Sample records for ballistics launch dynamics

  1. Trident II (D-5) Sea Launched Ballistic Missile UGM 133A (Trident II Missile) (United States)


    TRIDENT II (D5) Sea-Launched Ballistic Missile UGM 133A (TRIDENT II (D5) missile) developed an improved Submarine Launched Ballistic Missile with...The TRIDENT II (D5) missile’s increased payload allows the deterrent mission to be achieved with fewer submarines . Trident II Missile December 2015...needed for the cable builds, which extended the overall time required for build/test, and b) unplanned work was required during the Burn-In Console

  2. Launch Vehicle Dynamics Demonstrator Model (United States)


    The effect of vibration on launch vehicle dynamics was studied. Conditions included three modes of instability. The film includes close up views of the simulator fuel tank with and without stability control.

  3. Concept of an induction-dynamic catapult for a ballistic laser gravimeter


    Bolyukh, V. F.; Vinnichenko, A. I.


    A design is proposed for an inductive-dynamic catapult in a ballistic laser gravimeter with a fixed inductor and an electrically conducting armature that moves together with the test object along a vertical axis. The catapult ensures improved accuracy of the gravimeter through direct conversion of electrical into kinetic energy. The electrical circuit of the catapult provides two successive current pulses to the inductor for launching and braking of the armature during the operating cycle.

  4. North Korea's satellite launch: provocation and ballistic progress

    International Nuclear Information System (INIS)

    Sitt, Bernard


    North Korea's putting into orbit of a small meteorological satellite using an Unha-3 launcher on the 13 December 2013, a year on from Kim Jong-il's passing, smacks of provocation. The launch of an SLV that is closely related to the Taepodong-2 and that has numerous characteristics in common with a long-range ballistic missile contravened Security Council Resolutions 1695 (2006), 1718 (2006), and 1874 (2009), adopted in response to nuclear and ballistic tests carried out by Pyongyang. These resolutions implemented a progressively more strenuous regime of sanctions, which cannot fail to have marked the North Korean dictatorship, at least in economic and financial terms. The provisional successes and failures of the Six-party talks, mediated by China, which have been at a dead-end since 2009 bear witness to the unpredictability of the North's reactions. Pyongyang's double-agenda is, nonetheless, relatively easily to discern. Firstly, with this successful launch, North Korea has redeemed the failure of the first Unha-3 launch on the 13 April 2012, at the same time as Kim Jong-un took power and the country was celebrating the centenary of the birth of its founder, Kim Il-sung. This success evidently helps to bolster both the young leader's prestige on the domestic front and his sway over the army. Simultaneously, and beyond any symbolic value, North Korea's development of long-range ballistic capabilities constitutes veritable progress, on the back of a series of failures since 2006. Naturally, the reliability of the Unha-3 launcher (or of an improved Taepodong-2) is by no means guaranteed. Moreover, its payload is limited, since it can presently only launch small satellites, and thus well below the capacity needed to carry a nuclear weapon. If this is indeed North Korea's objective in years to come, it will need to make considerable technological progress, including the development of sufficiently small nuclear devices, which would

  5. New Diagnostic, Launch and Model Control Techniques in the NASA Ames HFFAF Ballistic Range (United States)

    Bogdanoff, David W.


    This report presents new diagnostic, launch and model control techniques used in the NASA Ames HFFAF ballistic range. High speed movies were used to view the sabot separation process and the passage of the model through the model splap paper. Cavities in the rear of the sabot, to catch the muzzle blast of the gun, were used to control sabot finger separation angles and distances. Inserts were installed in the powder chamber to greatly reduce the ullage volume (empty space) in the chamber. This resulted in much more complete and repeatable combustion of the powder and hence, in much more repeatable muzzle velocities. Sheets of paper or cardstock, impacting one half of the model, were used to control the amplitudes of the model pitch oscillations.

  6. Coupled Solid Rocket Motor Ballistics and Trajectory Modeling for Higher Fidelity Launch Vehicle Design (United States)

    Ables, Brett


    Multi-stage launch vehicles with solid rocket motors (SRMs) face design optimization challenges, especially when the mission scope changes frequently. Significant performance benefits can be realized if the solid rocket motors are optimized to the changing requirements. While SRMs represent a fixed performance at launch, rapid design iterations enable flexibility at design time, yielding significant performance gains. The streamlining and integration of SRM design and analysis can be achieved with improved analysis tools. While powerful and versatile, the Solid Performance Program (SPP) is not conducive to rapid design iteration. Performing a design iteration with SPP and a trajectory solver is a labor intensive process. To enable a better workflow, SPP, the Program to Optimize Simulated Trajectories (POST), and the interfaces between them have been improved and automated, and a graphical user interface (GUI) has been developed. The GUI enables real-time visual feedback of grain and nozzle design inputs, enforces parameter dependencies, removes redundancies, and simplifies manipulation of SPP and POST's numerous options. Automating the analysis also simplifies batch analyses and trade studies. Finally, the GUI provides post-processing, visualization, and comparison of results. Wrapping legacy high-fidelity analysis codes with modern software provides the improved interface necessary to enable rapid coupled SRM ballistics and vehicle trajectory analysis. Low cost trade studies demonstrate the sensitivities of flight performance metrics to propulsion characteristics. Incorporating high fidelity analysis from SPP into vehicle design reduces performance margins and improves reliability. By flying an SRM designed with the same assumptions as the rest of the vehicle, accurate comparisons can be made between competing architectures. In summary, this flexible workflow is a critical component to designing a versatile launch vehicle model that can accommodate a volatile

  7. Photogrammetry and ballistic analysis of a high-flying projectile in the STS-124 space shuttle launch (United States)

    Metzger, Philip T.; Lane, John E.; Carilli, Robert A.; Long, Jason M.; Shawn, Kathy L.


    A method combining photogrammetry with ballistic analysis is demonstrated to identify flying debris in a rocket launch environment. Debris traveling near the STS-124 Space Shuttle was captured on cameras viewing the launch pad within the first few seconds after launch. One particular piece of debris caught the attention of investigators studying the release of flame trench fire bricks because its high trajectory could indicate a flight risk to the Space Shuttle. Digitized images from two pad perimeter high-speed 16-mm film cameras were processed using photogrammetry software based on a multi-parameter optimization technique. Reference points in the image were found from 3D CAD models of the launch pad and from surveyed points on the pad. The three-dimensional reference points were matched to the equivalent two-dimensional camera projections by optimizing the camera model parameters using a gradient search optimization technique. Using this method of solving the triangulation problem, the xyz position of the object's path relative to the reference point coordinate system was found for every set of synchronized images. This trajectory was then compared to a predicted trajectory while performing regression analysis on the ballistic coefficient and other parameters. This identified, with a high degree of confidence, the object's material density and thus its probable origin within the launch pad environment. Future extensions of this methodology may make it possible to diagnose the underlying causes of debris-releasing events in near-real time, thus improving flight safety.

  8. In-flight dynamics of volcanic ballistic projectiles (United States)

    Taddeucci, J.; Alatorre-Ibargüengoitia, M. A.; Cruz-Vázquez, O.; Del Bello, E.; Scarlato, P.; Ricci, T.


    Centimeter to meter-sized volcanic ballistic projectiles from explosive eruptions jeopardize people and properties kilometers from the volcano, but they also provide information about the past eruptions. Traditionally, projectile trajectory is modeled using simplified ballistic theory, accounting for gravity and drag forces only and assuming simply shaped projectiles free moving through air. Recently, collisions between projectiles and interactions with plumes are starting to be considered. Besides theory, experimental studies and field mapping have so far dominated volcanic projectile research, with only limited observations. High-speed, high-definition imaging now offers a new spatial and temporal scale of observation that we use to illuminate projectile dynamics. In-flight collisions commonly affect the size, shape, trajectory, and rotation of projectiles according to both projectile nature (ductile bomb versus brittle block) and the location and timing of collisions. These, in turn, are controlled by ejection pulses occurring at the vent. In-flight tearing and fragmentation characterize large bombs, which often break on landing, both factors concurring to decrease the average grain size of the resulting deposits. Complex rotation and spinning are ubiquitous features of projectiles, and the related Magnus effect may deviate projectile trajectory by tens of degrees. A new relationship is derived, linking projectile velocity and size with the size of the resulting impact crater. Finally, apparent drag coefficient values, obtained for selected projectiles, mostly range from 1 to 7, higher than expected, reflecting complex projectile dynamics. These new perspectives will impact projectile hazard mitigation and the interpretation of projectile deposits from past eruptions, both on Earth and on other planets.

  9. A Study of Ammunition Response to the Interior Ballistics Environment of Gun Launch

    National Research Council Canada - National Science Library

    Ray, Stephen E; Nusca, Michael J; Horst, Albert W


    ... propellant charge during gun launch. Since material stress imposed on the ammunition could potentially damage the projectile or its payload, a detailed knowledge of the peak stress is essential in the ammunition design process...

  10. Dynamic Load Measurement of Ballistic Gelatin Impact Using an Instrumented Tube (United States)

    Seidt, J. D.; Periira, J. M.; Hammer, J. T.; Gilat, A.; Ruggeri, C. R.


    Bird strikes are a common problem for the aerospace industry and can cause serious damage to an aircraft. Ballistic gelatin is frequently used as a surrogate for actual bird carcasses in bird strike tests. Numerical simulations of these tests are used to supplement experimental data, therefore it is necessary to use numerical modeling techniques that can accurately capture the dynamic response of ballistic gelatin. An experimental technique is introduced to validate these modeling techniques. A ballistic gelatin projectile is fired into a strike plate attached to a 36 in. long sensor tube. Dynamic load is measured at two locations relative to the strike plate using strain gages configured in a full Wheatstone bridge. Data from these experiments are used to validate a gelatin constitutive model. Simulations of the apparatus are analyzed to investigate its performance.

  11. Determining the Probability of Violating Upper-Level Wind Constraints for the Launch of Minuteman Ill Ballistic Missiles At Vandenberg Air Force Base (United States)

    Shafer, Jaclyn A.; Brock, Tyler M.


    The 30th Operational Support Squadron Weather Flight (30 OSSWF) provides comprehensive weather services to the space program at Vandenberg Air Force Base (VAFB) in California. One of their responsibilities is to monitor upper-level winds to ensure safe launch operations of the Minuteman Ill ballistic missile. The 30 OSSWF requested the Applied Meteorology Unit (AMU) analyze VAFB sounding data to determine the probability of violating (PoV) upper-level thresholds for wind speed and shear constraints specific to this launch vehicle, and to develop a graphical user interface (GUI) that will calculate the PoV of each constraint on the day of launch. The AMU suggested also including forecast sounding data from the Rapid Refresh (RAP) model. This would provide further insight for the launch weather officers (LWOs) when determining if a wind constraint violation will occur over the next few hours, and help to improve the overall upper winds forecast on launch day.

  12. Dynamics of ballistically injected latex particles in living human endothelial cells

    NARCIS (Netherlands)

    Li, Y.; Vanapalli Veera, V.S.A.R.; Vanapalli, Srinivas; Duits, Michael H.G.


    We studied the dynamics of ballistically injected latex particles (BIP) inside endothelial cells, using video particle tracking to measure the mean squared displacement (MSD) as a function of lag time. The MSD shows a plateau at short times and a linear behavior at longer times, indicating that the

  13. Overview of Orion Crew Module and Launch Abort Vehicle Dynamic Stability (United States)

    Owens, Donald B.; Aibicjpm. Vamessa V.


    With the retirement of the Space Shuttle, NASA is designing a new spacecraft, called Orion, to fly astronauts to low earth orbit and beyond. Characterization of the dynamic stability of the Orion spacecraft is important for the design of the spacecraft and trajectory construction. Dynamic stability affects the stability and control of the Orion Crew Module during re-entry, especially below Mach = 2.0 and including flight under the drogues. The Launch Abort Vehicle is affected by dynamic stability as well, especially during the re-orientation and heatshield forward segments of the flight. The dynamic stability was assessed using the forced oscillation technique, free-to-oscillate, ballistic range, and sub-scale free-flight tests. All of the test techniques demonstrated that in heatshield-forward flight the Crew Module and Launch Abort Vehicle are dynamically unstable in a significant portion of their flight trajectory. This paper will provide a brief overview of the Orion dynamic aero program and a high-level summary of the dynamic stability characteristics of the Orion spacecraft.

  14. 15 CFR 744.3 - Restrictions on Certain Rocket Systems (including ballistic missile systems and space launch... (United States)


    ... Vehicles (including cruise missile systems, target drones and reconnaissance drones) End-Uses. 744.3... missile systems, target drones and reconnaissance drones) End-Uses. (a) General prohibition. In addition...: END-USER AND END-USE BASED § 744.3 Restrictions on Certain Rocket Systems (including ballistic missile...

  15. Vehicle Dynamics due to Magnetic Launch Propulsion (United States)

    Galaboff, Zachary J.; Jacobs, William; West, Mark E.; Montenegro, Justino (Technical Monitor)


    The field of Magnetic Levitation Lind Propulsion (MagLev) has been around for over 30 years, primarily in high-speed rail service. In recent years, however, NASA has been looking closely at MagLev as a possible first stage propulsion system for spacecraft. This approach creates a variety of new problems that don't currently exist with the present MagLev trains around the world. NASA requires that a spacecraft of approximately 120,000 lbs be accelerated at two times the acceleration of gravity (2g's). This produces a greater demand on power over the normal MagLev trains that accelerate at around 0.1g. To be able to store and distribute up to 3,000 Mega Joules of energy in less than 10 seconds is a technical challenge. Another problem never addressed by the train industry and, peculiar only to NASA, is the control of a lifting body through the acceleration of and separation from the MagLev track. Very little is understood about how a lifting body will react with external forces, Such as wind gusts and ground effects, while being propelled along on soft springs such as magnetic levitators. Much study needs to be done to determine spacecraft control requirements as well as what control mechanisms and aero-surfaces should be placed on the carrier. Once the spacecraft has been propelled down the track another significant event takes place, the separation of the spacecraft from the carrier. The dynamics involved for both the carrier and the spacecraft are complex and coupled. Analysis of the reaction of the carrier after losing, a majority of its mass must be performed to insure control of the carrier is maintained and a safe separation of the spacecraft is achieved. The spacecraft angle of attack required for lift and how it will affect the carriage just prior to separation, along with the impacts of around effect and aerodynamic forces at ground level must be modeled and analyzed to define requirements on the launch vehicle design. Mechanisms, which can withstand the

  16. Dynamic Brazilian Test for Mechanical Characterization of Ceramic Ballistic Protection

    Directory of Open Access Journals (Sweden)

    Martina Scapin


    Full Text Available The aim of this work is to identify the tensile strength of alumina (Corbit98, by performing Brazilian tests at different loading rate. In this kind of test, generally used for brittle material in static loading conditions, a cylindrical specimen is diametrically compressed and failure is generated in the middle of the component as a consequence of a positive tensile stress. In this work, this experimental technique was applied also in dynamic loading conditions by using a setup based on the Split Hopkinson Pressure Bar. Due to the properties of the investigated material, among which are high hardness, high compressive strength, and brittle behaviour, some precautions were needed to assure the validity of the tests. Digital Image Correlation techniques were applied for the analysis of high framerate videos.

  17. Dynamic scaling in a ballistic deposition model for a binary system

    International Nuclear Information System (INIS)

    El-Nashar, H.F.; Cerdeira, H.A.


    A ballistic deposition model for the kinetic of surface growth for two species is introduced as a description of the evolution of a surface under vapor deposition. We used a tunable parameter P to control the deposition of the particles such that one type is deposited with probability P while the other is deposited with 1 - P. Simulations in 2 + 1 dimensions using local surface diffusion lead to the formation of a rough surface whose dynamical evolution is not that of the Kardar-Parisi-Zhang universality class. Also, when surface diffusion becomes dominant, the model moves away from the Edwards-Wilkinson universality. (author)

  18. Dynamic Modeling of Ascent Abort Scenarios for Crewed Launches (United States)

    Bigler, Mark; Boyer, Roger L.


    For the last 30 years, the United States's human space program has been focused on low Earth orbit exploration and operations with the Space Shuttle and International Space Station programs. After nearly 50 years, the U.S. is again working to return humans beyond Earth orbit. To do so, NASA is developing a new launch vehicle and spacecraft to provide this capability. The launch vehicle is referred to as the Space Launch System (SLS) and the spacecraft is called Orion. The new launch system is being developed with an abort system that will enable the crew to escape launch failures that would otherwise be catastrophic as well as probabilistic design requirements set for probability of loss of crew (LOC) and loss of mission (LOM). In order to optimize the risk associated with designing this new launch system, as well as verifying the associated requirements, NASA has developed a comprehensive Probabilistic Risk Assessment (PRA) of the integrated ascent phase of the mission that includes the launch vehicle, spacecraft and ground launch facilities. Given the dynamic nature of rocket launches and the potential for things to go wrong, developing a PRA to assess the risk can be a very challenging effort. Prior to launch and after the crew has boarded the spacecraft, the risk exposure time can be on the order of three hours. During this time, events may initiate from either of the spacecraft, the launch vehicle, or the ground systems, thus requiring an emergency egress from the spacecraft to a safe ground location or a pad abort via the spacecraft's launch abort system. Following launch, again either the spacecraft or the launch vehicle can initiate the need for the crew to abort the mission and return to the home. Obviously, there are thousands of scenarios whose outcome depends on when the abort is initiated during ascent as to how the abort is performed. This includes modeling the risk associated with explosions and benign system failures that require aborting a

  19. Ballistic representation for kinematic access (United States)

    Alfano, Salvatore


    This work uses simple two-body orbital dynamics to initially determine the kinematic access for a ballistic vehicle. Primarily this analysis was developed to assess when a rocket body might conjunct with an orbiting satellite platform. A family of access opportunities can be represented as a volume for a specific rocket relative to its launch platform. Alternately, the opportunities can be represented as a geographical footprint relative to aircraft or satellite position that encompasses all possible launcher locations for a specific rocket. A thrusting rocket is treated as a ballistic vehicle that receives all its energy at launch and follows a coasting trajectory. To do so, the rocket's burnout energy is used to find its equivalent initial velocity for a given launcher's altitude. Three kinematic access solutions are then found that account for spherical Earth rotation. One solution finds the maximum range for an ascent-only trajectory while another solution accommodates a descending trajectory. In addition, the ascent engagement for the descending trajectory is used to depict a rapid access scenario. These preliminary solutions are formulated to address ground-, sea-, or air-launched vehicles.

  20. Dimension dependence of clustering dynamics in models of ballistic aggregation and freely cooling granular gas (United States)

    Paul, Subhajit; Das, Subir K.


    Via event-driven molecular dynamics simulations we study kinetics of clustering in assemblies of inelastic particles in various space dimensions. We consider two models, viz., the ballistic aggregation model (BAM) and the freely cooling granular gas model (GGM), for each of which we quantify the time dependence of kinetic energy and average mass of clusters (that form due to inelastic collisions). These quantities, for both the models, exhibit power-law behavior, at least in the long time limit. For the BAM, corresponding exponents exhibit strong dimension dependence and follow a hyperscaling relation. In addition, in the high packing fraction limit the behavior of these quantities become consistent with a scaling theory that predicts an inverse relation between energy and mass. On the other hand, in the case of the GGM we do not find any evidence for such a picture. In this case, even though the energy decay, irrespective of packing fraction, matches quantitatively with that for the high packing fraction picture of the BAM, it is inversely proportional to the growth of mass only in one dimension, and the growth appears to be rather insensitive to the choice of the dimension, unlike the BAM.

  1. Sustained small oscillations in nonlinear control systems. [launch vehicle dynamics (United States)

    George, J. H.; Gunderson, R. W.; Hahn, H.


    Some results of bifurcation theory were used to study the existence of small-amplitude periodic behavior in launch vehicle dynamics, assuming that nonlinearity exists as a cubic term in the rudder response. The analysis follows closely Sattinger's (1973) approach to the theory of periodic bifurcations. The conditions under which a bifurcating branch of orbitally stable periodic solutions will exist are determined. It is shown that in more complicated cases, the conditions under which the system matrix has a pair of simple purely imaginary eigenvalues can be determined with the aid of linear stability techniques.

  2. Dynamic material characterization by combining ballistic testing and an engineering model

    NARCIS (Netherlands)

    Carton, E.P.; Roebroeks, G.H.J.J.; Wal, R. van der


    At TNO several energy-based engineering models have been created for various failure mechanism occurring in ballistic testing of materials, like ductile hole growth, denting, plugging, etc. Such models are also under development for ceramic and fiberbased materials (fabrics). As the models are

  3. Energy Absorption and Dynamic Deformation of Backing Material for Ballistic Evaluation of Body Armour


    Debarati Bhattacharjee; Ajay Kumar; Ipsita Biswas


    The measurement of back face signature (BFS) or behind armour blunt trauma (BABT) is a critical aspect of ballistic evaluation of body armour. BFS is the impact experienced by the armour wearing body, when subjected to a non-penetrating projectile. Mineral or polymeric clay is used to measure the BFS. In addition to stopping the projectile, the body armour can be used only when the BFS also falls within permissible limits. The extent of the BFS depends upon the behavior of the backing materia...

  4. Terminal Ballistics

    CERN Document Server

    Rosenberg, Zvi


    This book covers the important issues of terminal ballistics in a comprehensive way combining experimental data, numerical simulations and analytical modeling. The first chapter reviews the experimental equipment which are used for ballistic tests and the diagnostics for material characterization under impulsive loading conditions. The second chapter covers essential features of the codes which are used for terminal ballistics such as the Euler vs. Lagrange schemes and meshing techniques, as well as the most popular material models. The third chapter, devoted to the penetration mechanics of rigid penetrators, brings the update of modeling in this field. The fourth chapter deals with plate perforation and the fifth chapter deals with the penetration mechanics of shaped charge jets and eroding long rods. The last two chapters discuss several techniques for the disruption and defeating of the main threats in armor design. Throughout the book the authors demonstrate the advantages of numerical simulations in unde...

  5. Design Guide for Aerodynamics Testing of Earth and Planetary Entry Vehicles in a Ballistic Range (United States)

    Bogdanoff, David W.


    The purpose of this manual is to aid in the design of an aerodynamics test of an earth or planetary entry capsule in a ballistic range. In this manual, much use is made of the results and experience gained in 50 years of ballistic range aerodynamics testing at the NASA Ames Research Center, and in particular, that gained in the last 27 years, while the author was working at NASA Ames. The topics treated herein include: Data to be obtained; flight data needed to design test; Reynolds number and dynamic similarity of flight trajectory and ballistic range test; capabilities of various ballistic ranges; Calculations of swerves due to average and oscillating lift and of drag-induced velocity decreases; Model and sabot design; materials, weights and stresses; Sabot separation; Launches at angle of attack and slapping with paper to produce pitch/yaw oscillations.

  6. Dynamic analysis of slender launching system connected by clamp band joint using harmonic balance method

    International Nuclear Information System (INIS)

    Qin, Z Y; Yan, S Z; Chu, F L


    Clamp band joints are widely used to fasten spacecrafts onto launching systems. Due to the unilateral constraints and the frictional slippage at the joint interface, clamp band joints may bring nonlinearity into launching systems during launching process. In this paper, the dynamics of a slender launching system with clamp band joint is investigated using harmonic balance method. Firstly, the formulas for the joint stiffness of the clamp band joint are proposed. Then, the finite element model for the launch vehicle and the spacecraft connected by the clamp band joint is developed, where the clamp band joint is represented by a massless beam element. Finally, harmonic balance method is applied to calculate the steady state response of the launching system

  7. Launch Vehicle Failure Dynamics and Abort Triggering Analysis (United States)

    Hanson, John M.; Hill, Ashely D.; Beard, Bernard B.


    Launch vehicle ascent is a time of high risk for an on-board crew. There are many types of failures that can kill the crew if the crew is still on-board when the failure becomes catastrophic. For some failure scenarios, there is plenty of time for the crew to be warned and to depart, whereas in some there is insufficient time for the crew to escape. There is a large fraction of possible failures for which time is of the essence and a successful abort is possible if the detection and action happens quickly enough. This paper focuses on abort determination based primarily on data already available from the GN&C system. This work is the result of failure analysis efforts performed during the Ares I launch vehicle development program. Derivation of attitude and attitude rate abort triggers to ensure that abort occurs as quickly as possible when needed, but that false positives are avoided, forms a major portion of the paper. Some of the potential failure modes requiring use of these triggers are described, along with analysis used to determine the success rate of getting the crew off prior to vehicle demise.

  8. Molecular Dynamics Modeling of the Effect of Axial and Transverse Compression on the Residual Tensile Properties of Ballistic Fiber

    Directory of Open Access Journals (Sweden)

    Sanjib C. Chowdhury


    Full Text Available Ballistic impact induces multiaxial loading on Kevlar® and polyethylene fibers used in protective armor systems. The influence of multiaxial loading on fiber failure is not well understood. Experiments show reduction in the tensile strength of these fibers after axial and transverse compression. In this paper, we use molecular dynamics (MD simulations to explain and develop a fundamental understanding of this experimental observation since the property reduction mechanism evolves from the atomistic level. An all-atom MD method is used where bonded and non-bonded atomic interactions are described through a state-of-the-art reactive force field. Monotonic tension simulations in three principal directions of the models are conducted to determine the anisotropic elastic and strength properties. Then the models are subjected to multi-axial loads—axial compression, followed by axial tension and transverse compression, followed by axial tension. MD simulation results indicate that pre-compression distorts the crystal structure, inducing preloading of the covalent bonds and resulting in lower tensile properties.

  9. Terminal ballistics

    CERN Document Server

    Rosenberg, Zvi


    This book comprehensively discusses essential aspects of terminal ballistics, combining experimental data, numerical simulations and analytical modeling. Employing a unique approach to numerical simulations as a measure of sensitivity for the major physical parameters, the new edition also includes the following features: new figures to better illustrate the problems discussed; improved explanations for the equation of state of a solid and for the cavity expansion process; new data concerning the Kolsky bar test; and a discussion of analytical modeling for the hole diameter in a thin metallic plate impacted by a shaped charge jet. The section on thick concrete targets penetrated by rigid projectiles has now been expanded to include the latest findings, and two new sections have been added: one on a novel approach to the perforation of thin concrete slabs, and one on testing the failure of thin metallic plates using a hydrodynamic ram.

  10. Dynamic calibration of piezoelectric transducers for ballistic high-pressure measurement

    Directory of Open Access Journals (Sweden)

    Elkarous Lamine


    Full Text Available The development of a dynamic calibration standard for high-amplitude pressure piezoelectric transducers implies the implementation of a system which can provide reference pressure values with known characteristics and uncertainty. The reference pressure must be issued by a sensor, as a part of a measuring chain, with a guaranteed traceability to an international standard. However, this operation has not been completely addressed yet until today and is still calling further investigations. In this paper, we introduce an experimental study carried out in order to contribute to current efforts for the establishment of a reference dynamic calibration method. A suitable practical calibration method based on the calculation of the reference pressure by measurement of the displacement of the piston in contact with an oil-filled cylindrical chamber is presented. This measurement was achieved thanks to a high speed camera and an accelerometer. Both measurements are then compared. In the first way, pressure was generated by impacting the piston with a free falling weight and, in the second way, with strikers of known weights and accelerated to the impact velocities with an air gun. The aim of the experimental setup is to work out a system which may generate known hydraulic pressure pulses with high-accuracy and known uncertainty. Moreover, physical models were also introduced to consolidate the experimental study. The change of striker’s velocities and masses allows tuning the reference pressure pulses with different shapes and, therefore, permits to sweep a wide range of magnitudes and frequencies.

  11. A ballistic laser gravimeter for a symmetrical measurement method with the inductive-dynamic catapult and auto-seismic vibration preventing


    Bolyukh, V. F.; Omelchenko, A.; Vinnichenko, A. I.


    A ballistic laser gravimeter (BLG) with a symmetrical measurement method of the gravity acceleration (GA) is considered. Special treatment is given to the problem of eliminating the measurement error due throw of the catapult when it speeds up the test body (TB). It is possible to decrease the indicated errors thanks to the use of the induction and dynamic catapult. However, a short-term boost catapult generates vibrations of the basement (i.e. a pillar) and the mechanical elements of the gra...

  12. Thermoplastic composites for ballistic application (United States)

    Song, John Whachong


    Systematic studies of thermoplastic composites on ballistic impact failure and kinetic energy absorption mechanisms were examined on both semicrystalline and amorphous polymer matrix composites. By taking advantages of the nature of thermoplastic polymers, the main objective of this research was to develop armor grade composites with thermoplastic resin matrices through a understanding of the microscopic as well as macroscopic characteristics of the composites. In both semicrystalline neat resin and composites, the crystal formation and the degree of crystallinity of the polymer matrix were greatly influenced by processing conditions, especially, the cooling rate. As the cooling rate is decreased, more perfect crystal formation and amorphous rearrangements were evident vs cooling at higher rates. The relative degree of crystallinity of semicrystalline matrix composites was calculated using dynamic mechanical analysis (DMA). These values were in good agreement with neat resin values obtained via differantial scanning calorimeter (DSC). Unfortunately, the morphological perfection of the semicrystalline matrix exhibits negligible advantage on ballistic impact resistance. Failure of the composites under ballistic impact was localized and the kinetic energy absorption was low. Amorphous polymers were also greatly influenced by processing conditions. Furthermore, amorphous polymers exhibit large processing windows in terms of processing temperature, which allows the various processing manipulations for ballistic composite fabrication. As increasing processing temperature, glass transition temperature of the polymer and stiffness of the composite increased due to the morphological perfection and level of wetting, respectively. Ballistic impact resistance was found to be inversely proportional to the stiffness of the composites. Fiber wetting characteristics and polymer morphology changes during the cooling process are considered to be major contributors of this behavior

  13. Earth to Mars Ballistic Mission Opportunities from Naro Space Center

    Directory of Open Access Journals (Sweden)

    Sung-Moon Yoo


    Full Text Available Earth to Mars ballistic mission opportunities from Naro Space Center are studied. Determining ballistic mission opportunities can be divided into two major parts, i.e. the launch window and the daily launch window determination. At the launch window determination parts, Porkchop diagrams of Earth launch C3 magnitude, total mission duration, declination of V∞ vector at the Earth launch, and declination & right ascension of V∞ vector at the Mars arrival are examined. The location of launch site and rotation effects of the Earth are considered during the daily launch window determination parts. Using Lambert method, various Porkchop diagrams of launching in 2027 are examined for example. The daily launch window of Naro Space Center at that year was checked to verify the launch possibility by comparing with the Kennedy Space Center.

  14. Methodologies for Verification and Validation of Space Launch System (SLS) Structural Dynamic Models: Appendices (United States)

    Coppolino, Robert N.


    Verification and validation (V&V) is a highly challenging undertaking for SLS structural dynamics models due to the magnitude and complexity of SLS subassemblies and subassemblies. Responses to challenges associated with V&V of Space Launch System (SLS) structural dynamics models are presented in Volume I of this paper. Four methodologies addressing specific requirements for V&V are discussed. (1) Residual Mode Augmentation (RMA). (2) Modified Guyan Reduction (MGR) and Harmonic Reduction (HR, introduced in 1976). (3) Mode Consolidation (MC). Finally, (4) Experimental Mode Verification (EMV). This document contains the appendices to Volume I.

  15. Dynamic modeling and ascent flight control of Ares-I Crew Launch Vehicle (United States)

    Du, Wei

    This research focuses on dynamic modeling and ascent flight control of large flexible launch vehicles such as the Ares-I Crew Launch Vehicle (CLV). A complete set of six-degrees-of-freedom dynamic models of the Ares-I, incorporating its propulsion, aerodynamics, guidance and control, and structural flexibility, is developed. NASA's Ares-I reference model and the SAVANT Simulink-based program are utilized to develop a Matlab-based simulation and linearization tool for an independent validation of the performance and stability of the ascent flight control system of large flexible launch vehicles. A linearized state-space model as well as a non-minimum-phase transfer function model (which is typical for flexible vehicles with non-collocated actuators and sensors) are validated for ascent flight control design and analysis. This research also investigates fundamental principles of flight control analysis and design for launch vehicles, in particular the classical "drift-minimum" and "load-minimum" control principles. It is shown that an additional feedback of angle-of-attack can significantly improve overall performance and stability, especially in the presence of unexpected large wind disturbances. For a typical "non-collocated actuator and sensor" control problem for large flexible launch vehicles, non-minimum-phase filtering of "unstably interacting" bending modes is also shown to be effective. The uncertainty model of a flexible launch vehicle is derived. The robust stability of an ascent flight control system design, which directly controls the inertial attitude-error quaternion and also employs the non-minimum-phase filters, is verified by the framework of structured singular value (mu) analysis. Furthermore, nonlinear coupled dynamic simulation results are presented for a reference model of the Ares-I CLV as another validation of the feasibility of the ascent flight control system design. Another important issue for a single main engine launch vehicle is

  16. Inverse Force Determination on a Small Scale Launch Vehicle Model Using a Dynamic Balance (United States)

    Ngo, Christina L.; Powell, Jessica M.; Ross, James C.


    A launch vehicle can experience large unsteady aerodynamic forces in the transonic regime that, while usually only lasting for tens of seconds during launch, could be devastating if structural components and electronic hardware are not designed to account for them. These aerodynamic loads are difficult to experimentally measure and even harder to computationally estimate. The current method for estimating buffet loads is through the use of a few hundred unsteady pressure transducers and wind tunnel test. Even with a large number of point measurements, the computed integrated load is not an accurate enough representation of the total load caused by buffeting. This paper discusses an attempt at using a dynamic balance to experimentally determine buffet loads on a generic scale hammer head launch vehicle model tested at NASA Ames Research Center's 11' x 11' transonic wind tunnel. To use a dynamic balance, the structural characteristics of the model needed to be identified so that the natural modal response could be and removed from the aerodynamic forces. A finite element model was created on a simplified version of the model to evaluate the natural modes of the balance flexures, assist in model design, and to compare to experimental data. Several modal tests were conducted on the model in two different configurations to check for non-linearity, and to estimate the dynamic characteristics of the model. The experimental results were used in an inverse force determination technique with a psuedo inverse frequency response function. Due to the non linearity, the model not being axisymmetric, and inconsistent data between the two shake tests from different mounting configuration, it was difficult to create a frequency response matrix that satisfied all input and output conditions for wind tunnel configuration to accurately predict unsteady aerodynamic loads.

  17. End-To-End Simulation of Launch Vehicle Trajectories Including Stage Separation Dynamics (United States)

    Albertson, Cindy W.; Tartabini, Paul V.; Pamadi, Bandu N.


    The development of methodologies, techniques, and tools for analysis and simulation of stage separation dynamics is critically needed for successful design and operation of multistage reusable launch vehicles. As a part of this activity, the Constraint Force Equation (CFE) methodology was developed and implemented in the Program to Optimize Simulated Trajectories II (POST2). The objective of this paper is to demonstrate the capability of POST2/CFE to simulate a complete end-to-end mission. The vehicle configuration selected was the Two-Stage-To-Orbit (TSTO) Langley Glide Back Booster (LGBB) bimese configuration, an in-house concept consisting of a reusable booster and an orbiter having identical outer mold lines. The proximity and isolated aerodynamic databases used for the simulation were assembled using wind-tunnel test data for this vehicle. POST2/CFE simulation results are presented for the entire mission, from lift-off, through stage separation, orbiter ascent to orbit, and booster glide back to the launch site. Additionally, POST2/CFE stage separation simulation results are compared with results from industry standard commercial software used for solving dynamics problems involving multiple bodies connected by joints.

  18. Flexible Launch Vehicle Stability Analysis Using Steady and Unsteady Computational Fluid Dynamics (United States)

    Bartels, Robert E.


    Launch vehicles frequently experience a reduced stability margin through the transonic Mach number range. This reduced stability margin can be caused by the aerodynamic undamping one of the lower-frequency flexible or rigid body modes. Analysis of the behavior of a flexible vehicle is routinely performed with quasi-steady aerodynamic line loads derived from steady rigid aerodynamics. However, a quasi-steady aeroelastic stability analysis can be unconservative at the critical Mach numbers, where experiment or unsteady computational aeroelastic analysis show a reduced or even negative aerodynamic damping.Amethod of enhancing the quasi-steady aeroelastic stability analysis of a launch vehicle with unsteady aerodynamics is developed that uses unsteady computational fluid dynamics to compute the response of selected lower-frequency modes. The response is contained in a time history of the vehicle line loads. A proper orthogonal decomposition of the unsteady aerodynamic line-load response is used to reduce the scale of data volume and system identification is used to derive the aerodynamic stiffness, damping, and mass matrices. The results are compared with the damping and frequency computed from unsteady computational aeroelasticity and from a quasi-steady analysis. The results show that incorporating unsteady aerodynamics in this way brings the enhanced quasi-steady aeroelastic stability analysis into close agreement with the unsteady computational aeroelastic results.

  19. Ballistic Test Facility (United States)

    Federal Laboratory Consortium — The Ballistic Test Facility is comprised of two outdoor and one indoor test ranges, which are all instrumented for data acquisition and analysis. Full-size aircraft...

  20. Probabilistic Sensitivity Analysis for Launch Vehicles with Varying Payloads and Adapters for Structural Dynamics and Loads (United States)

    McGhee, David S.; Peck, Jeff A.; McDonald, Emmett J.


    This paper examines Probabilistic Sensitivity Analysis (PSA) methods and tools in an effort to understand their utility in vehicle loads and dynamic analysis. Specifically, this study addresses how these methods may be used to establish limits on payload mass and cg location and requirements on adaptor stiffnesses while maintaining vehicle loads and frequencies within established bounds. To this end, PSA methods and tools are applied to a realistic, but manageable, integrated launch vehicle analysis where payload and payload adaptor parameters are modeled as random variables. This analysis is used to study both Regional Response PSA (RRPSA) and Global Response PSA (GRPSA) methods, with a primary focus on sampling based techniques. For contrast, some MPP based approaches are also examined.

  1. Targeting Low-Energy Ballistic Lunar Transfers (United States)

    Parker, Jeffrey S.


    Numerous low-energy ballistic transfers exist between the Earth and Moon that require less fuel than conventional transfers, but require three or more months of transfer time. An entirely ballistic lunar transfer departs the Earth from a particular declination at some time in order to arrive at the Moon at a given time along a desirable approach. Maneuvers may be added to the trajectory in order to adjust the Earth departure to meet mission requirements. In this paper, we characterize the (Delta)V cost required to adjust a low-energy ballistic lunar transfer such that a spacecraft may depart the Earth at a desirable declination, e.g., 28.5(white bullet), on a designated date. This study identifies the optimal locations to place one or two maneuvers along a transfer to minimize the (Delta)V cost of the transfer. One practical application of this study is to characterize the launch period for a mission that aims to launch from a particular launch site, such as Cape Canaveral, Florida, and arrive at a particular orbit at the Moon on a given date using a three-month low-energy transfer.

  2. Impact of Cross-Axis Structural Dynamics on Validation of Linear Models for Space Launch System (United States)

    Pei, Jing; Derry, Stephen D.; Zhou Zhiqiang; Newsom, Jerry R.


    A feasibility study was performed to examine the advisability of incorporating a set of Programmed Test Inputs (PTIs) during the Space Launch System (SLS) vehicle flight. The intent of these inputs is to provide validation to the preflight models for control system stability margins, aerodynamics, and structural dynamics. During October 2009, Ares I-X program was successful in carrying out a series of PTI maneuvers which provided a significant amount of valuable data for post-flight analysis. The resulting data comparisons showed excellent agreement with the preflight linear models across the frequency spectrum of interest. However unlike Ares I-X, the structural dynamics associated with the SLS boost phase configuration are far more complex and highly coupled in all three axes. This presents a challenge when implementing this similar system identification technique to SLS. Preliminary simulation results show noticeable mismatches between PTI validation and analytical linear models in the frequency range of the structural dynamics. An alternate approach was examined which demonstrates the potential for better overall characterization of the system frequency response as well as robustness of the control design.

  3. Dynamic recrystallization-induced flow phenomena in tungsten-tantalum (4%) [001] single-crystal rod ballistic penetrators

    International Nuclear Information System (INIS)

    Trillo, E.A.; Esquivel, E.V.; Murr, L.E.; Magness, L.S.


    Deformation-flow microstructures associated with [001] W-4% Ta penetrator fragments in a rolled homogeneous steel armor target exhibit dynamic recrystallization. The equiaxed, recrystallized grain structure observed in the deformed penetrator is also associated with soft zones in corresponding microhardness maps. Microstructure evolution is also examined by transmission electron microscopy (TEM) and selected-area electron diffraction (SAED)

  4. Capability of satellite-aided ballistic capture (United States)

    Luo, Z.-F.; Topputo, F.


    In this paper we study a special instance of ballistic capture dynamics: the case in which the capture orbit about a planet experiences a close passage to one or more of its natural satellites. The capability of the satellites in improving ballistic capture is assessed. The dynamical framework considers at least the gravitational attractions of the Sun, the planet, and its satellites, all acting on a massless particle. The effect of the satellites is introduced explicitly by modifying a previously developed method, which relies on three-dimensional stable sets and n-body dynamics with precise ephemeris. Once a stability criterium is defined, initial conditions defined over a computational grid are integrated forward and backward. This allows us to classify orbits into different sets. Ballistic capture orbits with prescribed features are generated by manipulating these sets. Two indices, namely the hyperbolic velocity and the stability index, are used to assess the performance of pre- and post-capture portions, respectively. A Pareto frontier is used to extract orbits of practical interest. Case studies are performed in the context of Earth and Jupiter environments. Comparing to the situation with no moons, the satellite-aided ballistic capture can evidently increase the pre-capture energy and post-capture stability, so making it possible to have permanent capture of a particle at zero-cost. This is a desirable feature in mission design.

  5. Ballistic Phosphorene Transistor (United States)


    satisfactory. W911NF-14-1-0572 -II 66414-EL-II.3 TO:(1) Electronics Division (Qiu, Joe) TITLE: Final Report: Ballistic Phosphorene Transistor (x) Material... Transistor ” as a STIP award for the period 09/1/2014 through 5/31/2015. The ARO program director responsible for the grant is Dr. Joe Qiu. The PI is Prof...UU 19-11-2015 1-Sep-2014 31-May-2015 Approved for Public Release; Distribution Unlimited Final Report: Ballistic Phosphorene Transistor The views

  6. Methodologies for Verification and Validation of Space Launch System (SLS) Structural Dynamic Models (United States)

    Coppolino, Robert N.


    Responses to challenges associated with verification and validation (V&V) of Space Launch System (SLS) structural dynamics models are presented in this paper. Four methodologies addressing specific requirements for V&V are discussed. (1) Residual Mode Augmentation (RMA), which has gained acceptance by various principals in the NASA community, defines efficient and accurate FEM modal sensitivity models that are useful in test-analysis correlation and reconciliation and parametric uncertainty studies. (2) Modified Guyan Reduction (MGR) and Harmonic Reduction (HR, introduced in 1976), developed to remedy difficulties encountered with the widely used Classical Guyan Reduction (CGR) method, are presented. MGR and HR are particularly relevant for estimation of "body dominant" target modes of shell-type SLS assemblies that have numerous "body", "breathing" and local component constituents. Realities associated with configuration features and "imperfections" cause "body" and "breathing" mode characteristics to mix resulting in a lack of clarity in the understanding and correlation of FEM- and test-derived modal data. (3) Mode Consolidation (MC) is a newly introduced procedure designed to effectively "de-feature" FEM and experimental modes of detailed structural shell assemblies for unambiguous estimation of "body" dominant target modes. Finally, (4) Experimental Mode Verification (EMV) is a procedure that addresses ambiguities associated with experimental modal analysis of complex structural systems. Specifically, EMV directly separates well-defined modal data from spurious and poorly excited modal data employing newly introduced graphical and coherence metrics.

  7. Dynamics of Magnetized Plasma Jets and Bubbles Launched into a Background Magnetized Plasma (United States)

    Wallace, B.; Zhang, Y.; Fisher, D. M.; Gilmore, M.


    The propagation of dense magnetized plasma, either collimated with mainly azimuthal B-field (jet) or toroidal with closed B-field (bubble), in a background plasma occurs in a number of solar and astrophysical cases. Such cases include coronal mass ejections moving in the background solar wind and extragalactic radio lobes expanding into the extragalactic medium. Understanding the detailed MHD behavior is crucial for correctly modeling these events. In order to further the understanding of such systems, we are investigating the injection of dense magnetized jets and bubbles into a lower density background magnetized plasma using a coaxial plasma gun and a background helicon or cathode plasma. In both jet and bubble cases, the MHD dynamics are found to be very different when launched into background plasma or magnetic field, as compared to vacuum. In the jet case, it is found that the inherent kink instability is stabilized by velocity shear developed due to added magnetic tension from the background field. In the bubble case, rather than directly relaxing to a minimum energy Taylor state (spheromak) as in vacuum, there is an expansion asymmetry and the bubble becomes Rayleigh-Taylor unstable on one side. Recent results will be presented. Work supported by the Army Research Office Award No. W911NF1510480.

  8. The Anti-Ballistic Missile Treaty

    International Nuclear Information System (INIS)

    Platt, A.


    This paper reports that in late May 1972 former President Richard M. Nixon went to Moscow and signed, among other documents, a Treaty to Limit Anti-Ballistic Missile (ABM) Systems. Under this agreement, both the United States and the Soviet Union made a commitment not to build nationwide ABM defenses against the other's intercontinental and submarine-launched ballistic missiles. They agreed to limit ABM deployments to a maximum of two sites, with no more than 100 launchers per site. Thirteen of the treaty's sixteen articles are intended to prevent any deviation from this. In addition, a joint Standing Consultative Commission to monitor compliance was created. National technical means --- sophisticated monitoring devices on land, sea, and in space --- were to be the primary instruments used to monitor compliance with the treaty. The ABM Treaty was signed in conjunction with an Interim Agreement to Limit Strategic Offensive Arms

  9. The method of neutron imaging as a tool for the study of the dynamics of water movement in wet aramid-based ballistic body armour panels (United States)

    Reifler, Felix A.; Lehmann, Eberhard H.; Frei, Gabriel; May, Hans; Rossi, René


    A new non-destructive method based on neutron imaging (neutron radiography) to determine the exact water content in aramid-based soft body armour panels is presented. While investigating the ballistic resistance of aramid-based body armour panels under a wet condition, it is important to precisely determine their water content and its chronological development. Using the presented method, the influence of water amount and location on impact testing as well as its time dependence was shown. In the ballistic panels used, spreading of water strongly depended on the kind of quilting. Very fast water migration could be observed when the panels were held vertically. Some first results regarding the water distribution in wet panels immediately after the impact are presented. On the basis of the presented results, requirements for a standard for testing the performance of ballistic panels in the wet state are deduced.

  10. Thermal effects on the performance, motor control and muscle dynamics of ballistic feeding in the salamander Eurycea guttolineata. (United States)

    Anderson, Christopher V; Larghi, Nicholas P; Deban, Stephen M


    Temperature strongly affects muscle contractile rate properties and thus may influence whole-organism performance. Movements powered by elastic recoil, however, are known to be more thermally robust than muscle-powered movements. We examined the whole-organism performance, motor control and muscle contractile physiology underlying feeding in the salamander Eurycea guttolineata. We compared elastically powered tongue projection with the associated muscle-powered retraction to determine the thermal robustness of each of these functional levels. We found that tongue-projection distance in E. guttolineata was unaffected by temperature across the entire 4-26°C range, tongue-projection dynamics were significantly affected by temperature across only the 4-11°C interval, and tongue retraction was affected to a higher degree across the entire temperature range. The significant effect of temperature on projection dynamics across the 4-11°C interval corresponds to a significant decline in projector muscle burst intensity and peak contractile force of the projector muscle across the same interval. Across the remaining temperature range, however, projection dynamics were unaffected by temperature, with muscle contractile physiology showing typical thermal effects and motor patterns showing increased activity durations and latencies. These results reveal that elastically powered tongue-projection performance in E. guttolineata is maintained to a higher degree than muscle-powered tongue retraction performance across a wide temperature range. These results further indicate that thermal robustness of the elastically powered movement is dependent on motor control and muscle physiology that results in comparable energy being stored in elastic tissues across a range of temperatures. © 2014. Published by The Company of Biologists Ltd.

  11. Gun Internal Ballistics. (United States)

    An approximate method of analysis is formulated for gun internal ballistics. The method is incorporated in a digital computer program which is...described. The validity of the method of analysis and computational procedure is substantiated by comparison of theoretical results with experimental

  12. Ballistic hole magnetic microscopy

    NARCIS (Netherlands)

    Haq, E.; Banerjee, T.; Siekman, M.H.; Lodder, J.C.; Jansen, R.


    A technique to study nanoscale spin transport of holes is presented: ballistic hole magnetic microscopy. The tip of a scanning tunneling microscope is used to inject hot electrons into a ferromagnetic heterostructure, where inelastic decay creates a distribution of electron-hole pairs.

  13. Dynamically reassigning a connected node to a block of compute nodes for re-launching a failed job (United States)

    Budnik, Thomas A [Rochester, MN; Knudson, Brant L [Rochester, MN; Megerian, Mark G [Rochester, MN; Miller, Samuel J [Rochester, MN; Stockdell, William M [Byron, MN


    Methods, systems, and products for dynamically reassigning a connected node to a block of compute nodes for re-launching a failed job that include: identifying that a job failed to execute on the block of compute nodes because connectivity failed between a compute node assigned as at least one of the connected nodes for the block of compute nodes and its supporting I/O node; and re-launching the job, including selecting an alternative connected node that is actively coupled for data communications with an active I/O node; and assigning the alternative connected node as the connected node for the block of compute nodes running the re-launched job.

  14. Firearms and Ballistics


    BOLTON-KING, Rachel; Schulze, Johan


    Chapter 7 of the book entitled 'Practical Veterinary Forensics' aims to introduce forensic veterinarians to the scientific concepts underpinning the field of firearms and ballistics. This introduction will enable practitioners to understand wound formation depending on the firearm and ammunition used. \\ud \\ud Various types of firearms, modern firing mechanisms and ammunition will be explained, together with an introduction to the physical concepts underpinning the four main constituents of th...

  15. Supra-ballistic phonons

    International Nuclear Information System (INIS)

    Russell, F.M.


    Energetic particles moving with a solid, either from nuclear reactions or externally injected, deposit energy by inelastic scattering processes which eventually appears as thermal energy. If the transfer of energy occurs in a crystalline solid then it is possible to couple some of the energy directly to the nuclei forming the lattice by generating phonons. In this paper the transfer of energy from a compound excited nucleus to the lattice is examined by introducing a virtual particle Π. It is shown that by including a Π in the nuclear reaction a substantial amount of energy can be coupled directly to the lattice. In the lattice this particle behaves as a spatially localized phonon of high energy, the so-called supra-ballistic phonon. By multiple inelastic scattering the supra-ballistic phonon eventually thermalizes. Because both the virtual particle Π and the equivalent supra-ballistic phonon have no charge or spin and can only exist within a lattice it is difficult to detect other than by its decay into thermal phonons. The possibility of a Π removing excess energy from a compound nucleus formed by the cold fusion of deuterium is examined. (Author)

  16. Ballistic negatron battery

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, M.S.R. [Koneru Lakshmiah Univ.. Dept. of Electrical and Electronics Engineering, Green fields, Vaddeswaram (India)


    If we consider the Statistics there is drastic increase in dependence of batteries from year to year, due to necessity of power storage equipment at homes, power generating off grid and on grid Wind, PV systems, etc.. Where wind power is leading in renewable sector, there is a need to look at its development. Considering the scenario in India, most of the wind resource areas are far away from grid and the remaining areas which are near to grid are of low wind currents which is of no use connecting these equipment directly to grid. So, there is a need for a power storage utility to be integrated, such as the BNB (Ballistic Negatron Battery). In this situation a country like India need a battery which should be reliable, cheap and which can be industrialized. So this paper presents the concept of working, design, operation, adaptability of a Ballistic Negatron Battery. Unlike present batteries with low energy density, huge size, more weight, more charging time and low resistant to wear level, this Ballistic Negatron Battery comes with, 1) High energy storage capability (many multiples more than the present most advanced battery). 2) Very compact in size. 3) Almost negligible in weight compared to present batteries. 4) Charges with in very less time. 5) Never exhibits a wear level greater than zero. Seems like inconceivable but adoptable with simple physics. This paper will explains in detail the principle, model, design, construction and practical considerations considered in making this battery. (Author)

  17. Coupling between a Langmuir wave and a ballistic perturbation

    International Nuclear Information System (INIS)

    Gervais, F.; Olivain, J.; Quemeneur, A.; Trocheris, M.


    The study of the mode-mode coupling usually neglects the ballistic contribution associated with parent waves. If this approximation is not made, a new mode, resulting from the interaction between the ballistic perturbation of pulsation ω 2 associated with one launched wave and the Landau component of pulsation ω 1 of the second one appears if ω 1 >ω 2 . The problem is solved theoretically and experimental evidence of this mode from measurements performed on a D.C. plasma column, confirms the results of this analysis

  18. Advanced prepreg ballistic composites for military helmets


    Dimeski, Dimko; Srebrenkoska, Vineta


    With the advancement of ballistic materials and technologies, the ballistic prepregs are becoming an essential construction technique for getting the maximum performance out of the high performance fibers. The ballistic prepregs help to maximize the engagement between fibers and high speed projectiles penetrating the ballistic material, thus reducing the amount of ballistic material required to defeat the projectiles. The backbone of lightweight ballistic materials is high perform...

  19. Development of Constraint Force Equation Methodology for Application to Multi-Body Dynamics Including Launch Vehicle Stage Seperation (United States)

    Pamadi, Bandu N.; Toniolo, Matthew D.; Tartabini, Paul V.; Roithmayr, Carlos M.; Albertson, Cindy W.; Karlgaard, Christopher D.


    The objective of this report is to develop and implement a physics based method for analysis and simulation of multi-body dynamics including launch vehicle stage separation. The constraint force equation (CFE) methodology discussed in this report provides such a framework for modeling constraint forces and moments acting at joints when the vehicles are still connected. Several stand-alone test cases involving various types of joints were developed to validate the CFE methodology. The results were compared with ADAMS(Registered Trademark) and Autolev, two different industry standard benchmark codes for multi-body dynamic analysis and simulations. However, these two codes are not designed for aerospace flight trajectory simulations. After this validation exercise, the CFE algorithm was implemented in Program to Optimize Simulated Trajectories II (POST2) to provide a capability to simulate end-to-end trajectories of launch vehicles including stage separation. The POST2/CFE methodology was applied to the STS-1 Space Shuttle solid rocket booster (SRB) separation and Hyper-X Research Vehicle (HXRV) separation from the Pegasus booster as a further test and validation for its application to launch vehicle stage separation problems. Finally, to demonstrate end-to-end simulation capability, POST2/CFE was applied to the ascent, orbit insertion, and booster return of a reusable two-stage-to-orbit (TSTO) vehicle concept. With these validation exercises, POST2/CFE software can be used for performing conceptual level end-to-end simulations, including launch vehicle stage separation, for problems similar to those discussed in this report.

  20. Modelling and Simulation on Multibody Dynamics for Vehicular Cold Launch Systems Based on Subsystem Synthesis Method (United States)

    Panyun, YAN; Guozhu, LIANG; Yongzhi, LU; Zhihui, QI; Xingdou, GAO


    The fast simulation of the vehicular cold launch system (VCLS) in the launch process is an essential requirement for practical engineering applications. In particular, a general and fast simulation model of the VCLS will help the designer to obtain the optimum scheme in the initial design phase. For these purposes, a system-level fast simulation model was established for the VCLS based on the subsystem synthesis method. Moreover, a comparison of the load of a seven-axis VCLS on the rigid ground through both theoretical calculations and experiments was carried out. It was found that the error of the load of the rear left outrigger is less than 7.1%, and the error of the total load of all the outriggers is less than 2.8%. Moreover, time taken for completion of the simulation model is only 9.5 min, which is 5% of the time taken by conventional algorithms.

  1. Ballistic Missile Intercept from UCAV (United States)


    on the DPRK TPD-2 ballistic missile. A 3 degree-of-freedom ( 3DoF ) mathematical model was previously developed and used to simulate the trajectory...Characteristics(estimated) TPD-2 ICBM Data Input to Simulation(From [1]) Figure 3. Reach of TPD-2 Missile A 3DoF ballistic missile

  2. Ballistic transport and electronic structure

    NARCIS (Netherlands)

    Schep, Kees M.; Kelly, Paul J.; Bauer, Gerrit E.W.


    The role of the electronic structure in determining the transport properties of ballistic point contacts is studied. The conductance in the ballistic regime is related to simple geometrical projections of the Fermi surface. The essential physics is first clarified for simple models. For real

  3. Ballistic quality assurance

    International Nuclear Information System (INIS)

    Cassol, E.; Bonnet, J.; Porcheron, D.; Mazeron, J.J.; Peiffert, D.; Alapetite, C.


    This review describes the ballistic quality assurance for stereotactic intracranial irradiation treatments delivered with Gamma Knife R either dedicated or adapted medical linear accelerators. Specific and periodic controls should be performed in order to check the mechanical stability for both irradiation and collimation systems. If this step remains under the responsibility of the medical physicist, it should be done in agreement with the manufacturer's technical support. At this time, there are no recent published guidelines. With technological developments, both frequency and accuracy should be assessed in each institution according to the treatment mode: single versus hypo-fractionated dose, circular collimator versus micro-multi-leaf collimators. In addition, 'end-to-end' techniques are mandatory to find the origin of potential discrepancies and to estimate the global ballistic accuracy of the delivered treatment. Indeed, they include frames, non-invasive immobilization devices, localizers, multimodal imaging for delineation and in-room positioning imaging systems. The final precision that could be reasonably achieved is more or less 1 mm. (authors)

  4. Results of a Round Robin ballistic load sensing headform test series

    NARCIS (Netherlands)

    Philippens, M.A.G.; Anctil, B.; Markwardt, K.C.


    The majority of methods to assess the behind armour blunt trauma (BABT) risk for ballistic helmets is based on plastic deformable headforms. An alternative, the Ballistic Load Sensing Headform (BLSH) can record the dynamic contact force between helmet back face and the skull. Helmet BABT methods are

  5. Ballistic Trauma of Limbs (United States)

    Lamah, Léopold; Keita, Damany; Marie Camara, Ibrahima; Lamine Bah, Mohamed; Sory, Sidimé; Diallo, Mamadou Moustapha


    The objective of our study was to report the management and follow-up of a particular case of ballistic trauma and to do the literature review. Observation: A 35-year-old patient, a trader who was the victim of a firearm accident under not very clear circumstances. He was admitted to the emergency department after 3 hours. Clinically, the patient had significant bleeding in the arm and was in a state of clouding of consciousness. We could notice on the right arm, a posterior large transfixing wound of 1 cm and a 6 cm one on the antero-internal side. The limb was cold with a small and thready pulse. Sensitivity was decreased in the radial nerve area. The radiograph showed bone comminution from the middle 1/3 to the superior 1/3 of the humeral diaphysis. The treatment was orthopedic (after debridement) by scapula-brachio-ante-brachiopalmar plaster splint with thoracic strap. The wound healed in 46 days and the patient resumed his activities after 11 months and 2 weeks. Conclusion: The authors presented the value of using the scapulo-brachio-palmar plaster splints with thoracic strap in some severe upper limb trauma in the absence of the external fixator. PMID:28567155

  6. Dynamics of Plasma Jets and Bubbles Launched into a Transverse Background Magnetic Field (United States)

    Zhang, Yue


    A coaxial magnetized plasma gun has been utilized to launch both plasma jets (open B-field) and plasma bubbles (closed B-field) into a transverse background magnetic field in the HelCat (Helicon-Cathode) linear device at the University of New Mexico. These situations may have bearing on fusion plasmas (e.g. plasma injection for tokamak fueling, ELM pacing, or disruption mitigation) and astrophysical settings (e.g. astrophysical jet stability, coronal mass ejections, etc.). The magnetic Reynolds number of the gun plasma is 100 , so that magnetic advection dominates over magnetic diffusion. The gun plasma ram pressure, ρjetVjet2 >B02 / 2μ0 , the background magnetic pressure, so that the jet or bubble can easily penetrate the background B-field, B0. When the gun axial B-field is weak compared to the gun azimuthal field, a current-driven jet is formed with a global helical magnetic configuration. Applying the transverse background magnetic field, it is observed that the n = 1 kink mode is stabilized, while magnetic probe measurements show contrarily that the safety factor q(a) drops below unity. At the same time, a sheared axial jet velocity is measured. We conclude that the tension force arising from increasing curvature of the background magnetic field induces the measured sheared flow gradient above the theoretical kink-stabilization threshold, resulting in the emergent kink stabilization of the injected plasma jet. In the case of injected bubbles, spheromak-like plasma formation is verified. However, when the spheromak plasma propagates into the transverse background magnetic field, the typical self-closed global symmetry magnetic configuration does not hold any more. In the region where the bubble toroidal field opposed the background B-field, the magneto-Rayleigh-Taylor (MRT) instability has been observed. Details of the experiment setup, diagnostics, experimental results and theoretical analysis will be presented. Supported by the National Science Foundation

  7. A system dynamics modelling approach to assess the impact of launching a new nicotine product on population health outcomes. (United States)

    Hill, Andrew; Camacho, Oscar M


    In 2012 the US FDA suggested the use of mathematical models to assess the impact of releasing new nicotine or tobacco products on population health outcomes. A model based on system dynamics methodology was developed to project the potential effects of a new nicotine product at a population level. A model representing traditional smoking populations (never, current and former smokers) and calibrated using historical data was extended to a two-product model by including electronic cigarettes use statuses. Smoking mechanisms, such as product initiation, switching, transition to dual use, and cessation, were represented as flows between smoking statuses (stocks) and the potential effect of smoking renormalisation through a feedback system. Mortality over a 50-year period (2000-2050) was the health outcome of interest, and was compared between two scenarios, with and without e-cigarettes being introduced. The results suggest that by 2050, smoking prevalence in adults was 12.4% in the core model and 9.7% (including dual users) in the counterfactual. Smoking-related mortality was 8.4% and 8.1%, respectively. The results suggested an overall beneficial effect from launching e-cigarettes and that system dynamics could be a useful approach to assess the potential population health effects of nicotine products when epidemiological data are not available. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Ballistic materials in MR imaging

    International Nuclear Information System (INIS)

    Smith, A.S.; Hurst, G.C.; Duerk, J.L.; Diaz, P.J.


    This paper reports on the most common ballistic materials available in the urban setting studied for deflection force, rotation, heating, and imaging artifact at 1.5 T to determine potential efficacy and safety for imaging patients with ballistic injuries. Twenty-eight missiles were tested, covering the range of bullet types and materials suggested by the Cleveland Police Department. Deflection force was measured by the New method. Rotation was studied by evaluating bullets in a 10% (W/W) ballistic gelating after 30 minutes with the long axis of the bullet placed parallel and perpendicular to the z axis. Heating was measured with alcohol thermometers imaged for 1 hour alternately with FESUM and spin-echo sequences (RF absorption w/Kg and 0.033 w/Kg). Image artifact evaluation of routine sequences was performed


    NARCIS (Netherlands)



    The invention pertains to a ballistic-resistant moulded article comprising a compressed stack of sheets comprising reinforcing tapes having a tensile strength of at least 1.0 GPa, a tensile modulus of at least 40 GPa, and a tensile energy-to-break of at least 15 J/g, the direction of the tapes

  10. Optimization theory for ballistic conversion

    NARCIS (Netherlands)

    Xie, Yanbo; Versluis, Andreas Michel; van den Berg, Albert; Eijkel, Jan C.T.


    The growing demand of renewable energy stimulates the exploration of new materials and methods for clean energy. We recently demonstrated a high efficiency and power density energy conversion mechanism by using jetted charged microdroplets, termed as ballistic energy conversion. Hereby, we model and

  11. Ballistic study of Tensylon®–based panels

    Directory of Open Access Journals (Sweden)

    L-C. Alil


    Full Text Available Ballistic protection is a matter of interest requested by civilian as well as military needs. The last decade has witnessed an increase in the use of light weight and efficient armour systems. These panels may be used for body protection as well as light vehicle protection against small calibres or to enhance the protection level of heavier vehicles with decreasing or maintaining their weight penalty. Ultra high molecular weight polyethylene is a material of interest for light weight armour applications. The authors designed panels made of hot–pressed Tensylon® in different configurations with thin steel sheets as a backing and shield protection. Comparison of their ballistic performance to the theory predictions reveals the improved ballistic response of the panels. In addition, a non–pressed Tensylon® panel has been tested in order to facilitate the observations of the failure mechanisms inside the panels. Even if not suitable for practical use, such non–pressed panels clearly reveal the dynamic processes at micro–scale that occur during the impact. The failure mechanisms of the material under bullet penetration are discussed based on photography, optical microscopy and scanning electron microscopy. The supposed effects of the panel pressing are discussed based on the observed difference between pressed and non–pressed structures ballistic response.

  12. Ballistic Evaluation of 2060 Aluminum (United States)


    compared with other ballistic- grade AAs, namely AA2195 and AA2139. The results of these experiments were used to derive the acceptance tables for AA2060...contributions of the following people who made this work possible: program lead Brian Placzankis of ARL’s Coatings, Corrosion and Engineered Polymers as the AA2195 alloy and therefore became the basis for a fiscal year 2012 OSD-funded DAC program to fully validate and ultimately transition

  13. Assessment and monitoring of ballistic and maximal upper-body strength qualities in athletes. (United States)

    Young, Kieran P; Haff, G Gregory; Newton, Robert U; Gabbett, Tim J; Sheppard, Jeremy M


    To evaluate whether the dynamic strength index (DSI: ballistic peak force/isometric peak force) could be effectively used to guide specific training interventions and detect training-induced changes in maximal and ballistic strength. Twenty-four elite male athletes were assessed in the isometric bench press and a 45% 1-repetition-maximum (1RM) ballistic bench throw using a force plate and linear position transducer. The DSI was calculated using the peak force values obtained during the ballistic bench throw and isometric bench press. Athletes were then allocated into 2 groups as matched pairs based on their DSI and strength in the 1RM bench press. Over the 5 wk of training, athletes performed either high-load (80-100% 1RM) bench press or moderate-load (40-55% 1RM) ballistic bench throws. The DSI was sensitive to disparate training methods, with the bench-press group increasing isometric bench-press peak force (P=.035, 91% likely), and the ballistic-bench-throw group increasing bench-throw peak force to a greater extent (P≤.001, 83% likely). A significant increase (P≤.001, 93% likely) in the DSI was observed for both groups. The DSI can be used to guide specific training interventions and can detect training-induced changes in isometric bench-press and ballistic bench-throw peak force over periods as short as 5 wk.

  14. Synchro-ballistic recording of detonation phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Critchfield, R.R.; Asay, B.W.; Bdzil, J.B.; Davis, W.C.; Ferm, E.N.; Idar, D.J.


    Synchro-ballistic use of rotating-mirror streak cameras allows for detailed recording of high-speed events of known velocity and direction. After an introduction to the synchro-ballistic technique, this paper details two diverse applications of the technique as applied in the field of high-explosives research. In the first series of experiments detonation-front shape is recorded as the arriving detonation shock wave tilts an obliquely mounted mirror, causing reflected light to be deflected from the imaging lens. These tests were conducted for the purpose of calibrating and confirming the asymptotic Detonation Shock Dynamics (DSD) theory of Bdzil and Stewart. The phase velocities of the events range from ten to thirty millimeters per microsecond. Optical magnification is set for optimal use of the film`s spatial dimension and the phase velocity is adjusted to provide synchronization at the camera`s maximum writing speed. Initial calibration of the technique is undertaken using a cylindrical HE geometry over a range of charge diameters and of sufficient length-to-diameter ratio to insure a stable detonation wave. The final experiment utilizes an arc-shaped explosive charge, resulting in an asymmetric detonation-front record. The second series of experiments consists of photographing a shaped-charge jet having a velocity range of two to nine millimeters per microsecond. To accommodate the range of velocities it is necessary to fire several tests, each synchronized to a different section of the jet. The experimental apparatus consists of a vacuum chamber to preclude atmospheric ablation of the jet tip with shocked-argon back lighting to produce a shadow-graph image.

  15. Artifacts that mimic ballistic magnetoresistance

    International Nuclear Information System (INIS)

    Egelhoff, W.F. . E-mail :; Gan, L.; Ettedgui, H.; Kadmon, Y.; Powell, C.J.; Chen, P.J.; Shapiro, A.J.; McMichael, R.D.; Mallett, J.J.; Moffat, T.P.; Stiles, M.D.; Svedberg, E.B.


    We have investigated the circumstances underlying recent reports of very large values of ballistic magnetoresistance (BMR) in nanocontacts between magnetic wires. We find that the geometries used are subject to artifacts due to motion of the wires that distort the nanocontact thereby changing its electrical resistance. Since these nanocontacts are often of atomic scale, reliable experiments would require stability on the atomic scale. No method for achieving such stability in macroscopic wires is apparent. We conclude that macroscopic magnetic wires cannot be used to establish the validity of the BMR effect

  16. The Launch of the MA-6, Friendship 7 (United States)


    The launch of the MA-6, Friendship 7, on February 20, 1962. Boosted by the Mercury-Atlas vehicle, a modified Atlas Intercontinental Ballistic Missile (ICBM), Friendship 7 was the first U.S. marned orbital flight and carried Astronaut John H. Glenn into orbit. Astronaut Glenn became the first American to orbit the Earth.

  17. The Cooperative Ballistic Missile Defence Game

    NARCIS (Netherlands)

    Evers, L.; Barros, A.I.; Monsuur, H.


    The increasing proliferation of ballistic missiles and weapons of mass destruction poses new risks worldwide. For a threatened nation and given the characteristics of this threat a layered ballistic missile defence system strategy appears to be the preferred solution. However, such a strategy

  18. Launch Preparation and Rocket Launching (United States)


    equipment: switchgear , power sources, onboard cable system. The imitation of prelaunch servicing procedure, launching and rocket flight is carried center of container between it and rocket are installed four bushings from foam plastic. These bushings hold rocket in the center of container and

  19. Max Launch Abort System (MLAS) Pad Abort Test Vehicle (PATV) II Attitude Control System (ACS) Integration and Pressurization Subsystem Dynamic Random Vibration Analysis (United States)

    Ekrami, Yasamin; Cook, Joseph S.


    In order to mitigate catastrophic failures on future generation space vehicles, engineers at the National Aeronautics and Space Administration have begun to integrate a novel crew abort systems that could pull a crew module away in case of an emergency at the launch pad or during ascent. The Max Launch Abort System (MLAS) is a recent test vehicle that was designed as an alternative to the baseline Orion Launch Abort System (LAS) to demonstrate the performance of a "tower-less" LAS configuration under abort conditions. The MLAS II test vehicle will execute a propulsive coast stabilization maneuver during abort to control the vehicles trajectory and thrust. To accomplish this, the spacecraft will integrate an Attitude Control System (ACS) with eight hypergolic monomethyl hydrazine liquid propulsion engines that are capable of operating in a quick pulsing mode. Two main elements of the ACS include a propellant distribution subsystem and a pressurization subsystem to regulate the flow of pressurized gas to the propellant tanks and the engines. The CAD assembly of the Attitude Control System (ACS) was configured and integrated into the Launch Abort Vehicle (LAV) design. A dynamic random vibration analysis was conducted on the Main Propulsion System (MPS) helium pressurization panels to assess the response of the panel and its components under increased gravitational acceleration loads during flight. The results indicated that the panels fundamental and natural frequencies were farther from the maximum Acceleration Spectral Density (ASD) vibrations which were in the range of 150-300 Hz. These values will direct how the components will be packaged in the vehicle to reduce the effects high gravitational loads.

  20. Assessment of Ballistic Performance for Transparent Material

    Directory of Open Access Journals (Sweden)

    Basim M. Fadhil


    Full Text Available A finite element method was used to investigate the ballistic behavior of Polymethylmethacrylate (PMMA under impact loading by spherical steel projectile with different ranges of velocities. Three different target thicknesses were used in the experimental and the numerical works. A mathematical model has been used for the ballistic limit based on the experimental results. It has been found that projectile velocity and target thickness play an important role in the ballistic behavior of PMMA. A good agreement was found between the numerical, experimental, and the analytical result.

  1. Emerging National Space Launch Programs. Economics and Safeguards (United States)


    the sounding rocket program of Sonda (see Table 2.2). Sonda is also the basis of both the MB/EE and SS series of tactical ballistic missiles. Two...S Reported Ballistic Missile Programs Program Derivative of Propellant Range (kin) Payload (kg) VLS Sonda Solid LEO t60 MB/EE.150, 350, 6(), and Orhita Sonda Solid 150-1000 Up to 500 SS.30o and 104)0; by Avibras Sonda Solid 300-1000 Up to 1000 rJFor a review of Brazil’s space launch program

  2. Injection of a microsatellite in circular orbits using a three-stage launch vehicle (United States)

    Marchi, L. O.; Murcia, J. O.; Prado, A. F. B. A.; Solórzano, C. R. H.


    The injection of a satellite into orbit is usually done by a multi-stage launch vehicle. Nowadays, the space market demonstrates a strong tendency towards the use of smaller satellites, because the miniaturization of the systems improve the cost/benefit of a mission. A study to evaluate the capacity of the Brazilian Microsatellite Launch Vehicle (VLM) to inject payloads into Low Earth Orbits is presented in this paper. All launches are selected to be made to the east side of the Alcântara Launch Center (CLA). The dynamical model to calculate the trajectory consists of the three degrees of freedom (3DOF) associated with the translational movement of the rocket. Several simulations are performed according to a set of restrictions imposed to the flight. The altitude reached in the separation of the second stage, the altitude and velocity of injection, the flight path angle at the moment of the activation of the third stage and the duration of the ballistic flight are presented as a function of the payload carried.

  3. Phase Contrast Imaging of Damage Initiation During Ballistic Impact of Boron Carbide (United States)

    Schuster, Brian; Tonge, Andrew; Ramos, Kyle; Rigg, Paulo; Iverson, Adam; Schuman, Adam; Lorenzo, Nicholas


    For several decades, flash X-ray imaging has been used to perform time-resolved investigations of the response of ceramics under ballistic impact. Traditional absorption based contrast offers little insight into the early initiation of inelastic deformation mechanisms and instead typically only shows the gross deformation and fracture behavior. In the present work, we employed phase contrast imaging (PCI) at the Dynamic Compression Sector (DCS) at the Advanced Photon Source, Argonne National Laboratory, to investigate crack initiation and propagation following the impact of copper penetrators into boron carbide targets. These experiments employed a single-stage propellant gun to launch small-scale (0.6 mm diameter by 3 mm long) pure copper impactors at velocities ranging from 0.9 to 1.9 km/s into commercially available boron carbide targets that were 8 mm on a side. At the lowest striking velocities the penetrator undergoes dwell or interface defeat and the target response is consistent with the cone crack formation at the impact site. At higher striking velocities there is a distinct transition to massive fragmentation leading to the onset of penetration.

  4. Ballistic Rail Gun Soft Recovery Facility (United States)

    Federal Laboratory Consortium — The Ballistic Rail Gun Soft Recovery Facility accommodates a 155mm Howitzer, fired horizontally into a 104-foot long water trough to slow the projectile and recover...

  5. Investigation of Unsteady Pressure-Sensitive Paint (uPSP) and a Dynamic Loads Balance to Predict Launch Vehicle Buffet Environments (United States)

    Schuster, David M.; Panda, Jayanta; Ross, James C.; Roozeboom, Nettie H.; Burnside, Nathan J.; Ngo, Christina L.; Kumagai, Hiro; Sellers, Marvin; Powell, Jessica M.; Sekula, Martin K.; hide


    This NESC assessment examined the accuracy of estimating buffet loads on in-line launch vehicles without booster attachments using sparse unsteady pressure measurements. The buffet loads computed using sparse sensor data were compared with estimates derived using measurements with much higher spatial resolution. The current method for estimating launch vehicle buffet loads is through wind tunnel testing of models with approximately 400 unsteady pressure transducers. Even with this relatively large number of sensors, the coverage can be insufficient to provide reliable integrated unsteady loads on vehicles. In general, sparse sensor spacing requires the use of coherence-length-based corrections in the azimuthal and axial directions to integrate the unsteady pressures and obtain reasonable estimates of the buffet loads. Coherence corrections have been used to estimate buffet loads for a variety of launch vehicles with the assumption methodology results in reasonably conservative loads. For the Space Launch System (SLS), the first estimates of buffet loads exceeded the limits of the vehicle structure, so additional tests with higher sensor density were conducted to better define the buffet loads and possibly avoid expensive modifications to the vehicle design. Without the additional tests and improvements to the coherence-length analysis methods, there would have been significant impacts to the vehicle weight, cost, and schedule. If the load estimates turn out to be too low, there is significant risk of structural failure of the vehicle. This assessment used a combination of unsteady pressure-sensitive paint (uPSP), unsteady pressure transducers, and a dynamic force and moment balance to investigate the integration schemes used with limited unsteady pressure data by comparing them with direct integration of extremely dense fluctuating pressure measurements. An outfall of the assessment was to evaluate the potential of using the emerging uPSP technique in a production

  6. Tracking Debris Shed by a Space-Shuttle Launch Vehicle (United States)

    Stuart, Phillip C.; Rogers, Stuart E.


    The DEBRIS software predicts the trajectories of debris particles shed by a space-shuttle launch vehicle during ascent, to aid in assessing potential harm to the space-shuttle orbiter and crew. The user specifies the location of release and other initial conditions for a debris particle. DEBRIS tracks the particle within an overset grid system by means of a computational fluid dynamics (CFD) simulation of the local flow field and a ballistic simulation that takes account of the mass of the particle and its aerodynamic properties in the flow field. The computed particle trajectory is stored in a file to be post-processed by other software for viewing and analyzing the trajectory. DEBRIS supplants a prior debris tracking code that took .15 minutes to calculate a single particle trajectory: DEBRIS can calculate 1,000 trajectories in .20 seconds on a desktop computer. Other improvements over the prior code include adaptive time-stepping to ensure accuracy, forcing at least one step per grid cell to ensure resolution of all CFD-resolved flow features, ability to simulate rebound of debris from surfaces, extensive error checking, a builtin suite of test cases, and dynamic allocation of memory.

  7. Multiple-Sensor Discrimination of Closely-Spaced Objects on a Ballistic Trajectory (United States)


    26 Table 7. Resulting pignistic probabilities for engagement ........................................................... 26 Table 8. Baseline radar...set of sensors is responsible for observing a complex of objects, selecting a target to engage , and intercepting that target.6 A multiple-sensor...Modeling Two-body orbit dynamics was utilized to generate ballistic trajectories between the desired burnout and reentry points. The dispersion of object

  8. Quantum and classical ballistic transport in a chaotic 2D electron channel

    International Nuclear Information System (INIS)

    Luna A, G.A.; Rodriguez, M.A.; Krokhin, A.; Na, K.; Mendez, A.


    We review recent results concerning the quantum and classical dynamical properties of ballistic electrons in a ripple channel, their transport properties and its classical-quantum correspondence is analyzed in terms of q uantum Poincare plots , energy level statistics, and certain features of the energy-band spectra. (Author)

  9. Inelastic deformation and failure of tungsten carbide under ballistic-loading conditions

    NARCIS (Netherlands)

    Hazell, P.J.; Appleby-Thomas, G.J.; Herlaar, K.; Painter, J.


    High-speed photography has been used to investigate the dynamic behaviour of similar grades of WC-Co hardmetals during ballistic impacts with velocities in the range of 28-484. m/s. Key features of the failure of similar grades of WC-Co materials during complimentary impacts have been observed and

  10. Determine ISS Soyuz Orbital Module Ballistic Limits for Steel Projectiles Hypervelocity Impact Testing (United States)

    Lyons, Frankel


    A new orbital debris environment model (ORDEM 3.0) defines the density distribution of the debris environment in terms of the fraction of debris that are low-density (plastic), medium-density (aluminum) or high-density (steel) particles. This hypervelocity impact (HVI) program focused on assessing ballistic limits (BLs) for steel projectiles impacting the enhanced Soyuz Orbital Module (OM) micrometeoroid and orbital debris (MMOD) shield configuration. The ballistic limit was defined as the projectile size on the threshold of failure of the OM pressure shell as a function of impact speeds and angle. The enhanced OM shield configuration was first introduced with Soyuz 30S (launched in May 2012) to improve the MMOD protection of Soyuz vehicles docked to the International Space Station (ISS). This test program provides HVI data on U.S. materials similar in composition and density to the Russian materials for the enhanced Soyuz OM shield configuration of the vehicle. Data from this test program was used to update ballistic limit equations used in Soyuz OM penetration risk assessments. The objective of this hypervelocity impact test program was to determine the ballistic limit particle size for 440C stainless steel spherical projectiles on the Soyuz OM shielding at several impact conditions (velocity and angle combinations). This test report was prepared by NASA-JSC/ HVIT, upon completion of tests.

  11. Ballistic Resistance of Honeycomb Sandwich Panels under In-Plane High-Velocity Impact (United States)

    Yang, Shu; Wang, Dong; Yang, Li-Jun


    The dynamic responses of honeycomb sandwich panels (HSPs) subjected to in-plane projectile impact were studied by means of explicit nonlinear finite element simulations using LS-DYNA. The HSPs consisted of two identical aluminum alloy face-sheets and an aluminum honeycomb core featuring three types of unit cell configurations (regular, rectangular-shaped, and reentrant hexagons). The ballistic resistances of HSPs with the three core configurations were first analyzed. It was found that the HSP with the reentrant auxetic honeycomb core has the best ballistic resistance, due to the negative Poisson's ratio effect of the core. Parametric studies were then carried out to clarify the influences of both macroscopic (face-sheet and core thicknesses, core relative density) and mesoscopic (unit cell angle and size) parameters on the ballistic responses of the auxetic HSPs. Numerical results show that the perforation resistant capabilities of the auxetic HSPs increase as the values of the macroscopic parameters increase. However, the mesoscopic parameters show nonmonotonic effects on the panels' ballistic capacities. The empirical equations for projectile residual velocities were formulated in terms of impact velocity and the structural parameters. It was also found that the blunter projectiles result in higher ballistic limits of the auxetic HSPs. PMID:24187526

  12. The Demeter micro satellite launch campaign (United States)

    Dubourg, V.; Kainov, V.; Thoby, M.; Silkin, O.; Solovey, V.

    The CNES Micro satellite DEMETER is planned for launch by the end of June 2004 on a DNEPR launcher, from the Baíkonur cosmodrome. DEMETER will be the main payload among nine co-passengers. DEMETER, initiated by CNES in 1998, is the first model of the MYRIADE micro satellites line of product; at the time when this abstract is issued, the satellite is going through the final integration tests, as well as the last system validation phase. The space head module of the launcher has been developed by the Ukrainian YSDO company, and a successful fit check test campaign has been performed in December 2003 and January 2004 that allowed confirming the compatibility of the payloads with their launcher interface. The launch campaign is in process of preparation, implying a close partnership between the satellite team at CNES and Russian and Ukrainian launcher authorities: DEMETER is a pioneer not only for the satellite concept itself, but also for being the first satellite of this range (3 axis stabilized, including an hydrazine propulsion system and developed by a national space agency) being launched on a Russian space adapted intercontinental ballistic missile SS18. The launch service is contracted and managed by ISC Kosmotras, and it will also be the first sun synchronous orbit launch for DNEPR. Thus the launch preparation proved to be a very challenging endeavour providing all the actors with very rich human experience, as well as technical exchanges, in the fields of launcher technology and interfaces, facilities adaptation, logistics and project coordination. In the coming paper, a short presentation of the DEMETER satellite and of the DNEPR launcher will be made, but the main purpose is to present: the launch campaign preparation milestones, the launch campaign itself and related preliminary results and the lessons learnt from this first CNES/DNEPR experience to open the way to the future MYRIADE launches. A common CNES/KOSMOTRAS presentation is proposed at the

  13. 24th International Symposium on Ballistics (United States)


    2008s.ppt Experimental Set-up Reverse ballistics experiments Flash radiography used to measure position of nose and tail of rod versus time 3 IBS 2008s.ppt...s Ballistic Testing. [VC]max vs Velocity Thorax -Kevlar Thorax -Twaron Thorax -Zylon Abdomen-Kevlar Abdomen-Twaron Abdomen-Zylon 25% Severe Thoracic...Injury 25% Severe Abdominal Injury -20 -10 0 10 20 30 40 50 60 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 D is pl ac em en tm m Time sec Displacement vs Time Thorax

  14. Numerical Simulation of Ballistic Impact of Layered Aluminum Nitride Ceramic (United States)


    ARL-TR-7416 ● SEP 2015 US Army Research Laboratory Numerical Simulation of Ballistic Impact of Layered Aluminum Nitride Ceramic...of Ballistic Impact of Layered Aluminum Nitride Ceramic by JD Clayton Weapons and Materials Research Directorate, ARL...Numerical Simulation of Ballistic Impact of Layered Aluminum Nitride Ceramic 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6

  15. Deterrence of ballistic missile systems and their effects on today's air operations (United States)

    Durak, Hasan


    Lately, the effect-based approach has gained importance in executing air operations. Thus, it makes more successful in obtaining the desired results by breaking the enemy's determination in a short time. Air force is the first option to be chosen in order to defuse the strategic targets. However, the problems such as the defense of targets and country, radars, range…etc. becoming serious problems. At this level ballistic missiles emerge as a strategic weapon. Ultimate emerging technologies guided by the INS and GPS can also be embedded with multiple warheads and reinforced with conventional explosive, ballistic missiles are weapons that can destroy targets with precision. They have the advantage of high speed, being easily launched from every platform and not being easily detected by air defense systems contrary to other air platforms. While these are the advantages, there are also disadvantages of the ballistic missiles. The high cost, unavailability of nuclear, biological and chemical weapons, and its limited effect while using conventional explosives against destroying the fortified targets are the disadvantages. The features mentioned above should be considered as limitation to the impact of the ballistic missiles. The aim is to impose the requests on enemies without starting a war with all components and to ensure better implementation of the operation functions during the air operations. In this study, effects of ballistic missiles in the future on air battle theatre will be discussed in the beginning, during the process and at the end phase of air operations within the scope of an effect-based approach.

  16. Area Ballistic Missile Defense Coordinator and the Airborne Laser: Creating Ballistic Missile Defense Unity of Effort

    National Research Council Canada - National Science Library

    Oms, Pedro


    Theater Ballistic Missile Defense (TBMD) is a challenging mission area for any Theater Combatant or Joint Task Force Commander, and one he must focus on to mitigate the strategic effects this "terror" weapon can impart...

  17. Venture Class Launch Services (United States)

    Wiese, Mark


    Provide an introduction to the Launch Services Program, and specifically the strategic initiative that drove the Venture Class Launch Services contracts. Provide information from the VCLS request for proposals, as well as the Agency's CubeSat Launch Initiative.

  18. Ballistic transport in semiconductor nanostructures: From quasi ...

    Indian Academy of Sciences (India)

    By suitable design it is possible to achieve quasi-ballistic transport in semiconductor nanostructures over times up to the ps-range. Monte-Carlo simulations reveal that under these conditions phase-coherent real-space oscillations of an electron ensemble, generated by fs-pulses become possible in wide potential wells.

  19. The Internal Ballistics of an Air Gun (United States)

    Denny, Mark


    The internal ballistics of a firearm or artillery piece considers the pellet, bullet, or shell motion while it is still inside the barrel. In general, deriving the muzzle speed of a gunpowder firearm from first principles is difficult because powder combustion is fast and it very rapidly raises the temperature of gas (generated by gunpowder…

  20. Electron Interference in Ballistic Graphene Nanoconstrictions

    DEFF Research Database (Denmark)

    Baringhaus, Jens; Settnes, Mikkel; Aprojanz, Johannes


    We realize nanometer size constrictions in ballistic graphene nanoribbons grown on sidewalls of SiC mesa structures. The high quality of our devices allows the observation of a number of electronic quantum interference phenomena. The transmissions of Fabry-Perot-like resonances are probed...

  1. Ballistic transport in semiconductor nanostructures: From quasi ...

    Indian Academy of Sciences (India)

    Abstract. By suitable design it is possible to achieve quasi-ballistic transport in semi- conductor nanostructures over times up to the ps-range. Monte-Carlo simulations reveal that under these conditions phase-coherent real-space oscillations of an electron ensem- ble, generated by fs-pulses become possible in wide ...

  2. Optimization theory for ballistic energy conversion

    NARCIS (Netherlands)

    Xie, Yanbo; Versluis, Michel; Van Den Berg, Albert; Eijkel, Jan C.T.


    The growing demand of renewable energy stimulates the exploration of new materials and methods for clean energy. We recently demonstrated a high efficiency and power density energy conversion mechanism by using jetted charged microdroplets, termed as ballistic energy conversion. Hereby, we model and

  3. Is there ballistic transport in metallic nano-objects? Ballistic versus diffusive contributions

    International Nuclear Information System (INIS)

    Garcia, N; Bai Ming; Lu Yonghua; Munoz, M; Cheng Hao; Levanyuk, A P


    When discussing the resistance of an atomic-or nanometre-size contact we should consider both its ballistic and its diffusive contributions. But there is a contribution of the leads to the resistance of the contact as well. In this context, the geometry and the roughness of the surfaces limiting the system will contribute to the resistance, and these contributions should be added to the ideal ballistic resistance of the nanocontact. We have calculated, for metallic materials, the serial resistance of the leads arising from the roughness, and our calculations show that the ohmic resistance is as important as the ballistic resistance of the constriction. The classical resistance is a lower limit to the quantum resistance of the leads. Many examples of earlier experiments show that the mean free path of the transport electrons is of the order of the size of the contacts or the leads. This is not compatible with the idea of ballistic transport. This result may put in serious difficulties the current, existing interpretation of experimental data in metals where only small serial resistances compared with the ballistic component of the total resistance have been taken into account. The two-dimensional electron gas (2DEG) is also discussed and the serial corrections appear to be smaller than for metals. Experiments with these last systems are proposed that may reveal new interesting aspects in the physics of ballistic and diffusive transport

  4. Is there ballistic transport in metallic nano-objects? Ballistic versus diffusive contributions

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, N [Laboratorio de Fisica de Sistemas Pequenos y NanotecnologIa, Consejo Superior de Investigaciones CientIficas (CSIC), Madrid 28006 (Spain); Bai Ming [Laboratorio de Fisica de Sistemas Pequenos y NanotecnologIa, Consejo Superior de Investigaciones CientIficas (CSIC), Madrid 28006 (Spain); Lu Yonghua [Laboratorio de Fisica de Sistemas Pequenos y NanotecnologIa, Consejo Superior de Investigaciones CientIficas (CSIC), Madrid 28006 (Spain); Munoz, M [Laboratorio de Fisica de Sistemas Pequenos y NanotecnologIa, Consejo Superior de Investigaciones CientIficas (CSIC), Madrid 28006 (Spain); Cheng Hao [Laboratorio de Fisica de Sistemas Pequenos y NanotecnologIa, Consejo Superior de Investigaciones CientIficas (CSIC), Madrid 28006 (Spain); Levanyuk, A P [Fisintec Innovacion Tecnologica, Miraflores 65, Alcobendas, Madrid 28100 (Spain)


    When discussing the resistance of an atomic-or nanometre-size contact we should consider both its ballistic and its diffusive contributions. But there is a contribution of the leads to the resistance of the contact as well. In this context, the geometry and the roughness of the surfaces limiting the system will contribute to the resistance, and these contributions should be added to the ideal ballistic resistance of the nanocontact. We have calculated, for metallic materials, the serial resistance of the leads arising from the roughness, and our calculations show that the ohmic resistance is as important as the ballistic resistance of the constriction. The classical resistance is a lower limit to the quantum resistance of the leads. Many examples of earlier experiments show that the mean free path of the transport electrons is of the order of the size of the contacts or the leads. This is not compatible with the idea of ballistic transport. This result may put in serious difficulties the current, existing interpretation of experimental data in metals where only small serial resistances compared with the ballistic component of the total resistance have been taken into account. The two-dimensional electron gas (2DEG) is also discussed and the serial corrections appear to be smaller than for metals. Experiments with these last systems are proposed that may reveal new interesting aspects in the physics of ballistic and diffusive transport.

  5. Cooperative Monitoring Center Occasional Paper/9: De-Alerting Strategic Ballistic Missiles

    Energy Technology Data Exchange (ETDEWEB)

    Connell, Leonard W.; Edenburn, Michael W.; Fraley, Stanley K.; Trost, Lawrence C.


    This paper presents a framework for evaluating the technical merits of strategic ballistic missile de-alerting measures, and it uses the framework to evaluate a variety of possible measures for silo-based, land-mobile, and submarine-based missiles. De-alerting measures are defined for the purpose of this paper as reversible actions taken to increase the time or effort required to launch a strategic ballistic missile. The paper does not assess the desirability of pursuing a de-alerting program. Such an assessment is highly context dependent. The paper postulates that if de-alerting is desirable and is used as an arms control mechanism, de-alerting measures should satisfy specific cirteria relating to force security, practicality, effectiveness, significant delay, and verifiability. Silo-launched missiles lend themselves most readily to de-alerting verification, because communications necessary for monitoring do not increase the vulnerabilty of the weapons by a significant amount. Land-mobile missile de-alerting measures would be more challenging to verify, because monitoring measures that disclose the launcher's location would potentially increase their vulnerability. Submarine-launched missile de-alerting measures would be extremely challlenging if not impossible to monitor without increasing the submarine's vulnerability.

  6. The Advantages of Normalizing Electromyography to Ballistic Rather than Isometric or Isokinetic Tasks. (United States)

    Suydam, Stephen M; Manal, Kurt; Buchanan, Thomas S


    Isometric tasks have been a standard for electromyography (EMG) normalization stemming from anatomic and physiologic stability observed during contraction. Ballistic dynamic tasks have the benefit of eliciting maximum EMG signals for normalization, despite having the potential for greater signal variability. It is the purpose of this study to compare maximum voluntary isometric contraction (MVIC) to nonisometric tasks with increasing degrees of extrinsic variability, ie, joint range of motion, velocity, rate of contraction, etc., to determine if the ballistic tasks, which elicit larger peak EMG signals, are more reliable than the constrained MVIC. Fifteen subjects performed MVIC, isokinetic, maximum countermovement jump, and sprint tasks while EMG was collected from 9 muscles in the quadriceps, hamstrings, and lower leg. The results revealed the unconstrained ballistic tasks were more reliable compared to the constrained MVIC and isokinetic tasks for all triceps surae muscles. The EMG from sprinting was more reliable than the constrained cases for both the hamstrings and vasti. The most reliable EMG signals occurred when the body was permitted its natural, unconstrained motion. These results suggest that EMG is best normalized using ballistic tasks to provide the greatest within-subject reliability, which beneficially yield maximum EMG values.

  7. Assessment of Three Finite Element Approaches for Modeling the Ballistic Impact Failure of Metal Plates (United States)

    Mansur, Ali; Nganbe, Michel


    The ballistic impact was numerically modeled for AISI 450 steel struck by a 17.3 g ogive nose WC-Co projectile using Abaqus/Explicit. The model was validated using experimental results and data for different projectiles and metal targets. The Abaqus ductile-shear, local principal strain to fracture, and absorbed strain energy at failure criteria were investigated. Due to the highly dynamic nature of ballistic impacts, the absorbed strain energy approach posed serious challenges in estimating the effective deformation volume and yielded the largest critical plate thicknesses for through-thickness penetration (failure). In contrast, the principal strain criterion yielded the lowest critical thicknesses and provided the best agreement with experimental ballistic test data with errors between 0 and 30%. This better accuracy was due to early failure definition when the very first mesh at the target back side reached the strain to fracture, which compensated for the overall model overestimation. The ductile-shear criterion yielded intermediate results between those of the two comparative approaches. In contrast to the ductile-shear criterion, the principal strain criterion requires only basic data readily available for practically all materials. Therefore, it is a viable alternative for an initial assessment of the ballistic performance and pre-screening of a large number of new candidate materials as well as for supporting the development of novel armor systems.

  8. Ballistic model to estimate microsprinkler droplet distribution

    Directory of Open Access Journals (Sweden)

    Conceição Marco Antônio Fonseca


    Full Text Available Experimental determination of microsprinkler droplets is difficult and time-consuming. This determination, however, could be achieved using ballistic models. The present study aimed to compare simulated and measured values of microsprinkler droplet diameters. Experimental measurements were made using the flour method, and simulations using a ballistic model adopted by the SIRIAS computational software. Drop diameters quantified in the experiment varied between 0.30 mm and 1.30 mm, while the simulated between 0.28 mm and 1.06 mm. The greatest differences between simulated and measured values were registered at the highest radial distance from the emitter. The model presented a performance classified as excellent for simulating microsprinkler drop distribution.

  9. Orbital magnetism in ensembles of ballistic billiards

    International Nuclear Information System (INIS)

    Ullmo, D.; Richter, K.; Jalabert, R.A.


    The magnetic response of ensembles of small two-dimensional structures at finite temperatures is calculated. Using semiclassical methods and numerical calculation it is demonstrated that only short classical trajectories are relevant. The magnetic susceptibility is enhanced in regular systems, where these trajectories appear in families. For ensembles of squares large paramagnetic susceptibility is obtained, in good agreement with recent measurements in the ballistic regime. (authors). 20 refs., 2 figs

  10. Lightweight Multifunctional Linear Cellular Alloy Ballistic Structures (United States)


    densities of 10, 15 and 20 % with the dimensions shown in Table 1. The alloy compositions were high strength maraging steel (M200) and Super Invar ... alloys made from LCA processing3 are shown in Table 3. Super Invar in the as-reduced state is a ductile (25-30%) austenitic alloy . When cooled to...Final Report for Lightweight Multifunctional Linear Cellular Alloy Ballistic Structures from Structured Alloys , Inc. Joe K

  11. Modeling internal ballistics of gas combustion guns. (United States)

    Schorge, Volker; Grossjohann, Rico; Schönekess, Holger C; Herbst, Jörg; Bockholdt, Britta; Ekkernkamp, Axel; Frank, Matthias


    Potato guns are popular homemade guns which work on the principle of gas combustion. They are usually constructed for recreational rather than criminal purposes. Yet some serious injuries and fatalities due to these guns are reported. As information on the internal ballistics of homemade gas combustion-powered guns is scarce, it is the aim of this work to provide an experimental model of the internal ballistics of these devices and to investigate their basic physical parameters. A gas combustion gun was constructed with a steel tube as the main component. Gas/air mixtures of acetylene, hydrogen, and ethylene were used as propellants for discharging a 46-mm caliber test projectile. Gas pressure in the combustion chamber was captured with a piezoelectric pressure sensor. Projectile velocity was measured with a ballistic speed measurement system. The maximum gas pressure, the maximum rate of pressure rise, the time parameters of the pressure curve, and the velocity and path of the projectile through the barrel as a function of time were determined according to the pressure-time curve. The maximum gas pressure was measured to be between 1.4 bar (ethylene) and 4.5 bar (acetylene). The highest maximum rate of pressure rise was determined for hydrogen at (dp/dt)max = 607 bar/s. The muzzle energy was calculated to be between 67 J (ethylene) and 204 J (acetylene). To conclude, this work provides basic information on the internal ballistics of homemade gas combustion guns. The risk of injury to the operator or bystanders is high, because accidental explosions of the gun due to the high-pressure rise during combustion of the gas/air mixture may occur.

  12. Buildings vs. ballistics: Quantifying the vulnerability of buildings to volcanic ballistic impacts using field studies and pneumatic cannon experiments (United States)

    Williams, G. T.; Kennedy, B. M.; Wilson, T. M.; Fitzgerald, R. H.; Tsunematsu, K.; Teissier, A.


    Recent casualties in volcanic eruptions due to trauma from blocks and bombs necessitate more rigorous, ballistic specific risk assessment. Quantitative assessments are limited by a lack of experimental and field data on the vulnerability of buildings to ballistic hazards. An improved, quantitative understanding of building vulnerability to ballistic impacts is required for informing appropriate life safety actions and other risk reduction strategies. We assessed ballistic impacts to buildings from eruptions at Usu Volcano and Mt. Ontake in Japan and compiled available impact data from eruptions elsewhere to identify common damage patterns from ballistic impacts to buildings. We additionally completed a series of cannon experiments which simulate ballistic block impacts to building claddings to investigate their performance over a range of ballistic projectile velocities, masses and energies. Our experiments provide new insights by quantifying (1) the hazard associated with post-impact shrapnel from building and rock fragments; (2) the effect of impact obliquity on damage; and (3) the additional impact resistance buildings possess when claddings are struck in areas directly supported by framing components. This was not well identified in previous work which may have underestimated building vulnerability to ballistic hazards. To improve assessment of building vulnerability to ballistics, we use our experimental and field data to develop quantitative vulnerability models known as fragility functions. Our fragility functions and field studies show that although unreinforced buildings are highly vulnerable to large ballistics (> 20 cm diameter), they can still provide shelter, preventing death during eruptions.

  13. Experimental investigation on ballistic stability of high-speed projectile in sand (United States)

    Zhang, Wei; Qi, Yafei; Huang, Wei; Li, Dacheng; Hypervelocity Impact Research Center Team


    The investigation on ballistic stability of high-speed projectile in granular materials is important to the study of the earth penetrating weapon(EPW). Laboratory-scaled sand entry experiments for the trajectory in the sand have been performed with four different nosed projectiles at a range of velocities from 20 m/s to 250 m/s. The slender projectiles were designed into flat, ogival, hemi-sperical, truncated-ogival nose shapes to make comparisons on the trajectory when those projectiles were launched at vertical and oblique impact angles (0° ~ 25°) along a view window. A high-speed camera placed at the side of the window was employed to capture the entire process of projectiles' penetration. Basing on the comparison of different tests, theoretical analysis is carried out on the relationships between ballistic stability and associated conditions. It can be obtained that projectile with flat nose has the best ballistic stability, followed by truncated-ogival nose, and ogival nose is the least at the same velocity. Additionally, a semi-empirical model based on a corrected drag coefficient is established to predict the depth of penetration. National Natural Science Foundation of China (NO.: 11372088)

  14. Learning without knowing: subliminal visual feedback facilitates ballistic motor learning

    DEFF Research Database (Denmark)

    Lundbye-Jensen, Jesper; Leukel, Christian; Nielsen, Jens Bo

    received supraliminal as compared to subliminal feedback. In the 0 ms feedback group motor performance increased only slightly indicating an important role of augmented feedback in learning the ballistic task. In the two groups who received subliminal feedback none of the subjects were able to tell what...... by the learner, indeed facilitated ballistic motor learning. This effect likely relates to multiple (conscious versus unconscious) processing of visual feedback and to the specific neural circuitries involved in optimization of ballistic motor performance....

  15. Interaction of a ballistic probe with gaseous media

    International Nuclear Information System (INIS)

    Kucerovsky, Zden; Greason, William D


    Free-flying metal probes are used to determine charge densities in gaseous media containing free charge or low density plasma. The trajectory of the probe is ensured either by gravity or by propelling the probe to a certain velocity at the launch site. While travelling, the probe charge changes from its launch-site magnitude to that related to the space charge density existing along the trajectory. The degree to which the probe's arrival-site charge magnitude matches the space charge density in the area of interest depends on the probe shape and on the charge exchange processes between the probe body and the medium. The paper studies a probe acting as a free-flying charge carrier in air, and discusses the problems that may lead to an imbalance between the charge collected by the probe in the area of interest and the charge measured at the arrival site. The analysis and the described experiments are of the ballistic type: a small, triboelectrically pre-charged metal probe was propelled on a horizontal path, and the charge carried by the probe was measured at several points along the trajectory by means of contact-free induction rings; the initial and final charges were determined by static Faraday cups. A charge disparity was found under certain conditions, and its degree explained by the effects of the charge carrier potential. The studied probe charges ranged from 10 to 50 nF, and the fly-times needed to cross a one-meter path ranged from 20 to 40 ms. The probe to gas charge exchange experiments and their analysis yielded conditions under which the probe lost approximately 10 % of its charge. The results of our study may be of interest to those who intend to use the free-flying probe technique for the determination of space charge density.

  16. Iraq Radiosonde Launch Records (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Iraqi upper air records loaned to NCDC from the Air Force 14th Weather Squadron. Scanned notebooks containing upper air radiosonde launch records and data. Launches...

  17. Dynamic analysis of a guided projectile during engraving process

    Directory of Open Access Journals (Sweden)

    Tao Xue


    Full Text Available The reliability of the electronic components inside a guided projectile is highly affected by the launch dynamics of guided projectile. The engraving process plays a crucial role on determining the ballistic performance and projectile stability. This paper analyzes the dynamic response of a guided projectile during the engraving process. By considering the projectile center of gravity moving during the engraving process, a dynamics model is established with the coupling of interior ballistic equations. The results detail the stress situation of a guided projectile band during its engraving process. Meanwhile, the axial dynamic response of projectile in the several milliseconds following the engraving process is also researched. To further explore how the different performance of the engraving band can affect the dynamics of guided projectile, this paper focuses on these two aspects: (a the effects caused by the different band geometry; and (b the effects caused by different band materials. The time domain and frequency domain responses show that the dynamics of the projectile are quite sensitive to the engraving band width. A material with a small modulus of elasticity is more stable than one with a high modulus of elasticity.

  18. Launching technological innovations

    DEFF Research Database (Denmark)

    Talke, Katrin; Salomo, Søren


    When conceptualising new product launch activities, most authors focused on activities aimed at overcoming customer resistance. As such a perspective neglects obstacles arising from the resistance of other stakeholders, this study proposes to explicitly consider stakeholder theory when developing...... in industrial markets. The launch strategy and tactics addressing resistance of customers, market players and parties from the broader firm environment are found to have a direct impact on market success. The launch strategy also drives both internally and externally directed launch tactics. For launch tactics...

  19. Analysis of behind the armor ballistic trauma. (United States)

    Wen, Yaoke; Xu, Cheng; Wang, Shu; Batra, R C


    The impact response of body armor composed of a ceramic plate with an ultrahigh molecular weight polyethylene (UHMWPE) fiber-reinforced composite and layers of UHMWPE fibers shielding a block of ballistic gelatin has been experimentally and numerically analyzed. It is a surrogate model for studying injuries to human torso caused by a bullet striking body protection armor placed on a person. Photographs taken with a high speed camera are used to determine deformations of the armor and the gelatin. The maximum depth of the temporary cavity formed in the ballistic gelatin and the peak pressure 40mm behind the center of the gelatin front face contacting the armor are found to be, respectively, ~34mm and ~15MPa. The Johnson-Holmquist material model has been used to simulate deformations and failure of the ceramic. The UHMWPE fiber-reinforced composite and the UHMWPE fiber layers are modeled as linear elastic orthotropic materials. The gelatin is modeled as a strain-rate dependent hyperelastic material. Values of material parameters are taken from the open literature. The computed evolution of the temporary cavity formed in the gelatin is found to qualitatively agree with that seen in experiments. Furthermore, the computed time histories of the average pressure at four points in the gelatin agree with the corresponding experimentally measured ones. The maximum pressure at a point and the depth of the temporary cavity formed in the gelatin can be taken as measures of the severity of the bodily injury caused by the impact; e.g. see the United States National Institute of Justice standard 0101.06-Ballistic Resistance of Body Armor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Contemporary management of maxillofacial ballistic trauma. (United States)

    Breeze, J; Tong, D; Gibbons, A


    Ballistic maxillofacial trauma in the UK is fortunately relatively rare, and generally involves low velocity handguns and shotguns. Civilian terrorist events have, however, shown that all maxillofacial surgeons need to understand how to treat injuries from improvised explosive devices. Maxillofacial surgeons in the UK have also been responsible for the management of soldiers evacuated from Iraq and Afghanistan, and in this review we describe the newer types of treatment that have evolved from these conflicts, particularly that of damage-control maxillofacial surgery. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  1. Ballistics Trajectory and Impact Analysis for Insensitive Munitions and Hazard Classification Project Criteria (United States)

    Baker, Ernest; van der Voort, Martijn; NATO Munitions Safety Information Analysis Centre Team


    Ballistics trajectory and impact conditions calculations were conducted in order to investigate the origin of the projection criteria for Insensitive Munitions (IM) and Hazard Classification (HC). The results show that the existing IM and HC projection criteria distance-mass relations are based on launch energy rather than impact conditions. The distance-mass relations were reproduced using TRAJCAN trajectory analysis by using launch energies of 8, 20 and 79J and calculating the maximum impact distance reached by a natural fragment (steel) launched from 1 m height. The analysis shows that at the maximum throw distances, the impact energy is generally much smaller than the launch energy. Using maximum distance projections, new distance-mass relations were developed that match the criteria based on impact energy at 15m and beyond rather than launch energy. Injury analysis was conducted using penetration injury and blunt injury models. The smallest projectile masses in the distance-mass relations are in the transition region from penetration injury to blunt injury. For this reason, blunt injury dominates the assessment of injury or lethality. State of the art blunt injury models predict only minor injury for a 20J impact. For a 79J blunt impact, major injury is likely to occur. MSIAC recommends changing the distance-mass relation that distinguishes a munitions burning response to a 20 J impact energy criterion at 15 m and updating of the UN Orange Book.

  2. Development and testing of a flexible ballistic neck protection

    NARCIS (Netherlands)

    Roebroeks, G.H.J.J.; Rensink, P.


    Sufficient ballistic protection of the neck area would significantly reduce the vulnerability of an infantry soldier. So far this protection is offered by extensions on the ballistic vest or combat helmet. However, the requirements for head agility and the various body to head positions combined

  3. A ballistic mission to fly by Comet Halley (United States)

    Boain, R. J.; Hastrup, R. C.


    The paper describes the available options, ballistic trajectory opportunities, and a preliminary reference trajectory that were selected as a basis for spacecraft design studies and programmatic planning for a Halley ballistic intercept mission in 1986. The paper also presents trajectory, performance, and navigation data which support the preliminary selection.

  4. Experiments with Liquid Propellant Jet Ignition in a Ballistic Compressor

    National Research Council Canada - National Science Library

    Birk, Avi


    .... The apparatus consists of an inline ballistic compressor and LP injector. The rebound of the ballistic compressor piston was arrested, trapping 40 to 55 MPa of 750 to 8500 C argon for ignition of circular jets in a windowed test chamber...

  5. 76 FR 70165 - Ballistic-Resistant Body Armor Standard Workshop (United States)


    ... of Justice Programs Ballistic-Resistant Body Armor Standard Workshop AGENCY: National Institute of..., Ballistic Resistance of Body Armor, and the discussion is directed toward manufacturers, certification... armor community will be summarized as part of the workshop notes. Contributors of comments will not be...

  6. Towards reliable simulations of ballistic impact on concrete structures

    NARCIS (Netherlands)

    Khoe, Y.S.; Tyler Street, M.D.; Maravalalu Suresh,, R.S.; Weerheijm, J.


    Protection against weapon effects like ballistic impacts, fragmenting shells and explosions is the core business of the Explosions, Ballistics and Protection department of TNO (The Netherlands). Experimental and numerical research is performed to gain and maintain the knowledge to support the Dutch

  7. An integrated approach towards future ballistic neck protection materials selection. (United States)

    Breeze, John; Helliker, Mark; Carr, Debra J


    Ballistic protection for the neck has historically taken the form of collars attached to the ballistic vest (removable or fixed), but other approaches, including the development of prototypes incorporating ballistic material into the collar of an under body armour shirt, are now being investigated. Current neck collars incorporate the same ballistic protective fabrics as the soft armour of the remaining vest, reflecting how ballistic protective performance alone has historically been perceived as the most important property for neck protection. However, the neck has fundamental differences from the thorax in terms of anatomical vulnerability, flexibility and equipment integration, necessitating a separate solution from the thorax in terms of optimal materials selection. An integrated approach towards the selection of the most appropriate combination of materials to be used for each of the two potential designs of future neck protection has been developed. This approach requires evaluation of the properties of each potential material in addition to ballistic performance alone, including flexibility, mass, wear resistance and thermal burden. The aim of this article is to provide readers with an overview of this integrated approach towards ballistic materials selection and an update of its current progress in the development of future ballistic neck protection.

  8. ballistic performance of a quenched and tempered steel against

    African Journals Online (AJOL)


    conditions. Hardness is an important feature for the materials used for armour strategy [1-3]. Sangoy and others.[5]reported that high hardness of given armour steel directly determines the ballistic performance and perforation mode. Many studies on the ballistic impact behaviour of the steels revealed that relationship exists ...

  9. Aerodynamic heating of ballistic missile including the effects of gravity

    Indian Academy of Sciences (India) Keywords. Aerodynamic heating; ballistic missile; gravity; flat-earth. Abstract. The aerodynamic heating of a ballistic missile due to only convection is analysed taking into consideration the effects of gravity. The amount of heat transferred to the wetted area and to the ...

  10. Ballistic performance and microstructure of four armor ceramics

    NARCIS (Netherlands)

    Abadjieva, E.; Carton, E.P.


    The ballistic behavior of four different armor ceramic materials with thicknesses varying from 3 mm to 14 mm has been investigated. These are two types of alumina Al2O3 armor grades and two types of SiC armor grades produced by different armor ceramic producers. The ballistic study has been

  11. Impacts of Deflection Nose on Ballistic Trajectory Control Law

    Directory of Open Access Journals (Sweden)

    Bo Zhang


    Full Text Available The deflection of projectile nose is aimed at changing the motion of the projectile in flight with the theory of motion control and changing the exterior ballistics so as to change its range and increase its accuracy. The law of external ballistics with the deflectable nose is considered as the basis of the design of a flight control system and an important part in the process of projectile development. Based on the existing rigid external ballistic model, this paper establishes an external ballistic calculation model for deflectable nose projectile and further establishes the solving programs accordingly. Different angle of attack, velocity, coefficients of lift, resistance, and moment under the deflection can be obtained in this paper based on the previous experiments and emulation researches. In the end, the author pointed out the laws on the impaction of external ballistic trajectory by the deflection of nose of the missile.

  12. China's Launch Vehicle Operations (United States)

    Bai, Jingwu


    China's Launch Vehicle technologies have been started since 1950s. With the efforts made by several-generation Chinese Space people, the Long March (LM) Launch Vehicles, China's main space transportation tools, have undergone a development road from conventional propellants to cryogenic propellants, from stage-by-stage to strap-on, from dedicated-launch to multiple-launch, from satellite-launching to space capsule-launching. The LM Launch Vehicles are capable of sending various payloads to different orbits with low cost and high reliability. Till now, the LM Launch Vehicles have conducted 67 launch missions, putting 76 spacecraft into the given orbits since the successful mission made by LM-1 in 1970. Especially, they have performed 22 international commercial satellite-launching missions, sending 27 foreign satellites successfully. The footprints of LM Launch Vehicles reflect the development and progress of Chinese Space Industry. At the beginning of the 21st century, with the development of launch vehicle technology and the economic globalization, it is an inexorable trend that Chinese space industry must participate in the international cooperation and competition. Being faced with both opportunities and challenges, Chinese Space Industry should promote actively the commercial launch service market to increase service quality and improve the comprehensive competition capabilities. In order to maintain the sustaining development of China's launch vehicle technology and to meet the increasing needs in the international commercial launch service market, Chinese space industry is now doing research work on developing new-generation Chinese launchers. The new launchers will be large-scale, powerful and non-contamination. The presence of the new-generation Chinese launchers will greatly speed up the development of the whole space-related industries in China, as well as other parts of the world. In the first part, this paper gives an overview on China Aerospace Science

  13. COSMOS Launch Services (United States)

    Kalnins, Indulis


    COSMOS-3M is a two stage launcher with liquid propellant rocket engines. Since 1960's COSMOS has launched satellites of up to 1.500kg in both circular low Earth and elliptical orbits with high inclination. The direct SSO ascent is available from Plesetsk launch site. The very high number of 759 launches and the achieved success rate of 97,4% makes this space transportation system one of the most reliable and successful launchers in the world. The German small satellite company OHB System co-operates since 1994 with the COSMOS manufacturer POLYOT, Omsk, in Russia. They have created the joint venture COSMOS International and successfully launched five German and Italian satellites in 1999 and 2000. The next commercial launches are contracted for 2002 and 2003. In 2005 -2007 COSMOS will be also used for the new German reconnaissance satellite launches. This paper provides an overview of COSMOS-3M launcher: its heritage and performance, examples of scientific and commercial primary and piggyback payload launches, the launch service organization and international cooperation. The COSMOS launch service business strategy main points are depicted. The current and future position of COSMOS in the worldwide market of launch services is outlined.

  14. Field mapping of ballistic pressure pulse sources

    Directory of Open Access Journals (Sweden)

    Rad Abtin Jamshidi


    Full Text Available Ballistic pressure pulse sources are used since late 1990s for the extracorporeal treatment of chronic Enthesitis. Newly indications are found in trigger-point-therapy for the treatment of musculoskeletal disorders. In both applications excellent results without relevant side effects were found in clinical trials. The technical principle of pressure pulse source is based on the same techniques used in air guns. A projectile is accelerated by pressurized air and hits the applicator with high kinetic energy. By this a compression wave travels through the material and induces a fast (4..5μs, almost singular pressure pulse of 2..10 MPa, which is followed by an equally short rarefaction phase of about the same amplitude. It is assumed that the pressure pulse accounts for the biomedical effects of the device. The slower inertial motion of the waveguide is damped by elastic stoppers, but still can be measured several micro seconds after the initial pressure pulse. In order to characterize the pressure pulse devices, field mapping is performed on several radial pressure pulse sources using the fiber optic hydrophone and a polyvinylidenfluorid (PVDF piezoelectric hydrophone. It could be shown that the current standard (IEC 61846 is not appropriate for characterization of ballistic pressure pulse sources.

  15. Ballistic Limit Equation for Single Wall Titanium (United States)

    Ratliff, J. M.; Christiansen, Eric L.; Bryant, C.


    Hypervelocity impact tests and hydrocode simulations were used to determine the ballistic limit equation (BLE) for perforation of a titanium wall, as a function of wall thickness. Two titanium alloys were considered, and separate BLEs were derived for each. Tested wall thicknesses ranged from 0.5mm to 2.0mm. The single-wall damage equation of Cour-Palais [ref. 1] was used to analyze the Ti wall's shielding effectiveness. It was concluded that the Cour-Palais single-wall equation produced a non-conservative prediction of the ballistic limit for the Ti shield. The inaccurate prediction was not a particularly surprising result; the Cour-Palais single-wall BLE contains shield material properties as parameters, but it was formulated only from tests of different aluminum alloys. Single-wall Ti shield tests were run (thicknesses of 2.0 mm, 1.5 mm, 1.0 mm, and 0.5 mm) on Ti 15-3-3-3 material custom cut from rod stock. Hypervelocity impact (HVI) tests were used to establish the failure threshold empirically, using the additional constraint that the damage scales with impact energy, as was indicated by hydrocode simulations. The criterion for shield failure was defined as no detached spall from the shield back surface during HVI. Based on the test results, which confirmed an approximately energy-dependent shield effectiveness, the Cour-Palais equation was modified.

  16. Advanced geometries for ballistic neutron guides

    International Nuclear Information System (INIS)

    Schanzer, Christian; Boeni, Peter; Filges, Uwe; Hils, Thomas


    Sophisticated neutron guide systems take advantage of supermirrors being used to increase the neutron flux. However, the finite reflectivity of supermirrors becomes a major loss mechanism when many reflections occur, e.g. in long neutron guides and for long wavelengths. In order to reduce the number of reflections, ballistic neutron guides have been proposed. Usually linear tapered sections are used to enlarge the cross-section and finally, focus the beam to the sample. The disadvantages of linear tapering are (i) an inhomogeneous phase space at the sample position and (ii) a decreasing flux with increasing distance from the exit of the guide. We investigate the properties of parabolic and elliptic tapering for ballistic neutron guides, using the Monte Carlo program McStas with a new guide component dedicated for such geometries. We show that the maximum flux can indeed be shifted away from the exit of the guide. In addition we explore the possibilities of parabolic and elliptic geometries to create point like sources for dedicated experimental demands

  17. Ballistic resistant article, semi-finished product for and method of making a shell for a ballistic resistant article

    NARCIS (Netherlands)

    Harings, Jules; Janse, Gerardus


    The invention relates to a ballistic resistant article, such as a helmet (1), comprising a double curved shell (2) in turn comprising a stack (5) of layers (6) of an oriented anti-ballistic material, the layers (6) comprising one or more plies and having a plurality of cuts (7), the ends of which

  18. Comparison of Ballistic-Coefficient-Based Estimation Algorithms for Precise Tracking of a Re-Entry Vehicle and its Impact Point Prediction

    Directory of Open Access Journals (Sweden)

    Kyung Rok Moon


    Full Text Available This paper studies the problem of tracking a re-entry vehicle (RV in order to predict its impact point on the ground. Re-entry target dynamics combined with super-high speed has a complex non-linearity due to ballistic coefficient variations. However, it is difficult to construct a database for the ballistic coefficient of a unknown vehicle for a wide range of variations, thus the reliability of target tracking performance cannot be guaranteed if accurate ballistic coefficient estimation is not achieved. Various techniques for ballistic coefficient estimation have been previously proposed, but limitations exist for the estimation of non-linear parts accurately without obtaining prior information. In this paper we propose the ballistic coefficient β model-based interacting multiple model-extended Kalman filter (β-IMM-EKF for precise tracking of an RV. To evaluate the performance, other ballistic coefficient model based filters, which are gamma augmented filter, gamma bootstrapped filter were compared and assessed with the proposed β-IMM-EKF for precise tracking of an RV.

  19. Trident II (D-5) Sea-Launched Ballistic Missile UGM 133A (Trident II Missile) (United States)


    unfavorable net change in the schedule variance is due to stopping Interferometric Fiber Optic Gyro assembly operations as a result of a technical problem...with oxygen depletion in the fill gas causing a frequency response problem with an optoelectrical gyro part. Trident II Missile December 2013 SAR

  20. Ballistic projectile metallurgical issues and fundamentals: Aerosol production in rod penetration erosion and erosion phenomena associated with railgun development (United States)

    Machado, Brenda I.

    The issue is derived from ballistic erosion as it relates to nanoparticle production and respiration of these particles as a health concern ballistic erosion and ballistic erosion as it relates to railgun performance. A common thread between these two issues is dynamic recrystallization (DRX). DRX has been demonstrated to be the dominant mechanism for solid-state flow associated with ballistic projectile/target penetration and interaction, friction-stir welding phenomena, and other high-strain rate deformation phenomena. Aerosol particulates collected on filters from ballistic penetration and erosion events for W-Ni-Co and W-Ni-Fe kinetic energy rod projectiles penetrating steel target plates were observed to be highly cytotoxic after 48 h exposure to human epithelial A549 lung cells. The aerosol consisted of micron-size Fe particulates and nanoparticulate aggregates consisting of W, Ni or W, Co and some Fe, characterized by SEM and TEM, and using energy-dispersive (X-ray) spectrometry by (EDS) for elemental analysis and mapping. Cytotoxic assays of micron and nano-size, manufactured metal particulates of W, Ni, Fe, and Co demonstrated that only the nanoparticulate elements demonstrated measurable cytotoxicity. Aluminum projectile (or armature) tribomaterial deposition onto copper conducting rails in an experimental solid-armature railgun system was observed, by optical, SEM and TEM. The extreme deformation at the aluminum/copper interface creates a solid-state flow regime by dynamic recrystallization which also leads to the erosion-product deposition. Melting of the low-temperature aluminum deposit also contributes to the rail damage and degradation of electromagnetic behavior. The creation of nano-grains by dynamic recrystallization allows for mixing at the aluminum/copper interface, and there is no evidence for traditional alloying.

  1. Foreign launch competition growing (United States)

    Brodsky, R. F.; Wolfe, M. G.; Pryke, I. W.


    A survey is given of progress made by other nations in providing or preparing to provide satellite launch services. The European Space Agency has four generations of Ariane vehicles, with a fifth recently approved; a second launch facility in French Guiana that has become operational has raised the possible Ariane launch rate to 10 per year, although a May failure of an Ariane 2 put launches on hold. The French Hermes spaceplane and the British HOTOL are discussed. Under the auspices of the Italian National Space Plane, the Iris orbital transfer vehicle is developed and China's Long March vehicles and the Soviet Protons and SL-4 vehicles are discussed; the Soviets moreover are apparently developing not only a Saturn V-class heavy lift vehicle with a 150,000-kg capacity (about five times the largest U.S. capacity) but also a space shuttle and a spaceplane. Four Japanese launch vehicles and some vehicles in an Indian program are also ready to provide launch services. In this new, tough market for launch services, the customers barely outnumber the suppliers. The competition develops just as the Challenger and Titan disasters place the U.S. at a disadvantage and underline the hard work ahead to recoup its heretofore leading position in launch services.

  2. Ballistic and Diffusive Thermal Conductivity of Graphene (United States)

    Saito, Riichiro; Masashi, Mizuno; Dresselhaus, Mildred S.


    This paper is a contribution to the Physical Review Applied collection in memory of Mildred S. Dresselhaus. Phonon-related thermal conductivity of graphene is calculated as a function of the temperature and sample size of graphene in which the crossover of ballistic and diffusive thermal conductivity occurs at around 100 K. The diffusive thermal conductivity of graphene is evaluated by calculating the phonon mean free path for each phonon mode in which the anharmonicity of a phonon and the phonon scattering by a 13C isotope are taken into account. We show that phonon-phonon scattering of out-of-plane acoustic phonon by the anharmonic potential is essential for the largest thermal conductivity. Using the calculated results, we can design the optimum sample size, which gives the largest thermal conductivity at a given temperature for applying thermal conducting devices.

  3. Ballistic thermoelectric transport in a Luttinger liquid

    International Nuclear Information System (INIS)

    Ivanov, Y V


    The Seebeck and Peltier coefficients of a homogeneous Luttinger liquid are calculated in the ballistic regime. Nonlinearity of the electron spectrum is taken into account. It is shown that, in the framework of the defined approximations, the thermoelectric power of a Luttinger liquid is equal to zero, in agreement with the exponentially small thermopower of a one-dimensional degenerate Fermi gas. The Peltier coefficient is controlled by a nonequilibrium state of the system. It is finite and renormalized by the interaction in the case of a convective flow of a Luttinger liquid. The zero modes of bosonic excitations and the dispersion-induced contribution to the electric current operator are taken into account in calculations.

  4. Ballistic transport in gold [110] nanowire (United States)

    Kurui, Yoshihiko; Oshima, Yoshifumi; Okamoto, Masakuni; Takayanagi, Kunio


    Conductance of gold nanowire elongated along the [110] direction (gold [110] nanowire) was measured during many breaking procedures, while simultaneously acquiring transmission electron microscope images. The conductance histogram exhibits a series of peaks whose conductance values increased nearly in steps of the conductance quantum, G0 =2e^2/h. However thick nanowires above 10G0 showed dequantization, where the increment was only 0.9G0. The structure for each peak was determined to be either an atomic sheet or a hexagonal prism. The number of conductance channels calculated for each atomic structure by first principles theory, coincided well with the peak index in the conductance histogram. The present study shows that the [110] nanowire behave as ballistic conductors, and a conductance peak appears whenever a conductance channel is opened.

  5. Ballistic Missile Defense: New Plans, Old Challenges

    Directory of Open Access Journals (Sweden)

    Elizabeth Zolotukhina


    Full Text Available On September 17, 2009—the 70th anniversary of the Soviet invasion of Poland in 1939 that marked the beginning of World War II—the Obama Administration announced its intention to shelve plans for the U.S. Ballistic Missile Defense (BMD that had been developed under former President George W. Bush. Pointing to a new intelligence assessment, President Obama argued that his predecessor's plan to deploy an X-band radar station outside of Prague, Czech Republic, and 10 two-stage interceptor missiles in Poland would not adequately protect America and its European allies from the Iranian threat and reiterated his opposition to utilizing unproven technology in any European BMD architecture.

  6. Ballistic energy transport in PEG oligomers

    Directory of Open Access Journals (Sweden)

    Kireev Victor V.


    Full Text Available Energy transport between the terminal groups of the azido-PEG-succinimide ester compounds with a number of repeating PEG units of 0, 4, 8, and 12 was studied using relaxation-assisted two-dimensional infrared spectroscopy. The through-bond energy transport time, evaluated as the waiting time at which the cross peak maximum is reached, Tmax, was found to be linearly dependent on the chain length for chain lengths up to 60 Å suggesting a ballistic energy transport regime. The through-bond energy transport speed is found to be ca. 500 m/s. The cross-peak amplitude at the maximum decays exponentially with the chain length with a characteristic decay distance of 15.7 ± 1 Å. Substantial mode delocalization across the PEG bridge is found, which can support the energy propagation as a wavepacket.

  7. Statistics of magnetoconductance in ballistic cavities

    International Nuclear Information System (INIS)

    Yang, X.; Ishio, H.; Burgdoerfer, J.


    The statistical properties of magnetoconductance in ballistic microcavities are investigated numerically. The distribution of conductance for chaotic cavities is found to follow the renormalized Porter-Thomas distribution suggested by random-matrix theory for the Gaussian ensemble while the conductance distribution of regular cavities in magnetic fields is nonuniversal and shifted towards the maximum value for a given number of open channels. The renormalized Porter-Thomas distribution implies a universal dependence of fluctuation amplitude on the mean conductance for chaotic cavities in the absence of time-reversal symmetry. The fluctuation amplitude for regular cavities is found to be larger than the saturation value of the fluctuation amplitude of chaotic cavities predicted by random-matrix theory. The change of the mean conductance as a function of the external magnetic field is consistent with semiclassical predictions

  8. 19 mm ballistic range: a potpourri of techniques and recipes

    International Nuclear Information System (INIS)

    Carpluk, G.T.


    The expansion of ballistic gun range facilities at LLL has introduced state-of-the-art diagnostic techniques to glovebox-enclosed ballistic guns systems. These enclosed ballistic ranges are designed for the study of one-dimensional shock phenomena in extremely toxic material such as plutonium. The extension of state-of-the-art phtographic and interferometric diagnostic systems to glovebox-enclosed gun systems introduces new design boundaries and performance criteria on optical and mechanical components. A technique for experimentally evaluating design proposals is illustrated, and several specific examples (such as, target alignment, collateral shrapnel damage, and soft recovery) are discussed

  9. Ballistic Trauma: Lessons Learned from Iraq and Afghanistan (United States)

    Shin, Emily H.; Sabino, Jennifer M.; Nanos, George P.; Valerio, Ian L.


    Management of upper extremity injuries secondary to ballistic and blast trauma can lead to challenging problems for the reconstructive surgeon. Given the recent conflicts in Iraq and Afghanistan, advancements in combat-casualty care, combined with a high-volume experience in the treatment of ballistic injuries, has led to continued advancements in the treatment of the severely injured upper extremity. There are several lessons learned that are translatable to civilian trauma centers and future conflicts. In this article, the authors provide an overview of the physics of ballistic injuries and principles in the management of such injuries through experience gained from military involvement in Iraq and Afghanistan. PMID:25685099

  10. Institute for Non-Lethal Defense Technologies Report: Ballistic Gelatin

    National Research Council Canada - National Science Library

    Nicholas, N. C; Welsch, J. R


    Ballistic gelatin is designed to simulate living soft tissue. It is the standard for evaluating the effectiveness of firearms against humans because of its convenience and acceptability over animal or cadaver testing...

  11. Designing an Innovative Composite Armor System for Affordable Ballistic Protection

    National Research Council Canada - National Science Library

    Ma, Zheng-Dong; Wang, Hui; Cui, Yushun; Rose, Douglas; Socks, Adria; Ostberg, Donald


    .... This paper focuses on the frontal armor plate and back plate design problems with demonstration examples, including both results of the virtual prototyping and ballistic testing for proof-of-concept...

  12. North Korean Ballistic Missile Threat to the United States

    National Research Council Canada - National Science Library

    Hildreth, Steven A


    ... so. The Administration will ask the 110th Congress to fund a National Missile Defense (NMD) site in Europe, which some analysts argue is needed because of the threat of North Korean ballistic missiles to Europe...

  13. Current neutralization in ballistic transport of light ion beams

    International Nuclear Information System (INIS)

    Hubbard, R.F.; Slinker, S.P.; Lampe, M.; Joyce, G.; Ottinger, P.


    Intense light ion beams are being considered as drivers to ignite fusion targets in the Laboratory Microfusion Facility (LMF). Ballistic transport of these beams from the diode to the target is possible only if the beam current is almost completely neutralized by plasma currents. This paper summarizes related work on relativistic electron beam and heavy ion beam propagation and describes a simple simulation model (DYNAPROP) which has been modified to treat light ion beam propagation. DYNAPROP uses an envelope equation to treat beam dynamics and uses rate equations to describe plasma and conductivity generation. The model has been applied both to the high current, 30 MeV Li +3 beams for LMF as well as low current, 1.2 MeV proton beams which are currently being studied on GAMBLE B at the Naval Research Laboratory. The predicted ratio of net currents to beam current is ∼0.1--0.2 for the GAMBLE experiment and ∼0.01 for LMF. The implications of these results for LMF and the GAMBLE experiments art discussed in some detail. The simple resistive model in DYNAPROP has well-known limitations in the 1 torr regime which arise primarily from the neglect of plasma electron transport. Alternative methods for treating the plasma response are discussed

  14. The Modeling and Application of Small Arms Wound Ballistics (United States)


    Components." The Journal of Traurma, vol. 25, pp. 522-529, 1985. 3. Clare, V., W. Ashman, P. Broome, J. Jameson, J. Lewis, J. Merkler, A. Mickiewicz , W...Proving Ground, MD, 1962. 28. Olivier, A., J. Merkler, B. Brown, and A. Mickiewicz . ’Wound Ballistics of the 15.2 Grain Steel Flechette." CRDLR 3132...NWerkler, A. Mickiewicz , W. Sacco, L. Sturdivan, D. Lamb, and F. Sylva,)us. "The ARRADCOM Computer Man - An Automated Approach To Wound Ballistics

  15. Understanding the Ballistic Event: Methodology and Initial Observations


    Healey, Adam; Cotton, J; Maclachlan, S; Smith, Paul; Yeomans, Julie


    The purpose of the study is to accelerate the development of ceramic materials for armour applications, by substantially increasing the information obtained from a high-energy projectile impact event. This has been achieved by modifying an existing test configuration to incorporate a block of ballistic gel, attached to the strike face of a ceramic armour system, to capture fragments generated during the ballistic event such that their final positions are maintained. Three different materials,...

  16. Ballistic Heat Conduction and Mass Disorder in One Dimension


    Ong, Zhun-Yong; Zhang, Gang


    It is well-known that in the disordered harmonic chain, heat conduction is subballistic and the thermal conductivity ($\\kappa$) scales asymptotically as $\\lim_{L\\rightarrow\\infty}\\kappa\\propto L^{0.5}$ where $L$ is the chain length. However, using the nonequilibrium Green's function (NEGF) method and analytical modeling, we show that there exists a critical crossover length scale ($L_{C}$) below which ballistic heat conduction ($\\kappa\\propto L$) can coexist with mass disorder. This ballistic...

  17. Ballistic Impact Simulation of Ceramic/Metal Armor Structures


    ARSLAN, Kemal; GÜNEŞ, Recep


    The study presents a comparative numericalinvestigation on ballistic performance of ceramic/metal armor structures. 2Daxisymmetric numerical model was developed for ballistic impact simulationsusing LS-DYNA® finite element software. The armor structuresincluded combinations of boron carbide (B4C), Al6061-T6 and 4340steel constituents. The interfaces in the armor structure were modelled with anepoxy resin adhesive. In order to define proper material behavior,Johnson-Holmquist-Ceramics material...

  18. Big Bang launch

    CERN Multimedia


    Physicists from the University, along with scientists and engineers around the world, watched with fevered anticipation as the world's biggest scientific experiment was launched in September. (1/1 page)

  19. Evaluation of Product Launch




    This bachelor thesis deals with the evaluation of the launch of product on the market and the proposal of a more appropriate solution. Author has chosen company Aponia software, s.r.o. with a place of business in Brno. It is small company which produces and sells navigations for mobile devices. During writing this thesis author focus on the launch of navigation for operating system Android on the market.

  20. The application of a calibrated 3D ballistic trajectory model to ballistic hazard assessments at Upper Te Maari, Tongariro (United States)

    Fitzgerald, R. H.; Tsunematsu, K.; Kennedy, B. M.; Breard, E. C. P.; Lube, G.; Wilson, T. M.; Jolly, A. D.; Pawson, J.; Rosenberg, M. D.; Cronin, S. J.


    On 6 August, 2012, Upper Te Maari Crater, Tongariro volcano, New Zealand, erupted for the first time in over one hundred years. Multiple vents were activated during the hydrothermal eruption, ejecting blocks up to 2.3 km and impacting ~ 2.6 km of the Tongariro Alpine Crossing (TAC) hiking track. Ballistic impact craters were mapped to calibrate a 3D ballistic trajectory model for the eruption. This was further used to inform future ballistic hazard. Orthophoto mapping revealed 3587 impact craters with a mean diameter of 2.4 m. However, field mapping of accessible regions indicated an average of at least four times more observable impact craters and a smaller mean crater diameter of 1.2 m. By combining the orthophoto and ground-truthed impact frequency and size distribution data, we estimate that approximately 13,200 ballistic projectiles were generated during the eruption. The 3D ballistic trajectory model and a series of inverse models were used to constrain the eruption directions, angles and velocities. When combined with eruption observations and geophysical observations, the model indicates that the blocks were ejected in five variously directed eruption pulses, in total lasting 19 s. The model successfully reproduced the mapped impact distribution using a mean initial particle velocity of 200 m/s with an accompanying average gas flow velocity over a 400 m radius of 150 m/s. We apply the calibrated model to assess ballistic hazard from the August eruption along the TAC. By taking the field mapped spatial density of impacts and an assumption that an average ballistic impact will cause serious injury or death (casualty) over an 8 m2 area, we estimate that the probability of casualty ranges from 1% to 16% along the affected track (assuming an eruption during the time of exposure). Future ballistic hazard and probabilities of casualty along the TAC are also assessed through application of the calibrated model. We model a magnitude larger eruption and illustrate

  1. Ballistic near-field heat transport in dense many-body systems (United States)

    Latella, Ivan; Biehs, Svend-Age; Messina, Riccardo; Rodriguez, Alejandro W.; Ben-Abdallah, Philippe


    Radiative heat transport mediated by near-field interactions is known to be superdiffusive in dilute, many-body systems. Here we use a generalized Landauer theory of radiative heat transfer in many-body planar systems to demonstrate a nonmonotonic transition from superdiffusive to ballistic transport in dense systems. We show that such a transition is associated to a change of the polarization of dominant modes. Our findings are complemented by a quantitative study of the relaxation dynamics of the system in the different regimes of heat transport. This result could have important consequences on thermal management at nanoscale of many-body systems.

  2. Allegany Ballistics Lab: sensor test target system (United States)

    Eaton, Deran S.


    Leveraging the Naval Surface Warfare Center, Indian Head Division's historical experience in weapon simulation, Naval Sea Systems Command commissioned development of a remote-controlled, digitally programmable Sensor Test Target as part of a modern, outdoor hardware-in-the-loop test system for ordnance-related guidance, navigation and control systems. The overall Target system design invokes a sciences-based, "design of automated experiments" approach meant to close the logistical distance between sensor engineering and developmental T&E in outdoor conditions over useful real world distances. This enables operating modes that employ broad spectrum electromagnetic energy in many a desired combination, variably generated using a Jet Engine Simulator, a multispectral infrared emitter array, optically enhanced incandescent Flare Simulators, Emitter/Detector mounts, and an RF corner reflector kit. As assembled, the recently tested Sensor Test Target prototype being presented can capably provide a full array of useful RF and infrared target source simulations for RDT&E use with developmental and existing sensors. Certain Target technologies are patent pending, with potential spinoffs in aviation, metallurgy and biofuels processing, while others are variations on well-established technology. The Sensor Test Target System is planned for extended installation at Allegany Ballistics Laboratory (Rocket Center, WV).

  3. Heat Coulomb blockade of one ballistic channel (United States)

    Sivre, E.; Anthore, A.; Parmentier, F. D.; Cavanna, A.; Gennser, U.; Ouerghi, A.; Jin, Y.; Pierre, F.


    Quantum mechanics and Coulomb interaction dictate the behaviour of small circuits. The thermal implications cover fundamental topics from quantum control of heat to quantum thermodynamics, with prospects of novel thermal machines and an ineluctably growing influence on nanocircuit engineering. Experimentally, the rare observations thus far include the universal thermal conductance quantum and heat interferometry. However, evidence for many-body thermal effects paving the way to markedly different heat and electrical behaviours in quantum circuits remains wanting. Here we report on the observation of the Coulomb blockade of electronic heat flow from a small metallic circuit node, beyond the widespread Wiedemann-Franz law paradigm. We demonstrate this thermal many-body phenomenon for perfect (ballistic) conduction channels to the node, where it amounts to the universal suppression of precisely one quantum of conductance for the transport of heat, but none for electricity. The inter-channel correlations that give rise to such selective heat current reduction emerge from local charge conservation, in the floating node over the full thermal frequency range (<~temperature × kB/h). This observation establishes the different nature of the quantum laws for thermal transport in nanocircuits.

  4. Ballistic Josephson junctions based on CVD graphene (United States)

    Li, Tianyi; Gallop, John; Hao, Ling; Romans, Edward


    Josephson junctions with graphene as the weak link between superconductors have been intensely studied in recent years, with respect to both fundamental physics and potential applications. However, most of the previous work was based on mechanically exfoliated graphene, which is not compatible with wafer-scale production. To overcome this limitation, we have used graphene grown by chemical vapour deposition (CVD) as the weak link of Josephson junctions. We demonstrate that very short, wide CVD-graphene-based Josephson junctions with Nb electrodes can work without any undesirable hysteresis in their electrical characteristics from 1.5 K down to a base temperature of 320 mK, and their gate-tuneable critical current shows an ideal Fraunhofer-like interference pattern in a perpendicular magnetic field. Furthermore, for our shortest junctions (50 nm in length), we find that the normal state resistance oscillates with the gate voltage, consistent with the junctions being in the ballistic regime, a feature not previously observed in CVD-graphene-based Josephson junctions.

  5. Rifle bullet penetration into ballistic gelatin. (United States)

    Wen, Yaoke; Xu, Cheng; Jin, Yongxi; Batra, R C


    The penetration of a rifle bullet into a block of ballistic gelatin is experimentally and computationally studied for enhancing our understanding of the damage caused to human soft tissues. The gelatin is modeled as an isotropic and homogeneous elastic-plastic linearly strain-hardening material that obeys a polynomial equation of state. Effects of numerical uncertainties on penetration characteristics are found by repeating simulations with minute variations in the impact speed and the angle of attack. The temporary cavity formed in the gelatin and seen in pictures taken by two high speed cameras is found to compare well with the computed one. The computed time histories of the hydrostatic pressure at points situated 60 mm above the line of impact are found to have "two peaks", one due to the bullet impact and the other due to the bullet tumbling. Contours of the von Mises stress and of the effective plastic strain in the gelatin block imply that a very small region adjacent to the cavity surface is plastically deformed. The angle of attack is found to noticeably affect the penetration depth at the instant of the bullet tumbling through 90°. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. A comparison of the behind armour blunt trauma effects between ceramic faced and soft body armours caused by ballistic impact


    Lewis, E. A.; Horsfall, Ian; Watson, Celia H.


    Recently published research has characterised the behind armour blunt trauma (BABT) effects associated with high velocity ballistic impact on textile-based armour faced with a ceramic plate. Subsequently dynamic displacements, accelerations and pressures have been characterised both in Gelatine experiments and animal experiments and used to provide test methodologies. High velocity armour consists of a ceramic plate usually backed with a composite panel, which is worn over the conventional te...

  7. Internal Ballistics of a Pneumatic Potato Cannon (United States)

    Mungan, Carl E.


    Basic laws of thermodynamics and mechanics are used to analyse an air gun. Such devices are often employed in outdoor physics demonstrations to launch potatoes using compressed gas that is here assumed to expand reversibly and adiabatically. Reasonable agreement is found with reported muzzle speeds for such homebuilt cannons. The treatment is…

  8. Scheme of rendezvous mission to lunar orbital station by spacecraft launched from Earth (United States)

    Murtazin, R. F.


    In recent years, great experience has been accumulated in manned flight astronautics for rendezvous in near-Earth orbit. During flights of Apollo spacecraft with crews that landed on the surface of the Moon, the problem of docking a landing module launched from the Moon's surface with the Apollo spacecraft's command module in a circumlunar orbit was successfully solved. A return to the Moon declared by leading space agencies requires a scheme for rendezvous of a spacecraft launched from an earth-based cosmodromee with a lunar orbital station. This paper considers some ballistic schemes making it possible to solve this problem with minimum fuel expenditures.

  9. Magnetic anisotropy and anisotropic ballistic conductance of thin magnetic wires

    International Nuclear Information System (INIS)

    Sabirianov, R.


    The magnetocrystalline anisotropy of thin magnetic wires of iron and cobalt is quite different from the bulk phases. The spin moment of monatomic Fe wire may be as high as 3.4 μ B , while the orbital moment as high as 0.5 μ B . The magnetocrystalline anisotropy energy (MAE) was calculated for wires up to 0.6 nm in diameter starting from monatomic wire and adding consecutive shells for thicker wires. I observe that Fe wires exhibit the change sign with the stress applied along the wire. It means that easy axis may change from the direction along the wire to perpendicular to the wire. We find that ballistic conductance of the wire depends on the direction of the applied magnetic field, i.e. shows anisotropic ballistic magnetoresistance. This effect occurs due to the symmetry dependence of the splitting of degenerate bands in the applied field which changes the number of bands crossing the Fermi level. We find that the ballistic conductance changes with applied stress. Even for thicker wires the ballistic conductance changes by factor 2 on moderate tensile stain in our 5x4 model wire. Thus, the ballistic conductance of magnetic wires changes in the applied field due to the magnetostriction. This effect can be observed as large anisotropic BMR in the experiment

  10. Approximate ballistics formulas for spherical pellets in free flight

    Directory of Open Access Journals (Sweden)

    E.J. Allen


    Full Text Available The ballistics equations for spherical pellets in free flight are simplified through appropriate scaling of the pellet velocity and pellet distance. Two different drag coefficient curves are averaged to yield a single curve applicable to shot pellets and round balls. The resulting S-shaped drag coefficient curve is approximated by three straight-line segments. The scaled ballistics equations are then solved exactly and simple formulas are found for the velocity and flight time with respect to trajectory distance. The formulas are applicable to spherical shot pellets and round balls of any composition under any atmospheric conditions. The formulas are amenable to quick and easy computation and may also serve as an aid in understanding and comparing black-box ballistics calculators. For shotshell ballistics, an important assumption in the present investigation is that the pellets are moving as single, free spheres and not as a dense cloud or in a shot column, in particular, the pellets are not interacting during flight. Therefore, the formulas are most appropriate for single round balls, for large shot sizes, and for pellets of small shot size fired from open chokes. The formulas are clear and accessible, and can be implemented by military or law enforcement personnel as well as hunters and shooters. This work differs from previous investigations in that accurate ballistics formulas are derived for spherical projectiles of shotguns and muzzleloaders using realistic drag coefficients.

  11. Transition to ballistic regime for heat transport in helium II

    Energy Technology Data Exchange (ETDEWEB)

    Sciacca, Michele, E-mail: [Dipartimento Scienze Agrarie e Forestali, Università degli studi di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia (Spain); Sellitto, Antonio, E-mail: [Dipartimento di Matematica, Informatica ed Economia, Università della Basilicata, Campus Macchia Romana, 85100 Potenza (Italy); Jou, David, E-mail: [Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia (Spain); Institut d' Estudis Catalans, Carme 47, 08001 Barcelona, Catalonia (Spain)


    The size-dependent and flux-dependent effective thermal conductivity of narrow capillaries filled with superfluid helium is analyzed from a thermodynamic continuum perspective. The classical Landau evaluation of the effective thermal conductivity of quiescent superfluid, or the Gorter–Mellinck regime of turbulent superfluids, is extended to describe the transition to ballistic regime in narrow channels wherein the radius R is comparable to (or smaller than) the phonon mean-free path ℓ in superfluid helium. To do so, we start from an extended equation for the heat flux incorporating non-local terms, and take into consideration a heat slip flow along the walls of the tube. This leads from an effective thermal conductivity proportional to R{sup 2} (Landau regime) to another one proportional to Rℓ (ballistic regime). We consider two kinds of flows: along cylindrical pipes and along two infinite parallel plates. - Highlights: • Heat transport in counterflow helium in the ballistic regime. • The one-fluid model based on the Extended Thermodynamics is used. • The transition from the Landau regime to the ballistic regime. • The transition from quantum turbulence to ballistic regime.

  12. Ballistic heat conduction and mass disorder in one dimension

    International Nuclear Information System (INIS)

    Ong, Zhun-Yong; Zhang, Gang


    It is well-known that in the disordered harmonic chain, heat conduction is subballistic and the thermal conductivity (κ) scales asymptotically as lim L→∞ κ∝L 0.5 where L is the chain length. However, using the nonequilibrium Green's function (NEGF) method and analytical modelling, we show that there exists a critical crossover length scale (L C ) below which ballistic heat conduction (κ∝L) can coexist with mass disorder. This ballistic-to-subballistic heat conduction crossover is connected to the exponential attenuation of the phonon transmittance function Ξ i.e. Ξ(ω, L) = exp[−L/λ(ω)], where λ is the frequency-dependent attenuation length. The crossover length can be determined from the minimum attenuation length, which depends on the maximum transmitted frequency. We numerically determine the dependence of the transmittance on frequency and mass composition as well as derive a closed form estimate, which agrees closely with the numerical results. For the length-dependent thermal conductance, we also derive a closed form expression which agrees closely with numerical results and reproduces the ballistic to subballistic thermal conduction crossover. This allows us to characterize the crossover in terms of changes in the length, mass composition and temperature dependence, and also to determine the conditions under which heat conduction enters the ballistic regime. We describe how the mass composition can be modified to increase ballistic heat conduction. (paper)

  13. Athermal laser launch telescopes

    NARCIS (Netherlands)

    Kamphues, F.G.; Henselmans, R.; Rijnveld, N.; Lemmen, M.H.J.; Doelman, N.J.; Nijkerk, M.D.


    ESO has developed a concept for a compact laser guide star unit for use in future Adaptive Optics (AO) systems. A small powerful laser is combined with a telescope that launches the beam, creating a single modular unit that can be mounted directly on a large telescope. This approach solves several

  14. Launch demand & costs

    Indian Academy of Sciences (India)

    Notes: Typical profile of spacecraft applications and mass projections indicate a steady trend towards larger spacecrafts for communication, remote sensing and scientific applications. This is also a result of the available launch capabilities of the ELVs being higher than the spacecraft mass. The average mass of the ...

  15. Air loads on solar panels during launch

    NARCIS (Netherlands)

    Beltman, W.M.; van der Hoogt, Peter; Spiering, R.M.E.J.; Tijdeman, H.


    The dynamical behaviour of solar panels during launch is significantly affected by the thin layers of air trapped between the panels. For narrow gaps the air manifests itself not only as a considerable added mass, but its viscosity can result in a substantial amount of damping. A model has been

  16. What Should Be the United States Policy towards Ballistic Missile Defense for Northeast Asia?

    National Research Council Canada - National Science Library

    Delgado, Roberto L


    .... The threat of ballistic missiles from Northeast Asia is especially high. China and North Korea are seen as the top threats in the region when it comes to the delivery of WMD through ballistic missiles...

  17. Modeling Ballistic Penetration of Multi-Layered Targets (United States)

    Zavattieri, Pablo Daniel; Dante Espinosa, Horacio; Dwivedi, Sunil


    There have been several efforts to experimentally design suitable multi-layered ceramic targets. The focus of these experiments has been to minimize ceramic damage and flow to maximize penetration resistance. But the challenge of developing effective ceramic armor systems by experiments alone is a difficult task. In general, experiments do not always provide direct information on material behavior. The implementation of an iterative computational/experimental procedure requires reliable material models incorporating microfailure and macrofracture of ceramics and penetrator materials. A dynamic finite element analysis of large displacements, high strain rate deformation behavior of materials is presented in total lagrangian coordinates. An isochoric finite deformation plasticity model for metals, including rate and temperature effecs, and a continuum/discrete damage model capable of capturing fragmentation at two size scales is derived by combining continuum damage model and a discrete damage model for brittle failure. It is assumed that size and distribution of potential fragments are known a-priori, through either experimental findings or material properties, and that macrocracks can nucleate and propagate along the boundaries of these potential fragments. The finite deformation continuum multiple-plane microcracking damage model accounts for microcracks within fragments and interface elements, with cohesive strength, between potential fragments describe the behavior of macrocracks. A versatile adaptive remeshing technique has been implemented to have well conditioned fine mesh in zones with high rate of inelastic deformation and coarse mesh in zones with low rate of inelastic deformation. The results are presented for the ballistic penetration of multi-layered ceramic/steel targets using the above model. The effect of ceramic materials and target configuration design for ceramic confinement on the response of multi-layered targets subjected to high velocity

  18. Learning without knowing: subliminal visual feedback facilitates ballistic motor learning

    DEFF Research Database (Denmark)

    Lundbye-Jensen, Jesper; Leukel, Christian; Nielsen, Jens Bo

    by subconscious (subliminal) augmented visual feedback on motor performance. To test this, 45 subjects participated in the experiment, which involved learning of a ballistic task. The task was to execute simple ankle plantar flexion movements as quickly as possible within 200 ms and to continuously improve...... by the learner, indeed facilitated ballistic motor learning. This effect likely relates to multiple (conscious versus unconscious) processing of visual feedback and to the specific neural circuitries involved in optimization of ballistic motor performance.......). It is a well- described phenomenon that we may respond to features of our surroundings without being aware of them. It is also a well-known principle, that learning is reinforced by augmented feedback on motor performance. In the present experiment we hypothesized that motor learning may be facilitated...

  19. Kinetics of diffusion-controlled and ballistically-controlled reactions

    International Nuclear Information System (INIS)

    Redner, S.


    The kinetics of diffusion-controlled two-species annihilation, A+B → O and single-species ballistically-controlled annihilation, A+A → O are investigated. For two-species annihilation, we describe the basic mechanism that leads to the formation of a coarsening mosaic of A- and B-domains. The implications of this picture on the distribution of reactants is discussed. For ballistic annihilation, dimensional analysis shows that the concentration and rms velocity decay as c∼t -α and v∼t -β , respectively, with α+β = 1 in any spatial dimension. Analysis of the Boltzmann equation for the evolution of the velocity distribution yields accurate predictions for the kinetics. New phenomena associated with discrete initial velocity distributions and with mixed ballistic and diffusive reactant motion are also discussed. (author)

  20. Ballistic spin filtering across the ferromagnetic-semiconductor interface

    Directory of Open Access Journals (Sweden)

    Y.H. Li


    Full Text Available The ballistic spin-filter effect from a ferromagnetic metal into a semiconductor has theoretically been studied with an intention of detecting the spin polarizability of density of states in FM layer at a higher energy level. The physical model for the ballistic spin filtering across the interface between ferromagnetic metals and semiconductor superlattice is developed by exciting the spin polarized electrons into n-type AlAs/GaAs superlattice layer at a much higher energy level and then ballistically tunneling through the barrier into the ferromagnetic film. Since both the helicity-modulated and static photocurrent responses are experimentally measurable quantities, the physical quantity of interest, the relative asymmetry of spin-polarized tunneling conductance, could be extracted experimentally in a more straightforward way, as compared with previous models. The present physical model serves guidance for studying spin detection with advanced performance in the future.

  1. Ballistic Anisotropic Magnetoresistance of Single-Atom Contacts. (United States)

    Schöneberg, J; Otte, F; Néel, N; Weismann, A; Mokrousov, Y; Kröger, J; Berndt, R; Heinze, S


    Anisotropic magnetoresistance, that is, the sensitivity of the electrical resistance of magnetic materials on the magnetization direction, is expected to be strongly enhanced in ballistic transport through nanoscale junctions. However, unambiguous experimental evidence of this effect is difficult to achieve. We utilize single-atom junctions to measure this ballistic anisotropic magnetoresistance (AMR). Single Co and Ir atoms are deposited on domains and domain walls of ferromagnetic Fe layers on W(110) to control their magnetization directions. They are contacted with nonmagnetic tips in a low-temperature scanning tunneling microscope to measure the junction conductances. Large changes of the magnetoresistance occur from the tunneling to the ballistic regime due to the competition of localized and delocalized d-orbitals, which are differently affected by spin-orbit coupling. This work shows that engineering the AMR at the single atom level is feasible.

  2. Development of high-density ceramic composites for ballistic applications

    International Nuclear Information System (INIS)

    Rupert, N.L.; Burkins, M.S.; Gooch, W.A.; Walz, M.J.; Levoy, N.F.; Washchilla, E.P.


    The application of ceramic composites for ballistic application has been generally developed with ceramics of low density, between 2.5 and 4.5 g/cm 2 . These materials have offered good performance in defeating small-caliber penetrators, but can suffer time-dependent degradation effects when thicker ceramic tiles are needed to defeat modem, longer, heavy metal penetrators that erode rather than break up. This paper addresses the ongoing development, fabrication procedures, analysis, and ballistic evaluation of thinner, denser ceramics for use in armor applications. Nuclear Metals Incorporated (NMI) developed a process for the manufacture of depleted uranium (DU) ceramics. Samples of the ceramics have been supplied to the US Army Research Laboratory (ARL) as part of an unfunded cooperative study agreement. The fabrication processes used, characterization of the ceramic, and a ballistic comparison between the DU-based ceramic with baseline Al 2 O 3 will be presented

  3. Design and Manufacturing Process for a Ballistic Missile

    Directory of Open Access Journals (Sweden)

    Zaharia Sebastian Marian


    Full Text Available Designing a ballistic missile flight depends on the mission and the stress to which the missile is subject. Missile’s requests are determined by: the organization of components; flight regime type, engine configuration and aerodynamic performance of the rocket flight. In this paper has been developed a ballistic missile with a smooth fuselage type, 10 control surfaces, 8 directional surfaces for cornering execution, 2 for maneuvers of execution to change the angle of incidence and 4 stabilizers direction. Through the technology of gluing and clamping of the shell and the use of titanium components, mass of ballistic missile presented a significant decrease in weight and a structure with high strength.

  4. Characterizing the dynamic strength of materials for ballistic applications (United States)

    Cazamias, James Ulysses

    We unambiguously verified the hypothesis that normal penetration in brittle materials may be represented as a bi-modal process. The first mode is governed by fundamental strength properties of the target, while the second mode is governed by the fracture kinetics. We investigated the failure response of glass under impact loading. We observed a drop in the failure wave velocity by a factor of 1/2 after unloading. While not unexpected, this drop had not been clearly observed previously. In contradiction to literature values, we observed a drop in sound speed behind the failure wave. Finally, despite the common perception that the failed material is comminuted, we observed a finite tensile strength. We proposed a new variant of the Taylor test using scaled rods to examine strain rate effects. For armor steel, we observed changes in strength greater than what would be expected from a logarithmic dependence of strength on strain rate although not enough to account for scale effects. For tungsten penetrators, we observed that smaller scale tungsten rods appeared to have more work hardening than the large scale rods which might account for scale effects. We examined the square Taylor impact problem. We showed that the square Taylor test is a new way to study shear localization under compressive-shear loading. We performed the first shock characterization of AlON. We observed that the bar impact experiment appears to differentiate between different thicknesses of ceramic tile in qualitative agreement with subscale and full scale penetration experiments. We present data supporting the lower yield strength estimate of 4.3 GPa for alumina. We performed the first bar impact characterization of AlON.

  5. Ballistics for neurosurgeons: Effects of firearms of customized cranioplasty implants


    Lemcke, Johannes; L?ser, Rainer; Telm, Andreas; Meier, Ullrich


    Introduction: There are about 33,000 deaths caused by gunshot wounds in the USA each year. Probably half of these deaths result from head wounds. Among US Army soldiers, 17% of all ballistic injuries are head wounds. This means that, even in those protected by ballistic helmets, gunshot injuries to the head represent a danger. The aim of this study was to examine the effects of shelling of computer-aided designed (CAD) cranioplasty implants made of two different materials. Methods: An experim...

  6. Quantifying Uncertainty from Computational Factors in Simulations of a Model Ballistic System (United States)


    Ballistic System by Daniel J Hornbaker Approved for public release; distribution is unlimited. NOTICES...Uncertainty from Computational Factors in Simulations of a Model Ballistic System by Daniel J Hornbaker Weapons and Materials Research...November 2016 4. TITLE AND SUBTITLE Quantifying Uncertainty from Computational Factors in Simulations of a Model Ballistic System 5a. CONTRACT NUMBER

  7. Space Logistics: Launch Capabilities (United States)

    Furnas, Randall B.


    The current maximum launch capability for the United States are shown. The predicted Earth-to-orbit requirements for the United States are presented. Contrasting the two indicates the strong National need for a major increase in Earth-to-orbit lift capability. Approximate weights for planned payloads are shown. NASA is studying the following options to meet the need for a new heavy-lift capability by mid to late 1990's: (1) Shuttle-C for near term (include growth versions); and (2) the Advanced Lauching System (ALS) for the long term. The current baseline two-engine Shuttle-C has a 15 x 82 ft payload bay and an expected lift capability of 82,000 lb to Low Earth Orbit. Several options are being considered which have expanded diameter payload bays. A three-engine Shuttle-C with an expected lift of 145,000 lb to LEO is being evaluated as well. The Advanced Launch System (ALS) is a potential joint development between the Air Force and NASA. This program is focused toward long-term launch requirements, specifically beyond the year 2000. The basic approach is to develop a family of vehicles with the same high reliability as the Shuttle system, yet offering a much greater lift capability at a greatly reduced cost (per pound of payload). The ALS unmanned family of vehicles will provide a low end lift capability equivalent to Titan IV, and a high end lift capability greater than the Soviet Energia if requirements for such a high-end vehicle are defined.In conclusion, the planning of the next generation space telescope should not be constrained to the current launch vehicles. New vehicle designs will be driven by the needs of anticipated heavy users.

  8. Launch of Zoological Letters. (United States)

    Fukatsu, Takema; Kuratani, Shigeru


    A new open-access journal, Zoological Letters, was launched as a sister journal to Zoological Science, in January 2015. The new journal aims at publishing topical papers of high quality from a wide range of basic zoological research fields. This review highlights the notable reviews and research articles that have been published in the first year of Zoological Letters, providing an overview on the current achievements and future directions of the journal.

  9. Launch Control Network Engineer (United States)

    Medeiros, Samantha


    The Spaceport Command and Control System (SCCS) is being built at the Kennedy Space Center in order to successfully launch NASA’s revolutionary vehicle that allows humans to explore further into space than ever before. During my internship, I worked with the Network, Firewall, and Hardware teams that are all contributing to the huge SCCS network project effort. I learned the SCCS network design and the several concepts that are running in the background. I also updated and designed documentation for physical networks that are part of SCCS. This includes being able to assist and build physical installations as well as configurations. I worked with the network design for vehicle telemetry interfaces to the Launch Control System (LCS); this allows the interface to interact with other systems at other NASA locations. This network design includes the Space Launch System (SLS), Interim Cryogenic Propulsion Stage (ICPS), and the Orion Multipurpose Crew Vehicle (MPCV). I worked on the network design and implementation in the Customer Avionics Interface Development and Analysis (CAIDA) lab.

  10. The usage of optical fibers for damage detection in ballistic protection composite laminates

    Directory of Open Access Journals (Sweden)

    Živković Irena D.


    Full Text Available This paper describes the procedure of embedding fiber optic sensors in laminar thermoplastic composite material, as well as damage investigation after ballistic loading. Thermoplastic-reinforced composite materials were made for increased material damage resistance during ballistic loading. Damage inside the composite material was detected by observing the intensity drop of the light signal transmitted through the optical fibers. Experimental testing was carried out in order to observe and analyze the response of the material under various load conditions. Different types of Kevlar reinforced composite materials (thermoplastic, thermo reactive and thermoplastic with ceramic plate as the impact face were made. Material damage resistance during ballistic loading was investigated and compared. Specimens were tested under multiple load conditions. The opto-electronic part of the measurement system consists of two light-emitting diodes as light sources for the optical fibers, and two photo detectors for the light intensity measurement. The output signal was acquired from photo detectors by means of a data acquisition board and personal computer. The measurements showed an intensity drop of the transmitted light signal as a result of the applied loading on composite structure for all the optical fibers. All the diagrams show similar behavior of the light signal intensity. In fact, all of them may be divided into three zones: the zone of penetration of the first composite layer, the bullet traveling zone through the composite material till its final stop, and the material relaxation zone. The attenuation of the light signal intensity during impact is caused by the influence of the applied dynamic stress on the embedded optical fibers. The applied stress caused micro bending of the optical fiber, changes in the shape of the cross-section and the unequal changes of the indices of refraction of the core and cladding due to the stress-optic effect. The

  11. The Impact of Arms Limitation Agreements and Export Control Regulations of International Commercial Launch Activities (United States)

    Freeland, Steven


    The commercial launch industry is by its very nature a global sector dominated by multinationals that operate across national boundaries. Since the end of the Cold War, new launch operators have become increasingly reliant on existing space and propulsion technology from Russia and other former constituent republics of the Soviet Union. With this in mind, the impact of export controls imposed by various countries under various internationally agreements, especially those of Australia, Russia and the United States, has become an increasingly important factor in the day-to-day operation of commercial launch operators. This is particularly true for launch operators utilising converted ballistic missiles as launch vehicles, as they have to consider also the impact of arms reduction treaties, such as START, on their launch operations. This paper explores the legal and administrative operations of the START and export control regimes operated by Russia and the United States, as well as emerging launching States such as Australia, and how they impact on the logistical operations of domestic or multinational commercial launch operators.

  12. Gate controlled high efficiency ballistic energy conversion system

    NARCIS (Netherlands)

    Xie, Yanbo; Bos, Diederik; de Boer, Hans L.; van den Berg, Albert; Eijkel, Jan C.T.; Zengerle, R.


    Last year we demonstrated the microjet ballistic energy conversion system[1]. Here we show that the efficiency of such a system can be further improved by gate control. With gate control the electrical current generation is enhanced a hundred times with respect to the current generated from the zeta

  13. Aerodynamic heating of ballistic missile including the effects of gravity

    Indian Academy of Sciences (India)

    The aerodynamic heating of a ballistic missile due to only convection is analysed taking into consideration the effects of gravity. The amount of heat transferred to the wetted area and to the nose region has been separately determined, unlike A Miele's treatise without consideration of gravity. The peak heating ratesto the ...

  14. Aerodynamic heating of ballistic missile including the effects of gravity

    Indian Academy of Sciences (India)

    Abstract. The aerodynamic heating of a ballistic missile due to only convection is analysed taking into consideration the effects of gravity. The amount of heat transferred to the wetted area and to the nose region has been separately determined, unlike A Miele's treatise without consideration of gravity. The peak heating rates ...

  15. The application of computed tomography in wound ballistics research (United States)

    Tsiatis, Nick; Moraitis, Konstantinos; Papadodima, Stavroula; Spiliopoulou, Chara; Kelekis, Alexis; Kelesis, Christos; Efstathopoulos, Efstathios; Kordolaimi, Sofia; Ploussi, Agapi


    In wound ballistics research there is a relationship between the data that characterize a bullet and the injury resulted after shooting when it perforates the human body. The bullet path in the human body following skin perforation as well as the damaging effect cannot always be predictable as they depend on various factors such as the bullet's characteristics (velocity, distance, type of firearm and so on) and the tissue types that the bullet passes through. The purpose of this presentation is to highlight the contribution of Computed Tomography (CT) in wound ballistics research. Using CT technology and studying virtual “slices” of specific areas on scanned human bodies, allows the evaluation of density and thickness of the skin, the subcutaneous tissue, the muscles, the vital organs and the bones. Density data taken from Hounsfield units can be converted in g/ml by using the appropriate software. By evaluating the results of this study, the anatomy of the human body utilizing ballistic gel will be reproduced in order to simulate the path that a bullet follows. The biophysical analysis in wound ballistics provides another application of CT technology, which is commonly used for diagnostic and therapeutic purposes in various medical disciplines.

  16. Quantum ballistic evolution in quantum mechanics: Application to quantum computers

    International Nuclear Information System (INIS)

    Benioff, P.


    Quantum computers are important examples of processes whose evolution can be described in terms of iterations of single-step operators or their adjoints. Based on this, Hamiltonian evolution of processes with associated step operators T is investigated here. The main limitation of this paper is to processes which evolve quantum ballistically, i.e., motion restricted to a collection of nonintersecting or distinct paths on an arbitrary basis. The main goal of this paper is proof of a theorem which gives necessary and sufficient conditions that T must satisfy so that there exists a Hamiltonian description of quantum ballistic evolution for the process, namely, that T is a partial isometry and is orthogonality preserving and stable on some basis. Simple examples of quantum ballistic evolution for quantum Turing machines with one and with more than one type of elementary step are discussed. It is seen that for nondeterministic machines the basis set can be quite complex with much entanglement present. It is also proven that, given a step operator T for an arbitrary deterministic quantum Turing machine, it is decidable if T is stable and orthogonality preserving, and if quantum ballistic evolution is possible. The proof fails if T is a step operator for a nondeterministic machine. It is an open question if such a decision procedure exists for nondeterministic machines. This problem does not occur in classical mechanics. Also the definition of quantum Turing machines used here is compared with that used by other authors. copyright 1996 The American Physical Society

  17. Phase conjugated Andreev backscattering in two-dimensional ballistic cavities

    NARCIS (Netherlands)

    Morpurgo, A.F.; Holl, S.; Wees, B.J.van; Klapwijk, T.M; Borghs, G.


    We have experimentally investigated transport in two-dimensional ballistic cavities connected to a point contact and to two superconducting electrodes with a tunable macroscopic phase difference. The point contact resistance oscillates as a function of the phase difference in a way which reflects

  18. Noninteracting beams of ballistic two-dimensional electrons

    International Nuclear Information System (INIS)

    Spector, J.; Stormer, H.L.; Baldwin, K.W.; Pfeiffer, L.N.; West, K.W.


    We demonstrate that two beams of two-dimensional ballistic electrons in a GaAs-AlGaAs heterostructure can penetrate each other with negligible mutual interaction analogous to the penetration of two optical beams. This allows electrical signal channels to intersect in the same plane with negligible crosstalk between the channels

  19. Comparison of ballistic impact effects between biological tissue and gelatin. (United States)

    Jin, Yongxi; Mai, Ruimin; Wu, Cheng; Han, Ruiguo; Li, Bingcang


    Gelatin is commonly used in ballistic testing as substitute for biological tissue. Comparison of ballistic impact effects produced in the gelatin and living tissue is lacking. The work in this paper was aimed to compare the typical ballistic impact effects (penetration trajectory, energy transfer, temporary cavity) caused by 4.8mm steel ball penetrating the 60kg porcine hind limbs and 10wt% gelatin. The impact event in the biological tissue was recorded by high speed flash X-ray machine at different delay time, while the event in the gelatin continuously recorded by high speed video was compared to that in the biological tissue. The collected results clearly displayed that the ballistic impact effects in the muscle and gelatin were similar for the steel ball test; as for instance, the projectile trajectory in the two targets was basically similar, the process of energy transfer was highly coincident, and the expansion of temporary cavity followed the same pattern. This study fully demonstrated that choosing gelatin as muscle simulant was reasonable. However, the maximum temporary cavity diameter in the gelatin was a little larger than that in the muscle, and the expansion period of temporary cavity was longer in the gelatin. Additionally, the temporary cavity collapse process in the two targets followed different patterns, and the collapse period in the gelatin was two times as long as that in the muscle. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. LQG controller designs from reduced order models for a launch ...

    Indian Academy of Sciences (India)

    This paper describes the effort of a multivariable control approach applied to the Geosynchronous Satellite Launch Vehicle (GSLV) of the Indian Space Research Organization (ISRO) during a certain stage of its launch. The fuel slosh dynamics are modelled using a pendulum model analogy. We describe two design ...

  1. Launching Garbage-Bag Balloons. (United States)

    Kim, Hy


    Presents a modification of a procedure for making and launching hot air balloons made out of garbage bags. Student instructions for balloon construction, launching instructions, and scale diagrams are included. (DDR)

  2. Launch Vehicle Control Center Architectures (United States)

    Watson, Michael D.; Epps, Amy; Woodruff, Van; Vachon, Michael Jacob; Monreal, Julio; Williams, Randall; McLaughlin, Tom


    This analysis is a survey of control center architectures of the NASA Space Launch System (SLS), United Launch Alliance (ULA) Atlas V and Delta IV, and the European Space Agency (ESA) Ariane 5. Each of these control center architectures have similarities in basic structure, and differences in functional distribution of responsibilities for the phases of operations: (a) Launch vehicles in the international community vary greatly in configuration and process; (b) Each launch site has a unique processing flow based on the specific configurations; (c) Launch and flight operations are managed through a set of control centers associated with each launch site, however the flight operations may be a different control center than the launch center; and (d) The engineering support centers are primarily located at the design center with a small engineering support team at the launch site.

  3. New Product Launching Ideas (United States)

    Kiruthika, E.


    Launching a new product can be a tense time for a small or large business. There are those moments when you wonder if all of the work done to develop the product will pay off in revenue, but there are many things are can do to help increase the likelihood of a successful product launch. An open-minded consumer-oriented approach is imperative in todayís diverse global marketplace so a firm can identify and serve its target market, minimize dissatisfaction, and stay ahead of competitors. Final consumers purchase for personal, family, or household use. Finally, the kind of information that the marketing team needs to provide customers in different buying situations. In high-involvement decisions, the marketer needs to provide a good deal of information about the positive consequences of buying. The sales force may need to stress the important attributes of the product, the advantages compared with the competition; and maybe even encourage ìtrialî or ìsamplingî of the product in the hope of securing the sale. The final stage is the post-purchase evaluation of the decision. It is common for customers to experience concerns after making a purchase decision. This arises from a concept that is known as ìcognitive dissonance

  4. Magnetic Launch Assist (United States)

    Jacobs, W. A.


    With the ever-increasing cost of getting to space and the need for safe, reliable, and inexpensive ways to access space, NASA is taking a look at technologies that will get us there. One of these technologies is Magnetic Launch Assist (MagLev). This is the concept of using both magnetic levitation and magnetic propulsion to provide an initial velocity by using electrical power from ground sources. The use of ground based power can significantly reduce operational costs over the consumables necessary to attain the same velocity. The technologies to accomplish this are both old and new. The concept of MagLev has been around for a long time and several MagLev Trains have already been made. Where NASA's MagLev diverges from the traditional train is in the immense power required to propel this vehicle to 600 feet per second in less than 10 seconds. New technologies or the upgrade of existing technologies will need to be investigated in areas of energy storage and power switching. Plus the separation of a very large mass (the space vehicle) and the aerodynamics of that vehicle while on the carrier are also of great concern and require considerable study and testing. NASA's plan is to mature these technologies in the next 10 years to achieve our goal of launching a full sized space vehicle off a MagLev rail.

  5. Space Launch System Ascent Flight Control Design (United States)

    Orr, Jeb S.; Wall, John H.; VanZwieten, Tannen S.; Hall, Charles E.


    A robust and flexible autopilot architecture for NASA's Space Launch System (SLS) family of launch vehicles is presented. The SLS configurations represent a potentially significant increase in complexity and performance capability when compared with other manned launch vehicles. It was recognized early in the program that a new, generalized autopilot design should be formulated to fulfill the needs of this new space launch architecture. The present design concept is intended to leverage existing NASA and industry launch vehicle design experience and maintain the extensibility and modularity necessary to accommodate multiple vehicle configurations while relying on proven and flight-tested control design principles for large boost vehicles. The SLS flight control architecture combines a digital three-axis autopilot with traditional bending filters to support robust active or passive stabilization of the vehicle's bending and sloshing dynamics using optimally blended measurements from multiple rate gyros on the vehicle structure. The algorithm also relies on a pseudo-optimal control allocation scheme to maximize the performance capability of multiple vectored engines while accommodating throttling and engine failure contingencies in real time with negligible impact to stability characteristics. The architecture supports active in-flight disturbance compensation through the use of nonlinear observers driven by acceleration measurements. Envelope expansion and robustness enhancement is obtained through the use of a multiplicative forward gain modulation law based upon a simple model reference adaptive control scheme.

  6. Ballistic-Failure Mechanisms in Gas Metal Arc Welds of Mil A46100 Armor-Grade Steel: A Computational Investigation (United States)

    Grujicic, M.; Snipes, J. S.; Galgalikar, R.; Ramaswami, S.; Yavari, R.; Yen, C.-F.; Cheeseman, B. A.


    In our recent work, a multi-physics computational model for the conventional gas metal arc welding (GMAW) joining process was introduced. The model is of a modular type and comprises five modules, each designed to handle a specific aspect of the GMAW process, i.e.: (i) electro-dynamics of the welding-gun; (ii) radiation-/convection-controlled heat transfer from the electric-arc to the workpiece and mass transfer from the filler-metal consumable electrode to the weld; (iii) prediction of the temporal evolution and the spatial distribution of thermal and mechanical fields within the weld region during the GMAW joining process; (iv) the resulting temporal evolution and spatial distribution of the material microstructure throughout the weld region; and (v) spatial distribution of the as-welded material mechanical properties. In the present work, the GMAW process model has been upgraded with respect to its predictive capabilities regarding the spatial distribution of the mechanical properties controlling the ballistic-limit (i.e., penetration-resistance) of the weld. The model is upgraded through the introduction of the sixth module in the present work in recognition of the fact that in thick steel GMAW weldments, the overall ballistic performance of the armor may become controlled by the (often inferior) ballistic limits of its weld (fusion and heat-affected) zones. To demonstrate the utility of the upgraded GMAW process model, it is next applied to the case of butt-welding of a prototypical high-hardness armor-grade martensitic steel, MIL A46100. The model predictions concerning the spatial distribution of the material microstructure and ballistic-limit-controlling mechanical properties within the MIL A46100 butt-weld are found to be consistent with prior observations and general expectations.

  7. Gridded thermionic gun and integral superconducting ballistic bunch compression cavity

    Energy Technology Data Exchange (ETDEWEB)

    Schultheiss, Thomas [Advanced Energy Systems, Inc., Medford, NY (United States)


    Electron-Ion colliders such as the Medium energy Electron Ion Collider (MEIC) being developed by JLAB require high current electrons with low energy spread for electron cooling of the collider ring. Accelerator techniques for improving bunch charge, average current, emittance, and energy spread are required for Energy Recovery Linacs (ERLs) and Circulator Rings (CR) for next generation colliders for nuclear physics experiments. Example candidates include thermionic-cathode electron guns with RF accelerating structures. Thermionic cathodes are known to produce high currents and have excellent lifetime. The success of the IR and THz Free-Electron Laser (FEL) designed and installed by Advanced Energy Systems at the Fritz Haber Institute (FHI) of the Max Planck Society in Berlin [1,2] demonstrates that gridded thermionic cathodes and rf systems be considered for next generation collider technology. In Phase 1 Advanced Energy Systems (AES) developed and analyzed a design concept using a superconducting cavity pair and gridded thermionic cathode. Analysis included Beam Dynamics and thermal analysis to show that a design of this type is feasible. The latest design goals for the MEIC electron cooler were for electron bunches of 420 pC at a frequency of 952.6 MHz with a magnetic field on the cathode of 2kG. This field magnetizes the beam imparting angular momentum that provides for helical motion of the electrons in the cooling solenoid. The helical motion increases the interaction time and improves the cooling efficiency. A coil positioned around the cathode providing 2kG field was developed. Beam dynamics simulations were run to develop the particle dynamics near the cathode and grid. Lloyd Young added capability to Tstep to include space charge effects between two plates and include image charge effects from the grid. He also added new pepper-pot geometry capability to account for honeycomb grids. These additions were used to develop the beam dynamics for this gun. The

  8. Payload Launch Lock Mechanism (United States)

    Young, Ken (Inventor); Hindle, Timothy (Inventor)


    A payload launch lock mechanism includes a base, a preload clamp, a fastener, and a shape memory alloy (SMA) actuator. The preload clamp is configured to releasibly restrain a payload. The fastener extends, along an axis, through the preload clamp and into the base, and supplies a force to the preload clamp sufficient to restrain the payload. The SMA actuator is disposed between the base and the clamp. The SMA actuator is adapted to receive electrical current and is configured, upon receipt of the electrical current, to supply a force that causes the fastener to elongate without fracturing. The preload clamp, in response to the fastener elongation, either rotates or pivots to thereby release the payload.

  9. LHCb launches new website

    CERN Multimedia


    A new public website for the LHCb experiment was launched last Friday to coincide with CERN’s Open Day weekend. Designed to provide accessible information on all aspects of the experiment, the website contains images and key facts about the LHCb detector, its design and installation and the international team behind the project. "LHCb is going to be one of the most important b-physics experiments in the world when it starts taking data later this year", explains Roger Forty, the experiment’s deputy spokesperson. "We hope the website will be a valuable resource, enabling people to learn about this fascinating area of research." The new website can be found at:

  10. Imaging ballistic carrier trajectories in graphene using scanning gate microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Morikawa, Sei; Masubuchi, Satoru [Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505 (Japan); Dou, Ziwei; Wang, Shu-Wei; Smith, Charles G.; Connolly, Malcolm R., E-mail: [Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE (United Kingdom); Watanabe, Kenji; Taniguchi, Takashi [National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan); Machida, Tomoki, E-mail: [Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505 (Japan); Institute for Nano Quantum Information Electronics, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505 (Japan)


    We use scanning gate microscopy to map out the trajectories of ballistic carriers in high-mobility graphene encapsulated by hexagonal boron nitride and subject to a weak magnetic field. We employ a magnetic focusing geometry to image carriers that emerge ballistically from an injector, follow a cyclotron path due to the Lorentz force from an applied magnetic field, and land on an adjacent collector probe. The local electric field generated by the scanning tip in the vicinity of the carriers deflects their trajectories, modifying the proportion of carriers focused into the collector. By measuring the voltage at the collector while scanning the tip, we are able to obtain images with arcs that are consistent with the expected cyclotron motion. We also demonstrate that the tip can be used to redirect misaligned carriers back to the collector.

  11. Ballistic penetration of multi-layered ceramic/steel targets (United States)

    Zavattieri, Pablo D.; Espinosa, Horacio D.


    The response of multi-layered ceramic/steel targets to high velocity impact and penetration has been investigated through experiments and finite element simulations. Damage quantification and the material stresses and velocity histories provided by experiments are used as constraints to be satisfied by numerical simulations of the ballistic penetration event. Experimental and numerical observations demonstrate that the penetration process does not strongly depend on the ceramic material as usually assumed by most investigators. Instead, local and global effects which are related to material performance and structural features have been found to be very important factors that affect the overall target performance. These findings show that meaningful light weight armor design can only be accomplished through a combined experimental/numerical study in which relevant ballistic materials and structures are simultaneously investigated.

  12. One Dimension Analytical Model of Normal Ballistic Impact on Ceramic/Metal Gradient Armor

    International Nuclear Information System (INIS)

    Liu Lisheng; Zhang Qingjie; Zhai Pengcheng; Cao Dongfeng


    An analytical model of normal ballistic impact on the ceramic/metal gradient armor, which is based on modified Alekseevskii-Tate equations, has been developed. The process of gradient armour impacted by the long rod can be divided into four stages in this model. First stage is projectile's mass erosion or flowing phase, mushrooming phase and rigid phase; second one is the formation of comminuted ceramic conoid; third one is the penetration of gradient layer and last one is the penetration of metal back-up plate. The equations of third stage have been advanced by assuming the behavior of gradient layer as rigid-plastic and considering the effect of strain rate on the dynamic yield strength

  13. Sun-perturbed Earth-to-moon transfers with ballistic capture (United States)

    Belbruno, Edward A.; Miller, James K.


    A method is described for constructing a new type of low energy transfer trajectory from the Earth to the moon leading to ballistic capture. This is accomplished by utilizing the nonlinear Earth-moon-sun perturbations on a point mass in three dimensions. The interaction of the gravitational fields of the bodies defines transition regions in the position-velocity space where the dynamic effects on the point mass tend to balance. These are termed weak stability boundaries. The transfer is obtained by the use of trajectories connecting the weak stability boundaries. It uses approximately 18 percent less Delta-V than the Hohmann transfer to insert a spacecraft into a circular orbit about the moon. The use of this transfer has recently been demonstrated by Japan's Hiten spacecraft, which arrived at the moon on October 2, 1991. Application of the transfer method is also made to the Lunar Observer Mission.

  14. Pivotal role of ballistic and quasi-ballistic electrons on LED efficiency (United States)

    Ni, X.; Li, X.; Lee, J.; Liu, S.; Avrutin, V.; Matulionis, A.; Özgür, Ü.; Morkoç, H.


    Significant progress in the power conversion efficiency and brightness of InGaN-based light emitting diodes (LEDs) has paved the way for these devices to be considered for LED lighting. In this realm, however, the efficiency must be retained at high injection levels in order to generate the lumens required. Unfortunately, LEDs undergo a monotonic efficiency degradation starting at current densities even lower than 50 A/cm 2 which would hinder LED insertion into the general lighting market. The physical origins for the loss of efficiency retention are at present a topic of intense debate given its enormous implications. This paper reviews the current status of the field regarding the mechanisms that have been put forward as being responsible for the loss of efficiency, such as Auger recombination, electron overflow (spillover), current crowding, asymmetric injection of electrons and holes, and poor transport of holes through the active region, the last one being applicable to multiple quantum well designs. While the Auger recombination received early attention, increasing number of researchers seem to think otherwise at the moment in that it alone (if any) cannot explain the progressively worsening loss of efficiency reduction as the InN mole fraction is increased. Increasing number of reports seems to suggest that the electron overflow is one of the major causes of efficiency degradation. The physical driving force for this is likely to be the relatively poor hole concentration and transport, and skewed injection favoring electrons owing to their relatively high concentration. Most intriguingly there is recent experimental convincing evidence to suggest that quasi-ballistic electrons in the active region, which are not able to thermalize within the residence time and possibly longitudinal optical phonon lifetime, contribute to the carrier overflow which would require an entirely new thought process in the realm of LEDs.

  15. Sino-Japanese relations and ballistic missile defence


    Hughes, Christopher W.


    Since December 1998, the Japanese government has formally committed itself to undertake cooperative technological research with the US into Ballistic Missile Defence (BMD). Japanese government policy-makers stress that the BMD project remains at present purely at the research stage, and that separate government decisions will be necessary before any progression towards the stages of development, production and deployment. Nevertheless, even at the research phase it is clear that both Japanese...

  16. Viscoelastic shock wave in ballistic gelatin behind soft body armor. (United States)

    Liu, Li; Fan, Yurun; Li, Wei


    Ballistic gelatins are widely used as a surrogate of biological tissue in blunt trauma tests. Non-penetration impact tests of handgun bullets on the 10wt% ballistic gelatin block behind soft armor were carried out in which a high-speed camera recorded the crater׳s movement and pressure sensors imbedded in the gelatin block recorded the pressure waves at different locations. The observed shock wave attenuation indicates the necessity of considering the gelatin׳s viscoelasticity. A three-element viscoelastic constitutive model was adopted, in which the relevant parameters were obtained via fitting the damping free oscillations at the beginning of the creep-mode of rheological measurement, and by examining the data of published split Hopkinson pressure bar (SHPB) experiments. The viscoelastic model is determined by a retardation time of 5.5×10(-5)s for high oscillation frequencies and a stress relaxation time of 2.0-4.5×10(-7)s for shock wave attenuation. Using the characteristic-line method and the spherical wave assumption, the propagation of impact pressure wave front and the subsequent unloading profile can be simulated using the experimental velocity boundary condition. The established viscoelastic model considerably improves the prediction of shock wave attenuation in the ballistic gelatin. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. The use of gelatine in wound ballistics research. (United States)

    Carr, D J; Stevenson, T; Mahoney, P F


    Blocks of gelatine are used in both lethality and survivability studies for broadly the same reason, i.e. comparison of ammunition effects using a material that it is assumed represents (some part of) the human body. The gelatine is used to visualise the temporary and permanent wound profiles; elements of which are recognised as providing a reasonable approximation to wounding in humans. One set of researchers aim to improve the lethality of the projectile, and the other to understand the effects of the projectile on the body to improve survivability. Research areas that use gelatine blocks are diverse and include ammunition designers, the medical and forensics communities and designers of ballistic protective equipment (including body armour). This paper aims to provide an overarching review of the use of gelatine for wound ballistics studies; it is not intended to provide an extensive review of wound ballistics as that already exists, e.g. Legal Med 23:21-29, 2016. Key messages are that test variables, projectile type (bullet, fragmentation), impact site on the body and intermediate layers (e.g. clothing, personal protective equipment (PPE)) can affect the resulting wound profiles.

  18. Ballistic Phonon Penetration Depth in Amorphous Silicon Dioxide. (United States)

    Yang, Lin; Zhang, Qian; Cui, Zhiguang; Gerboth, Matthew; Zhao, Yang; Xu, Terry T; Walker, D Greg; Li, Deyu


    Thermal transport in amorphous silicon dioxide (a-SiO 2 ) is traditionally treated as random walks of vibrations owing to its greatly disordered structure, which results in a mean free path (MFP) approximately the same as the interatomic distance. However, this picture has been debated constantly and in view of the ubiquitous existence of thin a-SiO 2 layers in nanoelectronic devices, it is imperative to better understand this issue for precise thermal management of electronic devices. Different from the commonly used cross-plane measurement approaches, here we report on a study that explores the in-plane thermal conductivity of double silicon nanoribbons with a layer of a-SiO 2 sandwiched in-between. Through comparing the thermal conductivity of the double ribbon samples with that of corresponding single ribbons, we show that thermal phonons can ballistically penetrate through a-SiO 2 of up to 5 nm thick even at room temperature. Comprehensive examination of double ribbon samples with various oxide layer thicknesses and van der Waals bonding strengths allows for extraction of the average ballistic phonon penetration depth in a-SiO 2 . With solid experimental data demonstrating ballistic phonon transport through a-SiO 2 , this work should provide important insight into thermal management of electronic devices.

  19. Launch Support Video Site (United States)

    OFarrell, Zachary L.


    The goal of this project is to create a website that displays video, countdown clock, and event times to customers during launches, without needing to be connected to the internal operations network. The requirements of this project are to also minimize the delay in the clock and events to be less than two seconds. The two parts of this are the webpage, which will display the data and videos to the user, and a server to send clock and event data to the webpage. The webpage is written in HTML with CSS and JavaScript. The JavaScript is responsible for connecting to the server, receiving new clock data, and updating the webpage. JavaScript is used for this because it can send custom HTTP requests from the webpage, and provides the ability to update parts of the webpage without having to refresh the entire page. The server application will act as a relay between the operations network, and the open internet. On the operations network side, the application receives multicast packets that contain countdown clock and events data. It will then parse the data into current countdown times and events, and create a packet with that information that can be sent to webpages. The other part will accept HTTP requests from the webpage, and respond to them with current data. The server is written in C# with some C++ files used to define the structure of data packets. The videos for the webpage will be shown in an embedded player from UStream.

  20. AMS ready for launch

    CERN Document Server

    Katarina Anthony


    On 29 April, the Alpha Magnetic Spectrometer (AMS) will complete its long expedition to the International Space Station on board the space shuttle Endeavour. The Endeavour is set to lift off from NASA’s Kennedy Space Station at 15:47 EST (21:47 CET).   Samuel Ting, principal investigator for the AMS project, and Rolf Heuer, CERN Director-General, visit the Kennedy Space Centre before the AMS launch.  Courtesy of NASA and Kennedy Space Center. AMS is a CERN recognised experiment, created by an internal collaboration of 56 institutes. It will be the first large magnetic spectrometer to be used in space, and has been designed to function as an external module on the ISS. AMS will measure cosmic rays without atmospheric interference, allowing researchers on the ground to continue their search for dark matter and antimatter in the Universe. Data collected by AMS will be analysed in CERN’s new AMS Control Centre in Building 946 (due for completion in June 2011). The End...

  1. Peer Review of Launch Environments (United States)

    Wilson, Timmy R.


    Catastrophic failures of launch vehicles during launch and ascent are currently modeled using equivalent trinitrotoluene (TNT) estimates. This approach tends to over-predict the blast effect with subsequent impact to launch vehicle and crew escape requirements. Bangham Engineering, located in Huntsville, Alabama, assembled a less-conservative model based on historical failure and test data coupled with physical models and estimates. This white paper summarizes NESC's peer review of the Bangham analytical work completed to date.

  2. Hybrid Composite Laminates Reinforced with Kevlar/Carbon/Glass Woven Fabrics for Ballistic Impact Testing

    Directory of Open Access Journals (Sweden)

    Elias Randjbaran


    Full Text Available Current study reported a facile method to investigate the effects of stacking sequence layers of hybrid composite materials on ballistic energy absorption by running the ballistic test at the high velocity ballistic impact conditions. The velocity and absorbed energy were accordingly calculated as well. The specimens were fabricated from Kevlar, carbon, and glass woven fabrics and resin and were experimentally investigated under impact conditions. All the specimens possessed equal mass, shape, and density; nevertheless, the layers were ordered in different stacking sequence. After running the ballistic test at the same conditions, the final velocities of the cylindrical AISI 4340 Steel pellet showed how much energy was absorbed by the samples. The energy absorption of each sample through the ballistic impact was calculated; accordingly, the proper ballistic impact resistance materials could be found by conducting the test. This paper can be further studied in order to characterise the material properties for the different layers.

  3. Hybrid composite laminates reinforced with Kevlar/carbon/glass woven fabrics for ballistic impact testing. (United States)

    Randjbaran, Elias; Zahari, Rizal; Jalil, Nawal Aswan Abdul; Majid, Dayang Laila Abang Abdul


    Current study reported a facile method to investigate the effects of stacking sequence layers of hybrid composite materials on ballistic energy absorption by running the ballistic test at the high velocity ballistic impact conditions. The velocity and absorbed energy were accordingly calculated as well. The specimens were fabricated from Kevlar, carbon, and glass woven fabrics and resin and were experimentally investigated under impact conditions. All the specimens possessed equal mass, shape, and density; nevertheless, the layers were ordered in different stacking sequence. After running the ballistic test at the same conditions, the final velocities of the cylindrical AISI 4340 Steel pellet showed how much energy was absorbed by the samples. The energy absorption of each sample through the ballistic impact was calculated; accordingly, the proper ballistic impact resistance materials could be found by conducting the test. This paper can be further studied in order to characterise the material properties for the different layers.

  4. Vandenberg Air Force Base Upper Level Wind Launch Weather Constraints (United States)

    Shafer, Jaclyn A.; Wheeler, Mark M.


    The 30th Operational Support Squadron Weather Flight (30 OSSWF) provides comprehensive weather services to the space program at Vandenberg Air Force Base (VAFB) in California. One of their responsibilities is to monitor upper-level winds to ensure safe launch operations of the Minuteman III ballistic missile. The 30 OSSWF tasked the Applied Meteorology Unit (AMU) to analyze VAFB sounding data with the goal of determining the probability of violating (PoV) their upper-level thresholds for wind speed and shear constraints specific to this launch vehicle, and to develop a tool that will calculate the PoV of each constraint on the day of launch. In order to calculate the probability of exceeding each constraint, the AMU collected and analyzed historical data from VAFB. The historical sounding data were retrieved from the National Oceanic and Atmospheric Administration Earth System Research Laboratory archive for the years 1994-2011 and then stratified into four sub-seasons: January-March, April-June, July-September, and October-December. The maximum wind speed and 1000-ft shear values for each sounding in each subseason were determined. To accurately calculate the PoV, the AMU determined the theoretical distributions that best fit the maximum wind speed and maximum shear datasets. Ultimately it was discovered that the maximum wind speeds follow a Gaussian distribution while the maximum shear values follow a lognormal distribution. These results were applied when calculating the averages and standard deviations needed for the historical and real-time PoV calculations. In addition to the requirements outlined in the original task plan, the AMU also included forecast sounding data from the Rapid Refresh model. This information provides further insight for the launch weather officers (LWOs) when determining if a wind constraint violation will occur over the next few hours on day of launch. The interactive graphical user interface (GUI) for this project was developed in

  5. Developing a Ballistic Software Kit to Estimate Vehicle Characteristics at the Draft Design Stage

    Directory of Open Access Journals (Sweden)

    V. I. Maiorova


    Full Text Available The article describes a ballistic software kit to calculate a moving vehicle trajectory in atmosphere and space. Such software gives an opportunity to accelerate the acquisition of flying vehicle’s ballistic parameters at the stage of draft design. It contributes to improving collaboration efficiency between adjacent departments involved in the project. The developed software kit includes three different programs: Trajectory-LAND© (motion in atmosphere with possible correction of a trajectory, Trajectory-SPACE© (motion in the non-central gravity field with possible simulation of maneuvers, Trajectory-LAUNCH© (launch-vehicle’s insertion into the orbit with possible defining the impact points of separated stages. Each of the software concedes the addition of computational modules to use the solution results of the basic task. Implemented mathematical models permit to take into account the influence of main perturbations on the flying vehicle during the flight. For illustration purposes, the article gives some examples of using each of the programs and their block-diagrams.The developed software implements some algorithms, which allow attaining the convergence of numerical simulation of differential equations of motion. This problem arises, for example, while determining an attitude in case the stages have already separated from the launch vehicle. The mathematical conversion from Rodriguez-Hamilton parameters into Euler’s angles disables us to obtain reliable values of attitude angles due to the limitations for existing area of inverse trigonometric functions being used. Incorrect values of pitch lead to raw and roll channels divergences. Moreover, the mistakes in attitude determination lead to mistakes in obtained values of attack angle, which is included into the forms for aerodynamic forces and torques. As a result, the solution of system of differential equations is a failure when a flying vehicle enters the height of 30-35 km. The

  6. Small Business Innovation Research Program at the Ballistic Missile Defense Organization (United States)


    8217 ,;;::i’:’.w..:.v,:.’..’,;?.:.:. t OFFICE OF THE INSPECTOR GENERAL SMALL BUSINESS INNOVATION RESEARCH PROGRAM AT THE BALLISTIC...Ballistic Missile Defense Organization Small Business Innovation Research Accession Number: 3526 Publication Date: Mar 21, 1995 Title: Small... Business Innovation Research Program at the Ballistic Missile Defense Organization Corporate Author Or Publisher: DoD, Office of the Inspector General

  7. Determining the Equation of State (EoS) Parameters for Ballistic Gelatin (United States)


    ARL-TR-7467 ● SEP 2015 US Army Research Laboratory Determining the Equation of State (EoS) Parameters for Ballistic Gelatin ...EoS) Parameters for Ballistic Gelatin by Yolin Huang Weapons and Materials Research Directorate, ARL Approved for...State (EoS) Parameters for Ballistic Gelatin 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Yolin Huang 5d

  8. Thermodynamic properties of UF sub 6 measured with a ballistic piston compressor (United States)

    Sterritt, D. E.; Lalos, G. T.; Schneider, R. T.


    From experiments performed with a ballistic piston compressor, certain thermodynamic properties of uranium hexafluoride were investigated. Difficulties presented by the nonideal processes encountered in ballistic compressors are discussed and a computer code BCCC (Ballistic Compressor Computer Code) is developed to analyze the experimental data. The BCCC unfolds the thermodynamic properties of uranium hexafluoride from the helium-uranium hexafluoride mixture used as the test gas in the ballistic compressor. The thermodynamic properties deduced include the specific heat at constant volume, the ratio of specific heats for UF6, and the viscous coupling constant of helium-uranium hexafluoride mixtures.

  9. Development of Mortar Simulator with Shell-In-Shell System – Problem of External Ballistics

    Directory of Open Access Journals (Sweden)

    A. Fedaravicius


    Full Text Available The shell-in-shell system used in the mortar simulator raises a number of non-standard technical and computational problems starting from the requirement to distribute the propelling blast energy between the warhead and the ballistic barrel, finishing with the requirement that the length of warhead's flight path must be scaled to combat shell firing tables. The design problem of the simulator is split into two parts – the problem of external ballistics where the initial velocities of the warhead must be determined, and the problem of internal ballistics – where the design of the cartridge and the ballistic barrel must be performed.

  10. Ballistic Impact Behavior of Nacre-Like Laminated Composites Consisting of B4C Tablets and Polyurea Matrix (United States)

    Grujicic, M.; Snipes, J. S.; Ramaswami, S.


    A nacre-like composite armor consisting of B4C tablets and polyurea matrix is modeled, and its ballistic impact behavior and penetration resistance (under a normal and a 15°-oblique impact by a solid right circular cylindrical projectile) were analyzed using a series of transient, nonlinear dynamic, finite-element analyses. Nacre is a biological material constituting the innermost layer of the shells of gastropods and bivalves. It consists of polygonal tablets of aragonite, tessellated to form individual layers and having the adjacent layers as well as the tablets within a layer bonded by a biopolymer. Due to its highly complex hierarchical microstructure, nacre possesses an outstanding combination of mechanical properties, the properties which are far superior to the ones that are predicted using the homogenization techniques such as the rule of mixtures. The results of the transient nonlinear dynamic analysis pertaining to the ballistic impact response and the penetration resistance of the modeled nacre-like armor are compared with their counterparts for the B4C single-block armor having an identical areal density. Furthermore, the effect of various nacre microstructural features (e.g., surface profiling, micron-scale asperities, mineral bridges between the overlapping tablets lying in adjacent layers) on the ballistic penetration resistance of the nacre-like composite armor is investigated in order to identify an optimal nacre-like composite-armor architecture having the largest penetration resistance. The results obtained clearly show that a nacre-like armor possesses a superior penetration resistance relative to its monolithic counterpart, and that the nacre microstructural features considered play a critical role in the armor penetration resistance.

  11. Magnetic Launch Assist Demonstration Test (United States)


    This image shows a 1/9 subscale model vehicle clearing the Magnetic Launch Assist System, formerly referred to as the Magnetic Levitation (MagLev), test track during a demonstration test conducted at the Marshall Space Flight Center (MSFC). Engineers at MSFC have developed and tested Magnetic Launch Assist technologies. To launch spacecraft into orbit, a Magnetic Launch Assist System would use magnetic fields to levitate and accelerate a vehicle along a track at very high speeds. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, a launch-assist system would electromagnetically drive a space vehicle along the track. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. This track is an advanced linear induction motor. Induction motors are common in fans, power drills, and sewing machines. Instead of spinning in a circular motion to turn a shaft or gears, a linear induction motor produces thrust in a straight line. Mounted on concrete pedestals, the track is 100-feet long, about 2-feet wide and about 1.5-feet high. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  12. Modeling and numerical simulation of interior ballistic processes in a 120mm mortar system (United States)

    Acharya, Ragini

    Numerical Simulation of interior ballistic processes in gun and mortar systems is a very difficult and interesting problem. The mathematical model for the physical processes in the mortar systems consists of a system of non-linear coupled partial differential equations, which also contain non-homogeneity in form of the source terms. This work includes the development of a three-dimensional mortar interior ballistic (3D-MIB) code for a 120mm mortar system and its stage-wise validation with multiple sets of experimental data. The 120mm mortar system consists of a flash tube contained within an ignition cartridge, tail-boom, fin region, charge increments containing granular propellants, and a projectile payload. The ignition cartridge discharges hot gas-phase products and unburned granular propellants into the mortar tube through vent-holes on its surface. In view of the complexity of interior ballistic processes in the mortar propulsion system, the overall problem was solved in a modular fashion, i.e., simulating each physical component of the mortar propulsion system separately. These modules were coupled together with appropriate initial and boundary conditions. The ignition cartridge and mortar tube contain nitrocellulose-based ball propellants. Therefore, the gas dynamical processes in the 120mm mortar system are two-phase, which were simulated by considering both phases as an interpenetrating continuum. Mass and energy fluxes from the flash tube into the granular bed of ignition cartridge were determined from a semi-empirical technique. For the tail-boom section, a transient one-dimensional two-phase compressible flow solver based on method of characteristics was developed. The mathematical model for the interior ballistic processes in the mortar tube posed an initial value problem with discontinuous initial conditions with the characteristics of the Riemann problem due to the discontinuity of the initial conditions. Therefore, the mortar tube model was solved

  13. Ram accelerator direct launch system for space cargo (United States)


    A new method of efficiently accelerating relatively large masses (up to several metric tons) to velocities of 0.6 km/sec up to 12 km/sec using chemical energy has been developed. The vehicle travels through a tube filled with a premixed gaseous fuel and oxidizer mixture. There is no propellant on-board the vehicle. The tube acts as the outer cowling of a ram jet and the energy release process travels with the vehicle. The ballistic efficiency remains high up to extremely high velocities and the acceleration can be maintained at a nearly constant level. Five modes of ram accelerator operation have been investigated; these modes differ primarily in the method of chemical heat release and the operational velocity range, and include two subsonic combustion modes (one of which involves thermally choke a combustion behind the vehicle) and three detonation drive modes. These modes of propulsion are capable of efficient acceleration in the range of 0.6-12 km/sec, although aerodynamic heating becomes severe above about 8 km/sec. Experiments carried out to date at the University of Washington up to 2 km/sec have established proof of principle of the ram accelerator concept and have shown close agreement between predicted and measured performance. A launch system capable of delivering two metric tons into low earth orbit was selected for the purposes of the present study. The preliminary analysis indicates that the overall dimensions of a restricted acceleration (less than approx. 1000 g) launch facility would require a tube 1 m in diameter, with an overall length of approximately 4 km. As in any direct launch scheme, a small on-board rocket is required to circularize the otherwise highly elliptical orbit which intersects the Earth. Various orbital insertion scenarios have been explored for the case of a 9 km/sec ram accelerator launch. These include direct insertion through a single circularization maneuver (i.e., on rocket burn), insertion involving two burns, and a

  14. Ballistic Characterization Of A Typical Military Steel Helmet

    Directory of Open Access Journals (Sweden)

    Mohamed Ali Maher


    Full Text Available In this study the ballistic limit of a steel helmet against a FMJ 919 mm caliber bullet is estimated. The helmet model is the typical polish helmet wz.31.The helmet material showed high strength low alloy steel material of 0.28 carbon content and 9.125 kgm2 areal density. The tensile test according to ASTM E8 showed a tensile strength of 1236.4 MPa .The average hardness value was about HV550. First shooting experiment has been executed using a 9 mm pistol based on 350 ms muzzle velocity at 5m against the simply supported helmet complete penetrations rose in this test were in the form of cracks on the helmet surface and partial penetrations were in the form of craters on the surface whose largest diameter and depth were 43 mm and 20.2 mm consequently .The second experiment was on a rifled gun arrangement 13 bullets of 919 mm caliber were shot on the examined simply supported steel helmet at a zero obliquity angle at different velocities to determine the ballistic limit velocity V50 according to MIL-STD-662F. Three major outcomes were revealed 1 the value V50 which found to be about 390 ms is higher than the one found in literature 360 ms German steel helmet model 1A1. 2 The smallest the standard deviation of the mixed results zone data the most accurate the ballistic limit is. 3Similar to the performance of blunt-ended projectiles impacting overmatching targets tD near 11 or larger It was found that the dominating failure mode of the steel helmet stuck by a hemispherical-nose projectile was plugging mode despite of having tD ratio of about 19 undermatching.

  15. Ballistic performance of polyurea-coated armor grade ceramic tiles (United States)

    Samiee, Ahsan; Isaacs, Jon; Nemat-Nasser, Sia


    The use of ceramics as energy absorbents has been studied by many researchers and some improvements in the ballistic performance of ceramic tiles have been made by coating them with different classes of materials (e.g. E-glass/epoxy, carbon-fiber/epoxy, etc.). Using ceramics for energy absorbing applications leads to a significant weight reduction of the system. Therefore, any modification to the ceramic configuration in the system which leads to more energy absorption with the same or less areal density is significant. On the other hand, polyurea has been proved to be an excellent energy dissipating agent in many applications. Inspired by this, we are studying the effect of coating ceramics with polyurea and other materials, on the energy absorption and ballistic performance of the resulting ceramic-based composites. In this study, we investigate the effect of polyurea on ballistic efficiency of ceramic tiles. To this end, we have performed a set of penetration tests on polyurea-ceramic composites. In our experiments, a high velocity projectile is propelled to impact and perforate the ceramic-polyurea composite. The velocity and mass of the projectile are measured before and after the penetration. The change in the kinetic energy of the projectile is evaluated and compared for different polyurea-ceramic configurations (e.g., polyurea on front face, polyurea on back face, polyurea between two ceramic tiles, etc.). The experimental results suggest that polyurea is not as effective as other restraining materials such as E-glass/epoxy and carbon-fiber/epoxy.

  16. Ballistic impact resistance of selected organic ophthalmic lenses. (United States)

    Chou, B Ralph; Yuen, Gloria S-C; Dain, Stephen J


    The aim was to assess the impact resistance of coated and uncoated mid-index spectacle lens materials using the ballistic impact test. Nominally plano lenses of each material in three thicknesses were obtained. The lenses were flat edged to a 50 mm diameter. Each lens was impacted by a 6.35 mm steel ball. Impact velocities were selected using the Zippy Estimation by Sequential Testing protocol to determine the threshold fracture impact velocity. Threshold fracture impact velocity generally increased with thickness; however, there was a wide variation in performance among the various lens materials at each thickness. In all but two instances, the differences in impact velocity at each thickness of lens material were significant. Comparison of the data for CR39 and Hoya Phoenix with the results of earlier studies showed that the lens mounting is a significant factor. The fracture velocities found in the present study were significantly lower than the fracture velocities found when the lens edge is restrained in the mounting. A scratch resistant coating reduced the impact resistance of CR39. The effect of the antireflection coating on the fracture velocity depended on the nature of the base scratch-resistant coating. Mid-index lens materials of the same thickness show widely varying levels of impact resistance under the ballistic test. Impact resistance increases non-linearly with centre thickness. The lens mounting might affect the results of the ballistic impact test. The presence of 'cushion coatings' might enhance impact resistance. © 2011 The Authors. Clinical and Experimental Optometry © 2011 Optometrists Association Australia.

  17. Approaches to Improve the Performances of the Sea Launch System Performances (United States)

    Tatarevs'kyy, K.


    The paper dwells on the outlines of the techniques of on-line pre-launch analysis on possibility of safe and reliable LV launch off floating launch system, when actual launch conditions (weather, launcher motion parameters) are beyond design limitations. The technique guarantees to follow the take-off LV trajectory limitations (the shock-free launch) and allows the improvement of the operat- ing characteristics of the floating launch systems at the expense of possibility to authorize the launch even if a number of weather and launcher motion parameters restrictions are exceeded. This paper ideas are applied for LV of Zenit-type launches off tilting launch platform, operative within Sea Launch. The importance, novelty and urgency of the approach under consideration is explained by the fact that the application during floating launch systems operation allows the bringing down of the num- ber of weather-conditioned launch abort cases. And this, in its part, increases the trustworthiness of the mission fulfillment on specific spacecraft injection, since, in the long run, the launch abort may cause the crossing of allowable wait threshold and accordingly the mission abort. All previous launch kinds for these LV did not require the development of the special technique of pre-launch analysis on launch possibility, since weather limitations for stationary launcher condi- tions are basically reduced to the wind velocity limitations. This parameter is reliably monitored and is sure to influence the launch dynamics. So the measured wind velocity allows the thorough picture on the possibility of the launch off the ground-based launcher. Since the floating launch systems commit complex and continuous movements under the exposure of the wind and the waves, the number of parameters is increased and, combined differently, they do not always make the issue on shockless launch critical. The proposed technique of the pre-launch analysis of the forthcoming launch dynamics with the

  18. The Falcon I Launch Vehicle


    Koenigsmann, Hans; Musk, Elon; Shotwell, Gwynne; Chinnery, Anne


    Falcon I is the first in a family of launch vehicles designed by Space Exploration Technologies to facilitate low cost access to space. Falcon I is a mostly reusable, two stage, liquid oxygen and kerosene powered launch vehicle. The vehicle is designed above all for high reliability, followed by low cost and a benign flight environment. Launched from Vandenberg, a standard Falcon I can carry over 1000 lbs to sun-synchronous orbit and 1500 lbs due east to 100 NM. To minimize failure modes, the...

  19. Ndt Characterization of Boron Carbide for Ballistic Applications (United States)

    Liaptsis, D.; Cooper, I.; Ludford, N.; Gunner, A.; Williams, Mike; Willis, David


    Boron Carbide (B4C) is widely used to provide ballistic protection in challenging service environments. This work was carried out to develop non-destructive testing (NDT) for B4C characterization. Deliberate flaws were introduced within the B4C tiles during manufacturing. An experimental program was undertaken to determine the best method to detect defects in ceramic tiles and material characterization. Ultrasonic characterization of the material was found to be able to detect both density variation and defects within the material.

  20. Diffusing-wave spectroscopy of cold atoms in ballistic motion (United States)

    Eloy, Aurélien; Yao, Zhibin; Bachelard, Romain; Guerin, William; Fouché, Mathilde; Kaiser, Robin


    Diffusing-wave spectroscopy is a powerful technique which consists in measuring the temporal correlation function of the intensity of light multiply scattered by a medium. In this paper, we apply this technique to cold atoms under purely ballistic motion and we investigate the transition between the single and the multiple-scattering regime. The intensity correlation function changes from a simple Gaussian function, whose width reveals the sample temperature, to a more complex decay shortened by the frequency redistribution in the thick cloud. These features are quantitatively compared to simulations with a phase-coherent and an incoherent model. Both show a very good agreement with the experiments.

  1. Star-grain rocket motor - nonsteady internal ballistics

    Energy Technology Data Exchange (ETDEWEB)

    Loncaric, S.; Greatrix, D.R.; Fawaz, Z. [Ryerson University, Dept. of Aerospace Engineering, Toronto (Canada)


    The nonsteady internal ballistics of a star-grain solid-propellant rocket motor are investigated through a numerical simulation model that incorporates both the internal flow and surrounding structure. The effects of structural vibration on burning rate augmentation and wave development in nonsteady operation are demonstrated. The amount of damping plays a role in influencing the predicted axial combustion instability symptoms of the motor. The variation in oscillation frequencies about a given star grain section periphery, and along the grain with different levels of burn-back, also influences the means by which the local acceleration drives the combustion and flow behaviour. (authors)

  2. Thermodynamic Bounds on Precision in Ballistic Multiterminal Transport (United States)

    Brandner, Kay; Hanazato, Taro; Saito, Keiji


    For classical ballistic transport in a multiterminal geometry, we derive a universal trade-off relation between total dissipation and the precision, at which particles are extracted from individual reservoirs. Remarkably, this bound becomes significantly weaker in the presence of a magnetic field breaking time-reversal symmetry. By working out an explicit model for chiral transport enforced by a strong magnetic field, we show that our bounds are tight. Beyond the classical regime, we find that, in quantum systems far from equilibrium, the correlated exchange of particles makes it possible to exponentially reduce the thermodynamic cost of precision.

  3. Quantum transport through ballistic chaotic cavities: a statistical approach

    International Nuclear Information System (INIS)

    Mello, P.A.


    The problem of quantum chaotic scattering is addressed by means of a statistical model for the scattering matrix. The model, introduced in the past in the context of nuclear physics, describes the problem in terms of a prompt and an equilibrated component: it incorporates the average value of the scattering matrix to describe the prompt processes and satisfies the requirements of flux conservation, causality and ergodicity. The model is applied to the analysis of electronic transport through ballistic mesoscopic cavities: it describes well the results arising form the numerical solution of the Schroedinger equation for two-dimensional cavities. (Author)

  4. Ballistic Characterization Of A Typical Military Steel Helmet


    Mohamed Ali Maher; Dr. Osama Mounir Dawood; Dr. Nabil El Houseiny Awad; Mahmoud Mohamed Younes


    In this study the ballistic limit of a steel helmet against a FMJ 919 mm caliber bullet is estimated. The helmet model is the typical polish helmet wz.31.The helmet material showed high strength low alloy steel material of 0.28 carbon content and 9.125 kgm2 areal density. The tensile test according to ASTM E8 showed a tensile strength of 1236.4 MPa .The average hardness value was about HV550. First shooting experiment has been executed using a 9 mm pistol based on 350 ms muzzle velocity at 5m...

  5. Modeling of Quasi-ballistic transport in multi-gate MOSFET for circuit simulations

    International Nuclear Information System (INIS)

    Martinie, Sebastien


    Today, the MOSFET transistor reaches deca-nanometer dimensions for which the effects of ballistic transport can no longer be neglected. The challenge is therefore to be able to introduce (quasi-)ballistic transport in the modeling of new devices and evaluates its impact at the circuit level. In this context, our work focuses on the introduction of (quasi-)ballistic transport in compact model of multi-gate transistor for the simulation of circuit elements. Firstly, the McKelvey's method applied to MOSFET has been used to synthesize existing works on analytical modeling of ballistic / quasi-ballistic transport. Then, we built a macroscopic model called 'quasi-ballistic mobility' (starting from pioneering work of Rhew et al), following the comparison between the moment method and the McKelvey method to describe (quasi-)ballistic transport in TCAD environment. Secondly, results from this first model have led us to build our (quasi-)ballistic current by adapting or creating new approaches to take into account various effects of nano-scale devices: short-channel effects, quantum confinement and scattering mechanisms. Finally, our work investigates the impact of the transport properties on the performances of circuit operation. (author)

  6. Nanosatellite Launch Adapter System (NLAS) (United States)

    Yost, Bruce D.; Hines, John W.; Agasid, Elwood F.; Buckley, Steven J.


    The utility of small spacecraft based on the University cubesat standard is becoming evident as more and more agencies and organizations are launching or planning to include nanosatellites in their mission portfolios. Cubesats are typically launched as secondary spacecraft in enclosed, containerized deployers such as the CalPoly Poly Picosat Orbital Deployer (P-POD) system. The P-POD allows for ease of integration and significantly reduces the risk exposure to the primary spacecraft and mission. NASA/ARC and the Operationally Responsive Space office are collaborating to develop a Nanosatellite Launch Adapter System (NLAS), which can accommodate multiple cubesat or cubesat-derived spacecraft on a single launch vehicle. NLAS is composed of the adapter structure, P-POD or similar spacecraft dispensers, and a sequencer/deployer system. This paper describes the NLAS system and it s future capabilities, and also provides status on the system s development and potential first use in space.

  7. Hewitt launches Research Councils UK

    CERN Multimedia


    "Trade and Industry Secretary Patricia Hewitt today launched 'Research Councils UK' - a new strategic partnership that will champion research in science, engineering and technology across the UK" (1 page).

  8. Magnetic Launch Assist Experimental Track (United States)


    In this photograph, a futuristic spacecraft model sits atop a carrier on the Magnetic Launch Assist System, formerly known as the Magnetic Levitation (MagLev) System, experimental track at the Marshall Space Flight Center (MSFC). Engineers at MSFC have developed and tested Magnetic Launch Assist technologies that would use magnetic fields to levitate and accelerate a vehicle along a track at very high speeds. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, a Magnetic Launch Assist system would electromagnetically drive a space vehicle along the track. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. This track is an advanced linear induction motor. Induction motors are common in fans, power drills, and sewing machines. Instead of spinning in a circular motion to turn a shaft or gears, a linear induction motor produces thrust in a straight line. Mounted on concrete pedestals, the track is 100-feet long, about 2-feet wide, and about 1.5-feet high. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  9. Aerodynamic Problems of Launch Vehicles

    Directory of Open Access Journals (Sweden)

    Kyong Chol Chou


    Full Text Available The airflow along the surface of a launch vehicle together with vase flow of clustered nozzles cause problems which may affect the stability or efficiency of the entire vehicle. The problem may occur when the vehicle is on the launching pad or even during flight. As for such problems, local steady-state loads, overall steady-state loads, buffet, ground wind loads, base heating and rocket-nozzle hinge moments are examined here specifically.

  10. CubeSat Launch Initiative (United States)

    Higginbotham, Scott


    The National Aeronautics and Space Administration (NASA) recognizes the tremendous potential that CubeSats (very small satellites) have to inexpensively demonstrate advanced technologies, collect scientific data, and enhance student engagement in Science, Technology, Engineering, and Mathematics (STEM). The CubeSat Launch Initiative (CSLI) was created to provide launch opportunities for CubeSats developed by academic institutions, non-profit entities, and NASA centers. This presentation will provide an overview of the CSLI, its benefits, and its results.

  11. Ballistic behavior of ultra-high molecular weight polyethylene composite: effect of gamma radiation

    International Nuclear Information System (INIS)

    Alves, Andreia L. dos Santos; Nascimento, Lucio F.C.; Suarez, Joao C. Miguez;


    Since World War II, textile composites have been used as ballistic armor. Ultra-high molecular weight polyethylene (UHMWPE) fibers are used in the production of armor materials. As they have been developed and commercialized only recently, there is not enough information about the effect of environmental agents in the ballistic performance of UHMWPE composites. In the present work, was evaluated the ballistic behavior of composite plates manufactured with UHMWPE fibers after exposure to gamma radiation. The ballistic tests results were related to the macromolecular alterations induced by the radiation through mechanical (hardness, impact and flexure) and physicochemical (Ftir/Mir. DSC and TGA) testing. It was observed that irradiation induces changes in the UHMWPE, degrading the ballistic performance of the composite. These results are presented and discussed. (author)

  12. 75 FR 78268 - Draft NIJ Selection and Application Guide to Ballistic-Resistant Body Armor for Law Enforcement... (United States)


    ... of Justice Programs Draft NIJ Selection and Application Guide to Ballistic-Resistant Body Armor for... of Draft NIJ Selection and Application Guide to Ballistic-Resistant Body Armor for Law Enforcement... the general public the draft ``NIJ Selection and Application Guide to Ballistic-Resistant Body Armor...

  13. Risk Estimation Methodology for Launch Accidents.

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Daniel James; Lipinski, Ronald J.; Bechtel, Ryan D.


    As compact and light weight power sources with reliable, long lives, Radioisotope Power Systems (RPSs) have made space missions to explore the solar system possible. Due to the hazardous material that can be released during a launch accident, the potential health risk of an accident must be quantified, so that appropriate launch approval decisions can be made. One part of the risk estimation involves modeling the response of the RPS to potential accident environments. Due to the complexity of modeling the full RPS response deterministically on dynamic variables, the evaluation is performed in a stochastic manner with a Monte Carlo simulation. The potential consequences can be determined by modeling the transport of the hazardous material in the environment and in human biological pathways. The consequence analysis results are summed and weighted by appropriate likelihood values to give a collection of probabilistic results for the estimation of the potential health risk. This information is used to guide RPS designs, spacecraft designs, mission architecture, or launch procedures to potentially reduce the risk, as well as to inform decision makers of the potential health risks resulting from the use of RPSs for space missions.

  14. Civilian casualties of Iraqi ballistic missile attack to

    Directory of Open Access Journals (Sweden)

    Khaji Ali


    Full Text Available 【Abstract】Objective: To determine the pattern of causalities of Iraqi ballistic missile attacks on Tehran, the capital of Iran, during Iraq-Iran war. Methods: Data were extracted from the Army Staff Headquarters based on daily reports of Iranian army units during the war. Results: During 52 days, Tehran was stroked by 118 Al-Hussein missiles (a modified version of Scud missile. Eighty-six missiles landed in populated areas. During Iraqi missile attacks, 422 civilians died and 1 579 injured (4.9 deaths and 18.3 injuries per missile. During 52 days, 8.1 of the civilians died and 30.4 injured daily. Of the cases that died, 101 persons (24% were excluded due to the lack of information. Among the remainders, 179 (55.8% were male and 142 (44.2% were female. The mean age of the victims was 25.3 years±19.9 years. Our results show that the high accuracy of modified Scud missiles landed in crowded ar-eas is the major cause of high mortality in Tehran. The pres-ence of suitable warning system and shelters could reduce civilian casualties. Conclusion: The awareness and readiness of civilian defense forces, rescue services and all medical facilities for dealing with mass casualties caused by ballistic missile at-tacks are necessary. Key words: Mortality; War; Mass casualty incidents; Wounds and injuries

  15. Clinical aspects of ballistic peripheral nerve injury: shrapnel versus gunshot. (United States)

    Rochkind, Shimon; Strauss, Ido; Shlitner, Zvi; Alon, Malvina; Reider, Evgeny; Graif, Moshe


    Ballistic injuries to peripheral nerves pose special challenges in terms of indications, timing and type of surgical intervention. The aim of the present work was to analyze our experience in the surgical treatment of peripheral nerve ballistic injuries with respect to the mechanism of injury (gunshot versus shrapnel), and identify common and dissimilar prognostic factors in both types of injury. This study was conducted on 42 patients totaling 58 nerves. Twenty-two patients (32 nerves) were injured by gunshot and 20 patients (26 nerves) by shrapnel. Median postoperative follow-up was 33 months (range 12 months to 14 years). Overall postoperative outcome appears to be more favorable for gunshot-wound (GSW) patients than shrapnel-injured patients, especially in terms of neuropathic pain relief (75 % vs. 58 % respectively, p Nerve graft reconstruction, rather than neurolysis, seems to be the more beneficial treatment for shrapnel-induced neuropathic pain (100 % vs. 47 % in improvement rate, respectively). Early surgical intervention (median 2 months after injury) significantly relieved neuropathic pain in 83 % of shrapnel-injured patients compared to 58 % in patients operated later. This study suggests that shrapnel injury is more destructive for nerve tissue than gunshot injury. Our impression is that early surgical intervention in shrapnel injuries and split nerve grafting (especially when small fragments are recognized in the nerve) significantly improve the patient's functional activity and quality of life.

  16. The proliferation of ballistic missiles: an aggravating factor of crises

    International Nuclear Information System (INIS)

    Rousset, Valery


    After a brief recall of the history of the development of ballistic missiles from World War II, the author discusses the various uses of these missiles, on the one hand by major powers, and on the other hand by other countries like Israel, Pakistan and India, and also Egypt and Iraq. He recalls the uses of these missiles during regional conflicts (Scuds by Iraq) and then discusses the issue of proliferation of ballistic missiles. He notices that most of these weapons are present in the arsenal of major powers under the form of intercontinental missiles, intermediate range weapons or theatre weapons. On the Third World side, proliferation concerns short- and medium-range missiles produced from technology transfers or national programmes. Mobile systems are now present in all conflicts (notably Libya, Syria) and are now based on more advanced technologies for propellers as well as for control and guidance systems. In the last part, the author discusses the perspectives associated with these missiles which are a strong offensive weapon, and are also modernised to carry nuclear warheads or multiple warheads. These evolutions could put the western superiority into question again

  17. NASA's Space Launch System: Momentum Builds Towards First Launch (United States)

    May, Todd; Lyles, Garry


    NASA's Space Launch System (SLS) is gaining momentum programmatically and technically toward the first launch of a new exploration-class heavy lift launch vehicle for international exploration and science initiatives. The SLS comprises an architecture that begins with a vehicle capable of launching 70 metric tons (t) into low Earth orbit. Its first mission will be the launch of the Orion Multi-Purpose Crew Vehicle (MPCV) on its first autonomous flight beyond the Moon and back. SLS will also launch the first Orion crewed flight in 2021. SLS can evolve to a 130-t lift capability and serve as a baseline for numerous robotic and human missions ranging from a Mars sample return to delivering the first astronauts to explore another planet. Managed by NASA's Marshall Space Flight Center, the SLS Program formally transitioned from the formulation phase to implementation with the successful completion of the rigorous Key Decision Point C review in 2014. At KDP-C, the Agency Planning Management Council determines the readiness of a program to go to the next life-cycle phase and makes technical, cost, and schedule commitments to its external stakeholders. As a result, the Agency authorized the Program to move forward to Critical Design Review, scheduled for 2015, and a launch readiness date of November 2018. Every SLS element is currently in testing or test preparations. The Program shipped its first flight hardware in 2014 in preparation for Orion's Exploration Flight Test-1 (EFT-1) launch on a Delta IV Heavy rocket in December, a significant first step toward human journeys into deep space. Accomplishments during 2014 included manufacture of Core Stage test articles and preparations for qualification testing the Solid Rocket Boosters and the RS-25 Core Stage engines. SLS was conceived with the goals of safety, affordability, and sustainability, while also providing unprecedented capability for human exploration and scientific discovery beyond Earth orbit. In an environment

  18. STS-93 Commander Collins suits up for launch (United States)


    During the third launch preparations in the Operations and Checkout Building, STS-93 Commander Eileen M. Collins waves while having her launch and entry suit checked. After Space Shuttle Columbia's July 20 and 22 launch attempts were scrubbed, the launch was again rescheduled for Friday, July 23, at 12:24 a.m. EDT. STS-93 is a five-day mission primarily to release the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. The STS-93 crew numbers five: Commander Collins, Pilot Jeffrey S. Ashby, and Mission Specialists Stephen A. Hawley (Ph.D.), Catherine G. Coleman (Ph.D.) and Michel Tognini of France, with the Centre National d'Etudes Spatiales (CNES). Collins is the first woman to serve as commander of a shuttle mission.

  19. STS-93 Mission Specialist Cady Coleman suits up for launch (United States)


    For the third time, during final launch preparations in the Operations and Checkout Building, STS-93 Mission Specialist Catherine G. Coleman (Ph.D.) dons her launch and entry suit. After Space Shuttle Columbia's July 20 and 22 launch attempts were scrubbed, the launch was again rescheduled for Friday, July 23, at 12:24 a.m. EDT. STS-93 is a five-day mission primarily to release the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. The STS-93 crew numbers five: Commander Eileen M. Collins, Pilot Jeffrey S. Ashby, and Mission Specialists Stephen A. Hawley (Ph.D.), Coleman, and Michel Tognini of France, with the Centre National d'Etudes Spatiales (CNES). Collins is the first woman to serve as commander of a shuttle mission.

  20. STS-93 Mission Specialist Hawley suits up for launch (United States)


    For the third time, during final launch preparations in the Operations and Checkout Building, STS-93 Mission Specialist Steven A. Hawley (Ph.D.) waves after donning his launch and entry suit. After Space Shuttle Columbia's July 20 and 22 launch attempts were scrubbed, the launch was again rescheduled for Friday, July 23, at 12:24 a.m. EDT. STS-93 is a five-day mission primarily to release the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. The STS-93 crew numbers five: Commander Eileen M. Collins, Pilot Jeffrey S. Ashby, and Mission Specialists Hawley, Catherine G. Coleman (Ph.D.) and Michel Tognini of France, with the Centre National d'Etudes Spatiales (CNES). Collins is the first woman to serve as commander of a shuttle mission.

  1. STS-93 Pilot Ashby suits up for launch (United States)


    In the Operations and Checkout Building during final launch preparations for the third time, STS-93 Pilot Jeffrey S. Ashby pulls on his glove, part of his launch and entry suit. After Space Shuttle Columbia's July 20 and 22 launch attempts were scrubbed, the launch was again rescheduled for Friday, July 23, at 12:24 a.m. EDT. STS-93 is a five-day mission primarily to release the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. The STS-93 crew numbers five: Commander Eileen Collins, Ashby, and Mission Specialists Stephen A. Hawley (Ph.D.), Catherine G. Coleman (Ph.D.) and Michel Tognini of France, with the Centre National d'Etudes Spatiales (CNES). Collins is the first woman to serve as commander of a shuttle mission.

  2. Adaptations in athletic performance after ballistic power versus strength training. (United States)

    Cormie, Prue; McGuigan, Michael R; Newton, Robert U


    To determine whether the magnitude of improvement in athletic performance and the mechanisms driving these adaptations differ in relatively weak individuals exposed to either ballistic power training or heavy strength training. Relatively weak men (n = 24) who could perform the back squat with proficient technique were randomized into three groups: strength training (n = 8; ST), power training (n = 8; PT), or control (n = 8). Training involved three sessions per week for 10 wk in which subjects performed back squats with 75%-90% of one-repetition maximum (1RM; ST) or maximal-effort jump squats with 0%-30% 1RM (PT). Jump and sprint performances were assessed as well as measures of the force-velocity relationship, jumping mechanics, muscle architecture, and neural drive. Both experimental groups showed significant (P < or = 0.05) improvements in jump and sprint performances after training with no significant between-group differences evident in either jump (peak power: ST = 17.7% +/- 9.3%, PT = 17.6% +/- 4.5%) or sprint performance (40-m sprint: ST = 2.2% +/- 1.9%, PT = 3.6% +/- 2.3%). ST also displayed a significant increase in maximal strength that was significantly greater than the PT group (squat 1RM: ST = 31.2% +/- 11.3%, PT = 4.5% +/- 7.1%). The mechanisms driving these improvements included significant (P < or = 0.05) changes in the force-velocity relationship, jump mechanics, muscle architecture, and neural activation that showed a degree of specificity to the different training stimuli. Improvements in athletic performance were similar in relatively weak individuals exposed to either ballistic power training or heavy strength training for 10 wk. These performance improvements were mediated through neuromuscular adaptations specific to the training stimulus. The ability of strength training to render similar short-term improvements in athletic performance as ballistic power training, coupled with the potential long-term benefits of improved maximal strength

  3. Launch Pad in a Box (United States)

    Mantovani, James; Tamasy, Gabor; Mueller, Rob; Townsend, Van; Sampson, Jeff; Lane, Mike


    NASA Kennedy Space Center (KSC) is developing a new deployable launch system capability to support a small class of launch vehicles for NASA and commercial space companies to test and launch their vehicles. The deployable launch pad concept was first demonstrated on a smaller scale at KSC in 2012 in support of NASA Johnson Space Center's Morpheus Lander Project. The main objective of the Morpheus Project was to test a prototype planetary lander as a vertical takeoff and landing test-bed for advanced spacecraft technologies using a hazard field that KSC had constructed at the Shuttle Landing Facility (SLF). A steel pad for launch or landing was constructed using a modular design that allowed it to be reconfigurable and expandable. A steel flame trench was designed as an optional module that could be easily inserted in place of any modular steel plate component. The concept of a transportable modular launch and landing pad may also be applicable to planetary surfaces where the effects of rocket exhaust plume on surface regolith is problematic for hardware on the surface that may either be damaged by direct impact of high speed dust particles, or impaired by the accumulation of dust (e.g., solar array panels and thermal radiators). During the Morpheus free flight campaign in 2013-14, KSC performed two studies related to rocket plume effects. One study compared four different thermal ablatives that were applied to the interior of a steel flame trench that KSC had designed and built. The second study monitored the erosion of a concrete landing pad following each landing of the Morpheus vehicle on the same pad located in the hazard field. All surfaces of a portable flame trench that could be directly exposed to hot gas during launch of the Morpheus vehicle were coated with four types of ablatives. All ablative products had been tested by NASA KSC and/or the manufacturer. The ablative thicknesses were measured periodically following the twelve Morpheus free flight tests

  4. Experiments and modeling of ballistic penetration using an energy failure criterion

    Directory of Open Access Journals (Sweden)

    Dolinski M.


    Full Text Available One of the most intricate problems in terminal ballistics is the physics underlying penetration and perforation. Several penetration modes are well identified, such as petalling, plugging, spall failure and fragmentation (Sedgwick, 1968. In most cases, the final target failure will combine those modes. Some of the failure modes can be due to brittle material behavior, but penetration of ductile targets by blunt projectiles, involving plugging in particular, is caused by excessive localized plasticity, with emphasis on adiabatic shear banding (ASB. Among the theories regarding the onset of ASB, new evidence was recently brought by Rittel et al. (2006, according to whom shear bands initiate as a result of dynamic recrystallization (DRX, a local softening mechanism driven by the stored energy of cold work. As such, ASB formation results from microstructural transformations, rather than from thermal softening. In our previous work (Dolinski et al., 2010, a failure criterion based on plastic strain energy density was presented and applied to model four different classical examples of dynamic failure involving ASB formation. According to this criterion, a material point starts to fail when the total plastic strain energy density reaches a critical value. Thereafter, the strength of the element decreases gradually to zero to mimic the actual material mechanical behavior. The goal of this paper is to present a new combined experimental-numerical study of ballistic penetration and perforation, using the above-mentioned failure criterion. Careful experiments are carried out using a single combination of AISI 4340 FSP projectiles and 25[mm] thick RHA steel plates, while the impact velocity, and hence the imparted damage, are systematically varied. We show that our failure model, which includes only one adjustable parameter in this present work, can faithfully reproduce each of the experiments without any further adjustment. Moreover, it is shown that the

  5. Penetration resistance and ballistic-impact behavior of Ti/TiAl3 metal/intermetallic laminated composites (MILCs: A computational investigation

    Directory of Open Access Journals (Sweden)

    Jennifer S. Snipes


    Full Text Available A comprehensive computational engineering analysis is carried out in order to assess suitability of the Ti/TiAl3 metal/intermetallic laminated composites (MILCs for use in both structural and add-on armor applications. This class of composite materials consists of alternating sub-millimeter thick layers of Ti (the ductile and tough constituent and TiAl3 (the stiff and hard constituent. In recent years, this class of materials has been investigated for potential use in light-armor applications as a replacement for the traditional metallic or polymer-matrix composite materials. Within the computational analysis, an account is given to differing functional requirements for candidate materials when used in structural and add-on ballistic armor. The analysis employed is of a transient, nonlinear-dynamics, finite-element character, and the problem investigated involves normal impact (i.e. under zero obliquity angle of a Ti/TiAl3 MILC target plate, over a range of incident velocities, by a fragment simulating projectile (FSP. This type of analysis can provide more direct information regarding the ballistic limit of the subject armor material, as well as help with the identification of the nature and the efficacy of various FSP material-deformation/erosion and kinetic-energy absorption/dissipation phenomena and processes. The results obtained clearly revealed that Ti/TiAl3 MILCs are more suitable for use in add-on ballistic, than in structural armor applications.

  6. A School Experiment in Kinematics: Shooting from a Ballistic Cart (United States)

    Kranjc, T.; Razpet, N.


    Many physics textbooks start with kinematics. In the lab, students observe the motions, describe and make predictions, and get acquainted with basic kinematics quantities and their meaning. Then they can perform calculations and compare the results with experimental findings. In this paper we describe an experiment that is not often done, but is interesting and attractive to students—the ballistic cart, i.e., the shooting of a ball from a cart moving along a slope. For that, one has to be familiar with one-dimensional uniform motion and one-dimensional motion with constant acceleration, as well as curvilinear motion that is a combination of such motions.1,2 The experimental results confirm theoretical predictions.

  7. Shot noise in a harmonically driven ballistic graphene transistor (United States)

    Korniyenko, Y.; Shevtsov, O.; Löfwander, T.


    We study time-dependent electron transport and quantum noise in a ballistic graphene field effect transistor driven by an ac gate potential. The nonlinear response to the ac signal is computed through Floquet theory for scattering states and Landauer-Büttiker theory for charge current and its fluctuations. Photon-assisted excitation of a quasibound state in the top-gate barrier leads to resonances in transmission that strongly influence the noise properties. For strong doping of graphene under source and drain contacts, when electrons are transmitted through the channel via evanescent waves, the resonance leads to a substantial suppression of noise. The Fano factor is then reduced well below the pseudodiffusive value, F tunneling (total suppression of back-reflection) persists for perpendicular incidence also when the barrier is driven harmonically. Although the transmission is inelastic and distributed among sideband energies, a sum rule leads to total suppression of shot noise.

  8. Interference in ballistic motor learning - is motor interference really sensory?

    DEFF Research Database (Denmark)

    Lundbye-Jensen, Jesper; Petersen, Tue Hvass; Rothwell, John C

    Skill gained after a short period of practice in one motor task can be abolished if a second task is learned shortly afterwards. We hypothesised that interference requires the same circuits to be engaged in the two tasks and provoke competing processes of synaptic plasticity. To test this, subjects...... learned a ballistic ankle plantarflexion task. Interference was observed following subsequent learning of a precision tracking task with the same movement direction and agonist muscles, but not by learning involving the opposite movement and antagonist muscles or by voluntary agonist contractions that did...... not require learning. Repeated transcranial magnetic stimulation (rTMS) of corticospinal motor output at intensities below ankle movement threshold did not cause interference, whereas suprathreshold rTMS did. Furthermore, electrical stimulation of the peripheral nerve to the plantarflexors (but not extensors...

  9. Launch Pad Coatings for Smart Corrosion Control (United States)

    Calle, Luz M.; Hintze, Paul E.; Bucherl, Cori N.; Li, Wenyan; Buhrow, Jerry W.; Curran, Jerome P.; Whitten, Mary C.


    Corrosion is the degradation of a material as a result of its interaction with the environment. The environment at the KSC launch pads has been documented by ASM International (formerly American Society for Metals) as the most corrosive in the US. The 70 tons of highly corrosive hydrochloric acid that are generated by the solid rocket boosters during a launch exacerbate the corrosiveness of the environment at the pads. Numerous failures at the pads are caused by the pitting of stainless steels, rebar corrosion, and the degradation of concrete. Corrosion control of launch pad structures relies on the use of coatings selected from the qualified products list (QPL) of the NASA Standard 5008A for Protective Coating of Carbon Steel, Stainless Steel, and Aluminum on Launch Structures, Facilities, and Ground Support Equipment. This standard was developed to establish uniform engineering practices and methods and to ensure the inclusion of essential criteria in the coating of ground support equipment (GSE) and facilities used by or for NASA. This standard is applicable to GSE and facilities that support space vehicle or payload programs or projects and to critical facilities at all NASA locations worldwide. Environmental regulation changes have dramatically reduced the production, handling, use, and availability of conventional protective coatings for application to KSC launch structures and ground support equipment. Current attrition rate of qualified KSC coatings will drastically limit the number of commercial off the shelf (COTS) products available for the Constellation Program (CxP) ground operations (GO). CxP GO identified corrosion detection and control technologies as a critical, initial capability technology need for ground processing of Ares I and Ares V to meet Constellation Architecture Requirements Document (CARD) CxP 70000 operability requirements for reduced ground processing complexity, streamlined integrated testing, and operations phase affordability

  10. Influence of Material Properties on the Ballistic Performance of Ceramics for Personal Body Armour

    Directory of Open Access Journals (Sweden)

    Christian Kaufmann


    Full Text Available In support of improved personal armour development, depth of penetration tests have been conducted on four different ceramic materials including alumina, modified alumina, silicon carbide and boron carbide. These experiments consisted of impacting ceramic tiles bonded to aluminum cylinders with 0.50 caliber armour piercing projectiles. The results are presented in terms of ballistic efficiency, and the validity of using ballistic efficiency as a measure of ceramic performance was examined. In addition, the correlation between ballistic performance and ceramic material properties, such as elastic modulus, hardness, spall strength and Hugoniot Elastic Limit, has been considered.

  11. Historical Review of the Correlation of Ballistic and Metallurgical Characteristics of Domestic Armor at Watertown Arsenal (United States)


    by the early part of 1942, and since the beginning of 1943 fracture tests for steel soundness and fiber and V-notch Charpy tests were also employed...prior to ballistic testing . Later, for armor 6" and thicker, non-ballistic tests (hardness and V-notch Charpy ) were substituted for ballistics. Today it...conclusions were drawn: "Shock failures in 1-112" and 2" armor, subjected to the slug test , are largely attributable to either poor steel quality, low

  12. Theoretical Study on Adhesives Used in Ballistic Protection Structures and Transparent Armor

    Directory of Open Access Journals (Sweden)

    Alil Luminiţa-Cristina


    Full Text Available This article is a brief study conducted on adhesives currently used for manufacturing performance ballistic protection structures. The study landmarks several aspects, such as: types of connections available to achieve multilayer structures based on ceramics, metals and polymers; ways in which adhesives influence the ballistic performance of protective structures; analysis of various types of adhesives used in ballistic protection industry; general considerations in the selection of adhesives for certain types of armor and protective structures; considerations for characterizing, testing and modeling adhesives.

  13. Ballistic Resistance of Armored Passenger Vehicles: Test Protocols and Quality Methods

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey M. Lacy; Robert E. Polk


    This guide establishes a test methodology for determining the overall ballistic resistance of the passenger compartment of assembled nontactical armored passenger vehicles (APVs). Because ballistic testing of every piece of every component of an armored vehicle is impractical, if not impossible, this guide describes a testing scheme based on statistical sampling of exposed component surface areas. Results from the test of the sampled points are combined to form a test score that reflects the probability of ballistic penetration into the passenger compartment of the vehicle.

  14. Optimization of Gas Metal Arc Welding (GMAW) Process for Maximum Ballistic Limit in MIL A46100 Steel Welded All-Metal Armor (United States)

    Grujicic, M.; Ramaswami, S.; Snipes, J. S.; Yavari, R.; Yen, C.-F.; Cheeseman, B. A.


    Our recently developed multi-physics computational model for the conventional gas metal arc welding (GMAW) joining process has been upgraded with respect to its predictive capabilities regarding the process optimization for the attainment of maximum ballistic limit within the weld. The original model consists of six modules, each dedicated to handling a specific aspect of the GMAW process, i.e., (a) electro-dynamics of the welding gun; (b) radiation-/convection-controlled heat transfer from the electric arc to the workpiece and mass transfer from the filler metal consumable electrode to the weld; (c) prediction of the temporal evolution and the spatial distribution of thermal and mechanical fields within the weld region during the GMAW joining process; (d) the resulting temporal evolution and spatial distribution of the material microstructure throughout the weld region; (e) spatial distribution of the as-welded material mechanical properties; and (f) spatial distribution of the material ballistic limit. In the present work, the model is upgraded through the introduction of the seventh module in recognition of the fact that identification of the optimum GMAW process parameters relative to the attainment of the maximum ballistic limit within the weld region entails the use of advanced optimization and statistical sensitivity analysis methods and tools. The upgraded GMAW process model is next applied to the case of butt welding of MIL A46100 (a prototypical high-hardness armor-grade martensitic steel) workpieces using filler metal electrodes made of the same material. The predictions of the upgraded GMAW process model pertaining to the spatial distribution of the material microstructure and ballistic limit-controlling mechanical properties within the MIL A46100 butt weld are found to be consistent with general expectations and prior observations.

  15. Starfire 1 Consort III Launch (United States)


    The Consort 3 is a commercial suborbital rocket that carried 12 microgravity experiments. It was launched on a Starfire rocket on May 16, 1990, from the Naval Ordnance Missile Test Station facilities at the U.S. Army's White Sands Missile Range (WSMR), NM. The videotape opens with approximately 2 minutes of a man speaking into a microphone but there is no sound. This is followed by a brief summary of the payload, and the expected trajectory, a view of the launch vehicle, the countdown and the launch. The videotape then shows a film clip from the University of Alabama, with Dr. Francis Wessling, project manager for the Consort 3 project, speaking about the mission goals in the materials sciences experimentation. The video shows footage of the payload being assembled. The next section is a discussion by Dr. Roy Hammustedt, of Pennsylvania State University, who reviews the Penn State Bio Module,and the goal of learning about the effects of gravity on physiology. This is followed by George Maybee, from McDonald Douglas, who spoke about the payload integration process while the video shows some of the construction. The last section of the videotape shows a press conference at the launch site. Ana Villamil answers questions from the press about the flight.

  16. VEGA, a small launch vehicle (United States)

    Duret, François; Fabrizi, Antonio


    Several studies have been performed in Europe aiming to promote the full development of a small launch vehicle to put into orbit one ton class spacecrafts. But during the last ten years, the european workforce was mainly oriented towards the qualification of the heavy class ARIANE 5 launch vehicle.Then, due also to lack of visibility on this reduced segment of market, when comparing with the geosatcom market, no proposal was sufficiently attractive to get from the potentially interrested authorities a clear go-ahead, i.e. a financial committment. The situation is now rapidly evolving. Several european states, among them ITALY and FRANCE, are now convinced of the necessity of the availability of such a transportation system, an important argument to promote small missions, using small satellites. Application market will be mainly scientific experiments and earth observation; some telecommunications applications may be also envisaged such as placement of little LEO constellation satellites, or replacement after failure of big LEO constellation satellites. FIAT AVIO and AEROSPATIALE have proposed to their national agencies the development of such a small launch vehicle, named VEGA. The paper presents the story of the industrial proposal, and the present status of the project: Mission spectrum, technical definition, launch service and performance, target development plan and target recurring costs, as well as the industrial organisation for development, procurement, marketing and operations.

  17. Launching the First Indian Satellite

    Indian Academy of Sciences (India)

    made in recent years in India in electronics. In comparison, information on rocket technology is much more restricted. Thus it came about that when in 1972 the USSR. Academy of Sciences offered us assistances to launch an Indian made satellite with a. Soviet rocket - the Indian Scientific Satellite Project came into being.

  18. LQG controller designs from reduced order models for a launch ...

    Indian Academy of Sciences (India)

    fuel interacts adversely with the rigid body dynamics of the LV and the feedback controller must attentuate these effects. This paper describes the effort of a multi- variable control approach applied to the Geosynchronous Satellite Launch Vehicle. (GSLV) of the Indian Space Research Organization (ISRO) during a certain ...

  19. Ballistic Imaging in the Primary Breakup Region of Diesel Injector Sprays

    National Research Council Canada - National Science Library

    Linne, M. A; Parker, T. E


    ...) for single-shot imaging of the near-field primary breakup region of a diesel spray. Ballistic imaging is a non-intrusive optical measurement technique that produces line-of-sight integrated images...

  20. Ballistic Missile Defense: National Security and the High Frontier of Space. (United States)

    Adragna, Steven P.


    Ballistic missile defense is discussed, and the rationale behind the proposal to place defensive weapons in space is examined. Strategic defense is a national security, political, and moral imperative. (RM)

  1. Small Business Innovation Research Program at the Ballistic Missile Defense Organization

    National Research Council Canada - National Science Library


    The audit objective was to determine whether the Ballistic Missile Defense Organization complied with legislation and DoD policy covering commercial potential requirements for Phase 1 of the SBIR program...

  2. Performance of Plain Woven Jute Fabric-Reinforced Polyester Matrix Composite in Multilayered Ballistic System

    Directory of Open Access Journals (Sweden)

    Sergio Neves Monteiro


    Full Text Available The ballistic performance of plain woven jute fabric-reinforced polyester matrix composites was investigated as the second layer in a multilayered armor system (MAS. Volume fractions of jute fabric, up to 30 vol %, were mixed with orthophthalic polyester to fabricate laminate composites. Ballistic tests were conducted using high velocity 7.62 mm ammunition. The depth of penetration caused by the bullet in a block of clay witness, simulating a human body, was used to evaluate the MAS ballistic performance according to the international standard. The fractured materials after tests were analyzed by scanning electron microscopy (SEM. The results indicated that jute fabric composites present a performance similar to that of the much stronger Kevlar™, which is an aramid fabric laminate, as MAS second layer with the same thickness. The mechanism of this similar ballistic behavior as well as the comparative advantages of the jute fabric composites over the Kevlar™ are discussed.

  3. Natural Mallow Fiber-Reinforced Epoxy Composite for Ballistic Armor Against Class III-A Ammunition (United States)

    Nascimento, Lucio Fabio Cassiano; Holanda, Luane Isquerdo Ferreira; Louro, Luis Henrique Leme; Monteiro, Sergio Neves; Gomes, Alaelson Vieira; Lima, Édio Pereira


    Epoxy matrix composites reinforced with up to 30 vol pct of continuous and aligned natural mallow fibers were for the first time ballistic tested as personal armor against class III-A 9 mm FMJ ammunition. The ballistic efficiency of these composites was assessed by measuring the dissipated energy and residual velocity after the bullet perforation. The results were compared to those in similar tests of aramid fabric (Kevlar™) commonly used in vests for personal protections. Visual inspection and scanning electron microscopy analysis of impact-fractured samples revealed failure mechanisms associated with fiber pullout and rupture as well as epoxy cracking. As compared to Kevlar™, the mallow fiber composite displayed practically the same ballistic efficiency. However, there is a reduction in both weight and cost, which makes the mallow fiber composites a promising material for personal ballistic protection.

  4. Micro-Doppler Feature Extraction and Recognition Based on Netted Radar for Ballistic Targets

    Directory of Open Access Journals (Sweden)

    Feng Cun-qian


    Full Text Available This study examines the complexities of using netted radar to recognize and resolve ballistic midcourse targets. The application of micro-motion feature extraction to ballistic mid-course targets is analyzed, and the current status of application and research on micro-motion feature recognition is concluded for singlefunction radar networks such as low- and high-resolution imaging radar networks. Advantages and disadvantages of these networks are discussed with respect to target recognition. Hybrid-mode radar networks combine low- and high-resolution imaging radar and provide a specific reference frequency that is the basis for ballistic target recognition. Main research trends are discussed for hybrid-mode networks that apply micromotion feature extraction to ballistic mid-course targets.

  5. A Comparison of the Deformation Flow and Failure of Two Tungsten Heavy Alloys in Ballistic Impacts

    National Research Council Canada - National Science Library

    Schuster, Brian E; Peterson, Bryan P; Magness, Lee S


    .... Small, but consistent, differences in the ballistic performances of the two lots of penetrators were observed in depth of penetration tests, in thick armor steel targets, and in limit velocity...

  6. Aeroelastic Ground Wind Loads Analysis Tool for Launch Vehicles (United States)

    Ivanco, Thomas G.


    Launch vehicles are exposed to ground winds during rollout and on the launch pad that can induce static and dynamic loads. Of particular concern are the dynamic loads caused by vortex shedding from nearly-cylindrical structures. When the frequency of vortex shedding nears that of a lowly-damped structural mode, the dynamic loads can be more than an order of magnitude greater than mean drag loads. Accurately predicting vehicle response to vortex shedding during the design and analysis cycles is difficult and typically exceeds the practical capabilities of modern computational fluid dynamics codes. Therefore, mitigating the ground wind loads risk typically requires wind-tunnel tests of dynamically-scaled models that are time consuming and expensive to conduct. In recent years, NASA has developed a ground wind loads analysis tool for launch vehicles to fill this analytical capability gap in order to provide predictions for prelaunch static and dynamic loads. This paper includes a background of the ground wind loads problem and the current state-of-the-art. It then discusses the history and significance of the analysis tool and the methodology used to develop it. Finally, results of the analysis tool are compared to wind-tunnel and full-scale data of various geometries and Reynolds numbers.

  7. THz-driven demagnetization with perpendicular magnetic anisotropy: towards ultrafast ballistic switching (United States)

    Polley, Debanjan; Pancaldi, Matteo; Hudl, Matthias; Vavassori, Paolo; Urazhdin, Sergei; Bonetti, Stefano


    We study THz-driven spin dynamics in thin CoPt films with perpendicular magnetic anisotropy. Femtosecond magneto-optical Kerr effect measurements show that demagnetization amplitude of about 1% can be achieved with a peak THz electric field of 300 kV cm‑1, and a corresponding peak magnetic field of 0.1 T. The effect is more than an order of magnitude larger than observed in samples with easy-plane anisotropy irradiated with the same field strength. We also utilize finite-element simulations to design a meta-material structure that can enhance the THz magnetic field by more than an order of magnitude, over an area of several tens of square micrometers. Magnetic fields exceeding 1 Tesla, generated in such meta-materials with the available laser-based THz sources, are expected to produce full magnetization reversal via ultrafast ballistic precession driven by the THz radiation. Our results demonstrate the possibility of table-top ultrafast magnetization reversal induced by THz radiation.

  8. Diffusive-to-ballistic transition of the modulated heat transport in a rarefied air chamber

    Directory of Open Access Journals (Sweden)

    C. L. Gomez-Heredia


    Full Text Available Modulated heat transfer in air subject to pressures from 760 Torr to 10-4 Torr is experimentally studied by means of a thermal-wave resonant cavity placed in a vacuum chamber. This is done through the analysis of the amplitude and phase delay of the photothermal signal as a function of the cavity length and pressure through of the Knudsen’s number. The viscous, transitional, and free molecular regimes of heat transport are observed for pressures P>1.5 Torr, 25 mTorrdynamics in gases supporting diffusive and ballistic heat transport.

  9. Constitutive equations of a ballistic steel alloy as a function of temperature (United States)

    Berkovic, L.; Chabotier, A.; Coghe, F.; Rabet, L.


    In the present work, dynamic tests have been performed on a new ballistic steel alloy by means of split Hopkinson pressure bars (SHPB). The impact behavior was investigated for strain rates ranging from 1000 to 2500 s-1, and temperatures in the range from - 196 to 300∘C. A robotized sample device was developed for transferring the sample from the heating or cooling device to the position between the bars. Simulations of the temperature evolution and its distribution in the specimen were performed using the finite element method. Measurements with thermocouples added inside the sample were carried out in order to validate the FEM simulations. The results show that a thermal gradient is present inside the sample; the average temperature loss during the manipulation of the sample is evaluated. In a last stage, optimal material constants for different constitutive models (Johnson-Cook, Zerilli-Amstrong, Cowper-Symonds) has been computed by fitting, in a least square sense, the numerical and experimental stress-strain curves. They have been implemented in a hydrocode for validation using a simple impact problem: an adapted projectile geometry with a truncated nose (.50 calibre fragment simulating projectiles) was fired directly against an armor plate. The parameters of the selected strength and failure models were determined. There is a good correspondence between the experimental and computed results. Nevertheless, an improved failure model is necessary to get satisfactory computed residual projectile velocities.

  10. Constitutive equations of a ballistic steel alloy as a function of temperature

    Directory of Open Access Journals (Sweden)

    Coghe F.


    Full Text Available In the present work, dynamic tests have been performed on a new ballistic steel alloy by means of split Hopkinson pressure bars (SHPB. The impact behavior was investigated for strain rates ranging from 1000 to 2500 s−1, and temperatures in the range from − 196 to 300∘C. A robotized sample device was developed for transferring the sample from the heating or cooling device to the position between the bars. Simulations of the temperature evolution and its distribution in the specimen were performed using the finite element method. Measurements with thermocouples added inside the sample were carried out in order to validate the FEM simulations. The results show that a thermal gradient is present inside the sample; the average temperature loss during the manipulation of the sample is evaluated. In a last stage, optimal material constants for different constitutive models (Johnson-Cook, Zerilli-Amstrong, Cowper-Symonds has been computed by fitting, in a least square sense, the numerical and experimental stress-strain curves. They have been implemented in a hydrocode for validation using a simple impact problem: an adapted projectile geometry with a truncated nose (.50 calibre fragment simulating projectiles was fired directly against an armor plate. The parameters of the selected strength and failure models were determined. There is a good correspondence between the experimental and computed results. Nevertheless, an improved failure model is necessary to get satisfactory computed residual projectile velocities.

  11. Understanding the ballistic event : Methodology and observations relevant to ceramic armour (United States)

    Healey, Adam

    The only widely-accepted method of gauging the ballistic performance of a material is to carry out ballistic testing; due to the large volume of material required for a statistically robust test, this process is very expensive. Therefore a new test, or suite of tests, that employ widely-available and economically viable characterisation methods to screen candidate armour materials is highly desirable; in order to design such a test, more information on the armour/projectile interaction is required. This work presents the design process and results of using an adapted specimen configuration to increase the amount of information obtained from a ballistic test. By using a block of ballistic gel attached to the ceramic, the fragmentation generated during the ballistic event was captured and analysed. In parallel, quasi-static tests were carried out using ring-on-ring biaxial disc testing to investigate relationships between quasi-static and ballistic fragment fracture surfaces. Three contemporary ceramic armour materials were used to design the test and to act as a baseline; Sintox FA alumina, Hexoloy SA silicon carbide and 3M boron carbide. Attempts to analyse the post-test ballistic sample non-destructively using X-ray computed tomography (XCT) were unsuccessful due to the difference in the density of the materials and the compaction of fragments. However, the results of qualitative and quantitative fracture surface analysis using scanning electron microscopy showed similarities between the fracture surfaces of ballistic fragments at the edges of the tile and biaxial fragments; this suggests a relationship between quasi-static and ballistic fragments created away from the centre of impact, although additional research will be required to determine the reason for this. Ballistic event-induced porosity was observed and quantified on the fracture surfaces of silicon carbide samples, which decreased as distance from centre of impact increased; upon further analysis this

  12. Space Launch System Development Status (United States)

    Lyles, Garry


    Development of NASA's Space Launch System (SLS) heavy lift rocket is shifting from the formulation phase into the implementation phase in 2014, a little more than three years after formal program approval. Current development is focused on delivering a vehicle capable of launching 70 metric tons (t) into low Earth orbit. This "Block 1" configuration will launch the Orion Multi-Purpose Crew Vehicle (MPCV) on its first autonomous flight beyond the Moon and back in December 2017, followed by its first crewed flight in 2021. SLS can evolve to a130-t lift capability and serve as a baseline for numerous robotic and human missions ranging from a Mars sample return to delivering the first astronauts to explore another planet. Benefits associated with its unprecedented mass and volume include reduced trip times and simplified payload design. Every SLS element achieved significant, tangible progress over the past year. Among the Program's many accomplishments are: manufacture of Core Stage test panels; testing of Solid Rocket Booster development hardware including thrust vector controls and avionics; planning for testing the RS-25 Core Stage engine; and more than 4,000 wind tunnel runs to refine vehicle configuration, trajectory, and guidance. The Program shipped its first flight hardware - the Multi-Purpose Crew Vehicle Stage Adapter (MSA) - to the United Launch Alliance for integration with the Delta IV heavy rocket that will launch an Orion test article in 2014 from NASA's Kennedy Space Center. Objectives of this Earth-orbit flight include validating the performance of Orion's heat shield and the MSA design, which will be manufactured again for SLS missions to deep space. The Program successfully completed Preliminary Design Review in 2013 and Key Decision Point C in early 2014. NASA has authorized the Program to move forward to Critical Design Review, scheduled for 2015 and a December 2017 first launch. The Program's success to date is due to prudent use of proven

  13. Proceedings of the heavy lift launch vehicle tropospheric effects workshop

    Energy Technology Data Exchange (ETDEWEB)


    A workshop, sponsored by the Argonne National Laboratory, on Heavy Lift Launch Vehicle (HLLV) troposheric effects was held in Chicago, Illinois, on September 12, 13, and 14, 1978. Briefings were conducted on the latest HLLV congigurations, launch schedules, and proposed fuels. The geographical, environmental, and ecological background of three proposed launch sites were presented in brief. The sites discussed were launch pads near the Kennedy Space Center (KSC), a site in the southwestern United States near Animus, New Mexico, and an ocean site just north of the equator off the coast of Ecuador. A review of past efforts in atmospheric dynamics modeling, source term prediction, atmospheric effects, cloud rise modeling, and rainout/washout effects for the Space Shuttle tropospheric effects indicated that much of the progress made in these areas has direct applicability to the HLLV. The potential pollutants from the HLLV are different and their chymical interactions with the atmosphere are more complex, but the analytical techniques developed for the Space Shuttle can be applied, with the appropriate modification, to the HLLV. Reviews were presented of the ecological baseline monitoring being performed at KSC and the plant toxicology studies being conducted at North Carolina State. Based on the proposed launch sites, the latest HLLV configuration fuel, and launch schedule, the attendees developed a lit of possible environmental issues associated with the HLLV. In addition, a list of specific recommendations for short- and long-term research to investigate, understand, and possibly mitigate the HLLV environmental impacts was developed.

  14. Forensic chemistry: perspective of new analytical methods applied to documentoscopy, ballistic and drugs of abuse


    Romão, Wanderson; Schwab, Nicolas V; Bueno, Maria Izabel M. S; Sparrapan, Regina; Eberlin, Marcos N; Martiny, Andrea; Sabino, Bruno D; Maldaner, Adriano O


    In this review recent methods developed and applied to solve criminal occurences related to documentoscopy, ballistic and drugs of abuse are discussed. In documentoscopy, aging of ink writings, the sequence of line crossings and counterfeiting of documents are aspects to be solved with reproducible, fast and non-destructive methods. In ballistic, the industries are currently producing ''lead-free'' or ''nontoxic'' handgun ammunitions, so new methods of gunshot residues characterization are be...

  15. The role of contemporary ferrous and nonferrous materials in ballistic protection of military vehicles


    Dimeski, Dimko; Srebrenkoska, Vineta


    Metallic armor is the most mature class of armor materials and is still widely used for ballistic protection today. Although the materials for metallic armor are highly developed, new and innovative metallic armor systems are being used to improve the ballistic protection (while reducing the weight) of various weapon systems. Historically, most metallic armor evolved from designing materials to meet structural or other requirements rather than from designing specifically for balli...

  16. Computational Predictions of Rear Surface Velocities for Metal Plates under Ballistic Impact (United States)


    Reinecke WG, editor. Ballistics ’99. Proceedings of the 18th International Symposium on Ballistics; 1999 Nov 15–19; San Antonio, TX. Lancaster (PA...Antonio, TX. Lancaster (PA): Technomic Pub Co. p. 761–768. 6. Robinson AC, Brunner TA, Carroll S, Drake R, Garasi CJ, Gardiner T, Haill T, Heath H...material library . While the primary data in this report does not consider fracture models, the comparisons below do include default settings of the JC

  17. Small Business Administration Section 8 (A) Support Services Contracts at the Ballistic Missile Defense Organization. (United States)



  18. Low-temperature ballistic transport in nanoscale epitaxial graphene cross junctions


    Weingart, S.; Bock, C.; Kunze, U.; Speck, F.; Seyller, Th.; Ley, L.


    We report on the observation of inertial-ballistic transport in nanoscale cross junctions fabricated from epitaxial graphene grown on SiC(0001). Ballistic transport is indicated by a negative bend resistance of R12,43 ~ 170 ohm which is measured in a non-local, four-terminal configuration at 4.2 K and which vanishes as the temperature is increased above 80 K.

  19. Comparison of porcine thorax to gelatine blocks for wound ballistics studies


    Mabbott, A.; Carr, D. J.; Champion, S.; Malbon, C.


    Tissue simulants are typically used in ballistic testing as substitutes for biological tissues. Many simulants have been used, with gelatine amongst the most common. While two concentrations of gelatine (10 and 20?%) have been used extensively, no agreed standard exists for the preparation of either. Comparison of ballistic damage produced in both concentrations is lacking. The damage produced in gelatine is also questioned, with regards to what it would mean for specific areas of living tiss...

  20. European global navigation satellite launches (United States)

    Zielinski, Sarah

    The European Space Agency launched its first Galileo satellite on 28 December 2005.When fully deployed, the Galileo system will provide a European global navigation alternative to the U.S. global positioning system (GPS) and the Russian global navigation satellite system (Glonass).The Galileo system will consist of 30 satellites (27 operational plus three active spare satellites) that are scheduled to be launched and fully operational by the end of 2008.The system will provide real-time positioning within one meter of accuracy and be fully inter-operable with the U.S. and Russian systems. However, unlike GPS and Glonass, Galileo will be under civilian rather than military control.

  1. Orientation Effects in Ballistic High-Strained P-type Si Nanowire FETs

    Directory of Open Access Journals (Sweden)

    Hong Yu


    Full Text Available In order to design and optimize high-sensitivity silicon nanowire-field-effect transistor (SiNW FET pressure sensors, this paper investigates the effects of channel orientations and the uniaxial stress on the ballistic hole transport properties of a strongly quantized SiNW FET placed near the high stress regions of the pressure sensors. A discrete stress-dependent six-band k.p method is used for subband structure calculation, coupled to a two-dimensional Poisson solver for electrostatics. A semi-classical ballistic FET model is then used to evaluate the ballistic current-voltage characteristics of SiNW FETs with and without strain. Our results presented here indicate that [110] is the optimum orientation for the p-type SiNW FETs and sensors. For the ultra-scaled 2.2 nm square SiNW, due to the limit of strong quantum confinement, the effect of the uniaxial stress on the magnitude of ballistic drive current is too small to be considered, except for the [100] orientation. However, for larger 5 nm square SiNW transistors with various transport orientations, the uniaxial tensile stress obviously alters the ballistic performance, while the uniaxial compressive stress slightly changes the ballistic hole current. Furthermore, the competition of injection velocity and carrier density related to the effective hole masses is found to play a critical role in determining the performance of the nanotransistors.

  2. Application of Super-Hydrophobic Coating for Enhanced Water Repellency of Ballistic Fabric

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Barton [ORNL; Rajic, Slobodan [ORNL; Hunter, Scott Robert [ORNL


    The objective of this work was to demonstrate that a superhydrophobic coating technology developed at Oak Ridge National Laboratory (ORNL) increases the water repellency of ballistic fabric beyond that provided by existing water repellency treatments. This increased water repellency has the potential to provide durable ballistic fabric for body armor without adding significant weight to the armor or significant manufacturing cost. Specimens of greige and scoured ballistic fabric were treated with a superhydrophobic coating and their weights and degree of water repellency were compared to specimens of untreated fabric. Treatment of both greige and scoured ballistic fabrics yielded highly water repellent fabrics. Our measurements of the water droplet contact angles gave values of approximately 150 , near the lower limit of 160 for superhydrophobic surfaces. The coatings increased the fabric weights by approximately 6%, an amount that is many times less than the estimated weight increase in a conventional treatment of ballistic fabric. The treated fabrics retained a significant amount of water repellency following a basic abrasion test, with water droplet contact angles decreasing by 14 to 23 . Microscopic analysis of the coating applied to woven fabrics indicated that the coating adhered equally well to fibers of greige and scoured yarns. Future evaluation of the superhydrophobic water repellent treatment will involve the manufacture of shoot packs of treated fabric for ballistic testing and provide an analysis of manufacturing scale-up and cost-to-benefit considerations.

  3. Acute effect of a ballistic and a static stretching exercise bout on flexibility and maximal strength. (United States)

    Bacurau, Reury Frank Pereira; Monteiro, Gizele Assis; Ugrinowitsch, Carlos; Tricoli, Valmor; Cabral, Leonardo Ferreira; Aoki, Marcelo Saldanha


    Different stretching techniques have been used during warm-up routines. However, these routines may decrease force production. The purpose of this study was to compare the acute effect of a ballistic and a static stretching protocol on lower-limb maximal strength. Fourteen physically active women (169.3 +/- 8.2 cm; 64.9 +/- 5.9 kg; 23.1 +/- 3.6 years) performed three experimental sessions: a control session (estimation of 45 degrees leg press one-repetition maximum [1RM]), a ballistic session (20 minutes of ballistic stretch and 45 degrees leg press 1RM), and a static session (20 minutes of static stretch and 45 degrees leg press 1RM). Maximal strength decreased after static stretching (213.2 +/- 36.1 to 184.6 +/- 28.9 kg), but it was unaffected by ballistic stretching (208.4 +/- 34.8 kg). In addition, static stretching exercises produce a greater acute improvement in flexibility compared with ballistic stretching exercises. Consequently, static stretching may not be recommended before athletic events or physical activities that require high levels of force. On the other hand, ballistic stretching could be more appropriate because it seems less likely to decrease maximal strength.

  4. Have we underestimated the kinematic and kinetic benefits of non-ballistic motion? (United States)

    Frost, David M; Cronin, John B; Newton, Robert U


    Explosive upper-body movements, with which the load is not thrown (non-ballistic), may comprise a phase during which forces are produced in opposition to the motion of the load. Thirty men completed three test sessions (free weight, ballistic, and pneumatic), each consisting of a one-repetition maximum (1-RM) and four explosive repetitions of a bench press at six loads (15, 30, 45, 60, 75, and 90% 1-RM). The end of the lifting phase for the non-ballistic conditions (free weight and pneumatic) was defined by: the point of peak barbell displacement and the point at which the vertical force became negative (positive work). When analysed by peak displacement, the ballistic condition elicited significantly greater mean velocity, force, and power at loads of 15-60% 1-RM compared with the free weight condition. When the period of negative work was removed, the mean free weight velocity, force, and power at loads below 60% 1-RM increased. Consequently, the only differences between the free weight and ballistic conditions were found at loads of 15% and 30% 1-RM. Including a period of negative work may underestimate all kinematic and kinetic variables dependent on the time to, or position of, the end of the lifting phase, for non-ballistic efforts.

  5. Vertical Launch System Loadout Planner (United States)


    United States Navy USS United States’ Ship VBA Visual Basic for Applications VLP VLS Loadout Planner VLS Vertical Launch System...mathematically complex and require training to operate the software. A Visual Basic for Applications ( VBA ) Excel (Microsoft Corporation, 2015...lockheed/data/ms2/documents/laun chers/MK41 VLS factsheet.pdf Microsoft Excel version 14.4.3, VBA computer software. (2011). Redmond, WA: Microsoft

  6. Using space manifold dynamics to deploy a small satellite constellation around the Moon (United States)

    Marson, Riccardo; Pontani, Mauro; Perozzi, Ettore; Teofilatto, Paolo


    The possibility of communicating with the far side of the Moon is essential for keeping a continuous radio link with lunar orbiting spacecraft, as well as with manned or unmanned surface facilities in locations characterized by poor coverage from Earth. If the exploration and the exploitation of the Moon must be sustainable in the medium/long term, we need to develop the capability to realize and service such facilities at an affordable cost. Minimizing the spacecraft mass and the number of launches is a driving parameter to this end. The aim of this study is to show how Space Manifold Dynamics can be profitably applied in order to launch three small spacecraft onboard the same launch vehicle and send them to different orbits around the Moon with no significant difference in the Delta-V budgets. Internal manifold transfers are considered to minimize also the transfer time. The approach used is the following: we used the linearized solution of the equations of motion in the Circular Restricted Three Body Problem to determine a first-guess state vector associated with the Weak Stability Boundary regions, either around the collinear Lagrangian point L1 or around the Moon. The resulting vector is then used as initial state in a numerical backward-integration sequence that outputs a trajectory on a manifold. The dynamical model used in the numerical integration is four-body and non-circular, i.e. the perturbations of the Sun and the lunar orbital eccentricity are accounted for. The trajectory found in this way is used as the principal segment of the lunar transfer. After separation, with minor maneuvers each satellite is injected into different orbits that lead to ballistic capture around the Moon. Finally, one or more circularization maneuvers are needed in order to achieve the final circular orbits. The whole mission profile, from launch to insertion into the final lunar orbits, is modeled numerically with the commercial software STK.

  7. A biologically inspired neural network controller for ballistic arm movements

    Directory of Open Access Journals (Sweden)

    Schmid Maurizio


    Full Text Available Abstract Background In humans, the implementation of multijoint tasks of the arm implies a highly complex integration of sensory information, sensorimotor transformations and motor planning. Computational models can be profitably used to better understand the mechanisms sub-serving motor control, thus providing useful perspectives and investigating different control hypotheses. To this purpose, the use of Artificial Neural Networks has been proposed to represent and interpret the movement of upper limb. In this paper, a neural network approach to the modelling of the motor control of a human arm during planar ballistic movements is presented. Methods The developed system is composed of three main computational blocks: 1 a parallel distributed learning scheme that aims at simulating the internal inverse model in the trajectory formation process; 2 a pulse generator, which is responsible for the creation of muscular synergies; and 3 a limb model based on two joints (two degrees of freedom and six muscle-like actuators, that can accommodate for the biomechanical parameters of the arm. The learning paradigm of the neural controller is based on a pure exploration of the working space with no feedback signal. Kinematics provided by the system have been compared with those obtained in literature from experimental data of humans. Results The model reproduces kinematics of arm movements, with bell-shaped wrist velocity profiles and approximately straight trajectories, and gives rise to the generation of synergies for the execution of movements. The model allows achieving amplitude and direction errors of respectively 0.52 cm and 0.2 radians. Curvature values are similar to those encountered in experimental measures with humans. The neural controller also manages environmental modifications such as the insertion of different force fields acting on the end-effector. Conclusion The proposed system has been shown to properly simulate the development of

  8. Three Dimensional Analysis of Elastic Rocket and Launcher at Launching (United States)

    Takeuchi, Shinsuke

    In this paper, a three-dimensional analysis of launching dynamics of a sounding rocket is investigated. In the analysis, the elastic vibration of the vehicle and launcher is considered. To estimate a trajectory dispersion including the effect of elasticity of the vehicle and launcher, a three-dimensional numerical simulation of a launch is performed. The accuracy of the numerical simulation is discussed and it is concluded that the simulation can estimate the maximum value of the trajectory dispersion properly. After that, the maximum value is estimated for the actual sounding rocket and the value is shown to be within the safty margin for this particular case.

  9. Launch Services, a Proven Model (United States)

    Trafton, W. C.; Simpson, J.


    From a commercial perspective, the ability to justify "leap frog" technology such as reusable systems has been difficult to justify because the estimated 5B to 10B investment is not supported in the current flat commercial market coupled with an oversupply of launch service suppliers. The market simply does not justify investment of that magnitude. Currently, next generation Expendable Launch Systems, including Boeing's Delta IV, Lockheed Martin's Atlas 5, Ariane V ESCA and RSC's H-IIA are being introduced into operations signifying that only upgrades to proven systems are planned to meet the changes in anticipated satellite demand (larger satellites, more lifetime, larger volumes, etc.) in the foreseeable future. We do not see a new fleet of ELVs emerging beyond that which is currently being introduced, only continuous upgrades of the fleet to meet the demands. To induce a radical change in the provision of launch services, a Multinational Government investment must be made and justified by World requirements. The commercial market alone cannot justify such an investment. And if an investment is made, we cannot afford to repeat previous mistakes by relying on one system such as shuttle for commercial deployment without having any back-up capability. Other issues that need to be considered are national science and security requirements, which to a large extent fuels the Japanese, Chinese, Indian, Former Soviet Union, European and United States space transportation entries. Additionally, this system must support or replace current Space Transportation Economies with across-the-board benefits. For the next 10 to 20 years, Multinational cooperation will be in the form of piecing together launch components and infrastructure to supplement existing launch systems and reducing the amount of non-recurring investment while meeting the future requirements of the End-User. Virtually all of the current systems have some form of multinational participation: Sea Launch

  10. Ground Vibration Testing Options for Space Launch Vehicles (United States)

    Patterson, Alan; Smith, Robert K.; Goggin, David; Newsom, Jerry


    New NASA launch vehicles will require development of robust systems in a fiscally-constrained environment. NASA, Department of Defense (DoD), and commercial space companies routinely conduct ground vibration tests as an essential part of math model validation and launch vehicle certification. Although ground vibration testing must be a part of the integrated test planning process, more affordable approaches must also be considered. A study evaluated several ground vibration test options for the NASA Constellation Program flight test vehicles, Orion-1 and Orion-2, which concluded that more affordable ground vibration test options are available. The motivation for ground vibration testing is supported by historical examples from NASA and DoD. The approach used in the present study employed surveys of ground vibration test subject-matter experts that provided data to qualitatively rank six test options. Twenty-five experts from NASA, DoD, and industry provided scoring and comments for this study. The current study determined that both element-level modal tests and integrated vehicle modal tests have technical merits. Both have been successful in validating structural dynamic math models of launch vehicles. However, element-level testing has less overall cost and schedule risk as compared to integrated vehicle testing. Future NASA launch vehicle development programs should anticipate that some structural dynamics testing will be necessary. Analysis alone will be inadequate to certify a crew-capable launch vehicle. At a minimum, component and element structural dynamic tests are recommended for new vehicle elements. Three viable structural dynamic test options were identified. Modal testing of the new vehicle elements and an integrated vehicle test on the mobile launcher provided the optimal trade between technical, cost, and schedule.

  11. Investigation on energy absorption efficiency of each layer in ballistic armour panel for applications in hybrid design


    Yang, Yanfei; Chen, Xiaogang


    This study aims to reveal different energy absorption efficiency of each layer when armour panel is under ballistic impact. Through Finite Element (FE) modelling and ballistic tests, it is found that when fabrics are layered up in a panel, energy absorption efficiency is only 30%–60% of an individual fabric layer with free boundary condition. In addition, fabric layers in front, middle, and back exhibit different ballistic characteristics. Therefore, a new hybrid design principle has been pro...

  12. China and ballistic missile defense: 1955 to 2002 and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Brad, Roberts


    China's opposition to U.S. ballistic missile defense was forcefully articulated officially and unofficially between 1991 and 2001. Vociferous opposition gave way to near silence following U.S. ABM Treaty withdrawal, raising a question about precisely whether and how China will respond to future U.S. deployments in both the political and military-operational realms. To gauge likely future responses, it is useful to put the experience of the 1991-2001 period into historical context. China's attitudes toward BMD have passed through a series of distinct phases since the beginning of the nuclear era, as China has been concerned alternately with the problems of strategic defense by both the Soviet Union and United States (and others) around its periphery. Throughout this era it has also pursued its own strategic defense capabilities. There are important elements of continuity in China's attitudes concerns about the viability of its own force and about strategic stability. These suggest the likelihood of significant responses to U.S. BMD even in the absence of sharp rhetoric. (author)

  13. China and ballistic missile defense: 1955 to 2002 and beyond

    International Nuclear Information System (INIS)

    Brad, Roberts


    China's opposition to U.S. ballistic missile defense was forcefully articulated officially and unofficially between 1991 and 2001. Vociferous opposition gave way to near silence following U.S. ABM Treaty withdrawal, raising a question about precisely whether and how China will respond to future U.S. deployments in both the political and military-operational realms. To gauge likely future responses, it is useful to put the experience of the 1991-2001 period into historical context. China's attitudes toward BMD have passed through a series of distinct phases since the beginning of the nuclear era, as China has been concerned alternately with the problems of strategic defense by both the Soviet Union and United States (and others) around its periphery. Throughout this era it has also pursued its own strategic defense capabilities. There are important elements of continuity in China's attitudes concerns about the viability of its own force and about strategic stability. These suggest the likelihood of significant responses to U.S. BMD even in the absence of sharp rhetoric. (author)

  14. Clothing increases the risk of indirect ballistic fractures (United States)


    Background Current literature has shown the mechanism of how indirect fractures occur but has not determined what factors increase the risks of such fractures. The objective of this study is thus to determine the effect of clothing and soft tissue thickness on the risk of indirect fracture formation. Methods Twenty-five fresh red deer femora embedded in ballistic gelatine were shot with varying distances off their medial cortex with a 5.56 × 45 mm North Atlantic Treaty Organization (NATO) bullet while being filmed with a slow-motion video. We compared the effect of two different gelatine depths and the effect of denim cloth laid onto the impact surface of the moulds. Results Bullet passage in thinner moulds failed to cause fracture because the bullet exited the mould before a large expanding temporary cavity was produced. Clothing dramatically altered the size and depth of the expanding cavity, as well as increased lateral pressures, resulting in more severe fractures with greater bullet distances from the bone that can cause fracture. Conclusions Clothing increases the risk of indirect fracture and results in larger, more superficial temporary cavities, with greater lateral pressures than are seen in unclothed specimens, resulting in more comminuted fractures. Greater tissue depth affords the 5.56 × 45 mm NATO a chance to yaw and thus develop an enlarging temporary cavity that is sufficient to cause fracture. PMID:24267379

  15. Photodegradation in ballistic laminates: Spectroscopy and lifetime extension

    Energy Technology Data Exchange (ETDEWEB)

    Renschler, C.L.; Stallard, B.R.; White, C.A.; Garcia, M.J.; Morse, H.E. [Sandia National Labs., Albuquerque, NM (United States). Properties of Organic Materials Dept.


    Several years ago, the Materials and Process Sciences Center (Org. 1800) was asked by Dept. 9613 to study the materials aging issues which had led to the loss of ballistic protection by Armored Tractor (AT) windshields and windows. The authors speculated that this loss of impact strength was due to photodegradation of the polycarbonate (PC) inboard ply. They developed a spectroscopic method to identify changes in the outboard surface of the PC, and showed that the changes in the surface which occurred upon natural aging in the field could be reproduced by exposing the laminates to a simulated solar flux. Based on these results, they recommended changes in the adhesive interlayers to filter out the ultraviolet (UV) light causing the aging problem. Working with the laminate vendor, PPG, they re-designed the laminates to implement these changes and block essentially all UV light from the inboard ply. The most recent phase of this work involved accelerated solar aging of laminates made with the new design to verify that photoaging effects have been blocked by the new materials. They report here the results of that study, and recommended follow-on work.

  16. Core-satellite supraparticles to ballistically stamp nanostructures on surfaces. (United States)

    Oppmann, Maximilian; Miller, Franziska; Thürauf, Sandra; Groppe, Philipp; Prieschl, Johannes; Stauch, Claudia; Mandel, Karl


    Nanostructured surfaces are of great importance in a very wide range of fields. They can be obtained by imprint or deposition techniques. However, these are usually sophisticated to perform. Generally, it is not easy to equip an object/product with a nanostructure post manufacturing. Yet, it would be very beneficial to achieve a modification of an arbitrary surface with a nanostructure of choice at a later stage by an approach that is simple to perform without the need of sophisticated equipment or excessive treatment by physico-chemical methods. Herein, such a process is reported which combines two "old-fashioned" techniques, namely sandblasting and rubber-stamping, and translates them to the "nano-world". By creating core-satellite supraparticles via spray-drying, a ballistic core-satellite stamp particle system is obtained which can be used to easily transfer a wide range of nanoparticles to a great variety of surfaces to equip these with a nanostructure and subsequently advanced properties. These include water-repellant, anti-fouling or anti-dust surfaces. Moreover, it is also demonstrated that the approach can be used to manufacture well-defined nano-imprinted surfaces. Such surfaces showed an improved spreading behavior for aliphatic alcohols, thus rendering such surfaces for instance very susceptible for disinfectants. All in all, the simple technique described herein has a great potential for creating nanostructured surfaces on nearly any surface.

  17. Ballistic thermoelectric properties of nitrogenated holey graphene nanostructures (United States)

    Cao, Wei; Xiao, Huaping; Ouyang, Tao; Zhong, Jianxin


    In this study, we theoretically investigate the ballistic thermoelectric performance of a new two-dimensional material, nitrogenated holey graphene (NHG), using nonequilibrium Green's function method. The calculations show that compared to graphene, such novel single atomic layer structure exhibits better thermoelectric performance. At room temperature, the stable hole (electron) thermoelectric figure of merit ( Z T ) could approach 0.75 (0.2) and 0.6 (0.2) for zigzag-edged (Z-NHGNRs) and armchair-edged NHGNRs (A-NHGNRs), respectively. To achieve better thermoelectric performance, the effect of geometric engineering (chevron-type nanoribbons and rhomboid quantum dot) on the electronic and phononic transport properties of Z-NHGNRs is further discussed. The results indicate that structure modulation is indeed a viable approach to enhance the thermoelectric properties (the figure of merit could exceed 1.5 and 1.3 for the chevron-type and rhomboid quantum dot system, respectively). On analyzing the transport properties, such improvement on the figure of merit is mainly attributed to the increased Seebeck coefficient and reduced thermal conductance (including both electronic and phononic contributions). Our findings presented in this paper qualify NHG as a promising thermoelectric material and provide theoretical guidance for fabricating the outstanding thermoelectric devices.

  18. A ballistic transport model for electronic excitation following particle impact (United States)

    Hanke, S.; Heuser, C.; Weidtmann, B.; Wucher, A.


    We present a ballistic model for the transport of electronic excitation energy induced by keV particle bombardment onto a solid surface. Starting from a free electron gas model, the Boltzmann transport equation (BTE) is employed to follow the evolution of the temporal and spatial distribution function f (r → , k → , t) describing the occupation probability of an electronic state k → at position r → and time t. Three different initializations of the distribution function are considered: i) a thermal distribution function with a locally and temporally elevated electron temperature, ii) a peak excitation at a specific energy above the Fermi level with a quasi-isotropic distribution in k-space and iii) an anisotropic peak excitation with k-vectors oriented in a specific transport direction. While the first initialization resembles a distribution function which may, for instance, result from electronic friction of moving atoms within an ion induced collision cascade, the peak excitation can in principle result from an autoionization process after excitation in close binary collisions. By numerically solving the BTE, we study the electronic energy exchange along a one dimensional transport direction to obtain a time and space resolved excitation energy distribution function, which is then analyzed in view of general transport characteristics of the chosen model system.

  19. The effect of core training on distal limb performance during ballistic strike manoeuvres. (United States)

    Lee, Benjamin; McGill, Stuart


    Ballistic limb motion is enabled by proximal "core" stiffness. However, controversy exists regarding the best method of training this characteristic. This study sought to determine the most effective core training method to enhance distal limb athleticism. A total of 12 participants (24 ± 3 years, 1.8 ± 0.05 m, 76.8 ± 9.7 kg) consisting of Muay Thai athletes performed a core training protocol (Isometric vs. Dynamic, with Control) for 6 weeks, using a repeated measures design to assess performance (peak strike velocity, peak impact force, muscular activation) in various strikes. Isometric training increased impact force in Jab (554.4 ± 70.1 N), Cross (1895.2 ± 203.1 N), Combo (616.8 ± 54.9 N), and Knee (1240.0 ± 89.1 N) trials (P < 0.05). Dynamic training increased strike velocity in Jab (1.3 ± 0.2 m · s -1 ), Cross (5.5 ± 0.9 m · s -1 ), Combo (0.7 ± 0.1, 2.8 ± 0.3 m · s -1 ), and Knee (3.2 ± 0.3 m · s -1 ) trials (P < 0.05). Isometric training increased Combo impact force 935.1 ± 100.3 N greater than Dynamic and 931.6 ± 108.5 N more than Control (P < 0.05). Dynamic training increased Jab strike velocity 1.3 ± 0.1 m · s -1 greater than Isometric and 0.8 ± 0.1 m · s -1 more than Control (P < 0.05). It appears that both static and dynamic approaches to core training are needed to enhance both velocity and force in distal limbs.

  20. STS-93 Commander Eileen Collins suits up for launch (United States)


    For the third time, in the Operations and Checkout Building, STS- 93 Commander Eileen M. Collins tries on her helmet with her launch and entry suit. After Space Shuttle Columbia's July 20 and 22 launch attempts were scrubbed, the launch was again rescheduled for Friday, July 23, at 12:24 a.m. EDT. STS-93 is a five-day mission primarily to release the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. The STS-93 crew numbers five: Commander Collins, Pilot Jeffrey S. Ashby, and Mission Specialists Stephen A. Hawley (Ph.D.), Catherine G. Coleman (Ph.D.) and Michel Tognini of France, with the Centre National d'Etudes Spatiales (CNES). Collins is the first woman to serve as commander of a shuttle mission.

  1. Improved Test and Launch Operations, Phase I (United States)

    National Aeronautics and Space Administration — Special Aerospace Services (SAS) has detailed knowledge and experience in remote and autonomous launch sites, inclusive of foreign launch sites. SAS will provide...

  2. Enabling Technology for Small Satellite Launch Project (United States)

    National Aeronautics and Space Administration — Access to space for Small Satellites is enabled by the use of excess launch capacity on existing launch vehicles. A range of sizes, form factors and masses of small...

  3. A Proposed Criterion for Launch Ramp Availability

    National Research Council Canada - National Science Library

    Dalzell, J


    The project under which the present report was produced has as an objective the development of methods for the evaluation and comparison of stem-launch and side-launch systems for small boat deployment from USCG cutters...

  4. Fiber Optic Sensing Systems for Launch Vehicles (United States)

    National Aeronautics and Space Administration — AES in partnership with HEOMD's Launch Services Program and ARMD, plans to develop Fiber Optic Sensing System (FOSS) hardware for use with Launch Vehicle Systems.AES...

  5. Smart Sensors for Launch Vehicles (United States)

    Ray, Sabooj; Mathews, Sheeja; Abraham, Sheena; Pradeep, N.; Vinod, P.


    Smart Sensors bring a paradigm shift in the data acquisition mechanism adopted for launch vehicle telemetry system. The sensors integrate signal conditioners, digitizers and communication systems to give digital output from the measurement location. Multiple sensors communicate with a centralized node over a common digital data bus. An in-built microcontroller gives the sensor embedded intelligence to carry out corrective action for sensor inaccuracies. A smart pressure sensor has been realized and flight-proven to increase the reliability as well as simplicity in integration so as to obtain improved data output. Miniaturization is achieved by innovative packaging. This work discusses the construction, working and flight performance of such a sensor.

  6. Effects of acute static, ballistic, and PNF stretching exercise on the muscle and tendon tissue properties. (United States)

    Konrad, A; Stafilidis, S; Tilp, M


    The purpose of this study was to investigate the influence of a single static, ballistic, or proprioceptive neuromuscular facilitation (PNF) stretching exercise on the various muscle-tendon parameters of the lower leg and to detect possible differences in the effects between the methods. Volunteers (n = 122) were randomly divided into static, ballistic, and PNF stretching groups and a control group. Before and after the 4 × 30 s stretching intervention, we determined the maximum dorsiflexion range of motion (RoM) with the corresponding fascicle length and pennation angle of the gastrocnemius medialis. Passive resistive torque (PRT) and maximum voluntary contraction (MVC) were measured with a dynamometer. Observation of muscle-tendon junction (MTJ) displacement with ultrasound allowed us to determine the length changes in the tendon and muscle, respectively, and hence to calculate stiffness. Although RoM increased (static: +4.3%, ballistic: +4.5%, PNF: +3.5%), PRT (static: -11.4%, ballistic: -11.5%, PNF: -13,7%), muscle stiffness (static: -13.1%, ballistic: -20.3%, PNF: -20.2%), and muscle-tendon stiffness (static: -11.3%, ballistic: -10.5%, PNF: -13.7%) decreased significantly in all the stretching groups. Only in the PNF stretching group, the pennation angle in the stretched position (-4.2%) and plantar flexor MVC (-4.6%) decreased significantly. Multivariate analysis showed no clinically relevant difference between the stretching groups. The increase in RoM and the decrease in PRT and muscle-tendon stiffness could be explained by more compliant muscle tissue following a single static, ballistic, or PNF stretching exercise. © 2017 The Authors Scandinavian Journal of Medicine & Science In Sports Published by John Wiley & Sons Ltd.

  7. 3D topography measurements on correlation cells—a new approach to forensic ballistics identifications

    International Nuclear Information System (INIS)

    Song, John; Chu, Wei; Tong, Mingsi; Soons, Johannes


    Based on three-dimensional (3D) topography measurements on correlation cells, the National Institute of Standards and Technology (NIST) has developed the ‘NIST Ballistics Identification System (NBIS)’ aimed at accurate ballistics identifications and fast ballistics evidence searches. The 3D topographies are divided into arrays of correlation cells to identify ‘valid correlation areas’ and eliminate ‘invalid correlation areas’ from the matching and identification procedure. A ‘congruent matching cells’ (CMC)’ method using three types of identification parameters of the paired correlation cells (cross correlation function maximum CCF max , spatial registration position in x–y and registration angle θ) is used for high accuracy ballistics identifications. ‘Synchronous processing’ is proposed for correlating multiple cell pairs at the same time to increase the correlation speed. The proposed NBIS can be used for correlations of both geometrical topographies and optical intensity images. All the correlation parameters and algorithms are in the public domain and subject to open tests. An error rate reporting procedure has been developed that can greatly add to the scientific support for the firearm and toolmark identification specialty, and give confidence to the trier of fact in court proceedings. The NBIS is engineered to employ transparent identification parameters and criteria, statistical models and correlation algorithms. In this way, interoperability between different ballistics identification systems can be more easily achieved. This interoperability will make the NBIS suitable for ballistics identifications and evidence searches with large national databases, such as the National Integrated Ballistic Information Network in the United States. (paper)

  8. 3D topography measurements on correlation cells—a new approach to forensic ballistics identifications (United States)

    Song, John; Chu, Wei; Tong, Mingsi; Soons, Johannes


    Based on three-dimensional (3D) topography measurements on correlation cells, the National Institute of Standards and Technology (NIST) has developed the ‘NIST Ballistics Identification System (NBIS)’ aimed at accurate ballistics identifications and fast ballistics evidence searches. The 3D topographies are divided into arrays of correlation cells to identify ‘valid correlation areas’ and eliminate ‘invalid correlation areas’ from the matching and identification procedure. A ‘congruent matching cells’ (CMC)’ method using three types of identification parameters of the paired correlation cells (cross correlation function maximum CCFmax, spatial registration position in x-y and registration angle θ) is used for high accuracy ballistics identifications. ‘Synchronous processing’ is proposed for correlating multiple cell pairs at the same time to increase the correlation speed. The proposed NBIS can be used for correlations of both geometrical topographies and optical intensity images. All the correlation parameters and algorithms are in the public domain and subject to open tests. An error rate reporting procedure has been developed that can greatly add to the scientific support for the firearm and toolmark identification specialty, and give confidence to the trier of fact in court proceedings. The NBIS is engineered to employ transparent identification parameters and criteria, statistical models and correlation algorithms. In this way, interoperability between different ballistics identification systems can be more easily achieved. This interoperability will make the NBIS suitable for ballistics identifications and evidence searches with large national databases, such as the National Integrated Ballistic Information Network in the United States.

  9. Obstacle avoidance and path planning for carrier aircraft launching

    Directory of Open Access Journals (Sweden)

    Wu Yu


    Full Text Available Launching safety and efficiency are important indexes to measure the fighting capacity of carrier. The study on path planning for taxi of carrier aircraft launching under actual deck environment is of great significance. In actual deck scheduling, manual command is applied to taxi of carrier aircraft, which has negative effects on the safety of staff and carrier aircraft launching. In consideration of both the safety and efficiency of carrier aircraft launching, the key elements of the problem are abstracted based on the analysis of deck environment, carrier aircraft maneuver performance and task requirements. According to the problem description, the mathematical model is established including various constraints. The carrier aircraft and the obstacles are reasonably simplified as circle and polygons respectively. What’s more, the proposed collision detection model reduces the calculations. Aimed at the features of model, the theory of model predictive control (MPC is applied to the path search. Then a dynamic weight heuristic function is designed and a dynamic multistep optimization algorithm is proposed. Taking the Nimitz-class aircraft carrier as an example, the paths from parking place to catapult are planned, which indicate the rationality of the model and the effectiveness of the algorithm by comparing the planning results under different simulation environments. The main contribution of research is the establishment of obstacle avoidance and path planning model. In addition, it provides the solution of model and technological foundations for comprehensive command and real-time decision-making of the carrier aircraft.

  10. Ballistic behaviour of ultra-high molecular weight polyethylene: effect of gamma radiation

    International Nuclear Information System (INIS)

    Alves, Andreia L.S.; Nascimento, Lucio F.C.; Miguez Suarez, Joao Carlos


    The fiber reinforced polymer matrix composites (PMCs) are considered excellent engineering materials. In structural applications, when a high strength-to-weight ratio is fundamental for the design, PMCs are successfully replacing many conventional materials. Since World War II textile materials have been used as ballistic armor. Materials manufactured with ultrahigh molecular weight polyethylene (UHMWPE) fibers are used in the production of armor materials, for personnel protection and armored vehicles. As these have been developed and commercialized more recently, there is not enough information about the action of the ionizing radiation in the ballistic performance of this armor material. In the present work the ballistic behavior of composite plates manufactured with ultrahigh molecular weight polyethylene (UHMWPE) fibers were evaluated after exposure to gamma radiation. The ballistic tests results were related to the macromolecular modifications induced by the environmental degradation through mechanical (hardness, impact and flexure) and physicochemical (infrared spectroscopy, differential scanning calorimetry and thermal gravimetric analysis) tests. Our results indicate that gamma irradiation induces modifications in the UHMWPE macromolecular chains, altering the mechanical properties of the composite and decreasing, for higher radiation doses, its ballistic performance. These results are presented and discussed. (author)

  11. Friction Stir Weld Failure Mechanisms in Aluminum-Armor Structures Under Ballistic Impact Loading Conditions (United States)

    Grujicic, M.; Pandurangan, B.; Arakere, A.; Yen, C.-F.; Cheeseman, B. A.


    A critical assessment is carried out of the microstructural changes in respect of the associated reductions in material mechanical properties and of the attendant ballistic-impact failure mechanisms in prototypical friction stir welding (FSW) joints found in armor structures made of high-performance aluminum alloys (including solution-strengthened and age-hardenable aluminum alloy grades). It is argued that due to the large width of FSW joints found in thick aluminum-armor weldments, the overall ballistic performance of the armor is controlled by the ballistic limits of its weld zones (e.g., heat-affected zone, the thermomechanically affected zone, the nugget, etc.). Thus, in order to assess the overall ballistic survivability of an armor weldment, one must predict/identify welding-induced changes in the material microstructure and properties, and the operative failure mechanisms in different regions of the weld. Toward this end, a procedure is proposed in the present study which combines the results of the FSW process modeling, basic physical-metallurgy principles concerning microstructure/property relations, and the fracture mechanics concepts related to the key blast/ballistic-impact failure modes. The utility of this procedure is demonstrated using the case of a solid-solution strengthened and cold-worked aluminum alloy armor FSW-weld test structure.

  12. Feed-forward motor control of ultrafast, ballistic movements. (United States)

    Kagaya, K; Patek, S N


    To circumvent the limits of muscle, ultrafast movements achieve high power through the use of springs and latches. The time scale of these movements is too short for control through typical neuromuscular mechanisms, thus ultrafast movements are either invariant or controlled prior to movement. We tested whether mantis shrimp (Stomatopoda: Neogonodactylus bredini) vary their ultrafast smashing strikes and, if so, how this control is achieved prior to movement. We collected high-speed images of strike mechanics and electromyograms of the extensor and flexor muscles that control spring compression and latch release. During spring compression, lateral extensor and flexor units were co-activated. The strike initiated several milliseconds after the flexor units ceased, suggesting that flexor activity prevents spring release and determines the timing of strike initiation. We used linear mixed models and Akaike's information criterion to serially evaluate multiple hypotheses for control mechanisms. We found that variation in spring compression and strike angular velocity were statistically explained by spike activity of the extensor muscle. The results show that mantis shrimp can generate kinematically variable strikes and that their kinematics can be changed through adjustments to motor activity prior to the movement, thus supporting an upstream, central-nervous-system-based control of ultrafast movement. Based on these and other findings, we present a shishiodoshi model that illustrates alternative models of control in biological ballistic systems. The discovery of feed-forward control in mantis shrimp sets the stage for the assessment of targets, strategic variation in kinematics and the role of learning in ultrafast animals. © 2016. Published by The Company of Biologists Ltd.

  13. Injury representation against ballistic threats using three novel numerical models. (United States)

    Breeze, Johno; Fryer, R; Pope, D; Clasper, J


    Injury modelling of ballistic threats is a valuable tool for informing policy on personal protective equipment and other injury mitigation methods. Currently, the Ministry of Defence (MoD) and Centre for Protection of National Infrastructure (CPNI) are focusing on the development of three interlinking numerical models, each of a different fidelity, to answer specific questions on current threats. High-fidelity models simulate the physical events most realistically, and will be used in the future to test the medical effectiveness of personal armour systems. They are however generally computationally intensive, slow running and much of the experimental data to base their algorithms on do not yet exist. Medium fidelity models, such as the personnel vulnerability simulation (PVS), generally use algorithms based on physical or engineering estimations of interaction. This enables a reasonable representation of reality and greatly speeds up runtime allowing full assessments of the entire body area to be undertaken. Low-fidelity models such as the human injury predictor (HIP) tool generally use simplistic algorithms to make injury predictions. Individual scenarios can be run very quickly and hence enable statistical casualty assessments of large groups, where significant uncertainty concerning the threat and affected population exist. HIP is used to simulate the blast and penetrative fragmentation effects of a terrorist detonation of an improvised explosive device within crowds of people in metropolitan environments. This paper describes the collaboration between MoD and CPNI using an example of all three fidelities of injury model and to highlight future areas of research that are required. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to

  14. Developmental framework to validate future designs of ballistic neck protection. (United States)

    Breeze, J; Midwinter, M J; Pope, D; Porter, K; Hepper, A E; Clasper, J


    The number of neck injuries has increased during the war in Afghanistan, and they have become an appreciable source of mortality and long-term morbidity for UK servicemen. A three-dimensional numerical model of the neck is necessary to allow simulation of penetrating injury from explosive fragments so that the design of body armour can be optimal, and a framework is required to validate and describe the individual components of this program. An interdisciplinary consensus group consisting of military maxillofacial surgeons, and biomedical, physical, and material scientists was convened to generate the components of the framework, and as a result it incorporates the following components: analysis of deaths and long-term morbidity, assessment of critical cervical structures for incorporation into the model, characterisation of explosive fragments, evaluation of the material of which the body armour is made, and mapping of the entry sites of fragments. The resulting numerical model will simulate the wound tract produced by fragments of differing masses and velocities, and illustrate the effects of temporary cavities on cervical neurovascular structures. Using this framework, a new shirt to be worn under body armour that incorporates ballistic cervical protection has been developed for use in Afghanistan. New designs of the collar validated by human factors and assessment of coverage are currently being incorporated into early versions of the numerical model. The aim of this paper is to describe this developmental framework and provide an update on the current progress of its individual components. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  15. Magnetic Launch Assist Vehicle-Artist's Concept (United States)


    This artist's concept depicts a Magnetic Launch Assist vehicle clearing the track and shifting to rocket engines for launch into orbit. The system, formerly referred as the Magnetic Levitation (MagLev) system, is a launch system developed and tested by Engineers at the Marshall Space Flight Center (MSFC) that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using an off-board electric energy source and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. The system is similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway. A full-scale, operational track would be about 1.5-miles long, capable of accelerating a vehicle to 600 mph in 9.5 seconds, and the vehicle would then shift to rocket engines for launch into orbit. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  16. CERN & Society launches donation portal

    CERN Multimedia

    Cian O'Luanaigh


    The CERN & Society programme brings together projects in the areas of education and outreach, innovation and knowledge exchange, and culture and arts, that spread the CERN spirit of scientific curiosity for the inspiration and benefit of society. Today, CERN & Society is launching its "giving" website – a portal to allow donors to contribute to various projects and forge new relationships with CERN.   "The CERN & Society initiative in its embryonic form began almost three years ago, with the feeling that the laboratory could play a bigger role for the benefit of society," says Matteo Castoldi, Head of the CERN Development Office, who, with his team, is seeking supporters and ambassadors for the CERN & Society initiative. "The concept is not completely new – in some sense it is embedded in CERN’s DNA, as the laboratory helps society by creating knowledge and new technologies – but we would like to d...

  17. Cerebral activations related to ballistic, stepwise interrupted and gradually modulated movements in Parkinson patients.

    Directory of Open Access Journals (Sweden)

    Carolien M Toxopeus

    Full Text Available Patients with Parkinson's disease (PD experience impaired initiation and inhibition of movements such as difficulty to start/stop walking. At single-joint level this is accompanied by reduced inhibition of antagonist muscle activity. While normal basal ganglia (BG contributions to motor control include selecting appropriate muscles by inhibiting others, it is unclear how PD-related changes in BG function cause impaired movement initiation and inhibition at single-joint level. To further elucidate these changes we studied 4 right-hand movement tasks with fMRI, by dissociating activations related to abrupt movement initiation, inhibition and gradual movement modulation. Initiation and inhibition were inferred from ballistic and stepwise interrupted movement, respectively, while smooth wrist circumduction enabled the assessment of gradually modulated movement. Task-related activations were compared between PD patients (N = 12 and healthy subjects (N = 18. In healthy subjects, movement initiation was characterized by antero-ventral striatum, substantia nigra (SN and premotor activations while inhibition was dominated by subthalamic nucleus (STN and pallidal activations, in line with the known role of these areas in simple movement. Gradual movement mainly involved antero-dorsal putamen and pallidum. Compared to healthy subjects, patients showed reduced striatal/SN and increased pallidal activation for initiation, whereas for inhibition STN activation was reduced and striatal-thalamo-cortical activation increased. For gradual movement patients showed reduced pallidal and increased thalamo-cortical activation. We conclude that PD-related changes during movement initiation fit the (rather static model of alterations in direct and indirect BG pathways. Reduced STN activation and regional cortical increased activation in PD during inhibition and gradual movement modulation are better explained by a dynamic model that also takes into account

  18. Space Launch System Vibration Analysis Support (United States)

    Johnson, Katie


    The ultimate goal for my efforts during this internship was to help prepare for the Space Launch System (SLS) integrated modal test (IMT) with Rodney Rocha. In 2018, the Structural Engineering Loads and Dynamics Team will have 10 days to perform the IMT on the SLS Integrated Launch Vehicle. After that 10 day period, we will have about two months to analyze the test data and determine whether the integrated vehicle modes/frequencies are adequate for launching the vehicle. Because of the time constraints, NASA must have newly developed post-test analysis methods proven well and with technical confidence before testing. NASA civil servants along with help from rotational interns are working with novel techniques developed and applied external to Johnson Space Center (JSC) to uncover issues in applying this technique to much larger scales than ever before. We intend to use modal decoupling methods to separate the entangled vibrations coming from the SLS and its support structure during the IMT. This new approach is still under development. The primary goal of my internship was to learn the basics of structural dynamics and physical vibrations. I was able to accomplish this by working on two experimental test set ups, the Simple Beam and TAURUS-T, and by doing some light analytical and post-processing work. Within the Simple Beam project, my role involves changing the data acquisition system, reconfiguration of the test set up, transducer calibration, data collection, data file recovery, and post-processing analysis. Within the TAURUS-T project, my duties included cataloging and removing the 30+ triaxial accelerometers, coordinating the removal of the structure from the current rolling cart to a sturdy billet for further testing, preparing the accelerometers for remounting, accurately calibrating, mounting, and mapping of all accelerometer channels, and some testing. Hammer and shaker tests will be performed to easily visualize mode shapes at low frequencies. Short

  19. The Space Launch System and Missions to the Outer Solar System (United States)

    Klaus, Kurt K.; Post, Kevin


    Introduction: America’s heavy lift launch vehicle, the Space Launch System, enables a variety of planetary science missions. The SLS can be used for most, if not all, of the National Research Council’s Planetary Science Decadal Survey missions to the outer planets. The SLS performance enables larger payloads and faster travel times with reduced operational complexity.Europa Clipper: Our analysis shows that a launch on the SLS would shorten the Clipper mission travel time by more than four years over earlier mission concept studies.Jupiter Trojan Tour and Rendezvous: Our mission concept replaces Advanced Stirling Radioisotope Generators (ASRGs) in the original design with solar arrays. The SLS capability offers many more target opportunities.Comet Surface Sample Return: Although in our mission concept, the SLS launches later than the NRC mission study (November 2022 instead of the original launch date of January 2021), it reduces the total mission time, including sample return, by two years.Saturn Apmospheric Entry Probe: Though Saturn arrivial time remains the same in our concept as the arrival date in the NRC study (2034), launching on the SLS shortens the mission travel time by three years with a direct ballistic trajectory.Uranus Orbiter with Probes: The SLS shortens travel time for an Uranus mission by four years with a Jupiter swing-by trajectory. It removes the need for a solar electric propulsion (SEP) stage used in the NRC mission concept study.Other SLS Science Mission Candidates: Two other mission concepts we are investigating that may be of interest to this community are the Advanced Technology Large Aperature Space Telescope (ATLAST) and the Interstellar Explorer also referred to as the Interstellar Probe.Summary: The first launch of the SLS is scheduled for 2018 followed by the first human launch in 2021. The SLS in its evolving configurations will enable a broad range of exploration missions which will serve to recapture the enthusiasm and

  20. Modeling and Simulation of Ballistic Penetration of Ceramic-Polymer-Metal Layered Systems

    Directory of Open Access Journals (Sweden)

    J. D. Clayton


    Full Text Available Numerical simulations and analysis of ballistic impact and penetration by tungsten alloy rods into composite targets consisting of layers of aluminum nitride ceramic tile(s, polymer laminae, and aluminum backing are conducted over a range of impact velocities on the order of 1.0 to 1.2 km/s. Computational results for ballistic efficiency are compared with experimental data from the literature. Simulations and experiments both demonstrate a trend of decreasing ballistic efficiency with increasing impact velocity. Predicted absolute residual penetration depths often exceed corresponding experimental values. The closest agreement between model and experiment is obtained when polymer interfaces are not explicitly represented in the numerical calculations, suggesting that the current model representation of such interfaces may be overly compliant. The present results emphasize the importance of proper resolution of geometry and constitutive properties of thin layers and interfaces between structural constituents for accurate numerical evaluation of performance of modern composite protection systems.

  1. Localization and Ballistic Diffusion for the Tempered Fractional Brownian-Langevin Motion (United States)

    Chen, Yao; Wang, Xudong; Deng, Weihua


    This paper discusses the tempered fractional Brownian motion (tfBm), its ergodicity, and the derivation of the corresponding Fokker-Planck equation. Then we introduce the generalized Langevin equation with the tempered fractional Gaussian noise for a free particle, called tempered fractional Langevin equation (tfLe). While the tfBm displays localization diffusion for the long time limit and for the short time its mean squared displacement (MSD) has the asymptotic form t^{2H}, we show that the asymptotic form of the MSD of the tfLe transits from t^2 (ballistic diffusion for short time) to t^{2-2H}, and then to t^2 (again ballistic diffusion for long time). On the other hand, the overdamped tfLe has the transition of the diffusion type from t^{2-2H} to t^2 (ballistic diffusion). The tfLe with harmonic potential is also considered.

  2. Considerations on Dop (Depth Of Penetration) Test for Evaluation of Ceramics Materials Used in Ballistic Protection (United States)

    Popa, Ioan-Dan; Dobriţa, Florin


    Tremendous amount of funds and other resorces were invested in studying the response of ceramic materials under ballistic impact, the main goal being to find a way to increase the protection of soldiers and the vehicles used in the modern battlespace. Using of ceramic materials especially carbon based (carbides), nitrogen based (nitrides) and oxygen based (oxides) ceramics in order to increase the protection level of ballistic equipment could be, sometimes, a big challenge when trying to use the proper test in order to evaluate and compare their performances. The role of the tests is to provide a better understanding of their response in different situations and, as a consequence, to make them more efficient as armour components through future improvements. The paper presents shortly the main tests which are used and eventually standardised for evaluating the ballistic behaviour of the ceramics and other armour components, with a special focus to DOP (Depth of Penetration) Tests.

  3. A discussion on the usefulness of a shared European ballistic image database. (United States)

    De Ceuster, J; Hermsen, R; Mastaglio, M; Nennstiel, R


    The introduction of electronic systems into the comparison of weapon marks in the mid 1990s caused a revolution in the discipline of "forensic ballistics". Most European states now use this technology to search their national open case files. Globalisation of crime and the loss of effective border controls have made the idea of a unified European ballistic system seem logical. The article critically considers the requirements and possible outcomes of such a system. Based on the experience of forensic practitioners it seems probable that a shared European electronic ballistic system will be of a very limited value at present. Further improvements of existing systems to reach compatibility are encouraged. Copyright © 2011 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.

  4. Dynamic Flexibility and Proprioceptive Neuromuscular Facilitation. (United States)

    Hardy, Lew; Jones, David


    Two experiments are described which investigated whether results obtained in studies of static flexibility tranfer to dynamic flexibility. In both experiments, subjects were assigned to a group receiving proprioceptive neuromuscular facilitation training, ballistic stretching technique training or a control group. Results are presented and…

  5. Dynamics of colloidal particles in ice

    KAUST Repository

    Spannuth, Melissa


    We use x-ray photon correlation spectroscopy (XPCS) to probe the dynamics of colloidal particles in polycrystalline ice. During freezing, the dendritic ice morphology and rejection of particles from the ice created regions of high particle density, where some of the colloids were forced into contact and formed disordered aggregates. The particles in these high density regions underwent ballistic motion, with a characteristic velocity that increased with temperature. This ballistic motion is coupled with both stretched and compressed exponential decays of the intensity autocorrelation function. We suggest that this behavior could result from ice grain boundary migration. © 2011 American Institute of Physics.

  6. Mesoscale Modeling of Dynamic Compression of Boron Carbide Polycrystals (United States)


    occurs in ballistic impact, and accompanies amorphization in diamond anvil cell (DAC) experiments (Yan et al., 2009). Fracture in boron carbide ...Mesoscale Modeling of Dynamic Compression of Boron Carbide Polycrystals by J. D. Clayton ARL-RP-440 May 2013...Ground, MD 21005-5069 ARL-RP-440 May 2013 Mesoscale Modeling of Dynamic Compression of Boron Carbide Polycrystals J. D. Clayton

  7. Effects of equal channel angular extrusion on microstructure, strength and ballistic performance of AA5754 plates

    DEFF Research Database (Denmark)

    Mishin, Oleg; Hong, Chuanshi; Toftegaard, Helmuth Langmaack


    The microstructure, hardness, tensile properties and ballistic performance have been investigated in thick plates of the AA5754 alloy both in a coarse-grained as-received condition and after 4 passes of equal channel angular extrusion (ECAE) conducted at elevated temperatures. It is found that ECAE...... refines the microstructure to an average subgrain size of 0.3 μm, which results in significantly increased hardness and strength. Although ductility decreases due to ECAE, the uniform elongation is still fairly large, ~10%. The ballistic performance of the ECAE-processed material is found...

  8. Ballistic Behaviour of Thick Steel Armour Plate under Oblique Impact: Experimental Investigation .


    S. N. Dikshit


    The ballistic behaviour of thick steel amlOW- plate has been investigated at different obliquity when impacted by an ogive-shaped steel projectile. The ballistic experiments have been conducted in the velocity range 300-800 m/s. Both the thickness of the target plate and the diameter of the projectile were 20 Inm. At 30 and 45. obliquity 20 mm plate provides full protection at 800 m/s, whereas at 0 and 15. obliquity, the plate provides protection up to 600 m/s. At 15 and 30° obliquity, the pl...

  9. Ballistic Behaviour of Thick Steel Armour Plate under Oblique Impact : Experimental Investigation II


    S. N. Dikshit


    The ballistic behaviour of thick steel armour plate at different obliquities has been investigated. Ballistic experiments were conducted in the velocity range 300-800 mls at 0°, 15°, 30° and 45° obliquity .A steel, conical projectile or 6.1 mm diameter was impacted on a 10 mm thick steel armour plate. At 30° and 45° obliquity, the plate offers protection up to a striking velocity of 800 mls. At zero obliquity, the plate provides protection below 6~ m/s. The depth of penetration decreases with...

  10. Ballistic Behaviour of Tempered Steel Armour Plates under Plane Strain Condition .


    S. N. Dikshit


    The present investigation deals with the ballistic behaviour of tempered steel armour plates under plane strain condition at normal angle of attack. A conical-shaped steel projectile of 6.1 mmdiameter was impacted on 20 mm thick steel annour plates of 350, 450 and 550 Hv hardness, in the velocity range 200 -700 m/s at zero obliquity. Ballistic performance measured in terms of the depthof penetration indicates that, under plane strain condition, behavio1Do" f 550 Hv steel plate is better than ...

  11. Effect of tempering time on the ballistic performance of a high strength armour steel


    Pradipta Kumar Jena; Ponguru Senthil P.; Siva Kumar K.


    The investigation describes and analyses the effect of tempering time on the mechanical and ballistic performance of a high strength armour steel. The steel is subjected to tempering at 300 °C for 2, 24 and 48 h. A marginal variation in strength and hardness is observed with increase in tempering time, whereas ductility and Charpy impact values are found to be decreasing. Ballistic performance of the samples are evaluated by impacting 7.62 mm and 12.7 mm armour piercing projectiles at 0° angl...

  12. A Systems Approach to Finding Cost-Effective Alternatives to European Ballistic Missile Defense (United States)


    has holes in its ability to cover the entire region as required. What are the existing approaches to ballistic missile defense in Europe? 4. What Are...however, this report focuses on ballistic missiles which use stellar or inertial guidance systems which are not subject to electromagnetic...location as the Baseline system (35.6° N, 32.5° E) while the other was placed north of Turkey in the Black Sea (41.5° N, 38.1° E). Each Aegis ship was

  13. Models for Ballistic Wind Measurement Error Analysis. Volume II. Users’ Manual. (United States)



  14. A ballistics module as a part of the fire control system

    Directory of Open Access Journals (Sweden)

    Branka R. Luković


    Full Text Available This article presents a ballistics module as a part of the fire control system of weapons for fire support (mortars, artillery weapons and rocket launchers. The software is "open" with the prominence of autonomy work. It can be modulated and adapted on the user demand. Moreover, it is independent of the hardware base. Introduction: The fire control system is based on a ballistic module (BM which determines the firing data for each weapon tool in the battery. Ballistic calculations, for the given position of the target in relation to the position of tools in the given weather conditions, determine firing data (elevation, direction, timing and locating devices so that the missile seems to cause the desired effect. This paper gives the basic information about the features the BM performs and the manner of their implementation in the fire control system without going into algorithmic solution procedures. Ballistic problem in the fire control system: Ballistic calculation is based on a trajectory calculation of all kinds of projectiles (current, time-fuze, illuminating, smoke, with conventional propulsion, rocket, with built-in gas generator, etc.. Instead of previous solutions, where a trajectory calculation of the fire control system was done by approximate methods, in this BM the trajectory calculation is made by the same model with the same data as for a weapon and ammunition in the process of creating a firing table. The data used in the fire control system are made simultaneously with the preparation of firing tables for a particular tool and associated ammunition,. A modified model of particle, standardized at the NATO level, is also used. Taking into account the meteorological situation, before the trajectory calculation is done, a relative position of the target in relation to the position of the tool should be determined. A selection or loading check is carried out (possibility of reaching a given target as well as the point at which the

  15. On the influence of particle morphology on the post-impact ballistic response of ceramic armour materials (United States)

    Hameed, Amer; Appleby-Thomas, Gareth; Wood, David; Jaansalu, Kevin


    Recent studies have shown evidence that the ballistic-resistance of fragmented (comminuted) ceramics is independent of the original strength of the material. In particular, experimental investigations into the ballistic behaviour of such fragmented ceramics have indicated that this response is correlated to shattered ceramic morphology. This suggests that careful control of ceramic microstructure - and therefore failure paths - might provide a route to optimise post-impact ballistic performance, thereby enhancing multi-hit capability. In this study, building on previous in-house work, ballistic tests were conducted using pre-formed `fragmented-ceramic' analogues based around three morphologically differing (but chemically identical) alumina feedstock materials compacted into target `pucks. In an evolution of previous work, variation of target thickness provided additional insight into an apparent morphology-based contribution to ballistic response.

  16. Temperature dependence of ballistic mobility in a metamorphic InGaAs/InAlAs high electron mobility transistor

    International Nuclear Information System (INIS)

    Lee, Jongkyong; Gang, Suhyun; Jo, Yongcheol; Kim, Jongmin; Woo, Hyeonseok; Han, Jaeseok; Kim, Hyungsang; Im, Hyunsik


    We have investigated the temperature dependence of ballistic mobility in a 100 nm-long InGaAs/InAlAs metamorphic high-electron-mobility transistor designed for millimeter-wavelength RF applications. To extract the temperature dependence of quasi-ballistic mobility, our experiment involves measurements of the effective mobility in the low-bias linear region of the transistor and of the collision-dominated Hall mobility using a gated Hall bar of the same epitaxial structure. The data measured from the experiment are consistent with that of modeled ballistic mobility based on ballistic transport theory. These results advance the understanding of ballistic transport in various transistors with a nano-scale channel length that is comparable to the carrier's mean free path in the channel.

  17. Problem of the reference height of the projectile trajectory as a reduced meteo-ballistic weighting factor

    Directory of Open Access Journals (Sweden)

    Vladimir Cech


    Full Text Available This paper deals with the issue of preparation of the aiming angles with the use of tabular firing tables and needed determination of the ballistic elements μB (ballistic wind wB, wxB, wZB, ballistic (virtual temperature τB, ballistic density ρB from the standardized met messages. The weighting factors are used for the calculation of ballistic elements μB that are incorporated into the trajectory calculations characteristics of weapon and ammunition. Two different methodologies practically used in the praxis are analysed and compared. For the comparison of the two methodologies the reference height of trajectory determined from the weighting factor functions is employed. On the basis of the analyses conducted, the potential for further increase in accuracy of these aiming angles preparation methods is pointed out.

  18. Launch pad lightning protection effectiveness (United States)

    Stahmann, James R.


    Using the striking distance theory that lightning leaders will strike the nearest grounded point on their last jump to earth corresponding to the striking distance, the probability of striking a point on a structure in the presence of other points can be estimated. The lightning strokes are divided into deciles having an average peak current and striking distance. The striking distances are used as radii from the points to generate windows of approach through which the leader must pass to reach a designated point. The projections of the windows on a horizontal plane as they are rotated through all possible angles of approach define an area that can be multiplied by the decile stroke density to arrive at the probability of strokes with the window average striking distance. The sum of all decile probabilities gives the cumulative probability for all strokes. The techniques can be applied to NASA-Kennedy launch pad structures to estimate the lightning protection effectiveness for the crane, gaseous oxygen vent arm, and other points. Streamers from sharp points on the structure provide protection for surfaces having large radii of curvature. The effects of nearby structures can also be estimated.

  19. National Security Space Launch at a Crossroads (United States)


    Research Service 3 competitive reusable rocket technology program and $60 million for expendable launch vehicle development and acquisition. on a Russian rocket engine (RD-180) for critical national security space launches on one of the primary EELV rockets was exacerbated by the...questions over individual launch costs, along with legal challenges to the Air Force EELV program by SpaceX , have contributed to Congress recently taking



    Makarov, I.A.; National aviation university, Kyiv


     Every respectable state which obtains the space branches of science and technology must have the space launching site. But Ukraine has not yet got such constructions. Naturally it is necessary to have such space launching site for being independent in cosmic exploration. This scientific project is proposed and initiated to solve the practically important problem of absence of the space launching site in our country.

  1. Reusable launch vehicle model uncertainties impact analysis (United States)

    Chen, Jiaye; Mu, Rongjun; Zhang, Xin; Deng, Yanpeng


    Reusable launch vehicle(RLV) has the typical characteristics of complex aerodynamic shape and propulsion system coupling, and the flight environment is highly complicated and intensely changeable. So its model has large uncertainty, which makes the nominal system quite different from the real system. Therefore, studying the influences caused by the uncertainties on the stability of the control system is of great significance for the controller design. In order to improve the performance of RLV, this paper proposes the approach of analyzing the influence of the model uncertainties. According to the typical RLV, the coupling dynamic and kinematics models are built. Then different factors that cause uncertainties during building the model are analyzed and summed up. After that, the model uncertainties are expressed according to the additive uncertainty model. Choosing the uncertainties matrix's maximum singular values as the boundary model, and selecting the uncertainties matrix's norm to show t how much the uncertainty factors influence is on the stability of the control system . The simulation results illustrate that the inertial factors have the largest influence on the stability of the system, and it is necessary and important to take the model uncertainties into consideration before the designing the controller of this kind of aircraft( like RLV, etc).

  2. STS-93 Pilot Ashby suits up before launch (United States)


    In the Operations and Checkout Building during final launch preparations for the second time, STS-93 Pilot Jeffrey S. Ashby waves after donning his launch and entry suit while a suit tech adjusts his boot. After Space Shuttle Columbia's July 20 launch attempt was scrubbed at the T-7 second mark in the countdown, the launch was rescheduled for Thursday, July 22, at 12:28 a.m. EDT. The target landing date is July 26, 1999, at 11:24 p.m. EDT. STS- 93 is a five-day mission primarily to release the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. The new telescope is 20 to 50 times more sensitive than any previous X-ray telescope and is expected unlock the secrets of supernovae, quasars and black holes. The STS-93 crew numbers five: Commander Eileen M. Collins, Ashby, and Mission Specialists Stephen A. Hawley (Ph.D.), Catherine G. Coleman (Ph.D.) and Michel Tognini of France, with the Centre National d'Etudes Spatiales (CNES). Collins is the first woman to serve as commander of a shuttle mission.

  3. STS-93 M.S. Hawley suits up for launch (United States)


    During final launch preparations in the Operations and Checkout Building, STS-93 Mission Specialist Steven A. Hawley (Ph.D.)gets help donning his launch and entry suit from a suit tech. After Space Shuttle Columbia's July 20 launch attempt was scrubbed at the T-7 second mark in the countdown, the launch was rescheduled for Thursday, July 22, at 12:28 a.m. EDT. The target landing date is July 26, 1999, at 11:24 p.m. EDT. STS-93 is a five-day mission primarily to release the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. The new telescope is 20 to 50 times more sensitive than any previous X- ray telescope and is expected unlock the secrets of supernovae, quasars and black holes. The STS-93 crew numbers five: Commander Eileen M. Collins, Pilot Jeffrey S. Ashby, and Mission Specialists Hawley, Catherine G. Coleman (Ph.D.) and Michel Tognini of France, with the Centre National d'Etudes Spatiales (CNES). Collins is the first woman to serve as commander of a shuttle mission.

  4. STS-93 Commander Collins waves after suiting up before launch (United States)


    During final launch preparations in the Operations and Checkout Building, STS-93 Commander Eileen M. Collins waves after donning her launch and entry suit. After Space Shuttle Columbia's July 20 launch attempt was scrubbed at the T-7 second mark in the countdown, the launch was rescheduled for Thursday, July 22, at 12:28 a.m. EDT. The target landing date is July 26, 1999, at 11:24 p.m. EDT. STS-93 is a five-day mission primarily to release the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. The new telescope is 20 to 50 times more sensitive than any previous X-ray telescope and is expected unlock the secrets of supernovae, quasars and black holes. The STS-93 crew numbers five: Commander Collins, Pilot Jeffrey S. Ashby, and Mission Specialists Stephen A. Hawley (Ph.D.), Catherine G. Coleman (Ph.D.) and Michel Tognini of France, with the Centre National d'Etudes Spatiales (CNES). Collins is the first woman to serve as commander of a shuttle mission.

  5. First mover advantage in launch of platform based variants

    DEFF Research Database (Denmark)

    Chaudhuri, Atanu; Singh, Kashi N


    Product choice and pricing are critical decisions taken by firms while launching new products. Firms need to consider the effect of competition while taking the above decisions. Extensive literature is available for pricing, positioning and launch sequence determination of differentiated products...... approach generates interesting insights on the competitive behavior of firms and shows that leaders can indeed enjoy first-mover advantage under certain conditions. Key Words: choice of product line, pricing, static and dynamic games, upper bound on prices......Product choice and pricing are critical decisions taken by firms while launching new products. Firms need to consider the effect of competition while taking the above decisions. Extensive literature is available for pricing, positioning and launch sequence determination of differentiated products...... under competition. But, there is need to understand the leader-follower behaviour of firms with differentiated products. The classical game theoretic models do not consider bounds on prices. Hence, applying these models for product choice and pricing decisions in a real-life industrial setting may...

  6. Thermomechanical Impact of Polyurethane Potting on Gun Launched Electronics

    Directory of Open Access Journals (Sweden)

    A. S. Haynes


    Full Text Available Electronics packages in precision guided munitions are used in guidance and control units, mission computers, and fuze-safe-and-arm devices. They are subjected to high g-loads during gun launch, pyrotechnic shocks during flight, and high g-loads upon impact with hard targets. To enhance survivability, many electronics packages are potted after assembly. The purpose of the potting is to provide additional structural support and shock damping. Researchers at the US Army recently completed a series of dynamic mechanical tests on a urethane-based potting material to assess its behavior in an electronics assembly during gun launch and under varying thermal launch conditions. This paper will discuss the thermomechanical properties of the potting material as well as simulation efforts to determine the suitability of this potting compound for gun launched electronics. Simulation results will compare stresses and displacements for a simplified electronics package with and without full potting. An evaluation of the advantages and consequences of potting electronics in munitions systems will also be discussed.

  7. NASA Exploration Launch Projects Overview: The Crew Launch Vehicle and the Cargo Launch Vehicle Systems (United States)

    Snoddy, Jimmy R.; Dumbacher, Daniel L.; Cook, Stephen A.


    The U.S. Vision for Space Exploration (January 2004) serves as the foundation for the National Aeronautics and Space Administration's (NASA) strategic goals and objectives. As the NASA Administrator outlined during his confirmation hearing in April 2005, these include: 1) Flying the Space Shuttle as safely as possible until its retirement, not later than 2010. 2) Bringing a new Crew Exploration Vehicle (CEV) into service as soon as possible after Shuttle retirement. 3) Developing a balanced overall program of science, exploration, and aeronautics at NASA, consistent with the redirection of the human space flight program to focus on exploration. 4) Completing the International Space Station (ISS) in a manner consistent with international partner commitments and the needs of human exploration. 5) Encouraging the pursuit of appropriate partnerships with the emerging commercial space sector. 6) Establishing a lunar return program having the maximum possible utility for later missions to Mars and other destinations. In spring 2005, the Agency commissioned a team of aerospace subject matter experts to perform the Exploration Systems Architecture Study (ESAS). The ESAS team performed in-depth evaluations of a number of space transportation architectures and provided recommendations based on their findings? The ESAS analysis focused on a human-rated Crew Launch Vehicle (CLV) for astronaut transport and a heavy lift Cargo Launch Vehicle (CaLV) to carry equipment, materials, and supplies for lunar missions and, later, the first human journeys to Mars. After several months of intense study utilizing safety and reliability, technical performance, budget, and schedule figures of merit in relation to design reference missions, the ESAS design options were unveiled in summer 2005. As part of NASA's systems engineering approach, these point of departure architectures have been refined through trade studies during the ongoing design phase leading to the development phase that

  8. Spin dynamics in a two-dimensional quantum gas

    DEFF Research Database (Denmark)

    Pedersen, Poul Lindholm; Gajdacz, Miroslav; Deuretzbacher, Frank


    We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions with superimp......We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions...... with nonlocal Einstein-Podolsky-Rosen entanglement....

  9. High Resolution, High-Speed Photography, an Increasingly Prominent Diagnostic in Ballistic Research Experiments

    International Nuclear Information System (INIS)

    Shaw, L.; Muelder, S.


    High resolution, high-speed photography is becoming a prominent diagnostic in ballistic experimentation. The development of high speed cameras utilizing electro-optics and the use of lasers for illumination now provide the capability to routinely obtain high quality photographic records of ballistic style experiments. The purpose of this presentation is to review in a visual manner the progress of this technology and how it has impacted ballistic experimentation. Within the framework of development at LLNL, we look at the recent history of large format high-speed photography, and present a number of photographic records that represent the state of the art at the time they were made. These records are primarily from experiments involving shaped charges. We also present some examples of current photographic technology, developed within the ballistic community, that has application to hydro diagnostic experimentation at large. This paper is designed primarily as an oral-visual presentation. This written portion is to provide general background, a few examples, and a bibliography

  10. Shape of scoria cones on Mars: Insights from numerical modeling of ballistic pathways

    Czech Academy of Sciences Publication Activity Database

    Brož, Petr; Čadek, O.; Hauber, E.; Rossi, A. P.


    Roč. 406, November (2014), s. 14-23 ISSN 0012-821X Institutional support: RVO:67985530 Keywords : Mars * explosive volcanism * scoria cone * ballistic pathway Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 4.734, year: 2014

  11. Modeling and experiments on ballistic impact into UHMWPE yarns using flat and saddle-nosed projectiles

    NARCIS (Netherlands)

    Phoenix, S.L.; Heisserer, U.; Werff, H. van der; Jagt-Deutekom , M.J. van der


    Yarn shooting experiments were conducted to determine the ballistically-relevant, Young’s modulus and tensile strength of ultra-high molecular weight polyethylene (UHMWPE) fiber. Target specimens were Dyneema® SK76 yarns (1760 dtex), twisted to 40 turns/m, and initially tensioned to stresses ranging

  12. Conventional Prompt Global Strike and Long Range Ballistic Missiles: Background and Issues (United States)


    ballistic missiles or caches of weapons of mass destruction (WMD) might allow the United States to destroy these weapons before an adversary could... coherent force structure. Hence, although the Air Force considered the NPR objective of integrating nuclear and conventional strike forces as a

  13. 77 FR 6548 - Notice of Availability of Ballistic Survivability, Lethality and Vulnerability Analyses (United States)


    ... Department of the Army Notice of Availability of Ballistic Survivability, Lethality and Vulnerability... survivability, lethality and vulnerability (SLV) analyses. ARL/SLAD conducts SLV analyses, using the MUVES-S2 vulnerability model, to quantify system, subsystem and/or component level vulnerabilities of ground and air...

  14. Hit-to-Kill Guidance Algorithm for the Interception of Ballistic Missiles During the Boost Phase (United States)


    MODELING PROGRAMS...............................................................81 A. 3DOF TARGET...BRFlight3.m .......................................................................................82 B. 3DOF INTERCEPTOR...Degree-of-Freedom ( 3DOF ) model of each. This paper will focus on the Taep’o-dong Two (TD2) ballistic rocket in development by the People’s

  15. Model for ballistic spin-transport in ferromagnet/two-dimensional electron gas/ferromagnet structures

    NARCIS (Netherlands)

    Schapers, T; Nitta, J; Heersche, HB; Takayanagi, H

    The spin dependent conductance of a ferromagnet/two-dimensional electron gas ferromagnet structure is theoretically examined in the ballistic transport regime. It is shown that the spin signal can be improved considerably by making use of the spin filtering effect of a barrier at the ferromagnet

  16. Critical currents in ballistic two-dimensional InAs-based superconducting weak links

    NARCIS (Netherlands)

    Heida, J.P.; Wees, B.J. van; Klapwijk, T.M.; Borghs, G.


    The critical supercurrent Ic carried by a short (0.3 to 0.8 µm) ballistic two-dimensional InAs-based electron gas between superconducting niobium electrodes is studied. In relating the maximum value to the resistance of the weak link in the normal state Rn a much lower value is found than


    Directory of Open Access Journals (Sweden)

    Nikolaos Zaras


    Full Text Available The purpose of the present study was to investigate the effects of 6 weeks strength vs. ballistic-power (Power training on shot put throwing performance in novice throwers. Seventeen novice male shot-put throwers were divided into Strength (N = 9 and Power (n = 8 groups. The following measurements were performed before and after the training period: shot put throws, jumping performance (CMJ, Wingate anaerobic performance, 1RM strength, ballistic throws and evaluation of architectural and morphological characteristics of vastus lateralis. Throwing performance increased significantly but similarly after Strength and Power training (7.0-13.5% vs. 6.0-11.5%, respectively. Muscular strength in leg press increased more after Strength than after Power training (43% vs. 21%, respectively, while Power training induced an 8.5% increase in CMJ performance and 9.0 - 25.8% in ballistic throws. Peak power during the Wingate test increased similarly after Strength and Power training. Muscle thickness increased only after Strength training (10%, p < 0.05. Muscle fibre Cross Sectional Area (fCSA increased in all fibre types after Strength training by 19-26% (p < 0.05, while only type IIx fibres hypertrophied significantly after Power training. Type IIx fibres (% decreased after Strength but not after Power training. These results suggest that shot put throwing performance can be increased similarly after six weeks of either strength or ballistic power training in novice throwers, but with dissimilar muscular adaptations

  18. Validation of the NATO Armaments Ballistic Kernel for use in small-arms fire control systems

    Directory of Open Access Journals (Sweden)

    D. Corriveau


    Full Text Available In support for the development of a new small-arm ballistic computer based on the NATO Armaments Ballistic Kernel (NABK for the Canadian snipers, DRDC Valcartier Research Centre was asked to carry out high-fidelity 6 degree-of-freedom (6-DOF trajectory simulations for a set of relevant vignettes for the snipers, and to compare the direct fire 6-DOF simulation results with those obtained with the 4-DOF NATO Armaments Ballistic Kernel (NABK adapted to simulate small-arm ammunition trajectories. To conduct this study, DRDC Valcartier Research Centre used BALCO v1.0b. This paper presents (1 the process and the methodology employed to carry out the sniper direct fire solution study, (2 the modeling and the simulation of the sniper projectile, the approach used in calculating the firing solutions, and the results of direct fire simulations for the sniper vignettes, and (3 an analysis of firing solutions obtained with the BALCO engine versus those of NABK. The work presented in this paper serves to validate the use of NABK for the new sniper ballistic computer.

  19. Dynamics

    CERN Document Server

    Goodman, Lawrence E


    Beginning text presents complete theoretical treatment of mechanical model systems and deals with technological applications. Topics include introduction to calculus of vectors, particle motion, dynamics of particle systems and plane rigid bodies, technical applications in plane motions, theory of mechanical vibrations, and more. Exercises and answers appear in each chapter.

  20. Pigeons' Discrimination of Michotte's Launching Effect (United States)

    Young, Michael E.; Beckmann, Joshua S.; Wasserman, Edward A.


    We trained four pigeons to discriminate a Michotte launching animation from three other animations using a go/no-go task. The pigeons received food for pecking at one of the animations, but not for pecking at the others. The four animations featured two types of interactions among objects: causal (direct launching) and noncausal (delayed, distal,…

  1. 14 CFR 417.111 - Launch plans. (United States)


    ...) Launch angle limits, as required by § 417.125(c)(3); and (ii) All procedures for measurement of launch... (NTSB) investigations and designate one or more points of contact for the FAA and NTSB. (5) Preventive measure. An AIP must contain procedures that require the licensee to identify and adopt preventive...

  2. Storage and recovery of elastic potential energy powers ballistic prey capture in toads. (United States)

    Lappin, A Kristopher; Monroy, Jenna A; Pilarski, Jason Q; Zepnewski, Eric D; Pierotti, David J; Nishikawa, Kiisa C


    Ballistic tongue projection in toads is a remarkably fast and powerful movement. The goals of this study were to: (1) quantify in vivo power output and activity of the depressor mandibulae muscles that are responsible for ballistic mouth opening, which powers tongue projection; (2) quantify the elastic properties of the depressor mandibulae muscles and their series connective tissues using in situ muscle stimulation and force-lever studies; and (3) develop and test an elastic recoil model, based on the observed elastic properties of the depressor mandibulae muscles and series connective tissues, that accounts for displacement, velocity, acceleration and power output during ballistic mouth opening in toads. The results demonstrate that the depressor mandibulae muscles of toads are active for up to 250 ms prior to mouth opening. During this time, strains of up to 21.4% muscle resting length (ML) develop in the muscles and series connective tissues. At maximum isometric force, series connective tissues develop strains up to 14% ML, and the muscle itself develops strains up to 17.5% ML. When the mouth opens rapidly, the peak instantaneous power output of the depressor mandibulae muscles and series connective tissues can reach 9600 W kg(-1). The results suggest that: (1) elastic recoil of muscle itself can contribute significantly to the power of ballistic movements; (2) strain in series elastic elements of the depressor mandibulae muscle is too large to be borne entirely by the cross bridges and the actin-myosin filament lattice; and (3) central nervous control of ballistic tongue projection in toads likely requires the specification of relatively few parameters.

  3. KevlarTM Fiber-Reinforced Polybenzoxazine Alloys for Ballistic Impact Application

    Directory of Open Access Journals (Sweden)

    Chanchira Jubsilp


    Full Text Available A light weight ballistic composites from KevlarTM-reinforcing fiber having polybenzoxazine (BA/urethane prepolymer (PU alloys as a matrix were investigated in this work. The effect of alloy compositions on the ballistic composite properties was determined. The results revealed that the enhancement in the glass transition temperature (Tg of the KevlarTM-reinforced BA/PU composites compared to that of the KevlarTM-reinforced polybenzoxazine composite was observed. The increase of the elastomeric PU content in the BA/PU alloy resulted in samples with tougher characteristics. The storage modulus of the KevlarTM-reinforced BA/PU composites increased with increasing the mass fraction of polybenzoxazine. A ballistic impact test was also performed on the KevlarTM-reinforced BA/PU composites using a 9 mm handgun. It was found that the optimal contents of PU in the BA/PU alloys should be approximately 20wt%. The extent of the delaminated area and interfacial fracture were observed to change with the varied compositions of the matrix alloys. The appropriate thickness of KevlarTM-reinforced 80/20 BA/PU composite panel was 30 plies and 50 plies to resist the penetration from the ballistic impact equivalent to levels II-A and III-A of NIJ standard. The arrangement of composite panels with the higher stiffness panel at the front side also showed the best efficiency of ballistic penetration resistance.

  4. Combining distances of ballistic and myrmecochorous seed dispersal in Adriana quadripartita (Euphorbiaceae) (United States)

    Beaumont, Kieren P.; Mackay, Duncan A.; Whalen, Molly A.


    The separate contributions of different vectors to net seed dispersal curves of diplochorous systems have rarely been characterised. In Australia, myrmecochory is a common seed dispersal syndrome and in the majority of such systems, seeds are initially dispersed ballistically. We measured ballistic and myrmecochorous seed dispersal distances in relation to canopies of Adriana quadripartita (Euphorbiaceae) and used a simulation model to estimate the net dispersal curve. We also compared seed removal rates and ant abundances under, and outside, plant canopies to examine how foraging patterns by ants may affect net dispersal. Overall ant abundance did not show a significant numerical response to seedfall; however, the abundance of the main seed dispersing ant, Rhytidoponera 'metallica' did. Despite this, seed removal rates did not differ significantly between canopy and open locations. Rhytidoponera 'metallica' account for 93% of observed seed dispersal events. On average, the ants dispersed seeds 1.54 m and in doing so, moved seed a mean radial distance of 0.76 m away from canopy edges. This contribution to net dispersal distance by ants is considerable since ballistic dispersal moved seeds a median distance of 7.5 cm. Our simulation model indicated that the combination of ballistic and ant seed dispersal is expected to result in seeds being transported a median net radial dispersal distance of 1.05 m from the canopy edge. Thus in this system, an important function of diplochory may simply be to move a higher proportion of seeds from under the canopy of parent plants than is possible by ballistic dispersal alone. This 'dispersal-for-distance' may result in reduced parent-offspring competition or may increase the probability that seeds reach rare safe sites for germination and recruitment.

  5. International Launch Vehicle Selection for Interplanetary Travel (United States)

    Ferrone, Kristine; Nguyen, Lori T.


    In developing a mission strategy for interplanetary travel, the first step is to consider launch capabilities which provide the basis for fundamental parameters of the mission. This investigation focuses on the numerous launch vehicles of various characteristics available and in development internationally with respect to upmass, launch site, payload shroud size, fuel type, cost, and launch frequency. This presentation will describe launch vehicles available and in development worldwide, then carefully detail a selection process for choosing appropriate vehicles for interplanetary missions focusing on international collaboration, risk management, and minimization of cost. The vehicles that fit the established criteria will be discussed in detail with emphasis on the specifications and limitations related to interplanetary travel. The final menu of options will include recommendations for overall mission design and strategy.

  6. Space shuttle launch vehicle performance trajectory, exchange ratios, and dispersion analysis (United States)

    Toelle, R. G.; Blackwell, D. L.; Lott, L. N.


    A baseline space shuttle performance trajectory for Mission 3A launched from WTR has been generated. Design constraints of maximum dynamic pressure, longitudinal acceleration, and delivered payload were satisfied. Payload exchange ratios are presented with explanation on use. Design envelopes of dynamic pressure, SRB staging point, aerodynamic heating and flight performance reserves are calculated and included.

  7. Guided Multiple Launch Rocket System/Guided Multiple Launch Rocket System Alternative Warhead (GMLRS/GMLRS AW) (United States)


    Launch Rocket System/Guided Multiple Launch Rocket System Alternative... Launch Rocket System/Guided Multiple Launch Rocket System Alternative Warhead (GMLRS/GMLRS AW) DoD Component Army Responsible Office References SAR...UNCLASSIFIED 5 Mission and Description The mission of the Guided Multiple Launch Rocket System/Guided Multiple Launch Rocket System Alternative

  8. Full-Envelope Launch Abort System Performance Analysis Methodology (United States)

    Aubuchon, Vanessa V.


    The implementation of a new dispersion methodology is described, which dis-perses abort initiation altitude or time along with all other Launch Abort System (LAS) parameters during Monte Carlo simulations. In contrast, the standard methodology assumes that an abort initiation condition is held constant (e.g., aborts initiated at altitude for Mach 1, altitude for maximum dynamic pressure, etc.) while dispersing other LAS parameters. The standard method results in large gaps in performance information due to the discrete nature of initiation conditions, while the full-envelope dispersion method provides a significantly more comprehensive assessment of LAS abort performance for the full launch vehicle ascent flight envelope and identifies performance "pinch-points" that may occur at flight conditions outside of those contained in the discrete set. The new method has significantly increased the fidelity of LAS abort simulations and confidence in the results.

  9. Launch flexibility using NLP guidance and remote wind sensing (United States)

    Cramer, Evin J.; Bradt, Jerre E.; Hardtla, John W.


    This paper examines the use of lidar wind measurements in the implementation of a guidance strategy for a nonlinear programming (NLP) launch guidance algorithm. The NLP algorithm uses B-spline command function representation for flexibility in the design of the guidance steering commands. Using this algorithm, the guidance system solves a two-point boundary value problem at each guidance update. The specification of different boundary value problems at each guidance update provides flexibility that can be used in the design of the guidance strategy. The algorithm can use lidar wind measurements for on pad guidance retargeting and for load limiting guidance steering commands. Examples presented in the paper use simulated wind updates to correct wind induced final orbit errors and to adjust the guidance steering commands to limit the product of the dynamic pressure and angle-of-attack for launch vehicle load alleviation.

  10. Ballistic transport in planetary ring systems due to particle erosion mechanisms. I - Theory, numerical methods, and illustrative examples (United States)

    Durisen, Richard H.; Murphy, Brian W.; Cramer, Nichael Lynn; Cuzzi, Jeffrey N.; Mullikin, Thomas L.


    Ballistic transport, defined as the net radial transport of mass and angular momentum due to exchanges of meteoroid hypersonic-impact ejecta by neighboring planetary ring regions on time-scales orders-of-magnitude shorter than the age of the solar system, is presently considered as a problem in mathematical physics. The preliminary results of a numerical scheme for following the combined effects of ballistic transport and viscous diffusion demonstrate that ballistic transport generates structure near sharp edges already present in the ring-mass distribution; the entire ring system ultimately develops an undulatory structure whose length scale is typically of the order of the radial excursion of the impact ejecta.

  11. Characterizing Epistemic Uncertainty for Launch Vehicle Designs (United States)

    Novack, Steven D.; Rogers, Jim; Hark, Frank; Al Hassan, Mohammad


    NASA Probabilistic Risk Assessment (PRA) has the task of estimating the aleatory (randomness) and epistemic (lack of knowledge) uncertainty of launch vehicle loss of mission and crew risk and communicating the results. Launch vehicles are complex engineered systems designed with sophisticated subsystems that are built to work together to accomplish mission success. Some of these systems or subsystems are in the form of heritage equipment, while some have never been previously launched. For these cases, characterizing the epistemic uncertainty is of foremost importance, and it is anticipated that the epistemic uncertainty of a modified launch vehicle design versus a design of well understood heritage equipment would be greater. For reasons that will be discussed, standard uncertainty propagation methods using Monte Carlo simulation produce counter intuitive results and significantly underestimate epistemic uncertainty for launch vehicle models. Furthermore, standard PRA methods such as Uncertainty-Importance analyses used to identify components that are significant contributors to uncertainty are rendered obsolete since sensitivity to uncertainty changes are not reflected in propagation of uncertainty using Monte Carlo methods.This paper provides a basis of the uncertainty underestimation for complex systems and especially, due to nuances of launch vehicle logic, for launch vehicles. It then suggests several alternative methods for estimating uncertainty and provides examples of estimation results. Lastly, the paper shows how to implement an Uncertainty-Importance analysis using one alternative approach, describes the results, and suggests ways to reduce epistemic uncertainty by focusing on additional data or testing of selected components.

  12. Robust Design of H-infinity Controller for a Launch Vehicle Autopilot against Disturbances


    Graells, Antonio; Carrabina, Francisco


    Atmospheric flight phase of a launch vehicle is utilized to evaluate the performance of an H-infinity controller in the presence of disturbances. Dynamics of the vehicle is linearly modeled using time-varying parameters. An operating point was found to design a robust command tracker using H-infinity control theory that guarantees a stable maneuver. At the end, the controller was employed on the launch vehicle to assess the capability of control design on the linearized aerospace vehicle. Exp...

  13. Experimental techniques for subnanosecond resolution of laser-launched plates and impact studies

    Energy Technology Data Exchange (ETDEWEB)

    Paisley, D.L.; Warnes, R.H.; Stahl, D.B. [Los Alamos National Lab., NM (United States). Dynamic Experimentation Div.


    Miniature laser-launched plates have applications in shock wave physics, studying dynamic properties of materials and can be used to generate experimental data in a manner similar to a laboratory gas gun for one-dimensional impact experiments. Laser-launched plates have the advantage of small size, low kinetic energy, and can be launched with ubiquitous laboratory lasers. Because of the small size and high accelerations (10{sup 7}--10{sup 10} g`s), improved temporal resolution and optical non-contact methods to collect data are required. Traditional mechanical in-situ gauges would significantly impair the data quality and do not have the required time response.

  14. An investigation into the relationship between thermal shock resistance and ballistic performance of ceramic materials (United States)

    Beaumont, Robert

    Currently, there are no reliable methods for screening potential armour materials and hence full-scale ballistic trials are needed. These are both costly and time-consuming in terms of the actual test and also in the materials development that needs to take place to produce sufficient material to give a meaningful result. Whilst it will not be possible to dispense with ballistic trials before material deployment in armour applications, the ability to shorten the development cycle would be advantageous. The thermal shock performance of ceramic armour materials has been highlighted as potential marker for ballistic performance. Hence the purpose of this study was to investigate this further. A new thermal shock technique that reproduced features relevant to ballistic testing was sought. As it would be beneficial to have a simple test that did not use much material, a water-drop method was adopted. This was combined with a variety of characterisation techniques, administered pre- and post-shock. The methods included measurement of the amplitude of ultrasonic wave transmission through the sample alongside residual strength testing using a biaxial ball-on-ball configuration and reflected light and confocal microscopy. Once the protocols had been refined the testing regime was applied to a group of ceramic materials. The materials selected were from two broad groups: alumina and carbide materials. Carbide ceramics show superior performance to alumina ceramics in ballistic applications so it was essential that any screening test would be easily able to differentiate the two groups. Within the alumina family, two commercially available materials, AD995 and Sintox FA, were selected. These were tested alongside three developmental silicon carbide-boron carbide composites, which had identical chemical compositions but different microstructures and thus presented more of a challenge in terms of differentiation. The results from the various tests were used to make predictions

  15. Magnetic Launch Assist System Demonstration Test (United States)


    Engineers at the Marshall Space Flight Center (MSFC) have been testing Magnetic Launch Assist Systems, formerly known as Magnetic Levitation (MagLev) technologies. To launch spacecraft into orbit, a Magnetic Launch Assist system would use magnetic fields to levitate and accelerate a vehicle along a track at a very high speed. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, the launch-assist system would electromagnetically drive a space vehicle along the track. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. This photograph shows a subscale model of an airplane running on the experimental track at MSFC during the demonstration test. This track is an advanced linear induction motor. Induction motors are common in fans, power drills, and sewing machines. Instead of spinning in a circular motion to turn a shaft or gears, a linear induction motor produces thrust in a straight line. Mounted on concrete pedestals, the track is 100-feet long, about 2-feet wide, and about 1.5- feet high. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  16. Tabletop Experimental Track for Magnetic Launch Assist (United States)


    Marshall Space Flight Center's (MSFC's) Advanced Space Transportation Program has developed the Magnetic Launch Assist System, formerly known as the Magnetic Levitation (MagLev) technology that could give a space vehicle a running start to break free from Earth's gravity. A Magnetic Launch Assist system would use magnetic fields to levitate and accelerate a vehicle along a track at speeds up to 600 mph. The vehicle would shift to rocket engines for launch into orbit. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, a Magnetic Launch Assist system would electromagnetically propel a space vehicle along the track. The tabletop experimental track for the system shown in this photograph is 44-feet long, with 22-feet of powered acceleration and 22-feet of passive braking. A 10-pound carrier with permanent magnets on its sides swiftly glides by copper coils, producing a levitation force. The track uses a linear synchronous motor, which means the track is synchronized to turn the coils on just before the carrier comes in contact with them, and off once the carrier passes. Sensors are positioned on the side of the track to determine the carrier's position so the appropriate drive coils can be energized. MSFC engineers have conducted tests on the indoor track and a 50-foot outdoor track. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  17. Launch Vehicle Selection and the Implementation of the Soil Moisture Active Passive Mission (United States)

    Sherman, Sarah; Waydo, Peter; Eremenko, Alexander


    Soil Moisture Active Passive (SMAP) is a NASA-developed Earth science satellite currently mapping the soil moisture content and freeze/thaw state of Earth's land mass from a 685km, near-polar, sun-synchronous orbit. It was launched on January 31, 2015 from Vandenberg AFB upon a Delta II 7320 launch vehicle. Due to external considerations, SMAP's launch vehicle selection remained an open item until Project Critical Design Review (CDR). Thus, certain key aspects of the spacecraft design had to accommodate a diverse range of candidate launch vehicle environments, performance envelopes, interfaces and operational scenarios. Engineering challenges stemmed from two distinct scenarios: decisions that had to be made prior to launch vehicle selection to accommodate all possible outcomes, and post-selection changes constrained by schedule and the existing spacecraft configuration. The effects of the timing of launch vehicle selection reached virtually every aspect of the Observatory's design and development. Physical environments, mass allocations, material selections, propulsion system performance, dynamic response, launch phase and mission planning, overall size and configuration, and of course all interfaces to the launch vehicle were heavily dependent on this outcome. This paper will discuss the resolution of these technical challenges.

  18. Computational Prediction of Pressure and Thermal Environments in the Flame Trench With Launch Vehicles (United States)

    Brehm, Christoph; Sozer, Emre; Barad, Michael F.; Housman, Jeffrey A.; Kiris, Cetin C.; Moini-Yekta, Shayan; Vu, Bruce T.; Parlier, Christopher R.


    One of the key objectives for the development of the 21st Century Space Launch Com- plex is to provide the exibility needed to support evolving launch vehicles and spacecrafts with enhanced range capacity. The launch complex needs to support various proprietary and commercial vehicles with widely di erent needs. The design of a multi-purpose main ame de ector supporting many di erent launch vehicles becomes a very challenging task when considering that even small geometric changes may have a strong impact on the pressure and thermal environment. The physical and geometric complexity encountered at the launch site require the use of state-of-the-art Computational Fluid Dynamics (CFD) tools to predict the pressure and thermal environments. Due to harsh conditions encountered in the launch environment, currently available CFD methods which are frequently employed for aerodynamic and ther- mal load predictions in aerospace applications, reach their limits of validity. This paper provides an in-depth discussion on the computational and physical challenges encountered when attempting to provide a detailed description of the ow eld in the launch environ- ment. Several modeling aspects, such as viscous versus inviscid calculations, single-species versus multiple-species ow models, and calorically perfect gas versus thermally perfect gas, are discussed. The Space Shuttle and the Falcon Heavy launch vehicles are used to study di erent engine and geometric con gurations. Finally, we provide a discussion on traditional analytical tools which have been used to provide estimates on the expected pressure and thermal loads.

  19. Gun Testing Ballistics Issues for Insensitive Munitions Fragment Impact Testing (United States)

    Baker, Ernest; Schultz, Emmanuel; NATO Munitions Safety Information Analysis Centre Team


    The STANAG 4496 Ed. 1 Fragment Impact, Munitions Test Procedure is normally conducted by gun launching a projectile for attack against a munition. The purpose of this test is to assess the reaction of a munition impacted by a fragment. The test specifies a standardized projectile (fragment) with a standard test velocity of 2530+/-90 m/s, or an alternate test velocity of 1830+/-60 m/s. The standard test velocity can be challenging to achieve and has several loosely defined and undefined characteristics that can affect the test item response. This publication documents the results of an international review of the STANAG 4496 related to the fragment impact test. To perform the review, MSIAC created a questionnaire in conjunction with the custodian of this STANAG and sent it to test centers. Fragment velocity variation, projectile tilt upon impact and aim point variation were identified as observed gun testing issues. Achieving 2530 m/s consistently and cost effectively can be challenging. The aim point of impact of the fragment is chosen with the objective of obtaining the most violent reaction. No tolerance for aim point is specified, although aim point variation can be a source for IM response variation. Fragment tilt on impact is also unspecified. The standard fragment fabricated from a variety of different steels which have a significant margin for mechanical properties. These, as well as other gun testing issues, have significant implications to resulting IM response.

  20. Effects of Strength vs. Ballistic-Power Training on Throwing Performance (United States)

    Zaras, Nikolaos; Spengos, Konstantinos; Methenitis, Spyridon; Papadopoulos, Constantinos; Karampatsos, Giorgos; Georgiadis, Giorgos; Stasinaki, Aggeliki; Manta, Panagiota; Terzis, Gerasimos


    The purpose of the present study was to investigate the effects of 6 weeks strength vs. ballistic-power (Power) training on shot put throwing performance in novice throwers. Seventeen novice male shot-put throwers were divided into Strength (N = 9) and Power (n = 8) groups. The following measurements were performed before and after the training period: shot put throws, jumping performance (CMJ), Wingate anaerobic performance, 1RM strength, ballistic throws and evaluation of architectural and morphological characteristics of vastus lateralis. Throwing performance increased significantly but similarly after Strength and Power training (7.0-13.5% vs. 6.0-11.5%, respectively). Muscular strength in leg press increased more after Strength than after Power training (43% vs. 21%, respectively), while Power training induced an 8.5% increase in CMJ performance and 9.0 - 25.8% in ballistic throws. Peak power during the Wingate test increased similarly after Strength and Power training. Muscle thickness increased only after Strength training (10%, p Strength training by 19-26% (p training. Type IIx fibres (%) decreased after Strength but not after Power training. These results suggest that shot put throwing performance can be increased similarly after six weeks of either strength or ballistic power training in novice throwers, but with dissimilar muscular adaptations. Key points Ballistic-power training with 30% of 1RM is equally effective in increasing shot put performance as strength training, in novice throwers, during a short training cycle of six weeks. In novice shot putters with relatively low initial muscle strength/mass, short-term strength training might be more important since it can increase both muscle strength and shot put performance. The ballistic type of power training resulted in a significant increase of the mass of type IIx muscle fibres and no change in their proportion. Thus, this type of training might be used effectively during the last weeks before

  1. Evaluation of Obturator and Sealing Cuff Properties for the M865 Training Projectile with Comparison to Ballistic Testing

    National Research Council Canada - National Science Library

    Hoppel, C


    The nylon obturation and RTV sealing cuff for the M865 training round were evaluated to identity potential sources of ballistic variability associated with the material properties and material processing...

  2. System Requirements Analysis and Technological Support for the Ballistic Missile Defense System (BMDS) - FY07 Progress Report

    National Research Council Canada - National Science Library

    Auguston, M; Drusinsky, D; Hutchins, R; Knorr, J. B; Michael, J. B; Otani, T; Pace, P. E; Sting, M; Tummala, M; Cook, T


    ... the communication requirements of the net-centric Ballistic Missile Defense warfare, and the use of architectural patterns and other software technologies to shape the emergent behavior of the BMDS taking...

  3. Comparing the Transition from Diffusive to Ballistic Heat Transport for 1D and 2D Nanoscale Interfaces (United States)

    Hernandez-Charpak, J.; Hoogeboom-Pot, K.; Anderson, E.; Murnane, M.; Kapteyn, H.; Nardi, D.


    How is thermal transport affected by spatial confinement in nanoscale systems? In past work we and others demonstrated that the Fourier Law of heat diffusion fails for length scales smaller than the mean free path of the energy carriers in a material. Here we probe how the transition from macroscopic diffusive behavior of phonons through the quasi-ballistic regime is different for 1D and 2D nano-confined hot spots. We study a series of periodic nickel lines (1D) and dots (2D) with linewidths varying from 750 to 30 nm deposited on both sapphire and silicon substrates. The thermal relaxation of these femtosecond-laser-excited nanostructures is monitored by the diffraction of extreme ultraviolet (EUV) light obtained from tabletop high harmonic generation. The short wavelength of EUV light, combined with the coherence and ultrashort pulses of high harmonic sources, provides a unique and powerful probe for nanostructured materials on their intrinsic length and time scales. The relaxation dynamics are linked to an effective thermal boundary resistivity with the assistance of multi-physics finite element analysis to quantify the stronger deviation from macroscopic diffusive behavior as a function of nanostructure linewidth in 2D hot spots compared to 1D. This work was supported by SRC Contract 2012-OJ-2304, by NSF Award No.: DGE 1144083, and used facilities provided by the NSF Engineering Research Center in EUV Science and Technology.

  4. Launch Pad Flame Trench Refractory Materials (United States)

    Calle, Luz M.; Hintze, Paul E.; Parlier, Christopher R.; Bucherl, Cori; Sampson, Jeffrey W.; Curran, Jerome P.; Kolody, Mark; Perusich, Steve; Whitten, Mary


    The launch complexes at NASA's John F. Kennedy Space Center (KSC) are critical support facilities for the successful launch of space-based vehicles. These facilities include a flame trench that bisects the pad at ground level. This trench includes a flame deflector system that consists of an inverted, V-shaped steel structure covered with a high temperature concrete material five inches thick that extends across the center of the flame trench. One side of the "V11 receives and deflects the flames from the orbiter main engines; the opposite side deflects the flames from the solid rocket boosters. There are also two movable deflectors at the top of the trench to provide additional protection to shuttle hardware from the solid rocket booster flames. These facilities are over 40 years old and are experiencing constant deterioration from launch heat/blast effects and environmental exposure. The refractory material currently used in launch pad flame deflectors has become susceptible to failure, resulting in large sections of the material breaking away from the steel base structure and creating high-speed projectiles during launch. These projectiles jeopardize the safety of the launch complex, crew, and vehicle. Post launch inspections have revealed that the number and frequency of repairs, as well as the area and size of the damage, is increasing with the number of launches. The Space Shuttle Program has accepted the extensive ground processing costs for post launch repair of damaged areas and investigations of future launch related failures for the remainder of the program. There currently are no long term solutions available for Constellation Program ground operations to address the poor performance and subsequent failures of the refractory materials. Over the last three years, significant liberation of refractory material in the flame trench and fire bricks along the adjacent trench walls following Space Shuttle launches have resulted in extensive investigations of

  5. Carbon Nanotube Infused Launch Vehicle Structures (United States)

    National Aeronautics and Space Administration — For the past 5 years Orbital ATK has been investing in, prototyping, and testing carbon nanotube infused composite structures to evaluate their impact on launch...

  6. Minimum Cost Nanosatellite Launch System, Phase I (United States)

    National Aeronautics and Space Administration — Delta Velocity Corporation proposes the development of a very low cost, highly responsive nanosat launch system. We propose to develop an integrated propulsion...

  7. Persistant Launch Range Surveillance, Phase I (United States)

    National Aeronautics and Space Administration — Launch site infrastructure and space vehicle assets represent multi-billion dollar investments that must be protected. Additionally, personnel and equipment must be...

  8. National Launch System comparative economic analysis (United States)

    Prince, A.


    Results are presented from an analysis of economic benefits (or losses), in the form of the life cycle cost savings, resulting from the development of the National Launch System (NLS) family of launch vehicles. The analysis was carried out by comparing various NLS-based architectures with the current Shuttle/Titan IV fleet. The basic methodology behind this NLS analysis was to develop a set of annual payload requirements for the Space Station Freedom and LEO, to design launch vehicle architectures around these requirements, and to perform life-cycle cost analyses on all of the architectures. A SEI requirement was included. Launch failure costs were estimated and combined with the relative reliability assumptions to measure the effects of losses. Based on the analysis, a Shuttle/NLS architecture evolving into a pressurized-logistics-carrier/NLS architecture appears to offer the best long-term cost benefit.

  9. Air Launch from a Towed Glider (United States)

    National Aeronautics and Space Administration — This research effort is exploring the concept of launching a rocket from a glider that is towed by an aircraft. The idea is to build a relatively inexpensive...

  10. Metric Tracking of Launch Vehicles Project (United States)

    National Aeronautics and Space Administration — NASA needs reliable, accurate navigation for launch vehicles and other missions. GPS is the best world-wide navigation system, but operates at low power making it...

  11. Visits Service Launches New Seminar Series

    CERN Multimedia


    The CERN Visits Service is launching a new series of seminars for guides, and they are open to everyone. The series kicks off next week with a talk by Konrad Elsener on the CERN neutrinos to Gran Sasso, CNGS, project.

  12. Metric Tracking of Launch Vehicles, Phase I (United States)

    National Aeronautics and Space Administration — NASA needs reliable, accurate navigation for launch vehicles and other missions. GPS is the best world-wide navigation system, but operates at low power making it...

  13. Simulation Environment for Orion Launch Abort System Control Design Studies (United States)

    McMinn, J. Dana; Jackson, E. Bruce; Christhilf, David M.


    The development and use of an interactive environment to perform control system design and analysis of the proposed Crew Exploration Vehicle Launch Abort System is described. The environment, built using a commercial dynamic systems design package, includes use of an open-source configuration control software tool and a collaborative wiki to coordinate between the simulation developers, control law developers and users. A method for switching between multiple candidate control laws and vehicle configurations is described. Aerodynamic models, especially in a development program, change rapidly, so a means for automating the implementation of new aerodynamic models is described.

  14. STS-105 Pre-Launch Press Conference (United States)


    George Diller, NASA Public Affairs, introduces Bill Gerstenmaier, Deputy Manager of the ISS Program, Dave King, NASA Director of Shuttle Processing, and Judy Konecky, Staff Meteorologist, in this STS-105 press conference. An overview is given of the success of the Expedition 2 crew, the expectations of the Expedition 3 crew, the launch countdown status, and the weather forecast for the Shuttle launch. They then answer questions from the press.

  15. Former astronaut Armstrong witnesses STS-83 launch (United States)


    Apollo l1 Commander Neil A. Armstrong and his wife, Carol, were among the many special NASA STS-83 launch guests who witnessed the liftoff of the Space Shuttle Columbia April 4 at the Banana Creek VIP Viewing Site at KSC. Columbia took off from Launch Pad 39A at 2:20:32 p.m. EST to begin the 16-day Microgravity Science Laboratory-1 (MSL-1) mission.

  16. Ballistic strength training compared with usual care for improving mobility following traumatic brain injury: protocol for a randomised, controlled trial

    Directory of Open Access Journals (Sweden)

    Gavin Williams


    Discussion: Strength training in neurological rehabilitation is highly topical because muscle weakness has been identified as the primary impairment leading to mobility limitations in many neurological populations. This project represents the first international study of ballistic strength training after traumatic brain injury. The novelty of ballistic strength training is that the exercises attempt to replicate how lower limb muscles work, by targeting the high angular velocities attained during walking and higher level activities.

  17. Launch vehicle design and GNC sizing with ASTOS (United States)

    Cremaschi, Francesco; Winter, Sebastian; Rossi, Valerio; Wiegand, Andreas


    The European Space Agency (ESA) is currently involved in several activities related to launch vehicle designs (Future Launcher Preparatory Program, Ariane 6, VEGA evolutions, etc.). Within these activities, ESA has identified the importance of developing a simulation infrastructure capable of supporting the multi-disciplinary design and preliminary guidance navigation and control (GNC) design of different launch vehicle configurations. Astos Solutions has developed the multi-disciplinary optimization and launcher GNC simulation and sizing tool (LGSST) under ESA contract. The functionality is integrated in the Analysis, Simulation and Trajectory Optimization Software for space applications (ASTOS) and is intended to be used from the early design phases up to phase B1 activities. ASTOS shall enable the user to perform detailed vehicle design tasks and assessment of GNC systems, covering all aspects of rapid configuration and scenario management, sizing of stages, trajectory-dependent estimation of structural masses, rigid and flexible body dynamics, navigation, guidance and control, worst case analysis, launch safety analysis, performance analysis, and reporting.

  18. STS-93 Commander Collins suits up before launch (United States)


    In the Operations and Checkout Building, STS-93 Commander Eileen M. Collins gets help donning her launch and entry suit. After Space Shuttle Columbia's July 20 launch attempt was scrubbed at the T-7 second mark in the countdown, the launch was rescheduled for Thursday, July 22, at 12:28 a.m. EDT. The target landing date is July 26, 1999, at 11:24 p.m. EDT. STS-93 is a five-day mission primarily to release the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. The new telescope is 20 to 50 times more sensitive than any previous X- ray telescope and is expected unlock the secrets of supernovae, quasars and black holes. The STS-93 crew numbers five: Commander Collins, Pilot Jeffrey S. Ashby, and Mission Specialists Stephen A. Hawley (Ph.D.), Catherine G. Coleman (Ph.D.) and Michel Tognini of France, with the Centre National d'Etudes Spatiales (CNES). Collins is the first woman to serve as commander of a shuttle mission.

  19. Ultra-fast ballistic magnetization reversal triggered by a single magnetic field pulse

    Energy Technology Data Exchange (ETDEWEB)

    Horley, Paul P; Gonzalez Hernandez, Jesus [Centro de Investigacion en Materiales Avanzados S.C., Chihuahua/Monterrey, Av. Miguel de Cervantes 120, 31109 Chihuahua, Chihuahua (Mexico); Vieira, Vitor R; Dugaev, Vitalii K [Centro de Fisica das Interaccoes Fundamentais, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Avenida Rovisco Pais, 1049-001 Lisbon (Portugal); Gorley, Peter [Department of Physics, Yuri Fedkovych Chernivtsi National University, 2 Kotsyubynsky Street, 58012 Chernivtsi (Ukraine); Barnas, Jozef, E-mail: [Institute of Molecular Physics, Polish Academy of Sciences, ul. Smoluchowskiego 17, 60-179 Poznan (Poland)


    Performance of devices such as magnetic random access memories crucially depends on magnetic switching time. By numerical simulations we show that ultra-fast (in the sub-nanosecond range) magnetic reversal in nanoparticles can be achieved with a single pulse of magnetic field oriented at some specific angles with respect to the magnetic moment. These angles form the areas of ballistic reversal (with no magnetization ringing). We show that the size of these areas increases with decreasing pulse duration, which allows reaching of the sub-nanosecond reversal for a pulse duration of the order of dozen(s) of ps. When changing the magnetic field, the areas of ballistic reversal move along the equator of the unitary sphere, and eventually merge with each other. For appropriate choice of the azimuthal angle, one can reach magnetic reversal along a trajectory located in or out of the easy plane.

  20. Ballistic performance of a Kevlar-29 woven fibre composite under varied temperatures (United States)

    Soykasap, O.; Colakoglu, M.


    Armours are usually manufactured from polymer matrix composites and used for both military and non-military purposes in different seasons, climates, and regions. The mechanical properties of the composites depend on temperature, which also affects their ballistic characteristics. The armour is used to absorb the kinetic energy of a projectile without any major injury to a person. Therefore, besides a high strength and lightness, a high damping capacity is required to absorb the impact energy transferred by the projectile. The ballistic properties of a Kevlar 29/polyvinyl butyral composite are investigated under varied temperatures in this study. The elastic modulus of the composite is determined from the natural frequency of composite specimens at different temperatures by using a damping monitoring method. Then, the backside deformation of composite plates is analysed experimentally and numerically employing the finite-element program Abaqus. The experimental and numeric results obtained are in good agreement.

  1. A numerical study of the nanoribbon field-effect transistors under the ballistic and dissipative transport (United States)

    Ghoreishi, Seyed Saleh; Yousefi, Reza; Saghafi, Kamyar; Aderang, Habib


    In this article, a detailed performance comparison is made between ballistic and dissipative quantum transport of metal oxide semicondutor-like graphene nanoribbon field-effect transistor, in ON and OFF-state conditions. By the self-consistent mode-space non-equilibrium Green's function approach, inter- and intraband scattering is accounted and the role of acoustic and optical phonon scattering on the performance of the devices is evaluated. We found that in this structure the dominant mechanism of scattering changes according to the ranges of voltage bias. Under large biasing conditions, the influence of optical phonon scattering becomes important. Also, the ambipolar and OFF-current are impressed by the phonon-assisted band-to-band tunneling and increased considerably compared to the ballistic conditions, although sub-threshold swing degrades due to optical phonon scattering.

  2. Nonlinear electron transport in InAs/AlGaSb three-terminal ballistic junctions

    International Nuclear Information System (INIS)

    Koyama, M; Inoue, T; Amano, N; Maemoto, T; Sasa, S; Inoue, M


    We have fabricated and characterized an InAs/AlGaSb three-terminal ballistic junction device. The fabricated device exhibited nonlinear electron transport properties because of ballistic motion of electrons in this structure that is comparable to the electron mean free path. When the left branch is biased to a finite voltage Vand the right to a voltage of -V (push-pull fashion), negative voltages appeared at the floating central branch regardless of the polarity of the input voltages. In the case of the central branch grounded in push-pull fashion, the clear current rectification effect also observed in the current flow of the central branch at 4.2K to even at 300K

  3. Study on Ballistic Absorbing Energy Character of High Performance Polyethylene Needle Felt (United States)

    Kailiang, Zhu; Jianqiao, Fu


    The ballistic performance of polyethylene needle felt is tested and the failure morphology after test is also observed. The results showed that when the non-dimensionally non-stressed fibers in polyethylene needles are subjected to high-speed projectile, secondary movement such as stretching and twisting occurs first. This secondary movement is very full, it is the main way of ballistic absorbing energy of the polyethylene needle felt which can avoid the polyethylene fiber short-term rapid heating-up and destroyed. Analysis results show that under normal temperature and humidity conditions, the V50 of 6-layer forded polyethylene needle felt sample is 250m/s. At (450 ± 50) m/s speed range of the target missile, the mean value of the penetrative specific energy absorption for 3-layer forded polyethylene needle felt anti-1.1g simulated projectiles (tapered column) reaches 24.1J·m2/kg.

  4. Improved theory of generalized meteo-ballistic weighting factor functions and their use

    Directory of Open Access Journals (Sweden)

    Vladimir Cech


    Full Text Available It follows from the analysis of artillery fire errors that approximately two-thirds of the inaccuracy of indirect artillery fire is caused by inaccuracies in the determination of the meteo parameters included in fire error budget model. Trajectories calculated under non-standard conditions are considered to be perturbed. The tools utilized for the analysis of perturbed trajectories are weighting factor functions (WFFs which are a special kind of sensitivity functions. WFFs are used for calculation of meteo ballistic elements µB (ballistic wind wB, density ρB, virtual temperature τB, pressure pB as well. We have found that the existing theory of WFF calculation has several significant shortcomings. The aim of the article is to present a new, improved theory of generalized WFFs that eliminates the deficiencies found. Using this theory will improve methods for designing firing tables, fire control systems algorithms, and meteo message generation algorithms.

  5. Short Ballistic Josephson Coupling in Planar Graphene Junctions with Inhomogeneous Carrier Doping (United States)

    Park, Jinho; Lee, Jae Hyeong; Lee, Gil-Ho; Takane, Yositake; Imura, Ken-Ichiro; Taniguchi, Takashi; Watanabe, Kenji; Lee, Hu-Jong


    We report on short ballistic (SB) Josephson coupling in junctions embedded in a planar heterostructure of graphene. Ballistic Josephson coupling is confirmed by the Fabry-Perot-type interference of the junction critical current Ic . The product of Ic and the normal-state junction resistance RN , normalized by the zero-temperature gap energy Δ0 of the superconducting electrodes, turns out to be exceptionally large close to 2, an indication of strong Josephson coupling in the SB junction limit. However, Ic shows a temperature dependence that is inconsistent with the conventional short-junction-like behavior based on the standard Kulik-Omel'yanchuk prediction. We argue that this feature stems from the effects of inhomogeneous carrier doping in graphene near the superconducting contacts, although the junction is in fact in the short-junction limit.

  6. Penetration of sandwich plates with hybrid-cores under oblique ballistic impact

    Directory of Open Access Journals (Sweden)

    Changye Ni


    Full Text Available The oblique penetration performance of lightweight hybrid-cored sandwich plates are investigated numerically. To compose the hybrid-core, ceramic prisms are inserted into pyramidal metal lattice trusses and fixed using epoxy resin. Three-dimensional finite element simulations are carried out for the hybridcored sandwich impacted at 15°, 30°, 45°, and 60° obliquity by a hemispherical projectile. The ballistic limit, the energy absorbed by the constituting elements, and the critical oblique angle are quantified. The physical mechanisms underlying the failure and the influence of fundamental system parameters are explored. The angle of obliquity is found to have significant influence on the ballistic trajectory and erosion of the projectile, thus it is important for the impact response and penetration resistance of the sandwich. For oblique angles equal to or larger than 45°, the projectile moves mainly horizontally and can not effectively penetrate across the sandwich.

  7. Future Launch Vehicle Structures - Expendable and Reusable Elements (United States)

    Obersteiner, M. H.; Borriello, G.


    Further evolution of existing expendable launch vehicles will be an obvious element influencing the future of space transportation. Besides this reusability might be the change with highest potential for essential improvement. The expected cost reduction and finally contributing to this, the improvement of reliability including safe mission abort capability are driving this idea. Although there are ideas of semi-reusable launch vehicles, typically two stages vehicles - reusable first stage or booster(s) and expendable second or upper stage - it should be kept in mind that the benefit of reusability will only overwhelm if there is a big enough share influencing the cost calculation. Today there is the understanding that additional technology preparation and verification will be necessary to master reusability and get enough benefits compared with existing launch vehicles. This understanding is based on several technology and system concepts preparation and verification programmes mainly done in the US but partially also in Europe and Japan. The major areas of necessary further activities are: - System concepts including business plan considerations - Sub-system or component technologies refinement - System design and operation know-how and capabilities - Verification and demonstration oriented towards future mission mastering: One of the most important aspects for the creation of those coming programmes and activities will be the iterative process of requirements definition derived from concepts analyses including economical considerations and the results achieved and verified within technology and verification programmes. It is the intention of this paper to provide major trends for those requirements focused on future launch vehicles structures. This will include the aspects of requirements only valid for reusable launch vehicles and those common for expendable, semi-reusable and reusable launch vehicles. Structures and materials is and will be one of the

  8. The National Guard Ballistic Missile Defense Mission minutemen at the Orgital Plane


    Trenary, Ralph Hiram


    Approved for public release; distribution is unlimited This thesis examines the decision to assign the Ballistic Missile Defense mission to units of the Colorado and Alaska National Guard. The history of the Nike Ajax, Nike Hercules, Sentinel and Safeguard programs are examined to identify the origins of support for this decision. First-hand sources provide evidence that the National Guard performance in the Nike air defense program is a record of parity and some superiority to equivalent ...

  9. The face of war: The initial management of modern battlefield ballistic facial injuries


    A Breeze; A J Gibbons


    There is an increased incidence of maxillofacial trauma in conflicts of the 21st century in comparison to those of the 20th century. This is attributed to the asymmetrical nature of modern war with the increased use of improvised explosive devices and improved thoraco-abdominal protection provided by current body armour. This paper aims to briefly review the principles of the initial management of modern battlefield ballistic injuries. The opinions given in this paper are those of the authors...

  10. Defense Science Board Task Force on Defense Strategies for Advanced Ballistic and Cruise Missile Threats (United States)


    annual investment of about $2.5 billion. The study also recommended that the Department of Defense enhance its ab ility to perform the kinds of broad...homeland fundamentally change the nature of the problem to one of strategic deterrence and that the spirit of the terms of reference was more...adversary investments in regional, precision attack cruise and ballistic threaten that foundation, investments that have dramatically increased both

  11. Wound Ballistics Modeling for Blast Loading Blunt Force Impact and Projectile Penetration.

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Paul A. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)


    Light body armor development for the warfighter is based on trial-and-error testing of prototype designs against ballistic projectiles. Torso armor testing against blast is nonexistent but necessary to protect the heart and lungs. In tests against ballistic projectiles, protective apparel is placed over ballistic clay and the projectiles are fired into the armor/clay target. The clay represents the human torso and its behind-armor, permanent deflection is the principal metric used to assess armor protection. Although this approach provides relative merit assessment of protection, it does not examine the behind-armor blunt trauma to crucial torso organs. We propose a modeling and simulation (M&S) capability for wound injury scenarios to the head, neck, and torso of the warfighter. We will use this toolset to investigate the consequences of, and mitigation against, blast exposure, blunt force impact, and ballistic projectile penetration leading to damage of critical organs comprising the central nervous, cardiovascular, and respiratory systems. We will leverage Sandia codes and our M&S expertise on traumatic brain injury to develop virtual anatomical models of the head, neck, and torso and the simulation methodology to capture the physics of wound mechanics. Specifically, we will investigate virtual wound injuries to the head, neck, and torso without and with protective armor to demonstrate the advantages of performing injury simulations for the development of body armor. The proposed toolset constitutes a significant advance over current methods by providing a virtual simulation capability to investigate wound injury and optimize armor design without the need for extensive field testing.

  12. Medical Department, United States Army. Wound Ballistics for World War II. (United States)


    tooth , both premolars, and the first molar were avulsed . A penetrating wound, 2.5 x 3.5 cm., entered the posterior left side of the chest through a...expla- nation for this unusual condition was that aircraft ammunition may have been salvaged from grounded planes and air force depots and used when... avulsion of the leg. A tourniquet was applied to the leg, 350 WOUND BALLISTICS plasma was given, and the patient was removed from the lines within an

  13. Live RB51 vaccine lyophilized hydrogel formulations with increased shelf life for practical ballistic delivery. (United States)

    Falconer, Jonathan L; Christie, R James; Pollard, Emily J; Olsen, Steven C; Grainger, David W


    Ballistic delivery capability is essential to delivering vaccines and other therapeutics effectively to both livestock and wildlife in many global scenarios. Here, lyophilized poly(ethylene glycol) (PEG)-glycolide dimethacrylate crosslinked but degradable hydrogels were assessed as payload vehicles to protect and deliver a viable bacterial vaccine, Brucella abortus strain RB51 (RB51), ballistically using commercial thermoplastic cellulosic degradable biobullets. Degradable PEG hydrogel rods loaded with ∼10(10) live RB51 bacteria (CFUs) were fabricated using three different polymerization methods, cut into fixed-sized payload segments, and lyophilized. Resulting dense, glassy RB51 vaccine-loaded monoliths were inserted into thermoplastic biobullet 100-μL payload chambers. Viability studies of lyophilized formulations assessed as a function of time and storage temperature supported the abilities of several conditions to produce acceptable vaccine shelf-lives. Fired from specifically designed air rifles, gel-loaded biobullets exhibit down-range ballistic properties (i.e., kinetic energy, trajectory, accuracy) similar to unloaded biobullets. Delivered to bovine tissue, these hydrogels rehydrate rapidly by swelling in tissue fluids, with complete hydration observed after 5h in serum. Live RB51 vaccine exhibited excellent viability following carrier polymerization, lyophilization, and storage, at levels sufficient for vaccine dosing to wild range bison, the intended target. These data validate lyophilized degradable PEG hydrogel rods as useful drug carriers for remote delivery of both live vaccines and other therapeutics to livestock, wildlife, or other free-range targets using ballistic technologies. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Conventional Prompt Global Strike and Long-Range Ballistic Missiles: Background and Issues (United States)


    Silver Bullet? Asking the Right Questions About Conventional Prompt Global Strike (Washington, DC: Carneige Endowment for International Peace, 2013), pp...124 James M. Acton, Silver Bullet? Asking the Right Questions About Prompt Global Strike (Washington, DC: Carnegie Endowment for International Peace, 2013), pp. 120-129. ...Conventional Prompt Global Strike and Long-Range Ballistic Missiles: Background and Issues Amy F. Woolf Specialist in Nuclear Weapons Policy

  15. Balancing ballistic protection against physiological strain: evidence from laboratory and field trials. (United States)

    Taylor, Nigel A S; Burdon, Catriona A; van den Heuvel, Anne M J; Fogarty, Alison L; Notley, Sean R; Hunt, Andrew P; Billing, Daniel C; Drain, Jace R; Silk, Aaron J; Patterson, Mark J; Peoples, Gregory E


    This project was based on the premise that decisions concerning the ballistic protection provided to defence personnel should derive from an evaluation of the balance between protection level and its impact on physiological function, mobility, and operational capability. Civilians and soldiers participated in laboratory- and field-based studies in which ensembles providing five levels of ballistic protection were evaluated, each with progressive increases in protection, mass (3.4-11.0 kg), and surface-area coverage (0.25-0.52 m(2)). Physiological trials were conducted on volunteers (N = 8) in a laboratory, under hot-dry conditions simulating an urban patrol: walking at 4 km·h(-1) (90 min) and 6 km·h(-1) (30 min or to fatigue). Field-based trials were used to evaluate tactical battlefield movements (mobility) of soldiers (N = 31) under tropical conditions, and across functional tests of power, speed, agility, endurance, and balance. Finally, trials were conducted at a jungle training centre, with soldiers (N = 32) patrolling under tropical conditions (averaging 5 h). In the laboratory, work tolerance was reduced as protection increased, with deep-body temperature climbing relentlessly. However, the protective ensembles could be grouped into two equally stressful categories, each providing a different level of ballistic protection. This outcome was supported during the mobility trials, with the greatest performance decrement evident during fire and movement simulations, as the ensemble mass was increased (-2.12%·kg(-1)). The jungle patrol trials similarly supported this outcome. Therefore, although ballistic protection does increase physiological strain, this research has provided a basis on which to determine how that strain can be balanced against the mission-specific level of required personal protection.

  16. Reasons Behind the Change of American Ballistic Missile Defense Architecture in Europe

    Directory of Open Access Journals (Sweden)

    Radovan EUGEL


    Full Text Available The article analyses the change of the architecture of American ballistic missile system in Europe by Barrack Obama in September 2009. The author argues that this change was partially, but not solely, motivated by the effort to appease the Russian antagonism against this project. This is supported by various arguments for and against the assertion that it was an effort to appease Russia. Thus, the answer should be somewhere in the middle.

  17. Performance of lead-free versus lead-based hunting ammunition in ballistic soap.

    Directory of Open Access Journals (Sweden)

    Felix Gremse

    Full Text Available BACKGROUND: Lead-free hunting bullets are an alternative to lead-containing bullets which cause health risks for humans and endangered scavenging raptors through lead ingestion. However, doubts concerning the effectiveness of lead-free hunting bullets hinder the wide-spread acceptance in the hunting and wildlife management community. METHODS: We performed terminal ballistic experiments under standardized conditions with ballistic soap as surrogate for game animal tissue to characterize dimensionally stable, partially fragmenting, and deforming lead-free bullets and one commonly used lead-containing bullet. The permanent cavities created in soap blocks are used as a measure for the potential wound damage. The soap blocks were imaged using computed tomography to assess the volume and shape of the cavity and the number of fragments. Shots were performed at different impact speeds, covering a realistic shooting range. Using 3D image segmentation, cavity volume, metal fragment count, deflection angle, and depth of maximum damage were determined. Shots were repeated to investigate the reproducibility of ballistic soap experiments. RESULTS: All bullets showed an increasing cavity volume with increasing deposited energy. The dimensionally stable and fragmenting lead-free bullets achieved a constant conversion ratio while the deforming copper and lead-containing bullets showed a ratio, which increases linearly with the total deposited energy. The lead-containing bullet created hundreds of fragments and significantly more fragments than the lead-free bullets. The deflection angle was significantly higher for the dimensionally stable bullet due to its tumbling behavior and was similarly low for the other bullets. The deforming bullets achieved higher reproducibility than the fragmenting and dimensionally stable bullets. CONCLUSION: The deforming lead-free bullet closely resembled the deforming lead-containing bullet in terms of energy conversion

  18. Review of background oriented schlieren and development for ballistic range applications

    Directory of Open Access Journals (Sweden)

    Obayashi Shigeru


    Full Text Available Quantitative measurements of fluid flow can be achieved by flow visualization techniques, and this paper reviews and outlines background oriented schlieren, with emphasis on its performance: measurement sensitivity and uncertainty. Since the technique depends on cross-correlation, an assessment of image evaluation is also conducted. Background oriented schlieren is applied to two flows: shock reflection from a wedge in a shock tube, and natural cooling byconvection. It is estimated that the technique can be applied to ballistic facilities.

  19. Ballistic Imaging and Scattering Measurements for Diesel Spray Combustion: Optical Development and Phenomenological Studies (United States)


    of ballistic imaging optical train. The HeNe laser and separate detectors are to measure the arrival of the imaging pulse and the spray injection...Experimental setup for two-color scattering measurement . Green beam (532nm), blue beam (355nm), C: camera, L: lens, I: iris, PH: laser pinhole, P...has been used to image fuel sprays in the near-orifice region of non- evaporating fuels. X-ray imaging has successfully measured fuel mass fraction

  20. Thermomechanical effects of ground-based directed energy weapons on satellites and Intercontinental Ballistic Missiles


    Mantzouris, Georgios


    Approved for public release; distribution is unlimited Thermo mechanical modeling and simulation of a satellite and intercontinental ballistic missile assumes importance due to the increased interest in assessing the potential of such attacks. Effective and innovative methods are sought in assessing the structural integrity of such structural components. In this study, we present modeling and simulation aspects of two generic models loaded by high energy laser beam. We present an applicati...

  1. Combined Structural and Compositional Evolution of Planetary Rings Due to Micrometeoroid Impacts and Ballistic Transport (United States)

    Estrada, Paul R.; Durisen, Richard H.; Cuzzi, Jeffrey N.; Morgan, Demitri A.


    We introduce improved numerical techniques for simulating the structural and compositional evolution of planetary rings due to micrometeoroid bombardment and subsequent ballistic transport of impact ejecta. Our current, robust code is capable of modeling structural changes and pollution transport simultaneously over long times on both local and global scales. In this paper, we describe the methodology based on the original structural code of Durisen et al. (1989, Icarus 80, 136-166) and on the pollution transport code of Cuzzi and Estrada (1998, Icarus 132, 1-35). We provide demonstrative simulations to compare with, and extend upon previous work, as well as examples of how ballistic transport can maintain the observed structure in Saturn's rings using available Cassini occultation optical depth data. In particular, we explicitly verify the claim that the inner B (and presumably A) ring edge can be maintained over long periods of time due to an ejecta distribution that is heavily biased in the prograde direction through a balance between the sharpening effects of ballistic transport and the broadening effects of viscosity. We also see that a "ramp"-like feature forms over time just inside that edge. However, it does not remain linear for the duration of the runs presented here unless a less steep ejecta velocity distribution is adopted. We also model the C ring plateaus and find that their outer edges can be maintained at their observed sharpness for long periods due to ballistic transport. We hypothesize that the addition of a significant component of a retrograde-biased ejecta distribution may help explain the linearity of the ramp and is probably essential for maintaining the sharpness of C ring plateau inner edges. This component would arise for the subset of micrometeoroid impacts which are destructive rather than merely cratering. Such a distribution will be introduced in future work.

  2. International space Launch Services Today, ILS (United States)

    Rymarcsuk, James A.; Haase, Ethan E.


    In the last five years the international space launch industry has undergone substantial change. New entrants and existing players in this market have introduced new and upgraded vehicles with greater lift capability than was available five years ago. In addition, some of these vehicles offer reduced risk from their predecessors thanks to design improvements and reductions in the number of failure points. The entry of these vehicles have generated greater supply, increased choice, and improved capabilities to the benefit of satellite operators and manufacturers. Some launch service providers have also enhanced the products and services they offer due to the increased competitiveness in the market. Although the number of commercial satellites launched per year has remained within a fairly narrow range in the last five years, expectations for the future that were once very optimistic have fallen dramatically. The significant number of commercial NGSO satellites launched in the late 1990s helped raise these expectations, but today, the predicted continued growth in launches due to NGSO and broadband systems has not materialized. Despite the decline in expectations from the late 1990s, however, the satellite market that the launch industry supports remains robust. Satellite operators maintain generally favorable financial positions, but the number of satellites required to provide services worldwide is growing slowly, with the number of new and replacement satellites launched per year remaining essentially flat. Satellite operators are undergoing consolidation that is rendering them stronger than ever, and putting them in a position to demand better service from their launch service providers. The increase in supply in the marketplace and the corresponding lack of growth in demand has led to a highly competitive marketplace for launch services internationally. ILS is well positioned with products and services to meet customer needs. Key customer buying factors include

  3. Proposal of New Triggered Lightning Launch Commit Criteria for Japan's Safety Rocket Launch (United States)

    Saito, Yasuhiro; Saito, Toshiya; Okita, Koichi


    Triggered lightning for rocket launch can cause the failure.The current Japanese criteria to postpone the launch opportunity is the thickness of cloud 1.8km with 0 -20 degrees Celsius. Of all H2A launches during these ten years, slipping launches have occurred over half of its flights. So, we have initiated a research on Triggered Lightning Launch Commit Criteria, two years ago.We present the overall activities with the observation campaign (RAIJIN*) in Feb/2012 and Jan-Feb/2013, by means of air-born field mill with airplane, X-band dual polarization radar, ground based field mill and Videosonde. Also, the analytical results and proposal of the new criteria will be shown.*) Raijin is originally a name for Thunder god in Japanese and here it stands for Rocket launch Atmospheric electricity Investigation by Jaxa IN cooperation with academia.

  4. Ballistic penetration test results for Ductal and ultra-high performance concrete samples.

    Energy Technology Data Exchange (ETDEWEB)

    Reinhart, William Dodd; Thornhill, Tom Finley, III (KTech)


    This document provides detailed test results of ballistic impact experiments performed on several types of high performance concrete. These tests were performed at the Sandia National Laboratories Shock Thermodynamic Applied Research Facility using a 50 caliber powder gun to study penetration resistance of concrete samples. This document provides test results for ballistic impact experiments performed on two types of concrete samples, (1) Ductal{reg_sign} concrete is a fiber reinforced high performance concrete patented by Lafarge Group and (2) ultra-high performance concrete (UHPC) produced in-house by DoD. These tests were performed as part of a research demonstration project overseen by USACE and ERDC, at the Sandia National Laboratories Shock Thermodynamic Applied Research (STAR) facility. Ballistic penetration tests were performed on a single stage research powder gun of 50 caliber bore using a full metal jacket M33 ball projectile with a nominal velocity of 914 m/s (3000 ft/s). Testing was observed by Beverly DiPaolo from ERDC-GSL. In all, 31 tests were performed to achieve the test objectives which were: (1) recovery of concrete test specimens for post mortem analysis and characterization at outside labs, (2) measurement of projectile impact velocity and post-penetration residual velocity from electronic and radiographic techniques and, (3) high-speed photography of the projectile prior to impact, impact and exit of the rear surface of the concrete construct, and (4) summarize the results.

  5. Mallow Fiber-Reinforced Epoxy Composites in Multilayered Armor for Personal Ballistic Protection (United States)

    Nascimento, Lucio Fábio Cassiano; Louro, Luis Henrique Leme; Monteiro, Sergio Neves; Lima, Édio Pereira; da Luz, Fernanda Santos


    Lighter and less expensive polymer composites reinforced with natural fibers have been investigated as possible components of a multilayered armor system (MAS) for personal protection against high-velocity ammunition. Their ballistic performance was consistently found comparable with that of conventional Kevlar® synthetic aramid fiber. Among the numerous existing natural fibers with the potential for reinforcing polymer composites to replace Kevlar® in MAS, mallow fiber has not been fully investigated. Thus, the objective of this work is to evaluate the ballistic performance of epoxy composites reinforced with 30 vol.% of aligned mallow fibers as a second MAS layer backing a front ceramic plate. The results using high-velocity 7.62 ammunition show a similar indentation to a Kevlar® layer with the same thickness. An impedance matching calculation supports the similar ballistic performance of mallow fiber composite and Kevlar®. Reduced MAS costs associated with the mallow fiber composite are practical advantages over Kevlar®.

  6. Influence of Chemical Surface Modification of Woven Fabrics on Ballistic and Stab Protection of Multilayer Packets

    Directory of Open Access Journals (Sweden)



    Full Text Available In order to achieve enhanced protective and wear (flexibility, less bulkiness properties of ballistic and stab protecting panels the investigation of chemical surface modification of woven p-aramid fabrics was performed applying different chemical composition shear thickening fluid (STF which improves friction inside fabric structure. For the chemical treatment silicic acid and acrylic dispersion water solutions were used and influence of their different concentrations on panels’ protective properties were investigated. Results of ballistic tests of multilayer protective panel have revealed that shear thickening effect was negligible when shooting at high energy range (E > 440 J. Determination of stab resistance of p-aramid panels has shown that different chemical composition of STFs had different influence on protective properties of the panels. Application of low concentrations of silicic acid determined higher stab resistance values comparing to higher concentrations of acrylic dispersion water solutions. At this stage of research stab tests results as ballistic ones determined that STF application for multilayer p-aramid fabrics protective panels is more efficient at low strike energy levels. DOI:

  7. Atmospheric Entry Studies for Venus Missions: 45 Sphere-Cone Rigid Aeroshells and Ballistic Entries (United States)

    Prabhu, Dinesh K.; Spilker, Thomas R.; Allen, Gary A., Jr.; Hwang, Helen H.; Cappuccio, Gelsomina; Moses, Robert W.


    The present study considers direct ballistic entries into the atmosphere of Venus using a 45deg sphere-cone rigid aeroshell, a legacy shape that has been used successfully in the past in the Pioneer Venus Multiprobe Mission. For a number of entry mass and heatshield diameter combinations (i.e., various ballistic coefficients) and entry velocities, the trajectory space in terms of entry flight path angles between skip out and -30deg is explored with a 3DoF trajectory code, TRAJ. From these trajectories, the viable entry flight path angle space is determined through the use of mechanical and thermal performance limits on the thermal protection material and science payload; the thermal protection material of choice is entry-grade carbon phenolic, for which a material thermal response model is available. For mechanical performance, a 200 g limit is placed on the peak deceleration load experienced by the science instruments, and 10 bar is assumed as the pressure limit for entry-grade carbon-phenolic material. For thermal performance, inflection points in the total heat load distribution are used as cut off criteria. Analysis of the results shows the existence of a range of critical ballistic coefficients beyond which the steepest possible entries are determined by the pressure limit of the material rather than the deceleration load limit.

  8. The relationship between mechanical properties and ballistic penetration depth in a viscoelastic gel. (United States)

    Mrozek, Randy A; Leighliter, Brad; Gold, Christopher S; Beringer, Ian R; Yu, Jian H; VanLandingham, Mark R; Moy, Paul; Foster, Mark H; Lenhart, Joseph L


    The fundamental material response of a viscoelastic material when impacted by a ballistic projectile has important implication for the defense, law enforcement, and medical communities particularly for the evaluation of protective systems. In this paper, we systematically vary the modulus and toughness of a synthetic polymer gel to determine their respective influence on the velocity-dependent penetration of a spherical projectile. The polymer gels were characterized using tensile, compression, and rheological testing taking special care to address the unique challenges associated with obtaining high fidelity mechanical data on highly conformal materials. The depth of penetration data was accurately described using the elastic Froude number for viscoelastic gels ranging in Young's modulus from ~60 to 630 kPa. The minimum velocity of penetration was determined to scale with the gel toughness divided by the gel modulus, a qualitative estimate for the zone of deformation size scale upon impact. We anticipate that this work will provide insight into the critical material factors that control ballistic penetration behavior in soft materials and aid in the design and development of new ballistic testing media. Published by Elsevier Ltd.

  9. Space Launch System for Exploration and Science (United States)

    Klaus, K.


    Introduction: The Space Launch System (SLS) is the most powerful rocket ever built and provides a critical heavy-lift launch capability enabling diverse deep space missions. The exploration class vehicle launches larger payloads farther in our solar system and faster than ever before. The vehicle's 5 m to 10 m fairing allows utilization of existing systems which reduces development risks, size limitations and cost. SLS lift capacity and superior performance shortens mission travel time. Enhanced capabilities enable a myriad of missions including human exploration, planetary science, astrophysics, heliophysics, planetary defense and commercial space exploration endeavors. Human Exploration: SLS is the first heavy-lift launch vehicle capable of transporting crews beyond low Earth orbit in over four decades. Its design maximizes use of common elements and heritage hardware to provide a low-risk, affordable system that meets Orion mission requirements. SLS provides a safe and sustainable deep space pathway to Mars in support of NASA's human spaceflight mission objectives. The SLS enables the launch of large gateway elements beyond the moon. Leveraging a low-energy transfer that reduces required propellant mass, components are then brought back to a desired cislunar destination. SLS provides a significant mass margin that can be used for additional consumables or a secondary payloads. SLS lowers risks for the Asteroid Retrieval Mission by reducing mission time and improving mass margin. SLS lift capacity allows for additional propellant enabling a shorter return or the delivery of a secondary payload, such as gateway component to cislunar space. SLS enables human return to the moon. The intermediate SLS capability allows both crew and cargo to fly to translunar orbit at the same time which will simplify mission design and reduce launch costs. Science Missions: A single SLS launch to Mars will enable sample collection at multiple, geographically dispersed locations and a

  10. Ballistic and diffusive dynamics in a two-dimensional ideal gas of macroscopic chaotic Faraday waves. (United States)

    Welch, Kyle J; Hastings-Hauss, Isaac; Parthasarathy, Raghuveer; Corwin, Eric I


    We have constructed a macroscopic driven system of chaotic Faraday waves whose statistical mechanics, we find, are surprisingly simple, mimicking those of a thermal gas. We use real-time tracking of a single floating probe, energy equipartition, and the Stokes-Einstein relation to define and measure a pseudotemperature and diffusion constant and then self-consistently determine a coefficient of viscous friction for a test particle in this pseudothermal gas. Because of its simplicity, this system can serve as a model for direct experimental investigation of nonequilibrium statistical mechanics, much as the ideal gas epitomizes equilibrium statistical mechanics.

  11. 76 FR 52694 - National Environmental Policy Act: Launch of NASA Routine Payloads on Expendable Launch Vehicles (United States)


    ... associated with NASA routine payloads could not be accomplished without launching orbital and interplanetary... range of payload masses, would provide the needed trajectory capabilities, and would provide highly...

  12. Superfluid kinetic equation approach to the dynamics of the 3He A-B phase boundary

    International Nuclear Information System (INIS)

    Palmeri, J.


    The dynamics of the A-B phase boundary is studied using a nonequilibrium theory inspired by the microscopic approach to flux flow in type-II superconductors, namely a generalized two-fluid model consisting of coupled dynamical equations for the superfluid order parameter and the quasiparticle fluid. The interface mobility is obtained to lowest order in the front velocity in three different dynamical regimes: the gapless, hydrodynamic, and ballistic. Experiments have so far only been performed in the ballistic regime, and in this regime we find that, if only Andreev scattering processes are accounted for in the interface mobility, then the theoretical predictions for the terminal velocity of the planar interface are too big by a factor ∼2. From this we conclude that there may be other important contributions to the interface mobility in the ballistic regime, and we discuss a few possibilities

  13. Ascent Trajectory Optimization for Air-Launched Launch Vehicle with Small Sun-Synchronous Orbit Satellite Based on Pseudo-spectral Method

    Directory of Open Access Journals (Sweden)

    L. Wang


    Full Text Available Economical space transportation systems to launch small satellites into Earth’s orbits are researched in many countries. Using aerospace systems, included aircraft and air-launched launch vehicle, is one of the low cost technical solutions. The airborne launch vehicle application to launch a small satellite with the purpose of remote sensing requires high precision exit on specified sun-synchronous orbit. So a problem is stated to construct an optimal ascent trajectory and optimal control.In this paper, the mathematical motion model of the air-launched launch vehicle with the external disturbances caused by the Earth’s non-sphericity, drag and wind is put forward based on the three-stage flight program with passive intermediate section. A discrete process based on pseudo-spectral method is used to solve the problem, which allows converting the initial problem into a nonlinear programming problem with dynamic constraints and aims for the criteria of maximization of the final mass released onto the target orbit.Application of the proposed solution procedure is illustrated by calculating the optimal control and the corresponding trajectory for two-stage liquid launch vehicle, which places the small spacecraft on the orbit of sun-synchronous at the height of 512 km. The numerical simulation results have demonstrated the effectiveness of the proposed algorithm and allow us to analyze three-stage trajectory parameters with intermediate passive flight phase. It can be noted that in the resulting ascent trajectory, the intermediate passive flight part is a suborbital trajectory with low energy integral, perigee of which is under the surface of the Earth.

  14. Cost and Economics for Advanced Launch Vehicles (United States)

    Whitfield, Jeff


    Market sensitivity and weight-based cost estimating relationships are key drivers in determining the financial viability of advanced space launch vehicle designs. Due to decreasing space transportation budgets and increasing foreign competition, it has become essential for financial assessments of prospective launch vehicles to be performed during the conceptual design phase. As part of this financial assessment, it is imperative to understand the relationship between market volatility, the uncertainty of weight estimates, and the economic viability of an advanced space launch vehicle program. This paper reports the results of a study that evaluated the economic risk inherent in market variability and the uncertainty of developing weight estimates for an advanced space launch vehicle program. The purpose of this study was to determine the sensitivity of a business case for advanced space flight design with respect to the changing nature of market conditions and the complexity of determining accurate weight estimations during the conceptual design phase. The expected uncertainty associated with these two factors drives the economic risk of the overall program. The study incorporates Monte Carlo simulation techniques to determine the probability of attaining specific levels of economic performance when the market and weight parameters are allowed to vary. This structured approach toward uncertainties allows for the assessment of risks associated with a launch vehicle program's economic performance. This results in the determination of the value of the additional risk placed on the project by these two factors.

  15. Rationales for the Lightning Launch Commit Criteria (United States)

    Willett, John C. (Editor); Merceret, Francis J. (Editor); Krider, E. Philip; O'Brien, T. Paul; Dye, James E.; Walterscheid, Richard L.; Stolzenburg, Maribeth; Cummins, Kenneth; Christian, Hugh J.; Madura, John T.


    Since natural and triggered lightning are demonstrated hazards to launch vehicles, payloads, and spacecraft, NASA and the Department of Defense (DoD) follow the Lightning Launch Commit Criteria (LLCC) for launches from Federal Ranges. The LLCC were developed to prevent future instances of a rocket intercepting natural lightning or triggering a lightning flash during launch from a Federal Range. NASA and DoD utilize the Lightning Advisory Panel (LAP) to establish and develop robust rationale from which the criteria originate. The rationale document also contains appendices that provide additional scientific background, including detailed descriptions of the theory and observations behind the rationales. The LLCC in whole or part are used across the globe due to the rigor of the documented criteria and associated rationale. The Federal Aviation Administration (FAA) adopted the LLCC in 2006 for commercial space transportation and the criteria were codified in the FAA's Code of Federal Regulations (CFR) for Safety of an Expendable Launch Vehicle (Appendix G to 14 CFR Part 417, (G417)) and renamed Lightning Flight Commit Criteria in G417.

  16. Ballistic analysis during multiscale explosive eruption at Vesuvius and hazard implications (United States)

    De Novellis, Vincenzo


    Ballistic Projectiles (BP) are rock-basement or magma fragments of variable size and density that are ejected from vents during explosive eruptions and follow almost parabolic trajectories that are influenced by gravity and drag forces before they reach their impact point on the surface. During the past century, numerous observers have described the violent ejection of large blocks and bombs from volcanoes during volcanic explosions. Starting from '40 years of last century, several authors developed a mathematical expression relating initial velocity and trajectory angle of ejected blocks to the range, taking into account air drag and assuming a constant drag coefficient; but only in the last 30 years was developed the first mathematical algorithm for ballistic trajectories in the volcanological literature that considered variations in drag coefficient with Reynolds number. Finally, with 21st century computer power, ballistic computation should be available to anyone as a back-of-the-envelope indicator of explosive power by a user-friendly computer program. At Mt. Vesuvius a series of explosion events accompanied eruptive mechanism stages during its history. In particular the explosive eruptive events at Vesuvius was affected by 3 types of energy activity: i) a normal strombolian activity that consists of rhythmic, mild to moderate explosions lasting a few seconds that eject scoriaceous lapilli and bombs, ash and lithic blocks; ii) a vulcanian or violent explosions characterized by short-lived events involving more than one vent, defined as strombolian paroxysms; iii) from sublinian to plinian activity, that have been the most powerful events observed at Mt. Vesuvius; on the other hand plinian was indicated as the energetic term to define the most famous eruption of 79 AD. In this study, an eruptive model appropriate for exanimated eruptions, is used to estimate initial conditions (ejection height, take-off angle, velocity) for BP, assuming a broad range of gas

  17. Influence of the vacuum resin process, on the ballistic behaviour of lightweight armouring solutions (United States)

    Lefebvre, M.; Boussu, F.; Coutellier, D.; Vallee, D.


    The armour of vehicles against conventional threats is mainly composed with steel or aluminium panels. Efficient heavy solutions exist, but the involved industries require new lightweight structures. Moreover, unconventional threats as IEDs (Improvised Explosive Devices) may cause severe damages on these structural and protective panel solutions. Thus, combination of aluminium or steel plates with textile composite structures used as a backing, leads to the mass reduction and better performance under delamination behaviour against these new threats. This paper is a part of a study dealing with the impact behaviour of three warp interlocks weaving structures under Fragment Simulating Projectile (FSP) impact. During this research, several parameters has being studied as the influence of the yarns insertions [1-4], the degradation of the yarns during the weaving process [5-7], and the influence of the resin rate on the ballistic behaviour. The resin rate inside composite materials is dependant on the final application. In ballistic protection, we need to control the resin rate in order to have a deformable structure in order to absorb the maximum of energy. However, with the warp interlocks weaving structure, the yarns insertions induce empty spaces between the yarns where the resin takes place without being evacuated. The resin rate inside the warp interlocks structures is in the most of cases less than 50%, which lead to have brittle and hard material during the impact. Contrary to interlocks structures, the existing protection based on prepreg structure have a high fibres ratio around 88% of weight. That leads to have the best ballistic properties during the impact and good deformability of the structure. The aim of this paper is to evaluate the influence of the resin rate on the ballistic results of the composites materials. For that, we have chosen two kinds of warp interlocks fabrics which were infused with epoxy resin following two processes. The first is a

  18. Influence of the vacuum resin process, on the ballistic behaviour of lightweight armouring solutions

    Directory of Open Access Journals (Sweden)

    Coutellier D.


    Full Text Available The armour of vehicles against conventional threats is mainly composed with steel or aluminium panels. Efficient heavy solutions exist, but the involved industries require new lightweight structures. Moreover, unconventional threats as IEDs (Improvised Explosive Devices may cause severe damages on these structural and protective panel solutions. Thus, combination of aluminium or steel plates with textile composite structures used as a backing, leads to the mass reduction and better performance under delamination behaviour against these new threats. This paper is a part of a study dealing with the impact behaviour of three warp interlocks weaving structures under Fragment Simulating Projectile (FSP impact. During this research, several parameters has being studied as the influence of the yarns insertions [1–4], the degradation of the yarns during the weaving process [5–7], and the influence of the resin rate on the ballistic behaviour. The resin rate inside composite materials is dependant on the final application. In ballistic protection, we need to control the resin rate in order to have a deformable structure in order to absorb the maximum of energy. However, with the warp interlocks weaving structure, the yarns insertions induce empty spaces between the yarns where the resin takes place without being evacuated. The resin rate inside the warp interlocks structures is in the most of cases less than 50%, which lead to have brittle and hard material during the impact. Contrary to interlocks structures, the existing protection based on prepreg structure have a high fibres ratio around 88% of weight. That leads to have the best ballistic properties during the impact and good deformability of the structure. The aim of this paper is to evaluate the influence of the resin rate on the ballistic results of the composites materials. For that, we have chosen two kinds of warp interlocks fabrics which were infused with epoxy resin following two

  19. STS-93 M.S. Michel Tognini suits up before launch (United States)


    For the third time, in the Operations and Checkout Building, STS- 93 Mission Specialist Michel Tognini of France, who represents the Centre National d'Etudes Spatiales (CNES), waves after donning his launch and entry suit during final launch preparations. After Space Shuttle Columbia's July 20 and 22 launch attempts were scrubbed, the launch was again rescheduled for Friday, July 23, at 12:24 a.m. EDT. STS-93 is a five-day mission primarily to release the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. The STS-93 crew numbers five: Commander Eileen M. Collins, Pilot Jeffrey S. Ashby, and Mission Specialists Stephen A. Hawley (Ph.D.), Catherine G. Coleman (Ph.D.) and Tognini. Collins is the first woman to serve as commander of a shuttle mission.

  20. Dust Dynamics Near Planetary Surfaces (United States)

    Colwell, Joshua; Hughes, Anna; Grund, Chris

    Observations of a lunar "horizon glow" by several Surveyor spacecraft in the 1960s opened the study of the dynamics of charged dust particles near planetary surfaces. The surfaces of the Moon and other airless planetary bodies in the solar system (asteroids, and other moons) are directly exposed to the solar wind and ionizing solar ultraviolet radiation, resulting in a time-dependent electric surface potential. Because these same objects are also exposed to bombardment by micrometeoroids, the surfaces are usually characterized by a power-law size distribution of dust that extends to sub-micron-sized particles. Individual particles can acquire a charge different from their surroundings leading to electrostatic levitation. Once levitated, particles may simply return to the surface on nearly ballistic trajectories, escape entirely from the moon or asteroid if the initial velocity is large, or in some cases be stably levitated for extended periods of time. All three outcomes have observable consequences. Furthermore, the behavior of charged dust near the surface has practical implications for planned future manned and unmanned activities on the lunar surface. Charged dust particles also act as sensitive probes of the near-surface plasma environment. Recent numerical modeling of dust levitation and transport show that charged micron-sized dust is likely to accumulate in topographic lows such as craters, providing a mechanism for the creation of dust "ponds" observed on the asteroid 433 Eros. Such deposition can occur when particles are supported by the photoelectron sheath above the dayside and drift over shadowed regions of craters where the surface potential is much smaller. Earlier studies of the lunar horizon glow are consistent with those particles being on simple ballistic trajectories following electrostatic launching from the surface. Smaller particles may be accelerated from the lunar surface to high altitudes consistent with observations of high altitude

  1. Atomic hydrogen as a launch vehicle propellant (United States)

    Palaszewski, Bryan A.


    An analysis of several atomic hydrogen launch vehicles was conducted. A discussion of the facilities and the technologies that would be needed for these vehicles is also presented. The Gross Liftoff Weights (GLOW) for two systems were estimated; their specific impulses (I sub sp) were 750 and 1500 lb(sub f)/s/lb(sub m). The atomic hydrogen launch vehicles were also compared to the currently planned Advanced Launch System design concepts. Very significant GLOW reductions of 52 to 58 percent are possible over the Advanced Launch System designs. Applying atomic hydrogen propellants to upper stages was also considered. Very high I(sub sp) (greater than 750 lb(sub f)/s/lb(sub m)) is needed to enable a mass savings over advanced oxygen/hydrogen propulsion. Associated with the potential benefits of high I(sub sp) atomic hydrogen are several challenging problems. Very high magnetic fields are required to maintain the atomic hydrogen in a solid hydrogen matrix. The magnetic field strength was estimated to be 30 kilogauss (3 Tesla). Also the storage temperature of the propellant is 4 K. This very low temperature will require a large refrigeration facility for the launch vehicle. The design considerations for a very high recombination rate for the propellant are also discussed. A recombination rate of 210 cm/s is predicted for atomic hydrogen. This high recombination rate can produce very high acceleration for the launch vehicle. Unique insulation or segmentation to inhibit the propellant may be needed to reduce its recombination rate.

  2. Space Launch System (SLS) Mission Planner's Guide (United States)

    Smith, David Alan


    The purpose of this Space Launch System (SLS) Mission Planner's Guide (MPG) is to provide future payload developers/users with sufficient insight to support preliminary SLS mission planning. Consequently, this SLS MPG is not intended to be a payload requirements document; rather, it organizes and details SLS interfaces/accommodations in a manner similar to that of current Expendable Launch Vehicle (ELV) user guides to support early feasibility assessment. Like ELV Programs, once approved to fly on SLS, specific payload requirements will be defined in unique documentation.

  3. Dynamics of surface-migration: Electron-induced reaction of 1,2-dihaloethanes on Si(100) (United States)

    Huang, Kai; MacLean, Oliver; Guo, Si Yue; McNab, Iain R.; Ning, Zhanyu; Wang, Chen-Guang; Ji, Wei; Polanyi, John C.


    Scanning Tunneling Microscopy was used to investigate the electron-induced reaction of 1,2-dibromoethane (DBE) and 1,2-dichloroethane (DCE) on Si(100).We observed a long-lived physisorbed molecular state of DBE at 75 K and of DCE at 110 K. As a result we were able to characterize by experiment and also by ab initio theory the dynamics of ethylene production in the electron-induced surface-reaction of these physisorbed species. For both DBE and DCE the ethylene product was observed to migrate across the surface. In the case of DBE the recoil of the ethylene favored the silicon rows, migrating by an average distance of 22 Å, and up to 100 Å. Trajectory calculations were performed for this electron-induced reaction, using an 'Impulsive Two-State' model involving an anionic excited state and a neutral ground-potential. The model agreed with experiment in reproducing both migration and desorption of the ethylene product. The computed migration exhibited a 'ballistic' launch and subsequent 'bounces', thereby accounting for the observed long-range migratory dynamics.

  4. B-52 Launch Aircraft in Flight (United States)


    NASA's venerable B-52 mothership is seen here photographed from a KC-135 Tanker aircraft. The X-43 adapter is visible attached to the right wing. The B-52, used for launching experimental aircraft and for other flight research projects, has been a familiar sight in the skies over Edwards for more than 40 years and is also both the oldest B-52 still flying and the aircraft with the lowest flight time of any B-52. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported

  5. 14 CFR 415.109 - Launch description. (United States)


    ... trajectory information as part of the flight safety analysis data required by § 415.115. (1) One drawing must... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Launch description. 415.109 Section 415.109 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF...

  6. Control of NASA's Space Launch System (United States)

    VanZwieten, Tannen S.


    The flight control system for the NASA Space Launch System (SLS) employs a control architecture that evolved from Saturn, Shuttle & Ares I-X while also incorporating modern enhancements. This control system, baselined for the first unmanned launch, has been verified and successfully flight-tested on the Ares I-X rocket and an F/A-18 aircraft. The development of the launch vehicle itself came on the heels of the Space Shuttle retirement in 2011, and will deliver more payload to orbit and produce more thrust than any other vehicle, past or present, opening the way to new frontiers of space exploration as it carries the Orion crew vehicle, equipment, and experiments into new territories. The initial 70 metric ton vehicle consists of four RS-25 core stage engines from the Space Shuttle inventory, two 5- segment solid rocket boosters which are advanced versions of the Space Shuttle boosters, and a core stage that resembles the External Tank and carries the liquid propellant while also serving as the vehicle's structural backbone. Just above SLS' core stage is the Interim Cryogenic Propulsion Stage (ICPS), based upon the payload motor used by the Delta IV Evolved Expendable Launch Vehicle (EELV).

  7. CHDS Launches Army National Guard Certificate Program


    Center for Homeland Defense and Security


    Center for Homeland Defense and Security, PRESS RELEASES The Naval Postgraduate School’s (NPS) Center for Homeland Defense and Security (CHDS) has launched a certificate program in Homeland Defense and Security (HD/S) specifically for the National Guard (NG). The...

  8. Illustration of Launching Samples Home from Mars (United States)


    One crucial step in a Mars sample return mission would be to launch the collected sample away from the surface of Mars. This artist's concept depicts a Mars ascent vehicle for starting a sample of Mars rocks on their trip to Earth.

  9. Pressure And Thermal Modeling Of Rocket Launches (United States)

    Smith, Sheldon D.; Myruski, Brian L.; Farmer, Richard C.; Freeman, Jon A.


    Report presents mathematical model for use in designing rocket-launching stand. Predicts pressure and thermal environment, as well as thermal responses of structures to impinging rocket-exhaust plumes. Enables relatively inexperienced analyst to determine time-varying distributions and absolute levels of pressure and heat loads on structures.

  10. Landsat Data Continuity Mission - Launch Fever (United States)

    Irons, James R.; Loveland, Thomas R.; Markham, Brian L.; Masek, Jeffrey G.; Cook, Bruce; Dwyer, John L.


    The year 2013 will be an exciting period for those that study the Earth land surface from space, particularly those that observe and characterize land cover, land use, and the change of cover and use over time. Two new satellite observatories will be launched next year that will enhance capabilities for observing the global land surface. The United States plans to launch the Landsat Data Continuity Mission (LDCM) in January. That event will be followed later in the year by the European Space Agency (ESA) launch of the first Sentinel 2 satellite. Considered together, the two satellites will increase the frequency of opportunities for viewing the land surface at a scale where human impact and influence can be differentiated from natural change. Data from the two satellites will provide images for similar spectral bands and for comparable spatial resolutions with rigorous attention to calibration that will facilitate cross comparisons. This presentation will provide an overview of the LDCM satellite system and report its readiness for the January launch.

  11. SMAP Post-launch Field Campaign Planning (United States)

    The SMAP post-launch Cal/Val activities are intended both to assess the quality of the mission products and to support analyses that lead to their improvement. A suite of complementary methodologies will be employed that will result in a robust global assessment. Much of the work will occur in the C...

  12. The Launch Systems Operations Cost Model (United States)

    Prince, Frank A.; Hamaker, Joseph W. (Technical Monitor)


    One of NASA's primary missions is to reduce the cost of access to space while simultaneously increasing safety. A key component, and one of the least understood, is the recurring operations and support cost for reusable launch systems. In order to predict these costs, NASA, under the leadership of the Independent Program Assessment Office (IPAO), has commissioned the development of a Launch Systems Operations Cost Model (LSOCM). LSOCM is a tool to predict the operations & support (O&S) cost of new and modified reusable (and partially reusable) launch systems. The requirements are to predict the non-recurring cost for the ground infrastructure and the recurring cost of maintaining that infrastructure, performing vehicle logistics, and performing the O&S actions to return the vehicle to flight. In addition, the model must estimate the time required to cycle the vehicle through all of the ground processing activities. The current version of LSOCM is an amalgamation of existing tools, leveraging our understanding of shuttle operations cost with a means of predicting how the maintenance burden will change as the vehicle becomes more aircraft like. The use of the Conceptual Operations Manpower Estimating Tool/Operations Cost Model (COMET/OCM) provides a solid point of departure based on shuttle and expendable launch vehicle (ELV) experience. The incorporation of the Reliability and Maintainability Analysis Tool (RMAT) as expressed by a set of response surface model equations gives a method for estimating how changing launch system characteristics affects cost and cycle time as compared to today's shuttle system. Plans are being made to improve the model. The development team will be spending the next few months devising a structured methodology that will enable verified and validated algorithms to give accurate cost estimates. To assist in this endeavor the LSOCM team is part of an Agency wide effort to combine resources with other cost and operations professionals to

  13. ARAC's operational support of the Cassini launch (United States)

    Pace, John C.; Baskett, Ronald L.


    The Atmospheric Release Advisory Capability (ARAC) program at the Lawrence Livermore National Laboratory (LLNL) was the U.S. Department of Energy atmospheric modeling resource used for the contingency of potential radiological releases during the launch of the Cassini mission. The ARAC Center at LLNL forecasted detailed weather conditions and delivered consequence assessments for potential accident scenarios to NASA before and during launch operations. A key aspect of ARAC's support was to acquire a variety of meteorological data for use in both forecast and real-time model calculations. ARAC acquired electronically two types of real-time observed meteorological data: 1) the full set of on-site towers and profilers via the Cape Canaveral Air Station (CCAS) Meteorological Interactive Data Display System (MIDDS), and 2) routine regional airport observations (delivered to the ARAC Center from the Air Force Weather Agency). We also used two forecasted data sources: 1) the U.S. Air Force 45th Weather Squadron at CCAS forecasted soundings for launch time, and 2) the Navy Operational Regional Atmospheric Prediction System (NORAPS) prognostic model which ARAC ran over the Cape. The NORAPS runs produced detailed 24-hr forecasts of 3-D wind fields. ARAC used default radiological accident source terms involving the potential destruction of Cassini's Radioisotope Thermoelectric Generators (RTGs) during 3 phases: 1) before the launch, 2) during the first 5 sec after ignition, and 3) from 5 to 143 sec after ignition. ARAC successfully developed and delivered dose and deposition plots at 24 hours, 3 hours, and 30 minutes before each of the launch windows.

  14. Launching a world-class joint venture. (United States)

    Bamford, James; Ernst, David; Fubini, David G


    More than 5,000 joint ventures, and many more contractual alliances, have been launched worldwide in the past five years. Companies are realizing that JVs and alliances can be lucrative vehicles for developing new products, moving into new markets, and increasing revenues. The problem is, the success rate for JVs and alliances is on a par with that for mergers and acquisitions--which is to say not very good. The authors, all McKinsey consultants, argue that JV success remains elusive for most companies because they don't pay enough attention to launch planning and execution. Most companies are highly disciplined about integrating the companies they target through M&A, but they rarely commit sufficient resources to launching similarly sized joint ventures or alliances. As a result, the parent companies experience strategic conflicts, governance gridlock, and missed operational synergies. Often, they walk away from the deal. The launch phase begins with the parent companies' signing of a memorandum of understanding and continues through the first 100 days of the JV or alliance's operation. During this period, it's critical for the parents to convene a team dedicated to exposing inherent tensions early. Specifically, the launch team must tackle four basic challenges. First, build and maintain strategic alignment across the separate corporate entities, each of which has its own goals, market pressures, and shareholders. Second, create a shared governance system for the two parent companies. Third, manage the economic interdependencies between the corporate parents and the JV. And fourth, build a cohesive, high-performing organization (the JV or alliance)--not a simple task, since most managers come from, will want to return to, and may even hold simultaneous positions in the parent companies. Using real-world examples, the authors offer their suggestions for meeting these challenges.

  15. Hybrid adaptive ascent flight control for a flexible launch vehicle (United States)

    Lefevre, Brian D.

    For the purpose of maintaining dynamic stability and improving guidance command tracking performance under off-nominal flight conditions, a hybrid adaptive control scheme is selected and modified for use as a launch vehicle flight controller. This architecture merges a model reference adaptive approach, which utilizes both direct and indirect adaptive elements, with a classical dynamic inversion controller. This structure is chosen for a number of reasons: the properties of the reference model can be easily adjusted to tune the desired handling qualities of the spacecraft, the indirect adaptive element (which consists of an online parameter identification algorithm) continually refines the estimates of the evolving characteristic parameters utilized in the dynamic inversion, and the direct adaptive element (which consists of a neural network) augments the linear feedback signal to compensate for any nonlinearities in the vehicle dynamics. The combination of these elements enables the control system to retain the nonlinear capabilities of an adaptive network while relying heavily on the linear portion of the feedback signal to dictate the dynamic response under most operating conditions. To begin the analysis, the ascent dynamics of a launch vehicle with a single 1st stage rocket motor (typical of the Ares 1 spacecraft) are characterized. The dynamics are then linearized with assumptions that are appropriate for a launch vehicle, so that the resulting equations may be inverted by the flight controller in order to compute the control signals necessary to generate the desired response from the vehicle. Next, the development of the hybrid adaptive launch vehicle ascent flight control architecture is discussed in detail. Alterations of the generic hybrid adaptive control architecture include the incorporation of a command conversion operation which transforms guidance input from quaternion form (as provided by NASA) to the body-fixed angular rate commands needed by the

  16. Restricted Three-Body Dynamics and Morphologies of Early Novae Shells and their Spectral Signatures (United States)

    Lynch, D. K.; Mazuk, S.; Campbell, E.; Venturini, C. C.


    The goal of this work is to calculate emission line profiles of classical novae systems for comparison to line profiles we observe in an attempt to deduce geometrical and dynamical properties of the system from the spectra. The material ejected by the thermonuclear runaway on the surface of the white dwarf (WD) is modeled as a large number of massless particles that are launched instantaneously and move ballistically thereafter. Each particle's position is propagated independently in three-dimensional space with a particle's track terminating if it impacts the WD or the secondary. Predicted line profiles, assuming an optically thin shell, are generated by computing a histogram of the number of particles in radial velocity space for a given observing projection. At high ejection velocities, a nearly spherical shell is produced. At ejection speeds near the WD's escape velocity, very complicated and ever changing geometries result and the material remains close to the system's barycenter. We present animations of computer simulations of novae shell development and the associated line profiles. This work supported by The Aerospace Corporation's Independent Research and Development program and by the US Air Force Space and Missile Systems Center through the Mission Oriented Investigation and Experimentation program, under contract F4701-00-C-0009 with the US Air Force.

  17. Shooting with sound: optimizing an affordable ballistic gelatin recipe in a graded ultrasound phantom education program. (United States)

    Tanious, Shariff F; Cline, Jamie; Cavin, Jennifer; Davidson, Nathan; Coleman, J Keegan; Goodmurphy, Craig W


    The goal of this study was to investigate the durability and longevity of gelatin formulas for the production of staged ultrasound phantoms for education. Gelatin phantoms were prepared from Knox gelatin (Kraft Foods, Northfield, IL) and a standard 10%-by-mass ordinance gelatin solution. Phantoms were durability tested by compressing to a 2-cm depth until cracking was visible. Additionally, 16 containers with varying combinations of phenol, container type, and storage location were tested for longevity against desiccation and molding. Once formulation was determined, 4 stages of phantoms from novice to clinically relevant were poured, and clinicians with ultrasound training ranked them on a 7-point Likert scale based on task difficulty, phantom suitability, and fidelity. On durability testing, the ballistic gelatin outperformed the Knox gelatin by more than 200 compressions. On longevity testing, gelatin with a 0.5% phenol concentration stored with a lid and refrigeration lasted longest, whereas containers without a lid had desiccation within 1 month, and those without phenol became moldy within 6 weeks. Ballistic gelatin was more expensive when buying in small quantities but was 7.4% less expensive when buying in bulk. The staged phantoms were deemed suitable for training, but clinicians did not consistently rank the phantoms in the intended order of 1 to 4 (44%). Refrigerated and sealed ballistic gelatin with phenol was a cost-effective method for creating in-house staged ultrasound phantoms suitable for large-scale ultrasound educational training needs. Clinician ranking of phantoms may be influenced by current training methods that favor biological tissue scanning as easier. © 2015 by the American Institute of Ultrasound in Medicine.

  18. Deformations on Hole and Projectile Surfaces Caused By High Velocity Friction During Ballistic Impact (United States)

    Karamış, M. B.


    In this study, the deformations caused by the ballistic impact on the MM composites and on projectile surfaces are examined. The hole section and grain deformation of unreinforced targets are also examined after impact. The relatively high complexity of impact problems is caused by the large number of intervening parameters like relative velocity of projectile and target, shape of colliding objects, relative stiffness and masses, time-dependent surface of contact, geometry and boundary conditions and material characteristics. The material used in this investigation are 2024 and 7075 aluminum alloys as matrix reinforced with SiC and Al2O3 particles. The matrix materials are extensively used in defense applications due to its favorable ballistic properties, moderate strength, high corrosion resistance and super plastic potential. Two different composites were produced; one by casting and the other by lamination. The ballistic tests of the composite targets were carried out according to NIJ Standard-0101.04, Temperature 21 °C, RH=65% with 7.62 mm projectiles. The bullet weight was 9.6 g and their muzzle velocities were in the range of 770–800 m/s. The projectiles consisted of a steel core, copper jacket and lead material. The composite targets were positioned 15 m from the rifle. The interaction between projectiles and the target hole created after impact were examined by light microscopy and photography. Different damage and failure mechanisms such as petalling, cracking, spalling, dishing, etc., were observed on the target body. On the other hand, dramatic wear and damages on the projectile surface were also observed. The targets were supported with Al-5083 backing blocks having 40 mm thickness.

  19. Simulating water distribution patterns for fixed spray plate sprinkler using the ballistic theory

    Directory of Open Access Journals (Sweden)

    Sofiane Ouazaa


    Full Text Available Ballistic simulation of the spray sprinkler for self-propelled irrigation machines requires the incorporation of the effect of the jet impact with the deflecting plate. The kinetic energy losses produced by the jet impact with the spray plate were experimentally characterized for different nozzle sizes and two working pressures for fixed spray plate sprinklers (FSPS. A technique of low speed photography was used to determine drop velocity at the point where the jet is broken into droplets. The water distribution pattern of FSPS for different nozzle sizes, working at two pressures and under different wind conditions were characterized in field experiments. The ballistic model was calibrated to simulate water distribution in different technical and meteorological conditions. Field experiments and the ballistic model were used to obtain the model parameters (D50, n, K1and K2. The results show that kinetic energy losses decrease with nozzle diameter increments; from 80% for the smallest nozzle diameter (2 mm to 45% for nozzle diameters larger than 5.1 mm, and from 80% for the smallest nozzle diameter (2 mm to 34.7% for nozzle diameters larger than 6.8 mm, at 138 kPa and 69 kPa working pressures, respectively. The results from the model compared well with field observations. The calibrated model has reproduced accurately the water distribution pattern in calm (r=0.98 and high windy conditions (r=0.76. A new relationship was found between the corrector parameters (K1’ and K2’ and the wind speed. As a consequence, model simulation will be possible for untested meteorological conditions.

  20. Ballistic electron channels including weakly protected topological states in delaminated bilayer graphene (United States)

    Lane, T. L. M.; Andelković, M.; Wallbank, J. R.; Covaci, L.; Peeters, F. M.; Fal'ko, V. I.


    We show that delaminations in bilayer graphene (BLG) with electrostatically induced interlayer symmetry can provide one with ballistic channels for electrons with energies inside the electrostatically induced BLG gap. These channels are formed by a combination of valley-polarized evanescent states propagating along the delamination edges (which persist in the presence of a strong magnetic field) and standing waves bouncing between them inside the delaminated region (in a strong magnetic field, these transform into Landau levels in the monolayers). For inverted stackings in BLGs on the left and right of the delamination (AB-2ML-BA or BA-2ML-AB, where 2ML indicates two decoupled monolayers of graphene), the lowest-energy ballistic channels are gapless, have linear dispersion, and appear to be weakly topologically protected. When BLG stackings on both sides of the delamination are the same (AB-2ML-AB or BA-2ML-BA), the lowest-energy ballistic channels are gapped, with a gap ɛg scaling as ɛg∝W-1 with delamination width and ɛg∝δ-1 with the on-layer energy difference in the delaminated part of the structure. Depending on the width, delaminations may also support several "higher-energy" waveguide modes. Our results are based on both the analytical study of the wave matching of Dirac states and tight-binding model calculations, and we analyze in detail the dependence of the delamination spectrum on the electrostatic conditions in the structure, such as the vertical displacement field.

  1. "Ballistic Six" Upper-Extremity Plyometric Training for the Pediatric Volleyball Players. (United States)

    Turgut, Elif; Cinar-Medeni, Ozge; Colakoglu, Filiz F; Baltaci, Gul


    The Ballistic Six exercise program includes commonly used upper-body exercises, and the program is recommended for overhead throwing athletes. The purpose of the current study was to investigate the effects of a 12-week the Ballistic Six upper-extremity plyometric training program on upper-body explosive power, endurance, and reaction time in pediatric overhead athletes. Twenty-eight female pediatric volleyball players participated in the study. The participants were randomly divided into 2 study groups: an intervention group (upper-extremity plyometric training in addition to the volleyball training; n = 14) and a control group (the volleyball training only; n = 14). All the participants were assessed before and after a 12-week training program for upper-body power, strength and endurance, and reaction time. Statistical comparison was performed using an analysis of variance test. Comparisons showed that after a 12-week training program, the Ballistic Six upper-body plyometric training program resulted in more improvements in an overhead medicine ball throwing distance and a push-up performance, as well as greater improvements in the reaction time in the nonthrowing arm when compared with control training. In addition, a 12-week training program was found to be effective in achieving improvements in the reaction time in the throwing arm for both groups similarly. Compared with regular training, upper-body plyometric training resulted in additional improvements in upper-body power and strength and endurance among pediatric volleyball players. The findings of the study provide a basis for developing training protocols for pediatric volleyball players.

  2. Ballistic stretching increases flexibility and acute vertical jump height when combined with basketball activity. (United States)

    Woolstenhulme, Mandy T; Griffiths, Christine M; Woolstenhulme, Emily M; Parcell, Allen C


    Stretching is often included as part of a warm-up procedure for basketball activity. However, the efficacy of stretching with respect to sport performance has come into question. We determined the effects of 4 different warm-up protocols followed by 20 minutes of basketball activity on flexibility and vertical jump height. Subjects participated in 6 weeks (2 times per week) of warm-up and basketball activity. The warm-up groups participated in ballistic stretching, static stretching, sprinting, or basketball shooting (control group). We asked 3 questions. First, what effect does 6 weeks of warm-up exercise and basketball play have on both flexibility and vertical jump height? We measured sit and reach and vertical jump height before (week -1) and after (week 7) the 6 weeks. Flexibility increased for the ballistic, static, and sprint groups compared to the control group (p vertical jump height did not change for any of the groups. Our second question was what is the acute effect of each warm-up on vertical jump height? We measured vertical jump immediately after the warm-up on 4 separate occasions during the 6 weeks (at weeks 0, 2, 4, and 6). Vertical jump height was not different for any group. Finally, our third question was what is the acute effect of each warm-up on vertical jump height following 20 minutes of basketball play? We measured vertical jump height immediately following 20 minutes of basketball play at weeks 0, 2, 4, and 6. Only the ballistic stretching group demonstrated an acute increase in vertical jump 20 minutes after basketball play (p basketball play, as it is beneficial to vertical jump performance.

  3. Ballistic Application of Coir Fiber Reinforced Epoxy Composite in Multilayered Armor


    Luz, Fernanda Santos da; Monteiro, Sergio Neves; Lima, Eduardo Sousa; Lima Júnior, Édio Pereira


    Multilayered armor systems (MAS) composed of relatively lighter materials with capacity to provide personal ballistic protection are being extensively investigated and used in armor vests. A typical MAS to stand high impact energy 7.62 mm bullet has a front ceramic followed by an aramid fabric laminate, such as Kevlar™. Since both the army and municipal police personnel might need to wear an armor vest, a large number of vests needs to be supplied. In the case of Kevlar™, one of the most expe...

  4. Capabilities of Helmets for Preventing Head Injuries Induced by Ballistic Impacts

    Directory of Open Access Journals (Sweden)

    D.V. Balandin


    Full Text Available The limiting performance of ballistically loaded helmets designed to reduce head injuries is studied analytically. The projectile does not penetrate the helmet. This analysis evaluates the absolute minimum of the peak displacement of the helmet shell relative to the head, provided that criteria measuring the severity of head injuries lie within prescribed limits. Rather than optimize a specific design configuration, e.g. a viscoelastic foam liner, characteristics of a time-dependent force representing the helmet liner are calculated. The formulation reduces the limiting performance analysis to an optimal control problem.

  5. Improving the ballistic immunity of armour steel weldments by plasma transferred arc (PTA) hardfacing

    International Nuclear Information System (INIS)

    Babu, S.; Balasubramanian, V.; Madhusudhan Reddy, G.; Balasubramanian, T.S.


    This investigation describes about improving the ballistic immunity of armour steel joints which are fabricated by sandwiching of plasma transferred arc (PTA) hardfaced interlayers in between soft austenitic stainless steel (ASS) welds. From the results, the welds with sandwiched interlayer stopped all the projectiles successfully, irrespective of processes used, whereas welds without sandwiched interlayer were failed. In order to know the cause of failure, a detailed metallographic examination was carried out. The variation in microstructure and hardness at various zones of the weld are discussed. For the first time, it was found that the armour steel could be hardfaced by the PTA process with tungsten carbide powder.

  6. Analytical Model of Subthreshold Drain Current Characteristics of Ballistic Silicon Nanowire Transistors

    Directory of Open Access Journals (Sweden)

    Wanjie Xu


    Full Text Available A physically based subthreshold current model for silicon nanowire transistors working in the ballistic regime is developed. Based on the electric potential distribution obtained from a 2D Poisson equation and by performing some perturbation approximations for subband energy levels, an analytical model for the subthreshold drain current is obtained. The model is further used for predicting the subthreshold slopes and threshold voltages of the transistors. Our results agree well with TCAD simulation with different geometries and under different biasing conditions.

  7. The NOL ballistic piston compressor 2: Operation up to 5,000 ATM (United States)

    Hammond, G. L.; Lalos, G. T.


    Experiments are described which demonstrated the feasibility of rapidly compressing inert gases in a ballistic piston compressor to simultaneously high temperatures and densities previously unobtainable in the laboratory. With argon, temperatures of the order of 6000 K and accompanying densities of the order of 100 Amagats have been obtained; and with nitrogen, temperatures and densities of 3000 K and 400 Amagats have been approached. Details of the design, assembly, instrumentation, and operating procedures are presented, and the results of mechanical and thermal performance tests up to 5000 atmospheres pressure are described. Emphasis is placed on experiments which demonstrated the usefulness of this apparatus for spectral line broadening studies.

  8. Using ballistic electron emission microscopy to investigate the metal-vacuum interface

    International Nuclear Information System (INIS)

    Baykul, M.C.


    This dissertation investigates the possibility of using the ballistic electron microscope (BEEM) to study the metal-vacuum interface. In order to do that, we have designed and built a novel experimental setup which consists of an STM tip from which electrons tunnel into a thin (<60 nm), free-standing metal film in vacuum ambient. When the tunnel bias exceeds the work function of the metal, some small fraction of the tunneling electrons traverses through the film without any energy loss, and emits into the vacuum through the back side of the film. The rate of emission of such ballistic electrons, which is called the collector current, is measured by a channel electron multiplier. One of the major challenges for this investigation was preparing free-standing thin films by the following steps: (a) evaporating Au onto a (100) face of NaCl at room temperature, (b) dissolving the NaCl in a 50-50 mixture of ethyl alcohol and distilled water, and (c) catching the Au film that floats on the surface of the solvent onto a Cu grid. Subsequent annealing increased the grain size, and improved the bonding of the film onto the grid. We have succeeded in observing ballistic electron emission through these free-standing thin films, even though the collector current tended to decay in a time interval of a few tenths of a second. The exact cause of this decay is not known, however we have suggested some possibilities. By ramping the bias voltage from about 0.2 V to about 10.5 V, we find the threshold bias voltage at which the collector current begins. This threshold voltage is an upper limit for the work function of AU. From our data we obtained a value of 5.2 V for this upper limit. We also have plotted the collector current, that was averaged over a scan area of 375 nm x 375 nm, against the tunnel bias. This plot shows that, for this region, the lowest threshold bias voltage for ballistic electron emission is between 3.5 V and 4.5 V

  9. Current transport modeling and experimental study of THz room temperature ballistic deflection transistors

    Energy Technology Data Exchange (ETDEWEB)

    Kaushal, Vikas; Margala, Martin [Department of Electrical and Computer Engineering, University of Massachusetts Lowell, MA, 01854 (United States); Yu Qiaoyan; Ampadu, Paul; Guarino, Gregg; Sobolewski, Roman, E-mail: vikas_kaushal@student.uml.ed [Department of Electrical and Computer Engineering, University of Rochester, NY, 14627 (United States)


    In this paper, two different theoretical models, Comsol Multiphysics{sup TM} (a Finite Element Analysis tool), and a field solver Atlas/Blaze from Silvaco, are compared qualitatively to study the effect of the deflector position, its size and electric field on the charge transport and its distribution along the channel, resulting in current outputs and leakages in ballistic deflection transistors (BDT). Silvaco simulations and experimental results were then used to study the lateral charge transport as a result of variation in electric field distribution, which controls the charge current along the channel in BDT. The electric field dependence of gain is also studied with experimental and theoretical results.

  10. Current transport modeling and experimental study of THz room temperature ballistic deflection transistors

    International Nuclear Information System (INIS)

    Kaushal, Vikas; Margala, Martin; Yu Qiaoyan; Ampadu, Paul; Guarino, Gregg; Sobolewski, Roman


    In this paper, two different theoretical models, Comsol Multiphysics TM (a Finite Element Analysis tool), and a field solver Atlas/Blaze from Silvaco, are compared qualitatively to study the effect of the deflector position, its size and electric field on the charge transport and its distribution along the channel, resulting in current outputs and leakages in ballistic deflection transistors (BDT). Silvaco simulations and experimental results were then used to study the lateral charge transport as a result of variation in electric field distribution, which controls the charge current along the channel in BDT. The electric field dependence of gain is also studied with experimental and theoretical results.

  11. High energy ballistic and fracture comparison between multilayered armor systems using non-woven curaua fabric composites and aramid laminates

    Directory of Open Access Journals (Sweden)

    Fábio de Oliveira Braga


    Full Text Available For personal protection against high kinetic energy projectiles, multilayered armor systems (MAS are usually the best option. They combine synergistically the properties of different materials such as ceramics, composites and metals. In the present work, ballistic tests were performed to evaluate multilayered armor systems (MAS using curaua non-woven fabric epoxy composites as second layer. A comparison to a MAS using aramid (Kevlar™ fabric laminates was made. The results showed that the curaua non-woven fabric composites are suitable to the high ballistic applications, and are promising substitutes for aramid fabric laminates. Keywords: Composite, Natural fiber, Curaua fiber, Non-woven fabric, Aramid laminate, Ballistic test

  12. Comparative study on sintered alumina for ballistic shielding application; Estudo comparativo entre aluminas sinterizadas visando aplicacao em blindagem balistica

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Francisco Cristovao Lourenco de; Goncalves, Diniz Pereira [Centro Tecnico Aeroespacial (CTA), Sao Jose dos Campos, SP (Brazil). Inst. de Aeronautica e Espaco


    This work presents a development of the armor made from special ceramic materials and kevlar. An experimental investigation was conducted to study the ballistic penetration resistance on three samples taken from sintered alumina: a commercial one and two formulations A and B made in IAE/CTA. The main differences between the two formulations was the grain size and bend resistance. The knowledge of the mechanisms during the penetration and perforation process allowed to apply a ductile composite laminate made form kevlar under the alumina to delay its rupture. The last ballistic test showed how a Weibull`s modulii and other mechanical properties are able to improve ballistic penetration resistance. (author) 3 refs.

  13. Experimental Determination of Ballistic Performance of Composite Material Kevlar 29 and Alumina Powder/ Epoxy by Spherical Projectile

    Directory of Open Access Journals (Sweden)

    Luay Hashem Abbud


    Full Text Available In this study, a response of hybrid composite laminate woven fiber Kevlar29 – Al2O3 Powder/ Epoxy subjected to high velocity impact loading is presented. The energy absorbed due to impact of small rigid projectile on composite materials targets is determined experimentally. The energy absorbed due to impact of hemispherical projectiles on the developed composite laminates is investigated. The results revealed the maximum ballistic limit at impact velocity is found to be 390.87 ± 6 m/s for an the 18 mm target thickness. The ballistic limit velocity predictions are based on the theoretical method presented from another article. The initial velocity and residual velocity results showed good is agreement compared with the predicted results of Ipson and Recht equations. With 5.4 % of accuracy based on the experimental value for the theoretical model for ballistic limit velocity.

  14. NASA's Space Launch System Development Status (United States)

    Lyles, Garry


    Development of the National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) heavy lift rocket is shifting from the formulation phase into the implementation phase in 2014, a little more than 3 years after formal program establishment. Current development is focused on delivering a vehicle capable of launching 70 metric tons (t) into low Earth orbit. This "Block 1" configuration will launch the Orion Multi-Purpose Crew Vehicle (MPCV) on its first autonomous flight beyond the Moon and back in December 2017, followed by its first crewed flight in 2021. SLS can evolve to a130t lift capability and serve as a baseline for numerous robotic and human missions ranging from a Mars sample return to delivering the first astronauts to explore another planet. Benefits associated with its unprecedented mass and volume include reduced trip times and simplified payload design. Every SLS element achieved significant, tangible progress over the past year. Among the Program's many accomplishments are: manufacture of core stage test barrels and domes; testing of Solid Rocket Booster development hardware including thrust vector controls and avionics; planning for RS- 25 core stage engine testing; and more than 4,000 wind tunnel runs to refine vehicle configuration, trajectory, and guidance. The Program shipped its first flight hardware - the Multi-Purpose Crew Vehicle Stage Adapter (MSA) - to the United Launch Alliance for integration with the Delta IV heavy rocket that will launch an Orion test article in 2014 from NASA's Kennedy Space Center. The Program successfully completed Preliminary Design Review in 2013 and will complete Key Decision Point C in 2014. NASA has authorized the Program to move forward to Critical Design Review, scheduled for 2015 and a December 2017 first launch. The Program's success to date is due to prudent use of proven technology, infrastructure, and workforce from the Saturn and Space Shuttle programs, a streamlined management

  15. 14 CFR 417.125 - Launch of an unguided suborbital launch vehicle. (United States)


    ... elevation angle setting that ensures the rocket will not fly uprange. A launch operator must set the..., in all configurations, must be stable in flexible body to 1.5 calibers and rigid body to 2.0 calibers...

  16. Testing Strategies and Methodologies for the Max Launch Abort System (United States)

    Schaible, Dawn M.; Yuchnovicz, Daniel E.


    The National Aeronautics and Space Administration (NASA) Engineering and Safety Center (NESC) was tasked to develop an alternate, tower-less launch abort system (LAS) as risk mitigation for the Orion Project. The successful pad abort flight demonstration test in July 2009 of the "Max" launch abort system (MLAS) provided data critical to the design of future LASs, while demonstrating the Agency s ability to rapidly design, build and fly full-scale hardware at minimal cost in a "virtual" work environment. Limited funding and an aggressive schedule presented a challenge for testing of the complex MLAS system. The successful pad abort flight demonstration test was attributed to the project s systems engineering and integration process, which included: a concise definition of, and an adherence to, flight test objectives; a solid operational concept; well defined performance requirements, and a test program tailored to reducing the highest flight test risks. The testing ranged from wind tunnel validation of computational fluid dynamic simulations to component ground tests of the highest risk subsystems. This paper provides an overview of the testing/risk management approach and methodologies used to understand and reduce the areas of highest risk - resulting in a successful flight demonstration test.

  17. Demonstration of a New Smallsat Launch Vehicle: The Orbital/Suborbital Program (OSP) Space Launch Vehicle Inaugural Mission Results


    Schoneman, Scott; Buckley, MAJ Steven; Stoller, MAJ George; Marina, CPT Luis; Morris, LT Christopher


    The United States Air Force and Orbital Sciences Corporation (Orbital) completed development and demonstration of a new low cost space launch vehicle for launching small satellites using surplus Minuteman II rocket motors melded with commercial launch vehicle technology. The Orbital Suborbital Program Space Launch Vehicle (OSPSLV, aka OSP Minotaur) successfully achieved all mission objectives with the inaugural launch into a 405 nm circular, 100 deg inclination orbit on 26 January, 2000. This...

  18. A perfect launch of Space Shuttle Discovery (United States)


    Space Shuttle Discovery lifts off Launch Pad 39A against a backdrop of xenon lights (just above the orbiter' nose and at left). On the Mobile Launcher Platform beneath, water begins flooding the area for flame and sound control. The perfect on- time liftoff occurred at 7:17 p.m. EDT, sending a crew of seven on the 100th launch in the history of the Shuttle program. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. Discovery's landing is expected Oct. 22 at 2:10 p.m. EDT.

  19. STS-99 / Endeavour Pre Launch Press Conference (United States)


    Live footage shows the participants in the Pre Launch Press Conference disclosing the status of the STS-99 flight. The panelists consists of Ron Dittemore the Shuttle Program Manager from JSC (Johnson Space Center), Dave King Director of Shuttle Processing from KSC (Kennedy Space Center), and Capt. Clif Stargardt Meteorologist 45th Weather Squadron. George Diller NASA's Public Affairs Office introduces each panelist as they discuss the hardware change, re-test, and the weather condition. The panelists also answer questions from the audience about the GPS box that failed early that morning, the deployment of the mass, and vehicle safety today as it compares to the past. Also shown are various shots of the Shuttle on the launch pad.

  20. STS-99 Pre-Launch Press Conference (United States)


    Live footage shows the participants in the Pre-Launch Press Conference disclosing the status of the STS-99 flight. The panelists consists of Ron Dittemore the Shuttle Program Manager from JSC (Johnson Space Center), Dave King Director of Shuttle Operation from KSC (Kennedy Space Center), Klaus Damian Head of ESA Astronaut Training Division, and Capt. Clif Stargardt Meteorologist 45th Weather Squadron. George Diller, NASA's Public Affairs Office, introduces each panelist as they discuss the failure of a segment of the tip seal, the international contributions made to this mission, and the weather condition. The panelists also answer questions from the audience about the rejected component of the tip seal, how this error was made, and the effects that this has on the flight plans. Also shown are various night shots of the Shuttle on the launch pad.