortality, even after maternal factors and the presence or absence of multiple pregnancies have been taken into account. There is no significant difference in the studies between ICSI and IVF, which are often not individualised. The results of birth defects following IVF treatment are contradictory in the literature. The risk of birth defects following ICSI can be caused by male infertility (chromosome abnormality rate, microdeletion of the Y chromosome, genetic fingerprint) or by the technique used (no selection of the fertilising spermatozoon, disturbance of the meiotic spindle, risk of introduction of foreign materials, risk of infection). Analysis of the literature is complicated because of methodological biases. Thus, according to the studies, the risks of defects following ICSI are identical or increased compared with those following IVF. In the long term, synthesis of the studies does not allow any certainty regarding the growth of children, their cognitive or psychomotor development, the risk of cancers or epigenetic diseases. The current data is more reassuring than worrying, but the good current studies on child development should be developed in terms of number, cohort size and monitoring period.

  11. Apparatus for control of mercury

    Science.gov (United States)

    Downs, William; Bailey, Ralph T.

    2001-01-01

    A method and apparatus for reducing mercury in industrial gases such as the flue gas produced by the combustion of fossil fuels such as coal adds hydrogen sulfide to the flue gas in or just before a scrubber of the industrial process which contains the wet scrubber. The method and apparatus of the present invention is applicable to installations employing either wet or dry scrubber flue gas desulfurization systems. The present invention uses kraft green liquor as a source for hydrogen sulfide and/or the injection of mineral acids into the green liquor to release vaporous hydrogen sulfide in order to form mercury sulfide solids.

  12. Nuclear fuel pellet loading apparatus

    International Nuclear Information System (INIS)

    Gerkey, K.S.

    1979-01-01

    An automatic apparatus for loading a predetermined amount of nuclear fuel pellets into a nuclear fuel element to be used in a nuclear reactor is described. The apparatus consists of a vibratory bed capable of supporting corrugated trays containing rows of nuclear fuel pellets and arranged in alignment with the open ends of several nuclear fuel elements. A sweep mechanism is arranged above the trays and serves to sweep the rows of fuel pellets onto the vibratory bed and into the fuel element. A length detecting system, in conjunction with a pellet stopping mechanism, is also provided to assure that a predetermined amount of nuclear fuel pellets are loaded into each fuel element

  13. A simple Cavendish experimental apparatus

    Science.gov (United States)

    Kossler, W. J.; Klein, Susann; Morrow, Dominick; Juliao, Andre

    2016-03-01

    A simple Cavendish apparatus is described that allows measurement of the gravitational constant G and makes observable the gravitational attraction between commonplace objects. The apparatus consists of a torsion balance constructed from readily available materials, including lead bricks and fishing weights ("sinkers"). A computer program is used to determine the gravitational field at the location of the small mass due to a nearby lead brick, which allows students to gain experience with numerical methods. Experimental results obtained are compatible with the accepted value of G.

  14. Detecting Seismic Infrasound Signals on Balloon Platforms

    Science.gov (United States)

    Krishnamoorthy, S.; Komjathy, A.; Cutts, J. A.; Pauken, M.; Garcia, R.; Mimoun, D.; Jackson, J. M.; Kedar, S.; Smrekar, S. E.; Hall, J. L.

    2017-12-01

    The determination of the interior structure of a planet requires detailed seismic investigations - a process that entails the detection and characterization of seismic waves due to geological activities (e.g., earthquakes, volcanoes, etc.). For decades, this task has primarily been performed on Earth by an ever-expanding network of terrestrial seismic stations. However, on planets such as Venus, where the surface pressure and temperature can reach as high as 90 atmospheres and 450 degrees Celsius respectively, placing seismometers on the planet's surface poses a vexing technological challenge. However, the upper layers of the Venusian atmosphere are more benign and capable of hosting geophysical payloads for longer mission lifetimes. In order to achieve the aim of performing geophysical experiments from an atmospheric platform, JPL and its partners (ISAE-SUPAERO and California Institute of Technology) are in the process of developing technologies for detection of infrasonic waves generated by earthquakes from a balloon. The coupling of seismic energy into the atmosphere critically depends on the density differential between the surface of the planet and the atmosphere. Therefore, the successful demonstration of this technique on Earth would provide ample reason to expect success on Venus, where the atmospheric impedance is approximately 60 times that of Earth. In this presentation, we will share results from the first set of Earth-based balloon experiments performed in Pahrump, Nevada in June 2017. These tests involved the generation of artificial sources of known intensity using a seismic hammer and their detection using a complex network of sensors, including highly sensitive micro-barometers suspended from balloons, GPS receivers, geophones, microphones, and seismometers. This experiment was the first of its kind and was successful in detecting infrasonic waves from the earthquakes generated by the seismic hammer. We will present the first comprehensive analysis

  15. Microcontroller uses in Long-Duration Ballooning

    Science.gov (United States)

    Jones, Joseph

    This paper discusses how microcontrollers are being utilized to fulfill the demands of long duration ballooning (LDB) and the advantages of doing so. The Columbia Scientific Balloon Facility (CSBF) offers the service of launching high altitude balloons (120k ft) which provide an over the horizon telemetry system and platform for scientific research payloads to collect data. CSBF has utilized microcontrollers to address multiple tasks and functions which were previously performed by more complex systems. A microcontroller system has been recently developed and programmed in house to replace our previous backup navigation system which is used on all LDB flights. A similar microcontroller system was developed to be independently launched in Antarctica before the actual scientific payload. This system's function is to transmit its GPS position and a small housekeeping packet so that we can confirm the upper level float winds are as predicted from satellite derived models. Microcontrollers have also been used to create test equipment to functionally check out the flight hardware used in our telemetry systems. One test system which was developed can be used to quickly determine if our communication link we are providing for the science payloads is functioning properly. Another system was developed to provide us with the ability to easily determine the status of one of our over the horizon communication links through a closed loop system. This test system has given us the capability to provide more field support to science groups than we were able to in years past. The trend of utilizing microcontrollers has taken place for a number of reasons. By using microcontrollers to fill these needs, it has given us the ability to quickly design and implement systems which meet flight critical needs, as well as perform many of the everyday tasks in LDB. This route has also allowed us to reduce the amount of time required for personnel to perform a number of the tasks required

  16. Rectal Balloon for the Immobilization of the Prostate Internal Motion

    International Nuclear Information System (INIS)

    Lee, Sang Kyu; Beak, Jong Geal; Kim, Joo Ho; Jeon, Byong Chul; Cho, Jeong Hee; Kim, Dong Wook; Song, Tae Soo; Cho, Jae Ho; Na, Soo Kyong

    2005-01-01

    The using of endo-rectal balloon has proposed as optimal method that minimized the motion of prostate and the dose of rectum wall volume for treated prostate cancer patients, so we make the customized rectal balloon device. In this study, we analyzed the efficiency of the Self-customized rectal balloon in the aspects of its reproducibility. In 5 patients, for treatment planning, each patient was acquired CT slice images in state of with and without rectal balloon. Also they had CT scanning same repeated third times in during radiation treatment (IMRT). In each case, we analyzed the deviation of rectal balloon position and verified the isodose distribution of rectum wall at closed prostate. Using the rectal balloon, we minimized the planning target volume (PTV) by decreased the internal motion of prostate and overcome the dose limit of radiation therapy in prostate cancer by increased the gap between the rectum wall and high dose region. The using of rectal balloon, although, was reluctant to treat by patients. View a point of immobilization of prostate internal motion and dose escalation of GTV (gross tumor volume), its using consider large efficient for treated prostate cancer patients.

  17. Graph-Based Path-Planning for Titan Balloons

    Science.gov (United States)

    Blackmore, Lars James; Fathpour, Nanaz; Elfes, Alberto

    2010-01-01

    A document describes a graph-based path-planning algorithm for balloons with vertical control authority and little or no horizontal control authority. The balloons are designed to explore celestial bodies with atmospheres, such as Titan, a moon of Saturn. The algorithm discussed enables the balloon to achieve horizontal motion using the local horizontal winds. The approach is novel because it enables the balloons to use arbitrary wind field models. This is in contrast to prior approaches that used highly simplified wind field models, such as linear, or binary, winds. This new approach works by discretizing the space in which the balloon operates, and representing the possible states of the balloon as a graph whose arcs represent the time taken to move from one node to another. The approach works with arbitrary wind fields, by looking up the wind strength and direction at every node in the graph from an arbitrary wind model. Having generated the graph, search techniques such as Dijkstra s algorithm are then used to find the set of vertical actuation commands that takes the balloon from the start to the goal in minimum time. In addition, the set of reachable locations on the moon or planet can be determined.

  18. A Survey of Titan Balloon Concepts and Technology Status

    Science.gov (United States)

    Hall, Jeffery L.

    2011-01-01

    This paper surveys the options for, and technology status of, balloon vehicles to explore Saturn's moon Titan. A significant amount of Titan balloon concept thinking and technology development has been performed in recent years, particularly following the spectacular results from the descent and landing of the Huygens probe and remote sensing observations by the Cassini spacecraft. There is widespread recognition that a balloon vehicle on the next Titan mission could provide an outstanding and unmatched capability for in situ exploration on a global scale. The rich variety of revealed science targets has combined with a highly favorable Titan flight environment to yield a wide diversity of proposed balloon concepts. The paper presents a conceptual framework for thinking about balloon vehicle design choices and uses it to analyze various Titan options. The result is a list of recommended Titan balloon vehicle concepts that could perform a variety of science missions, along with their projected performance metrics. Recent technology developments for these balloon concepts are discussed to provide context for an assessment of outstanding risk areas and technological maturity. The paper concludes with suggestions for technology investments needed to achieve flight readiness.

  19. Ballooning modes or Fourier modes in a toroidal plasma?

    International Nuclear Information System (INIS)

    Connor, J.W.; Taylor, J.B.

    1987-01-01

    The relationship between two different descriptions of eigenmodes in a torus is investigated. In one the eigenmodes are similar to Fourier modes in a cylinder and are highly localized near a particular rational surface. In the other they are the so-called ballooning modes that extend over many rational surfaces. Using a model that represents both drift waves and resistive interchanges the transition from one of these structures to the other is investigated. In this simplified model the transition depends on a single parameter which embodies the competition between toroidal coupling of Fourier modes (which enhances ballooning) and variation in frequency of Fourier modes from one rational surface to another (which diminishes ballooning). As the coupling is increased each Fourier mode acquires a sideband on an adjacent rational surface and these sidebands then expand across the radius to form the extended mode described by the conventional ballooning mode approximation. This analysis shows that the ballooning approximation is appropriate for drift waves in a tokamak but not for resistive interchanges in a pinch. In the latter the conventional ballooning effect is negligible but they may nevertheless show a ballooning feature. This is localized near the same rational surface as the primary Fourier mode and so does not lead to a radially extended structure

  20. An Undergraduate Student Instrumentation Project (USIP) to Develop New Instrument Technology to Study the Auroral Ionosphere and Stratospheric Ozone Layer Using Ultralight Balloon Payloads

    Science.gov (United States)

    Nowling, M.; Ahmad, H.; Gamblin, R.; Guala, D.; Hermosillo, D.; Pina, M.; Marrero, E.; Canales, D. R. J.; Cao, J.; Ehteshami, A.; Bering, E. A., III; Lefer, B. L.; Dunbar, B.; Bias, C.; Shahid, S.

    2015-12-01

    This project is currently engaging twelve undergraduate students in the process of developing new technology and instrumentation for use in balloon borne geospace investigations in the auroral zone. Motivation stems from advances in microelectronics and consumer electronic technology. Given the technological innovations over the past 20 years it now possible to develop new instrumentation to study the auroral ionosphere and stratospheric ozone layer using ultralight balloon payloads for less than 6lbs and $3K per payload. The University of Houston Undergraduate Student Instrumentation Project (USIP) team has built ten such payloads for launch using 1500 gm latex weather balloons deployed in Houston, TX, Fairbanks, AK, and as well as zero pressure balloons launched from northern Sweden. The latex balloon project will collect vertical profiles of wind velocity, temperature, electrical conductivity, ozone, and odd nitrogen. This instrument payload will also produce profiles of pressure, electric field, and air-earth electric current. The zero pressure balloons will obtain a suite of geophysical measurements including: DC electric field, electric field and magnetic flux, optical imaging, total electron content of ionosphere via dual-channel GPS, X-ray detection, and infrared/UV spectroscopy. Students flew payloads with different combinations of these instruments to determine which packages are successful. Data collected by these instruments will be useful in understanding the nature of electrodynamic coupling in the upper atmosphere and how the global earth system is changing. Twelve out of the launched fifteen payloads were successfully launched and recovered. Results and best practices learned from lab tests and initial Houston test flights will be discussed.

  1. N-dependence of ballooning instabilities

    International Nuclear Information System (INIS)

    Dewar, R.L.; Manickam, J.; Grimm, R.C.; Chance, M.S.

    1980-05-01

    The critical β for stability against ideal hydromagnetic internal ballooning modes as a function of toroidal mode number, n, is calculated for two different equilibrium sequences by use of a finite element technique (n less than or equal to 20), and a WKB formalism (n greater than or equal to 5). The agreement between the two methods is good in the overlap region 5 approx.less than or equal to n approx. less than or equal to 20. The WKB formula reduces to the 1/n correction at very high n, but is much more accurate at moderate n. The critical β vs n curves exhibit oscillatory structure at low n, but in both sequences the lower bound on β/sub c/ approx. 5%. For reactor parameters, finite Larmor radius effects are not expected to have a large effect on this β-limitation

  2. Management of intra-aortic balloon pumps.

    Science.gov (United States)

    Webb, Christopher A-J; Weyker, Paul D; Flynn, Brigid C

    2015-06-01

    Intra-aortic balloon pumps (IABPs) continue to be the most widely used cardiac support devices with an annual estimate of 200 000 IABPs placed worldwide. IABPs enhance myocardial function by maximizing oxygen supply and minimizing oxygen demand. The use of IABPs is not without risk, with major vascular injury, ischemia, and infection being the most common complications, especially in high-risk patients. While recent studies have questioned the use of IABPs in patients with cardiogenic shock secondary to myocardial infarction, these studies have limitations making it difficult to formulate definitive conclusions. This review will focus on the mechanisms of counterpulsation, the management of IABPs and the evidence supporting this ventricular support therapy. © The Author(s) 2014.

  3. High Energy Antimatter Telescope (HEAT) Balloon Experiment

    Science.gov (United States)

    Beatty, J. J.

    1995-01-01

    This grant supported our work on the High Energy Antimatter Telescope(HEAT) balloon experiment. The HEAT payload is designed to perform a series of experiments focusing on the cosmic ray positron, electron, and antiprotons. Thus far two flights of the HEAT -e+/- configuration have taken place. During the period of this grant major accomplishments included the following: (1) Publication of the first results of the 1994 HEAT-e+/- flight in Physical Review Letters; (2) Successful reflight of the HEAT-e+/- payload from Lynn Lake in August 1995; (3) Repair and refurbishment of the elements of the HEAT payload damaged during the landing following the 1995 flight; and (4) Upgrade of the ground support equipment for future flights of the HEAT payload.

  4. Waste Water Treatment Apparatus and Methods

    Science.gov (United States)

    Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)

    2014-01-01

    An improved draft tube spout fluid bed (DTSFB) mixing, handling, conveying, and treating apparatus and systems, and methods for operating are provided. The apparatus and systems can accept particulate material and pneumatically or hydraulically conveying the material to mix and/or treat the material. In addition to conveying apparatus, a collection and separation apparatus adapted to receive the conveyed particulate material is also provided. The collection apparatus may include an impaction plate against which the conveyed material is directed to improve mixing and/or treatment. The improved apparatus are characterized by means of controlling the operation of the pneumatic or hydraulic transfer to enhance the mixing and/or reacting by controlling the flow of fluids, for example, air, into and out of the apparatus. The disclosed apparatus may be used to mix particulate material, for example, mortar; react fluids with particulate material; coat particulate material, or simply convey particulate material.

  5. Intragastric balloon for morbid obesity causing chronic gastric dilatation

    International Nuclear Information System (INIS)

    Pretolesi, F.; Derchi, L.E.; Redaelli, G.; Papagni, L.

    2001-01-01

    We describe the radiographic findings observed in a morbidly obese and diabetic patient with an intragastric air-filled balloon introduced as a therapeutic measure to reduce food intake. The balloon was associated with chronic gastric dilatation and had to be removed 3 months after insertion. However, together with diet and behavioural therapy, it proved effective in reducing body weight and ameliorating glycaemic control. Although rarely used, intragastric balloons for the treatment of morbid obesity are still encountered in radiological practice. Radiologists must be able to recognize them and to understand their complications. (orig.)

  6. An investigation of electrostatically deposited radionuclides on latex balloons

    International Nuclear Information System (INIS)

    Price, T.; Caly, A.

    2012-01-01

    Use of Canadian Nuclear Society (CNS) education material for a community science education event to promote science awareness, science culture and literacy (Science Rendezvous 2011) lead to investigation of observed phenomena. Experiments are done on balloons that are electrostatically charged then left to collect particulate. Alpha spectroscopy was performed to identify alpha emitting radioisotopes present on the balloons. The time dependent behaviour of the activity was investigated. Additionally, the Alpha activity of the balloon was compared to Beta activity. The grounds for further investigations are proposed. (author)

  7. Intragastric balloon for morbid obesity causing chronic gastric dilatation

    Energy Technology Data Exchange (ETDEWEB)

    Pretolesi, F.; Derchi, L.E. [Dept. of Radiology, University of Genoa (Italy); Redaelli, G.; Papagni, L. [IRCCS, Ist. Auxologico Italiano, Milan (Italy)

    2001-04-01

    We describe the radiographic findings observed in a morbidly obese and diabetic patient with an intragastric air-filled balloon introduced as a therapeutic measure to reduce food intake. The balloon was associated with chronic gastric dilatation and had to be removed 3 months after insertion. However, together with diet and behavioural therapy, it proved effective in reducing body weight and ameliorating glycaemic control. Although rarely used, intragastric balloons for the treatment of morbid obesity are still encountered in radiological practice. Radiologists must be able to recognize them and to understand their complications. (orig.)

  8. Apparatus for measuring fluid flow

    Science.gov (United States)

    Smith, J.E.; Thomas, D.G.

    Flow measuring apparatus includes a support loop having strain gages mounted thereon and a drag means which is attached to one end of the support loop and which bends the sides of the support loop and induces strains in the strain gages when a flow stream impacts thereon.

  9. Flexible ultrasonic pipe inspection apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, C.F.; Howard, B.D.

    1994-01-01

    Pipe crawlers, pipe inspection {open_quotes}rabbits{close_quotes} and similar vehicles are widely used for inspecting the interior surfaces of piping systems, storage tanks and process vessels for damaged or flawed structural features. This paper describes the design of a flexible, modular ultrasonic pipe inspection apparatus.

  10. Nuclear fuel rod loading apparatus

    International Nuclear Information System (INIS)

    King, H.B.

    1981-01-01

    A nuclear fuel loading apparatus, incorporating a microprocessor control unit, is described which automatically loads nuclear fuel pellets into dual fuel rods with a minimum of manual involvement and in a manner and sequence to ensure quality control and accuracy. (U.K.)

  11. Born : vastutustundlikud tulevikus edukad / Kerstin Born ; interv. Kristo Kiviorg

    Index Scriptorium Estoniae

    Born, Kerstin

    2007-01-01

    Vastutustundliku ettevõtluse Euroopa organisatsiooni CSR Europe'i juht Kerstin Born vastab küsimustele ettevõtete vastutustundlikkuse kohta ühiskonnas. Vt. samas: Käivitus vastutustundliku ettevõtluse indeks

  12. Balloon Angioplasty - The Legacy of Andreas Grüntzig, M.D. (1939-1985).

    Science.gov (United States)

    Barton, Matthias; Grüntzig, Johannes; Husmann, Marc; Rösch, Josef

    2014-01-01

    In 1974, at the Medical Policlinic of the University of Zürich, German-born physician-scientist Andreas Grüntzig (1939-1985) for the first time applied a balloon-tipped catheter to re-open a severely stenosed femoral artery, a procedure, which he initially called "percutaneous transluminal dilatation". Balloon angioplasty as a therapy of atherosclerotic vascular disease, for which Grüntzig and Charles T. Dotter (1920-1985) received a nomination for the Nobel Prize in Physiology or Medicine in 1978, became one of the most successful examples of translational medicine in the twentieth century. Known today as percutaneous transluminal angioplasty (PTA) in peripheral arteries or percutaneous transluminal coronary angioplasty (PTCA) or percutaneous coronary intervention (PCI) in coronary arteries, balloon angioplasty has become the method of choice to treat patients with acute myocardial infarction or occluded leg arteries. On the occasion of the 40(th) anniversary of balloon angioplasty, we summarize Grüntzig's life and career in Germany, Switzerland, and the United States and also review the developments in vascular medicine from the 1890s to the 1980s, including Dotter's first accidental angioplasty in 1963. The work of pioneers of catheterization, including Pedro L. Fariñas in Cuba, André F. Cournand in France, Werner Forssmann, Werner Porstmann and Eberhard Zeitler in Germany, António Egas Moniz and Reynaldo dos Santos in Portugal, Sven-Ivar Seldinger in Sweden, and Barney Brooks, Thomas J. Fogarty, Melvin P. Judkins, Richard K. Myler, Dickinson W. Richards, and F. Mason Sones in the United States, is discussed. We also present quotes by Grüntzig and excerpts from his unfinished autobiography, statements of Grüntzig's former colleagues and contemporary witnesses, and have included hitherto unpublished historic photographs and links to archive recordings and historic materials. This year, on June 25, 2014, Andreas Grüntzig would have celebrated his 75(th

  13. Development of a New Coaxial Balloon Catheter System for Balloon-Occluded Retrograde Transvenous Obliteration (B-RTO)

    International Nuclear Information System (INIS)

    Tanoue, Shuichi; Kiyosue, Hiro; Matsumoto, Shunro; Hori, Yuzo; Okahara, Mika; Kashiwagi, Junji; Mori, Hiromu

    2006-01-01

    Purpose. To develop a new coaxial balloon catheter system and evaluate its clinical feasibility for balloon-occluded retrograde transvenous obliteration (B-RTO). Methods. A coaxial balloon catheter system was constructed with 9 Fr guiding balloon catheter and 5 Fr balloon catheter. A 5 Fr catheter has a high flexibility and can be coaxially inserted into the guiding catheter in advance. The catheter balloons are made of natural rubber and can be inflated to 2 cm (guiding) and 1 cm (5 Fr) maximum diameter. Between July 2003 and April 2005, 8 consecutive patients (6 men, 2 women; age range 33-72 years, mean age 55.5 years) underwent B-RTO using the balloon catheter system. Five percent ethanolamine oleate iopamidol (EOI) was used as sclerosing agent. The procedures, including maneuverability of the catheter, amount of injected sclerosing agent, necessity for coil embolization of collateral draining veins, and initial clinical results, were evaluated retrospectively. The occlusion rate was assessed by postcontrast CT within 2 weeks after B-RTO. Results. The balloon catheter could be advanced into the proximal potion of the gastrorenal shunt beyond the collateral draining vein in all cases. The amount of injected EOI ranged from 3 to 34 ml. Coil embolization of the collateral draining vein was required in 2 cases. Complete obliteration of gastric varices on initial follow-up CT was obtained in 7 cases. The remaining case required re-treatment that resulted in complete obstruction of the varices after the second B-RTO. No procedure-related complications were observed. Conclusion. B-RTO using the new coaxial balloon catheter is feasible. Gastric varices can be treated more simply by using this catheter system

  14. Apparatus for assembly of microelectronic devices

    Science.gov (United States)

    Okandan, Murat; Nielson, Gregory N.; Cruz-Campa, Jose Luis; Lavin, Judith Maria; Resnick, Paul J.

    2017-09-12

    An apparatus including a carrier substrate configured to move a microelectronic device. The apparatus further includes a rotatable body configured to receive the microelectronic device. Additionally, the apparatus includes a second substrate configured to receive the microelectronic device from the rotatable body.

  15. OCT evaluation of directional atherectomy compared to balloon angioplasty

    Energy Technology Data Exchange (ETDEWEB)

    Marmagkiolis, Konstantinos [Citizens Memorial Hospital Heart and Vascular Institute, Bolivar, MO (United States); Lendel, Vasili [Arkansas Heart Hospital, Peripheral Vascular Institute, Little Rock, AR (United States); Cilingiroglu, Mehmet, E-mail: mcilingiroglu@yahoo.com [Arkansas Heart Hospital, Peripheral Vascular Institute, Little Rock, AR (United States); Koc University, School of Medicine, Istanbul (Turkey)

    2015-09-15

    Directional atherectomy (DA) is one of the most commonly used modalities for the treatment of obstructive femoropopliteal peripheral arterial disease (PAD), especially in patients with large and calcified atherosclerotic plaques. The effect of directional atherectomy to the vascular wall compared to balloon angioplasty by optical coherence tomography (OCT) has not been previously described. We present the first case of OCT after directional atherectomy with SilverHawk followed by angiosculpt balloon angioplasty. - Highlights: • Directional atherectomy avoids the vascular mechanical damage caused by angioplasty balloons and the exposure of stent struts or the potential of stent fracture with stents. • OCT can accurately assess the effect of endovacular interventions to the vessel wall. • Although angiographic results after directional atherectomy are acceptable, OCT use demonstrated suboptimal improvement of the MLA requiring additional balloon angioplasty. • Longer studies are needed to define whether the improved OCT results with angioplasty compared to DA may offer better clinical outcomes.

  16. Remote sensing and sensor testing via hot air balloons

    Energy Technology Data Exchange (ETDEWEB)

    Watson, S.M. [Univ. of Utah, Salt Lake City, UT (United States); Kroutil, R.T. [Army Edgewood Research, Development and Engineering Center, Aberdeen Proving Ground, MD (United States); Traynor, C.A. [DARPA High Performance Computing Applications, Arlington, VA (United States)] [and others

    1996-11-01

    Tethered and free-flying manned hot air balloons have been demonstrated as platforms for various remote sensing asks and sensor testing and atmospheric measurements. These platforms are inexpensive to operate, do not cause atmospheric disturbances as do higher speed platforms, and are extremely stable and free of vibrations inherent in aircraft structures. The equipment operated and tested on the balloons in connection with this project includes a prototype multispectral imaging spectrometer, high resolution CCD cameras, mid- and far-infrared cameras, a radiometer, FTIR spectrometers, video recording equipment and portable power generators carried beneath the balloon providing power to the equipment The experiments conducted on and from the balloon include chemical effluents characterization, atmospheric propagation through slant paths, obscurants imaging and scene reflectance. 7 refs.

  17. Development of Venus Balloon Seismology Missions Through Earth Analog Experiments

    Science.gov (United States)

    Krishnamoorthy, S.; Komjathy, A.; Cutts, J. A.; Pauken, M. T.; Garcia, R. F.; Mimoun, D.; Jackson, J. M.; Kedar, S.; Smrekar, S. E.; Hall, J. L.

    2017-11-01

    The study of a planet’s seismic activity is central to the understanding of its internal structure. We discuss advances made through Earth analog testing for performing remote seismology on Venus using balloons floated in the mid-atmosphere.

  18. Stabilization of ballooning modes with sheared toroidal rotation

    International Nuclear Information System (INIS)

    Miller, R.L.; Waelbroeck, F.L.; Hassam, A.B.; Waltz, R.E.

    1995-01-01

    Stabilization of magnetohydrodynamic ballooning modes by sheared toroidal rotation is demonstrated using a shifted circle equilibrium model. A generalized ballooning mode representation is used to eliminate the fast Alfven wave, and an initial value code solves the resulting equations. The s-α diagram (magnetic shear versus pressure gradient) of ballooning mode theory is extended to include rotational shear. In the ballooning representation, the modes shift periodically along the field line to the next point of unfavorable curvature. The shift frequency (dΩ/dq, where Ω is the angular toroidal velocity and q is the safety factor) is proportional to the rotation shear and inversely proportional to the magnetic shear. Stability improves with increasing shift frequency and direct stable access to the second stability regime occurs when this frequency is approximately one-quarter to one-half the Alfven frequency, ω A =V A /qR. copyright 1995 American Institute of Physics

  19. Design Evolution and Methodology for Pumpkin Super-Pressure Balloons

    Science.gov (United States)

    Farley, Rodger

    The NASA Ultra Long Duration Balloon (ULDB) program has had many technical development issues discovered and solved along its road to success as a new vehicle. It has the promise of being a sub-satellite, a means to launch up to 2700 kg to 33.5 km altitude for 100 days from a comfortable mid-latitude launch point. Current high-lift long duration ballooning is accomplished out of Antarctica with zero-pressure balloons, which cannot cope with the rigors of diurnal cycles. The ULDB design is still evolving, the product of intense analytical effort, scaled testing, improved manufacturing, and engineering intuition. The past technical problems, in particular the s-cleft deformation, their solutions, future challenges, and the methodology of pumpkin balloon design will generally be described.

  20. A battery-operated pilot balloon time-signal generator

    Science.gov (United States)

    Ralph H. Moltzau

    1966-01-01

    Describes the design and construction of a 1-pound, battery-operated, time-signal transmitter, which is usable with portable radio or field telephone circuits for synchronizing multi-theodolite observation of pilot balloons.

  1. Balloon valvuloplasty for severe mitral valve stenosis in pregnancy

    African Journals Online (AJOL)

    . Commerford, B. Levetan. Balloon Valvuloplasties for severe mitral stenosis were performed on 11 ... 140 patients each year with cardiac disease - an incidence of 0.5%. ... Department of Medicine, Groote Schuur Hospital and University of.

  2. Ballooning stability analysis of JET H-mode discharges

    International Nuclear Information System (INIS)

    O'Brien, D.P.; Galvao, R.; Keilhacker, M.; Lazzaro, E.; Watkins, M.L.

    1989-01-01

    Previous studies of the stability of a large aspect ratio model equilibrium to ideal MHD ballooning modes have shown that across the bulk of the plasma there exist two marginally stable values of the pressure gradient parameter α. These define an unstable zone which separates the first (small α) stable region from the second (large α) stable region. Close to the separatrix, however, the first and second regions can coalesce when the surface averaged current density, Λ, exceeds a critical value. The plasma in this region is then stable to ballooning modes at all values of the pressure gradient. In this paper we extend these results to JET H-mode equilibria using a finite aspect ratio ballooning formalism, and assess the relevance of ideal ballooning stability in these discharges. In particular we analyse shot 15894 at time 56 sec. which is 1.3 s into the H-phase. (author) 4 refs., 4 figs

  3. 10 meter Sub-Orbital Large Balloon Reflector (LBR)

    Data.gov (United States)

    National Aeronautics and Space Administration — This is the lead NIAC Phase II proposal for “10 meter Sub-Orbital Large Balloon Reflector (LBR)” with Christopher K. Walker as PI. We propose to develop and...

  4. Ideal ballooning stability near an equilibrium magnetic island

    Energy Technology Data Exchange (ETDEWEB)

    Hegna, C.C.; Callen, J.D.

    1992-03-01

    The stability properties of ideal ballooning modes on toroidal flux surfaces near a quasistatic magnetic island is examined. On these surfaces, magnetic field-line trajectories tend to bunch on that part of the magnetic surface closet to the X-point of the magnetic island. Because of this preferential bunching, the stabilizing effect of field-line bending due to magnetic shear can be reduced. Eigenfunctions localized in helical angle near the X-point and in poloidal angle on the bad curvature side of the tokamak are more susceptible to ballooning instability than are modes in corresponding equilibria without the magnetic island. For a slowly growing island, a growing number of flux surfaces located near the separatrix become ballooning unstable. Secondary ballooning instabilities may play a part in the crash phase of sawteeth or macroscopic island dynamics.

  5. Properties of ballooning modes in the Heliotron configurations

    International Nuclear Information System (INIS)

    Nakajima, N.; Hudson, S.R.; Hegna, C.C.

    2005-01-01

    The stability of ballooning modes is influenced by the local and global magnetic shear and local and global magnetic curvature so significantly that it is fairly difficult to get those general properties in the three dimensional configurations with strong flexibility due to the external coil system. In the case of the planar axis heliotron configurations allowing a large Shafranov shift, like LHD, properties of the high-mode-number ballooning modes have been intensively investigated. It has been analytically shown that the local magnetic shear comes to disappear in the stellarator-like global magnetic shear region, as the Shafranov shift becomes large. Based on this mechanism and the characteristics of the local and global magnetic curvature, it is numerically shown that the destabilized ballooning modes have strong three-dimensional properties (both poloidal and toroidal mode couplings) in the Mercier stable region, and that those are fairly similar to ballooning modes in the axisymmetric system in the Mercier unstable region. As is well known, however, no quantization condition is applicable to the ballooning modes in the three-dimensional system without symmetry, and so the results of the high-mode-number ballooning modes in the covering space had to be confirmed in the real space. Such a confirmation has been done in the Mercier stable region and also in the Mercier unstable region by using three dimensional linearized ideal MHD stability code cas3d. Confirming the relation between high-mode-number ballooning analyses by the global mode analyses, the method of the equilibrium profile variations has been developed in the tree dimensional system, giving dt/dψ - dP/dψ stability diagram corresponding to the s - α diagram in tokamaks. This method of profile variation are very powerful to investigate the second stability of high-mode-number ballooning modes and has been more developed. Recently it has been applied to the plasma in the inward-shifted LHD

  6. Overview of the Scientific Balloon Activity in Sweden

    Science.gov (United States)

    Abrahamsson, Mattias; Kemi, Stig; Lockowandt, Christian; Andersson, Kent

    SSC, formerly known as Swedish Space Corporation, is a Swedish state-owned company working in several different space related fields, including scientific stratospheric balloon launches. Esrange Space Centre (Esrange in short) located in the north of Sweden is the launch facility of SSC, where both sounding rocket launches and stratospheric balloon launches are conducted. At Esrange there are also facilities for satellite communication, including one of the largest civilian satellite data reception stations in the world. Stratospheric balloons have been launched from Esrange since 1974, when the first flights were performed together with the French space agency CNES. These balloon flights have normally flown eastward either only over Sweden or into Finland. Some flights have also had permission to fly into Russia, as far as the Ural Mountains. Normal flight times are from 4 to 12 hours. These eastward flights are conducted during the winter months (September to May). Long duration flights have been flown from ESC since 2005, when NASA flew the BLAST payload from Sweden to north Canada. The prevailing westerly wind pattern is very advantageous for trans-Atlantic flights during summer (late May to late July). The long flight times are very beneficial for astronomical payloads, such as telescopes that need long observation times. In 2013 two such payloads were flown, the first called SUNRISE was a German/US solar telescope, and the other called PoGOLite with a Swedish gamma-ray telescope. In 14 days PoGOLite, which had permission to fly over Russia, made an almost complete circumpolar flight. Typical scientific balloon payload fields include atmospheric research, including research on ozone depletion, astronomical and cosmological research, and research in technical fields such as aerodynamics. University students from all over Europe are involved in flights from Esrange under a Swedish/German programme called BEXUS. Two stratospheric balloons are flown with student

  7. The Evaluation of Endoscopic Balloon Dilation Treatment for Benign

    Directory of Open Access Journals (Sweden)

    H. Ghofrani

    2008-04-01

    Full Text Available Background and ObjectiveBalloon dilatation of stricture is one of the new treatment methods for patients with Gastric Outlet Obstruction (GOO. Prevalence and underlying etiologies of GOO in various populations are different. The goal of the present study was to determine the effectiveness of endoscopic balloon dilatation and factors that could affect method advantage among patients with benign etiology for GOO. Methods Forty-five patients with symptoms of benign GOO were randomly selected. The mean age of patients was 43.7±18.1 years and 86.7% of them were men. Gastric outlet was delineated using double channel videoendoscopy. The severity of gastric pain was measured by VAS test immediately before and one month after balloon dilatation. Patients were followed after procedure weekly (for the first month and then monthly. Balloon dilatation was repeated for 27% patients during the follow up period.ResultsPatients were followed for 9.9±5.8 months. Furthermore, 71.1% were H. pylori positive. Positive response percent to endoscopic balloon dilatation was 80% and eight patients were took under surgical resection. Weight loss was seen frequently in the non-respondent group. The pain severity was significantly reduced in respondent subjects. No meaningful correlations were found between the response to balloon dilatation and positive H. pylori and cigarette smoking.ConclusionEndoscopic balloon dilatation is a safe and effective method for treating most of patients with benign gastric outlet obstruction and has favorable long-term outcome. Keywords: Endoscopy, Gastric Outlet Obstruction (GOO, Balloon Dilatation

  8. Ballooning Stability of the Compact Quasiaxially Symmetric Stellarator

    International Nuclear Information System (INIS)

    Redi, M.H.; Canik, J.; Dewar, R.L.; Johnson, J.L.; Klasky, S.; Cooper, W.A.; Kerbichler, W.

    2001-01-01

    The magnetohydrodynamic (MHD) ballooning stability of a compact, quasiaxially symmetric stellarator (QAS), expected to achieve good stability and particle confinement is examined with a method that can lead to estimates of global stability. Making use of fully 3D, ideal-MHD stability codes, the QAS beta is predicted to be limited above 4% by ballooning and high-n kink modes. Here MHD stability is analyzed through the calculation and examination of the ballooning mode eigenvalue isosurfaces in the 3-space [s, alpha, theta(subscript ''k'')]; s is the edge normalized toroidal flux, alpha is the field line variable, and theta(subscript ''k'') is the perpendicular wave vector or ballooning parameter. Broken symmetry, i.e., deviations from axisymmetry, in the stellarator magnetic field geometry causes localization of the ballooning mode eigenfunction, with new types of nonsymmetric, eigenvalue isosurfaces in both the stable and unstable spectrum. The isosurfaces around the most unstable points i n parameter space (well above marginal) are topologically spherical. In such cases, attempts to use ray tracing to construct global ballooning modes lead to a k-space runaway. Introduction of a reflecting cutoff in k(perpendicular) to model numerical truncation or finite Larmor radius (FLR) yields chaotic ray paths ergodically filling the allowed phase space, indicating that the global spectrum must be described using the language of quantum chaos theory. However, the isosurface for marginal stability in the cases studied are found to have a more complex topology, making estimation of FLR stabilization more difficult

  9. New apparatus of JMTR hot laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Haru Yuki; Kawa Mura, Hiro Shi [Japan Atomic Energy Research Institute, Tokai (Japan)

    1995-09-15

    In the Hot Laboratory, PIE apparatus and technology have been continuously developed and expanded to accommodate the needs of researchers. Especially from 1994 to 1995, several apparatus were extensively developed and are being installed as follows: 1)PIE equipment for beryllium examinations To measure the tritium release rate, thermal coefficient and so on of irradiated beryllium, four glove boxes and apparatus were installed. 2)Welding and machining apparatus To evaluate the weldability of fusion reactor materials, plates of SUS 316 and Inconel 625 irradiated in the JMTR were welded, machined to test pieces and then subjected to tensile test. 3)Electron beam heat load testing apparatus To perform high heat load test and thermal shock test for plasma facing materials of fusion reactor, an electron beam heating apparatus was manufactured and installed in a concrete cell. 4)Test piece manufacturing apparatus A cutting apparatus to cut the tube of in pile loop used in the JMTR, and an electro discharge machining apparatus to manufacture the test pieces were installed. 5)IASCC testing apparatus To perform the stress corrosion cracking test in high temperature water, an IASCC testing apparatus was installed and offered many useful data.

  10. Construction of shallow land simulation apparatuses

    International Nuclear Information System (INIS)

    Yamamoto, Tadatoshi; Ohtsuka, Yoshiro; Takebe, Shinichi; Ohnuki, Toshihiko; Ogawa, Hiromichi; Harada, Yoshikane; Saitoh, Kazuaki; Wadachi, Yoshiki

    1984-07-01

    Shallow land simulation apparatuses in which natural soil can be used as testing soil have been constructed to investigate the migration characteristics of radionuclides in a disposal site. These apparatuses consist of aerated zone apparatus and aquifer zone one. In the aerated zone apparatus, aerated soil upon ground water level is contained in the soil column (d: 30cm x h: 120cm). In the aquifer zone apparatus, aquifer soil laying ground water level is contained in the soil vessel (b: 90cm x l: 270cm x h: 45cm). This report describes the outline of shallow land simulation apparatuses : function of apparatuses and specification of devices, analysis of obstructions, safety rules, analysis of accidents and operation manual. (author)

  11. Synthesis gas method and apparatus

    Science.gov (United States)

    Kelly, Sean M.; Kromer, Brian R.; Litwin, Michael M.; Rosen, Lee J.; Christie, Gervase Maxwell; Wilson, Jamie R.; Kosowski, Lawrence W.; Robinson, Charles

    2013-01-08

    A method and apparatus for producing a synthesis gas product having one or more oxygen transport membrane elements thermally coupled to one or more catalytic reactors such that heat generated from the oxygen transport membrane element supplies endothermic heating requirements for steam methane reforming reactions occurring within the catalytic reactor through radiation and convention heat transfer. A hydrogen containing stream containing no more than 20 percent methane is combusted within the oxygen transport membrane element to produce the heat and a heated combustion product stream. The heated combustion product stream is combined with a reactant stream to form a combined stream that is subjected to the reforming within the catalytic reactor. The apparatus may include modules in which tubular membrane elements surround a central reactor tube.

  12. Micromachined patch-clamp apparatus

    Science.gov (United States)

    Okandan, Murat

    2012-12-04

    A micromachined patch-clamp apparatus is disclosed for holding one or more cells and providing electrical, chemical, or mechanical stimulation to the cells during analysis with the patch-clamp technique for studying ion channels in cell membranes. The apparatus formed on a silicon substrate utilizes a lower chamber formed from silicon nitride using surface micromachining and an upper chamber formed from a molded polymer material. An opening in a common wall between the chambers is used to trap and hold a cell for analysis using the patch-clamp technique with sensing electrodes on each side of the cell. Some embodiments of the present invention utilize one or more electrostatic actuators formed on the substrate to provide mechanical stimulation to the cell being analyzed, or to provide information about mechanical movement of the cell in response to electrical or chemical stimulation.

  13. Thermoplastic welding apparatus and method

    Energy Technology Data Exchange (ETDEWEB)

    Matsen, Marc R.; Negley, Mark A.; Geren, William Preston; Miller, Robert James

    2017-03-07

    A thermoplastic welding apparatus includes a thermoplastic welding tool, at least one tooling surface in the thermoplastic welding tool, a magnetic induction coil in the thermoplastic welding tool and generally encircling the at least one tooling surface and at least one smart susceptor in the thermoplastic welding tool at the at least one tooling surface. The magnetic induction coil is adapted to generate a magnetic flux field oriented generally parallel to a plane of the at least one smart susceptor.

  14. Coated substrate apparatus and method

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Zhenan; Diao, Ying; Mannsfeld, Stefan Christian Bernhardt; Tee, Chee-Keong; Becerril-Garcia, Hector A.; Zhou, Yan

    2018-01-09

    A coated substrate is formed with aligned objects such as small molecules, macromolecules and nanoscale particulates, such as inorganic, organic or inorganic/organic hybrid materials. In accordance with one or more embodiments, an apparatus or method involves an applicator having at least one surface patterned with protruded or indented features, and a coated substrate including a solution-based layer of objects having features and morphology attributes arranged as a function of the protruded or indented features.

  15. Cooling apparatus and couplings therefor

    Science.gov (United States)

    Lomax, Curtis; Webbon, Bruce

    1993-11-01

    A cooling apparatus includes a container filled with a quantity of coolant fluid initially cooled to a solid phase, a cooling loop disposed between a heat load and the container. A pump for circulating a quantity of the same type of coolant fluid in a liquid phase through the cooling loop, a pair of couplings for communicating the liquid phase coolant fluid into the container in a direct interface with the solid phase coolant fluid.

  16. Apparatus for entrained coal pyrolysis

    Science.gov (United States)

    Durai-Swamy, Kandaswamy

    1982-11-16

    This invention discloses a process and apparatus for pyrolyzing particulate coal by heating with a particulate solid heating media in a transport reactor. The invention tends to dampen fluctuations in the flow of heating media upstream of the pyrolysis zone, and by so doing forms a substantially continuous and substantially uniform annular column of heating media flowing downwardly along the inside diameter of the reactor. The invention is particularly useful for bituminous or agglomerative type coals.

  17. Multipurpose Thermal Insulation Test Apparatus

    Science.gov (United States)

    Fesmire, James E. (Inventor); Augustynowicz, Stanislaw D. (Inventor)

    2002-01-01

    A multi-purpose thermal insulation test apparatus is used for testing insulation materials, or other components. The test apparatus is a fluid boil-off calorimeter system for calibrated measurement of the apparent thermal conductivity (k-value) of a specimen material at a fixed vacuum level. The apparatus includes an inner vessel for receiving a fluid with a normal boiling point below ambient temperature, such as liquid nitrogen, enclosed within a vacuum chamber. A cold mass assembly, including the inner vessel and thermal guards, is suspended from the top of the vacuum chamber. Handling tools attach to the cold mass assembly for convenient manipulation of the assembly and for the installation or wrapping of insulation test materials. Liquid nitrogen is typically supplied to the inner vessel using a fill tube with funnel. A single port through the top of the vacuum chamber facilitates both filling and venting. Aerogel composite stacks with reflective films are fastened to the top and the bottom of the inner vessel as thermal guards. The comparative k-value of the insulation material is determined by measuring the boil-off flow rate of gas, the temperature differential across the insulation thickness, and the dimensions (length and diameters) of the test specimen.

  18. Apparatus for making molten silicon

    Science.gov (United States)

    Levin, Harry (Inventor)

    1988-01-01

    A reactor apparatus (10) adapted for continuously producing molten, solar grade purity elemental silicon by thermal reaction of a suitable precursor gas, such as silane (SiH.sub.4), is disclosed. The reactor apparatus (10) includes an elongated reactor body (32) having graphite or carbon walls which are heated to a temperature exceeding the melting temperature of silicon. The precursor gas enters the reactor body (32) through an efficiently cooled inlet tube assembly (22) and a relatively thin carbon or graphite septum (44). The septum (44), being in contact on one side with the cooled inlet (22) and the heated interior of the reactor (32) on the other side, provides a sharp temperature gradient for the precursor gas entering the reactor (32) and renders the operation of the inlet tube assembly (22) substantially free of clogging. The precursor gas flows in the reactor (32) in a substantially smooth, substantially axial manner. Liquid silicon formed in the initial stages of the thermal reaction reacts with the graphite or carbon walls to provide a silicon carbide coating on the walls. The silicon carbide coated reactor is highly adapted for prolonged use for production of highly pure solar grade silicon. Liquid silicon (20) produced in the reactor apparatus (10) may be used directly in a Czochralski or other crystal shaping equipment.

  19. Balloon catheter dilatation of benign urethral strictures

    International Nuclear Information System (INIS)

    Perini, L.; Cavallo, A.; Perin, B.; Bighi, G.

    1988-01-01

    The authors report their experience of benign urethral stricture dilatation by balloon catheter in 11 male patients. Ten posterior and 2 anterior urethral strictures were treated; in 1 patients several narrowings coexisted at various levels. Etiology was inflammatory in 4 cases, iatrogen in 3, post-traumatic in 2, and equivocal in 2. The patients were studied both before and soon after dilatation by means of retrograde and voiding cystourethrogram and uroflowgraphy; the follow-up (2-14 months) was performed by urodynamic alone. In all cases, dilatation was followed by the restoration of urethral gauge, together with prompt functional improvement of urodynamic parameters. The latter result subsisted in time in 9 patients. In 2 cases recurrences were observed demonstrated at once by clinics and urodynamics. Both lesions were successfully re-treated. Neither early not late complication occurred. In spite of the limited material, the valuable results obtained, together with the absence of complications, the peculiar morphology of recurrences, and the chance of repeating it make the procedure advisable as a valid alternative to conventional techniques for these pathologies

  20. Retrograde prostatic urethroplasty with a balloon catheter

    International Nuclear Information System (INIS)

    Castaneda, F.; Reddy, P.; Hulbert, J.; Letourneau, J.G.; Hunter, D.W.; Castaneda-Zuniga, W.R.; Amplatz, K.

    1987-01-01

    Twenty-five patients with prostatism and documented BPH who were candidates for transurethral resection of the prostate were dilated for 10 minutes with 25-mm urethroplasty balloons using a retrograde transurethral approach. The procedure was performed under local anesthesia using 2% viscous lidocaine on an outpatient basis. A mild discomfort was experienced by all patients with a moderate urgency sensation. Mild transient hematuria was present in all, which cleared in 4 to 6 hours. Dysuria usually lasted for 72 hours. Significant improvement has been seen in the relief of symptoms in patients without middle-lobe hypertrophy as documented by uroflow studies, voiding cystourethrograms, and retrograde urethrograms. In patients with middle-lobe hypertrophy, moderate improvement in uroflow studies was observed, which correlated well with symptomatic improvement. Rectal US and MR studies have shown no evidence of intraprostatic or periprostatic abnormalities. No complications have been encountered so far. The longest current follow-up is 20 months, with a mean of 10 months

  1. Mechanism of prostatic urethroplasty with balloon catheter

    International Nuclear Information System (INIS)

    Castaneda, F.; Maynar, M.; Hulbert, J.

    1988-01-01

    A series of 60 patients have undergone prostatic urethroplasty with balloon catheters at our institution. The follow-up of these patients has ranged from more than 3 years to not less than 6 months. The preliminary results have been excellent, with a success rate of 75% in patients with predominant lateral lobe hypertrophy. This success rate drops to 25% in patients with predominant middle lobe hypertrophy. In previous communications the authors have proposed that the mechanism of prostatic urethral relief of obstruction is due to stretching of the prostatic capsule, tissue compression, and possible subsequent atrophy, as suggested by findings of transrectal US, MR imaging, voiding and retrograde urethrography, and urinary flow studies. Recent clinical information that has led to further animal research has shown that in addition to the previously supposed mechanism of action, separation of the prostatic lobes occurs by splitting of the anterior and posterior commissures of the prostatic gland tissue. This separation of the prostatic lobes is therefore the goal of the procedure. As more experience is gained, the already high success rate can probably be improved

  2. Percutaneous balloon valvuloplasty in mitral stenosis

    International Nuclear Information System (INIS)

    Park, Jae Hyung; Oh, Byung Hee; Park, Kyung Ju; Kim, Seung Hyup; Lee, Young Woo; Han, Man Chung

    1989-01-01

    Percutaneous balloon valvuloplasty(PBV) was successfully performed in 8 mitral stenosis patients for recent 3 months. Five patients have aortic insufficiencies also and two patients have mitral regurgitations below grade II/IV. All patients showed sinus rhythm on EKG, and had no mitral valvular calcification on echocardiography and fluoroscopy. PBV resulted in an increase in mitral valve area from 1.22±0.22 to 2.57±0.86 cm 2 , a decrease in mean left atrial pressure from 23.4±9.6 to 7.5±3.4 mmHg and a decrease in mean mitral pressure gradient from 21.3±9.4 to 6.8±3.1 mmHg. There were no significant complications except 2 cases of newly appeared and mildly aggravated mitral regurgitation. We believe that PBV will become a treatment modality of choice replacing surgical commissurotomy or valve replacement in a group of mitral stenosis patients, because of its effectiveness and safety

  3. The University of Alberta High Altitude Balloon Program

    Science.gov (United States)

    Johnson, W.; Buttenschoen, A.; Farr, Q.; Hodgson, C.; Mann, I. R.; Mazzino, L.; Rae, J.; University of Alberta High Altitude Balloon Team

    2011-12-01

    The University of Alberta High Altitude Balloon (UA-HAB) program is a one and half year program sponsored by the Canadian Space Agency (CSA) that offers hands on experience for undergraduate and graduate students in the design, build, test and flight of an experimental payload on a high altitude balloon platform. Utilising low cost weather balloon platforms, and through utilisation of the CSA David Florida Laboratory for thermal-vacuum tests , in advance of the final flight of the payload on a NASA high altitude balloon platform. Collectively the program provided unique opportunities for students to experience mission phases which parallel those of a space satellite mission. The program has facilitated several weather balloon missions, which additionally provide educational opportunities for university students and staff, as well as outreach opportunities among junior and senior high school students. Weather balloon missions provide a cheap and quick alternative to suborbital missions; they can be used to test components for more expensive missions, as well as to host student based projects from different disciplines such as Earth and Atmospheric Sciences (EAS), Physics, and Engineering. In addition to extensive skills development, the program aims to promote recruitment of graduate and undergraduate students into careers in space science and engineering. Results from the UA-HAB program and the flight of the UA-HAB shielded Gieger counter payload for cosmic ray and space radiation studies will be presented. Lessons learned from developing and maintaining a weather balloon program will also be discussed. This project is undertaken in partnership with the High Altitude Student Platform, organized by Louisiana State University and the Louisiana Space Consortium (LaSpace), and sponsored by NASA, with the financial support of the Canadian Space Agency.

  4. Cerebral ischemia associated with PercuSurge balloon occlusion balloon during carotid stenting: Incidence and possible mechanisms.

    Science.gov (United States)

    Chaer, Rabih A; Trocciola, Susan; DeRubertis, Brian; Lin, Stephanie C; Kent, K Craig; Faries, Peter L

    2006-05-01

    Interruption of antegrade cerebral perfusion results in transient neurologic intolerance in some patients undergoing carotid angioplasty and stenting (CAS). This study sought to evaluate factors that contributed to the development of cerebral ischemia during PercuSurge balloon occlusion and techniques used to allow successful completion of the CAS procedure. The PercuSurge occlusion balloon was used in 43 of 165 patients treated with CAS for high-grade stenosis (mean stenosis, 90%). All 43 patients were at increased risk for endarterectomy (7 restenosis, 3 irradiation, 3 contralateral occlusion, and 30 Goldman class II-III); 20% were symptomatic. Symptoms of cerebral hypoperfusion during temporary occlusion of the internal carotid artery occurred in 10 of 43 and included dysarthria (7/10), agitation (6/10), decreased level of consciousness (5/10), and focal hemispheric deficit (3/10). An incomplete circle of Willis or contralateral carotid artery occlusion, or both, was present in 8 of 10 patients. Symptoms resulting from PercuSurge balloon occlusion were managed by balloon deflation with or without evacuation of blood from the internal carotid artery using the Export catheter. All symptoms resolved completely without deficit after deflation of the occlusion balloon. The development of neurologic symptoms after initial PercuSurge balloon inflation and occluded internal carotid artery flow was associated with a decrease in the mean Glasgow Coma Scale (GCS) from 15 to 10 (range, 9 to 14); the GCS returned to normal after occlusion balloon deflation and remained normal during subsequent reinflation. The mean time to spontaneous recovery of full neurologic function was 8 minutes (range, 4 to 15 minutes). No thrombotic or embolic events were present on cerebral angiography or computed tomography scan. Balloon reinflation was performed after a mean reperfusion interval of 10 minutes after full neurologic recovery (range, 4 to 20 minutes). The mean subsequent procedure

  5. The ATIC Long Duration Balloon Project

    Science.gov (United States)

    Guzik, T.

    Long Duration Balloon (LDB) scientific experiments, launched to circumnavigate the south pole over Antarctica, have particular advantages compared to Shuttle or other Low Earth Orbit (LEO) missions in terms of cost, weight, scientific "duty factor" and work force development. The Advanced Thin Ionization Calorimeter (ATIC) cosmic ray astrophysics experiment is a good example of a university-based project that takes full advantage of current LDB capability and could effectively use future expansion in launch weight and flight duration. The ATIC experiment is currently being shipped to Antarctica in preparation for its first LDB science flight that will investigate the charge composition and energy spectra of primary cosmic rays over the energy range from about 101 0 to 10 1 4 eV. The instrument is built around a fully active, Bismuth Germanate (BGO) ionization calorimeter to measure the energy deposited by the cascades formed by particles interacting in a thick carbon target. A highly segmented silicon matrix, located above the target, provides good incident charge resolution plus rejection of the "backscattered" particles from the interaction. Trajectory reconstruction is based on the cascade profile in the BGO calorimeter, plus information from the three scintillator hodoscope layers in the target section above it. The hodoscope planes also provide the primary event trigger to initiate the detector readout, another measure of the incident particle charge and an indicator of the interaction point in the carbon material. The scientific payload weighs ~1,540 kg and consumes ~300 Watts of power supplied by a ~580 Watt solar array system. A full evaluation of the experiment was performed during a test flight occurring between 28 December 2000 and 13 January 2001 where ATIC was carried3 to an altitude of ~37 km above Antarctica by a ~850,000 m helium filled balloon for one circumnavigation of the continent. All systems behaved well, the detectors performed as expected

  6. Apparatuses And Systems For Embedded Thermoelectric Generators

    KAUST Repository

    Hussain, Muhammad M.

    2013-08-08

    An apparatus and a system for embedded thermoelectric generators are disclosed. In one embodiment, the apparatus is embedded in an interface where the ambient temperatures on two sides of the interface are different. In one embodiment, the apparatus is fabricated with the interface in integrity as a unitary piece. In one embodiment, the apparatus includes a first thermoelectric material embedded through the interface. The apparatus further includes a second thermoelectric material embedded through the interface. The first thermoelectric material is electrically coupled to the second thermoelectric material. In one embodiment, the apparatus further includes an output structure coupled to the first thermoelectric material and the second thermoelectric material and configured to output a voltage.

  7. Ideal ballooning stability of JET discharges

    International Nuclear Information System (INIS)

    Galvao, R.M.O.; Lazzaro, E.; O'Rourke, J.; Smeulders, P.; Schmidt, G.

    1989-01-01

    Conditions under which ballooning modes are expected to be excited have recently been obtained in two different types of discharges in JET. In the first type, discharges with β approaching the Troyon-Sykes-Wesson critical value β c for optimised pressure profiles have been produced at low toroidal fields (B T =1.5T). In the second type, extremely high pressure gradients have been produced in the plasma core through pellet injection in the current rise phase of the discharge followed by strong additional heating. The stability of these discharges has been studied with the stability code HBT coupled to the equilibrium identification code IDENTC. The equilibrium pressure and diamagnetic function profiles are determined in IDENTC by an optimisation procedure to fit the external magnetic measurements. The resulting pressure profile in the equatorial plane is then compared with the profile derived from 'direct' measurements, i.e. electron density and temperature profiles measured by the LIDAR diagnostic system, ion-temperature profile measured by the charge-exchange diagnostic system, and ion density profile calculated from the Z eff and electron density profiles. Furthermore, the value of the safety factor q on axis is compared with that determined from polarimetry. When good agreement is found, the output data from IDENTC is passed directly to HBT to carry out the stability analysis. When there is not a good agreement, as in the case of pellet discharges with highly peaked pressure profiles, the equilibrium is reevaluated using the 'experimental' profile and the data from polarimetry. (author) 6 refs., 4 figs

  8. Advances in the Remote Monitoring of Balloon Flights

    Science.gov (United States)

    Breeding, S.

    At the National Scientific Balloon Facility (NSBF), we must staff the Long Duration Balloon (LDB) control center 24 hours a day during LDB flights. This requires three daily shifts of two operators (balloon control and tdrss scheduling). In addition to this we also have one engineer on-call as LDB Lead to resolve technical issues and one manager on-call for flight management. These on-call periods are typically 48 to 72 hours in length. In the past the on-call staff had to travel to the LDB control center in order to monitor the status of a flight in any detail. This becomes problematic as flight durations push out beyond 20 to 30 day lengths, as these staff members are not available for business travel during these periods. This paper describes recent advances which allow for the remote monitoring of scientific balloon flight ground station computer displays. This allows balloon flight managers and lead engineers to check flight status and performance from any location with a network or telephone connection. This capability frees key personnel from the NSBF base during flights. It also allows other interested parties to check on the flight status at their convenience.

  9. Time-dependent strains and stresses in a pumpkin balloon

    Science.gov (United States)

    Gerngross, T.; Xu, Y.; Pellegrino, S.

    This paper presents a study of pumpkin-shaped superpressure balloons consisting of gores made from a thin polymeric film attached to high stiffness meridional tendons This type of design is being used for the NASA ULDB balloons The gore film shows considerable time-dependent stress relaxation whereas the behaviour of the tendons is essentially time-independent Upon inflation and pressurization the instantaneous i e linear-elastic strain and stress distributions in the film show significantly higher values in the meridional direction However over time and due to the biaxial visco-elastic stress relaxation of the the gore material the em hoop strains increase and the em meridional stresses decrease whereas the em remaining strain and stress components remain substantially unchanged These results are important for a correct assessment of the structural integrity of a pumpkin balloon in a long-duration mission both in terms of the material performance and the overall stability of the shape of the balloon An experimental investigation of the time dependence of the biaxial strain distribution in the film of a 4 m diameter 48 gore pumpkin balloon is presented The inflated shape of selected gores has been measured using photogrammetry and the time variation in strain components at some particular points of these gores has been measured under constant pressure and temperature The results show good correlation with a numerical study using the ABAQUS finite-element package that includes a widely used model of

  10. Aerial Deployment and Inflation System for Mars Helium Balloons

    Science.gov (United States)

    Lachenmeler, Tim; Fairbrother, Debora; Shreves, Chris; Hall, Jeffery, L.; Kerzhanovich, Viktor V.; Pauken, Michael T.; Walsh, Gerald J.; White, Christopher V.

    2009-01-01

    A method is examined for safely deploying and inflating helium balloons for missions at Mars. The key for making it possible to deploy balloons that are light enough to be buoyant in the thin, Martian atmosphere is to mitigate the transient forces on the balloon that might tear it. A fully inflated Mars balloon has a diameter of 10 m, so it must be folded up for the trip to Mars, unfolded upon arrival, and then inflated with helium gas in the atmosphere. Safe entry into the Martian atmosphere requires the use of an aeroshell vehicle, which protects against severe heating and pressure loads associated with the hypersonic entry flight. Drag decelerates the aeroshell to supersonic speeds, then two parachutes deploy to slow the vehicle down to the needed safe speed of 25 to 35 m/s for balloon deployment. The parachute system descent dynamic pressure must be approximately 5 Pa or lower at an altitude of 4 km or more above the surface.

  11. Multispectral imaging method and apparatus

    Science.gov (United States)

    Sandison, David R.; Platzbecker, Mark R.; Vargo, Timothy D.; Lockhart, Randal R.; Descour, Michael R.; Richards-Kortum, Rebecca

    1999-01-01

    A multispectral imaging method and apparatus adapted for use in determining material properties, especially properties characteristic of abnormal non-dermal cells. A target is illuminated with a narrow band light beam. The target expresses light in response to the excitation. The expressed light is collected and the target's response at specific response wavelengths to specific excitation wavelengths is measured. From the measured multispectral response the target's properties can be determined. A sealed, remote probe and robust components can be used for cervical imaging

  12. Nitrogen fixation method and apparatus

    Science.gov (United States)

    Chen, H.L.

    1983-08-16

    A method and apparatus for achieving nitrogen fixation includes a volumetric electric discharge chamber. The volumetric discharge chamber provides an even distribution of an electron beam, and enables the chamber to be maintained at a controlled energy to pressure (E/p) ratio. An E/p ratio of from 5 to 15 kV/atm of O[sub 2]/cm promotes the formation of vibrationally excited N[sub 2]. Atomic oxygen interacts with vibrationally excited N[sub 2] at a much quicker rate than unexcited N[sub 2], greatly improving the rate at which NO is formed. 1 fig.

  13. X-ray diffraction apparatus

    International Nuclear Information System (INIS)

    Padini, F.R.

    1978-01-01

    The invention provides an x-ray diffraction apparatus permitting the rotation of the divergence sit in conjunction with the rotation of the x-ray irradiated specimen, whereby the dimensions of the x-ray irradiated portion of the specimen remain substantially constant during the rotation of the specimen. In a preferred embodiment, the divergence slit is connected to a structural element linked with a second structural element connected to the specimen such that the divergence slit rotates at a lower angular speed than the specimen

  14. Coeliac cavity ultrasonic diagnosis apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Ando, O.; Suwaki, T.

    1983-07-05

    A coeliac cavity ultrasonic diagnosis apparatus is disclosed which includes an ultrasonic transducer or scanner portion adapted to be inserted into a coeliac cavity to effect a sector scan of an ultrasonic beam to produce an ultrasonic image of internal tissues and in which the ultrasonic oscillator on the one hand and an ultrasonic reflecting mirror and rotary disc on the other hand are relatively rotated so as to effect the sector scan of the ultrasonic beam and the rotary angle of the rotary disc is detected so as to obtain a deflecting angle of the ultrasonic beam and a display on a cathode ray tube of a precise ultrasonic picture image.

  15. Cluster Implantation and Deposition Apparatus

    DEFF Research Database (Denmark)

    Hanif, Muhammad; Popok, Vladimir

    2015-01-01

    In the current report, a design and capabilities of a cluster implantation and deposition apparatus (CIDA) involving two different cluster sources are described. The clusters produced from gas precursors (Ar, N etc.) by PuCluS-2 can be used to study cluster ion implantation in order to develop...... contributions to the theory of cluster stopping in matter as well as for practical applications requiring ultra-shallow implantation and modification of surfaces on the nanoscale. Metal clusters from the magnetron cluster source are of interest for the production of optical sensors to detect specific biological...

  16. Functional characterization of the kidneys of preterm infants born to mothers with preeclampsia

    Directory of Open Access Journals (Sweden)

    N. F. Panakhova

    2014-01-01

    Full Text Available The aim of the study was to identify kidney dysfunction in infants born prematurely to mothers with preeclampsia. Forty-eight preterm infants, including 15 babies born to mothers with preeclampsia (a study group, 13 neonates whose mothers had complicated pregnancy without preeclampsia (a comparison group, and 15 apparently healthy infants (a control group were examined. To evaluate renal tubular function, the indicators, namely: kidney injury molecule-1 (ЮМ-1 and neutrophil gelatmase-associated lipokalin-2 (NGAL were determined on 1—3 and 7—10 days of their life. Glomerular filtration rate was estimated to assess the performance of the glomerular apparatus. The study group was found to have the high values of tubular injury markers on 1 to 7—10 days of life, which significantly differed from those in the control and comparison groups (/КО,05. The glomerular filtration rate reflecting the capacity of the glomerular apparatus in the infants born to preeclamptic mothers was lower than that in the control group, but similar to that in the comparison group with a tendency towards normalization by the end of the early neonatal period. Thus, glomerular injury was short-term and abolished during adequate therapy whereas the high urinary levels of KJM-1 and NGAL from the first to 10th days of life confirm persistent tubular injury in the infants born to preeclamptic mothers.

  17. Inexpensive Demonstration of Diffraction-Limited Telescope from NASA Stratospheric Balloons

    Science.gov (United States)

    Young, Elliot

    NASA s Balloon Program often flies payloads to altitudes of 120,000 ft or higher, above 99.5% of the atmosphere. At those altitudes, the imaging degradation due to atmospheric- induced wavefront errors is virtually zero. In 2009, the SUNRISE balloon mission quantified the wavefront errors with a Shack-Hartmann array and found no evidence of wavefront errors. This means that a large telescope on a balloon should be able to achieve diffraction-limited performance, provided it can be stabilized at a level that is finer than the diffraction limit. At visible wavelengths, the diffraction limit of a 1 or 2 m telescope is 0.1 arcsec or 0.05 arcsec, respectively. NASA recently demonstrated WASP (the Wallops Arc-Second Pointing system) on a balloon flight in October 2011, a coarse pointing system that kept a dummy telescope (24 ft long, 1500 lbs) stabilized at the 0.25 arcsec level. We propose to use an orthogonal transfer CCD (OTCCD) from MIT Lincoln Laboratory to improve the pointing to 0.05 arcsec, an order of magnitude better than the coarse pointing alone and sufficient to provide long integrations at the diffraction limit of a 2-m telescope. Imaging in visible wavelengths is an important new capability. Ground-based adaptive optics (AO) systems on 8-m and 10-m class telescope cannot effectively correct for atmospheric turbulence at wavelengths shorter than 1 μm; the atmospheric wavefront errors are larger at these wavelengths than in the infrared J-H-K bands. At present, only the Hubble Space Telescope can achieve 0.05 arcsec resolution images in visible wavelengths, a capability that is dramatically oversubscribed. With a camera based on an MIT/LL OTCCD, a 2-m balloon-borne telescope could match the spatial resolution of HST. Under this project (and in conjunction with a SWRI Internal Research proposal), we will perform ground tests of a motion-compensation camera based on an MIT/LL Orthogonal Transfer CCD (OTCCD). This device can shift charge in four directions

  18. High n ballooning modes in highly elongated tokamaks

    International Nuclear Information System (INIS)

    An, C.H.; Bateman, G.

    1980-02-01

    An analytic study of stability against high n ballooning modes in highly elongated axisymmetric plasmas is presented and compared with computational results. From the equation for the marginal pressure gradient, it is found that the local shear plays an important role on the stability of elongated and shifted plasma, and that high elongation deteriorates the stability by decreasing the stabilizing effects of field line bending and local shear. The net contribution of the local shear to stability decreases with elongation and shift for strongly ballooning modes (eigenfunctions strongly localized near the outer edge of the toroidal flux surfaces) but increases for interchange modes (eigenfunctions more uniform along the flux surfaces). The computational study of high n ballooning modes in a highly elongated plasma reveals that lowering the aspect ratio and broadening the pressure profile enhance the marginal beta for β/sub p/ less than unity but severely reduce the marginal beta for β/sub p/ larger than unity

  19. Review of the British scientific sounding rocket and balloon programmes

    International Nuclear Information System (INIS)

    Delury, J.T.

    1978-01-01

    This review describes the UK scientific sounding rocket programmes which have utilised Skylarks for 21 years, Petrels for 10 years and Fulmars for 2 years. The SRC's ongoing programme is now based on the Petrel and Fulmar rockets, and approved proposals by 5 UK scientific groups covering 1978 and 1979 are outlined. The British scientific balloon programme, which serves 14 scientific groups within UK universities, involves a planned 10 flights per annum using balloons of 3 M cu ft to 31 M cu ft capacity and payloads up to 2 tons in weight. The review outlines the balloon programme of flights planned mainly from Palestine in Texas and Alice Springs/Mildura in Australia. (author)

  20. Popping balloons: formation of a crack network in rubber membranes

    Science.gov (United States)

    Moulinet, Sebastien; Adda-Bedia, Mokhtar; Equipe Morphogenèse et phénomènes multi-échelle Team

    2015-03-01

    Everyone can make the observation: a rubber balloon inflated until it spontaneously pop breaks into a large number of shreds. In contrast, a balloon pierced with a needle at an early stage of its inflation breaks into two large pieces. Using model latex balloons, we have experimentally investigated the transition between these two breaking regimes. We have showed that, above a threshold stress in the latex membrane, a single crack become unstable and separates into two new cracks. Then, a cascade of tip-splitting generates a network of cracks that eventually form a large number of fragments. We have observed that the instability of the crack occurs when it reaches a limit velocity that could the speed of sound. By studying the energy balance during the explosion, we can determine the intrinsic fracture energy of rubber, a measurement difficult to achieve with usual tensile testing.

  1. JUBA (Joint UAS-Balloon Activities) Final Campaign Report.

    Energy Technology Data Exchange (ETDEWEB)

    Dexheimer, Darielle [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Apple, Monty [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Callow, Diane Schafer [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Longbottom, Casey Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Novick, David K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wilson, Christopher W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-02-01

    Using internal investment funds within Sandia National Laboratories’ (SNL) Division 6000, JUBA was a collaborative exercise between SNL Orgs. 6533 & 6913 (later 8863) to demonstrate simultaneous flights of tethered balloons and UAS on the North Slope of Alaska. JUBA UAS and tethered balloon flights were conducted within the Restricted Airspace associated with the ARM AMF3 site at Oliktok Point, Alaska. The Restricted Airspace occupies a 2 nautical mile radius around Oliktok Point. JUBA was conducted at the Sandia Arctic Site, which is approximately 2 km east-southeast of the AMF3. JUBA activities occurred from 08/08/17 – 08/10/17. Atmospheric measurements from tethered balloons can occur for a long duration, but offer limited spatial variation. Measurements from UAS could offer increased spatial variability.

  2. Absence of Bacteria on Coronary Angioplasty Balloons from Unselected Patients

    DEFF Research Database (Denmark)

    Hansen, Gorm Mørk; Nilsson, Martin; Nielsen, Claus Henrik

    2015-01-01

    , and translocation of bacteria from the oral cavity to the coronary arteries may play a role in the development of coronary artery disease. Very few studies have used angioplasty balloons for in vivo sampling from diseased coronary arteries, and with varying results. Therefore, the aim of this study was to assess...... if bacterial DNA from primarily oral bacteria could be detected on coronary angioplasty balloons by use of an optimized sampling process combined with an internally validated sensitive polymerase chain reaction (PCR) assay. Coronary angioplasty balloons and control samples from a total of 45 unselected...... patients with stable angina, unstable angina/non-ST elevation myocardial infarction, and ST-elevation myocardial infarction (n = 15 in each group) were collected and analyzed using a PCR assay with high sensitivity and specificity for 16S rRNA genes of the oral microbiome. Despite elimination of extraction...

  3. Ileal Varices Treated with Balloon-Occluded Retrograde Transvenous Obliteration.

    Science.gov (United States)

    Sato, Takahiro; Yamazaki, Katsu; Toyota, Jouji; Karino, Yoshiyasu; Ohmura, Takumi; Akaike, Jun

    2009-04-01

    A 55-year-old man with hepatitis B virus antigen-positive liver cirrhosis was admitted to our hospital with anal bleeding. Colonoscopy revealed blood retention in the entire colon, but no bleeding lesion was found. Computed tomography images showed that vessels in the ileum were connected to the right testicular vein, and we suspected ileal varices to be the most probable cause of bleeding. We immediately performed double balloon enteroscopy, but failed to find any site of bleeding owing to the difficulty of fiberscope insertion with sever adhesion. Using a balloon catheter during retrograde transvenous venography, we found ileal varices communicating with the right testicular vein (efferent vein) with the superior mesenteric vein branch as the afferent vein of these varices. We performed balloon occluded retrograde transvenous obliteration by way of the efferent vein of the varices and have detected no further bleeding in this patient one year after treatment.

  4. Iridium: Global OTH data communications for high altitude scientific ballooning

    Science.gov (United States)

    Denney, A.

    While the scientific community is no stranger to embracing commercially available technologies, the growth and availability of truly affordable cutting edge technologies is opening the door to an entirely new means of global communications. For many years high altitude ballooning has provided science an alternative to costly satellite based experimental platforms. As with any project, evolution becomes an integral part of development. Specifically in the NSBF ballooning program, where flight durations have evolved from the earlier days of hours to several weeks and plans are underway to provide missions up to 100 days. Addressing increased flight durations, the harsh operational environment, along with cumbersome and outdated systems used on existing systems, such as the balloon vehicles Support Instrumentation Package (SIP) and ground-based systems, a new Over-The-Horizon (OTH) communications medium is sought. Current OTH equipment planning to be phased-out include: HF commanding systems, ARGOS PTT telemetry downlinks and INMARSAT data terminals. Other aspects up for review in addition to the SIP to utilize this communications medium include pathfinder balloon platforms - thereby, adding commanding abilities and increased data rates, plus providing a package for ultra-small experiments to ride aloft. Existing communication systems employed by the National Scientific Balloon Facility ballooning program have been limited not only by increased cost, slow data rates and "special government use only" services such as TDRSS (Tracking and Data Relay Satellite System), but have had to make special provisions to geographical flight location. Development of the Support Instrumentation Packages whether LDB (Long Duration Balloon), ULDB (Ultra Long Duration Balloon) or conventional ballooning have been plagued by non-standard systems configurations requiring additional support equipment for different regions and missions along with a myriad of backup for redundancy. Several

  5. Apparatus for incinerating hazardous waste

    Science.gov (United States)

    Chang, R.C.W.

    1994-12-20

    An apparatus is described for incinerating wastes, including an incinerator having a combustion chamber, a fluid-tight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes. 1 figure.

  6. Fuel cell catholyte regenerating apparatus

    International Nuclear Information System (INIS)

    Struthers, R. C.

    1985-01-01

    A catholyte regenerating apparatus for a fuel cell having a cathode section containing a catholyte solution and wherein fuel cell reaction reduces the catholyte to gas and water. The apparatus includes means to conduct partically reduced water diluted catholyte from the fuel cell and means to conduct the gas from the fuel cell to a mixing means. An absorption tower containing a volume of gas absorbing liquid solvent receives the mixed together gas and diluted catholyte from the mixing means within the absorption column, the gas is absorbed by the solvent and the gas ladened solvent and diluted catholyte are commingled. A liquid transfer means conducts gas ladened commingled. A liquid transfer means conducts gas ladened commingled solvent and electrolyte from the absorption column to an air supply means wherein air is added and commingled therewith and a stoichiometric volume of oxygen from the air is absorbed thereby. A second liquid transfer means conducts the gas ladened commingled solvent and diluted catholyte into a catalyst column wherein the oxygen and gas react to reconstitute the catholyte from which the gas was generated wna wherein the reconstituted diluted catholyte is separated from the solvent. Recirculating means conducts the solvent from the catalyst column back into the absorption column and liquid conducting means conducts the reconstituted catholyte to a holding tank preparatory for catholyte to a holding tank preparatory for recirculation through the cathode section of the fuel cell

  7. Apparatus for use in radioimmunoassays

    International Nuclear Information System (INIS)

    Chen, C-H.; Tsay, H-M.; Heyer, R.E.

    1979-01-01

    Apparatus for solid-phase antibody separation techniques used in radioimmunoassays is described in this invention. It consists of a rectangular prism tray with multiple wells protruding into its interior from one side. Near the base of the tray is an orifice used for creating evacuated condition within the structure. At the base of each well there is an orifice of such size and shape as to retain an aqueous liquid under given pressure conditions but permit the evacuation of this liquid at reduced pressure. The outlet of these orifices is in the shape of an inverted conical frustrum. Each of the wells contains an antibody coated disc of porous cellulose paper surrounded by a plastic support. The porous nature of the cellulose paper ensures contact between the antibody coating and the antigen. The use of antibody coated porous cellulose paper in combination with the vacuum operated apparatus simplifies the manipulative steps whilst still maintaining the sensitivity of the radioimmunoassay. It also obviates the need for aspiration and thus lessens the risk of contamination from one sample to another. (UK)

  8. BETA (Bitter Electromagnet Testing Apparatus)

    Science.gov (United States)

    Bates, Evan M.; Birmingham, William J.; Rivera, William F.; Romero-Talamas, Carlos A.

    2017-10-01

    The Bitter Electromagnet Testing Apparatus (BETA) is a 1-Tesla (T) prototype of the 10-T Adjustable Long Pulse High-Field Apparatus (ALPHA). These water-cooled resistive magnets use high DC currents to produce strong uniform magnetic fields. Presented here is the successful completion of the BETA project and experimental results validating analytical magnet designing methods developed at the Dusty Plasma Laboratory (DPL). BETA's final design specifications will be highlighted which include electromagnetic, thermal and stress analyses. The magnet core design will be explained which include: Bitter Arcs, helix starters, and clamping annuli. The final version of the magnet's vessel and cooling system are also presented, as well as the electrical system of BETA, which is composed of a unique solid-state breaker circuit. Experimental results presented will show the operation of BETA at 1 T. The results are compared to both analytical design methods and finite element analysis calculations. We also explore the steady state maximums and theoretical limits of BETA's design. The completion of BETA validates the design and manufacturing techniques that will be used in the succeeding magnet, ALPHA.

  9. Nuclear reactor core servicing apparatus

    International Nuclear Information System (INIS)

    Andrea, C.

    1977-01-01

    Disclosed is an improved core servicing apparatus for a nuclear reactor of the type having a reactor vessel, a vessel head having a head penetration therethrough, a removable plug adapted to fit in the head penetration, and a core of the type having an array of elongated assemblies. The improved core servicing apparatus comprises a plurality of support columns suspended from the removable plug and extending downward toward the nuclear core, rigid support means carried by each of the support columns, and a plurality of servicing means for each of the support columns for servicing a plurality of assemblies. Each of the plurality of servicing means for each of the support columns is fixedly supported in a fixed array from the rigid support means. Means are provided for rotating the rigid support means and servicing means between condensed and expanded positions. When in the condensed position, the rigid support means and servicing means lie completely within the coextensive boundaries of the plug, and when in the expanded position, some of the rigid support means and servicing means lie without the coextensive boundaries of the plug

  10. Master-slave micromanipulator apparatus

    Science.gov (United States)

    Morimoto, Alan K.; Kozlowski, David M.; Charles, Steven T.; Spalding, James A.

    1999-01-01

    An apparatus based on precision X-Y stages that are stacked. Attached to arms projecting from each X-Y stage are a set of two axis gimbals. Attached to the gimbals is a rod, which provides motion along the axis of the rod and rotation around its axis. A dual-planar apparatus that provides six degrees of freedom of motion precise to within microns of motion. Precision linear stages along with precision linear motors, encoders, and controls provide a robotics system. The motors can be positioned in a remote location by incorporating a set of bellows on the motors and can be connected through a computer controller that will allow one to be a master and the other one to be a slave. Position information from the master can be used to control the slave. Forces of interaction of the slave with its environment can be reflected back to the motor control of the master to provide a sense of force sensed by the slave. Forces import onto the master by the operator can be fed back into the control of the slave to reduce the forces required to move it.

  11. Blood pressure normalization post-jugular venous balloon angioplasty.

    Science.gov (United States)

    Sternberg, Zohara; Grewal, Prabhjot; Cen, Steven; DeBarge-Igoe, Frances; Yu, Jinhee; Arata, Michael

    2015-05-01

    This study is the first in a series investigating the relationship between autonomic nervous system dysfunction and chronic cerebrospinal venous insufficiency in multiple sclerosis patients. We screened patients for the combined presence of the narrowing of the internal jugular veins and symptoms of autonomic nervous system dysfunction (fatigue, cognitive dysfunction, sleeping disorders, headache, thermal intolerance, bowel/bladder dysfunction) and determined systolic and diastolic blood pressure responses to balloon angioplasty. The criteria for eligibility for balloon angioplasty intervention included ≥ 50% narrowing in one or both internal jugular veins, as determined by the magnetic resonance venography, and ≥ 3 clinical symptoms of autonomic nervous system dysfunction. Blood pressure was measured at baseline and post-balloon angioplasty. Among patients who were screened, 91% were identified as having internal jugular veins narrowing (with obstructing lesions) combined with the presence of three or more symptoms of autonomic nervous system dysfunction. Balloon angioplasty reduced the average systolic and diastolic blood pressure. However, blood pressure categorization showed a biphasic response to balloon angioplasty. The procedure increased blood pressure in multiple sclerosis patients who presented with baseline blood pressure within lower limits of normal ranges (systolic ≤ 105 mmHg, diastolic ≤ 70 mmHg) but decreased blood pressure in patients with baseline blood pressure above normal ranges (systolic ≥ 130 mmHg, diastolic ≥ 80 mmHg). In addition, gender differences in baseline blood pressure subcategories were observed. The coexistence of internal jugular veins narrowing and symptoms of autonomic nervous system dysfunction suggests that the two phenomena may be related. Balloon angioplasty corrects blood pressure deviation in multiple sclerosis patients undergoing internal jugular vein dilation. Further studies should investigate the

  12. Particle Astrophysics in NASA's Long Duration Balloon Program

    Energy Technology Data Exchange (ETDEWEB)

    Gorham, Peter W.

    2013-10-15

    A century after Viktor Hess' discovery of cosmic rays, balloon flights still play a central role in the investigation of cosmic rays over nearly their entire spectrum. We report on the current status of NASA balloon program for particle astrophysics, with particular emphasis on the very successful Antarctic long-duration balloon program, and new developments in the progress toward ultra-long duration balloons.

  13. Properties of nylon 12 balloons after thermal and liquid carbon dioxide treatments.

    Science.gov (United States)

    Ro, Andrew J; Davé, Vipul

    2013-03-01

    Critical design attributes of angioplasty balloons include the following: tear resistance, high burst pressures, controlled compliance, and high fatigue. Balloons must have tear resistance and high burst pressures because a calcified stenosis can be hard and nominal pressures of up to 16 atm can be used to expand the balloon. The inflated balloon diameter must be a function of the inflation pressure, thus compliance is predictable and controlled. Reliable compliance is necessary to prevent damage to vessel walls, which may be caused by over-inflation. Balloons are often inflated multiple times in a clinical setting and they must be highly resistant to fatigue. These design attributes are dependent on the mechanical properties and polymer morphology of the balloon. The effects of residual stresses on shrinkage, crystallite orientation, balloon compliance, and mechanical properties were studied for angioplasty nylon 12 balloons. Residual stresses of these balloons were relieved by oven heat treatment and liquid CO2 exposure. Residual stresses were measured by quantifying shrinkage at 80 °C of excised balloon samples using a dynamic mechanical analyzer. Shrinkage was lower after oven heat treatment and liquid CO2 exposure compared to the as-received balloons, in the axial and radial directions. As-received, oven heat treated, and liquid CO2-exposed balloon samples exhibited similar thermal properties (T(g), T(m), X(t)). Crystallite orientation was not observed in the balloon cylindrical body using X-ray scattering and polarized light microscopy, which may be due to balloon fabrication conditions. Significant differences were not observed between the stress-strain curves, balloon compliance, and average burst pressures of the as-received, oven heat treated, and liquid CO2-exposed balloons. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Excised larynx evaluation of wedge-shaped adjustable balloon implant for minimally invasive type I thyroplasty.

    Science.gov (United States)

    Hoffman, Matthew R; Devine, Erin E; McCulloch, Timothy M; Jiang, Jack J

    2014-04-01

    To describe the method of inserting a wedge-shaped adjustable balloon implant (wABI) via a minithyrotomy for medialization thyroplasty and evaluate its effect on a range of phonatory parameters using the excised larynx bench apparatus. Repeated measures with each larynx serving as its own control. A prototype wABI was deployed in six excised canine larynges of various sizes through a minithyrotomy and then filled with saline. Mucosal wave, aerodynamic, and acoustic parameters were measured for three conditions: normal, vocal fold paralysis, and paralysis with the wABI. Phonation threshold pressure (P < .001), flow (P < .001), and power (P = .002) were significantly lower for wABI compared to paralysis trials; values did not differ significantly from normal trials. Percent jitter (P = .002) and percent shimmer (P = .007) were also significantly decreased compared to the paralysis condition, and values were not significantly different compared to normal. The mucosal wave was preserved after insertion of the wABI. Effective vocal fold medialization with preservation of the mucosal wave was observed with the wABI in this preliminary excised larynx experiment. The wABI offers the potential for a minimally invasive insertion in addition to postoperative adjustability. Further studies in living animals and humans are warranted to evaluate clinical utility. NA. © 2013 The American Laryngological, Rhinological and Otological Society, Inc.

  15. Observation of short period fluctuation of CygX-1 with balloon

    International Nuclear Information System (INIS)

    Nakagawa, Michio; Sakurai, Takahisa; Uchida, Masayoshi

    1977-01-01

    CygX-1 presents very complex short period fluctuation of X-ray, therefore the hard X-ray was especially observed in 1972 and 1973 with large balloons, and the data were analyzed. This short period fluctuation and energy spectra of CygX-1 in the normal and flare time bands were compared. The observing apparatuses consisted of the 3 in diameter NaI detector and a high pressure proportional counter. The observing method is to turn the gondora alternately to the directions of source (ON) and background (OFF). As for the data analysis, the events at ON and OFF in the observation data in 1972 and 1973 were plotted for time interval. The background component is in agreement with Poisson's distribution, but source component is not. This difference for Poisson's distribution means the behavior of CygX-1. The power spectrum was analyzed, and the strong power density was observed at 5.4 x 10 -2 Hz in ON, but such power density was not observed in OFF. Accordingly this is presumed to be caused by CygX-1. The events for time interval in flare time are shown. The rise of about 2.9 σ exists at 80 msec. The count rates were compared for photon energy in the normal and flare times. The short period fluctuation of hard X-ray from CygX-1 deviates from Poisson's distribution and is different in the normal and flare times. (Nakai, Y.)

  16. Simulation of the Beating Heart Based on Physically Modeling aDeformable Balloon

    Energy Technology Data Exchange (ETDEWEB)

    Rohmer, Damien; Sitek, Arkadiusz; Gullberg, Grant T.

    2006-07-18

    The motion of the beating heart is complex and createsartifacts in SPECT and x-ray CT images. Phantoms such as the JaszczakDynamic Cardiac Phantom are used to simulate cardiac motion forevaluationof acquisition and data processing protocols used for cardiacimaging. Two concentric elastic membranes filled with water are connectedto tubing and pump apparatus for creating fluid flow in and out of theinner volume to simulate motion of the heart. In the present report, themovement of two concentric balloons is solved numerically in order tocreate a computer simulation of the motion of the moving membranes in theJaszczak Dynamic Cardiac Phantom. A system of differential equations,based on the physical properties, determine the motion. Two methods aretested for solving the system of differential equations. The results ofboth methods are similar providing a final shape that does not convergeto a trivial circular profile. Finally,a tomographic imaging simulationis performed by acquiring static projections of the moving shape andreconstructing the result to observe motion artifacts. Two cases aretaken into account: in one case each projection angle is sampled for ashort time interval and the other case is sampled for a longer timeinterval. The longer sampling acquisition shows a clear improvement indecreasing the tomographic streaking artifacts.

  17. AIAA Educator Academy: The Space Weather Balloon Module

    Science.gov (United States)

    Longmier, B.; Henriquez, E.; Bering, E. A.; Slagle, E.

    2013-12-01

    Educator Academy is a K-12 STEM curriculum developed by the STEM K-12 Outreach Committee of the American Institute of Aeronautics and Astronautics (AIAA). Consisting of three independent curriculum modules, K-12 students participate in inquiry-based science and engineering challenges to improve critical thinking skills and enhance problem solving skills. The Space Weather Balloon Curriculum Module is designed for students in grades 9-12. Throughout this module, students learn and refine physics concepts as well as experimental research skills. Students participate in project-based learning that is experimental in nature. Students are engaged with the world around them as they collaborate to launch a high altitude balloon equipped with HD cameras.The program leaders launch high altitude weather balloons in collaboration with schools and students to teach physics concepts, experimental research skills, and to make space exploration accessible to students. A weather balloon lifts a specially designed payload package that is composed of HD cameras, GPS tracking devices, and other science equipment. The payload is constructed and attached to the balloon by the students with low-cost materials. The balloon and payload are launched with FAA clearance from a site chosen based on wind patterns and predicted landing locations. The balloon ascends over 2 hours to a maximum altitude of 100,000 feet where it bursts and allows the payload to slowly descend using a built-in parachute. The payload is located using the GPS device. In April 2012, the Space Weather Balloon team conducted a prototype field campaign near Fairbanks Alaska, sending several student-built experiments to an altitude of 30km, underneath several strong auroral displays. To better assist teachers in implementing one or more of these Curriculum Modules, teacher workshops are held to give teachers a hands-on look at how this curriculum is used in the classroom. And, to provide further support, teachers are each

  18. Cloud Water Content Sensor for Sounding Balloons and Small UAVs

    Science.gov (United States)

    Bognar, John A.

    2009-01-01

    A lightweight, battery-powered sensor was developed for measuring cloud water content, which is the amount of liquid or solid water present in a cloud, generally expressed as grams of water per cubic meter. This sensor has near-zero power consumption and can be flown on standard sounding balloons and small, unmanned aerial vehicles (UAVs). The amount of solid or liquid water is important to the study of atmospheric processes and behavior. Previous sensing techniques relied on strongly heating the incoming air, which requires a major energy input that cannot be achieved on sounding balloons or small UAVs.

  19. Cosmic ray abundance measurements with the CAKE balloon experiment

    CERN Document Server

    Cecchini, S.; Giacomelli, G.; Manzoor, S.; Medinaceli, E.; Patrizii, L.; Togo, V.

    2005-01-01

    We present the results from the CAKE (Cosmic Abundance below Knee Energy) balloon experiment which uses nuclear track detectors. The final experiment goal is the determination of the charge spectrum of CR nuclei with Z $>$ 30 in the primary cosmic radiation. The detector, which has a geometric acceptance of $\\sim$ 1.7 m$^2$sr, was exposed in a trans-mediterranean stratospheric balloon flight. Calibrations of the detectors used (CR39 and Lexan), scanning strategies and algorithms for tracking particles in an automatic mode are presented. The present status of the results is discussed

  20. Polymer blends for LDB applications. [Long Duration Ballooning

    Science.gov (United States)

    Lichkus, Andrew M.; Harrison, Ian R.

    1991-01-01

    A series of LCP/PE blends have been studied to determine the potential of such systems to produce a high modulus balloon film material which retains the balloon fabrication and low temperature flight advantages of the current PE films. Blown films of blends of 5 and 15 percent LCP in PE have been produced which show a 28 percent enhancement in modulus over the neat PE matrix. These results are substantially lower than anticipated and are explained in terms of the LCP reinforcement aspect ratio and fibril diameter.

  1. Emerging Stent and Balloon Technologies in the Femoropopliteal Arteries

    Directory of Open Access Journals (Sweden)

    Georgios Pastromas

    2014-01-01

    Full Text Available Endovascular procedures for the management of the superficial femoral (SFA and popliteal artery disease are increasingly common. Over the past decade, several stent technologies have been established which may offer new options for improved clinical outcomes. This paper reviews the current evidence for SFA and popliteal artery angioplasty and stenting, with a focus on randomized trials and registries of nitinol self-expanding stents, drug-eluting stents, dug-coated balloons, and covered stent-grafts. We also highlight the limitations of the currently available data and the future routes in peripheral arterial disease (PAD stent and balloon technology.

  2. The German scientific balloon and sounding rocket programme

    International Nuclear Information System (INIS)

    Dahl, A.F.

    1980-01-01

    This report contains information on sounding rocket projects in the scientific field of astronomy, aeronomy, magnetosphere, and material science under microgravity. The scientific balloon projects are performed with emphasis on astronomical research. By means of tables it is attempted to give a survey, as complete as possible, of the projects the time since the last symposium in Ajaccio, Corsica, and of preparations and plans for the future until 1983. The scientific balloon and sounding rocket projects form a small successful part of the German space research programme. (Auth.)

  3. BioEnterics Intragastric Balloon (BIB) versus Spatz Adjustable Balloon System (ABS): Our experience in the elderly.

    Science.gov (United States)

    Russo, Teresa; Aprea, Giovanni; Formisano, Cesare; Ruggiero, Simona; Quarto, Gennaro; Serra, Raffaele; Massa, Guido; Sivero, Luigi

    2017-02-01

    The BioEnterics Intragastric Balloon (BIB) and the Spatz Adjustable Balloon System (ABS) are in fact recommended for weight reduction as a bridge to bariatric surgery. We retrospected studied patients with body mass index (BMI) and age ranges of 37-46 and 70-80 years, respectively, who had undergone BIB from January 2010 to July 2012 and prospected studied patients who had undergone Spatz balloon from July 2012 to August 2014. The aim of this study is to compare BIB and Spatz in terms of weight loss, complications, and maintenance of weight after removal. For both procedures, the median weight loss was 20 ± 3 kg, median BMI at the end of the therapy was 32 ± 2, and no severe complication occurred. Copyright © 2016 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.

  4. Apparatus Named after Our Academic Ancestors, III

    Science.gov (United States)

    Greenslade, Thomas B., Jr.

    2014-01-01

    My academic ancestors in physics have called on me once more to tell you about the apparatus that they devised, and that many of you have used in your demonstrations and labs. This article is about apparatus named after François Arago, Heinrich Helmholtz, Leon Foucault, and James Watt.

  5. Radiation therapy apparatus having retractable beam stopper

    International Nuclear Information System (INIS)

    Coad, G.L.

    1983-01-01

    This invention relates to a radiation therapy apparatus which utilized a linear translation mechanism for positioning a beam stopper. An apparatus is described wherein the beam stopper is pivotally attached to the therapy machine with an associated drive motor in such a way that the beam stopper retracts linearly

  6. Method and apparatus for producing microspherical particles

    International Nuclear Information System (INIS)

    Egli, W.; Bailey, W.H.; Leary, D.F.; Lansley, R.J.

    1979-01-01

    This invention relates generally to a method and apparatus for producing microspherical particles and more particularly to a method and apparatus which are particularly useful in connection with the sol-gel process for the production of nuclear fuel kernels. (U.K.)

  7. The Acoustical Apparatus of Rudolph Koenig.

    Science.gov (United States)

    Greenslade, Thomas B., Jr.

    1992-01-01

    Discusses the history of Rudolph Koenig's contribution to the development of acoustical apparatus. Contributions include the clock fork to determine absolute acoustic frequencies, a forerunner of the oscilloscope called the manometric flame, and an acoustic interference apparatus used in the Fourier synthesis of musical sounds. (MDH)

  8. Apparatus for processing fibrous pulp material

    NARCIS (Netherlands)

    Dekker, J.C.; Bouma, H.; Mulder, F.B.M.

    2008-01-01

    The invention relates to an apparatus (1) for processing a flow of pulp comprising fibrous material, in particular pulp comprising cellulose fibres for making paper, said apparatus comprising a drum (2) having a rotational axis (R), an inlet end (3), an outlet end (4) and an inner surface, a

  9. Development of an antihydrogen trapping apparatus

    CERN Document Server

    Jenkins, Matthew James

    This thesis details the development and commissioning of the ALPHA antihydrogen trapping apparatus. It discusses the history of antimatter physics that led to and enabled the design of the apparatus. It discusses the importance of antihydrogen trapping in testing one of the basic assumptions of the Standard Model of particle physics (that of CPT invariance). It goes on to discuss the design and construction of the apparatus. Finally, it presents results that demonstrate antihydrogen formation in the new magnetic field configurations that together constitute a magnetic minimum trap for neutral antihydrogen. This is an important preliminary result for any antihydrogen trapping apparatus, and confirms that the ALPHA apparatus does present a potential route towards laser spectroscopy of antihydrogen.

  10. Detection of Water Borne Protozoa

    DEFF Research Database (Denmark)

    Al-Sabi, Mohammad Nafi Solaiman; Enemark, Heidi L.; Kurtzhals, J.A.L.

    Protozoa of several species play a key role in water borne outbreaks of diarrhea worldwide. Identification of such protozoa depends mainly on parasite detection. However, water contains several hundreds of thousands of microorganisms belonging to different taxa. The exact identification...... of pathogenic protozoa relies on selective isolation and detection that is conducted by experienced technicians. Advanced techniques such as immuno-fluorescent dyes, polymerase chain reaction, and many other techniques, may be used for species-specific identification of pathogenic protozoa. Each diagnostic...

  11. Sand fly-borne viruses

    OpenAIRE

    Nedvědová Cvanová, Lucie

    2015-01-01

    Sand flies (Diptera: Psychodidae) are important vectors of protozoan, bacterial and viral patogens causing diseases in humans and domestic animals. This thesis summarizes the current knowledge on sand fly-born viruses, their distribution in the World, infection symptoms and life cycle in the nature. These viruses are transmitted by sand flies of genera Phlebotomus, Lutzomyia and Sergentomyia and they can be found on every continent except for Antarctica. They belong into four families, Bunyav...

  12. Automatic gamma spectrometry analytical apparatus

    International Nuclear Information System (INIS)

    Lamargot, J.-P.; Wanin, Maurice.

    1980-01-01

    This invention falls within the area of quantitative or semi-quantitative analysis by gamma spectrometry and particularly refers to a device for bringing the samples into the counting position. The purpose of this invention is precisely to provide an automatic apparatus specifically adapted to the analysis of hard gamma radiations. To this effect, the invention relates to a gamma spectrometry analytical device comprising a lead containment, a detector of which the sensitive part is located inside the containment and additionally comprising a transfer system for bringing the analyzed samples in succession to a counting position inside the containment above the detector. A feed compartment enables the samples to be brought in turn one by one on to the transfer system through a duct connecting the compartment to the transfer system. Sequential systems for the coordinated forward feed of the samples in the compartment and the transfer system complete this device [fr

  13. Assembly apparatus for nuclear reactors

    International Nuclear Information System (INIS)

    Boczek, W.

    1976-01-01

    A hoisting apparatus for assembling and operating a nuclear reactor comprises two rope drums, two gear mechanisms, and two hoisting mechanisms each with one rope for a predetermined load, a change-speed gear mechanism or shiftable gear mechanism for the selectable adjustment of various hoisting speeds for the two hoisting mechanisms, a drive connection which is provided for at least one gear mechanism and permits different distances between the said gear mechanism and the change-speed gear mechanism, a common motor for the two hoisting mechanisms, a rigid connection for the two lifting mechanisms which permits different distances between the lifting mechanisms, and a rope compensating device selectively adjustable so as to be operative or inoperative

  14. Hermetic Seal Leak Detection Apparatus

    Science.gov (United States)

    Kelley, Anthony R. (Inventor)

    2013-01-01

    The present invention is a hermetic seal leak detection apparatus, which can be used to test for hermetic seal leaks in instruments and containers. A vacuum tight chamber is created around the unit being tested to minimize gas space outside of the hermetic seal. A vacuum inducing device is then used to increase the gas chamber volume inside the device, so that a slight vacuum is pulled on the unit being tested. The pressure in the unit being tested will stabilize. If the stabilized pressure reads close to a known good seal calibration, there is not a leak in the seal. If the stabilized pressure reads closer to a known bad seal calibration value, there is a leak in the seal. The speed of the plunger can be varied and by evaluating the resulting pressure change rates and final values, the leak rate/size can be accurately calculated.

  15. Apparatus for sampling hazardous media

    International Nuclear Information System (INIS)

    Gardner, J.F.; Showalter, T.W.

    1984-01-01

    An apparatus for sampling a hazardous medium, such as radioactive or chemical waste, selectively collects a predetermined quantity of the medium in a recess of an end-over-end rotatable valving member. This collected quantity is deposited in a receiving receptacle located in a cavity while the receiving receptacle is in a sealed relationship with a recess to prevent dusting of the sampled media outside the receiving receptacle. The receiving receptacle is removably fitted within a vehicle body which is, in turn, slidably movable upon a track within a transport tube. The receiving receptacle is transported in the vehicle body from its sample receiving position within a container for the hazardous medium to a sample retrieval position outside the medium container. The receiving receptacle may then be removed from the vehicle body, capped and taken to a laboratory for chemical analysis. (author)

  16. Dental X-ray apparatus

    International Nuclear Information System (INIS)

    Weiss, M.E.

    1980-01-01

    Intra-oral dental X-ray apparatus for panoramic dental radiography is described in detail. It comprises an electron gun having an elongated tubular target carrier extending into the patient's mouth. The carrier supports an inclined target for direction of an X-ray pattern towards a film positioned externally of the patient's mouth. Image definition is improved by a focusing anode which focuses the electron beam into a sharp spot (0.05 to 0.10 mm diameter) on the target. The potential on the focusing anode is adjustable to vary the size of the spot. An X-ray transmitting ceramic (oxides of Be, Al and Si) window is positioned adjacent to the front face of the target. The electron beam can be magnetically deflected to change the X-ray beam direction. (author)

  17. Development of capsule assembling apparatus

    International Nuclear Information System (INIS)

    Tayama, Yoshinobu; Kanazawa, Yoshiharu; Sozawa, Shizuo; Kawamata, Kazuo; Shizuoka, Yoshihiro; Onizawa, Satoshi; Nakagawa, Tetsuya

    2012-01-01

    The service of JMTR hot laboratory, associated with the Japan Materials Testing Reactor, was started on 1971 to examine specimens irradiated mainly in the JMTR. A wide variety of post irradiation examinations for research and development of nuclear fuels and materials are available in the JMTR hot laboratory. This laboratory has an advantage that its hot cell is connected with JMTR by a canal directly, and it is easy to transport irradiated capsule and specimens. New power ramping test for the high burn-up fuels by using the JMTR has been planed. The power ramping test using a boiling water capsule facility needs a re-capsuling of fuel rods for re-irradiation, and a modification of the facility up to about 100 GWD/t were necessary. This report introduces the new handling techniques and capsule assembling apparatus for the boiling water capsule facility. (author)

  18. Power conversion apparatus and method

    Science.gov (United States)

    Su, Gui-Jia [Knoxville, TN

    2012-02-07

    A power conversion apparatus includes an interfacing circuit that enables a current source inverter to operate from a voltage energy storage device (voltage source), such as a battery, ultracapacitor or fuel cell. The interfacing circuit, also referred to as a voltage-to-current converter, transforms the voltage source into a current source that feeds a DC current to a current source inverter. The voltage-to-current converter also provides means for controlling and maintaining a constant DC bus current that supplies the current source inverter. The voltage-to-current converter also enables the current source inverter to charge the voltage energy storage device, such as during dynamic braking of a hybrid electric vehicle, without the need of reversing the direction of the DC bus current.

  19. APPARATUS FOR LIQUID PHASE EXTRACTION

    Science.gov (United States)

    Hicks, T.R.; Lehman, H.R.; Rubin, B.

    1958-09-16

    operation is described. It comprises a tubular colunm having upper and lower enlarged terminal portions, and a constricted central section containing fluid dispersal packing. Pulsing means are coupled to the upper portion of the column. The inlet for the less dense phase is located above the inlet for the denser phase and both are positioned so that liquids enter the constricted packingfilled central section. The apparatos also includes an interfacing level control, and means fer sensing the level of the interface actuate apparatus for controlling the rate of flow of input or discharge. The outlet for the less dense phase is located in the upper packing free portion of the colunm and that of the denser phase in the lower portion.

  20. Isotope separation method and apparatus

    International Nuclear Information System (INIS)

    Lyon, R.K.; Eisner, P.N.; Thomas, W.R.L.

    1980-01-01

    A method and apparatus are specified for separating a mixture of isotopes present in a compound, preferably a gaseous compound, into two or more parts in each of which the abundances of the isotopes differ from the natural abundances of the isotopes in the compound. The invention particularly relates to carrying out a laser induced, isotopically selective conversion of gaseous molecules in such a manner as to achieve more than one stage of isotope separation along the length of the laser beam. As an example, the invention is applied to the separation of the isotopes of uranium in UF 6 , in which either the U-235 or U-238 isotope is selectively excited by means of irradiation from an infrared laser, and the selectively excited isotope converted into a product that can be recovered from UF 6 by one of a variety of methods that are described. (U.K.)

  1. Apparatuses to support photovoltaic modules

    Energy Technology Data Exchange (ETDEWEB)

    Ciasulli, John; Jones, Jason

    2017-08-22

    Methods and apparatuses to support photovoltaic ("PV") modules are described. A saddle bracket has a mounting surface to support one or more PV modules over a tube, a gusset coupled to the mounting surface, and a mounting feature coupled to the gusset to couple to the tube. A grounding washer has a first portion to couple to a support; and a second portion coupled to the first portion to provide a ground path to a PV module. A PV system has a saddle bracket; a PV module over the saddle bracket; and a grounding washer coupled to the saddle bracket and the PV module. Saddle brackets can be coupled to a torque tube at predetermined locations. PV modules can be coupled to the saddle brackets.

  2. Multileaf collimator and related apparatus

    International Nuclear Information System (INIS)

    Brown, K.J.

    1989-01-01

    In radiotherapy apparatus using a multileaf collimator, the adjustment positions of the individual leaves can be determined optically by means of a video camera which observes the leaves via a radiation transparent mirror in the beam path. In order to overcome problems of low contrast and varying object brightness, the improvement comprises adding retroreflectors to the collimator leaves whose positions are known relative to the inner edge of the respective leaf. The retroreflectors can extend along the length of the leaf or they can be small. For setting up, corresponding manually adjustable optical diaphragm leaves can be used to project an optical simulation of the treatment area onto the patient, retroreflectors being similarly located relative to the shadow-casting edge of the leaves. (author)

  3. Modeling of column apparatus processes

    CERN Document Server

    Boyadjiev, Christo; Boyadjiev, Boyan; Popova-Krumova, Petya

    2016-01-01

    This book presents a new approach for the modeling of chemical and interphase mass transfer processes in industrial column apparatuses, using convection-diffusion and average-concentration models. The convection-diffusion type models are used for a qualitative analysis of the processes and to assess the main, small and slight physical effects, and then reject the slight effects. As a result, the process mechanism can be identified. It also introduces average concentration models for quantitative analysis, which use the average values of the velocity and concentration over the cross-sectional area of the column. The new models are used to analyze different processes (simple and complex chemical reactions, absorption, adsorption and catalytic reactions), and make it possible to model the processes of gas purification with sulfur dioxide, which form the basis of several patents.

  4. Dental X-ray apparatus

    International Nuclear Information System (INIS)

    Weiss, M.E.

    1980-01-01

    Intra-oral X-ray apparatus which reduces the number of exposures necessary to obtain panoramic dental radiographs is described in detail. It comprises an electron gun, a tubular target carrier projecting from the gun along the beam axis and carrying at its distal end a target surrounded by a shield of X-ray opaque material. This shield extends forward and laterally of the target and has surfaces which define a wedge or cone-shaped radiation pattern delimited vertically by the root tips of the patient's teeth. A film holder is located externally of the patient's mouth. A disposable member can fit on the target carrier to depress the patient's tongue out of the radiation pattern and to further shield the roof of the mouth. The electron beam can be magnetically deflected to change the X-ray beam direction. (author)

  5. Characterizing the Asian Tropopause Aerosol Layer (ATAL) Using Satellite Observations, Balloon Measurements and a Chemical Transport Model

    Science.gov (United States)

    Fairlie, T. D.; Vernier, J.-P.; Liu, H.; Deshler, T.; Natarajan, M.; Bedka, K.; Wegner, T.; Baker, N.; Gadhavi, H.; Ratnam, M. V.; hide

    2016-01-01

    Satellite observations and numerical modeling studies have demonstrated that the Asian Summer Monsoon (ASM) provide a conduit for gas-phase pollutants in south Asia to reach the lower stratosphere. Now, observations from the CALIPSO satellite have revealed the Asian Tropopause Aerosol Layer (ATAL), a summertime accumulation of aerosols in the upper troposphere and lower stratosphere (UTLS), associated with the ASM anticyclone. The ATAL has potential implications for regional cloud properties, climate, and chemical processes in the UTLS. Here, we show in situ measurements from balloon-borne instruments, aircraft, and satellite observations, together with trajectory and chemical transport model (CTM) simulations to explore the origin, composition, physical, and optical properties of aerosols in the ATAL. In particular, we show balloon-data from our BATAL-2015 field campaign to India and Saudi Arabia in summer 2015, which includes in situ backscatter measurements from COBALD instruments, and the first observations of size and volatility of aerosols in the ATAL layer using optical particle counters (OPCs). Back trajectory calculations initialized from CALIPSO observations point to deep convection over North India as a principal source of ATAL aerosols. Available aircraft observations suggest significant sulfur and carbonaceous components to the ATAL, which is supported by simulations using the GEOS-Chem CTM. Source elimination studies conducted with the GEOS-Chem indicate that ATAL aerosols originate primary from south Asian sources, in contrast with some earlier studies.

  6. 28. Critical pulmonary valve stenosis: Medical management beyond balloon dilation

    Directory of Open Access Journals (Sweden)

    Muhammad Arif Khan

    2015-10-01

    Conclusion: Phentolamine and/or Captopril have a therapeutic role in neonates with critical PVS who remain oxygen dependent after balloon dilation. Both medicationslead to vasodilatation of pulmonary and systemic vascularity. They facilitate inflowto the right ventricle. Right to left shunt across a PFO or/ ASD minimizesand saturation improves leading to a significantreduction in length of hospitalization.

  7. Balloon dacryocystoplasty study in the management of adult epiphora.

    LENUS (Irish Health Repository)

    Fenton, S

    2012-02-03

    PURPOSE: To determine the efficacy of dacryocystoplasty with balloon dilation in the treatment of acquired obstruction of the nasolacrimal system in adults. METHODS: Balloon dacryocystoplasty was performed in 52 eyes of 42 patients under general anaesthetic. A Teflon-coated guidewire was introduced through the canaliculus and manipulated through the nasolacrimal system and out of the nasal aperture. A 4 mm wide 3 cm coronary angioplasty balloon catheter was threaded over the guidewire in a retrograde fashion and dilated at the site of obstruction. RESULTS: There was complete obstruction in 30% of cases and partial obstruction in 70%. The most common site of obstruction was the nasolacrimal duct. The procedure was technically successful in 94% of cases. The overall re-obstruction rate was 29% within 1 year of the procedure. There was an anatomical failure rate of 17% for partial obstruction and 69% for complete obstruction within 1 year. CONCLUSIONS: Balloon dacryocystoplasty has a high recurrence rate. There may be a limited role for this procedure in partial obstructions. Further refinements of the procedure are necessary before it can be offered as a comparable alternative to a standard surgical dacryocystorhinostomy.

  8. Percutaneous transvenous angioplasty of inferior vena cava by balloon dilatation

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Kyung Suk; Kim, Jae Kyu; Park, Jin Gyun; Kang, Heung Keun; Chung, Hyon De; Kim, Shin Kon; Chung, Sang Young [Chonnam National University College of Medicine, Kwangju (Korea, Republic of)

    1989-10-15

    3 patients with membranous (2 patients) and segmental (1 patient) obstruction of IVC were successfully treated by percutaneous transvenous angioplasty using balloon catheter. Improvements of clinical and radiological findings could be obtained after procedures. Relatively good patency was obtained in all cases without complications. This procedure can be applied safely to membranous or segmental obstructions of IVC and elsewhere in the venous systems.

  9. Meshed-Pumpkin Super-Pressure Balloon Design

    Science.gov (United States)

    Jones, Jack; Yavrouian, Andre

    2003-01-01

    An improved, lightweight design has been proposed for super-pressure balloons used to carry scientific instruments at high altitudes in the atmosphere of Earth for times as long as 100 days. [A super-pressure balloon is one in which the pressure of the buoyant gas (typically, helium) is kept somewhat above ambient pressure in order to maintain approximately constant density and thereby regulate the altitude.] The proposed design, called "meshed pumpkin," incorporates the basic concept of the pumpkin design, which is so named because of its appearance. The pumpkin design entails less weight than does a spherical design, and the meshed-pumpkin design would reduce weight further. The basic idea of the meshed-pumpkin design is to reinforce the membrane of a pumpkin balloon by attaching a strong, lightweight fabric mesh to its outer surface. The reinforcement would make it possible to reduce the membrane mass to one-third or less of that of the basic pumpkin design while retaining sufficient strength to enable the balloon to remain at approximately constant altitude for months.

  10. Balloon atrial septostomy under echocardiographic guide: case series

    Directory of Open Access Journals (Sweden)

    SM Meraji

    2012-12-01

    Full Text Available Background: Balloon atrial septostomy is an emergent procedure in pediatric cardiology. Nowadays, most patients in need of the procedure have acceptable outcomes after surgical repair. Thus, it is important to perform this procedure as safe as possible. By performing early arterial switch operation and prostaglandin infusion, the rate of balloon atrial septostomy has markedly decreased. However, not all centers performing early arterial switch repairs have abandoned atrial septostomy, even in patients who respond favorably to prostaglandin infusion.Case presentation: In total, eight 1- to 15-day old term neonates admitted in Shahid Rajaee Heart Center in Tehran, Iran from October 2009 to February 2011, with congenital heart diseases were scheduled for balloon atrial septostomy. In six cases the procedure was done exclusively under echocardiographic guidance and in two cases with the help of fluoroscopy. Success was defined as the creation of an atrial septal defect with a diameter equal to or more than 5 mm and ample mobility of its margins.Results: Male sex was predominant (87% and the mean age of the neonates was six days. The diagnosis in all cases was simple transposition of great arteries. The procedure was successful in all patients with any cardiovascular complication.Conclusion: Balloon atrial septostomy is an emergent procedure that can be done safely and effectively under echocardiographic guidance. According to the feasibility of this technique it could be performed fast, safe and effective at bedside, avoiding patient transportation to hemodynamic laboratory or referral center.

  11. Balloon valvuloplasty for severe mitral valve stenosis in pregnancy ...

    African Journals Online (AJOL)

    Balloon valvuloplasties for severe mitral stenosis were performed on 11 pregnant patients with excellent resutts and no complications. The mitral valve area was increased from a mean of 0.9 cnr to 2.1 cnr. There was no clinically significant mitral regurgitation. The pregnancies proceeded normally to delivery at or near tenn, ...

  12. Balloon test project: Cosmic Ray Antimatter Calorimeter (CRAC)

    Science.gov (United States)

    Christy, J. C.; Dhenain, G.; Goret, P.; Jorand, J.; Masse, P.; Mestreau, P.; Petrou, N.; Robin, A.

    1984-01-01

    Cosmic ray observations from balloon flights are discussed. The cosmic ray antimatter calorimeter (CRAC) experiment attempts to measure the flux of antimatter in the 200-600 Mev/m energy range and the isotopes of light elements between 600 and 1,000 Mev/m.

  13. Achilles tests finally nail PWR fuel clad ballooning fears

    International Nuclear Information System (INIS)

    Dore, P.; McMinn, K.

    1992-01-01

    A conclusive series of experiments carried out by AEA Reactor Services at its Achilles rig in the UK has finally allayed fears that fuel clad ballooning is a major safety problem for Sizewell B, Britain's first Pressurized Water Reactor. The experiments are described in this article. (author)

  14. Balloon dilatation of isolated severe tricuspid valve stenosis

    Directory of Open Access Journals (Sweden)

    Rajeev Bhardwaj

    2015-12-01

    Full Text Available Tricuspid valve stenosis is mostly rheumatic in origin. It almost always occurs in association with mitral valve disease. There are only few case reports of isolated tricuspid valve stenosis. We report a case of isolated tricuspid valve stenosis, which was treated with balloon dilatation.

  15. Balloon dilatation of isolated severe tricuspid valve stenosis

    OpenAIRE

    Bhardwaj, Rajeev; Sharma, Rajesh

    2015-01-01

    Tricuspid valve stenosis is mostly rheumatic in origin. It almost always occurs in association with mitral valve disease. There are only few case reports of isolated tricuspid valve stenosis. We report a case of isolated tricuspid valve stenosis, which was treated with balloon dilatation.

  16. Latex Micro-balloon Pumping in Centrifugal Microfluidic Platforms

    Science.gov (United States)

    Aeinehvand, Mohammad Mahdi; Ibrahim, Fatimah; Al-Faqheri, Wisam; Thio, Tzer Hwai Gilbert; Kazemzadeh, Amin; Wadi harun, Sulaiman; Madou, Marc

    2014-01-01

    Centrifugal microfluidic platforms have emerged as point-of-care diagnostic tools. However, the unidirectional nature of the centrifugal force limits the available space for multi-stepped processes on a single microfluidics disc. To overcome this limitation, a passive pneumatic pumping method actuated at high rotational speeds has been previously proposed to pump liquid against the centrifugal force. In this paper, a novel micro-balloon pumping method that relies on elastic energy stored in a latex membrane is introduced. It operates at low rotational speeds and pumps a larger volume of liquid towards the centre of the disc. Two different micro-balloon pumping designs have been developed to study the pump performance and capacity at a range of rotational frequencies from 0 to 1500 rpm. The behaviour of the micro-balloon pump on the centrifugal microfluidic platforms has been theoretically analysed and compared with the experimental data. The experimental data shows that, the developed pumping method dramatically decreases the required rotational speed to pump liquid compared to the previously developed pneumatic pumping methods. It also shows that within a range of rotational speed, desirable volume of liquid can be stored and pumped by adjusting the size of the micro-balloon. PMID:24441792

  17. [Expansion dilatation balloons for cervical ripening in obstetric practice].

    Science.gov (United States)

    Ducarme, G; Grange, J; Vital, M

    2016-02-01

    During recent decades, mechanical devices have been substituted by pharmacological methods. Their place in the therapeutic arsenal remains important with a renewed obstetrical interest for these devices. Due to a lack of data they are still not recommended as first-line. This review thus attempted to examine the use of expansion dilatation balloons (Foley catheter and double-balloons) to analyze their effectiveness in case of native uterus and previous cesarean section. Twenty-seven clinical trials had compared balloons catheter and prostaglandins in patients without a history of uterine scar. The risk of cesarean section did not differ. Mechanical methods seemed to be more effective in achieving delivery within 24hours, with fewer episodes of excessive uterine contractions, but they necessitated more oxytocin during labor. Ten clinical trials analyzed dilatation balloons in patients with previous cesarean section. More than 70% women had favorable cervical ripening (Bishop score>6), and vaginal delivery was reported between 35 and 70% of patients. The risk of uterine rupture was low between 0.64 and 0.72%, with neither increased risk of severe neonatal and maternal morbidity nor increased risk of infectious morbidity. Mechanical methods are effective and safe for third trimester cervical ripening, mainly in women with previous cesarean section. Potential advantages may include wide availability and reduction of some of the side effects. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  18. 21 CFR 886.4100 - Radiofrequency electrosurgical cautery apparatus.

    Science.gov (United States)

    2010-04-01

    ... bleeding by a high frequency electric current. (b) Classification. Class II. ... electrosurgical cautery apparatus. (a) Identification. A radiofrequency electrosurgical cautery apparatus is an AC...

  19. Lightweight Liquid Helium Dewar for High-Altitude Balloon Payloads

    Science.gov (United States)

    Kogut, Alan; James, Bryan; Fixsen, Dale

    2013-01-01

    Astrophysical observations at millimeter wavelengths require large (2-to-5- meter diameter) telescopes carried to altitudes above 35 km by scientific research balloons. The scientific performance is greatly enhanced if the telescope is cooled to temperatures below 10 K with no emissive windows between the telescope and the sky. Standard liquid helium bucket dewars can contain a suitable telescope for telescope diameter less than two meters. However, the mass of a dewar large enough to hold a 3-to-5-meter diameter telescope would exceed the balloon lift capacity. The solution is to separate the functions of cryogen storage and in-flight thermal isolation, utilizing the unique physical conditions at balloon altitudes. Conventional dewars are launched cold: the vacuum walls necessary for thermal isolation must also withstand the pressure gradient at sea level and are correspondingly thick and heavy. The pressure at 40 km is less than 0.3% of sea level: a dewar designed for use only at 40 km can use ultra thin walls to achieve significant reductions in mass. This innovation concerns new construction and operational techniques to produce a lightweight liquid helium bucket dewar. The dewar is intended for use on high-altitude balloon payloads. The mass is low enough to allow a large (3-to-5-meter) diameter dewar to fly at altitudes above 35 km on conventional scientific research balloons without exceeding the lift capability of the balloon. The lightweight dewar has thin (250- micron) stainless steel walls. The walls are too thin to support the pressure gradient at sea level: the dewar launches warm with the vacuum space vented continuously during ascent to eliminate any pressure gradient across the walls. A commercial 500-liter storage dewar maintains a reservoir of liquid helium within a minimal (hence low mass) volume. Once a 40-km altitude is reached, the valve venting the vacuum space of the bucket dewar is closed to seal the vacuum space. A vacuum pump then

  20. National Report on the NASA Sounding Rocket and Balloon Programs

    Science.gov (United States)

    Eberspeaker, Philip; Fairbrother, Debora

    2013-01-01

    The U. S. National Aeronautics and Space Administration (NASA) Sounding Rockets and Balloon Programs conduct a total of 30 to 40 missions per year in support of the NASA scientific community and other users. The NASA Sounding Rockets Program supports the science community by integrating their experiments into the sounding rocket payloads, and providing both the rocket vehicle and launch operations services. Activities since 2011 have included two flights from Andoya Rocket Range, more than eight flights from White Sands Missile Range, approximately sixteen flights from Wallops Flight Facility, two flights from Poker Flat Research Range, and four flights from Kwajalein Atoll. Other activities included the final developmental flight of the Terrier-Improved Malemute launch vehicle, a test flight of the Talos-Terrier-Oriole launch vehicle, and a host of smaller activities to improve program support capabilities. Several operational missions have utilized the new Terrier-Malemute vehicle. The NASA Sounding Rockets Program is currently engaged in the development of a new sustainer motor known as the Peregrine. The Peregrine development effort will involve one static firing and three flight tests with a target completion data of August 2014. The NASA Balloon Program supported numerous scientific and developmental missions since its last report. The program conducted flights from the U.S., Sweden, Australia, and Antarctica utilizing standard and experimental vehicles. Of particular note are the successful test flights of the Wallops Arc Second Pointer (WASP), the successful demonstration of a medium-size Super Pressure Balloon (SPB), and most recently, three simultaneous missions aloft over Antarctica. NASA continues its successful incremental design qualification program and will support a science mission aboard WASP in late 2013 and a science mission aboard the SPB in early 2015. NASA has also embarked on an intra-agency collaboration to launch a rocket from a balloon to

  1. Generalised ballooning theory of two-dimensional tokamak modes

    Science.gov (United States)

    Abdoul, P. A.; Dickinson, D.; Roach, C. M.; Wilson, H. R.

    2018-02-01

    In this work, using solutions from a local gyrokinetic flux-tube code combined with higher order ballooning theory, a new analytical approach is developed to reconstruct the global linear mode structure with associated global mode frequency. In addition to the isolated mode (IM), which usually peaks on the outboard mid-plane, the higher order ballooning theory has also captured other types of less unstable global modes: (a) the weakly asymmetric ballooning theory (WABT) predicts a mixed mode (MM) that undergoes a small poloidal shift away from the outboard mid-plane, (b) a relatively more stable general mode (GM) balloons on the top (or bottom) of the tokamak plasma. In this paper, an analytic approach is developed to combine these disconnected analytical limits into a single generalised ballooning theory. This is used to investigate how an IM behaves under the effect of sheared toroidal flow. For small values of flow an IM initially converts into a MM where the results of WABT are recaptured, and eventually, as the flow increases, the mode asymptotically becomes a GM on the top (or bottom) of the plasma. This may be an ingredient in models for understanding why in some experimental scenarios, instead of large edge localised modes (ELMs), small ELMs are observed. Finally, our theory can have other important consequences, especially for calculations involving Reynolds stress driven intrinsic rotation through the radial asymmetry in the global mode structures. Understanding the intrinsic rotation is significant because external torque in a plasma the size of ITER is expected to be relatively low.

  2. Cryo-balloon catheter position planning using AFiT

    Science.gov (United States)

    Kleinoeder, Andreas; Brost, Alexander; Bourier, Felix; Koch, Martin; Kurzidim, Klaus; Hornegger, Joachim; Strobel, Norbert

    2012-02-01

    Atrial fibrillation (AFib) is the most common heart arrhythmia. In certain situations, it can result in life-threatening complications such as stroke and heart failure. For paroxsysmal AFib, pulmonary vein isolation (PVI) by catheter ablation is the recommended choice of treatment if drug therapy fails. During minimally invasive procedures, electrically active tissue around the pulmonary veins is destroyed by either applying heat or cryothermal energy to the tissue. The procedure is usually performed in electrophysiology labs under fluoroscopic guidance. Besides radio-frequency catheter ablation devices, so-called single-shot devices, e.g., the cryothermal balloon catheters, are receiving more and more interest in the electrophysiology (EP) community. Single-shot devices may be advantageous for certain cases, since they can simplify the creation of contiguous (gapless) lesion sets around the pulmonary vein which is needed to achieve PVI. In many cases, a 3-D (CT, MRI, or C-arm CT) image of a patient's left atrium is available. This data can then be used for planning purposes and for supporting catheter navigation during the procedure. Cryo-thermal balloon catheters are commercially available in two different sizes. We propose the Atrial Fibrillation Planning Tool (AFiT), which visualizes the segmented left atrium as well as multiple cryo-balloon catheters within a virtual reality, to find out how well cryo-balloons fit to the anatomy of a patient's left atrium. First evaluations have shown that AFiT helps physicians in two ways. First, they can better assess whether cryoballoon ablation or RF ablation is the treatment of choice at all. Second, they can select the proper-size cryo-balloon catheter with more confidence.

  3. Embolization of carotid-cavernous fistula using a silicone balloon and a tracker-catheter system

    International Nuclear Information System (INIS)

    Kim, Sun Yong; Cho, Kil Ho; Park, Bok Hwan

    1992-01-01

    With the recent introduction and development of the detachable balloon system, it has become the treatment of choice in the management of carotid cavernous fistulas(CCFs). But, since most delivery systems for embolization of CCF mainly depend on flow guidance for balloon delivery, in case of small fistula, pseudo aneurysm and arterialized venous collaterals, failure of balloon embolization can occur. To overcome these limitation, the authors designed and used a new versatile, steerable, and flow-guided detachable balloon system by using a Tracker catheter system with silicone or latex balloons. Using this maneuver, we could get successful fistula occlusion in 7 out of 8 patients (silicone balloon). But in one case, we had to occlude the internal carotid artery at the fistula site, proximal and distal cervical portions of the internal carotid artery. This balloon delivery system proved to provide high selectivity for fistula and relatively ease of handing

  4. Quantum Theory for a Total System with One Internal Measuring Apparatus

    Science.gov (United States)

    Wang, Wen-Ge

    2011-03-01

    We propose a quantum theory for a total system including one internal measuring apparatus. The theory is based on three basic assumptions and a principle termed the principle of compatible description (PCD). The assumptions are: (i) Physical states of the total system can be associated with vectors in the Hilbert space. (ii) Dynamical evolution of a state vector obeys Schrö dinger equation. (iii) For a physical state of the total system described by a pure vector, in which a subsystem may play the role of an internal measuring apparatus, when certain stable condition is satisfied, the pure-vector description may be given a Born-type ensemble interpretation. The PCD states that different descriptions for the same state of the total system must give consistent predictions for results of measurements performed by the internal measuring apparatus. The proposed theory lies at a meeting point of Copenhagen, Everett's relative-state, and consistent-histories interpretations of quantum mechanics. While, it provides something new: For example, the PCD imposes a restriction to vectors that can be associated with physical states, which may effectively break the time-reversal symmetry of Schrödinger equation. As an application of the theory, we derive a condition under which a two-level quantum system may have definite properties, such that it may play the essential role of a measuring apparatus.

  5. Fire control apparatus for a laser weapon

    Science.gov (United States)

    Worsham, R. H.

    1985-10-01

    This patent application discloses a laser weapon fire control computer apparatus for responding in real time to the escort/threat scenario that confronts the weapon. The fire control computer apparatus compares the threat data with stored predicted scenarios to develop a firing strategy menu which takes into account the fact that the laser energy is instantaneously propagated to the target but requires a substantial amount of time to inflict damage. The fire control computer apparatus utilizes the weapon's status, dwell time, slow time and fuel limits to yield a weapon pointing sequence and weapon on-off times.

  6. Apparatus for concentrating by dual temperature exchange

    International Nuclear Information System (INIS)

    Spevack, J.S.

    1975-01-01

    Improvements in an apparatus for isotope concentration by dual temperature exchange between feed and auxiliary fluids in a multistage system are described. The first fluid is a vaporizable liquid and the auxiliary fluid a gas, the apparatus having means for cascading the auxiliary fluid and the feed fluid in vapor and preferably also in liquid form. The apparatus also contains new combinations of means for improving the heating and/or cooling and/or humidifying and/or dehumidifying operations of the system. The reactants in the example given are hydrogen sulfide gas and liquid water

  7. SCANNING AND TRACKING MONITORING APPARATUS AND METHOD

    DEFF Research Database (Denmark)

    2017-01-01

    Disclosed is a scanning monitoring apparatus for medical imaging, the scanning monitoring apparatus comprising a controller unit and a display, wherein the controller unit during a scanning session is configured to obtain tracking data (102) of a subject in a medical scanner, obtain scanner data...... indicative of operating parameters of the medical scanner (104); determine an output of a verification function based on the tracking data and the scanner data (106); and control the scanning monitoring apparatus according to the output of the verification function (108). A notification signal may...

  8. Balloon Angioplasty – The Legacy of Andreas Grüntzig, M.D. (1939–1985)

    Science.gov (United States)

    Barton, Matthias; Grüntzig, Johannes; Husmann, Marc; Rösch, Josef

    2014-01-01

    In 1974, at the Medical Policlinic of the University of Zürich, German-born physician-scientist Andreas Grüntzig (1939–1985) for the first time applied a balloon-tipped catheter to re-open a severely stenosed femoral artery, a procedure, which he initially called “percutaneous transluminal dilatation”. Balloon angioplasty as a therapy of atherosclerotic vascular disease, for which Grüntzig and Charles T. Dotter (1920–1985) received a nomination for the Nobel Prize in Physiology or Medicine in 1978, became one of the most successful examples of translational medicine in the twentieth century. Known today as percutaneous transluminal angioplasty (PTA) in peripheral arteries or percutaneous transluminal coronary angioplasty (PTCA) or percutaneous coronary intervention (PCI) in coronary arteries, balloon angioplasty has become the method of choice to treat patients with acute myocardial infarction or occluded leg arteries. On the occasion of the 40th anniversary of balloon angioplasty, we summarize Grüntzig’s life and career in Germany, Switzerland, and the United States and also review the developments in vascular medicine from the 1890s to the 1980s, including Dotter’s first accidental angioplasty in 1963. The work of pioneers of catheterization, including Pedro L. Fariñas in Cuba, André F. Cournand in France, Werner Forssmann, Werner Porstmann and Eberhard Zeitler in Germany, António Egas Moniz and Reynaldo dos Santos in Portugal, Sven-Ivar Seldinger in Sweden, and Barney Brooks, Thomas J. Fogarty, Melvin P. Judkins, Richard K. Myler, Dickinson W. Richards, and F. Mason Sones in the United States, is discussed. We also present quotes by Grüntzig and excerpts from his unfinished autobiography, statements of Grüntzig’s former colleagues and contemporary witnesses, and have included hitherto unpublished historic photographs and links to archive recordings and historic materials. This year, on June 25, 2014, Andreas Grüntzig would have celebrated

  9. Differential flux measurement of atmospheric pion, muon, electron and positron energy spectra at balloon altitudes

    Energy Technology Data Exchange (ETDEWEB)

    Grimani, C.; Brunetti, M.T.; Codino, A. [Perugia Univ. (Italy)]|[INFN, Perugia (Italy); Papini, P.; Massimo Brancaccio, F.; Finetti, N. [Florence Univ. (Italy)]|[INFN, Florence (Italy); Stephens, S.A. [Tata Institute of Fundamental Researc, Bombay (International Commission on Radiation Units and Measurements); Basini, G.; Bongiorno, F. [INFN, Laboratori Nazionali di Frascati, Rome (Italy); Golden, R.L. [New Mexico State Univ. Las Cruces, NM (United States). Particle Astrophysics Lab.

    1995-09-01

    The fluxes of atmospheric electrons, positrons, positive and negative muons and negative pions have been determined using the NMSU Wizard-MASS2 balloons-borne instrument. The instrument was launched from Fort Sumner, New Mexico, (geomagnetic cut-off about 4.5 GV/c) on september 23, 1991. The flight lasted 9.8 hours and remained above 100.000 ft. Muons and negative pions were observed and their momenta were determined. Since these particles are not a part of the primary component, the measurement of their fluxes provides information regarding production and propagation of secondary particles in the atmosphere. Similarly, observations of electrons and positrons well below the geomagnetic cut-off provides insight into electromagnetic cascade processes in the upper atmosphere. In addition, the determination of the energy spectra of rare particles such as positrons can be used for background subtraction for cosmic ray experiments gathering data below a few g/cm{sup 2} of overlying atmosphere.

  10. LEAP [Low-Energy Antiproton]: A balloon-borne search for low-energy cosmic-ray antiprotons

    International Nuclear Information System (INIS)

    Moats, A.R.M.

    1989-01-01

    The LEAP (Low-Energy Antiproton) experiment is a search for cosmic-ray antiprotons in the 120 MeV to 1.2 GeV kinetic energy range. The motivation for this project was the result announced by Buffington et. al. (1981) that indicated an anomalously high antiproton flux below 300 MeV; this result has compelled theorists to propose sources of primary antiprotons above the small secondary antiproton flux produced by high energy cosmic-ray collisions with nuclei in the interstellar medium. LEAP consisted of the NMSU magnetic spectrometer, a time-of-flight system designed at Goddard Space Flight Center, two scintillation detectors, and a Cherenkov counter designed and built at the University of Arizona. Analysis of flight data performed by the high-energy astrophysics group at Goddard Space Flight Center revealed no antiproton candidates found in the 120 MeV to 360 MeV range; 3 possible antiproton candidate events were found in the 500 MeV to 1.2 GeV range in an analysis done here at the University of Arizona. However, since it will be necessary to sharpen the calibration on all of the LEAP systems in order to positively identify these events as antiprotons, only an upper limit has been determined at present. Thus, combining the analyses performed at the University of Arizona and Goddard Space Flight Center, 90% confidence upper limits of 3.5 x 10 -5 in the 120 MeV to 360 MeV range and 2.3 x 10 -4 in the 500 MeV to 1.2 GeV range for the antiproton/proton ratio is indicated by the LEAP results. LEAP disagrees sharply with the results of the Buffington group, indicating a low antiproton flux at these energies

  11. Measurement of cosmic ray at sea level with a balloon-borne, multistage and multiwire proportional counter telescope

    International Nuclear Information System (INIS)

    Hisashita, Akira; Sekiguchi, Hiroyuki; Kubota, Tadashi; Yanagimachi, Tomoki; Kurita, Hirohisa

    1979-01-01

    A multistage and multiwire proportional counter telescope has been developed to detect high energy cosmic ray (>10 GeV/nucl.) and to investigate charges and energy spectra. The observation provides with important information on the propagation and origin of cosmic ray. The energy of cosmic ray can be determined, using the relativistic increase of ionization loss in gas. In order to investigate this property, the five-stage and seven-wire proportional counter telescope was constructed, and high energy cosmic ray at sea level was detected. The distribution of ionization loss in each proportional counter was obtained. The results showed that the pulse height of the proportional counters drifted with time. This drift must be removed because it makes the determination of cosmic ray energy difficult. (Yoshimori, M.)

  12. The data processor of the EUSO-Balloon experiment

    International Nuclear Information System (INIS)

    Scotti, V; Osteria, G

    2014-01-01

    The JEM-EUSO instrument is a wide-angle refractive telescope in near-ultraviolet wavelength region being proposed for attachment to the Japanese Experiment Module (JEM) onboard International Space Station (ISS). The main scientific goal of the mission is the study of Extreme Energy Cosmic Rays (EECR) above 5 × 10 19 eV. The instrument consists of high transmittance optical Fresnel lenses with a diameter of 2.5 m, a focal surface covered by ∼ 5000 Multi Anode Photo Multiplier Tubes of 64 pixels, front-end readout, trigger and system electronics. The EUSO-Balloon experiment is a pathfinder mission in which a telescope of smaller dimension than the one designed for the ISS will be mounted onboard a stratospheric balloon. The main objective of this pathfinder mission, planned for 2014, is to perform a full scale end-to-end test of all the key technologies and instrumentation of JEM-EUSO detectors and to prove the global detection chain. Furthermore, EUSO-Balloon will measure the atmospheric and terrestrial UV background components, in different observational modes, fundamental for the development of the simulations. Through a series of stratospheric balloon flights performed by the French Space Agency CNES, EUSO-Balloon also has the potential to detect Extensive Air Showers from above, paving the way for any future large scale, space-based EECR observatory. In this paper we will present the Data Processor (DP) of EUSO-Balloon, which is the component of the Electronics System which performs the data management and the instrument control. More in detail, the DP controls the front-end electronics, performs the 2nd level trigger filtering, tags events with arrival time and payload position through a GPS system, manages the Mass Memory for data storage, measures live and dead time of the telescope, provides signals for time synchronization of the event, performs housekeeping monitor, and handles the interface to the telemetry system. The DP has to operate at high

  13. Bi-planal angiographic apparatus

    International Nuclear Information System (INIS)

    1981-01-01

    Angiography apparatus has an L-arm rotatable about a vertical axis and a U-arm mounted on the upstanding section of the L-arm for rotation about a horizontal axis. An x-ray source is at one end of the U-arm and image receptors including an image intensifier and a first film changer are at the other end to enable making posterior-anterior and anterior-posterior x-ray views at various angles relative to a patient who is located on the isocenter which is the intersection of the horizontal, vertical and x-ray beam axis. A second film changer for making lateral generally isocentric views is mounted within the U-arm on a stand that is movable along the horizontal U-arm axis to allow obtaining various distances between the image plane of the film and another x-ray source. The lateral changer is on a mechanism for shifting it vertically and longitudinally a limited amount and for rotating it with a motor so this changer will stay level until the U-arm has been tilted through a pre-determined angle. After this angle is reached motorized rotation is discontinued and the lateral changer is allowed to rotate with the U-arm. (Auth.)

  14. Isotope separation apparatus and method

    International Nuclear Information System (INIS)

    Cotter, T.P.

    1982-01-01

    The invention relates to a method and apparatus for laser isotope separation by photodeflection. A molecular beam comprising at least two isotopes to be separated intersects, preferable substantially perpendicular to one broad side of the molecular beam, with a laser beam traveling in a first direction. The laser beam is reflected back through the molecular beam, preferably in a second direction essentially opposite to the first direction. The laser beam comprises pi-pulses of a selected wavelength which excite unexcited molecules, or cause stimulated emission of excited molecules of one of the isotopes. Excitation caused by first direction pi-pulses moves molecules of the isotope excited thereby in the first direction. Stimulated emission of excited molecules of the isotope is brought about by returning pi-pulses traveling in the second direction. Stimulated emission moves emitting molecules in a direction opposite to the photon emitted. Because emitted photons travel in the second direction, emitting molecules move in the first direction. Substantial molecular movement is accomplished by a large number of pi-pulse-molecule interactions. A beam corer collects the molecules in the resulting enriched divergent portions of the beam

  15. Hanging drop crystal growth apparatus

    Science.gov (United States)

    Naumann, Robert J. (Inventor); Witherow, William K. (Inventor); Carter, Daniel C. (Inventor); Bugg, Charles E. (Inventor); Suddath, Fred L. (Inventor)

    1990-01-01

    This invention relates generally to control systems for controlling crystal growth, and more particularly to such a system which uses a beam of light refracted by the fluid in which crystals are growing to detect concentration of solutes in the liquid. In a hanging drop apparatus, a laser beam is directed onto drop which refracts the laser light into primary and secondary bows, respectively, which in turn fall upon linear diode detector arrays. As concentration of solutes in drop increases due to solvent removal, these bows move farther apart on the arrays, with the relative separation being detected by arrays and used by a computer to adjust solvent vapor transport from the drop. A forward scattering detector is used to detect crystal nucleation in drop, and a humidity detector is used, in one embodiment, to detect relative humidity in the enclosure wherein drop is suspended. The novelty of this invention lies in utilizing angular variance of light refracted from drop to infer, by a computer algorithm, concentration of solutes therein. Additional novelty is believed to lie in using a forward scattering detector to detect nucleating crystallites in drop.

  16. Powder collection apparatus/method

    Science.gov (United States)

    Anderson, I.E.; Terpstra, R.L.; Moore, J.A.

    1994-01-11

    Device for separating and collecting ultrafine atomized powder from the gas stream of a gas atomizing apparatus comprises a housing having an interior wall oriented at an angle relative to horizontal so as to form a downwardly converging, conical expansion chamber, an inlet conduit communicated to the expansion chamber proximate an upper region thereof for receiving the gas stream, and an outlet proximate a lower region of the expansion chamber. The inlet conduit is oriented at a compound inclined angle (with respect to horizontal) selected to promote separation and collection of powder from the gas stream in the expansion chamber. The compound angle comprises a first entrance angle that is greater than the angle of repose of the powder on the housing interior wall such that any powder accumulation in the inlet conduit tends to flow down the wall toward the outlet. The second angle is selected generally equal to the angle of the housing interior wall measured from the same horizontal plane so as to direct the gas stream into the expansion chamber generally tangent to the housing interior wall to establish a downward swirling gas stream flow in the expansion chamber. A powder collection container is communicated to the outlet of the expansion chamber to collect the powder for further processing. 4 figures.

  17. Dental X-ray apparatus

    International Nuclear Information System (INIS)

    Weiss, M.E.

    1980-01-01

    Intra-oral dental X-ray apparatus for panoramic radiography is described in detail. It comprises a tubular target carrier supporting at its distal end a target with an inclined forward face. Image definition is improved by positioning in the path of the X-rays a window of X-ray transmitting ceramic material, e.g. 90% oxide of Be, or Al, 7% Si0 2 . The target carrier forms a probe which can be positioned in the patient's mouth. X-rays are directed forwardly and laterally of the target to an X-ray film positioned externally. The probe is provided with a detachable sleeve having V-form arms of X-ray opaque material which serve to depress the tongue out of the radiation path and also shield the roof of the mouth and other regions of the head from the X-ray pattern. A cylindrical lead shield defines the X-ray beam angle. (author)

  18. We have "born digital" - now what about "born semantic"?

    Science.gov (United States)

    Leadbetter, Adam; Fredericks, Janet

    2014-05-01

    The phrase "born-digital" refers to those materials which originate in a digital form. In Earth and Space Sciences, this is now very much the norm for data: analogue to digital converters sit on instrument boards and produce a digital record of the observed environment. While much effort has been put in to creating and curating these digital data, there has been little work on using semantic mark up of data from the point of collection - what we term 'born semantic'. In this presentation we report on two efforts to expand this area: Qartod-to-OGC (Q2O) and SenseOCEAN. These projects have taken a common approach to 'born semantic': create or reuse appropriate controlled vocabularies, published to World Wide Web Commission (W3C) standards use standards from the Open Geospatial Consortium's Sensor Web Enablement (SWE) initiative to describe instrument setup, deployment and/or outputs using terms from those controlled vocabularies embed URLs from the controlled vocabularies within the SWE documents in a "Linked Data" conformant approach Q2O developed best practices examples of SensorML descriptions of Original Equipment Manufacturers' metadata (model characteristics, capabilities, manufacturer contact, etc ...) set-up and deployment SensorML files; and data centre process-lineage using registered vocabularies to describe terms (including input, output, processes, parameters, quality control flags) One Q2O use case, the Martha's Vineyard Coastal Observatory ADCP Waves instance, uses SensorML and registered vocabularies to fully describe the process of computing wave parameters from sensed properties, including quality control tests and associated results. The European Commission Framework Programme 7 project SenseOCEAN draws together world leading marine sensor developers to create a highly integrated multifunction and cost-effective in situ marine biogeochemical sensor system. This project will provide a quantum leap in the ability to measure crucial biogeochemical

  19. Neutron logging reliability techniques and apparatus

    International Nuclear Information System (INIS)

    Johnstone, C.W.

    1975-01-01

    Apparatus and methods for verifying the validity of data derived at least in part by neutron logging of earth formations, and, where indicated, for affording neutron diffusion-corrected values of such data, are disclosed. (WHK)

  20. Method and apparatus for measuring electromagnetic radiation

    Science.gov (United States)

    Been, J. F. (Inventor)

    1973-01-01

    An apparatus and method are described in which the capacitance of a semiconductor junction subjected to an electromagnetic radiation field is utilized to indicate the intensity or strength of the radiation.

  1. 42 CFR 84.74 - Apparatus containers; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Apparatus containers; minimum requirements. 84.74...-Contained Breathing Apparatus § 84.74 Apparatus containers; minimum requirements. (a) Apparatus may be equipped with a substantial, durable container bearing markings which show the applicant's name, the type...

  2. Universal penetration test apparatus with fluid penetration sensor

    Science.gov (United States)

    Johnson, P.W.; Stampfer, J.F.; Bradley, O.D.

    1999-02-02

    A universal penetration test apparatus is described for measuring resistance of a material to a challenge fluid. The apparatus includes a pad saturated with the challenge fluid. The apparatus includes a compression assembly for compressing the material between the pad and a compression member. The apparatus also includes a sensor mechanism for automatically detecting when the challenge fluid penetrates the material. 23 figs.

  3. Apparatus, System, And Method For Roadway Monitoring

    KAUST Repository

    Claudel, Christian G.

    2015-06-02

    An apparatus, system, and method for monitoring traffic and roadway water conditions. Traffic flow and roadway flooding is monitored concurrently through a wireless sensor network. The apparatus and system comprises ultrasound rangefinders monitoring traffic flow, flood water conditions, or both. Routing information may be calculated from the traffic conditions, such that routes are calculated to avoid roadways that are impassable or are slow due to traffic conditions.

  4. Proton imaging apparatus for proton therapy application

    International Nuclear Information System (INIS)

    Sipala, V.; Lo Presti, D.; Brianzi, M.; Civinini, C.; Bruzzi, M.; Scaringella, M.; Talamonti, C.; Bucciolini, M.; Cirrone, G.A.P.; Cuttone, G.; Randazzo, N.; Stancampiano, C.; Tesi, M.

    2011-01-01

    Radiotherapy with protons, due to the physical properties of these particles, offers several advantages for cancer therapy as compared to the traditional radiotherapy and photons. In the clinical use of proton beams, a p CT (Proton Computer Tomography) apparatus can contribute to improve the accuracy of the patient positioning and dose distribution calculation. In this paper a p CT apparatus built by the Prima (Proton Imaging) Italian Collaboration will be presented and the preliminary results will be discussed.

  5. Report upon inquiry into radiation apparatus

    International Nuclear Information System (INIS)

    1984-10-01

    In this report the committee has provided its assessment of the need and justification for the law to provide for the control of the provision of radiation apparatus, the planning needs for the provision of diagnostic and therapeutic facilities, the location of such facilities, the appropriateness or otherwise of existing legislation, the necessity for any further legislative needs and the criteria governing the provision of such radiation apparatus

  6. An analysis of the deployment of a pumpkin balloon at Mars

    Science.gov (United States)

    Rand, J. L.; Phillips, M. L.

    2004-01-01

    The design of large superpressure balloons has received significant attention in recent years due to the successful demonstration of various enabling technologies and materials. Of particular note is the "pumpkin" shaped balloon concept, which allows the stress in the envelope to be limited by the surface geometry. Unlike a sphere, where the radius used to determine the stress is determined by the volume of the balloon, the pumpkin utilizes a system of meridional tendons to react the loading in one direction, and form a number of lobes, which limit the stress in the circumferential direction. A suitable superpressure balloon has been designed using this technology which will carry 2 kg in the atmosphere of Mars. The deployment of this balloon is assumed to occur while falling on a decelerator suitably designed for the Mars atmosphere. The inflation is accomplished by a 10 kg system suspended at the nadir of the balloon. As the system falls toward the surface of the planet, helium gas is transferred into the balloon, forming a partially inflated system very similar to an ascending zero pressure balloon. This analysis incorporates the flow of the planetary gas around the inflating balloon which alters the pressure distribution and shape. As a result, stresses are seen to increase beyond the design values which will require the balloon to be redesigned to accommodate this type of dynamic deployment.

  7. Experimental characterization and numerical modelling of polymeric film damage, constituting the stratospheric super pressurized balloons

    Science.gov (United States)

    Chaabane, Makram; Chaabane, Makram; Dalverny, Olivier; Deramecourt, Arnaud; Mistou, Sébastien

    The super-pressure balloons developed by CNES are a great challenge in scientific ballooning. Whatever the balloon type considered (spherical, pumpkin...), it is necessary to have good knowledge of the mechanical behavior of the envelope regarding to the flight level and the lifespan of the balloon. It appears during the working stages of the super pressure balloons that these last can exploded prematurely in the course of the first hours of flight. For this reason CNES and LGP are carrying out research programs about experimentations and modelling in order to predict a good stability of the balloons flight and guarantee a life time in adequacy with the technical requirement. This study deals with multilayered polymeric film damage which induce balloons failure. These experimental and numerical study aims, are a better understanding and predicting of the damage mechanisms bringing the premature explosion of balloons. The following damages phenomena have different origins. The firsts are simple and triple wrinkles owed during the process and the stocking stages of the balloons. The second damage phenomenon is associated to the creep of the polymeric film during the flight of the balloon. The first experimental results we present in this paper, concern the mechanical characterization of three different damage phenomena. The severe damage induced by the wrinkles of the film involves a significant loss of mechanical properties. In a second part the theoretical study, concerns the choice and the development of a non linear viscoelastic coupled damage behavior model in a finite element code.

  8. Stability of Balloon-Retention Gastrostomy Tubes with Different Concentrations of Contrast Material: In Vitro Study

    International Nuclear Information System (INIS)

    Lopera, Jorge E.; Alvarez, Alex; Trimmer, Clayton; Josephs, Shellie; Anderson, Matthew; Dolmatch, Bart

    2009-01-01

    The purpose of this study was to determine the performance of two balloon-retention-type gastrostomy tubes when the balloons are inflated with two types of contrast materials at different concentrations. Two commonly used balloon-retention-type tubes (MIC and Tri-Funnel) were inflated to the manufacturer's recommended volumes (4 and 20 cm 3 , respectively) with normal saline or normal saline plus different concentrations of contrast material. Five tubes of each brand were inflated with normal saline and 0%, 25%, 50%, 75%, and 100% contrast material dilutions, using either nonionic hyperosmolar contrast, or nonionic iso-osmolar contrast. The tubes were submerged in a glass basin containing a solution with a pH of 4. Every week the tubes were visually inspected to determine the integrity of the balloons, and the diameter of the balloons was measured with a caliper. The tests were repeated every week for a total of 12 weeks. The MIC balloons deflated slightly faster over time than the Tri-Funnel balloons. The Tri-Funnel balloons remained relatively stable over the study period for the different concentrations of contrast materials. The deflation rates of the MIC balloons were proportionally related to the concentration of saline and inversely related to the concentration of the contrast material. At high contrast material concentrations, solidification of the balloons was observed. In conclusion, this in vitro study confirms that the use of diluted amounts of nonionic contrast materials is safe for inflating the balloons of two types of balloon-retention feeding tubes. High concentrations of contrast could result in solidification of the balloons and should be avoided.

  9. Ballooning instabilities in tokamaks with sheared toroidal flows

    International Nuclear Information System (INIS)

    Waelbroeck, F.L.; Chen, L.

    1990-11-01

    The stability of ballooning modes in the presence of sheared toroidal flows is investigated. The eigenmodes are shown to be related by a Fourier transformation to the non-exponentially growing Floquet solutions found by Cooper. It is further shown that the problem cannot be reduced further than to a two dimensional partial differential equation. Next, the generalized ballooning equation is solved analytically for a circular tokamak equilibrium with sonic flows, but with a small rotation shear compared to the sound speed. With this ordering, the centrifugal forces are comparable to the pressure gradient forces driving the instability, but coupling of the mode with the sound wave is avoided. A new stability criterion is derived which explicitly demonstrates that flow shear is stabilizing at constant centrifugal force gradient. 34 refs

  10. Dosimetry of beta emitting radionuclides for use in balloon angioplasty

    International Nuclear Information System (INIS)

    Fox, R.A.

    1997-01-01

    The dose at varying distances from the surface of an infinite cylinder containing 90 Y, 32 P and 188 Re respectively is calculated using published scaled point dose kernels for these three radionuclides. It is shown that all are suitable radionuclides for use in the irradiation of arteries subsequent to balloon angioplasty. All three may be used as a radioactive liquid in the angioplasty balloon, thereby simplifying the procedure and enabling a uniform radiation dose to be given to the arterial wall. It is however shown that there is a rapid reduction in dose with distance from the arterial wall which demands careful specification of the prescribed radiation dose. A similar rapid reduction with distance is also found with a central radioactive wire or with a radioactive stent containing the same radionuclides. (author)

  11. Accelerated partial breast irradiation utilizing balloon brachytherapy techniques

    International Nuclear Information System (INIS)

    Strauss, Jonathan B.; Dickler, Adam

    2009-01-01

    To overcome the barriers to BCT, methods of PBI in the setting of breast conservation have been explored. The method of PBI with the longest published follow-up is multi-catheter interstitial brachytherapy. Balloon-based brachytherapy with the MammoSite brachytherapy applicator was designed to simplify the brachytherapy procedure for PBI, enhance the reproducibility of the dosimetry, and improve patient comfort. The rates of local recurrence following PBI with the MammoSite applicator have been low, but there are few published reports and follow-up has been relatively short. The cosmetic outcomes and toxicity of MammoSite PBI are comparable to those seen after multicatheter-based PBI. Additional methods of balloon brachytherapy, including Xoft and SenoRx Contura have been developed. Finally, long-term follow-up after PBI is important for the welfare of individual patients and in order to establish the efficacy, late toxicity and cosmetic outcomes of this technique.

  12. Transjugular balloon mitral valvotomy in a patient with severe kyphoscoliosis

    Directory of Open Access Journals (Sweden)

    George Joseph

    2016-09-01

    Full Text Available Balloon mitral valvotomy (BMV performed by the conventional transfemoral approach can be difficult or even impossible in the presence of structural impediments such as severe kyphoscoliosis, gross cardiac anatomic distortion and inferior vena caval anomalies. A 25-year-old woman with severe thoracolumbar kyphoscoliosis due to poliomyelitis presented with symptomatic rheumatic mitral valve stenosis. After the failure of transfemoral BMV, the procedure was attempted from the right jugular access, using a modified septal puncture technique. The left atrium was entered from the jugular access and the mitral valve was crossed and dilated successfully using over the wire balloon technique. Transjugular BMV is an effective alternative in patients with kyphoscoliotic spine that preclude transfemoral approach. The detailed technique used for the procedure, its advantages as well as the other percutaneous treatment options are also discussed.

  13. The Inflammatory Sequelae of Aortic Balloon Occlusion in Hemorrhagic Shock

    Science.gov (United States)

    2014-04-13

    metabolic profile was significantly different. Clamp occlusion was associated with a significantly higher lactate burden and vasopressor requirement in...balloon occlusion. This was associated with a significant metabolic burden as measured by serum lactate; however, with suitable resuscitation, this...interleukin 10, reduces nuclear factor kB DNA binding, and improves short term survival in lethal endotoxemia . Crit Care Med 2004;32:801. [36] Manning JE

  14. Asymptotic stability boundaries of ballooning modes in circular tokamaks

    International Nuclear Information System (INIS)

    Chen, L.; Bondeson, A.; Chance, M.S.

    1987-06-01

    The model ballooning mode equation of Connor, Hastie, and Taylor for large-aspect-ratio circular tokamaks is analyzed in the limit of large pressure gradient, and corresponding expressions for stability boundaries are derived. In particular, it is found that for a fixed radial wave number, there exists an infinite sequence of unstable bands, and that minimizing over the radial wave numbers leads to asymptotic merging between the neighboring bands

  15. Percutaneous balloon valvuloplasty of a stenosed mitral bioprosthesis.

    Science.gov (United States)

    Fernandez, J J; DeSando, C J; Leff, R A; Ord, M; Sabbagh, A H

    1990-01-01

    A 62-year-old woman with disabling mitral prosthetic stenosis underwent percutaneous balloon valvuloplasty. The transvalvular gradient preoperatively was 22 mm Hg and was reduced to 6 mm Hg after the valvuloplasty. the valve area was increased from an initial value of 0.77 cm2 to 1.53 cm2. No complications occurred related to the Further studies are necessary to ascertain the indications and long-term results of percutaneous valvuloplasty on bioprosthesis in the mitral position.

  16. Prime time for drug eluting balloons in SFA interventions?

    Science.gov (United States)

    Brodmann, M

    2014-08-01

    Peripheral arterial disease most commonly affects the femoropopliteal segment. Despite enormous improvements in device and treatment technology the long-term patency rate and clinical benefit of endovascular treatment in the respective vascular bed is not satisfying. Drug coated balloon technology as a treatment option in femoropopliteal disease has shown encouraging results in first-in-man trials, which have now been proven in large randomized controlled trials.

  17. Cask handling method and apparatus

    International Nuclear Information System (INIS)

    Yoli, A.H.; Husain, I.

    1977-01-01

    The method of transferring radioactive material into and out of the cask comprises positioning a tank with an open end in a well. Then a cask having a passage for moving radioactive material into and out of the cask is placed in the tank through the opening in the tank. The tank opening is then sealed to the cask relative to the well without sealing the passage relative to the well to prevent water filled into the well from leaking into the tank. Then the well is filled with water above the seal, and radioactive material is then moved through the water in the well through the passage into the cask. The tank may be filled with demineralized water from a separate source to pressurize the space in the tank on the other side of the seal from the well to prevent water in the well from entering the tank. The water level in the well and in the tank is then lowered, the tank opening to the cask seal is removed, and a cover is attached to the cask passage to maintain the radioactive material and contaminated water in the cask. The apparatus which accomplishes the above method comprises a tank in a well for receiving a cask therein. A seal between the tank and the cask prevents water in the well from flowing into the tank about the cask and permits water in the well to flow through the cask opening into the cask. A first water supply means raises and lowers the water level in the well, and a second water supply means supplies clean demineralized water to the tank under pressure to prevent water in the well from leaking into the tank. The seal is annularly shaped and is attached to the top of the tank. The central portion of the annular seal is aligned with the cask opening and it has means to seal the annular seal to the cask

  18. Quantum behaviour of measuring apparatus

    International Nuclear Information System (INIS)

    Amri, T.

    2011-05-01

    This thesis explores the quantum behavior of measurement apparatus with illustrations in quantum optics. This is the first study of quantum properties of measurements performed by any kind of devices. We show that the quantum properties of a measurement, such as its projective or non-classical character, are revealed only by the quantum states of an unusual approach of quantum physics: the retrodictive approach. This approach involves retro-predictions about state preparations leading to a given measurement result, contrary to the predictive approach with which we usually make predictions about the results of an experiment. By clarifying the mathematical foundations of the retrodictive approach, we propose a general procedure for reconstructing the quantum states of this approach: the retrodicted states. We have realized these reconstructions for single-photon detectors, widely used in quantum cryptography for instance. This is the first tomography of quantum states totally based on the retrodictive approach and preparation choices, contrary to usual reconstructions based on measurement results. These tomographies enabled us to study experimentally the noise influence on the quantum properties of measurements performed by these detectors, in particular their transition from a strongly quantum behavior into a more classical behavior. Finally, we propose a detector of Schroedinger's Cat states of light, which are superpositions of incompatible quasi-classical states of light. In a modern version of a thought experiment proposed by Eugene Wigner in 1961, such a device could allow the Wigner's Friend to detect a Schroedinger's Cat, contrary to human eyes for which we specify some quantum properties. We generalize the use of such a non-classical detector to an estimation protocol, totally based on the retrodictive approach and preparation choices. Such a procedure could enable optimal estimations, by reaching the quantum Cramer-Rao bound, which is a very topical issue

  19. A Sensitivity Analysis of fMRI Balloon Model

    KAUST Repository

    Zayane, Chadia

    2015-04-22

    Functional magnetic resonance imaging (fMRI) allows the mapping of the brain activation through measurements of the Blood Oxygenation Level Dependent (BOLD) contrast. The characterization of the pathway from the input stimulus to the output BOLD signal requires the selection of an adequate hemodynamic model and the satisfaction of some specific conditions while conducting the experiment and calibrating the model. This paper, focuses on the identifiability of the Balloon hemodynamic model. By identifiability, we mean the ability to estimate accurately the model parameters given the input and the output measurement. Previous studies of the Balloon model have somehow added knowledge either by choosing prior distributions for the parameters, freezing some of them, or looking for the solution as a projection on a natural basis of some vector space. In these studies, the identification was generally assessed using event-related paradigms. This paper justifies the reasons behind the need of adding knowledge, choosing certain paradigms, and completing the few existing identifiability studies through a global sensitivity analysis of the Balloon model in the case of blocked design experiment.

  20. Balloon Cell Urethral Melanoma: Differential Diagnosis and Management

    Directory of Open Access Journals (Sweden)

    M. McComiskey

    2015-01-01

    Full Text Available Introduction. Primary malignant melanoma of the urethra is a rare tumour (0.2% of all melanomas that most commonly affects the meatus and distal urethra and is three times more common in women than men. Case. A 76-year-old lady presented with vaginal pain and discharge. On examination, a 4 cm mass was noted in the vagina and biopsy confirmed melanoma of a balloon type. Preoperative CT showed no distant metastases and an MRI scan of the pelvis demonstrated no associated lymphadenopathy. She underwent anterior exenterative surgery and vaginectomy also. Histology confirmed a urethral nodular malignant melanoma. Discussion. First-line treatment of melanoma is often surgical. Adjuvant treatment including chemotherapy, radiotherapy, or immunotherapy has also been reported. Even with aggressive management, malignant melanoma of the urogenital tract generally has a poor prognosis. Recurrence rates are high and the mean period between diagnosis and recurrence is 12.5 months. A 5-year survival rate of less than 20% has been reported in balloon cell melanomas along with nearly 20% developing local recurrence. Conclusion. To the best of our knowledge, this case is the first report of balloon cell melanoma arising in the urethra. The presentation and surgical management has been described and a literature review provided.