WorldWideScience

Sample records for ballistic molecular transistors

  1. Going ballistic: Graphene hot electron transistors

    Science.gov (United States)

    Vaziri, S.; Smith, A. D.; Östling, M.; Lupina, G.; Dabrowski, J.; Lippert, G.; Mehr, W.; Driussi, F.; Venica, S.; Di Lecce, V.; Gnudi, A.; König, M.; Ruhl, G.; Belete, M.; Lemme, M. C.

    2015-12-01

    This paper reviews the experimental and theoretical state of the art in ballistic hot electron transistors that utilize two-dimensional base contacts made from graphene, i.e. graphene base transistors (GBTs). Early performance predictions that indicated potential for THz operation still hold true today, even with improved models that take non-idealities into account. Experimental results clearly demonstrate the basic functionality, with on/off current switching over several orders of magnitude, but further developments are required to exploit the full potential of the GBT device family. In particular, interfaces between graphene and semiconductors or dielectrics are far from perfect and thus limit experimental device integrity, reliability and performance.

  2. A Klein-tunneling transistor with ballistic graphene

    International Nuclear Information System (INIS)

    Wilmart, Quentin; Fève, Gwendal; Berroir, Jean-Marc; Plaçais, Bernard; Berrada, Salim; Hung Nguyen, V; Dollfus, Philippe; Torrin, David

    2014-01-01

    Today, the availability of high mobility graphene up to room temperature makes ballistic transport in nanodevices achievable. In particular, p-n-p transistors in the ballistic regime give access to Klein tunneling physics and allow the realization of devices exploiting the optics-like behavior of Dirac Fermions (DFs) as in the Veselago lens or the Fabry–Pérot cavity. Here we propose a Klein tunneling transistor based on the geometrical optics of DFs. We consider the case of a prismatic active region delimited by a triangular gate, where total internal reflection may occur, which leads to the tunable suppression of transistor transmission. We calculate the transmission and the current by means of scattering theory and the finite bias properties using non-equilibrium Green's function (NEGF) simulation. (letter)

  3. A Klein-tunneling transistor with ballistic graphene

    Energy Technology Data Exchange (ETDEWEB)

    Wilmart, Quentin; Fève, Gwendal; Berroir, Jean-Marc; Plaçais, Bernard [Laboratoire Pierre Aigrain, Ecole Normale Supérieure, CNRS (UMR 8551), Université P et M Curie, Université D Diderot, 24, rue Lhomond, 75231 Paris Cedex 05 (France); Berrada, Salim; Hung Nguyen, V; Dollfus, Philippe [Institute of Fundamental Electronics, Univ. Paris-Sud, CNRS, Orsay (France); Torrin, David [Département de Physique, Ecole Polytechnique, 91128 Palaiseau (France)

    2014-06-15

    Today, the availability of high mobility graphene up to room temperature makes ballistic transport in nanodevices achievable. In particular, p-n-p transistors in the ballistic regime give access to Klein tunneling physics and allow the realization of devices exploiting the optics-like behavior of Dirac Fermions (DFs) as in the Veselago lens or the Fabry–Pérot cavity. Here we propose a Klein tunneling transistor based on the geometrical optics of DFs. We consider the case of a prismatic active region delimited by a triangular gate, where total internal reflection may occur, which leads to the tunable suppression of transistor transmission. We calculate the transmission and the current by means of scattering theory and the finite bias properties using non-equilibrium Green's function (NEGF) simulation. (letter)

  4. Scaling properties of ballistic nano-transistors

    Directory of Open Access Journals (Sweden)

    Wulf Ulrich

    2011-01-01

    Full Text Available Abstract Recently, we have suggested a scale-invariant model for a nano-transistor. In agreement with experiments a close-to-linear thresh-old trace was found in the calculated I D - V D-traces separating the regimes of classically allowed transport and tunneling transport. In this conference contribution, the relevant physical quantities in our model and its range of applicability are discussed in more detail. Extending the temperature range of our studies it is shown that a close-to-linear thresh-old trace results at room temperatures as well. In qualitative agreement with the experiments the I D - V G-traces for small drain voltages show thermally activated transport below the threshold gate voltage. In contrast, at large drain voltages the gate-voltage dependence is weaker. As can be expected in our relatively simple model, the theoretical drain current is larger than the experimental one by a little less than a decade.

  5. Ballistic Spin Field Effect Transistor Based on Silicon Nanowires

    Science.gov (United States)

    Osintsev, Dmitri; Sverdlov, Viktor; Stanojevic, Zlatan; Selberherr, Siegfried

    2011-03-01

    We investigate the properties of ballistic spin field-effect transistors build on silicon nanowires. An accurate description of the conduction band based on the k . p} model is necessary in thin and narrow silicon nanostructures. The subband effective mass and subband splitting dependence on the nanowire dimensions is analyzed and used in the transport calculations. The spin transistor is formed by sandwiching the nanowire between two ferromagnetic metallic contacts. Delta-function barriers at the interfaces between the contacts and the silicon channel are introduced. The major contribution to the electric field-dependent spin-orbit interaction in confined silicon systems is due to the interface-induced inversion asymmetry which is of the Dresselhaus type. We study the current and conductance through the system for the contacts being in parallel and anti-parallel configurations. Differences between the [100] and [110] orientated structures are investigated in details. This work is supported by the European Research Council through the grant #247056 MOSILSPIN.

  6. Temperature dependence of ballistic mobility in a metamorphic InGaAs/InAlAs high electron mobility transistor

    International Nuclear Information System (INIS)

    Lee, Jongkyong; Gang, Suhyun; Jo, Yongcheol; Kim, Jongmin; Woo, Hyeonseok; Han, Jaeseok; Kim, Hyungsang; Im, Hyunsik

    2014-01-01

    We have investigated the temperature dependence of ballistic mobility in a 100 nm-long InGaAs/InAlAs metamorphic high-electron-mobility transistor designed for millimeter-wavelength RF applications. To extract the temperature dependence of quasi-ballistic mobility, our experiment involves measurements of the effective mobility in the low-bias linear region of the transistor and of the collision-dominated Hall mobility using a gated Hall bar of the same epitaxial structure. The data measured from the experiment are consistent with that of modeled ballistic mobility based on ballistic transport theory. These results advance the understanding of ballistic transport in various transistors with a nano-scale channel length that is comparable to the carrier's mean free path in the channel.

  7. Analytical Model of Subthreshold Drain Current Characteristics of Ballistic Silicon Nanowire Transistors

    Directory of Open Access Journals (Sweden)

    Wanjie Xu

    2015-01-01

    Full Text Available A physically based subthreshold current model for silicon nanowire transistors working in the ballistic regime is developed. Based on the electric potential distribution obtained from a 2D Poisson equation and by performing some perturbation approximations for subband energy levels, an analytical model for the subthreshold drain current is obtained. The model is further used for predicting the subthreshold slopes and threshold voltages of the transistors. Our results agree well with TCAD simulation with different geometries and under different biasing conditions.

  8. Molecular thermal transistor: Dimension analysis and mechanism

    Science.gov (United States)

    Behnia, S.; Panahinia, R.

    2018-04-01

    Recently, large challenge has been spent to realize high efficient thermal transistors. Outstanding properties of DNA make it as an excellent nano material in future technologies. In this paper, we introduced a high efficient DNA based thermal transistor. The thermal transistor operates when the system shows an increase in the thermal flux despite of decreasing temperature gradient. This is what called as negative differential thermal resistance (NDTR). Based on multifractal analysis, we could distinguish regions with NDTR state from non-NDTR state. Moreover, Based on dimension spectrum of the system, it is detected that NDTR state is accompanied by ballistic transport regime. The generalized correlation sum (analogous to specific heat) shows that an irregular decrease in the specific heat induces an increase in the mean free path (mfp) of phonons. This leads to the occurrence of NDTR.

  9. Ballistic electron transport calculation of strained germanium-tin fin field-effect transistors

    International Nuclear Information System (INIS)

    Lan, H.-S.; Liu, C. W.

    2014-01-01

    The dependence of ballistic electron current on Sn content, sidewall orientations, fin width, and uniaxial stress is theoretically studied for the GeSn fin field-effect transistors. Alloying Sn increases the direct Γ valley occupancy and enhances the injection velocity at virtual source node. (112 ¯ ) sidewall gives the highest current enhancement due to the rapidly increasing Γ valley occupancy. The non-parabolicity of the Γ valley affects the occupancy significantly. However, uniaxial tensile stress and the shrinkage of fin width reduce the Γ valley occupancy, and the currents are enhanced by increasing occupancy of specific indirect L valleys with high injection velocity

  10. Ballistic electron transport calculation of strained germanium-tin fin field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Lan, H.-S. [Graduate Institute of Electronics Engineering and Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan (China); Liu, C. W., E-mail: chee@cc.ee.ntu.edu.tw [Graduate Institute of Electronics Engineering and Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan (China); Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan (China)

    2014-05-12

    The dependence of ballistic electron current on Sn content, sidewall orientations, fin width, and uniaxial stress is theoretically studied for the GeSn fin field-effect transistors. Alloying Sn increases the direct Γ valley occupancy and enhances the injection velocity at virtual source node. (112{sup ¯}) sidewall gives the highest current enhancement due to the rapidly increasing Γ valley occupancy. The non-parabolicity of the Γ valley affects the occupancy significantly. However, uniaxial tensile stress and the shrinkage of fin width reduce the Γ valley occupancy, and the currents are enhanced by increasing occupancy of specific indirect L valleys with high injection velocity.

  11. Current transport modeling and experimental study of THz room temperature ballistic deflection transistors

    Energy Technology Data Exchange (ETDEWEB)

    Kaushal, Vikas; Margala, Martin [Department of Electrical and Computer Engineering, University of Massachusetts Lowell, MA, 01854 (United States); Yu Qiaoyan; Ampadu, Paul; Guarino, Gregg; Sobolewski, Roman, E-mail: vikas_kaushal@student.uml.ed [Department of Electrical and Computer Engineering, University of Rochester, NY, 14627 (United States)

    2009-11-15

    In this paper, two different theoretical models, Comsol Multiphysics{sup TM} (a Finite Element Analysis tool), and a field solver Atlas/Blaze from Silvaco, are compared qualitatively to study the effect of the deflector position, its size and electric field on the charge transport and its distribution along the channel, resulting in current outputs and leakages in ballistic deflection transistors (BDT). Silvaco simulations and experimental results were then used to study the lateral charge transport as a result of variation in electric field distribution, which controls the charge current along the channel in BDT. The electric field dependence of gain is also studied with experimental and theoretical results.

  12. Current transport modeling and experimental study of THz room temperature ballistic deflection transistors

    International Nuclear Information System (INIS)

    Kaushal, Vikas; Margala, Martin; Yu Qiaoyan; Ampadu, Paul; Guarino, Gregg; Sobolewski, Roman

    2009-01-01

    In this paper, two different theoretical models, Comsol Multiphysics TM (a Finite Element Analysis tool), and a field solver Atlas/Blaze from Silvaco, are compared qualitatively to study the effect of the deflector position, its size and electric field on the charge transport and its distribution along the channel, resulting in current outputs and leakages in ballistic deflection transistors (BDT). Silvaco simulations and experimental results were then used to study the lateral charge transport as a result of variation in electric field distribution, which controls the charge current along the channel in BDT. The electric field dependence of gain is also studied with experimental and theoretical results.

  13. Molecular dynamics simulations of ballistic He penetration into W fuzz

    NARCIS (Netherlands)

    Klaver, T. P. C.; Nordlund, K.; Morgan, T. W.; Westerhof, E.; Thijsse, B. J.; van de Sanden, M. C. M.

    2016-01-01

    Results are presented of large-scale Molecular Dynamics simulations of low-energy He bombardment of W nanorods, or so-called ‘fuzz’ structures. The goal of these simulations is to see if ballistic He penetration through W fuzz offers a more realistic scenario for how He moves through fuzz layers

  14. Quasi-ballistic carbon nanotube array transistors with current density exceeding Si and GaAs

    Science.gov (United States)

    Brady, Gerald J.; Way, Austin J.; Safron, Nathaniel S.; Evensen, Harold T.; Gopalan, Padma; Arnold, Michael S.

    2016-01-01

    Carbon nanotubes (CNTs) are tantalizing candidates for semiconductor electronics because of their exceptional charge transport properties and one-dimensional electrostatics. Ballistic transport approaching the quantum conductance limit of 2G0 = 4e2/h has been achieved in field-effect transistors (FETs) containing one CNT. However, constraints in CNT sorting, processing, alignment, and contacts give rise to nonidealities when CNTs are implemented in densely packed parallel arrays such as those needed for technology, resulting in a conductance per CNT far from 2G0. The consequence has been that, whereas CNTs are ultimately expected to yield FETs that are more conductive than conventional semiconductors, CNTs, instead, have underperformed channel materials, such as Si, by sixfold or more. We report quasi-ballistic CNT array FETs at a density of 47 CNTs μm−1, fabricated through a combination of CNT purification, solution-based assembly, and CNT treatment. The conductance is as high as 0.46 G0 per CNT. In parallel, the conductance of the arrays reaches 1.7 mS μm−1, which is seven times higher than the previous state-of-the-art CNT array FETs made by other methods. The saturated on-state current density is as high as 900 μA μm−1 and is similar to or exceeds that of Si FETs when compared at and equivalent gate oxide thickness and at the same off-state current density. The on-state current density exceeds that of GaAs FETs as well. This breakthrough in CNT array performance is a critical advance toward the exploitation of CNTs in logic, high-speed communications, and other semiconductor electronics technologies. PMID:27617293

  15. Compact modeling of nanoscale triple-gate junctionless transistors covering drift-diffusion to quasi-ballistic carrier transport

    Science.gov (United States)

    Oproglidis, T. A.; Karatsori, T. A.; Barraud, S.; Ghibaudo, G.; Dimitriadis, C. A.

    2018-04-01

    In this work, we extend our analytical compact model for nanoscale junctionless triple-gate (JL TG) MOSFETs, capturing carrier transport from drift-diffusion to quasi-ballistic regime. This is based on a simple formulation of the low-field mobility extracted from experimental data using the Y-function method, taking into account the ballistic carrier motion and an increased carrier scattering in process-induced defects near the source/drain regions. The case of a Schottky junction in non-ideal ohmic contact at the drain side was also taken into account by modifying the threshold voltage and ideality factor of the JL transistor. The model is validated with experimental data for n-channel JL TG MOSFETs with channel length varying from 95 down to 25 nm. It can be easily implemented as a compact model for use in Spice circuit simulators.

  16. Vibrational excitations in molecular layers probed by ballistic electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kajen, Rasanayagam Sivasayan; Chandrasekhar, Natarajan [Institute of Materials Research and Engineering, 3 Research Link, 117602 (Singapore); Feng Xinliang; Muellen, Klaus [Max-Planck-Institut fuer Polymerforschung, Postfach 3148, D-55021 Mainz (Germany); Su Haibin, E-mail: n-chandra@imre.a-star.edu.sg, E-mail: muellen@mpip-mainz.mpg.de, E-mail: hbsu@ntu.edu.sg [Division of Materials Science, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore)

    2011-10-28

    We demonstrate the information on molecular vibrational modes via the second derivative (d{sup 2}I{sub B}/dV{sup 2}) of the ballistic electron emission spectroscopy (BEES) current. The proposed method does not create huge fields as in the case of conventional derivative spectroscopy and maintains a zero bias across the device. BEES studies carried out on three different types of large polycyclic aromatic hydrocarbon (PAH) molecular layers show that the d{sup 2}I{sub B}/dV{sup 2} spectra consist of uniformly spaced peaks corresponding to vibronic excitations. The peak spacing is found to be identical for molecules within the same PAH family though the BEES onset voltage varies for different molecules. In addition, injection into a particular orbital appears to correspond to a specific vibrational mode as the manifestation of the symmetry principle.

  17. Ballistic behavior of ultra-high molecular weight polyethylene composite: effect of gamma radiation

    International Nuclear Information System (INIS)

    Alves, Andreia L. dos Santos; Nascimento, Lucio F.C.; Suarez, Joao C. Miguez; lucio2002bol.com.br

    2003-01-01

    Since World War II, textile composites have been used as ballistic armor. Ultra-high molecular weight polyethylene (UHMWPE) fibers are used in the production of armor materials. As they have been developed and commercialized only recently, there is not enough information about the effect of environmental agents in the ballistic performance of UHMWPE composites. In the present work, was evaluated the ballistic behavior of composite plates manufactured with UHMWPE fibers after exposure to gamma radiation. The ballistic tests results were related to the macromolecular alterations induced by the radiation through mechanical (hardness, impact and flexure) and physicochemical (Ftir/Mir. DSC and TGA) testing. It was observed that irradiation induces changes in the UHMWPE, degrading the ballistic performance of the composite. These results are presented and discussed. (author)

  18. Controlling charge current through a DNA based molecular transistor

    Energy Technology Data Exchange (ETDEWEB)

    Behnia, S., E-mail: s.behnia@sci.uut.ac.ir; Fathizadeh, S.; Ziaei, J.

    2017-01-05

    Molecular electronics is complementary to silicon-based electronics and may induce electronic functions which are difficult to obtain with conventional technology. We have considered a DNA based molecular transistor and study its transport properties. The appropriate DNA sequence as a central chain in molecular transistor and the functional interval for applied voltages is obtained. I–V characteristic diagram shows the rectifier behavior as well as the negative differential resistance phenomenon of DNA transistor. We have observed the nearly periodic behavior in the current flowing through DNA. It is reported that there is a critical gate voltage for each applied bias which above it, the electrical current is always positive. - Highlights: • Modeling a DNA based molecular transistor and studying its transport properties. • Choosing the appropriate DNA sequence using the quantum chaos tools. • Choosing the functional interval for voltages via the inverse participation ratio tool. • Detecting the rectifier and negative differential resistance behavior of DNA.

  19. Progresses in organic field-effect transistors and molecular electronics

    Institute of Scientific and Technical Information of China (English)

    Wu Weiping; Xu Wei; Hu Wenping; Liu Yunqi; Zhu Daoben

    2006-01-01

    In the past years,organic semiconductors have been extensively investigated as electronic materials for organic field-effect transistors (OFETs).In this review,we briefly summarize the current status of organic field-effect transistors including materials design,device physics,molecular electronics and the applications of carbon nanotubes in molecular electronics.Future prospects and investigations required to improve the OFET performance are also involved.

  20. Quantum transport through a deformable molecular transistor

    Science.gov (United States)

    Cornaglia, P. S.; Grempel, D. R.; Ness, H.

    2005-02-01

    The linear transport properties of a model molecular transistor with electron-electron and electron-phonon interactions were investigated analytically and numerically. The model takes into account phonon modulation of the electronic energy levels and of the tunneling barrier between the molecule and the electrodes. When both effects are present they lead to asymmetries in the dependence of the conductance on gate voltage. The Kondo effect is observed in the presence of electron-phonon interactions. There are important qualitative differences between the cases of weak and strong coupling. In the first case the standard Kondo effect driven by spin fluctuations occurs. In the second case, it is driven by charge fluctuations. The Fermi-liquid relation between the spectral density of the molecule and its charge is altered by electron-phonon interactions. Remarkably, the relation between the zero-temperature conductance and the charge remains unchanged. Therefore, there is perfect transmission in all regimes whenever the average number of electrons in the molecule is an odd integer.

  1. Quantum ballistic transistor and low noise HEMT for cryo-electronics lower than 4.2 K

    International Nuclear Information System (INIS)

    Gremion, E.

    2008-01-01

    Next generations of cryo-detectors, widely used in physics of particles and physics of universe, will need in the future high-performance cryo-electronics less noisy and closer to the detector. Within this context, this work investigates properties of two dimensional electron gas GaAlAs/GaAs by studying two components, quantum point contact (QPC) and high electron mobility transistor (HEMT). Thanks to quantized conductance steps in QPC, we have realized a quantum ballistic transistor (voltage gain higher than 1), a new component useful for cryo-electronics thanks to its operating temperature and weak power consumption (about 1 nW). Moreover, the very low capacity of this component leads to promising performances for multiplexing low temperature bolometer dedicated to millimetric astronomy. The second study focused on HEMT with very high quality 2DEG. At 4.2 K, a voltage gain higher than 20 can be obtained with a very low power dissipation of less than 100 μW. Under the above experimental conditions, an equivalent input voltage noise of 1.2 nV/√(Hz) at 1 kHz and 0.12 nV/√(Hz) at 100 kHz has been reached. According to the Hooge formula, these noise performances are get by increasing gate capacity estimated to 60 pF. (author)

  2. Self-Consistent Study of Conjugated Aromatic Molecular Transistors

    International Nuclear Information System (INIS)

    Jing, Wang; Yun-Ye, Liang; Hao, Chen; Peng, Wang; Note, R.; Mizuseki, H.; Kawazoe, Y.

    2010-01-01

    We study the current through conjugated aromatic molecular transistors modulated by a transverse field. The self-consistent calculation is realized with density function theory through the standard quantum chemistry software Gaussian03 and the non-equilibrium Green's function formalism. The calculated I – V curves controlled by the transverse field present the characteristics of different organic molecular transistors, the transverse field effect of which is improved by the substitutions of nitrogen atoms or fluorine atoms. On the other hand, the asymmetry of molecular configurations to the axis connecting two sulfur atoms is in favor of realizing the transverse field modulation. Suitably designed conjugated aromatic molecular transistors possess different I – V characteristics, some of them are similar to those of metal-oxide-semiconductor field-effect transistors (MOSFET). Some of the calculated molecular devices may work as elements in graphene electronics. Our results present the richness and flexibility of molecular transistors, which describe the colorful prospect of next generation devices. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  3. Molecular materials for organic field-effect transistors

    International Nuclear Information System (INIS)

    Mori, T

    2008-01-01

    Organic field-effect transistors are important applications of thin films of molecular materials. A variety of materials have been explored for improving the performance of organic transistors. The materials are conventionally classified as p-channel and n-channel, but not only the performance but also even the carrier polarity is greatly dependent on the combinations of organic semiconductors and electrode materials. In this review, particular emphasis is laid on multi-sulfur compounds such as tetrathiafulvalenes and metal dithiolates. These compounds are components of highly conducting materials such as organic superconductors, but are also used in organic transistors. The charge-transfer complexes are used in organic transistors as active layers as well as electrodes. (topical review)

  4. An analytic current-voltage model for quasi-ballistic III-nitride high electron mobility transistors

    Science.gov (United States)

    Li, Kexin; Rakheja, Shaloo

    2018-05-01

    We present an analytic model to describe the DC current-voltage (I-V) relationship in scaled III-nitride high electron mobility transistors (HEMTs) in which transport within the channel is quasi-ballistic in nature. Following Landauer's transport theory and charge calculation based on two-dimensional electrostatics that incorporates negative momenta states from the drain terminal, an analytic expression for current as a function of terminal voltages is developed. The model interprets the non-linearity of access regions in non-self-aligned HEMTs. Effects of Joule heating with temperature-dependent thermal conductivity are incorporated in the model in a self-consistent manner. With a total of 26 input parameters, the analytic model offers reduced empiricism compared to existing GaN HEMT models. To verify the model, experimental I-V data of InAlN/GaN with InGaN back-barrier HEMTs with channel lengths of 42 and 105 nm are considered. Additionally, the model is validated against numerical I-V data obtained from DC hydrodynamic simulations of an unintentionally doped AlGaN-on-GaN HEMT with 50-nm gate length. The model is also verified against pulsed I-V measurements of a 150-nm T-gate GaN HEMT. Excellent agreement between the model and experimental and numerical results for output current, transconductance, and output conductance is demonstrated over a broad range of bias and temperature conditions.

  5. Ballistic behaviour of ultra-high molecular weight polyethylene: effect of gamma radiation

    International Nuclear Information System (INIS)

    Alves, Andreia L.S.; Nascimento, Lucio F.C.; Miguez Suarez, Joao Carlos

    2004-01-01

    The fiber reinforced polymer matrix composites (PMCs) are considered excellent engineering materials. In structural applications, when a high strength-to-weight ratio is fundamental for the design, PMCs are successfully replacing many conventional materials. Since World War II textile materials have been used as ballistic armor. Materials manufactured with ultrahigh molecular weight polyethylene (UHMWPE) fibers are used in the production of armor materials, for personnel protection and armored vehicles. As these have been developed and commercialized more recently, there is not enough information about the action of the ionizing radiation in the ballistic performance of this armor material. In the present work the ballistic behavior of composite plates manufactured with ultrahigh molecular weight polyethylene (UHMWPE) fibers were evaluated after exposure to gamma radiation. The ballistic tests results were related to the macromolecular modifications induced by the environmental degradation through mechanical (hardness, impact and flexure) and physicochemical (infrared spectroscopy, differential scanning calorimetry and thermal gravimetric analysis) tests. Our results indicate that gamma irradiation induces modifications in the UHMWPE macromolecular chains, altering the mechanical properties of the composite and decreasing, for higher radiation doses, its ballistic performance. These results are presented and discussed. (author)

  6. Molecular Dynamics Studies on Ballistic Thermal Resistance of Graphene Nano-Junctions

    International Nuclear Information System (INIS)

    Yao Wen-Jun; Cao Bing-Yang

    2015-01-01

    Ballistic thermal resistance of graphene nano-junctions is investigated using non-equilibrium molecular dynamics simulation. The simulation system is consisted of two symmetrical trapezoidal or rectangular graphene nano-ribbons (GNRs) and a connecting nanoscale constriction in between. From the simulated temperature profile, a big temperature jump resulted from the constriction is found, which is proportional to the heat current and corresponds to a local ballistic thermal resistance. Fixing the constriction width and the length of GNRs, this ballistic thermal resistance is independent of the width of the GNRs bottom layer, i.e., the convex angle. But interestingly, this thermal resistance has obvious size effect. It is inversely proportional to the constriction width and will disappear with the constriction being wider. Moreover, based on the phonon dynamics theory, a theoretical model of the ballistic thermal resistance in two-dimensional nano-systems is developed, which gives a good explanation on microcosmic level and agrees well with the simulation result quantitatively and qualitatively. (paper)

  7. The influence of magnetic field on ballistic performance of aramid fibre and ultrahigh molecular weight polyethylene

    International Nuclear Information System (INIS)

    Wong, Y.C.; Ruan, D.; Sesso, M.L.

    2014-01-01

    Highlights: • Ballistic tests conducted on Kevlar and UHMWPE within a magnetic field. • Repulsion force created by opposing magnet poles reduced the impact momentum. • High speed camera images showed no perforation on Kevlar due to magnetic field. • Standoff distance between magnets has an effect on the repulsion force. - Abstract: An innovative method is introduced here whereby using two sets of arrays of rare earth magnets aligned opposite each other in order to create a repulsion force owing to the like poles when facing close to each other. Ballistic test samples of aramid fibre (Kevlar K29) and ultrahigh molecular weight polyethylene (UHMWPE) were sandwiched by two sets of opposing magnets. Ballistic test was conducted using a gas gun with a 7.62 mm diameter projectile at a velocity ranging from 160 to 220 m/s. High speed camera was used to capture the ballistics testing and it shows that the magnetic repulsion force created by the opposing rare earth magnets managed to suppress the projectile from advancing into the front face of the aramid fibre. Similarly, when magnets were used, the UHMWPE sample shows the projectile perforated through the first few sheets and finally rested on the last sheet showing partial perforation

  8. Ballistic Phosphorene Transistor

    Science.gov (United States)

    2015-11-19

    IEEE Electron Devices Letters 35 (7): 795-797, 2014. 2. Yexin Deng, Zhe Luo, Nathan J. Conrad, Han Liu, Yongji Gong, Sina Najmaei, Pulickel M...IEEE Electron Devices Letters 35 (7): 795-797, 2014. 2. Yexin Deng, Zhe Luo, Nathan J. Conrad, Han Liu, Yongji Gong, Sina Najmaei, Pulickel M

  9. Quantum ballistic transistor and low noise HEMT for cryo-electronics lower than 4.2 K; Transistor balistique quantique et HEMT bas-bruit pour la cryoelectronique inferieure a 4.2 K

    Energy Technology Data Exchange (ETDEWEB)

    Gremion, E

    2008-01-15

    Next generations of cryo-detectors, widely used in physics of particles and physics of universe, will need in the future high-performance cryo-electronics less noisy and closer to the detector. Within this context, this work investigates properties of two dimensional electron gas GaAlAs/GaAs by studying two components, quantum point contact (QPC) and high electron mobility transistor (HEMT). Thanks to quantized conductance steps in QPC, we have realized a quantum ballistic transistor (voltage gain higher than 1), a new component useful for cryo-electronics thanks to its operating temperature and weak power consumption (about 1 nW). Moreover, the very low capacity of this component leads to promising performances for multiplexing low temperature bolometer dedicated to millimetric astronomy. The second study focused on HEMT with very high quality 2DEG. At 4.2 K, a voltage gain higher than 20 can be obtained with a very low power dissipation of less than 100 {mu}W. Under the above experimental conditions, an equivalent input voltage noise of 1.2 nV/{radical}(Hz) at 1 kHz and 0.12 nV/{radical}(Hz) at 100 kHz has been reached. According to the Hooge formula, these noise performances are get by increasing gate capacity estimated to 60 pF. (author)

  10. Quantum ballistic analysis of transition metal dichalcogenides based double gate junctionless field effect transistor and its application in nano-biosensor

    Science.gov (United States)

    Shadman, Abir; Rahman, Ehsanur; Khosru, Quazi D. M.

    2017-11-01

    To reduce the thermal budget and the short channel effects in state of the art CMOS technology, Junctionless field effect transistor (JLFET) has been proposed in the literature. Numerous experimental, modeling, and simulation based works have been done on this new FET with bulk materials for various geometries until now. On the other hand, the two-dimensional layered material is considered as an alternative to current Si technology because of its ultra-thin body and high mobility. Very recently few simulation based works have been done on monolayer molybdenum disulfide based JLFET mainly to show the advantage of JLFET over conventional FET. However, no comprehensive simulation-based work has been done for double gate JLFET keeping in mind the prominent transition metal dichalcogenides (TMDC) to the authors' best knowledge. In this work, we have studied quantum ballistic drain current-gate voltage characteristics of such FETs within non-equilibrium Green's function (NEGF) framework. Our simulation results reveal that all these TMDC materials are viable options for implementing state of the art Junctionless MOSFET with emphasis on their performance at short gate lengths. Besides evaluating the prospect of TMDC materials in the digital logic application, the performance of Junctionless Double Gate trilayer TMDC heterostructure FET for the label-free electrical detection of biomolecules in dry environment has been investigated for the first time to the authors' best knowledge. The impact of charge neutral biomolecules on the electrical characteristics of the biosensor has been analyzed under dry environment situation. Our study shows that these materials could provide high sensitivity in the sub-threshold region as a channel material in nano-biosensor, a trend demonstrated by silicon on insulator FET sensor in the literature. Thus, going by the trend of replacing silicon with these novel materials in device level, TMDC heterostructure could be a viable alternative to

  11. Field-effect transistors based on self-organized molecular nanostripes

    DEFF Research Database (Denmark)

    Cavallini, M.; Stoliare, P.; Moulin, J.-F.

    2005-01-01

    Charge transport properties in organic semiconductors depend strongly on molecular order. Here we demonstrate field-effect transistors where drain current flows through a precisely defined array of nanostripes made of crystalline and highly ordered molecules. The molecular stripes are fabricated ...... by the menisci once the critical concentration is reached and self-organizes into molecularly ordered stripes 100-200 nm wide and a few monolayers high. The charge mobility measured along the stripes is 2 orders of magnitude larger than the values measured for spin-coated thin films....... across the channel of the transistor by a stamp-assisted deposition of the molecular semiconductors from a solution. As the solvent evaporates, the capillary forces drive the solution to form menisci under the stamp protrusions. The solute precipitates only in the regions where the solution is confined...

  12. Molecular Line Studies of Ballistic Stellar Interlopers Burrowing through Dense Interstellar Clouds

    Science.gov (United States)

    Rosen, Anna; Sahai, R.; Claussen, M.; Morris, M.

    2010-01-01

    When an intermediate-mass star speeds through a dense interstellar cloud at a high velocity, it can produce a cometary or bow shock structure due to the cloud being impacted by the intense stellar wind. This class of objects, recently discovered in an HST imaging survey, has been dubbed "ballistic stellar interlopers" (Sahai et al. 2009). Using the ARO's 12m and SMT 10m millimeter-wave dishes, we have obtained molecular line emission data towards 10 stellar interloper sources, in order to identify and characterize the dense clouds with which the interlopers are interacting. We have made small "on-the-fly" maps in the 12CO (J=2-1) and 13CO (J=2-1) lines for each cloud, and obtained spectra of high-density tracers such as N2H+ (J=3-2), HCO+ (J=3-2), CN(N=2-1), and SO(J=5-4), which probe a range of physical conditions in the interstellar clouds being impacted by the interlopers. The data have been reduced and analyzed, and preliminary estimates of the cloud temperatures (9-22 K) and 13CO optical depths (0.18-0.37) have been made. The maps, which show the emission as a function of radial velocity and spatial offset from the location of the interlopers, have helped us distinguish between the clouds interacting with the interlopers, and those which are unrelated but happen to lie along the line of sight. These data will now enable us to carry out high-resolution mm-wave interferometric observations of the interlopers in the future. This research was performed at JPL under the Minority Education Initiatives program. RS and MM were funded by a Long Term Space Astrophysics award from NASA for this work. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. Special thanks goes to John Bieging and Bill Peters of the Arizona Radio Observatory.

  13. Sensors based on carbon nanotube field-effect transistors and molecular recognition approaches

    OpenAIRE

    Cid Salavert, Cristina Carlota

    2009-01-01

    The general objective of this thesis is to develop chemical sensors whose sensing capacities are based on the principle of molecular recognition and where the transduction is carried out by single-walled carbon nanotubes (SWCNT).The sensing device used is the carbon nanotube field-effect transistor (CNTFET). The new structure of the CNTFET allows nanotubes to be integrated at the surface of the devices, thus exploiting SWCNTs' sensitivity to changes in their environment. The functionalization...

  14. Dissipative tunneling and orthogonality catastrophe in molecular transistors

    DEFF Research Database (Denmark)

    Braig, S.; Flensberg, Karsten

    2004-01-01

    Transport through molecular devices with weak tunnel coupling to the leads but with strong coupling to a single vibrational mode is considered in the case where the vibration is damped by coupling to the environment. In particular, we investigate what influence the electrostatic coupling of the c......Transport through molecular devices with weak tunnel coupling to the leads but with strong coupling to a single vibrational mode is considered in the case where the vibration is damped by coupling to the environment. In particular, we investigate what influence the electrostatic coupling...

  15. Josephson current through a molecular transistor in a dissipative environment

    DEFF Research Database (Denmark)

    Novotny, T; Rossini, Gianpaolo; Flensberg, Karsten

    2005-01-01

    We study the Josephson coupling between two superconductors through a single correlated molecular level, including Coulomb interaction on the level and coupling to a bosonic environment. All calculations are done to the lowest, i.e., the fourth, order in the tunneling coupling and we find...

  16. Coherent molecular transistor: control through variation of the gate wave function.

    Science.gov (United States)

    Ernzerhof, Matthias

    2014-03-21

    In quantum interference transistors (QUITs), the current through the device is controlled by variation of the gate component of the wave function that interferes with the wave function component joining the source and the sink. Initially, mesoscopic QUITs have been studied and more recently, QUITs at the molecular scale have been proposed and implemented. Typically, in these devices the gate lead is subjected to externally adjustable physical parameters that permit interference control through modifications of the gate wave function. Here, we present an alternative model of a molecular QUIT in which the gate wave function is directly considered as a variable and the transistor operation is discussed in terms of this variable. This implies that we specify the gate current as well as the phase of the gate wave function component and calculate the resulting current through the source-sink channel. Thus, we extend on prior works that focus on the phase of the gate wave function component as a control parameter while having zero or certain discrete values of the current. We address a large class of systems, including finite graphene flakes, and obtain analytic solutions for how the gate wave function controls the transistor.

  17. Coherent molecular transistor: Control through variation of the gate wave function

    International Nuclear Information System (INIS)

    Ernzerhof, Matthias

    2014-01-01

    In quantum interference transistors (QUITs), the current through the device is controlled by variation of the gate component of the wave function that interferes with the wave function component joining the source and the sink. Initially, mesoscopic QUITs have been studied and more recently, QUITs at the molecular scale have been proposed and implemented. Typically, in these devices the gate lead is subjected to externally adjustable physical parameters that permit interference control through modifications of the gate wave function. Here, we present an alternative model of a molecular QUIT in which the gate wave function is directly considered as a variable and the transistor operation is discussed in terms of this variable. This implies that we specify the gate current as well as the phase of the gate wave function component and calculate the resulting current through the source-sink channel. Thus, we extend on prior works that focus on the phase of the gate wave function component as a control parameter while having zero or certain discrete values of the current. We address a large class of systems, including finite graphene flakes, and obtain analytic solutions for how the gate wave function controls the transistor

  18. Molecular design and ordering effects in π-functional materials for transistor and solar cell applications

    KAUST Repository

    Beaujuge, Pierre

    2011-12-21

    Organic electronics are broadly anticipated to impact the development of flexible thin-film device technologies. Among these, solution-processable π-conjugated polymers and small molecules are proving particularly promising in field-effect transistors and bulk heterojunction solar cells. This Perspective analyzes some of the most exciting strategies recently suggested in the design and structural organization of π-functional materials for transistor and solar cell applications. Emphasis is placed on the interplay between molecular structure, self-assembling properties, nanoscale and mesoscale ordering, and device efficiency parameters. A critical look at the various approaches used to optimize both materials and device performance is provided to assist in the identification of new directions and further advances. © 2011 American Chemical Society.

  19. Research Update: Molecular electronics: The single-molecule switch and transistor

    Directory of Open Access Journals (Sweden)

    Kai Sotthewes

    2014-01-01

    Full Text Available In order to design and realize single-molecule devices it is essential to have a good understanding of the properties of an individual molecule. For electronic applications, the most important property of a molecule is its conductance. Here we show how a single octanethiol molecule can be connected to macroscopic leads and how the transport properties of the molecule can be measured. Based on this knowledge we have realized two single-molecule devices: a molecular switch and a molecular transistor. The switch can be opened and closed at will by carefully adjusting the separation between the electrical contacts and the voltage drop across the contacts. This single-molecular switch operates in a broad temperature range from cryogenic temperatures all the way up to room temperature. Via mechanical gating, i.e., compressing or stretching of the octanethiol molecule, by varying the contact's interspace, we are able to systematically adjust the conductance of the electrode-octanethiol-electrode junction. This two-terminal single-molecule transistor is very robust, but the amplification factor is rather limited.

  20. Molecular Dynamics Modeling of the Effect of Axial and Transverse Compression on the Residual Tensile Properties of Ballistic Fiber

    Directory of Open Access Journals (Sweden)

    Sanjib C. Chowdhury

    2017-02-01

    Full Text Available Ballistic impact induces multiaxial loading on Kevlar® and polyethylene fibers used in protective armor systems. The influence of multiaxial loading on fiber failure is not well understood. Experiments show reduction in the tensile strength of these fibers after axial and transverse compression. In this paper, we use molecular dynamics (MD simulations to explain and develop a fundamental understanding of this experimental observation since the property reduction mechanism evolves from the atomistic level. An all-atom MD method is used where bonded and non-bonded atomic interactions are described through a state-of-the-art reactive force field. Monotonic tension simulations in three principal directions of the models are conducted to determine the anisotropic elastic and strength properties. Then the models are subjected to multi-axial loads—axial compression, followed by axial tension and transverse compression, followed by axial tension. MD simulation results indicate that pre-compression distorts the crystal structure, inducing preloading of the covalent bonds and resulting in lower tensile properties.

  1. Molecular doping for control of gate bias stress in organic thin film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Hein, Moritz P., E-mail: hein@iapp.de; Lüssem, Björn; Jankowski, Jens; Tietze, Max L.; Riede, Moritz K. [Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Straße 1, 01069 Dresden (Germany); Zakhidov, Alexander A. [Fraunhofer COMEDD, Maria-Reiche-Str. 2, 01109 Dresden (Germany); Leo, Karl [Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Straße 1, 01069 Dresden (Germany); Fraunhofer COMEDD, Maria-Reiche-Str. 2, 01109 Dresden (Germany)

    2014-01-06

    The key active devices of future organic electronic circuits are organic thin film transistors (OTFTs). Reliability of OTFTs remains one of the most challenging obstacles to be overcome for broad commercial applications. In particular, bias stress was identified as the key instability under operation for numerous OTFT devices and interfaces. Despite a multitude of experimental observations, a comprehensive mechanism describing this behavior is still missing. Furthermore, controlled methods to overcome these instabilities are so far lacking. Here, we present the approach to control and significantly alleviate the bias stress effect by using molecular doping at low concentrations. For pentacene and silicon oxide as gate oxide, we are able to reduce the time constant of degradation by three orders of magnitude. The effect of molecular doping on the bias stress behavior is explained in terms of the shift of Fermi Level and, thus, exponentially reduced proton generation at the pentacene/oxide interface.

  2. Molecular doping for control of gate bias stress in organic thin film transistors

    International Nuclear Information System (INIS)

    Hein, Moritz P.; Lüssem, Björn; Jankowski, Jens; Tietze, Max L.; Riede, Moritz K.; Zakhidov, Alexander A.; Leo, Karl

    2014-01-01

    The key active devices of future organic electronic circuits are organic thin film transistors (OTFTs). Reliability of OTFTs remains one of the most challenging obstacles to be overcome for broad commercial applications. In particular, bias stress was identified as the key instability under operation for numerous OTFT devices and interfaces. Despite a multitude of experimental observations, a comprehensive mechanism describing this behavior is still missing. Furthermore, controlled methods to overcome these instabilities are so far lacking. Here, we present the approach to control and significantly alleviate the bias stress effect by using molecular doping at low concentrations. For pentacene and silicon oxide as gate oxide, we are able to reduce the time constant of degradation by three orders of magnitude. The effect of molecular doping on the bias stress behavior is explained in terms of the shift of Fermi Level and, thus, exponentially reduced proton generation at the pentacene/oxide interface

  3. Molecular gated-AlGaN/GaN high electron mobility transistor for pH detection.

    Science.gov (United States)

    Ding, Xiangzhen; Yang, Shuai; Miao, Bin; Gu, Le; Gu, Zhiqi; Zhang, Jian; Wu, Baojun; Wang, Hong; Wu, Dongmin; Li, Jiadong

    2018-04-18

    A molecular gated-AlGaN/GaN high electron mobility transistor has been developed for pH detection. The sensing surface of the sensor was modified with 3-aminopropyltriethoxysilane to provide amphoteric amine groups, which would play the role of receptors for pH detection. On modification with 3-aminopropyltriethoxysilane, the transistor exhibits good chemical stability in hydrochloric acid solution and is sensitive for pH detection. Thus, our molecular gated-AlGaN/GaN high electron mobility transistor acheived good electrical performances such as chemical stability (remained stable in hydrochloric acid solution), good sensitivity (37.17 μA/pH) and low hysteresis. The results indicate a promising future for high-quality sensors for pH detection.

  4. Terminal Ballistics

    CERN Document Server

    Rosenberg, Zvi

    2012-01-01

    This book covers the important issues of terminal ballistics in a comprehensive way combining experimental data, numerical simulations and analytical modeling. The first chapter reviews the experimental equipment which are used for ballistic tests and the diagnostics for material characterization under impulsive loading conditions. The second chapter covers essential features of the codes which are used for terminal ballistics such as the Euler vs. Lagrange schemes and meshing techniques, as well as the most popular material models. The third chapter, devoted to the penetration mechanics of rigid penetrators, brings the update of modeling in this field. The fourth chapter deals with plate perforation and the fifth chapter deals with the penetration mechanics of shaped charge jets and eroding long rods. The last two chapters discuss several techniques for the disruption and defeating of the main threats in armor design. Throughout the book the authors demonstrate the advantages of numerical simulations in unde...

  5. Molecular Design of Semiconducting Polymers for High-Performance Organic Electrochemical Transistors

    KAUST Repository

    Nielsen, Christian B.

    2016-07-22

    The organic electrochemical transistor (OECT), capable of transducing small ionic fluxes into electronic signals in an aqueous envi-ronment, is an ideal device to utilize in bioelectronic applications. Currently, most OECTs are fabricated with commercially availa-ble conducting poly(3,4-ethylenedioxythiophene) (PEDOT)-based suspensions and are therefore operated in depletion mode. Here, we present a series of semiconducting polymers designed to elucidate important structure-property guidelines required for accumulation mode OECT operation. We discuss key aspects relating to OECT performance such as ion and hole transport, elec-trochromic properties, operational voltage and stability. The demonstration of our molecular design strategy is the fabrication of accumulation mode OECTs that clearly outperform state-of-the-art PEDOT based devices, and show stability under aqueous oper-ation without the need for formulation additives and cross-linkers.

  6. Surface-directed molecular assembly of pentacene on monolayer graphene for high-performance organic transistors.

    Science.gov (United States)

    Lee, Wi Hyoung; Park, Jaesung; Sim, Sung Hyun; Lim, Soojin; Kim, Kwang S; Hong, Byung Hee; Cho, Kilwon

    2011-03-30

    Organic electronic devices that use graphene electrodes have received considerable attention because graphene is regarded as an ideal candidate electrode material. Transfer and lithographic processes during fabrication of patterned graphene electrodes typically leave polymer residues on the graphene surfaces. However, the impact of these residues on the organic semiconductor growth mechanism on graphene surface has not been reported yet. Here, we demonstrate that polymer residues remaining on graphene surfaces induce a stand-up orientation of pentacene, thereby controlling pentacene growth such that the molecular assembly is optimal for charge transport. Thus, pentacene field-effect transistors (FETs) using source/drain monolayer graphene electrodes with polymer residues show a high field-effect mobility of 1.2 cm(2)/V s. In contrast, epitaxial growth of pentacene having molecular assembly of lying-down structure is facilitated by π-π interaction between pentacene and the clean graphene electrode without polymer residues, which adversely affects lateral charge transport at the interface between electrode and channel. Our studies provide that the obtained high field-effect mobility in pentacene FETs using monolayer graphene electrodes arises from the extrinsic effects of polymer residues as well as the intrinsic characteristics of the highly conductive, ultrathin two-dimensional monolayer graphene electrodes.

  7. High mobility n-type organic thin-film transistors deposited at room temperature by supersonic molecular beam deposition

    Energy Technology Data Exchange (ETDEWEB)

    Chiarella, F., E-mail: fabio.chiarella@spin.cnr.it; Barra, M.; Ciccullo, F.; Cassinese, A. [CNR-SPIN and Physics Department, University of Naples, Piazzale Tecchio 80, I-80125 Naples (Italy); Toccoli, T.; Aversa, L.; Tatti, R.; Verucchi, R. [IMEM-CNR-FBK Division of Trento, Via alla Cascata 56/C, I-38123 Povo (Italy); Iannotta, S. [IMEM-CNR, Parco Area delle Scienze 37/A, I-43124 Parma (Italy)

    2014-04-07

    In this paper, we report on the fabrication of N,N′-1H,1H-perfluorobutil dicyanoperylenediimide (PDIF-CN{sub 2}) organic thin-film transistors by Supersonic Molecular Beam Deposition. The devices exhibit mobility up to 0.2 cm{sup 2}/V s even if the substrate is kept at room temperature during the organic film growth, exceeding by three orders of magnitude the electrical performance of those grown at the same temperature by conventional Organic Molecular Beam Deposition. The possibility to get high-mobility n-type transistors avoiding thermal treatments during or after the deposition could significantly extend the number of substrates suitable to the fabrication of flexible high-performance complementary circuits by using this compound.

  8. Terminal ballistics

    CERN Document Server

    Rosenberg, Zvi

    2016-01-01

    This book comprehensively discusses essential aspects of terminal ballistics, combining experimental data, numerical simulations and analytical modeling. Employing a unique approach to numerical simulations as a measure of sensitivity for the major physical parameters, the new edition also includes the following features: new figures to better illustrate the problems discussed; improved explanations for the equation of state of a solid and for the cavity expansion process; new data concerning the Kolsky bar test; and a discussion of analytical modeling for the hole diameter in a thin metallic plate impacted by a shaped charge jet. The section on thick concrete targets penetrated by rigid projectiles has now been expanded to include the latest findings, and two new sections have been added: one on a novel approach to the perforation of thin concrete slabs, and one on testing the failure of thin metallic plates using a hydrodynamic ram.

  9. Ballistic Deflection Transistors for THz Amplification

    Science.gov (United States)

    2016-05-09

    glass nano-materials. Si-on-glass is an interesting material with possible applications ranging from ultrafast electronics to solar cells. We used our...planar geometry allows for a flexible design and easy integration as a multi-element sensor or with either optical nano-concentrators or THz coupling

  10. Ballistic phonon transport in holey silicon.

    Science.gov (United States)

    Lee, Jaeho; Lim, Jongwoo; Yang, Peidong

    2015-05-13

    When the size of semiconductors is smaller than the phonon mean free path, phonons can carry heat with no internal scattering. Ballistic phonon transport has received attention for both theoretical and practical aspects because Fourier's law of heat conduction breaks down and the heat dissipation in nanoscale transistors becomes unpredictable in the ballistic regime. While recent experiments demonstrate room-temperature evidence of ballistic phonon transport in various nanomaterials, the thermal conductivity data for silicon in the length scale of 10-100 nm is still not available due to experimental challenges. Here we show ballistic phonon transport prevails in the cross-plane direction of holey silicon from 35 to 200 nm. The thermal conductivity scales linearly with the length (thickness) even though the lateral dimension (neck) is as narrow as 20 nm. We assess the impact of long-wavelength phonons and predict a transition from ballistic to diffusive regime using scaling models. Our results support strong persistence of long-wavelength phonons in nanostructures and are useful for controlling phonon transport for thermoelectrics and potential phononic applications.

  11. Controlling morphology and molecular order of solution-processed organic semiconductors for transistors

    NARCIS (Netherlands)

    Li, X.

    2012-01-01

    As a potential low-cost alternative to traditional amorphous-silicon based devices, organic field-effect transistors (OFETs) are expected to be incorporated into all-plastic integrated circuits and flexible display backplanes. More recently, breakthroughs have been made in the performance of OFETs

  12. Comportamento balístico de compósito de polietileno de altíssimo peso molecular: efeito da radiação gama Ballistic behaviour of ultra-high molecular weight polyethylene: effect of gamma radiation

    Directory of Open Access Journals (Sweden)

    Andreia L. S. Alves

    2004-06-01

    Full Text Available Os materiais compósitos de matriz polimérica (PMCs reforçados por fibras são considerados excelentes materiais de engenharia. Em aplicações estruturais, quando uma elevada relação resistência peso é fundamental para o projeto, os PMCs vêm substituindo com sucesso diversos materiais convencionais. Materiais têxteis são utilizados, desde a 2ª Guerra Mundial, como blindagens balísticas. Materiais fabricados com fibra do polietileno de altíssimo peso molecular (UHMWPE são empregados na produção de blindagens, para proteção pessoal e em carros de combate. Todavia, em virtude de terem sido desenvolvidos e comercializados mais recentemente, não existem informações suficientes sobre o desempenho balístico desses materiais após a sua exposição aos agentes ambientais. No presente trabalho foi estudado o comportamento balístico de placas compósitas fabricadas com fibra de polietileno de altíssimo peso molecular (UHMWPE, após sua exposição à radiação gama. Os resultados dos testes balísticos foram relacionados com as alterações macromoleculares induzidas pela irradiação por meio de ensaios mecânicos (dureza, impacto e flexão e físico-químicos (espectroscopia no infravermelho, calorimetria diferencial de varredura e análise termogravimétrica. Foi verificado que a irradiação gama provoca modificações nas cadeias macromoleculares do polímero, que alteram as propriedades mecânicas do compósito de UHMWPE, reduzindo, nas doses de radiação mais elevadas, o seu desempenho balístico. Estes resultados são apresentados e discutidos.The fiber reinforced polymer matrix composites (PMCs are considered excellent engineering materials. In structural applications, when a high strength-to-weight ratio is fundamental for the design, PMCs are successfully replacing many conventional materials. Since World War II textile materials have been used as ballistic armor. Materials manufactured with ultrahigh molecular weight

  13. Extended-gate field-effect transistor (EG-FET) with molecularly imprinted polymer (MIP) film for selective inosine determination.

    Science.gov (United States)

    Iskierko, Zofia; Sosnowska, Marta; Sharma, Piyush Sindhu; Benincori, Tiziana; D'Souza, Francis; Kaminska, Izabela; Fronc, Krzysztof; Noworyta, Krzysztof

    2015-12-15

    A novel recognition unit of chemical sensor for selective determination of the inosine, renal disfunction biomarker, was devised and prepared. For that purpose, inosine-templated molecularly imprinted polymer (MIP) film was deposited on an extended-gate field-effect transistor (EG-FET) signal transducing unit. The MIP film was prepared by electrochemical polymerization of bis(bithiophene) derivatives bearing cytosine and boronic acid substituents, in the presence of the inosine template and a thiophene cross-linker. After MIP film deposition, the template was removed, and was confirmed by UV-visible spectroscopy. Subsequently, the film composition was characterized by spectroscopic techniques, and its morphology and thickness were determined by AFM. The finally MIP film-coated extended-gate field-effect transistor (EG-FET) was used for signal transduction. This combination is not widely studied in the literature, despite the fact that it allows for facile integration of electrodeposited MIP film with FET transducer. The linear dynamic concentration range of the chemosensor was 0.5-50 μM with inosine detectability of 0.62 μM. The obtained detectability compares well to the levels of the inosine in body fluids which are in the range 0-2.9 µM for patients with diagnosed diabetic nephropathy, gout or hyperuricemia, and can reach 25 µM in certain cases. The imprinting factor for inosine, determined from piezomicrogravimetric experiments with use of the MIP film-coated quartz crystal resonator, was found to be 5.5. Higher selectivity for inosine with respect to common interferents was also achieved with the present molecularly engineered sensing element. The obtained analytical parameters of the devised chemosensor allow for its use for practical sample measurements. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Narrow electron injector for ballistic electron spectroscopy

    International Nuclear Information System (INIS)

    Kast, M.; Pacher, C.; Strasser, G.; Gornik, E.

    2001-01-01

    A three-terminal hot electron transistor is used to measure the normal energy distribution of ballistic electrons generated by an electron injector utilizing an improved injector design. A triple barrier resonant tunneling diode with a rectangular transmission function acts as a narrow (1 meV) energy filter. An asymmetric energy distribution with its maximum on the high-energy side with a full width at half maximum of ΔE inj =10 meV is derived. [copyright] 2001 American Institute of Physics

  15. The Truth About Ballistic Coefficients

    OpenAIRE

    Courtney, Michael; Courtney, Amy

    2007-01-01

    The ballistic coefficient of a bullet describes how it slows in flight due to air resistance. This article presents experimental determinations of ballistic coefficients showing that the majority of bullets tested have their previously published ballistic coefficients exaggerated from 5-25% by the bullet manufacturers. These exaggerated ballistic coefficients lead to inaccurate predictions of long range bullet drop, retained energy and wind drift.

  16. Transistor data book

    International Nuclear Information System (INIS)

    1988-03-01

    It introduces how to use this book. It lists transistor data and index, which are Type No, Cross index, Germanium PNP low power transistors, silicon NPN low power transistors, Germanium PNP high power transistors, Switching transistors, transistor arrays, Miscellaneous transistors, types with U.S military specifications, direct replacement transistors, suggested replacement transistors, schematic drawings, outline drawings, device number keys and manufacturer's logos.

  17. Molecular Design of Semiconducting Polymers for High-Performance Organic Electrochemical Transistors

    KAUST Repository

    Nielsen, Christian B.; Giovannitti, Alexander; Sbircea, Dan-Tiberiu; Bandiello, Enrico; Niazi, Muhammad Rizwan; Hanifi, David A.; Sessolo, Michele; Amassian, Aram; Malliaras, George G.; Rivnay, Jonathan; McCulloch, Iain

    2016-01-01

    required for accumulation mode OECT operation. We discuss key aspects relating to OECT performance such as ion and hole transport, elec-trochromic properties, operational voltage and stability. The demonstration of our molecular design strategy

  18. Ballistic Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Ballistic Test Facility is comprised of two outdoor and one indoor test ranges, which are all instrumented for data acquisition and analysis. Full-size aircraft...

  19. Solvent vapor annealing in the molecular regime drastically improves carrier transport in small-molecule thin-film transistors

    KAUST Repository

    Khan, Hadayat Ullah

    2013-04-10

    We demonstrate a new way to investigate and control the solvent vapor annealing of solution-cast organic semiconductor thin films. Solvent vapor annealing of spin-cast films of 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-Pn) is investigated in situ using quartz crystal microbalance with dissipation (QCM-D) capability, allowing us to monitor both solvent mass uptake and changes in the mechanical rigidity of the film. Using time-resolved grazing incidence wide angle X-ray scattering (GIWAXS) and complementary static atomic force microscopy (AFM), we demonstrate that solvent vapor annealing in the molecular regime can cause significant performance improvements in organic thin film transistors (OTFTs), whereas allowing the solvent to percolate and form a liquid phase results in catastrophic reorganization and dewetting of the film, making the process counterproductive. Using these lessons we devise processing conditions which prevent percolation of the adsorbed solvent vapor molecules for extended periods, thus extending the benefits of solvent vapor annealing and improving carrier mobility by nearly two orders of magnitude. Ultimately, it is demonstrated that QCM-D is a very powerful sensor of the state of the adsorbed solvent as well as the thin film, thus making it suitable for process development as well as in-line process monitoring both in laboratory and in future manufacturing settings. © 2013 American Chemical Society.

  20. Solvent vapor annealing in the molecular regime drastically improves carrier transport in small-molecule thin-film transistors

    KAUST Repository

    Khan, Hadayat Ullah; Li, Ruipeng; Ren, Yi; Chen, Long; Payne, Marcia M.; Bhansali, Unnat Sampatraj; Smilgies, Detlef Matthias; Anthony, John Edward; Amassian, Aram

    2013-01-01

    We demonstrate a new way to investigate and control the solvent vapor annealing of solution-cast organic semiconductor thin films. Solvent vapor annealing of spin-cast films of 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-Pn) is investigated in situ using quartz crystal microbalance with dissipation (QCM-D) capability, allowing us to monitor both solvent mass uptake and changes in the mechanical rigidity of the film. Using time-resolved grazing incidence wide angle X-ray scattering (GIWAXS) and complementary static atomic force microscopy (AFM), we demonstrate that solvent vapor annealing in the molecular regime can cause significant performance improvements in organic thin film transistors (OTFTs), whereas allowing the solvent to percolate and form a liquid phase results in catastrophic reorganization and dewetting of the film, making the process counterproductive. Using these lessons we devise processing conditions which prevent percolation of the adsorbed solvent vapor molecules for extended periods, thus extending the benefits of solvent vapor annealing and improving carrier mobility by nearly two orders of magnitude. Ultimately, it is demonstrated that QCM-D is a very powerful sensor of the state of the adsorbed solvent as well as the thin film, thus making it suitable for process development as well as in-line process monitoring both in laboratory and in future manufacturing settings. © 2013 American Chemical Society.

  1. Plasma-assisted Molecular Beam Epitaxy of N-polar InAlN-barrier High-electron-mobility Transistors.

    Science.gov (United States)

    Hardy, Matthew T; Storm, David F; Katzer, D Scott; Downey, Brian P; Nepal, Neeraj; Meyer, David J

    2016-11-24

    Plasma-assisted molecular beam epitaxy is well suited for the epitaxial growth of III-nitride thin films and heterostructures with smooth, abrupt interfaces required for high-quality high-electron-mobility transistors (HEMTs). A procedure is presented for the growth of N-polar InAlN HEMTs, including wafer preparation and growth of buffer layers, the InAlN barrier layer, AlN and GaN interlayers and the GaN channel. Critical issues at each step of the process are identified, such as avoiding Ga accumulation in the GaN buffer, the role of temperature on InAlN compositional homogeneity, and the use of Ga flux during the AlN interlayer and the interrupt prior to GaN channel growth. Compositionally homogeneous N-polar InAlN thin films are demonstrated with surface root-mean-squared roughness as low as 0.19 nm and InAlN-based HEMT structures are reported having mobility as high as 1,750 cm 2 /V∙sec for devices with a sheet charge density of 1.7 x 10 13 cm -2 .

  2. Ballistic characteristics improving and maintenance of protective ballistic vests

    OpenAIRE

    RADONJIC VOJKAN M.; JOVANOVIC DANKO M.; ZIVANOVIC GORAN Z.; RESIMIC BRANKO V.

    2014-01-01

    The work presents research of the materials necessary for the maintenance of protective ballistic vests. In this paper is proposed a new construction design with modern materials for ballistic inserts producing. This paper also presents the results of laboratory tests of ballistic cartridges with new materials. Based on the test results, it can be concluded, the proposed technical solution for making ballistic inserts adequately meets current standards.

  3. Unijunction transistors

    International Nuclear Information System (INIS)

    1981-01-01

    The electrical characteristics of unijunction transistors can be modified by irradiation with electron beams in excess of 400 KeV and at a dose rate of 10 13 to 10 16 e/cm 2 . Examples are given of the effect of exposing the emitter-base junctions of transistors to such lattice defect causing radiation for a time sufficient to change the valley current of the transistor. (U.K.)

  4. Isolate extended state in the DNA molecular transistor with surface interaction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Le, E-mail: wang_le917@gs.zzu.edu.cn; Qin, Zhi-Jie

    2016-02-01

    The field effect characteristic of a DNA molecular device is investigated in a tight binding model with binary disorder and side site correlation. Using the transfer-matrix method and Landauer–Büttiker theory, we find that the system has isolated extended state that is irrespective of the DNA sequence and can be modulated by the gate voltage. When the gate voltage reaches some proper value, the isolated extended state appears at the Fermi level of the system and the long range charge transport is greatly enhanced. We attribute this phenomenon to the combination of the external field, the surface interaction, and the intrinsic disorder of DNA. The result is a generic feature of the nanowire with binary disorder and surface interaction.

  5. Mechanism of ballistic collisions

    International Nuclear Information System (INIS)

    Sindoni, J.M.; Sharma, R.D.

    1992-01-01

    Ballistic collisions is a term used to describe atom-diatom collisions during which a substantial fraction of the initial relative translational energy is converted into the internal energy of the diatom. An exact formulation of the impulse approach to atom-diatom collisions is shown to be in excellent agreement with the experimental results for the CsF-Ar system at 1.1 eV relative translational energy for laboratory scattering angles of 30 degree and 60 degree. The differential cross section for scattering of CsF peaks at two distinct recoil velocities. The peak centered at the recoil velocity corresponding to elastic scattering has been called the elastic peak. This peak is shown to consist of several hundred inelastic transitions, most involving a small change in internal energy. The peak near the center-of-mass (c.m.) velocity is called the ballistic peak and is shown to consist of highly inelastic (ballistic) transitions. It is shown that transitions comprising the ballistic (elastic) peak occur when an Ar atom strikes the F (Cs) end of CsF. When one is looking along the direction of the c.m. velocity, the signal from a single transition, which converts about 99.99% of the relative translational energy into internal energy, may be larger than the signal from any other ballistic transition by as much as an order of magnitude. This property may be used to prepare state-selected and velocity-selected beams for further studies. It is also pointed out that the ballistic peak may be observed for any atom-molecule system under appropriate circumstances

  6. Ballistic missile defense effectiveness

    Science.gov (United States)

    Lewis, George N.

    2017-11-01

    The potential effectiveness of ballistic missile defenses today remains a subject of debate. After a brief discussion of terminal and boost phase defenses, this chapter will focus on long-range midcourse defenses. The problems posed by potential countermeasures to such midcourse defenses are discussed as are the sensor capabilities a defense might have available to attempt to discriminate the actual missile warhead in a countermeasures environment. The role of flight testing in assessing ballistic missile defense effectiveness is discussed. Arguments made about effectiveness by missile defense supporters and critics are summarized.

  7. Superconducting transistor

    International Nuclear Information System (INIS)

    Gray, K.E.

    1978-01-01

    A three film superconducting tunneling device, analogous to a semiconductor transistor, is presented, including a theoretical description and experimental results showing a current gain of four. Much larger current gains are shown to be feasible. Such a development is particularly interesting because of its novelty and the striking analogies with the semiconductor junction transistor

  8. Ballistic hole magnetic microscopy

    NARCIS (Netherlands)

    Haq, E.; Banerjee, T.; Siekman, M.H.; Lodder, J.C.; Jansen, R.

    2005-01-01

    A technique to study nanoscale spin transport of holes is presented: ballistic hole magnetic microscopy. The tip of a scanning tunneling microscope is used to inject hot electrons into a ferromagnetic heterostructure, where inelastic decay creates a distribution of electron-hole pairs.

  9. Ballistic impact response of lipid membranes.

    Science.gov (United States)

    Zhang, Yao; Meng, Zhaoxu; Qin, Xin; Keten, Sinan

    2018-03-08

    Therapeutic agent loaded micro and nanoscale particles as high-velocity projectiles can penetrate cells and tissues, thereby serving as gene and drug delivery vehicles for direct and rapid internalization. Despite recent progress in developing micro/nanoscale ballistic tools, the underlying biophysics of how fast projectiles deform and penetrate cell membranes is still poorly understood. To understand the rate and size-dependent penetration processes, we present coarse-grained molecular dynamics simulations of the ballistic impact of spherical projectiles on lipid membranes. Our simulations reveal that upon impact, the projectile can pursue one of three distinct pathways. At low velocities below the critical penetration velocity, projectiles rebound off the surface. At intermediate velocities, penetration occurs after the projectile deforms the membrane into a tubular thread. At very high velocities, rapid penetration occurs through localized membrane deformation without tubulation. Membrane tension, projectile velocity and size govern which phenomenon occurs, owing to their positive correlation with the reaction force generated between the projectile and the membrane during impact. Two critical membrane tension values dictate the boundaries among the three pathways for a given system, due to the rate dependence of the stress generated in the membrane. Our findings provide broad physical insights into the ballistic impact response of soft viscous membranes and guide design strategies for drug delivery through lipid membranes using micro/nanoscale ballistic tools.

  10. High performance inkjet-printed metal oxide thin film transistors via addition of insulating polymer with proper molecular weight

    Science.gov (United States)

    Sun, Dawei; Chen, Cihai; Zhang, Jun; Wu, Xiaomin; Chen, Huipeng; Guo, Tailiang

    2018-01-01

    Fabrication of metal oxide thin film transistor (MOTFT) arrays using the inkjet printing process has caused tremendous interest for low-cost and large-area flexible electronic devices. However, the inkjet-printed MOTFT arrays usually exhibited a non-uniform geometry due to the coffee ring effect, which restricted their commercial application. Therefore, in this work, a strategy is reported to control the geometry and enhance device performance of inkjet-printed MOTFT arrays by the addition of an insulating polymer to the precursor solution prior to film deposition. Moreover, the impact of the polymer molecular weight (MW) on the geometry, chemical constitution, crystallization, and MOTFT properties of inkjet-printed metal oxide depositions was investigated. The results demonstrated that with an increase of MW of polystyrene (PS) from 2000 to 200 000, the coffee ring was gradually faded and the coffee ring effect was completely eliminated when MW reached 200 000, which is associated with the enhanced viscosity with the insulating polymer, providing a high resistance to the outward capillary flow, which facilitated the depinning of the contact line, leading to the elimination of the coffee ring. More importantly, the carrier mobility increased significantly from 4.2 cm2 V-1 s-1 up to 13.7 cm2 V-1 s-1 as PS MW increased from 2000 to 200 000, which was about 3 times that of the pristine In2O3 TFTs. Grazing incidence X-ray diffraction and X-ray photoelectron spectroscopy results indicated that PS doping of In2O3 films not only frustrated crystallization but also altered chemical constitution by enhancing the formation of the M-O structure, both of which facilitated the carrier transport. These results demonstrated that the simple polymer additive process provides a promising method that can efficiently control the geometry of MO arrays during inkjet printing and maximize the device performance of MOTFT arrays, which showed great potential for the application in next

  11. Orientation Effects in Ballistic High-Strained P-type Si Nanowire FETs

    Directory of Open Access Journals (Sweden)

    Hong Yu

    2009-04-01

    Full Text Available In order to design and optimize high-sensitivity silicon nanowire-field-effect transistor (SiNW FET pressure sensors, this paper investigates the effects of channel orientations and the uniaxial stress on the ballistic hole transport properties of a strongly quantized SiNW FET placed near the high stress regions of the pressure sensors. A discrete stress-dependent six-band k.p method is used for subband structure calculation, coupled to a two-dimensional Poisson solver for electrostatics. A semi-classical ballistic FET model is then used to evaluate the ballistic current-voltage characteristics of SiNW FETs with and without strain. Our results presented here indicate that [110] is the optimum orientation for the p-type SiNW FETs and sensors. For the ultra-scaled 2.2 nm square SiNW, due to the limit of strong quantum confinement, the effect of the uniaxial stress on the magnitude of ballistic drive current is too small to be considered, except for the [100] orientation. However, for larger 5 nm square SiNW transistors with various transport orientations, the uniaxial tensile stress obviously alters the ballistic performance, while the uniaxial compressive stress slightly changes the ballistic hole current. Furthermore, the competition of injection velocity and carrier density related to the effective hole masses is found to play a critical role in determining the performance of the nanotransistors.

  12. Tuning the threshold voltage of carbon nanotube transistors by n-type molecular doping for robust and flexible complementary circuits

    Science.gov (United States)

    Wang, Huiliang; Wei, Peng; Li, Yaoxuan; Han, Jeff; Lee, Hye Ryoung; Naab, Benjamin D.; Liu, Nan; Wang, Chenggong; Adijanto, Eric; Tee, Benjamin C.-K.; Morishita, Satoshi; Li, Qiaochu; Gao, Yongli; Cui, Yi; Bao, Zhenan

    2014-01-01

    Tuning the threshold voltage of a transistor is crucial for realizing robust digital circuits. For silicon transistors, the threshold voltage can be accurately controlled by doping. However, it remains challenging to tune the threshold voltage of single-wall nanotube (SWNT) thin-film transistors. Here, we report a facile method to controllably n-dope SWNTs using 1H-benzoimidazole derivatives processed via either solution coating or vacuum deposition. The threshold voltages of our polythiophene-sorted SWNT thin-film transistors can be tuned accurately and continuously over a wide range. Photoelectron spectroscopy measurements confirmed that the SWNT Fermi level shifted to the conduction band edge with increasing doping concentration. Using this doping approach, we proceeded to fabricate SWNT complementary inverters by inkjet printing of the dopants. We observed an unprecedented noise margin of 28 V at VDD = 80 V (70% of 1/2VDD) and a gain of 85. Additionally, robust SWNT complementary metal−oxide−semiconductor inverter (noise margin 72% of 1/2VDD) and logic gates with rail-to-rail output voltage swing and subnanowatt power consumption were fabricated onto a highly flexible substrate. PMID:24639537

  13. Observation of strong reflection of electron waves exiting a ballistic channel at low energy

    Energy Technology Data Exchange (ETDEWEB)

    Vaz, Canute I.; Campbell, Jason P.; Ryan, Jason T.; Gundlach, David; Cheung, Kin. P., E-mail: Kin.Cheung@NIST.gov [National Institute of Standards and Technology, Gaithersburg, MD 20899-8120 (United States); Liu, Changze [National Institute of Standards and Technology, Gaithersburg, MD 20899-8120 (United States); Institute of Microelectronics, Peking University, Beijing 100871 (China); Southwick, Richard G. [National Institute of Standards and Technology, Gaithersburg, MD 20899-8120 (United States); IBM Research, Albany, NY 12205 (United States); Oates, Anthony S. [Taiwan Semiconductor Manufacturing Corporation, Hsinchu 30844, Taiwan (China); Huang, Ru [Institute of Microelectronics, Peking University, Beijing 100871 (China)

    2016-06-15

    Wave scattering by a potential step is a ubiquitous concept. Thus, it is surprising that theoretical treatments of ballistic transport in nanoscale devices, from quantum point contacts to ballistic transistors, assume no reflection even when the potential step is encountered upon exiting the device. Experiments so far seem to support this even if it is not clear why. Here we report clear evidence of coherent reflection when electron wave exits the channel of a nanoscale transistor and when the electron energy is low. The observed behavior is well described by a simple rectangular potential barrier model which the Schrodinger’s equation can be solved exactly. We can explain why reflection is not observed in most situations but cannot be ignored in some important situations. Our experiment also represents a direct measurement of electron injection velocity - a critical quantity in nanoscale transistors that is widely considered not measurable.

  14. Investigation of the potential barrier lowering for quasi-ballistic transport in short channel MOSFETs

    International Nuclear Information System (INIS)

    Lee, Jaehong; Kwon, Yongmin; Ji, Junghwan; Shin, Hyungcheol

    2011-01-01

    In this paper, the quasi-ballistic carrier transport in short channel MOSFETs is investigated from the point of potential barrier lowering. To investigate the ballistic characteristic of transistors, we extracted the channel backscattering coefficient and the ballistic ratio from experimental data obtained by RF C-V and DC I-V measurements. Two factors that modulate the potential barrier height, besides the gate bias, are considered in this work: the drain bias (V DS ) and the channel doping concentration (N A ). We extract the critical length by calculating the potential drop in the channel region and conclude that the drain bias and the channel doping concentration affect the quasi-ballistic carrier transport.

  15. Ballistic Missile Defense

    OpenAIRE

    Mayer, Michael

    2011-01-01

    At the 2010 NATO summit in Lisbon, the alliance decided to move forward on the development of a territorial ballistic missile defense (BMD) system and explore avenues for cooperation with Russia in this endeavor. Substantial progress on BMD has been made over the past decade, but some questions remain regarding the ultimate strategic utility of such a system and whether its benefi ts outweigh the possible opportunity costs. Missile defense has been a point of contention between the US and its...

  16. Whither Ballistic Missile Defense?

    Science.gov (United States)

    1992-11-30

    important that technology today is placing enormous power in the many camps-not only information that enables timely decision-making, but also the...WHITHER BALLISTIC MISSILE DEFENSE? BY AMBASSADOR HENRY F. COOPER NOVEMBER 30,1992 TECHNICAL MARKETING SOCIETY OF AMERICA WASHINGTON, DC...Conference on Technical Marketing 2000: Opportunities and Strategies for a Changing World) I intend to discuss the prospects for SDI in a changing

  17. Firearms and Ballistics

    OpenAIRE

    BOLTON-KING, Rachel; Schulze, Johan

    2016-01-01

    Chapter 7 of the book entitled 'Practical Veterinary Forensics' aims to introduce forensic veterinarians to the scientific concepts underpinning the field of firearms and ballistics. This introduction will enable practitioners to understand wound formation depending on the firearm and ammunition used. \\ud \\ud Various types of firearms, modern firing mechanisms and ammunition will be explained, together with an introduction to the physical concepts underpinning the four main constituents of th...

  18. Supra-ballistic phonons

    International Nuclear Information System (INIS)

    Russell, F.M.

    1989-05-01

    Energetic particles moving with a solid, either from nuclear reactions or externally injected, deposit energy by inelastic scattering processes which eventually appears as thermal energy. If the transfer of energy occurs in a crystalline solid then it is possible to couple some of the energy directly to the nuclei forming the lattice by generating phonons. In this paper the transfer of energy from a compound excited nucleus to the lattice is examined by introducing a virtual particle Π. It is shown that by including a Π in the nuclear reaction a substantial amount of energy can be coupled directly to the lattice. In the lattice this particle behaves as a spatially localized phonon of high energy, the so-called supra-ballistic phonon. By multiple inelastic scattering the supra-ballistic phonon eventually thermalizes. Because both the virtual particle Π and the equivalent supra-ballistic phonon have no charge or spin and can only exist within a lattice it is difficult to detect other than by its decay into thermal phonons. The possibility of a Π removing excess energy from a compound nucleus formed by the cold fusion of deuterium is examined. (Author)

  19. Ballistic deficit correction

    International Nuclear Information System (INIS)

    Duchene, G.; Moszynski, M.; Curien, D.

    1991-01-01

    The EUROGAM data-acquisition has to handle a large number of events/s. Typical in-beam experiments using heavy-ion fusion reactions assume the production of about 50 000 compound nuclei per second deexciting via particle and γ-ray emissions. The very powerful γ-ray detection of EUROGAM is expected to produce high-fold event rates as large as 10 4 events/s. Such high count rates introduce, in a common dead time mode, large dead times for the whole system associated with the processing of the pulse, its digitization and its readout (from the preamplifier pulse up to the readout of the information). In order to minimize the dead time the shaping time constant τ, usually about 3 μs for large volume Ge detectors has to be reduced. Smaller shaping times, however, will adversely affect the energy resolution due to ballistic deficit. One possible solution is to operate the linear amplifier, with a somewhat smaller shaping time constant (in the present case we choose τ = 1.5 μs), in combination with a ballistic deficit compensator. The ballistic deficit can be corrected in different ways using a Gated Integrator, a hardware correction or even a software correction. In this paper we present a comparative study of the software and hardware corrections as well as gated integration

  20. Ballistic negatron battery

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, M.S.R. [Koneru Lakshmiah Univ.. Dept. of Electrical and Electronics Engineering, Green fields, Vaddeswaram (India)

    2012-07-01

    If we consider the Statistics there is drastic increase in dependence of batteries from year to year, due to necessity of power storage equipment at homes, power generating off grid and on grid Wind, PV systems, etc.. Where wind power is leading in renewable sector, there is a need to look at its development. Considering the scenario in India, most of the wind resource areas are far away from grid and the remaining areas which are near to grid are of low wind currents which is of no use connecting these equipment directly to grid. So, there is a need for a power storage utility to be integrated, such as the BNB (Ballistic Negatron Battery). In this situation a country like India need a battery which should be reliable, cheap and which can be industrialized. So this paper presents the concept of working, design, operation, adaptability of a Ballistic Negatron Battery. Unlike present batteries with low energy density, huge size, more weight, more charging time and low resistant to wear level, this Ballistic Negatron Battery comes with, 1) High energy storage capability (many multiples more than the present most advanced battery). 2) Very compact in size. 3) Almost negligible in weight compared to present batteries. 4) Charges with in very less time. 5) Never exhibits a wear level greater than zero. Seems like inconceivable but adoptable with simple physics. This paper will explains in detail the principle, model, design, construction and practical considerations considered in making this battery. (Author)

  1. Transistor Effect in Improperly Connected Transistors.

    Science.gov (United States)

    Luzader, Stephen; Sanchez-Velasco, Eduardo

    1996-01-01

    Discusses the differences between the standard representation and a realistic representation of a transistor. Presents an experiment that helps clarify the explanation of the transistor effect and shows why transistors should be connected properly. (JRH)

  2. Organic field-effect transistors as a test-bed for molecular electronics : A combined study with large-area molecular junctions

    NARCIS (Netherlands)

    Asadi, Kamal; Katsouras, Ilias; Harkema, Jan; Gholamrezaie, Fatemeh; Smits, Edsger C. F.; Biscarini, Fabio; Blom, Paul W. M.; de Leeuw, Dago M.

    The contact resistance of a transistor using self-assembled monolayer (SAM)-modified source and drain electrodes depends on the SAM tunnel resistance, the height of the injection barrier and the morphology at the contact. To disentangle the different contributions, we have combined here the

  3. Organic field-effect transistors as a test-bed for molecular electronics : a combined study with large-area molecular junctions

    NARCIS (Netherlands)

    Asadi, K.; Katsouras, I.; Harkema, J.; Gholamrezaie, F.; Smits, E.C.P.; Biscarini, F.; Blom b, P.W.M.; Leeuw, D.M. de

    2012-01-01

    The contact resistance of a transistor using self-assembled monolayer (SAM)-modified source and drain electrodes depends on the SAM tunnel resistance, the height of the injection barrier and the morphology at the contact. To disentangle the different contributions, we have combined here the

  4. Organic field-effect transistors as a test-bed for molecular electronics : A combined study with large-area molecular junctions

    NARCIS (Netherlands)

    Asadi, Kamal; Katsouras, Ilias; Harkema, Jan; Gholamrezaie, Fatemeh; Smits, Edsger C. F.; Biscarini, Fabio; Blom, Paul W. M.; de Leeuw, Dago M.

    2012-01-01

    The contact resistance of a transistor using self-assembled monolayer (SAM)-modified source and drain electrodes depends on the SAM tunnel resistance, the height of the injection barrier and the morphology at the contact. To disentangle the different contributions, we have combined here the

  5. Ballistic transport and electronic structure

    NARCIS (Netherlands)

    Schep, Kees M.; Kelly, Paul J.; Bauer, Gerrit E.W.

    1998-01-01

    The role of the electronic structure in determining the transport properties of ballistic point contacts is studied. The conductance in the ballistic regime is related to simple geometrical projections of the Fermi surface. The essential physics is first clarified for simple models. For real

  6. High operational and environmental stability of high-mobility conjugated polymer field-effect transistors through the use of molecular additives

    KAUST Repository

    Nikolka, Mark; Nasrallah, Iyad; Rose, Bradley Daniel; Ravva, Mahesh Kumar; Broch, Katharina; Sadhanala, Aditya; Harkin, David; Charmet, Jerome; Hurhangee, Michael; Brown, Adam; Illig, Steffen; Too, Patrick; Jongman, Jan; McCulloch, Iain; Bredas, Jean-Luc; Sirringhaus, Henning

    2016-01-01

    Due to their low-temperature processing properties and inherent mechanical flexibility, conjugated polymer field-effect transistors (FETs) are promising candidates for enabling flexible electronic circuits and displays. Much progress has been made on materials performance; however, there remain significant concerns about operational and environmental stability, particularly in the context of applications that require a very high level of threshold voltage stability, such as active-matrix addressing of organic light-emitting diode displays. Here, we investigate the physical mechanisms behind operational and environmental degradation of high-mobility, p-type polymer FETs and demonstrate an effective route to improve device stability. We show that water incorporated in nanometre-sized voids within the polymer microstructure is the key factor in charge trapping and device degradation. By inserting molecular additives that displace water from these voids, it is possible to increase the stability as well as uniformity to a high level sufficient for demanding industrial applications.

  7. High operational and environmental stability of high-mobility conjugated polymer field-effect transistors through the use of molecular additives

    KAUST Repository

    Nikolka, Mark

    2016-12-12

    Due to their low-temperature processing properties and inherent mechanical flexibility, conjugated polymer field-effect transistors (FETs) are promising candidates for enabling flexible electronic circuits and displays. Much progress has been made on materials performance; however, there remain significant concerns about operational and environmental stability, particularly in the context of applications that require a very high level of threshold voltage stability, such as active-matrix addressing of organic light-emitting diode displays. Here, we investigate the physical mechanisms behind operational and environmental degradation of high-mobility, p-type polymer FETs and demonstrate an effective route to improve device stability. We show that water incorporated in nanometre-sized voids within the polymer microstructure is the key factor in charge trapping and device degradation. By inserting molecular additives that displace water from these voids, it is possible to increase the stability as well as uniformity to a high level sufficient for demanding industrial applications.

  8. X-ray diffraction study of InAlAs-InGaAs on InP high electron mobility transistor structure prepared by molecular-beam epitaxy

    International Nuclear Information System (INIS)

    Liu, H.Y.; Kao, Y.C.; Kim, T.S.

    1990-01-01

    High-electron mobility transistors (HEMTs) can be prepared by growing alternating epitaxial layers of InAlAs and InGaAs on InP substrates. Lattice matched HEMTs are obtained by growing layers of IN x Al (1-x) As and In y Ga (1-y) As with x ≅ 0.5227 and y ≅ 0.5324. Varying the values of x and y by controlling the individual flux during molecular-beam epitaxial (MBE) growth, one can obtain pseudomorphic HEMTs. Pseudomorphic HEMTs may have superior electronic transport properties and larger conduction band discontinuity when compared to an unstrained one. The precise control of the composition is thus important to the properties of HEMTs. This control is however very difficult and the values of x and y may vary from run to run. The authors demonstrate in this paper the capability of a double crystal rocking curve (DCRC) on the structure characterization

  9. Ballistic quality assurance

    International Nuclear Information System (INIS)

    Cassol, E.; Bonnet, J.; Porcheron, D.; Mazeron, J.J.; Peiffert, D.; Alapetite, C.

    2012-01-01

    This review describes the ballistic quality assurance for stereotactic intracranial irradiation treatments delivered with Gamma Knife R either dedicated or adapted medical linear accelerators. Specific and periodic controls should be performed in order to check the mechanical stability for both irradiation and collimation systems. If this step remains under the responsibility of the medical physicist, it should be done in agreement with the manufacturer's technical support. At this time, there are no recent published guidelines. With technological developments, both frequency and accuracy should be assessed in each institution according to the treatment mode: single versus hypo-fractionated dose, circular collimator versus micro-multi-leaf collimators. In addition, 'end-to-end' techniques are mandatory to find the origin of potential discrepancies and to estimate the global ballistic accuracy of the delivered treatment. Indeed, they include frames, non-invasive immobilization devices, localizers, multimodal imaging for delineation and in-room positioning imaging systems. The final precision that could be reasonably achieved is more or less 1 mm. (authors)

  10. Electrical responses by effects of molecular adsorption on channel and junctions of carbon nanotube field effect transistors

    International Nuclear Information System (INIS)

    Kang, Donghun; Park, Wanjun

    2008-01-01

    We report the adsorption effect on the electrical transport of nanotube field effect transistors. The source-drain current is monitored separately for the nanotube channel and the metal-nanotube junction under different pressures of ambient air with a blocking passivation. The metal-nanotube junction shows a significant change from p-type to ambipolar upon vacuum pumping, while the nanotube channel changes modestly. The metal-nanotube junction is found to be far more sensitive to the environment than the nanotube channel. We suggest that the adsorption states underneath the blocking layer do not desorb, and thus the positive carriers would not be diluted upon the vacuum pumping. This result is interpreted as the formation of an i-p-i and p-i-p junction with charge transfer by oxygen molecules. (fast track communication)

  11. Ballistic studies on layered structures

    International Nuclear Information System (INIS)

    Jena, P.K.; Ramanjeneyulu, K.; Siva Kumar, K.; Balakrishna Bhat, T.

    2009-01-01

    This paper presents the ballistic behavior and penetration mechanism of metal-metal and metal-fabric layered structures against 7.62 armour piercing projectiles at a velocity of 840 ± 15 m/s at 30 o angle of impact and compares the ballistic results with that of homogeneous metallic steel armour. This study also describes the effect of keeping a gap between the target layers. Experimental results showed that among the investigated materials, the best ballistic performance was attained with metal-fabric layered structures. The improvements in ballistic performance were analyzed in terms of mode of failure and fracture mechanisms of the samples by using optical and electron microscope, X-ray radiography and hardness measurement equipments.

  12. Japan and Ballistic Missile Defense

    National Research Council Canada - National Science Library

    Swaine, Michael

    2001-01-01

    Spurred by a perceived growing ballistic missile threat from within the Asia-Pacific region and requests from the United States to support research and development on components of a missile defense...

  13. The Impact of Molecular p-Doping on Charge Transport in High-Mobility Small-Molecule/Polymer Blend Organic Transistors

    KAUST Repository

    Paterson, Alexandra F.

    2017-12-27

    Molecular doping is a powerful tool with the potential to resolve many of the issues currently preventing organic thin-film transistor (OTFT) commercialization. However, the addition of dopant molecules into organic semiconductors often disrupts the host lattice, introducing defects and harming electrical transport. New dopant-based systems that overcome practical utilization issues, while still reaping the electrical performance benefits, would therefore be extremely valuable. Here, the impact of p-doping on the charge transport in blends consisting of the small-molecule 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT), the polymer indacenodithiophene-benzothiadiazole (C16IDT-BT), and the molecular dopant C60F48 is investigated. Electrical field-effect measurements indicate that p-doping not only enhances the average saturation mobility from 1.4 to 7.8 cm2 V−1 s−1 over 50 devices (maximum values from around 4 to 13 cm2 V−1 s−1), but also improves bias–stress stability, contact resistance, threshold voltage, and the overall device-to-device performance variation. Importantly, materials characterization using X-ray diffraction, X-ray photoemission spectroscopy, and ultraviolet photoemission spectroscopy, combined with charge transport modeling, reveal that effective doping is achieved without perturbing the microstructure of the polycrystalline semiconductor film. This work highlights the remarkable potential of ternary organic blends as a simple platform for OTFTs to achieve all the benefits of doping, with none of the drawbacks.

  14. The Impact of Molecular p-Doping on Charge Transport in High-Mobility Small-Molecule/Polymer Blend Organic Transistors

    KAUST Repository

    Paterson, Alexandra F.; Lin, Yen-Hung; Mottram, Alexander D.; Fei, Zhuping; Niazi, Muhammad Rizwan; Kirmani, Ahmad R.; Amassian, Aram; Solomeshch, Olga; Tessler, Nir; Heeney, Martin; Anthopoulos, Thomas D.

    2017-01-01

    Molecular doping is a powerful tool with the potential to resolve many of the issues currently preventing organic thin-film transistor (OTFT) commercialization. However, the addition of dopant molecules into organic semiconductors often disrupts the host lattice, introducing defects and harming electrical transport. New dopant-based systems that overcome practical utilization issues, while still reaping the electrical performance benefits, would therefore be extremely valuable. Here, the impact of p-doping on the charge transport in blends consisting of the small-molecule 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT), the polymer indacenodithiophene-benzothiadiazole (C16IDT-BT), and the molecular dopant C60F48 is investigated. Electrical field-effect measurements indicate that p-doping not only enhances the average saturation mobility from 1.4 to 7.8 cm2 V−1 s−1 over 50 devices (maximum values from around 4 to 13 cm2 V−1 s−1), but also improves bias–stress stability, contact resistance, threshold voltage, and the overall device-to-device performance variation. Importantly, materials characterization using X-ray diffraction, X-ray photoemission spectroscopy, and ultraviolet photoemission spectroscopy, combined with charge transport modeling, reveal that effective doping is achieved without perturbing the microstructure of the polycrystalline semiconductor film. This work highlights the remarkable potential of ternary organic blends as a simple platform for OTFTs to achieve all the benefits of doping, with none of the drawbacks.

  15. Ballistic Missile Defense in Europe

    OpenAIRE

    Sarihan, Ali; Bush, Amy; Summers, Lawrence; Thompson, Brent; Tomasszewski, Steven

    2009-01-01

    This paper will build on ballistic missile defense in Europe. In the first part, a brief historical overview will place the current public management issue into light. This is followed by a discussion of the main actors in the international debate, the problems that arise and the available options and recommendations to address missile defense. In the second part, differences between George W. Bush and Barack H. Obama will analyze under the title “Ballistic Missile Defense in Europe: Evolving...

  16. Room-Temperature Quantum Ballistic Transport in Monolithic Ultrascaled Al-Ge-Al Nanowire Heterostructures.

    Science.gov (United States)

    Sistani, Masiar; Staudinger, Philipp; Greil, Johannes; Holzbauer, Martin; Detz, Hermann; Bertagnolli, Emmerich; Lugstein, Alois

    2017-08-09

    Conductance quantization at room temperature is a key requirement for the utilizing of ballistic transport for, e.g., high-performance, low-power dissipating transistors operating at the upper limit of "on"-state conductance or multivalued logic gates. So far, studying conductance quantization has been restricted to high-mobility materials at ultralow temperatures and requires sophisticated nanostructure formation techniques and precise lithography for contact formation. Utilizing a thermally induced exchange reaction between single-crystalline Ge nanowires and Al pads, we achieved monolithic Al-Ge-Al NW heterostructures with ultrasmall Ge segments contacted by self-aligned quasi one-dimensional crystalline Al leads. By integration in electrostatically modulated back-gated field-effect transistors, we demonstrate the first experimental observation of room temperature quantum ballistic transport in Ge, favorable for integration in complementary metal-oxide-semiconductor platform technology.

  17. Room-temperature ballistic energy transport in molecules with repeating units

    International Nuclear Information System (INIS)

    Rubtsova, Natalia I.; Nyby, Clara M.; Zhang, Hong; Zhang, Boyu; Zhou, Xiao; Jayawickramarajah, Janarthanan; Burin, Alexander L.; Rubtsov, Igor V.

    2015-01-01

    In materials, energy can propagate by means of two limiting regimes: diffusive and ballistic. Ballistic energy transport can be fast and efficient and often occurs with a constant speed. Using two-dimensional infrared spectroscopy methods, we discovered ballistic energy transport via individual polyethylene chains with a remarkably high speed of 1440 m/s and the mean free path length of 14.6 Å in solution at room temperature. Whereas the transport via the chains occurs ballistically, the mechanism switches to diffusive with the effective transport speed of 130 m/s at the end-groups attached to the chains. A unifying model of the transport in molecules is presented with clear time separation and additivity among the transport along oligomeric fragments, which occurs ballistically, and the transport within the disordered fragments, occurring diffusively. The results open new avenues for making novel elements for molecular electronics, including ultrafast energy transporters, controlled chemical reactors, and sub-wavelength quantum nanoseparators

  18. Room-temperature ballistic energy transport in molecules with repeating units

    Energy Technology Data Exchange (ETDEWEB)

    Rubtsova, Natalia I.; Nyby, Clara M.; Zhang, Hong; Zhang, Boyu; Zhou, Xiao; Jayawickramarajah, Janarthanan; Burin, Alexander L.; Rubtsov, Igor V., E-mail: irubtsov@tulane.edu [Department of Chemistry, Tulane University, New Orleans, Louisiana 70118 (United States)

    2015-06-07

    In materials, energy can propagate by means of two limiting regimes: diffusive and ballistic. Ballistic energy transport can be fast and efficient and often occurs with a constant speed. Using two-dimensional infrared spectroscopy methods, we discovered ballistic energy transport via individual polyethylene chains with a remarkably high speed of 1440 m/s and the mean free path length of 14.6 Å in solution at room temperature. Whereas the transport via the chains occurs ballistically, the mechanism switches to diffusive with the effective transport speed of 130 m/s at the end-groups attached to the chains. A unifying model of the transport in molecules is presented with clear time separation and additivity among the transport along oligomeric fragments, which occurs ballistically, and the transport within the disordered fragments, occurring diffusively. The results open new avenues for making novel elements for molecular electronics, including ultrafast energy transporters, controlled chemical reactors, and sub-wavelength quantum nanoseparators.

  19. Management of civilian ballistic fractures.

    Science.gov (United States)

    Seng, V S; Masquelet, A C

    2013-12-01

    The management of ballistic fractures, which are open fractures, has often been studied in wartime and has benefited from the principles of military surgery with debridement and lavage, and the use of external fixation for bone stabilization. In civilian practice, bone stabilization of these fractures is different and is not performed by external fixation. Fifteen civilian ballistic fractures, Gustilo II or IIIa, two associated with nerve damage and none with vascular damage, were reviewed. After debridement and lavage, ten internal fixations and five conservative treatments were used. No superficial or deep surgical site infection was noted. Fourteen of the 15 fractures (93%) healed without reoperation. Eleven of the 15 patients (73%) regained normal function. Ballistic fractures have a bad reputation due to their many complications, including infections. In civilian practice, the use of internal fixation is not responsible for excessive morbidity, provided debridement and lavage are performed. Civilian ballistic fractures, when they are caused by low-velocity firearms, differ from military ballistic fractures. Although the principle of surgical debridement and lavage remains the same, bone stabilization is different and is similar to conventional open fractures. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  20. Analysis of behind the armor ballistic trauma.

    Science.gov (United States)

    Wen, Yaoke; Xu, Cheng; Wang, Shu; Batra, R C

    2015-05-01

    The impact response of body armor composed of a ceramic plate with an ultrahigh molecular weight polyethylene (UHMWPE) fiber-reinforced composite and layers of UHMWPE fibers shielding a block of ballistic gelatin has been experimentally and numerically analyzed. It is a surrogate model for studying injuries to human torso caused by a bullet striking body protection armor placed on a person. Photographs taken with a high speed camera are used to determine deformations of the armor and the gelatin. The maximum depth of the temporary cavity formed in the ballistic gelatin and the peak pressure 40mm behind the center of the gelatin front face contacting the armor are found to be, respectively, ~34mm and ~15MPa. The Johnson-Holmquist material model has been used to simulate deformations and failure of the ceramic. The UHMWPE fiber-reinforced composite and the UHMWPE fiber layers are modeled as linear elastic orthotropic materials. The gelatin is modeled as a strain-rate dependent hyperelastic material. Values of material parameters are taken from the open literature. The computed evolution of the temporary cavity formed in the gelatin is found to qualitatively agree with that seen in experiments. Furthermore, the computed time histories of the average pressure at four points in the gelatin agree with the corresponding experimentally measured ones. The maximum pressure at a point and the depth of the temporary cavity formed in the gelatin can be taken as measures of the severity of the bodily injury caused by the impact; e.g. see the United States National Institute of Justice standard 0101.06-Ballistic Resistance of Body Armor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Ballistic materials in MR imaging

    International Nuclear Information System (INIS)

    Smith, A.S.; Hurst, G.C.; Duerk, J.L.; Diaz, P.J.

    1990-01-01

    This paper reports on the most common ballistic materials available in the urban setting studied for deflection force, rotation, heating, and imaging artifact at 1.5 T to determine potential efficacy and safety for imaging patients with ballistic injuries. Twenty-eight missiles were tested, covering the range of bullet types and materials suggested by the Cleveland Police Department. Deflection force was measured by the New method. Rotation was studied by evaluating bullets in a 10% (W/W) ballistic gelating after 30 minutes with the long axis of the bullet placed parallel and perpendicular to the z axis. Heating was measured with alcohol thermometers imaged for 1 hour alternately with FESUM and spin-echo sequences (RF absorption w/Kg and 0.033 w/Kg). Image artifact evaluation of routine sequences was performed

  2. Optimization theory for ballistic conversion

    NARCIS (Netherlands)

    Xie, Yanbo; Versluis, Michel; van den Berg, Albert; Eijkel, Jan C.T.

    2016-01-01

    The growing demand of renewable energy stimulates the exploration of new materials and methods for clean energy. We recently demonstrated a high efficiency and power density energy conversion mechanism by using jetted charged microdroplets, termed as ballistic energy conversion. Hereby, we model and

  3. BALLISTIC RESISTANT ARTICLES COMPRISING TAPES

    NARCIS (Netherlands)

    VAN DER EEM, JORIS; HARINGS, JULES; JANSE, GERARDUS; TJADEN, HENDRIK

    2015-01-01

    The invention pertains to a ballistic-resistant moulded article comprising a compressed stack of sheets comprising reinforcing tapes having a tensile strength of at least 1.0 GPa, a tensile modulus of at least 40 GPa, and a tensile energy-to-break of at least 15 J/g, the direction of the tapes

  4. High-Performance n-Channel Organic Transistors Using High-Molecular-Weight Electron-Deficient Copolymers and Amine-Tailed Self-Assembled Monolayers.

    Science.gov (United States)

    Wang, Yang; Hasegawa, Tsukasa; Matsumoto, Hidetoshi; Mori, Takehiko; Michinobu, Tsuyoshi

    2018-03-01

    While high-performance p-type semiconducting polymers are widely reported, their n-type counterparts are still rare in terms of quantity and quality. Here, an improved Stille polymerization protocol using chlorobenzene as the solvent and palladium(0)/copper(I) as the catalyst is developed to synthesize high-quality n-type polymers with number-average molecular weight up to 10 5 g mol -1 . Furthermore, by sp 2 -nitrogen atoms (sp 2 -N) substitution, three new n-type polymers, namely, pBTTz, pPPT, and pSNT, are synthesized, and the effect of different sp 2 -N substitution positions on the device performances is studied for the first time. It is found that the incorporation of sp 2 -N into the acceptor units rather than the donor units results in superior crystalline microstructures and higher electron mobilities. Furthermore, an amine-tailed self-assembled monolayer (SAM) is smoothly formed on a Si/SiO 2 substrate by a simple spin-coating technique, which can facilitate the accumulation of electrons and lead to more perfect unipolar n-type transistor performances. Therefore, a remarkably high unipolar electron mobility up to 5.35 cm 2 V -1 s -1 with a low threshold voltage (≈1 V) and high on/off current ratio of ≈10 7 is demonstrated for the pSNT-based devices, which are among the highest values for unipolar n-type semiconducting polymers. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Ballistic study of Tensylon®–based panels

    Directory of Open Access Journals (Sweden)

    L-C. Alil

    2018-06-01

    Full Text Available Ballistic protection is a matter of interest requested by civilian as well as military needs. The last decade has witnessed an increase in the use of light weight and efficient armour systems. These panels may be used for body protection as well as light vehicle protection against small calibres or to enhance the protection level of heavier vehicles with decreasing or maintaining their weight penalty. Ultra high molecular weight polyethylene is a material of interest for light weight armour applications. The authors designed panels made of hot–pressed Tensylon® in different configurations with thin steel sheets as a backing and shield protection. Comparison of their ballistic performance to the theory predictions reveals the improved ballistic response of the panels. In addition, a non–pressed Tensylon® panel has been tested in order to facilitate the observations of the failure mechanisms inside the panels. Even if not suitable for practical use, such non–pressed panels clearly reveal the dynamic processes at micro–scale that occur during the impact. The failure mechanisms of the material under bullet penetration are discussed based on photography, optical microscopy and scanning electron microscopy. The supposed effects of the panel pressing are discussed based on the observed difference between pressed and non–pressed structures ballistic response.

  6. Toward Better Personal Ballistic Protection

    Science.gov (United States)

    2014-03-04

    Toward Better Personal Ballistic Protection Manon Bolduc1, Jason Lo2, Ruby Zhang2, Dan Walsh2, Shuqiong Lin3, Benoit Simard3, Ken Bosnick4, Mike...presenc particulate gr atly increase ceramic mad er, knowing e ceramic ma the alumina y on the mat a layered with s on the coat stantial prope C) magnif...mic fiber ma site ceramics such, thod. this fore, on of t has 8. CONCLUSION In an attempt to improve the failure resistance of ceramic

  7. Ballistic food transport in toucans.

    Science.gov (United States)

    Baussart, Sabine; Korsoun, Leonid; Libourel, Paul-Antoine; Bels, Vincent

    2009-08-01

    The basic mechanism of food transport in tetrapods is lingual-based. Neognathous birds use this mechanism for exploiting a large diversity of food resources, whereas paleognathous birds use cranioinertial mechanism with or without tongue involvement. Food transport in two neognathous species of toucans (Ramphastos toco and R. vitellinus) is defined as ballistic transport mechanism. Only one transport cycle is used for moving the food from the tip of the beak to the pharynx. The food is projected between jaws with similar initial velocity in both species. At the time of release, the angle between trajectory of food position and horizontal is higher in R. vitellinus with a shorter beak than in R. toco. The tongue never makes contact with the food nor is it used to expand the buccal cavity. Tongue movement is associated with throat expansion, permitting the food to reach the entrance of the esophagus at the end of the ballistic trajectory. Selection of large food items in the diet may explain the evolutionary trend of using ballistic transport in the feeding behavior of toucans, which plays a key role in ecology of tropical forest. 2009 Wiley-Liss, Inc.

  8. Liquid crystals for organic transistors (Conference Presentation)

    Science.gov (United States)

    Hanna, Jun-ichi; Iino, Hiroaki

    2016-09-01

    Liquid crystals are a new type of organic semiconductors exhibiting molecular orientation in self-organizing manner, and have high potential for device applications. In fact, various device applications have been proposed so far, including photosensors, solar cells, light emitting diodes, field effect transistors, and so on.. However, device performance in those fabricated with liquid crystals is less than those of devices fabricated with conventional materials in spite of unique features of liquid crystals. Here we discuss how we can utilize the liquid crystallinity in organic transistors and how we can overcome conventional non-liquid crystalline organic transistor materials. Then, we demonstrate high performance organic transistors fabricated with a smectic E liquid crystal of Ph-BTBT-10, which show high mobility of over 10cm2/Vs and high thermal durability of over 200oC in OFETs fabricated with its spin-coated polycrystalline thin films.

  9. Conformable Self-Healing Ballistic Armor

    Science.gov (United States)

    2011-06-28

    public release, distribution unlimited 13. SUPPLEMENTARY NOTES Patent No: US 7,966,923 B2 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION...B2 5 Each unit of shell 10 of the ballistic annor of the subject invention further comprises fastening means 20 to attach each such shell IOta the...selectively affixing the conformable ballistic annor to the vehicle is a secure manner, both on a temporal)’ orpennanent basis. The ballistic

  10. Dense-plasma research using ballistic compressors

    International Nuclear Information System (INIS)

    Hess, H.

    1986-01-01

    An introduction is given to research on dense (or nonideal) plasmas which can be generated to advantage by ballistic compressors. Some properties of ballistic compressors are discussed especially in comparison with shock tubes. A short review is given on the history of these devices for high-pressure plasma generation. The present state of the art is reported including research on the two ZIE (Central Institute for Electron Physics) ballistic compressors. (author)

  11. Ship Anti Ballistic Missile Response (SABR)

    OpenAIRE

    Johnson, Allen P.; Breeden, Bryan; Duff, Willard Earl; Fishcer, Paul F.; Hornback, Nathan; Leiker, David C.; Carlisle, Parker; Diersing, Michael; Devlin, Ryan; Glenn, Christopher; Hoffmeister, Chris; Chong, Tay Boon; Sing, Phang Nyit; Meng, Low Wee; Meng, Fann Chee

    2006-01-01

    Includes supplementary material. Based on public law and Presidential mandate, ballistic missile defense development is a front-burner issue for homeland defense and the defense of U.S. and coalition forces abroad. Spearheaded by the Missile Defense Agency, an integrated ballistic missile defense system was initiated to create a layered defense composed of land-, air-, sea-, and space-based assets. The Ship Anti-Ballistic Response (SABR) Project is a systems engineering approach t...

  12. Doped Organic Transistors.

    Science.gov (United States)

    Lüssem, Björn; Keum, Chang-Min; Kasemann, Daniel; Naab, Ben; Bao, Zhenan; Leo, Karl

    2016-11-23

    Organic field-effect transistors hold the promise of enabling low-cost and flexible electronics. Following its success in organic optoelectronics, the organic doping technology is also used increasingly in organic field-effect transistors. Doping not only increases device performance, but it also provides a way to fine-control the transistor behavior, to develop new transistor concepts, and even improve the stability of organic transistors. This Review summarizes the latest progress made in the understanding of the doping technology and its application to organic transistors. It presents the most successful doping models and an overview of the wide variety of materials used as dopants. Further, the influence of doping on charge transport in the most relevant polycrystalline organic semiconductors is reviewed, and a concise overview on the influence of doping on transistor behavior and performance is given. In particular, recent progress in the understanding of contact doping and channel doping is summarized.

  13. SOI Transistor measurement techniques using body contacted transistors

    International Nuclear Information System (INIS)

    Worley, E.R.; Williams, R.

    1989-01-01

    Measurements of body contacted SOI transistors are used to isolate parameters of the back channel and island edge transistor. Properties of the edge and back channel transistor have been measured before and after X-ray irradiation (ARACOR). The unique properties of the edge transistor are shown to be a result of edge geometry as confirmed by a two dimensional transistor simulator

  14. Ballistic transport and quantum interference in InSb nanowire devices

    International Nuclear Information System (INIS)

    Li Sen; Huang Guang-Yao; Guo Jing-Kun; Kang Ning; Xu Hong-Qi; Caroff, Philippe

    2017-01-01

    An experimental realization of a ballistic superconductor proximitized semiconductor nanowire device is a necessary step towards engineering topological quantum electronics. Here, we report on ballistic transport in InSb nanowires grown by molecular-beam epitaxy contacted by superconductor electrodes. At an elevated temperature, clear conductance plateaus are observed at zero magnetic field and in agreement with calculations based on the Landauer formula. At lower temperature, we have observed characteristic Fabry–Pérot patterns which confirm the ballistic nature of charge transport. Furthermore, the magnetoconductance measurements in the ballistic regime reveal a periodic variation related to the Fabry–Pérot oscillations. The result can be reasonably explained by taking into account the impact of magnetic field on the phase of ballistic electron’s wave function, which is further verified by our simulation. Our results pave the way for better understanding of the quantum interference effects on the transport properties of InSb nanowires in the ballistic regime as well as developing of novel device for topological quantum computations. (paper)

  15. The Cooperative Ballistic Missile Defence Game

    NARCIS (Netherlands)

    Evers, L.; Barros, A.I.; Monsuur, H.

    2013-01-01

    The increasing proliferation of ballistic missiles and weapons of mass destruction poses new risks worldwide. For a threatened nation and given the characteristics of this threat a layered ballistic missile defence system strategy appears to be the preferred solution. However, such a strategy

  16. Artifacts that mimic ballistic magnetoresistance

    International Nuclear Information System (INIS)

    Egelhoff, W.F. . E-mail : egelhoff@nist.gov; Gan, L.; Ettedgui, H.; Kadmon, Y.; Powell, C.J.; Chen, P.J.; Shapiro, A.J.; McMichael, R.D.; Mallett, J.J.; Moffat, T.P.; Stiles, M.D.; Svedberg, E.B.

    2005-01-01

    We have investigated the circumstances underlying recent reports of very large values of ballistic magnetoresistance (BMR) in nanocontacts between magnetic wires. We find that the geometries used are subject to artifacts due to motion of the wires that distort the nanocontact thereby changing its electrical resistance. Since these nanocontacts are often of atomic scale, reliable experiments would require stability on the atomic scale. No method for achieving such stability in macroscopic wires is apparent. We conclude that macroscopic magnetic wires cannot be used to establish the validity of the BMR effect

  17. Ballistic electron transport in mesoscopic samples

    International Nuclear Information System (INIS)

    Diaconescu, D.

    2000-01-01

    In the framework of this thesis, the electron transport in the ballistic regime has been studied. Ballistic means that the lateral sample dimensions are smaller than the mean free path of the electrons, i.e. the electrons can travel through the whole device without being scattered. This leads to transport characteristics that differ significantly from the diffusive regime which is realised in most experiments. Making use of samples with high mean free path, features of ballistic transport have been observed on samples with sizes up to 100 μm. The basic device used in ballistic electron transport is the point contact, from which a collimated beam of ballistic electrons can be injected. Such point contacts were realised with focused ion beam (FIB) implantation and the collimating properties were analysed using a two opposite point contact configuration. The typical angular width at half maximum is around 50 , which is comparable with that of point contacts defined by other methods. (orig.)

  18. Ballistic superconductivity in semiconductor nanowires

    Science.gov (United States)

    Zhang, Hao; Gül, Önder; Conesa-Boj, Sonia; Nowak, Michał P.; Wimmer, Michael; Zuo, Kun; Mourik, Vincent; de Vries, Folkert K.; van Veen, Jasper; de Moor, Michiel W. A.; Bommer, Jouri D. S.; van Woerkom, David J.; Car, Diana; Plissard, Sébastien R; Bakkers, Erik P.A.M.; Quintero-Pérez, Marina; Cassidy, Maja C.; Koelling, Sebastian; Goswami, Srijit; Watanabe, Kenji; Taniguchi, Takashi; Kouwenhoven, Leo P.

    2017-01-01

    Semiconductor nanowires have opened new research avenues in quantum transport owing to their confined geometry and electrostatic tunability. They have offered an exceptional testbed for superconductivity, leading to the realization of hybrid systems combining the macroscopic quantum properties of superconductors with the possibility to control charges down to a single electron. These advances brought semiconductor nanowires to the forefront of efforts to realize topological superconductivity and Majorana modes. A prime challenge to benefit from the topological properties of Majoranas is to reduce the disorder in hybrid nanowire devices. Here we show ballistic superconductivity in InSb semiconductor nanowires. Our structural and chemical analyses demonstrate a high-quality interface between the nanowire and a NbTiN superconductor that enables ballistic transport. This is manifested by a quantized conductance for normal carriers, a strongly enhanced conductance for Andreev-reflecting carriers, and an induced hard gap with a significantly reduced density of states. These results pave the way for disorder-free Majorana devices. PMID:28681843

  19. Ballistic representation for kinematic access

    Science.gov (United States)

    Alfano, Salvatore

    2011-01-01

    This work uses simple two-body orbital dynamics to initially determine the kinematic access for a ballistic vehicle. Primarily this analysis was developed to assess when a rocket body might conjunct with an orbiting satellite platform. A family of access opportunities can be represented as a volume for a specific rocket relative to its launch platform. Alternately, the opportunities can be represented as a geographical footprint relative to aircraft or satellite position that encompasses all possible launcher locations for a specific rocket. A thrusting rocket is treated as a ballistic vehicle that receives all its energy at launch and follows a coasting trajectory. To do so, the rocket's burnout energy is used to find its equivalent initial velocity for a given launcher's altitude. Three kinematic access solutions are then found that account for spherical Earth rotation. One solution finds the maximum range for an ascent-only trajectory while another solution accommodates a descending trajectory. In addition, the ascent engagement for the descending trajectory is used to depict a rapid access scenario. These preliminary solutions are formulated to address ground-, sea-, or air-launched vehicles.

  20. Ballistic resistance capacity of carbon nanotubes

    International Nuclear Information System (INIS)

    Mylvaganam, Kausala; Zhang, L C

    2007-01-01

    Carbon nanotubes have high strength, light weight and excellent energy absorption capacity and therefore have great potential applications in making antiballistic materials. By examining the ballistic impact and bouncing-back processes on carbon nanotubes, this investigation shows that nanotubes with large radii withstand higher bullet speeds and the ballistic resistance is the highest when the bullet hits the centre of the CNT; the ballistic resistance of CNTs will remain the same on subsequent bullet strikes if the impact is after a small time interval

  1. Preservation and storage of prepared ballistic gelatine.

    Science.gov (United States)

    Mattijssen, E J A T; Alberink, I; Jacobs, B; van den Boogaard, Y

    2016-02-01

    The use of ballistic gelatine, generally accepted as a human muscle tissue simulant in wound ballistic studies, might be improved by adding a preservative (Methyl 4-hydroxybenzoate) which inhibits microbial growth. This study shows that replacing a part of the gelatine powder by the preservative does not significantly alter the penetration depth of projectiles. Storing prepared blocks of ballistic gelatine over time decreased the penetration depth of projectiles. Storage of prepared gelatine for 4 week already showed a significant effect on the penetration depth of projectiles. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Assessment of Ballistic Performance for Transparent Material

    Directory of Open Access Journals (Sweden)

    Basim M. Fadhil

    2014-05-01

    Full Text Available A finite element method was used to investigate the ballistic behavior of Polymethylmethacrylate (PMMA under impact loading by spherical steel projectile with different ranges of velocities. Three different target thicknesses were used in the experimental and the numerical works. A mathematical model has been used for the ballistic limit based on the experimental results. It has been found that projectile velocity and target thickness play an important role in the ballistic behavior of PMMA. A good agreement was found between the numerical, experimental, and the analytical result.

  3. Demonstration of β-(Al x Ga1- x )2O3/β-Ga2O3 modulation doped field-effect transistors with Ge as dopant grown via plasma-assisted molecular beam epitaxy

    Science.gov (United States)

    Ahmadi, Elaheh; Koksaldi, Onur S.; Zheng, Xun; Mates, Tom; Oshima, Yuichi; Mishra, Umesh K.; Speck, James S.

    2017-07-01

    β-(Al x Ga1- x )2O3/β-Ga2O3 heterostructures were grown via plasma-assisted molecular beam epitaxy. The β-(Al x Ga1- x )2O3 barrier was partially doped by Ge to achieve a two-dimensional electron gas (2DEG) in Ga2O3. The formation of the 2DEG was confirmed by capacitance-voltage measurements. The impact of Ga-polishing on both the surface morphology and the reduction of the unintentionally incorporated Si at the growth interface was investigated using atomic force microscopy and secondary-ion mass spectrometry. Modulation doped field-effect transistors were fabricated. A maximum current density of 20 mA/mm with a pinch-off voltage of -6 V was achieved on a sample with a 2DEG sheet charge density of 1.2 × 1013 cm-2.

  4. Room Temperature Silicene Field-Effect Transistors

    Science.gov (United States)

    Akinwande, Deji

    Silicene, a buckled Si analogue of graphene, holds significant promise for future electronics beyond traditional CMOS. In our predefined experiments via encapsulated delamination with native electrodes approach, silicene devices exhibit an ambipolar charge transport behavior, corroborating theories on Dirac band in Ag-free silicene. Monolayer silicene device has extracted field-effect mobility within the theoretical expectation and ON/OFF ratio greater than monolayer graphene, while multilayer silicene devices show decreased mobility and gate modulation. Air-stability of silicene devices depends on the number of layers of silicene and intrinsic material structure determined by growth temperature. Few or multi-layer silicene devices maintain their ambipolar behavior for days in contrast to minutes time scale for monolayer counterparts under similar conditions. Multilayer silicene grown at different temperatures below 300oC possess different intrinsic structures and yield different electrical property and air-stability. This work suggests a practical prospect to enable more air-stable silicene devices with layer and growth condition control, which can be leveraged for other air-sensitive 2D materials. In addition, we describe quantum and classical transistor device concepts based on silicene and related buckled materials that exploit the 2D topological insulating phenomenon. The transistor device physics offer the potential for ballistic transport that is robust against scattering and can be employed for both charge and spin transport. This work was supported by the ARO.

  5. Steering of quantum waves: Demonstration of Y-junction transistors using InAs quantum wires

    Science.gov (United States)

    Jones, Gregory M.; Qin, Jie; Yang, Chia-Hung; Yang, Ming-Jey

    2005-06-01

    In this paper we demonstrate using an InAs quantum wire Y-branch switch that the electron wave can be switched to exit from the two drains by a lateral gate bias. The gating modifies the electron wave functions as well as their interference pattern, causing the anti-correlated, oscillatory transconductances. Our result suggests a new transistor function in a multiple-lead ballistic quantum wire system.

  6. Analysis of the two dimensional Datta-Das Spin Field Effect Transistor

    OpenAIRE

    Bandyopadhyay, S.

    2010-01-01

    An analytical expression is derived for the conductance modulation of a ballistic two dimensional Datta-Das Spin Field Effect Transistor (SPINFET) as a function of gate voltage. Using this expression, we show that the recently observed conductance modulation in a two-dimensional SPINFET structure does not match the theoretically expected result very well. This calls into question the claimed demonstration of the SPINFET and underscores the need for further careful investigation.

  7. Analysis of the two-dimensional Datta-Das spin field effect transistor

    Science.gov (United States)

    Agnihotri, P.; Bandyopadhyay, S.

    2010-03-01

    An analytical expression is derived for the conductance modulation of a ballistic two-dimensional Datta-das spin field effect transistor (SPINFET) as a function of gate voltage. Using this expression, we show that the recently observed conductance modulation in a two-dimensional SPINFET structure does not match the theoretically expected result very well. This calls into question the claimed demonstration of the SPINFET and underscores the need for further careful investigation.

  8. Modeling and experiments on ballistic impact into UHMWPE yarns using flat and saddle-nosed projectiles

    NARCIS (Netherlands)

    Phoenix, S.L.; Heisserer, U.; Werff, H. van der; Jagt-Deutekom , M.J. van der

    2017-01-01

    Yarn shooting experiments were conducted to determine the ballistically-relevant, Young’s modulus and tensile strength of ultra-high molecular weight polyethylene (UHMWPE) fiber. Target specimens were Dyneema® SK76 yarns (1760 dtex), twisted to 40 turns/m, and initially tensioned to stresses ranging

  9. Ballistic Rail Gun Soft Recovery Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Ballistic Rail Gun Soft Recovery Facility accommodates a 155mm Howitzer, fired horizontally into a 104-foot long water trough to slow the projectile and recover...

  10. Ballistic Missile Defense and ABM Treaty Limitations

    National Research Council Canada - National Science Library

    Robinson, Brian

    1998-01-01

    The U.S. must critically evaluate our current ballistic missile defense (BMD) strategy. In today's geostrategic context, is it sound strategy to continue to impose 1972 ABM Treaty restrictions on BMD systems development...

  11. Quantum Mechanical Modeling of Ballistic MOSFETs

    Science.gov (United States)

    Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, Bryan (Technical Monitor)

    2001-01-01

    The objective of this project was to develop theory, approximations, and computer code to model quasi 1D structures such as nanotubes, DNA, and MOSFETs: (1) Nanotubes: Influence of defects on ballistic transport, electro-mechanical properties, and metal-nanotube coupling; (2) DNA: Model electron transfer (biochemistry) and transport experiments, and sequence dependence of conductance; and (3) MOSFETs: 2D doping profiles, polysilicon depletion, source to drain and gate tunneling, understand ballistic limit.

  12. Silicon heterojunction transistor

    International Nuclear Information System (INIS)

    Matsushita, T.; Oh-uchi, N.; Hayashi, H.; Yamoto, H.

    1979-01-01

    SIPOS (Semi-insulating polycrystalline silicon) which is used as a surface passivation layer for highly reliable silicon devices constitutes a good heterojunction for silicon. P- or B-doped SIPOS has been used as the emitter material of a heterojunction transistor with the base and collector of silicon. An npn SIPOS-Si heterojunction transistor showing 50 times the current gain of an npn silicon homojunction transistor has been realized by high-temperature treatments in nitrogen and low-temperature annealing in hydrogen or forming gas

  13. Molecular-beam-deposited yttrium-oxide dielectrics in aluminum-gated metal - oxide - semiconductor field-effect transistors: Effective electron mobility

    International Nuclear Information System (INIS)

    Ragnarsson, L.-A degree.; Guha, S.; Copel, M.; Cartier, E.; Bojarczuk, N. A.; Karasinski, J.

    2001-01-01

    We report on high effective mobilities in yttrium-oxide-based n-channel metal - oxide - semiconductor field-effect transistors (MOSFETs) with aluminum gates. The yttrium oxide was grown in ultrahigh vacuum using a reactive atomic-beam-deposition system. Medium-energy ion-scattering studies indicate an oxide with an approximate composition of Y 2 O 3 on top of a thin layer of interfacial SiO 2 . The thickness of this interfacial oxide as well as the effective mobility are found to be dependent on the postgrowth anneal conditions. Optimum conditions result in mobilities approaching that of SiO 2 -based MOSFETs at higher fields with peak mobilities at approximately 210 cm 2 /Vs. [copyright] 2001 American Institute of Physics

  14. Impact of recess etching and surface treatments on ohmic contacts regrown by molecular-beam epitaxy for AlGaN/GaN high electron mobility transistors

    Energy Technology Data Exchange (ETDEWEB)

    Joglekar, S.; Azize, M.; Palacios, T. [Microsystems Technology Laboratories, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 (United States); Beeler, M.; Monroy, E. [Université Grenoble-Alpes, 38000 Grenoble (France); CEA Grenoble, INAC-PHELIQS, 38000 Grenoble (France)

    2016-07-25

    Ohmic contacts fabricated by regrowth of n{sup +} GaN are favorable alternatives to metal-stack-based alloyed contacts in GaN-based high electron mobility transistors. In this paper, the influence of reactive ion dry etching prior to regrowth on the contact resistance in AlGaN/GaN devices is discussed. We demonstrate that the dry etch conditions modify the surface band bending, dangling bond density, and the sidewall depletion width, which influences the contact resistance of regrown contacts. The impact of chemical surface treatments performed prior to regrowth is also investigated. The sensitivity of the contact resistance to the surface treatments is found to depend upon the dangling bond density of the sidewall facets exposed after dry etching. A theoretical model has been developed in order to explain the observed trends.

  15. Silicon nanowire transistors

    CERN Document Server

    Bindal, Ahmet

    2016-01-01

    This book describes the n and p-channel Silicon Nanowire Transistor (SNT) designs with single and dual-work functions, emphasizing low static and dynamic power consumption. The authors describe a process flow for fabrication and generate SPICE models for building various digital and analog circuits. These include an SRAM, a baseband spread spectrum transmitter, a neuron cell and a Field Programmable Gate Array (FPGA) platform in the digital domain, as well as high bandwidth single-stage and operational amplifiers, RF communication circuits in the analog domain, in order to show this technology’s true potential for the next generation VLSI. Describes Silicon Nanowire (SNW) Transistors, as vertically constructed MOS n and p-channel transistors, with low static and dynamic power consumption and small layout footprint; Targets System-on-Chip (SoC) design, supporting very high transistor count (ULSI), minimal power consumption requiring inexpensive substrates for packaging; Enables fabrication of different types...

  16. Organic electrochemical transistors

    KAUST Repository

    Rivnay, Jonathan; Inal, Sahika; Salleo, Alberto; Owens, Ró isí n M.; Berggren, Magnus; Malliaras, George G.

    2018-01-01

    Organic electrochemical transistors (OECTs) make effective use of ion injection from an electrolyte to modulate the bulk conductivity of an organic semiconductor channel. The coupling between ionic and electronic charges within the entire volume

  17. Vertical organic transistors.

    Science.gov (United States)

    Lüssem, Björn; Günther, Alrun; Fischer, Axel; Kasemann, Daniel; Leo, Karl

    2015-11-11

    Organic switching devices such as field effect transistors (OFETs) are a key element of future flexible electronic devices. So far, however, a commercial breakthrough has not been achieved because these devices usually lack in switching speed (e.g. for logic applications) and current density (e.g. for display pixel driving). The limited performance is caused by a combination of comparatively low charge carrier mobilities and the large channel length caused by the need for low-cost structuring. Vertical Organic Transistors are a novel technology that has the potential to overcome these limitations of OFETs. Vertical Organic Transistors allow to scale the channel length of organic transistors into the 100 nm regime without cost intensive structuring techniques. Several different approaches have been proposed in literature, which show high output currents, low operation voltages, and comparatively high speed even without sub-μm structuring technologies. In this review, these different approaches are compared and recent progress is highlighted.

  18. Projectile penetration into ballistic gelatin.

    Science.gov (United States)

    Swain, M V; Kieser, D C; Shah, S; Kieser, J A

    2014-01-01

    Ballistic gelatin is frequently used as a model for soft biological tissues that experience projectile impact. In this paper we investigate the response of a number of gelatin materials to the penetration of spherical steel projectiles (7 to 11mm diameter) with a range of lower impacting velocities (projectile velocity are found to be linear for all systems above a certain threshold velocity required for initiating penetration. The data for a specific material impacted with different diameter spheres were able to be condensed to a single curve when the penetration depth was normalised by the projectile diameter. When the results are compared with a number of predictive relationships available in the literature, it is found that over the range of projectiles and compositions used, the results fit a simple relationship that takes into account the projectile diameter, the threshold velocity for penetration into the gelatin and a value of the shear modulus of the gelatin estimated from the threshold velocity for penetration. The normalised depth is found to fit the elastic Froude number when this is modified to allow for a threshold impact velocity. The normalised penetration data are found to best fit this modified elastic Froude number with a slope of 1/2 instead of 1/3 as suggested by Akers and Belmonte (2006). Possible explanations for this difference are discussed. © 2013 Published by Elsevier Ltd.

  19. Ballistic self-annealing during ion implantation

    International Nuclear Information System (INIS)

    Prins, Johan F.

    2001-01-01

    Ion implantation conditions are considered during which the energy, dissipated in the collision cascades, is low enough to ensure that the defects, which are generated during these collisions, consist primarily of vacancies and interstitial atoms. It is proposed that ballistic self-annealing is possible when the point defect density becomes high enough, provided that none, or very few, of the interstitial atoms escape from the layer being implanted. Under these conditions, the fraction of ballistic atoms, generated within the collision cascades from substitutional sites, decreases with increasing ion dose. Furthermore, the fraction of ballistic atoms, which finally end up within vacancies, increases with increasing vacancy density. Provided the crystal structure does not collapse, a damage threshold should be approached where just as many atoms are knocked out of substitutional sites as the number of ballistic atoms that fall back into vacancies. Under these conditions, the average point defect density should approach saturation. This model is applied to recently published Raman data that have been measured on a 3 MeV He + -ion implanted diamond (Orwa et al 2000 Phys. Rev. B 62 5461). The conclusion is reached that this ballistic self-annealing model describes the latter data better than a model in which it is assumed that the saturation in radiation damage is caused by amorphization of the implanted layer. (author)

  20. Ballistic thermophoresis of adsorbates on free-standing graphene.

    Science.gov (United States)

    Panizon, Emanuele; Guerra, Roberto; Tosatti, Erio

    2017-08-22

    The textbook thermophoretic force which acts on a body in a fluid is proportional to the local temperature gradient. The same is expected to hold for the macroscopic drift behavior of a diffusive cluster or molecule physisorbed on a solid surface. The question we explore here is whether that is still valid on a 2D membrane such as graphene at short sheet length. By means of a nonequilibrium molecular dynamics study of a test system-a gold nanocluster adsorbed on free-standing graphene clamped between two temperatures [Formula: see text] apart-we find a phoretic force which for submicron sheet lengths is parallel to, but basically independent of, the local gradient magnitude. This identifies a thermophoretic regime that is ballistic rather than diffusive, persisting up to and beyond a 100-nanometer sheet length. Analysis shows that the phoretic force is due to the flexural phonons, whose flow is known to be ballistic and distance-independent up to relatively long mean-free paths. However, ordinary harmonic phonons should only carry crystal momentum and, while impinging on the cluster, should not be able to impress real momentum. We show that graphene and other membrane-like monolayers support a specific anharmonic connection between the flexural corrugation and longitudinal phonons whose fast escape leaves behind a 2D-projected mass density increase endowing the flexural phonons, as they move with their group velocity, with real momentum, part of which is transmitted to the adsorbate through scattering. The resulting distance-independent ballistic thermophoretic force is not unlikely to possess practical applications.

  1. Modeling terminal ballistics using blending-type spline surfaces

    Science.gov (United States)

    Pedersen, Aleksander; Bratlie, Jostein; Dalmo, Rune

    2014-12-01

    We explore using GERBS, a blending-type spline construction, to represent deform able thin-plates and model terminal ballistics. Strategies to construct geometry for different scenarios of terminal ballistics are proposed.

  2. Carbon Based Transistors and Nanoelectronic Devices

    Science.gov (United States)

    Rouhi, Nima

    Carbon based materials (carbon nanotube and graphene) has been extensively researched during the past decade as one of the promising materials to be used in high performance device technology. In long term it is thought that they may replace digital and/or analog electronic devices, due to their size, near-ballistic transport, and high stability. However, a more realistic point of insertion into market may be the printed nanoelectronic circuits and sensors. These applications include printed circuits for flexible electronics and displays, large-scale bendable electrical contacts, bio-membranes and bio sensors, RFID tags, etc. In order to obtain high performance thin film transistors (as the basic building block of electronic circuits) one should be able to manufacture dense arrays of all semiconducting nanotubes. Besides, graphene synthesize and transfer technology is in its infancy and there is plenty of room to improve the current techniques. To realize the performance of nanotube and graphene films in such systems, we need to economically fabricate large-scale devices based on these materials. Following that the performance control over such devices should also be considered for future design variations for broad range of applications. Here we have first investigated carbon nanotube ink as the base material for our devices. The primary ink used consisted of both metallic and semiconducting nanotubes which resulted in networks suitable for moderate-resistivity electrical connections (such as interconnects) and rfmatching circuits. Next, purified all-semiconducting nanotube ink was used to fabricate waferscale, high performance (high mobility, and high on/off ratio) thin film transistors for printed electronic applications. The parameters affecting device performance were studied in detail to establish a roadmap for the future of purified nanotube ink printed thin film transistors. The trade of between mobility and on/off ratio of such devices was studied and the

  3. Highly Luminescent 2D-Type Slab Crystals Based on a Molecular Charge-Transfer Complex as Promising Organic Light-Emitting Transistor Materials.

    Science.gov (United States)

    Park, Sang Kyu; Kim, Jin Hong; Ohto, Tatsuhiko; Yamada, Ryo; Jones, Andrew O F; Whang, Dong Ryeol; Cho, Illhun; Oh, Sangyoon; Hong, Seung Hwa; Kwon, Ji Eon; Kim, Jong H; Olivier, Yoann; Fischer, Roland; Resel, Roland; Gierschner, Johannes; Tada, Hirokazu; Park, Soo Young

    2017-09-01

    A new 2:1 donor (D):acceptor (A) mixed-stacked charge-transfer (CT) cocrystal comprising isometrically structured dicyanodistyrylbenzene-based D and A molecules is designed and synthesized. Uniform 2D-type morphology is manifested by the exquisite interplay of intermolecular interactions. In addition to its appealing structural features, unique optoelectronic properties are unveiled. Exceptionally high photoluminescence quantum yield (Φ F ≈ 60%) is realized by non-negligible oscillator strength of the S 1 transition, and rigidified 2D-type structure. Moreover, this luminescent 2D-type CT crystal exhibits balanced ambipolar transport (µ h and µ e of ≈10 -4 cm 2 V -1 s -1 ). As a consequence of such unique optoelectronic characteristics, the first CT electroluminescence is demonstrated in a single active-layered organic light-emitting transistor (OLET) device. The external quantum efficiency of this OLET is as high as 1.5% to suggest a promising potential of luminescent mixed-stacked CT cocrystals in OLET applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. InAlAs/InGaAs Pseudomorphic High Eelectron Mobility Transistors Grown by Molecular Beam Epitaxy on the InP Substrate

    International Nuclear Information System (INIS)

    Huang Jie; Guo Tian-Yi; Zhang Hai-Ying; Xu Jing-Bo; Fu Xiao-Jun; Yang Hao; Niu Jie-Bin

    2010-01-01

    A novel PMMA/PMGI/ZEP520 trilayer resist electron beam lithograph (EBL) technology is successfully developed and used to fabricate the 150 nm gate-length In 0.7 Ga 0.3 As/In 0.52 Al 0.48 As Pseudomorphic HEMT on an InP substrate, of which the material structure is successfully designed and optimized. A perfect profile of T-gate is successfully obtained. These fabricated devices demonstrate excellent dc and rf characteristics: the transconductance G m , maximum saturation drain-to-source current I DSS , threshold voltage V T , maximum current gain frequency f T derived from h 21 , maximum frequency of oscillation derived from maximum available power gain/maximum stable gain and from unilateral power-gain of metamorphic InGaAs/InAlAs high electron mobility transistors (HEMTs) are 470 mS/mm, 560 mA/mm, −1.0 V, 76 GHz, 135 GHz and 436 GHz, respectively. The excellent high frequency performances promise the possibility of metamorphic HEMTs for millimeter-wave applications. (cross-disciplinary physics and related areas of science and technology)

  5. Two distinct ballistic processes in graphene

    International Nuclear Information System (INIS)

    Lewkowicz, M; Rosenstein, B; Nghiem, D

    2012-01-01

    A dynamical approach to ballistic transport in mesoscopic graphene samples of finite length Land contact potential difference with leads U is developed. It is shown that at ballistic times shorter than both relevant time scales, t L = L/v g (v g - Fermi velocity) and t u = ħ/(eU), the major effect of electric field is to creates the electron - hole pairs, namely causes interband transitions. At ballistic times lager than the two scales the mechanism is very different. The conductivity has its “nonrelativistic” or intraband value equal to the one obtained within the Landauer-Butticker approach for the barrier Uresulting from evanescent waves tunneling through the barrier.

  6. Ballistic properties of bidirectional fiber/resin composites

    OpenAIRE

    Dimeski, Dimko; Spaseska, Dijana

    2004-01-01

    The aim of the research was to make evaulation of the ballistic strenth of four different composites intended to be used in manufacturing of ballistic items for personal protection. Research has been performed on glass, ntlon, HPPE and aramide fibers...... Key words. aramid, ballistic, V50

  7. 2015 Assessment of the Ballistic Missile Defense System (BMDS)

    Science.gov (United States)

    2016-04-01

    Director, Operational Test and Evaluation 2015 Assessment of the Ballistic Missile Defense System (BMDS...Evaluation (DOT&E) as they pertain to the Ballistic Missile Defense System (BMDS). Congress specified these requirements in the fiscal year 2002 (FY02...systems are the Ground-based Midcourse Defense (GMD), Aegis Ballistic Missile Defense (Aegis BMD), Terminal High-Altitude Area Defense (THAAD), and

  8. Diode, transistor & fet circuits manual

    CERN Document Server

    Marston, R M

    2013-01-01

    Diode, Transistor and FET Circuits Manual is a handbook of circuits based on discrete semiconductor components such as diodes, transistors, and FETS. The book also includes diagrams and practical circuits. The book describes basic and special diode characteristics, heat wave-rectifier circuits, transformers, filter capacitors, and rectifier ratings. The text also presents practical applications of associated devices, for example, zeners, varicaps, photodiodes, or LEDs, as well as it describes bipolar transistor characteristics. The transistor can be used in three basic amplifier configuration

  9. Electron irradiation of power transistors

    International Nuclear Information System (INIS)

    Hower, P.L.; Fiedor, R.J.

    1982-01-01

    A method for reducing storage time and gain parameters in a semiconductor transistor includes the step of subjecting the transistor to electron irradiation of a dosage determined from measurements of the parameters of a test batch of transistors. Reduction of carrier lifetime by proton bombardment and gold doping is mentioned as an alternative to electron irradiation. (author)

  10. Growth of high mobility GaN and AlGaN/GaN high electron mobility transistor structures on 4H-SiC by ammonia molecular-beam epitaxy

    International Nuclear Information System (INIS)

    Webb, James B.; Tang, H.; Bardwell, J. A.; Coleridge, P.

    2001-01-01

    Ammonia molecular-beam epitaxy has been used to grow high-quality epilayers of GaN and AlGaN/GaN heterostructure field-effect transistor (HFET) structures on insulating 4H-SiC. The growth process, which used a magnetron sputter epitaxy deposited buffer layer of AlN, has been described previously. Ex situ pretreatment of the SiC substrate was found to be unnecessary. For a single 2.0 μm thick silicon doped epilayer, a room temperature (RT) electron mobility of 500 cm2/Vs was measured at a carrier density of 6.6x10 16 cm -3 . For the HFET structure, a room temperature mobility of 1300 cm2/Vs at a sheet carrier density of 3.3x10 12 cm -2 was observed, increasing to 11000 cm2/Vs at 77 K. The surface morphology of the layers indicated a coalesced mesa structure similar to what we observed for growth on sapphire, but with a lower overall defect density and correspondingly larger grain size. The observation of well-resolved Shubnikov de Haas oscillations at fields as low as 3 T indicated a relatively smooth interface. [copyright] 2001 American Institute of Physics

  11. Optimization theory for ballistic energy conversion

    NARCIS (Netherlands)

    Xie, Yanbo; Versluis, Michel; Van Den Berg, Albert; Eijkel, Jan C.T.

    2016-01-01

    The growing demand of renewable energy stimulates the exploration of new materials and methods for clean energy. We recently demonstrated a high efficiency and power density energy conversion mechanism by using jetted charged microdroplets, termed as ballistic energy conversion. Hereby, we model and

  12. Ballistic tongue projection in a miniaturized salamander.

    Science.gov (United States)

    Deban, Stephen M; Bloom, Segall V

    2018-05-20

    Miniaturization of body size is often accompanied by peculiarities in morphology that can have functional consequences. We examined the feeding behavior and morphology of the miniaturized plethodontid salamander Thorius, one of the smallest vertebrates, to determine if its performance and biomechanics differ from those of its larger relatives. High-speed imaging and dynamics analysis of feeding at a range of temperatures show that tongue projection in Thorius macdougalli is ballistic and achieves accelerations of up to 600 G with low thermal sensitivity, indicating that tongue projection is powered by an elastic-recoil mechanism. Preceding ballistic projection is an unusual preparatory phase of tongue protrusion, which, like tongue retraction, shows lower performance and higher thermal sensitivity that are indicative of movement being powered directly by muscle shortening. The variability of tongue-projection kinematics and dynamics is comparable to larger ballistic-tongued plethodontids and reveals that Thorius is capable of modulating its tongue movements in response to prey distance. Morphological examination revealed that T. macdougalli possesses a reduced number of myofibers in the tongue muscles, a large projector muscle mass relative to tongue mass, and an unusual folding of the tongue skeleton, compared with larger relatives. Nonetheless, T. macdougalli retains the elaborated collagen aponeuroses in the projector muscle that store elastic energy and a tongue skeleton that is free of direct myofiber insertion, two features that appear to be essential for ballistic tongue projection in salamanders. © 2018 Wiley Periodicals, Inc.

  13. Characterization of dynamic properties of ballistic clay

    NARCIS (Netherlands)

    Carton, E.P.; Roebroeks, G.H.J.J.; Broos, J.P.F.; Halls, V.; Zheng, J.

    2014-01-01

    In order use material models in (numerical) calculations, the mechanical properties of all materials involved should be known. At TNO an indirect method to determine the dynamic flow stress of materials has been generated by a combination of ballistic penetration tests with an energy-based

  14. The Internal Ballistics of an Air Gun

    Science.gov (United States)

    Denny, Mark

    2011-01-01

    The internal ballistics of a firearm or artillery piece considers the pellet, bullet, or shell motion while it is still inside the barrel. In general, deriving the muzzle speed of a gunpowder firearm from first principles is difficult because powder combustion is fast and it very rapidly raises the temperature of gas (generated by gunpowder…

  15. Electron Interference in Ballistic Graphene Nanoconstrictions

    DEFF Research Database (Denmark)

    Baringhaus, Jens; Settnes, Mikkel; Aprojanz, Johannes

    2016-01-01

    We realize nanometer size constrictions in ballistic graphene nanoribbons grown on sidewalls of SiC mesa structures. The high quality of our devices allows the observation of a number of electronic quantum interference phenomena. The transmissions of Fabry-Perot-like resonances are probed...

  16. Ballistic transport in semiconductor nanostructures: From quasi ...

    Indian Academy of Sciences (India)

    By suitable design it is possible to achieve quasi-ballistic transport in semiconductor nanostructures over times up to the ps-range. Monte-Carlo simulations reveal that under these conditions phase-coherent real-space oscillations of an electron ensemble, generated by fs-pulses become possible in wide potential wells.

  17. Is there ballistic transport in metallic nano-objects? Ballistic versus diffusive contributions

    International Nuclear Information System (INIS)

    Garcia, N; Bai Ming; Lu Yonghua; Munoz, M; Cheng Hao; Levanyuk, A P

    2007-01-01

    When discussing the resistance of an atomic-or nanometre-size contact we should consider both its ballistic and its diffusive contributions. But there is a contribution of the leads to the resistance of the contact as well. In this context, the geometry and the roughness of the surfaces limiting the system will contribute to the resistance, and these contributions should be added to the ideal ballistic resistance of the nanocontact. We have calculated, for metallic materials, the serial resistance of the leads arising from the roughness, and our calculations show that the ohmic resistance is as important as the ballistic resistance of the constriction. The classical resistance is a lower limit to the quantum resistance of the leads. Many examples of earlier experiments show that the mean free path of the transport electrons is of the order of the size of the contacts or the leads. This is not compatible with the idea of ballistic transport. This result may put in serious difficulties the current, existing interpretation of experimental data in metals where only small serial resistances compared with the ballistic component of the total resistance have been taken into account. The two-dimensional electron gas (2DEG) is also discussed and the serial corrections appear to be smaller than for metals. Experiments with these last systems are proposed that may reveal new interesting aspects in the physics of ballistic and diffusive transport

  18. The Effects of Ballistic and Non-Ballistic Bench Press on Mechanical Variables.

    Science.gov (United States)

    Moir, Gavin L; Munford, Shawn N; Moroski, Lindsey L; Davis, Shala E

    2017-02-21

    To investigate the effects of ballistic and non-ballistic bench press performed with loads equivalent to 30 and 90% 1-repetition maximum (1-RM) on mechanical variables. Eleven resistance-trained men (age: 23.0 ± 1.4 years; mass: 98.4 ± 14.4 kg) attended four testing sessions where they performed one of the following sessions: 1) three sets of five non-ballistic repetitions performed with a load equivalent to 30% 1-RM (30N-B), 2) three sets of five ballistic repetitions performed with a load equivalent to 30% 1-RM (30B), 3) three sets of four non-ballistic repetitions with a load equivalent to 90% 1-RM (90N-B), 4) three sets of four ballistic repetitions with a load equivalent to 90% 1-RM (90B). Force plates and a 3-D motion analysis system were used to determine the velocity, force, power output (PO) and work during each repetition. The heavier loads resulted in significantly greater forces applied to the barbell (mean differences: 472-783 N, pvelocities (mean differences: 0.85-1.20 m/s, pvelocity (mean difference: 0.33 m/s, pbench press may be an effective exercise for developing power output and multiple sets may elicit post-activation potentiation that enhances force production. However, these benefits may be negated at heavier loads.

  19. Accelerating the life of transistors

    International Nuclear Information System (INIS)

    Qi Haochun; Lü Changzhi; Zhang Xiaoling; Xie Xuesong

    2013-01-01

    Choosing small and medium power switching transistors of the NPN type in a 3DK set as the study object, the test of accelerating life is conducted in constant temperature and humidity, and then the data are statistically analyzed with software developed by ourselves. According to degradations of such sensitive parameters as the reverse leakage current of transistors, the lifetime order of transistors is about more than 10 4 at 100 °C and 100% relative humidity (RH) conditions. By corrosion fracture of transistor outer leads and other failure modes, with the failure truncated testing, the average lifetime rank of transistors in different distributions is extrapolated about 10 3 . Failure mechanism analyses of degradation of electrical parameters, outer lead fracture and other reasons that affect transistor lifetime are conducted. The findings show that the impact of external stress of outer leads on transistor reliability is more serious than that of parameter degradation. (semiconductor devices)

  20. Trismus in Face Transplantation Following Ballistic Trauma.

    Science.gov (United States)

    Krezdorn, Nicco; Alhefzi, Muayyad; Perry, Bridget; Aycart, Mario A; Tasigiorgos, Sotirios; Bueno, Ericka M; Green, Jordan R; Pribaz, Julian J; Pomahac, Bohdan; Caterson, Edward J

    2018-06-01

    Trismus can be a challenging consequence of ballistic trauma to the face, and has rarely been described in the setting of face transplantation. Almost half of all current face transplant recipients in the world received transplantation to restore form and function after a ballistic injury. Here we report our experience and challenges with long standing trismus after face transplantation. We reviewed the medical records of our face transplant recipients whose indication was ballistic injury. We focused our review on trismus and assessed the pre-, peri- and postoperative planning, surgery and functional outcomes. Two patients received partial face transplantation, including the midface for ballistic trauma. Both patients suffered from impaired mouth opening, speech intelligibility, and oral competence. Severe scarring of the temporomandibular joint (TMJ) required intraoperative release in both patients, and additional total condylectomy on the left side 6 months posttransplant for 1 patient. Posttransplant, both patients achieved an improvement in mouth opening; however, there was persistent trismus. One year after transplantation, range of motion of the jaw had improved for both patients. Independent oral food intake was possible 1 year after surgery, although spillage of liquids and mixed consistency solids persisted. Speech intelligibility testing showed impairments in the immediate postoperative period, with improvement to over 85% for both patients at 1 year posttransplant. Ballistic trauma to the face and subsequent reconstructive measures can cause significant scarring and covert injuries to structures such as the TMJ, resulting in long standing trismus. Meticulous individual planning prior to interventions such as face transplantation must take these into account. We encourage intraoperative evaluation of these structures as well as peri- and postoperative treatment when necessary. Due to the nature of the primary injury, functional outcomes after face

  1. Vertical organic transistors

    International Nuclear Information System (INIS)

    Lüssem, Björn; Günther, Alrun; Fischer, Axel; Kasemann, Daniel; Leo, Karl

    2015-01-01

    Organic switching devices such as field effect transistors (OFETs) are a key element of future flexible electronic devices. So far, however, a commercial breakthrough has not been achieved because these devices usually lack in switching speed (e.g. for logic applications) and current density (e.g. for display pixel driving). The limited performance is caused by a combination of comparatively low charge carrier mobilities and the large channel length caused by the need for low-cost structuring. Vertical Organic Transistors are a novel technology that has the potential to overcome these limitations of OFETs. Vertical Organic Transistors allow to scale the channel length of organic transistors into the 100 nm regime without cost intensive structuring techniques. Several different approaches have been proposed in literature, which show high output currents, low operation voltages, and comparatively high speed even without sub-μm structuring technologies. In this review, these different approaches are compared and recent progress is highlighted. (topical review)

  2. Photosensitive graphene transistors.

    Science.gov (United States)

    Li, Jinhua; Niu, Liyong; Zheng, Zijian; Yan, Feng

    2014-08-20

    High performance photodetectors play important roles in the development of innovative technologies in many fields, including medicine, display and imaging, military, optical communication, environment monitoring, security check, scientific research and industrial processing control. Graphene, the most fascinating two-dimensional material, has demonstrated promising applications in various types of photodetectors from terahertz to ultraviolet, due to its ultrahigh carrier mobility and light absorption in broad wavelength range. Graphene field effect transistors are recognized as a type of excellent transducers for photodetection thanks to the inherent amplification function of the transistors, the feasibility of miniaturization and the unique properties of graphene. In this review, we will introduce the applications of graphene transistors as photodetectors in different wavelength ranges including terahertz, infrared, visible, and ultraviolet, focusing on the device design, physics and photosensitive performance. Since the device properties are closely related to the quality of graphene, the devices based on graphene prepared with different methods will be addressed separately with a view to demonstrating more clearly their advantages and shortcomings in practical applications. It is expected that highly sensitive photodetectors based on graphene transistors will find important applications in many emerging areas especially flexible, wearable, printable or transparent electronics and high frequency communications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Deformable Organic Nanowire Field-Effect Transistors.

    Science.gov (United States)

    Lee, Yeongjun; Oh, Jin Young; Kim, Taeho Roy; Gu, Xiaodan; Kim, Yeongin; Wang, Ging-Ji Nathan; Wu, Hung-Chin; Pfattner, Raphael; To, John W F; Katsumata, Toru; Son, Donghee; Kang, Jiheong; Matthews, James R; Niu, Weijun; He, Mingqian; Sinclair, Robert; Cui, Yi; Tok, Jeffery B-H; Lee, Tae-Woo; Bao, Zhenan

    2018-02-01

    Deformable electronic devices that are impervious to mechanical influence when mounted on surfaces of dynamically changing soft matters have great potential for next-generation implantable bioelectronic devices. Here, deformable field-effect transistors (FETs) composed of single organic nanowires (NWs) as the semiconductor are presented. The NWs are composed of fused thiophene diketopyrrolopyrrole based polymer semiconductor and high-molecular-weight polyethylene oxide as both the molecular binder and deformability enhancer. The obtained transistors show high field-effect mobility >8 cm 2 V -1 s -1 with poly(vinylidenefluoride-co-trifluoroethylene) polymer dielectric and can easily be deformed by applied strains (both 100% tensile and compressive strains). The electrical reliability and mechanical durability of the NWs can be significantly enhanced by forming serpentine-like structures of the NWs. Remarkably, the fully deformable NW FETs withstand 3D volume changes (>1700% and reverting back to original state) of a rubber balloon with constant current output, on the surface of which it is attached. The deformable transistors can robustly operate without noticeable degradation on a mechanically dynamic soft matter surface, e.g., a pulsating balloon (pulse rate: 40 min -1 (0.67 Hz) and 40% volume expansion) that mimics a beating heart, which underscores its potential for future biomedical applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. On-Chip Sorting of Long Semiconducting Carbon Nanotubes for Multiple Transistors along an Identical Array.

    Science.gov (United States)

    Otsuka, Keigo; Inoue, Taiki; Maeda, Etsuo; Kometani, Reo; Chiashi, Shohei; Maruyama, Shigeo

    2017-11-28

    Ballistic transport and sub-10 nm channel lengths have been achieved in transistors containing one single-walled carbon nanotube (SWNT). To fill the gap between single-tube transistors and high-performance logic circuits for the replacement of silicon, large-area, high-density, and purely semiconducting (s-) SWNT arrays are highly desired. Here we demonstrate the fabrication of multiple transistors along a purely semiconducting SWNT array via an on-chip purification method. Water- and polymer-assisted burning from site-controlled nanogaps is developed for the reliable full-length removal of metallic SWNTs with the damage to s-SWNTs minimized even in high-density arrays. All the transistors with various channel lengths show large on-state current and excellent switching behavior in the off-state. Since our method potentially provides pure s-SWNT arrays over a large area with negligible damage, numerous transistors with arbitrary dimensions could be fabricated using a conventional semiconductor process, leading to SWNT-based logic, high-speed communication, and other next-generation electronic devices.

  5. Buildings vs. ballistics: Quantifying the vulnerability of buildings to volcanic ballistic impacts using field studies and pneumatic cannon experiments

    Science.gov (United States)

    Williams, G. T.; Kennedy, B. M.; Wilson, T. M.; Fitzgerald, R. H.; Tsunematsu, K.; Teissier, A.

    2017-09-01

    Recent casualties in volcanic eruptions due to trauma from blocks and bombs necessitate more rigorous, ballistic specific risk assessment. Quantitative assessments are limited by a lack of experimental and field data on the vulnerability of buildings to ballistic hazards. An improved, quantitative understanding of building vulnerability to ballistic impacts is required for informing appropriate life safety actions and other risk reduction strategies. We assessed ballistic impacts to buildings from eruptions at Usu Volcano and Mt. Ontake in Japan and compiled available impact data from eruptions elsewhere to identify common damage patterns from ballistic impacts to buildings. We additionally completed a series of cannon experiments which simulate ballistic block impacts to building claddings to investigate their performance over a range of ballistic projectile velocities, masses and energies. Our experiments provide new insights by quantifying (1) the hazard associated with post-impact shrapnel from building and rock fragments; (2) the effect of impact obliquity on damage; and (3) the additional impact resistance buildings possess when claddings are struck in areas directly supported by framing components. This was not well identified in previous work which may have underestimated building vulnerability to ballistic hazards. To improve assessment of building vulnerability to ballistics, we use our experimental and field data to develop quantitative vulnerability models known as fragility functions. Our fragility functions and field studies show that although unreinforced buildings are highly vulnerable to large ballistics (> 20 cm diameter), they can still provide shelter, preventing death during eruptions.

  6. [Wound Ballistics – a Brief Overview].

    Science.gov (United States)

    Bolliger, Stephan A; Eggert, Sebastian; Thali, Michael J

    2016-02-03

    Wound ballistics examines the specific effect, namely the wound profile, of bullets on the body by firing at synthetic models made of ordnance gelatine, glycerin soap and synthetic bones, validated with real cases from (battlefield) surgery and forensic pathology. Wound profile refers to the penetration depth, the bullet deformation/ fragmentation, the diameter of the permanent and the temporary wound cavity. Knowing these features and the used ammunition a surgeon can rapidly assess the amount damage within a patient. The forensic pathologist can draw conclusions as to the used ammunition based on the wound profile. By measuring of the destructive capability of different ammunition types, wound ballistics lays the foundation for guidelines concerning the maximum effect of military ammunition.

  7. Ballistic model to estimate microsprinkler droplet distribution

    Directory of Open Access Journals (Sweden)

    Conceição Marco Antônio Fonseca

    2003-01-01

    Full Text Available Experimental determination of microsprinkler droplets is difficult and time-consuming. This determination, however, could be achieved using ballistic models. The present study aimed to compare simulated and measured values of microsprinkler droplet diameters. Experimental measurements were made using the flour method, and simulations using a ballistic model adopted by the SIRIAS computational software. Drop diameters quantified in the experiment varied between 0.30 mm and 1.30 mm, while the simulated between 0.28 mm and 1.06 mm. The greatest differences between simulated and measured values were registered at the highest radial distance from the emitter. The model presented a performance classified as excellent for simulating microsprinkler drop distribution.

  8. One-Dimensional Modelling of Internal Ballistics

    Science.gov (United States)

    Monreal-González, G.; Otón-Martínez, R. A.; Velasco, F. J. S.; García-Cascáles, J. R.; Ramírez-Fernández, F. J.

    2017-10-01

    A one-dimensional model is introduced in this paper for problems of internal ballistics involving solid propellant combustion. First, the work presents the physical approach and equations adopted. Closure relationships accounting for the physical phenomena taking place during combustion (interfacial friction, interfacial heat transfer, combustion) are deeply discussed. Secondly, the numerical method proposed is presented. Finally, numerical results provided by this code (UXGun) are compared with results of experimental tests and with the outcome from a well-known zero-dimensional code. The model provides successful results in firing tests of artillery guns, predicting with good accuracy the maximum pressure in the chamber and muzzle velocity what highlights its capabilities as prediction/design tool for internal ballistics.

  9. The Anti-Ballistic Missile Treaty

    International Nuclear Information System (INIS)

    Platt, A.

    1991-01-01

    This paper reports that in late May 1972 former President Richard M. Nixon went to Moscow and signed, among other documents, a Treaty to Limit Anti-Ballistic Missile (ABM) Systems. Under this agreement, both the United States and the Soviet Union made a commitment not to build nationwide ABM defenses against the other's intercontinental and submarine-launched ballistic missiles. They agreed to limit ABM deployments to a maximum of two sites, with no more than 100 launchers per site. Thirteen of the treaty's sixteen articles are intended to prevent any deviation from this. In addition, a joint Standing Consultative Commission to monitor compliance was created. National technical means --- sophisticated monitoring devices on land, sea, and in space --- were to be the primary instruments used to monitor compliance with the treaty. The ABM Treaty was signed in conjunction with an Interim Agreement to Limit Strategic Offensive Arms

  10. Polypeptides Based Molecular Electronics

    National Research Council Canada - National Science Library

    Lam, Yeng M; Mhaisalkar, Subodh; Li, Lain-Jong; Dravid, Vinayak P; Shekhawat, Gajendra S; Suri, Raman

    2008-01-01

    ... the formation of molecular devices such as transistors, diodes, and sensors. We have designed the peptides, arranged them on substrates using self-assembly, Dip-PEN nanolithography, and also e-beam assisted lithography...

  11. Cost Effective Regional Ballistic Missile Defense

    Science.gov (United States)

    2016-02-16

    deploying advanced air defense systems18, such as the Russian S-300 and S-500, and concealing them in hardened, camouflaged sites, such as extensive... Russian objections to the European Phased Adaptive Approach (EPAA) and fund homeland defense priorities.39 Furthermore, the PTSS system was also... Theatre Ballistic Missile Defence Capability Becomes Operational,” Jane’s Missiles & Rockets, 1 February 2011. 55 Joseph W. Kirschbaum, REGIONAL MISSILE

  12. Orbital magnetism in ensembles of ballistic billiards

    International Nuclear Information System (INIS)

    Ullmo, D.; Richter, K.; Jalabert, R.A.

    1993-01-01

    The magnetic response of ensembles of small two-dimensional structures at finite temperatures is calculated. Using semiclassical methods and numerical calculation it is demonstrated that only short classical trajectories are relevant. The magnetic susceptibility is enhanced in regular systems, where these trajectories appear in families. For ensembles of squares large paramagnetic susceptibility is obtained, in good agreement with recent measurements in the ballistic regime. (authors). 20 refs., 2 figs

  13. Strategic nuclear policy and ballistic missile defense

    International Nuclear Information System (INIS)

    1981-01-01

    The article explains the problems of the antirockets (ABM) as they were part of the presentation Salt I 1972. It is a translation from the English of a publication of the Foreign Affairs Research Institute in London. A topical analysis of the strategic nuclear policy of the two superpowers and their attitudes in the question of ballistic missile defense are given by means of two monographies. (orig./HSCH) [de

  14. Modeling internal ballistics of gas combustion guns.

    Science.gov (United States)

    Schorge, Volker; Grossjohann, Rico; Schönekess, Holger C; Herbst, Jörg; Bockholdt, Britta; Ekkernkamp, Axel; Frank, Matthias

    2016-05-01

    Potato guns are popular homemade guns which work on the principle of gas combustion. They are usually constructed for recreational rather than criminal purposes. Yet some serious injuries and fatalities due to these guns are reported. As information on the internal ballistics of homemade gas combustion-powered guns is scarce, it is the aim of this work to provide an experimental model of the internal ballistics of these devices and to investigate their basic physical parameters. A gas combustion gun was constructed with a steel tube as the main component. Gas/air mixtures of acetylene, hydrogen, and ethylene were used as propellants for discharging a 46-mm caliber test projectile. Gas pressure in the combustion chamber was captured with a piezoelectric pressure sensor. Projectile velocity was measured with a ballistic speed measurement system. The maximum gas pressure, the maximum rate of pressure rise, the time parameters of the pressure curve, and the velocity and path of the projectile through the barrel as a function of time were determined according to the pressure-time curve. The maximum gas pressure was measured to be between 1.4 bar (ethylene) and 4.5 bar (acetylene). The highest maximum rate of pressure rise was determined for hydrogen at (dp/dt)max = 607 bar/s. The muzzle energy was calculated to be between 67 J (ethylene) and 204 J (acetylene). To conclude, this work provides basic information on the internal ballistics of homemade gas combustion guns. The risk of injury to the operator or bystanders is high, because accidental explosions of the gun due to the high-pressure rise during combustion of the gas/air mixture may occur.

  15. Junctionless Cooper pair transistor

    Energy Technology Data Exchange (ETDEWEB)

    Arutyunov, K. Yu., E-mail: konstantin.yu.arutyunov@jyu.fi [National Research University Higher School of Economics , Moscow Institute of Electronics and Mathematics, 101000 Moscow (Russian Federation); P.L. Kapitza Institute for Physical Problems RAS , Moscow 119334 (Russian Federation); Lehtinen, J.S. [VTT Technical Research Centre of Finland Ltd., Centre for Metrology MIKES, P.O. Box 1000, FI-02044 VTT (Finland)

    2017-02-15

    Highlights: • Junctionless Cooper pair box. • Quantum phase slips. • Coulomb blockade and gate modulation of the Coulomb gap. - Abstract: Quantum phase slip (QPS) is the topological singularity of the complex order parameter of a quasi-one-dimensional superconductor: momentary zeroing of the modulus and simultaneous 'slip' of the phase by ±2π. The QPS event(s) are the dynamic equivalent of tunneling through a conventional Josephson junction containing static in space and time weak link(s). Here we demonstrate the operation of a superconducting single electron transistor (Cooper pair transistor) without any tunnel junctions. Instead a pair of thin superconducting titanium wires in QPS regime was used. The current–voltage characteristics demonstrate the clear Coulomb blockade with magnitude of the Coulomb gap modulated by the gate potential. The Coulomb blockade disappears above the critical temperature, and at low temperatures can be suppressed by strong magnetic field.

  16. Mesoscopic photon heat transistor

    DEFF Research Database (Denmark)

    Ojanen, T.; Jauho, Antti-Pekka

    2008-01-01

    We show that the heat transport between two bodies, mediated by electromagnetic fluctuations, can be controlled with an intermediate quantum circuit-leading to the device concept of a mesoscopic photon heat transistor (MPHT). Our theoretical analysis is based on a novel Meir-Wingreen-Landauer-typ......We show that the heat transport between two bodies, mediated by electromagnetic fluctuations, can be controlled with an intermediate quantum circuit-leading to the device concept of a mesoscopic photon heat transistor (MPHT). Our theoretical analysis is based on a novel Meir......-Wingreen-Landauer-type of conductance formula, which gives the photonic heat current through an arbitrary circuit element coupled to two dissipative reservoirs at finite temperatures. As an illustration we present an exact solution for the case when the intermediate circuit can be described as an electromagnetic resonator. We discuss...

  17. Organic electrochemical transistors

    Science.gov (United States)

    Rivnay, Jonathan; Inal, Sahika; Salleo, Alberto; Owens, Róisín M.; Berggren, Magnus; Malliaras, George G.

    2018-02-01

    Organic electrochemical transistors (OECTs) make effective use of ion injection from an electrolyte to modulate the bulk conductivity of an organic semiconductor channel. The coupling between ionic and electronic charges within the entire volume of the channel endows OECTs with high transconductance compared with that of field-effect transistors, but also limits their response time. The synthetic tunability, facile deposition and biocompatibility of organic materials make OECTs particularly suitable for applications in biological interfacing, printed logic circuitry and neuromorphic devices. In this Review, we discuss the physics and the mechanism of operation of OECTs, focusing on their identifying characteristics. We highlight organic materials that are currently being used in OECTs and survey the history of OECT technology. In addition, form factors, fabrication technologies and applications such as bioelectronics, circuits and memory devices are examined. Finally, we take a critical look at the future of OECT research and development.

  18. Organic electrochemical transistors

    KAUST Repository

    Rivnay, Jonathan

    2018-01-16

    Organic electrochemical transistors (OECTs) make effective use of ion injection from an electrolyte to modulate the bulk conductivity of an organic semiconductor channel. The coupling between ionic and electronic charges within the entire volume of the channel endows OECTs with high transconductance compared with that of field-effect transistors, but also limits their response time. The synthetic tunability, facile deposition and biocompatibility of organic materials make OECTs particularly suitable for applications in biological interfacing, printed logic circuitry and neuromorphic devices. In this Review, we discuss the physics and the mechanism of operation of OECTs, focusing on their identifying characteristics. We highlight organic materials that are currently being used in OECTs and survey the history of OECT technology. In addition, form factors, fabrication technologies and applications such as bioelectronics, circuits and memory devices are examined. Finally, we take a critical look at the future of OECT research and development.

  19. Targeting Low-Energy Ballistic Lunar Transfers

    Science.gov (United States)

    Parker, Jeffrey S.

    2010-01-01

    Numerous low-energy ballistic transfers exist between the Earth and Moon that require less fuel than conventional transfers, but require three or more months of transfer time. An entirely ballistic lunar transfer departs the Earth from a particular declination at some time in order to arrive at the Moon at a given time along a desirable approach. Maneuvers may be added to the trajectory in order to adjust the Earth departure to meet mission requirements. In this paper, we characterize the (Delta)V cost required to adjust a low-energy ballistic lunar transfer such that a spacecraft may depart the Earth at a desirable declination, e.g., 28.5(white bullet), on a designated date. This study identifies the optimal locations to place one or two maneuvers along a transfer to minimize the (Delta)V cost of the transfer. One practical application of this study is to characterize the launch period for a mission that aims to launch from a particular launch site, such as Cape Canaveral, Florida, and arrive at a particular orbit at the Moon on a given date using a three-month low-energy transfer.

  20. Space-based ballistic-missile defense

    International Nuclear Information System (INIS)

    Bethe, H.A.; Garwin, R.L.; Gottfried, K.; Kendall, H.W.

    1984-01-01

    This article, based on a forthcoming book by the Union for Concerned Scientists, focuses on the technical aspects of the issue of space-based ballistic-missile defense. After analysis, the authors conclude that the questionable performance of the proposed defense, the ease with which it could be overwhelmed or circumvented, and its potential as an antisatellite system would cause grievous damage to the security of the US if the Strategic Defense Initiative were to be pursued. The path toward greater security lies in quite another direction, they feel. Although research on ballistic-missile defense should continue at the traditional level of expenditure and within the constraints of the ABM Treaty, every effort should be made to negotiate a bilateral ban on the testing and use of space weapons. The authors think it is essential that such an agreement cover all altitudes, because a ban on high-altitude antisatellite weapons alone would not viable if directed energy weapons were developed for ballistic-missile defense. Further, the Star Wars program, unlikely ever to protect the entire nation against a nuclear attack, would nonetheless trigger a major expansion of the arms race

  1. Injuries of the head from backface deformation of ballistic protective helmets under ballistic impact.

    Science.gov (United States)

    Rafaels, Karin A; Cutcliffe, Hattie C; Salzar, Robert S; Davis, Martin; Boggess, Brian; Bush, Bryan; Harris, Robert; Rountree, Mark Steve; Sanderson, Ellory; Campman, Steven; Koch, Spencer; Dale Bass, Cameron R

    2015-01-01

    Modern ballistic helmets defeat penetrating bullets by energy transfer from the projectile to the helmet, producing helmet deformation. This deformation may cause severe injuries without completely perforating the helmet, termed "behind armor blunt trauma" (BABT). As helmets become lighter, the likelihood of larger helmet backface deformation under ballistic impact increases. To characterize the potential for BABT, seven postmortem human head/neck specimens wearing a ballistic protective helmet were exposed to nonperforating impact, using a 9 mm, full metal jacket, 124 grain bullet with velocities of 400-460 m/s. An increasing trend of injury severity was observed, ranging from simple linear fractures to combinations of linear and depressed fractures. Overall, the ability to identify skull fractures resulting from BABT can be used in forensic investigations. Our results demonstrate a high risk of skull fracture due to BABT and necessitate the prevention of BABT as a design factor in future generations of protective gear. © 2014 American Academy of Forensic Sciences.

  2. Coherent Charge Transport in Ballistic InSb Nanowire Josephson Junctions

    Science.gov (United States)

    Li, S.; Kang, N.; Fan, D. X.; Wang, L. B.; Huang, Y. Q.; Caroff, P.; Xu, H. Q.

    2016-01-01

    Hybrid InSb nanowire-superconductor devices are promising for investigating Majorana modes and topological quantum computation in solid-state devices. An experimental realisation of ballistic, phase-coherent superconductor-nanowire hybrid devices is a necessary step towards engineering topological superconducting electronics. Here, we report on a low-temperature transport study of Josephson junction devices fabricated from InSb nanowires grown by molecular-beam epitaxy and provide a clear evidence for phase-coherent, ballistic charge transport through the nanowires in the junctions. We demonstrate that our devices show gate-tunable proximity-induced supercurrent and clear signatures of multiple Andreev reflections in the differential conductance, indicating phase-coherent transport within the junctions. We also observe periodic modulations of the critical current that can be associated with the Fabry-Pérot interference in the nanowires in the ballistic transport regime. Our work shows that the InSb nanowires grown by molecular-beam epitaxy are of excellent material quality and hybrid superconducting devices made from these nanowires are highly desirable for investigation of the novel physics in topological states of matter and for applications in topological quantum electronics. PMID:27102689

  3. Molecular Electronics

    DEFF Research Database (Denmark)

    Jennum, Karsten Stein

    This thesis includes the synthesis and characterisation of organic compounds designed for molecular electronics. The synthesised organic molecules are mainly based on two motifs, the obigo(phenyleneethynylenes) (OPE)s and tetrathiafulvalene (TTF) as shown below. These two scaffolds (OPE and TTF......) are chemically merged together to form cruciform-like structures that are an essential part of the thesis. The cruciform molecules were subjected to molecular conductance measurements to explore their capability towards single-crystal field-effect transistors (Part 1), molecular wires, and single electron......, however, was obtained by a study of a single molecular transistor. The investigated OPE5-TTF compound was captured in a three-terminal experiment, whereby manipulation of the molecule’s electronic spin was possible in different charge states. Thus, we demonstrated how the cruciform molecules could...

  4. Quantum simulation of an ultrathin body field-effect transistor with channel imperfections

    Science.gov (United States)

    Vyurkov, V.; Semenikhin, I.; Filippov, S.; Orlikovsky, A.

    2012-04-01

    An efficient program for the all-quantum simulation of nanometer field-effect transistors is elaborated. The model is based on the Landauer-Buttiker approach. Our calculation of transmission coefficients employs a transfer-matrix technique involving the arbitrary precision (multiprecision) arithmetic to cope with evanescent modes. Modified in such way, the transfer-matrix technique turns out to be much faster in practical simulations than that of scattering-matrix. Results of the simulation demonstrate the impact of realistic channel imperfections (random charged centers and wall roughness) on transistor characteristics. The Landauer-Buttiker approach is developed to incorporate calculation of the noise at an arbitrary temperature. We also validate the ballistic Landauer-Buttiker approach for the usual situation when heavily doped contacts are indispensably included into the simulation region.

  5. Advancement in organic nanofiber based transistors

    DEFF Research Database (Denmark)

    Jensen, Per Baunegaard With; Kjelstrup-Hansen, Jakob; Tavares, Luciana

    and characterization of OLETs using the organic semiconductors para-hexaphenylene (p6P), 5,5´-Di-4-biphenyl-2,2´-bithiophene (PPTTPP) and 5,5'-bis(naphth-2-yl)-2,2'-bithiophene (NaT2). These molecules can self-assemble forming molecular crystalline nanofibers. Organic nanofibers can form the basis for light......The focus of this project is to study the light emission from nanofiber based organic light-emitting transistors (OLETs) with the overall aim of developing efficient, nanoscale light sources with different colors integrated on-chip. The research performed here regards the fabrication...

  6. Dosimetric properties of MOS transistors

    International Nuclear Information System (INIS)

    Peter, I.; Frank, G.

    1977-01-01

    The performance of MOS transistors as gamma detectors has been tested. The dosimeter sensitivity has proved to be independent on the doses ranging from 10 3 to 10 6 R, and gamma energy of 137 Cs, 60 Co - sources and 5 - 18 MeV electrons. Fading of the space charge trapped by the SiO 2 layer of the transistor has appeared to be neglegible at room temperature after 400 hrs. The isochronous annealing in the temperature range of 40-260 deg C had a more substantial effect on the space charge of the transistor irradiated with 18 MeV electrons than on the 137 Cs gamma-irradiated transistors. This proved a repeated use of γ-dosemeters. MOS transistors are concluded to be promising for gamma dosimetry [ru

  7. Spin Hall effect transistor

    Czech Academy of Sciences Publication Activity Database

    Wunderlich, Joerg; Park, B.G.; Irvine, A.C.; Zarbo, Liviu; Rozkotová, E.; Němec, P.; Novák, Vít; Sinova, Jairo; Jungwirth, Tomáš

    2010-01-01

    Roč. 330, č. 6012 (2010), s. 1801-1804 ISSN 0036-8075 R&D Projects: GA AV ČR KAN400100652; GA MŠk LC510 EU Projects: European Commission(XE) 215368 - SemiSpinNet Grant - others:AV ČR(CZ) AP0801 Program:Akademická prémie - Praemium Academiae Institutional research plan: CEZ:AV0Z10100521 Keywords : spin Hall effect * spintronics * spin transistor Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 31.364, year: 2010

  8. Graphene field effect transistor without an energy gap.

    Science.gov (United States)

    Jang, Min Seok; Kim, Hyungjun; Son, Young-Woo; Atwater, Harry A; Goddard, William A

    2013-05-28

    Graphene is a room temperature ballistic electron conductor and also a very good thermal conductor. Thus, it has been regarded as an ideal material for postsilicon electronic applications. A major complication is that the relativistic massless electrons in pristine graphene exhibit unimpeded Klein tunneling penetration through gate potential barriers. Thus, previous efforts to realize a field effect transistor for logic applications have assumed that introduction of a band gap in graphene is a prerequisite. Unfortunately, extrinsic treatments designed to open a band gap seriously degrade device quality, yielding very low mobility and uncontrolled on/off current ratios. To solve this dilemma, we propose a gating mechanism that leads to a hundredfold enhancement in on/off transmittance ratio for normally incident electrons without any band gap engineering. Thus, our saw-shaped geometry gate potential (in place of the conventional bar-shaped geometry) leads to switching to an off state while retaining the ultrahigh electron mobility in the on state. In particular, we report that an on/off transmittance ratio of 130 is achievable for a sawtooth gate with a gate length of 80 nm. Our switching mechanism demonstrates that intrinsic graphene can be used in designing logic devices without serious alteration of the conventional field effect transistor architecture. This suggests a new variable for the optimization of the graphene-based device--geometry of the gate electrode.

  9. Band-to-band tunneling in a carbon nanotube metal-oxide-semiconductor field-effect transistor is dominated by phonon assisted tunneling

    OpenAIRE

    Koswatta, Siyuranga O.; Lundstrom, Mark S.; Nikonov, Dmitri E.

    2007-01-01

    Band-to-band tunneling (BTBT) devices have recently gained a lot of interest due to their potential for reducing power dissipation in integrated circuits. We have performed extensive simulations for the BTBT operation of carbon nanotube metal-oxide-semiconductor field-effect transistors (CNT-MOSFETs) using the non-equilibrium Green's functions formalism for both ballistic and dissipative quantum transport. In comparison with recently reported experimental data (Y. Lu et al, J. Am. Chem. Soc.,...

  10. The reference ballistic imaging database revisited.

    Science.gov (United States)

    De Ceuster, Jan; Dujardin, Sylvain

    2015-03-01

    A reference ballistic image database (RBID) contains images of cartridge cases fired in firearms that are in circulation: a ballistic fingerprint database. The performance of an RBID was investigated a decade ago by De Kinder et al. using IBIS(®) Heritage™ technology. The results of that study were published in this journal, issue 214. Since then, technologies have evolved quite significantly and novel apparatus have become available on the market. The current research article investigates the efficiency of another automated ballistic imaging system, Evofinder(®) using the same database as used by De Kinder et al. The results demonstrate a significant increase in correlation efficiency: 38% of all matches were on first position of the Evofinder correlation list in comparison to IBIS(®) Heritage™ where only 19% were on the first position. Average correlation times are comparable to the IBIS(®) Heritage™ system. While Evofinder(®) demonstrates specific improvement for mutually correlating different ammunition brands, ammunition dependence of the markings is still strongly influencing the correlation result because the markings may vary considerably. As a consequence a great deal of potential hits (36%) was still far down in the correlation lists (positions 31 and lower). The large database was used to examine the probability of finding a match as a function of correlation list verification. As an example, the RBID study on Evofinder(®) demonstrates that to find at least 90% of all potential matches, at least 43% of the items in the database need to be compared on screen and this for breech face markings and firing pin impression separately. These results, although a clear improvement to the original RBID study, indicate that the implementation of such a database should still not be considered nowadays. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Ballistic Characterization of the Scalability of Magnesium Alloy AMX602

    Science.gov (United States)

    2015-07-01

    Magnesium Alloy AMX602 by Tyrone L Jones Weapons and Materials Research Directorate, ARL Katsuyoshi Kondoh Joining and Welding Research...formed a collaborative partnership with Osaka University Joining and Welding Research Institute (JWRI), Taber Extrusions, Epson Atmix, Pacific Sowa...Powder Metallurgy 4 5. Fabrication Procedure 4 6. Mechanical Property Analysis 5 7. Ballistic Experimental Procedures 6 8. Ballistic Experimental

  12. Development and testing of a flexible ballistic neck protection

    NARCIS (Netherlands)

    Roebroeks, G.H.J.J.; Rensink, P.

    2016-01-01

    Sufficient ballistic protection of the neck area would significantly reduce the vulnerability of an infantry soldier. So far this protection is offered by extensions on the ballistic vest or combat helmet. However, the requirements for head agility and the various body to head positions combined

  13. 76 FR 70165 - Ballistic-Resistant Body Armor Standard Workshop

    Science.gov (United States)

    2011-11-10

    ... DEPARTMENT OF JUSTICE Office of Justice Programs [OJP (NIJ) Docket No. 1573] Ballistic-Resistant Body Armor Standard Workshop AGENCY: National Institute of Justice, DOJ. ACTION: Notice. SUMMARY: The... jointly hosting a workshop focused on NIJ Standard-0101.06, Ballistic Resistance of Body Armor, and the...

  14. An integrated approach towards future ballistic neck protection materials selection.

    Science.gov (United States)

    Breeze, John; Helliker, Mark; Carr, Debra J

    2013-05-01

    Ballistic protection for the neck has historically taken the form of collars attached to the ballistic vest (removable or fixed), but other approaches, including the development of prototypes incorporating ballistic material into the collar of an under body armour shirt, are now being investigated. Current neck collars incorporate the same ballistic protective fabrics as the soft armour of the remaining vest, reflecting how ballistic protective performance alone has historically been perceived as the most important property for neck protection. However, the neck has fundamental differences from the thorax in terms of anatomical vulnerability, flexibility and equipment integration, necessitating a separate solution from the thorax in terms of optimal materials selection. An integrated approach towards the selection of the most appropriate combination of materials to be used for each of the two potential designs of future neck protection has been developed. This approach requires evaluation of the properties of each potential material in addition to ballistic performance alone, including flexibility, mass, wear resistance and thermal burden. The aim of this article is to provide readers with an overview of this integrated approach towards ballistic materials selection and an update of its current progress in the development of future ballistic neck protection.

  15. Towards reliable simulations of ballistic impact on concrete structures

    NARCIS (Netherlands)

    Khoe, Y.S.; Tyler Street, M.D.; Maravalalu Suresh,, R.S.; Weerheijm, J.

    2013-01-01

    Protection against weapon effects like ballistic impacts, fragmenting shells and explosions is the core business of the Explosions, Ballistics and Protection department of TNO (The Netherlands). Experimental and numerical research is performed to gain and maintain the knowledge to support the Dutch

  16. Experiments with Liquid Propellant Jet Ignition in a Ballistic Compressor

    National Research Council Canada - National Science Library

    Birk, Avi

    1998-01-01

    .... The apparatus consists of an inline ballistic compressor and LP injector. The rebound of the ballistic compressor piston was arrested, trapping 40 to 55 MPa of 750 to 8500 C argon for ignition of circular jets in a windowed test chamber...

  17. A ballistic mission to fly by Comet Halley

    Science.gov (United States)

    Boain, R. J.; Hastrup, R. C.

    1980-01-01

    The paper describes the available options, ballistic trajectory opportunities, and a preliminary reference trajectory that were selected as a basis for spacecraft design studies and programmatic planning for a Halley ballistic intercept mission in 1986. The paper also presents trajectory, performance, and navigation data which support the preliminary selection.

  18. Simulation of depth of penetration during ballistic impact on thick ...

    Indian Academy of Sciences (India)

    One-dimensional discrete element model for the ballistic impact is used ... Simulation of ballistic impact process has been done using several ..... MATLAB 7.0 platform is used to simulate impact process using 1-D DEM and to perform the.

  19. Sub-ballistic behavior in the quantum kicked rotor

    Energy Technology Data Exchange (ETDEWEB)

    Romanelli, A. [Instituto de Fisica, Facultad de Ingenieria, Universidad de la Republica, C.C. 30, C.P. 11000, Montevideo (Uruguay)]. E-mail: alejo@fing.edu.uy; Auyuanet, A. [Instituto de Fisica, Facultad de Ingenieria, Universidad de la Republica, C.C. 30, C.P. 11000, Montevideo (Uruguay)]. E-mail: auyuanet@fing.edu.uy; Siri, R. [Instituto de Fisica, Facultad de Ingenieria, Universidad de la Republica, C.C. 30, C.P. 11000, Montevideo (Uruguay)]. E-mail: rsiri@fing.edu.uy; Micenmacher, V. [Instituto de Fisica, Facultad de Ingenieria, Universidad de la Republica, C.C. 30, C.P. 11000, Montevideo (Uruguay)]. E-mail: vmd@fing.edu.uy

    2007-05-28

    We study the resonances of the quantum kicked rotor subjected to an excitation that follows an aperiodic Fibonacci prescription. In such a case the secondary resonances show a sub-ballistic behavior like the quantum walk with the same aperiodic prescription for the coin. The principal resonances maintain the well-known ballistic behavior.

  20. Sub-ballistic behavior in the quantum kicked rotor

    International Nuclear Information System (INIS)

    Romanelli, A.; Auyuanet, A.; Siri, R.; Micenmacher, V.

    2007-01-01

    We study the resonances of the quantum kicked rotor subjected to an excitation that follows an aperiodic Fibonacci prescription. In such a case the secondary resonances show a sub-ballistic behavior like the quantum walk with the same aperiodic prescription for the coin. The principal resonances maintain the well-known ballistic behavior

  1. Contemporary management of maxillofacial ballistic trauma.

    Science.gov (United States)

    Breeze, J; Tong, D; Gibbons, A

    2017-09-01

    Ballistic maxillofacial trauma in the UK is fortunately relatively rare, and generally involves low velocity handguns and shotguns. Civilian terrorist events have, however, shown that all maxillofacial surgeons need to understand how to treat injuries from improvised explosive devices. Maxillofacial surgeons in the UK have also been responsible for the management of soldiers evacuated from Iraq and Afghanistan, and in this review we describe the newer types of treatment that have evolved from these conflicts, particularly that of damage-control maxillofacial surgery. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  2. MD Test of a Ballistic Optics

    CERN Document Server

    Garcia-Tabares Valdivieso, Ana; Salvachua Ferrando, Belen Maria; Skowronski, Piotr Krzysztof; Solfaroli Camillocci, Matteo; Tomas Garcia, Rogelio; Wenninger, Jorg; Coello De Portugal - Martinez Vazquez, Jaime Maria; CERN. Geneva. ATS Department

    2016-01-01

    The ballistic optics is designed to improve the understanding of optical errors and BPM systematic effects in the critical triplet region. The particularity of that optics is that the triplet is switched off, effectively transforming the triplets on both sides of IR1 and IR5 into drift spaces. Advantage can be taken from that fact to localize better errors in the Q4-Q5-triplet region. During this MD this new optics was tested for the first time at injection with beam 2.

  3. Impacts of Deflection Nose on Ballistic Trajectory Control Law

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2014-01-01

    Full Text Available The deflection of projectile nose is aimed at changing the motion of the projectile in flight with the theory of motion control and changing the exterior ballistics so as to change its range and increase its accuracy. The law of external ballistics with the deflectable nose is considered as the basis of the design of a flight control system and an important part in the process of projectile development. Based on the existing rigid external ballistic model, this paper establishes an external ballistic calculation model for deflectable nose projectile and further establishes the solving programs accordingly. Different angle of attack, velocity, coefficients of lift, resistance, and moment under the deflection can be obtained in this paper based on the previous experiments and emulation researches. In the end, the author pointed out the laws on the impaction of external ballistic trajectory by the deflection of nose of the missile.

  4. Feasibility of ballistic strengthening exercises in neurologic rehabilitation.

    Science.gov (United States)

    Williams, Gavin; Clark, Ross A; Hansson, Jessica; Paterson, Kade

    2014-09-01

    Conventional methods for strength training in neurologic rehabilitation are not task specific for walking. Ballistic strength training was developed to improve the functional transfer of strength training; however, no research has investigated this in neurologic populations. The aim of this pilot study was to evaluate the feasibility of applying ballistic principles to conventional leg strengthening exercises in individuals with mobility limitations as a result of neurologic injuries. Eleven individuals with neurologic injuries completed seated and reclined leg press using conventional and ballistic techniques. A 2 × 2 repeated-measures analysis of variance was used to compare power measures (peak movement height and peak velocity) between exercises and conditions. Peak jump velocity and peak jump height were greater when using the ballistic jump technique rather than the conventional concentric technique (P ballistic principles was associated with increased peak height and peak velocities.

  5. Ballistic resistant article, semi-finished product for and method of making a shell for a ballistic resistant article

    NARCIS (Netherlands)

    Harings, Jules Armand Wilhelmina; Janse, Gerardus Hubertus Anna

    2013-01-01

    The invention relates to a ballistic resistant article, such as a helmet (1), comprising a double curved shell in turn comprising a stack (5) of layers (6) of an oriented anti-ballistic material, the layers comprising one or more plies and having a plurality of cuts (7), the ends of which define a

  6. Ballistic resistant article, semi-finished product for and method of making a shell for a ballistic resistant article

    NARCIS (Netherlands)

    Harings, Jules; Janse, Gerardus

    2013-01-01

    The invention relates to a ballistic resistant article, such as a helmet (1), comprising a double curved shell (2) in turn comprising a stack (5) of layers (6) of an oriented anti-ballistic material, the layers (6) comprising one or more plies and having a plurality of cuts (7), the ends of which

  7. Physical limits of silicon transistors and circuits

    International Nuclear Information System (INIS)

    Keyes, Robert W

    2005-01-01

    A discussion on transistors and electronic computing including some history introduces semiconductor devices and the motivation for miniaturization of transistors. The changing physics of field-effect transistors and ways to mitigate the deterioration in performance caused by the changes follows. The limits of transistors are tied to the requirements of the chips that carry them and the difficulties of fabricating very small structures. Some concluding remarks about transistors and limits are presented

  8. Copper atomic-scale transistors.

    Science.gov (United States)

    Xie, Fangqing; Kavalenka, Maryna N; Röger, Moritz; Albrecht, Daniel; Hölscher, Hendrik; Leuthold, Jürgen; Schimmel, Thomas

    2017-01-01

    We investigated copper as a working material for metallic atomic-scale transistors and confirmed that copper atomic-scale transistors can be fabricated and operated electrochemically in a copper electrolyte (CuSO 4 + H 2 SO 4 ) in bi-distilled water under ambient conditions with three microelectrodes (source, drain and gate). The electrochemical switching-on potential of the atomic-scale transistor is below 350 mV, and the switching-off potential is between 0 and -170 mV. The switching-on current is above 1 μA, which is compatible with semiconductor transistor devices. Both sign and amplitude of the voltage applied across the source and drain electrodes ( U bias ) influence the switching rate of the transistor and the copper deposition on the electrodes, and correspondingly shift the electrochemical operation potential. The copper atomic-scale transistors can be switched using a function generator without a computer-controlled feedback switching mechanism. The copper atomic-scale transistors, with only one or two atoms at the narrowest constriction, were realized to switch between 0 and 1 G 0 ( G 0 = 2e 2 /h; with e being the electron charge, and h being Planck's constant) or 2 G 0 by the function generator. The switching rate can reach up to 10 Hz. The copper atomic-scale transistor demonstrates volatile/non-volatile dual functionalities. Such an optimal merging of the logic with memory may open a perspective for processor-in-memory and logic-in-memory architectures, using copper as an alternative working material besides silver for fully metallic atomic-scale transistors.

  9. Advanced geometries for ballistic neutron guides

    International Nuclear Information System (INIS)

    Schanzer, Christian; Boeni, Peter; Filges, Uwe; Hils, Thomas

    2004-01-01

    Sophisticated neutron guide systems take advantage of supermirrors being used to increase the neutron flux. However, the finite reflectivity of supermirrors becomes a major loss mechanism when many reflections occur, e.g. in long neutron guides and for long wavelengths. In order to reduce the number of reflections, ballistic neutron guides have been proposed. Usually linear tapered sections are used to enlarge the cross-section and finally, focus the beam to the sample. The disadvantages of linear tapering are (i) an inhomogeneous phase space at the sample position and (ii) a decreasing flux with increasing distance from the exit of the guide. We investigate the properties of parabolic and elliptic tapering for ballistic neutron guides, using the Monte Carlo program McStas with a new guide component dedicated for such geometries. We show that the maximum flux can indeed be shifted away from the exit of the guide. In addition we explore the possibilities of parabolic and elliptic geometries to create point like sources for dedicated experimental demands

  10. Ballistic Limit Equation for Single Wall Titanium

    Science.gov (United States)

    Ratliff, J. M.; Christiansen, Eric L.; Bryant, C.

    2009-01-01

    Hypervelocity impact tests and hydrocode simulations were used to determine the ballistic limit equation (BLE) for perforation of a titanium wall, as a function of wall thickness. Two titanium alloys were considered, and separate BLEs were derived for each. Tested wall thicknesses ranged from 0.5mm to 2.0mm. The single-wall damage equation of Cour-Palais [ref. 1] was used to analyze the Ti wall's shielding effectiveness. It was concluded that the Cour-Palais single-wall equation produced a non-conservative prediction of the ballistic limit for the Ti shield. The inaccurate prediction was not a particularly surprising result; the Cour-Palais single-wall BLE contains shield material properties as parameters, but it was formulated only from tests of different aluminum alloys. Single-wall Ti shield tests were run (thicknesses of 2.0 mm, 1.5 mm, 1.0 mm, and 0.5 mm) on Ti 15-3-3-3 material custom cut from rod stock. Hypervelocity impact (HVI) tests were used to establish the failure threshold empirically, using the additional constraint that the damage scales with impact energy, as was indicated by hydrocode simulations. The criterion for shield failure was defined as no detached spall from the shield back surface during HVI. Based on the test results, which confirmed an approximately energy-dependent shield effectiveness, the Cour-Palais equation was modified.

  11. Ballistic energy transport via perfluoroalkane linkers

    Energy Technology Data Exchange (ETDEWEB)

    Rubtsova, Natalia I. [Department of Chemistry, Tulane University, New Orleans, LA 70118 (United States); Rubtsov, Igor V., E-mail: irubtsov@tulane.edu [Department of Chemistry, Tulane University, New Orleans, LA 70118 (United States)

    2013-08-30

    Highlights: ► Energy transport in perfluoroalkanes oligomers of various chain lengths was studied. ► Cross-peaks among C=O stretch and CH bending modes were recorded using RA 2DIR. ► Efficient constant-speed energy transport with the speed of 1150 m/s is found. ► Ballistic energy transport mechanism is suggested. - Abstract: Intramolecular energy transport in a series of perfluoroalkane oligomers with various chain lengths of 3, 5, 7, 9, and 11 carbon atoms terminated by a carboxylic acid moiety on one end and –CF{sub 2}H group on another end is studied by relaxation-assisted two-dimensional infrared spectroscopy. Perfluoroalkane oligomers adopt an extended structure with antiperiplanar orientation of the neighboring carbon atoms. The energy transport initiated by exciting the C=O stretching mode of the acid was recorded by measuring a cross-peak amplitude between the C=O stretch and the C–H bending mode as a function of the waiting time between the excitation and probing. A linear dependence of energy transport time vs. chain length is found, which suggests a ballistic energy transport mechanism. The energy transport speed, measured from the chain-length dependence of the half-rise time, T{sub ½}, was found to be ca. 1150 m/s, which is close to the longitudinal speed of sound in Teflon polymers.

  12. Programmable automated transistor test system

    International Nuclear Information System (INIS)

    Truong, L.V.; Sundberg, G.R.

    1986-01-01

    The paper describes a programmable automated transistor test system (PATTS) and its utilization to evaluate bipolar transistors and Darlingtons, and such MOSFET and special types as can be accommodated with the PATTS base-drive. An application of a pulsed power technique at low duty cycles in a non-destructive test is used to examine the dynamic switching characteristic curves of power transistors. Data collection, manipulation, storage, and output are operator interactive but are guided and controlled by the system software. In addition a library of test data is established on disks, tapes, and hard copies for future reference

  13. Nanogap Electrodes towards Solid State Single-Molecule Transistors.

    Science.gov (United States)

    Cui, Ajuan; Dong, Huanli; Hu, Wenping

    2015-12-01

    With the establishment of complementary metal-oxide-semiconductor (CMOS)-based integrated circuit technology, it has become more difficult to follow Moore's law to further downscale the size of electronic components. Devices based on various nanostructures were constructed to continue the trend in the minimization of electronics, and molecular devices are among the most promising candidates. Compared with other candidates, molecular devices show unique superiorities, and intensive studies on molecular devices have been carried out both experimentally and theoretically at the present time. Compared to two-terminal molecular devices, three-terminal devices, namely single-molecule transistors, show unique advantages both in fundamental research and application and are considered to be an essential part of integrated circuits based on molecular devices. However, it is very difficult to construct them using the traditional microfabrication techniques directly, thus new fabrication strategies are developed. This review aims to provide an exclusive way of manufacturing solid state gated nanogap electrodes, the foundation of constructing transistors of single or a few molecules. Such single-molecule transistors have the potential to be used to build integrated circuits. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Ballistic properties of bidirectional fiber/resin composites

    International Nuclear Information System (INIS)

    Dimeski, Dimko; Spaseska, Dijana

    2004-01-01

    The aim of the research was to make evaluation of the ballistic strength of four different fiber/resin composites intended to be used in manufacturing of ballistic items for personal protection. Research has been performed on glass, ballistic nylon, aramid and HPPE (High Performance Polyethylene) plainly woven fabric based composites. As a matrix system, in all cases, polyvinylbutyral modified phenolic resin was used. For the investigation, areal weight range 2 - 9 kg/m 2 chosen was, which is applicable for personal ballistic protection and the ultimate resin content range 20 - 50 vol.%. Ballistic test of the composites has shown that the best results exhibit HPPE based composites; aramid based composites have been the second best followed by the polyamide based composites. The worst results have been shown by the glass based composites. All composites with lower resin content (20%) have performed much better than their counterparts with higher resin content (50 %).The plot of the ballistic strength (V 50 ) versus areal weight has shown a linear increase of V 50 with the increase of areal weight. The ballistic strength of the composites is highly dependant on the fiber/resin ratio and increases with the increase of the fiber content. (Author)

  15. Transistor and integrated circuit manufacture

    International Nuclear Information System (INIS)

    Colman, D.

    1978-01-01

    This invention relates to the manufacture of transistors and integrated circuits by ion bombardment techniques and is particularly, but not exclusively, of value in the manufacture of so-called integrated injection logic circuitry. (author)

  16. High transconductance organic electrochemical transistors

    Science.gov (United States)

    Khodagholy, Dion; Rivnay, Jonathan; Sessolo, Michele; Gurfinkel, Moshe; Leleux, Pierre; Jimison, Leslie H.; Stavrinidou, Eleni; Herve, Thierry; Sanaur, Sébastien; Owens, Róisín M.; Malliaras, George G.

    2013-07-01

    The development of transistors with high gain is essential for applications ranging from switching elements and drivers to transducers for chemical and biological sensing. Organic transistors have become well-established based on their distinct advantages, including ease of fabrication, synthetic freedom for chemical functionalization, and the ability to take on unique form factors. These devices, however, are largely viewed as belonging to the low-end of the performance spectrum. Here we present organic electrochemical transistors with a transconductance in the mS range, outperforming transistors from both traditional and emerging semiconductors. The transconductance of these devices remains fairly constant from DC up to a frequency of the order of 1 kHz, a value determined by the process of ion transport between the electrolyte and the channel. These devices, which continue to work even after being crumpled, are predicted to be highly relevant as transducers in biosensing applications.

  17. Organic tunnel field effect transistors

    KAUST Repository

    Tietze, Max Lutz; Lussem, Bjorn; Liu, Shiyi

    2017-01-01

    Various examples are provided for organic tunnel field effect transistors (OTFET), and methods thereof. In one example, an OTFET includes a first intrinsic layer (i-layer) of organic semiconductor material disposed over a gate insulating layer

  18. High transconductance organic electrochemical transistors

    Science.gov (United States)

    Khodagholy, Dion; Rivnay, Jonathan; Sessolo, Michele; Gurfinkel, Moshe; Leleux, Pierre; Jimison, Leslie H.; Stavrinidou, Eleni; Herve, Thierry; Sanaur, Sébastien; Owens, Róisín M.; Malliaras, George G.

    2013-01-01

    The development of transistors with high gain is essential for applications ranging from switching elements and drivers to transducers for chemical and biological sensing. Organic transistors have become well-established based on their distinct advantages, including ease of fabrication, synthetic freedom for chemical functionalization, and the ability to take on unique form factors. These devices, however, are largely viewed as belonging to the low-end of the performance spectrum. Here we present organic electrochemical transistors with a transconductance in the mS range, outperforming transistors from both traditional and emerging semiconductors. The transconductance of these devices remains fairly constant from DC up to a frequency of the order of 1 kHz, a value determined by the process of ion transport between the electrolyte and the channel. These devices, which continue to work even after being crumpled, are predicted to be highly relevant as transducers in biosensing applications. PMID:23851620

  19. Transistor and integrated circuit manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Colman, D

    1978-09-27

    This invention relates to the manufacture of transistors and integrated circuits by ion bombardment techniques and is particularly, but not exclusively, of value in the manufacture of so-called integrated injection logic circuitry.

  20. Dosimetric properties of MOS transistors

    International Nuclear Information System (INIS)

    Frank, H.; Petr, I.

    1977-01-01

    The structure of MOS transistors is described and their characteristics given. The experiments performed and data in the literature show the following dosimetric properties of MOS transistors: while for low gamma doses the transistor response to exposure is linear, it shows saturation for higher doses (exceeding 10 3 Gy in tissue). The response is independent of the energy of radiation and of the dose rate (within 10 -2 to 10 5 Gy/s). The spontaneous reduction with time of the spatial charge captured by the oxide layer (fading) is small and acceptable from the point of view of dosimetry. Curves are given of isochronous annealing of the transistors following irradiation with 137 Cs and 18 MeV electrons for different voltages during irradiation. The curves show that in MOS transistors irradiated with high-energy electrons the effect of annealing is less than in transistors irradiated with 137 Cs. In view of the requirement of using higher temperatures (approx. 400 degC) for the complete ''erasing'' of the captured charge, unsealed systems must be used for dosimetric purposes. The effect was also studied of neutron radiation, proton radiation and electron radiation on the MOS transistor structure. For MOS transistor irradiation with 14 MeV neutrons from a neutron generator the response was 4% of that for gamma radiation at the same dose equivalent. The effect of proton radiation was studied as related to the changes in MOS transistor structure during space flights. The response curve shapes are similar to those of gamma radiation curves. The effect of electron radiation on the MOS structure was studied by many authors. The experiments show that for each thickness of the SiO 2 layer an electron energy exists at which the size of the charge captured in SiO 2 is the greatest. All data show that MOS transistors are promising for radiation dosimetry. The main advantage of MOS transistors as gamma dosemeters is the ease and speed of evaluation, low sensitivity to neutron

  1. AlN/GaN heterostructures for normally-off transistors

    Energy Technology Data Exchange (ETDEWEB)

    Zhuravlev, K. S., E-mail: zhur@isp.nsc.ru; Malin, T. V.; Mansurov, V. G.; Tereshenko, O. E. [Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics, Siberian Branch (Russian Federation); Abgaryan, K. K.; Reviznikov, D. L. [Dorodnicyn Computing Centre of the Russian Academy of Sciences (Russian Federation); Zemlyakov, V. E.; Egorkin, V. I. [National Research University of Electronic Technology (MIET) (Russian Federation); Parnes, Ya. M.; Tikhomirov, V. G. [Joint Stock Company “Svetlana-Electronpribor” (Russian Federation); Prosvirin, I. P. [Russian Academy of Sciences, Boreskov Institute of Catalysis, Siberian Branch (Russian Federation)

    2017-03-15

    The structure of AlN/GaN heterostructures with an ultrathin AlN barrier is calculated for normally-off transistors. The molecular-beam epitaxy technology of in situ passivated SiN/AlN/GaN heterostructures with a two-dimensional electron gas is developed. Normally-off transistors with a maximum current density of ~1 A/mm, a saturation voltage of 1 V, a transconductance of 350 mS/mm, and a breakdown voltage of more than 60 V are demonstrated. Gate lag and drain lag effects are almost lacking in these transistors.

  2. Planar-Processed Polymer Transistors.

    Science.gov (United States)

    Xu, Yong; Sun, Huabin; Shin, Eul-Yong; Lin, Yen-Fu; Li, Wenwu; Noh, Yong-Young

    2016-10-01

    Planar-processed polymer transistors are proposed where the effective charge injection and the split unipolar charge transport are all on the top surface of the polymer film, showing ideal device characteristics with unparalleled performance. This technique provides a great solution to the problem of fabrication limitations, the ambiguous operating principle, and the performance improvements in practical applications of conjugated-polymer transistors. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Ballistic trauma: lessons learned from iraq and afghanistan.

    Science.gov (United States)

    Shin, Emily H; Sabino, Jennifer M; Nanos, George P; Valerio, Ian L

    2015-02-01

    Management of upper extremity injuries secondary to ballistic and blast trauma can lead to challenging problems for the reconstructive surgeon. Given the recent conflicts in Iraq and Afghanistan, advancements in combat-casualty care, combined with a high-volume experience in the treatment of ballistic injuries, has led to continued advancements in the treatment of the severely injured upper extremity. There are several lessons learned that are translatable to civilian trauma centers and future conflicts. In this article, the authors provide an overview of the physics of ballistic injuries and principles in the management of such injuries through experience gained from military involvement in Iraq and Afghanistan.

  4. Ballistic transport in graphene grown by chemical vapor deposition

    International Nuclear Information System (INIS)

    Calado, V. E.; Goswami, S.; Xu, Q.; Vandersypen, L. M. K.; Zhu, Shou-En; Janssen, G. C. A. M.; Watanabe, K.; Taniguchi, T.

    2014-01-01

    In this letter, we report the observation of ballistic transport on micron length scales in graphene synthesised by chemical vapour deposition (CVD). Transport measurements were done on Hall bar geometries in a liquid He cryostat. Using non-local measurements, we show that electrons can be ballistically directed by a magnetic field (transverse magnetic focussing) over length scales of ∼1 μm. Comparison with atomic force microscope measurements suggests a correlation between the absence of wrinkles and the presence of ballistic transport in CVD graphene

  5. Ballistic transport in graphene grown by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Calado, V. E.; Goswami, S.; Xu, Q.; Vandersypen, L. M. K., E-mail: l.m.k.vandersypen@tudelft.nl [Kavli Institute of Nanoscience, Delft University of Technology, 2600 GA Delft (Netherlands); Zhu, Shou-En; Janssen, G. C. A. M. [Micro and Nano Engineering Laboratory, Precision and Microsystems Engineering, Delft University of Technology, 2628 CD Delft (Netherlands); Watanabe, K.; Taniguchi, T. [Advanced Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan)

    2014-01-13

    In this letter, we report the observation of ballistic transport on micron length scales in graphene synthesised by chemical vapour deposition (CVD). Transport measurements were done on Hall bar geometries in a liquid He cryostat. Using non-local measurements, we show that electrons can be ballistically directed by a magnetic field (transverse magnetic focussing) over length scales of ∼1 μm. Comparison with atomic force microscope measurements suggests a correlation between the absence of wrinkles and the presence of ballistic transport in CVD graphene.

  6. 19 mm ballistic range: a potpourri of techniques and recipes

    International Nuclear Information System (INIS)

    Carpluk, G.T.

    1975-01-01

    The expansion of ballistic gun range facilities at LLL has introduced state-of-the-art diagnostic techniques to glovebox-enclosed ballistic guns systems. These enclosed ballistic ranges are designed for the study of one-dimensional shock phenomena in extremely toxic material such as plutonium. The extension of state-of-the-art phtographic and interferometric diagnostic systems to glovebox-enclosed gun systems introduces new design boundaries and performance criteria on optical and mechanical components. A technique for experimentally evaluating design proposals is illustrated, and several specific examples (such as, target alignment, collateral shrapnel damage, and soft recovery) are discussed

  7. Comparative study on sintered alumina for ballistic shielding application

    International Nuclear Information System (INIS)

    Melo, Francisco Cristovao Lourenco de; Goncalves, Diniz Pereira

    1997-01-01

    This work presents a development of the armor made from special ceramic materials and kevlar. An experimental investigation was conducted to study the ballistic penetration resistance on three samples taken from sintered alumina: a commercial one and two formulations A and B made in IAE/CTA. The main differences between the two formulations was the grain size and bend resistance. The knowledge of the mechanisms during the penetration and perforation process allowed to apply a ductile composite laminate made form kevlar under the alumina to delay its rupture. The last ballistic test showed how a Weibull's modulii and other mechanical properties are able to improve ballistic penetration resistance. (author)

  8. Simulating the ballistic effects of ion irradiation in the binary collision approximation: A first step toward the ion mixing framework

    International Nuclear Information System (INIS)

    Demange, G.; Antoshchenkova, E.; Hayoun, M.; Lunéville, L.; Simeone, D.

    2017-01-01

    Understanding ballistic effects induced by ion beam irradiation can be a key point for controlling and predicting the microstructure of irradiated materials. Meanwhile, the ion mixing framework suggests an average description of displacement cascades may be sufficient to estimate the influence of ballistic relocations on the microstructure. In this work, the BCA code MARLOWE was chosen for its ability to account for the crystal structure of irradiated materials. A first set of simulations was performed on pure copper for energies ranging from 0.5 keV to 20 keV. These simulations were validated using molecular dynamics (MD). A second set of simulations on AgCu irradiated by 1 MeV krypton ions was then carried out using MARLOWE only, as such energy is beyond reach for molecular dynamics. MARLOWE simulations are found to be in good agreement with experimental results, which suggests the predictive potential of the method.

  9. Simulating the ballistic effects of ion irradiation in the binary collision approximation: A first step toward the ion mixing framework

    Energy Technology Data Exchange (ETDEWEB)

    Demange, G., E-mail: gilles.demange@univ-rouen.fr [DEN/MDN/SRMA/LA2M, CEA Saclay, F-91191 Gif-sur-Yvette (France); Antoshchenkova, E. [DEN/MDN/SRMA/LA2M, CEA Saclay, F-91191 Gif-sur-Yvette (France); Hayoun, M. [LSI, École Polytechnique, CNRS, CEA Saclay, Université Paris-Saclay, F-91128 Palaiseau (France); Lunéville, L. [DEN/SERMA/LLPR, CEA Saclay, F-91191 Gif sur Yvette (France); Simeone, D. [DEN/MDN/SRMA/LA2M, CEA Saclay, F-91191 Gif-sur-Yvette (France)

    2017-04-01

    Understanding ballistic effects induced by ion beam irradiation can be a key point for controlling and predicting the microstructure of irradiated materials. Meanwhile, the ion mixing framework suggests an average description of displacement cascades may be sufficient to estimate the influence of ballistic relocations on the microstructure. In this work, the BCA code MARLOWE was chosen for its ability to account for the crystal structure of irradiated materials. A first set of simulations was performed on pure copper for energies ranging from 0.5 keV to 20 keV. These simulations were validated using molecular dynamics (MD). A second set of simulations on AgCu irradiated by 1 MeV krypton ions was then carried out using MARLOWE only, as such energy is beyond reach for molecular dynamics. MARLOWE simulations are found to be in good agreement with experimental results, which suggests the predictive potential of the method.

  10. Ballistic and Diffusive Thermal Conductivity of Graphene

    Science.gov (United States)

    Saito, Riichiro; Masashi, Mizuno; Dresselhaus, Mildred S.

    2018-02-01

    This paper is a contribution to the Physical Review Applied collection in memory of Mildred S. Dresselhaus. Phonon-related thermal conductivity of graphene is calculated as a function of the temperature and sample size of graphene in which the crossover of ballistic and diffusive thermal conductivity occurs at around 100 K. The diffusive thermal conductivity of graphene is evaluated by calculating the phonon mean free path for each phonon mode in which the anharmonicity of a phonon and the phonon scattering by a 13C isotope are taken into account. We show that phonon-phonon scattering of out-of-plane acoustic phonon by the anharmonic potential is essential for the largest thermal conductivity. Using the calculated results, we can design the optimum sample size, which gives the largest thermal conductivity at a given temperature for applying thermal conducting devices.

  11. Ultimately short ballistic vertical graphene Josephson junctions

    Science.gov (United States)

    Lee, Gil-Ho; Kim, Sol; Jhi, Seung-Hoon; Lee, Hu-Jong

    2015-01-01

    Much efforts have been made for the realization of hybrid Josephson junctions incorporating various materials for the fundamental studies of exotic physical phenomena as well as the applications to superconducting quantum devices. Nonetheless, the efforts have been hindered by the diffusive nature of the conducting channels and interfaces. To overcome the obstacles, we vertically sandwiched a cleaved graphene monoatomic layer as the normal-conducting spacer between superconducting electrodes. The atomically thin single-crystalline graphene layer serves as an ultimately short conducting channel, with highly transparent interfaces with superconductors. In particular, we show the strong Josephson coupling reaching the theoretical limit, the convex-shaped temperature dependence of the Josephson critical current and the exceptionally skewed phase dependence of the Josephson current; all demonstrate the bona fide short and ballistic Josephson nature. This vertical stacking scheme for extremely thin transparent spacers would open a new pathway for exploring the exotic coherence phenomena occurring on an atomic scale. PMID:25635386

  12. Ballistic energy transport in PEG oligomers

    Directory of Open Access Journals (Sweden)

    Kireev Victor V.

    2013-03-01

    Full Text Available Energy transport between the terminal groups of the azido-PEG-succinimide ester compounds with a number of repeating PEG units of 0, 4, 8, and 12 was studied using relaxation-assisted two-dimensional infrared spectroscopy. The through-bond energy transport time, evaluated as the waiting time at which the cross peak maximum is reached, Tmax, was found to be linearly dependent on the chain length for chain lengths up to 60 Å suggesting a ballistic energy transport regime. The through-bond energy transport speed is found to be ca. 500 m/s. The cross-peak amplitude at the maximum decays exponentially with the chain length with a characteristic decay distance of 15.7 ± 1 Å. Substantial mode delocalization across the PEG bridge is found, which can support the energy propagation as a wavepacket.

  13. Gate tuneable beamsplitter in ballistic graphene

    Energy Technology Data Exchange (ETDEWEB)

    Rickhaus, Peter; Makk, Péter, E-mail: Peter.Makk@unibas.ch; Schönenberger, Christian [Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Liu, Ming-Hao; Richter, Klaus [Institut für Theoretische Physik, Universität Regensburg, D-93040 Regensburg (Germany)

    2015-12-21

    We present a beam splitter in a suspended, ballistic, multiterminal, bilayer graphene device. By using local bottomgates, a p-n interface tilted with respect to the current direction can be formed. We show that the p-n interface acts as a semi-transparent mirror in the bipolar regime and that the reflectance and transmittance of the p-n interface can be tuned by the gate voltages. Moreover, by studying the conductance features appearing in magnetic field, we demonstrate that the position of the p-n interface can be moved by 1 μm. The herein presented beamsplitter device can form the basis of electron-optic interferometers in graphene.

  14. Efficient thermal diode with ballistic spacer

    Science.gov (United States)

    Chen, Shunda; Donadio, Davide; Benenti, Giuliano; Casati, Giulio

    2018-03-01

    Thermal rectification is of importance not only for fundamental physics, but also for potential applications in thermal manipulations and thermal management. However, thermal rectification effect usually decays rapidly with system size. Here, we show that a mass-graded system, with two diffusive leads separated by a ballistic spacer, can exhibit large thermal rectification effect, with the rectification factor independent of system size. The underlying mechanism is explained in terms of the effective size-independent thermal gradient and the match or mismatch of the phonon bands. We also show the robustness of the thermal diode upon variation of the model's parameters. Our finding suggests a promising way for designing realistic efficient thermal diodes.

  15. Ballistic thermoelectric transport in a Luttinger liquid

    International Nuclear Information System (INIS)

    Ivanov, Y V

    2010-01-01

    The Seebeck and Peltier coefficients of a homogeneous Luttinger liquid are calculated in the ballistic regime. Nonlinearity of the electron spectrum is taken into account. It is shown that, in the framework of the defined approximations, the thermoelectric power of a Luttinger liquid is equal to zero, in agreement with the exponentially small thermopower of a one-dimensional degenerate Fermi gas. The Peltier coefficient is controlled by a nonequilibrium state of the system. It is finite and renormalized by the interaction in the case of a convective flow of a Luttinger liquid. The zero modes of bosonic excitations and the dispersion-induced contribution to the electric current operator are taken into account in calculations.

  16. Ballistic Missile Defense: New Plans, Old Challenges

    Directory of Open Access Journals (Sweden)

    Elizabeth Zolotukhina

    2010-01-01

    Full Text Available On September 17, 2009—the 70th anniversary of the Soviet invasion of Poland in 1939 that marked the beginning of World War II—the Obama Administration announced its intention to shelve plans for the U.S. Ballistic Missile Defense (BMD that had been developed under former President George W. Bush. Pointing to a new intelligence assessment, President Obama argued that his predecessor's plan to deploy an X-band radar station outside of Prague, Czech Republic, and 10 two-stage interceptor missiles in Poland would not adequately protect America and its European allies from the Iranian threat and reiterated his opposition to utilizing unproven technology in any European BMD architecture.

  17. Heterogeneous propellant internal ballistics: criticism and regeneration

    Science.gov (United States)

    Glick, R. L.

    2011-10-01

    Although heterogeneous propellant and its innately nondeterministic, chemically discrete morphology dominates applications, ballisticcharacterization deterministic time-mean burning rate and acoustic admittance measures' absence of explicit, nondeterministic information requires homogeneous propellant with a smooth, uniformly regressing burning surface: inadequate boundary conditions for heterogeneous propellant grained applications. The past age overcame this dichotomy with one-dimensional (1D) models and empirical knowledge from numerous, adequately supported motor developments and supplementary experiments. However, current cost and risk constraints inhibit this approach. Moreover, its fundamental science approach is more sensitive to incomplete boundary condition information (garbage-in still equals garbage-out) and more is expected. This work critiques this situation and sketches a path forward based on enhanced ballistic and motor characterizations in the workplace and approximate model and apparatus developments mentored by CSAR DNS capabilities (or equivalent).

  18. Statistics of magnetoconductance in ballistic cavities

    International Nuclear Information System (INIS)

    Yang, X.; Ishio, H.; Burgdoerfer, J.

    1995-01-01

    The statistical properties of magnetoconductance in ballistic microcavities are investigated numerically. The distribution of conductance for chaotic cavities is found to follow the renormalized Porter-Thomas distribution suggested by random-matrix theory for the Gaussian ensemble while the conductance distribution of regular cavities in magnetic fields is nonuniversal and shifted towards the maximum value for a given number of open channels. The renormalized Porter-Thomas distribution implies a universal dependence of fluctuation amplitude on the mean conductance for chaotic cavities in the absence of time-reversal symmetry. The fluctuation amplitude for regular cavities is found to be larger than the saturation value of the fluctuation amplitude of chaotic cavities predicted by random-matrix theory. The change of the mean conductance as a function of the external magnetic field is consistent with semiclassical predictions

  19. Institute for Non-Lethal Defense Technologies Report: Ballistic Gelatin

    National Research Council Canada - National Science Library

    Nicholas, N. C; Welsch, J. R

    2004-01-01

    Ballistic gelatin is designed to simulate living soft tissue. It is the standard for evaluating the effectiveness of firearms against humans because of its convenience and acceptability over animal or cadaver testing...

  20. Ballistic Jumping Drops on Superhydrophobic Surfaces via Electrostatic Manipulation.

    Science.gov (United States)

    Li, Ning; Wu, Lei; Yu, Cunlong; Dai, Haoyu; Wang, Ting; Dong, Zhichao; Jiang, Lei

    2018-02-01

    The ballistic ejection of liquid drops by electrostatic manipulating has both fundamental and practical implications, from raindrops in thunderclouds to self-cleaning, anti-icing, condensation, and heat transfer enhancements. In this paper, the ballistic jumping behavior of liquid drops from a superhydrophobic surface is investigated. Powered by the repulsion of the same kind of charges, water drops can jump from the surface. The electrostatic acting time for the jumping of a microliter supercooled drop only takes several milliseconds, even shorter than the time for icing. In addition, one can control the ballistic jumping direction precisely by the relative position above the electrostatic field. The approach offers a facile method that can be used to manipulate the ballistic drop jumping via an electrostatic field, opening the possibility of energy efficient drop detaching techniques in various applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Designing an Innovative Composite Armor System for Affordable Ballistic Protection

    National Research Council Canada - National Science Library

    Ma, Zheng-Dong; Wang, Hui; Cui, Yushun; Rose, Douglas; Socks, Adria; Ostberg, Donald

    2006-01-01

    .... This paper focuses on the frontal armor plate and back plate design problems with demonstration examples, including both results of the virtual prototyping and ballistic testing for proof-of-concept...

  2. Precession feature extraction of ballistic missile warhead with high velocity

    Science.gov (United States)

    Sun, Huixia

    2018-04-01

    This paper establishes the precession model of ballistic missile warhead, and derives the formulas of micro-Doppler frequency induced by the target with precession. In order to obtain micro-Doppler feature of ballistic missile warhead with precession, micro-Doppler bandwidth estimation algorithm, which avoids velocity compensation, is presented based on high-resolution time-frequency transform. The results of computer simulations confirm the effectiveness of the proposed method even with low signal-to-noise ratio.

  3. Instrument employing a charge flow transistor

    International Nuclear Information System (INIS)

    1981-01-01

    The invention concerns instruments employing charge-flow transistors that operate to sense a property in the surrounding environment. It is based on a particular sensor principle, thin-film conduction. The instruments described include a charge-flow transistor with semiconductor substrate, a source region, a drain region, a gate insulator, and a gapped electrode structure with a thin-film sensor material in the gap. The sensor material has an electrical conductance that is sensitive to a property of the ambient environment and has a surface conductance that differs substantially from its bulk conductance. The main object is to provide a low-cost instrument for early-warning fire-detection devices: in this case the property detected would be the products of combustion. Other properties that can be sensed include gases or vapors, free radicals, vapor electromagnetic radiation, subatomic particles, atomic or molecular beams, changes in ambient pressure or temperature, the chemical composition and the electrochemical potential of a solution. (U.K.)

  4. Instrument employing a charge flow transistor

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-11

    The invention concerns instruments employing charge-flow transistors that operate to sense a property in the surrounding environment. It is based on a particular sensor principle, thin-film conduction. The instruments described include a charge-flow transistor with semiconductor substrate, a source region, a drain region, a gate insulator, and a gapped electrode structure with a thin-film sensor material in the gap. The sensor material has an electrical conductance that is sensitive to a property of the ambient environment and has a surface conductance that differs substantially from its bulk conductance. The main object is to provide a low-cost instrument for early-warning fire-detection devices: in this case the property detected would be the products of combustion. Other properties that can be sensed include gases or vapors, free radicals, vapor electromagnetic radiation, subatomic particles, atomic or molecular beams, changes in ambient pressure or temperature, the chemical composition and the electrochemical potential of a solution.

  5. Room-temperature ballistic transport in III-nitride heterostructures.

    Science.gov (United States)

    Matioli, Elison; Palacios, Tomás

    2015-02-11

    Room-temperature (RT) ballistic transport of electrons is experimentally observed and theoretically investigated in III-nitrides. This has been largely investigated at low temperatures in low band gap III-V materials due to their high electron mobilities. However, their application to RT ballistic devices is limited by their low optical phonon energies, close to KT at 300 K. In addition, the short electron mean-free-path at RT requires nanoscale devices for which surface effects are a limitation in these materials. We explore the unique properties of wide band-gap III-nitride semiconductors to demonstrate RT ballistic devices. A theoretical model is proposed to corroborate experimentally their optical phonon energy of 92 meV, which is ∼4× larger than in other III-V semiconductors. This allows RT ballistic devices operating at larger voltages and currents. An additional model is described to determine experimentally a characteristic dimension for ballistic transport of 188 nm. Another remarkable property is their short carrier depletion at device sidewalls, down to 13 nm, which allows top-down nanofabrication of very narrow ballistic devices. These results open a wealth of new systems and basic transport studies possible at RT.

  6. Logarithmic current-measuring transistor circuits

    DEFF Research Database (Denmark)

    Højberg, Kristian Søe

    1967-01-01

    Describes two transistorized circuits for the logarithmic measurement of small currents suitable for nuclear reactor instrumentation. The logarithmic element is applied in the feedback path of an amplifier, and only one dual transistor is used as logarithmic diode and temperature compensating...... transistor. A simple one-amplifier circuit is compared with a two-amplifier system. The circuits presented have been developed in connexion with an amplifier using a dual m.o.s. transistor input stage with diode-protected gates....

  7. Distributed amplifier using Josephson vortex flow transistors

    International Nuclear Information System (INIS)

    McGinnis, D.P.; Beyer, J.B.; Nordman, J.E.

    1986-01-01

    A wide-band traveling wave amplifier using vortex flow transistors is proposed. A vortex flow transistor is a long Josephson junction used as a current controlled voltage source. The dual nature of this device to the field effect transistor is exploited. A circuit model of this device is proposed and a distributed amplifier utilizing 50 vortex flow transistors is predicted to have useful gain to 100 GHz

  8. The point of practical use for the transistor circuit

    International Nuclear Information System (INIS)

    1996-01-01

    This is comprised of eight chapters and goes as follows; what is transistor? the first step for use of transistor such as connection between power and signal source, static characteristic of transistor and equivalent circuit of transistor, design of easy small-signal amplifier circuit, design for amplification of electric power and countermeasure for prevention of trouble, transistor concerned interface, transistor circuit around micro computer, transistor in active use of FET and power circuit and transistor. It has an appendix on transistor and design of bias of FET circuits like small signal transistor circuit and FET circuit.

  9. High Charge Carrier Mobility Polymers for Organic Transistors

    OpenAIRE

    Erdmann, Tim

    2017-01-01

    I) Introduction p-Conjugated polymers inherently combine electronic properties of inorganic semiconductor crystals and material characteristics of organic plastics due to their special molecular design. This unique combination has led to developing new unconventional optoelectronic technologies and, further, resulted in the evolution of semiconducting polymers (SCPs) as fundamental components for novel electronic devices, such as organic field-effect transistors (OFETs), organic light-emit...

  10. Transistor challenges - A DRAM perspective

    International Nuclear Information System (INIS)

    Faul, Juergen W.; Henke, Dietmar

    2005-01-01

    Key challenges of the transistor scaling from a DRAM perspective will be reviewed. Both, array transistors as well as DRAM support devices face challenges that differ essentially from high performance logic device scaling. As a major difference, retention time and standby current requirements characterize special boundary conditions in the DRAM device design. Array device scaling is determined by a chip size driven aggressive node scaling. To continue scaling, major innovations need to be introduced into state-of-the-art planar array transistors. Alternatively, non planar device concepts will have to be evaluated. Support device design for DRAMs is driven by today's market demand for increased chip performances at little to no extra cost. Major innovations are required to continue that path. Besides this strive for performance increase, special limitations for 'on pitch' circuits at the array edge will come up due to the aggressive cell size scaling

  11. Magnetic Vortex Based Transistor Operations

    Science.gov (United States)

    Kumar, D.; Barman, S.; Barman, A.

    2014-01-01

    Transistors constitute the backbone of modern day electronics. Since their advent, researchers have been seeking ways to make smaller and more efficient transistors. Here, we demonstrate a sustained amplification of magnetic vortex core gyration in coupled two and three vortices by controlling their relative core polarities. This amplification is mediated by a cascade of antivortex solitons travelling through the dynamic stray field. We further demonstrated that the amplification can be controlled by switching the polarity of the middle vortex in a three vortex sequence and the gain can be controlled by the input signal amplitude. An attempt to show fan–out operation yielded gain for one of the symmetrically placed branches which can be reversed by switching the core polarity of all the vortices in the network. The above observations promote the magnetic vortices as suitable candidates to work as stable bipolar junction transistors (BJT). PMID:24531235

  12. Tunneling field effect transistor technology

    CERN Document Server

    Chan, Mansun

    2016-01-01

    This book provides a single-source reference to the state-of-the art in tunneling field effect transistors (TFETs). Readers will learn the TFETs physics from advanced atomistic simulations, the TFETs fabrication process and the important roles that TFETs will play in enabling integrated circuit designs for power efficiency. · Provides comprehensive reference to tunneling field effect transistors (TFETs); · Covers all aspects of TFETs, from device process to modeling and applications; · Enables design of power-efficient integrated circuits, with low power consumption TFETs.

  13. Photon-gated spin transistor

    OpenAIRE

    Li, Fan; Song, Cheng; Cui, Bin; Peng, Jingjing; Gu, Youdi; Wang, Guangyue; Pan, Feng

    2017-01-01

    Spin-polarized field-effect transistor (spin-FET), where a dielectric layer is generally employed for the electrical gating as the traditional FET, stands out as a seminal spintronic device under the miniaturization trend of electronics. It would be fundamentally transformative if optical gating was used for spin-FET. We report a new type of spin-polarized field-effect transistor (spin-FET) with optical gating, which is fabricated by partial exposure of the (La,Sr)MnO3 channel to light-emitti...

  14. Programmable, automated transistor test system

    Science.gov (United States)

    Truong, L. V.; Sundburg, G. R.

    1986-01-01

    A programmable, automated transistor test system was built to supply experimental data on new and advanced power semiconductors. The data will be used for analytical models and by engineers in designing space and aircraft electric power systems. A pulsed power technique was used at low duty cycles in a nondestructive test to examine the dynamic switching characteristic curves of power transistors in the 500 to 1000 V, 10 to 100 A range. Data collection, manipulation, storage, and output are operator interactive but are guided and controlled by the system software.

  15. Ballistic Josephson junctions based on CVD graphene

    Science.gov (United States)

    Li, Tianyi; Gallop, John; Hao, Ling; Romans, Edward

    2018-04-01

    Josephson junctions with graphene as the weak link between superconductors have been intensely studied in recent years, with respect to both fundamental physics and potential applications. However, most of the previous work was based on mechanically exfoliated graphene, which is not compatible with wafer-scale production. To overcome this limitation, we have used graphene grown by chemical vapour deposition (CVD) as the weak link of Josephson junctions. We demonstrate that very short, wide CVD-graphene-based Josephson junctions with Nb electrodes can work without any undesirable hysteresis in their electrical characteristics from 1.5 K down to a base temperature of 320 mK, and their gate-tuneable critical current shows an ideal Fraunhofer-like interference pattern in a perpendicular magnetic field. Furthermore, for our shortest junctions (50 nm in length), we find that the normal state resistance oscillates with the gate voltage, consistent with the junctions being in the ballistic regime, a feature not previously observed in CVD-graphene-based Josephson junctions.

  16. Heat Coulomb blockade of one ballistic channel

    Science.gov (United States)

    Sivre, E.; Anthore, A.; Parmentier, F. D.; Cavanna, A.; Gennser, U.; Ouerghi, A.; Jin, Y.; Pierre, F.

    2018-02-01

    Quantum mechanics and Coulomb interaction dictate the behaviour of small circuits. The thermal implications cover fundamental topics from quantum control of heat to quantum thermodynamics, with prospects of novel thermal machines and an ineluctably growing influence on nanocircuit engineering. Experimentally, the rare observations thus far include the universal thermal conductance quantum and heat interferometry. However, evidence for many-body thermal effects paving the way to markedly different heat and electrical behaviours in quantum circuits remains wanting. Here we report on the observation of the Coulomb blockade of electronic heat flow from a small metallic circuit node, beyond the widespread Wiedemann-Franz law paradigm. We demonstrate this thermal many-body phenomenon for perfect (ballistic) conduction channels to the node, where it amounts to the universal suppression of precisely one quantum of conductance for the transport of heat, but none for electricity. The inter-channel correlations that give rise to such selective heat current reduction emerge from local charge conservation, in the floating node over the full thermal frequency range (laws for thermal transport in nanocircuits.

  17. Electron quantum optics in ballistic chiral conductors

    Energy Technology Data Exchange (ETDEWEB)

    Bocquillon, Erwann; Freulon, Vincent; Parmentier, Francois D.; Berroir, Jean-Marc; Placais, Bernard; Feve, Gwendal [Laboratoire Pierre Aigrain, Ecole Normale Superieure, CNRS (UMR 8551), Universite Pierre et Marie Curie, Universite Paris Diderot, Paris (France); Wahl, Claire; Rech, Jerome; Jonckheere, Thibaut; Martin, Thierry [Aix Marseille Universite, CNRS, CPT, UMR 7332, Marseille (France); Universite de Toulon, CNRS, CPT, UMR 7332, La Garde (France); Grenier, Charles; Ferraro, Dario; Degiovanni, Pascal [Universite de Lyon, Federation de Physique Andre Marie Ampere, CNRS - Laboratoire de Physique de l' Ecole Normale Superieure de Lyon, Lyon (France)

    2014-01-15

    The edge channels of the quantum Hall effect provide one dimensional chiral and ballistic wires along which electrons can be guided in an optics-like setup. Electronic propagation can then be analyzed using concepts and tools derived from optics. After a brief review of electron optics experiments performed using stationary current sources which continuously emit electrons in the conductor, this paper focuses on triggered sources, which can generate on-demand a single particle state. It first outlines the electron optics formalism and its analogies and differences with photon optics and then turns to the presentation of single electron emitters and their characterization through the measurements of the average electrical current and its correlations. This is followed by a discussion of electron quantum optics experiments in the Hanbury-Brown and Twiss geometry where two-particle interferences occur. Finally, Coulomb interactions effects and their influence on single electron states are considered. (copyright 2013 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Electron quantum optics in ballistic chiral conductors

    International Nuclear Information System (INIS)

    Bocquillon, Erwann; Freulon, Vincent; Parmentier, Francois D.; Berroir, Jean-Marc; Placais, Bernard; Feve, Gwendal; Wahl, Claire; Rech, Jerome; Jonckheere, Thibaut; Martin, Thierry; Grenier, Charles; Ferraro, Dario; Degiovanni, Pascal

    2014-01-01

    The edge channels of the quantum Hall effect provide one dimensional chiral and ballistic wires along which electrons can be guided in an optics-like setup. Electronic propagation can then be analyzed using concepts and tools derived from optics. After a brief review of electron optics experiments performed using stationary current sources which continuously emit electrons in the conductor, this paper focuses on triggered sources, which can generate on-demand a single particle state. It first outlines the electron optics formalism and its analogies and differences with photon optics and then turns to the presentation of single electron emitters and their characterization through the measurements of the average electrical current and its correlations. This is followed by a discussion of electron quantum optics experiments in the Hanbury-Brown and Twiss geometry where two-particle interferences occur. Finally, Coulomb interactions effects and their influence on single electron states are considered. (copyright 2013 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Electron optics with ballistic graphene junctions

    Science.gov (United States)

    Chen, Shaowen

    Electrons transmitted across a ballistic semiconductor junction undergo refraction, analogous to light rays across an optical boundary. A pn junction theoretically provides the equivalent of a negative index medium, enabling novel electron optics such as negative refraction and perfect (Veselago) lensing. In graphene, the linear dispersion and zero-gap bandstructure admit highly transparent pn junctions by simple electrostatic gating, which cannot be achieved in conventional semiconductors. Robust demonstration of these effects, however, has not been forthcoming. Here we employ transverse magnetic focusing to probe propagation across an electrostatically defined graphene junction. We find perfect agreement with the predicted Snell's law for electrons, including observation of both positive and negative refraction. Resonant transmission across the pn junction provides a direct measurement of the angle dependent transmission coefficient, and we demonstrate good agreement with theory. Comparing experimental data with simulation reveals the crucial role played by the effective junction width, providing guidance for future device design. Efforts toward sharper pn junction and possibility of zero field Veselago lensing will also be discussed. This work is supported by the Semiconductor Research Corporations NRI Center for Institute for Nanoelectronics Discovery and Exploration (INDEX).

  20. Direct observation of ballistic Andreev reflection

    Science.gov (United States)

    Klapwijk, T. M.; Ryabchun, S. A.

    2014-12-01

    An overview is presented of experiments on ballistic electrical transport in inhomogeneous superconducting systems which are controlled by the process of Andreev reflection. The initial experiments based on the coexistence of a normal phase and a superconducting phase in the intermediate state led to the concept itself. It was followed by a focus on geometrically inhomogeneous systems like point contacts, which provided a very clear manifestation of the energy and direction dependence of the Andreev reflection process. The point contacts have recently evolved towards the atomic scale owing to the use of mechanical break-junctions, revealing a very detailed dependence of Andreev reflection on the macroscopic phase of the superconducting state. In present-day research, the superconducting in homogeneity is constructed by clean room technology and combines superconducting materials, for example, with low-dimensional materials and topological insulators. Alternatively, the superconductor is combined with nano-objects, such as graphene, carbon nanotubes, or semiconducting nanowires. Each of these "inhomogeneous systems" provides a very interesting range of properties, all rooted in some manifestation of Andreev reflection.

  1. Silicon on insulator self-aligned transistors

    Science.gov (United States)

    McCarthy, Anthony M.

    2003-11-18

    A method for fabricating thin-film single-crystal silicon-on-insulator (SOI) self-aligned transistors. Standard processing of silicon substrates is used to fabricate the transistors. Physical spaces, between the source and gate, and the drain and gate, introduced by etching the polysilicon gate material, are used to provide connecting implants (bridges) which allow the transistor to perform normally. After completion of the silicon substrate processing, the silicon wafer is bonded to an insulator (glass) substrate, and the silicon substrate is removed leaving the transistors on the insulator (glass) substrate. Transistors fabricated by this method may be utilized, for example, in flat panel displays, etc.

  2. On theory of single-molecule transistor

    International Nuclear Information System (INIS)

    Tran Tien Phuc

    2009-01-01

    The results of the study on single-molecule transistor are mainly investigated in this paper. The structure of constructed single-molecule transistor is similar to a conventional MOSFET. The conductive channel of the transistors is a single-molecule of halogenated benzene derivatives. The chemical simulation software CAChe was used to design and implement for the essential parameter of the molecules utilized as the conductive channel. The GUI of Matlab has been built to design its graphical interface, calculate and plot the output I-V characteristic curves for the transistor. The influence of temperature, length and width of the conductive channel, and gate voltage is considered. As a result, the simulated curves are similar to the traditional MOSFET's. The operating temperature range of the transistors is wider compared with silicon semiconductors. The supply voltage for transistors is only about 1 V. The size of transistors in this research is several nanometers.

  3. Analysing organic transistors based on interface approximation

    International Nuclear Information System (INIS)

    Akiyama, Yuto; Mori, Takehiko

    2014-01-01

    Temperature-dependent characteristics of organic transistors are analysed thoroughly using interface approximation. In contrast to amorphous silicon transistors, it is characteristic of organic transistors that the accumulation layer is concentrated on the first monolayer, and it is appropriate to consider interface charge rather than band bending. On the basis of this model, observed characteristics of hexamethylenetetrathiafulvalene (HMTTF) and dibenzotetrathiafulvalene (DBTTF) transistors with various surface treatments are analysed, and the trap distribution is extracted. In turn, starting from a simple exponential distribution, we can reproduce the temperature-dependent transistor characteristics as well as the gate voltage dependence of the activation energy, so we can investigate various aspects of organic transistors self-consistently under the interface approximation. Small deviation from such an ideal transistor operation is discussed assuming the presence of an energetically discrete trap level, which leads to a hump in the transfer characteristics. The contact resistance is estimated by measuring the transfer characteristics up to the linear region

  4. Transition to ballistic regime for heat transport in helium II

    Energy Technology Data Exchange (ETDEWEB)

    Sciacca, Michele, E-mail: michele.sciacca@unipa.it [Dipartimento Scienze Agrarie e Forestali, Università degli studi di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia (Spain); Sellitto, Antonio, E-mail: ant.sellitto@gmail.com [Dipartimento di Matematica, Informatica ed Economia, Università della Basilicata, Campus Macchia Romana, 85100 Potenza (Italy); Jou, David, E-mail: david.jou@uab.cat [Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia (Spain); Institut d' Estudis Catalans, Carme 47, 08001 Barcelona, Catalonia (Spain)

    2014-07-04

    The size-dependent and flux-dependent effective thermal conductivity of narrow capillaries filled with superfluid helium is analyzed from a thermodynamic continuum perspective. The classical Landau evaluation of the effective thermal conductivity of quiescent superfluid, or the Gorter–Mellinck regime of turbulent superfluids, is extended to describe the transition to ballistic regime in narrow channels wherein the radius R is comparable to (or smaller than) the phonon mean-free path ℓ in superfluid helium. To do so, we start from an extended equation for the heat flux incorporating non-local terms, and take into consideration a heat slip flow along the walls of the tube. This leads from an effective thermal conductivity proportional to R{sup 2} (Landau regime) to another one proportional to Rℓ (ballistic regime). We consider two kinds of flows: along cylindrical pipes and along two infinite parallel plates. - Highlights: • Heat transport in counterflow helium in the ballistic regime. • The one-fluid model based on the Extended Thermodynamics is used. • The transition from the Landau regime to the ballistic regime. • The transition from quantum turbulence to ballistic regime.

  5. Ballistic heat conduction and mass disorder in one dimension.

    Science.gov (United States)

    Ong, Zhun-Yong; Zhang, Gang

    2014-08-20

    It is well-known that in the disordered harmonic chain, heat conduction is subballistic and the thermal conductivity (κ) scales asymptotically as lim(L--> ∞) κ ∝ L(0.5) where L is the chain length. However, using the nonequilibrium Green's function (NEGF) method and analytical modelling, we show that there exists a critical crossover length scale (LC) below which ballistic heat conduction (κ ∝ L) can coexist with mass disorder. This ballistic-to-subballistic heat conduction crossover is connected to the exponential attenuation of the phonon transmittance function Ξ i.e. Ξ(ω, L) = exp[-L/λ(ω)], where λ is the frequency-dependent attenuation length. The crossover length can be determined from the minimum attenuation length, which depends on the maximum transmitted frequency. We numerically determine the dependence of the transmittance on frequency and mass composition as well as derive a closed form estimate, which agrees closely with the numerical results. For the length-dependent thermal conductance, we also derive a closed form expression which agrees closely with numerical results and reproduces the ballistic to subballistic thermal conduction crossover. This allows us to characterize the crossover in terms of changes in the length, mass composition and temperature dependence, and also to determine the conditions under which heat conduction enters the ballistic regime. We describe how the mass composition can be modified to increase ballistic heat conduction.

  6. Verification of models for ballistic movement time and endpoint variability.

    Science.gov (United States)

    Lin, Ray F; Drury, Colin G

    2013-01-01

    A hand control movement is composed of several ballistic movements. The time required in performing a ballistic movement and its endpoint variability are two important properties in developing movement models. The purpose of this study was to test potential models for predicting these two properties. Twelve participants conducted ballistic movements of specific amplitudes using a drawing tablet. The measured data of movement time and endpoint variability were then used to verify the models. This study was successful with Hoffmann and Gan's movement time model (Hoffmann, 1981; Gan and Hoffmann 1988) predicting more than 90.7% data variance for 84 individual measurements. A new theoretically developed ballistic movement variability model, proved to be better than Howarth, Beggs, and Bowden's (1971) model, predicting on average 84.8% of stopping-variable error and 88.3% of aiming-variable errors. These two validated models will help build solid theoretical movement models and evaluate input devices. This article provides better models for predicting end accuracy and movement time of ballistic movements that are desirable in rapid aiming tasks, such as keying in numbers on a smart phone. The models allow better design of aiming tasks, for example button sizes on mobile phones for different user populations.

  7. Magnetic anisotropy and anisotropic ballistic conductance of thin magnetic wires

    International Nuclear Information System (INIS)

    Sabirianov, R.

    2006-01-01

    The magnetocrystalline anisotropy of thin magnetic wires of iron and cobalt is quite different from the bulk phases. The spin moment of monatomic Fe wire may be as high as 3.4 μ B , while the orbital moment as high as 0.5 μ B . The magnetocrystalline anisotropy energy (MAE) was calculated for wires up to 0.6 nm in diameter starting from monatomic wire and adding consecutive shells for thicker wires. I observe that Fe wires exhibit the change sign with the stress applied along the wire. It means that easy axis may change from the direction along the wire to perpendicular to the wire. We find that ballistic conductance of the wire depends on the direction of the applied magnetic field, i.e. shows anisotropic ballistic magnetoresistance. This effect occurs due to the symmetry dependence of the splitting of degenerate bands in the applied field which changes the number of bands crossing the Fermi level. We find that the ballistic conductance changes with applied stress. Even for thicker wires the ballistic conductance changes by factor 2 on moderate tensile stain in our 5x4 model wire. Thus, the ballistic conductance of magnetic wires changes in the applied field due to the magnetostriction. This effect can be observed as large anisotropic BMR in the experiment

  8. Nonlinear Ballistic Transport in an Atomically Thin Material.

    Science.gov (United States)

    Boland, Mathias J; Sundararajan, Abhishek; Farrokhi, M Javad; Strachan, Douglas R

    2016-01-26

    Ultrashort devices that incorporate atomically thin components have the potential to be the smallest electronics. Such extremely scaled atomically thin devices are expected to show ballistic nonlinear behavior that could make them tremendously useful for ultrafast applications. While nonlinear diffusive electron transport has been widely reported, clear evidence for intrinsic nonlinear ballistic transport in the growing array of atomically thin conductors has so far been elusive. Here we report nonlinear electron transport of an ultrashort single-layer graphene channel that shows quantitative agreement with intrinsic ballistic transport. This behavior is shown to be distinctly different than that observed in similarly prepared ultrashort devices consisting, instead, of bilayer graphene channels. These results suggest that the addition of only one extra layer of an atomically thin material can make a significant impact on the nonlinear ballistic behavior of ultrashort devices, which is possibly due to the very different chiral tunneling of their charge carriers. The fact that we observe the nonlinear ballistic response at room temperature, with zero applied magnetic field, in non-ultrahigh vacuum conditions and directly on a readily accessible oxide substrate makes the nanogap technology we utilize of great potential for achieving extremely scaled high-speed atomically thin devices.

  9. Ballistic heat conduction and mass disorder in one dimension

    International Nuclear Information System (INIS)

    Ong, Zhun-Yong; Zhang, Gang

    2014-01-01

    It is well-known that in the disordered harmonic chain, heat conduction is subballistic and the thermal conductivity (κ) scales asymptotically as lim L→∞ κ∝L 0.5 where L is the chain length. However, using the nonequilibrium Green's function (NEGF) method and analytical modelling, we show that there exists a critical crossover length scale (L C ) below which ballistic heat conduction (κ∝L) can coexist with mass disorder. This ballistic-to-subballistic heat conduction crossover is connected to the exponential attenuation of the phonon transmittance function Ξ i.e. Ξ(ω, L) = exp[−L/λ(ω)], where λ is the frequency-dependent attenuation length. The crossover length can be determined from the minimum attenuation length, which depends on the maximum transmitted frequency. We numerically determine the dependence of the transmittance on frequency and mass composition as well as derive a closed form estimate, which agrees closely with the numerical results. For the length-dependent thermal conductance, we also derive a closed form expression which agrees closely with numerical results and reproduces the ballistic to subballistic thermal conduction crossover. This allows us to characterize the crossover in terms of changes in the length, mass composition and temperature dependence, and also to determine the conditions under which heat conduction enters the ballistic regime. We describe how the mass composition can be modified to increase ballistic heat conduction. (paper)

  10. What Should Be the United States Policy towards Ballistic Missile Defense for Northeast Asia?

    National Research Council Canada - National Science Library

    Delgado, Roberto L

    2005-01-01

    .... The threat of ballistic missiles from Northeast Asia is especially high. China and North Korea are seen as the top threats in the region when it comes to the delivery of WMD through ballistic missiles...

  11. Herontwerp Ballistisch vest voor Vrouwen: Fase 1 (Redesign Ballistic Vest for Women: Phase 1)

    National Research Council Canada - National Science Library

    Koerhuis, C. L; Weghorst, M. G

    2008-01-01

    .... A questionnaire was filled out by fourteen female soldiers consisting of questions about complaints, characteristics of the ballistic vest and the mobility of the combat soldier wearing the ballistic vest...

  12. Transistor effects and in situ STM of redox molecules at room temperature

    DEFF Research Database (Denmark)

    Albrecht, Tim; Guckian, A; Vos, JG

    2005-01-01

    . It predicts a distinct increase of the tunnelling current close to the equilibrium potential, i.e., if molecular bridge states are tuned into resonance with the Fermi levels of the enclosing electrodes. The complexes display robust electrochemistry on Au(111) electrode surfaces. STM images at molecular......Inorganic transition metal complexes were identified as potential candidates for transistor-like behavior in an electrochemical scanning tunnelling microscope (STM) configuration at room temperature. The theoretical background has been established based on condensed matter charge transfer theory...... resolution reveal detailed information on their surface structure and scanning tunnelling spectroscopy experiments have shown clear evidence of transistor-like behavior...

  13. A High-Voltage Level Tolerant Transistor Circuit

    NARCIS (Netherlands)

    Annema, Anne J.; Geelen, Godefridus Johannes Gertrudis Maria

    2001-01-01

    A high-voltage level tolerant transistor circuit, comprising a plurality of cascoded transistors, including a first transistor (T1) operatively connected to a high-voltage level node (3) and a second transistor (T2) operatively connected to a low-voltage level node (2). The first transistor (T1)

  14. Organic field-effect transistors using single crystals

    International Nuclear Information System (INIS)

    Hasegawa, Tatsuo; Takeya, Jun

    2009-01-01

    Organic field-effect transistors using small-molecule organic single crystals are developed to investigate fundamental aspects of organic thin-film transistors that have been widely studied for possible future markets for 'plastic electronics'. In reviewing the physics and chemistry of single-crystal organic field-effect transistors (SC-OFETs), the nature of intrinsic charge dynamics is elucidated for the carriers induced at the single crystal surfaces of molecular semiconductors. Materials for SC-OFETs are first reviewed with descriptions of the fabrication methods and the field-effect characteristics. In particular, a benchmark carrier mobility of 20-40 cm 2 Vs -1 , achieved with thin platelets of rubrene single crystals, demonstrates the significance of the SC-OFETs and clarifies material limitations for organic devices. In the latter part of this review, we discuss the physics of microscopic charge transport by using SC-OFETs at metal/semiconductor contacts and along semiconductor/insulator interfaces. Most importantly, Hall effect and electron spin resonance (ESR) measurements reveal that interface charge transport in molecular semiconductors is properly described in terms of band transport and localization by charge traps. (topical review)

  15. Organic field-effect transistors using single crystals

    Directory of Open Access Journals (Sweden)

    Tatsuo Hasegawa and Jun Takeya

    2009-01-01

    Full Text Available Organic field-effect transistors using small-molecule organic single crystals are developed to investigate fundamental aspects of organic thin-film transistors that have been widely studied for possible future markets for 'plastic electronics'. In reviewing the physics and chemistry of single-crystal organic field-effect transistors (SC-OFETs, the nature of intrinsic charge dynamics is elucidated for the carriers induced at the single crystal surfaces of molecular semiconductors. Materials for SC-OFETs are first reviewed with descriptions of the fabrication methods and the field-effect characteristics. In particular, a benchmark carrier mobility of 20–40 cm2 Vs−1, achieved with thin platelets of rubrene single crystals, demonstrates the significance of the SC-OFETs and clarifies material limitations for organic devices. In the latter part of this review, we discuss the physics of microscopic charge transport by using SC-OFETs at metal/semiconductor contacts and along semiconductor/insulator interfaces. Most importantly, Hall effect and electron spin resonance (ESR measurements reveal that interface charge transport in molecular semiconductors is properly described in terms of band transport and localization by charge traps.

  16. Missile Defense: Ballistic Missile Defense System Testing Delays Affect Delivery of Capabilities

    Science.gov (United States)

    2016-04-28

    Page 1 GAO-16-339R Ballistic Missile Defense 441 G St. N.W. Washington, DC 20548 April 28, 2016 Congressional Committees Missile Defense... Ballistic Missile Defense System Testing Delays Affect Delivery of Capabilities For over half a century, the Department of Defense (DOD) has been...funding efforts to develop a system to detect, track, and defeat enemy ballistic missiles. The current system—the Ballistic Missile Defense System

  17. Diagnostics of ballistic electrons in a dc/rf hybrid capacitively coupled discharge

    International Nuclear Information System (INIS)

    Xu Lin; Chen, Lee; Funk, Merritt; Ranjan, Alok; Hummel, Mike; Bravenec, Ron; Sundararajan, Radha; Economou, Demetre J.; Donnelly, Vincent M.

    2008-01-01

    The energy distribution of ballistic electrons in a dc/rf hybrid parallel-plate capacitively coupled plasma reactor was measured. Ballistic electrons originated as secondaries produced by ion and electron bombardment of the electrodes. The energy distribution of ballistic electrons peaked at the value of the negative bias applied to the dc electrode. As that bias became more negative, the ballistic electron current on the rf substrate electrode increased dramatically. The ion current on the dc electrode also increased

  18. Ultimate response time of high electron mobility transistors

    International Nuclear Information System (INIS)

    Rudin, Sergey; Rupper, Greg; Shur, Michael

    2015-01-01

    We present theoretical studies of the response time of the two-dimensional gated electron gas to femtosecond pulses. Our hydrodynamic simulations show that the device response to a short pulse or a step-function signal is either smooth or oscillating time-decay at low and high mobility, μ, values, respectively. At small gate voltage swings, U 0  = U g  − U th , where U g is the gate voltage and U th is the threshold voltage, such that μU 0 /L < v s , where L is the channel length and v s is the effective electron saturation velocity, the decay time in the low mobility samples is on the order of L 2 /(μU 0 ), in agreement with the analytical drift model. However, the decay is preceded by a delay time on the order of L/s, where s is the plasma wave velocity. This delay is the ballistic transport signature in collision-dominated devices, which becomes important during very short time periods. In the high mobility devices, the period of the decaying oscillations is on the order of the plasma wave velocity transit time. Our analysis shows that short channel field effect transistors operating in the plasmonic regime can meet the requirements for applications as terahertz detectors, mixers, delay lines, and phase shifters in ultra high-speed wireless communication circuits

  19. Design and Manufacturing Process for a Ballistic Missile

    Directory of Open Access Journals (Sweden)

    Zaharia Sebastian Marian

    2016-12-01

    Full Text Available Designing a ballistic missile flight depends on the mission and the stress to which the missile is subject. Missile’s requests are determined by: the organization of components; flight regime type, engine configuration and aerodynamic performance of the rocket flight. In this paper has been developed a ballistic missile with a smooth fuselage type, 10 control surfaces, 8 directional surfaces for cornering execution, 2 for maneuvers of execution to change the angle of incidence and 4 stabilizers direction. Through the technology of gluing and clamping of the shell and the use of titanium components, mass of ballistic missile presented a significant decrease in weight and a structure with high strength.

  20. Ballistic-neutralized chamber transport of intense heavy ion beams

    International Nuclear Information System (INIS)

    Rose, D.V.; Welch, D.R.; Oliver, B.V.; Clark, R.E.; Sharp, W.M.; Friedman, A.

    2001-01-01

    Two-dimensional particle-in-cell simulations of intense heavy ion beams propagating in an inertial confinement fusion (ICF) reactor chamber are presented. The ballistic-neutralized transport scheme studied uses 4 GeV Pb +1 ion beams injected into a low-density, gas-filled reactor chamber and the beam is ballistically focused onto an ICF target before entering the chamber. Charge and current neutralization of the beam is provided by the low-density background gas. The ballistic-neutralized simulations include stripping of the beam ions as the beam traverses the chamber as well as ionization of the background plasma. In addition, a series of simulations are presented that explore the charge and current neutralization of the ion beam in an evacuated chamber. For this vacuum transport mode, neutralizing electrons are only drawn from sources near the chamber entrance

  1. Novel formulations of ballistic gelatin. 1. Rheological properties.

    Science.gov (United States)

    Zecheru, Teodora; Său, Ciprian; Lăzăroaie, Claudiu; Zaharia, Cătălin; Rotariu, Traian; Stănescu, Paul-Octavian

    2016-06-01

    Ballistic gelatin is the simulant of the human body during field tests in forensics and other related fields, due to its physical and mechanical similarities to human trunk and organs. Since the ballistic gelatin used in present has important issues to overcome, an alternative approach is the use of gelatin-polymer composites, where a key factor is the insertion of biocompatible materials, which replicate accurately the human tissues. In order to be able to obtain an improved material in terms of mechanical performances by an easy industrial-scale technology, before the verification of the ballistic parameters by shooting in agreement with military standards, one of the best and cheapest solutions is to perform a thorough check of their rheological properties, in standard conditions. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Ballistic spin filtering across the ferromagnetic-semiconductor interface

    Directory of Open Access Journals (Sweden)

    Y.H. Li

    2012-03-01

    Full Text Available The ballistic spin-filter effect from a ferromagnetic metal into a semiconductor has theoretically been studied with an intention of detecting the spin polarizability of density of states in FM layer at a higher energy level. The physical model for the ballistic spin filtering across the interface between ferromagnetic metals and semiconductor superlattice is developed by exciting the spin polarized electrons into n-type AlAs/GaAs superlattice layer at a much higher energy level and then ballistically tunneling through the barrier into the ferromagnetic film. Since both the helicity-modulated and static photocurrent responses are experimentally measurable quantities, the physical quantity of interest, the relative asymmetry of spin-polarized tunneling conductance, could be extracted experimentally in a more straightforward way, as compared with previous models. The present physical model serves guidance for studying spin detection with advanced performance in the future.

  3. Ballistic Anisotropic Magnetoresistance of Single-Atom Contacts.

    Science.gov (United States)

    Schöneberg, J; Otte, F; Néel, N; Weismann, A; Mokrousov, Y; Kröger, J; Berndt, R; Heinze, S

    2016-02-10

    Anisotropic magnetoresistance, that is, the sensitivity of the electrical resistance of magnetic materials on the magnetization direction, is expected to be strongly enhanced in ballistic transport through nanoscale junctions. However, unambiguous experimental evidence of this effect is difficult to achieve. We utilize single-atom junctions to measure this ballistic anisotropic magnetoresistance (AMR). Single Co and Ir atoms are deposited on domains and domain walls of ferromagnetic Fe layers on W(110) to control their magnetization directions. They are contacted with nonmagnetic tips in a low-temperature scanning tunneling microscope to measure the junction conductances. Large changes of the magnetoresistance occur from the tunneling to the ballistic regime due to the competition of localized and delocalized d-orbitals, which are differently affected by spin-orbit coupling. This work shows that engineering the AMR at the single atom level is feasible.

  4. Kinetics of diffusion-controlled and ballistically-controlled reactions

    International Nuclear Information System (INIS)

    Redner, S.

    1995-01-01

    The kinetics of diffusion-controlled two-species annihilation, A+B → O and single-species ballistically-controlled annihilation, A+A → O are investigated. For two-species annihilation, we describe the basic mechanism that leads to the formation of a coarsening mosaic of A- and B-domains. The implications of this picture on the distribution of reactants is discussed. For ballistic annihilation, dimensional analysis shows that the concentration and rms velocity decay as c∼t -α and v∼t -β , respectively, with α+β = 1 in any spatial dimension. Analysis of the Boltzmann equation for the evolution of the velocity distribution yields accurate predictions for the kinetics. New phenomena associated with discrete initial velocity distributions and with mixed ballistic and diffusive reactant motion are also discussed. (author)

  5. Development of high-density ceramic composites for ballistic applications

    International Nuclear Information System (INIS)

    Rupert, N.L.; Burkins, M.S.; Gooch, W.A.; Walz, M.J.; Levoy, N.F.; Washchilla, E.P.

    1993-01-01

    The application of ceramic composites for ballistic application has been generally developed with ceramics of low density, between 2.5 and 4.5 g/cm 2 . These materials have offered good performance in defeating small-caliber penetrators, but can suffer time-dependent degradation effects when thicker ceramic tiles are needed to defeat modem, longer, heavy metal penetrators that erode rather than break up. This paper addresses the ongoing development, fabrication procedures, analysis, and ballistic evaluation of thinner, denser ceramics for use in armor applications. Nuclear Metals Incorporated (NMI) developed a process for the manufacture of depleted uranium (DU) ceramics. Samples of the ceramics have been supplied to the US Army Research Laboratory (ARL) as part of an unfunded cooperative study agreement. The fabrication processes used, characterization of the ceramic, and a ballistic comparison between the DU-based ceramic with baseline Al 2 O 3 will be presented

  6. Learning without knowing: subliminal visual feedback facilitates ballistic motor learning

    DEFF Research Database (Denmark)

    Lundbye-Jensen, Jesper; Leukel, Christian; Nielsen, Jens Bo

    by subconscious (subliminal) augmented visual feedback on motor performance. To test this, 45 subjects participated in the experiment, which involved learning of a ballistic task. The task was to execute simple ankle plantar flexion movements as quickly as possible within 200 ms and to continuously improve...... by the learner, indeed facilitated ballistic motor learning. This effect likely relates to multiple (conscious versus unconscious) processing of visual feedback and to the specific neural circuitries involved in optimization of ballistic motor performance.......). It is a well- described phenomenon that we may respond to features of our surroundings without being aware of them. It is also a well-known principle, that learning is reinforced by augmented feedback on motor performance. In the present experiment we hypothesized that motor learning may be facilitated...

  7. Molecular beam epitaxy growth of In0.52Al0.48As/In0.53Ga0.47As metamorphic high electron mobility transistor employing growth interruption and in situ rapid thermal annealing

    International Nuclear Information System (INIS)

    Ihn, Soo-Ghang; Jo, Seong June; Song, Jong-In

    2006-01-01

    We investigated the effects of high temperature (∼700 deg. C) in situ rapid thermal annealing (RTA) carried out during growth interruption between spacer and δ-doping layers of an In 0.52 Al 0.48 As/In 0.53 Ga 0.47 As metamorphic high electron mobility transistor (MHEMT) grown on a compositionally graded InGaAlAs buffer layer. The in situ RTA improved optical and structural properties of the MHEMT without degradation of transport property, while postgrowth RTA improved the structural property of the MHEMT but significantly degraded mobility due to the defect-assisted Si diffusion. The results indicate the potential of the in situ RTA for use in the growth of high-quality metamorphic epitaxial layers for optoelectronic applications requiring improved optical and electrical properties

  8. 77 FR 809 - Request for Proposals for Certification and Testing Expertise for the Ballistic Resistance of...

    Science.gov (United States)

    2012-01-06

    ... for Certification and Testing Expertise for the Ballistic Resistance of Personal Body Armor (2008... revising its Ballistic Resistance of Personal Body Armor (2008) Standard and corresponding certification... laboratories with experience in programs for similar types of ballistic-resistant personal protective equipment...

  9. 76 FR 14589 - Defense Federal Acquisition Regulation Supplement; Repeal of Restriction on Ballistic Missile...

    Science.gov (United States)

    2011-03-17

    ...-AH18 Defense Federal Acquisition Regulation Supplement; Repeal of Restriction on Ballistic Missile...). Section 222 repeals the restriction on purchase of Ballistic Missile Defense research, development, test... Ballistic Missile Defense research, development, test, and evaluation that was required by section 222 of...

  10. Cost of space-based laser ballistic missile defense.

    Science.gov (United States)

    Field, G; Spergel, D

    1986-03-21

    Orbiting platforms carrying infrared lasers have been proposed as weapons forming the first tier of a ballistic missile defense system under the President's Strategic Defense Initiative. As each laser platform can destroy a limited number of missiles, one of several methods of countering such a system is to increase the number of offensive missiles. Hence it is important to know whether the cost-exchange ratio, defined as the ratio of the cost to the defense of destroying a missile to the cost to the offense of deploying an additional missile, is greater or less than 1. Although the technology to be used in a ballistic missile defense system is still extremely uncertain, it is useful to examine methods for calculating the cost-exchange ratio. As an example, the cost of an orbiting infrared laser ballistic missile defense system employed against intercontinental ballistic missiles launched simultaneously from a small area is compared to the cost of additional offensive missiles. If one adopts lower limits to the costs for the defense and upper limits to the costs for the offense, the cost-exchange ratio comes out substantially greater than 1. If these estimates are confirmed, such a ballistic missile defense system would be unable to maintain its effectiveness at less cost than it would take to proliferate the ballistic missiles necessary to overcome it and would therefore not satisfy the President's requirements for an effective strategic defense. Although the method is illustrated by applying it to a space-based infrared laser system, it should be straightforward to apply it to other proposed systems.

  11. Low-Energy Ballistic Transfers to Lunar Halo Orbits

    Science.gov (United States)

    Parker, Jeffrey S.

    2009-01-01

    Recent lunar missions have begun to take advantage of the benefits of low-energy ballistic transfers between the Earth and the Moon rather than implementing conventional Hohmann-like lunar transfers. Both Artemis and GRAIL plan to implement low-energy lunar transfers in the next few years. This paper explores the characteristics and potential applications of many different families of low-energy ballistic lunar transfers. The transfers presented here begin from a wide variety of different orbits at the Earth and follow several different distinct pathways to the Moon. This paper characterizes these pathways to identify desirable low-energy lunar transfers for future lunar missions.

  12. Nonlocal nature of the resistance in classical ballistic transport

    International Nuclear Information System (INIS)

    Sukhorukov, E.V.; Levinson, I.B.

    1990-01-01

    An investigation is made of the resistance of ballistic microstructures formed in the two-dimensional electron gas of a GaAs/AlGaAs heterojunction representing combinations of long channels. It is shown that the nonlocal nature of the resistance (dependence on the measurement method) is unrelated to the quantum nature of the electron behavior, but is solely due to the ballistic nature of microstructures and does not disappear in the classical limit. An analog of the Landauer equation is obtained for the resistance measured by the four-probe method allowing for the geometry of the measuring probes

  13. Voltage quantization by ballistic vortices in two-dimensional superconductors

    International Nuclear Information System (INIS)

    Orlando, T.P.; Delin, K.A.

    1991-01-01

    The voltage generated by moving ballistic vortices with a mass m ν in a two-dimensional superconducting ring is quantized, and this quantization depends on the amount of charge enclosed by the ring. The quantization of the voltage is the dual to flux quantization in a superconductor, and is a manifestation of the Aharonov-Casher effect. The quantization is obtained by applying the Bohr-Sommerfeld criterion to the canonical momentum of the ballistic vortices. The results of this quantization condition can also be used to understand the persistent voltage predicted by van Wees for an array of Josephson junctions

  14. A microscopic model of ballistic-diffusive crossover

    International Nuclear Information System (INIS)

    Bagchi, Debarshee; Mohanty, P K

    2014-01-01

    Several low-dimensional systems show a crossover from diffusive to ballistic heat transport when system size is decreased. Although there is some phenomenological understanding of this crossover phenomenon at the coarse-grained level, a microscopic picture that consistently describes both the ballistic and the diffusive transport regimes has been lacking. In this work we derive a scaling form for the thermal current in a class of one dimensional systems attached to heat baths at boundaries and rigorously show that the crossover occurs when the characteristic length scale of the system competes with the system size. (paper)

  15. Geometrical optimization of a local ballistic magnetic sensor

    Energy Technology Data Exchange (ETDEWEB)

    Kanda, Yuhsuke; Hara, Masahiro [Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan); Nomura, Tatsuya [Advanced Electronics Research Division, INAMORI Frontier Research Center, Kyushu University, 744 Motooka, Fukuoka 819-0395 (Japan); Kimura, Takashi [Advanced Electronics Research Division, INAMORI Frontier Research Center, Kyushu University, 744 Motooka, Fukuoka 819-0395 (Japan); Department of Physics, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581 (Japan)

    2014-04-07

    We have developed a highly sensitive local magnetic sensor by using a ballistic transport property in a two-dimensional conductor. A semiclassical simulation reveals that the sensitivity increases when the geometry of the sensor and the spatial distribution of the local field are optimized. We have also experimentally demonstrated a clear observation of a magnetization process in a permalloy dot whose size is much smaller than the size of an optimized ballistic magnetic sensor fabricated from a GaAs/AlGaAs two-dimensional electron gas.

  16. Coupling between a Langmuir wave and a ballistic perturbation

    International Nuclear Information System (INIS)

    Gervais, F.; Olivain, J.; Quemeneur, A.; Trocheris, M.

    1980-01-01

    The study of the mode-mode coupling usually neglects the ballistic contribution associated with parent waves. If this approximation is not made, a new mode, resulting from the interaction between the ballistic perturbation of pulsation ω 2 associated with one launched wave and the Landau component of pulsation ω 1 of the second one appears if ω 1 >ω 2 . The problem is solved theoretically and experimental evidence of this mode from measurements performed on a D.C. plasma column, confirms the results of this analysis

  17. Intrinsically stretchable and healable semiconducting polymer for organic transistors.

    Science.gov (United States)

    Oh, Jin Young; Rondeau-Gagné, Simon; Chiu, Yu-Cheng; Chortos, Alex; Lissel, Franziska; Wang, Ging-Ji Nathan; Schroeder, Bob C; Kurosawa, Tadanori; Lopez, Jeffrey; Katsumata, Toru; Xu, Jie; Zhu, Chenxin; Gu, Xiaodan; Bae, Won-Gyu; Kim, Yeongin; Jin, Lihua; Chung, Jong Won; Tok, Jeffrey B-H; Bao, Zhenan

    2016-11-17

    Thin-film field-effect transistors are essential elements of stretchable electronic devices for wearable electronics. All of the materials and components of such transistors need to be stretchable and mechanically robust. Although there has been recent progress towards stretchable conductors, the realization of stretchable semiconductors has focused mainly on strain-accommodating engineering of materials, or blending of nanofibres or nanowires into elastomers. An alternative approach relies on using semiconductors that are intrinsically stretchable, so that they can be fabricated using standard processing methods. Molecular stretchability can be enhanced when conjugated polymers, containing modified side-chains and segmented backbones, are infused with more flexible molecular building blocks. Here we present a design concept for stretchable semiconducting polymers, which involves introducing chemical moieties to promote dynamic non-covalent crosslinking of the conjugated polymers. These non-covalent crosslinking moieties are able to undergo an energy dissipation mechanism through breakage of bonds when strain is applied, while retaining high charge transport abilities. As a result, our polymer is able to recover its high field-effect mobility performance (more than 1 square centimetre per volt per second) even after a hundred cycles at 100 per cent applied strain. Organic thin-film field-effect transistors fabricated from these materials exhibited mobility as high as 1.3 square centimetres per volt per second and a high on/off current ratio exceeding a million. The field-effect mobility remained as high as 1.12 square centimetres per volt per second at 100 per cent strain along the direction perpendicular to the strain. The field-effect mobility of damaged devices can be almost fully recovered after a solvent and thermal healing treatment. Finally, we successfully fabricated a skin-inspired stretchable organic transistor operating under deformations that might be

  18. Power transistor module for high current applications

    International Nuclear Information System (INIS)

    Cilyo, F.F.

    1975-01-01

    One of the parts needed for the control system of the 400-GeV accelerator at Fermilab was a power transistor with a safe operating area of 1800A at 50V, dc current gain of 100,000 and 20 kHz bandwidth. Since the commercially available discrete devices and power hybrid packages did not meet these requirements, a power transistor module was developed which performed satisfactorily. By connecting 13 power transistors in parallel, with due consideration for network and heat dissipation problems, and by driving these 13 with another power transistor, a super power transistor is made, having an equivalent current, power, and safe operating area capability of 13 transistors. For higher capabilities, additional modules can be conveniently added. (auth)

  19. Establishment of design space for high current gain in III-N hot electron transistors

    Science.gov (United States)

    Gupta, Geetak; Ahmadi, Elaheh; Suntrup, Donald J., III; Mishra, Umesh K.

    2018-01-01

    This paper establishes the design space of III-N hot electron transistors (HETs) for high current gain by designing and fabricating HETs with scaled base thickness. The device structure consists of GaN-based emitter, base and collector regions where emitter and collector barriers are implemented using AlN and InGaN layers, respectively, as polarization-dipoles. Electrons tunnel through the AlN layer to be injected into the base at a high energy where they travel in a quasi-ballistic manner before being collected. Current gain increases from 1 to 3.5 when base thickness is reduced from 7 to 4 nm. The extracted mean free path (λ mfp) is 5.8 nm at estimated injection energy of 1.5 eV.

  20. Principles of an atomtronic transistor

    International Nuclear Information System (INIS)

    Caliga, Seth C; Anderson, Dana Z; Straatsma, Cameron J E; Zozulya, Alex A

    2016-01-01

    A semiclassical formalism is used to investigate the transistor-like behavior of ultracold atoms in a triple-well potential. Atom current flows from the source well, held at fixed chemical potential and temperature, into an empty drain well. In steady-state, the gate well located between the source and drain is shown to acquire a well-defined chemical potential and temperature, which are controlled by the relative height of the barriers separating the three wells. It is shown that the gate chemical potential can exceed that of the source and have a lower temperature. In electronics terminology, the source–gate junction can be reverse-biased. As a result, the device exhibits regimes of negative resistance and transresistance, indicating the presence of gain. Given an external current input to the gate, transistor-like behavior is characterized both in terms of the current gain, which can be greater than unity, and the power output of the device. (paper)

  1. High current transistor pulse generator

    International Nuclear Information System (INIS)

    Nesterov, V.; Cassel, R.

    1991-05-01

    A solid state pulse generator capable of delivering high current trapezoidally shaped pulses into an inductive load has been developed at SLAC. Energy stored in the capacitor bank of the pulse generator is switched to the load through a pair of Darlington transistors. A combination of diodes and Darlington transistors is used to obtain trapezoidal or triangular shaped current pulses into an inductive load and to recover the remaining energy in the same capacitor bank without reversing capacitor voltage. The transistors work in the switch mode, and the power losses are low. The rack mounted pulse generators presently used at SLAC contain a 660 microfarad storage capacitor bank and can deliver 400 amps at 800 volts into inductive loads up to 3 mH. The pulse generators are used in several different power systems, including pulse to pulse bipolar power supplies and in application with current pulses distributed into different inductive loads. The current amplitude and discharge time are controlled by the central computer system through a specially developed multichannel controller. Several years of operation with the pulse generators have proven their consistent performance and reliability. 8 figs

  2. Impact of Process Technologies on ELDRS of Bipolar Transistors

    International Nuclear Information System (INIS)

    Lu Wu; Ren Diyuan; Guo Qi; Yu Xuefeng; Zheng Yuzhan

    2010-01-01

    Radiation effects under different dose rates and annealing behaviors of domestic bipolar transistors, with same manufacture technology, were investigated.These transistors include NPN transistors of various emitter area, and LPNP transistors with different doping concentrations in emitter. It is shown that different types of transistors have different radiation responses. The results of NPN transistors show that more degradation occurs at less emitter area. Yet, the results of LPNP transistors demonstrate that transistors with lightly doped emitter are more sensitive to radiation, compared with heavily doped emitter. Finally,the mechanisms of the difference between various radiation responses were analyzed. (authors)

  3. Magneto-ballistic transport in GaN nanowires

    International Nuclear Information System (INIS)

    Santoruvo, Giovanni; Allain, Adrien; Ovchinnikov, Dmitry; Matioli, Elison

    2016-01-01

    The ballistic filtering property of nanoscale crosses was used to investigate the effect of perpendicular magnetic fields on the ballistic transport of electrons on wide band-gap GaN heterostructures. The straight scattering-less trajectory of electrons was modified by a perpendicular magnetic field which produced a strong non-linear behavior in the measured output voltage of the ballistic filters and allowed the observation of semi-classical and quantum effects, such as quenching of the Hall resistance and manifestation of the last plateau, in excellent agreement with the theoretical predictions. A large measured phase coherence length of 190 nm allowed the observation of universal quantum fluctuations and weak localization of electrons due to quantum interference up to ∼25 K. This work also reveals the prospect of wide band-gap GaN semiconductors as a platform for basic transport and quantum studies, whose properties allow the investigation of ballistic transport and quantum phenomena at much larger voltages and temperatures than in other semiconductors.

  4. Ballistic edge states in Bismuth nanowires revealed by SQUID interferometry.

    Science.gov (United States)

    Murani, Anil; Kasumov, Alik; Sengupta, Shamashis; Kasumov, Yu A; Volkov, V T; Khodos, I I; Brisset, F; Delagrange, Raphaëlle; Chepelianskii, Alexei; Deblock, Richard; Bouchiat, Hélène; Guéron, Sophie

    2017-07-05

    The protection against backscattering provided by topology is a striking property. In two-dimensional insulators, a consequence of this topological protection is the ballistic nature of the one-dimensional helical edge states. One demonstration of ballisticity is the quantized Hall conductance. Here we provide another demonstration of ballistic transport, in the way the edge states carry a supercurrent. The system we have investigated is a micrometre-long monocrystalline bismuth nanowire with topological surfaces, that we connect to two superconducting electrodes. We have measured the relation between the Josephson current flowing through the nanowire and the superconducting phase difference at its ends, the current-phase relation. The sharp sawtooth-shaped phase-modulated current-phase relation we find demonstrates that transport occurs selectively along two ballistic edges of the nanowire. In addition, we show that a magnetic field induces 0-π transitions and ϕ 0 -junction behaviour, providing a way to manipulate the phase of the supercurrent-carrying edge states and generate spin supercurrents.

  5. Comparison of ballistic impact effects between biological tissue and gelatin.

    Science.gov (United States)

    Jin, Yongxi; Mai, Ruimin; Wu, Cheng; Han, Ruiguo; Li, Bingcang

    2018-02-01

    Gelatin is commonly used in ballistic testing as substitute for biological tissue. Comparison of ballistic impact effects produced in the gelatin and living tissue is lacking. The work in this paper was aimed to compare the typical ballistic impact effects (penetration trajectory, energy transfer, temporary cavity) caused by 4.8mm steel ball penetrating the 60kg porcine hind limbs and 10wt% gelatin. The impact event in the biological tissue was recorded by high speed flash X-ray machine at different delay time, while the event in the gelatin continuously recorded by high speed video was compared to that in the biological tissue. The collected results clearly displayed that the ballistic impact effects in the muscle and gelatin were similar for the steel ball test; as for instance, the projectile trajectory in the two targets was basically similar, the process of energy transfer was highly coincident, and the expansion of temporary cavity followed the same pattern. This study fully demonstrated that choosing gelatin as muscle simulant was reasonable. However, the maximum temporary cavity diameter in the gelatin was a little larger than that in the muscle, and the expansion period of temporary cavity was longer in the gelatin. Additionally, the temporary cavity collapse process in the two targets followed different patterns, and the collapse period in the gelatin was two times as long as that in the muscle. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Magneto-ballistic transport in GaN nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Santoruvo, Giovanni, E-mail: giovanni.santoruvo@epfl.ch; Allain, Adrien; Ovchinnikov, Dmitry; Matioli, Elison, E-mail: elison.matioli@epfl.ch [Ecole Polytechnique Fédérale de Lausanne (EPFL), CH 1015 Lausanne (Switzerland)

    2016-09-05

    The ballistic filtering property of nanoscale crosses was used to investigate the effect of perpendicular magnetic fields on the ballistic transport of electrons on wide band-gap GaN heterostructures. The straight scattering-less trajectory of electrons was modified by a perpendicular magnetic field which produced a strong non-linear behavior in the measured output voltage of the ballistic filters and allowed the observation of semi-classical and quantum effects, such as quenching of the Hall resistance and manifestation of the last plateau, in excellent agreement with the theoretical predictions. A large measured phase coherence length of 190 nm allowed the observation of universal quantum fluctuations and weak localization of electrons due to quantum interference up to ∼25 K. This work also reveals the prospect of wide band-gap GaN semiconductors as a platform for basic transport and quantum studies, whose properties allow the investigation of ballistic transport and quantum phenomena at much larger voltages and temperatures than in other semiconductors.

  7. Skipping Orbits, Traversing Trajectories, and Quantum Ballistic Transport in Microstructures

    NARCIS (Netherlands)

    Beenakker, C.W.J.; Houten, H. van; Wees, B.J. van

    1989-01-01

    Three topics of current interest in the study of quantum ballistic transport in a two-dimensional electron gas are discussed, with an emphasis on correspondences between classical trajectories and quantum states in the various experimental geometries. We consider the quantized conductance of point

  8. Ballistic propagation of turbulence front in tokamak edge plasmas

    International Nuclear Information System (INIS)

    Sugita, Satoru; Itoh, Kimitaka; Itoh, Sanae-I; Yagi, Masatoshi; Fuhr, Guillaume; Beyer, Peter; Benkadda, Sadruddin

    2012-01-01

    The flux-driven nonlinear simulation of resistive ballooning mode turbulence with tokamak edge geometry is performed to study the non-steady component in the edge turbulence. The large-scale and dynamical events in transport are investigated in a situation where the mean flow is suppressed. Two types of dynamics are observed. One is the radial propagation of the pulse of pressure gradient, the other is the appearance/disappearance of radially elongated global structure of turbulent heat flux. The ballistic propagation is observed in the pulse of pressure gradient, which is associated with the front of turbulent heat flux. We focus on this ballistic propagation phenomenon. Both of the bump of pressure gradient and the front of heat flux propagate inward and outward direction. It is confirmed that the strong fluctuation propagates with the pulse front. It is observed that the number of pulses going outward is close to those going inward. This ballistic phenomenon does not contradict to the turbulence spreading theory. Statistical characteristics of the ballistic propagation of pulses are evaluated and compared with scaling laws which is given by the turbulence spreading theory. It is found that they give qualitatively good agreement. (paper)

  9. Controlling ballistic missiles: How important? How to do it?

    International Nuclear Information System (INIS)

    Harvey, J.R.; Rubin, U.

    1992-01-01

    Missiles themselves are not weapons of mass destruction; they do not give states the ability to wreak unimaginable destruction, or to radically shift the balance of power, as nuclear weapons do. Hence, the primary focus of nonproliferation efforts should remain on weapons of mass destruction, particularly nuclear weapons, rather than on one of the many possible means of delivering them. Moreover, as discussed in more detail below, advanced strike aircraft can also be effective in delivering nuclear weapons, and are generally more effective than ballistic missiles for delivering conventional or chemical ordnance. Ultimately, if the industrialized nations seriously desire to control the spread of delivery means for weapons of mass destruction, they need to consider bringing controls over ballistic missiles and advanced strike aircraft more into balance. At the same time, while efforts to control ballistic missile proliferation - centered on the Missile Technology Control Regime (MTCR) - have had some successes and could be strengthened, US policy will be most effective if it recognizes two key realities: the spread of ballistic missiles cannot be as comprehensively controlled as the spread of nuclear weapons, nor need it be as comprehensively controlled

  10. Quantum ballistic evolution in quantum mechanics: Application to quantum computers

    International Nuclear Information System (INIS)

    Benioff, P.

    1996-01-01

    Quantum computers are important examples of processes whose evolution can be described in terms of iterations of single-step operators or their adjoints. Based on this, Hamiltonian evolution of processes with associated step operators T is investigated here. The main limitation of this paper is to processes which evolve quantum ballistically, i.e., motion restricted to a collection of nonintersecting or distinct paths on an arbitrary basis. The main goal of this paper is proof of a theorem which gives necessary and sufficient conditions that T must satisfy so that there exists a Hamiltonian description of quantum ballistic evolution for the process, namely, that T is a partial isometry and is orthogonality preserving and stable on some basis. Simple examples of quantum ballistic evolution for quantum Turing machines with one and with more than one type of elementary step are discussed. It is seen that for nondeterministic machines the basis set can be quite complex with much entanglement present. It is also proven that, given a step operator T for an arbitrary deterministic quantum Turing machine, it is decidable if T is stable and orthogonality preserving, and if quantum ballistic evolution is possible. The proof fails if T is a step operator for a nondeterministic machine. It is an open question if such a decision procedure exists for nondeterministic machines. This problem does not occur in classical mechanics. Also the definition of quantum Turing machines used here is compared with that used by other authors. copyright 1996 The American Physical Society

  11. On the Trajectories of Projectiles Depicted in Early Ballistic Woodcuts

    Science.gov (United States)

    Stewart, Sean M.

    2012-01-01

    Motivated by quaint woodcut depictions often found in many late 16th and 17th century ballistic manuals of cannonballs fired in air, a comparison of their shapes with those calculated for the classic case of a projectile moving in a linear resisting medium is made. In considering the asymmetrical nature of such trajectories, the initial launch…

  12. The application of computed tomography in wound ballistics research

    International Nuclear Information System (INIS)

    Tsiatis, Nick; Moraitis, Konstantinos; Papadodima, Stavroula; Spiliopoulou, Chara; Kelekis, Alexis; Kelesis, Christos; Efstathopoulos, Efstathios; Kordolaimi, Sofia; Ploussi, Agapi

    2015-01-01

    In wound ballistics research there is a relationship between the data that characterize a bullet and the injury resulted after shooting when it perforates the human body. The bullet path in the human body following skin perforation as well as the damaging effect cannot always be predictable as they depend on various factors such as the bullet's characteristics (velocity, distance, type of firearm and so on) and the tissue types that the bullet passes through. The purpose of this presentation is to highlight the contribution of Computed Tomography (CT) in wound ballistics research. Using CT technology and studying virtual “slices” of specific areas on scanned human bodies, allows the evaluation of density and thickness of the skin, the subcutaneous tissue, the muscles, the vital organs and the bones. Density data taken from Hounsfield units can be converted in g/ml by using the appropriate software. By evaluating the results of this study, the anatomy of the human body utilizing ballistic gel will be reproduced in order to simulate the path that a bullet follows. The biophysical analysis in wound ballistics provides another application of CT technology, which is commonly used for diagnostic and therapeutic purposes in various medical disciplines. (paper)

  13. Aerodynamic heating of ballistic missile including the effects of gravity

    Indian Academy of Sciences (India)

    Abstract. The aerodynamic heating of a ballistic missile due to only convection is analysed taking into consideration the effects of gravity. The amount of heat transferred to the wetted area and to the nose region has been separately determined, unlike A Miele's treatise without consideration of gravity. The peak heating rates ...

  14. Medical Provider Ballistic Protection at Active Shooter Events.

    Science.gov (United States)

    Stopyra, Jason P; Bozeman, William P; Callaway, David W; Winslow, James; McGinnis, Henderson D; Sempsrott, Justin; Evans-Taylor, Lisa; Alson, Roy L

    2016-01-01

    There is some controversy about whether ballistic protective equipment (body armor) is required for medical responders who may be called to respond to active shooter mass casualty incidents. In this article, we describe the ongoing evolution of recommendations to optimize medical care to injured victims at such an incident. We propose that body armor is not mandatory for medical responders participating in a rapid-response capacity, in keeping with the Hartford Consensus and Arlington Rescue Task Force models. However, we acknowledge that the development and implementation of these programs may benefit from the availability of such equipment as one component of risk mitigation. Many police agencies regularly retire body armor on a defined time schedule before the end of its effective service life. Coordination with law enforcement may allow such retired body armor to be available to other public safety agencies, such as fire and emergency medical services, providing some degree of ballistic protection to medical responders at little or no cost during the rare mass casualty incident. To provide visual demonstration of this concept, we tested three "retired" ballistic vests with ages ranging from 6 to 27 years. The vests were shot at close range using police-issue 9mm, .40 caliber, .45 caliber, and 12-gauge shotgun rounds. Photographs demonstrate that the vests maintained their ballistic protection and defeated all of these rounds. 2016.

  15. Gate controlled high efficiency ballistic energy conversion system

    NARCIS (Netherlands)

    Xie, Yanbo; Bos, Diederik; de Boer, Hans L.; van den Berg, Albert; Eijkel, Jan C.T.; Zengerle, R.

    2013-01-01

    Last year we demonstrated the microjet ballistic energy conversion system[1]. Here we show that the efficiency of such a system can be further improved by gate control. With gate control the electrical current generation is enhanced a hundred times with respect to the current generated from the zeta

  16. Ballistic transport in graphene grown by chemical vapor deposition

    NARCIS (Netherlands)

    Calado, V.E.; Zhu, S.E.; Goswami, S.; Xu, Q.; Watanabe, K.; Taniguchi, T.; Janssen, G.C.A.M.; Vandersypen, L.M.K.

    2014-01-01

    In this letter, we report the observation of ballistic transport on micron length scales in graphene synthesised by chemical vapour deposition (CVD). Transport measurements were done on Hall bar geometries in a liquid He cryostat. Using non-local measurements, we show that electrons can be

  17. Noninteracting beams of ballistic two-dimensional electrons

    International Nuclear Information System (INIS)

    Spector, J.; Stormer, H.L.; Baldwin, K.W.; Pfeiffer, L.N.; West, K.W.

    1991-01-01

    We demonstrate that two beams of two-dimensional ballistic electrons in a GaAs-AlGaAs heterostructure can penetrate each other with negligible mutual interaction analogous to the penetration of two optical beams. This allows electrical signal channels to intersect in the same plane with negligible crosstalk between the channels

  18. MODELING THE FLIGHT TRAJECTORY OF OPERATIONAL-TACTICAL BALLISTIC MISSILES

    Directory of Open Access Journals (Sweden)

    I. V. Filipchenko

    2018-01-01

    Full Text Available The article gives the basic approaches to updating the systems of combat operations modeling in the part of enemy missile attack simulation taking into account the possibility of tactical ballistic missile maneuvering during the flight. The results of simulation of combat tactical missile defense operations are given. 

  19. Aerodynamic heating of ballistic missile including the effects of gravity

    Indian Academy of Sciences (India)

    The aerodynamic heating of a ballistic missile due to only convection is analysed taking into consideration the effects of gravity. The amount of heat transferred to the wetted area and to the nose region has been separately determined, unlike A Miele's treatise without consideration of gravity. The peak heating ratesto the ...

  20. Ballistic parameters and trauma potential of pistol crossbows.

    Science.gov (United States)

    Frank, Matthias; Schikorr, Wolfgang; Tesch, Ralf; Werner, Ronald; Hanisch, Steffen; Peters, Dieter; Ekkernkamp, Axel; Bockholdt, Britta; Seifert, Julia

    2013-07-01

    Hand-held pistol crossbows, which are smaller versions of conventional crossbows, have recently increased in popularity. Similar to conventional crossbows, life threatening injuries due to bolts discharged from pistol crossbows are reported in forensic and traumatological literature. While the ballistic background of conventional crossbows is comprehensively investigated, there are no investigations on the characteristic ballistic parameters (draw force, potential energy, recurve factor, kinetic energy, and efficiency) of pistol crossbows. Two hand-held pistol crossbows (Barnett Commando and Mini Cross Bow, rated draw force 362.9 N or 80 lbs) were tested. The maximum draw force was investigated using a dynamic tensile testing machine (TIRAtest 2705, TIRA GmbH). The potential energy was determined graphically by polynomial regression as area under the force-draw curve. External ballistic parameters of the bolts discharged from pistol crossbows were measured using a redundant ballistic speed measurement system (Dual-BMC 21a and Dual-LS 1000, Werner Mehl Kurzzeitmesstechnik). The average maximum draw force was 190.3 and 175.6 N for the Barnett and Mini Cross Bow, respectively. The corresponding total energy expended was 10.7 and 11 J, respectively. The recurve factor was calculated to be 0.705 and 1.044, respectively. Average bolt velocity was measured 43 up to 52 m/s. The efficiency was calculated up to 0.94. To conclude, this work provides the pending ballistic data on this special subgroup of crossbows which operate on a remarkable low kinetic energy level. Furthermore, it demonstrates that the nominal draw force pretended in the sales brochure is grossly exaggerated.

  1. The effect of high-pressure devitrification and densification on ballistic-penetration resistance of fused silica

    Science.gov (United States)

    Avuthu, Vasudeva Reddy

    Despite the clear benefits offered by more advanced transparent materials, (e.g. transparent ceramics offer a very attractive combination of high stiffness and high hardness levels, highly-ductile transparent polymers provide superior fragment-containing capabilities, etc.), ballistic ceramic-glass like fused-silica remains an important constituent material in a majority of transparent impact-resistant structures (e.g. windshields and windows of military vehicles, portholes in ships, ground vehicles and spacecraft) used today. Among the main reasons for the wide-scale use of glass, the following three are most frequently cited: (i) glass-structure fabrication technologies enable the production of curved, large surface-area, transparent structures with thickness approaching several inches; (ii) relatively low material and manufacturing costs; and (iii) compositional modifications, chemical strengthening, and controlled crystallization have been demonstrated to be capable of significantly improving the ballistic properties of glass. In the present work, the potential of high-pressure devitrification and densification of fused-silica as a ballistic-resistance-enhancement mechanism is investigated computationally. In the first part of the present work, all-atom molecular-level computations are carried out to infer the dynamic response and material microstructure/topology changes of fused silica subjected to ballistic impact by a nanometer-sized hard projectile. The analysis was focused on the investigation of specific aspects of the dynamic response and of the microstructural changes such as the deformation of highly sheared and densified regions, and the conversion of amorphous fused silica to SiO2 crystalline allotropic modifications (in particular, alpha-quartz and stishovite). The microstructural changes in question were determined by carrying out a post-processing atom-coordination procedure. This procedure suggested the formation of high-density stishovite (and

  2. Study on GaN buffer leakage current in AlGaN/GaN high electron mobility transistor structures grown by ammonia-molecular beam epitaxy on 100-mm Si(111)

    International Nuclear Information System (INIS)

    Ravikiran, L.; Radhakrishnan, K.; Ng, G. I.; Munawar Basha, S.; Dharmarasu, N.; Agrawal, M.; Manoj kumar, C. M.; Arulkumaran, S.

    2015-01-01

    The effect of carbon doping on the structural and electrical properties of GaN buffer layer of AlGaN/GaN high electron mobility transistor (HEMT) structures has been studied. In the undoped HEMT structures, oxygen was identified as the dominant impurity using secondary ion mass spectroscopy and photoluminescence (PL) measurements. In addition, a notable parallel conduction channel was identified in the GaN buffer at the interface. The AlGaN/GaN HEMT structures with carbon doped GaN buffer using a CBr 4 beam equivalent pressure of 1.86 × 10 −7 mTorr showed a reduction in the buffer leakage current by two orders of magnitude. Carbon doped GaN buffers also exhibited a slight increase in the crystalline tilt with some pits on the growth surface. PL and Raman measurements indicated only a partial compensation of donor states with carbon acceptors. However, AlGaN/GaN HEMT structures with carbon doped GaN buffer with 200 nm thick undoped GaN near the channel exhibited good 2DEG characteristics

  3. Study on GaN buffer leakage current in AlGaN/GaN high electron mobility transistor structures grown by ammonia-molecular beam epitaxy on 100-mm Si(111)

    Energy Technology Data Exchange (ETDEWEB)

    Ravikiran, L.; Radhakrishnan, K., E-mail: ERADHA@e.ntu.edu.sg; Ng, G. I. [NOVITAS-Nanoelectronics, Centre of Excellence, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Munawar Basha, S.; Dharmarasu, N.; Agrawal, M.; Manoj kumar, C. M.; Arulkumaran, S. [Temasek Laboratories@NTU, Nanyang Technological University, Singapore 637553 (Singapore)

    2015-06-28

    The effect of carbon doping on the structural and electrical properties of GaN buffer layer of AlGaN/GaN high electron mobility transistor (HEMT) structures has been studied. In the undoped HEMT structures, oxygen was identified as the dominant impurity using secondary ion mass spectroscopy and photoluminescence (PL) measurements. In addition, a notable parallel conduction channel was identified in the GaN buffer at the interface. The AlGaN/GaN HEMT structures with carbon doped GaN buffer using a CBr{sub 4} beam equivalent pressure of 1.86 × 10{sup −7} mTorr showed a reduction in the buffer leakage current by two orders of magnitude. Carbon doped GaN buffers also exhibited a slight increase in the crystalline tilt with some pits on the growth surface. PL and Raman measurements indicated only a partial compensation of donor states with carbon acceptors. However, AlGaN/GaN HEMT structures with carbon doped GaN buffer with 200 nm thick undoped GaN near the channel exhibited good 2DEG characteristics.

  4. Balanced Ambipolar Organic Field-Effect Transistors by Polymer Preaggregation.

    Science.gov (United States)

    Janasz, Lukasz; Luczak, Adam; Marszalek, Tomasz; Dupont, Bertrand G R; Jung, Jaroslaw; Ulanski, Jacek; Pisula, Wojciech

    2017-06-21

    Ambipolar organic field-effect transistors (OFETs) based on heterojunction active films still suffer from an imbalance in the transport of electrons and holes. This problem is related to an uncontrolled phase separation between the donor and acceptor organic semiconductors in the thin films. In this work, we have developed a concept to improve the phase separation in heterojunction transistors to enhance their ambipolar performance. This concept is based on preaggregation of the donor polymer, in this case poly(3-hexylthiophene) (P3HT), before solution mixing with the small-molecular-weight acceptor, phenyl-C61-butyric acid methyl ester (PCBM). The resulting heterojunction transistor morphology consists of self-assembled P3HT fibers embedded in a PCBM matrix, ensuring balanced mobilities reaching 0.01 cm 2 /V s for both holes and electrons. These are the highest mobility values reported so far for ambipolar OFETs based on P3HT/PCBM blends. Preaggregation of the conjugated polymer before fabricating binary blends can be regarded as a general concept for a wider range of semiconducting systems applicable in organic electronic devices.

  5. The Influence of Morphology on High-Performance Polymer Field-Effect Transistors

    DEFF Research Database (Denmark)

    Tsao, Hoi Nok; Cho, Don; Andreasen, Jens Wenzel

    2009-01-01

    The influence of molecular packing on the performance of polymer organic field-effect transistors is illustrated in this work. Both close -stacking distance and long-range order are important for achieving high mobilities. By aligning the polymers from solution, long-range order is induced...

  6. Nanofluidic Transistor Circuits

    Science.gov (United States)

    Chang, Hsueh-Chia; Cheng, Li-Jing; Yan, Yu; Slouka, Zdenek; Senapati, Satyajyoti

    2012-02-01

    Non-equilibrium ion/fluid transport physics across on-chip membranes/nanopores is used to construct rectifying, hysteretic, oscillatory, excitatory and inhibitory nanofluidic elements. Analogs to linear resistors, capacitors, inductors and constant-phase elements were reported earlier (Chang and Yossifon, BMF 2009). Nonlinear rectifier is designed by introducing intra-membrane conductivity gradient and by asymmetric external depletion with a reverse rectification (Yossifon and Chang, PRL, PRE, Europhys Lett 2009-2011). Gating phenomenon is introduced by functionalizing polyelectrolytes whose conformation is field/pH sensitive (Wang, Chang and Zhu, Macromolecules 2010). Surface ion depletion can drive Rubinstein's microvortex instability (Chang, Yossifon and Demekhin, Annual Rev of Fluid Mech, 2012) or Onsager-Wien's water dissociation phenomenon, leading to two distinct overlimiting I-V features. Bipolar membranes exhibit an S-hysteresis due to water dissociation (Cheng and Chang, BMF 2011). Coupling the hysteretic diode with some linear elements result in autonomous ion current oscillations, which undergo classical transitions to chaos. Our integrated nanofluidic circuits are used for molecular sensing, protein separation/concentration, electrospray etc.

  7. Ballistic Evaporation and Solvation of Helium Atoms at the Surfaces of Protic and Hydrocarbon Liquids.

    Science.gov (United States)

    Johnson, Alexis M; Lancaster, Diane K; Faust, Jennifer A; Hahn, Christine; Reznickova, Anna; Nathanson, Gilbert M

    2014-11-06

    Atomic and molecular solutes evaporate and dissolve by traversing an atomically thin boundary separating liquid and gas. Most solutes spend only short times in this interfacial region, making them difficult to observe. Experiments that monitor the velocities of evaporating species, however, can capture their final interactions with surface solvent molecules. We find that polarizable gases such as N2 and Ar evaporate from protic and hydrocarbon liquids with Maxwell-Boltzmann speed distributions. Surprisingly, the weakly interacting helium atom emerges from these liquids at high kinetic energies, exceeding the expected energy of evaporation from salty water by 70%. This super-Maxwellian evaporation implies in reverse that He atoms preferentially dissolve when they strike the surface at high energies, as if ballistically penetrating into the solvent. The evaporation energies increase with solvent surface tension, suggesting that He atoms require extra kinetic energy to navigate increasingly tortuous paths between surface molecules.

  8. Improvements in or relating to transistor circuits

    International Nuclear Information System (INIS)

    Richards, R.F.; Williamson, P.W.

    1978-01-01

    This invention relates to transistor circuits and in particular to integrated transistor circuits formed on a substrate of semi-conductor material such as silicon. The invention is concerned with providing integrated circuits in which malfunctions caused by the effects of ionising, e.g. nuclear, radiations are reduced. (author)

  9. Ultrasmall transistor-based light sources

    DEFF Research Database (Denmark)

    With Jensen, Per Baunegaard; Tavares, Luciana; Kjelstrup-Hansen, Jakob

    Dette projekt fokuserer på at udvikle transistor baserede nanofiber lyskilder med det overordnede mål at udvikle effektive og nano skalerede flerfarvede lyskilder integreret on-chip.......Dette projekt fokuserer på at udvikle transistor baserede nanofiber lyskilder med det overordnede mål at udvikle effektive og nano skalerede flerfarvede lyskilder integreret on-chip....

  10. Efficient simulation of power MOS transistors

    NARCIS (Netherlands)

    Ugryumova, M.; Schilders, W.H.A.

    2011-01-01

    In this report we present a few industrial problems related to modeling of MOS transistors. We suggest an efficient algorithm for computing output current at the top ports of power MOS transistors for given voltage excitations. The suggested algorithm exploits the connection between the resistor and

  11. Band-to-band tunneling in a carbon nanotube metal-oxide-semiconductor field-effect transistor is dominated by phonon-assisted tunneling.

    Science.gov (United States)

    Koswatta, Siyuranga O; Lundstrom, Mark S; Nikonov, Dmitri E

    2007-05-01

    Band-to-band tunneling (BTBT) devices have recently gained a lot of interest due to their potential for reducing power dissipation in integrated circuits. We have performed extensive simulations for the BTBT operation of carbon nanotube metal-oxide-semiconductor field-effect transistors (CNT-MOSFETs) using the nonequilibrium Green's function formalism for both ballistic and dissipative quantum transport. In comparison with recently reported experimental data (J. Am. Chem. Soc. 2006, 128, 3518-3519), we have obtained strong evidence that BTBT in CNT-MOSFETs is dominated by optical phonon assisted inelastic transport, which can have important implications on the transistor characteristics. It is shown that, under large biasing conditions, two-phonon scattering may also become important.

  12. Silicon nanotube field effect transistor with core-shell gate stacks for enhanced high-performance operation and area scaling benefits

    KAUST Repository

    Fahad, Hossain M.

    2011-10-12

    We introduce the concept of a silicon nanotube field effect transistor whose unique core-shell gate stacks help achieve full volume inversion by giving a surge in minority carrier concentration in the near vicinity of the ultrathin channel and at the same time rapid roll-off at the source and drain junctions constituting velocity saturation-induced higher drive current-enhanced high performance per device with efficient real estate consumption. The core-shell gate stacks also provide superior short channel effects control than classical planar metal oxide semiconductor field effect transistor (MOSFET) and gate-all-around nanowire FET. The proposed device offers the true potential to be an ideal blend for quantum ballistic transport study of device property control by bottom-up approach and high-density integration compatibility using top-down state-of-the-art complementary metal oxide semiconductor flow. © 2011 American Chemical Society.

  13. Silicon nanotube field effect transistor with core-shell gate stacks for enhanced high-performance operation and area scaling benefits

    KAUST Repository

    Fahad, Hossain M.; Smith, Casey; Rojas, Jhonathan Prieto; Hussain, Muhammad Mustafa

    2011-01-01

    We introduce the concept of a silicon nanotube field effect transistor whose unique core-shell gate stacks help achieve full volume inversion by giving a surge in minority carrier concentration in the near vicinity of the ultrathin channel and at the same time rapid roll-off at the source and drain junctions constituting velocity saturation-induced higher drive current-enhanced high performance per device with efficient real estate consumption. The core-shell gate stacks also provide superior short channel effects control than classical planar metal oxide semiconductor field effect transistor (MOSFET) and gate-all-around nanowire FET. The proposed device offers the true potential to be an ideal blend for quantum ballistic transport study of device property control by bottom-up approach and high-density integration compatibility using top-down state-of-the-art complementary metal oxide semiconductor flow. © 2011 American Chemical Society.

  14. Growth and characterization of AlGaN/GaN/AlGaN double-heterojunction high-electron-mobility transistors on 100-mm Si(111) using ammonia-molecular beam epitaxy

    International Nuclear Information System (INIS)

    Ravikiran, L.; Radhakrishnan, K.; Yiding, Lin; Ng, G. I.; Dharmarasu, N.; Agrawal, M.; Arulkumaran, S.; Vicknesh, S.

    2015-01-01

    To improve the confinement of two-dimensional electron gas (2DEG) in AlGaN/GaN high electron mobility transistor (HEMT) heterostructures, AlGaN/GaN/AlGaN double heterojunction HEMT (DH-HEMT) heterostructures were grown using ammonia-MBE on 100-mm Si substrate. Prior to the growth, single heterojunction HEMT (SH-HEMT) and DH-HEMT heterostructures were simulated using Poisson-Schrödinger equations. From simulations, an AlGaN buffer with “Al” mole fraction of 10% in the DH-HEMT was identified to result in both higher 2DEG concentration (∼10 13  cm −2 ) and improved 2DEG confinement in the channel. Hence, this composition was considered for the growth of the buffer in the DH-HEMT heterostructure. Hall measurements showed a room temperature 2DEG mobility of 1510 cm 2 /V.s and a sheet carrier concentration (n s ) of 0.97 × 10 13  cm −2 for the DH-HEMT structure, while they are 1310 cm 2 /V.s and 1.09 × 10 13  cm −2 , respectively, for the SH-HEMT. Capacitance-voltage measurements confirmed the improvement in the confinement of 2DEG in the DH-HEMT heterostructure, which helped in the enhancement of its room temperature mobility. DH-HEMT showed 3 times higher buffer break-down voltage compared to SH-HEMT, while both devices showed almost similar drain current density. Small signal RF measurements on the DH-HEMT showed a unity current-gain cut-off frequency (f T ) and maximum oscillation frequency (f max ) of 22 and 25 GHz, respectively. Thus, overall, DH-HEMT heterostructure was found to be advantageous due to its higher buffer break-down voltages compared to SH-HEMT heterostructure

  15. High-Performance Vertical Organic Electrochemical Transistors.

    Science.gov (United States)

    Donahue, Mary J; Williamson, Adam; Strakosas, Xenofon; Friedlein, Jacob T; McLeod, Robert R; Gleskova, Helena; Malliaras, George G

    2018-02-01

    Organic electrochemical transistors (OECTs) are promising transducers for biointerfacing due to their high transconductance, biocompatibility, and availability in a variety of form factors. Most OECTs reported to date, however, utilize rather large channels, limiting the transistor performance and resulting in a low transistor density. This is typically a consequence of limitations associated with traditional fabrication methods and with 2D substrates. Here, the fabrication and characterization of OECTs with vertically stacked contacts, which overcome these limitations, is reported. The resulting vertical transistors exhibit a reduced footprint, increased intrinsic transconductance of up to 57 mS, and a geometry-normalized transconductance of 814 S m -1 . The fabrication process is straightforward and compatible with sensitive organic materials, and allows exceptional control over the transistor channel length. This novel 3D fabrication method is particularly suited for applications where high density is needed, such as in implantable devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Universal power transistor base drive control unit

    Science.gov (United States)

    Gale, Allan R.; Gritter, David J.

    1988-01-01

    A saturation condition regulator system for a power transistor which achieves the regulation objectives of a Baker clamp but without dumping excess base drive current into the transistor output circuit. The base drive current of the transistor is sensed and used through an active feedback circuit to produce an error signal which modulates the base drive current through a linearly operating FET. The collector base voltage of the power transistor is independently monitored to develop a second error signal which is also used to regulate base drive current. The current-sensitive circuit operates as a limiter. In addition, a fail-safe timing circuit is disclosed which automatically resets to a turn OFF condition in the event the transistor does not turn ON within a predetermined time after the input signal transition.

  17. Effect of the metal work function on the electrical properties of carbon nanotube network transistors

    International Nuclear Information System (INIS)

    Kim, Un Jeong; Ko, Dae Young; Kil, Joon Pyo; Lee, Jung Wha; Park, Wan Jun

    2012-01-01

    A nearly perfect semiconducting single-walled carbon nanotube random network thin film transistor array was fabricated, and its reproducible transport properties were investigated. The effects of the metal work function for both the source and the drain on the electrical properties of the transistors were systematically investigated. Three different metal electrodes, Al, Ti, and Pd, were employed. As the metal work function increased, p-type behavior became dominant, and the field effect hole mobility dramatically increased. Also, the Schottky barrier of the Ti-nanotube contact was invariant to the molecular adsorption of species in air.

  18. Numerical simulation and optimized design of cased telescoped ammunition interior ballistic

    Directory of Open Access Journals (Sweden)

    Jia-gang Wang

    2018-04-01

    Full Text Available In order to achieve the optimized design of a cased telescoped ammunition (CTA interior ballistic design, a genetic algorithm was introduced into the optimal design of CTA interior ballistics with coupling the CTA interior ballistic model. Aiming at the interior ballistic characteristics of a CTA gun, the goal of CTA interior ballistic design is to obtain a projectile velocity as large as possible. The optimal design of CTA interior ballistic is carried out using a genetic algorithm by setting peak pressure, changing the chamber volume and gun powder charge density. A numerical simulation of interior ballistics based on a 35 mm CTA firing experimental scheme was conducted and then the genetic algorithm was used for numerical optimization. The projectile muzzle velocity of the optimized scheme is increased from 1168 m/s for the initial experimental scheme to 1182 m/s. Then four optimization schemes were obtained with several independent optimization processes. The schemes were compared with each other and the difference between these schemes is small. The peak pressure and muzzle velocity of these schemes are almost the same. The result shows that the genetic algorithm is effective in the optimal design of the CTA interior ballistics. This work will be lay the foundation for further CTA interior ballistic design. Keywords: Cased telescoped ammunition, Interior ballistics, Gunpowder, Optimization genetic algorithm

  19. Giant electron-hole transport asymmetry in ultra-short quantum transistors

    Science.gov (United States)

    McRae, A. C.; Tayari, V.; Porter, J. M.; Champagne, A. R.

    2017-01-01

    Making use of bipolar transport in single-wall carbon nanotube quantum transistors would permit a single device to operate as both a quantum dot and a ballistic conductor or as two quantum dots with different charging energies. Here we report ultra-clean 10 to 100 nm scale suspended nanotube transistors with a large electron-hole transport asymmetry. The devices consist of naked nanotube channels contacted with sections of tube under annealed gold. The annealed gold acts as an n-doping top gate, allowing coherent quantum transport, and can create nanometre-sharp barriers. These tunnel barriers define a single quantum dot whose charging energies to add an electron or a hole are vastly different (e−h charging energy asymmetry). We parameterize the e−h transport asymmetry by the ratio of the hole and electron charging energies ηe−h. This asymmetry is maximized for short channels and small band gap tubes. In a small band gap device, we demonstrate the fabrication of a dual functionality quantum device acting as a quantum dot for holes and a much longer quantum bus for electrons. In a 14 nm-long channel, ηe−h reaches up to 2.6 for a device with a band gap of 270 meV. The charging energies in this device exceed 100 meV. PMID:28561024

  20. Imaging ballistic carrier trajectories in graphene using scanning gate microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Morikawa, Sei; Masubuchi, Satoru [Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505 (Japan); Dou, Ziwei; Wang, Shu-Wei; Smith, Charles G.; Connolly, Malcolm R., E-mail: mrc61@cam.ac.uk [Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE (United Kingdom); Watanabe, Kenji; Taniguchi, Takashi [National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan); Machida, Tomoki, E-mail: tmachida@iis.u-tokyo.ac.jp [Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505 (Japan); Institute for Nano Quantum Information Electronics, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505 (Japan)

    2015-12-14

    We use scanning gate microscopy to map out the trajectories of ballistic carriers in high-mobility graphene encapsulated by hexagonal boron nitride and subject to a weak magnetic field. We employ a magnetic focusing geometry to image carriers that emerge ballistically from an injector, follow a cyclotron path due to the Lorentz force from an applied magnetic field, and land on an adjacent collector probe. The local electric field generated by the scanning tip in the vicinity of the carriers deflects their trajectories, modifying the proportion of carriers focused into the collector. By measuring the voltage at the collector while scanning the tip, we are able to obtain images with arcs that are consistent with the expected cyclotron motion. We also demonstrate that the tip can be used to redirect misaligned carriers back to the collector.

  1. HVI Ballistic Limit Charaterization of Fused Silica Thermal Pane

    Science.gov (United States)

    Bohl, William E.; Miller, Joshua E.; Christiansen, Eric L.; Deighton, Kevin.; Davis, Bruce

    2015-01-01

    The Orion spacecraft's windows are exposed to the micrometeroid and orbital debris (MMOD) space environments while in space as well as the Earth entry environment at the mission's conclusion. The need for a low-mass spacecraft window design drives the need to reduce conservatism when assessing the design for loss of crew due to MMOD impact and subsequent Earth entry. Therefore, work is underway at NASA and Lockheed Martin to improve characterization of the complete penetration ballistic limit of an outer fused silica thermal pane. Hypervelocity impact tests of the window configuration at up to 10 km/s and hydrocode modeling have been performed with a variety of projectile materials to enable refinement of the fused silica ballistic limit equation.

  2. Determination of the propellant combustion law under ballistic experiment conditions

    Science.gov (United States)

    Ishchenko, A. N.; Diachkovskii, A. S.; Zykova, A. I.; Kasimov, VZ; Samorokova, N. M.

    2017-11-01

    The main characteristics of ballistic experiment are the maximum pressure in the combustion chamber P max and the projectile velocity at the time of barrel leaving U M. During the work the burning law of the new high-energy fuel was determined in a ballistic experiment. This burning law was used for a parametric study of depending P max and U M from a powder charge mass and a traveling charge at initial temperature of + 20 °C was carried out. The optimal conditions for loading were obtained for improving the muzzle velocity by 14.9 %. Under optimal loading, there is defined the conditions, which is possible to get the greatest value muzzle velocity projectile at pressures up to 600 MPa.

  3. Investigation on utilization of liquid propellant in ballistic range experiments

    Energy Technology Data Exchange (ETDEWEB)

    Saso, Akihiro; Oba, Shinji; Takayama, Kazuyoshi [Tohoku University, Sendai (Japan)

    1999-10-31

    Experiments were conducted in a ballistic range using a HAN (hydroxylammonium nitrate)-based liquid monopropellant, LP1846. In a 25-mm-bore single-stage gun, using bulk-loaded propellant of 10 to 35 g, a muzzle speed up to 1.0 km/s was obtained. Time variations of propellant chamber pressures and in-tube projectile velocity profiles were measured. The liquid propellant combustion was initiated accompanying a delay time which was created due to the pyrolysis of the propellant. In order to obtain reliable ballistic range performance, the method of propellant loading was revealed to be critical. Since the burning rate of the liquid propellant is relatively low, the peak acceleration and the muzzle speed strongly depend on the rupture pressure of a diaphragm that was inserted between the launch tube and the propellant chamber. (author)

  4. Ballistic transport of graphene pnp junctions with embedded local gates

    International Nuclear Information System (INIS)

    Nam, Seung-Geol; Ki, Dong-Keun; Kim, Youngwook; Kim, Jun Sung; Lee, Hu-Jong; Park, Jong Wan

    2011-01-01

    We fabricated graphene pnp devices, by embedding pre-defined local gates in an oxidized surface layer of a silicon substrate. With neither deposition of dielectric material on the graphene nor electron-beam irradiation, we obtained high-quality graphene pnp devices without degradation of the carrier mobility even in the local-gate region. The corresponding increased mean free path leads to the observation of ballistic and phase-coherent transport across a local gate 130 nm wide, which is about an order of magnitude wider than reported previously. Furthermore, in our scheme, we demonstrated independent control of the carrier density in the local-gate region, with a conductance map very much distinct from those of top-gated devices. This was caused by the electric field arising from the global back gate being strongly screened by the embedded local gate. Our scheme allows the realization of ideal multipolar graphene junctions with ballistic carrier transport.

  5. Ballistic target tracking algorithm based on improved particle filtering

    Science.gov (United States)

    Ning, Xiao-lei; Chen, Zhan-qi; Li, Xiao-yang

    2015-10-01

    Tracking ballistic re-entry target is a typical nonlinear filtering problem. In order to track the ballistic re-entry target in the nonlinear and non-Gaussian complex environment, a novel chaos map particle filter (CMPF) is used to estimate the target state. CMPF has better performance in application to estimate the state and parameter of nonlinear and non-Gassuian system. The Monte Carlo simulation results show that, this method can effectively solve particle degeneracy and particle impoverishment problem by improving the efficiency of particle sampling to obtain the better particles to part in estimation. Meanwhile CMPF can improve the state estimation precision and convergence velocity compared with EKF, UKF and the ordinary particle filter.

  6. Quantum logic gates based on ballistic transport in graphene

    Energy Technology Data Exchange (ETDEWEB)

    Dragoman, Daniela [Faculty of Physics, University of Bucharest, P.O. Box MG-11, 077125 Bucharest (Romania); Academy of Romanian Scientists, Splaiul Independentei 54, 050094 Bucharest (Romania); Dragoman, Mircea, E-mail: mircea.dragoman@imt.ro [National Institute for Research and Development in Microtechnology (IMT), P.O. Box 38-160, 023573 Bucharest (Romania)

    2016-03-07

    The paper presents various configurations for the implementation of graphene-based Hadamard, C-phase, controlled-NOT, and Toffoli gates working at room temperature. These logic gates, essential for any quantum computing algorithm, involve ballistic graphene devices for qubit generation and processing and can be fabricated using existing nanolithographical techniques. All quantum gate configurations are based on the very large mean-free-paths of carriers in graphene at room temperature.

  7. Ballistic and snake photon imaging for locating optical endomicroscopy fibres

    Science.gov (United States)

    Tanner, M. G.; Choudhary, T. R.; Craven, T. H.; Mills, B.; Bradley, M.; Henderson, R. K.; Dhaliwal, K.; Thomson, R. R.

    2017-01-01

    We demonstrate determination of the location of the distal-end of a fibre-optic device deep in tissue through the imaging of ballistic and snake photons using a time resolved single-photon detector array. The fibre was imaged with centimetre resolution, within clinically relevant settings and models. This technique can overcome the limitations imposed by tissue scattering in optically determining the in vivo location of fibre-optic medical instruments. PMID:28966848

  8. Effect of ageing on the calibration of ballistic gelatin.

    Science.gov (United States)

    Guey, Jason; Rodrigues, S; Pullen, A; Shaw, B; Kieser, D C

    2018-02-27

    Ballistic gelatin is commonly used as a validated surrogate for soft tissue during terminal ballistic testing. However, the effect of a delay between production and testing of a gelatin mould remains unknown. The aim of this study was to determine any potential effects of ageing on ballistic gelatin. Depth of penetration (DoP) of 4.5 mm spherical fragment simulating projectiles was ascertained using mixtures of 10%, 11.25% and 20% Type A 250 Bloom ballistic gelatin. Testing was performed daily for 5 days using velocities between 75 and 210 m/s. DoP at day 5 was statistically compared with day 1, and net mass change was recorded daily. No significant difference was found for DoP observed with time in any of the samples (P>0.05). Spearman correlation was excellent in all moulds. The moulds with known standard calibrations remained in calibration throughout the study period. Mass loss of less than 1% was noted in all samples. Mass loss was the only quantifiable measure of changes in the blocks with time, but did not correlate with any changes in DoP. This may provide reassurance when undertaking such testing that an inadvertent delay will not significantly alter the penetration properties of the mould. Future research is recommended to determine any potential effect on the mechanical properties of gelatin at higher velocity impacts and whether the calibration corresponds to an adequate simulation under such conditions. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  9. Production and Mechanical Characterization of Ballistic Thermoplastic Composite Materials

    OpenAIRE

    D. Korsacilar; C. Atas

    2014-01-01

    In this study, first thermoplastic composite materials /plates that have high ballistic impact resistance were produced. For this purpose, the thermoplastic prepreg and the vacuum bagging technique were used to produce a composite material. Thermoplastic prepregs (resin-impregnated fiber) that are supplied ready to be used, namely high-density polyethylene (HDPE) was chosen as matrix and unidirectional glass fiber was used as reinforcement. In order to compare the fiber c...

  10. How to optimize joint theater ballistic missile defense

    OpenAIRE

    Diehl, Douglas D.

    2004-01-01

    Approved for public release, distribution is unlimited Many potential adversaries seek, or already have theater ballistic missiles capable of threatening targets of interest to the United States. The U.S. Missile Defense Agency and armed forces are developing and fielding missile interceptors carried by many different platforms, including ships, aircraft, and ground units. Given some exigent threat, the U.S. must decide where to position defensive platforms and how they should engage poten...

  11. System Architecture for Anti-Ship Ballistic Missile Defense (ASBMD)

    OpenAIRE

    Hobgood, Jean; Madison, Kimberly; Pawlowski, Geoffrey; Nedd, Steven; Roberts, Michael; Rumberg, Paige

    2009-01-01

    Approved for public release; distribution is unlimited. Recent studies suggest that China is developing a new class of ballistic missiles that can be used against moving targets, such as ships. One such technology is anticipated to cover a range of 2,000 kilometers and operate at a speed of Mach 10. The threat is also capable of maneuvering both during the midcourse and terminal flight phases for the purposes of guidance, target acquisition, and countermeasures. This threat could greatl...

  12. Ballistic V50 Evaluation of TIMET Ti108

    Science.gov (United States)

    2018-02-01

    threat by 1 m/s. Future studies or adjustments to the chemistry of the Ti108 can be conducted to optimize ballistic performance. 15. SUBJECT TERMS...10 Fig. A-2 30-mm APDS overall back of plate .................................................... 10 List of Tables Table 1 Chemistry of Ti108...performance of different titanium alloys. Conventional Ti-6Al-4V is commonly used in aerospace frames and engine components, but has difficulty passing

  13. Optomechanical transistor with mechanical gain

    Science.gov (United States)

    Zhang, X. Z.; Tian, Lin; Li, Yong

    2018-04-01

    We study an optomechanical transistor, where an input field can be transferred and amplified unidirectionally in a cyclic three-mode optomechanical system. In this system, the mechanical resonator is coupled simultaneously to two cavity modes. We show that it only requires a finite mechanical gain to achieve the nonreciprocal amplification. Here the nonreciprocity is caused by the phase difference between the linearized optomechanical couplings that breaks the time-reversal symmetry of this system. The amplification arises from the mechanical gain, which provides an effective phonon bath that pumps the mechanical mode coherently. This effect is analogous to the stimulated emission of atoms, where the probe field can be amplified when its frequency is in resonance with that of the anti-Stokes transition. We show that by choosing optimal parameters, this optomechanical transistor can reach perfect unidirectionality accompanied with strong amplification. In addition, the presence of the mechanical gain can result in ultralong delay in the phase of the probe field, which provides an alternative to controlling light transport in optomechanical systems.

  14. Growth and characterization of AlGaN/GaN/AlGaN double-heterojunction high-electron-mobility transistors on 100-mm Si(111) using ammonia-molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Ravikiran, L.; Radhakrishnan, K., E-mail: ERADHA@ntu.edu.sg; Yiding, Lin; Ng, G. I. [NOVITAS-Nanoelectronics Centre of Excellence, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Dharmarasu, N.; Agrawal, M.; Arulkumaran, S.; Vicknesh, S. [Temasek Laboratories@NTU, Nanyang Technological University, Singapore 637553 (Singapore)

    2015-01-14

    To improve the confinement of two-dimensional electron gas (2DEG) in AlGaN/GaN high electron mobility transistor (HEMT) heterostructures, AlGaN/GaN/AlGaN double heterojunction HEMT (DH-HEMT) heterostructures were grown using ammonia-MBE on 100-mm Si substrate. Prior to the growth, single heterojunction HEMT (SH-HEMT) and DH-HEMT heterostructures were simulated using Poisson-Schrödinger equations. From simulations, an AlGaN buffer with “Al” mole fraction of 10% in the DH-HEMT was identified to result in both higher 2DEG concentration (∼10{sup 13 }cm{sup −2}) and improved 2DEG confinement in the channel. Hence, this composition was considered for the growth of the buffer in the DH-HEMT heterostructure. Hall measurements showed a room temperature 2DEG mobility of 1510 cm{sup 2}/V.s and a sheet carrier concentration (n{sub s}) of 0.97 × 10{sup 13 }cm{sup −2} for the DH-HEMT structure, while they are 1310 cm{sup 2}/V.s and 1.09 × 10{sup 13 }cm{sup −2}, respectively, for the SH-HEMT. Capacitance-voltage measurements confirmed the improvement in the confinement of 2DEG in the DH-HEMT heterostructure, which helped in the enhancement of its room temperature mobility. DH-HEMT showed 3 times higher buffer break-down voltage compared to SH-HEMT, while both devices showed almost similar drain current density. Small signal RF measurements on the DH-HEMT showed a unity current-gain cut-off frequency (f{sub T}) and maximum oscillation frequency (f{sub max}) of 22 and 25 GHz, respectively. Thus, overall, DH-HEMT heterostructure was found to be advantageous due to its higher buffer break-down voltages compared to SH-HEMT heterostructure.

  15. Hybrid composite laminates reinforced with Kevlar/carbon/glass woven fabrics for ballistic impact testing.

    Science.gov (United States)

    Randjbaran, Elias; Zahari, Rizal; Jalil, Nawal Aswan Abdul; Majid, Dayang Laila Abang Abdul

    2014-01-01

    Current study reported a facile method to investigate the effects of stacking sequence layers of hybrid composite materials on ballistic energy absorption by running the ballistic test at the high velocity ballistic impact conditions. The velocity and absorbed energy were accordingly calculated as well. The specimens were fabricated from Kevlar, carbon, and glass woven fabrics and resin and were experimentally investigated under impact conditions. All the specimens possessed equal mass, shape, and density; nevertheless, the layers were ordered in different stacking sequence. After running the ballistic test at the same conditions, the final velocities of the cylindrical AISI 4340 Steel pellet showed how much energy was absorbed by the samples. The energy absorption of each sample through the ballistic impact was calculated; accordingly, the proper ballistic impact resistance materials could be found by conducting the test. This paper can be further studied in order to characterise the material properties for the different layers.

  16. Hybrid Composite Laminates Reinforced with Kevlar/Carbon/Glass Woven Fabrics for Ballistic Impact Testing

    Directory of Open Access Journals (Sweden)

    Elias Randjbaran

    2014-01-01

    Full Text Available Current study reported a facile method to investigate the effects of stacking sequence layers of hybrid composite materials on ballistic energy absorption by running the ballistic test at the high velocity ballistic impact conditions. The velocity and absorbed energy were accordingly calculated as well. The specimens were fabricated from Kevlar, carbon, and glass woven fabrics and resin and were experimentally investigated under impact conditions. All the specimens possessed equal mass, shape, and density; nevertheless, the layers were ordered in different stacking sequence. After running the ballistic test at the same conditions, the final velocities of the cylindrical AISI 4340 Steel pellet showed how much energy was absorbed by the samples. The energy absorption of each sample through the ballistic impact was calculated; accordingly, the proper ballistic impact resistance materials could be found by conducting the test. This paper can be further studied in order to characterise the material properties for the different layers.

  17. Wound ballistic evaluation of the Taser® XREP ammunition.

    Science.gov (United States)

    Kunz, Sebastian N; Adamec, Jiri; Zinka, Bettina; Münzel, Daniela; Noël, Peter B; Eichner, Simon; Manthei, Axel; Grove, Nico; Graw, M; Peschel, Oliver

    2013-01-01

    The Taser® eXtended Range Electronic Projectile (XREP®) is a wireless conducted electrical weapon (CEW) designed to incapacitate a person from a larger distance. The aim of this study was to analyze the ballistic injury potential of the XREP. Twenty rounds were fired from the Taser®X12 TM shotgun into ballistic soap covered with artificial skin and clothing at different shooting distances (1-25 m). One shot was fired at pig skin at a shooting distance of 10 m. The average projectile velocity was 67.0 m/s. The kinetic energy levels on impact varied from 28-52 J. Depending on the intermediate target, the projectiles penetrated up to 4.2 cm into the ballistic soap. On impact the nose assembly did not separate from the chassis, and no electrical activation was registered. Upon impact, a skin penetration of the XREP cannot be excluded. However, it is very unlikely at shooting distances of 10 m or more. Clothing and a high elasticity limit of the target body area can significantly reduce the penetration risk on impact.

  18. Viscoelastic shock wave in ballistic gelatin behind soft body armor.

    Science.gov (United States)

    Liu, Li; Fan, Yurun; Li, Wei

    2014-06-01

    Ballistic gelatins are widely used as a surrogate of biological tissue in blunt trauma tests. Non-penetration impact tests of handgun bullets on the 10wt% ballistic gelatin block behind soft armor were carried out in which a high-speed camera recorded the crater׳s movement and pressure sensors imbedded in the gelatin block recorded the pressure waves at different locations. The observed shock wave attenuation indicates the necessity of considering the gelatin׳s viscoelasticity. A three-element viscoelastic constitutive model was adopted, in which the relevant parameters were obtained via fitting the damping free oscillations at the beginning of the creep-mode of rheological measurement, and by examining the data of published split Hopkinson pressure bar (SHPB) experiments. The viscoelastic model is determined by a retardation time of 5.5×10(-5)s for high oscillation frequencies and a stress relaxation time of 2.0-4.5×10(-7)s for shock wave attenuation. Using the characteristic-line method and the spherical wave assumption, the propagation of impact pressure wave front and the subsequent unloading profile can be simulated using the experimental velocity boundary condition. The established viscoelastic model considerably improves the prediction of shock wave attenuation in the ballistic gelatin. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Drag of ballistic electrons by an ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Gurevich, V. L.; Muradov, M. I., E-mail: mag.muradov@mail.ioffe.ru [Russian Academy of Sciences, Ioffe Physicotechnical Institute (Russian Federation)

    2015-12-15

    Drag of electrons of a one-dimensional ballistic nanowire by a nearby one-dimensional beam of ions is considered. We assume that the ion beam is represented by an ensemble of heavy ions of the same velocity V. The ratio of the drag current to the primary current carried by the ion beam is calculated. The drag current turns out to be a nonmonotonic function of velocity V. It has a sharp maximum for V near v{sub nF}/2, where n is the number of the uppermost electron miniband (channel) taking part in conduction and v{sub nF} is the corresponding Fermi velocity. This means that the phenomenon of ion beam drag can be used for investigation of the electron spectra of ballistic nanostructures. We note that whereas observation of the Coulomb drag between two parallel quantum wires may in general be complicated by phenomena such as tunneling and phonon drag, the Coulomb drag of electrons of a one-dimensional ballistic nanowire by an ion beam is free of such spurious effects.

  20. Ballistic Phonon Penetration Depth in Amorphous Silicon Dioxide.

    Science.gov (United States)

    Yang, Lin; Zhang, Qian; Cui, Zhiguang; Gerboth, Matthew; Zhao, Yang; Xu, Terry T; Walker, D Greg; Li, Deyu

    2017-12-13

    Thermal transport in amorphous silicon dioxide (a-SiO 2 ) is traditionally treated as random walks of vibrations owing to its greatly disordered structure, which results in a mean free path (MFP) approximately the same as the interatomic distance. However, this picture has been debated constantly and in view of the ubiquitous existence of thin a-SiO 2 layers in nanoelectronic devices, it is imperative to better understand this issue for precise thermal management of electronic devices. Different from the commonly used cross-plane measurement approaches, here we report on a study that explores the in-plane thermal conductivity of double silicon nanoribbons with a layer of a-SiO 2 sandwiched in-between. Through comparing the thermal conductivity of the double ribbon samples with that of corresponding single ribbons, we show that thermal phonons can ballistically penetrate through a-SiO 2 of up to 5 nm thick even at room temperature. Comprehensive examination of double ribbon samples with various oxide layer thicknesses and van der Waals bonding strengths allows for extraction of the average ballistic phonon penetration depth in a-SiO 2 . With solid experimental data demonstrating ballistic phonon transport through a-SiO 2 , this work should provide important insight into thermal management of electronic devices.

  1. Evaluation of bone surrogates for indirect and direct ballistic fractures.

    Science.gov (United States)

    Bir, Cynthia; Andrecovich, Chris; DeMaio, Marlene; Dougherty, Paul J

    2016-04-01

    The mechanism of injury for fractures to long bones has been studied for both direct ballistic loading as well as indirect. However, the majority of these studies have been conducted on both post-mortem human subjects (PMHS) and animal surrogates which have constraints in terms of storage, preparation and testing. The identification of a validated bone surrogate for use in forensic, medical and engineering testing would provide the ability to investigate ballistic loading without these constraints. Two specific bone surrogates, Sawbones and Synbone, were evaluated in comparison to PMHS for both direct and indirect ballistic loading. For the direct loading, the mean velocity to produce fracture was 121 ± 19 m/s for the PMHS, which was statistically different from the Sawbones (140 ± 7 m/s) and Synbone (146 ± 3 m/s). The average distance to fracture in the indirect loading was .70 cm for the PMHS. The Synbone had a statistically similar average distance to fracture (.61 cm, p=0.54) however the Sawbones average distance to fracture was statistically different (.41 cm, pballistic testing was not identified and future work is warranted. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. [Ballistic concepts and management of gunshot wounds at members].

    Science.gov (United States)

    Fabeck, L; Hock, N; Goffin, J; Ngatchou, W

    2017-01-01

    Ballistic trauma is not the prerogative of battlefields and currently extends to civil environments. Any surgeon or emergency room can be faced with such trauma whose management requires an understanding of wound ballistics. The aim of this retrospective is reviewing the management of ballistic trauma within the C.H.U. Saint-Pierre hospital over a period of ten years. Data recorded included demographics data, lesions, clinical parameters, imaging, treatment and outcome. It appears that the wounds of the members have a low mortality rate but a significant rate of complications. Patients should be managed according to the ATLS protocol and according hemodynamic stability and location of the injury, benefit from imaging. Unstable patients will be operated in emergency, stable patients will be treated according to the extent of damage and the type of fracture either conservatively or by external fixator and intramedullary centromedullary. Debridement and antibiotics are recommended as a nerve exploration if there is a peripheral paralysis. The management of trauma in our sample appear not optimal in light of the literature especially in terms of setting the vascular point of debridement, antibiotic and nerve repair resulting in significant consequences. Two management protocols according to patients' hemodynamic status are offered.

  3. The use of gelatine in wound ballistics research.

    Science.gov (United States)

    Carr, D J; Stevenson, T; Mahoney, P F

    2018-04-25

    Blocks of gelatine are used in both lethality and survivability studies for broadly the same reason, i.e. comparison of ammunition effects using a material that it is assumed represents (some part of) the human body. The gelatine is used to visualise the temporary and permanent wound profiles; elements of which are recognised as providing a reasonable approximation to wounding in humans. One set of researchers aim to improve the lethality of the projectile, and the other to understand the effects of the projectile on the body to improve survivability. Research areas that use gelatine blocks are diverse and include ammunition designers, the medical and forensics communities and designers of ballistic protective equipment (including body armour). This paper aims to provide an overarching review of the use of gelatine for wound ballistics studies; it is not intended to provide an extensive review of wound ballistics as that already exists, e.g. Legal Med 23:21-29, 2016. Key messages are that test variables, projectile type (bullet, fragmentation), impact site on the body and intermediate layers (e.g. clothing, personal protective equipment (PPE)) can affect the resulting wound profiles.

  4. Is muscle coordination affected by loading condition in ballistic movements?

    Science.gov (United States)

    Giroux, Caroline; Guilhem, Gaël; Couturier, Antoine; Chollet, Didier; Rabita, Giuseppe

    2015-02-01

    This study aimed to investigate the effect of loading on lower limb muscle coordination involved during ballistic squat jumps. Twenty athletes performed ballistic squat jumps on a force platform. Vertical force, velocity, power and electromyographic (EMG) activity of lower limb muscles were recorded during the push-off phase and compared between seven loading conditions (0-60% of the concentric-only maximal repetition). The increase in external load increased vertical force (from 1962 N to 2559 N; P=0.0001), while movement velocity decreased (from 2.5 to 1.6 ms(-1); P=0.0001). EMG activity of tibialis anterior first peaked at 5% of the push-off phase, followed by gluteus maximus (35%), vastus lateralis and soleus (45%), rectus femoris (55%), gastrocnemius lateralis (65%) and semitendinosus (75%). This sequence of activation (P=0.67) and the amplitude of muscle activity (P=0.41) of each muscle were not affected by loading condition. However, a main effect of muscle was observed on these parameters (peak value: Ppush-off phase. Our findings suggest that muscle coordination is not influenced by external load during a ballistic squat jump. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Valley-symmetric quasi-1D transport in ballistic graphene

    Science.gov (United States)

    Lee, Hu-Jong

    We present our recent studies on gate-defined valley-symmetric one-dimensional (1D) carrier guiding in ballistic monolayer graphene and valley-symmetry-protected topological 1D transport in ballistic bilayer graphene. Successful carrier guiding was realized in ballistic monolayer graphene even in the absence of a band gap by inducing a high distinction ( more than two orders of magnitude) in the carrier density between the region of a quasi-1D channel and the rest of the top-gated regions. Conductance of a channel shows quantized values in units of 4e2/ h, suggesting that the valley symmetry is preserved. For the latter, the topological 1D conduction was realized between two closely arranged insulating regions with inverted band gaps, induced under a pair of split dual gating with polarities opposite to each other. The maximum conductance along the boundary channel showed 4e2/ h, again with the preserved valley symmetry. The 1D topological carrier guiding demonstrated in this study affords a promising route to robust valleytronic applications and sophisticated valley-associated functionalities based on 2D materials. This work was funded by the National Research Foundation of Korea.

  6. High-performance vertical organic transistors.

    Science.gov (United States)

    Kleemann, Hans; Günther, Alrun A; Leo, Karl; Lüssem, Björn

    2013-11-11

    Vertical organic thin-film transistors (VOTFTs) are promising devices to overcome the transconductance and cut-off frequency restrictions of horizontal organic thin-film transistors. The basic physical mechanisms of VOTFT operation, however, are not well understood and VOTFTs often require complex patterning techniques using self-assembly processes which impedes a future large-area production. In this contribution, high-performance vertical organic transistors comprising pentacene for p-type operation and C60 for n-type operation are presented. The static current-voltage behavior as well as the fundamental scaling laws of such transistors are studied, disclosing a remarkable transistor operation with a behavior limited by injection of charge carriers. The transistors are manufactured by photolithography, in contrast to other VOTFT concepts using self-assembled source electrodes. Fluorinated photoresist and solvent compounds allow for photolithographical patterning directly and strongly onto the organic materials, simplifying the fabrication protocol and making VOTFTs a prospective candidate for future high-performance applications of organic transistors. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Colour tuneable light-emitting transistor

    Energy Technology Data Exchange (ETDEWEB)

    Feldmeier, Eva J.; Melzer, Christian; Seggern, Heinz von [Electronic Materials Department, Institute of Materials Science, Technische Universitaet Darmstadt (Germany)

    2010-07-01

    In recent years the interest in ambipolar organic light-emitting field-effect transistors has increased steadily as the devices combine switching behaviour of transistors with light emission. Usually, small molecules and polymers with a band gap in the visible spectral range serve as semiconducting materials. Mandatory remain balanced injection and transport properties for both charge carrier types to provide full control of the spatial position of the recombination zone of electrons and holes in the transistor channel via the applied voltages. As will be presented here, the spatial control of the recombination zone opens new possibilities towards light-emitting devices with colour tuneable emission. In our contribution an organic light-emitting field-effect transistors is presented whose emission colour can be changed by the applied voltages. The organic top-contact field-effect transistor is based on a parallel layer stack of acenes serving as organic transport and emission layers. The transistor displays ambipolar characteristics with a narrow recombination zone within the transistor channel. During operation the recombination zone can be moved by a proper change in the drain and gate bias from one organic semiconductor layer to another one inducing a change in the emission colour. In the presented example the emission maxima can be switched from 530 nm to 580 nm.

  8. Navy Ohio Replacement (SSBN[X]) Ballistic Missile Submarine Program: Background and Issues for Congress

    Science.gov (United States)

    2016-04-05

    Navy Ohio Replacement (SSBN[X]) Ballistic Missile Submarine Program: Background and Issues for Congress Ronald O’Rourke Specialist in Naval...Affairs April 5, 2016 Congressional Research Service 7-5700 www.crs.gov R41129 Navy Ohio Replacement (SSBN[X]) Ballistic Missile Submarine...1,091.1 million in research and development funding for the Ohio replacement program (ORP), a program to design and build a new class of 12 ballistic

  9. Ballistic Imaging and Scattering Measurements for Diesel Spray Combustion: Optical Development and Phenomenological Studies

    Science.gov (United States)

    2016-04-01

    3mm) of diesel sprays from a high-pressure single-hole fuel injector . Ballistic imaging of dodecane and methyl oleate sprays are reported...Porter, Sean P. Duran, Terence E. Parker. Picosecond Ballistic Imaging of Ligament Structures in the Near- Nozzle Region of Diesel Sprays, ILASS...Experiments in Fluids (12 2014) Sean Duran, Jason Porter, Terence Parker. Ballistic Imaging of a Diesel Injector Spray at High Temperature and

  10. Basic matrix algebra and transistor circuits

    CERN Document Server

    Zelinger, G

    1963-01-01

    Basic Matrix Algebra and Transistor Circuits deals with mastering the techniques of matrix algebra for application in transistors. This book attempts to unify fundamental subjects, such as matrix algebra, four-terminal network theory, transistor equivalent circuits, and pertinent design matters. Part I of this book focuses on basic matrix algebra of four-terminal networks, with descriptions of the different systems of matrices. This part also discusses both simple and complex network configurations and their associated transmission. This discussion is followed by the alternative methods of de

  11. Protonic transistors from thin reflecting films

    Energy Technology Data Exchange (ETDEWEB)

    Ordinario, David D.; Phan, Long; Jocson, Jonah-Micah [Department of Chemical Engineering and Materials Science, University of California, Irvine, California 92697 (United States); Nguyen, Tam [Department of Chemistry, University of California, Irvine, California 92697 (United States); Gorodetsky, Alon A., E-mail: alon.gorodetsky@uci.edu [Department of Chemical Engineering and Materials Science, University of California, Irvine, California 92697 (United States); Department of Chemistry, University of California, Irvine, California 92697 (United States)

    2015-01-01

    Ionic transistors from organic and biological materials hold great promise for bioelectronics applications. Thus, much research effort has focused on optimizing the performance of these devices. Herein, we experimentally validate a straightforward strategy for enhancing the high to low current ratios of protein-based protonic transistors. Upon reducing the thickness of the transistors’ active layers, we increase their high to low current ratios 2-fold while leaving the other figures of merit unchanged. The measured ratio of 3.3 is comparable to the best values found for analogous devices. These findings underscore the importance of the active layer geometry for optimum protonic transistor functionality.

  12. Transistors using crystalline silicon devices on glass

    Science.gov (United States)

    McCarthy, Anthony M.

    1995-01-01

    A method for fabricating transistors using single-crystal silicon devices on glass. This method overcomes the potential damage that may be caused to the device during high voltage bonding and employs a metal layer which may be incorporated as part of the transistor. This is accomplished such that when the bonding of the silicon wafer or substrate to the glass substrate is performed, the voltage and current pass through areas where transistors will not be fabricated. After removal of the silicon substrate, further metal may be deposited to form electrical contact or add functionality to the devices. By this method both single and gate-all-around devices may be formed.

  13. Gold nanoparticle-pentacene memory-transistors

    OpenAIRE

    Novembre , Christophe; Guerin , David; Lmimouni , Kamal; Gamrat , Christian; Vuillaume , Dominique

    2008-01-01

    We demonstrate an organic memory-transistor device based on a pentacene-gold nanoparticles active layer. Gold (Au) nanoparticles are immobilized on the gate dielectric (silicon dioxide) of a pentacene transistor by an amino-terminated self-assembled monolayer. Under the application of writing and erasing pulses on the gate, large threshold voltage shift (22 V) and on/off drain current ratio of ~3E4 are obtained. The hole field-effect mobility of the transistor is similar in the on and off sta...

  14. Diffusive-to-ballistic transition of the modulated heat transport in a rarefied air chamber

    Directory of Open Access Journals (Sweden)

    C. L. Gomez-Heredia

    2017-01-01

    Full Text Available Modulated heat transfer in air subject to pressures from 760 Torr to 10-4 Torr is experimentally studied by means of a thermal-wave resonant cavity placed in a vacuum chamber. This is done through the analysis of the amplitude and phase delay of the photothermal signal as a function of the cavity length and pressure through of the Knudsen’s number. The viscous, transitional, and free molecular regimes of heat transport are observed for pressures P>1.5 Torr, 25 mTorrmolecular one. Furthermore, the increase of the radiative contribution on both the amplitude and phase is also observed as the pressure reduces. The obtained results show that the proposed methodology can be used to study the molecular dynamics in gases supporting diffusive and ballistic heat transport.

  15. Development of Mortar Simulator with Shell-In-Shell System – Problem of External Ballistics

    Directory of Open Access Journals (Sweden)

    A. Fedaravicius

    2007-01-01

    Full Text Available The shell-in-shell system used in the mortar simulator raises a number of non-standard technical and computational problems starting from the requirement to distribute the propelling blast energy between the warhead and the ballistic barrel, finishing with the requirement that the length of warhead's flight path must be scaled to combat shell firing tables. The design problem of the simulator is split into two parts – the problem of external ballistics where the initial velocities of the warhead must be determined, and the problem of internal ballistics – where the design of the cartridge and the ballistic barrel must be performed.

  16. Thermodynamic properties of UF sub 6 measured with a ballistic piston compressor

    Science.gov (United States)

    Sterritt, D. E.; Lalos, G. T.; Schneider, R. T.

    1973-01-01

    From experiments performed with a ballistic piston compressor, certain thermodynamic properties of uranium hexafluoride were investigated. Difficulties presented by the nonideal processes encountered in ballistic compressors are discussed and a computer code BCCC (Ballistic Compressor Computer Code) is developed to analyze the experimental data. The BCCC unfolds the thermodynamic properties of uranium hexafluoride from the helium-uranium hexafluoride mixture used as the test gas in the ballistic compressor. The thermodynamic properties deduced include the specific heat at constant volume, the ratio of specific heats for UF6, and the viscous coupling constant of helium-uranium hexafluoride mixtures.

  17. Experimental evaluation of ballistic hazards in imaging diagnostic center

    International Nuclear Information System (INIS)

    Karpowicz, Jolanta; Gryz, Krzysztof

    2013-01-01

    Serious hazards for human health and life and devices in close proximity to the magnetic resonance scanners (MRI scanners) include the effects of being hit by ferromagnetic objects attracted by static magnetic field (SMF) produced by scanner magnet – the so-called ballistic hazards classified among indirect electromagnetic hazards. International safety guidelines and technical literature specify different SMF threshold values regarding ballistic hazards – e.g. 3 mT (directive 2004/40/EC, EN 60601-2-33), and 30 mT (BMAS 2009, directive proposal 2011). Investigations presented in this article were performed in order to experimentally verify SMF threshold for ballistic hazards near MRI scanners used in Poland. Investigations were performed with the use of a laboratory source of SMF (0–30 mT) and MRI scanners of various types. The levels of SMF in which metal objects of various shapes and 0.4–500 g mass are moved by the field influence were investigated. The distance from the MRI scanners (0.2–3T) where hazards may occur were also investigated. Objects investigated under laboratory conditions were moved by SMF of 2.2–15 mT magnetic flux density when they were freely suspended, but were moved by the SMF of 5.6–22 mT when they were placed on a smooth surface. Investigated objects were moved in fields of 3.5–40 mT by MRI scanners. Distances from scanner magnet cover, where ballistic hazards might occur are: up to 0.5 m for 0.2–0.3T scanners; up to 1.3 m for 0.5T scanners; up to 2.0 m for 1.5T scanners and up to 2.5 m for 3T scanners (at the front and back of the magnet). It was shown that SMF of 3 mT magnetic flux density should be taken as the threshold for ballistic hazards. Such level is compatible with SMF limit value regarding occupational safety and health-protected areas/zones, where according to the Polish labor law the procedures of work environment inspection and prevention measures regarding indirect electromagnetic hazards should be applied

  18. Experimental evaluation of ballistic hazards in imaging diagnostic center.

    Science.gov (United States)

    Karpowicz, Jolanta; Gryz, Krzysztof

    2013-04-01

    Serious hazards for human health and life and devices in close proximity to the magnetic resonance scanners (MRI scanners) include the effects of being hit by ferromagnetic objects attracted by static magnetic field (SMF) produced by scanner magnet - the so-called ballistic hazards classified among indirect electromagnetic hazards. International safety guidelines and technical literature specify different SMF threshold values regarding ballistic hazards - e.g. 3 mT (directive 2004/40/EC, EN 60601-2-33), and 30 mT (BMAS 2009, directive proposal 2011). Investigations presented in this article were performed in order to experimentally verify SMF threshold for ballistic hazards near MRI scanners used in Poland. Investigations were performed with the use of a laboratory source of SMF (0-30 mT) and MRI scanners of various types. The levels of SMF in which metal objects of various shapes and 0.4-500 g mass are moved by the field influence were investigated. The distance from the MRI scanners (0.2-3T) where hazards may occur were also investigated. Objects investigated under laboratory conditions were moved by SMF of 2.2-15 mT magnetic flux density when they were freely suspended, but were moved by the SMF of 5.6-22 mT when they were placed on a smooth surface. Investigated objects were moved in fields of 3.5-40 mT by MRI scanners. Distances from scanner magnet cover, where ballistic hazards might occur are: up to 0.5 m for 0.2-0.3T scanners; up to 1.3 m for 0.5T scanners; up to 2.0 m for 1.5T scanners and up to 2.5 m for 3T scanners (at the front and back of the magnet). It was shown that SMF of 3 mT magnetic flux density should be taken as the threshold for ballistic hazards. Such level is compatible with SMF limit value regarding occupational safety and health-protected areas/zones, where according to the Polish labor law the procedures of work environment inspection and prevention measures regarding indirect electromagnetic hazards should be applied. Presented results

  19. Ballistic electron emissions microscopy (BEEM) of ferromagnet-semiconductor interfaces; Ballistische Elektronen Emissions Mikroskopie (BEEM) an Ferromagnet-Halbleitergrenzflaechen

    Energy Technology Data Exchange (ETDEWEB)

    Obernhuber, S.

    2007-04-15

    For current research on spin-transistors it is important to know the characteristics of ferromagnet semiconductor interfaces. The ballistic electron emission microscopy (BEEM) is a method to investigate such a buried interface with nanometer resolution. In this work several ferromagnet/GaAs(110) interfaces have been analysed concerning their homogeneity and mean local Schottky-barrier heights (SBH) have been determined. In Addition, the resulting integral SBH was calculated from the distribution of the local SBHs and compared with the SBH determined from voltage/current characteristics. The areas with a low SBH dominate the current conduction across the interface. Additional BEEM measurements on (AlGaAs/GaAs) heterostructures have been performed. This heterostructures consist of 50 nm AlGaAs/GaAs layers. The results of the BEEM measurements indicate, that the GaAs QWs are defined by AlGaAs barriers. The transition from AlGaAs to GaAs is done within 10 nm. (orig.)

  20. Lateral power transistors in integrated circuits

    CERN Document Server

    Erlbacher, Tobias

    2014-01-01

    This book details and compares recent advancements in the development of novel lateral power transistors (LDMOS devices) for integrated circuits in power electronic applications. It includes the state-of-the-art concept of double-acting RESURF topologies.

  1. Water-gel for gating graphene transistors.

    Science.gov (United States)

    Kim, Beom Joon; Um, Soong Ho; Song, Woo Chul; Kim, Yong Ho; Kang, Moon Sung; Cho, Jeong Ho

    2014-05-14

    Water, the primary electrolyte in biology, attracts significant interest as an electrolyte-type dielectric material for transistors compatible with biological systems. Unfortunately, the fluidic nature and low ionic conductivity of water prevents its practical usage in such applications. Here, we describe the development of a solid state, megahertz-operating, water-based gate dielectric system for operating graphene transistors. The new electrolyte systems were prepared by dissolving metal-substituted DNA polyelectrolytes into water. The addition of these biocompatible polyelectrolytes induced hydrogelation to provide solid-state integrity to the system. They also enhanced the ionic conductivities of the electrolytes, which in turn led to the quick formation of an electric double layer at the graphene/electrolyte interface that is beneficial for modulating currents in graphene transistors at high frequencies. At the optimized conditions, the Na-DNA water-gel-gated flexible transistors and inverters were operated at frequencies above 1 MHz and 100 kHz, respectively.

  2. From transistor to trapped-ion computers for quantum chemistry.

    Science.gov (United States)

    Yung, M-H; Casanova, J; Mezzacapo, A; McClean, J; Lamata, L; Aspuru-Guzik, A; Solano, E

    2014-01-07

    Over the last few decades, quantum chemistry has progressed through the development of computational methods based on modern digital computers. However, these methods can hardly fulfill the exponentially-growing resource requirements when applied to large quantum systems. As pointed out by Feynman, this restriction is intrinsic to all computational models based on classical physics. Recently, the rapid advancement of trapped-ion technologies has opened new possibilities for quantum control and quantum simulations. Here, we present an efficient toolkit that exploits both the internal and motional degrees of freedom of trapped ions for solving problems in quantum chemistry, including molecular electronic structure, molecular dynamics, and vibronic coupling. We focus on applications that go beyond the capacity of classical computers, but may be realizable on state-of-the-art trapped-ion systems. These results allow us to envision a new paradigm of quantum chemistry that shifts from the current transistor to a near-future trapped-ion-based technology.

  3. Transfer-free fabrication of graphene transistors

    OpenAIRE

    Wessely, P.J.; Wessely, F.; Birinci, E.; Schwalke, U.; Riedinger, B.

    2012-01-01

    The authors invented a method to fabricate graphene transistors on oxidized silicon wafers without the need to transfer graphene layers. To stimulate the growth of graphene layers on oxidized silicon, a catalyst system of nanometer thin aluminum/nickel double layer is used. This catalyst system is structured via liftoff before the wafer enters the catalytic chemical vapor deposition (CCVD) chamber. In the subsequent methane-based growth process, monolayer graphene field-effect transistors and...

  4. Diffusion pipes at PNP switching transistors

    International Nuclear Information System (INIS)

    Sachelarie, D.; Postolache, C.; Gaiseanu, F.

    1976-01-01

    The appearance of the ''diffusion pipes'' greatly affects the fabrication of the PNP high-frequency/very-fast-switching transistors. A brief review of the principal problems connected to the presence of these ''pipes'' is made. A research program is presented which permitted the fabrication of the PNP switching transistors at ICCE-Bucharest, with transition frequency fsub(T) = 1.2 GHz and storage time tsub(s) = 4.5 ns. (author)

  5. Integrated amplifying circuit with MOS transistors

    Energy Technology Data Exchange (ETDEWEB)

    Baylac, B; Merckel, G; Meunier, P

    1974-01-25

    The invention relates to a feedback-pass-band amplifier with MOS-transistors. The differential stage of conventional amplifiers is changed into an adding state, whereas the differential amplification stages are changed into amplifier inverter stages. All MOS transistors used in that amplifier are of similar configuration and are interdigitized, whereby the operating speed dispersion is reduced. This can be applied to obtaining a measurement channel for proportional chambers.

  6. Variability of Plyometric and Ballistic Exercise Technique Maintains Jump Performance.

    Science.gov (United States)

    Chandler, Phillip T; Greig, Matthew; Comfort, Paul; McMahon, John J

    2018-06-01

    Chandler, PT, Greig, M, Comfort, P, and McMahon, JJ. Variability of plyometric and ballistic exercise technique maintains jump performance. J Strength Cond Res 32(6): 1571-1582, 2018-The aim of this study was to investigate changes in vertical jump technique over the course of a training session. Twelve plyometric and ballistic exercise-trained male athletes (age = 23.4 ± 4.6 years, body mass = 78.7 ± 18.8 kg, height = 177.1 ± 9.0 cm) performed 3 sets of 10 repetitions of drop jump (DJ), rebound jump (RJ) and squat jump (SJ). Each exercise was analyzed from touchdown to peak joint flexion and peak joint flexion to take-off. Squat jump was analyzed from peak joint flexion to take-off only. Jump height, flexion and extension time and range of motion, and instantaneous angles of the ankle, knee, and hip joints were measured. Separate 1-way repeated analyses of variance compared vertical jump technique across exercise sets and repetitions. Exercise set analysis found that SJ had lower results than DJ and RJ for the angle at peak joint flexion for the hip, knee, and ankle joints and take-off angle of the hip joint. Exercise repetition analysis found that the ankle joint had variable differences for the angle at take-off, flexion, and extension time for RJ. The knee joint had variable differences for flexion time for DJ and angle at take-off and touchdown for RJ. There was no difference in jump height. Variation in measured parameters across repetitions highlights variable technique across plyometric and ballistic exercises. This did not affect jump performance, but likely maintained jump performance by overcoming constraints (e.g., level of rate coding).

  7. Surgeon preferences regarding antibiotic prophylaxis for ballistic fractures.

    Science.gov (United States)

    Marecek, Geoffrey S; Earhart, Jeffrey S; Gardner, Michael J; Davis, Jason; Merk, Bradley R

    2016-06-01

    Scant evidence exists to support antibiotic use for low velocity ballistic fractures (LVBF). We therefore sought to define current practice patterns. We hypothesized that most surgeons prescribe antibiotics for LVBF, prescribing is not driven by institutional protocols, and that decisions are based on protocols utilized for blunt trauma. A web-based questionnaire was emailed to the membership of the Orthopaedic Trauma Association (OTA). The questionnaire included demographic information and questions about LVBF treatment practices. Two hundred and twenty surgeons responded. One hundred and fifty-four (70 %) respondents worked at a Level-1 trauma center, 176 (80 %) had received fellowship education in orthopaedic trauma and 104 (47 %) treated at least 10 ballistic fractures annually. Responses were analyzed with SAS 9.3 for Windows (SAS Institute Inc, Cary, NC). One hundred eighty-six respondents (86 %) routinely provide antibiotics for LVBF. Those who did not were more apt to do so for intra-articular fractures (8/16, 50 %) and pelvic fractures with visceral injury (10/16, 63 %). Most surgeons (167, 76 %) do not believe the Gustilo-Anderson classification applies to ballistic fractures, and (20/29, 70 %) do not base their antibiotic choice on the classification system. Few institutions (58, 26 %) have protocols guiding antibiotic use for LVBF. Routine antibiotic use for LVBF is common; however, practice is not dictated by institutional protocol. Although antibiotic use generally follows current blunt trauma guidelines, surgeons do not base their treatment decisions the Gustilo-Anderson classification. Given the high rate of antibiotic use for LVBF, further study should focus on providing evidence-based treatment guidelines.

  8. Ballistic Characterization Of A Typical Military Steel Helmet

    Directory of Open Access Journals (Sweden)

    Mohamed Ali Maher

    2017-08-01

    Full Text Available In this study the ballistic limit of a steel helmet against a FMJ 919 mm caliber bullet is estimated. The helmet model is the typical polish helmet wz.31.The helmet material showed high strength low alloy steel material of 0.28 carbon content and 9.125 kgm2 areal density. The tensile test according to ASTM E8 showed a tensile strength of 1236.4 MPa .The average hardness value was about HV550. First shooting experiment has been executed using a 9 mm pistol based on 350 ms muzzle velocity at 5m against the simply supported helmet complete penetrations rose in this test were in the form of cracks on the helmet surface and partial penetrations were in the form of craters on the surface whose largest diameter and depth were 43 mm and 20.2 mm consequently .The second experiment was on a rifled gun arrangement 13 bullets of 919 mm caliber were shot on the examined simply supported steel helmet at a zero obliquity angle at different velocities to determine the ballistic limit velocity V50 according to MIL-STD-662F. Three major outcomes were revealed 1 the value V50 which found to be about 390 ms is higher than the one found in literature 360 ms German steel helmet model 1A1. 2 The smallest the standard deviation of the mixed results zone data the most accurate the ballistic limit is. 3Similar to the performance of blunt-ended projectiles impacting overmatching targets tD near 11 or larger It was found that the dominating failure mode of the steel helmet stuck by a hemispherical-nose projectile was plugging mode despite of having tD ratio of about 19 undermatching.

  9. Ballistic Aspects of Feasibility for Prospective Satellite Navigation Technologies

    Directory of Open Access Journals (Sweden)

    L. N. Lysenko

    2015-01-01

    Full Text Available When modeling the operating processes of ballistics and navigation support it is expedient to make decomposition of the general problem of coordinate-time and navigation support into the typical options of its engineering implementation.As the satellite navigation technologies the paper considers inter-satellite measurement and autonomous navigation mode of differential correction. It also assesses the possibility of their application to improve the accuracy of navigation determinations.Technologies using inter-satellite measurement tools such as GLONASS / GPS equipment, equipment of inter-satellite radio link, astro-optical space based devices are an independent class of navigation technologies.However, each of these options has both advantages and disadvantages that affect the eva luation of the appropriateness and feasibility of their use.The paper separately considers the problem of increasing survivability of space systems and conservation of ground control complex due to introduction of requirements to ensure the independent functioning of spacecraft and application of technologies of ballistics and navigation support, supposing to involve minimum means of automated ground control complex for these purposes.Currently, there is a completely developed theory of autonomous navigation based on astronomical positional gauges, which are used as onboard optical sensors of orientation and stabilization systems.To date, the differential navigation mode is, virtually, the only approach that can allow the olution of tasks in terms of increased accuracy, but with some restrictions.The implementation of differential mode of treatment is carried out through the creation of differential subsystems of the satellite navigation systems. These subsystems are usually divided into wide-range, regional and local ones.Analysis of ballistic aspects to implement discussed navigation technologies allowed us to identify constraints for improving accuracy to define

  10. Adaptations in athletic performance after ballistic power versus strength training.

    Science.gov (United States)

    Cormie, Prue; McGuigan, Michael R; Newton, Robert U

    2010-08-01

    To determine whether the magnitude of improvement in athletic performance and the mechanisms driving these adaptations differ in relatively weak individuals exposed to either ballistic power training or heavy strength training. Relatively weak men (n = 24) who could perform the back squat with proficient technique were randomized into three groups: strength training (n = 8; ST), power training (n = 8; PT), or control (n = 8). Training involved three sessions per week for 10 wk in which subjects performed back squats with 75%-90% of one-repetition maximum (1RM; ST) or maximal-effort jump squats with 0%-30% 1RM (PT). Jump and sprint performances were assessed as well as measures of the force-velocity relationship, jumping mechanics, muscle architecture, and neural drive. Both experimental groups showed significant (P training with no significant between-group differences evident in either jump (peak power: ST = 17.7% +/- 9.3%, PT = 17.6% +/- 4.5%) or sprint performance (40-m sprint: ST = 2.2% +/- 1.9%, PT = 3.6% +/- 2.3%). ST also displayed a significant increase in maximal strength that was significantly greater than the PT group (squat 1RM: ST = 31.2% +/- 11.3%, PT = 4.5% +/- 7.1%). The mechanisms driving these improvements included significant (P force-velocity relationship, jump mechanics, muscle architecture, and neural activation that showed a degree of specificity to the different training stimuli. Improvements in athletic performance were similar in relatively weak individuals exposed to either ballistic power training or heavy strength training for 10 wk. These performance improvements were mediated through neuromuscular adaptations specific to the training stimulus. The ability of strength training to render similar short-term improvements in athletic performance as ballistic power training, coupled with the potential long-term benefits of improved maximal strength, makes strength training a more effective training modality for relatively weak individuals.

  11. Results of a Round Robin ballistic load sensing headform test series

    NARCIS (Netherlands)

    Philippens, M.A.G.; Anctil, B.; Markwardt, K.C.

    2014-01-01

    The majority of methods to assess the behind armour blunt trauma (BABT) risk for ballistic helmets is based on plastic deformable headforms. An alternative, the Ballistic Load Sensing Headform (BLSH) can record the dynamic contact force between helmet back face and the skull. Helmet BABT methods are

  12. Electron eigen-oscillations and ballistic modes of a stable plasma

    International Nuclear Information System (INIS)

    Jungwirth, K.

    1976-01-01

    The relation between plasma responses to singular and regular initial perturbations is established. Time scaling is introduced to separate time intervals for which eigen-oscillations (Landau solution) are dominant from such where ballistic modes prevail. The enhanced role is demonstrated of the ballistic modes for an initially perturbed field-free plasma including the phenomenon of plasma wave echoes. (author)

  13. A Survey of Ballistic Transfers to Low Lunar Orbit

    Science.gov (United States)

    Parker, Jeffrey S.; Anderson, Rodney L.; Peterson, Andrew

    2011-01-01

    A simple strategy is identified to generate ballistic transfers between the Earth and Moon, i.e., transfers that perform two maneuvers: a trans-lunar injection maneuver to depart the Earth and a Lunar Orbit Insertion maneuver to insert into orbit at the Moon. This strategy is used to survey the performance of numerous transfers between varying Earth parking orbits and varying low lunar target orbits. The transfers surveyed include short 3-6 day direct transfers, longer 3-4 month low energy transfers, and variants that include Earth phasing orbits and/or lunar flybys.

  14. Thermodynamic Bounds on Precision in Ballistic Multiterminal Transport

    Science.gov (United States)

    Brandner, Kay; Hanazato, Taro; Saito, Keiji

    2018-03-01

    For classical ballistic transport in a multiterminal geometry, we derive a universal trade-off relation between total dissipation and the precision, at which particles are extracted from individual reservoirs. Remarkably, this bound becomes significantly weaker in the presence of a magnetic field breaking time-reversal symmetry. By working out an explicit model for chiral transport enforced by a strong magnetic field, we show that our bounds are tight. Beyond the classical regime, we find that, in quantum systems far from equilibrium, the correlated exchange of particles makes it possible to exponentially reduce the thermodynamic cost of precision.

  15. Debris Examination Using Ballistic and Radar Integrated Software

    Science.gov (United States)

    Griffith, Anthony; Schottel, Matthew; Lee, David; Scully, Robert; Hamilton, Joseph; Kent, Brian; Thomas, Christopher; Benson, Jonathan; Branch, Eric; Hardman, Paul; hide

    2012-01-01

    The Debris Examination Using Ballistic and Radar Integrated Software (DEBRIS) program was developed to provide rapid and accurate analysis of debris observed by the NASA Debris Radar (NDR). This software provides a greatly improved analysis capacity over earlier manual processes, allowing for up to four times as much data to be analyzed by one-quarter of the personnel required by earlier methods. There are two applications that comprise the DEBRIS system: the Automated Radar Debris Examination Tool (ARDENT) and the primary DEBRIS tool.

  16. Analysis and optimization of trajectories for Ballistic Missiles Interception

    OpenAIRE

    Montero Yéboles, Daniel

    2016-01-01

    Intercontinental Ballistic Missiles are capable of placing a nuclear warhead at more than 5,000 km away from its launching base. With the lethal power of a nuclear warhead a whole city could be wiped out by a single weapon causing millions of deaths. This means that the threat posed to any country from a single ICBM captured by a terrorist group or launched by a 'rogue' state is huge. This threat is increasing as more countries are achieving nuclear and advanced launcher capabilities. In orde...

  17. Star-grain rocket motor - nonsteady internal ballistics

    Energy Technology Data Exchange (ETDEWEB)

    Loncaric, S.; Greatrix, D.R.; Fawaz, Z. [Ryerson University, Dept. of Aerospace Engineering, Toronto (Canada)

    2004-01-01

    The nonsteady internal ballistics of a star-grain solid-propellant rocket motor are investigated through a numerical simulation model that incorporates both the internal flow and surrounding structure. The effects of structural vibration on burning rate augmentation and wave development in nonsteady operation are demonstrated. The amount of damping plays a role in influencing the predicted axial combustion instability symptoms of the motor. The variation in oscillation frequencies about a given star grain section periphery, and along the grain with different levels of burn-back, also influences the means by which the local acceleration drives the combustion and flow behaviour. (authors)

  18. 48 CFR 252.225-7018 - Notice of prohibition of certain contracts with foreign entities for the conduct of ballistic...

    Science.gov (United States)

    2010-10-01

    ... certain contracts with foreign entities for the conduct of ballistic missile defense research, development... foreign entities for the conduct of ballistic missile defense research, development, test, and evaluation... With Foreign Entities for the Conduct of Ballistic Missile Defense Research, Development, Test, and...

  19. Ballistic current transport studies of ferromagnetic multilayer films and tunnel junctions (invited)

    International Nuclear Information System (INIS)

    Rippard, W. H.; Perrella, A. C.; Buhrman, R. A.

    2001-01-01

    Three applications of ballistic electron microscopy are used to study, with nanometer-scale resolution, the magnetic and electronic properties of magnetic multilayer thin films and tunnel junctions. First, the capabilities of ballistic electron magnetic microscopy are demonstrated through an investigation of the switching behavior of continuous Ni 80 Fe 20 /Cu/Co trilayer films in the presence of an applied magnetic field. Next, the ballistic, hot-electron transport properties of Co films and multilayers formed by thermal evaporation and magnetron sputtering are compared, a comparison which reveals significant differences in the ballistic transmissivity of thin film multilayers formed by the two techniques. Finally, the electronic properties of thin aluminum oxide tunnel junctions formed by thermal evaporation and sputter deposition are investigated. Here the ballistic electron microscopy studies yield a direct measurement of the barrier height of the aluminum oxide barriers, a result that is invariant over a wide range of oxidation conditions. [copyright] 2001 American Institute of Physics

  20. Effect of measurement on the ballistic-diffusive transition in turbid media.

    Science.gov (United States)

    Glasser, Ziv; Yaroshevsky, Andre; Barak, Bavat; Granot, Er'el; Sternklar, Shmuel

    2013-10-01

    The dependence of the transition between the ballistic and the diffusive regimes of turbid media on the experimental solid angle of the detection system is analyzed theoretically and experimentally. A simple model is developed which shows the significance of experimental conditions on the location of the ballistic-diffusive transition. It is demonstrated that decreasing the solid angle expands the ballistic regime; however, this benefit is bounded by the initial Gaussian beam diffraction. In addition, choosing the appropriate wavelength according to the model's principles provides another means of expanding the ballistic regime. Consequently, by optimizing the experimental conditions, it should be possible to extract the ballistic image of a tissue with a thickness of 1 cm.

  1. Effect of ballistic electrons on ultrafast thermomechanical responses of a thin metal film

    International Nuclear Information System (INIS)

    Xiong Qi-lin; Tian Xin

    2017-01-01

    The ultrafast thermomechanical coupling problem in a thin gold film irradiated by ultrashort laser pulses with different electron ballistic depths is investigated via the ultrafast thermoelasticity model. The solution of the problem is obtained by solving finite element governing equations. The comparison between the results of ultrafast thermomechanical coupling responses with different electron ballistic depths is made to show the ballistic electron effect. It is found that the ballistic electrons have a significant influence on the ultrafast thermomechanical coupling behaviors of the gold thin film and the best laser micromachining results can be achieved by choosing the specific laser technology (large or small ballistic range). In addition, the influence of simplification of the ultrashort laser pulse source on the results is studied, and it is found that the simplification has a great influence on the thermomechanical responses, which implies that care should be taken when the simplified form of the laser source term is applied as the Gaussian heat source. (paper)

  2. Time-gated ballistic imaging using a large aperture switching beam.

    Science.gov (United States)

    Mathieu, Florian; Reddemann, Manuel A; Palmer, Johannes; Kneer, Reinhold

    2014-03-24

    Ballistic imaging commonly denotes the formation of line-of-sight shadowgraphs through turbid media by suppression of multiply scattered photons. The technique relies on a femtosecond laser acting as light source for the images and as switch for an optical Kerr gate that separates ballistic photons from multiply scattered ones. The achievable image resolution is one major limitation for the investigation of small objects. In this study, practical influences on the optical Kerr gate and image quality are discussed theoretically and experimentally applying a switching beam with large aperture (D = 19 mm). It is shown how switching pulse energy and synchronization of switching and imaging pulse in the Kerr cell influence the gate's transmission. Image quality of ballistic imaging and standard shadowgraphy is evaluated and compared, showing that the present ballistic imaging setup is advantageous for optical densities in the range of 8 ballistic imaging setup into a schlieren-type system with an optical schlieren edge.

  3. Development of ballistics identification—from image comparison to topography measurement in surface metrology

    International Nuclear Information System (INIS)

    Song, J; Chu, W; Vorburger, T V; Thompson, R; Renegar, T B; Zheng, A; Yen, J; Silver, R; Ols, M

    2012-01-01

    Fired bullets and ejected cartridge cases have unique ballistics signatures left by the firearm. By analyzing the ballistics signatures, forensic examiners can trace these bullets and cartridge cases to the firearm used in a crime scene. Current automated ballistics identification systems are primarily based on image comparisons using optical microscopy. The correlation accuracy depends on image quality which is largely affected by lighting conditions. Because ballistics signatures are geometrical micro-topographies by nature, direct measurement and correlation of the surface topography is being investigated for ballistics identification. A Two-dimensional and Three-dimensional Topography Measurement and Correlation System was developed at the National Institute of Standards and Technology for certification of Standard Reference Material 2460/2461 bullets and cartridge cases. Based on this system, a prototype system for bullet signature measurement and correlation has been developed for bullet signature identifications, and has demonstrated superior correlation results. (paper)

  4. The effects of drain scatterings on the electron transport properties of strained-Si diodes with ballistic and non-ballistic channels

    International Nuclear Information System (INIS)

    Yasenjan Ghupur; Mamtimin Geni; Mamatrishat Mamat; Abudukelimu Abudureheman

    2015-01-01

    The effects of multiple scattering on the electron transport properties in drain regions are numerically investigated for the cases of strained-Si diodes with or without scattering in the channel. The performance of non-ballistic (with scattering) channel Si-diodes is compared with that of ballistic (without scattering) channel Si-diodes, using the strain and scattering model. Our results show that the values of the electron velocity and the current in the strain model are higher than the respective values in the unstrained model, and the values of the velocity and the current in the ballistic channel model are higher than the respective values in the non-ballistic channel model. In the strain and scattering models, the effect of each carrier scattering mechanism on the performance of the Si-diodes is analyzed in the drain region. For the ballistic channel model, our results show that inter-valley optical phonon scattering improves device performance, whereas intra-valley acoustic phonon scattering degrades device performance. For the strain model, our results imply that the larger energy splitting of the strained Si could suppress the inter-valley phonon scattering rate. In conclusion, for the drain region, investigation of the strained-Si and scattering mechanisms are necessary, in order to improve the performance of nanoscale ballistic regime devices. (paper)

  5. Structural and morphological properties of GaN buffer layers grown by ammonia molecular beam epitaxy on SiC substrates for AlGaN/GaN high electron mobility transistors

    International Nuclear Information System (INIS)

    Corrion, A. L.; Poblenz, C.; Wu, F.; Speck, J. S.

    2008-01-01

    The impact of growth conditions on the surface morphology and structural properties of ammonia molecular beam epitaxy GaN buffers layers on SiC substrates was investigated. The threading dislocation (TD) density was found to decrease with decreasing NH 3 :Ga flux ratio, which corresponded to an increase in surface roughness and reduction in residual compressive lattice mismatch stress. Furthermore, the dislocation density and compressive stress decreased for increasing buffer thickness. TD inclination was proposed to account for these observations. Optimized surface morphologies were realized at high NH 3 :Ga flux ratios and were characterized by monolayer-high steps, spiral hillocks, and pyramidal mounds, with rms roughness of ∼1.0 nm over 2x2 μm 2 atomic force microscopy images. Smooth surface morphologies were realized over a large range of growth temperatures and fluxes, and growth rates of up to 1 μm/h were achieved. TD densities in the buffers as low as 3x10 9 cm -2 were demonstrated. These buffers were highly insulating and were used in recently reported AlGaN/GaN HEMTs with power densities of >11 W/mm at 4 and 10 GHz

  6. Failure rates for accelerated acceptance testing of silicon transistors

    Science.gov (United States)

    Toye, C. R.

    1968-01-01

    Extrapolation tables for the control of silicon transistor product reliability have been compiled. The tables are based on a version of the Arrhenius statistical relation and are intended to be used for low- and medium-power silicon transistors.

  7. Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors

    Science.gov (United States)

    Kagan; Mitzi; Dimitrakopoulos

    1999-10-29

    Organic-inorganic hybrid materials promise both the superior carrier mobility of inorganic semiconductors and the processability of organic materials. A thin-film field-effect transistor having an organic-inorganic hybrid material as the semiconducting channel was demonstrated. Hybrids based on the perovskite structure crystallize from solution to form oriented molecular-scale composites of alternating organic and inorganic sheets. Spin-coated thin films of the semiconducting perovskite (C(6)H(5)C(2)H(4)NH(3))(2)SnI(4) form the conducting channel, with field-effect mobilities of 0.6 square centimeters per volt-second and current modulation greater than 10(4). Molecular engineering of the organic and inorganic components of the hybrids is expected to further improve device performance for low-cost thin-film transistors.

  8. Selective detection of SO2 at room temperature based on organoplatinum functionalized single-walled carbon nanotube field effect transistors

    NARCIS (Netherlands)

    Cid, C.C.; Jimenez-Cadena, G.; Riu, J.; Maroto, A.; Rius, F.X.; Batema, G.D.; van Koten, G.

    2009-01-01

    We report a field effect transistor (FET) based on a network of single-walled carbon nanotubes (SWCNTs) that for the first time can selectively detect a single gaseous molecule in air by chemically functionalizing the SWCNTs with a selective molecular receptor. As a target model we used SO2. The

  9. Graphene ballistic nano-rectifier with very high responsivity

    Science.gov (United States)

    Auton, Gregory; Zhang, Jiawei; Kumar, Roshan Krishna; Wang, Hanbin; Zhang, Xijian; Wang, Qingpu; Hill, Ernie; Song, Aimin

    2016-01-01

    Although graphene has the longest mean free path of carriers of any known electronic material, very few novel devices have been reported to harness this extraordinary property. Here we demonstrate a ballistic nano-rectifier fabricated by creating an asymmetric cross-junction in single-layer graphene sandwiched between boron nitride flakes. A mobility ∼200,000 cm2 V−1 s−1 is achieved at room temperature, well beyond that required for ballistic transport. This enables a voltage responsivity as high as 23,000 mV mW−1 with a low-frequency input signal. Taking advantage of the output channels being orthogonal to the input terminals, the noise is found to be not strongly influenced by the input. Hence, the corresponding noise-equivalent power is as low as 0.64 pW Hz−1/2. Such performance is even comparable to superconducting bolometers, which however need to operate at cryogenic temperatures. Furthermore, output oscillations are observed at low temperatures, the period of which agrees with the lateral size quantization. PMID:27241162

  10. Ballistic trauma from an exploding electronic cigarette: Case report

    Directory of Open Access Journals (Sweden)

    Christopher Ban, DMD

    2017-09-01

    Full Text Available Electronic cigarettes (e-cigarettes first became available in the United States in 2007, and since that time, the number of e-cigarette users in the US has grown to over 2.5 million. During the period from 2010–2013 alone, the percentage of Americans who reported that they had ever used electronic cigarettes more than doubled from 3.3% to 8.5%. This number will continue to grow, as the use of electronic cigarettes as an alternative to smoking and in smoking cessation is being explored by the public and medical professionals alike. This article presents a case report involving a patient who was injured when the electronic cigarette he was smoking exploded in his face, causing a ballistic injury to his maxilla, as well as a series of other associated injuries. There have been several recent reports in the literature of exploding electronic cigarettes. This article presents a case of avulsive injury due to ballistic trauma with associated impaction of the vaporizing device.

  11. Improving Ballistic Performance of Polyurethane Foam by Nanoparticle Reinforcement

    Directory of Open Access Journals (Sweden)

    M. F. Uddin

    2009-01-01

    Full Text Available We report improving ballistic performance of polyurethane foam by reinforcing it with nanoscale TiO2 particles. Particles were dispersed through a sonic cavitation process and the loading of particles was 3 wt% of the total polymer. Once foams were reinforced, sandwich panels were made and impacted with fragment simulating projectiles (FSPs in a 1.5-inch gas gun. Projectile speed was set up to have complete penetration of the target in each experiment. Test results have indicated that sandwich with nanophased cores absorbed about 20% more kinetic energy than their neat counterpart. The corresponding increase in ballistic limit was around 12% over the neat control samples. The penetration phenomenon was also monitored using a high-speed camera. Analyses of digital images showed that FSP remained inside the nanophased sandwich for about 7 microseconds longer than that of a neat sandwich demonstrating improved energy absorption capability of the nanoparticle reinforced core. Failure modes for energy absorption have been investigated through a microscope and high-speed images.

  12. Civilian casualties of Iraqi ballistic missile attack to

    Directory of Open Access Journals (Sweden)

    Khaji Ali

    2012-06-01

    Full Text Available 【Abstract】Objective: To determine the pattern of causalities of Iraqi ballistic missile attacks on Tehran, the capital of Iran, during Iraq-Iran war. Methods: Data were extracted from the Army Staff Headquarters based on daily reports of Iranian army units during the war. Results: During 52 days, Tehran was stroked by 118 Al-Hussein missiles (a modified version of Scud missile. Eighty-six missiles landed in populated areas. During Iraqi missile attacks, 422 civilians died and 1 579 injured (4.9 deaths and 18.3 injuries per missile. During 52 days, 8.1 of the civilians died and 30.4 injured daily. Of the cases that died, 101 persons (24% were excluded due to the lack of information. Among the remainders, 179 (55.8% were male and 142 (44.2% were female. The mean age of the victims was 25.3 years±19.9 years. Our results show that the high accuracy of modified Scud missiles landed in crowded ar-eas is the major cause of high mortality in Tehran. The pres-ence of suitable warning system and shelters could reduce civilian casualties. Conclusion: The awareness and readiness of civilian defense forces, rescue services and all medical facilities for dealing with mass casualties caused by ballistic missile at-tacks are necessary. Key words: Mortality; War; Mass casualty incidents; Wounds and injuries

  13. The proliferation of ballistic missiles: an aggravating factor of crises

    International Nuclear Information System (INIS)

    Rousset, Valery

    2015-01-01

    After a brief recall of the history of the development of ballistic missiles from World War II, the author discusses the various uses of these missiles, on the one hand by major powers, and on the other hand by other countries like Israel, Pakistan and India, and also Egypt and Iraq. He recalls the uses of these missiles during regional conflicts (Scuds by Iraq) and then discusses the issue of proliferation of ballistic missiles. He notices that most of these weapons are present in the arsenal of major powers under the form of intercontinental missiles, intermediate range weapons or theatre weapons. On the Third World side, proliferation concerns short- and medium-range missiles produced from technology transfers or national programmes. Mobile systems are now present in all conflicts (notably Libya, Syria) and are now based on more advanced technologies for propellers as well as for control and guidance systems. In the last part, the author discusses the perspectives associated with these missiles which are a strong offensive weapon, and are also modernised to carry nuclear warheads or multiple warheads. These evolutions could put the western superiority into question again

  14. Analytical model for a cooperative ballistic deposition in one dimension

    Science.gov (United States)

    Hassan, M. Kamrul; Wessel, Niels; Kurths, Jürgen

    2003-06-01

    We formulate a model for a cooperative ballistic deposition (CBD) process whereby the incoming particles are correlated with those already adsorbed via attractive force. The strength of the correlation is controlled by a tunable parameter a that interpolates the classical car parking problem at a=0, the ballistic deposition at a=1, and the CBD model at a>1. The effects of the correlation in the CBD model are as follows. The jamming coverage q(a) increases with the strength of attraction a due to an ever-increasing tendency of cluster formation. The system almost reaches the closest packing structure as a→∞ but never forms a percolating cluster, which is typical of one-dimensional systems. In the large a regime, the mean cluster size k increases as a1/2. Furthermore, the asymptotic approach towards the closest packing is purely algebraic both with a as q(∞)-q(a)˜a-1/2 and with k as q(∞)-q(k)˜k-1, where q(∞)≃1.

  15. Improving Ballistic Performance of Polyurethane Foam by Nanoparticle Reinforcement

    International Nuclear Information System (INIS)

    Uddin, M.F.; Zainuddin, S.; Mahfuz, H.; Jeelani, S.

    2009-01-01

    We report improving ballistic performance of polyurethane foam by reinforcing it with nano scale TiO 2 particles. Particles were dispersed through a sonic cavitation process and the loading of particles was 3 wt % of the total polymer. Once foams were reinforced, sandwich panels were made and impacted with fragment simulating projectiles (FSPs) in a 1.5-inch gas gun. Projectile speed was set up to have complete penetration of the target in each experiment. Test results have indicated that sandwich with nano phased cores absorbed about 20% more kinetic energy than their neat counterpart. The corresponding increase in ballistic limit was around 12% over the neat control samples. The penetration phenomenon was also monitored using a high-speed camera. Analyses of digital images showed that FSP remained inside the nano phased sandwich for about 7 microseconds longer than that of a neat sandwich demonstrating improved energy absorption capability of the nanoparticle reinforced core. Failure modes for energy absorption have been investigated through a microscope and high-speed images.

  16. Organic tunnel field effect transistors

    KAUST Repository

    Tietze, Max Lutz

    2017-06-29

    Various examples are provided for organic tunnel field effect transistors (OTFET), and methods thereof. In one example, an OTFET includes a first intrinsic layer (i-layer) of organic semiconductor material disposed over a gate insulating layer; source (or drain) contact stacks disposed on portions of the first i-layer; a second i-layer of organic semiconductor material disposed on the first i-layer surrounding the source (or drain) contact stacks; an n-doped organic semiconductor layer disposed on the second i-layer; and a drain (or source) contact layer disposed on the n-doped organic semiconductor layer. The source (or drain) contact stacks can include a p-doped injection layer, a source (or drain) contact layer, and a contact insulating layer. In another example, a method includes disposing a first i-layer over a gate insulating layer; forming source or drain contact stacks; and disposing a second i-layer, an n-doped organic semiconductor layer, and a drain or source contact.

  17. Ambipolar phosphorene field effect transistor.

    Science.gov (United States)

    Das, Saptarshi; Demarteau, Marcel; Roelofs, Andreas

    2014-11-25

    In this article, we demonstrate enhanced electron and hole transport in few-layer phosphorene field effect transistors (FETs) using titanium as the source/drain contact electrode and 20 nm SiO2 as the back gate dielectric. The field effect mobility values were extracted to be ∼38 cm(2)/Vs for electrons and ∼172 cm(2)/Vs for the holes. On the basis of our experimental data, we also comprehensively discuss how the contact resistances arising due to the Schottky barriers at the source and the drain end effect the different regime of the device characteristics and ultimately limit the ON state performance. We also propose and implement a novel technique for extracting the transport gap as well as the Schottky barrier height at the metal-phosphorene contact interface from the ambipolar transfer characteristics of the phosphorene FETs. This robust technique is applicable to any ultrathin body semiconductor which demonstrates symmetric ambipolar conduction. Finally, we demonstrate a high gain, high noise margin, chemical doping free, and fully complementary logic inverter based on ambipolar phosphorene FETs.

  18. Low-background transistors for application in nuclear electronics

    International Nuclear Information System (INIS)

    Krasnokutskij, R.N.; Kurchaninov, L.L.; Fedyakin, N.N.; Shuvalov, R.S.

    1988-01-01

    Investigations of silicon transistors were carried out to determine transistors with low value of base distributed resistance (R). Measurement results for R and current amplification coefficient β are presented for bipolar transistor several types. Correlations between R and β were studied. KT 399A, 2T640A and KT3117B transistors are found to be most adequate ones as a base for low-background amplifier development

  19. High Accuracy Transistor Compact Model Calibrations

    Energy Technology Data Exchange (ETDEWEB)

    Hembree, Charles E. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Mar, Alan [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Robertson, Perry J. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    Typically, transistors are modeled by the application of calibrated nominal and range models. These models consists of differing parameter values that describe the location and the upper and lower limits of a distribution of some transistor characteristic such as current capacity. Correspond- ingly, when using this approach, high degrees of accuracy of the transistor models are not expected since the set of models is a surrogate for a statistical description of the devices. The use of these types of models describes expected performances considering the extremes of process or transistor deviations. In contrast, circuits that have very stringent accuracy requirements require modeling techniques with higher accuracy. Since these accurate models have low error in transistor descriptions, these models can be used to describe part to part variations as well as an accurate description of a single circuit instance. Thus, models that meet these stipulations also enable the calculation of quantifi- cation of margins with respect to a functional threshold and uncertainties in these margins. Given this need, new model high accuracy calibration techniques for bipolar junction transis- tors have been developed and are described in this report.

  20. Low-voltage self-assembled monolayer field-effect transistors on flexible substrates.

    Science.gov (United States)

    Schmaltz, Thomas; Amin, Atefeh Y; Khassanov, Artoem; Meyer-Friedrichsen, Timo; Steinrück, Hans-Georg; Magerl, Andreas; Segura, Juan José; Voitchovsky, Kislon; Stellacci, Francesco; Halik, Marcus

    2013-08-27

    Self-assembled monolayer field-effect transistors (SAMFETs) of BTBT functionalized phosphonic acids are fabricated. The molecular design enables device operation with charge carrier mobilities up to 10(-2) cm(2) V(-1) s(-1) and for the first time SAMFETs which operate on rough, flexible PEN substrates even under mechanical substrate bending. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Impact of barrier thickness on transistor performance in AlN/GaN high electron mobility transistors grown on free-standing GaN substrates

    International Nuclear Information System (INIS)

    Deen, David A.; Storm, David F.; Meyer, David J.; Bass, Robert; Binari, Steven C.; Gougousi, Theodosia; Evans, Keith R.

    2014-01-01

    A series of six ultrathin AlN/GaN heterostructures with varied AlN thicknesses from 1.5–6 nm have been grown by molecular beam epitaxy on free-standing hydride vapor phase epitaxy GaN substrates. High electron mobility transistors (HEMTs) were fabricated from the set in order to assess the impact of barrier thickness and homo-epitaxial growth on transistor performance. Room temperature Hall characteristics revealed mobility of 1700 cm 2 /V s and sheet resistance of 130 Ω/□ for a 3 nm thick barrier, ranking amongst the lowest room-temperature sheet resistance values reported for a polarization-doped single heterostructure in the III-Nitride family. DC and small signal HEMT electrical characteristics from submicron gate length HEMTs further elucidated the effect of the AlN barrier thickness on device performance.

  2. Impact of barrier thickness on transistor performance in AlN/GaN high electron mobility transistors grown on free-standing GaN substrates

    Energy Technology Data Exchange (ETDEWEB)

    Deen, David A., E-mail: david.deen@alumni.nd.edu; Storm, David F.; Meyer, David J.; Bass, Robert; Binari, Steven C. [Electronics Science and Technology Division, Naval Research Laboratory, Washington, DC 20375-5347 (United States); Gougousi, Theodosia [Physics Department, University of Maryland Baltimore County, Baltimore, Maryland 21250 (United States); Evans, Keith R. [Kyma Technologies, Raleigh, North Carolina 27617 (United States)

    2014-09-01

    A series of six ultrathin AlN/GaN heterostructures with varied AlN thicknesses from 1.5–6 nm have been grown by molecular beam epitaxy on free-standing hydride vapor phase epitaxy GaN substrates. High electron mobility transistors (HEMTs) were fabricated from the set in order to assess the impact of barrier thickness and homo-epitaxial growth on transistor performance. Room temperature Hall characteristics revealed mobility of 1700 cm{sup 2}/V s and sheet resistance of 130 Ω/□ for a 3 nm thick barrier, ranking amongst the lowest room-temperature sheet resistance values reported for a polarization-doped single heterostructure in the III-Nitride family. DC and small signal HEMT electrical characteristics from submicron gate length HEMTs further elucidated the effect of the AlN barrier thickness on device performance.

  3. Design method for a digitally trimmable MOS transistor structure

    DEFF Research Database (Denmark)

    Ning, Feng; Bruun, Erik

    1996-01-01

    A digitally trimmable MOS transistor is a MOS transistor consisting of a drain, a source, and a main gate as well as several subgates. The transconductance of the transistor is tunabledigitally by means of connecting subgates either to the main gate or to the source terminal. In this paper, a sys...

  4. Stretchable transistors with buckled carbon nanotube films as conducting channels

    Science.gov (United States)

    Arnold, Michael S; Xu, Feng

    2015-03-24

    Thin-film transistors comprising buckled films comprising carbon nanotubes as the conductive channel are provided. Also provided are methods of fabricating the transistors. The transistors, which are highly stretchable and bendable, exhibit stable performance even when operated under high tensile strains.

  5. High mobility polymer gated organic field effect transistor using zinc ...

    Indian Academy of Sciences (India)

    Organic thin film transistors were fabricated using evaporated zinc phthalocyanine as the active layer. Parylene film ... At room temperature, these transistors exhibit p-type conductivity with field-effect ... Keywords. Organic semiconductor; field effect transistor; phthalocyanine; high mobility. ... The evaporation rate was kept at ...

  6. EDITORIAL: Reigniting innovation in the transistor Reigniting innovation in the transistor

    Science.gov (United States)

    Demming, Anna

    2012-09-01

    Today the transistor is integral to the electronic circuitry that wires our lives. When Bardeen and Brattain first observed an amplified signal by connecting electrodes to a germanium crystal they saw that their 'semiconductor triode' could prove a useful alternative to the more cumbersome vacuum tubes used at the time [1]. But it was perhaps William Schottky who recognized the extent of the transistor's potential. A basic transistor has three or more terminals and current across one pair of terminals can switch or amplify current through another pair. Bardeen, Brattain and Schottky were jointly awarded a Nobel Prize in 1956 'for their researches on semiconductors and their discovery of the transistor effect' [2]. Since then many new forms of the transistor have been developed and understanding of the underlying properties is constantly advancing. In this issue Chen and Shih and colleagues at Taiwan National University and Drexel University report a pyroelectrics transistor. They show how a novel optothermal gating mechanism can modulate the current, allowing a range of developments in nanoscale optoelectronics and wireless devices [3]. The explosion of interest in nanoscale devices in the 1990s inspired electronics researchers to look for new systems that can act as transistors, such as carbon nanotube [4] and silicon nanowire [5] transistors. Generally these transistors function by raising and lowering an energy barrier of kBT -1, but researchers in the US and Canada have demonstrated that the quantum interference between two electronic pathways through aromatic molecules can also modulate the current flow [6]. The device has advantages for further miniaturization where energy dissipation in conventional systems may eventually cause complications. Interest in transistor technology has also led to advances in fabrication techniques for achieving high production quantities, such as printing [7]. Researchers in Florida in the US demonstrated field effect transistor

  7. Effect of joint design on ballistic performance of quenched and tempered steel welded joints

    International Nuclear Information System (INIS)

    Balakrishnan, M.; Balasubramanian, V.; Madhusudhan Reddy, G.

    2014-01-01

    Highlights: • Traditional usage of austenitic stainless steel filler for armour steel welding shows poor ballistic performance. • Earlier efforts show dubious success on ballistic resistance of armour steel joints. • Comparative evaluation of equal/unequal joint design on ballistic performance. • Effect of joint design covers the main aspects of successful bullet stoppage. - Abstract: A study was carried out to evaluate the effect of joint design on ballistic performance of armour grade quenched and tempered steel welded joints. Equal double Vee and unequal double Vee joint configuration were considered in this study. Targets were fabricated using 4 mm thick tungsten carbide hardfaced middle layer; above and below which austenitic stainless steel layers were deposited on both sides of the hardfaced interlayer in both joint configurations. Shielded metal arc welding process was used to deposit for all layers. The fabricated targets were evaluated for its ballistic performance and the results were compared in terms of depth of penetration on weld metal. From the ballistic test results, it was observed that both the targets successfully stopped the bullet penetration at weld center line. Of the two targets, the target made with unequal double Vee joint configuration offered maximum resistance to the bullet penetration at weld metal location without any bulge at the rear side. The higher volume of austenitic stainless steel front layer and the presence of hardfaced interlayer after some depth of soft austenitic stainless steel front layer is the primary reason for the superior ballistic performance of this joint

  8. Assessment and monitoring of ballistic and maximal upper-body strength qualities in athletes.

    Science.gov (United States)

    Young, Kieran P; Haff, G Gregory; Newton, Robert U; Gabbett, Tim J; Sheppard, Jeremy M

    2015-03-01

    To evaluate whether the dynamic strength index (DSI: ballistic peak force/isometric peak force) could be effectively used to guide specific training interventions and detect training-induced changes in maximal and ballistic strength. Twenty-four elite male athletes were assessed in the isometric bench press and a 45% 1-repetition-maximum (1RM) ballistic bench throw using a force plate and linear position transducer. The DSI was calculated using the peak force values obtained during the ballistic bench throw and isometric bench press. Athletes were then allocated into 2 groups as matched pairs based on their DSI and strength in the 1RM bench press. Over the 5 wk of training, athletes performed either high-load (80-100% 1RM) bench press or moderate-load (40-55% 1RM) ballistic bench throws. The DSI was sensitive to disparate training methods, with the bench-press group increasing isometric bench-press peak force (P=.035, 91% likely), and the ballistic-bench-throw group increasing bench-throw peak force to a greater extent (P≤.001, 83% likely). A significant increase (P≤.001, 93% likely) in the DSI was observed for both groups. The DSI can be used to guide specific training interventions and can detect training-induced changes in isometric bench-press and ballistic bench-throw peak force over periods as short as 5 wk.

  9. A new experimental setup to characterize the dynamic mechanical behaviour of ballistic yarns

    International Nuclear Information System (INIS)

    Chevalier, C; Kerisit, C; Faderl, N; Klavzar, A; Boussu, F; Coutellier, D

    2016-01-01

    Fabrics have been widely used as part of ballistic protections since the 1970s and the development of new ballistic solutions made from fabrics need numerical simulations, in order to predict the performance of the ballistic protection. The performances and the induced mechanisms in ballistic fabrics during an impact depend on the weaving parameters and also on the inner parameters of the yarns used inside these structures. Thus, knowing the dynamic behaviour of yarn is essential to determine the ballistic behaviour of fabrics during an impact. Two major experimental devices exist and are used to test ballistic yarns in a dynamic uniaxial tension. The first one corresponds to the Split Hopkinson Tensile Bars device, which is commonly used to characterize the mechanical properties of materials in uniaxial tension and under high loading. The second one is the transversal impact device. The real conditions of ballistic impact can be realized with this device. Then, this paper deals with a new experimental setup developed in our laboratory and called the ‘tensile impact test for yarn’ (TITY) device. With this device, specific absorbed energy measurements of para-aramid yarns (336 Tex, Twaron ™ , 1000 filaments) have been carried out and revealed that static and dynamic properties of para-aramid are different. (paper)

  10. Transistor Small Signal Analysis under Radiation Effects

    International Nuclear Information System (INIS)

    Sharshar, K.A.A.

    2004-01-01

    A Small signal transistor parameters dedicate the operation of bipolar transistor before and after exposed to gamma radiation (1 Mrad up to 5 Mrads) and electron beam(1 MeV, 25 mA) with the same doses as a radiation sources, the electrical parameters of the device are changed. The circuit Model has been discussed.Parameters, such as internal emitter resistance (re), internal base resistance, internal collector resistance (re), emitter base photocurrent (Ippe) and base collector photocurrent (Ippe). These parameters affect on the operation of the device in its applications, which work as an effective element, such as current gain (hFE≡β)degradation it's and effective parameter in the device operation. Also the leakage currents (IcBO) and (IEBO) are most important parameters, Which increased with radiation doses. Theoretical representation of the change in the equivalent circuit for NPN and PNP bipolar transistor were discussed, the input and output parameters of the two types were discussed due to the change in small signal input resistance of the two types. The emitter resistance(re) were changed by the effect of gamma and electron beam irradiation, which makes a change in the role of matching impedances between transistor stages. Also the transistor stability factors S(Ico), S(VBE) and S(β are detected to indicate the transistor operations after exposed to radiation fields. In low doses the gain stability is modified due to recombination of induced charge generated during device fabrication. Also the load resistance values are connected to compensate the effect

  11. Multicolored Nanofiber Based Organic Light-Emitting Transistor

    DEFF Research Database (Denmark)

    With Jensen, Per Baunegaard; Kjelstrup-Hansen, Jakob; Tavares, Luciana

    For optoelectronic applications, organic semiconductors have several advantages over their inorganic counterparts such as facile synthesis, tunability via synthetic chemistry, and low temperature processing. Self-assembled, molecular crystalline nanofibers are of particular interest as they could...... form ultra-small light-emitters in future nanophotonic applications. Such organic nanofibers exhibit many interesting optical properties including polarized photo- and electroluminescence, waveguiding, and emission color tunability. We here present a first step towards a multicolored, electrically...... driven device by combining nanofibers made from two different molecules, parahexaphenylene (p6P) and 5,5´-Di-4-biphenyl-2,2´-bithiophene (PPTTPP), which emits blue and green light, respectively. The organic nanofibers are implemented on a bottom gate/bottom contact field-effect transistor platform using...

  12. Lateral and Vertical Organic Transistors

    Science.gov (United States)

    Al-Shadeedi, Akram

    An extensive study has been performed to provide a better understanding of the operation principles of doped organic field-effect transistors (OFETs), organic p-i-n diodes, Schottky diodes, and organic permeable base transistors (OPBTs). This has been accomplished by a combination of electrical and structural characterization of these devices. The discussion of doped OFETs focuses on the shift of the threshold voltage due to increased doping concentrations and the generation and transport of minority charge carriers. Doping of pentacene OFETs is achieved by co-evaporation of pentacene with the n-dopant W2(hpp)4. It is found that pentacene thin film are efficiently doped and that a conductivity in the range of 2.6 x 10-6 S cm-1 for 1 wt% to 2.5 x 10-4 S cm-1 for 16 wt% is reached. It is shown that n-doped OFET consisting of an n-doped channel and n-doped contacts are ambipolar. This behavior is surprising, as n-doping the contacts should suppress direct injection of minority charge carriers (holes). It was proposed that minority charge carrier injection and hence the ambipolar characteristic of n-doped OFETs can be explained by Zener tunneling inside the intrinsic pentacene layer underneath the drain electrode. It is shown that the electric field in this layer is indeed in the range of the breakdown field of pentacene based p-i-n Zener homodiodes. Doping the channel has a profound influence on the onset voltage of minority (hole) conduction. The onset voltage can be shifted by lightly n-doping the channel. The shift of onset voltage can be explained by two mechanisms: first, due to a larger voltage that has to be applied to the gate in order to fully deplete the n-doped layer. Second, it can be attributed to an increase in hole trapping by inactive dopants. Moreover, it has been shown that the threshold voltage of majority (electron) conduction is shifted by an increase in the doping concentration, and that the ambipolar OFETs can be turned into unipolar OFETs at

  13. Graphene Field Effect Transistor for Radiation Detection

    Science.gov (United States)

    Li, Mary J. (Inventor); Chen, Zhihong (Inventor)

    2016-01-01

    The present invention relates to a graphene field effect transistor-based radiation sensor for use in a variety of radiation detection applications, including manned spaceflight missions. The sensing mechanism of the radiation sensor is based on the high sensitivity of graphene in the local change of electric field that can result from the interaction of ionizing radiation with a gated undoped silicon absorber serving as the supporting substrate in the graphene field effect transistor. The radiation sensor has low power and high sensitivity, a flexible structure, and a wide temperature range, and can be used in a variety of applications, particularly in space missions for human exploration.

  14. Fundamentals of RF and microwave transistor amplifiers

    CERN Document Server

    Bahl, Inder J

    2009-01-01

    A Comprehensive and Up-to-Date Treatment of RF and Microwave Transistor Amplifiers This book provides state-of-the-art coverage of RF and microwave transistor amplifiers, including low-noise, narrowband, broadband, linear, high-power, high-efficiency, and high-voltage. Topics covered include modeling, analysis, design, packaging, and thermal and fabrication considerations. Through a unique integration of theory and practice, readers will learn to solve amplifier-related design problems ranging from matching networks to biasing and stability. More than 240 problems are included to help read

  15. Switching Characteristics of Ferroelectric Transistor Inverters

    Science.gov (United States)

    Laws, Crystal; Mitchell, Coey; MacLeod, Todd C.; Ho, Fat D.

    2010-01-01

    This paper presents the switching characteristics of an inverter circuit using a ferroelectric field effect transistor, FeFET. The propagation delay time characteristics, phl and plh are presented along with the output voltage rise and fall times, rise and fall. The propagation delay is the time-delay between the V50% transitions of the input and output voltages. The rise and fall times are the times required for the output voltages to transition between the voltage levels V10% and V90%. Comparisons are made between the MOSFET inverter and the ferroelectric transistor inverter.

  16. Static Characteristics of the Ferroelectric Transistor Inverter

    Science.gov (United States)

    Mitchell, Cody; Laws, crystal; MacLeond, Todd C.; Ho, Fat D.

    2010-01-01

    The inverter is one of the most fundamental building blocks of digital logic, and it can be used as the foundation for understanding more complex logic gates and circuits. This paper presents the characteristics of an inverter circuit using a ferroelectric field-effect transistor. The voltage transfer characteristics are analyzed with respect to varying parameters such as supply voltage, input voltage, and load resistance. The effects of the ferroelectric layer between the gate and semiconductor are examined, and comparisons are made between the inverters using ferroelectric transistors and those using traditional MOSFETs.

  17. Ballistic Transport Exceeding 28 μm in CVD Grown Graphene.

    Science.gov (United States)

    Banszerus, Luca; Schmitz, Michael; Engels, Stephan; Goldsche, Matthias; Watanabe, Kenji; Taniguchi, Takashi; Beschoten, Bernd; Stampfer, Christoph

    2016-02-10

    We report on ballistic transport over more than 28 μm in graphene grown by chemical vapor deposition (CVD) that is fully encapsulated in hexagonal boron nitride. The structures are fabricated by an advanced dry van-der-Waals transfer method and exhibit carrier mobilities of up to three million cm(2)/(Vs). The ballistic nature of charge transport is probed by measuring the bend resistance in cross- and square-shaped devices. Temperature-dependent measurements furthermore prove that ballistic transport is maintained exceeding 1 μm up to 200 K.

  18. A theoretical analysis of ballistic electron emission microscopy: band structure effects and attenuation lengths

    International Nuclear Information System (INIS)

    Andres, P.L. de; Reuter, K.; Garcia-Vidal, F.J.; Flores, F.; Hohenester, U.; Kocevar, P.

    1998-01-01

    Using quantum mechanical approach, we compute the ballistic electron emission microscopy current distribution in reciprocal space to compare experimental and theoretical spectroscopic I(V) curves. In the elastic limit, this formalism is a 'parameter free' representation of the problem. At low voltages, low temperatures, and for thin metallic layers, the elastic approximation is enough to explain the experiments (ballistic conditions). At low temperatures, inelastic effects can be taken into account approximately by introducing an effective electron-electron lifetime as an imaginary part in the energy. Ensemble Monte Carlo calculations were also performed to obtain ballistic electron emission microscopy currents in good agreement with the previous approach. (author)

  19. Comparison of third-order plasma wave echoes with ballistic second-order plasma wave echoes

    International Nuclear Information System (INIS)

    Leppert, H.D.; Schuelter, H.; Wiesemann, K.

    1982-01-01

    The apparent dispersion of third-order plasma wave echoes observed in a high frequency plasma is compared with that of simultaneously observed ballistic second-order echoes. Amplitude and wavelength of third-order echoes are found to be always smaller than those of second-order echoes, however, the dispersion curves of both types of echoes are very similar. These observations are in qualitative agreement with calculations of special ballistic third-order echoes. The ballistic nature of the observed third-order echoes may, therefore, be concluded from these measurements. (author)

  20. Ballistic Resistance of Armored Passenger Vehicles: Test Protocols and Quality Methods

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey M. Lacy; Robert E. Polk

    2005-07-01

    This guide establishes a test methodology for determining the overall ballistic resistance of the passenger compartment of assembled nontactical armored passenger vehicles (APVs). Because ballistic testing of every piece of every component of an armored vehicle is impractical, if not impossible, this guide describes a testing scheme based on statistical sampling of exposed component surface areas. Results from the test of the sampled points are combined to form a test score that reflects the probability of ballistic penetration into the passenger compartment of the vehicle.

  1. Influence of Material Properties on the Ballistic Performance of Ceramics for Personal Body Armour

    Directory of Open Access Journals (Sweden)

    Christian Kaufmann

    2003-01-01

    Full Text Available In support of improved personal armour development, depth of penetration tests have been conducted on four different ceramic materials including alumina, modified alumina, silicon carbide and boron carbide. These experiments consisted of impacting ceramic tiles bonded to aluminum cylinders with 0.50 caliber armour piercing projectiles. The results are presented in terms of ballistic efficiency, and the validity of using ballistic efficiency as a measure of ceramic performance was examined. In addition, the correlation between ballistic performance and ceramic material properties, such as elastic modulus, hardness, spall strength and Hugoniot Elastic Limit, has been considered.

  2. Poly(3-hexylthiophene): TIPS-pentacene blends aiming transistor applications

    Energy Technology Data Exchange (ETDEWEB)

    Silva Ozório, Maiza da, E-mail: ozoriounesp@gmail.com; Nogueira, Gabriel Leonardo; Morais, Rogério Miranda; Silva Martin, Cibely da; Constantino, Carlos José Leopoldo; Alves, Neri

    2016-06-01

    Poly(3-hexylthiophene):6,13-bis(triisopropylsilylethynyl)-pentacene (P3HT:TP) blends with a ratio of 1:1 (wt/wt) were deposited via spin coating on anodized oxide (Al{sub 2}O{sub 3}). A phase separation of the compounds was observed, resulting in the formation of crystalline aggregates of TP molecules that segregate vertically on the surface. The form of segregation depends on the oxide surface treatment used. Spectroscopy analysis shows a higher molecular order of P3HT in the blend than for neat film and that TP molecules are also distributed in the polymeric matrix. Regarding the OFET characteristics, charge carrier mobilities of 1.2 × 10{sup −3} cm{sup 2} V{sup −1} s{sup −1} and 2.0 × 10{sup −3} cm{sup 2} V{sup −1} s{sup −1} were obtained from devices for untreated and (hexamethyldisilazane) HMDS-treated Al{sub 2}O{sub 3} gate dielectric, respectively. These results confirm that P3HT:TP blends have good potential as an active layer in organic field effect transistors (OFETs). - Highlights: • Phase separation occurs in the P3HT:TP blend. • The P3HT:TP blends form aggregates that segregate vertically to the surface. • The molecular order of the P3HT is higher for the blend than for the neat film. • Treatment of surface with HMDS influence in the formation of the aggregate • The P3HT:TP blends have great viability of using for application in transistors.

  3. Dimension dependence of clustering dynamics in models of ballistic aggregation and freely cooling granular gas

    Science.gov (United States)

    Paul, Subhajit; Das, Subir K.

    2018-03-01

    Via event-driven molecular dynamics simulations we study kinetics of clustering in assemblies of inelastic particles in various space dimensions. We consider two models, viz., the ballistic aggregation model (BAM) and the freely cooling granular gas model (GGM), for each of which we quantify the time dependence of kinetic energy and average mass of clusters (that form due to inelastic collisions). These quantities, for both the models, exhibit power-law behavior, at least in the long time limit. For the BAM, corresponding exponents exhibit strong dimension dependence and follow a hyperscaling relation. In addition, in the high packing fraction limit the behavior of these quantities become consistent with a scaling theory that predicts an inverse relation between energy and mass. On the other hand, in the case of the GGM we do not find any evidence for such a picture. In this case, even though the energy decay, irrespective of packing fraction, matches quantitatively with that for the high packing fraction picture of the BAM, it is inversely proportional to the growth of mass only in one dimension, and the growth appears to be rather insensitive to the choice of the dimension, unlike the BAM.

  4. Significantly High Thermal Rectification in an Asymmetric Polymer Molecule Driven by Diffusive versus Ballistic Transport.

    Science.gov (United States)

    Ma, Hao; Tian, Zhiting

    2018-01-10

    Tapered bottlebrush polymers have novel nanoscale polymer architecture. Using nonequilibrium molecular dynamics simulations, we showed that these polymers have the unique ability to generate thermal rectification in a single polymer molecule and offer an exceptional platform for unveiling different heat conduction regimes. In sharp contrast to all other reported asymmetric nanostructures, we observed that the heat current from the wide end to the narrow end (the forward direction) in tapered bottlebrush polymers is smaller than that in the opposite direction (the backward direction). We found that a more disordered to less disordered structural transition within tapered bottlebrush polymers is essential for generating nonlinearity in heat conduction for thermal rectification. Moreover, the thermal rectification ratio increased with device length, reaching as high as ∼70% with a device length of 28.5 nm. This large thermal rectification with strong length dependence uncovered an unprecedented phenomenon-diffusive thermal transport in the forward direction and ballistic thermal transport in the backward direction. This is the first observation of radically different transport mechanisms when heat flow direction changes in the same system. The fundamentally new knowledge gained from this study can guide exciting research into nanoscale organic thermal diodes.

  5. Ballistic Electron Emission Microscopy/Spectroscopy on Au/Titanylphthalocyanine/GaAs Heterostructures

    International Nuclear Information System (INIS)

    Oezcan, S; Roch, T; Strasser, G; Smoliner, J; Franke, R; Fritz, T

    2007-01-01

    In this article Au/titanylphthalocyanine/GaAs diodes incorporating ultra smooth thin films of the archetypal organic semiconductor titanylphthalocyanine (TiOPc) were investigated by Ballistic Electron Emission Microscopy/Spectroscopy (BEEM/S). Analyzing the BEEM spectra, we find that the TiOPc increases the BEEM threshold voltage compared to reference Au/GaAs diodes. From BEEM images taken we conclude that our molecular beam epitaxial (MBE) grown samples show very homogeneous transmission, compare to wet chemically manufactured organic films. The barrier height measured on the Au- TiOPc-GaAs is V b ∼ 1.2eV, which is in good agreement with the data found in [T. Nishi, K. Tanai, Y. Cuchi, M. R. Willis, and K. Seki Chem. Phys. Lett., vol. 414, pp. 479-482, 2005.]. The results indicate that TiOPc functions as a p-type semiconductor, which is plausible since the measurements were carried out in air [K. Walzer, T. Toccoli, A. Pallaori, R. Verucchi, T. Fritz, K. Leo, A. Boschetti, and S. Iannotte Surf. Scie., vol. 573, pp. 346-358, 2004

  6. Shootthrough fault protection system for bipolar transistors in a voltage source transistor inverter

    International Nuclear Information System (INIS)

    Wirth, W.F.

    1982-01-01

    Faulted bipolar transistors in a voltage source transistor inverter are protected against shootthrough fault current, from the filter capacitor of the d-c voltage source which drives the inverter over the d-c bus, by interposing a small choke in series with the filter capacitor to limit the rate of rise of that fault current while at the same time causing the d-c bus voltage to instantly drop to essentially zero volts at the beginning of a shootthrough fault. In this way, the load lines of the faulted transistors are effectively shaped so that they do not enter the second breakdown area, thereby preventing second breakdown destruction of the transistors

  7. Decoherence and quantum walks: Anomalous diffusion and ballistic tails

    International Nuclear Information System (INIS)

    Prokof'ev, N. V.; Stamp, P. C. E.

    2006-01-01

    The common perception is that strong coupling to the environment will always render the evolution of the system density matrix quasiclassical (in fact, diffusive) in the long time limit. We present here a counterexample, in which a particle makes quantum transitions between the sites of a d-dimensional hypercubic lattice while strongly coupled to a bath of two-level systems that 'record' the transitions. The long-time evolution of an initial wave packet is found to be most unusual: the mean square displacement of the particle density matrix shows long-range ballistic behavior, with 2 >∼t 2 , but simultaneously a kind of weakly localized behavior near the origin. This result may have important implications for the design of quantum computing algorithms, since it describes a class of quantum walks

  8. Ballistic Performance of Porous-Ceramic, Thermal-Protection-Systems

    Science.gov (United States)

    Christiansen, E. L.; Davis, B. A.; Miller, J. E.; Bohl, W. E.; Foreman, C. D.

    2009-01-01

    Porous-ceramic, thermal protection systems are used heavily in current reentry vehicles like the Space Shuttle and are currently being proposed for the next generation of manned spacecraft, Orion. These materials insulate the structural components of a spacecraft against the intense thermal environments of atmospheric reentry. Furthermore, these materials are also highly exposed to space environmental hazards like meteoroid and orbital debris impacts. This paper discusses recent impact testing up to 9 km/s, and the findings of the influence of material equation-of-state on the simulation of the impact event to characterize the ballistic performance of these materials. These results will be compared with heritage models1 for these materials developed from testing at lower velocities. Assessments of predicted spacecraft risk based upon these tests and simulations will also be discussed.

  9. HVI Ballistic Limit Characterization of Fused Silica Thermal Panes

    Science.gov (United States)

    Miller, J. E.; Bohl, W. D.; Christiansen, E. L.; Davis, B. A.; Deighton, K. D.

    2015-01-01

    Fused silica window systems are used heavily on crewed reentry vehicles, and they are currently being used on the next generation of US crewed spacecraft, Orion. These systems improve crew situational awareness and comfort, as well as, insulating the reentry critical components of a spacecraft against the intense thermal environments of atmospheric reentry. Additionally, these materials are highly exposed to space environment hazards like solid particle impacts. This paper discusses impact studies up to 10 km/s on a fused silica window system proposed for the Orion spacecraft. A ballistic limit equation that describes the threshold of perforation of a fuse silica pane over a broad range of impact velocities, obliquities and projectile materials is discussed here.

  10. A School Experiment in Kinematics: Shooting from a Ballistic Cart

    Science.gov (United States)

    Kranjc, T.; Razpet, N.

    2011-10-01

    Many physics textbooks start with kinematics. In the lab, students observe the motions, describe and make predictions, and get acquainted with basic kinematics quantities and their meaning. Then they can perform calculations and compare the results with experimental findings. In this paper we describe an experiment that is not often done, but is interesting and attractive to students—the ballistic cart, i.e., the shooting of a ball from a cart moving along a slope. For that, one has to be familiar with one-dimensional uniform motion and one-dimensional motion with constant acceleration, as well as curvilinear motion that is a combination of such motions.1,2 The experimental results confirm theoretical predictions.

  11. North Korea's satellite launch: provocation and ballistic progress

    International Nuclear Information System (INIS)

    Sitt, Bernard

    2013-12-01

    North Korea's putting into orbit of a small meteorological satellite using an Unha-3 launcher on the 13 December 2013, a year on from Kim Jong-il's passing, smacks of provocation. The launch of an SLV that is closely related to the Taepodong-2 and that has numerous characteristics in common with a long-range ballistic missile contravened Security Council Resolutions 1695 (2006), 1718 (2006), and 1874 (2009), adopted in response to nuclear and ballistic tests carried out by Pyongyang. These resolutions implemented a progressively more strenuous regime of sanctions, which cannot fail to have marked the North Korean dictatorship, at least in economic and financial terms. The provisional successes and failures of the Six-party talks, mediated by China, which have been at a dead-end since 2009 bear witness to the unpredictability of the North's reactions. Pyongyang's double-agenda is, nonetheless, relatively easily to discern. Firstly, with this successful launch, North Korea has redeemed the failure of the first Unha-3 launch on the 13 April 2012, at the same time as Kim Jong-un took power and the country was celebrating the centenary of the birth of its founder, Kim Il-sung. This success evidently helps to bolster both the young leader's prestige on the domestic front and his sway over the army. Simultaneously, and beyond any symbolic value, North Korea's development of long-range ballistic capabilities constitutes veritable progress, on the back of a series of failures since 2006. Naturally, the reliability of the Unha-3 launcher (or of an improved Taepodong-2) is by no means guaranteed. Moreover, its payload is limited, since it can presently only launch small satellites, and thus well below the capacity needed to carry a nuclear weapon. If this is indeed North Korea's objective in years to come, it will need to make considerable technological progress, including the development of sufficiently small nuclear devices, which would necessitate further nuclear tests. In

  12. Spectral mapping of thermal conductivity through nanoscale ballistic transport

    Science.gov (United States)

    Hu, Yongjie; Zeng, Lingping; Minnich, Austin J.; Dresselhaus, Mildred S.; Chen, Gang

    2015-08-01

    Controlling thermal properties is central to many applications, such as thermoelectric energy conversion and the thermal management of integrated circuits. Progress has been made over the past decade by structuring materials at different length scales, but a clear relationship between structure size and thermal properties remains to be established. The main challenge comes from the unknown intrinsic spectral distribution of energy among heat carriers. Here, we experimentally measure this spectral distribution by probing quasi-ballistic transport near nanostructured heaters down to 30 nm using ultrafast optical spectroscopy. Our approach allows us to quantify up to 95% of the total spectral contribution to thermal conductivity from all phonon modes. The measurement agrees well with multiscale and first-principles-based simulations. We further demonstrate the direct construction of mean free path distributions. Our results provide a new fundamental understanding of thermal transport and will enable materials design in a rational way to achieve high performance.

  13. Spin separation driven by quantum interference in ballistic rings

    International Nuclear Information System (INIS)

    Bellucci, S; Onorato, P

    2008-01-01

    We propose an all-electrical nanoscopic structure where a pure spin current is induced in the transverse probes attached to a quantum-coherent ballistic quasi-one-dimensional ring when conventional unpolarized charge current is injected through its longitudinal leads. The study is essentially based on the spin-orbit coupling (SOC) arising from the laterally confining electric field (β-SOC). This sets the basic difference with other works employing mesoscopic rings with the conventional Rashba SO term (α-SOC). The β-SOC ring generates oscillations of the predicted spin Hall current due to spin-sensitive quantum-interference effects caused by the difference in phase acquired by opposite spins states traveling clockwise and counterclockwise. We focus on single-channel transport and solve analytically the spin polarization of the current. We relate the presence of a polarized spin current with the peaks in the longitudinal conductance.

  14. Ballistics considerations for small-caliber, low-density projectiles

    International Nuclear Information System (INIS)

    Gouge, M.J.; Baylor, L.R.; Combs, S.K.; Fisher, P.W.; Foster, C.A.; Foust, C.R.; Milora, S.L.; Qualls, A.L.

    1993-01-01

    One major application for single- and two-stage light gas guns is for fueling magnetic fusion confinement devices. Powder guns are not a feasible alternative due to possible plasma contamination by residual powder gases and the eventual requirement of steady-state operation at ∼ 1 Hz, which will dictate a closed gas handling system where propellant gases are recovered, processed and recompressed. Interior ballistic calculations for single-stage light gas guns, both analytical and numerical, are compared to an extensive data base for low density hydrogenic projectiles (pellets). Some innovative range diagnostics are described for determining the size and velocity of these small (several mm) size projectiles. A conceptual design of a closed cycle propellant gas system is presented including tradeoffs between different light propellant gases

  15. Anti-Weak Localization Measurements in the Ballistic Regime

    Science.gov (United States)

    Jayathilaka, Dilhani; Dedigama, Aruna; Murphy, Sheena; Edirisooriya, Madhavie; Goel, Niti; Mishima, Tetsuya; Santos, Michael; Mullen, Kieran

    2007-03-01

    Anti-weak localization dominates at low fields in systems in which spin-orbit coupling is strong. The experimental results are well described by theory [1] in low mobility systems in which the magnetic length (lB) is greater than the mean free path; however high mobility systems with strong spin-orbit interactions, such the InSb based two dimensional systems (2DESs) examined here, are not in this diffusive regime. A recently developed theory [2] addresses both the diffusive and ballistic regimes taking into account both the backscattered and non-backscattered contributions to the conductivity. We will discuss the agreement of the new theory to measurements of InSb 2DESs prepared with both strong Dresselhaus and Rashba effects. [1] S.V. Iordanskii, Yu B. Lyanda-Geller, and G.E. Pikus, JETP Lett. 60, 206 (1994). [2] L.E. Golub, Phys. Rev. B. 71, 235310 (2005).

  16. Ballistic electron emission spectroscopy on Ag/Si devices

    Energy Technology Data Exchange (ETDEWEB)

    Bannani, A; Bobisch, C A; Matena, M; Moeller, R [Department of Physics, Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, 47048 Duisburg (Germany)], E-mail: amin.bannani@uni-due.de

    2008-09-17

    In this work we report on ballistic electron emission spectroscopy (BEES) studies on epitaxial layers of silver grown on silicon surfaces, with either a Si(111)-(7 x 7) or Si(100)-(2 x 1) surface reconstruction. The experiments were done at low temperature and in ultra-high vacuum (UHV). In addition, BEES measurements on polycrystalline Ag films grown on hydrogen-terminated H:Si(111)-(1 x 1) and H:Si(100)-(2 x 1) surfaces were performed. The Schottky barrier heights were evaluated by BEES. The results are compared to the values for the barrier height reported for macroscopic Schottky diodes. We show that the barrier heights for the epitaxial films substantially differ from the values measured on polycrystalline Ag films, suggesting a strong effect of the interface on the barrier height.

  17. High mobility and quantum well transistors design and TCAD simulation

    CERN Document Server

    Hellings, Geert

    2013-01-01

    For many decades, the semiconductor industry has miniaturized transistors, delivering increased computing power to consumers at decreased cost. However, mere transistor downsizing does no longer provide the same improvements. One interesting option to further improve transistor characteristics is to use high mobility materials such as germanium and III-V materials. However, transistors have to be redesigned in order to fully benefit from these alternative materials. High Mobility and Quantum Well Transistors: Design and TCAD Simulation investigates planar bulk Germanium pFET technology in chapters 2-4, focusing on both the fabrication of such a technology and on the process and electrical TCAD simulation. Furthermore, this book shows that Quantum Well based transistors can leverage the benefits of these alternative materials, since they confine the charge carriers to the high-mobility material using a heterostructure. The design and fabrication of one particular transistor structure - the SiGe Implant-Free Qu...

  18. Highly Crumpled All-Carbon Transistors for Brain Activity Recording.

    Science.gov (United States)

    Yang, Long; Zhao, Yan; Xu, Wenjing; Shi, Enzheng; Wei, Wenjing; Li, Xinming; Cao, Anyuan; Cao, Yanping; Fang, Ying

    2017-01-11

    Neural probes based on graphene field-effect transistors have been demonstrated. Yet, the minimum detectable signal of graphene transistor-based probes is inversely proportional to the square root of the active graphene area. This fundamentally limits the scaling of graphene transistor-based neural probes for improved spatial resolution in brain activity recording. Here, we address this challenge using highly crumpled all-carbon transistors formed by compressing down to 16% of its initial area. All-carbon transistors, chemically synthesized by seamless integration of graphene channels and hybrid graphene/carbon nanotube electrodes, maintained structural integrity and stable electronic properties under large mechanical deformation, whereas stress-induced cracking and junction failure occurred in conventional graphene/metal transistors. Flexible, highly crumpled all-carbon transistors were further verified for in vivo recording of brain activity in rats. These results highlight the importance of advanced material and device design concepts to make improvements in neuroelectronics.

  19. Transistor-based particle detection systems and methods

    Science.gov (United States)

    Jain, Ankit; Nair, Pradeep R.; Alam, Muhammad Ashraful

    2015-06-09

    Transistor-based particle detection systems and methods may be configured to detect charged and non-charged particles. Such systems may include a supporting structure contacting a gate of a transistor and separating the gate from a dielectric of the transistor, and the transistor may have a near pull-in bias and a sub-threshold region bias to facilitate particle detection. The transistor may be configured to change current flow through the transistor in response to a change in stiffness of the gate caused by securing of a particle to the gate, and the transistor-based particle detection system may configured to detect the non-charged particle at least from the change in current flow.

  20. Reconfigurable Complementary Logic Circuits with Ambipolar Organic Transistors.

    Science.gov (United States)

    Yoo, Hocheon; Ghittorelli, Matteo; Smits, Edsger C P; Gelinck, Gerwin H; Lee, Han-Koo; Torricelli, Fabrizio; Kim, Jae-Joon

    2016-10-20

    Ambipolar organic electronics offer great potential for simple and low-cost fabrication of complementary logic circuits on large-area and mechanically flexible substrates. Ambipolar transistors are ideal candidates for the simple and low-cost development of complementary logic circuits since they can operate as n-type and p-type transistors. Nevertheless, the experimental demonstration of ambipolar organic complementary circuits is limited to inverters. The control of the transistor polarity is crucial for proper circuit operation. Novel gating techniques enable to control the transistor polarity but result in dramatically reduced performances. Here we show high-performance non-planar ambipolar organic transistors with electrical control of the polarity and orders of magnitude higher performances with respect to state-of-art split-gate ambipolar transistors. Electrically reconfigurable complementary logic gates based on ambipolar organic transistors are experimentally demonstrated, thus opening up new opportunities for ambipolar organic complementary electronics.

  1. Manganese oxalate nanorods as ballistic modifier for composite solid propellants

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Supriya [Department of Chemistry, DDU Gorakhpur University, Gorakhpur 273009, U.P. (India); Chawla, Mohit [School of Basic Sciences, Indian Institute of Technology Mandi, Mandi 175005, H.P. (India); Siril, Prem Felix, E-mail: prem@iitmandi.ac.in [School of Basic Sciences, Indian Institute of Technology Mandi, Mandi 175005, H.P. (India); Singh, Gurdip [Department of Chemistry, DDU Gorakhpur University, Gorakhpur 273009, U.P. (India)

    2014-12-10

    Highlights: • Manganese oxalate nanorods were prepared using mild thermal precipitation and aging. • The nanorods were found to be efficient ballistic modifier for solid propellants. • The nanorods sensitized the thermolysis of ammonium perchlorate. • Controlled thermal decomposition of nanorods yielded manganese oxide nanoparticles. • MnO nanoparticles formed insitu in the condensed phase enhance the burning rates. - Abstract: Rod-shaped nanostructures of manganese oxalate (MnC{sub 2}O{sub 4}) were synthesized via mild thermal precipitation and aging process. Chemical composition of the MnC{sub 2}O{sub 4} nanorods was confirmed using Fourier transform infra-red (FTIR) spectroscopy and energy dispersive X-ray spectroscopy (EDS). X-ray diffraction (XRD) and selected area electron diffraction (SAED) studies revealed the crystal structure. Field emission scanning electron microscopy (FE-SEM) imaging and high resolution transmission electron microscopy (HR-TEM) were employed to study the structural features of the nanorods. The MnC{sub 2}O{sub 4} nanorods were found to be efficient ballistic modifier for the burning rate enhancement of composite solid propellants (CSPs). Thermal analysis using TGA-DSC showed that MnC{sub 2}O{sub 4} nanorods sensitized the thermal decomposition of ammonium perchlorate (AP) and the CSPs. Controlled thermal decomposition of the MnC{sub 2}O{sub 4} nanorods resulted in the formation of managanese oxide nanoparticles with mesoporosity. A plausible mechanism for the burning rate enhancement using MnC{sub 2}O{sub 4} nanorods was proposed.

  2. Attenuation of blast pressure behind ballistic protective vests.

    Science.gov (United States)

    Wood, Garrett W; Panzer, Matthew B; Shridharani, Jay K; Matthews, Kyle A; Capehart, Bruce P; Myers, Barry S; Bass, Cameron R

    2013-02-01

    Clinical studies increasingly report brain injury and not pulmonary injury following blast exposures, despite the increased frequency of exposure to explosive devices. The goal of this study was to determine the effect of personal body armour use on the potential for primary blast injury and to determine the risk of brain and pulmonary injury following a blast and its impact on the clinical care of patients with a history of blast exposure. A shock tube was used to generate blast overpressures on soft ballistic protective vests (NIJ Level-2) and hard protective vests (NIJ Level-4) while overpressure was recorded behind the vest. Both types of vest were found to significantly decrease pulmonary injury risk following a blast for a wide range of conditions. At the highest tested blast overpressure, the soft vest decreased the behind armour overpressure by a factor of 14.2, and the hard vest decreased behind armour overpressure by a factor of 56.8. Addition of body armour increased the 50th percentile pulmonary death tolerance of both vests to higher levels than the 50th percentile for brain injury. These results suggest that ballistic protective body armour vests, especially hard body armour plates, provide substantial chest protection in primary blasts and explain the increased frequency of head injuries, without the presence of pulmonary injuries, in protected subjects reporting a history of blast exposure. These results suggest increased clinical suspicion for mild to severe brain injury is warranted in persons wearing body armour exposed to a blast with or without pulmonary injury.

  3. Advanced ceramics reinforced with carbon nanotubes for ballistic application

    International Nuclear Information System (INIS)

    Couto, Carlos Alberto de Oliveira; Passador, Fabio Roberto

    2016-01-01

    Full text: The carbon nanotubes have excellent mechanical properties, the elastic modulus is around 1TPa, next to the diamond and the mechanical strength is 10 to 100 times higher than steel, moreover they are self-lubricating, which facilitates the ceramic composites compression process. The insertion of carbon nanotubes tends to improve the fracture toughness of ceramic composites, but is necessary to obtain a good dispersion in the ceramic matrix. The objective of this work is to develop a tough and tenacious ceramics for ballistic application, using structural ceramics of alumina and tetragonal zirconia and evaluate the influence of the addition of carbon nanotubes (multilayer) on the mechanical properties of the composite. The carbon nanotubes were functionalized with carboxylic groups by nitric acid oxidation reaction. To ensure a homogeneous distribution of the carbon nanotubes in the matrix of alumina/zirconia, surfactants were used: sodium dodecyl sulphate + gum arabic in the amount of 50% by mass of carbon nanotubes. Ceramic powders were prepared with pure alumina and alumina + 20% by mass of tetragonal zirconia/yttria, with and without addition of carbon nanotubes at concentrations of 0.1 and 0.5% by mass. The samples were uniaxially and isostatically pressed at 300 MPa and sintered in a conventional oven at 1500 °C for two hours and a heating rate of 5 °C/min, aimed at commercial application. The morphology of ceramic powders were characterized by SEM and XRD. The mechanical properties of the sintered samples were evaluated by flexural bending at three points, Vickers microhardness and fracture toughness by single edge-notched beam (SENB). The use of carbon nanotubes in the ceramic composite caused a decrease in hardness and an increase in fracture toughness, with great potential for ballistic applications. (author)

  4. In-flight dynamics of volcanic ballistic projectiles

    Science.gov (United States)

    Taddeucci, J.; Alatorre-Ibargüengoitia, M. A.; Cruz-Vázquez, O.; Del Bello, E.; Scarlato, P.; Ricci, T.

    2017-09-01

    Centimeter to meter-sized volcanic ballistic projectiles from explosive eruptions jeopardize people and properties kilometers from the volcano, but they also provide information about the past eruptions. Traditionally, projectile trajectory is modeled using simplified ballistic theory, accounting for gravity and drag forces only and assuming simply shaped projectiles free moving through air. Recently, collisions between projectiles and interactions with plumes are starting to be considered. Besides theory, experimental studies and field mapping have so far dominated volcanic projectile research, with only limited observations. High-speed, high-definition imaging now offers a new spatial and temporal scale of observation that we use to illuminate projectile dynamics. In-flight collisions commonly affect the size, shape, trajectory, and rotation of projectiles according to both projectile nature (ductile bomb versus brittle block) and the location and timing of collisions. These, in turn, are controlled by ejection pulses occurring at the vent. In-flight tearing and fragmentation characterize large bombs, which often break on landing, both factors concurring to decrease the average grain size of the resulting deposits. Complex rotation and spinning are ubiquitous features of projectiles, and the related Magnus effect may deviate projectile trajectory by tens of degrees. A new relationship is derived, linking projectile velocity and size with the size of the resulting impact crater. Finally, apparent drag coefficient values, obtained for selected projectiles, mostly range from 1 to 7, higher than expected, reflecting complex projectile dynamics. These new perspectives will impact projectile hazard mitigation and the interpretation of projectile deposits from past eruptions, both on Earth and on other planets.

  5. Advanced ceramics reinforced with carbon nanotubes for ballistic application

    Energy Technology Data Exchange (ETDEWEB)

    Couto, Carlos Alberto de Oliveira; Passador, Fabio Roberto, E-mail: carlos.couto.sjc@gmail.com [Universidade Federal de Sao Paulo (UNIFESP), Sao Jose dos Campos, SP (Brazil)

    2016-07-01

    Full text: The carbon nanotubes have excellent mechanical properties, the elastic modulus is around 1TPa, next to the diamond and the mechanical strength is 10 to 100 times higher than steel, moreover they are self-lubricating, which facilitates the ceramic composites compression process. The insertion of carbon nanotubes tends to improve the fracture toughness of ceramic composites, but is necessary to obtain a good dispersion in the ceramic matrix. The objective of this work is to develop a tough and tenacious ceramics for ballistic application, using structural ceramics of alumina and tetragonal zirconia and evaluate the influence of the addition of carbon nanotubes (multilayer) on the mechanical properties of the composite. The carbon nanotubes were functionalized with carboxylic groups by nitric acid oxidation reaction. To ensure a homogeneous distribution of the carbon nanotubes in the matrix of alumina/zirconia, surfactants were used: sodium dodecyl sulphate + gum arabic in the amount of 50% by mass of carbon nanotubes. Ceramic powders were prepared with pure alumina and alumina + 20% by mass of tetragonal zirconia/yttria, with and without addition of carbon nanotubes at concentrations of 0.1 and 0.5% by mass. The samples were uniaxially and isostatically pressed at 300 MPa and sintered in a conventional oven at 1500 °C for two hours and a heating rate of 5 °C/min, aimed at commercial application. The morphology of ceramic powders were characterized by SEM and XRD. The mechanical properties of the sintered samples were evaluated by flexural bending at three points, Vickers microhardness and fracture toughness by single edge-notched beam (SENB). The use of carbon nanotubes in the ceramic composite caused a decrease in hardness and an increase in fracture toughness, with great potential for ballistic applications. (author)

  6. Thermal transistor utilizing gas-liquid transition

    KAUST Repository

    Komatsu, Teruhisa S.

    2011-01-25

    We propose a simple thermal transistor, a device to control heat current. In order to effectively change the current, we utilize the gas-liquid transition of the heat-conducting medium (fluid) because the gas region can act as a good thermal insulator. The three terminals of the transistor are located at both ends and the center of the system, and are put into contact with distinct heat baths. The key idea is a special arrangement of the three terminals. The temperature at one end (the gate temperature) is used as an input signal to control the heat current between the center (source, hot) and another end (drain, cold). Simulating the nanoscale systems of this transistor, control of heat current is demonstrated. The heat current is effectively cut off when the gate temperature is cold and it flows normally when it is hot. By using an extended version of this transistor, we also simulate a primitive application for an inverter. © 2011 American Physical Society.

  7. A Comparison of the Deformation Flow and Failure of Two Tungsten Heavy Alloys in Ballistic Impacts

    National Research Council Canada - National Science Library

    Schuster, Brian E; Peterson, Bryan P; Magness, Lee S

    2006-01-01

    .... Small, but consistent, differences in the ballistic performances of the two lots of penetrators were observed in depth of penetration tests, in thick armor steel targets, and in limit velocity...

  8. Development of an Advanced Composite Material Model Suitable for Blast and Ballistic Impact Simulations

    National Research Council Canada - National Science Library

    Yen, C. F; Cheeseman, B. A

    2004-01-01

    A robust composite progressive failure model has been successfully developed to account for the strain-rate and pressure dependent behavior of composite materials subjected to high velocity ballistic impact...

  9. Live RB51 vaccine lyophilized hydrogel formulations with increased shelf life for practical ballistic delivery

    Science.gov (United States)

    Ballistic delivery capability is essential to delivering vaccines and other therapeutics effectively to both livestock and wildlife in many global scenarios. Here, lyophilized poly(ethylene glycol) (PEG)-glycolide dimethacrylate crosslinked but degradable hydrogels were assessed as payload vehicles ...

  10. Performance of Plain Woven Jute Fabric-Reinforced Polyester Matrix Composite in Multilayered Ballistic System

    Directory of Open Access Journals (Sweden)

    Sergio Neves Monteiro

    2018-02-01

    Full Text Available The ballistic performance of plain woven jute fabric-reinforced polyester matrix composites was investigated as the second layer in a multilayered armor system (MAS. Volume fractions of jute fabric, up to 30 vol %, were mixed with orthophthalic polyester to fabricate laminate composites. Ballistic tests were conducted using high velocity 7.62 mm ammunition. The depth of penetration caused by the bullet in a block of clay witness, simulating a human body, was used to evaluate the MAS ballistic performance according to the international standard. The fractured materials after tests were analyzed by scanning electron microscopy (SEM. The results indicated that jute fabric composites present a performance similar to that of the much stronger Kevlar™, which is an aramid fabric laminate, as MAS second layer with the same thickness. The mechanism of this similar ballistic behavior as well as the comparative advantages of the jute fabric composites over the Kevlar™ are discussed.

  11. Electron transport properties in InAs four-terminal ballistic junctions under weak magnetic fields

    International Nuclear Information System (INIS)

    Koyama, M.; Fujiwara, K.; Amano, N.; Maemoto, T.; Sasa, S.; Inoue, M.

    2009-01-01

    We report on the electron transport properties based on ballistic electrons under magnetic fields in four-terminal ballistic junctions fabricated on an InAs/AlGaSb heterostructure. The four-terminal junction structure is composed of two longitudinal stems with two narrow wires slanted with 30 degree from the perpendicular axis. The electron focusing peak was obtained with the bend resistance measurement. Then it was investigated the nonlinear electron transport property of potential difference between longitudinal stems due to ballistic electrons with applying direct current from narrow wires. Observed nonlinearity showed clear rectification effects which have negative polarity regardless of input voltage polarity. Although this nonlinearity was qualitatively changed due to the Lorentz force under magnetic fields, the degradation of ballistic effects on nonlinear properties were observed when the current increased to higher strength. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. NATO and U.S. Ballistic Missile Defense Programs: Divergent or Convergent Paths?

    National Research Council Canada - National Science Library

    Toms, Kevin E

    2008-01-01

    ...) information network to support the Theater Missile Defense (TMD) capabilities of specific Allies for the protection of forward deployed troops, and studies of the feasibility and political-military implications of Ballistic Missile Defense (BMD...

  13. Function-Oriented Material Design of Joints for Advance Armors Under Ballistic Impact

    National Research Council Canada - National Science Library

    Ma, Zheng-Dong; Wang, Hui; Raju, Basavaraju

    2004-01-01

    The objective of this research is to develop a system of software tools based on a new design methodology for the efficient composite armor structural design under ballistic impact loading conditions...

  14. Challenges in the Acceptance/Licensing of a Mobile Ballistic Missile Range Safety Technology (BMRST) System

    National Research Council Canada - National Science Library

    Bartone, Chris

    2001-01-01

    ...), Space Vehicle Directorate, Ballistic Missile Technology program. The BMRST Program is to develop and to demonstrate a "certifiable" mobile launch range tracking and control system based upon the Global Positioning System (GPS...

  15. Formal Specification and Run-time Monitoring Within the Ballistic Missile Defense Project

    National Research Council Canada - National Science Library

    Caffall, Dale S; Cook, Thomas; Drusinsky, Doron; Michael, James B; Shing, Man-Tak; Sklavounos, Nicholas

    2005-01-01

    .... Ballistic Missile Defense Advanced Battle Manager (ABM) project in an effort that is amongst the most comprehensive application of formal methods to a large-scale safety-critical software application ever reported...

  16. Electron transport in InAs/AlGaSb ballistic rectifiers

    International Nuclear Information System (INIS)

    Maemoto, Toshihiko; Koyama, Masatoshi; Furukawa, Masashi; Takahashi, Hiroshi; Sasa, Shigehiko; Inoue, Masataka

    2006-01-01

    Nonlinear transport properties of a ballistic rectifier fabricated from InAs/AlGaSb heterostructures are reported. The operation of the ballistic rectifier is based on the guidance of carriers by a square anti-dot structure. The structure was defined by electron beam lithography and wet chemical etching. The DC characteristics and magneto-transport properties of the ballistic rectifier have been measured at 77 K and 4.2 K. Rectification effects relying on the ballistic transport were observed. From the four-terminal resistance measured at low magnetic fields, we also observed magneto-resistance fluctuations corresponding to the electron trajectories and symmetry-breaking electron scattering, which are influenced by the magnetic field strength

  17. Micro-Doppler Feature Extraction and Recognition Based on Netted Radar for Ballistic Targets

    Directory of Open Access Journals (Sweden)

    Feng Cun-qian

    2015-12-01

    Full Text Available This study examines the complexities of using netted radar to recognize and resolve ballistic midcourse targets. The application of micro-motion feature extraction to ballistic mid-course targets is analyzed, and the current status of application and research on micro-motion feature recognition is concluded for singlefunction radar networks such as low- and high-resolution imaging radar networks. Advantages and disadvantages of these networks are discussed with respect to target recognition. Hybrid-mode radar networks combine low- and high-resolution imaging radar and provide a specific reference frequency that is the basis for ballistic target recognition. Main research trends are discussed for hybrid-mode networks that apply micromotion feature extraction to ballistic mid-course targets.

  18. Ballistic Impact Resistance of Plain Woven Kenaf/Aramid Reinforced Polyvinyl Butyral Laminated Hybrid Composite

    Directory of Open Access Journals (Sweden)

    Suhad D. Salman

    2016-07-01

    Full Text Available Traditionally, the helmet shell has been used to provide protection against head injuries and fatalities caused by ballistic threats. In this study, because of the high cost of aramid fibres and the necessity for environmentally friendly alternatives, a portion of aramid was replaced with plain woven kenaf fibre, with different arrangements and thicknesses, without jeopardising the requirements demanded by U.S. Army helmet specifications. Furthermore, novel helmets were produced and tested to reduce the dependency on the ballistic resistance components. Their use could lead to helmets that are less costly and more easily available than conventional helmet armour. The hybrid materials subjected to ballistic tests were composed of 19 layers and were fabricated by the hot press technique using different numbers and configurations of plain woven kenaf and aramid layers. In the case of ballistic performance tests, a positive effect was found for the hybridisation of kenaf and aramid laminated composites.

  19. Natural Mallow Fiber-Reinforced Epoxy Composite for Ballistic Armor Against Class III-A Ammunition

    Science.gov (United States)

    Nascimento, Lucio Fabio Cassiano; Holanda, Luane Isquerdo Ferreira; Louro, Luis Henrique Leme; Monteiro, Sergio Neves; Gomes, Alaelson Vieira; Lima, Édio Pereira

    2017-10-01

    Epoxy matrix composites reinforced with up to 30 vol pct of continuous and aligned natural mallow fibers were for the first time ballistic tested as personal armor against class III-A 9 mm FMJ ammunition. The ballistic efficiency of these composites was assessed by measuring the dissipated energy and residual velocity after the bullet perforation. The results were compared to those in similar tests of aramid fabric (Kevlar™) commonly used in vests for personal protections. Visual inspection and scanning electron microscopy analysis of impact-fractured samples revealed failure mechanisms associated with fiber pullout and rupture as well as epoxy cracking. As compared to Kevlar™, the mallow fiber composite displayed practically the same ballistic efficiency. However, there is a reduction in both weight and cost, which makes the mallow fiber composites a promising material for personal ballistic protection.

  20. Ballistic Missile Defense in the European Theater: Political, Military and Technical Considerations

    National Research Council Canada - National Science Library

    Terstegge, Stephen D

    2007-01-01

    ... that threatens the homeland of the United States. Therefore, the United States faces the complex security challenge of emplacing ballistic missile defense assets on European soil in the very near-term to mitigate this threat...

  1. Ballistic Missile Defense: National Security and the High Frontier of Space.

    Science.gov (United States)

    Adragna, Steven P.

    1985-01-01

    Ballistic missile defense is discussed, and the rationale behind the proposal to place defensive weapons in space is examined. Strategic defense is a national security, political, and moral imperative. (RM)

  2. Spatially resolved band alignments at Au-hexadecanethiol monolayer-GaAs(001) interfaces by ballistic electron emission microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Junay, A.; Guézo, S., E-mail: sophie.guezo@univ-rennes1.fr; Turban, P.; Delhaye, G.; Lépine, B.; Tricot, S.; Ababou-Girard, S.; Solal, F. [Département Matériaux-Nanosciences, Institut de Physique de Rennes, UMR 6251, CNRS-Université de Rennes 1, Campus de Beaulieu, Bât 11E, 35042 Rennes Cedex (France)

    2015-08-28

    We study structural and electronic inhomogeneities in Metal—Organic Molecular monoLayer (OML)—semiconductor interfaces at the sub-nanometer scale by means of in situ Ballistic Electron Emission Microscopy (BEEM). BEEM imaging of Au/1-hexadecanethiols/GaAs(001) heterostructures reveals the evolution of pinholes density as a function of the thickness of the metallic top-contact. Using BEEM in spectroscopic mode in non-short-circuited areas, local electronic fingerprints (barrier height values and corresponding spectral weights) reveal a low-energy tunneling regime through the insulating organic monolayer. At higher energies, BEEM evidences new conduction channels, associated with hot-electron injection in the empty molecular orbitals of the OML. Corresponding band diagrams at buried interfaces can be thus locally described. The energy position of GaAs conduction band minimum in the heterostructure is observed to evolve as a function of the thickness of the deposited metal, and coherently with size-dependent electrostatic effects under the molecular patches. Such BEEM analysis provides a quantitative diagnosis on metallic top-contact formation on organic molecular monolayer and appears as a relevant characterization for its optimization.

  3. Single molecule transistor based nanopore for the detection of nicotine

    Energy Technology Data Exchange (ETDEWEB)

    Ray, S. J., E-mail: ray.sjr@gmail.com [Institute of Materials Science, Technical University of Darmstadt, Alarich-Weiss-Str. 2, 64287 Darmstadt (Germany)

    2014-12-28

    A nanopore based detection methodology was proposed and investigated for the detection of Nicotine. This technique uses a Single Molecular Transistor working as a nanopore operational in the Coulomb Blockade regime. When the Nicotine molecule is pulled through the nanopore area surrounded by the Source(S), Drain (D), and Gate electrodes, the charge stability diagram can detect the presence of the molecule and is unique for a specific molecular structure. Due to the weak coupling between the different electrodes which is set by the nanopore size, the molecular energy states stay almost unaffected by the electrostatic environment that can be realised from the charge stability diagram. Identification of different orientation and position of the Nicotine molecule within the nanopore area can be made from specific regions of overlap between different charge states on the stability diagram that could be used as an electronic fingerprint for detection. This method could be advantageous and useful to detect the presence of Nicotine in smoke which is usually performed using chemical chromatography techniques.

  4. Single molecule transistor based nanopore for the detection of nicotine

    Science.gov (United States)

    Ray, S. J.

    2014-12-01

    A nanopore based detection methodology was proposed and investigated for the detection of Nicotine. This technique uses a Single Molecular Transistor working as a nanopore operational in the Coulomb Blockade regime. When the Nicotine molecule is pulled through the nanopore area surrounded by the Source(S), Drain (D), and Gate electrodes, the charge stability diagram can detect the presence of the molecule and is unique for a specific molecular structure. Due to the weak coupling between the different electrodes which is set by the nanopore size, the molecular energy states stay almost unaffected by the electrostatic environment that can be realised from the charge stability diagram. Identification of different orientation and position of the Nicotine molecule within the nanopore area can be made from specific regions of overlap between different charge states on the stability diagram that could be used as an electronic fingerprint for detection. This method could be advantageous and useful to detect the presence of Nicotine in smoke which is usually performed using chemical chromatography techniques.

  5. Image charge effects in single-molecule junctions: Breaking of symmetries and negative-differential resistance in a benzene single-electron transistor

    DEFF Research Database (Denmark)

    Kaasbjerg, Kristen; Flensberg, K.

    2011-01-01

    and molecular symmetries remain unclear. Using a theoretical framework developed for semiconductor-nanostructure-based single-electron transistors (SETs), we demonstrate that the image charge interaction breaks the molecular symmetries in a benzene-based single-molecule transistor operating in the Coulomb...... blockade regime. This results in the appearance of a so-called blocking state, which gives rise to negative-differential resistance (NDR). We show that the appearance of NDR and its magnitude in the symmetry-broken benzene SET depends in a complicated way on the interplay between the many-body matrix...

  6. Understanding the ballistic event : Methodology and observations relevant to ceramic armour

    Science.gov (United States)

    Healey, Adam

    The only widely-accepted method of gauging the ballistic performance of a material is to carry out ballistic testing; due to the large volume of material required for a statistically robust test, this process is very expensive. Therefore a new test, or suite of tests, that employ widely-available and economically viable characterisation methods to screen candidate armour materials is highly desirable; in order to design such a test, more information on the armour/projectile interaction is required. This work presents the design process and results of using an adapted specimen configuration to increase the amount of information obtained from a ballistic test. By using a block of ballistic gel attached to the ceramic, the fragmentation generated during the ballistic event was captured and analysed. In parallel, quasi-static tests were carried out using ring-on-ring biaxial disc testing to investigate relationships between quasi-static and ballistic fragment fracture surfaces. Three contemporary ceramic armour materials were used to design the test and to act as a baseline; Sintox FA alumina, Hexoloy SA silicon carbide and 3M boron carbide. Attempts to analyse the post-test ballistic sample non-destructively using X-ray computed tomography (XCT) were unsuccessful due to the difference in the density of the materials and the compaction of fragments. However, the results of qualitative and quantitative fracture surface analysis using scanning electron microscopy showed similarities between the fracture surfaces of ballistic fragments at the edges of the tile and biaxial fragments; this suggests a relationship between quasi-static and ballistic fragments created away from the centre of impact, although additional research will be required to determine the reason for this. Ballistic event-induced porosity was observed and quantified on the fracture surfaces of silicon carbide samples, which decreased as distance from centre of impact increased; upon further analysis this

  7. Materials and devices with applications in high-end organic transistors

    International Nuclear Information System (INIS)

    Takeya, J.; Uemura, T.; Sakai, K.; Okada, Y.

    2014-01-01

    The development of functional materials typically benefits from an understanding of the microscopic mechanisms by which those materials operate. To accelerate the development of organic semiconductor devices with industrial applications in flexible and printed electronics, it is essential to elucidate the mechanisms of charge transport associated with molecular-scale charge transfer. In this study, we employed Hall effect measurements to differentiate coherent band transport from site-to-site hopping. The results of tests using several different molecular systems as the active semiconductor layers demonstrate that high-mobility charge transport in recently-developed solution-crystallized organic transistors is the result of a band-like mechanism. These materials, which have the potential to be organic transistors exhibiting the highest speeds ever obtained, are significantly different from the conventional lower-mobility organic semiconductors with incoherent hopping-like transport mechanisms which were studied in the previous century. They may be categorized as “high-end” organic semiconductors, characterized by their coherent electronic states and high values of mobility which are close to or greater than 10 cm 2 /Vs. - Highlights: • Transport in high-mobility solution-crystallized organic transistors is band-like. • High-end organic semiconductors carry coherent electrons with mobility > 10 cm 2 /Vs. • Hall-effect measurement differentiates coherent band transport from hopping. • We found an anomalous pressure effect in organic semiconductors

  8. Non linear interaction between a Langmuir wave and a ballistic perturbation

    International Nuclear Information System (INIS)

    Gervais, F.; Olivain, J.; Quemeneur, A.; Trocheris, M.

    1979-05-01

    The theoretical solutions of the Landau-Vlasov initial value problem giving mode-mode coupling usually neglect the free-streaming contribution. We solve theoretically this problem including the ballistic terms. We find that a new mode appears resulting from the nonlinear interaction between the Landau component and the ballistic perturbation. The amplitude of this mode is calculated as a function of distance and compared with experimental results in a plasma column

  9. Low-temperature ballistic transport in nanoscale epitaxial graphene cross junctions

    OpenAIRE

    Weingart, S.; Bock, C.; Kunze, U.; Speck, F.; Seyller, Th.; Ley, L.

    2009-01-01

    We report on the observation of inertial-ballistic transport in nanoscale cross junctions fabricated from epitaxial graphene grown on SiC(0001). Ballistic transport is indicated by a negative bend resistance of R12,43 ~ 170 ohm which is measured in a non-local, four-terminal configuration at 4.2 K and which vanishes as the temperature is increased above 80 K.

  10. Influence of Material Properties on the Ballistic Performance of Ceramics for Personal Body Armour

    OpenAIRE

    Kaufmann, Christian; Cronin, Duane; Worswick, Michael; Pageau, Gilles; Beth, Andre

    2003-01-01

    In support of improved personal armour development, depth of penetration tests have been conducted on four different ceramic materials including alumina, modified alumina, silicon carbide and boron carbide. These experiments consisted of impacting ceramic tiles bonded to aluminum cylinders with 0.50 caliber armour piercing projectiles. The results are presented in terms of ballistic efficiency, and the validity of using ballistic efficiency as a measure of ceramic performance was examined. In...

  11. The Rise and Fall of Safeguard:Anti‐Ballistic Missile Technology and the Nixon Administration

    OpenAIRE

    Spinardi, Graham

    2010-01-01

    The Safeguard anti-ballistic missile system was the first (and up until 2002 the only) system deployed to defend the USA from nuclear-armed ballistic missile attack. It was finally declared operational in September 1975 after many years of development and fierce controversy over both its feasibility and its desirability. However, almost immediately Congress voted to close the system down and it was dismantled within a few months. This paper draws on documents available in the Nixon archives t...

  12. Friction Stir Weld Failure Mechanisms in Aluminum-Armor Structures Under Ballistic Impact Loading Conditions

    Science.gov (United States)

    2013-01-01

    REPORT Friction Stir Weld Failure Mechanisms in Aluminum-Armor Structures Under Ballistic Impact Loading Conditions 14. ABSTRACT 16. SECURITY...properties and of the attendant ballistic-impact failure mechanisms in prototypical friction stir welding (FSW) joints found in armor structures made of high...mechanisms, friction stir welding M. Grujicic, B. Pandurangan, A. Arakere, C-F. Yen, B. A. Cheeseman Clemson University Office of Sponsored Programs 300

  13. Quantum mechanical solver for confined heterostructure tunnel field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Verreck, Devin, E-mail: devin.verreck@imec.be; Groeseneken, Guido [imec, Kapeldreef 75, 3001 Leuven (Belgium); Department of Electrical Engineering, KU Leuven, 3001 Leuven (Belgium); Van de Put, Maarten; Sorée, Bart; Magnus, Wim [imec, Kapeldreef 75, 3001 Leuven (Belgium); Departement of Physics, Universiteit Antwerpen, 2020 Antwerpen (Belgium); Verhulst, Anne S.; Collaert, Nadine; Thean, Aaron [imec, Kapeldreef 75, 3001 Leuven (Belgium); Vandenberghe, William G. [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, Texas 75080 (United States)

    2014-02-07

    Heterostructure tunnel field-effect transistors (HTFET) are promising candidates for low-power applications in future technology nodes, as they are predicted to offer high on-currents, combined with a sub-60 mV/dec subthreshold swing. However, the effects of important quantum mechanical phenomena like size confinement at the heterojunction are not well understood, due to the theoretical and computational difficulties in modeling realistic heterostructures. We therefore present a ballistic quantum transport formalism, combining a novel envelope function approach for semiconductor heterostructures with the multiband quantum transmitting boundary method, which we extend to 2D potentials. We demonstrate an implementation of a 2-band version of the formalism and apply it to study confinement in realistic heterostructure diodes and p-n-i-n HTFETs. For the diodes, both transmission probabilities and current densities are found to decrease with stronger confinement. For the p-n-i-n HTFETs, the improved gate control is found to counteract the deterioration due to confinement.

  14. Tunnel Field-Effect Transistors in 2-D Transition Metal Dichalcogenide Materials

    Science.gov (United States)

    Ilatikhameneh, Hesameddin; Tan, Yaohua; Novakovic, Bozidar; Klimeck, Gerhard; Rahman, Rajib; Appenzeller, Joerg

    2015-12-01

    In this work, the performance of Tunnel Field-Effect Transistors (TFETs) based on two-dimensional Transition Metal Dichalcogenide (TMD) materials is investigated by atomistic quantum transport simulations. One of the major challenges of TFETs is their low ON-currents. 2D material based TFETs can have tight gate control and high electric fields at the tunnel junction, and can in principle generate high ON-currents along with a sub-threshold swing smaller than 60 mV/dec. Our simulations reveal that high performance TMD TFETs, not only require good gate control, but also rely on the choice of the right channel material with optimum band gap, effective mass and source/drain doping level. Unlike previous works, a full band atomistic tight binding method is used self-consistently with 3D Poisson equation to simulate ballistic quantum transport in these devices. The effect of the choice of TMD material on the performance of the device and its transfer characteristics are discussed. Moreover, the criteria for high ON-currents are explained with a simple analytic model, showing the related fundamental factors. Finally, the subthreshold swing and energy-delay of these TFETs are compared with conventional CMOS devices.

  15. Molecular electronics: the single molecule switch and transistor

    NARCIS (Netherlands)

    Sotthewes, Kai; Geskin, Victor; Heimbuch, Rene; Kumar, Avijit; Zandvliet, Henricus J.W.

    2014-01-01

    In order to design and realize single-molecule devices it is essential to have a good understanding of the properties of an individual molecule. For electronic applications, the most important property of a molecule is its conductance. Here we show how a single octanethiol molecule can be connected

  16. Application of Super-Hydrophobic Coating for Enhanced Water Repellency of Ballistic Fabric

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Barton [ORNL; Rajic, Slobodan [ORNL; Hunter, Scott Robert [ORNL

    2014-10-01

    The objective of this work was to demonstrate that a superhydrophobic coating technology developed at Oak Ridge National Laboratory (ORNL) increases the water repellency of ballistic fabric beyond that provided by existing water repellency treatments. This increased water repellency has the potential to provide durable ballistic fabric for body armor without adding significant weight to the armor or significant manufacturing cost. Specimens of greige and scoured ballistic fabric were treated with a superhydrophobic coating and their weights and degree of water repellency were compared to specimens of untreated fabric. Treatment of both greige and scoured ballistic fabrics yielded highly water repellent fabrics. Our measurements of the water droplet contact angles gave values of approximately 150 , near the lower limit of 160 for superhydrophobic surfaces. The coatings increased the fabric weights by approximately 6%, an amount that is many times less than the estimated weight increase in a conventional treatment of ballistic fabric. The treated fabrics retained a significant amount of water repellency following a basic abrasion test, with water droplet contact angles decreasing by 14 to 23 . Microscopic analysis of the coating applied to woven fabrics indicated that the coating adhered equally well to fibers of greige and scoured yarns. Future evaluation of the superhydrophobic water repellent treatment will involve the manufacture of shoot packs of treated fabric for ballistic testing and provide an analysis of manufacturing scale-up and cost-to-benefit considerations.

  17. Effects of Different Relative Loads on Power Performance During the Ballistic Push-up.

    Science.gov (United States)

    Wang, Ran; Hoffman, Jay R; Sadres, Eliahu; Bartolomei, Sandro; Muddle, Tyler W D; Fukuda, David H; Stout, Jeffrey R

    2017-12-01

    Wang, R, Hoffman, JR, Sadres, E, Bartolomei, S, Muddle, TWD, Fukuda, DH, and Stout, JR. Effects of different relative loads on power performance during the ballistic push-up. J Strength Cond Res 31(12): 3411-3416, 2017-The purpose of this investigation was to examine the effect of load on force and power performance during a ballistic push-up. Sixty (24.5 ± 4.3 years, 1.75 ± 0.07 m, and 80.8 ± 13.5 kg) recreationally active men who participated in this investigation completed all testing and were included in the data analysis. All participants were required to perform a 1 repetition maximum bench press, and ballistic push-ups without external load (T1), with 10% (T2) and 20% (T3) of their body mass. Ballistic push-ups during T2 and T3 were performed using a weight loaded vest. Peak and mean force, power, as well as net impulse and flight time were determined for each ballistic push-up. Peak and mean force were both significantly greater (p ballistic push-up, regardless of the participants' level of strength.

  18. Are certain fractures at increased risk for compartment syndrome after civilian ballistic injury?

    Science.gov (United States)

    Meskey, Thomas; Hardcastle, John; O'Toole, Robert V

    2011-11-01

    Compartment syndrome after ballistic fracture is uncommon but potentially devastating. Few data are available to help guide clinicians regarding risk factors for developing compartment syndrome after ballistic fractures. Our primary hypothesis was that ballistic fractures of certain bones would be at higher risk for development of compartment syndrome. A retrospective review at a Level I trauma center from 2001 through 2007 yielded 650 patients with 938 fractures resulting from gunshots. We reviewed all operative notes, clinic notes, discharge summaries, and data from our prospective trauma database. Cases in which the attending orthopedic surgeon diagnosed compartment syndrome and performed fasciotomy were considered cases with compartment syndrome. We excluded all prophylactic fasciotomies. Univariate analyses were conducted to identify risk factors associated with development of compartment syndrome. Twenty-six (2.8%) of the 938 fractures were associated with compartment syndrome. Only fibular (11.6%) and tibial (11.4%) fractures had incidence significantly higher than baseline for all ballistic fractures (p Ballistic fractures of the fibula and tibia are at increased risk for development of compartment syndrome over other ballistic fractures. We recommend increased vigilance when treating these injuries, particularly if the fracture is in the proximal aspect of the bone or is associated with vascular injury.

  19. Ballistic protection performance of curved armor systems with or without debondings/delaminations

    International Nuclear Information System (INIS)

    Tan, Ping

    2014-01-01

    Highlights: • Influence of pre-existing defect in an armor system on its ballistic performance. • Development of finite element models for the ballistic performance of armor systems. • Prediction of the ballistic limit and back face deformation of curved armor systems. - Abstract: In order to discern how pre-existing defects such as single or multiple debondings/delaminations in a curved armor system may affect its ballistic protection performance, two-dimensional axial finite element models were generated using the commercial software ANSYS/Autodyn. The armor systems considered in this investigation are composed of boron carbide front component and Kevlar/epoxy backing component. They are assumed to be perfectly bonded at the interface without defects. The parametric study shows that for the cases considered, the maximum back face deformation of a curved armor system with or without defects is more sensitive to its curvature, material properties of the ceramic front component, and pre-existing defect size and location than the ballistic limit velocity. Additionally, both the ballistic limit velocity and maximum back face deformation are significantly affected by the backing component thickness, front/backing component thickness ratio and the number of delaminations

  20. A biologically inspired neural network controller for ballistic arm movements

    Directory of Open Access Journals (Sweden)

    Schmid Maurizio

    2007-09-01

    Full Text Available Abstract Background In humans, the implementation of multijoint tasks of the arm implies a highly complex integration of sensory information, sensorimotor transformations and motor planning. Computational models can be profitably used to better understand the mechanisms sub-serving motor control, thus providing useful perspectives and investigating different control hypotheses. To this purpose, the use of Artificial Neural Networks has been proposed to represent and interpret the movement of upper limb. In this paper, a neural network approach to the modelling of the motor control of a human arm during planar ballistic movements is presented. Methods The developed system is composed of three main computational blocks: 1 a parallel distributed learning scheme that aims at simulating the internal inverse model in the trajectory formation process; 2 a pulse generator, which is responsible for the creation of muscular synergies; and 3 a limb model based on two joints (two degrees of freedom and six muscle-like actuators, that can accommodate for the biomechanical parameters of the arm. The learning paradigm of the neural controller is based on a pure exploration of the working space with no feedback signal. Kinematics provided by the system have been compared with those obtained in literature from experimental data of humans. Results The model reproduces kinematics of arm movements, with bell-shaped wrist velocity profiles and approximately straight trajectories, and gives rise to the generation of synergies for the execution of movements. The model allows achieving amplitude and direction errors of respectively 0.52 cm and 0.2 radians. Curvature values are similar to those encountered in experimental measures with humans. The neural controller also manages environmental modifications such as the insertion of different force fields acting on the end-effector. Conclusion The proposed system has been shown to properly simulate the development of