WorldWideScience

Sample records for ball mill grinding

  1. Determination of the boundary conditions of the grinding load in ball mills

    Science.gov (United States)

    Sharapov, Rashid R.

    2018-02-01

    The prospects of application in ball mills for grinding cement clinker with inclined partitions are shown. It is noted that ball mills with inclined partitions are more effective. An algorithm is proposed for calculating the power consumed by a ball mill with inclined inter-chamber partitions in which an axial movement of the ball load takes place. The boundary conditions in which the ball load is located are determined. The equations of bounding the grinding load are determined. The behavior of a grinding load is considered in view of the characteristic cross sections. The coordinates of the centers of gravity of the grinding load with a definite step and the shape of the cross sections are determined. It is theoretically shown that grinding load in some parts of the ball mill not only consumes, but also helps to rotate the ball mill. Methods for calculating complex analytical expressions for determining the coordinates of the centers of gravity of the grinding load under the conditions of its longitudinal motion have developed. The carried out researches allow to approach from the general positions to research of behavior of a grinding load in the ball mills equipped with various in-mill devices.

  2. Matrix model of the grinding process of cement clinker in the ball mill

    Science.gov (United States)

    Sharapov, Rashid R.

    2018-02-01

    In the article attention is paid to improving the efficiency of production of fine powders, in particular Portland cement clinker. The questions of Portland cement clinker grinding in closed circuit ball mills. Noted that the main task of modeling the grinding process is predicting the granulometric composition of the finished product taking into account constructive and technological parameters used ball mill and separator. It is shown that the most complete and informative characterization of the grinding process in a ball mill is a grinding matrix taking into account the transformation of grain composition inside the mill drum. Shows how the relative mass fraction of the particles of crushed material, get to corresponding fraction. Noted, that the actual task of reconstruction of the matrix of grinding on the experimental data obtained in the real operating installations. On the basis of experimental data obtained on industrial installations, using matrix method to determine the kinetics of the grinding process in closed circuit ball mills. The calculation method of the conversion of the grain composition of the crushed material along the mill drum developed. Taking into account the proposed approach can be optimized processing methods to improve the manufacturing process of Portland cement clinker.

  3. Dry grinding of talc in a stirred ball mill

    Directory of Open Access Journals (Sweden)

    Cayirli Serkan

    2016-01-01

    Full Text Available The aim of this work was to investigate micro fine size dry grindability of talc in a stirred ball mill. The effects of various parameters such as grinding time, stirrer speed, powder filling ratio and ball filling ratio were investigated. Alumina balls were used as grinding media. Experiments were carried out using the 24 full factorial design. The main and interaction effects were evaluated using the Yates method. Test results were evaluated on the basis of product size and surface area.

  4. Optimum condition determination of Rirang uranium ores grinding using ball mill

    International Nuclear Information System (INIS)

    Affandi, Kosim; Waluyo, Sugeng; Sarono, Budi; Sujono; Muhammad

    2002-01-01

    The grinding experiment on Rirang Uranium ore has been carried out with the aim is to find out the optimum condition of wet grinding using ball mill to produce particle size -325, -200 and -100 mesh. This will be used for decomposition feed the test was done by examine the parameters comparison of ore's weight against ball's weight and time of grinding. The test shown that the product of particle size -325 meshes was achieved optimum condition at the comparison ore's weight: ball = 1:3, grinding time 150 minutes, % solid 60, speed rotation of ball mill 60 rpm and recovery of grinding was 93.51 % of -325 mesh. The product of particle size -200 mesh was achieved optimum condition at comparison ore's weight: ball = 1:2, time of grinding 60 minutes, the fraction of + 200 mesh was regrind, the recovery of grinding 6.82% at particle size of (-200 + 250) mesh, 5.75 % at (-250 + 325)m mesh and, 47.93 % -325 mesh. The product of particle size -100 mesh was achieved the optimum condition at comparison ore's weight: ball = 1:2, time of grinding at 30 minutes particle size +100 mesh regrinding using mortar grinder, recovery of grinding 30.10% at particle size (-100 + 150) m, 12.28 % at (-150 + 200) mesh, 15.92 % at (-200 + 250) mesh, 12.44 % at (-250 + 325) mesh and 29.26 % -325 mesh. The determination of specific gravity of Rirang uranium ore was between 4.15 - 4.55 g/cm 3

  5. Grinding arrangement for ball nose milling cutters

    Science.gov (United States)

    Burch, C. F. (Inventor)

    1974-01-01

    A grinding arrangement for spiral fluted ball nose end mills and like tools includes a tool holder for positioning the tool relative to a grinding wheel. The tool is mounted in a spindle within the tool holder for rotation about its centerline and the tool holder is pivotably mounted for angular movement about an axis which intersects that centerline. A follower arm of a cam follower secured to the spindle cooperates with a specially shaped cam to provide rotation of the tool during the angular movement of the tool holder during the grinding cycle, by an amount determined by the cam profile. In this way the surface of the cutting edge in contact with the grinding wheel is maintained at the same height on the grinding wheel throughout the angular movement of the tool holder during the grinding cycle.

  6. Reliable Mechanochemistry: Protocols for Reproducible Outcomes of Neat and Liquid Assisted Ball-mill Grinding Experiments.

    Science.gov (United States)

    Belenguer, Ana M; Lampronti, Giulio I; Sanders, Jeremy K M

    2018-01-23

    The equilibrium outcomes of ball mill grinding can dramatically change as a function of even tiny variations in the experimental conditions such as the presence of very small amounts of added solvent. To reproducibly and accurately capture this sensitivity, the experimentalist needs to carefully consider every single factor that can affect the ball mill grinding reaction under investigation, from ensuring the grinding jars are clean and dry before use, to accurately adding the stoichiometry of the starting materials, to validating that the delivery of solvent volume is accurate, to ensuring that the interaction between the solvent and the powder is well understood and, if necessary, a specific soaking time is added to the procedure. Preliminary kinetic studies are essential to determine the necessary milling time to achieve equilibrium. Only then can exquisite phase composition curves be obtained as a function of the solvent concentration under ball mill liquid assisted grinding (LAG). By using strict and careful procedures analogous to the ones here presented, such milling equilibrium curves can be obtained for virtually all milling systems. The system we use to demonstrate these procedures is a disulfide exchange reaction starting from the equimolar mixture of two homodimers to obtain at equilibrium quantitative heterodimer. The latter is formed by ball mill grinding as two different polymorphs, Form A and Form B. The ratio R = [Form B] / ([Form A] + [Form B]) at milling equilibrium depends on the nature and concentration of the solvent in the milling jar.

  7. THEORETICAL AND EXPERIMENTAL STUDIES OF ENERGY-EFFICIENT GRINDING PROCESS OF CEMENT CLINKER IN A BALL MILL

    Directory of Open Access Journals (Sweden)

    Kuznetsova M.M.

    2014-08-01

    Full Text Available The article presents results of theoretical and experimental research of grinding process of bulk materials in a ball mill. The new method of determination of energy efficiently mode of operation of ball mills in a process of a cement clinker grinding is proposed and experimentally tested.

  8. Kinetic parameters of grinding media in ball mills with various liner design and mill speed based on DEM modeling

    Science.gov (United States)

    Khakhalev, P. A.; Bogdanov, VS; Kovshechenko, V. M.

    2018-03-01

    The article presents analysis of the experiments in the ball mill of 0.5x0.3 m with four different liner types based on DEM modeling. The numerical experiment always complements laboratory research and allow obtaining high accuracy output data. An important property of the numerical experiment is the possibility of visualization of the results. The EDEM software allows calculating trajectory of the grinding bodies and kinetic parameters of each ball for the relative mill speed and the different types of mill’s liners.

  9. Determination of rational parameters for process of grinding materials pre-crushed by pressure in ball mill

    Science.gov (United States)

    Romanovich, A. A.; Romanovich, L. G.; Chekhovskoy, E. I.

    2018-03-01

    The article presents the results of experimental studies on the grinding process of a clinker preliminarily ground in press roller mills in a ball mill equipped with energy exchange devices. The authors studied the influence of the coefficients of loading for grinding bodies of the first and second mill chambers, their lengths, angles of inclination, and the mutual location of energy exchange devices (the ellipse segment and the double-acting blade) on the output parameters of the grinding process (productivity, drive power consumption and specific energy consumption). It is clarified that the best results of the disaggregation and grinding process, judging by the minimum specific energy consumption in the grinding of clinker with an anisotropic texture after force deformation between the rolls of a press roller shredder, are achieved at a certain angle of ellipse segment inclination; the length of the first chamber and the coefficients of loading the chambers with grinding bodies.

  10. Dependence of rates of breakage on fines content in wet ball mill grinding

    Science.gov (United States)

    Bhattacharyya, Anirban

    The following research fundamentally deals with the cause and implications of nonlinearities in breakage rates of materials in wet grinding systems. The innate dependence of such nonlinearities on fines content and the milling environment during wet grinding operations is also tested and observed. Preferential breakage of coarser size fractions as compared to the finer size fractions in a particle population were observed and discussed. The classification action of the pulp was deemed to be the probable cause for such a peculiarity. Ores with varying degrees of hardness and brittleness were used for wet grinding experiments, primarily to test the variations in specific breakage rates as a function of varying hardness. For this research, limestone, quartzite, and gold ore were used. The degree of hardness is of the order of: limestone, quartzite, gold ore. Selection and breakage function parameters were determined in the course of this research. Functional forms of these expressions were used to compare experimentally derived parameter estimates. Force-fitting of parameters was not done in order to examine the realtime behavior of particle populations in wet grinding systems. Breakage functions were established as being invariant with respect to such operating variables like ball load, mill speed, particle load, and particle size distribution of the mill. It was also determined that specific selection functions were inherently dependent on the particle size distribution in wet grinding systems. Also, they were consistent with inputs of specific energy, according to grind time. Nonlinearity trends were observed for 1st order specific selection functions which illustrated variations in breakage rates with incremental inputs of grind time and specific energy. A mean particle size called the fulcrum was noted below which the nonlinearities in the breakage trends were observed. This magnitude of the fulcrum value varied with percent solids and slurry filling, indicating

  11. Effect of milling time on microstructure and properties of Nano-titanium polymer by high-energy ball milling

    Science.gov (United States)

    Wang, Bo; Wei, Shicheng; Wang, Yujiang; Liang, Yi; Guo, Lei; Xue, Junfeng; Pan, Fusheng; Tang, Aitao; Chen, Xianhua; Xu, Binshi

    2018-03-01

    Nano-titanium (Nano-Ti) was prepared by high-energy ball milling from pure Ti power and grinding agents (Epoxy resin) at room temperature. The effect of milling time on structure and properties of Nano-Ti polymer were investigated systematically. The results show that high-energy ball milling is an effective way to produce Nano-Ti polymer. The dispersion stability and compatibility between Ti power and grinding agents are improved by prolonging the milling time at a certain degree, that is to say, the optimization milling time is 240 min. The particle size of Ti powder and the diffraction peaks intensity of Ti decrease obviously as the milling time increases due to the compression stress, shear friction and other mechanical forces are formed during ball milling. FT-IR result displays that the wavenumber of all the bands move to lower wavenumber after ball milling, and the epoxy ring is open. The system internal energy rises owing to the broken epoxy group and much more Nano-Ti is formed to promote the grafting reaction between Nano-Ti and epoxy resin. The results from TEM and XPS also prove that. And the grafting ration is maximum as the milling time is 240 min, the mass loss ratio is 17.53%.

  12. Grinding in lead-zinc concentrator Sasa – choice between different grinding media

    OpenAIRE

    Krstev, Boris

    2004-01-01

    In this paper will be present result obtained from investigation in the grinding circuit of the lead-zinc concentrator Sasa,using differen grindng media: • Litzkhun-Niederwipper Forged Steel grinding balls; • GSI LUCCHINI Moly-Cop Forged Steel grinding balls; • Cast steel grinding balls from Ukraina and Bulgaria; In the same time will be shown comparation between obtained parameters using different grinding balls specially: • Capacity of the grinding mill; • Particle size; ...

  13. The grinding behavior of ground copper powder for Cu/CNT nanocomposite fabrication by using the dry grinding process with a high-speed planetary ball mill

    Science.gov (United States)

    Choi, Heekyu; Bor, Amgalan; Sakuragi, Shiori; Lee, Jehyun; Lim, Hyung-Tae

    2016-01-01

    The behavior of ground copper powder for copper-carbon nanotube (copper-CNT) nanocomposite fabrication during high-speed planetary ball milling was investigated because the study of the behavior characteristics of copper powder has recently gained scientific interest. Also, studies of Cu/CNT composites have widely been done due to their useful applications to enhanced, advanced nano materials and components, which would significantly improve the properties of new mechatronics-integrated materials and components. This study varied experimental conditions such as the rotation speed and the grinding time with and without CNTs, and the particle size distribution, median diameter, crystal structure and size, and particle morphology were monitored for a given grinding time. We observed that pure copper powders agglomerated and that the morphology changed with changing rotation speed. The particle agglomerations were observed with maximum experiment conditions (700 rpm, 60 min) in this study of the grinding process for mechanical alloys in the case of pure copper powders because the grinding behavior of Cu/CNT agglomerations was affected by the addition of CNTs. Indeed, the powder morphology and the crystal size of the composite powder could be changed by increasing the grinding time and the rotation speed.

  14. Rubber lining design for grinding mills: influence on economy and capacity

    Energy Technology Data Exchange (ETDEWEB)

    Nillson, G

    1979-11-01

    There is a difference in design parameters between steel linings and rubber linings for grinding mills. The basic design parameters for rubber are described and a comparison is made between steel and rubber in different applications. If a rubber lining is correctly designed, it will give at least the same capacity as any other type of lining. A rubber lining can often be made thinner than other types of lining and, in such cases, the increased mill diameter will increase the capacity. What has been said above regarding capacity applies equally to grinding efficiency. The grind can sometimes be changed by altering the lifter height and lifter profile. Rubber linings of the correct quality and design will always give improved lining economy, except for large primary ball mills. We trust that new designs and rubber qualities will change the picture in the future. What is said about lining economy is especially true when taking reduced downtime and maintenance into consideration. The lining must be designed to reduce sliding over the shell, which leads to heavy wear. When used for dry grinding, the adverse effects of temperature must be observed.

  15. Steel grinding media in production use

    International Nuclear Information System (INIS)

    Nass, D.E.

    1975-01-01

    This paper reviews the types of steel being used for grinding rods and balls by the mining industry in U. S. and Canada. Results of a Dec. 1973 grinding media survey of U. S. and Canadian mills are summarized. Common alloying elements (C, Mn, Cr, Mo, Cu, etc.) are discussed. Grinding balls and rods are discussed separately; wear tests using irradiated balls are described. Finally, defects in grinding media are discussed

  16. Research kinetic of motion of milling bodies in ball mill, outfit heat-exchange unit and calculation of its energy performance

    Science.gov (United States)

    Romanovich, A. A.; Romanovich, M. A.; Apukhtina, I. V.

    2018-03-01

    The article considers topical issues of energy saving in cement production with the use of a technological grinding complex, which includes a press roller grinder and a ball mill. Rational conditions of grinding are proposed for pre-shredded material through the installation of blade energy exchange devices (BEED) in the mill drum. The loading level in the first chamber varies periodically depending on the drum rotation angle, equipped with BEED. In the zone of BEED’s active action, there is a “scooping” of a part of grinding bodies together with crushed material, raising them to a height and giving them a longitudinally transverse movement, which is different from movement created in the mill without BEED. At the same time, additional work that consumes engine power is being done. A technique is proposed for calculating the additional engine power consumption of a mill, equipped with a BEED. This power is spent on creating a longitudinal-transverse motion of grinding bodies and its first and second chambers in areas of active influence of the BEED. Comparative analysis of results obtained experimentally and calculations of proposed equations show a high convergence of results. These analytical dependencies may be interest to Russian and foreign organizations that carry out their activities in the field of design and manufacture of cement equipment, as well as to cement producers.

  17. Operating results of Kosmos Cement's O-SEPA separator for raw grinding

    Energy Technology Data Exchange (ETDEWEB)

    Ireland, T C [Consultec Ltd., Toronto (CA); Schultz, G K [Southdown Incorporated, Houston, TX (US)

    1991-01-01

    High efficiency separators were first introduced in the cement industry to improve the energy efficiency of finish grinding circuits. Lately, however, a great deal of interest has been focused on improving the energy efficiency of raw grinding circuits. High efficiency separators have successfully been installed in roller mills as well as in ball mill raw grinding circuits. This paper describes the operating experience of the first installation in North America using a high efficiency separator in a raw grinding circuit. This installation, commissioned in 1988 at the Louisville, Kentucky plant of Kosmos Cement, uses a conventional 4500 HP ball mill and a high efficiency dynamic separator to produce raw meal for a preheater kiln as well as high fineness limestone for sulphur scrubbing in a nearby power plant. The system uses kiln exhaust gases for drying both in the mill and in the separator. (author).

  18. The effect of ZrO2 grinding media on the attrition milling of FeAl with Y2O3

    International Nuclear Information System (INIS)

    Gedevanishvili, S.; Deevi, S.C.

    2004-01-01

    Attrition milling of water and gas atomized FeAl was carried out with Y 2 O 3 , where ZrO 2 was used as a grinding media in place of stainless steel balls to avoid contamination with Cr and C. Consolidation of the milled powders produced complex FeAl phases containing Zr which doubled the hardness and significantly improved the creep resistance as compared to that of unmilled and consolidated FeAl

  19. Ball mill tool for crushing coffee and cocoa beans base on fraction size sieving results

    Science.gov (United States)

    Haryanto, B.; Sirait, M.; Azalea, M.; Alvin; Cahyani, S. E.

    2018-02-01

    Crushing is one of the operation units that aimed to convert the size of solid material to be smoother particle’s size. The operation unit that can be used in this crushing is ball mill. The purpose of this study is to foresee the effect of raw material mass, grinding time, and the number of balls that are used in the ball mill tool related to the amount of raw material of coffee and cocoa beans. Solid material that has become smooth is then sieved with sieve mesh with size number: 50, 70, 100, and 140. It is in order to obtain the mass fraction that escaped from each sieve mesh. From the experiment, it can be concluded that mass percentage fraction of coffee powder is bigger than cocoa powder that escaped from the mesh. Hardness and humidity of coffee beans and cocoa beans have been the important factors that made coffee beans is easier to be crushed than cocoa beans.

  20. Grinding Si3N4 Powder In Si3N4 Equipment

    Science.gov (United States)

    Herbell, Thomas P.; Freedman, Marc R.; Kiser, James D.

    1989-01-01

    Three methods of grinding compared. Report based on study of grinding silicon nitride powder in preparation for sintering into solid ceramic material. Attrition, vibratory, and ball mills lined with reaction-bonded silicon nitride tested. Rates of reduction of particle sizes and changes in chemical compositions of powders measured so grinding efficiences and increases in impurity contents from wear of mills and media evaluated for each technique.

  1. Reactive-inspired ball-milling synthesis of an ODS steel: study of the influence of ball-milling and annealing

    International Nuclear Information System (INIS)

    Brocq, M.

    2010-10-01

    In the context of the development of new ODS (Oxide Dispersion Strengthened) steels as core materials in future nuclear reactors, we investigated a new process inspired by reactive ball-milling which consists in using YFe 3 andFe 2 O 3 as starting reactants instead of Y 2 O 3 to produce a dispersion of nano-oxides in a steel matrix and the influence of synthesis conditions on the nano-oxide characteristics were studied. For that aim, ODS steels were prepared by ball-milling and then annealed. Multi-scale characterizations were performed after each synthesis step, using notably atom probe tomography and small angle neutron scattering. The process inspired by reactive ball-milling was shown to be efficient for ODS steel synthesis, but it does not modify the nano-oxide characteristics as compared to those of oxides directly incorporated in the matrix by ball-milling. Broadly speaking, the nature of the starting oxygen bearing reactants has no influence on nano-oxide formation. Moreover, we showed that the nucleation of nano-oxides nucleation can start during milling and continues during annealing with a very fast kinetic. The final characteristics of nano-oxides formed in this way can be monitored through ball-milling parameters (intensity, temperature and atmosphere) and annealing parameters (duration and temperature). (author)

  2. Work Index and Grinding Energy Assessment of Dilband Iron Ore, Pakistan

    Directory of Open Access Journals (Sweden)

    Muhammad Ishaque Abro

    2011-01-01

    Full Text Available Importance of comminution in mineral processing sector is highly acknowledged from energy perspective. In present study an attempt was made to understand the comminuting behavior of Dilband iron ore and to compute the grinding energy requirement for production of ultrafine particles up to mesh of liberation. In this regard standard grindability tests developed by the Chair of Mineral Processing Leoben Austria was used for calculating work index of Dilband iron ore. The grinding tests were conducted in rod and ball mills. The work index value of two feed size fractions with 80% passing at 3800?m and 5200?m was noted to be 11.85 kwh/t and 9.3 kwh/ton respectively. Ball mill grinding test indicates that dry grinding in open circuit is not efficient and consumes more energy of 88.48kwh/t of ore for grinding 1000/40?m to 80% <40?m size.

  3. Comparison of Wet and Dry Grinding in Electromagnetic Mill

    Directory of Open Access Journals (Sweden)

    Szymon Ogonowski

    2018-03-01

    Full Text Available Comparison of dry and wet grinding process in an electromagnetic mill is presented in this paper. The research was conducted in a batch copper ore grinding. Batch mode allows for precise parametrization and constant repetitive conditions of the experiments. The following key aspects were tested: processing time, feed size, size of the grinding media, mass of the material and graining media, and density of the pulp. The particles size distribution of the product samples was analyzed in the laboratory after each experiment. The paper discusses the experimental results as well as the concept of dry and wet grinding and classification circuits for the electromagnetic mill. The main points of the discussion are the size reduction effectiveness and power consumption of the entire system.

  4. Ball-milling-induced crystallization and ball-milling effect on thermal crystallization kinetics in an amorphous FeMoSiB alloy

    International Nuclear Information System (INIS)

    Guo, F.Q.; Lu, K.

    1997-01-01

    Microstructure evolution in a melt-spun amorphous Fe 77.2 Mo 0.8 Si 9 B 13 alloy subjected to high-energy ball milling was investigated by means of X-ray diffraction (XRD), a transmission electron microscope (TEM), and a differential scanning calorimeter (DSC). It was found that during ball milling, crystallization occurs in the amorphous ribbon sample with precipitation of an α-Fe solid solution, and the amorphous sample crystallizes completely into a single α-Fe nanostructure (rather than α-Fe and borides as in the usual thermal crystallization products) when the milling time exceeds 135 hours. The volume fraction of material crystallized was found to be approximately proportional to the milling time. The fully crystallized sample with a single α-Fe nanophase exhibits an intrinsic thermal stability against phase separation upon annealing at high temperatures. The ball-milling effect on the subsequent thermal crystallization of the amorphous phase in an as-milled sample was studied by comparison of the crystallization products and kinetic parameters between the as-quenched amorphous sample and the as-milled sample was studied by comparison of the crystallization products and kinetic parameters between the as-quenched amorphous sample and the as-milled partially crystallized samples. The crystallization temperatures and activation energies for the crystallization processes of the residual amorphous phase were considerably decreased due to ball milling, indicating that ball milling has a significant effect on the depression of thermal stability of the residual amorphous phase

  5. Characterization of steel 70XL used in the manufacture of balls for the clinker's milling

    Directory of Open Access Journals (Sweden)

    Eider Gresesqui-Lobaina

    2017-10-01

    Full Text Available The present article deals with the wear of the balls used for the grinding of the clinker in the processes of obtaining cement. Three specimens of different steel were made: one of steel AISI 4140, with which balls are forged for the milling process; another 70XL steel (70 XL with normalized, tempered and tempered thermal treatments; and the third, of equal material that the second but without treatment. For the metallographic observation the samples were made with dimensions of 10 mm in diameter and 8 mm in thickness, revealing for AISI 4140 steel a structure of martensitic type with some presence of acicular ferrite. For the 70XL steel without heat treatment the presence of ferrite and cementite was observed, while the steel 70XL with heat treatment showed in the limits of free cementite grain in a pearly matrix, which resulted in a higher hardness (up to HRC 59 , 8 and lower gravimetric wear compared to other materials. Therefore it is recommended as the most suitable for the manufacture of balls for grinding minerals 70XL steel with heat treatment.

  6. Simulation of the Mineração Serra Grande Industrial Grinding Circuit

    Directory of Open Access Journals (Sweden)

    Thiago Oliveira Nunan

    Full Text Available Abstract Increasing throughput during the mining cycle operation frequently generates significant capital gains for a company. However, it is necessary to evaluate plant capacity and expand it for obtaining the required throughput increase. Therefore, studies including different scenarios, installation of new equipment and/or optimization of existing ones are required. This study describes the sampling methodology, sample characterization, modeling and simulation of Mineração Serra Grande industrial grinding circuit, an AngloGold Ashanti company, located in Crixás, State of Goiás, Brazil. The studied scenarios were: (1 adding a third ball mill in series with existing two ball mills, (2 adding a third ball mill in parallel with existing mills, (3 adding a vertical mill in series with existing mills and (4 adding high pressure grinding rolls to existing mills. The four simulations were carried out for designing the respective circuit, assessing the interference with existing equipment and installations, as well as comparing the energy consumption among the selected expansion alternatives. Apart from the HPGR alternative, all other three simulations resulted in the required P80 and capacity. Among the three selected simulations, the Vertimill alternative showed the smallest installed power.

  7. Improved hydrogen sorption kinetics in wet ball milled Mg hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Li

    2011-05-04

    In this work, wet ball milling method is used in order to improve hydrogen sorption behaviour due to its improved microstructure of solid hydrogen materials. Compared to traditional ball milling method, wet ball milling has benefits on improvement of MgH{sub 2} microstructure and further influences on its hydrogen sorption behavior. With the help of solvent tetrahydrofuran (THF), wet ball milled MgH{sub 2} powder has much smaller particle size and its specific surface area is 7 times as large as that of dry ball milled MgH{sub 2} powder. Although after ball milling the grain size is decreased a lot compared to as-received MgH{sub 2} powder, the grain size of wet ball milled MgH{sub 2} powder is larger than that of dry ball milled MgH{sub 2} powder due to the lubricant effect of solvent THF during wet ball milling. The improved particle size and specific surface area of wet ball milled MgH{sub 2} powder is found to be determining its hydrogen sorption kinetics especially at relatively low temperatures. And it also shows good cycling sorption behavior, which decides on its industrial applicability. With three different catalysts MgH{sub 2} powder shows improved hydrogen sorption behavior as well as the cyclic sorption behavior. Among them, the Nb{sub 2}O{sub 5} catalyst is found to be the most effective one in this work. Compared to the wet ball milled MgH{sub 2} powder, the particle size and specific surface area of the MgH{sub 2} powder with catalysts are similar to the previous ones, while the grain size of the MgH{sub 2} with catalysts is much finer. In this case, two reasons for hydrogen sorption improvement are suggested: one is the reduction of the grain size. The other may be as pointed out in some literatures that formation of new oxidation could enhance the hydrogen sorption kinetics, which is also the reason why its hydrogen capacity is decreased compared to without catalysts. After further ball milling, the specific surface area of wet ball milled Mg

  8. Comparison of tungsten carbide and stainless steel ball bearings for grinding single maize kernels in a reciprocating grinder

    Science.gov (United States)

    Reciprocating grinders can grind single maize kernels by shaking the kernel in a vial with a ball bearing. This process results in a grind quality that is not satisfactory for many experiments. Tungesten carbide ball bearings are nearly twice as dense as steel, so we compared their grinding performa...

  9. Energy-effective Grinding of Inorganic Solids Using Organic Additives.

    Science.gov (United States)

    Mishra, Ratan K; Weibel, Martin; Müller, Thomas; Heinz, Hendrik; Flatt, Robert J

    2017-08-09

    We present our research findings related to new formulations of the organic additives (grinding aids) needed for the efficient grinding of inorganic solids. Even though the size reduction phenomena of the inorganic solid particles in a ball mill is purely a physical process, the addition of grinding aids in milling media introduces a complex physicochemical process. In addition to further gain in productivity, the organic additive helps to reduce the energy needed for grinding, which in the case of cement clinker has major environmental implications worldwide. This is primarily due to the tremendous amounts of cement produced and almost 30% of the associated electrical energy is consumed for grinding. In this paper, we examine the question of how to optimize these grinding aids linking molecular insight into their working mechanisms, and also how to design chemical additives of improved performance for industrial comminution.

  10. Encaging palladium(0 in layered double hydroxide: A sustainable catalyst for solvent-free and ligand-free Heck reaction in a ball mill

    Directory of Open Access Journals (Sweden)

    Wei Shi

    2017-08-01

    Full Text Available In this paper, the synthesis of a cheap, reusable and ligand-free Pd catalyst supported on MgAl layered double hydroxides (Pd/MgAl-LDHs by co-precipitation and reduction methods is described. The catalyst was used in Heck reactions under high-speed ball milling (HSBM conditions at room temperature. The effects of milling-ball size, milling-ball filling degree, reaction time, rotation speed and grinding auxiliary category, which would influence the yields of mechanochemical Heck reactions, were investigated in detail. The characterization results of XRD, ICP–MS and XPS suggest that Pd/MgAl-LDHs have excellent textural properties with zero-valence Pd on its layers. The reaction results indicate that the catalyst could be utilized in HSBM systems to afford a wide range of Heck coupling products in satisfactory yields. Furthermore, this catalyst could be easily recovered and reused for at least five times without significant loss of catalytic activity.

  11. Simulation of ball motion and energy transfer in a planetary ball mill

    International Nuclear Information System (INIS)

    Lu Sheng-Yong; Mao Qiong-Jing; Li Xiao-Dong; Yan Jian-Hua; Peng Zheng

    2012-01-01

    A kinetic model is proposed for simulating the trajectory of a single milling ball in a planetary ball mill, and a model is also proposed for simulating the local energy transfer during the ball milling process under no-slip conditions. Based on the kinematics of ball motion, the collision frequency and power are described, and the normal impact forces and effective power are derived from analyses of collision geometry. The Hertzian impact theory is applied to formulate these models after having established some relationships among the geometric, dynamic, and thermophysical parameters. Simulation is carried out based on two models, and the effects of the rotation velocity of the planetary disk Ω and the vial-to-disk speed ratio ω/Ω on other kinetic parameters is investigated. As a result, the optimal ratio ω/Ω to obtain high impact energy in the standard operating condition at Ω = 800 rpm is estimated, and is equal to 1.15. (interdisciplinary physics and related areas of science and technology)

  12. Reduction of hydrogen desorption temperature of ball-milled MgH2 by NbF5 addition

    International Nuclear Information System (INIS)

    Recham, N.; Bhat, V.V.; Kandavel, M.; Aymard, L.; Tarascon, J.-M.; Rougier, A.

    2008-01-01

    Enhanced sorption properties of ball-milled MgH 2 are reported by adding NbF 5 . Among various catalyst amounts, 2 mol% of NbF 5 reveals to be the optimum concentration leading to significant reduction of the desorption temperature as well as faster kinetics of ball-milled MgH 2 . At 200 deg. C, temperature at which MgH 2 does not show any activity, MgH 2NbF 5 /2mol% composite desorbs 3.2 wt.% of H 2 in 50 mins. Interestingly, the addition of NbF 5 is also associated with an increase in the desorption pressure. At 300 deg. C, MgH 2NbF 5 /2mol% composite starts to desorb hydrogen at 600 mbar in comparison with 1 mbar for MgH 2 . Further improvements were successfully achieved by pre-grinding NbF 5 prior to ball-milling the catalyst with MgH 2 . Such pre-ground NbF 5 catalyzed MgH 2 composite desorbs 3 wt.% of H 2 at 150 deg. C. Improved properties are associated with smaller activation energies down to values close to the enthalpy of formation of MgH 2 . Finally, the mechanism at the origin of the enhancement is discussed in terms of catalyst stability, MgF 2 formation and electronic density localization

  13. Quenching simulation of steel grinding balls

    Energy Technology Data Exchange (ETDEWEB)

    Zapata-Hernandez, O.; Reyes, L. A.; Camurri, C.; Carrasco, C.; Garza-Monte-de-Oca, F.; Colas, R.

    2015-07-01

    The phase transformations of high carbon steel during quenching and equalizing were modelled using commercial computer packages based on the finite element method and the kinetic transformation of steel. The model was used to predict the temperature and microstructural changes taking place within balls of two different sizes that are used for grinding mineral ores. A good correlation between the temperatures measured by inserted thermocouples and those predicted by the model was obtained after modifying the thermal conductivity of the steel within the temperature domain at which mixed phases are present. The phase transformations predicted were confirmed by metallographic analyses. (Author)

  14. Micro structrual characterization and analysis of ball milled silicon carbide

    Science.gov (United States)

    Madhusudan, B. M.; Raju, H. P.; Ghanaraja., S.

    2018-04-01

    Mechanical alloying has been one of the prominent methods of powder synthesis technique in solid state involving cyclic deformation, cold welding and fracturing of powder particles. Powder particles in this method are subjected to greater mechanical deformation due to the impact of ball-powder-ball and ball-powder-container collisions that occurs during mechanical alloying. Strain hardening and fracture of particles decreases the size of the particles and creates new surfaces. The objective of this Present work is to use ball milling of SiC powder for different duration of 5, 10, 15 and 20 hours by High energy planetary ball milling machine and to evaluate the effect of ball milling on SiC powder. Micro structural Studies using Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD) and EDAX has been investigated.

  15. High-energy ball milling of powder B-C mixtures

    International Nuclear Information System (INIS)

    Ramos, Alfeu S.; Taguchi, Simone P.; Ramos, Erika C.T.; Arantes, Vera L.; Ribeiro, Sebastiao

    2006-01-01

    The present work reports on the preparation of B-10 at.% C and B-18 at.% C powders by high-energy ball milling and further heat treatment. The milling process was carried out in a planetary ball mill. Following the milling process, powder samples were heat-treated at 1200 deg. C for 4 h using inert atmosphere. The milled and heat-treated B-10C and B-18C powders were characterized by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. A reduction on the intensity of B and C peaks was noticed after milling for 2 h, probably due the fine powder particle sizes because the pronounced fracture mechanism during ball milling of brittle starting components. The XRD patterns of B-10C and B-18C powders milled for 6 h indicated the presence of other peaks, suggesting that a metastable structure could have been formed. After milling for 90 h, these unknown peaks were still present. A large amount of B 4 C was formed after heat treatment at 1200 deg. C for 4 h beside these unknown peaks

  16. Response to Thermal Exposure of Ball-Milled Aluminum-Borax Powder Blends

    Science.gov (United States)

    Birol, Yucel

    2013-04-01

    Aluminum-borax powder mixtures were ball milled and heated above 873 K (600 °C) to produce Al-B master alloys. Ball-milled powder blends reveal interpenetrating layers of deformed aluminum and borax grains that are increasingly refined with increasing milling time. Thermal exposure of the ball-milled powder blends facilitates a series of thermite reactions between these layers. Borax, dehydrated during heating, is reduced by Al, and B thus generated reacts with excess Al to produce AlB2 particles dispersed across the aluminum grains starting at 873 K (600 °C). AlB2 particles start to form along the interface of the aluminum and borax layers. Once nucleated, these particles grow readily to become hexagonal-shaped crystals that traverse the aluminum grains with increasing temperatures as evidenced by the increase in the size as well as in the number of the AlB2 particles. Ball milling for 1 hour suffices to achieve a thermite reaction between borax and aluminum. Ball milling further does not impact the response of the powder blend to thermal exposure. The nucleation-reaction sites are multiplied, however, with increasing milling time and thus insure a higher number of smaller AlB2 particles. The size of the AlB2 platelets may be adjusted with the ball milling time.

  17. Mechanochemical Ring-Opening Polymerization of Lactide: Liquid-Assisted Grinding for the Green Synthesis of Poly(lactic acid) with High Molecular Weight.

    Science.gov (United States)

    Ohn, Nuri; Shin, Jihoon; Kim, Sung Sik; Kim, Jeung Gon

    2017-09-22

    Mechanochemical polymerization of lactide is carried out by using ball milling. Mechanical energy from collisions between the balls and the vessel efficiently promotes an organic-base-mediated metal- and solvent-free solid-state polymerization. Investigation of the parameters of the ball-milling synthesis revealed that the degree of lactide ring-opening polymerization could be modulated by the ball-milling time, vibration frequency, mass of the ball media, and liquid-assisted grinding. Liquid-assisted grinding was found to be an especially important factor for achieving a high degree of mechanochemical polymerization. Although polymer-chain scission from the strong collision energy prevented mechanical-force-driven high-molecular-weight polymer synthesis, the addition of only a small amount of liquid enabled sufficient energy dissipation and poly(lactic acid) was thereby obtained with a molecular weight of over 1×10 5  g mol -1 . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Multifractal properties of ball milling dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Budroni, M. A., E-mail: mabudroni@uniss.it; Pilosu, V.; Rustici, M. [Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, Via Vienna 2, Sassari 07100 (Italy); Delogu, F. [Dipartimento di Ingegneria Meccanica, Chimica, e dei Materiali, Università degli Studi di Cagliari, via Marengo 2, Cagliari 09123 (Italy)

    2014-06-15

    This work focuses on the dynamics of a ball inside the reactor of a ball mill. We show that the distribution of collisions at the reactor walls exhibits multifractal properties in a wide region of the parameter space defining the geometrical characteristics of the reactor and the collision elasticity. This feature points to the presence of restricted self-organized zones of the reactor walls where the ball preferentially collides and the mechanical energy is mainly dissipated.

  19. Efficient Fuel Pretreatment: Simultaneous Torrefaction and Grinding of Biomass

    DEFF Research Database (Denmark)

    Saleh, Suriyati Binti; Hansen, Brian Brun; Jensen, Peter Arendt

    2013-01-01

    Combining torrefaction and grinding of biomass in one reactor may be an attractive fuel pretreatment process. A combined laboratory torrefaction and ball mill reactor has been constructed for studies of the influence of temperature and residence time on the product yields and particle size...... reductions of Danish wheat straw, spruce chips, and pine chips. On the basis of initial experiments, which evaluated the influence of reactor mass loading, gas flow, and grinding ball size and material, a standard experimental procedure was developed. The particle size reduction capability......, and ash composition, where straw has a higher alkali content. This and other studies indicate that the large difference in the alkali contents of the biomasses is the main cause for the observed difference in torrefaction characteristics. Experiments with separate particle heating and grinding showed...

  20. Structure and magnetism of SmCo5 nanoflakes prepared by surfactant-assisted ball milling with different ball sizes

    International Nuclear Information System (INIS)

    Nie, Junwu; Han, Xianghua; Du, Juan; Xia, Weixing; Zhang, Jian; Guo, Zhaohui; Yan, Aru; Li, Wei; Ping Liu, J.

    2013-01-01

    Anisotropic magnetic SmCo 5 nanoflakes have been fabricated by surfactant-assisted ball milling (SABM) using hardened steel balls of one of the following sizes: 4, 6.5, 9.5 and 12.7 mm in diameters. The magnetic properties of SmCo 5 particles prepared by SABM with different milling ball sizes in diameters were investigated systematically. It was showed that the nanoflakes milled by amount of small size balls had a higher coercivity and lower anisotropy, i.e., worse grain orientation although in a short milling time while the nanoflakes prepared with same weight of big balls tend to have a lower coercivity, better grain orientation. The coercivity mechanism of the nanoflake was studied and it was mainly dominated with the domain-wall pinning. The SEM analysis shows that the morphology of nanoflakes prepared with different ball sizes are almost the same when the balls to powder weight ratio is fixed. The different magnetic properties caused by different ball sizes are mainly due to the different microstructure changes, i.e, grain refinement and c-axis orientation, which are demonstrated by X-ray diffraction (XRD) analysis and transmission electron microscope (TEM). Based on the experiments above, a combined milling process was suggested and done to improve magnetic properties as your need. - Highlights: • We fabricated anisotropic magnetic SmCo 5 nanoflakes by surfactant-assisted ball milling (SABM). • We investigated the magnetic properties of SmCo 5 particles systematically. It was showed that the coercivity, high or low, and grain orientation, good or bad, were influenced strongly by balls size. The different magnetisms caused by different ball sizes is mainly due to the different microstructure changes. • The coercivity mechanism of the nanoflake was studied and it was mainly dominated with the domain-wall pinning

  1. Ferromagnetic behavior of nanocrystalline Cu–Mn alloy prepared by ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, B.N., E-mail: bholanath_mondal@yahoo.co.in [Department of Central Scientific Services, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032 (India); Sardar, G. [Department of Zoology, Baruipur College, South 24 parganas 743 610 (India); Nath, D.N. [Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032 (India); Chattopadhyay, P.P. [Department of Metallurgy and Materials Engineering, Bengal Engineering and Science University, Shibpur, Howrah 711 103 (India)

    2014-12-15

    50Cu–50Mn (wt%) alloy was produced by ball milling. The milling was continued up to 30 h followed by isothermal annealing over a four interval of temperature from 350 to 650 °C held for 1 h. Crystallite size, lattice strain, lattice parameter were determined by Rietveld refinement structure analysis of X-ray diffraction data. The amount of dissolved/precipitated Mn (wt%) after ball milling/milling followed by annealing was calculated by quantative phase analysis (QPA). The increase of coercivity could be attributed to the introduction of lattice strain and reduction of crystallite size as a function of milling time. Electron paramagnetic resonance and superconducting quantum interface device analysis indicate that soft ferromagnetic behavior has been achieved by ball milled and annealed Cu–Mn alloy. The maximum coercivity value of Cu–Mn alloy obtained after annealing at 350 °C for 1 h is 277 Oe. - Highlights: • A small amount of Mn has dissolved in Cu after ball milling for 30 h. • Coercivity of the Cu–Mn alloy has increased with an increase in milling time. • Substantial MnO has formed after annealing at 650 °C for 1 h. • The ball milled and annealed alloy have revealed soft ferromagnetic behavior. • The alloy annealed at 350 °C shows the maximum value of coercivity.

  2. Preparation of tungsten-iron carbide by ball milling

    International Nuclear Information System (INIS)

    Wang, G.M.; Campbell, S.J.; Calka, A.; Kaczmarek, W.A.

    1996-01-01

    Several sets of elemental powder mixtures of Fe-W-C (W 46 Fe 46 C 8 , W 60 Fe 20 C 20 and W 34 Fe 33 C 33 ) were ball milled using Uni-Ball mill for periods of up to 550 h in vacuum with a ball - to - powder ratio of about 35:1. Depending on the milling time, the main component of the as-milled materials was found to be solid solutions of Fe-W-C or Fe-C. Ternary phase W 3 Fe 3 C was obtained on annealing the as-milled materials at about 700 deg C. This product was then found to transfer to (FeW) 6 C on heat treatment at about 800 deg C. The resultant products of the annealing processes were found to depend not only on the annealing temperature, but also the starting composition, especially the initial carbon concentration. Detailed information on the structural and phase evolution during thermal treatment as measured using x-ray diffraction, Moessbauer spectroscopy and thermal analysis is presented. Special interest is focused on the competition for formation in this system between the Fe-C, W-Fe and W-C phases

  3. Effect of process variables on synthesis of MgB2 by a high energy ball mill

    Directory of Open Access Journals (Sweden)

    Kurama Haldun

    2016-01-01

    Full Text Available The discovery of superconductivity of MgB2 in 2001, with a critical temperature of 39 K, offered the promise of important large-scale applications at around 20 K. Except than the other featured synthesis methods, mechanical activation performed by high energy ball mills, as bulk form synthesis or as a first step of wire and thin film productions, has considered as an effective alternative production route in recent years. The process of mechanical activation (MA starts with mixing the powders in the right proportion and loading the powder mixture into the mill with the grinding media. The milled powder is then consolidated into a bulk shape and heat-treated to obtain desired microstructure and properties. Thus, the important components of the MA process are the raw materials, mill type and process variables. During the MA process, heavy deformation of particles occure. This is manifested by the presence of a variety of crystal defects such as dislocations, vacancies, stacking faults and increased number of particle boundaries. The presence of this defect structure enhances the diffusivity of solute hence the critical currents and magnetic flux pinning ability of MgB2 are improved. The aim of the present study is to determine the effects of process variables such as ball-to-powder mass ratio, size of balls, milling time, annealing temperature and contribution of process control agent (toluene on the product size, morphology and conversion level of precursor powders to MgB2 after subsequent heat treatment. The morphological analyses of the samples were performed by a high vacuum electron microscope ZEISS SUPRA VP 50. The phase compositions of the samples were performed with an Rigaku-Rint 2200 diffractometer, with nickel filtered Cu Kα radiation and conversion level. The MgB2 phase wt % was calculated by the Rietveld refinement method. The obtained results were discussed according to the process variables to find out their affect on the structure

  4. CVD carbon powders modified by ball milling

    Directory of Open Access Journals (Sweden)

    Kazmierczak Tomasz

    2015-09-01

    Full Text Available Carbon powders produced using a plasma assisted chemical vapor deposition (CVD methods are an interesting subject of research. One of the most interesting methods of synthesizing these powders is using radio frequency plasma. This method, originally used in deposition of carbon films containing different sp2/sp3 ratios, also makes possible to produce carbon structures in the form of powder. Results of research related to the mechanical modification of these powders have been presented. The powders were modified using a planetary ball mill with varying parameters, such as milling speed, time, ball/powder mass ratio and additional liquids. Changes in morphology and particle sizes were measured using scanning electron microscopy and dynamic light scattering. Phase composition was analyzed using Raman spectroscopy. The influence of individual parameters on the modification outcome was estimated using statistical method. The research proved that the size of obtained powders is mostly influenced by the milling speed and the amount of balls. Powders tend to form conglomerates sized up to hundreds of micrometers. Additionally, it is possible to obtain nanopowders with the size around 100 nm. Furthermore, application of additional liquid, i.e. water in the process reduces the graphitization of the powder, which takes place during dry milling.

  5. Suppressing Heavy Metal Leaching through Ball Milling of Fly Ash

    Directory of Open Access Journals (Sweden)

    Zhiliang Chen

    2016-07-01

    Full Text Available Ball milling is investigated as a method of reducing the leaching concentration (often termed stablilization of heavy metals in municipal solid waste incineration (MSWI fly ash. Three heavy metals (Cu, Cr, Pb loose much of their solubility in leachate by treating fly ash in a planetary ball mill, in which collisions between balls and fly ash drive various physical processes, as well as chemical reactions. The efficiency of stabilization is evaluated by analysing heavy metals in the leachable fraction from treated fly ash. Ball milling reduces the leaching concentration of Cu, Cr, and Pb, and water washing effectively promotes stabilization efficiency by removing soluble salts. Size distribution and morphology of particles were analysed by laser particle diameter analysis and scanning electron microscopy. X-ray diffraction analysis reveals significant reduction of the crystallinity of fly ash by milling. Fly ash particles can be activated through this ball milling, leading to a significant decrease in particle size, a rise in its BET-surface, and turning basic crystals therein into amorphous structures. The dissolution rate of acid buffering materials present in activated particles is enhanced, resulting in a rising pH value of the leachate, reducing the leaching out of some heavy metals.

  6. Attempted - to -Phase Conversion of Croconic Acid via Ball Milling

    Science.gov (United States)

    2017-05-18

    ARL-TN-0824 MAY 2017 US Army Research Laboratory Attempted α- to β-Phase Conversion of Croconic Acid via Ball Milling by...Laboratory Attempted α- to β-Phase Conversion of Croconic Acid via Ball Milling by Steven W Dean, Rose A Pesce-Rodriguez, and Jennifer A Ciezak...

  7. Surface modification of titanium hydride with epoxy resin via microwave-assisted ball milling

    International Nuclear Information System (INIS)

    Ning, Rong; Chen, Ding; Zhang, Qianxia; Bian, Zhibing; Dai, Haixiong; Zhang, Chi

    2014-01-01

    Highlights: • TiH 2 was modified with epoxy resin by microwave-assisted ball milling. • The epoxy ring was opened under the coupling effect of microwave and ball milling. • Microwave-assisted ball milling improved the compatibility of TiH 2 with epoxy. - Abstract: Surface modification of titanium hydride with epoxy resin was carried out via microwave-assisted ball milling and the products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), thermo-gravimetry (TG) and Fourier transform infrared spectroscopy (FT-IR). A sedimentation test was performed to investigate the compatibility of the modified nano titanium hydride with the epoxy resin. The results show that the epoxy resin molecules were grafted on the surface of nano titanium hydride particles during the microwave-assisted ball milling process, which led to the improvement of compatibility between the nanoparticles and epoxy resin. According to the FT-IR, the grafting site was likely to be located around the epoxy group due to the fact that the epoxy ring was opened. However, compared with microwave-assisted ball milling, the conventional ball milling could not realize the surface modification, indicating that the coupling effect of mechanical force and microwave played a key role during the process

  8. Lab-scale roller table mill for investigating the grinding behaviour of coal

    Energy Technology Data Exchange (ETDEWEB)

    Werner, V.; Zelkowski, J.; Schoenert, K. [Inst. for Energy Process Engineering and Fuel Technology and Inst. of Mineral Processing, Univ. Clausthal, Clausthal-Zellerfeld (Germany)

    1999-11-01

    The test mill is equipped with one roller. The material bed can be discharged completely after overroling. Grinding force, torque and gap width are measured. Cycle tests with three coals have been performed for simulating a closed circuit process. The grinding behaviour is characterized by the following relations: compaction of the particle bed and specific power draft vs. specific grinding force, production of fine material (dust), circuit factor, specific surface of the dust and specific work-input of the grinding circuit vs. specific power draft. (orig.)

  9. Investigation of the milling capabilities of the F10 Fine Grind mill using Box-Behnken designs.

    Science.gov (United States)

    Tan, Bernice Mei Jin; Tay, Justin Yong Soon; Wong, Poh Mun; Chan, Lai Wah; Heng, Paul Wan Sia

    2015-01-01

    Size reduction or milling of the active is often the first processing step in the design of a dosage form. The ability of a mill to convert coarse crystals into the target size and size distribution efficiently is highly desirable as the quality of the final pharmaceutical product after processing is often still dependent on the dimensional attributes of its component constituents. The F10 Fine Grind mill is a mechanical impact mill designed to produce unimodal mid-size particles by utilizing a single-pass two-stage size reduction process for fine grinding of raw materials needed in secondary processing. Box-Behnken designs were used to investigate the effects of various mill variables (impeller, blower and feeder speeds and screen aperture size) on the milling of coarse crystals. Response variables included the particle size parameters (D10, D50 and D90), span and milling rate. Milled particles in the size range of 5-200 μm, with D50 ranging from 15 to 60 μm, were produced. The impeller and feeder speeds were the most critical factors influencing the particle size and milling rate, respectively. Size distributions of milled particles were better described by their goodness-of-fit to a log-normal distribution (i.e. unimodality) rather than span. Milled particles with symmetrical unimodal distributions were obtained when the screen aperture size was close to the median diameter of coarse particles employed. The capacity for high throughput milling of particles to a mid-size range, which is intermediate between conventional mechanical impact mills and air jet mills, was demonstrated in the F10 mill. Prediction models from the Box-Behnken designs will aid in providing a better guide to the milling process and milled product characteristics. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Phase transition of Ni-Mn-Ga alloy powders prepared by vibration ball milling

    International Nuclear Information System (INIS)

    Tian, B.; Chen, F.; Tong, Y.X.; Li, L.; Zheng, Y.F.; Liu, Y.; Li, Q.Z.

    2011-01-01

    Research highlights: → The vibration ball milling with a high milling energy introduces the atomic disorder and large lattice distortion in the alloy during milling and makes the formation of disordered fcc structure phase in the alloy. → The transition temperature and activation energy for disordered fcc → disordered bcc are ∼320 o C and 209 ± 8 kJ/mol, respectively. → The alloy powders annealed at 800 o C for 1 h show a one-stage martensitic transformation with quite lower latent heat compared to the bulk alloy. - Abstract: This study investigated the phase transformation of the flaky shaped Ni-Mn-Ga powder particles with thickness around 1 μm prepared by vibration ball milling and post-annealing. The SEM, XRD, DSC and ac magnetic susceptibility measurement techniques were used to characterize the Ni-Mn-Ga powders. The structural transition of Heusler → disordered fcc occurred in the powders prepared by vibration ball milling (high milling energy) for 4 h, which was different from the structural transition of Heusler → disordered fct of the powders fabricated by planetary ball milling (low milling energy) for 4 h. The two different structures after ball milling should be due to the larger lattice distortion occurred in the vibration ball milling process than in the planetary ball milling process. The structural transition of disordered fcc → disordered bcc took place at ∼320 o C during heating the as-milled Ni-Mn-Ga powders, which was attributed to the elimination of lattice distortion caused by ball milling. The activation energy for this transition was 209 ± 8 kJ/mol. The Ni-Mn-Ga powder annealed at 800 o C mainly contained Heusler austenite phase at room temperature and showed a low volume of martensitic transformation upon cooling. The inhibition of martensitic transformation might be attributed to the reduction of grain size in the annealed Ni-Mn-Ga particles.

  11. Processing of magnetically anisotropic MnBi particles by surfactant assisted ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Kanari, K. [Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Sarafidis, C., E-mail: hsara@physics.auth.gr [Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Gjoka, M.; Niarchos, D. [INN, NCSR Demokritos, Athens 15310 (Greece); Kalogirou, O. [Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)

    2017-03-15

    MnBi particles are obtained from bulk MnBi using mechanochemical processing. The structure and magnetic properties of the MnBi particles are investigated by means of X-ray diffraction analysis, scanning electron microscopy and magnetometry. Surfactant assisted high energy ball milling results to the samples’ degradation even after one hour of milling. In the case of surfactant assisted low energy ball milling the increase of ball milling duration decreases the average particle size while the particles seem to be more separated. The saturation magnetization (M{sub s}) was found to decrease for large milling times beginning from 61 Am{sup 2}/kg, while the coercivity (μ{sub 0}H{sub c}) increases with the increase of ball milling duration up to 35 min where it reaches 1.62 T and thereafter it decreases. - Highlights: • Effect of surfactants in processing of MnBi. • Magnetization degradation due to air storage and due to processing. • Coercivity of 1.6 T in epoxy resin oriented material.

  12. The effect of intermediate stop and ball size in fabrication of recycled steel powder using ball milling from machining steel chips

    International Nuclear Information System (INIS)

    Fitri, M.W.M.; Shun, C.H.; Rizam, S.S.; Shamsul, J.B.

    2007-01-01

    A feasibility study for producing recycled steel powder from steel scrap by ball milling was carried out. Steel scrap from machining was used as a raw material and was milled using planetary ball milling. Three samples were prepared in order to study the effect of intermediate stop and ball size. Sample with intermediate stop during milling process showed finer particle size compared to the sample with continuous milling. Decrease in the temperature of the vial during the intermediate stop milling gives less ductile behaviour to the steel powder, which is then easily work-hardened and fragmented to fine powder. Mixed small and big size ball give the best production of recycled steel powder where it gives higher impact force to the scrap and accelerate the fragmentation of the steel scrap into powder. (author)

  13. Ball Milling Assisted Solvent and Catalyst Free Synthesis of Benzimidazoles and Their Derivatives.

    Science.gov (United States)

    El-Sayed, Taghreed H; Aboelnaga, Asmaa; Hagar, Mohamed

    2016-08-24

    Benzoic acid and o-phenylenediamine efficiently reacted under the green solvent-free Ball Milling method. Several reaction parameters were investigated such as rotation frequency; milling balls weight and milling time. The optimum reaction condition was milling with 56.6 g weight of balls at 20 Hz frequency for one hour milling time. The study was extended for synthesis of a series of benzimidazol-2-one or benzimidazol-2-thione using different aldehydes; carboxylic acids; urea; thiourea or ammonium thiocyanate with o-phenylenediamine. Moreover; the alkylation of benzimidazolone or benzimidazolthione using ethyl chloroacetate was also studied.

  14. Reduced graphene oxide synthesis by high energy ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, O. [Department of Physics, M.U.C Women' s College, Burdwan 713104 (India); Mitra, S. [MLS Prof' s Unit, Indian Association for the Cultivation of Science, Kolkata 700032 (India); Pal, M. [CSIR-Central Glass and Ceramic Research Institute, Kolkata 700032 (India); Datta, A. [University School of Basic and Applied Science (USBAS), Guru Gobind Singh Indraprastha University, New Delhi 110075 (India); Dhara, S. [Surface and Nanoscience Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Chakravorty, D., E-mail: mlsdc@iacs.res.in [MLS Prof' s Unit, Indian Association for the Cultivation of Science, Kolkata 700032 (India)

    2015-07-01

    Graphene oxide is transformed to reduced graphene oxide by high energy ball milling in inert atmosphere. The process of ball milling introduces defects and removes oxygen functional groups, thereby creating the possibility of fine tuning the band gap of all intermediate stages of the structural evolution. A limit of the backbone sp{sup 2} network structure has been found which should be able to accommodate defects, before amorphization sets in. The amorphization of graphene oxide is achieved rather quickly in comparison to that of graphite. From thermogravimetric and differential scanning calorimetric analysis along with Fourier transform infrared (FTIR) and Raman spectroscopic studies, it is found that the number of oxygen-containing groups decreases at a faster rate than that of aromatic double bonds with increasing ball milling time with a maximum limit of 3 h. Several characterization techniques (FTIR, Raman, UV–Visible and X-ray photoelectron spectroscopy) have confirmed that the material synthesized is, indeed, reduced graphene oxide. - Highlights: • Graphene oxide is transformed to reduced graphene oxide by high energy ball milling in inert atmosphere. • Fine tuning the band gap by introducing defects and removing oxygen functional groups. • Introduction of excess defects leads to amorphization. • Photoluminescence has been observed in the UV-blue region.

  15. Ball milling of chalcopyrite: Moessbauer spectroscopy and XRD studies

    International Nuclear Information System (INIS)

    Pollak, H.; Fernandes, M.; Levendis, D.; Schonig, L.

    1999-01-01

    The aim of this project is to study the behavior of chalcopyrite under ball milling for extended periods in order to determine how it's decompose or transform. Tests were done with chalcopyrite mixed with iron and zinc with and without surfactant. The use of surfactants has various effects such as avoiding oxidation and clustering of the fine particles. In all case magnetic chalcopyrite is transformed into a paramagnetic component showing a disordered structure, thus revealing that Cu atoms have replaced Fe atoms. In the case of ball milling in air, chalcopyrite is decomposed with the lost of iron, while in milling under surfactants, iron enters into the chalcopyrite structure. (author)

  16. Comprehensive characterization of ball-milled powders simulating a tribofilm system

    Energy Technology Data Exchange (ETDEWEB)

    Häusler, I., E-mail: ines.haeusler@bam.de; Dörfel, I., E-mail: Ilona.doerfel@bam.de; Peplinski, B., E-mail: Burkhard.peplinski@bam.de; Dietrich, P.M., E-mail: Paul.dietrich@yahoo.de; Unger, W.E.S., E-mail: Wolfgang.Unger@bam.de; Österle, W., E-mail: Werner.Oesterle@bam.de

    2016-01-15

    A model system was used to simulate the properties of tribofilms which form during automotive braking. The model system was prepared by ball milling of a blend of 70 vol.% iron oxides, 15 vol.% molybdenum disulfide and 15 vol.% graphite. The resulting mixture was characterized by X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and various transmission electron microscopic (TEM) methods, including energy dispersive X-ray spectroscopy (EDXS), high resolution investigations (HRTEM) with corresponding simulation of the HRTEM images, diffraction methods such as scanning nano-beam electron diffraction (SNBED) and selected area electron diffraction (SAED). It could be shown that the ball milling caused a reduction of the grain size of the initial components to the nanometer range. Sometimes even amorphization or partial break-down of the crystal structure was observed for MoS{sub 2} and graphite. Moreover, chemical reactions lead to a formation of surface coverings of the nanoparticles by amorphous material, molybdenum oxides, and iron sulfates as derived from XPS. - Highlights: • Ball milling of iron oxides, MoS{sub 2}, and graphite to simulate a tribofilm • Increasing coefficient of friction after ball milling of the model blend • Drastically change of the diffraction pattern of the powder mixture • TEM & XPS showed the components of the milled mixture and the process during milling. • MoS{sub 2} and graphite suffered a loss in translation symmetry or became amorphous.

  17. High-Energy Ball-Milling of Alloys and Compounds

    International Nuclear Information System (INIS)

    Le Caer, G.; Delcroix, P.; Begin-Colin, S.; Ziller, T.

    2002-01-01

    After outlining some characteristics of high-energy ball-milling, we discuss selected examples of phase transformation and of alloy synthesis which focus on deviations from archetypal behaviours and throw light on the milling mechanisms. Some contributions of Moessbauer spectrometry to the characterization of ground materials are described.

  18. FePt magnetic particles prepared by surfactant-assisted ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Velasco, V., E-mail: vvjimeno@fis.ucm.es [Instituto de Magnetismo Aplicado, UCM-ADIF-CSIC, P.O. Box 155, Las Rozas 28230 (Spain); Departamento de Física de Materiales, Universidad Complutense de Madrid, Madrid 28040 (Spain); Hernando, A.; Crespo, P. [Instituto de Magnetismo Aplicado, UCM-ADIF-CSIC, P.O. Box 155, Las Rozas 28230 (Spain); Departamento de Física de Materiales, Universidad Complutense de Madrid, Madrid 28040 (Spain)

    2013-10-15

    High-energy ball milling of Fe and Pt elemental powders has been carried out under dry and wet (in presence of solvent and surfactants) conditions. Dry milling leads to the formation of the disordered FCC-FePt alloy whereas by the wet milling procedure the main process is the decrease of Fe and Pt particle size, although some dissolution of Pt into Fe grains cannot be ruled out, and no hint of the formation of the FCC-FePt phase is observed even to milling times up to 20 h, as X-ray diffraction, electron microscopy and Mössbauer spectroscopy indicates. The as-milled particles were annealed at 600 °C for 2 h under Ar atmosphere. It is noticed that the disordered fcc-FePt phase observed in particles milled under dry conditions transform to ordered fct phase characterized by a hard magnetic behavior with a coercive field up to 10,000 Oe. However, those particles milled in the surfactant/solvent medium exhibit a soft magnetic behavior with a coercive field of 600 Oe. These results indicate that wet high-energy ball milling is not an adequate technique for obtaining single-phase FePt particles. - Highlights: • FePt particles have been obtained by high-energy ball milling. • In the presence of surfactants and solvents, almost no alloying process takes place. • After annealing, the coercive field of the FePt alloy particles increases from 150 Oe to 10,000 Oe.

  19. Influence of pin and hammer mill on grinding characteristics, thermal and antioxidant properties of coriander powder.

    Science.gov (United States)

    Barnwal, P; Singh, K K; Sharma, Alka; Choudhary, A K; Saxena, S N

    2015-12-01

    In present study, influence of grinding (hammer and pin mills) and moisture content (range: 6.4-13.6 % dry basis) on the quality traits of coriander powder were investigated. These include grinding parameters, colour parameters, specific heat, thermal conductivity, thermal diffusivity, glass transition temperature, essential oil, total phenolic content, total flavonoid content and DPPH scavenging (%) of coriander powder. For coriander seed, the geometric properties such as major, medium, minor dimensions, geometric mean diameter, arithmetic mean diameter, sphericity, surface area and volume of coriander seeds increased significantly with increasing moisture (6.4-13.6 % db). For coriander powder, the grinding parameters such as average particle size, volume surface mean diameter and volume mean diameter increased significantly with increasing moisture (6.4-13.6 % db). With the grinding method, the colour attributes of coriander powder such as L-value, a-value, b-value, hue angle and browning index varied significantly. It was observed that the specific heat followed second order polynomial relationship with temperature and moisture whereas thermal conductivity varied linearly with temperature and moisture content. The variation of glass transition temperature with moisture can be best represented in quadratic manner. Total flavonoid content (mg QE/g crude seed extract) and DPPH scavenging % activity of coriander powder is significantly affected by grinding methods. A lower value of specific heat was observed for hammer ground coriander powder as compared to pin mill ground coriander powder. The thermal conductivity of hammer mill ground coriander powder was higher as compared to pin mill ground coriander. It was observed that hammer mill yields more fine coriander powder in comparison to pin mill. The browning index was more in hammer mill ground coriander powder.

  20. Structural and magnetic properties of ball milled copper ferrite

    DEFF Research Database (Denmark)

    Goya, G.F.; Rechenberg, H.R.; Jiang, Jianzhong

    1998-01-01

    The structural and magnetic evolution in copper ferrite (CuFe2O4) caused by high-energy ball milling are investigated by x-ray diffraction, Mössbauer spectroscopy, and magnetization measurements. Initially, the milling process reduces the average grain size of CuFe2O4 to about 6 nm and induces....... The canted spin configuration is also suggested by the observed reduction in magnetization of particles in the blocked state. Upon increasing the milling time, nanometer-sized CuFe2O4 particles decompose, forming alpha-Fe2O3 and other phases, causing a further decrease of magnetization. After a milling time...... of 98 h, alpha-Fe2O3 is reduced to Fe3O4, and magnetization increases accordingly to the higher saturation magnetization value of magnetite. Three sequential processes during high-energy ball milling are established: (a) the synthesis of partially inverted CuFe2O4 particles with a noncollinear spin...

  1. Nanocrystalline TiAl powders synthesized by high-energy ball milling: effects of milling parameters on yield and contamination

    International Nuclear Information System (INIS)

    Bhattacharya, Prajina; Bellon, Pascal; Averback, Robert S.; Hales, Stephen J.

    2004-01-01

    High-energy ball milling was employed to produce nanocrystalline Ti-Al powders. As sticking of the powders can be sufficiently severe to result in a near zero yield, emphasis was placed on varying milling conditions so as to increase the yield, while avoiding contamination of the powders. The effects of milling parameters such as milling tools, initial state of the powders and addition of process control agents (PCA's) were investigated. Cyclohexane, stearic acid and titanium hydride were used as PCA's. Milling was conducted either in a Cr-steel vial with C-steel balls, or in a tungsten carbide (WC) vial with WC balls, using either elemental or pre-alloyed powders. Powder samples were characterized using X-ray diffraction, scanning and transmission electron microscopy. In the absence of PCA's mechanical alloying in a WC vial and attrition milling in a Cr-steel vial were shown to lead to satisfactory yields, about 65-80%, without inducing any significant contamination of the powders. The results suggest that sticking of the powders on to the milling tools is correlated with the phase evolution occurring in these powders during milling

  2. The Tool Life of Ball Nose end Mill Depending on the Different Types of Ramping

    Science.gov (United States)

    Vopát, Tomáš; Peterka, Jozef; Kováč, Martin

    2014-12-01

    The article deals with the cutting tool wear measurement process and tool life of ball nose end mill depending on upward ramping and downward ramping. The aim was to determine and compare the wear (tool life) of ball nose end mill for different types of copy milling operations, as well as to specify particular steps of the measurement process. In addition, we examined and observed cutter contact areas of ball nose end mill with machined material. For tool life test, DMG DMU 85 monoBLOCK 5-axis CNC milling machine was used. In the experiment, cutting speed, feed rate, axial depth of cut and radial depth of cut were not changed. The cutting tool wear was measured on Zoller Genius 3s universal measuring machine. The results show different tool life of ball nose end mills depending on the copy milling strategy.

  3. Effects of grinding on certain crystalline structures

    International Nuclear Information System (INIS)

    Tekiz, Y.

    1965-06-01

    The effects of grinding on certain crystalline substances (ZnO, ZnS, Sb), have been studied using X-ray diffraction and electron microscopy. The treatments were carried out using a vibrating mill which involves a higher energy than more conventional equipment such as ball-mills. Various methods have been proposed for determining the width of the intrinsic profile (β). In the case of zinc oxide it has been shown possible to differentiate the respective contributions of the fragmentation effects and of lattice deformation effects to the overall effects of the grinding. For the two types of zinc sulfide (blend and Wurtzite) it has been shown that the blend-wurtzite) transition point is very much decreased, and that the rate of transformation of wurtzite into the stable form (blend) at room temperature is considerably increased by the grinding. In the case of antimony, the method of fragmentation shows the existence of an anisotropy which appears to be connected with easily cleavable planes. These observations show that in the case of grinding carried out with sufficient energy, the accumulation of this energy in the matter through the creation of lattice defects can accelerate the reaction rate or bring about physical transformations. (author) [fr

  4. Process intensification effect of ball milling on the hydrothermal pretreatment for corn straw enzymolysis

    International Nuclear Information System (INIS)

    Yuan, Zhengqiu; Long, Jinxing; Wang, Tiejun; Shu, Riyang; Zhang, Qi; Ma, Longlong

    2015-01-01

    Highlights: • Novel pretreatment of ball milling combined with hydrothermal method was presented. • Intensification effect of ball milling was significant for corn straw enzymolysis. • Ball milling destroyed the physical structure of corn straw. • Chemical (liquid mixture) method removed lignin and hemicellulose. • Glucose yield increased from 0.41 to 13.86 mg mL −1 under the optimized condition. - Abstract: Enhancement of the cellulose accessibility is significant for biomass enzymatic hydrolysis. Here, we reported an efficient combined pretreatment for corn straw enzymolysis using ball milling and dilute acid hydrothermal method (a mixture solvent of H 2 O/ethanol/sulfuric acid/hydrogen peroxide liquid). The process intensification effect of ball milling on the pretreatment of the corn straw was studied through the comparative characterization of the physical–chemical properties of the raw and pretreated corn straw using FT-IR, BET, XRD, SEM, and HPLC analysis. The effect of the pretreatment temperature was also investigated. Furthermore, various pretreatment methods were compared as well. Moreover, the pretreatment performance was measured by enzymolysis. The results showed that ball milling had a significant process intensification effect on the corn straw enzymolysis. The glucose concentration was dramatically increased from 0.41 to 13.86 mg mL −1 after the combined treatment of ball milling and hydrothermal. The efficient removal of lignin and hemicellulose and the enlargement of the surface area were considered to be responsible for this significant increase based on the intensive analysis on the main components and the physical–chemical properties of the raw and pretreated corn straw

  5. The Tool Life of Ball Nose end Mill Depending on the Different Types of Ramping

    Directory of Open Access Journals (Sweden)

    Vopát Tomáš

    2014-12-01

    Full Text Available The article deals with the cutting tool wear measurement process and tool life of ball nose end mill depending on upward ramping and downward ramping. The aim was to determine and compare the wear (tool life of ball nose end mill for different types of copy milling operations, as well as to specify particular steps of the measurement process. In addition, we examined and observed cutter contact areas of ball nose end mill with machined material. For tool life test, DMG DMU 85 monoBLOCK 5-axis CNC milling machine was used. In the experiment, cutting speed, feed rate, axial depth of cut and radial depth of cut were not changed. The cutting tool wear was measured on Zoller Genius 3s universal measuring machine. The results show different tool life of ball nose end mills depending on the copy milling strategy.

  6. Galvanic Interaction between Chalcopyrite and Pyrite with Low Alloy and High Carbon Chromium Steel Ball

    Directory of Open Access Journals (Sweden)

    Asghar Azizi

    2013-01-01

    Full Text Available This study was aimed to investigate the galvanic interaction between pyrite and chalcopyrite with two types of grinding media (low alloy and high carbon chromium steel ball in grinding of a porphyry copper sulphide ore. Results indicated that injection of different gases into mill altered the oxidation-reduction environment during grinding. High carbon chromium steel ball under nitrogen gas has the lowest galvanic current, and low alloy steel ball under oxygen gas had the highest galvanic current. Also, results showed that the media is anodic relative to pyrite and chalcopyrite, and therefore pyrite or chalcopyrite with a higher rest potential acted as the cathode, whilst the grinding media with a lower rest potential acted as the anode, when they are electrochemically contacted. It was also found that low alloy steel under oxygen produced the highest amount of EDTA extractable iron in the slurry, whilst high carbon chromium steel under nitrogen atmosphere led to the lowest amount.

  7. Mechanically Induced Graphite-Nanodiamonds-Phase Transformations During High-Energy Ball Milling

    Science.gov (United States)

    El-Eskandarany, M. Sherif

    2017-05-01

    Due to their unusual mechanical, chemical, physical, optical, and biological properties, nearly spherical-like nanodiamonds have received much attention as desirable advanced nanomaterials for use in a wide spectrum of applications. Although, nanodiamonds can be successfully synthesized by several approaches, applications of high temperature and/or high pressure may restrict the real applications of such strategic nanomaterials. Distinct from the current preparation approaches used for nanodiamonds preparation, here we show a new process for preparing ultrafine nanodiamonds (3-5 nm) embedded in a homogeneous amorphous-carbon matrix. Our process started from high-energy ball milling of commercial graphite powders at ambient temperature under normal atmospheric helium gas pressure. The results have demonstrated graphite-single wall carbon nanotubes-amorphous-carbon-nanodiamonds phase transformations carried out through three subsequent stages of ball milling. Based on XRD and RAMAN analyses, the percentage of nanodiamond phase + C60 (crystalline phase) produced by ball milling was approximately 81%, while the amorphous phase amount was 19%. The pressure generated on the powder together the with temperature increase upon the ball-powder-ball collision is responsible for the phase transformations occurring in graphite powders.

  8. Kinetics of Grinding of Secondary Serpentine Raw Material at Cascade Operating Mode

    Directory of Open Access Journals (Sweden)

    Marek Matik

    2004-12-01

    Full Text Available The paper deals with the grinding of secondary serpentine material from the Dobšiná´s heap in a ball ceramic mill. The raw material was pre-sieved to prepare fraction of +250 –1,000 µm that was fed to the mill. During batch experiment an amount of oversize on the screen with a mesh size of 200 µm was observed as a function of time. Two speed modes were tested. Firstly, it was the mode designed by mill producer implicit from the structure of milling stand equipped by electromotor, friction gear onto driving shaft with given diameter. The speed of this original alignment attains 40 rmp. Secondly, it was cascade speed mode according to the Haase´s equation, namely 53 rmp, achieved by enlargement of driving shaft diameter. As to winning of required final product 90 % –200 µm, increased speed resulted in the shortening of grinding time from 17.5 to15.7 hour.

  9. Ammonia synthesis over multi-promoted iron catalysts obtained by high-energy ball-milling

    DEFF Research Database (Denmark)

    Jacobsen, C.J.H.; Jiang, Jianzhong; Mørup, Steen

    1999-01-01

    The feasibility of producing ammonia synthesis catalysts from high-energy ball-milling of a simple mixture of the constituent oxides has been investigated. The effect of ball-milling the fused oxidic precursor of the industrial KM1 ammonia synthesis catalyst has also been studied. The results show...

  10. Crystallite sizes of LiH before and after ball milling and thermal exposure

    International Nuclear Information System (INIS)

    Ortiz, Angel L.; Osborn, William; Markmaitree, Tippawan; Shaw, Leon L.

    2008-01-01

    The powder characteristics of lithium hydride (LiH) as a function of high-energy ball milling condition are systematically investigated via quantitative X-ray diffraction (XRD) analysis. The results obtained from the XRD analysis are compared with those attained from scanning electron microscopy (SEM), transmission electron microscopy (TEM), and specific surface area (SSA) analyses. The thermal stability of the ball-milled LiH is also investigated in order to provide physical insights into its cyclic stability in hydrogen sorption and desorption cycles. The results indicate that ball milling is effective in obtaining nano-crystalline LiH powder which is relatively stable with retention of nano-crystals after thermal exposure at 285 deg. C (equivalent to 0.58T m ) for 1 h. The good thermal stability observed is attributed to the presence of many pores in the agglomerates at the ball-milled condition. These pores effectively prevent crystal growth during the thermal exposure

  11. Crystallite sizes of LiH before and after ball milling and thermal exposure

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, Angel L. [Departamento de Electronica e Ingenieria Electromecanica, Universidad de Extremadura, Badajoz (Spain); Osborn, William; Markmaitree, Tippawan [Department of Chemical, Materials and Biomolecular Engineering, University of Connecticut, 97 North Eagleville Road, U-3136 Storrs, CT 06269-3136 (United States); Shaw, Leon L. [Department of Chemical, Materials and Biomolecular Engineering, University of Connecticut, 97 North Eagleville Road, U-3136 Storrs, CT 06269-3136 (United States)], E-mail: leon.shaw@uconn.edu

    2008-04-24

    The powder characteristics of lithium hydride (LiH) as a function of high-energy ball milling condition are systematically investigated via quantitative X-ray diffraction (XRD) analysis. The results obtained from the XRD analysis are compared with those attained from scanning electron microscopy (SEM), transmission electron microscopy (TEM), and specific surface area (SSA) analyses. The thermal stability of the ball-milled LiH is also investigated in order to provide physical insights into its cyclic stability in hydrogen sorption and desorption cycles. The results indicate that ball milling is effective in obtaining nano-crystalline LiH powder which is relatively stable with retention of nano-crystals after thermal exposure at 285 deg. C (equivalent to 0.58T{sub m}) for 1 h. The good thermal stability observed is attributed to the presence of many pores in the agglomerates at the ball-milled condition. These pores effectively prevent crystal growth during the thermal exposure.

  12. Effect of high-energy ball milling in the structural and textural properties of kaolinite

    Directory of Open Access Journals (Sweden)

    E. C. Leonel

    2014-06-01

    Full Text Available Through the process of high-energy ball milling it is possible to obtain solid materials with higher surface area and different particle sizes. These characteristics are very important for some application such as adsorption. Besides, applications of some clays depend on the functionalization which, for kaolinite, takes place in the aluminol groups. Modification in the structural and textural properties of kaolinite by high-energy milling can improve functionalization of kaolinite due to the exposure of aluminol groups. In this work studies were done on the influence of high-energy ball milling on the morphological properties of kaolinite, taking into account parameters such as filling of the miller, number of balls and amount of mass to be milled. Moreover, studies involving milling kinetics of purified kaolinite were carried out to verify modification in the morphology of kaolinite with milling time.

  13. Microstructural Evolution, Thermodynamics, and Kinetics of Mo-Tm2O3 Powder Mixtures during Ball Milling

    Directory of Open Access Journals (Sweden)

    Yong Luo

    2016-10-01

    Full Text Available The microstructural evolution, thermodynamics, and kinetics of Mo (21 wt % Tm2O3 powder mixtures during ball milling were investigated using X-ray diffraction and transmission electron microscopy. Ball milling induced Tm2O3 to be decomposed and then dissolved into Mo crystal. After 96 h of ball milling, Tm2O3 was dissolved completely and the supersaturated nanocrystalline solid solution of Mo (Tm, O was obtained. The Mo lattice parameter increased with increasing ball-milling time, opposite for the Mo grain size. The size and lattice parameter of Mo grains was about 8 nm and 0.31564 nm after 96 h of ball milling, respectively. Ball milling induced the elements of Mo, Tm, and O to be distributed uniformly in the ball-milled particles. Based on the semi-experimental theory of Miedema, a thermodynamic model was developed to calculate the driving force of phase evolution. There was no chemical driving force to form a crystal solid solution of Tm atoms in Mo crystal or an amorphous phase because the Gibbs free energy for both processes was higher than zero. For Mo (21 wt % Tm2O3, it was mechanical work, not the negative heat of mixing, which provided the driving force to form a supersaturated nanocrystalline Mo (Tm, O solid solution.

  14. Tungsten-nanodiamond composite powders produced by ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, D., E-mail: daniela.nunes@ist.utl.pt [Associacao Euratom/IST, Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); LNEG, Estrada do Paco do Lumiar, 1649-038 Lisboa (Portugal); ICEMS, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Livramento, V. [Associacao Euratom/IST, Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); LNEG, Estrada do Paco do Lumiar, 1649-038 Lisboa (Portugal); Mardolcar, U.V. [Departamento de Fisica, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Centro de Ciencias Moleculares e Materiais, Faculdade de Ciencias da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa (Portugal); Correia, J.B. [LNEG, Estrada do Paco do Lumiar, 1649-038 Lisboa (Portugal); Carvalho, P.A. [ICEMS, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Departamento de Bioengenharia, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)

    2012-07-15

    The major challenge in producing tungsten-nanodiamond composites by ball milling lies in successfully dispersing carbon nanoparticles in the metallic matrix while keeping carbide formation at a minimum. Processing windows for carbide minimization have been established through systematic variation of the nanodiamond fraction, milling energy and milling time. Materials characterization has been carried out by X-ray diffraction, scanning and transmission electron microscopy and microhardness testing. Nanostructured matrices with homogeneously dispersed particles that preserved the diamond structure have been produced. Differential thermal analysis has been used to evaluate the composites thermal stability.

  15. Fine grinding of brittle minerals and materials by jet mill

    Directory of Open Access Journals (Sweden)

    Lek Sikong

    2008-05-01

    Full Text Available Various variables affecting grinding, such as air pressure, minerals or materials hardness, feed size were investigated.The limitations of grinding of gypsum, barite, ilmenite, quartz and ferrosilicon were also elucidated by means of particlefineness size distribution and morphology of ground products. It was found that:1 The density of particles, which are in the grinding zone affects the product fineness, i.e. higher feed rate resultsin a larger product size. The appropriate feed rate is suggested to be 0.2~0.5 g/s. Moreover, the density and hardness ofminerals or materials tend to have an effect on the product fineness. Heavy minerals, such as barite or ilmenite, exhibit afiner product size than lighter minerals, like quartz. However, for quartz, the higher hardness also results in a larger d50.2 Air pressure is the most vital variable which affects the grinding by a jet mill. The d50 seems to relate to theapplied air pressure as a power law equation expressed as following:d50 = aP b ; as P 0The a-value and b-value have been found to correlate to the feed size. The higher the air pressure applied the finerthe product size attained. Moreover, air pressure has a greater effect on hard minerals than on softer ones.3 Feed size seems to have a small effect on ground the product fineness of soft materials, such as gypsum andbarite, but a significant effect on that of hard materials, such as ferrosilicon and quartz, in particularly by milling at low airpressures of 2~3 kg/cm2.4 For the breakage behavior and morphology of ground materials, it was also found that the minerals having cleavages,such as gypsum and barite, tend to be broken along their cleavage planes. Thus, the particle size distribution of theseproducts becomes narrower. While quartz, ilmenite, and ferrosilicon have shattering and chipping breakage mechanisms,grinding results in angular shapes of the ground products and a wider size distribution. Blocks or platelets and

  16. Preparation of iron sulphides by high energy ball milling

    DEFF Research Database (Denmark)

    Lin, R.; Jiang, Jianzhong; Larsen, R.K.

    1998-01-01

    The reaction of a powder mixture consisting of 50 a.% Fe and 50 a.% S during high energy ball milling has been studied by x-ray diffraction and Mossbauer spectroscopy. After around 19 h of milling FeS2 and FeS havebeen formed. By further milling the FeS compound becomes dominating and only Fe......S with an average crystallite size of about 10 nm was observed after milling times longer than 67 h. Mossbauer spectra obtained with applied fields show that the particles are antiferromagnetic or have a strongly canted spin structure....

  17. The effect of cryogenic grinding and hammer milling on the flavour quality of ground pepper (Piper nigrum L.).

    Science.gov (United States)

    Liu, Hong; Zeng, Fankui; Wang, Qinghuang; Ou, Shiyi; Tan, Lehe; Gu, Fenglin

    2013-12-15

    In this study, we compared the effects of cryogenic grinding and hammer milling on the flavour attributes of black, white, and green pepper. The flavour attributes were analysed using headspace solid-phase micro-extraction (HS-SPME) and gas chromatography-mass spectrometry (GC/MS), sensory evaluation and electronic nose (e-nose) analysis. Cryogenic grinding resulted in minimal damage to the colour, flavour, and sensory attributes of the spices. Cryogenic grinding was also better than hammer milling at preserving the main potent aroma constituents, but the concentrations of the main aroma constituents were dramatically reduced after storing the samples at 4 °C for 6 months. Pattern matching performed by the e-nose further supported our sensory and instrumental findings. Overall, cryogenic grinding was superior to hammer milling for preserving the sensory properties and flavour attributes of pepper without significantly affecting its quality. However, we found that the flavour quality of ground pepper was reduced during storage. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Low-temperature magnetic behavior of ball-milled copper ferrite

    DEFF Research Database (Denmark)

    Goya, G.F.; Rechenberg, H.R.; Jiang, Jianzhong

    1999-01-01

    We present a study on magnetic properties of CuFe2O4 nanoparticles, produced by high-energy ball milling. The series of samples obtained, with average particle sizes LFAN alpha d RTAN ranging from 61 nm to 9 nm, display increasing relaxation effects at room temperature. Irreversibility of the mag......We present a study on magnetic properties of CuFe2O4 nanoparticles, produced by high-energy ball milling. The series of samples obtained, with average particle sizes LFAN alpha d RTAN ranging from 61 nm to 9 nm, display increasing relaxation effects at room temperature. Irreversibility...... of the magnetization and shifts to negative fields in the hysteresis loops are observed below T-f APEQ 55 K, indicating unidirectional magnetic anisotropy in milled samples. These features could be explained by assuming the formation of a spin-disordered surface layer, which is exchange-coupled to the ferrimagnetic...

  19. Reversible a-Fe2O3 to Fe3O4 transformation during ball milling

    DEFF Research Database (Denmark)

    Linderoth, Søren; Jiang, Jianzhong; Mørup, Steen

    1997-01-01

    The transformation of hematite to magnetite by high-energy ball milling in a sealed container has been studied by Mossbauer spectroscopy and x-ray diffraction. Mechanisms for this transformation are critically discussed. The dominant mechanism is concluded to be due to bond breaking during the high...... energy ball milling followed by release of the oxygen from the vial. The reverse transformation, magnetite to hematite, is demonstrated to occur by ball milling in air. Mechanisms for this reverse transformation are also put forward....

  20. Defect induced electronic states and magnetism in ball-milled graphite.

    Science.gov (United States)

    Milev, Adriyan; Dissanayake, D M A S; Kannangara, G S K; Kumarasinghe, A R

    2013-10-14

    The electronic structure and magnetism of nanocrystalline graphite prepared by ball milling of graphite in an inert atmosphere have been investigated using valence band spectroscopy (VB), core level near-edge X-ray absorption fine structure (NEXAFS) spectroscopy and magnetic measurements as a function of the milling time. The NEXAFS spectroscopy of graphite milled for 30 hours shows simultaneous evolution of new states at ~284.0 eV and at ~290.5 eV superimposed upon the characteristic transitions at 285.4 eV and 291.6 eV, respectively. The modulation of the density of states is explained by evolution of discontinuities within the sheets and along the fracture lines in the milled graphite. The magnetic measurements in the temperature interval 2-300-2 K at constant magnetic field strength show a correlation between magnetic properties and evolution of the new electronic states. With the reduction of the crystallite sizes of the graphite fragments, the milled material progressively changes its magnetic properties from diamagnetic to paramagnetic with contributions from both Pauli and Curie paramagnetism due to the evolution of new states at ~284 and ~290.5 eV, respectively. These results indicate that the magnetic behaviour of ball-milled graphite can be manipulated by changing the milling conditions.

  1. Nano-oxide nucleation in a 14Cr-ODS steel elaborated by reactive-inspired ball-milling: Multiscale characterizations

    International Nuclear Information System (INIS)

    Brocq, M.; Legendre, F.; Sakasegawa, H.; Radiguet, B.; Cuvilly, F.; Pareige, P.; Mathon, M.H.

    2009-01-01

    Oxide dispersion strengthened (ODS) steels are promising structural materials for both fusion and fission Generation IV reactors. Indeed, they exhibit excellent mechanical and creep properties and radiation resistance thanks to a fine and dense dispersion of complex nanometric oxides. ODS steels are usually elaborated by ball-milling iron based and yttrium oxide powders and then by thermomechanical treatments. It is expected that ball-milling dissolves yttrium oxides in the metallic matrix and that annealing induces nano-oxide precipitation. However the formation mechanism remains unclear and as a consequence the process is still uncontrolled. In this context, we proposed a new approach based on reactive ball milling of iron oxide (Fe 2 O 3 ), yttria (YFe 3 ) and iron based alloy in a dedicated instrumented ball-milling device. Also, a fine scale characterization, after each step of the process including ball-milling, is performed. A Fe-14Cr-2W-1Ti-0.8Y-0.2O (%wt) ODS steel was synthesized by reactive ball-milling and was characterized at very fine scale in both as-milled and as-annealed state. Atom Probe Tomography (APT) and Small Angle Neutron Scattering (SANS) were combined. After ballmilling, most of Y and O were, as expected, in solution in the ferritic matrix but some complex Y-Ti nano-oxides were also observed, indicating that oxide nucleation can start during ball-milling. With annealing the number of nano-oxides increases. In this presentation, experimental results of APT and SANS will be detailed and compared with what is usually observed in ODS steels elaborated by conventional ball milling. Finally, a formation mechanism of nano-oxides deduced from these results will be proposed. (author)

  2. Transforming from paramagnetism to room temperature ferromagnetism in CuO by ball milling

    Directory of Open Access Journals (Sweden)

    Daqiang Gao

    2011-12-01

    Full Text Available In this work, we experimentally demonstrate that it is possible to induce ferromagnetism in CuO by ball milling without any ferromagnetic dopant. The magnetic measurements indicate that paramagnetic CuO is driven to the ferromagnetic state at room temperature by ball milling gradually. The saturation magnetization of the milled powders is found to increase with expanding the milling time and then decrease by annealing under atmosphere. The fitted X-ray photoelectron spectroscopy results indicate that the observed induction and weaken of the ferromagnetism shows close relationship with the valence charged oxygen vacancies (Cu1+-VO in CuO.

  3. Effect of additional nickel on crystallization degree evolution of expanded graphite during ball-milling and annealing

    International Nuclear Information System (INIS)

    Wang Liqin; Yue Xueqing; Zhang Fucheng; Zhang Ruijun

    2010-01-01

    Expanded graphite (EG) and a mixture of EG and nickel (EG-Ni system) were ball-milled and subsequently annealed, respectively. The products were characterized by X-ray diffraction (XRD), Raman spectra and transmission electron microscopy (TEM). After 100 h milling, the average crystallite thickness (L c ) of EG and EG-Ni system deceases from 14.5 to 8.0 and 9.6 nm, respectively, while the interlayer spacing (d 002 ) increases from 0.3341 to 0.3371 and 0.3348 nm, respectively. It can be concluded that ball-milling decreases the crystallization degree of EG, while the additional nickel restrains this process. For the samples ball-milled for 80 h, the disorder parameter I D /(I D + I G ) ratio of EG and EG-Ni system is in the range of 20.7-55.8% and 31.7-45.8%, respectively, implying that the presence of nickel is beneficial to more homogeneous ball-milling of EG. When the samples after ball-milling for 80 h were annealed for 4 h, the average crystallite thickness of EG and EG-Ni system increases from 8.5 to 9.0 nm and from 11.8 to 15.5 nm, respectively. It is deduced that annealing improves the crystallization degree of ball-milled EG, and the additional nickel is helpful for this process.

  4. Fabrication of Ti-Ni-Cu shape memory alloy powders by ball milling method

    International Nuclear Information System (INIS)

    Kang, S.; Nam, T.

    2001-01-01

    Ti-Ni and Ti-Ni-Cu shape memory alloy powders have been fabricated by ball milling method, and then alloying behavior and transformation behavior were investigated by means of optical microscopy, electron microscopy, X-ray diffraction and differential scanning calorimetry. As milled Ti-Ni powders fabricated with milling time less than 20 hrs was a mixture of pure elemental Ti and Ni, and therefore it was unable to obtain alloy powders because the combustion reaction between Ti and Ni occurred during heat treatment. Since those fabricated with milling time more than 20 hrs was a mixture of Ti-rich and Ni-rich Ti-Ni solid solution, however, it was possible to obtain alloy powders without the combustion reaction during heat treatment. Clear exothermic and endothermic peaks appeared in the cooling and heating curves, respectively in DSC curves of 20 hrs and 30 hrs milled Ti-Ni powders. On the other hand, in DSC curves of 1 hr, 10 hrs, 50 hrs and 100 hrs, the thermal peaks were almost discernible. The most optimum ball milling time for fabricating Ti-Ni alloy powders was 30 hrs. Ti-40Ni-10Cu(at%) alloy powders were fabricated successfully by ball milling conditions with rotating speed of 100 rpm and milling time of 30 hrs. (author)

  5. Effect of ball-milling to the surface morphology of CaCO3

    Science.gov (United States)

    Sulimai, N. H.; Rani, Rozina Abdul; Khusaimi, Z.; Abdullah, S.; Salifairus, M. J.; Alrokayan, Salman; Khan, Haseeb; Rusop, M.

    2018-05-01

    Calcium Carbonate can be synthesized in many approaches. This work studied on the physical changes to Calcium Carbonate (CaCO3) by ball-milling activity in different parameters; number of ball; collision duration; revolution per minute (RPM). Zirconia balls were used in the work because it has the best durability to withstand ball-milling conditions set. Industrial grade CaCO3 particles that were run in aforementioned parameters were characterized by Field Emission Scanning Electron Microscope (FE-SEM) to study the physical changes on the size and surface of the CaCO3. They were also characterized with Fourier Transform Infra-red Spectroscopy (FTIR) were fingerprint of CaCO3 regions were identified and any changes in the band position and intensity were discussed. Number of Zirconia balls and collision duration is directly proportional to the absorbance intensity whereas it is inversely proportional for the rpm. The best number of parameters producing the highest Absorbance is 100 Zirconia balls in duration of 1 hour and 100rpm.

  6. Comparative Study by MS and XRD of Fe50Al50 Alloys Produced by Mechanical Alloying, Using Different Ball Mills

    International Nuclear Information System (INIS)

    Rojas Martinez, Y.; Perez Alcazar, G. A.; Bustos Rodriguez, H.; Oyola Lozano, D.

    2005-01-01

    In this work we report a comparative study of the magnetic and structural properties of Fe 50 Al 50 alloys produced by mechanical alloying using two different planetary ball mills with the same ball mass to powder mass relation. The Fe 50 Al 50 sample milled during 48 h using the Fritsch planetary ball mill pulverisette 5 and balls of 20 mm, presents only a bcc alloy phase with a majority of paramagnetic sites, whereas that sample milled during the same time using the Fritsch planetary ball mill pulverisette 7 with balls of 15 mm, presents a bcc alloy phase with paramagnetic site (doublet) and a majority of ferromagnetic sites which include pure Fe. However for 72 h of milling this sample presents a bcc paramagnetic phase, very similar to that prepared with the first system during 48 h. These results show that the conditions used in the first ball mill equipment make more efficient the milling process.

  7. Magnetoresistivity and microstructure of YBa2Cu3Oy prepared using planetary ball milling

    International Nuclear Information System (INIS)

    Hamrita, A.; Ben Azzouz, F.; Madani, A.; Ben Salem, M.

    2012-01-01

    Superconducting properties of YBa 2 Cu 3 O y prepared using planetary ball milling were studied. Y-deficient YBa 2 Cu 3 O y nanoparticles are embedded in the superconducting matrix. Ball milled sample exhibits a large magnetoresistivity in weak magnetic fields at 77 K. We have studied the microstructure and the magnetoresistivity of polycrystalline YBa 2 Cu 3 O y (YBCO or Y-123 for brevity) embedded with nanoparticles of Y-deficient YBCO, generated by the planetary ball milling technique. Bulk samples were synthesized from a precursor YBCO powder, which was prepared from commercial high purity Y 2 O 3 , Ba 2 CO 3 and CuO via a one-step annealing process in air at 950 °C. After planetary ball milling of the precursor, the powder was uniaxially pressed and subsequently annealed at 950 °C in air. Phase analysis by X-ray diffraction (XRD), granular structure examination by scanning electron microscopy (SEM), microstructure investigation by transmission electron microscopy (TEM) coupled with energy dispersive X-ray spectroscopy (EDXS) were carried out. TEM analyses show that nanoparticles of Y-deficient YBCO, generated by ball milling, are embedded in the superconducting matrix. Electrical resistance as a function of temperature, ρ(T), revealed that the zero resistance temperature, T co , is 84.5 and 90 K for the milled and unmilled samples respectively. The milled ceramics exhibit a large magnetoresistance in weak magnetic fields at liquid nitrogen temperature. This attractive effect is of high significance as it makes these materials promising candidates for practical application in magnetic field sensor devices.

  8. Electrochemical properties of the ball-milled LaMg10NiMn alloy with Ni powders

    International Nuclear Information System (INIS)

    Wang Yi; Wang Xin; Gao Xueping; Shen Panwen

    2008-01-01

    The electrochemical characteristics of the ball-milled LaMg 10 NiMn alloys with Ni powders were investigated. It was found that the ball-milled LaMg 10 NiMn + 150 wt.% Ni composite exhibited higher first discharge capacity and better cycle performance. By means of the analysis of electrochemical impedance spectra (EIS), it was shown that the existence of manganese in LaMg 10 NiMn alloy increased the electrocatalytic activity due to its catalytic effect, and destabilized metal hydrides, and so reduced the hydrogen diffusion resistance. These contributed to the higher discharge capacity of the ball-milled LaMg 10 NiMn-Ni composite. According to the analytical results of X-ray diffraction (XRD), EIS and steady-state polarization (SSP) experiments, the inhibition of metal corrosion is not the main reason for the better cycle performance. The main reason is that the electrochemical reaction resistance of the ball-milled LaMg 10 NiMn-Ni composite is always lower than that of the ball-milled LaMg 10 Ni 2 -Ni composite because the former one contains manganese, which is a catalyst for the electrode reaction

  9. Effect of milling variables on powder character and sintering behaviour of 434L ferritic stainless steel-Al2O3 composites

    International Nuclear Information System (INIS)

    Mukherjee, S.K.; Upadhyaya, G.S.

    1985-01-01

    Ball milling of ferritic stainless steel-4 vol% Al 2 O 3 powder was carried out for the duration up to 222 ks. Attritor milling of ferritic stainless steel-6 vol% Al 2 O 3 were also carried out for the duration up to 32.4 ks. The characterization of the milled powders were performed. The sintering of ball milled powders was carried out at 1623 K for 10.8 ks in hydrogen. The premix of as received stainless steel powder and the attritor milled powder was also sintered at 1623 K for 3.6 ks in hydrogen. The results showed that an optimum ball milling period in between 58 and 173 ks was required to achieve better sintered properties. The attritor milling was more effective in grinding the powders as compared to ball milling, and the sinterability was also higher for such powders. (author)

  10. Thermogravimetric and Differential Scanning Calorimetric Behavior of Ball-Milled Nuclear Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eung Seon; Kim, Min Hwan; Kim, Yong Wan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Yi Hyun; Cho, Seung Yon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    An examination was made to characterize the oxidation behavior of ball-milled nuclear graphite powder through a TG-DSC analysis. With the ball milling time, the BET surface area increased with the reduction of particle size, but decreased with the chemisorptions of O{sub 2} on the activated surface. The enhancement of the oxidation after the ball milling is attributed to both increases in the specific surface area and atomic scale defects in the graphite structure. In a high temperature gas-cooled reactor, nuclear graphite has been widely used as fuel elements, moderator or reflector blocks, and core support structures owing to its excellent moderating power, mechanical properties and machinability. For the same reason, it will be used in a helium cooled ceramic reflector test blanket module for the ITER. Each submodule has a seven-layer breeding zone, including three neutron multiplier layers packed with beryllium pebbles, three lithium ceramic pebbles packed tritium breeder layers, and a reflector layer packed with 1 mm diameter graphite pebbles to reduce the volume of beryllium. The abrasion of graphite structures owing to relative motion or thermal cycle during operation may produce graphite dust. It is expected that graphite dust will be more oxidative than bulk graphite, and thus the oxidation behavior of graphite dust must be examined to analyze the safety of the reactors during an air ingress accident. In this study, the thermal stability of ball-milled graphite powder was investigated using a simultaneous thermogravimeter-differential scanning calorimeter.

  11. Effect of ball milling time on thermoelectric properties of bismuth telluride nanomaterials

    Science.gov (United States)

    Khade, Poonam; Bagwaiya, Toshi; Bhattacharaya, Shovit; Singh, Ajay; Jha, Purushottam; Shelke, Vilas

    2018-04-01

    The effect of different milling time on thermoelectric properties of bismuth telluride (Bi2Te3) was investigated. The nanomaterial was prepared by varying the ball milling time and followed by hot press sintering. The crystal structure and phase formation were verified by X-ray diffraction and Raman Spectroscopy. The experimental results show that electrical conductivity increases whereas thermal conductivity decreases with increasing milling time. The negative sign of seebeck coefficient indicate the n-type nature with majority charge carriers of electrons. A maximum figure of merit about 0.55 is achieved for l5hr ball milled Bi2Te3 sample. The present study demonstrates the simple and cost-effective method for synthesis of Bi2Te3 thermoelectric material at large scale thermoelectric applications.

  12. An analytical model for force prediction in ball nose micro milling of inclined surfaces

    DEFF Research Database (Denmark)

    Bissacco, Giuliano; Hansen, Hans Nørgaard; De Chiffre, Leonardo

    2010-01-01

    Ball nose micro milling is a key process for the generation of free form surfaces and inclined surfaces often present in mould inserts for micro replication. This paper presents a new cutting force model for ball nose micro milling that is capable of taking into account the effect of the edge...

  13. Effect of the milling conditions on the degree of amorphization of selenium by milling in a planetary ball mill

    International Nuclear Information System (INIS)

    Ksiazek, K; Wacke, S; Gorecki, T; Gorecki, Cz

    2007-01-01

    The effect of the milling parameters (rotation speed of the milling device and duration of milling) on the phase composition of the products of milling of fully crystalline selenium has been investigated. The milling was conducted using a planetary micromill and the phase composition of the milling products was determined by differential thermal analysis. It has been found that ball milling leads to the partial amorphization of the starting crystalline material. The content of amorphous phase in the milling products depends, in a rather complicated way, on the milling parameters. At the milling parameters adopted in the present study, the milling product was never fully amorphous. The complicated way the milling parameters affect the content of amorphous phase in the milling products is a result of competition of two processes: amorphization due to deformation and refinement of grains of milled material and crystallization of the already produced amorphous material at the cost of heat evolved in the milling vial during the milling process

  14. Refinement of Crystalline Boron and the Superconducting Properties of MgB2 by Attrition Ball Milling

    International Nuclear Information System (INIS)

    Lee, J. H.; Shin, S. Y.; Park, H. W.; Jun, B. H.; Kim, C. J.

    2008-01-01

    We report refinement of crystalline boron by an attrition ball milling system and the superconducting properties of the MgB 2 pellets prepared from the refined boron. In this work, we have conducted the ball milling with only crystalline boron powder, in order to improve homogeneity and control the grain size of the MgB 2 that is formed from it. We observed that the crystalline responses in the ball-milled boron became broader and weaker when the ball-milling time was further increased. On the other hand, the B 2 O 3 peak became stronger in the powders, resulting in an increase in the amount of MgO within the MgB 2 volume. The main reason for this is a greater oxygen uptake. From the perspective of the superconducting properties, however, the sample prepared from boron that was ball milled for 5 hours showed an improvement of critical current density (J c ), even with increased MgO phase, under an external magnetic field at 5 and 20 K.

  15. Study on the bonding state for carbon-boron nitrogen with different ball milling time

    International Nuclear Information System (INIS)

    Xiong, Y.H.; Xiong, C.S.; Wei, S.Q.; Yang, H.W.; Mai, Y.T.; Xu, W.; Yang, S.; Dai, G.H.; Song, S.J.; Xiong, J.; Ren, Z.M.; Zhang, J.; Pi, H.L.; Xia, Z.C.; Yuan, S.L.

    2006-01-01

    The varied bonding state and microstructure characterization were discussed for carbon-boron nitrogen (CBN) with abundant phase structure and nanostructure, which were synthesized directly by mechanical alloying technique at room temperature. According to the results of SEM and X-ray photoelectron spectroscopy (XPS) of CBN with different ball milling time, it is substantiated that the bonding state and microstructure for CBN were closely related to the ball milling time. With the increase of the ball milling time, some new chemical bonding states of CBN were observed, which implies that some new bonding state and microstructures have been formed. The results of XPS are accordance with that of X-ray diffraction of CBN

  16. Obtention of hydroxyapatite submicrometric of bovine origin by vibratory grinding for rapid prototyping

    International Nuclear Information System (INIS)

    Meira, C.R.; Purquerio, B.M.; Fortulan, C.A.

    2011-01-01

    Submicron bovine hydroxyapatite was obtained for rapid prototyping. Hydroxyapatite structure originated from bovine mineral bone has great importance among the biomaterials and biocompatibility due to its great similarity with the human bone structure. This study aims to obtain powder for manufacture by rapid prototyping of scaffolds. This technique manufacture requires highly reactive powders to compensate for the absence of pressure forming. Hydroxyapatite was milled in a ball mill and vibratory mill, and analyzed for their average equivalent spherical diameter and surface area. Test specimens were isostatically pressed at 100 MPa and machined into cylindrical test specimens. These specimens were sintered at several temperatures to determine the optimal sintering temperature based on densification and chemistry stability. In grinding ball mill was obtained particles of equivalent diameter of 0.74 micron in vibratory mill of 0.46 micrometers. An average flexural strength of 100 MPa and 99,8% of real density was attained for the sample sintered at 1300 deg C/2h, signaling potential for use in rapid prototyping. (author)

  17. Milling of rice grains. The degradation on three structural levels of starch in rice flour can be independently controlled during grinding.

    Science.gov (United States)

    Tran, Thuy T B; Shelat, Kinnari J; Tang, Daniel; Li, Enpeng; Gilbert, Robert G; Hasjim, Jovin

    2011-04-27

    Whole polished rice grains were ground using cryogenic and hammer milling to understand the mechanisms of degradation of starch granule structure, whole (branched) molecular structure, and individual branches of the molecules during particle size reduction (grinding). Hammer milling caused greater degradation to starch granules than cryogenic milling when the grains were ground to a similar volume-median diameter. Molecular degradation of starch was not evident in the cryogenically milled flours, but it was observed in the hammer-milled flours with preferential cleavage of longer (amylose) branches. This can be attributed to the increased grain brittleness and fracturability at cryogenic temperatures, reducing the mechanical energy required to diminish the grain size and thus reducing the probability of chain scission. The results indicate, for the first time, that branching, whole molecule, and granule structures of starch can be independently altered by varying grinding conditions, such as grinding force and temperature.

  18. Scale-up of organic reactions in ball mills: process intensification with regard to energy efficiency and economy of scale.

    Science.gov (United States)

    Stolle, Achim; Schmidt, Robert; Jacob, Katharina

    2014-01-01

    The scale-up of the Knoevenagel-condensation between vanillin and barbituric acid carried out in planetary ball mills is investigated from an engineering perspective. Generally, the reaction proceeded in the solid state without intermediate melting and afforded selectively only one product. The reaction has been used as a model to analyze the influence and relationship of different parameters related to operation in planetary ball mills. From the viewpoint of technological parameters the milling ball diameter, dMB, the filling degree with respect to the milling balls' packing, ΦMB,packing, and the filling degree of the substrates with respect to the void volume of the milling balls' packing, ΦGS, have been investigated at different reaction scales. It was found that milling balls with small dMB lead to higher yields within shorter reaction time, treaction, or lower rotation frequency, rpm. Thus, the lower limit is set considering the technology which is available for the separation of the milling balls from the product after the reaction. Regarding ΦMB,packing, results indicate that the optimal value is roughly 50% of the total milling beakers' volume, VB,total, independent of the reaction scale or reaction conditions. Thus, 30% of VB,total are taken by the milling balls. Increase of the initial batch sizes changes ΦGS significantly. However, within the investigated parameter range no negative influence on the yield was observed. Up to 50% of VB,total can be taken over by the substrates in addition to 30% for the total milling ball volume. Scale-up factors of 15 and 11 were realized considering the amount of substrates and the reactor volume, respectively. Beside technological parameters, variables which influence the process itself, treaction and rpm, were investigated also. Variation of those allowed to fine-tune the reaction conditions in order to maximize the yield and minimize the energy intensity.

  19. Performance Study of Graphite Anode Slurry in Lithium-ion Flow Battery by Ball Milling

    Directory of Open Access Journals (Sweden)

    FENG Cai-mei

    2018-02-01

    Full Text Available Graphite anode slurry of lithium-ion flow battery was prepared by the method of ball milling. The morphology, conductivity, specific capacity and cycle performance of graphite anode slurry were studied. Results show that the addition of conductive carbon material can improve the suspension stability of the electrode slurry; the ball milling process can not only improve the suspension stability but also reduce the resistivity of the mixed powders of graphite and conductive carbon materials, the ball milling effect is satisfactory when the mass ratio of the balls and the solid particles is 5:1, but too high ratio of the milling ball and the solid materials can destroy the layer structure of the graphite and affect the stability of the slurry. Increasing the fraction of the graphite and conductive carbon materials can form stable electrical network structure in the slurry and improve the reversible capacity; at the premise of keeping the flowability of the electrode slurry, the reversible specific capacity can be more than 40mAh/g. The capacity loss of graphite anode slurry mainly occurs in the first charging-discharging process, as the increase of the cycles, the capacity loss rate decreases, the capacity goes stable after 5 cycles.

  20. Grinding and cooking dry-mill germ to optimize aqueous enzymatic oil extraction

    Science.gov (United States)

    The many recent dry grind plants that convert corn to ethanol are potential sources of substantial amounts of corn oil. This report describes an aqueous enzymatic extraction (AEE) method to separate oil from dry-mill corn germ (DMG). The method is an extension of AEE previously developed for wet...

  1. High-efficient production of boron nitride nanosheets via an optimized ball milling process for lubrication in oil.

    Science.gov (United States)

    Deepika; Li, Lu Hua; Glushenkov, Alexey M; Hait, Samik K; Hodgson, Peter; Chen, Ying

    2014-12-03

    Although tailored wet ball milling can be an efficient method to produce a large quantity of two-dimensional nanomaterials, such as boron nitride (BN) nanosheets, milling parameters including milling speed, ball-to-powder ratio, milling ball size and milling agent, are important for optimization of exfoliation efficiency and production yield. In this report, we systematically investigate the effects of different milling parameters on the production of BN nanosheets with benzyl benzoate being used as the milling agent. It is found that small balls of 0.1-0.2 mm in diameter are much more effective in exfoliating BN particles to BN nanosheets. Under the optimum condition, the production yield can be as high as 13.8% and the BN nanosheets are 0.5-1.5 μm in diameter and a few nanometers thick and of relative high crystallinity and chemical purity. The lubrication properties of the BN nanosheets in base oil have also been studied. The tribological tests show that the BN nanosheets can greatly reduce the friction coefficient and wear scar diameter of the base oil.

  2. Performance assessment of river sand versus ceramic grinding media on the Fimiston Ultra-fine Grinding application

    International Nuclear Information System (INIS)

    Blake, Guillaume; Clermont, Benoit; Gianatti, Christopher

    2012-01-01

    Ultra-fine grinding increases the amenability of the refractory concentrate to direct cyanide leaching. Low cost media such as silica river sand gives very fine product grind sizes, however the sand media is quite angular and is often supplied with a broad size distribution. It is generally accepted that the use of a ceramic grinding media will result in a finer product size or allow an increase in the mill throughput. The capacity of a mill is known to increase with decreasing grinding media diameter, the mill wear can be decreased and efficiency of grinding increased. Magotteaux Keramax-MTX Ceramic grinding media was purchased for a plant trial, to assess its' performance.

  3. Fabrication of lanthanum-doped thorium dioxide by high-energy ball milling and spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Spencer M.; Yao, Tiankai [Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180 (United States); Lu, Fengyuan [Department of Mechanical & Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803 (United States); Xin, Guoqing; Zhu, Weiguang [Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180 (United States); Lian, Jie, E-mail: lianj@rpi.edu [Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180 (United States)

    2017-03-15

    Abstract: High-energy ball milling was used to synthesize Th{sub 1-x}La{sub x}O{sub 2-0.5x} (x = 0.09, 0.23) solid solutions, as well as improve the sinterability of ThO{sub 2} powders. Dense La-doped ThO{sub 2} pellets with theoretical density above 94% were consolidated by spark plasma sintering at temperatures above 1400 °C for 20 min, and the densification behavior and the non-equilibrium effects on phase and structure were investigated. A lattice contraction of the SPS-densified pellets occurred with increasing ball milling duration, and a secondary phase with increased La-content was observed in La-doped pellets. A dependence on the La-content and sintering duration for the onset of localized phase segregation has been proposed. The effects of high-energy ball milling, La-content, and phase formation on the thermal diffusivity were also studied for La-doped ThO{sub 2} pellets by laser flash measurement. Increasing La-content and high energy ball milling time decreases thermal diffusivity; while the sintering peak temperature and holding time beyond 1600 °C dramatically altered the temperature dependence of the thermal diffusivity beyond 600 °C. - Highlights: • Lanthanum incorporation into ThO{sub 2} by high energy ball milling and rapid consolidation by spark plasma sintering. • Elucidation of phase behavior of the La-doped ThO{sub 2} and the contributions of La incorporation and SPS sintering conditions. • Investigation of the effects of La incorporation and high energy ball milling on the thermal behavior of La-doped ThO{sub 2}.

  4. Partial amorphization of an α-FeCr alloy by ball-milling

    International Nuclear Information System (INIS)

    Loureiro, J. M.; Costa, B. F. O.; Caer, G. Le; Delcroix, P.

    2008-01-01

    The structural changes of near-equiatomic α-FeCr alloys, ground in a vibratory mill in vacuum and in argon, were followed as a function of milling time. An amorphous phase forms in both cases but at a much faster rate when milling in argon than when milling in vacuum. Amorphisation by ball-milling of α-FeCr alloys is deduced to be an intrinsic phenomenon which is however speeded-up by oxygen. The amorphous phase crystallizes into a bcc Cr-rich phase and a bcc Fe-rich phase when annealed for short times.

  5. Comparative Study by MS and XRD of Fe{sub 50}Al{sub 50} Alloys Produced by Mechanical Alloying, Using Different Ball Mills

    Energy Technology Data Exchange (ETDEWEB)

    Rojas Martinez, Y., E-mail: yarojas@ut.edu.co [University of Tolima, Department of Physics (Colombia); Perez Alcazar, G. A. [University of Valle, Department of Physics (Colombia); Bustos Rodriguez, H.; Oyola Lozano, D., E-mail: doyolalozano@yahoo.com.mx [University of Tolima, Department of Physics (Colombia)

    2005-02-15

    In this work we report a comparative study of the magnetic and structural properties of Fe{sub 50}Al{sub 50} alloys produced by mechanical alloying using two different planetary ball mills with the same ball mass to powder mass relation. The Fe{sub 50}Al{sub 50} sample milled during 48 h using the Fritsch planetary ball mill pulverisette 5 and balls of 20 mm, presents only a bcc alloy phase with a majority of paramagnetic sites, whereas that sample milled during the same time using the Fritsch planetary ball mill pulverisette 7 with balls of 15 mm, presents a bcc alloy phase with paramagnetic site (doublet) and a majority of ferromagnetic sites which include pure Fe. However for 72 h of milling this sample presents a bcc paramagnetic phase, very similar to that prepared with the first system during 48 h. These results show that the conditions used in the first ball mill equipment make more efficient the milling process.

  6. Effect of Milling Time on the Microstructure, Physical and Mechanical Properties of Al-Al₂O₃ Nanocomposite Synthesized by Ball Milling and Powder Metallurgy.

    Science.gov (United States)

    Toozandehjani, Meysam; Matori, Khamirul Amin; Ostovan, Farhad; Abdul Aziz, Sidek; Mamat, Md Shuhazlly

    2017-10-26

    The effect of milling time on the morphology, microstructure, physical and mechanical properties of pure Al-5 wt % Al₂O₃ (Al-5Al₂O₃) has been investigated. Al-5Al₂O₃ nanocomposites were fabricated using ball milling in a powder metallurgy route. The increase in the milling time resulted in the homogenous dispersion of 5 wt % Al₂O₃ nanoparticles, the reduction of particle clustering, and the reduction of distances between the composite particles. The significant grain refining during milling was revealed which showed as a reduction of particle size resulting from longer milling time. X-Ray diffraction (XRD) analysis of the nanocomposite powders also showed that designated ball milling contributes to the crystalline refining and accumulation of internal stress due to induced severe plastic deformation of the particles. It can be argued that these morphological and microstructural variations of nanocomposite powders induced by designated ball milling time was found to contribute to an improvement in the density, densification, micro-hardness ( HV ), nano-hardness ( HN ), and Young's modulus ( E ) of Al-5Al₂O₃ nanocomposites. HV , HN , and E values of nanocomposites were increased by ~48%, 46%, and 40%, after 12 h of milling, respectively.

  7. Novel ultra-cryo milling and co-grinding technique in liquid nitrogen to produce dissolution-enhanced nanoparticles for poorly water-soluble drugs.

    Science.gov (United States)

    Sugimoto, Shohei; Niwa, Toshiyuki; Nakanishi, Yasuo; Danjo, Kazumi

    2012-01-01

    A novel ultra-cryo milling micronization technique for pharmaceutical powders using liquid nitrogen (LN2 milling) was used to grind phenytoin, a poorly water-soluble drug, to improve its dissolution rate. LN2 milling produced particles that were much finer and more uniform in size and shape than particles produced by jet milling. However, the dissolution rate of LN2-milled phenytoin was the same as that of unground phenytoin due to agglomeration of the submicron particles. To overcome this, phenytoin was co-ground with polyvinylpyrrolidone (PVP). The dissolution rate of co-ground phenytoin was much higher than that of original phenytoin, single-ground phenytoin, a physical mixture of phenytoin and PVP, or jet-milled phenytoin. X-Ray diffraction showed that the crystalline state of mixtures co-ground by LN2 milling remained unchanged. The equivalent improvement in dissolution, whether phenytoin was co-ground or separately ground and then mixed with PVP, suggested that even when co-ground, the grinding of PVP and phenytoin occurs essentially independently. Mixing original PVP with ground phenytoin provided a slight improvement in dissolution, indicating that the particle size of PVP is important for improving dissolution. When mixed with ground phenytoin, PVP ground by LN2 milling aided the wettability and dispersion of phenytoin, enhancing utilization of the large surface area of ground phenytoin. Co-grinding phenytoin with other excipients such as Eudragit L100, hypromellose, hypromellose acetate-succinate, microcrystalline cellulose, hydroxypropylcellulose and carboxymethyl cellulose also improved the dissolution profile, indicating an ultra-cryo milling and co-grinding technique in liquid nitrogen has a broad applicability of the dissolution enhancement of phenytoin.

  8. ALSTOM Schusselmuhle fur die feinvermahlung von anhydrit ALSTOM bowl mill for anhydrite fine grinding

    CERN Document Server

    Angleys, M

    2003-01-01

    After the ALSTOM bowl mill had proved a success during numerous laboratory tests using different industrial minerals, for the first time a mill, type SM 20/12 was commissioned for ATLAS s.c. at Lodz /Poland for anhydrite grinding. Based on corresponding laboratory tests with anhydrite, it was possible to adapt the equipment to the requirements of the material with modified properties. Due to the project preparation together with the customer, the mill could be installed and commissioned according to schedule by a joint team of engineers for erection and commissioning.

  9. Distinguishing effect of buffing vs. grinding, milling and turning operations on the chloride induced SCC susceptibility of 304L austenitic stainless steel

    International Nuclear Information System (INIS)

    Kumar, Pandu Sunil; Acharyya, Swati Ghosh; Rao, S.V. Ramana; Kapoor, Komal

    2017-01-01

    The study compares the effect of different surface working operations like grinding, milling, turning and buffing on the Cl – induced stress corrosion cracking (SCC) susceptibility of austenitic 304L stainless steel (SS) in a chloride environment. SS 304L was subjected to four different surface working operations namely grinding, milling, turning and buffing. The residual stress distribution of the surface as a result of machining was measured by X-ray diffraction. The Cl – induced SCC susceptibility of the different surface worked samples were determined by testing in boiling magnesium chloride as per ASTM G36 for 3 h, 9 h and 72 h. The surface and cross section of the samples both pre and post exposure to the corrosive medium was characterized using optical microscopy, scanning electron microscopy (SEM). The study revealed that grinding, milling and turning operations resulted in high tensile residual stresses on the surface together with the high density of deformation bands making these surfaces highly susceptible to Cl – induced SCC. On the other hand buffing produces compressive residual stresses on the surface with minimal plastic strain, making it more resistance to Cl – induced SCC. The study highlights that the conventional machining operations on 304L SS surfaces should be invariably followed by buffing operation to make the surfaces more resistance to SCC. - Highlights: • Grinding, milling and turning lead to tensile residual stresses and plastic strain. • Buffing leads to compressive residual stresses on the surface and minimal strain. • Grinding, milling and turning make 304L SS surface susceptible to SCC. • Buffed 304L SS surface is immune to SCC. • Grinding, milling, and turning operations should be followed by buffing operation.

  10. Distinguishing effect of buffing vs. grinding, milling and turning operations on the chloride induced SCC susceptibility of 304L austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Pandu Sunil [School of Engineering Sciences and Technology, University of Hyderabad, Hyderabad 500046 (India); Acharyya, Swati Ghosh, E-mail: swati364@gmail.com [School of Engineering Sciences and Technology, University of Hyderabad, Hyderabad 500046 (India); Rao, S.V. Ramana; Kapoor, Komal [Nuclear Fuel Complex, Department of Atomic Energy, Government of India, Hyderabad 500062 (India)

    2017-02-27

    The study compares the effect of different surface working operations like grinding, milling, turning and buffing on the Cl{sup –} induced stress corrosion cracking (SCC) susceptibility of austenitic 304L stainless steel (SS) in a chloride environment. SS 304L was subjected to four different surface working operations namely grinding, milling, turning and buffing. The residual stress distribution of the surface as a result of machining was measured by X-ray diffraction. The Cl{sup –} induced SCC susceptibility of the different surface worked samples were determined by testing in boiling magnesium chloride as per ASTM G36 for 3 h, 9 h and 72 h. The surface and cross section of the samples both pre and post exposure to the corrosive medium was characterized using optical microscopy, scanning electron microscopy (SEM). The study revealed that grinding, milling and turning operations resulted in high tensile residual stresses on the surface together with the high density of deformation bands making these surfaces highly susceptible to Cl{sup –} induced SCC. On the other hand buffing produces compressive residual stresses on the surface with minimal plastic strain, making it more resistance to Cl{sup –} induced SCC. The study highlights that the conventional machining operations on 304L SS surfaces should be invariably followed by buffing operation to make the surfaces more resistance to SCC. - Highlights: • Grinding, milling and turning lead to tensile residual stresses and plastic strain. • Buffing leads to compressive residual stresses on the surface and minimal strain. • Grinding, milling and turning make 304L SS surface susceptible to SCC. • Buffed 304L SS surface is immune to SCC. • Grinding, milling, and turning operations should be followed by buffing operation.

  11. Synthesis of Randomly Substituted Anionic Cyclodextrins in Ball Milling

    Directory of Open Access Journals (Sweden)

    László Jicsinszky

    2017-03-01

    Full Text Available A number of influencing factors mean that the random substitution of cyclodextrins (CD in solution is difficult to reproduce. Reaction assembly in mechanochemistry reduces the number of these factors. However, lack of water can improve the reaction outcomes by minimizing the reagent’s hydrolysis. High-energy ball milling is an efficient, green and simple method for one-step reactions and usually reduces degradation and byproduct formation. Anionic CD derivatives have successfully been synthesized in the solid state, using a planetary ball mill. Comparison with solution reactions, the solvent-free conditions strongly reduced the reagent hydrolysis and resulted in products of higher degree of substitution (DS with more homogeneous DS distribution. The synthesis of anionic CD derivatives can be effectively performed under mechanochemical activation without significant changes to the substitution pattern but the DS distributions were considerably different from the products of solution syntheses.

  12. Effect of Heat Treatment on the Hardness and Wear of Grinding Balls

    Science.gov (United States)

    Aissat, Sahraoui; Sadeddine, Abdelhamid; Bradai, Mohand Amokrane; Younes, Rassim; Bilek, Ali; Benabbas, Abderrahim

    2017-09-01

    The effect quenching and tempering by different regimes on Rockwell hardness and wear processes of grinding balls 50 and 70 mm in diameter made of two melts of chromium-molybdenum cast iron is studied. The heating temperature for quenching is 850, 950, and 1050°C; the tempering temperature is 250, 400, and 600°C. Iron is analyzed in an electron microscope. Diffraction patterns are obtained. A model of cast iron wear is suggested and compared to the Davis model and to experimental results. An optimum heat treatment regime is proposed.

  13. Ball Milling Treatment of Black Dross for Selective Dissolution of Alumina in Sodium Hydroxide Leaching

    OpenAIRE

    Thi Thuy Nhi Nguyen; Man Seung Lee; Thi Hong Nguyen

    2018-01-01

    A process consisting of ball milling followed by NaOH leaching was developed to selectively dissolve alumina from black dross. From the ball milling treatment, it was found that milling speed greatly affected the leaching behavior of silica and the oxides of Ca, Fe, Mg, and Ti present in dross. The leaching behavior of the mechanically activated dross was investigated by varying NaOH concentration, leaching temperature and time, and pulp density. In most of the leaching conditions, only alumi...

  14. Residual stresses analysis in ball end milling of nickel-based superalloy Inconel 718

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Junteng; Zhang, Dinghua; Wu, Baohai; Luo, Ming [Key Laboratory of Contemporary Design and Integrated Manufacturing Technology, Northwestern Polytechnical University (China)

    2017-11-15

    Inconel 718 is widely used in the aviation, space, automotive and biomedical industries because of its outstanding properties. Near-surface residual stresses that are induced by ball end milling in Inconel 718 can be crucial for the performance and service time of the machined parts. In this paper, the influences of cutting conditions, including the use of cutting parameters, cutting fluid and spindle angles, on the residual stresses in the ball end milling process of Inconel 718 alloy were investigated experimentally. X-ray diffraction measurements reveal that residual stress distributions are highly influenced by cutting parameters, especially the depth of cut and cutting speed. The milling operation with cooling induces more compressive stresses trend and the magnitude of the residual stresses increases in the tensile direction with the increase of spindle angles. These cutting induced effects were further discussed with respect to thermal- mechanical coupling theory and some observations made by optical microscopy. From this investigation, it is suggested that the machining process parameters are not the smaller the better for the control of residual stresses in the ball end milling process of Inconel 718. (author)

  15. A study of the mechanism of microwave-assisted ball milling preparing ZnFe{sub 2}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yingzhe; Wu, Yujiao [College of materials and metallurgical engineering, Guizhou Institute of Technology, Guiyang 550003 (China); 2011 Collaborative Innovation Center of Guizhou Province, Guiyang 550003 (China); Qin, Qingdong [College of materials and metallurgical engineering, Guizhou Institute of Technology, Guiyang 550003 (China); Wang, Fuchun [College of materials and metallurgical engineering, Guizhou Institute of Technology, Guiyang 550003 (China); 2011 Collaborative Innovation Center of Guizhou Province, Guiyang 550003 (China); Chen, Ding [College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082 (China)

    2016-07-01

    In this paper, well dispersed ZnFe{sub 2}O{sub 4} nano-particles with high magnetization saturation of 82.23 emu/g were first synthesized by microwave assisted ball milling and then the influences of pre-treatments and microwave powers to the progress were studied. It was found that under the both function of crack effect induced by ball milling and rotary motion induced by microwave the synthesized ferrtie nano-particles were well dispersed that is much different from the powders synthesized by normal high energy ball milling. The pre-treatment of ball milling can only enhance the reaction rate in the first several hours but the pre-irradiation of microwave can enhance the hole reaction rate. Further more, it was also been found that with increasing the microwave power, the more raw materials will converted into zinc ferrite in the first 5 h. 5 h latter the microwave power of 720 W is high enough for the coupling effect of microwave and ball milling with stirrer rotation speed of 256 rpm. - Highlights: • ZnFe{sub 2}O{sub 4} with 82.23 emu/g were synthesized without heat treatment. • The produced powder dispersed very well without any dispersant. • The pre-treatment of microwave enhanced the reaction rate much. • The pre-treatment of ball milling enhance chemical rate at beginning.

  16. Synthesis of the Mg2Ni alloy prepared by mechanical alloying using a high energy ball mill

    International Nuclear Information System (INIS)

    Iturbe G, J. L.; Lopez M, B. E.; Garcia N, M. R.

    2010-01-01

    Mg 2 Ni was synthesized by a solid state reaction from the constituent elemental powder mixtures via mechanical alloying. The mixture was ball milled for 10 h at room temperature in an argon atmosphere. The high energy ball mill used here was fabricated at ININ. A hardened steel vial and three steel balls of 12.7 mm in diameter were used for milling. The ball to powder weight ratio was 10:1. A small amount of powder was removed at regular intervals to monitor the structural changes. All the steps were performed in a little lucite glove box under argon gas, this glove box was also constructed in our Institute. The structural evolution during milling was characterized by X-ray diffraction and scanning electron microscopy techniques. The hydrogen reaction was carried out in a micro-reactor under controlled conditions of pressure and temperature. The hydrogen storage properties of mechanically milled powders were evaluated by using a thermogravimetric analysis system. Although homogeneous refining and alloying take place efficiently by repeated forging, the process time can be reduced to one fiftieth of the time necessary for conventional mechanical milling and attrition. (Author)

  17. A study on a new algorithm to optimize ball mill system based on modeling and GA

    International Nuclear Information System (INIS)

    Wang Heng; Jia Minping; Huang Peng; Chen Zuoliang

    2010-01-01

    Aiming at the disadvantage of conventional optimization method for ball mill pulverizing system, a novel approach based on RBF neural network and genetic algorithm was proposed in the present paper. Firstly, the experiments and measurement for fill level based on vibration signals of mill shell was introduced. Then, main factors which affected the power consumption of ball mill pulverizing system were analyzed, and the input variables of RBF neural network were determined. RBF neural network was used to map the complex non-linear relationship between the electric consumption and process parameters and the non-linear model of power consumption was built. Finally, the model was optimized by genetic algorithm and the optimal work conditions of ball mill pulverizing system were determined. The results demonstrate that the method is reliable and practical, and can reduce the electric consumption obviously and effectively.

  18. One step conversion of wheat straw to sugars by simultaneous ball milling, mild acid, and fungus Penicillium simplicissimum treatment.

    Science.gov (United States)

    Yuan, Li; Chen, Zhenhua; Zhu, Yonghua; Liu, Xuanming; Liao, Hongdong; Chen, Ding

    2012-05-01

    Wheat straw is one of the major lignocellulosic plant residues in many countries including China. An attractive alternative is the utilization of wheat straw for bioethanol production. This article mainly studies a simple one-step wet milling with Penicillium simplicissimum and weak acid to hydrolysis of wheat straw. The optimal condition for hydrolysis was ball milling 48 h in citrate solvent (pH = 4) with P. simplicissimum H5 at the speed of 500 rpm and the yield of sugar increased with increased milling time. Corresponding structure transformations before and after milling analyzed by X-ray diffraction, transmission Fourier transform infrared spectroscopy, and environmental scanning electron microscopy clearly indicated that this combined treatment could be attributed to the crystalline and chemical structure changes of cellulose in wheat straw during ball milling. This combined treatment of ball milling, mild acid, and fungus hydrolysis enabled the conversion of the wheat straw. Compared with traditional method of ball milling, this work showed a more simple, novel, and environmentally friendly way in mechanochemical treatment of wheat straw.

  19. Sintered Fe-Ni-Cu-Sn-C Alloys Made of Ball-Milled Powders

    Directory of Open Access Journals (Sweden)

    Romański A.

    2014-10-01

    Full Text Available The main objective of this paper was to perform sinterability studies of ball-milled Fe-12%Ni-6.4%Cu-1.6%Sn-0.6%C powders. A mixture of precisely weighed amounts of elemental iron, nickel and graphite, and pre-alloyed 80/20 bronze powders was ball-milled for 8, 30 and 120 hours. After cold-pressing at 400 MPa the specimens were sintered at 900oC for 30 minutes in a reducing atmosphere and subsequently tested for density and hardness as well as subjected to structural studies using scanning electron microscopy (SEM and X-ray diffraction (XRD analysis.

  20. Fe-Al2O3 nanocomposites prepared by high-energy ball milling

    DEFF Research Database (Denmark)

    Linderoth, Søren; Pedersen, M.S.

    1994-01-01

    Nanocomposites of alpha-Fe and alpha-Al2O3, prepared by high-energy ball milling, exhibit coercivities which are enhanced by about two orders of magnitude with respect to the bulk value. The degree of enhancement depends on the volume fraction (x(upsilon)) of Fe, with a maximum for x(upsilon) alm......Nanocomposites of alpha-Fe and alpha-Al2O3, prepared by high-energy ball milling, exhibit coercivities which are enhanced by about two orders of magnitude with respect to the bulk value. The degree of enhancement depends on the volume fraction (x(upsilon)) of Fe, with a maximum for x...

  1. Synthesis of Ni-YSZ cermet for an electrode of high temperature electrolysis by high energy ball milling

    International Nuclear Information System (INIS)

    Hong, H.S.; Chae, U.S.; Park, K.M.; Choo, S.T.

    2005-01-01

    Ni/YSZ composites for a cathode that can be used in high temperature electrolysis were prepared by ball milling of Ni and YSZ powder. Ball milling was performed in a dry process and in ethanol. The microstructure and electrical conductivity of the composites were examined by XRD, SEM, TEM and a 4-point probe. XRD patterns for both the dry and wet ball-milled powders showed that the composites were composed of crystalline Ni and YSZ particles. The patterns did not change with increases in the milling time up to 48 h. Dry-milling slightly increased the average particle size compared to starting Ni particles, but little change in the particle size was observed with the increase in milling time. On the other hand, the wet-milling reduced the average size and the increasing milling time induced a further decrease in the particle size. After cold-pressing and annealing at 900 C for 2 h, the dry-milled powder exhibited high stability against Ni sintering so that the particle size changed little, but the particle size increased in the wet-milled powder. The electrical conductivity increased after sintering at 900 C. Particles from the dry and wet process became denser and contacted closer after sintering, providing better electron migration paths. (orig.)

  2. Synthesis of the Mg{sub 2}Ni alloy prepared by mechanical alloying using a high energy ball mill

    Energy Technology Data Exchange (ETDEWEB)

    Iturbe G, J. L.; Lopez M, B. E. [ININ, Departamento de Quimica, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Garcia N, M. R., E-mail: joseluis.iturbe@inin.gob.m [UNAM, Facultad de Estudios Superiores Zaragoza, Batalla 5 de Mayo s/n, Esq. Fuerte de Loreto, Col. Ejercito de Oriente, 09230 Mexico D. F. (Mexico)

    2010-07-01

    Mg{sub 2}Ni was synthesized by a solid state reaction from the constituent elemental powder mixtures via mechanical alloying. The mixture was ball milled for 10 h at room temperature in an argon atmosphere. The high energy ball mill used here was fabricated at ININ. A hardened steel vial and three steel balls of 12.7 mm in diameter were used for milling. The ball to powder weight ratio was 10:1. A small amount of powder was removed at regular intervals to monitor the structural changes. All the steps were performed in a little lucite glove box under argon gas, this glove box was also constructed in our Institute. The structural evolution during milling was characterized by X-ray diffraction and scanning electron microscopy techniques. The hydrogen reaction was carried out in a micro-reactor under controlled conditions of pressure and temperature. The hydrogen storage properties of mechanically milled powders were evaluated by using a thermogravimetric analysis system. Although homogeneous refining and alloying take place efficiently by repeated forging, the process time can be reduced to one fiftieth of the time necessary for conventional mechanical milling and attrition. (Author)

  3. Microstructural evolution of nanostructured Ti0.9Al0.1N prepared by reactive ball-milling

    International Nuclear Information System (INIS)

    Bhaskar, U.K.; Bid, S.; Pradhan, S.K.

    2011-01-01

    Research highlights: → Nanocrystalline stoichiometric Ti 0.9 Al 0.1 N powder has been prepared by ball-milling the 0.9 mol fraction of α-Ti (hcp) and 0.1 mol fraction of aluminum (fcc) powders under N 2 at room temperature. Initially, α-Ti phase partially transformed to the transient β-Ti phase and Ti 0.9 Al 0.1 N (fcc) phase is noticed to form after 3 h of milling. Nanocrystalline stoichiometric Ti 0.9 Al 0.1 N phase is formed after 7 h of milling. The main features which are observed in the present study are stated below: 1.During ball-milling of α-Ti, the α-Ti phase partially converted to transient cubic β-Ti phase within 1 h of milling. 2.Ti 0.9 Al 0.1 N (fcc) phase is noticed to form after 3 h of milling. Complete formation of Ti 0.9 Al 0.1 N (fcc) is obtained at 7 h of milling which is lesser than complete formation time (9 h) of TiN. Doping Al atoms accelerates the formation of (TiAl)N phase. 3.The particle size of Ti 0.9 Al 0.1 N decrease rapidly up to 3 h and then increase slightly due to agglomeration effect. 4.The particle size of Ti 0.9 Al 0.1 N estimated from X-ray is in good agreement with that measured from HRTEM. - Abstract: Nanocrystalline stoichiometric Ti 0.9 Al 0.1 N powder has been prepared by ball-milling the α-Ti (hcp) and aluminum (fcc) powders under N 2 at room temperature. Initially, α-Ti phase partially transformed to the transient cubic β-Ti phase and Ti 0.9 Al 0.1 N (fcc) phase is noticed to form after 3 h of milling. Nanocrystalline stoichiometric Ti 0.9 Al 0.1 N phase is formed after 7 h of milling. After 1 h of milling, all Al atoms are diffused into the α-Ti matrix. The transient β-Ti phase is noticed to form after 1 h of milling and disappears completely after 7 h of milling. Microstructure characterization of unmilled and ball-milled powders by analyzing XRD patterns employing the Rietveld structure refinement reveals the inclusion of Al and nitrogen atoms into the Ti lattice on the way to formation of Ti 0.9 Al 0.1 N

  4. A software tool for simulation of surfaces generated by ball nose end milling

    DEFF Research Database (Denmark)

    Bissacco, Giuliano

    2004-01-01

    , for prediction of surface topography of ball nose end milled surfaces, was developed. Such software tool is based on a simplified model of the ideal tool motion and neglects the effects due to run-out, static and dynamic deflections and error motions, but has the merit of generating in output a file in a format...... readable by a surface processor software (SPIP [2]), for calculation of a number of surface roughness parameters. In the next paragraph a description of the basic features of ball nose end milled surfaces is given, while in paragraph 3 the model is described....

  5. Design and Testing of UMM Vertical Ball Mill (UVBM) for producing Aluminium Powder

    Science.gov (United States)

    Aisyah, I. S.; Caesarendra, Wahyu; Suprihanto, Agus

    2018-04-01

    UMM Vertical Ball Mill (UVBM) was intended to be the apparatus to produce metal powder with superior characteristic in production rate while retaining good quality of metal powder. The concept of design was adopting design theory of Phal and Beitz with emphasis on increasing of probability of success in engineering and economy aspects.Since it was designed as vertical ball mill, a new way to produce powder, then it need to be tested for the performance after manufactured. The test on UVBM was carried out by milling of aluminium chip for 5 (five) different milling time of 0.5 hours, 1 hour, 3 hours, 5 hours and 7 hours, and the powder product then be characterized for it morphology and size using Scanning Electron Microscope (SEM) and Sieve.The results of the study were the longer of the milling time, the finer of the powder. From the test results of SEM, the morphology of the powder with 5 variations of milling time were most of the powder in form of flake (flat), small round and angular (irregular). The distribution of powder size was best obtained on the variation of milling time 3 hours, 5 hours, and 7 hours with percentage of 200 mesh in size of 22.14 %, 64 % and 91.25 % respectively.

  6. Optimization of operating variables for production of ultra-fine talc in a stirred mill. Specific surface area investigations

    Directory of Open Access Journals (Sweden)

    Toraman Oner Yusuf

    2016-01-01

    Full Text Available Due to its properties such as chemical inertness, softness, whiteness, high thermal conductivity, low electrical conductivity and adsorption properties talc has wide industrial applications in paper, cosmetics, paints, polymer, ceramics, refractory materials and pharmaceutical. The demand for ultra-fine talc is emerging which drives the mineral industry to produce value added products. In this study, it was investigated how certain grinding parameters such as mill speed, ball filling ratio, powder filling ratio and grinding time of dry stirred mill affect grindability of talc ore (d97=127 μm. A series of laboratory experiments using a 24 full factorial design was conducted to determine the optimal operational parameters of a stirred mill in order to minimize the specific surface area. The main and interaction effects on the volume specific surface area (SV, m2.cm−3 of the ground product were evaluated using the Yates analysis. Under the optimal conditions at the stirrer speed of 600 rpm, grinding time of 20 min, sample mass of 5% and ball ratio of 70%, the resulting talc powder had larger volume specific surface area (i.e., 3.48 m2.cm−3 than the starting material (i.e., 1.84 m2.cm−3.

  7. Effect of Milling Time on the Microstructure, Physical and Mechanical Properties of Al-Al2O3 Nanocomposite Synthesized by Ball Milling and Powder Metallurgy

    Science.gov (United States)

    Matori, Khamirul Amin; Ostovan, Farhad; Abdul Aziz, Sidek; Mamat, Md Shuhazlly

    2017-01-01

    The effect of milling time on the morphology, microstructure, physical and mechanical properties of pure Al-5 wt % Al2O3 (Al-5Al2O3) has been investigated. Al-5Al2O3 nanocomposites were fabricated using ball milling in a powder metallurgy route. The increase in the milling time resulted in the homogenous dispersion of 5 wt % Al2O3 nanoparticles, the reduction of particle clustering, and the reduction of distances between the composite particles. The significant grain refining during milling was revealed which showed as a reduction of particle size resulting from longer milling time. X-Ray diffraction (XRD) analysis of the nanocomposite powders also showed that designated ball milling contributes to the crystalline refining and accumulation of internal stress due to induced severe plastic deformation of the particles. It can be argued that these morphological and microstructural variations of nanocomposite powders induced by designated ball milling time was found to contribute to an improvement in the density, densification, micro-hardness (HV), nano-hardness (HN), and Young’s modulus (E) of Al-5Al2O3 nanocomposites. HV, HN, and E values of nanocomposites were increased by ~48%, 46%, and 40%, after 12 h of milling, respectively. PMID:29072632

  8. Effect of Milling Time on the Microstructure, Physical and Mechanical Properties of Al-Al2O3 Nanocomposite Synthesized by Ball Milling and Powder Metallurgy

    Directory of Open Access Journals (Sweden)

    Meysam Toozandehjani

    2017-10-01

    Full Text Available The effect of milling time on the morphology, microstructure, physical and mechanical properties of pure Al-5 wt % Al2O3 (Al-5Al2O3 has been investigated. Al-5Al2O3 nanocomposites were fabricated using ball milling in a powder metallurgy route. The increase in the milling time resulted in the homogenous dispersion of 5 wt % Al2O3 nanoparticles, the reduction of particle clustering, and the reduction of distances between the composite particles. The significant grain refining during milling was revealed which showed as a reduction of particle size resulting from longer milling time. X-Ray diffraction (XRD analysis of the nanocomposite powders also showed that designated ball milling contributes to the crystalline refining and accumulation of internal stress due to induced severe plastic deformation of the particles. It can be argued that these morphological and microstructural variations of nanocomposite powders induced by designated ball milling time was found to contribute to an improvement in the density, densification, micro-hardness (HV, nano-hardness (HN, and Young’s modulus (E of Al-5Al2O3 nanocomposites. HV, HN, and E values of nanocomposites were increased by ~48%, 46%, and 40%, after 12 h of milling, respectively.

  9. Synthesis of free standing nanocrystalline Cu by ball milling at cryogenic temperature

    Energy Technology Data Exchange (ETDEWEB)

    Barai, K. [Department of Metallurgy and Materials Engineering, Bengal Engineering College, Shibpur, Howrah 711103 (India); Tiwary, C.S. [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India); Chattopadhyay, P.P. [Department of Metallurgy and Materials Engineering, Bengal Engineering College, Shibpur, Howrah 711103 (India); Chattopadhyay, K., E-mail: kamanio@materials.iisc.ernet.in [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India)

    2012-12-15

    This paper reports for the first time synthesis of free standing nano-crystalline copper crystals of a {approx}30-40 nm by ball milling of copper powder at 150 K under Argon atmosphere in a specially designed cryomill. The detailed characterization of these particles using multiple techniques that includes transmission electron microscopy confirms our conclusion. Careful analysis of the chemistry of these particles indicates that these particles are essentially contamination free. Through the analysis of existing models of grain size refinements during ball milling and low temperature deformation, we argue that the suppression of thermal processes and low temperature leads to formation of free nanoparticles as the process of fracture dominates over possible cold welding at low temperatures.

  10. Effect of expansion temperature of expandable graphite on microstructure evolution of expanded graphite during high-energy ball-milling

    International Nuclear Information System (INIS)

    Yue Xueqing; Li Liang; Zhang Ruijun; Zhang Fucheng

    2009-01-01

    Two expanded graphites (EG), marked as EG-1 and EG-2, were prepared by rapid heating of expandable graphite to 600 and 1000 deg. C, respectively, and ball milled in a high-energy mill (planetary-type) under air atmosphere. The microstructure evolution of the ball-milled samples was characterized by X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). XRD analysis shows that the evolution degree of the average crystallite thickness along the c-axis (L c ) of EG-2 is lower than that of EG-1 during the milling process. From the HRTEM images of the samples after 100 h ball-milling, slightly curved graphene planes can be frequently observed both in the two EGs, however, EG-1 and EG-2 exhibit sharply curved graphene planes and smoothly curved graphene planes with high bending angles, respectively.

  11. Magnetic properties of nanocrystalline Fe–10%Ni alloy obtained by planetary ball mills

    International Nuclear Information System (INIS)

    Hamzaoui, Rabah; Elkedim, Omar

    2013-01-01

    Highlights: •Solid solution formation accompanied by a grain refinement for nanocrystalline Fe-Ni. •The shock mode process (SMP) prevails when Ω > >ω. •The friction mode process (FMP) is stronger when Ω < <ω. •The FMP leads to the formation of alloys exhibiting a soft magnetic behavior. -- Abstract: Planetary ball mill PM 400 from Retsch (with different milling times for Ω = 400 rpm, ω = 800 rpm) and P4 vario ball mill from Fritsch (with different milling conditions (Ω/ω), Ω and ω being the disc and the vial rotation speeds, respectively) are used for obtaining nanocrystalline Fe–10wt% Ni. The structure and magnetic properties are studied by using X-ray diffraction, SEM and hysteresis measurements, respectively. The bcc-Fe(Ni) phase formation is identified by X-ray diffraction. The higher the shock power and the higher milling time are, the larger the bcc lattice parameter and the lower the grain size. The highest value of the coercivity is 1600 A/m for Fe–10 wt.%Ni (with shock mode (424 rpm/100 rpm) after 36 h of milling), while the lowest value is 189 A/m for (400 rpm/800 rpm) after 72 h of milling. The milling performed in the friction mode has been found to lead the formation of alloys exhibiting a soft magnetic behavior for nanocrystalline Fe–10%Ni

  12. Excess lithium storage in LiFePO4-Carbon interface by ball-milling

    Science.gov (United States)

    Guo, Hua; Song, Xiaohe; Zheng, Jiaxin; Pan, Feng

    2016-07-01

    As one of the most popular cathode materials for high power lithium ion batteries (LIBs) of the electrical-vehicle (EV), lithium iron phosphate (LiFePO4 (LFP)) is limited to its relatively lower theoretical specific capacity of 170mAh g-1. To break the limits and further improve the capacity of LFP is promising but challenging. In this study, the ball-milling method is applied to the mixture of LFP and carbon, and the effective capacity larger than the theoretical one by 30mAh g-1 is achieved. It is demonstrated that ball-milling leads to the LFP-Carbon interface to store the excess Li-ions.

  13. ZnO nanoparticles obtained by ball milling technique: Structural, micro-structure, optical and photo-catalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Balamurugan, S., E-mail: scandium.chemistry@gmail.com; Joy, Josny; Godwin, M. Anto; Selvamani, S.; Raja, T. S. Gokul [Advanced Nanomaterials Research Laboratory, Department of Nanotechnology, Noorul Islam Centre for Higher Education, Thuckalay, Kumaracoil - 629 180 (India)

    2016-05-23

    The ZnO nanoparticles were obtained by ball milling of commercial grade ZnO powder at 250 rpm for 20 h and studied their structural, micro-structure, optical and photo-catalytic properties. Due to ball milling significant decrease in lattice parameters and average crystalline size is noticed for the as-milled ZnO nano powder. The HRSEM images of the as-milled powder consist of agglomerated fine spherical nanoparticles in the range of ~10-20 nm. The room temperature PL spectrum of as-milled ZnO nano powder excited under 320 nm reveals two emission bands at ~406 nm (violet emission) and ~639 nm (green emission). Interestingly about 98 % of photo degradation of methylene (MB) by the ZnO catalyst is achieved at 100 minutes of solar light irradiation.

  14. Polycrystalline Nd2Fe14B/α-Fe nanocomposite flakes with a sub-micro/nanometre thickness prepared by surfactant-assisted high-energy ball milling

    International Nuclear Information System (INIS)

    Tang, Xin; Chen, Xi; Chen, Renjie; Yan, Aru

    2015-01-01

    Highlights: • Nd 2 Fe 14 B/α-Fe flakes are formed by peeling along preferential planes. • (0 0 l) planes are found to be preferential cleavage planes. • Magnetic properties degrade with increasing ball milling time. • Anisotropic nanocomposite magnets are fabricated. - Abstract: A surfactant-assisted high-energy ball milling technique was employed to synthesize Nd 2 Fe 14 B/α-Fe nanoparticles and nanoflakes from melt-spun nanocrystalline powders. The microstructure evolution in ball milling process was investigated. In the beginning stage (0–4 h) of ball milling, raw powders were crushed into micrometre-sized particles. While flakes were mainly formed by reducing thickness of particles via peeling layer by layer along preferential planes in the late stage (8–16 h). The selected area electron diffraction and high-resolution transmission electron microscopy images show that preferential cleavage planes are basal planes. With ball milling proceeding, more and more defects were induced by ball milling. As a result, the coercivity and remanence decreased to 1.6 kOe and 3.2 kGs, respectively. After 16 h ball milling, the exchange decoupling occurred due to severe amorphorization. A weakly-textured nanocomposite magnet was fabricated after 12 h ball milling and the anisotropy in magnetic properties can be further improved by employing settling down process to select particle size and aligning particles in external field

  15. Interim report on task 1.2: near equilibrium processing requirements - attrition milling part 1 of 2 to Lawrence Livermore National for contract b345772

    International Nuclear Information System (INIS)

    Stewart, M W A; Vance, E R; Day, R A; Eddowes, T; Moricca, S

    2000-01-01

    The objective of Task 1.2 has only partly been achieved as the work on Pu/U-formulations and to a significant degree on Th/U-formulations has been performed under grinding/blending conditions that did not replicate plant-like fabrication processes, particularly in the case with the small glovebox attritor. Nevertheless the results do show that actinide-rich particles, not present in specimens made via the alkoxide-route (equilibrium conditions), occur when the grinding process is not efficient enough to ensure that high-fired PuO 2 , ThO 2 and UO 2 particles are below a critical size. Our current perception is that the critical size for specimens sintered at 1350 C for 4 hours is about 5 (micro)m in diameter. The critical size is difficult to estimate, as it is equal to the starting diameter of actinide oxides just visible within brannerite regions. Our larger scale attritor experiments as well as experience with wet and dry ball milling suggests that acceptable mineralogy and microstructure can be obtained by dry milling via attritor and ball mills. This is provided that appropriate attention is paid to the size and density of the grinding media, grinding additives that reduce caking of the powder, and in the case of attritors the grinding speed and pot setup. The ideal products for sintering are free flowing granules of ∼ 100 (micro)m containing constituents ground to about 1 (micro)m to ensure homogeneity and equilibrium mineralogy

  16. Preparation of 50Ni-45Ti-5Zr powders by high-energy ball milling and hot pressing

    Energy Technology Data Exchange (ETDEWEB)

    Marinzeck de Alcantara Abdala, Julia, E-mail: juabdala@yahoo.com.b [Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraiba, Av. Shishima Hifumi, 2911, 12244-000 Sao Jose dos Campos (Brazil); Bacci Fernandes, Bruno, E-mail: brunobacci@yahoo.com.b [Divisao de Engenharia Mecanica, Instituto Tecnologico de Aeronautica, Praca Marechal-do-Ar Eduardo Gomes, 50, 12228-904 Sao Jose dos Campos (Brazil); Santos, Dalcy Roberto dos, E-mail: dalcy@iae.cta.b [Instituto de Aeronautica e Espaco, Centro Tecnologico Aeroespacial, Praca Marechal-do-Ar Eduardo Gomes, 50, 12228-904 Sao Jose dos Campos (Brazil); Rodrigues Henriques, Vinicius Andre, E-mail: vinicius@iae.cta.b [Instituto de Aeronautica e Espaco, Centro Tecnologico Aeroespacial, Praca Marechal-do-Ar Eduardo Gomes, 50, 12228-904 Sao Jose dos Campos (Brazil); Moura Neto, Carlos de, E-mail: mneto@ita.b [Divisao de Engenharia Mecanica, Instituto Tecnologico de Aeronautica, Praca Marechal-do-Ar Eduardo Gomes, 50, 12228-904 Sao Jose dos Campos (Brazil); Saraiva Ramos, Alfeu, E-mail: alfeu@univap.b [Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraiba, Av. Shishima Hifumi, 2911, 12244-000 Sao Jose dos Campos (Brazil)

    2010-04-16

    This study reports on the preparation of the 50Ni-45Ti-5Zr (at.%) alloy by high-energy ball milling and hot pressing. The elemental powder mixture was processed in silicon nitride and hardened steel vials, and samples were collected after different milling times. To recover the previous powders in addition wet milling isopropyl alcohol (for 20 min) was adopted. The mechanically alloyed powders were hot-pressed under vacuum at 900 {sup o}C for 1 h using pressure levels close to 200 MPa. The milled powders were characterized by means of scanning electron microscopy, X-ray diffraction, and energy dispersive spectrometry techniques. It was noted that the ductile starting powders were continuously cold-welded during ball milling. This fact was more pronounced during the processing of 50Ni-45Ti-5Zr powders in hardened steel vial. After milling for 5 h, the results suggested that amorphous and nanocrystalline structures were achieved. The complete consolidation was found after hot pressing of mechanically alloyed 50Ni-45Ti-5Zr powders, and a large amount of the B2-NiTi phase was formed mainly after processing in stainless steel balls and vial.

  17. Nitrogen-doped graphene by ball-milling graphite with melamine for energy conversion and storage

    International Nuclear Information System (INIS)

    Xue, Yuhua; Chen, Hao; Qu, Jia; Dai, Liming

    2015-01-01

    N-doped graphene was prepared by ball milling of graphite with melamine. It was found that ball-milling reduced the size of graphite particles from 30 to 1 μm and facilitated the exfoliation of the resultant small particles into few-layer N-doped graphene nanosheets under ultrasonication. The as-prepared N-doped graphene nanoplatelets (NGnPs) exhibited a nitrogen content as high as 11.4 at.%, making them attractive as efficient electrode materials in supercapacitors for energy storage and as highly-active metal-free catalysts for oxygen reduction in fuel cells for energy conversion. (paper)

  18. Reactive-inspired ball-milling synthesis of an ODS steel: study of the influence of ball-milling and annealing; Synthese et caracterisation d'un acier ODS prepare par un procede inspiredu broyage reactif: etude de l'influence des conditions de broyage et recuit

    Energy Technology Data Exchange (ETDEWEB)

    Brocq, M.

    2010-10-15

    In the context of the development of new ODS (Oxide Dispersion Strengthened) steels as core materials in future nuclear reactors, we investigated a new process inspired by reactive ball-milling which consists in using YFe{sub 3} andFe{sub 2}O{sub 3} as starting reactants instead of Y{sub 2}O{sub 3} to produce a dispersion of nano-oxides in a steel matrix and the influence of synthesis conditions on the nano-oxide characteristics were studied. For that aim, ODS steels were prepared by ball-milling and then annealed. Multi-scale characterizations were performed after each synthesis step, using notably atom probe tomography and small angle neutron scattering. The process inspired by reactive ball-milling was shown to be efficient for ODS steel synthesis, but it does not modify the nano-oxide characteristics as compared to those of oxides directly incorporated in the matrix by ball-milling. Broadly speaking, the nature of the starting oxygen bearing reactants has no influence on nano-oxide formation. Moreover, we showed that the nucleation of nano-oxides nucleation can start during milling and continues during annealing with a very fast kinetic. The final characteristics of nano-oxides formed in this way can be monitored through ball-milling parameters (intensity, temperature and atmosphere) and annealing parameters (duration and temperature). (author)

  19. Impact Load Behavior between Different Charge and Lifter in a Laboratory-Scale Mill.

    Science.gov (United States)

    Yin, Zixin; Peng, Yuxing; Zhu, Zhencai; Yu, Zhangfa; Li, Tongqing

    2017-07-31

    The impact behavior between the charge and lifter has significant effect to address the mill processing, and is affected by various factors including mill speed, mill filling, lifter height and media shape. To investigate the multi-body impact load behavior, a series of experiments and Discrete Element Method (DEM) simulations were performed on a laboratory-scale mill, in order to improve the grinding efficiency and prolong the life of the lifter. DEM simulation hitherto has been extensively applied as a leading tool to describe diverse issues in granular processes. The research results shown as follows: The semi-empirical power draw of Bond model in this paper does not apply very satisfactorily for the ball mills, while the power draw determined by DEM simulation show a good approximation for the measured power draw. Besides, the impact force on the lifter was affected by mill speed, grinding media filling, lifter height and iron ore particle. The maximum percent of the impact force between 600 and 1400 N is at 70-80% of critical speed. The impact force can be only above 1400 N at the grinding media filling of 20%, and the maximum percent of impact force between 200 and 1400 N is obtained at the grinding media filling of 20%. The percent of impact force ranging from 0 to 200 N decreases with the increase of lifter height. However, this perfect will increase above 200 N. The impact force will decrease when the iron ore particles are added. Additionally, for the 80% of critical speed, the measured power draw has a maximum value. Increasing the grinding media filling increases the power draw and increasing the lifter height does not lead to any variation in power draw.

  20. Simulation of activational grinding for rhombic sulfur particles in a disintegrator (pinned disc mill

    Directory of Open Access Journals (Sweden)

    Farit Urakaev

    2016-12-01

    Full Text Available Based on the theoretical studies, complete picture of a mechanical processing of sulfur in the disintegrator is given. Kinematic and dynamic characteristics of elastic and inelastic collisions of particles of processed rhombic sulfur with rows of disintegrator fingers are calculated. Based on the analysis of the obtained dependency of the rotation frequency of the rotors offers, advices on selecting optimal conditions for activation milling of α-sulfur in the disintegrator are given. These results can be partially used in the processing of sulfur and in other types of shock grinding devices, in particular, jet mills.

  1. Ball milled bauxite residue as a reinforcing filler in phosphate-based intumescent system

    Directory of Open Access Journals (Sweden)

    Adiat Ibironke Arogundade

    2018-01-01

    Full Text Available Bauxite residue (BR is an alumina refinery waste with a global disposal problem. Of the 120 MT generated annually, only 3 MT is disposed via utilization. One of the significant challenges to sustainable utilization has been found to be the cost of processing. In this work, using ball milling, we achieved material modification of bauxite residue. Spectrometric imaging with FESEM showed the transformation from an aggregate structure to nano, platy particulates, leading to particle size homogeneity. BET analysis showed surface area was increased by 23%, while pH was reduced from 10.8 to 9.1 due to collapsing of the hydroxyl surface by the fracturing action of the ball mill. Incorporation of this into a phosphate-based fire retardant, intumescent formulation led to improved material dispersion and the formation of reinforcing heat shielding char nodules. XRD revealed the formation of ceramic metal phosphates which acted as an additional heat sink to the intumescent system, thereby reducing char oxidation and heat transfer to the substrate. Steel substrate temperature from a Bunsen burner test reduced by 33%. Therefore, ball milling can serve as a simple, low-cost processing route for the reuse of bauxite residue in intumescent composites.

  2. Grinding Inside A Toroidal Cavity

    Science.gov (United States)

    Mayer, Walter; Adams, James F.; Burley, Richard K.

    1987-01-01

    Weld lines ground smooth within about 0.001 in. Grinding tool for smoothing longitudinal weld lines inside toroidal cavity includes curved tunnel jig to guide grinding "mouse" along weld line. Curvature of tunnel jig matched to shape of toroid so grinding ball in mouse follows circular arc of correct radius as mouse is pushed along tunnel. Tool enables precise control of grindout shape, yet easy to use.

  3. Quenching simulation of steel grinding balls

    Directory of Open Access Journals (Sweden)

    Zapata-Hernández, Oscar

    2015-09-01

    Full Text Available The phase transformations of high carbon steel during quenching and equalizing were modelled using commercial computer packages based on the finite element method and the kinetic transformation of steel. The model was used to predict the temperature and microstructural changes taking place within balls of two different sizes that are used for grinding mineral ores. A good correlation between the temperatures measured by inserted thermocouples and those predicted by the model was obtained after modifying the thermal conductivity of the steel within the temperature domain at which mixed phases are present. The phase transformations predicted were confirmed by metallographic analyses.Las transformaciones de fase en aceros de alto carbono durante su temple y un posterior periodo de estabilización fueron modelizadas por medio del uso de paquetes computacionales basados en el método del elemento finito y de la transformación cinética de los aceros. El modelo se usó para predecir los cambios de temperatura y microestructura que se presentan en bolas de dos diferentes tamaños empleadas en estaciones de molienda de minerales. Se encontró una buena correlación entre las temperaturas medidas mediante la inserción de termopares y aquellas predichas por el modelo una vez que se modificó la conductividad térmica del acero en el intervalo mixto de fases. La predicción de las transformaciones de fase se confirmó a través del análisis metalográfico.

  4. Effect of ball-milling time on the structural characteristics of biomedical porous Ti-Sn-Nb alloy

    Energy Technology Data Exchange (ETDEWEB)

    Nouri, Alireza, E-mail: alireza_nouri@yahoo.com [CQM-Centro de Quimica da Madeira, MMRG, Universidade da Madeira, Campus Universitario da Penteada, 9000-390 Funchal (Portugal); Institute for Technology Research and Innovation, Deakin University, Geelong, Victoria 3217 (Australia); Hodgson, Peter D. [Institute for Technology Research and Innovation, Deakin University, Geelong, Victoria 3217 (Australia); Wen Cuie [IRIS, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, 543-454 Burwood Road, Hawthorn, Victoria 3122 Australia (Australia)

    2011-07-20

    The structural characteristics of biomedical porous materials are crucial for bone tissue to grow into a porous structure and can also influence the fixation and remodeling between the implant and the human tissues. The current study has been investigating the effect of the ball-milling variable of time on the structural characteristics and pore morphology of a biomedical porous Ti-16Sn-4Nb (wt.%) alloy. The alloy was synthesized using high-energy ball milling for different periods of time, and the porous Ti-16Sn-4Nb alloy was fabricated by using a space holder sintering process. The resultant powder particles, bulk, and porous samples were characterized using a scanning electron microscope (SEM), laser particle-size analyzer, chemical analysis, X-ray diffraction analysis (XRD), and the Vickers hardness test. The results indicated that the inner pore surface, pore wall architecture, degree of porosity, pore size and the inter-pore connectivity of the sintered porous alloy are all considerably affected by ball-milling time.

  5. CNTs/Al5083 Composites of High-performance Uniform and Dispersion Fabricated by High-energy Ball-milling

    Directory of Open Access Journals (Sweden)

    GUO Li

    2017-11-01

    Full Text Available Carbon nanotubes (CNTs, mass fraction of 0%-2% reinforced Al5083 composites were fabricated by horizontal high-energy ball milling. The effects of ball milling time and CNTs contents on the properties of composite materials were studied. The micro morphology of CNTs/Al5083 composites was characterized by scanning electron microscopy(SEM and transmission electron microscopy(TEM, the tensile strength and microhardness of the composites were tested. The results indicate that after high-energy ball milling for 1.5h, the carbon nanotubes are dispersed homogeneously in the Al5083 matrix, and good interfacial bonding strength between CNTs and Al5083 is obtained at the addition of 1.5%CNTs. Under these conditions, the tensile strength and microhardness of CNTs/Al5083 composites are 188.8MPa and 136HV, respectively. Compared to Al5083 matrix without CNTs reinforcement, tensile strength and microhardness of CNTs/Al5083 composites are increased by 32.2% and 36%, respectively.

  6. Transformation of Goethite to Hematite Nanocrystallines by High Energy Ball Milling

    Directory of Open Access Journals (Sweden)

    O. M. Lemine

    2014-01-01

    Full Text Available α-Fe2O3 nanocrystallines were prepared by direct transformation via high energy ball milling treatment for α-FeOOH powder. X-ray diffraction, Rietveld analysis, TEM, and vibrating sample magnetometer (VSM are used to characterize the samples obtained after several milling times. Phase identification using Rietveld analysis showed that the goethite is transformed to hematite nanocrystalline after 40 hours of milling. HRTEM confirm that the obtained phase is mostly a single-crystal structure. This result suggested that the mechanochemical reaction is an efficient way to prepare some iron oxides nanocrystallines from raw materials which are abundant in the nature. The mechanism of the formation of hematite is discussed in text.

  7. Hydrogen storage in Mg-Ni-Fe compounds prepared by melt spinning and ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Palade, P. [Settore Materiali, Dipartimento di Ingegneria Meccanica, Universita di Padova, via Marzolo 9, 35131 Padova (Italy); National Institute for Physics of Materials, Atomistilor 105 bis, P.O. Box MG-7, 077125 Bucharest-Magurele (Romania); Sartori, S. [Settore Materiali, Dipartimento di Ingegneria Meccanica, Universita di Padova, via Marzolo 9, 35131 Padova (Italy); Maddalena, A. [Settore Materiali, Dipartimento di Ingegneria Meccanica, Universita di Padova, via Marzolo 9, 35131 Padova (Italy); Principi, G. [Settore Materiali, Dipartimento di Ingegneria Meccanica, Universita di Padova, via Marzolo 9, 35131 Padova (Italy)]. E-mail: giovanni.principi@unipd.it; Lo Russo, S. [Dipartimento di Fisica, Universita di Padova, Via Marzolo 8, 35131 Padova (Italy); Lazarescu, M. [National Institute for Physics of Materials, Atomistilor 105 bis, P.O. Box MG-7, 077125 Bucharest-Magurele (Romania); Schinteie, G. [National Institute for Physics of Materials, Atomistilor 105 bis, P.O. Box MG-7, 077125 Bucharest-Magurele (Romania); Kuncser, V. [National Institute for Physics of Materials, Atomistilor 105 bis, P.O. Box MG-7, 077125 Bucharest-Magurele (Romania); Filoti, G. [National Institute for Physics of Materials, Atomistilor 105 bis, P.O. Box MG-7, 077125 Bucharest-Magurele (Romania)

    2006-05-18

    Magnesium-rich Mg-Ni-Fe intermetallic compounds have been prepared by two different routes: (a) short time ball milling of ribbons obtained by melt spinning; (b) long time ball milling of a mixture of MgH{sub 2}, Ni and Fe powders. The first type of samples displays an hydrogen desorption kinetics better than the second one. Pressure composition isotherm measurements exhibit for both type of samples two plateaux, the lower and wider corresponding to the MgH{sub 2} phase and the upper and shorter corresponding to the Mg{sub 2}NiH{sub 4} phase. The presence of the two types of hydrides is confirmed by X-ray diffraction analysis. Moessbauer spectroscopy shows that in melt spun and subsequently milled samples iron is mainly in a disordered structure and segregates after hydrogenation, while in directly milled powders remains mainly unalloyed. After multiple hydrogen absorption/desorption cycles the main part of iron is in metallic state in samples of both types, those of first type preserving better hydrogen desorption kinetics.

  8. Highly anisotropic SmCo5 nanoflakes by surfactant-assisted ball milling at low temperature

    International Nuclear Information System (INIS)

    Liu, Lidong; Zhang, Songlin; Zhang, Jian; Ping Liu, J.; Xia, Weixing; Du, Juan; Yan, Aru; Yi, Jianhong; Li, Wei; Guo, Zhaohui

    2015-01-01

    Surfactant-assisted ball milling (SABM) has been shown to be a promising method for preparing rare earth-transition metal (RE-TM) nanoflakes and nanoparticles. In this work, we prepared SmCo 5 nanoflakes by SABM at low temperature, and 2-methyl pentane and trioctylamine were specially selected as solvent and surfactant, respectively, due to their low melting points. The effects of milling temperature on the morphology, microstructure and magnetic performance of SmCo 5 nanoflakes were investigated systematically. Comparing with the samples milled at room temperature, the SmCo 5 nanoflakes prepared at low temperature displayed more homogeneous morphology and lower oxygen content. Remarkably, better crystallinity, better grain alignment and larger remanence ratio were shown in the samples milled at low temperature, which resulted from the distinct microstructure caused by low milling temperature. The differences in structural evolution between the SmCo 5 nanoflakes milled at room temperature and low temperature, including the formation of nanocrystalline, grain boundary sliding, grain rotation, et al., were discussed. It was found that lowering the temperature of SABM was a powerful method for the fabrication of RE-TM nanoflakes, which showed better hard magnetic properties and lower oxygen content. This was important for the preparation of high-performance sintered magnets, bonded magnets and nanocomposite magnets. - Highlights: • We prepare SmCo 5 nanoflakes by surfactant-assisted ball milling at low temperature. • Better grain alignment and higher remanence ratio are achieved. • The oxygen content is reduced by lowering the milling temperature. • A distinct microstructural evolution caused by low milling temperature is clarified

  9. Industrial versus Laboratory Clinker Processing Using Grinding Aids (Scale Effect

    Directory of Open Access Journals (Sweden)

    Joseph Jean Assaad

    2015-01-01

    Full Text Available The evaluation of grinding aid (GA effect on clinker processing in laboratory grinding mills is relatively simple. Yet, the results obtained cannot be directly transposed to industrial mills, given the fundamentally different operational modes and grinding parameters. This paper seeks to evaluate the scale effect by comparing the results obtained from a closed-circuit tube mill operating at 90 ton/hr to those determined using a 50-liter laboratory mill. Tests results have shown that the decrease in specific energy consumption (Ec due to glycol or amine-based GA can be evaluated under laboratory conditions. However, such tests underestimate the actual performance that could be achieved in real-scale mills; the Ec reduction due to GA is around twofold higher when grinding is performed in real-scale mill. Compared to industrial tests, the cement particle size distribution curves widened and shifted towards higher diameters when grinding was performed under laboratory conditions, particularly with GA additions. This led to remarkable changes in water demand, setting time, and 1- and 28-day compressive strengths.

  10. Effects of ball milling on microstructures and thermoelectric properties of higher manganese silicides

    International Nuclear Information System (INIS)

    Chen, Xi; Shi, Li; Zhou, Jianshi; Goodenough, John B.

    2015-01-01

    Highlights: • The already low κ L of HMS can be suppressed further by decreasing the grain size. • The ball milling process can lead to the formation of secondary MnSi and W/C-rich phases. • The formation of the MnSi ad W/C rich phases is found to suppress the thermoelectric power factor. - Abstract: Bulk nanostructured higher manganese silicide (HMS) samples with different grain size are prepared by melting, subsequent ball milling (BM), and followed by spark plasma sintering (SPS). The effects of BM time on the microstructures and thermoelectric properties of these samples are investigated. It is found that BM effectively reduces the grain size to about 90 nm in the sample after SPS, which leads to a decrease in both the thermal conductivity and electrical conductivity. By prolonging the BM time, MnSi and tungsten/carbon-rich impurity phases are formed due to the impact-induced decomposition of HMS and contamination from the tungsten carbide jar and balls during the BM, respectively. These impurities result in a reduced Seebeck coefficient and increased thermal conductivity above room temperature. The measured size-dependent lattice thermal conductivities agree qualitatively with the reported calculation results based on a combined phonon and diffuson model. The size effects are found to be increasingly significant as temperature decreases. Because of the formation of the impurity phases and a relatively large grain size, the ZT values are not improved in the ball-milled HMS samples. These findings suggest the need of alternative approaches for the synthesis of pure HMS with further reduced grain size and controlled impurity doping in order to enhance the thermoelectric figure-of-merit of HMS via nanostructuring

  11. Polycrystalline Nd{sub 2}Fe{sub 14}B/α-Fe nanocomposite flakes with a sub-micro/nanometre thickness prepared by surfactant-assisted high-energy ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Xin, E-mail: tangshincn@gmail.com [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Chen, Xi [Mechanical and Electrical Engineering College, Xinxiang University, No. 192, Jinsui Road, Xinxiang, Henan 453003 (China); Chen, Renjie; Yan, Aru [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2015-09-25

    Highlights: • Nd{sub 2}Fe{sub 14}B/α-Fe flakes are formed by peeling along preferential planes. • (0 0 l) planes are found to be preferential cleavage planes. • Magnetic properties degrade with increasing ball milling time. • Anisotropic nanocomposite magnets are fabricated. - Abstract: A surfactant-assisted high-energy ball milling technique was employed to synthesize Nd{sub 2}Fe{sub 14}B/α-Fe nanoparticles and nanoflakes from melt-spun nanocrystalline powders. The microstructure evolution in ball milling process was investigated. In the beginning stage (0–4 h) of ball milling, raw powders were crushed into micrometre-sized particles. While flakes were mainly formed by reducing thickness of particles via peeling layer by layer along preferential planes in the late stage (8–16 h). The selected area electron diffraction and high-resolution transmission electron microscopy images show that preferential cleavage planes are basal planes. With ball milling proceeding, more and more defects were induced by ball milling. As a result, the coercivity and remanence decreased to 1.6 kOe and 3.2 kGs, respectively. After 16 h ball milling, the exchange decoupling occurred due to severe amorphorization. A weakly-textured nanocomposite magnet was fabricated after 12 h ball milling and the anisotropy in magnetic properties can be further improved by employing settling down process to select particle size and aligning particles in external field.

  12. Study of the preparation of Cu-TiC composites by reaction of soluble Ti and ball-milled carbon coating TiC

    Science.gov (United States)

    Xu, Xuexia; Li, Wenbin; Wang, Yong; Dong, Guozhen; Jing, Shangqian; Wang, Qing; Feng, Yanting; Fan, Xiaoliang; Ding, Haimin

    2018-06-01

    In this work, Cu-TiC composites have been successfully prepared by reaction of soluble Ti and carbon coating TiC. Firstly, the ball milling of graphite and TiC mixtures is used to obtain the carbon coating TiC which has fine size and improved reaction activity. After adding the ball milled carbon coating TiC into Cu-Ti melts, the soluble Ti will easily react with the carbon coating to form TiC. This process will also improve the wettability between Cu melts and TiC core. As a result, besides the TiC prepared by reaction of soluble Ti and carbon coating, the ball milled TiC will also be brought into the melts. Some of these ball-milled TiC particles will go on being coated by the formed TiC from the reaction of Ti and the coating carbon and left behind in the composites. However, most of TiC core will be further reacted with the excessive Ti and be transformed into the newly formed TiC with different stoichiometry. The results indicate that it is a feasible method to synthesize TiC in Cu melts by reaction of soluble Ti and ball-milled carbon coating TiC.

  13. XRD and HREM studies from the decomposition of icosahedral AlCuFe single-phase by high-energy ball milling

    International Nuclear Information System (INIS)

    Patino-Carachure, C.; Tellez-Vazquez, O.; Rosas, G.

    2011-01-01

    Highlights: → Point defects induced during milling leading to an order-disorder quasicrystal transition. → Nanoquasicrystalline regions of 12 nm are obtained. → Highly ordered i-phase with high symmetry transforms to a crystalline phase of intermetallic character and lower symmetry. - Abstract: In this investigation the Al 64 Cu 24 Fe 12 alloy was melted in an induction furnace and solidified under normal casting conditions. In order to obtain the icosahedral phase (i-phase) in a single-phase region, the as-cast sample was subject to a heat treatment at 700 deg. C under argon atmosphere. Subsequently, the i-phase was milled for different times in order to evaluate phase stability under heavy deformation. X-ray diffraction (XRD) and high-resolution electron microscopy (HREM) analysis were conducted to the structural characterization of ball-milled powders. XRD results indicated a reduction in quasicrystal size during mechanical ball milling to about 30 h. HREM analysis revealed the presence of aperiodic nano-domains, for example, with apparent fivefold symmetry axis. Therefore, the i-phase remains stable over the first 30 h of ball-milling time. However, among 30-50 h of mechanical milling the i-phase transforms progressively into β-cubic phase.

  14. XRD and HREM studies from the decomposition of icosahedral AlCuFe single-phase by high-energy ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Patino-Carachure, C.; Tellez-Vazquez, O. [Instituto de Investigaciones Metalurgicas, UMSNH, Edificio U, Ciudad Universitaria, Morelia, Michoacan 58000 (Mexico); Rosas, G., E-mail: grtrejo@umich.mx [Instituto de Investigaciones Metalurgicas, UMSNH, Edificio U, Ciudad Universitaria, Morelia, Michoacan 58000 (Mexico)

    2011-10-13

    Highlights: > Point defects induced during milling leading to an order-disorder quasicrystal transition. > Nanoquasicrystalline regions of 12 nm are obtained. > Highly ordered i-phase with high symmetry transforms to a crystalline phase of intermetallic character and lower symmetry. - Abstract: In this investigation the Al{sub 64}Cu{sub 24}Fe{sub 12} alloy was melted in an induction furnace and solidified under normal casting conditions. In order to obtain the icosahedral phase (i-phase) in a single-phase region, the as-cast sample was subject to a heat treatment at 700 deg. C under argon atmosphere. Subsequently, the i-phase was milled for different times in order to evaluate phase stability under heavy deformation. X-ray diffraction (XRD) and high-resolution electron microscopy (HREM) analysis were conducted to the structural characterization of ball-milled powders. XRD results indicated a reduction in quasicrystal size during mechanical ball milling to about 30 h. HREM analysis revealed the presence of aperiodic nano-domains, for example, with apparent fivefold symmetry axis. Therefore, the i-phase remains stable over the first 30 h of ball-milling time. However, among 30-50 h of mechanical milling the i-phase transforms progressively into {beta}-cubic phase.

  15. Hydrogen sorption properties of ball-milled Mg-C nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Spassov, Tony; Zlatanova, Zlatina; Spassova, Maya; Todorova, Stanislava [Faculty of Chemistry, University of Sofia ' ' St.Kl.Ohridski' ' , 1 James Bourchier str. 1164 Sofia (Bulgaria)

    2010-10-15

    MgH{sub 2} 75 at.%-C 25 at.% composites are synthesized by ball milling using different kinds of carbon additives: carbon black (CB), nanodiamonds (ND) and amorphous carbon soot (AC). X-ray diffraction analysis showed that the MgH{sub 2} phase in the as-obtained composite powders is nanocrystalline (80-100 nm). The SEM observations revealed that the samples consist of 5-15 {mu}m MgH{sub 2} particles, surrounded and in some cases coated by carbon flakes. The composite containing nanodiamonds revealed strong decrease of the MgH{sub 2} decomposition temperature with more than 100 C, compared to ball-milled pure MgH{sub 2}. Important issue of the present study is also the low temperature hydriding of the ball-milled Mg-C nanocomposites, investigated by high-pressure DSC. The process starts at about 200 C for all materials studied, but the hydriding mechanism looks different for the composites with different kinds of carbon additives. Whereas for Mg-carbon black it takes place in a relatively narrow temperature range, expressed by a single exothermic peak (200-300 C) for the other two composites the hydriding is a multi-step process, featured by two overlapped exothermic peaks for Mg-nanodiamonds and by two well separated exothermic effects (at about 300 C and 400 C) for Mg-amorphous carbon soot. The observed difference in the hydriding behavior of the Mg-C composites is attributed to the different kind of carbon component, which is supposed to play a catalytic role as well as protects magnesium from oxidation. The incorporation of carbon into the MgH{sub 2} particles results in the formation of high density of defects (dislocations and grain boundaries), which is supposed to be among the most possible reasons for the decreased hydride decomposition temperature. The Mg-C nanocomposites show reproducible hydriding/dehydriding behavior (thermodynamics and kinetics) during multiple cycling. Among the composites in the present study ''Mg-carbon black

  16. Synthesis of Ni3Ta, Ni2Ta and NiTa by high-energy ball milling and subsequent heat treatment

    International Nuclear Information System (INIS)

    Benites, H.S.N.; Silva, B.P da; Ramos, A.S.; Silva, A.A.A.P.; Coelho, G.C.; Lima, B.B. de

    2014-01-01

    The tantalum has relevance for the development of multicomponent Ni-based superalloys which are hardened by solid solution and precipitation mechanisms. Master alloys are normally used in the production step in order to produce refractory metals and alloys. The present work reports on the synthesis of Ni_3Ta, Ni_2Ta and NiTa by high-energy ball milling and subsequent heat treatment. The elemental Ni-25Ta, Ni-33Ta and Ni-50Ta (at.-%) powder mixtures were ball milled under Ar atmosphere using stainless steel balls and vials, 300 rpm and a ball-to-powder weight ratio of 10:1. Following, the as-milled samples were uniaxially compacted and heat-treated at 1100 deg C for 4h under Ar atmosphere. The characterization of as-milled and heat-treated samples was conducted by means of X-ray diffraction, scanning electron microscopy, and energy dispersive spectrometry. A large amount of Ni_3Ta, Ni_2Ta and NiTa was formed in the mechanically alloyed heat-treated Ni-25Ta, Ni-33Ta and Ni-50Ta alloys. (author)

  17. Synthesis and characterization of grinding aid fly ash blended mortar effect on bond strength of masonry prisms

    Science.gov (United States)

    Krishnaraj, L.; Ravichandran, P. T.; Sagadevan, Suresh

    2018-04-01

    The aim of the present work is to study the effect of particle size reduction by applying top-down nanotechnology such as ball mill grinding process with the addition of amine-based grinding aids. The particle size reduction in synthesis process and its characterization were investigated for fly ash particles. The Rosin-Rammler-Bennet (RRB) distribution model using mathematical formulations were studied for fly ash ground particles. The hardened properties of grinding aid fly ash composite mortar were studied using compressive strength test. The optimum grinding time was 120 min identified through the particle size distribution analysis. The mean particle size decreased from 92.09 μm to 10.5 μm in which there is 89% reduction in particle size due to the grinding of fly ash particle with grinding aids. The compressive strength results show that substitutions of Ordinary Portland Cement (OPC) mortar by Amine-based Grinding aid Fly Ash (AGFA) 15% gives 12, 23% and at 30% gives 6, 8% of higher strength compare to the substitutions of raw fly ash. The addition of grinding aids in grinding process gives more advantages to reduce the particle size without changing chemical composition. The AGFA sample shows better performance in compressive strength and bond strength behavior of masonry prism. It may suggest that amine based grinding aids play a vital role and feasible to use in fly ash grinding process.

  18. Reverse martensitic transformation in alumina-15 vol% zirconia nanostructured powder synthesized by high energy ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Maneshian, M.H. [Department of Materials Science and Engineering, Sharif University of Technology, Azadi Avenue, P.O. Box 11365-9466, Tehran (Iran, Islamic Republic of)], E-mail: mh_maneshian@yahoo.com; Banerjee, M.K. [National Institute of Foundry and Forge Technology, Hatia, Ranchi 834003 (India)

    2008-07-14

    In the present work, three alumina-15 vol% zirconia composites with Y{sub 2}O{sub 3}, MgO as dopants and without oxide as dopant have been investigated. High energy ball milling (HEBM) provides the positive thermodynamic driving force for monoclinic to tetragonal transformation and it reduces starting temperature for the reverse martensitic transformation, meanwhile mobility of zirconium cations and oxygen anions are enhanced in zirconia by HEBM. The general, albeit heuristic, reasoning is corroborated by nanocrystallity, particle size and also the retained monoclinic seem to play an important role. After 10 h HEBM, approximately 28% zirconia tetragonal phase is achieved. Non-stoichiometric tetragonal zirconia phase; Zr{sub 0.95}O{sub 2} is seen to have been achieved by high energy ball milling (HEBM). The structural and compositional evolutions during HEBM have been investigated using X-ray diffraction method (XRD) and scanning electron microscopy (SEM). High resolution transmission electron microscope (TEM) is also used for further understanding about the phenomenological changes taking place during high energy ball milling.

  19. PENGARUH SERBUK U-Mo HASIL PROSES MEKANIK DAN HYDRIDE – DEHYDRIDE – GRINDING MILL TERHADAP KUALITAS PELAT ELEMEN BAKAR U-Mo/Al

    Directory of Open Access Journals (Sweden)

    Supardjo Supardjo

    2015-07-01

    Full Text Available PENGARUH SERBUK U-Mo HASIL PROSES MEKANIK DAN HYDRIDE – DEHYDRIDE – GRINDING MILL TERHADAP KUALITAS PELAT ELEMEN BAKAR U-Mo/Al. Penelitian bahan bakar U-7Mo/Al tipe pelat dilakukan dalam rangka pengembangan bahan bakar U3Si2/Al untuk mendapatkan bahan bakar baru yang memiliki densitas uranium lebih tinggi, stabil selama digunakan sebagai bahan bakar di dalam reaktor dan mudah dilakukan proses olah ulangnya. Lingkup penelitian meliputi pembuatan: paduan U-7Mo dengan teknik peleburan, pembuatan serbuk U-7Mo dengan dikikir dan hydride - dehydride - grinding mill, IEB U-7Mo/Al dengan teknik kompaksi pada tekanan 20 bar, dan PEB U-7Mo/Al dengan teknik pengerolan panas pada temperatur 425oC. Paduan U-7Mo hasil proses peleburan cukup homogen, berat jenis 16,34 g/cm3 dan bersifat ulet, kemudian dibuat menjadi serbuk dengan cara dikikir dan hydride - dehydride - grinding mill. Serbuk U-7Mo hasil proses kikir berbentuk pipih, kontaminan Fe cukup tinggi, sedangkan serbuk hasil proses hydride - dehydride - grinding mill, cenderung equiaxial dengan kontaminan yang rendah. Kedua jenis serbuk U-7Mo tersebut digunakan sebagai bahan baku pembuatan IEB U-7Mo/Al dan PEB U-7Mo/Al dengan densitas uranium 7 gU/cm3 dan diperoleh produk dengan kualitas yang hampir sama. Hasil uji IEB U-7Mo/Al berukuran 25 x 15 x 3,15±0,05 mm, tidak terdapat cacat/retak, distribusi U-7Mo di dalam matriks cukup homogen dan tidak terdapat pengelompokan/aglomerasi U-7Mo yang berdimensi >1 mm. PEB U-7Mo/Al hasil pengerolan dengan tebal akhir 1,45 mm, memiliki ketebalan meat rerata 0,60 mm dan tebal kelongsong 0,4 mm dan terdapat 1 titik pengukuran kelongsong dengan ketebalan 0,15 mm. Dengan membandingkan penggunaan kedua jenis serbuk U-7Mo tersebut, IEB U-7Mo/Al dan PEB U-7Mo/Al yang dihasilkan memiliki kualitas hampir sama. Namun demikian penggunaan serbuk U- 7Mo hasil proses hydride - dehydride - grinding mill lebih baik karena proses pengerjaannya lebih cepat dan impuritas dalam

  20. Effects of ball milling on microstructures and thermoelectric properties of higher manganese silicides

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xi [Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712 (United States); Shi, Li, E-mail: lishi@mail.utexas.edu [Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712 (United States); Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712 (United States); Zhou, Jianshi; Goodenough, John B. [Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712 (United States); Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712 (United States)

    2015-08-25

    Highlights: • The already low κ{sub L} of HMS can be suppressed further by decreasing the grain size. • The ball milling process can lead to the formation of secondary MnSi and W/C-rich phases. • The formation of the MnSi ad W/C rich phases is found to suppress the thermoelectric power factor. - Abstract: Bulk nanostructured higher manganese silicide (HMS) samples with different grain size are prepared by melting, subsequent ball milling (BM), and followed by spark plasma sintering (SPS). The effects of BM time on the microstructures and thermoelectric properties of these samples are investigated. It is found that BM effectively reduces the grain size to about 90 nm in the sample after SPS, which leads to a decrease in both the thermal conductivity and electrical conductivity. By prolonging the BM time, MnSi and tungsten/carbon-rich impurity phases are formed due to the impact-induced decomposition of HMS and contamination from the tungsten carbide jar and balls during the BM, respectively. These impurities result in a reduced Seebeck coefficient and increased thermal conductivity above room temperature. The measured size-dependent lattice thermal conductivities agree qualitatively with the reported calculation results based on a combined phonon and diffuson model. The size effects are found to be increasingly significant as temperature decreases. Because of the formation of the impurity phases and a relatively large grain size, the ZT values are not improved in the ball-milled HMS samples. These findings suggest the need of alternative approaches for the synthesis of pure HMS with further reduced grain size and controlled impurity doping in order to enhance the thermoelectric figure-of-merit of HMS via nanostructuring.

  1. Characterization of prealloyed copper powders treated in high energy ball mill

    International Nuclear Information System (INIS)

    Rajkovic, Viseslava; Bozic, Dusan; Jovanovic, Milan T.

    2006-01-01

    The inert gas atomised prealloyed copper powders containing 3.5 wt.% Al were milled up to 20 h in the planetary ball mill in order to oxidize aluminium in situ with oxygen from the air. In the next procedure compacts from milled powder were synthesized by hot-pressing in argon atmosphere. Compacts from as-received Cu-3.5 wt.% Al powder and electrolytic copper powder were also prepared under the same conditions. Microstructural and morphological changes of high energy milled powder as well as changes of thermal stability and electrical conductivity of compacts were studied as a function of milling time and high temperature exposure at 800 deg. C. Optical, scanning electron microscopy (SEM) and X-ray diffraction analysis were performed for microstructural characterization, whereas thermal stability and electrical conductivity were evaluated by microhardness measurements and conductometer Sigmatest, respectively. The prealloyed 5 h-milled and compacted powder showed a significant increase in microhardness reaching the value of 2600 MPa, about 4 times greater than that of compacts synthesized from as-received electrolytic copper powder (670 MPa). The electrical conductivity of compacts from 5 h-milled powder was 52% IACS. The results were discussed in terms of the effect of small grain size and finely distributed alumina dispersoids on hardening and thermal stability of compacts

  2. Magnetic and mechanical properties of Cu (75 wt%) – 316L grade stainless steels synthesized by ball milling and annealing

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Bholanath, E-mail: bholanath_mondal@yahoo.co.in [Department of Central Scientific Services, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India); Chabri, Sumit [Department of Metallurgy and Materials Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103 (India); Sardar, Gargi [Department of Zoology, Baruipur College, South 24 Parganas, 743610 (India); Bhowmik, Nandagopal [Department of Metallurgy and Materials Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103 (India); Sinha, Arijit, E-mail: arijitsinha2@yahoo.co.in [School of Materials Science and Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103 (India); Chattopadhyay, Partha Protim [Department of Metallurgy and Materials Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103 (India)

    2015-05-01

    Elemental powders of Cu (75 wt%) and 316-stainless steel (25 wt%) has been subjected to ball milling upto 70 h followed by isothermal annealing at the temperature range of 350–750 °C for 1 h to investigate the microstructural evolution along with magnetic and mechanical properties. After 40 h of milling, the bcc Fe is almost dissolved in the solid solution of Cu but no significant change has been observed in the XRD pattern after 70 h of milling, Annealing of the alloy has resulted in precipitation of nanocrystalline bcc-Fe in Cu which triggers the soft ferromagnetic properties. The extensive mechanical characterization has been done at the microstructural scale by nanoindentation technique which demonstrates a hardening behavior of the compacted and annealed alloys due to possible precipitation of nanocrystalline bcc-Fe in Cu. - Highlights: • Nanocrystalline phases with partial amorphorization obtained after 70 h of milling. • Precipitation and grain coarsening of Fe and Cu after annealing as observed by XRD. • Annealing of the ball milled sample upto 550 {sup o}C has evolved ferromagnetic behavior. • Nanoindentation predicts a hardening behavior of annealed ball milled samples.

  3. Obtention of hydroxyapatite submicrometric of bovine origin by vibratory grinding for rapid prototyping; Obtencao de hidroxiapatita submicrometrica de origem bovina por moagem vibratoria visando prototipagem rapida

    Energy Technology Data Exchange (ETDEWEB)

    Meira, C.R.; Purquerio, B.M.; Fortulan, C.A., E-mail: camilameira@sc.usp.br [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Escola de Engenharia; Braga, F.J.C. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Submicron bovine hydroxyapatite was obtained for rapid prototyping. Hydroxyapatite structure originated from bovine mineral bone has great importance among the biomaterials and biocompatibility due to its great similarity with the human bone structure. This study aims to obtain powder for manufacture by rapid prototyping of scaffolds. This technique manufacture requires highly reactive powders to compensate for the absence of pressure forming. Hydroxyapatite was milled in a ball mill and vibratory mill, and analyzed for their average equivalent spherical diameter and surface area. Test specimens were isostatically pressed at 100 MPa and machined into cylindrical test specimens. These specimens were sintered at several temperatures to determine the optimal sintering temperature based on densification and chemistry stability. In grinding ball mill was obtained particles of equivalent diameter of 0.74 micron in vibratory mill of 0.46 micrometers. An average flexural strength of 100 MPa and 99,8% of real density was attained for the sample sintered at 1300 deg C/2h, signaling potential for use in rapid prototyping. (author)

  4. Effect of the grinding behaviour of coal blends on coal utilisation for combustion

    Energy Technology Data Exchange (ETDEWEB)

    Rubiera, F.; Arenillas, A.; Fuente, E.; Pis, J.J. [Inst. Nacional del Carbon, CSIC, Oviedo (Spain); Miles, N. [School of Chemical, Environmental and Mining Engineering, Nottingham Univ. (United Kingdom)

    1999-11-01

    Grinding of a high volatile bituminous coal was performed in three comminution devices: Raymond Mill (RM), Rolls Crusher (RC) and Ball Mill (BM). The pulverised samples were sieved to obtain four particle size fractions, and temperature-programmed combustion (TPC) was used for the evaluation of their combustion behaviour. In addition, three coals of different hardness and rank were mixed in various proportions in order to compare the combustibility characteristics of the binary coal blends with those of the individual coals. The effect of coal blending on grindability was also studied. It was found that grindability was non-additive especially when coals of very different hardgrove grindability index (HGI) were blended. The combustion studies also suggested that there exists an interaction between individual coals when they are burnt as a blend. (orig.)

  5. Improving milling and production of a dust-producing unit equipped with hammer mills

    Energy Technology Data Exchange (ETDEWEB)

    Vorotnikov, Ye.G.; Nikiforov, A.A.; Rasputin, O.V.; Sukhunin, V.I.

    1982-01-01

    This paper presents generalized experience for deriving coarse ground coal dust in hammer mills by providing comparison data on improving efficiency of operation of the unit when switching to a coarser-type grind of the fuel. Need to have more precise formulas to calculate grinding potential of hammer mills when using a coarser grind is shown.

  6. Effect of ball milling time on the hydrogen storage properties of TiF{sub 3}-doped LiAlH{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shu-Sheng [Materials and Thermochemistry Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023 (China); Graduate School of Chinese Academy of Sciences, Beijing 100049 (China); Sun, Li-Xian; Zhang, Yao; Zhang, Jian; Chu, Hai-Liang; Fan, Mei-Qiang; Zhang, Tao [Materials and Thermochemistry Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023 (China); Xu, Fen [Faculty of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029 (China); Song, Xiao-Yan [College of Materials Science and Engineering, Key Laboratory of Advanced Functional Materials, Chinese Education Ministry, Beijing University of Technology, Beijing 100124 (China); Grolier, Jean Pierre [Laboratory of Thermodynamics of Solutions and Polymers, Blaise Pascal University, 24 Avenue des Landais, 63177-Aubiere Cedex (France)

    2009-10-15

    In the present work, the catalytic effect of TiF{sub 3} on the dehydrogenation properties of LiAlH{sub 4} has been investigated. Decomposition of LiAlH{sub 4} occurs during ball milling in the presence of 4 mol% TiF{sub 3}. Different ball milling times have been used, from 0.5 h to 18 h. With ball milling time increasing, the crystallite sizes of LiAlH{sub 4} get smaller (from 69 nm to 43 nm) and the dehydrogenation temperature becomes lower (from 80 C to 60 C). Half an hour ball milling makes the initial dehydrogenation temperature of doped LiAlH{sub 4} reduce to 80 C, which is 70 C lower than as-received LiAlH{sub 4}. About 5.0 wt.% H{sub 2} can be released from TiF{sub 3}-doped LiAlH{sub 4} after 18 h ball milling in the range of 60 C-145 C (heating rate 2 C min{sup -1}). TiF{sub 3} probably reacts with LiAlH{sub 4} to form the catalyst, TiAl{sub 3}. The mechanochemical and thermochemical reactions have been clarified. However, the rehydrogenation of LiAlH{sub 4}/Li{sub 3}AlH{sub 6} can not be realized under 95 bar H{sub 2} in the presence of TiF{sub 3} because of their thermodynamic properties. (author)

  7. Evaluation of different pulverisation methods for RNA extraction in squash fruit: lyophilisation, cryogenic mill and mortar grinding.

    Science.gov (United States)

    Román, Belén; González-Verdejo, Clara I; Peña, Francisco; Nadal, Salvador; Gómez, Pedro

    2012-01-01

    Quality and integrity of RNA are critical for transcription studies in plant molecular biology. In squash fruit and other high water content crops, the grinding of tissue with mortar and pestle in liquid nitrogen fails to produce a homogeneous and fine powered sample desirable to ensure a good penetration of the extraction reagent. To develop an improved pulverisation method to facilitate the homogenisation process of squash fruit tissue prior to RNA extraction without reducing quality and yield of the extracted RNA. Three methods of pulverisation, each followed by the same extraction protocol, were compared. The first approach consisted of the lyophilisation of the sample in order to remove the excess of water before grinding, the second one used a cryogenic mill and the control one a mortar grinding of frozen tissue. The quality of the isolated RNA was tested by carrying out a quantitative real time downstream amplification. In the three situations considered, mean values for A(260) /A(280) indicated minimal interference by proteins and RNA quality indicator (RQI) values were considered appropriate for quantitative real-time polymerase chain reaction (qRT-PCR) amplification. Successful qRT-PCR amplifications were obtained with cDNA isolated with the three protocols. Both apparatus can improve and facilitate the grinding step in the RNA extraction process in zucchini, resulting in isolated RNA of high quality and integrity as revealed by qRT-PCR downstream application. This is apparently the first time that a cryogenic mill has been used to prepare fruit samples for RNA extraction, thereby improving the sampling strategy because the fine powder obtained represents a homogeneous mix of the organ tissue. Copyright © 2012 John Wiley & Sons, Ltd.

  8. Efficiency of ball milled South African bentonite clay for remediation of acid mine drainage

    CSIR Research Space (South Africa)

    Masindi, Vhahangwele

    2015-12-01

    Full Text Available The feasibility of using vibratory ball milled South African bentonite clay for neutralization and attenuation of inorganic contaminants from acidic and metalliferous mine effluents has been evaluated. Treatment of acid mine drainage (AMD...

  9. Highly anisotropic SmCo{sub 5} nanoflakes by surfactant-assisted ball milling at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Lidong; Zhang, Songlin [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201 (China); Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201 (China); Zhang, Jian, E-mail: zhangj@nimte.ac.cn [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201 (China); Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201 (China); Ping Liu, J. [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Xia, Weixing; Du, Juan; Yan, Aru [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201 (China); Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201 (China); Yi, Jianhong [Institute of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650500 (China); Li, Wei; Guo, Zhaohui [Division of Functional Materials, Central Iron and Steel Research Institute, Beijing 100081 (China)

    2015-01-15

    Surfactant-assisted ball milling (SABM) has been shown to be a promising method for preparing rare earth-transition metal (RE-TM) nanoflakes and nanoparticles. In this work, we prepared SmCo{sub 5} nanoflakes by SABM at low temperature, and 2-methyl pentane and trioctylamine were specially selected as solvent and surfactant, respectively, due to their low melting points. The effects of milling temperature on the morphology, microstructure and magnetic performance of SmCo{sub 5} nanoflakes were investigated systematically. Comparing with the samples milled at room temperature, the SmCo{sub 5} nanoflakes prepared at low temperature displayed more homogeneous morphology and lower oxygen content. Remarkably, better crystallinity, better grain alignment and larger remanence ratio were shown in the samples milled at low temperature, which resulted from the distinct microstructure caused by low milling temperature. The differences in structural evolution between the SmCo{sub 5} nanoflakes milled at room temperature and low temperature, including the formation of nanocrystalline, grain boundary sliding, grain rotation, et al., were discussed. It was found that lowering the temperature of SABM was a powerful method for the fabrication of RE-TM nanoflakes, which showed better hard magnetic properties and lower oxygen content. This was important for the preparation of high-performance sintered magnets, bonded magnets and nanocomposite magnets. - Highlights: • We prepare SmCo{sub 5} nanoflakes by surfactant-assisted ball milling at low temperature. • Better grain alignment and higher remanence ratio are achieved. • The oxygen content is reduced by lowering the milling temperature. • A distinct microstructural evolution caused by low milling temperature is clarified.

  10. Preparation of natural pyrite nanoparticles by high energy planetary ball milling as a nanocatalyst for heterogeneous Fenton process

    Energy Technology Data Exchange (ETDEWEB)

    Fathinia, Siavash [Department of Mining Engineering, Faculty of Engineering and Technology, Imam Khomeini International University, Qazvin (Iran, Islamic Republic of); Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of); Fathinia, Mehrangiz [Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of); Rahmani, Ali Akbar [Department of Mining Engineering, Faculty of Engineering and Technology, Imam Khomeini International University, Qazvin (Iran, Islamic Republic of); Khataee, Alireza, E-mail: a_khataee@tabrizu.ac.ir [Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2015-02-01

    Graphical abstract: - Highlights: • Pyrite nanoparticles were successfully produced by planetary ball milling process. • The physical and chemical properties of pyrite nanoparticles were fully examined. • The degradation of AO7 was notably enhanced by pyrite nanoparticles Fenton system. • The influences of basic operational parameters were investigated using CCD. - Abstract: In the present study pyrite nanoparticles were prepared by high energy mechanical ball milling utilizing a planetary ball mill. Various pyrite samples were produced by changing the milling time from 2 h to 6 h, in the constant milling speed of 320 rpm. X-ray diffraction (XRD), scanning electron microscopy (SEM) linked with energy dispersive X-ray (EDX), Fourier transform infrared spectroscopy (FT-IR) analysis and Brunauer–Emmett–Teller (BET) were performed to explain the characteristics of primary (unmilled) and milled pyrite samples. The average particle size distribution of the produced pyrite during 6 h milling was found to be between 20 nm and 100 nm. The catalytic performance of the different pyrite samples was examined in the heterogeneous Fenton process for degradation of C.I. Acid Orange 7 (AO7) solution. Results showed that the decolorization efficiency of AO7 in the presence of 6 h-milled pyrite sample was the highest. The impact of key parameters on the degradation efficiency of AO7 by pyrite nanoparticles catalyzed Fenton process was modeled using central composite design (CCD). Accordingly, the maximum removal efficiency of 96.30% was achieved at initial AO7 concentration of 16 mg/L, H{sub 2}O{sub 2} concentration of 5 mmol/L, catalyst amount of 0.5 g/L and reaction time of 25 min.

  11. Effect of deep cryogenic treatment on the microstructure and wear performance of Cr-Mn-Cu white cast iron grinding media

    Science.gov (United States)

    Vidyarthi, M. K.; Ghose, A. K.; Chakrabarty, I.

    2013-12-01

    The phase transformation and grinding wear behavior of Cr-Mn-Cu white cast irons subjected to destabilization treatment followed by air cooling or deep cryogenic treatment were studied as a part of the development program of substitute alloys for existing costly wear resistant alloys. The microstructural evolution during heat treatment and the consequent improvement in grinding wear performance were evaluated with optical and scanning electron microscopy, X-ray diffraction analysis, bulk hardness, impact toughness and corrosion rate measurements, laboratory ball mill grinding wear test etc. The deep cryogenic treatment has a significant effect in minimizing the retained austenite content and converts it to martensite embedded with fine M7C3 alloy carbides. The cumulative wear losses in cryotreated alloys are lesser than those with conventionally destabilized alloys followed by air cooling both in wet and dry grinding conditions. The cryotreated Cr-Mn-Cu irons exhibit comparable wear performance to high chromium irons.

  12. Magnetic interactions in high-energy ball-milled NiZnFe2O4/SiO2 composites

    International Nuclear Information System (INIS)

    Pozo Lopez, G.; Silvetti, S.P.; Urreta, S.E.; Cabanillas, E.D.

    2007-01-01

    Composites Ni 0.5 Zn 0.5 Fe 2 O 4 /SiO 2 are obtained after high-energy ball milling precursor oxides, in stoichiometric proportions, for 200 h at room temperature and further isothermal annealing for 1 h at 1273 K, under air and argon atmosphere, respectively. After 200 h grinding, a complex microstructure develops with small hematite crystals mixed with SiO 2 and remanent NiO and ZnO particles, and very small NiZn ferrite clusters, reaching a mean size of ∼9 nm. The high temperature treatments remove the hematite grains from the powder and promote the growth of NiZn ferrite grains to reach mean sizes nearly ∼20 nm. For treatments in oxidizing atmospheres, the major phases are SiO 2 and NiZn ferrite, while for annealing in Ar a new phase appears, fayalite, which is paramagnetic at room temperature. The M-H loops are all well described by the sum of a ferromagnetic and a superparamagnetic-like contribution. The observed properties are interpreted considering the different magnetic phases obtained, their crystal sizes and their mutual interactions

  13. Particle and powder characterisation of Bi-based superconductors

    International Nuclear Information System (INIS)

    Yavuz, M.; Guo, Y. C.; Liu, H. L.; Dou, S. X.; Vance, E. R.

    1996-01-01

    Full text: Superconductor precursor powder was ground in a planetary and an attrition mill using various combinations of grinding container, balls and carrier (dry and wet). Dry milling was found to be more effective than wet milling for reducing particle size irrespective of container and ball materials used in the planetary milling. On the other hand, wet milling was found more effective in the attrition milling. Serious Si contamination was observed in powders milled using agate grinding materials. Some C from polypropylene container was found after milling, but no Zr from YSZ balls. Effect of particle size on the property of Bi 2223/Ag tapes was investigated in terms of critical current density (J c ). Fine particle size was found to show high J c

  14. Magnetic properties of ball-milled Fe0.6Mn0.1Al0.3 alloys

    International Nuclear Information System (INIS)

    Rebolledo, A.F.; Romero, J.J.; Cuadrado, R.; Gonzalez, J.M.; Pigazo, F.; Palomares, F.J.; Medina, M.H.; Perez Alcazar, G.A.

    2007-01-01

    The FeMnAl-disordered alloy system exhibits, depending on the composition and the temperature, a rich variety of magnetic phases including the occurrence of ferromagnetism, antiferromagnetism, paramagnetism and spin-glass and reentrant spin glass behaviors. These latter phases result from the presence of atomic disorder and magnetic dilution and from the competing exchange interactions taking place between an Fe atom and its Mn and Fe first neighbors. The use of mechanical alloying in order to prepare these alloys is specially interesting since it allows to introduce in a progressive way large amounts of disorder. In this work, we describe the evolution with the milling time of the temperature dependence of the magnetic properties of mechanically alloyed Fe 0.6 Mn 0.1 Al 0.3 samples. The materials were prepared in a planetary ball mill using a balls-to-powder mass ratio of 15:1 and pure (99.95 at%) Fe, Mn and Al powders for times up to 19 h. The X-rays diffraction (XRD) spectra show the coexistence of three phases at short milling times. For milling times over 6 h, only the FeMnAl ternary alloy BCC phase is observed. Moesbauer spectroscopy reveals the complete formation of the FeMnAl alloy after 9 h milling time. The magnetic characterization showed that all the samples were ferromagnetic at room temperature with coercivities decreasing from 105 Oe (3 h milled sample) down to 5 Oe in the case of the sample milled for 19 h

  15. Effect of ball mill treatment on kinetics of amorphous Ni78Si10B12 alloy crystallization

    International Nuclear Information System (INIS)

    Tomilin, I.A.; Mochalova, T.Yu.; Kaloshkin, S.D.; Kostyukovich, T.G.; Lopatina, E.A.

    1993-01-01

    The effect of the parameters of Ni 78 Si 10 B 12 alloy amorphous strip milling in a ball planetary mill on the stability of powder amorphous state, crytallization kinetics and dispersity is studied by the methods of differential scanning microcaloremetry and X-ray diffraction analysis. Energy intensity of milling conditions is assessed. An increase of input energy results in a decrease of activation energy of powder crystallization. Strip milling parameters which enable to avaintain the amorphous state of the material are determined

  16. Ultrafiltration of thin stillage from conventional and e-mill dry grind processes.

    Science.gov (United States)

    Arora, Amit; Dien, Bruce S; Belyea, Ronald L; Wang, Ping; Singh, Vijay; Tumbleson, M E; Rausch, Kent D

    2011-05-01

    We used ultrafiltration (UF) to evaluate membrane filtration characteristics of thin stillage and determine solids and nutrient compositions of filtered streams. To obtain thin stillage, corn was fermented using laboratory methods. UF experiments were conducted in batch mode under constant temperature and flow rate conditions. Two regenerated cellulose membranes (10 and 100 kDa molecular weight cutoffs) were evaluated with the objective of retaining solids as well as maximizing permeate flux. Optimum pressures for 10 and 100 kDa membranes were 207 and 69 kPa, respectively. Total solids, ash, and neutral detergent fiber contents of input TS streams of dry grind and E-Mill processes were similar; however, fat and protein contents were different (p stillage fractionation had higher mean total solids contents (27.6% to 27.8%) compared to E-Mill (22.2% to 23.4%). Total solids in retentate streams were found similar to those from commercial evaporators used in industry (25% to 35% total solids). Fat contents of retentate streams ranged from 16.3% to 17.5% for the conventional process. A 2% increment in fat concentration was observed in the E-Mill retentate stream. Thin stillage ash content was reduced 60% in retentate streams.

  17. Surface Generation Modeling in Ball Nose End Milling: a review of relevant literature

    DEFF Research Database (Denmark)

    Bissacco, Giuliano

    One of the most common metal removal operation used in industry is the milling process. This machining process is well known since the beginning of last century and has experienced, along the years, many improvements of the basic technology, as concerns tools, machine tools, coolants...... to be adjusted afterwards. Nevertheless, many efforts have been done during the last 50 years in order to realize prediction tools for machining processes and particularly for conventional turning and milling operations. Most of these models aim at prediction of cutting forces tool wear and tool life. However...... been addressed in this direction. Among all the machining operations, ball nose end milling has shown great potentials, particularly in machining of sculptured surfaces with high requirements in terms of surface finish; this is due to the good spatial agreement of the mill shape with the geometry...

  18. Microstructural changes and effect of variation of lattice strain on positron annihilation lifetime parameters of zinc ferrite nanocomposites prepared by high enegy ball-milling

    Directory of Open Access Journals (Sweden)

    Abhijit Banerjee

    2012-12-01

    Full Text Available Zn-ferrite nanoparticles were synthesized at room temperature by mechanical alloying the stoichiometric (1:1 mol% mixture of ZnO and α-Fe2O3 powder under open air. Formation of both normal and inverse spinel ferrite phases was noticed after 30 minutes and 2.5 hours ball milling respectively and the content of inverse spinel phase increased with increasing milling time. The phase transformation kinetics towards formation of ferrite phases and microstructure characterization of ball milled ZnFe2O4 phases was primarily investigated by X-ray powder diffraction pattern analysis. The relative phase abundances of different phases, crystallite size, r.m.s. strain, lattice parameter change etc. were estimated from the Rietveld powder structure refinement analysis of XRD data. Positron annihilation lifetime spectra of all ball milled samples were deconvoluted with three lifetime parameters and their variation with milling time duration was explained with microstructural changes and formation of different phases with increase of milling time duration.

  19. Long-Term Effects on Graphene Supercapacitors of Using a Zirconia Bowl and Zirconia Balls for Ball-Mill mixing of Active Materials

    Science.gov (United States)

    Song, Dae-Hoon; Kim, Jin-Young; Kahng, Yung Ho; Cho, Hoonsung; Kim, Eung-Sam

    2018-04-01

    Improving the energy storage performance of supercapacitor electrodes based on reduced graphene oxide (RGO) is one of the main subjects in this research field. However, when a zirconia bowl and zirconia balls were used for ball-mill mixing of the active materials for RGO supercapacitors, the energy storage performance deteriorated over time. Our study revealed that the source of the problem was the inclusion of zirconia bits from abrasion of the bowl and the balls during the ballmill mixing, which increased during a period of 1 year. We probed two solutions to this problem: 1) hydrofluoric (HF) acid treatment of the RGO supercapacitors and 2) use of a tempered steel bowl and tempered steel balls for the mixing. For both cases, the energy storage performance was restored to near the initial level, showing a specific capacitance ( C sp ) of 200 F/g. Our results should lead to progress in research on RGO supercapacitors.

  20. Effects of processing parameters on the synthesis of (K0.5Na0.5)NbO3 nanopowders by reactive high-energy ball milling method.

    Science.gov (United States)

    Nguyen, Duc Van

    2014-01-01

    The effects of ball milling parameters, namely, the ball-to-powder mass ratio and milling speed, on the synthesis of (K0.5Na0.5)NbO3 nanopowders by high-energy ball milling method from a stoichiometric mixture containing Na2CO3, K2CO3, and Nb2O5 were investigated in this paper. The results indicated that the single crystalline phase of (K0.5Na0.5)NbO3 was received in as-milled samples synthesized using optimized ball-to-powder mass ratio of 35 : 1 and at a milling speed of 600 rpm for 5 h. In the optimized as-milled samples, no remaining alkali carbonates that can provide the volatilizable potassium-containing species were found and (K0.5Na0.5)NbO3 nanopowders were readily obtained via the formation of an intermediate carbonato complex. This complex was mostly transformed into (K0.5Na0.5)NbO3 at temperature as low as 350°C and its existence was no longer detected at spectroscopic level when calcination temperature crossed over 700°C.

  1. Ferromagnetic resonance parameters of ball-milled Ni-Zn ferrite nanoparticles

    International Nuclear Information System (INIS)

    Rao, B. Parvatheeswara; Caltun, Ovidiu; Dumitru, Ioan; Spinu, Leonard

    2006-01-01

    Ferrite nanoparticles of the size about 6 nm have been made by using high-energy ball mill on the sintered pellets of the system Ni 0.65 Zn 0.375 In x Ti 0.025 Fe 1.95- x O 4 . XRD, VSM and FMR techniques were used for structural and magnetic characterizations of the samples. The magnetic characteristics of indium-doped samples are compared with those for bulk samples. The differences are discussed in terms of the particle size and small-particle magnetism

  2. Characterization of structures and novel magnetic response of Fe87.5Si7Al5.5 alloy processed by ball milling

    International Nuclear Information System (INIS)

    Duan, Yuping; Gu, Shuchao; Zhang, Zhonglun; Wen, Ming

    2012-01-01

    Highlights: ► The water atomized Fe 87.5 Si 7 Al 5.5 (Wt.%) alloy was processed by ball-milling. ► The microstructure and magnetic properties of alloy changed following milling. ► The powders milled for 10 h have the largest M s and strongest reflection loss. ► The permeability of the powders milled for 2 h is the largest. ► The charge exchange between Fe and Si is discussed base on first-principles. - Abstract: The water atomized Fe 87.5 Si 7 Al 5.5 (Wt.%) alloy was processed by a high-energy planetary ball-milling. The characterization of morphology, microstructure, and electromagnetic properties were measured by scanning electron microscope (SEM), X-ray diffractometer, vibrating sample magnetometer (VSM), vector network analyzer and the first principle method. The analysis results showed that the powders shape became flaky from fusiform. The powders showed a reduction of the average grain size and the increase of the internal strain, and then presented an adverse variation trend after 55 h milling. The powders that milled 10 h had the largest saturation magnetization M S (131 emu/g). The value μ′ of the powders decreased with increasing milling time at relatively lower frequency (2–8 GHz), but opposite variation tendency happened at higher frequency (8–18 GHz). Also, only short time milling can enhance the value of μ″ in the test frequency. The powders after 10 h milling showed excellent microwave absorption (RL < −10 dB) at the frequency 9.0–15.6 GHz and the absorption peak shifted regularly to the high frequency as the increased milling time. Furthermore, the effect of charge exchange between the Fe and Si on the saturation magnetization in the ball-milling process was also investigated by using density functional theory (DFT) of first principle.

  3. Effect of Grinding Fineness of Fly Ash on the Properties of Geopolymer Foam

    Directory of Open Access Journals (Sweden)

    Szabó R.

    2017-06-01

    Full Text Available Present paper deals with the development of geopolymer foam prepared from ground F class power station fly ash. The effect of the fly ash fineness on the rheology of the geopolymer paste and the foam properties have been investigated. The raw fly ash was ground in a ball mill for various duration, 5, 10, 20, 30, 60 and 120 min. Geopolymer paste was prepared from the raw and ground fly ash with NaOH – sodium silicate mixture as alkaline activator. Geopolymer foam production was made using H2O2 as foaming agent. Additionally, the geopolymer material structure was investigated by Fourier transform infrared spectrometer, the foam cell structure was monitored using optical microscopy. The rheological behaviour of the geopolymer paste changed due to the grinding of fly ash (from Bingham plastic to Newtonian liquid. Grinding of fly ash has a significant effect on the physical properties as well as on the cell structure of the geopolymer foam.

  4. Dehydriding and re-hydriding properties of high-energy ball milled LiBH{sub 4}+MgH{sub 2} mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Crosby, Kyle; Shaw, Leon L. [Department of Chemical, Materials and Biomolecular Engineering, University of Connecticut, 97 North Eagleville Road, U-3136, Storrs, CT 06269 (United States)

    2010-07-15

    Here we report the first investigation of the dehydriding and re-hydriding properties of 2LiBH{sub 4} + MgH{sub 2} mixtures in the solid state. Such a study is made possible by high-energy ball milling of 2LiBH{sub 4}+MgH{sub 2} mixtures at liquid nitrogen temperature with the addition of graphite. The 2LiBH{sub 4}+MgH{sub 2} mixture ball milled under this condition exhibits a 5-fold increase in the released hydrogen at 265 C when compared with ineffectively ball milled counterparts. Furthermore, both LiBH{sub 4} and MgH{sub 2} contribute to hydrogen release in the solid state. The isothermal dehydriding/re-hydriding cycles at 265 C reveal that re-hydriding is dominated by re-hydriding of Mg. These unusual phenomena are explained based on the formation of nanocrystalline and amorphous phases, the increased defect concentration in crystalline compounds, and possible catalytic effects of Mg,MgH{sub 2} and LiBH{sub 4} on their dehydriding and re-hydriding properties. (author)

  5. Discrete element method based scale-up model for material synthesis using ball milling

    Science.gov (United States)

    Santhanam, Priya Radhi

    Mechanical milling is a widely used technique for powder processing in various areas. In this work, a scale-up model for describing this ball milling process is developed. The thesis is a combination of experimental and modeling efforts. Initially, Discrete Element Model (DEM) is used to describe energy transfer from milling tools to the milled powder for shaker, planetary, and attritor mills. The rolling and static friction coefficients are determined experimentally. Computations predict a quasisteady rate of energy dissipation, E d, for each experimental configuration. It is proposed that the milling dose defined as a product of Ed and milling time, t, divided by the mass of milled powder, mp characterizes the milling progress independently of the milling device or milling conditions used. Once the milling dose is determined for one experimental configuration, it can be used to predict the milling time required to prepare the same material in any milling configuration, for which Ed is calculated. The concept is validated experimentally for DEM describing planetary and shaker mills. For attritor, the predicted Ed includes substantial contribution from milling tool interaction events with abnormally high forces (>103 N). The energy in such events is likely dissipated to heat or plastically deform milling tools rather than refine material. Indeed, DEM predictions for the attritor correlate with experiments when such events are ignored in the analysis. With an objective of obtaining real-time indicators of milling progress, power, torque, and rotation speed of the impeller of an attritor mill are measured during preparation of metal matrix composite powders in the subsequent portion of this thesis. Two material systems are selected and comparisons made between in-situ parameters and experimental milling progress indicators. It is established that real-time measurements can certainly be used to describe milling progress. However, they need to be interpreted carefully

  6. Moessbauer Study of the Ball Milling Disordering Process of FeAl Intermetallic Compounds

    International Nuclear Information System (INIS)

    Oleszak, Dariusz; Bruna, Pere; Crespo, Daniel; Pradell, Trinitat

    2005-01-01

    Structural changes during ball milling of ordered Fe50Al50 intermetallic compounds were studied. X-Ray diffraction allowed the computation of a Long Range Order parameter (LRO) which dropped to zero after a short milling time. The initial B2 ordered structure gradually transforms into a disordered BCC structure, with a final crystallite size of about 25 nm. Moessbauer spectroscopy was used for obtaining a Chemical Short Range Order parameter (CSRO). Using a semiempirical n-body noncentral potential a model of the partially disordered B2 structure was built allowing computing the distribution of Quadrupole Splitting during the disordering process. Comparison between experimental and simulated Moessbauer spectra shows a maximum of disorder in the system for 5h milling, related to the highest value of the lattice spacing and the broader quadrupole hyperfine distribution. However, after milling for times longer than 5h, there is a change on the behavior of the experimental data that cannot be explained by the simple disordering process

  7. The Effect of the Wear of Rotor Pins on Grinding Efficiency in a High-speed Disintegrator

    OpenAIRE

    Karel DVOŘÁK; Dušan DOLÁK; David PALOUŠEK; Ladislav ČELKO; David JECH

    2018-01-01

    One of the directions intensively investigated in the field of milling is high-energy milling (HEM). One type of HEM is high-speed grinding in high-speed disintegrators. This type of mill is particularly suitable for the grinding and activation of fine powder materials. It has several advantages, such as a very intensive and continual refining process. One disadvantage is that its grinding pins are prone to abrasion, which may result in a decrease of the efficiency of grinding. This effect wa...

  8. A combination method of the theory and experiment in determination of cutting force coefficients in ball-end mill processes

    Directory of Open Access Journals (Sweden)

    Yung-Chou Kao

    2015-10-01

    Full Text Available In this paper, the cutting force calculation of ball-end mill processing was modeled mathematically. All derivations of cutting forces were directly based on the tangential, radial, and axial cutting force components. In the developed mathematical model of cutting forces, the relationship of average cutting force and the feed per flute was characterized as a linear function. The cutting force coefficient model was formulated by a function of average cutting force and other parameters such as cutter geometry, cutting conditions, and so on. An experimental method was proposed based on the stable milling condition to estimate the cutting force coefficients for ball-end mill. This method could be applied for each pair of tool and workpiece. The developed cutting force model has been successfully verified experimentally with very promising results.

  9. Effect of machining parameters on surface integrity of silicon carbide ceramic using end electric discharge milling and mechanical grinding hybrid machining

    International Nuclear Information System (INIS)

    Ji, Renjie; Liu, Yonghong; Zhang, Yanzhen; Cai, Baoping; Li, Xiaopeng; Zheng, Chao

    2013-01-01

    A novel hybrid process that integrates end electric discharge (ED) milling and mechanical grinding is proposed. The process is able to effectively machine a large surface area on SiC ceramic with good surface quality and fine working environmental practice. The polarity, pulse on-time, and peak current are varied to explore their effects on the surface integrity, such as surface morphology, surface roughness, micro-cracks, and composition on the machined surface. The results show that positive tool polarity, short pulse on-time, and low peak current cause a fine surface finish. During the hybrid machining of SiC ceramic, the material is mainly removed by end ED milling at rough machining mode, whereas it is mainly removed by mechanical grinding at finish machining mode. Moreover, the material from the tool can transfer to the workpiece, and a combination reaction takes place during machining.

  10. Dead time and recovery time investigations on grinding plants with the aid of radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Roetzer, H; Hagspiel, W

    1977-02-01

    With the aid of the radionuclides Mn 56 and Na 24 as tracers, respectively, the following characteristics were investigated for a roller mill and for a tandem air-swept grinding plant: the time of passage of the mill feed material, the retention time distribution in the grinding system (most frequent and mean retention time), and the time required for, respectively, 50%, 90% and 95% of the material to pass, in some instances separately for the three raw material components limestone, clay and sand. In addition, in the case of the air-swept grinding plant the time required for conveying the raw meal sample from the sampling point to the X-ray fluorescence analysis apparatus was determined. The mean retention time of the material in the two roller mills IV and V was 2.93 and 2.55 minutes respectively; for the tandem air-swept grinding plant it was 8 minutes. The time taken for 90% of the mill feed to pass through the mill was 5.5 and 5 minutes for the roller mills respectively and was about 18.3 minutes for the air-swept plant. The dead time vor conveying the raw meal sample to the X-ray fluorescence apparatus, including further grinding of the sample in a vibratory mill, was 12 minutes.

  11. High anisotropic NdFeB submicro/nanoflakes prepared by surfactant-assisted ball milling at low temperature

    Science.gov (United States)

    An, Xiaoxin; Jin, Kunpeng; Abbas, Nadeem; Fang, Qiuli; Wang, Fang; Du, Juan; Xia, Weixing; Yan, Aru; Liu, J. Ping; Zhang, Jian

    2017-11-01

    Hard magnetic NdFeB submicro/nanoflakes were successfully prepared by surfactant-assisted ball milling at low temperature (SABMLT) by specially using 2-methyl pentane and trioctylamine (TOA) as solvent and surfactant, respectively. Influences of the amount of TOA and milling temperature on the crystal structure, morphology and magnetic performances of the as-prepared NdFeB powders were investigated systematically. There is significant difference on morphology between the NdFeB powders milled at room and low temperature. The NdFeB powders with flaky morphology could be obtained even with a small amount of TOA by SABMLT, which could not be achieved by surfactant-assisted ball milling at room temperature (SABMRT). The better crystallinity, better grain alignment, higher coercivity, larger saturation magnetization and remanence ratio were achieved in the samples prepared by SABMLT. Furthermore, the final NdFeB powders prepared by SABMLT possessed a lower amount of residual TOA than those prepared by SABMRT. It was demonstrated that SABMLT is a promising way to fabricate rare-earth-transition metal nanoflakes with high anisotropy for permanent magnetic materials. The effective method of preparing NdFeB flakes by lowering temperature will be also useful to fabricate flakes of other functional materials.

  12. Influence of Temperature on the Performance of LiNi1/3Co1/3Mn1/3O2 Prepared by High-Temperature Ball-Milling Method

    Directory of Open Access Journals (Sweden)

    Ming Tian

    2018-01-01

    Full Text Available Aiming at the preparation of high electrochemical performance LiNi1/3Co1/3Mn1/3O2 cathode material for lithium-ion battery, LiNi1/3Co1/3Mn1/3O2 was prepared with lithium carbonate, nickel (II oxide, cobalt (II, III oxide, and manganese dioxide as raw materials by high-temperature ball-milling method. Influence of ball-milling temperature was investigated in this work. It was shown that the fine LiNi1/3Co1/3Mn1/3O2 powder with high electrochemical performance can be produced by the high-temperature ball-milling process, and the optimal ball-milling temperature obtained in the current study was 750°C. Its initial discharge capacity was 146.0 mAhg−1 at the rate of 0.1 C, and over 50 cycles its capacity retention rate was 90.2%.

  13. Evaluation of ball and roller bearings restored by grinding

    Science.gov (United States)

    Parker, R. J.; Zaretsky, E. V.; Chen, S. M.

    1976-01-01

    A joint program was undertaken to restore by grinding those rolling-element bearings which are currently being discarded at aircraft engine and transmission overhaul. Three bearing types were selected from the UH-1 helicopter engine (T-53) and transmission for the pilot program. Groups of each of these bearings were visually and dimensionally inspected for suitability for restoration. A total of 250 bearings were restored by grinding. Of this number, 30 bearings from each type were endurance tested to a TBO of 1600 hours. No bearing failures occurred related to the restoration by grinding process. The two bearing failures which occurred were due to defective rolling elements and were typical of those which may occur in new bearings. The restorable component yield to the three groups was in excess of 90 percent.

  14. Model Predictive Control for an Industrial SAG Mill

    DEFF Research Database (Denmark)

    Ohan, Valeriu; Steinke, Florian; Metzger, Michael

    2012-01-01

    identication. When applied to MIMO systems we call this controller a MIMO-ARX based MPC. We use an industrial Semi-Autogenous Grinding (SAG) mill to illustrate the performance of this controller. SAG mills are the primary units in a grinding chain and also the most power consuming units. Therefore, improved...... control of SAG mills has the potential to signicantly improve eciency and reduce the specic energy consumption for mineral processes. Grinding circuits involving SAG mills are multivariate processes. Commissioning of a control system based on a classical single-loop controllers with logic is time...

  15. A co-production of sugars, lignosulfonates, cellulose, and cellulose nanocrystals from ball-milled woods.

    Science.gov (United States)

    Du, Lanxing; Wang, Jinwu; Zhang, Yang; Qi, Chusheng; Wolcott, Michael P; Yu, Zhiming

    2017-08-01

    This study demonstrated the technical potential for the large-scale co-production of sugars, lignosulfonates, cellulose, and cellulose nanocrystals. Ball-milled woods with two particle sizes were prepared by ball milling for 80min or 120min (BMW 80 , BMW 120 ) and then enzymatically hydrolyzed. 78.3% cellulose conversion of BMW 120 was achieved, which was three times as high as the conversion of BMW 80 . The hydrolyzed residues (HRs) were neutrally sulfonated cooking. 57.72g/L and 88.16g/L lignosulfonate concentration, respectively, were harvested from HR 80 and HR 120 , and 42.6±0.5% lignin were removed. The subsequent solid residuals were purified to produce cellulose and then this material was acid-hydrolyzed to produce cellulose nanocrystals. The BMW 120 maintained smaller particle size and aspect ratio during each step of during the multiple processes, while the average aspect ratio of its cellulose nanocrystals was larger. The crystallinity of both materials increased with each step of wet processing, reaching to 74% for the cellulose. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Hydrophilic functionalized silicon nanoparticles produced by high energy ball milling

    Science.gov (United States)

    Hallmann, Steffen

    The mechanochemical synthesis of functionalized silicon nanoparticles using High Energy Ball Milling (HEBM) is described. This method facilitates the fragmentation of mono crystalline silicon into the nanometer regime and the simultaneous surface functionalization of the formed particles. The surface functionalization is induced by the reaction of an organic liquid, such as alkynes and alkenes with reactive silicon sites. This method can be applied to form water soluble silicon nanoparticles by lipid mediated micelle formation and the milling in organic liquids containing molecules with bi-functional groups, such as allyl alcohol. Furthermore, nanometer sized, chloroalkyl functionalized particles can be synthesized by milling the silicon precursor in the presence of an o-chloroalkyne with either alkenes or alkynes as coreactants. This process allows tuning of the concentration of the exposed, alkyl linked chloro groups, simply by varying the relative amounts of the coreactant. The silicon nanoparticles that are formed serve as the starting point for a wide variety of chemical reactions, which may be used to alter the surface properties of the functionalized nanoparticles. Finally, the use of functionalized silicon particles for the production of superhydrophobic films is described. Here HEBM proves to be an efficient method to produce functionalized silicon particles, which can be deposited to form a stable coating exhibiting superhydrophobic properties. The hydrophobicity of the silicon film can be tuned by the milling time and thus the resulting surface roughness of the films.

  17. Improved critical current densities in bulk FeSe superconductor using ball milled powders and high temperature sintering

    Energy Technology Data Exchange (ETDEWEB)

    Muralidhar, M.; Furutani, K.; Murakami, M. [Graduate School of Science and Engineering, Superconducting Materials Laboratory, Shibaura Institute of Technology, Tokyo (Japan); Kumar, Dinesh; Rao, M.S. Ramachandra [Department of Physics, Nano Functional Materials Technology Centre and Materials Science Research Centre, Indian Institute of Technology Madras, Chennai (India); Koblischka, M.R. [Institute of Experimental Physics, Saarland University, Saarbruecken (Germany)

    2016-12-15

    The present study is investigating the effect of high temperature sintering combined with ball milled powders for the preparation of FeSe material via solid state sintering technique. The commercial powders of Fe (99.9% purity) and Se (99.9% purity) were mixed in a nominal ratio Fe:Se = 1:1 and thoroughly ground and ball-milled in a glove box during 6 h. Then, the powder mixture was pressed into pellets of 5 mm in diameter and 2 mm thickness using an uniaxial pressure of 100 MPa. The samples were sealed in quartz tubes and sintered at 600 C for 24 h. Then, the pellets were again thoroughly ground and ball-milled in the glove box and pressed into pellets, and the final sintering was performed at two different temperatures, namely at 900 C for 24 h and at 950 C for 24 h. X-ray diffraction results confirmed that both samples showed mainly of the β-FeSe with tetragonal structure. The temperature dependence of magnetization (M-T) curves revealed a sharp superconducting transition T{sub c,} {sub onset} = 8.16 K for the sample sintered at 900 C. Further, scanning electron microscopy observations proved that samples sintered at 900 C show a platelike grain structure with high density. As a result, improved irreversibility fields around 5 T and the critical current density (J{sub c}) values of 6252 A cm{sup -2} at 5 K and self-field are obtained. Furthermore, the normalized volume pinning force versus the reduced field plots indicated a peak position at 0.4 for the sample sintered at 900 C. Improved flux pinning and the high J{sub c} values are attributed to the textured microstructure of the material, produced by a combination of high temperature sintering and ball milling. (copyright 2016 The Authors. Phys. Status Solidi A published by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Effects of High Pressure ORE Grinding on the Efficiency of Flotation Operations

    Science.gov (United States)

    Saramak, Daniel; Krawczykowska, Aldona; Młynarczykowska, Anna

    2014-10-01

    This article discusses issues related to the impact of the high pressure comminution process on the efficiency of the copper ore flotation operations. HPGR technology improves the efficiency of mineral resource enrichment through a better liberation of useful components from waste rock as well as more efficient comminution of the material. Research programme included the run of a laboratory flotation process for HPGR crushing products at different levels of operating pressures and moisture content. The test results showed that products of the high-pressure grinding rolls achieved better recoveries in flotation processes and showed a higher grade of useful components in the flotation concentrate, in comparison to the ball mill products. Upgrading curves have also been marked in the following arrangement: the content of useful component in concentrate the floatation recovery. All upgrading curves for HPGR products had a more favourable course in comparison to the curves of conventionally grinded ore. The results also indicate that various values of flotation recoveries have been obtained depending on the machine operating parameters (i.e. the operating pressure), and selected feed properties (moisture).

  19. Microstructures, Mechanical Properties and Thermal Conductivities of W-0.5 wt.%TiC Alloys Prepared via Ball Milling and Wet Chemical Method

    Science.gov (United States)

    Lang, Shaoting; Yan, Qingzhi; Sun, Ningbo; Zhang, Xiaoxin; Ge, Changchun

    2017-10-01

    Two kinds of W-0.5 wt.%TiC alloys were prepared, one by ball milling and the other by the wet chemical method. For comparison, pure tungsten powders were chemically prepared and sintered by the same process. The microstructures, mechanical properties and thermal conductivities of the prepared samples were characterized. It has been found that the wet chemical method resulted in finer sizes and more uniform distribution of TiC particles in the sintered tungsten matrix than the ball milling method. The W-TiC alloy prepared by the wet chemical method achieved the highest bending strength (1065.72 MPa) among the samples. Further, it also exhibited obviously higher thermal conductivities in the temperature range of room temperature to 600°C than did the W-TiC alloy prepared by ball milling, but the differences in their thermal conductivities could be ignored in the range of 600-800°C.

  20. Conductometry and Size Characterization of Polypyrrole Nanoparticles Produced by Ball Milling

    OpenAIRE

    Abbasi, Abdul Malik Rehan; Marsalkova, Miroslava; Militky, Jiri

    2013-01-01

    Polypyrrole (PPy), one of the most extensively investigated conducting polymers, has attracted a great deal of interest because of its good electrical conductivity, environmental stability, and easy synthesis. PPy films were produced by polymerization of pyrrole and tosylate (TsO−) as dopants in the presence of oxidant FeCl3 and polyethylene glycol (Mw 8000) at −5°C for 48 h. High energy milling was carried out at 850 rpm in the dry media with the balls of 10 mm. Particles were then character...

  1. Hydroamination reactions of alkynes with ortho-substituted anilines in ball mills: synthesis of benzannulated N-heterocycles by a cascade reaction.

    Science.gov (United States)

    Weiße, Maik; Zille, Markus; Jacob, Katharina; Schmidt, Robert; Stolle, Achim

    2015-04-20

    It was demonstrated that ortho-substituted anilines are prone to undergo hydroamination reactions with diethyl acetylenedicarboxylate in a planetary ball mill. A sequential coupling of the intermolecular hydroamination reaction with intramolecular ring closure was utilized for the syntheses of benzooxazines, quinoxalines, and benzothiazines from readily available building blocks, that is, electrophilic alkynes and anilines with OH, NH, or SH groups in the ortho position. For the heterocycle formation, it was shown that several stress conditions were able to initiate the reaction in the solid state. Processing in a ball mill seemed to be advantageous over comminution with mortar and pestle with respect to process control. In the latter case, significant postreaction modification occurred during solid-state analysis. Cryogenic milling proved to have an adverse effect on the molecular transformation of the reagents. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A vertical ball mill as a new reactor design for biomass hydrolysis and fermentation process

    DEFF Research Database (Denmark)

    de Assis Castro, Rafael Cunha; Mussatto, Solange I.; Conceicao Roberto, Inês

    2017-01-01

    A vertical ball mill (VBM) reactor was evaluated for use in biomass conversion processes. The effects of agitation speed (100–200 rpm), number of glass spheres (0–30 units) and temperature (40–46 °C) on enzymatic hydrolysis of rice straw and on glucose fermentation by a thermotolerant Kluyveromyces...

  3. Biodistribution of nanoparticles of hydrophobic gadopentetic-acid derivative prepared with a planetary ball mill for neutron-capture therapy of cancer

    International Nuclear Information System (INIS)

    Nabeta, Chika; Ichikawa, Hideki; Fukumori, Yoshinobu

    2006-01-01

    Nanoparticles of hydrophobic gadopentetic-acid derivatives (Gd-nanoGR) were prepared with a wet ball-milling process for gadolinium neutron-capture therapy. Ball-milling of solid mass of gadopentetic acid distearylamide with soybean lecithin as a dispersant in the presence of water and subsequent sonication at 70degC resulted in the Gd-nanoGR with the particle size of 63 nm. Biodistribution study using melanoma-bearing hamsters demonstrated that the i.v. injection of the Gd-nanoGR made a higher gadolinium accumulation in tumor (109 μg Gd/g wet tumor at 6h after administration), when compared with the gadolinium-loaded micellar-like nanoparticles previously reported. (author)

  4. Application of mechano-chemical synthesis for protective coating

    Indian Academy of Sciences (India)

    This can either be prevented by using grinding medium and container of same material of the milled material or by adding a coating of the milled material on them. The paper describes the observations made during a mechano-chemical reaction, being used for coating the balls and vials in a planetary ball mill.

  5. On mill flow rate and fineness control in cement grinding circuits: instability and delayed measurements

    International Nuclear Information System (INIS)

    Lepore, R.; Boulvin, M.; Renotte, C.; Remy, M.

    1999-01-01

    A control structure for the mill flow rate and the product fineness is designed, with the feed flow rate and the classifier characteristic as the manipulated variables. Experimental results from a plant highlight the instability of the grinding circuit. A model previously developed by the authors stresses the major influence of the classifier nonlinearities onto this instability. A cascade control structure has been designed and implemented on site. The measurements of the product fineness, sensitive to material grindability fluctuations, are randomly time-delayed. The control structure uses a fineness estimator based on an adaptive scheme and a time delay compensator. (author)

  6. Raman spectroscopy fingerprint of stainless steel-MWCNTs nanocomposite processed by ball-milling

    Directory of Open Access Journals (Sweden)

    Marcos Allan Leite dos Reis

    2018-01-01

    Full Text Available Stainless steel 304L alloy powder and multiwalled carbon nanotubes were mixed by ball-milling under ambient atmosphere and in a broad range of milling times, which spans from 0 to 120 min. Here, we provided spectroscopic signatures for several distinct composites produced, to show that the Raman spectra present interesting splittings of the D-band feature into two main sub-bands, D-left and D-right, together with several other secondary features. The G-band feature also presents multiple splittings that are related to the outer and inner diameter distributions intrinsic to the multiwalled carbon nanotube samples. A discussion about the second order 2D-band (also known as G′-band is also provided. The results reveal that the multiple spectral features observed in the D-band are related to an increased chemical functionalization. A lower content of amorphous carbon at 60 and 90 min of milling time is verified and the G-band frequencies associated to the tubes in the outer diameters distribution is upshifted, which suggests that doping induced by strain is taking place in the milled samples. The results indicate that Raman spectroscopy can be a powerful tool for a fast and non-destructive characterization of carbon nanocomposites used in powder metallurgy manufacturing processes.

  7. Raman spectroscopy fingerprint of stainless steel-MWCNTs nanocomposite processed by ball-milling

    Science.gov (United States)

    dos Reis, Marcos Allan Leite; Barbosa Neto, Newton Martins; de Sousa, Mário Edson Santos; Araujo, Paulo T.; Simões, Sónia; Vieira, Manuel F.; Viana, Filomena; Loayza, Cristhian R. L.; Borges, Diego J. A.; Cardoso, Danyella C. S.; Assunção, Paulo D. C.; Braga, Eduardo M.

    2018-01-01

    Stainless steel 304L alloy powder and multiwalled carbon nanotubes were mixed by ball-milling under ambient atmosphere and in a broad range of milling times, which spans from 0 to 120 min. Here, we provided spectroscopic signatures for several distinct composites produced, to show that the Raman spectra present interesting splittings of the D-band feature into two main sub-bands, D-left and D-right, together with several other secondary features. The G-band feature also presents multiple splittings that are related to the outer and inner diameter distributions intrinsic to the multiwalled carbon nanotube samples. A discussion about the second order 2D-band (also known as G'-band) is also provided. The results reveal that the multiple spectral features observed in the D-band are related to an increased chemical functionalization. A lower content of amorphous carbon at 60 and 90 min of milling time is verified and the G-band frequencies associated to the tubes in the outer diameters distribution is upshifted, which suggests that doping induced by strain is taking place in the milled samples. The results indicate that Raman spectroscopy can be a powerful tool for a fast and non-destructive characterization of carbon nanocomposites used in powder metallurgy manufacturing processes.

  8. Synthesis of Cu(In,Ga)Se{sub 2} crystals using a crank ball mill

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Suzuka; Noji, Hideki; Akaki, Yoji [Miyakonojo National College of Technology, 473-1 Yoshio, Miyakonojo Miyazaki 885-8567 (Japan); Okamoto, Tomoichiro [Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188 (Japan)

    2015-06-15

    Cu(In,Ga)Se{sub 2} (CIGS) crystals were synthesized by a mechanochemical (MC) process using a crank ball mill. The molar ratios of starting materials were Cu:In:Ga:Se=1:1-x:x:2 (0≤x≤1) and Cu:In:Ga:Se=1:0.7:0.3:y (2≤y≤3). The reaction time reduced with decreasing Se and Ga molar ratios. The collection rate decreased with longer reaction times. From XRD patterns, we confirmed that the CuInSe{sub 2} and/or CuGaSe{sub 2}crystals were successfully grown when the powders reacted. Although the crystals grown with a selenium molar ration of 2 were Se-poor, those grown at a molar ratio of 3 were Se-rich. When Se increasing molar ratio, Cu, In, and Ga were away from the stoichiometric. With a molar ratio of Cu:In:Ga:Se=1:0.7:0.3:2.5∝2.7, their composition became stoichiometric. Crystal morphology was varied. CIGS crystals were thus successfully synthesized using a crank ball mill. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Effect of grinding on photostimuable phosphors for x-ray screens

    International Nuclear Information System (INIS)

    Rao, R.B.

    1988-01-01

    Luminescence efficiency of a phosphor can be improved by minimizing the energy losses during excitation. The loss of excitation energy in the case of powdered samples is mainly due to scattering of incident radiation by the particles of phosphor. Thus, while considering the industrial applications of polycrystalline phosphors in lamps, screens, paints, etc., the effect of particle size on the light output has to be specially studied. It is very well established that the radiographic imaging with photostimuable (PS) phosphors has many advantages over conventional photographic film screens. In the new type of computer radiography, PS phosphors are to be used as memory materials for temporary storage of the x-ray image. Eu(2+) doped barium fluorohalide phosphors are most suitable for this purpose. The spatial resolution from the image plate can be improved to a certain extent with phosphors comprising fine particles. The fineness of the particles can be achieved by various means such as grinding, fast cooling after firing or incorporation of some flux materials during the firing processes. But the efficiency of the phosphor deteriorates with grinding. Fast cooling is a complicated process in the case of Eu(2+) doped phosphors. Incorporation of flux materials may change the characteristics of phosphor materials. In the present investigation, effect of grinding (ball milling) on particle size distribution, shape of the particles and luminescent properties of BaFCl phosphors have been studied

  10. Effects of grinding on properties of Mg-PSZ ceramics prepared by the surface enrichment of zirconia powders

    International Nuclear Information System (INIS)

    Deb, S.; Das, S.R.

    1995-01-01

    Commercial grade zirconia powders of mean particle size of 3.21 microns were super-ground in wet condition in alcoholic medium in a Planetary Ball-Mill for 12-hours using a zirconia pot as well as balls, in order to avoid contaminations from the grinding media. Sedigraph analysis data show the mean particle sizes within the range of 0.4 to 0.2 micron. The super-ground zirconia powders were then treated with appropriate acid and alkali solutions in order to enrich the surfaces of zirconia powders. The chemical analysis reports depict the enrichment phenomena of the processed zirconia powders. Magnesium oxide of different mole percentages (3 to 9%) have been incorporated to the above super-ground and enriched zirconia powder and green specimens were prepared by pressing with a suitable pressure of 200 MPa to yield the green compaction density of 3.06 gm/cm 3 . The compacted green specimens were sintered without pressure at 1,480 C in air followed by normal cooling. X-ray diffraction patterns of the above sintered and cooled specimens have confirmed the formation of Mg-PSZ ceramics with 40% tetragonal phase. The sintered PSZ-products have shown very good surface properties but at the cost of transverse rupture strength. The effects of grinding were observed on the above Mg-PSZ ceramics which exhibit very little change in the tetragonal phase even after 30-minutes of grinding with a 60-mesh diamond wheel at a normal pressure of 4 kg/cm 2

  11. Generation of drugs coated iron nanoparticles through high energy ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Radhika Devi, A.; Murty, B. S. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Chelvane, J. A. [Defence Metallurgical Research Laboratory, Hyderabad 500058 (India); Prabhakar, P. K.; Padma Priya, P. V.; Doble, Mukesh [Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036 (India)

    2014-03-28

    The iron nanoparticles coated with oleic acid and drugs such as folic acid/Amoxicillin were synthesized by high energy ball milling and characterized by X-ray diffraction, Transmission electron microscope, zeta potential, dynamic light scattering, Fourier Transform Infra red (FT-IR) measurements, and thermo gravimetric analysis (TGA). FT-IR and TGA measurements show good adsorption of drugs on oleic acid coated nanoparticles. Magnetic measurements indicate that saturation magnetization is larger for amoxicillin coated particles compared to folic acid coated particles. The biocompatibility of the magnetic nanoparticles prepared was evaluated by in vitro cytotoxicity assay using L929 cells as model cells.

  12. Optimization of Process Variables for Grinding of Ibuprofen using Response Surface Methodology

    International Nuclear Information System (INIS)

    Sim, Chol-Ho

    2013-01-01

    Ibuprofen, non-steroidal anti-inflammatory drugs; NSAIDs, is a highly crystalline substance with the pharmaceutical properties of poor solubility and low bioavailability. The size reduction of ibuprofen is needed to improve the solubility. The objective of this study is to optimize the grinding condition of ibuprofen. Grinding of ibuprofen was carried out using a planetary mill. Grinding parameters were optimized using Box-Behnken experimental design method. The physical characteristics of ground ibuprofen were investigated for the particle size by particle size analyzer, for the crystal size by X-ray diffraction (XRD), and for the tensile strength by tensile/compression tester. The optimum conditions for the milling of ibuprofen were 290 rpm of the revolution number of mill, 24.6 g of the weight of sample, and 10minutes of grinding time. The measured value of the particle size of ground ibuprofen at these optimum conditions was 13.5 µm. The results showed that the crystal size of ibuprofen was reduced by the planetary milling process. In case the relative density of the tablets formulated of ground ibuprofen was range of 0.85-0.90, the tensile strength of them was range of 12-14 Kg f /cm 2

  13. The Effect of the Wear of Rotor Pins on Grinding Efficiency in a High-speed Disintegrator

    Directory of Open Access Journals (Sweden)

    Karel DVOŘÁK

    2018-02-01

    Full Text Available One of the directions intensively investigated in the field of milling is high-energy milling (HEM. One type of HEM is high-speed grinding in high-speed disintegrators. This type of mill is particularly suitable for the grinding and activation of fine powder materials. It has several advantages, such as a very intensive and continual refining process. One disadvantage is that its grinding pins are prone to abrasion, which may result in a decrease of the efficiency of grinding. This effect was investigated in this paper. Laboratory high speed disintegrator DESI 11 with steel pins was used. Portland clinker was chosen for the experiment, because of its average hardness. After each kilogram of the milled material, a sample was taken and the weight loss of the rotors was measured. The wear of the rotors was also measured using the 3D optical scanner ATOS Triple Scan. Results show that wear of rotors has a significant impact on the grinding efficiency.DOI: http://dx.doi.org/10.5755/j01.ms.24.1.17737

  14. Fine grinding of brittle minerals and materials by jet mill

    OpenAIRE

    Lek Sikong; Kalayanee Kooptanond; Noparit Morasut; Thammasak Pongprasert

    2008-01-01

    Various variables affecting grinding, such as air pressure, minerals or materials hardness, feed size were investigated.The limitations of grinding of gypsum, barite, ilmenite, quartz and ferrosilicon were also elucidated by means of particlefineness size distribution and morphology of ground products. It was found that:1) The density of particles, which are in the grinding zone affects the product fineness, i.e. higher feed rate resultsin a larger product size. The appropriate feed rate is s...

  15. Applications of sealed sources in chemical engineering. III

    International Nuclear Information System (INIS)

    Pokorny, J.; Zaloudik, P.; Thyn, J.

    1980-01-01

    Agitated ball mills (ABM, sand or Perl mills, Ruehrwerksmuehle) have found wide applications in wet tumbling of solids. The applications of ABM in dry tumbling started recently and stimulated studies into some specific characteristics of ABM. Our work on dry grinding in 5, 20 and 100 litres ABM pointed to the important role played by shaft power in scaling up. An important parameter for the assessment of mill shaft power requirements is the bulk density of the milling charge and its local values throughout the mill. Focusing attention on density we experimented on a 8-litre glass model of ABM filled with 4 millimetres polystyrene balls used as a milling charge. The bulk density of the milling charge was measured radiometrically under dry grinding conditions and the results were used in equations for the mill power consumption. (author)

  16. Si@SiOx/Graphene nanosheet anode materials for lithium-ion batteries synthesized by ball milling process

    Science.gov (United States)

    Tie, Xiaoyong; Han, Qianyan; Liang, Chunyan; Li, Bo; Zai, Jiantao; Qian, Xuefeng

    2017-12-01

    Si@SiOx/Graphene nanosheet (GNS) nanocomposites as high performance anode materials for lithium-ion batteries are synthesized by mechanically blending the mixture of expanded graphite with Si nanoparticles, and characterized by X-ray diffraction, Raman spectrum, field emission scanning electron microscopy and transmission electron microscopy. During the ball milling process, the size of Si nanoparticles will decrease, and the layer of expanded graphite can be peeled off to thin multilayers. Electrochemical performances reveal that the obtained Si@SiOx/GNS nanocomposites exhibit improved cycling stability, high reversible lithium storage capacity and superior rate capability, e.g. the discharge capacity is kept as high as 1055 mAh g-1 within 50 cycles at a current density of 200 mA g-1, retaining 63.6% of the initial value. The high performance of the obtained nanocomposites can be ascribed to GNS prepared through heat-treat and ball-milling methods, the decrease in the size of Si nanoparticles and SiOx layer on Si surface, which enhance the interactions between Si and GNS.

  17. Band gap-engineered ZnO and Ag/ZnO by ball-milling method and their photocatalytic and Fenton-like photocatalytic activities

    International Nuclear Information System (INIS)

    Choi, Young In; Jung, Hye Jin; Shin, Weon Gyu; Sohn, Youngku

    2015-01-01

    Graphical abstract: - Highlights: • Ag/ZnO hybrid materials were prepared by a ball-milling method. • Adsorption and photocatalytic dye degradation were tested for pure RhB under visible light. • Adsorption and photocatalytic dye degradation were tested for mixed dye (MO + RhB + MB) under visible light. • Fenton-like photocatalytic activity (H 2 O 2 addition effects) was examined. - Abstract: The hybridization of ZnO with Ag has been performed extensively to increase the efficiency of ZnO in various applications, including catalysis. In this study, a wet (w) and dry (d) ball-milling method was used to hybridize Ag with ZnO nanoparticles, and their physicochemical properties were examined. Visible light absorption was enhanced and the band gap was engineered by ball-milling and Ag hybridization. Their photocatalytic activities were tested with rhodamine B (RhB) and a mixed dye (methyl orange + RhB + methylene blue) under visible light irradiation. For pure RhB, the photocatalytic activity was decreased by ball-milling and was observed in the order of ZnO(d) < Ag/ZnO(d) < ZnO(w) < Ag/ZnO(w) ≤ ZnO(ref). For the degradation of RhB and methylene blue (MB) in the mixed dye (or the simulated real contaminated water), the photocatalytic activity was observed in the order of Ag/ZnO(d) < ZnO(d) < ZnO(w) < Ag/ZnO(w) ≤ ZnO(ref). When the photodegradation tested with H 2 O 2 addition, however, the Fenton-like photocatalytic activity was reversed and the ZnO(ref) showed the poorest activity for the degradation of RhB and methylene blue (MB). In the mixed dye over all the catalysts, methyl orange (MO) was degraded most rapidly. The relative degradation rates of RhB and MB were found to be dependent on the catalyst and reaction conditions.

  18. Crystallographic alignment evolution and magnetic properties of anisotropic Sm{sub 0.6}Pr{sub 0.4}Co{sub 5} nanoflakes prepared by surfactant-assisted ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Xu, M.L.; Wu, Q.; Li, Y.Q.; Liu, W.Q.; Lu, Q.M.; Yue, M., E-mail: yueming@bjut.edu.cn

    2015-08-01

    The microstructure, crystal structure and magnetic properties were studied for Sm{sub 0.6}Pr{sub 0.4}Co{sub 5} nanoflakes prepared by surfactant-assisted high-energy ball milling (SAHEBM). Effect of ball-milling time on the c-axis crystallographic alignment, morphology and magnetic properties of Sm{sub 0.6}Pr{sub 0.4}Co{sub 5} nanoflakes was systematically investigated. With increasing milling time from 1 h to 7 h, the intensity ratio between (002) and (111) reflection peaks indicating degree of c-axis crystal texture of the (Sm, Pr)Co{sub 5} phase increases first, peaks at 3 h, then drops again, revealing that the strongest c-axis crystal texture was obtained in the nanoflakes milled for 3 h. On the other hand, the coercivity (H{sub ci}) of the flakes increases gradually from 1.71 to 14.65 kOe with the increase of ball milling time. As a result, an optimal magnetic properties of M{sub r} of 10.23 kGs, H{sub ci} of 11.45 kOe and (BH){sub max} of 24.40 MGOe was obtained in Sm{sub 0.6}Pr{sub 0.4}Co{sub 5} nanoflakes milled for 3 h, which also displayed a high aspect ratio, small in-plane size, pronounced (001) out-of-plane texture. - Highlights: • Anisotropic Sm{sub 0.6}Pr{sub 0.4}Co{sub 5} nanoflakes with strong c-axis texture were prepared. • Effects of ball-milling time on structure and magnetic properties were studied. • (BH){sub max} value of Sm{sub 0.6}Pr{sub 0.4}Co{sub 5} nanoflakes is larger than that of SmCo{sub 5} nanoflakes.

  19. Structural study of ball-milled sodium alanate under high pressure

    International Nuclear Information System (INIS)

    Selva Vennila, R.; Drozd, Vadym; George, Lyci; Saxena, Surendra K.; Liermann, Hanns-Peter; Liu, H.Z.; Stowe, Ashley C.; Berseth, Polly; Anton, Donald; Zidan, Ragaiy

    2009-01-01

    Ball-milled NaAlH 4 was studied up to 15 GPa in a diamond anvil cell (DAC) by X-ray diffraction using a synchrotron radiation source. Lattice parameters were determined from the X-ray diffraction data at various pressures up to 6.5 GPa. Intensity of the powder diffraction patterns decreased with increasing pressure. Amorphisation started at a pressure of ∼6.5 GPa and completed at 13.5 GPa. Reversible phase transformation from amorphous phase to the tetragonal phase was observed. A fit to the pressure-volume data equation of state was obtained using the Birch-Murnaghan equation of state and the bulk modulus was found to be 52.16 ± 0.9 GPa which is twice higher than the unmilled NaAlH 4

  20. Cold compaction behavior and pressureless sinterability of ball milled WC and WC/Cu powders

    Directory of Open Access Journals (Sweden)

    Hashemi Seyed R.

    2016-01-01

    Full Text Available In this research, cold compaction behavior and pressureless sinterability of WC, WC-10%wtCu and WC-30%wtCu powders were investigated. WC and WC/Cu powders were milled in a planetary ball mill for 20h. The milled powders were cold compacted at 100, 200, 300 and 400 MPa pressures. The compressibility behavior of the powders was evaluated using the Heckel, Panelli-Ambrosio and Ge models. The results showed that the Panelli-Ambrosio was the preferred equation for description the cold compaction behavior of the milled WC and WC-30%wtCu powders. Also, the most accurate model for describing the compressibility of WC-10%wtCu powders was the Heckel equation. The cold compacts were sintered at 1400°C. It was found that by increasing the cold compaction pressure of powder compacts before sintering, the sinterability of WC-30%wtCu powder compacts was enhanced. However, the cold compaction magnitude was not affected significantly on the sinterability of WC and WC-10%wtCu powders. The microstructural investigations of the sintered samples by Scanning Electron Microscopy (SEM confirmed the presence of porosities at the interface of copper-tungsten carbide phases.

  1. A morphological evaluation of a duplex stainless steel processed by high energy Ball Mill

    International Nuclear Information System (INIS)

    Yonekubo, Ariane Emi; Cintho, Osvaldo Mitsuyuki; Aguiar, Denilson Jose Marcolino de; Capocchi, Jose Deodoro Trani

    2009-01-01

    The duplex stainless steels are formed by a ferrite and austenite mixture, giving them a combination of properties. Commercially, these steels are hot rolled, developing an anisotropic, alternated ferrite and austenite elongated lamellae microstructure. In this work, a duplex stainless steel was produced by the mixture of elementary powders with the composition Fe-19.5Cr-5Ni processed in an ATTRITOR ball mill during periods up to 15 hours. The powders obtained were compressed in specimens and were heat treated in the temperatures of 900, 1050 and 1200 °C during 1 hour and analysed by x ray diffraction, optic microscopy, scanning electron microscopy and energy dispersion spectroscopy. An optimized microstructure with ultrafine, equiaxial and regular duplex microstructure was obtained in the 15 hour milling and 1200 °C heat treatment. Afterwards, a commercially super duplex stainless steel UNS S32520 was aged at 800 °C aiming the precipitation of σ phase in order to reduce its toughness and then, milled in SPEX mill. The resulting microstructure was a very fine duplex type with irregular grain boundary morphology duo to the grain growth barrier promoted by the renascent σ phase particles during sintering process. (author)

  2. Optimization of Process Variables for Grinding of Ibuprofen using Response Surface Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Chol-Ho [Sangji University, Wonju (Korea, Republic of)

    2013-12-15

    Ibuprofen, non-steroidal anti-inflammatory drugs; NSAIDs, is a highly crystalline substance with the pharmaceutical properties of poor solubility and low bioavailability. The size reduction of ibuprofen is needed to improve the solubility. The objective of this study is to optimize the grinding condition of ibuprofen. Grinding of ibuprofen was carried out using a planetary mill. Grinding parameters were optimized using Box-Behnken experimental design method. The physical characteristics of ground ibuprofen were investigated for the particle size by particle size analyzer, for the crystal size by X-ray diffraction (XRD), and for the tensile strength by tensile/compression tester. The optimum conditions for the milling of ibuprofen were 290 rpm of the revolution number of mill, 24.6 g of the weight of sample, and 10minutes of grinding time. The measured value of the particle size of ground ibuprofen at these optimum conditions was 13.5 µm. The results showed that the crystal size of ibuprofen was reduced by the planetary milling process. In case the relative density of the tablets formulated of ground ibuprofen was range of 0.85-0.90, the tensile strength of them was range of 12-14 Kg{sub f}/cm{sup 2}.

  3. Liquigroud technique: a new concept for enhancing dissolution rate of glibenclamide by combination of liquisolid and co-grinding technologies.

    Science.gov (United States)

    Azharshekoufeh, Leila; Shokri, Javad; Barzegar-Jalali, Mohammad; Javadzadeh, Yousef

    2017-01-01

    Introduction: The potential of combining liquisolid and co-grinding technologies (liquiground technique) was investigated to improve the dissolution rate of a water-insoluble agent (glibenclamide) with formulation-dependent bioavailability. Methods: To this end, different formulations of liquisolid tablets with a wide variety of non-volatile solvents contained varied ratios of drug: solvent and dissimilar carriers were prepared, and then their release profiles were evaluated. Furthermore, the effect of size reduction by ball milling on the dissolution behavior of glibenclamide from liquisolid tablets was investigated. Any interaction between the drug and the excipient or crystallinity changes during formulation procedure was also examined using X-ray diffraction (XRD) and differential scanning calorimetry (DSC). Results: The present study revealed that classic liquisolid technique did not significantly affect the drug dissolution profile as compared to the conventional tablets. Size reduction obtained by co-grinding of liquid medication was more effective than the implementation of liquisolid technique in enhancing the dissolution rate of glibenclamide. The XRD and DSC data displayed no formation of complex or any crystallinity changes in both formulations. Conclusion: An enhanced dissolution rate of glibenclamide is achievable through the combination of liquisolid and co-grinding technologies.

  4. Synthesis and characterization of FePt nanoparticles by high energy ball milling with and without surfactant

    International Nuclear Information System (INIS)

    Velasco, V.; Martinez, A.; Recio, J.; Hernando, A.; Crespo, P.

    2012-01-01

    Highlights: ► Fe and Pt powders in the presence of surfactants don’t alloyed by HEBM technique. ► FePt alloys obtained by dry milling exhibit particle sizes of around 10 μm. ► FePt alloys obtained by dry milling exhibit soft magnetic behavior. ► A thermal treatment induces a phase transformation from FCC to FCT. - Abstract: FePt nanoparticles were prepared by high energy ball milling (HEBM) in two different ways. In the first one, elemental powders were mixed and milled whereas in the second one the milling was performed in the presence of oleyl amine and oleic acid as surfactants and hexane as a solvent. X-ray diffraction shows that when the milling is performed in dry conditions, Fe and Pt are alloyed after 5 h, whereas in the wet milling procedure alloying does not take place. In the first case, the diffraction pattern corresponds to the disordered FCC phase. This behavior is also corroborated by the evolution of the magnetic characteristics. In the case of the alloy obtained in dry conditions, the powder was heat treated in order to induce the transformation to the ordered phase. Coercivities of 2.5 kOe are obtained after 650 °C for 2 h.

  5. Si/C composite lithium-ion battery anodes synthesized from coarse silicon and citric acid through combined ball milling and thermal pyrolysis

    International Nuclear Information System (INIS)

    Gu Peng; Cai Rui; Zhou Yingke; Shao Zongping

    2010-01-01

    Silicon and related materials have recently received considerable attention as potential anodes in Li-ion batteries for their high theoretical specific capacities. To overcome the problem of volume variations during the Li insertion/extraction process, in this work, Si/C composites with low carbon content were synthesized from cheap coarse silicon and citric acid by simple ball milling and subsequent thermal treatment. The effects of ball milling time and calcination temperature on the structure, composition and morphology of the composites were systematically investigated by the determination of specific surface area (BET) and particle-size distribution, X-ray diffraction (XRD), O 2 -TPO, and scanning electron microscopy (SEM). The capacity and cycling stability of the composites were systematically evaluated by electrochemical charge/discharge tests. It was found that both the initial capacity and the cycling stability of the composites were dependent on the milling and calcination conditions, and attractive overall electrochemical performance could be obtained by optimizing the synthesis process.

  6. Preparation, characterization and optoelectronic properties of nanodiamonds doped zinc oxide nanomaterials by a ball milling technique

    Science.gov (United States)

    Ullah, Hameed; Sohail, Muhammad; Malik, Uzma; Ali, Naveed; Bangash, Masroor Ahmad; Nawaz, Mohsan

    2016-07-01

    Zinc oxide (ZnO) is one of the very important metal oxides (MOs) for applications in optoelectronic devices which work in the blue and UV regions. However, to meet the challenges of obtaining ZnO nanomaterials suitable for practical applications, various modifications in physico-chemical properties are highly desirable. One of the ways adopted for altering the properties is to synthesize composite(s) of ZnO with various reinforcements. Here we report on the tuning of optoelectronic properties of ZnO upon doping by nanodiamonds (NDs) using the ball milling technique. A varying weight percent (wt.%) of NDs were ball milled for 2 h with ZnO nanoparticles prepared by a simple precipitation method. The effects of different parameters, the calcination temperature of ZnO, wt.% of NDs and mechanical milling upon the optoelectronic properties of the resulting ZnO-NDs nanocomposites have been investigated. The ZnO-NDs nanocomposites were characterized by IR spectroscopy, powder x-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDX). The UV-vis spectroscopy revealed the alteration in the bandgap energy (Eg ) of ZnO as a function of the calcination temperature of ZnO, changing the concentration of NDs, and mechanical milling of the resulting nanocomposites. The photoluminescence (PL) spectroscopy showed a decrease in the deep level emission (DLE) peaks and an increase in near-band-edge transition peaks as a result of the increasing concentration of NDs. The decrease in DLE and increase in band to band transition peaks were due to the strong interaction between the NDs and the Zn+; consequently, the Zn+ concentration decreased on the interstitial sites.

  7. "Grinding" cavities in polyurethane foam

    Science.gov (United States)

    Brower, J. R.; Davey, R. E.; Dixon, W. F.; Robb, P. H.; Zebus, P. P.

    1980-01-01

    Grinding tool installed on conventional milling machine cuts precise cavities in foam blocks. Method is well suited for prototype or midsize production runs and can be adapted to computer control for mass production. Method saves time and materials compared to bonding or hot wire techniques.

  8. Influence of cation disorder on the magnetic properties of ball-milled ilmenite (FeTiO3)

    DEFF Research Database (Denmark)

    Mørup, Steen; Rasmussen, Helge Kildahl; Brok, Erik

    2012-01-01

    We have investigated the evolution of crystal structure, cation disorder and magnetic properties of ilmenite (FeTiO3) after increasing time of high-energy ball-milling in an inert atmosphere. Refinement of X-ray diffraction data show that the hexagonal crystal structure of ilmenite is maintained...

  9. Niobium Carbide-Reinforced Al Matrix Composites Produced by High-Energy Ball Milling

    Science.gov (United States)

    Travessa, Dilermando Nagle; Silva, Marina Judice; Cardoso, Kátia Regina

    2017-06-01

    Aluminum and its alloys are key materials for the transportation industry as they contribute to the development of lightweight structures. The dispersion of hard ceramic particles in the Al soft matrix can lead to a substantial strengthening effect, resulting in composite materials exhibiting interesting mechanical properties and inspiring their technological use in sectors like the automotive and aerospace industries. Powder metallurgy techniques are attractive to design metal matrix composites, achieving a homogeneous distribution of the reinforcement into the metal matrix. In this work, pure aluminum has been reinforced with particles of niobium carbide (NbC), an extremely hard and stable refractory ceramic. Its use as a reinforcing phase in metal matrix composites has not been deeply explored. Composite powders produced after different milling times, with 10 and 20 vol pct of NbC were produced by high-energy ball milling and characterized by scanning electron microscopy and by X-ray diffraction to establish a relationship between the milling time and size, morphology, and distribution of the particles in the composite powder. Subsequently, an Al/10 pct NbC composite powder was hot extruded into cylindrical bars. The strength of the obtained composite bars is comparable to the commercial high-strength, aeronautical-grade aluminum alloys.

  10. Atomic disorder and amorphization of B2-structure CoZr by ball milling

    International Nuclear Information System (INIS)

    Zhou, G.F.; Bakker, H.

    1996-01-01

    For a considerable number of intermetallic compounds it has been found that ball milling introduces atomic (chemical) disorder. Disorder due to milling was demonstrated by x-ray diffraction in AlRu, crystallizing in the B2 structure (ordered b.c.c.) by a decrease of the intensity of superlattice reflections relative to fundamental reflections. The same technique was used to investigate disordering by milling in Ni 3 Al, crystallizing in the L1 2 structure (ordered f.c.c.). In both cases the disorder is anti-site disorder of both components, i.e. both atomic species substitute on the wrong sublattices. Besides x-ray diffraction measurements of magnetic properties turned out to be useful in monitoring structural changes due to milling. The change in the superconducting transition temperature, measured by magnetic a.c. susceptibility, was used to demonstrate atomic disordering by milling in Nb 3 Sn and Nb 3 Au. The type of disorder turned out to be anti-site disorder. Such a type of disorder occurs in the same materials also at high temperatures or after irradiation by neutrons. The disordering was accompanied by an increase of the lattice parameter. An increase in high-field magnetization accompanied by a decrease of the lattice parameter during milling was found in B2 CoGa and B2 CoAl. In principle in the completely ordered state both compounds are non-magnetic, because the CO atoms are shielded from one another by Ga and Al atoms, respectively. However, when a Co atom is transferred to the wrong sublattice, it is surrounded by Co atoms as nearest neighbors and bears a magnetic moment. This explains the strong increase of the magnetization due to milling

  11. Effect of metal ion and ball milling on the electrochemical properties of M0.5TiOPO4 (M = Ni, Cu, Mg)

    International Nuclear Information System (INIS)

    Godbole, Vikram A.; Villevieille, Claire; Novák, Petr

    2013-01-01

    Various metal titanium oxyphosphates, M 0.5 TiOPO 4 (M = Ni, Cu, Mg) were synthesized via modified solution route synthesis. The as synthesized M 0.5 TiOPO 4 (M = Ni, Cu, Mg) were electrochemically tested using galvanostatic cycling, cyclic voltammetry, and rate performance measurements in order to investigate the effect of metal ion (M) on the electrochemical performance of this family of materials. All the studied materials reacted with 3 Li + during the 1st lithiation showing reaction plateaus at different potentials versus Lithium. Similar studies were performed on M 0.5 TiOPO 4 (M = Ni, Cu, Mg) samples with smaller particle size, obtained via ball milling, in order to understand the effect of particle size on the electrochemistry of the materials. The ball milled samples delivered higher specific charge during the 1st cycle showing reaction plateaus at different potentials, poorer capacity retention, and poorer rate capability as compared to the as synthesized ones. This was attributed to a change in morphology and particle size of the samples upon ball milling. Amongst all the tested materials, the as synthesized Cu 0.5 TiOPO 4 showed the best electrochemistry. The ball milled Mg 0.5 TiOPO 4 reacted with ∼5.5 Li + during 1st lithiation (as compared to 3 Li + expected from this family of compounds) and 3.3 Li + during the 1st delithiation (rather than the expected 2 Li + ). This suggests a reaction mechanism where Mg 0.5 TiOPO 4 undergoes a phase transformation forming Mg 0 , which reversibly alloys with 2.5 extra Li + . Thus the electrochemical cycling of Mg 0.5 TiOPO 4 gives insights into the reaction mechanism in this family of materials

  12. A novel fabrication technology of in situ TiB2/6063Al composites: High energy ball milling and melt in situ reaction

    International Nuclear Information System (INIS)

    Zhang, S.-L.; Yang, J.; Zhang, B.-R.; Zhao, Y.-T.; Chen, G.; Shi, X.-X.; Liang, Z.-P.

    2015-01-01

    Highlights: • This paper presents a novel technology to fabricate the TiB 2 /6063Al composites. • The novel technology decreases in situ reaction temperature and shortens the time. • The reaction mechanism of in situ reaction at the low temperature is discussed. • Effect of ball milling time and in situ reaction time on the composites is studied. - Abstract: TiB 2 /6063Al matrix composites are fabricated from Al–TiO 2 –B 2 O 3 system by the technology combining high energy ball milling with melt in situ reaction. The microstructure and tensile properties of the composites are investigated by XRD, SEM, EDS, TEM and electronic tensile testing. The results indicate that high energy ball milling technology decreases the in situ reaction temperature and shortens the reaction time for Al–TiO 2 –B 2 O 3 system in contrast with the conventional melt in situ synthesis. The morphology of in situ TiB 2 particles is exhibited in irregular shape or nearly circular shape, and the average size of the particles is less than 700 nm, thereinto the minimum size is approximately 200 nm. In addition, the morphology and size of the reinforced particles are affected by the time of ball milling and in situ reaction. TEM images indicate that the interface between 6063Al matrix and TiB 2 particles is clear and no interfacial outgrowth is observed. Tensile testing results show that the as-cast TiB 2 /6063Al composites exhibit a much higher strength, reaching 191 MPa, which is 1.23 times as high as the as-cast 6063Al matrix. Besides, the tensile fracture surface of the composites displays the dimple-fracture character

  13. The crystallization of amorphous Fe2MnGe powder prepared by ball milling

    International Nuclear Information System (INIS)

    Zhang, L.; Brueck, E.; Tegus, O.; Buschow, K.H.J.; Boer, F.R. de

    2003-01-01

    We synthesized for the first time the intermetallic compound Fe 2 MnGe. To avoid preferential evaporation of volatile components we exploited mechanical alloying. Amorphous Fe 2 MnGe alloy powder was prepared by planetary ball milling elemental starting materials. The amorphous-to-crystalline transition was studied by means of differential scanning calorimetry (DSC) and X-ray diffraction (XRD). A cubic D0 3 phase is formed at low temperature and transforms to a high-temperature hexagonal D0 19 phase. The apparent activation energy was determined by means of the Kissinger method

  14. Morphology and magnetic properties of CeCo5 submicron flakes prepared by surfactant-assisted high-energy ball milling

    International Nuclear Information System (INIS)

    Zhang, J.J.; Gao, H.M.; Yan, Y.; Bai, X.; Su, F.; Wang, W.Q.; Du, X.B.

    2012-01-01

    CeCo 5 permanent magnetic alloy has been processed by surfactant assisted high energy ball milling. Heptane and oleic acid were used as the solvent and surfactant, respectively. The amount of surfactant used was 50% by weight of the starting powder. The produced particles were deposited on a piece of copper (4 mm in length and width) under a magnetic field of 27 kOe applied along the copper surface and immobilized by ethyl α-cyanoacrylate. Scanning electron microscope pictures show that the particles are flakes, several μm in length and width and tens of nm in thickness. X-ray diffraction patterns and magnetic measurements prove that the flakes are crystalline with c-axes magnetic anisotropy. The easy magnetization axis is oriented perpendicular to the surface of the flake. A maximum coercivity of 3.3 kOe was obtained for the sample milled for 40 min. - Highlights: ► CeCo 5 permanent magnetic alloy has been processed by surfactant assisted high energy ball milling (HEBM). ► The particles show a flake-like morphology with several μm in length and width and tens nm in thickness. ► The flakes are crystallographic and magnetic anisotropic and the c-axes, also the easy magnetization directions are oriented perpendicular to the surface of the flake. ► Maximum coercivity of 3.3 kOe has been obtained for the sample milled for 40 min.

  15. The Effect of Powder Ball Milling on the Microstructure and Mechanical Properties of Sintered Fe-Cr-Mo-Mn-(Cu) Steel

    Science.gov (United States)

    Kulecki, P.; Lichańska, E.

    2017-12-01

    The effect of ball milling powder mixtures of Höganäs pre-alloyed iron Astaloy CrM, low-carbon ferromanganese Elkem, elemental electrolytic Cu and C-UF graphite on the sintered structure and mechanical properties was evaluated. The mixing was conducted using Turbula mixer for 30 minutes and CDI-EM60 frequency inverter for 1 and 2 hours. Milling was performed on 150 g mixtures with (in weight %) CrM + 1% Mn, CrM + 2% Mn, CrM + 1% Mn + 1% Cu and CrM + 2% Mn + 1% Cu, all with 0.6%C. The green compacts were single pressed at 660 MPa according to PN-EN ISO 2740. Sintering was carried out in a laboratory horizontal furnace Carbolite STF 15/450 at 1250°C for 60 minutes in 5%H2 - 95%N2 atmosphere with a heating rate of 75°C/min, followed by sintering hardening at 60°C/min cooling rate. All the steels were characterized by martensitic structures. Mechanical testing revealed that steels based on milled powders have slightly higher mechanical properties compared to those only mixed and sintered. The best combination of mechanical properties, for ball milled CrM + 1% Mn + 1% Cu was UTS 1046 MPa, TRS 1336 MPa and A 1.94%.

  16. Structural study of ball-milled sodium alanate under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Selva Vennila, R. [Center for Study of Matter at Extreme Conditions, Florida International University, Miami, FL 33199 (United States)], E-mail: selva.raju@fiu.edu; Drozd, Vadym; George, Lyci; Saxena, Surendra K. [Center for Study of Matter at Extreme Conditions, Florida International University, Miami, FL 33199 (United States); Liermann, Hanns-Peter [High Pressure Collaboration Access Team (HPCAT) and Geophysical Laboratory, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States); Liu, H.Z. [HPCAT, Geophysical Laboratory, Carnegie Institution of Washington, Building 434E, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Stowe, Ashley C.; Berseth, Polly; Anton, Donald; Zidan, Ragaiy [Savannah River National Laboratory, Energy Security Department, Aiken, SC 29808 (United States)

    2009-04-03

    Ball-milled NaAlH{sub 4} was studied up to 15 GPa in a diamond anvil cell (DAC) by X-ray diffraction using a synchrotron radiation source. Lattice parameters were determined from the X-ray diffraction data at various pressures up to 6.5 GPa. Intensity of the powder diffraction patterns decreased with increasing pressure. Amorphisation started at a pressure of {approx}6.5 GPa and completed at 13.5 GPa. Reversible phase transformation from amorphous phase to the tetragonal phase was observed. A fit to the pressure-volume data equation of state was obtained using the Birch-Murnaghan equation of state and the bulk modulus was found to be 52.16 {+-} 0.9 GPa which is twice higher than the unmilled NaAlH{sub 4}.

  17. Improved coal grinding and fuel flow control in thermal power plants

    DEFF Research Database (Denmark)

    Niemczyk, Piotr; Bendtsen, Jan Dimon

    2011-01-01

    A novel controller for coal circulation and pulverized coal flow in a coal mill is proposed. The design is based on optimal control theory for bilinear systems with additional integral action. The states are estimated from the grinding power consumption and the amount of coal accumulated in the m......A novel controller for coal circulation and pulverized coal flow in a coal mill is proposed. The design is based on optimal control theory for bilinear systems with additional integral action. The states are estimated from the grinding power consumption and the amount of coal accumulated...... as well as when parameter uncertainties and noise are present. The proposed controller lowers the grinding power consumption while in most cases exhibiting superior performance in comparison with the PID controller....

  18. Fabrication of a Micro-Lens Array Mold by Micro Ball End-Milling and Its Hot Embossing

    Directory of Open Access Journals (Sweden)

    Peng Gao

    2018-02-01

    Full Text Available Hot embossing is an efficient technique for manufacturing high-quality micro-lens arrays. The machining quality is significant for hot embossing the micro-lens array mold. This study investigates the effects of micro ball end-milling on the machining quality of AISI H13 tool steel used in the micro-lens array mold. The micro ball end-milling experiments were performed under different machining strategies, and the surface roughness and scallop height of the machined micro-lens array mold are measured. The experimental results showed that a three-dimensional (3D offset spiral strategy could achieve a higher machining quality in comparison with other strategies assessed in this study. Moreover, the 3D offset spiral strategy is more appropriate for machining the micro-lens array mold. With an increase of the cutting speed and feed rate, the surface roughness of the micro-lens array mold slightly increases, while a small step-over can greatly reduce the surface roughness. In addition, a hot embossing experiment was undertaken, and the obtained results indicated higher-quality production of the micro-lens array mold by the 3D offset spiral strategy.

  19. Highly Al-doped TiO2 nanoparticles produced by Ball Mill Method: structural and electronic characterization

    International Nuclear Information System (INIS)

    Santos, Desireé M. de los; Navas, Javier; Sánchez-Coronilla, Antonio; Alcántara, Rodrigo; Fernández-Lorenzo, Concha; Martín-Calleja, Joaquín

    2015-01-01

    Highlights: • Highly Al-doped TiO 2 nanoparticles were synthesized using a Ball Mill Method. • Al doping delayed anatase to rutile phase transformation. • Al doping allow controlling the structural and electronic properties of nanoparticles. - Abstract: This study presents an easy method for synthesizing highly doped TiO 2 nanoparticles. The Ball Mill method was used to synthesize pure and Al-doped titanium dioxide, with an atomic percentage up to 15.7 at.% Al/(Al + Ti). The samples were annealed at 773 K, 973 K and 1173 K, and characterized using ICP-AES, XRD, Raman spectroscopy, FT-IR, TG, STEM, XPS, and UV–vis spectroscopy. The effect of doping and the calcination temperature on the structure and properties of the nanoparticles were studied. The results show high levels of internal doping due to the substitution of Ti 4+ ions by Al 3+ in the TiO 2 lattice. Furthermore, anatase to rutile transformation occurs at higher temperatures when the percentage of doping increases. Therefore, Al doping allows us to control the structural and electronic properties of the nanoparticle synthesized. So, it is possible to obtain nanoparticles with anatase as predominant phase in a higher range of temperature

  20. Utilization of aluminum to obtaining a duplex type stainless steel using high energy ball milling

    International Nuclear Information System (INIS)

    Pavlak, I.E.; Cintho, O.M.; Capocchi, J.D.T.

    2010-01-01

    The obtaining of stainless steel using aluminum in its composition - FeMnAl system, has been researches subject since the sixties, by good mechanical properties and resistance to oxidation presented, when compared with conventional FeNiCr stainless steel system. In another point, the aluminum and manganese are low cost then traditional elements. This work, metallic powders of iron, manganese and pure aluminum, were processed in a Spex type high-energy ball mill in nitrogen atmosphere. The milling products were compressed into pastille form and sintered under inert atmosphere. The final products were characterized by optical and electronic microscopy and microhardness test. The metallographic analysis shows a typical austenite and ferrite duplex type microstructure. The presence of these phases was confirmed according X ray diffraction analysis. (author)

  1. Quenching ilmenite with a high-temperature and high-pressure phase using super-high-energy ball milling.

    Science.gov (United States)

    Hashishin, Takeshi; Tan, Zhenquan; Yamamoto, Kazuhiro; Qiu, Nan; Kim, Jungeum; Numako, Chiya; Naka, Takashi; Valmalette, Jean Christophe; Ohara, Satoshi

    2014-04-25

    The mass production of highly dense oxides with high-temperature and high-pressure phases allows us to discover functional properties that have never been developed. To date, the quenching of highly dense materials at the gramme-level at ambient atmosphere has never been achieved. Here, we provide evidence of the formation of orthorhombic Fe2TiO4 from trigonal FeTiO3 as a result of the high-temperature (>1250 K) and high-pressure (>23 GPa) condition induced by the high collision energy of 150 gravity generated between steel balls. Ilmenite was steeply quenched by the surrounding atmosphere, when iron-rich ilmenite (Fe2TiO4) with a high-temperature and high-pressure phase was formed by planetary collisions and was released from the collision points between the balls. Our finding allows us to infer that such intense planetary collisions induced by high-energy ball milling contribute to the mass production of a high-temperature and high-pressure phase.

  2. Microstructural characteristics and mechanical properties of carbon nanotube reinforced aluminum alloy composites produced by ball milling

    International Nuclear Information System (INIS)

    Raviathul Basariya, M.; Srivastava, V.C.; Mukhopadhyay, N.K.

    2014-01-01

    Highlights: • 6082 Al alloy composite with 2 wt% multiwalled carbon nanotubes prepared by milling. • Effect of milling time on structure and property evolution has been studied. • The reinforced composite powders showed a drastic crystallite size refinement. • The presence of carbon nanotube led to a two fold increase in the hardness and modulus. • The composite powder showed good thermal stability studied by DTA. - Abstract: The influence of milling time on the structure, morphology and thermal stability of multi-walled carbon nanotubes (MWCNTs) reinforced EN AW6082 aluminum alloy powders has been studied. After structural and microstructural characterization of the mechanically milled powders micro- and nano-hardness of the composite powder particles were evaluated. The morphological and X-ray diffraction studies on the milled powders revealed that the carbon nanotubes (CNTs) were uniformly distributed and embedded within the aluminum matrix. No reaction products were detected even after long milling up to 50 h. Nanotubes became shorter in length as they fractured under the impact and shearing action during the milling process. A high hardness of about 436 ± 52 HV is achieved for the milled powders, due to the addition of MWCNTs, after milling for 50 h. The increased elastic modulus and nanohardness can be attributed to the finer grain size evolved during high energy ball milling and to the uniform distribution of hard CNTs in the Al-alloy matrix. The hardness values of the composite as well as the matrix alloy compares well with that predicted by the Hall–Petch relationship

  3. Synthesis and characterization of FePt nanoparticles by high energy ball milling with and without surfactant

    Energy Technology Data Exchange (ETDEWEB)

    Velasco, V., E-mail: vvjimeno@fis.ucm.es [Instituto de Magnetismo Aplicado, UCM-ADIF-CSIC, 28230 Las Rozas (Spain); Martinez, A.; Recio, J. [Instituto de Magnetismo Aplicado, UCM-ADIF-CSIC, 28230 Las Rozas (Spain); Hernando, A.; Crespo, P. [Instituto de Magnetismo Aplicado, UCM-ADIF-CSIC, 28230 Las Rozas (Spain); Dpto. de Fisica de Materiales, UCM, 28040 Madrid (Spain)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer Fe and Pt powders in the presence of surfactants don't alloyed by HEBM technique. Black-Right-Pointing-Pointer FePt alloys obtained by dry milling exhibit particle sizes of around 10 {mu}m. Black-Right-Pointing-Pointer FePt alloys obtained by dry milling exhibit soft magnetic behavior. Black-Right-Pointing-Pointer A thermal treatment induces a phase transformation from FCC to FCT. - Abstract: FePt nanoparticles were prepared by high energy ball milling (HEBM) in two different ways. In the first one, elemental powders were mixed and milled whereas in the second one the milling was performed in the presence of oleyl amine and oleic acid as surfactants and hexane as a solvent. X-ray diffraction shows that when the milling is performed in dry conditions, Fe and Pt are alloyed after 5 h, whereas in the wet milling procedure alloying does not take place. In the first case, the diffraction pattern corresponds to the disordered FCC phase. This behavior is also corroborated by the evolution of the magnetic characteristics. In the case of the alloy obtained in dry conditions, the powder was heat treated in order to induce the transformation to the ordered phase. Coercivities of 2.5 kOe are obtained after 650 Degree-Sign C for 2 h.

  4. Band gap-engineered ZnO and Ag/ZnO by ball-milling method and their photocatalytic and Fenton-like photocatalytic activities

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Young In [School of Chemistry and Biochemistry, Yeungnam University, Gyeongsan, Gyeongbuk 38541 (Korea, Republic of); Jung, Hye Jin [Department of Mechanical Engineering, Chungnam National University, Daejeon 34134 (Korea, Republic of); Shin, Weon Gyu, E-mail: wgshin@cnu.ac.kr [Department of Mechanical Engineering, Chungnam National University, Daejeon 34134 (Korea, Republic of); Sohn, Youngku, E-mail: youngkusohn@ynu.ac.kr [School of Chemistry and Biochemistry, Yeungnam University, Gyeongsan, Gyeongbuk 38541 (Korea, Republic of)

    2015-11-30

    Graphical abstract: - Highlights: • Ag/ZnO hybrid materials were prepared by a ball-milling method. • Adsorption and photocatalytic dye degradation were tested for pure RhB under visible light. • Adsorption and photocatalytic dye degradation were tested for mixed dye (MO + RhB + MB) under visible light. • Fenton-like photocatalytic activity (H{sub 2}O{sub 2} addition effects) was examined. - Abstract: The hybridization of ZnO with Ag has been performed extensively to increase the efficiency of ZnO in various applications, including catalysis. In this study, a wet (w) and dry (d) ball-milling method was used to hybridize Ag with ZnO nanoparticles, and their physicochemical properties were examined. Visible light absorption was enhanced and the band gap was engineered by ball-milling and Ag hybridization. Their photocatalytic activities were tested with rhodamine B (RhB) and a mixed dye (methyl orange + RhB + methylene blue) under visible light irradiation. For pure RhB, the photocatalytic activity was decreased by ball-milling and was observed in the order of ZnO(d) < Ag/ZnO(d) < ZnO(w) < Ag/ZnO(w) ≤ ZnO(ref). For the degradation of RhB and methylene blue (MB) in the mixed dye (or the simulated real contaminated water), the photocatalytic activity was observed in the order of Ag/ZnO(d) < ZnO(d) < ZnO(w) < Ag/ZnO(w) ≤ ZnO(ref). When the photodegradation tested with H{sub 2}O{sub 2} addition, however, the Fenton-like photocatalytic activity was reversed and the ZnO(ref) showed the poorest activity for the degradation of RhB and methylene blue (MB). In the mixed dye over all the catalysts, methyl orange (MO) was degraded most rapidly. The relative degradation rates of RhB and MB were found to be dependent on the catalyst and reaction conditions.

  5. A novel fabrication technology of in situ TiB{sub 2}/6063Al composites: High energy ball milling and melt in situ reaction

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, S.-L.; Yang, J. [School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013 (China); Zhang, B.-R. [School of Mechanical Engineering, Qilu University of Technology, Jinan, Shandong 250022 (China); Zhao, Y.-T., E-mail: 278075525@qq.com [School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013 (China); Chen, G.; Shi, X.-X.; Liang, Z.-P. [School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013 (China)

    2015-08-05

    Highlights: • This paper presents a novel technology to fabricate the TiB{sub 2}/6063Al composites. • The novel technology decreases in situ reaction temperature and shortens the time. • The reaction mechanism of in situ reaction at the low temperature is discussed. • Effect of ball milling time and in situ reaction time on the composites is studied. - Abstract: TiB{sub 2}/6063Al matrix composites are fabricated from Al–TiO{sub 2}–B{sub 2}O{sub 3} system by the technology combining high energy ball milling with melt in situ reaction. The microstructure and tensile properties of the composites are investigated by XRD, SEM, EDS, TEM and electronic tensile testing. The results indicate that high energy ball milling technology decreases the in situ reaction temperature and shortens the reaction time for Al–TiO{sub 2}–B{sub 2}O{sub 3} system in contrast with the conventional melt in situ synthesis. The morphology of in situ TiB{sub 2} particles is exhibited in irregular shape or nearly circular shape, and the average size of the particles is less than 700 nm, thereinto the minimum size is approximately 200 nm. In addition, the morphology and size of the reinforced particles are affected by the time of ball milling and in situ reaction. TEM images indicate that the interface between 6063Al matrix and TiB{sub 2} particles is clear and no interfacial outgrowth is observed. Tensile testing results show that the as-cast TiB{sub 2}/6063Al composites exhibit a much higher strength, reaching 191 MPa, which is 1.23 times as high as the as-cast 6063Al matrix. Besides, the tensile fracture surface of the composites displays the dimple-fracture character.

  6. Memory effect of ball-milled and annealed nanosized hematite

    International Nuclear Information System (INIS)

    Bercoff, P.G.; Bertorello, H.R.; Oliva, M.I.

    2007-01-01

    Fine particles of hematite (mean size 55 nm) were produced by ball milling a mixture of hematite and pure Fe and annealing at 1000 o C. X-ray diffraction (XRD) and Moessbauer spectroscopy show that only α-Fe 2 O 3 is present in the final product, with lattice and Moessbauer parameters that correspond to bulk hematite. ZFC and FC magnetization measurements were performed from 5 to 300 K, at different applied fields. Two magnetic regimes were observed: one at low temperatures (≤100 K) that we ascribe to the magnetic moments in the outer shell of the particles that couple to the magnetic moments in the core, and another at higher temperature that corresponds to the Morin transition, finding that the Morin temperature is T M =246 K. The memory effect is clearly observed in magnetic measurements that start from different remanence states and explained as dependent on the ordering of the magnetic moments within the particles

  7. Experimental and theoretical study of phase transitions under ball milling; Etude experimentale et modelisation des changements de phases sous broyage a haute energie

    Energy Technology Data Exchange (ETDEWEB)

    Pochet, P

    1998-12-31

    The aim of this work was to determine how phase transition s under ball-milling depend on the milling conditions and to find out if one can rationalize such transitions with the theory of driven alloys. We have chosen two phase transitions: the order-disorder transition in Fe Al and the precipitation-dissolution NiGe. In the case of Fe Al we have found that the steady-state long range order parameter achieved under ball milling intensity; moreover the same degree of order is achieved starting from an ordered alloy or a disordered solid solution. On the way to fully disordered state the degree of order either decreases monotonically or goes through a short lived transient state. This behaviour is reminiscent of a first order transition while the equilibrium transition is second order. All the above features are well reproduced by a simple model of driven alloys, which was originally build for alloys under irradiation. The stationary degree of order results of two competitive atomic jump mechanisms: the forced displacements induced by the shearing of the grains, and the thermally activated jumps caused by vacancies migrations. Finally we have performed atomistic simulations with a Monte Carlo kinetic algorithm, which revealed the role of the fluctuations in the intensity of the forcing. Moreover we have shown that specific atomistic mechanisms are active in a dilute NiGe solid solution which might lead to ball milling induced precipitation in under-saturated solid solution. (author). 149 refs.

  8. Experimental and theoretical study of phase transitions under ball milling; Etude experimentale et modelisation des changements de phases sous broyage a haute energie

    Energy Technology Data Exchange (ETDEWEB)

    Pochet, P

    1997-12-31

    The aim of this work was to determine how phase transition s under ball-milling depend on the milling conditions and to find out if one can rationalize such transitions with the theory of driven alloys. We have chosen two phase transitions: the order-disorder transition in Fe Al and the precipitation-dissolution NiGe. In the case of Fe Al we have found that the steady-state long range order parameter achieved under ball milling intensity; moreover the same degree of order is achieved starting from an ordered alloy or a disordered solid solution. On the way to fully disordered state the degree of order either decreases monotonically or goes through a short lived transient state. This behaviour is reminiscent of a first order transition while the equilibrium transition is second order. All the above features are well reproduced by a simple model of driven alloys, which was originally build for alloys under irradiation. The stationary degree of order results of two competitive atomic jump mechanisms: the forced displacements induced by the shearing of the grains, and the thermally activated jumps caused by vacancies migrations. Finally we have performed atomistic simulations with a Monte Carlo kinetic algorithm, which revealed the role of the fluctuations in the intensity of the forcing. Moreover we have shown that specific atomistic mechanisms are active in a dilute NiGe solid solution which might lead to ball milling induced precipitation in under-saturated solid solution. (author). 149 refs.

  9. Structural evolution of Ni-20Cr alloy during ball milling of elemental powders

    International Nuclear Information System (INIS)

    Lopez B, I.; Trapaga M, L. G.; Martinez F, E.; Zoz, H.

    2011-01-01

    The ball milling (B M) of blended Ni and Cr elemental powders was carried out in a Simoloyer performing on high-energy scale mode at maximum production to obtain a nano structured Ni-20Cr alloy. The phase transformations and structural changes occurring during mechanical alloying were investigated by X-ray diffraction (XRD) and optical microscopy (Om). A gradual solid solubility of Cr and the subsequent formation of crystalline metastable solid solutions described in terms of the Avrami-Ero fe ev kinetics model were calculated. The XRD analysis of the structure indicates that cumulative lattice strain contributes to the driving force for solid solution between Ni and Cr during B M. Microstructure evolution has shown, additionally to the lamellar length refinement commonly observed, the folding of lamellae in the final processing stage. Om observations revealed that the lamellar spacing of Ni rich zones reaches a steady value near 500 nm and almost disappears after 30 h of milling. (Author)

  10. Structural evolution of Ni-20Cr alloy during ball milling of elemental powders

    Energy Technology Data Exchange (ETDEWEB)

    Lopez B, I.; Trapaga M, L. G. [IPN, Centro de Investigacion y de Estudios Avanzados, Unidad Queretaro, Libramiento Norponiente No. 2000, Juriquilla, 76230 Queretaro (Mexico); Martinez F, E. [Centro de Investigacion e Innovacion Tecnologica, Cerrada de Cecati s/n, Col. Santa Catarina Azcapotzalco, 02250 Mexico D. F. (Mexico); Zoz, H., E-mail: israelbaez@gmail.co [Zoz GmbH, D-57482, Wenden (Germany)

    2011-07-01

    The ball milling (B M) of blended Ni and Cr elemental powders was carried out in a Simoloyer performing on high-energy scale mode at maximum production to obtain a nano structured Ni-20Cr alloy. The phase transformations and structural changes occurring during mechanical alloying were investigated by X-ray diffraction (XRD) and optical microscopy (Om). A gradual solid solubility of Cr and the subsequent formation of crystalline metastable solid solutions described in terms of the Avrami-Ero fe ev kinetics model were calculated. The XRD analysis of the structure indicates that cumulative lattice strain contributes to the driving force for solid solution between Ni and Cr during B M. Microstructure evolution has shown, additionally to the lamellar length refinement commonly observed, the folding of lamellae in the final processing stage. Om observations revealed that the lamellar spacing of Ni rich zones reaches a steady value near 500 nm and almost disappears after 30 h of milling. (Author)

  11. Morphology and magnetic properties of CeCo{sub 5} submicron flakes prepared by surfactant-assisted high-energy ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J.J.; Gao, H.M.; Yan, Y.; Bai, X.; Su, F.; Wang, W.Q. [State key Laboratory for Superhard Materials and Department of Physics, Jilin University, Changchun 130012 (China); Du, X.B., E-mail: duxb@jlu.edu.cn [State key Laboratory for Superhard Materials and Department of Physics, Jilin University, Changchun 130012 (China)

    2012-10-15

    CeCo{sub 5} permanent magnetic alloy has been processed by surfactant assisted high energy ball milling. Heptane and oleic acid were used as the solvent and surfactant, respectively. The amount of surfactant used was 50% by weight of the starting powder. The produced particles were deposited on a piece of copper (4 mm in length and width) under a magnetic field of 27 kOe applied along the copper surface and immobilized by ethyl {alpha}-cyanoacrylate. Scanning electron microscope pictures show that the particles are flakes, several {mu}m in length and width and tens of nm in thickness. X-ray diffraction patterns and magnetic measurements prove that the flakes are crystalline with c-axes magnetic anisotropy. The easy magnetization axis is oriented perpendicular to the surface of the flake. A maximum coercivity of 3.3 kOe was obtained for the sample milled for 40 min. - Highlights: Black-Right-Pointing-Pointer CeCo{sub 5} permanent magnetic alloy has been processed by surfactant assisted high energy ball milling (HEBM). Black-Right-Pointing-Pointer The particles show a flake-like morphology with several {mu}m in length and width and tens nm in thickness. Black-Right-Pointing-Pointer The flakes are crystallographic and magnetic anisotropic and the c-axes, also the easy magnetization directions are oriented perpendicular to the surface of the flake. Black-Right-Pointing-Pointer Maximum coercivity of 3.3 kOe has been obtained for the sample milled for 40 min.

  12. Fabrication mechanism of FeSe superconductors with high-energy ball milling aided sintering process

    International Nuclear Information System (INIS)

    Zhang, Shengnan; Liu, Jixing; Feng, Jianqing; Wang, Yao; Ma, Xiaobo; Li, Chengshan; Zhang, Pingxiang

    2015-01-01

    FeSe Superconducting bulks with high content of superconducting PbO-type β-FeSe phase were prepared with high-energy ball milling (HEBM) aided sintering process. During this process, precursor powders with certain Fe/Se ratio were ball milled first then sintered. The influences of HEBM process as well as initial Fe/Se ratio on the phase evolution process were systematically discussed. With HEBM process and proper initial Fe/Se ratio, the formation of non-superconducting hexagonal δ-FeSe phase were effectively avoided. FeSe bulk with the critical temperature of 9.0 K was obtained through a simple one-step sintering process with lower sintering temperature. Meanwhile, the phase evolution mechanism of the HEBM precursor powders during sintering was deduced based on both the thermodynamic analysis and step-by-step sintering results. The key function of the HEBM process was to provide a high uniformity of chemical composition distribution, thus to successfully avoide the formation of intermediate product during sintering, including FeSe 2 and Fe 7 Se 8 . Therefore, the fundamental principal for the synthesis of FeSe superconductors were concluded as: HEBM aided sintering process, with the sintering temperature of >635 °C and a slow cooling process. - Highlights: • A novel synthesis technique was developed for FeSe based superconductors. • FeSe bulks with high Tc and high β-FeSe phase content has been obtained. • Phase evolution process for the HEBM aided sintering process was proposed

  13. Decomposition pathways of polytetrafluoroethylene by co-grinding with strontium/calcium oxides.

    Science.gov (United States)

    Qu, Jun; He, Xiaoman; Zhang, Qiwu; Liu, Xinzhong; Saito, Fumio

    2017-06-01

    Waste polytetrafluoroethylene (PTFE) could be easily decomposed by co-grinding with inorganic additive such as strontium oxide (SrO), strontium peroxide (SrO 2 ) and calcium oxide (CaO) by using a planetary ball mill, in which the fluorine was transformed into nontoxic inorganic fluoride salts such as strontium fluoride (SrF 2 ) or calcium fluoride (CaF 2 ). Depending on the kind of additive as well as the added molar ratio, however, the reaction mechanism of the decomposition was found to change, with different compositions of carbon compounds formed. CO gas, the mixture of strontium carbonate (SrCO 3 ) and carbon, only SrCO 3 were obtained as reaction products respectively with equimolar SrO, excess SrO and excess SrO 2 to the monomer unit CF 2 of PTFE were used. Excess amount of CaO was needed to effectively decompose PTFE because of its lower reactivity compared with strontium oxide, but it promised practical applications due to its low cost.

  14. Influence of B4C-doping and high-energy ball milling on phase formation and critical current density of (Bi,Pb)-2223 HTS

    Science.gov (United States)

    Margiani, N. G.; Mumladze, G. A.; Adamia, Z. A.; Kuzanyan, A. S.; Zhghamadze, V. V.

    2018-05-01

    In this paper, the combined effects of B4C-doping and planetary ball milling on the phase evolution, microstructure and transport properties of Bi1.7Pb0.3Sr2Ca2Cu3Oy(B4C)x HTS with x = 0 ÷ 0.125 were studied through X-ray diffraction (XRD), scanning electron microscopy (SEM), resistivity and critical current density measurements. Obtained results have shown that B4C additive leads to the strong acceleration of high-Tc phase formation and substantial enhancement in Jc. High-energy ball milling seems to produce a more homogeneous distribution of refined doped particles in the (Bi,Pb)-2223 HTS which results in an improved intergranular flux pinning and better self-field Jc performance.

  15. Magnetic Properties of Nanocrystalline FexCu1-x Alloys Prepared by Ball Milling

    International Nuclear Information System (INIS)

    Yousif, A.; Bouziane, K.; Elzain, M. E.; Ren, X.; Berry, F. J.; Widatallah, H. M.; Al Rawas, A.; Gismelseed, A.; Al-Omari, I. A.

    2004-01-01

    X-ray diffraction, Moessbauer and magnetization measurements were used to study Fe x Cu 1-x alloys prepared by ball-milling. The X-ray data show the formation of a nanocrystalline Fe-Cu solid solution. The samples with x≥0.8 and x≤0.5 exhibit bcc or fcc phase, respectively. Both the bcc and fcc phases are principally ferromagnetic for x≥0.2, but the sample with x=0.1 remains paramagnetic down to 78 K. The influence of the local environment on the hyperfine parameters and the local magnetic moment are discussed using calculations based on the discrete-variational method in the local density approximation.

  16. Simulation-Assisted Evaluation of Grinding Circuit Flowsheet Design Alternatives: Aghdarreh Gold Ore Processing Plant / Ocena Alternatywnych Schematów Technologicznych Procesu Rozdrabniania W Zakładach Przeróbki Rud Złota W Aghdarreh, Z Wykorzystaniem Metod Symulacji

    Science.gov (United States)

    Farzanegan, A.; Ghalaei, A. Ebtedaei

    2015-03-01

    The run of mine ore from Aghdarreh gold mine must be comminuted to achieve the desired degree of liberation of gold particles. Currently, comminution circuits include a single-stage crushing using a jaw crusher and a single-stage grinding using a Semi-Autogenous Grinding (SAG) mill in closed circuit with a hydrocyclone package. The gold extraction is done by leaching process using cyanidation method through a series of stirred tanks. In this research, an optimization study of Aghdarreh plant grinding circuit performance was done to lower the product particle size (P80) from 70 μm to approximately 40 μm by maintaining current throughput using modeling and simulation approach. After two sampling campaigns from grinding circuit, particle size distribution data were balanced using NorBal software. The first and second data sets obtained from the two sampling campaigns were used to calibrate necessary models and validate them prior to performing simulation trials using MODSIM software. Computer simulations were performed to assess performance of two proposed new circuit flowsheets. The first proposed flowsheet consists of existing SAG mill circuit and a new proposed ball mill in closed circuit with a new second hydrocyclone package. The second proposed flowsheet consists of existing SAG mill circuit followed by a new proposed ball mill in closed circuit with the existing hydrocyclone package. In all simulations, SAGT, CYCL and MILL models were selected to simulate SAG mill, Hydrocyclone packages and ball mill units. SAGT and MILL models both are based on population balance model of grinding process. CYCL model is based on Plitt's empirical model of classification process in hydrocyclone units. It was shown that P80 can be reduced to about 40 μm and 42 μm for the first and second proposed circuits, respectively. Based on capital and operational costs, it can be concluded that the second proposed circuit is a more suitable option for plant grinding flowsheet

  17. Recycling process for recovery of gallium from GaN an e-waste of LED industry through ball milling, annealing and leaching.

    Science.gov (United States)

    Swain, Basudev; Mishra, Chinmayee; Kang, Leeseung; Park, Kyung-Soo; Lee, Chan Gi; Hong, Hyun Seon

    2015-04-01

    Waste dust generated during manufacturing of LED contains significant amounts of gallium and indium, needs suitable treatment and can be an important resource for recovery. The LED industry waste dust contains primarily gallium as GaN. Leaching followed by purification technology is the green and clean technology. To develop treatment and recycling technology of these GaN bearing e-waste, leaching is the primary stage. In our current investigation possible process for treatment and quantitative leaching of gallium and indium from the GaN bearing e-waste or waste of LED industry dust has been developed. To recycle the waste and quantitative leaching of gallium, two different process flow sheets have been proposed. In one, process first the GaN of the waste the LED industry dust was leached at the optimum condition. Subsequently, the leach residue was mixed with Na2CO3, ball milled followed by annealing, again leached to recover gallium. In the second process, the waste LED industry dust was mixed with Na2CO3, after ball milling and annealing, followed acidic leaching. Without pretreatment, the gallium leaching was only 4.91 w/w % using 4M HCl, 100°C and pulp density of 20g/L. After mechano-chemical processing, both these processes achieved 73.68 w/w % of gallium leaching at their optimum condition. The developed process can treat and recycle any e-waste containing GaN through ball milling, annealing and leaching. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Mechanical intermixing of components in (CoMoNi)-based systems and the formation of (CoMoNi)/WC nanocomposite layers on Ti sheets under ball collisions

    Science.gov (United States)

    Romankov, S.; Park, Y. C.; Shchetinin, I. V.

    2017-11-01

    Cobalt (Co), molybdenum (Mo), and nickel (Ni) components were simultaneously introduced onto titanium (Ti) surfaces from a composed target using ball collisions. Tungsten carbide (WC) balls were selected for processing as the source of a cemented carbide reinforcement phase. During processing, ball collisions continuously introduced components from the target and the grinding media onto the Ti surface and induced mechanical intermixing of the elements, resulting in formation of a complex nanocomposite structure onto the Ti surface. The as-fabricated microstructure consisted of uniformly dispersed WC particles embedded within an integrated metallic matrix composed of an amorphous phase with nanocrystalline grains. The phase composition of the alloyed layers, atomic reactions, and the matrix grain sizes depended on the combination of components introduced onto the Ti surface during milling. The as-fabricated layer exhibited a very high hardness compared to industrial metallic alloys and tool steel materials. This approach could be used for the manufacture of both cemented carbides and amorphous matrix composite layers.

  19. Influence of spark plasma sintering conditions on the sintering and functional properties of an ultra-fine grained 316L stainless steel obtained from ball-milled powder

    Energy Technology Data Exchange (ETDEWEB)

    Keller, C., E-mail: clement.keller@insa-rouen.fr [Groupe de Physique des Matériaux, CNRS-UMR 6634, Université de Rouen, INSA de Rouen, Avenue de l' Université, 76800 Saint-Etienne du Rouvray (France); Tabalaiev, K.; Marnier, G. [Groupe de Physique des Matériaux, CNRS-UMR 6634, Université de Rouen, INSA de Rouen, Avenue de l' Université, 76800 Saint-Etienne du Rouvray (France); Noudem, J. [Laboratoire de Cristallographie des Matériaux, CNRS-UMR 6508, Université de Caen, ENSICAEN, 7 bd du Maréchal Juin, 14050 Caen (France); Sauvage, X. [Groupe de Physique des Matériaux, CNRS-UMR 6634, Université de Rouen, INSA de Rouen, Avenue de l' Université, 76800 Saint-Etienne du Rouvray (France); Hug, E. [Laboratoire de Cristallographie des Matériaux, CNRS-UMR 6508, Université de Caen, ENSICAEN, 7 bd du Maréchal Juin, 14050 Caen (France)

    2016-05-17

    In this work, 316L samples with submicrometric grain size were sintered by spark plasma sintering. To this aim, 316L powder was first ball-milled with different conditions to obtain nanostructured powder. The process control agent quantity and milling time were varied to check their influence on the crystallite size of milled powder. Samples were then sintered by spark plasma sintering using different sets of sintering parameters (temperature, dwell time and pressure). For each sample, grain size and density were systematically measured in order to investigate the influence of the sintering process on these two key microstructure parameters. Results show that suitable ball-milling and subsequent sintering can be employed to obtain austenitic stainless steel samples with grain sizes in the nanometer range with porosity lower than 3%. However, ball-milling and subsequent sintering enhance chromium carbides formation at the sample surface in addition to intragranular and intergranular oxides in the sample as revealed by X-ray diffraction and transmission electron microscopy. It has been shown that using Boron nitride together with graphite foils to protect the mold from powder welding prevent such carbide formation. For mechanical properties, results show that the grain size refinement strongly increases the hardness of the samples without deviation from Hall-Petch relationship despite the oxides formation. For corrosion resistance, grain sizes lower than a few micrometers involve a strong decrease in the pitting potential and a strong increase in passivation current. As a consequence, spark plasma sintering can be considered as a promising tool for ultra-fine grained austenitic stainless steel.

  20. Hydrogen storage materials discovery via high throughput ball milling and gas sorption.

    Science.gov (United States)

    Li, Bin; Kaye, Steven S; Riley, Conor; Greenberg, Doron; Galang, Daniel; Bailey, Mark S

    2012-06-11

    The lack of a high capacity hydrogen storage material is a major barrier to the implementation of the hydrogen economy. To accelerate discovery of such materials, we have developed a high-throughput workflow for screening of hydrogen storage materials in which candidate materials are synthesized and characterized via highly parallel ball mills and volumetric gas sorption instruments, respectively. The workflow was used to identify mixed imides with significantly enhanced absorption rates relative to Li2Mg(NH)2. The most promising material, 2LiNH2:MgH2 + 5 atom % LiBH4 + 0.5 atom % La, exhibits the best balance of absorption rate, capacity, and cycle-life, absorbing >4 wt % H2 in 1 h at 120 °C after 11 absorption-desorption cycles.

  1. The influence of ball-milling time on the dehydrogenation properties of the NaAlH4-MgH2 composite

    NARCIS (Netherlands)

    Bendyna, J.K.; Dyjak, S.M.; Notten, P.H.L.

    2015-01-01

    The recently developed NaAlH4eMgH2 composite shows improved hydrogen-storage properties compared to MgH2 and NaAlH4. However, the dehydrogenation reaction rates are still too limited, hampering practical applications. Mechanical ball milling is broadly used to improve the dehydrogenation reaction

  2. Highly Al-doped TiO{sub 2} nanoparticles produced by Ball Mill Method: structural and electronic characterization

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Desireé M. de los, E-mail: desire.delossantos@uca.es; Navas, Javier, E-mail: javier.navas@uca.es; Sánchez-Coronilla, Antonio; Alcántara, Rodrigo; Fernández-Lorenzo, Concha; Martín-Calleja, Joaquín

    2015-10-15

    Highlights: • Highly Al-doped TiO{sub 2} nanoparticles were synthesized using a Ball Mill Method. • Al doping delayed anatase to rutile phase transformation. • Al doping allow controlling the structural and electronic properties of nanoparticles. - Abstract: This study presents an easy method for synthesizing highly doped TiO{sub 2} nanoparticles. The Ball Mill method was used to synthesize pure and Al-doped titanium dioxide, with an atomic percentage up to 15.7 at.% Al/(Al + Ti). The samples were annealed at 773 K, 973 K and 1173 K, and characterized using ICP-AES, XRD, Raman spectroscopy, FT-IR, TG, STEM, XPS, and UV–vis spectroscopy. The effect of doping and the calcination temperature on the structure and properties of the nanoparticles were studied. The results show high levels of internal doping due to the substitution of Ti{sup 4+} ions by Al{sup 3+} in the TiO{sub 2} lattice. Furthermore, anatase to rutile transformation occurs at higher temperatures when the percentage of doping increases. Therefore, Al doping allows us to control the structural and electronic properties of the nanoparticle synthesized. So, it is possible to obtain nanoparticles with anatase as predominant phase in a higher range of temperature.

  3. Integrated modeling and analysis of ball screw feed system and milling process with consideration of multi-excitation effect

    Science.gov (United States)

    Zhang, Xing; Zhang, Jun; Zhang, Wei; Liang, Tao; Liu, Hui; Zhao, Wanhua

    2018-01-01

    The present researches about feed drive system and milling process are almost independent with each other, and ignore the interaction between the two parts, especially the influence of nonideal motion of feed drive system on milling process. An integrated modeling method of ball screw feed system and milling process with multi-excitation effect is proposed in this paper. In the integrated model, firstly an analytical model of motor harmonic torque with consideration of asymmetrical drive circuit and asymmetrical permanent magnet is given. Then, the numerical simulation procedure of cutter/workpiece engagement during milling process with displacement fluctuation induced by harmonic torque is put forward, which is followed by the solving flow for the proposed integrated model. Based on the integrated model, a new kind of quality defect shown as contour low frequency oscillation on machined surface is studied by experiments and simulations. The results demonstrate that the forming mechanism of the contour oscillation can be ascribed to the multi-excitation effect with motor harmonic torque and milling force. Moreover, the influence of different milling conditions on the contour oscillation characteristics, particularly on surface roughness, are further discussed. The results indicate that it is necessary to explain the cause of the new kind of quality defect with a view of system integration.

  4. Chevron's Panna Maria mill process description

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Key features of Chevron's Uranium Mill located near Panna Maria, Texas, are described. The mill is designed to process a nominal 2500 dry tons/day of uranium bearing ore containing 15% uncombined moisture. The following operations at the mill are highlighted: ore receiving, grinding, leaching, countercurrent decantation and tailings disposal, filtering, solvent extraction, solvent stripping, precipitation, drying, and packaging

  5. Synthesis of stoichiometric Ca{sub 2}Fe{sub 2}O{sub 5} nanoparticles by high-energy ball milling and thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Amorim, B.F.; Morales, M.A.; Bohn, F.; Carriço, A.S. [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, 59078-900 Natal, RN (Brazil); Medeiros, S.N. de, E-mail: sndemedeiros@gmail.com [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, 59078-900 Natal, RN (Brazil); Dantas, A.L. [Departamento de Física, Universidade do Estado do Rio Grande do Norte, 59610-210 Mossoró, RN (Brazil)

    2016-05-01

    We report the synthesis of Ca{sub 2}Fe{sub 2}O{sub 5} nanoparticles by high-energy ball milling and thermal annealing from α-Fe{sub 2}O{sub 3} and CaCO{sub 3}. Magnetization measurements, Mössbauer and X-ray spectra reveal that annealing at high temperatures leads to better quality samples. Our results indicate nanoparticles produced by 10 h high-energy ball milling and thermal annealing for 2 h at 1100 °C achieve improved stoichiometry and the full weak ferromagnetic signal of Ca{sub 2}Fe{sub 2}O{sub 5}. Samples annealed at lower temperatures show departure from stoichiometry, with a higher occupancy of Fe{sup 3+} in octahedral sites, and a reduced magnetization. Thermal relaxation for temperatures in the 700–1100 °C range is well represented by a Néel model, assuming a random orientation of the weak ferromagnetic moment of the Ca{sub 2}Fe{sub 2}O{sub 5} nanoparticles.

  6. The incredible shrinking ball

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Maurice

    2011-12-15

    In the oil and gas industry, the implementation of fracture systems using ball and seat technology helped make multistage fracturing possible. However, frac balls can obstruct later production flow by staying in the well. Baker Hughes Inc. developed a technology to solve this problem: IN-Tallic frac balls. The unique feature of these frac balls is that they are made of an electrolytic metallic nanostructured material which is light and strong and which melts away with salt water or brine through a decomposition process governed by electrochemical reactions controlled by nanoscale coatings. These balls need to be kept away from moisture in order to prevent degradation. This technology is more expensive than traditional frac balls but it prevents the need to mill out obstructions created by the balls. The IN-Tallic frac balls are a new technology which provides operators with peace of mind.

  7. Controlling the number of walls in multi walled carbon nanotubes/alumina hybrid compound via ball milling of precipitate catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Nosbi, Norlin [School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia (USM), 14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang (Malaysia); Akil, Hazizan Md, E-mail: hazizan@usm.my [School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia (USM), 14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang (Malaysia); Cluster for Polymer Composite (CPC), Science and Engineering Research Centre, Engineering Campus, Universiti Sains Malaysia (USM), 14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang (Malaysia)

    2015-06-15

    Graphical abstract: - Highlights: • We report that, to manipulate carbon nanotubes geometry and number of walls are by controlling the precipitate catalyst size. • Number of walls and geometry effects depend on the milling time of the precipitate catalyst. • Increasing milling of time will decrease the carbon nanotubes number of walls. • Increasing milling of time will increase the carbon nanotubes thermal conductivity. - Abstract: This paper reports the influence of milling time on the structure and properties of the precipitate catalyst of multi walled carbon nanotubes (MWCNT)/alumina hybrid compound, produced through the chemical vapour deposition (CVD) process. For this purpose, light green precipitate consisted of aluminium, nickel(II) nitrate hexahydrate and sodium hydroxide mixture was placed in a planetary mill equipped with alumina vials using alumina balls at 300 rpm rotation speed for various milling time (5–15 h) prior to calcinations and CVD process. The compound was characterized using various techniques. Based on high-resolution transmission electron microscopy analysis, increasing the milling time up to 15 h decreased the diameter of MWCNT from 32.3 to 13.1 nm. It was noticed that the milling time had a significant effect on MWCNT wall thickness, whereby increasing the milling time from 0 to 15 h reduced the number of walls from 29 to 12. It was also interesting to note that the carbon content increased from 23.29 wt.% to 36.37 wt.% with increasing milling time.

  8. Heterogeneous sono-Fenton-like process using martite nanocatalyst prepared by high energy planetary ball milling for treatment of a textile dye.

    Science.gov (United States)

    Dindarsafa, Mahsa; Khataee, Alireza; Kaymak, Baris; Vahid, Behrouz; Karimi, Atefeh; Rahmani, Amir

    2017-01-01

    High energy planetary ball milling was applied to prepare sono-Fenton nanocatalyst from natural martite (NM). The NM samples were milled for 2-6h at the speed of 320rpm for production of various ball milled martite (BMM) samples. The catalytic performance of the BMMs was greater than the NM for treatment of Acid Blue 92 (AB92) in heterogeneous sono-Fenton-like process. The NM and the BMM samples were characterized by XRD, FT-IR, SEM, EDX and BET analyses. The particle size distribution of the 6h-milled martite (BMM 3 ) was in the range of 10-90nm, which had the highest surface area compared to the other samples. Then, the impact of main operational parameters was investigated on the process. Complete removal of the dye was obtained at the desired conditions including initial pH 7, 2.5g/L BMM 3 dosage, 10mg/L AB92 concentration, and 150W ultrasonic power after 30min of treatment. The treatment process followed pseudo-first order kinetic. Environmentally-friendly modification of the NM, low leached iron amount and repeated application at milder pH were the significant benefits of the BMM 3 . The GC-MS was successfully used to identify the generated intermediates. Eventually, an artificial neural network (ANN) was applied to predict the AB92 removal efficiency based upon the experimental data with a proper correlation coefficient (R 2 =0.9836). Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Unraveling the synthesis of homoleptic [Ag(N,N-diaryl-NHC)2]Y (Y = BF4, PF6) complexes by ball-milling.

    Science.gov (United States)

    Beillard, Audrey; Bantreil, Xavier; Métro, Thomas-Xavier; Martinez, Jean; Lamaty, Frédéric

    2016-11-28

    A user-friendly and general mechanochemical method was developed to access rarely described NHC (N-heterocyclic carbene) silver(i) complexes featuring N,N-diarylimidazol(idin)ene ligands and non-coordinating tetrafluoroborate or hexafluorophosphate counter anions. Comparison with syntheses in solution clearly demonstrated the superiority of the ball-milling conditions.

  10. Delamination of hexagonal boron nitride in a stirred media mill

    International Nuclear Information System (INIS)

    Damm, C.; Körner, J.; Peukert, W.

    2013-01-01

    A scalable process for delamination of hexagonal boron nitride in an aqueous solution of the non-ionic surfactant TWEEN85 using a stirred media mill is presented. The size of the ZrO 2 beads used as grinding media governs the dimensions of the ground boron nitride particles as atomic force microscopic investigations (AFM) reveal: the mean flakes thickness decreases from 3.5 to 1.5 nm and the ratio between mean flake area and mean flake thickness increases from 2,200 to 5,800 nm if the grinding media size is reduced from 0.8 to 0.1 mm. This result shows that a high number of stress events in combination with low stress energy (small grinding media) facilitate delamination of the layered material whereas at high stress energies in combination with a low number of stress events (large grinding media) breakage of the layers dominates over delamination. The results of particle height analyses by AFM show that few-layer structures have been formed by stirred media milling. This result is in agreement with the layer thickness dependence of the delamination energy for hexagonal boron nitride. The concentration of nanoparticles remaining dispersed after centrifugation of the ground suspension increases with grinding time and with decreasing grinding media size. After 5 h of grinding using 0.1 mm ZrO 2 grinding media the yield of nanoparticle formation is about 5 wt%. The nanoparticles exhibit the typical Raman peak for hexagonal boron nitride at 1,366 cm −1 showing that the in-plane order in the milled platelets is remained.

  11. Effect of glucosamine HCl on dissolution and solid state behaviours of piroxicam upon milling.

    Science.gov (United States)

    Al-Hamidi, Hiba; Edwards, Alison A; Douroumis, Dionysis; Asare-Addo, Kofi; Nayebi, Alireza Mohajjel; Reyhani-Rad, Siamak; Mahmoudi, Javad; Nokhodchi, Ali

    2013-03-01

    Piroxicam is a non-steroidal anti-inflammatory drug that is characterised by low solubility and high permeability. In order to improve the drug dissolution rate, the co-grinding method was used as an approach to prepare piroxicam co-ground in the carriers such as glucosamine hydrochloride. As, this amino sugar (glucosamine HCl) has been shown to decrease pain and improve mobility in osteoarthritis in joints, therefore, the incorporation of glucosamine in piroxicam formulations would be expected to offer additional benefits to patients. The effect of the order of grinding on the dissolution of piroxicam was also investigated. Co-ground drug and glucosamine were prepared in different ratios using a ball mill. The samples were then subjected to different grinding times. In order to investigate the effect of the grinding process on the dissolution behaviour of piroxicam, the drug was ground separately in the absence of glucosamine. Mixtures of ground piroxicam and unground D-glucosamine HCl were prepared. Physical mixtures of piroxicam and glucosamine were also prepared for comparison. The properties of prepared co-ground systems and physical mixtures were studied using a dissolution tester, FTIR, SEM, XRPD and DSC. These results showed that the presence of glucosamine HCl can increase dissolution rate of piroxicam compared to pure piroxicam. Generally, all dissolution profiles showed the fastest dissolution rate when ground piroxicam was mixed with unground glucosamine. This was closely followed by the co-grinding of piroxicam with glucosamine where lower grinding times showed the fastest dissolution. The solid state studies showed that the grinding of piroxicam for longer times had no effect on polymorphic form of piroxicam, whereas mixtures of piroxicam-glucosamine ground for longer times (60 min) converted piroxicam polymorph II to polymorph I. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Production of pyrite nanoparticles using high energy planetary ball milling for sonocatalytic degradation of sulfasalazine.

    Science.gov (United States)

    Khataee, Alireza; Fathinia, Siavash; Fathinia, Mehrangiz

    2017-01-01

    Sonocatalytic performance of pyrite nanoparticles was evaluated by the degradation of sulfasalazine (SSZ). Pyrite nanoparticles were produced via a high energy mechanical ball milling (MBM) in different processing time from 2h to 6h, in the constant milling speed of 320rpm. X-ray diffraction (XRD), scanning electron microscopy (SEM) coupled with energy dispersive X-ray (EDX), Fourier transform infrared spectroscopy (FT-IR) analysis and Brunauer-Emmett-Teller (BET) confirmed the production of pyrite nanoparticles during 6h of ball milling with the average size distribution of 20-80nm. The effects of various operational parameters including pH value, catalyst amount (mg/L), SSZ concentration (mg/L), ultrasonic frequency (kHz) and reaction time on the SSZ removal efficiency were examined. The obtained results showed that the maximum removal efficiency of 97.00% was obtained at pH value of 4, catalyst dosage of 0.5g/L, SSZ concentration of 10mg/L and reaction time of 30min. Experimental results demonstrated that the kinetic of the degradation process can be demonstrated using Langmuir-Hinshelwood (L-H) kinetic model. The effect of different inorganic ions such as Cl - , CO 3 2- and SO 4 2- was investigated on the L-H reaction rate (k r ) and adsorption (K s ) constants. Results showed that the presence of the mentioned ions significantly influenced the L-H constants. The impact of ethanol as a OH radical scavenger and some enhancers including H 2 O 2 and K 2 S 2 O 8 was investigated on the SSZ removal efficiency. Accordingly, the presence of ethanol suppressed SSZ degradation due to the quenching of OH radicals and the addition of K 2 S 2 O 8 and H 2 O 2 increased the SSZ removal efficiency, due to the formation of SO 4 - and additional OH radicals, respectively. Under the identical conditions of operating parameters, pyrite nanoparticles maintained their catalytic activity during four consecutive runs. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Fabrication and characterization of Cu/YSZ cermet high temperature electrolysis cathode material prepared by high-energy ball-milling method

    International Nuclear Information System (INIS)

    Lee, Sungkyu; Kim, Jong-Min; Hong, Hyun Seon; Woo, Sang-Kook

    2009-01-01

    Cu/YSZ cermet (40 and 60 vol.% Cu powder with balance YSZ) is a more economical cathode material than the conventional Ni/YSZ cermet for high temperature electrolysis (HTE) of water vapor and it was successfully fabricated by high-energy ball-milling of Cu and YSZ powders, pressing into pellets (o 13 mm x 2 mm) and subsequent sintering process at 700 deg. C under flowing 5%-H 2 /Ar gas. The Cu/YSZ composite material thus fabricated was characterized using various analytical tools such as XRD, SEM, and laser diffraction and scattering method. Electrical conductivity of sintered Cu/YSZ cermet pellets thus fabricated was measured by using 4-probe technique for comparison with that of conventional Ni/YSZ cermets. The effect of composite composition on the electrical conductivity was investigated and a marked increase in electrical conductivity for copper contents greater than 40 vol.% in the composite was explained by percolation threshold. Also, Cu/YSZ cermet was selected as a candidate for HTE cathode of self-supporting planar unit cell and its electrochemical performance was investigated, paving the way for preliminary correlation of high-energy ball-milling parameters with observed physical and electrochemical performance of Cu/YSZ cermets

  14. Performance enhancement of NdFeB nanoflakes prepared by surfactant-assisted ball milling at low temperature by using different surfactants

    Science.gov (United States)

    An, Xiaoxin; Jin, Kunpeng; Wang, Fang; Fang, Qiuli; Du, Juan; Xia, Weixing; Yan, Aru; Liu, J. Ping; Zhang, Jian

    2017-02-01

    Hard magnetic NdFeB submicron and nanoflakes were successfully prepared by surfactant-assisted ball milling at room temperature (SABMRT) and low temperature (SABMLT) by using oleic acid (OA), oleylamine (OLA) and trioctylamine (TOA) as surfactant, respectively. Among the surfactants used, OA and OLA have similar effects on the morphology of the NdFeB nanoflakes milled at both room and low temperature. In the case of TOA, irregular micron-sized particles and submirco/nanoflakes were obtained for the NdFeB powders prepared by SABMRT and SABMLT, respectively. Samples prepared by SABMLT show better crystallinity and better degree of grain alignment than that prepared by SABMRT with the same surfactant. Comparing with the samples milled at RT, higher coercivity and larger remanence ratio were achieved in the NdFeB samples prepared at LT. The amounts of residual surfactants in final NdFeB powders were also calculated, which reveals that the final NdFeB powders milled at LT possess lower amount of residual surfactants than those milled at RT. It was found that lowering milling temperature of SABM would be a promising way for fabricating permanent magnetic materials with better hard magnetic properties.

  15. Mechanism of nanostructure formation in ball-milled Cu and Cu–3wt%Zn studied by X-ray diffraction line profile analysis

    International Nuclear Information System (INIS)

    Khoshkhoo, M. Samadi; Scudino, S.; Bednarcik, J.; Kauffmann, A.; Bahmanpour, H.; Freudenberger, J.; Scattergood, R.; Zehetbauer, M.J.; Koch, C.C.; Eckert, J.

    2014-01-01

    Highlights: • Nanostructured powders of Cu and Cu–3wt%Zn were produced using ball milling. • During cryomilling, nanostructure was formed by structural decomposition. • Dynamic recrystallization happened in room–temperature milling of Cu–3wt%Zn. • Structural decomposition took place during room–temperature milling of Cu. -- Abstract: The mechanism of nanostructure formation during cryogenic and room-temperature milling of Cu and Cu–3wt%Zn was investigated using X-ray diffraction line profile analysis. For that, the whole powder pattern modeling approach (WPPM) was used to analyze the evolution of microstructural features including coherently scattering domain size, dislocation density, and density of planar faults. It was found that for all sets of experiments, structural decomposition is the dominant mechanism of nanostructure formation during cryomilling. During subsequent RT-milling, grain refinement still occurs by structural decomposition for pure copper. On the other hand, discontinuous dynamic recrystallization is responsible for nanostructure formation during RT-milling of Cu–3wt%Zn. This is attributed to lower stacking-fault energy of Cu–3wt%Zn compared to pure copper. Finally, room temperature milling reveals the occurrence of a detwinning phenomenon

  16. Comminution circuits for compact itabirites

    Directory of Open Access Journals (Sweden)

    Pedro Ferreira Pinto

    Full Text Available Abstract In the beneficiation of compact Itabirites, crushing and grinding account for major operational and capital costs. As such, the study and development of comminution circuits have a fundamental importance for feasibility and optimization of compact Itabirite beneficiation. This work makes a comparison between comminution circuits for compact Itabirites from the Iron Quadrangle. The circuits developed are: a crushing and ball mill circuit (CB, a SAG mill and ball mill circuit (SAB and a single stage SAG mill circuit (SSSAG. For the SAB circuit, the use of pebble crushing is analyzed (SABC. An industrial circuit for 25 million tons of run of mine was developed for each route from tests on a pilot scale (grinding and industrial scale. The energy consumption obtained for grinding in the pilot tests was compared with that reported by Donda and Bond. The SSSAG route had the lowest energy consumption, 11.8kWh/t and the SAB route had the highest energy consumption, 15.8kWh/t. The CB and SABC routes had a similar energy consumption of 14.4 kWh/t and 14.5 kWh/t respectively.

  17. Investigation of physical properties and stability of indomethacin-cimetidine and naproxen-cimetidine co-amorphous systems prepared by quench cooling, coprecipitation and ball milling

    DEFF Research Database (Denmark)

    Lim, Ai Wei; Löbmann, Korbinian; Grohganz, Holger

    2016-01-01

    the samples. Structural relaxation (i.e. molecular mobility) behaviour was obtained from the Kohlrausch-Williams-Watts (KWW) relationship. KEY FINDINGS: A glass transition temperature (Tg ), on average 20 °C higher than the predicted Tg (calculated from the Fox equation), was observed in all samples....... The structural relaxation was dependent on the preparative methods. At a storage temperature of 40 °C, a comparatively higher molecular mobility was observed in indomethacin-cimetidine samples prepared by ball milling (ln τ(β) = 0.8), while similar molecular mobility was found for the same sample prepared...... by quench cooling (ln τ(β) = 2.4) and co-evaporation (ln τ(β) = 2.5). In contrast, molecular mobility of the naproxen-cimetidine samples followed the order co-evaporation (ln τ(β) = 0.8), quench cooling (ln τ(β) = 1.6) and ball milling (ln τ(β) = 1.8). CONCLUSION: The estimated relaxation times by the DSC...

  18. A study on thermal and mechanical properties of mechanically milled HDPE and PP

    International Nuclear Information System (INIS)

    Can, S.; Tan, S.

    2003-01-01

    In this study, mechanical mixing of HDPE and PP was performed via ball milling. Prepared compositions were 75/25 , 50/50 , 25/75 w/w HDPE/PP. Milling time and ball to powder ratio (B/P) were kept constant and system was cooled by adding solid CO 2 to improve the milling efficiency. To compare these systems with traditional methods, mixtures were also melt mixed by Brabender Plasti-Corder. Both milled and melt mixed systems were examined with DSC for thermal properties and tensile testing for mechanical properties Results are discussed by comparing milled , melt mixed and as-received polymers. It is observed that, unlike ball milled systems' in melt mixed systems mechanical properties are composition dependent. In addition , ball milling results in amorphization of both polymers and very high amounts of PP (75wt %) creates very amorphous HDPE structure. (Original)

  19. Fabrication of Al/A206–Al2O3 nano/micro composite by combining ball milling and stir casting technology

    International Nuclear Information System (INIS)

    Tahamtan, S.; Halvaee, A.; Emamy, M.; Zabihi, M.S.

    2013-01-01

    Highlights: ► Uniform distribution of alumina particles in molten Al alloy by using MMMC. ► Improvement in wettability of alumina particles with molten Al alloy by using MMMC. ► Porosity content in Al/A206-alumina composite decreased by using MMMC. ► Improvement in tensile strength of Al/A206-alumina composite by using MMMC. ► Decrease in interfacial reaction product by incorporating MMMC in semi-solid state. - Abstract: Al206/5vol.%Al 2 O 3p cast composites were fabricated by the injection of reinforcing particles into molten Al alloy in two different forms, i.e. as Al 2 O 3 particles and milled particulates of alumina with Al and Mg powders. The resultant milled powders (Master Metal Matrix Composite (MMMC)) were then added into the molten Al alloy both in semi-solid state and above liquidus temperature. Effects of powder addition technique, reinforcement particle size and casting temperature on distribution and incorporation of reinforcing particles into molten Al alloy were investigated. Morphology evolution of powders during milling, microscopic examinations of composite and matrix alloy were studied by scanning electron microscopy (SEM). X-ray diffraction (XRD) analysis was also used to determine the possible interaction between powders after ball milling process. Results showed that injection of powders in the form of MMMC leads to considerable improvement in incorporation and distribution of Al 2 O 3p in the Al206 matrix alloy leading to the improvement in tensile properties. Improvement in tensile properties is attributed to the better wetting of Al 2 O 3p by melt as well as removing microchannels and roughness on alumina particles as a consequence of ball milling process

  20. SnSe/carbon nanocomposite synthesized by high energy ball milling as an anode material for sodium-ion and lithium-ion batteries

    International Nuclear Information System (INIS)

    Zhang, Zhian; Zhao, Xingxing; Li, Jie

    2015-01-01

    Graphical abstract: A homogeneous nanocomposite of SnSe and carbon black was synthesised by high energy ball milling and empolyed as an anode material for sodium-ion batteries (SIBs) and lithium-ion batteries (LIBs). The nanocomposite anode exhibits excellent electrochemical performances in both SIBs and LIBs. - Highlights: • A homogeneous nanocomposite of SnSe and carbon black was fabricated by high energy ball milling. • SnSe and carbon black are homogeneously mixed at the nanoscale level. • The SnSe/C anode exhibits excellent electrochemical performances in both SIBs and LIBs. - Abstract: A homogeneous nanocomposite of SnSe and carbon black, denoted as SnSe/C nanocomposite, was fabricated by high energy ball milling and empolyed as a high performance anode material for both sodium-ion batteries and lithium-ion batteries. The X-ray diffraction patterns, scanning electron microscopy and transmission electron microscopy observations confirmed that SnSe in SnSe/C nanocomposite was homogeneously distributed within carbon black. The nanocomposite anode exhibited enhanced electrochemical performances including a high capacity, long cycling behavior and good rate performance in both sodium-ion batteries (SIBs) and lithium-ion batteries (LIBs). In SIBs, an initial capacitiy of 748.5 mAh g −1 was obtained and was maintained well on cycling (324.9 mAh g −1 at a high current density of 500 mA g −1 in the 200 th cycle) with 72.5% retention of second cycle capacity (447.7 mAh g −1 ). In LIBs, high initial capacities of approximately 1097.6 mAh g −1 was obtained, and this reduced to 633.1 mAh g −1 after 100 cycles at 500 mA g −1

  1. Influence of octanoic acid on SmCo{sub 5} nanoflakes prepared by surfactant-assisted high-energy ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Liyun, E-mail: zheng@udel.ed [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); College of Electromechanical Engineering, Hebei University of Engineering, Handan, Hebei 056038 (China); Cui Baozhi; Akdogan, Nilay G.; Li Wanfeng; Hadjipanayis, George C. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States)

    2010-08-20

    High-energy ball milling (HEBM) of magnetically hard SmCo{sub 5} was conducted in heptane with octanoic acid as the surfactant. The effects of octanoic acid on the morphology and magnetic properties of the powders were investigated by scanning electron microscopy, X-ray diffraction and vibrating sample magnetometry. The results show an interesting unexpected fact that the SmCo{sub 5} powders processed by octanoic acid-assisted HEBM were in form of nanoflakes with aspect-ratio of 10{sup 2}-10{sup 3} without the presence of nanoparticles. The thickness of nanoflakes decreases with increasing milling time. X-ray diffraction patterns did not show the sign of oxidation and the diffraction peaks of SmCo{sub 5} were getting broader with the increase of milling time. The nanoflakes were magnetically anisotropic and had a higher coercivity than the micro-particles prepared by HEBM without surfactant. The coercivity of SmCo{sub 5} increased initially with the milling time and then it decreased after reaching the maximum value of 15.2 kOe. High-resolution transmission electron microscopy image showed that the SmCo{sub 5} nanoflakes are nanocrystalline with an average crystallite size approximately 12 nm.

  2. Easily recycled Bi2O3 photocatalyst coatings prepared via ball milling followed by calcination

    Science.gov (United States)

    Cheng, Lijun; Hu, Xumin; Hao, Liang

    2017-06-01

    Bi2O3 photocatalyst coatings derived from Bi coatings were first prepared by a two-step method, namely ball milling followed by the calcination process. The as-prepared samples were characterized by XRD, SEM, XPS and UV-Vis spectra, respectively. The results showed that monoclinic Bi2O3 coatings were obtained after sintering Bi coatings at 673 or 773 K, while monoclinic and triclinic mixed phase Bi2O3 coatings were obtained at 873 or 973 K. The topographies of the samples were observably different, which varied from flower-like, irregular, polygonal to nanosized particles with the increase in calcination temperature. Photodegradation of malachite green under simulated solar irradiation for 180 min showed that the largest degradation efficiency of 86.2% was achieved over Bi2O3 photocatalyst coatings sintered at 873 K. The Bi2O3 photocatalyst coatings, encapsulated with Al2O3 ball with an average diameter around 1 mm, are quite easily recycled, which provides an alternative visible light-driven photocatalyst suitable for practical water treatment application.

  3. Contamination risk of stable isotope samples during milling.

    Science.gov (United States)

    Isaac-Renton, M; Schneider, L; Treydte, K

    2016-07-15

    Isotope analysis of wood is an important tool in dendrochronology and ecophysiology. Prior to mass spectrometry analysis, wood must be homogenized, and a convenient method involves a ball mill capable of milling samples directly in sample tubes. However, sample-tube plastic can contaminate wood during milling, which could lead to biological misinterpretations. We tested possible contamination of whole wood and cellulose samples during ball-mill homogenization for carbon and oxygen isotope measurements. We used a multi-factorial design with two/three steel milling balls, two sample amounts (10 mg, 40 mg), and two milling times (5 min, 10 min). We further analyzed abrasion by milling empty tubes, and measured the isotope ratios of pure contaminants. A strong risk exists for carbon isotope bias through plastic contamination: the δ(13) C value of polypropylene deviated from the control by -6.77‰. Small fibers from PTFE filter bags used during cellulose extraction also present a risk as the δ(13) C value of this plastic deviated by -5.02‰. Low sample amounts (10 mg) showed highest contamination due to increased abrasion during milling (-1.34‰), which is further concentrated by cellulose extraction (-3.38‰). Oxygen isotope measurements were unaffected. A ball mill can be used to homogenize samples within test tubes prior to oxygen isotope analysis, but not prior to carbon or radiocarbon isotope analysis. There is still a need for a fast, simple and contamination-free sample preparation procedure. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Magnetic properties of Co{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} spinel ferrite nanoparticles synthesized by starch-assisted sol–gel autocombustion method and its ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Raghvendra Singh, E-mail: yadav@fch.vutbr.cz [Materials Research Centre, Brno University of Technology, Purkyňova 464/118, 61200 Brno (Czech Republic); Havlica, Jaromir [Materials Research Centre, Brno University of Technology, Purkyňova 464/118, 61200 Brno (Czech Republic); Hnatko, Miroslav; Šajgalík, Pavol [Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 36 Bratislava (Slovakia); Alexander, Cigáň [Institute of Measurement Science, Slovak Academy of Sciences, Dúbravská cesta 9, SK-841 04 Bratislava (Slovakia); Palou, Martin; Bartoníčková, Eva; Boháč, Martin; Frajkorová, Františka; Masilko, Jiri; Zmrzlý, Martin; Kalina, Lukas; Hajdúchová, Miroslava; Enev, Vojtěch [Materials Research Centre, Brno University of Technology, Purkyňova 464/118, 61200 Brno (Czech Republic)

    2015-03-15

    In this article, Co{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} (x=0.0 and 0.5) spinel ferrite nanoparticles were achieved at 800 °C by starch-assisted sol–gel autocombustion method. To further reduce the particle size, these synthesized ferrite nanoparticles were ball-milled for 2 h. X-ray diffraction patterns demonstrated single phase formation of Co{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} (x=0.0 and 0.5) spinel ferrite nanoparticles. FE-SEM analysis indicated the nanosized spherical particles formation with spherical morphology. The change in Raman modes and relative intensity were observed due to ball milling and consequently decrease of particle size and cationic redistribution. An X-ray Photoelectron Spectroscopy (XPS) result indicated that Co{sup 2+}, Zn{sup 2+} and Fe{sup 3+} exist in octahedral and tetrahedral sites. The cationic redistribution of Zn{sup 2+} and consequently Fe{sup 3+} occurred between octahedral and tetrahedral sites after ball-milling. The change in saturation magnetization (M{sub s}) and coercivity (H{sub c}) with decrease of nanocrystalline size and distribution of cations in spinel ferrite were observed. - Highlights: • Co{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} spinel ferrite nanoparticles. • Starch-assisted sol–gel auto-combustion method. • Effect of ball-milling on particle size and cation distribution. • Magnetic property dependent on cations and particle size.

  5. Co-grinding Effect on Crystalline Zaltoprofen with ?-cyclodextrin/Cucurbit[7]uril in Tablet Formulation

    OpenAIRE

    Li, Shanshan; Lin, Xiang; Xu, Kailin; He, Jiawei; Yang, Hongqin; Li, Hui

    2017-01-01

    This work aimed to investigate the co-grinding effects of ?-cyclodextrin (?-CD) and cucurbit[7]uril (CB[7]) on crystalline zaltoprofen (ZPF) in tablet formulation. Crystalline ZPF was prepared through anti-solvent recrystallization and fully analyzed through single-crystal X-ray diffraction. Co-ground dispersions and mono-ground ZPF were prepared using a ball grinding process. Results revealed that mono-ground ZPF slightly affected the solid state, solubility, and dissolution of crystalline Z...

  6. Using of fluidized-bed jet mill to a super fine comminution of steel composite

    Directory of Open Access Journals (Sweden)

    D. Urbaniak

    2015-01-01

    Full Text Available In many industries the demand for very fine material increases. In the metallurgical industry, for example, there is increasing use of the production of high density metal elements with the use of metallurgical powder composites. The use of powder composites requires prior their grinding. Unfortunately, the very fine grinding is not an easy process. The using for this purpose fluidized-bed jet mill was proposed in the paper. The attempts of grinding of metallurgical powder were carried out in the fluidized-bed jet mill. After the experiment analyses of particle size distribution of grinding products were performed. The results are presented in graphs. Analyses of the obtained results concluded that the grinding of very fine metallurgical composite is possible and produces positive results.

  7. TRISO-coated spent fuel processing using a Grind-Leach head-end

    International Nuclear Information System (INIS)

    Spencer, Barry B.; Del Cul, Guillermo D.; Mattus, Catherine H.; Collins, Emory D.

    2005-01-01

    Processing of TRISO-coated HTGR fuels with the grind-leach process requires that the fuel be finely pulverized for efficient and effective acid dissolution of the fuel components. Mechanical size reduction of the fuel is being investigated with jet mill technology as the final milling step. Laboratory experiments were performed with surrogates of crushed fuel compacts that indicate that milling to very small particle sizes is feasible. The size distribution of the milled product is sensitive to the solids feed rate, and the distribution may be bimodal which could support an effective solid-solid separation. (author)

  8. Removal of fluoride from drinking water using modified ultrafine tea powder processed using a ball-mill

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Huimei; Xu, Lingyun; Chen, Guijie; Peng, Chuanyi [School of Tea & Food Science and Technology, Anhui Agricultural University/State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, Anhui (China); Ke, Fei [School of Tea & Food Science and Technology, Anhui Agricultural University/State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, Anhui (China); School of Science, Anhui Agricultural University, Hefei 230036 (China); Liu, Zhengquan; Li, Daxiang; Zhang, Zhengzhu [School of Tea & Food Science and Technology, Anhui Agricultural University/State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, Anhui (China); Wan, Xiaochun, E-mail: xcwan@ahau.edu.cn [School of Tea & Food Science and Technology, Anhui Agricultural University/State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, Anhui (China)

    2016-07-01

    Highlights: • Ultrafine tea powder (UTP) was prepared by ball-milling. • A novel and high efficient biosorbent from ultrafine tea powder (UTP) for the removal of fluoride from drinking water was prepared. • Loaded ultrafine tea powder adsorbed more fluoride adsorption than loaded tea waste. • UTP-Zr performed well over a considerably wide pH range, from 3.0 to 10.0. • UTP-Zr retains Zr metal ion during defluoridation, limiting secondary pollution. - Abstract: A low-cost and highly efficient biosorbent was prepared by loading zirconium(IV) onto ball-milled, ultrafine tea powder (UTP-Zr) for removal of fluoride from drinking water. To evaluate the fluoride adsorption capacity of UTP-Zr over a wide range of conditions, the biosorbent dosage, contact time, initial pH, initial fluoride concentration and presence of other ions were varied. UTP-Zr performed well over the considerably wide pH range of 3–10. The residual concentration of Zr in the treated water was below the limit of detection (0.01 mg/L). Fluoride adsorption by the UTP-Zr biosorbent followed the Langmuir model, with a maximum adsorption capacity of 12.43 mgF/g at room temperature. The fluoride adsorption kinetics fit the pseudo-second-order kinetic model. The synthesized biosorbent was characterized by BET, SEM, EDS, XRD and XPS to reveal how UTP-Zr interacts with fluoride. Results from this study demonstrated that UTP-based biosorbents will be useful and safe for the removal of fluoride from drinking water.

  9. Removal of fluoride from drinking water using modified ultrafine tea powder processed using a ball-mill

    International Nuclear Information System (INIS)

    Cai, Huimei; Xu, Lingyun; Chen, Guijie; Peng, Chuanyi; Ke, Fei; Liu, Zhengquan; Li, Daxiang; Zhang, Zhengzhu; Wan, Xiaochun

    2016-01-01

    Highlights: • Ultrafine tea powder (UTP) was prepared by ball-milling. • A novel and high efficient biosorbent from ultrafine tea powder (UTP) for the removal of fluoride from drinking water was prepared. • Loaded ultrafine tea powder adsorbed more fluoride adsorption than loaded tea waste. • UTP-Zr performed well over a considerably wide pH range, from 3.0 to 10.0. • UTP-Zr retains Zr metal ion during defluoridation, limiting secondary pollution. - Abstract: A low-cost and highly efficient biosorbent was prepared by loading zirconium(IV) onto ball-milled, ultrafine tea powder (UTP-Zr) for removal of fluoride from drinking water. To evaluate the fluoride adsorption capacity of UTP-Zr over a wide range of conditions, the biosorbent dosage, contact time, initial pH, initial fluoride concentration and presence of other ions were varied. UTP-Zr performed well over the considerably wide pH range of 3–10. The residual concentration of Zr in the treated water was below the limit of detection (0.01 mg/L). Fluoride adsorption by the UTP-Zr biosorbent followed the Langmuir model, with a maximum adsorption capacity of 12.43 mgF/g at room temperature. The fluoride adsorption kinetics fit the pseudo-second-order kinetic model. The synthesized biosorbent was characterized by BET, SEM, EDS, XRD and XPS to reveal how UTP-Zr interacts with fluoride. Results from this study demonstrated that UTP-based biosorbents will be useful and safe for the removal of fluoride from drinking water.

  10. Record critical current densities in IG processed bulk YBa{sub 2}Cu{sub 3}O{sub y} fabricated using ball-milled Y{sub 2}Ba{sub 1}Cu{sub 1}O{sub 5} phase

    Energy Technology Data Exchange (ETDEWEB)

    Muralidhar, Miryala; Kenta, Nakazato; Murakami, Masato [Department of Materials Science and Engineering, Superconducting Materials Laboratory, Shibaura Institute of Technology, Tokyo (Japan); Zeng, XianLin; Koblischka, Michael R. [Institute of Experimental Physics, Saarland University, Saarbruecken (Germany); Diko, Pavel [Institute of Experimental Physics, Material Physics Laboratory, Slovak Academy of Sciences, Kosice (Slovakia)

    2016-02-15

    The infiltration-growth (IG) technique enables the uniform and controllable Y{sub 2}BaCuO{sub 5} (Y211) secondary phase particles formation within the YBa{sub 2}Cu{sub 3}O{sub y} (Y123) matrix. Recent results clarified that the flux pinning performance of the Y123 material was dramatically improved by optimizing the processing conditions during the IG process. In this paper, we adapted the IG technique and produced several samples with addition of nanometer-sized Y211 secondary phase particles, which were produced by a ball milling technique. We found that the performance of the IG processed Y123 material dramatically improved in the low field region for a ball milling time of 12 h as compared to the samples without a ball milling step. Magnetization measurements showed a sharp superconducting transition with an onset T{sub c} at around 92 K. The critical current density (J{sub c}) at 77 K and zero field was determined to be 224 022 Acm{sup -2}, which is higher than the not ball-milled sample. Furthermore, microstructural observations exhibited a uniform microstructure with homogenous distribution of nanosized Y-211 inclusions within the Y-123 matrix. The improved performance of the Y-123 material can be understood in terms of fine distribution of the secondary phases. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. A 6-DOF parallel bone-grinding robot for cervical disc replacement surgery.

    Science.gov (United States)

    Tian, Heqiang; Wang, Chenchen; Dang, Xiaoqing; Sun, Lining

    2017-12-01

    Artificial cervical disc replacement surgery has become an effective and main treatment method for cervical disease, which has become a more common and serious problem for people with sedentary work. To improve cervical disc replacement surgery significantly, a 6-DOF parallel bone-grinding robot is developed for cervical bone-grinding by image navigation and surgical plan. The bone-grinding robot including mechanical design and low level control is designed. The bone-grinding robot navigation is realized by optical positioning with spatial registration coordinate system defined. And a parametric robot bone-grinding plan and high level control have been developed for plane grinding for cervical top endplate and tail endplate grinding by a cylindrical grinding drill and spherical grinding for two articular surfaces of bones by a ball grinding drill. Finally, the surgical flow for a robot-assisted cervical disc replacement surgery procedure is present. The final experiments results verified the key technologies and performance of the robot-assisted surgery system concept excellently, which points out a promising clinical application with higher operability. Finally, study innovations, study limitations, and future works of this present study are discussed, and conclusions of this paper are also summarized further. This bone-grinding robot is still in the initial stage, and there are many problems to be solved from a clinical point of view. Moreover, the technique is promising and can give a good support for surgeons in future clinical work.

  12. Correlation of gas sensitivite properties with microstructure of Fe2O3-SnO2 ceramics prepared by high energy ball milling

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Lu, S.W.; Zhou, Y.X.

    1997-01-01

    A remarkable gas sensitivity to ethnaol gas has been observed in nanostructured Fe2O3-SnO2 materials with a composition of 6.4 mol% SnO2 prepared by high energy ball milling. The microstructure of the materials has been examined by x-ray diffraction (XRD) and Mossbauer spectroscopy. It was found...

  13. Influence of emulsifiers on the optimization of processing parameters of refining milk chocolate in the ball mill

    Directory of Open Access Journals (Sweden)

    Pajin Biljana

    2011-01-01

    Full Text Available Chocolate manufacture is a complex process which includes a large number of technology operations. One of the obligatory phases is milling, called refining, which aims at obtaining the appropriate distribution of particle size, resulting in the chocolate with optimal physical and sensory characteristics. The aim of this work was to define and optimize the process parameters for the production of milk chocolate by a non-conventional procedure, using the ball mill. The quality of chocolate mass, produced on this way, is determined by measuring the following parameters: moisture, size of the largest cocoa particle, yield flow, and Casson plastic viscosity. A special consideration of this study is the optimization of the types and amounts of emulsifiers, which are responsible for achieving the appropriate rheological and physical characteristics of the chocolate mass. The obtained parameters are compared with those which are typical for the standard procedure.

  14. Milling and dispersion of multi-walled carbon nanotubes in texanol

    Science.gov (United States)

    Darsono, Nono; Yoon, Dang-Hyok; Kim, Jaemyung

    2008-03-01

    Rheological results were used to determine the optimum type of dispersant and its concentration for six commercial dispersants for the dispersion of multi-walled carbon nanotube (MWCNT) agglomerates in texanol. An unsaturated polycarboxylic acid copolymer (BYK P-104) exhibited the optimum performance with the lowest MWCNT slurry viscosity in texanol. The cutting and dispersion efficiencies of MWCNTs with 20 wt.% of BYK P-104 dispersant were compared using conventional ball milling and high energy milling, whereby the latter was found to be more effective. High energy milling for 2 h produced a large portion of MWCNT agglomerates smaller than 150 nm, showing a drastic increase in slurry viscosity due to the dispersion into individual CNTs. On the other hand, 120 h ball milling was required to achieve the agglomerate size of 300 nm with less viscosity increase upon milling. Decrease in the degree of MWCNT crystallinity was observed by both milling, even though 2 h high energy milling showed slightly less damage than 120 h ball milling based on XRD and Raman spectroscopy results.

  15. Cylindrical plunge grinding of difficult to grind materials

    International Nuclear Information System (INIS)

    Nakajima, Toshikatsu; Uno, Yoshiyuki; Kayahara, Masayuki.

    1983-01-01

    Cylindrical plunge grinding processes of titanium alloy and nickel-base superalloys with various kinds of conventional grinding wheels, which are known as difficult to grind materials, are experimentally investigated, analyzing size generation process, grinding force, surface roughness, wheel wear, grinding ratio and so on. For grinding titanium alloy Ti-6Al-4V, GC grinding wheel yields most superior grinding results which leads to lower grinding force, smaller residual stock, less wheel wear and higher grinding ratio up to about 3 with GC 80 L 9 V wheel. Then, for grinding nickelbase superalloys Waspaloy and Rene 41, WA 150 L 9 V wheel yields better grinding results in surface roughness, wheel wear, grinding ratio without chatter vibration though grinding force is higher, and the grinding ratio about 3 is obtained. Furthermore, higher plunge speed and speed ratio result in higher grinding efficiency though grinding force, surface roughness, wheel wear increase for grinding titanium alloy and nickel-base superalloys. (author)

  16. Wood pellet milling tests in a suspension-fired power plant

    DEFF Research Database (Denmark)

    Masche, Marvin; Puig-Arnavat, Maria; Wadenbäck, Johan

    2018-01-01

    classification (i.e., the classifier cut size) are affected by the internal pellet particle size distribution obtained after pellet disintegration in hot water. Furthermore, optimal conditions for comminuting pellets were identified. The milling behavior was assessed by determining the specific grinding energy...... consumption and the differential mill pressure. The size and shape of comminuted pellets sampled from burner pipes were analyzed by dynamic image analysis and sieve analysis, respectively. The results showed that the internal pellet particle size distribution affected both the milling behavior...... similar. Mill operating changes had a negligible effect on the original elongated wood particle shape. To achieve the desired comminuted product fineness (i.e., the classifier cut size) with lower specific grinding energy consumption, power plant operators need to choose pellets with a finer internal...

  17. Effect of milling time on the structure, particle size, and morphology of montmorillonite

    International Nuclear Information System (INIS)

    Abareshi, M.

    2017-01-01

    In the current research, effect of milling on the structure, particle size and morphology of montmorillonite was investigated. For this purpose, the montmorillonite was analyzed by X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy. Then the montmorillonite was milled using high energy planetary ball mill at different milling times (1-60 hours). After that, the structure, particle size and morphology of all samples were investigated by XRD, FTIR, SEM, and transmission electron microscopy. Results showed that the ball milling causes the particle size reduction of clay and separation of the clay layers. Moreover, ball milling increases the overall structural disorder and transforms the crystalline structure into an amorphous phase. Also, the morphology of clay particle changes from layered to aggregates of almost rounded particles after 60 hours of milling.

  18. Wet Mechanochemical Processing of Celestine using (NH42CO3

    Directory of Open Access Journals (Sweden)

    Deniz Bingöl

    2017-06-01

    Full Text Available In this study, traditional (univariate method of processing to the wet mechanochemical treatment were applied to obtain both SrCO3 and (NH42SO4 from celestite (SrSO4-(NH42CO3-H2O mixtures in a planetary ball mill. X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and chemical analysis were used to analyze products formed during wet milling. A hydrometallurgical process was carried out to examine milling time, ball to grinding material mass ratio, (NH42CO3 to SrSO4 mole ratio and rotational speed of the mill in a planetary mill. Under optimum conditions, a conversion approaching 100% of SrCO3 was obtained.

  19. Moessbauer spectroscopy study of the synthesis of SnFe2O4 by high energy ball milling (HEBM) of SnO and α-Fe2O3

    International Nuclear Information System (INIS)

    Uwakweh, Oswald N C; Perez Moyet, Richard; Mas, Rita; Morales, Carolyn; Vargas, Pedro; Silva, Josue; Rossa, Angel; Lopez, Neshma

    2010-01-01

    The formation of single phase nanoparticles of spinel structured ferrite, SnFe 2 O 4 , by mechanochemical syntheses using HEBM of stoichiometric amounts of solid SnO and α-Fe 2 O 3 with acetone as surfactant was achieved progressively as function of ball milling time. Single phase SnFe 2 O 4 formation commenced from five hours of continuous ball milling, and reached completion after 22 hours, thereby yielding a material with a lattice parameter of 8.543 A, and particle size of 10.91 nm. The coercivity was 4.44 mT, magnetic saturation value of 17.75 Am 2 /kg, and remanent magnetizations of 1.50 Am 2 /kg, correspondingly. The nanosized particles exhibited superparamagnetic behavior phenomenon based on Moessbauer spectroscopy measurements. The kinetic analyses based on the modified Kissinger method yielded four characteristic stages during the thermal evolution of the 22 hours milled state with activation energies of 0.23 kJ/mol, 2.52 kJ/mol, 0.024 kJ/mol, and 1.57 kJ/mol respectively.

  20. Microstructural and magnetic behavior of nanostructured soft alloys prepared by mechanical grinding and gas atomization

    International Nuclear Information System (INIS)

    Marin, P.; Lopez, M.; Garcia-Escorial, A.; Lieblich, M.

    2007-01-01

    Nanocrystalline powder of Fe-Si-B-Cu-Nb has been obtained by means of mechanical milling of the corresponding nanocrystalline ribbons. Gas atomization technique has been used to minimize the magnetic hardening due to stress effects observed in ball-milled samples. Fe-Si-B-Cu-Nb and Fe-Si nanocrystalline samples have been prepared by gas atomization. The aim of our work is to analyse the particle size dependence of coercivity in this nanostructured alloys and to show the analogies and differences between ball-milled and gas atomized samples

  1. Recycling process for recovery of gallium from GaN an e-waste of LED industry through ball milling, annealing and leaching

    Energy Technology Data Exchange (ETDEWEB)

    Swain, Basudev, E-mail: swain@iae.re.kr; Mishra, Chinmayee; Kang, Leeseung; Park, Kyung-Soo, E-mail: kspark@iae.re.kr; Lee, Chan Gi; Hong, Hyun Seon, E-mail: hshong@iae.re.kr

    2015-04-15

    Waste dust generated during manufacturing of LED contains significant amounts of gallium and indium, needs suitable treatment and can be an important resource for recovery. The LED industry waste dust contains primarily gallium as GaN. Leaching followed by purification technology is the green and clean technology. To develop treatment and recycling technology of these GaN bearing e-waste, leaching is the primary stage. In our current investigation possible process for treatment and quantitative leaching of gallium and indium from the GaN bearing e-waste or waste of LED industry dust has been developed. To recycle the waste and quantitative leaching of gallium, two different process flow sheets have been proposed. In one, process first the GaN of the waste the LED industry dust was leached at the optimum condition. Subsequently, the leach residue was mixed with Na{sub 2}CO{sub 3}, ball milled followed by annealing, again leached to recover gallium. In the second process, the waste LED industry dust was mixed with Na{sub 2}CO{sub 3}, after ball milling and annealing, followed acidic leaching. Without pretreatment, the gallium leaching was only 4.91 w/w % using 4 M HCl, 100 °C and pulp density of 20 g/L. After mechano-chemical processing, both these processes achieved 73.68 w/w % of gallium leaching at their optimum condition. The developed process can treat and recycle any e-waste containing GaN through ball milling, annealing and leaching. - Highlights: • Simplest process for treatment of GaN an LED industry waste developed. • The process developed recovers gallium from waste LED waste dust. • Thermal analysis and phase properties of GaN to Ga{sub 2}O{sub 3} and GaN to NaGaO{sub 2} revealed. • Solid-state chemistry involved in this process reported. • Quantitative leaching of the GaN was achieved.

  2. Effects of grinding on certain crystalline structures; Influence de broyage sur quelques structures cristallines

    Energy Technology Data Exchange (ETDEWEB)

    Tekiz, Y [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-06-15

    The effects of grinding on certain crystalline substances (ZnO, ZnS, Sb), have been studied using X-ray diffraction and electron microscopy. The treatments were carried out using a vibrating mill which involves a higher energy than more conventional equipment such as ball-mills. Various methods have been proposed for determining the width of the intrinsic profile ({beta}). In the case of zinc oxide it has been shown possible to differentiate the respective contributions of the fragmentation effects and of lattice deformation effects to the overall effects of the grinding. For the two types of zinc sulfide (blend and Wurtzite) it has been shown that the blend-wurtzite) transition point is very much decreased, and that the rate of transformation of wurtzite into the stable form (blend) at room temperature is considerably increased by the grinding. In the case of antimony, the method of fragmentation shows the existence of an anisotropy which appears to be connected with easily cleavable planes. These observations show that in the case of grinding carried out with sufficient energy, the accumulation of this energy in the matter through the creation of lattice defects can accelerate the reaction rate or bring about physical transformations. (author) [French] Les effets du broyage sur certains corps cristallises (ZnO, ZnS, Sb) ont ete etudies a l'aide de la diffraction de rayons X et de la microscopie electronique. Les broyages ont ete effectues au moyen d'un vibro-broyeur qui met en jeu une energie superieure par rapport aux appareils plus conventionnels tels que les broyeurs a boulets. Diverses methodes concernant la determination de la largeur du profil intrinseque ({beta}) ont ete proposees. Dans le cas de l'oxyde de zinc on a montre la possibilite de differencier les contributions de l'effet de fragmentation et celui de perturbation du reseau, a l'effet total du broyage. Avec les deux varietes de sulfure de zinc (blende et Wurtzite) on a montre que le point de

  3. Fabrication, characterization and application of Cu{sub 2}ZnSn(S,Se){sub 4} absorber layer via a hybrid ink containing ball milled powders

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chunran [State Key Laboratory of Superhard Materials and College of Physics, Jilin University, Changchun 130023 (China); Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012 (China); College of Mathematics and Physics, Bohai University, Jinzhou 121013 (China); Yao, Bin, E-mail: binyao@jlu.edu.cn [State Key Laboratory of Superhard Materials and College of Physics, Jilin University, Changchun 130023 (China); Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012 (China); Li, Yongfeng, E-mail: liyongfeng@jlu.edu.cn [Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012 (China); Xiao, Zhenyu [State Key Laboratory of Superhard Materials and College of Physics, Jilin University, Changchun 130023 (China); Ding, Zhanhui [Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012 (China); Zhao, Haifeng; Zhang, Ligong; Zhang, Zhenzhong [State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, No. 3888 Dongnanhu Road, Changchun 130033 (China)

    2015-09-15

    Highlights: • CZTS powders are prepared from binary sulfides by a low cost ball milling process. • Elaborated on phase evolution and formation mechanism of CZTS. • Proposed a hybrid ink approach to resolve difficulty in deposition of CZTS film. • CZTSSe solar cells with highest efficiency of 4.2% are fabricated. • Small-grained CZTS layer hinders the collection of minority carriers. - Abstract: Cu{sub 2}ZnSnS{sub 4} (CZTS) powder with kesterite structure was prepared by ball milling of mixture of Cu{sub 2}S, ZnS and SnS{sub 2} powders for more than 15 h. By dispersing the milled CZTS powder in a Cu-, Zn- and Sn-chalcogenide precursor solution, a hybrid ink was fabricated. With the hybrid ink, a precursor CZTS film was deposited on Mo coated soda-lime glass by spin-coating. In order to obtain Cu{sub 2}ZnSn(S,Se){sub 4} (CZTSSe) absorber film with kesterite structure, the CZTS film was annealed at 560 °C for 15 min in Se ambient. It is demonstrated that the annealed film is dominated by a thick layer of kesterite CZTSSe with larger grain size and Cu{sub 8}Fe{sub 3}Sn{sub 2}(S,Se){sub 12} impurity phase with the exception of a very thin layer of kesterite CZTS with smaller grain size at interface between the CZTSSe and Mo layers. Solar cell device was fabricated by using the annealed CZTSSe film as absorber layer, and its conversion efficiency reached 4.2%. Mechanism of formation of the kesterite CZTS powder and CZTSSe film as well as effect of impurity phases on conversion efficiency are discussed in the present paper. The present results suggest that the hybrid ink approach combining with ball milling is a simple, low cost and promising method for preparation of kesterite CZTSSe absorber film and CZTSSe-based solar cell.

  4. Magnetic Properties of Nanocrystalline Fe{sub x}Cu{sub 1-x} Alloys Prepared by Ball Milling

    Energy Technology Data Exchange (ETDEWEB)

    Yousif, A.; Bouziane, K., E-mail: bouzi@squ.edu.om; Elzain, M. E. [Sultan Qaboos University, Physics Department, College of Science (Oman); Ren, X.; Berry, F. J. [The Open University, Department of Chemistry (United Kingdom); Widatallah, H. M. [Sudan Atomic Energy Commission, Institute of Nuclear Research (Sudan); Al Rawas, A.; Gismelseed, A.; Al-Omari, I. A. [Sultan Qaboos University, Physics Department, College of Science (Oman)

    2004-12-15

    X-ray diffraction, Moessbauer and magnetization measurements were used to study Fe{sub x}Cu{sub 1-x} alloys prepared by ball-milling. The X-ray data show the formation of a nanocrystalline Fe-Cu solid solution. The samples with x{>=}0.8 and x{<=}0.5 exhibit bcc or fcc phase, respectively. Both the bcc and fcc phases are principally ferromagnetic for x{>=}0.2, but the sample with x=0.1 remains paramagnetic down to 78 K. The influence of the local environment on the hyperfine parameters and the local magnetic moment are discussed using calculations based on the discrete-variational method in the local density approximation.

  5. Phase transformation and magnetic properties of MnAl powders prepared by elemental-doping and salt-assisted ball milling

    Science.gov (United States)

    Qian, Hui-Dong; Si, Ping-Zhan; Choi, Chul-Jin; Park, Jihoon; Cho, Kyung Mox

    2018-05-01

    The effects of elemental doping of Si and Fe on the ɛ→τ phase transformation and the magnetic properties of MnAl were studied. The magnetic powders of Si- and Fe-doped MnAl were prepared by using induction melting followed by water-quenching, annealing, and salt-assisted ball-milling. The Fe-doped MnAl powders are mainly composed of the L10-structured τ-phase, while the Si-doped MnAl are composed of τ-phase and a small fraction of γ2- and β-phases. A unique thin leaves-like morphology with thickness of several tens of nanometers and diameter size up to 500 nm were observed in the Si-doped MnAl powders. The Fe-doped MnAl powders show irregular shape with much larger dimensions in the range from several to 10 μm. The morphology difference of the samples was ascribed to the variation of the mechanical properties affected by different doping elements. The phase transformation temperatures of the ɛ-phase of the samples were measured. The doping of Fe decreases the onset temperature of the massive phase transformation in MnAl, while the Si-doping increases the massive phase transformation temperature. Both Fe and Si increase the Curie temperature of MnAl. A substantially enhanced coercivity up to 0.45 T and 0.42 T were observed in the ball-milled MnAl powders doped with Si and Fe, respectively.

  6. Effects of Particle Size on the Morphology and Water- and Thermo-Resistance of Washed Cottonseed Meal-Based Wood Adhesives

    Directory of Open Access Journals (Sweden)

    Zhongqi He

    2017-12-01

    Full Text Available Water washing of cottonseed meal is more cost-efficient and environmentally friendly than protein isolation by means of alkaline extraction and acidic precipitation. Thus, water-washed cottonseed meal (WCSM is more promising as biobased wood adhesives. In this work, we examined the effects of the particle size on the morphology and adhesive performance of WCSM. Pilot-scale produced and dried WCSM was treated by three grinding methods: (1 ground by a hammer mill and passed through a 0.5-mm screen, (2 further ground by a cyclone mill and passed through a 0.5-mm screen, or (3 further ground by a ball mill and passed through a 0.18-mm screen. Micro-morphological examination revealed two types of particles. The filament-like particles were mainly fibrous materials from residual linters. Chunk-like particles were more like aggregates or accumulations of small particles, with proteins as the major component. Further grinding of the 0.5-mm Hammer product with the Cyclone and Ball mill led to more fine (smaller particles in the WCSM products. The impact of further grinding on the dry and soaked adhesive strengths was minimal. However, the decrease of the hot and wet strengths of WCSM products by the additional grinding was significant (p ≤ 0.05. Data presented in this work is useful in developing the industrial standards of WCSM products used in wood bonding.

  7. The Structure and Mechanical Properties of High-Strength Bulk Ultrafine-Grained Cobalt Prepared Using High-Energy Ball Milling in Combination with Spark Plasma Sintering

    Czech Academy of Sciences Publication Activity Database

    Marek, I.; Vojtěch, D.; Michalcová, A.; Kubatík, Tomáš František

    2016-01-01

    Roč. 9, č. 5 (2016), č. článku 391. ISSN 1996-1944 Institutional support: RVO:61389021 Keywords : ultrafine-grained material * cobalt * ball milling * spark plasma sintering * mechanical properties Subject RIV: JG - Metallurgy Impact factor: 2.654, year: 2016 www.mdpi.com/1996-1944/9/5/391/pdf

  8. Barium Ferrite Ball Milled in Vacuum

    International Nuclear Information System (INIS)

    Campbell, S.J.; Wu, E.; Kaczmarek, W.A.; Wang, G.

    1998-01-01

    The structural and magnetic behaviour of BaFe 12 O 19 subjected to milling in vacuum for 1000 h has been investigated by x-ray powder diffraction and Moessbauer effect spectroscopy techniques. Pronounced structural disorder is obtained along with partial decomposition of BaFe 12 O 19 to α-Fe 2 O 3 and evidence for superparamagnetic relaxation effects due to the fine particles produced on milling. Restoration of the fully crystallised BaFe 12 O 19 structure on annealing at 1000 deg. C is accompanied by a six fold enhancement in the magnetic coercivity. This behaviour is linked with the fine crystallites

  9. Morphology and magnetic properties of CeCo5 submicron flakes prepared by surfactant-assisted high-energy ball milling

    Science.gov (United States)

    Zhang, J. J.; Gao, H. M.; Yan, Y.; Bai, X.; Su, F.; Wang, W. Q.; Du, X. B.

    2012-10-01

    CeCo5 permanent magnetic alloy has been processed by surfactant assisted high energy ball milling. Heptane and oleic acid were used as the solvent and surfactant, respectively. The amount of surfactant used was 50% by weight of the starting powder. The produced particles were deposited on a piece of copper (4 mm in length and width) under a magnetic field of 27 kOe applied along the copper surface and immobilized by ethyl α-cyanoacrylate. Scanning electron microscope pictures show that the particles are flakes, several μm in length and width and tens of nm in thickness. X-ray diffraction patterns and magnetic measurements prove that the flakes are crystalline with c-axes magnetic anisotropy. The easy magnetization axis is oriented perpendicular to the surface of the flake. A maximum coercivity of 3.3 kOe was obtained for the sample milled for 40 min.

  10. Westinghouse modular grinding process - improvement for follow on processes

    Energy Technology Data Exchange (ETDEWEB)

    Fehrmann, Henning [Westinghouse Germany GmbH, Mannheim, State (Germany)

    2013-07-01

    In nuclear power plants (NPP) ion exchange (IX) resins are used in several systems for water treatment. The resins can be in bead or powdered form. For waste treatment of spent IX resins, two methods are basically used: Direct immobilization (e.g. with cement, bitumen, polymer or High Integrity Container (HIC)); Thermal treatment (e.g. drying, oxidation or pyrolysis). Bead resins have some properties (e.g. particle size and density) that can have negative impacts on following waste treatment processes. Negative impacts could be: Floatation of bead resins in cementation process; Sedimentation in pipeline during transportation; Poor compaction properties for Hot Resin Supercompaction (HRSC). Reducing the particle size of the bead resins can have beneficial effects enhancing further treatment processes and overcoming prior mentioned effects. Westinghouse Electric Company has developed a modular grinding process to crush/grind the bead resins. This modular process is designed for flexible use and enables a selective adjustment of particle size to tailor the grinding system to the customer needs. The system can be equipped with a crusher integrated in the process tank and if necessary a colloid mill. The crusher reduces the bead resins particle size and converts the bead resins to a pump able suspension with lower sedimentation properties. With the colloid mill the resins can be ground to a powder. Compared to existing grinding systems this equipment is designed to minimize radiation exposure of the worker during operation and maintenance. Using the crushed and/or ground bead resins has several beneficial effects like facilitating cementation process and recipe development, enhancing oxidation of resins, improving the Hot Resin Supercompaction volume reduction performance. (authors)

  11. Westinghouse modular grinding process - improvement for follow on processes

    International Nuclear Information System (INIS)

    Fehrmann, Henning

    2013-01-01

    In nuclear power plants (NPP) ion exchange (IX) resins are used in several systems for water treatment. The resins can be in bead or powdered form. For waste treatment of spent IX resins, two methods are basically used: Direct immobilization (e.g. with cement, bitumen, polymer or High Integrity Container (HIC)); Thermal treatment (e.g. drying, oxidation or pyrolysis). Bead resins have some properties (e.g. particle size and density) that can have negative impacts on following waste treatment processes. Negative impacts could be: Floatation of bead resins in cementation process; Sedimentation in pipeline during transportation; Poor compaction properties for Hot Resin Supercompaction (HRSC). Reducing the particle size of the bead resins can have beneficial effects enhancing further treatment processes and overcoming prior mentioned effects. Westinghouse Electric Company has developed a modular grinding process to crush/grind the bead resins. This modular process is designed for flexible use and enables a selective adjustment of particle size to tailor the grinding system to the customer needs. The system can be equipped with a crusher integrated in the process tank and if necessary a colloid mill. The crusher reduces the bead resins particle size and converts the bead resins to a pump able suspension with lower sedimentation properties. With the colloid mill the resins can be ground to a powder. Compared to existing grinding systems this equipment is designed to minimize radiation exposure of the worker during operation and maintenance. Using the crushed and/or ground bead resins has several beneficial effects like facilitating cementation process and recipe development, enhancing oxidation of resins, improving the Hot Resin Supercompaction volume reduction performance. (authors)

  12. Microstructures and Dehydrogenation Properties of Ball-milled MgH2-K2Ti6O13-Ni Composite Systems

    Directory of Open Access Journals (Sweden)

    ZHANG Jian

    2016-11-01

    Full Text Available The K2Ti6O13 whisker separate-doped and K2Ti6O13 whisker and Ni powder multi-doped MgH2 hydrogen storage composite systems were prepared by mechanical milling method. The microstructures and dehydrogenation properties of the prepared samples were characterized by some testing methods such as X-ray diffraction (XRD, scanning electron microscope (SEM and differential scanning calorimeter (DSC. The results show that the K2Ti6O13 whisker not only plays the roles in refining the MgH2 crystalline grain, but also inhibit the agglomeration of MgH2 particles in K2Ti6O13 whisker separate-doped system, which results in the decreased dehydrogenation temperature of MgH2 matrix. When the mass ratio of K2Ti6O13 to MgH2 is 3:7, the improvement effect on dehydrogenation properties of MgH2 is the most remarkable. As compared with pure ball-milled MgH2, the dehydrogenation temperature of MgH2 in K2Ti6O13 whisker separate-doped system is decreased by nearly 75℃. For K2Ti6O13 whisker and Ni powder multi-dopedsystem, the dehydrogenation temperature of MgH2 matrix is further decreased compared to K2Ti6O13 whisker separate-doped one due to the dual effects of refined MgH2 crystalline grain by K2Ti6O13 whisker and destabilized MgH2 lattice by Ni solution. As compared with pure ball-milled MgH2, the dehydrogenation temperature of MgH2 in K2Ti6O13 whisker and Ni powder multi-doped system is decreased by nearly 87℃.

  13. The Study on Grinding Ratio in Form Grinding with White Fused Alumina (WA) Grinding Wheels

    Science.gov (United States)

    Junming, Wang; Jiong, Wang; Deyuan, Lou

    2018-03-01

    The study is carried out based on an experiment of form grinding spur rack with white fused alumina (WA) grinding wheels. In the experiment, SOV-3020A type tri-axial image mapper is utilized to measure the profile of the tooth space in the rack, and the curve equations between the sectional area of the tooth space and the tooth sequence under different grinding depths are established by nonlinear curve regress using software of origin8.0. Then, it deduces the prediction equations for current grinding ratio and cumulative grinding ratio under different grinding depths. The result shows that the grinding ratio is exponential decline relationship with the increase of the number of the tooth to be ground under the same grinding depth, and the decline speed is fast in the initial stage. With the increase of grinding depth, the grinding ratio increases gradually. The cumulative grinding ratio is about twice as high as the current grinding ratio. Thus, large grinding depth is generally used in rough grinding to improve grinding efficiency.

  14. Assessment of heavy metals introduced into food through milling process: health implications

    International Nuclear Information System (INIS)

    Adeti, P.J.

    2015-07-01

    The present study was conducted to characterised and assesss heavy metal contamination in food through milling process and their health implications. Grinding plate made from Ghana, India and Nigeria purchased from the Ghanaian open market were used for this work. Maize from the same farm was milled into flour using the three grinding plate inserted into three different corn milling machines operating on commercial bases. Th first grinding was done immediately after the insertion of the newly sharpened plates into the machines. The plates were left for continuous daily usage. Subsequent milling of the maize was done after intervals of one month. The grinding plates and maize flour was analysed using Atomic absorption spectrophometer (AAS). The resultes recorded indicated that the heavy metals content o the Ghanaian, Indian and Nigerian made plates had the e similar metal contents but varied in terms of the individual metal concentrations. Flour from the Ghanaian made plates had the highest level of contaminants with the least from that of the Indian made plates. Generally, the highest levels of contamination were observed in the fist milling for the three plates as compared to the three subsequent milling at monthly interval. The contamination levels showed a decreasing trend from the first month (first milling ) to the fourth month (fourth milling). Cu, Cr and Ni showed concentrations above the permissible limit set by FAO/WHO in milled maize using Ghanaian made plate. Copper (Cu) recorded a concentration value between 15.04 mg/kg to 10.21mg.kg, 11.25 mg/kg to 9.13mg/kg and 10.36mg/kg and 9.68mg/kg using the Ghanaian-, Indian and Nigerian made plate respectively. Chromium (Cr) recorded a concentration between 1.51 mg/kg to 0.96 mg/kg, 1.03mg/kg to 0.91 mg/kg and 0.98mg/kg to 0.80 mg/kg using Ghanaian-, Indian and Nigerian made plates respectively. Nickel (Ni) recorded a concentration value between 23.23 mg/kg to 10.43 mg/kg, 11.46mg/kg to 10.43 mg/kg and 12.55 mg

  15. Processing equipment for grinding of building powders

    Science.gov (United States)

    Fediuk, R. S.; Ibragimov, R. A.; Lesovik, V. S.; Pak, A. A.; Krylov, V. V.; Poleschuk, M. M.; Stoyushko, N. Y.; Gladkova, N. A.

    2018-03-01

    In the article questions of mechanical grinding up to nanosize of building powder materials are considered. In the process of mechanoactivation of the composite binder, active molecules of cement minerals arise when molecular packets are destroyed in the areas of defects and loosening of the metastable phase during decompensation of intermolecular forces. The process is accompanied by a change in the kinetics of hardening Portland cement. Mechanical processes in the grinding of mineral materials cause, together with an increase in their surface energy, the growth of the isobaric potential of the powders and, accordingly, their chemical activity, which also contributes to high adhesion strength when they come into contact with binders. Thus, a set of measures for mechanical activation allows more fully use the mass of components of the filled cement systems and regulate their properties. At relatively low costs, it is possible to provide an impressive and, importantly, easily repeatable in production conditions result. It is revealed that the use of a vario-planetary mill allows to achieve the best results on grinding the powder building materials.

  16. Surface integrity of GH4169 affected by cantilever finish grinding and the application in aero-engine blades

    Directory of Open Access Journals (Sweden)

    Li Xun

    2015-10-01

    Full Text Available GH4169 is the main material for aero-engine blades and integrated blisks. Because GH4169 has a poor milling performance, the profile precision and surface integrity of blades and integrated blisks are difficult to be met by utilizing the conventional milling process, which directly influence the global performance and reliability of aero-engines. Through grinding experiments on parameters and surface integrity optimization, the helical cantilever grinding process utilizing a 300# CBN RB wheel is presented and applied in finish machining of GH4169 blades. The profile errors of the blade surface are within ±0.01 mm, the roughness is less than 0.4 μm, the residual compressive stresses and the hardening rate are appropriate, there are no phenomena of burr and smearing with the grinding chips, and the leading/trailing edge can be smoothly connected with the suction/pressure surface. All the experimental results indicate that this grinding process is greatly suitable for the profile finish machining of GH4169 blades.

  17. Lignocellulose fermentation and residual solids characterization for senescent switchgrass fermentation by Clostridium thermocellum in the presence and absence of continuous in situ ball-milling

    Energy Technology Data Exchange (ETDEWEB)

    Balch, Michael L.; Holwerda, Evert K.; Davis, Mark F.; Sykes, Robert W.; Happs, Renee M.; Kumar, Rajeev; Wyman, Charles E.; Lynd, Lee R.

    2017-04-12

    Milling during lignocellulosic fermentation, henceforth referred to as cotreatment, is investigated as an alternative to thermochemical pretreatment as a means of enhancing biological solubilization of lignocellulose. We investigate the impact of milling on soluble substrate fermentation by Clostridium thermocellum with comparison to yeast, document solubilization for fermentation of senescent switchgrass with and without ball milling, and characterize residual solids. Soluble substrate fermentation by C. thermocellum proceeded readily in the presence of continuous ball milling but was completely arrested for yeast. Total fractional carbohydrate solubilization achieved after fermentation of senescent switchgrass by C. thermocellum for 5 days was 0.45 without cotreatment or pretreatment, 0.81 with hydrothermal pretreatment (200 degrees C, 15 minutes, severity 4.2), and 0.88 with cotreatment. Acetate and ethanol were the main fermentation products, and were produced at similar ratios with and without cotreatment. Analysis of solid residues was undertaken using molecular beam mass spectrometry (PyMBMS) and solid-state nuclear magnetic resonance spectroscopy (NMR) in order to provide insight into changes in plant cell walls during processing via various modes. The structure of lignin present in residual solids remaining after fermentation with cotreatment appeared to change little, with substantially greater changes observed for hydrothermal pretreatment - particularly with respect to formation of C-C bonds. The observation of high solubilization with little apparent modification of the residue is consistent with cotreatment enhancing solubilization primarily by increasing the access of saccharolytic enzymes to the feedstock, and C. thermocellum being able to attack all the major linkages in cellulosic biomass provided that these linkages are accessible.

  18. Gravity flow operated small electricity generator retrofit kit to flour mill industry.

    Science.gov (United States)

    Shekara, Prithivi; Kumar V, Pavan; Hosamane, Gangadharappa Gundabhakthara

    2013-10-01

    Flour milling is a grinding process to produce flour from wheat through comprehensive stages of grinding and separation. The primary energy is required to provide power used in grinding of wheat. In wheat milling, tempering is the process of adding water to wheat before milling to toughen the bran and mellow the endosperm. Gravity flow of the wheat is utilized to rotate the dampener wheel with cups to add water. Low cost gravity flow operated small electricity generator retrofit kit for dampener was designed and developed to justify low cost energy production without expensive solutions. Results of statistical analysis indicated that there was significant difference in mean values for voltage, rpm and flow rate at the 95% probability level. The resulted maximum mechanical power and measured electrical power were 5.1 W and 4.9 W respectively at wheat flow rate of 1.6 Kg/s and dampener wheel rotational velocity of 4.4 rad/s.

  19. Formation of ultra-fine grained TiC-dispersed SUS316L by ball-milling and their consolidation by hot isostatic pressing

    International Nuclear Information System (INIS)

    Zheng, Yongjia; Yamasaki, Tohru; Fukami, Takeshi; Mitamura, Tohru; Terasawa, Mititaka

    2003-01-01

    In order to overcome the irradiation embrittlement in austenitic stainless steels, ultra-fine grained SUS316L steels with very fine TiC particles have been developed. The SUS316-TiC nanocomposite powders having 1.0 to 2.0 mass%TiC were prepared by ball-milling SUS316-TiC powder mixtures for 125h in an argon gas atmosphere. The milled powders were consolidated by hot isostatic pressing (HIP) under a pressure of 200 MPa at temperature between 700-1000degC, and the bulk materials with crystallite size ranging between 100-400 nm have been produced. The possibility of using fine-grained TiC particles for pinning grain boundaries and thereby to maintain the ultra-fine grained structures has been discussed. (author)

  20. Influence of Copper Ore Comminution in HPGR on Downstream Minerallurgical Processes

    Directory of Open Access Journals (Sweden)

    Saramak D.

    2017-09-01

    Full Text Available Crushing processes taking place in high-pressure grinding rolls devices (HPGR are currently one of the most efficient methods of hard ore size reduction in terms of the energy consumption. The HPGR products are characterized by a fine particle size and the micro-cracks formation in individual particles, which appears in downstream grinding processes, decreasing their energy consumption. The purpose of the paper was to analyze the effectiveness of a ball mill grinding process and flotation operations depending on the changeable conditions of run of the HPGR crushing process. The research programme carried out included crushing tests in the laboratory scale HPGR device at various settings of the operating pressure volume and selected qualitative properties of the feed material (i.e. particle size distribution. On the basis of obtained results the models, defining the grinding process effectiveness as a function of changeable conditions of HPGR process run, were determined. Based on these models the optimal grinding time in a ball mill was specified which is, in turn, the basis for optimization of operation the technological comminution circuits for a given material type. The obtained results proved that the application of HPGR devices in given copper ore comminution circuit may improve the effectiveness of downstream grinding process what leads to improvement of the entire circuit work efficiency through decreasing the process energy consumption and enhancing the product size reduction.

  1. Low-Cost Structural Thermoelectric Materials: Processing and Consolidation

    Science.gov (United States)

    2015-01-01

    milling media (440C stainless steel balls) with a ball-to-powder ratio of 10-to-1 by weight, and then sealed inside a glove box in an argon (Ar...elements with superior mechanical, tribological , and/or oxidation/corrosion properties (e.g., transition metals) but are less efficient at converting heat...the appropriate proportions, for alloys) and grinding media (typically steel balls) in the right proportion into a vial. This is then loaded into a

  2. Synthesis of carbon nanotubes from acetylene on the FeCoMgO catalytic system obtained by ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Biris, A R; Simon, S; Lupu, D; Misan, I [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath, 400293 Cluj-Napoca (Romania); Biris, A S; Dervishi, E; Li, Z; Watanabe, F [UALR Nanotechnology Center, University of Arkansas, 2801 S University Ave, Little Rock, AR 72204 (United States); Lucaci, M, E-mail: alexandru.biris@itim-cj.r [National Institute for Research and Development in Electrical Engineering ICPE-CA 313 Splaiul Unirii, 030138 Bucharest (Romania)

    2009-08-01

    Highly crystalline multi wall carbon nanotubes have been synthesized by RF-CVD from acetylene at 850{sup 0}C over a Fe:Co:MgO catalyst. The catalytic system was obtained by mixing for 100 h Fe, Co and MgO powders in a ball milling device under petroleum ether environment, followed by oxidation in air at 500{sup 0}C for 24 h. Most of the nanotubes had external diameters in order of dozens of nm and lengths of microns, resulting in an aspect ration of over 1000. Their external to internal diameter ratio varied between 2.5 and 3.

  3. The influence of grinding oil viscosity on grinding heat and burn damage in creep-feed grinding{copyright}

    Energy Technology Data Exchange (ETDEWEB)

    Zhen-Change Liu [Shandong Univ. of Technology, Jinan (China); Abe, Satoshi; Noda, Masahiro [Yushiro Chemical Industry Co. Ltd., Kanagawa (Japan)

    1995-08-01

    Grinding oils are widely used in precision grinding, such as tool grinding, thread grinding and gear grinding, during which processes grinding burn is the most prevalent damage affecting the integrity of ground surface. This paper discusses the influence of oil viscosity on grinding heat and burn damage in creep-feed-grinding. Experimental results indicated that, under lighter grinding conditions, the effects of oil viscosity was not observed, but under heavy grinding conditions grinding burn occurred when using low viscosity oil. When the viscosity of the oil was increased, grinding heat and burn damage tended to be reduced. As the viscosity was increased to a certain level, grinding burn reduction, by further increasing the viscosity, became less while other problems such as much higher oil pump noise and reduced oil flow occurred. It is clear that a viscosity limit exists for given grinding conditions. 5 refs., 4 figs., 3 tabs.

  4. Influence of clinker grinding-aids on the intrinsic characteristics of cements and on the behaviour of mortars

    Directory of Open Access Journals (Sweden)

    Fernández Luco, L.

    2003-12-01

    Full Text Available In the production of portland cement, grinding aids are used to improve the grinding stage and reduce the energy required to achieve the required fineness. These additives remain in the final product and they might influence the characteristics and properties of the cement, and thus, mortar and concrete. This paper presents an evaluation of two grinding-aid additives used in the production of portland cement ground in a ball mill at a laboratory stage, with suitable proportions of portland cement clinker and gypsum. A control cement mix was also produced without using any admixture and the results are shown on a comparative basis. Conclusions indicate that grinding-aids additives have some influence on the characteristics of portland cement produced, increasing their specific surface and modifying microstructure and its packing ability. Mortars and concretes made with cements ground with the addition of gringing-aids exhibit higher strength at any age and a reduced water demand. Special attention should be taken to consider any interaction with water-reducing admixture in concretes and mortars.

    En la fabricación de cemento portland es una práctica creciente la utilización de aditivos para optimizar el proceso de molienda; éstos quedan incorporados en el producto final y pueden influir sobre las características y propiedades del cemento, morteros y hormigones. En este trabajo se presenta la evaluación de dos aditivos comerciales en la molienda conjunta de clínker de cemento portland y yeso comercial, tratados en un molino a bolas a escala de laboratorio, en forma comparativa con un cemento sin aditivo producido en forma equivalente. Las conclusiones indican que los aditivos de molienda tienen influencia en las características del cemento resultante, incrementando su superficie y modificando su microestructura y estado de agregación; los morteros mejoran sus prestaciones mecánicas a todas las edades y se reduce la demanda de agua

  5. Photoacoustic study of nanocrystalline silicon produced by mechanical grinding

    Energy Technology Data Exchange (ETDEWEB)

    Poffo, C.M. [Departamento de Engenharia Mecanica, Universidade Federal de Santa Catarina, Campus Universitario Trindade, C.P. 476, 88040-900 Florianopolis, Santa Catarina (Brazil); Lima, J.C. de, E-mail: fsc1jcd@fisica.ufsc.b [Departamento de Fisica, Universidade Federal de Santa Catarina, Campus Trindade, C.P. 476, 88040-900 Florianopolis, Santa Catarina (Brazil); Souza, S.M.; Triches, D.M. [Departamento de Engenharia Mecanica, Universidade Federal de Santa Catarina, Campus Universitario Trindade, C.P. 476, 88040-900 Florianopolis, Santa Catarina (Brazil); Grandi, T.A. [Departamento de Fisica, Universidade Federal de Santa Catarina, Campus Trindade, C.P. 476, 88040-900 Florianopolis, Santa Catarina (Brazil); Biasi, R.S. de [Secao de Engenharia Mecanica e de Materiais, Instituto Militar de Engenharia, 22290-270 Rio de Janeiro, RJ (Brazil)

    2011-04-01

    Mechanical grinding (MG) was used to produce nanocrystalline silicon and its thermal and transport properties were investigated by photoacoustic absorption spectroscopy (PAS). The experimental results suggest that in as-milled nanocrystalline silicon for 10 h the heat transfer through the crystalline and interfacial components is similar, and after annealed at 470 {sup o}C the heat transfer is controlled by crystalline component.

  6. Photoacoustic study of nanocrystalline silicon produced by mechanical grinding

    International Nuclear Information System (INIS)

    Poffo, C.M.; Lima, J.C. de; Souza, S.M.; Triches, D.M.; Grandi, T.A.; Biasi, R.S. de

    2011-01-01

    Mechanical grinding (MG) was used to produce nanocrystalline silicon and its thermal and transport properties were investigated by photoacoustic absorption spectroscopy (PAS). The experimental results suggest that in as-milled nanocrystalline silicon for 10 h the heat transfer through the crystalline and interfacial components is similar, and after annealed at 470 o C the heat transfer is controlled by crystalline component.

  7. EFFECT OF CUP AND BALL TYPES ON MECHANO-CHEMICAL SYNTHES IS OF Al2O3–TiC NANOCOMPOSITE POWDER

    Directory of Open Access Journals (Sweden)

    M. Zakeri

    2012-07-01

    Full Text Available Al2O3–TiC nanocomposite powder was successfully synthesized by ball milling TiO2, Al and graphite powders. Effects of cup and ball type, milling time and annealing were investigated. XRD was used to characterize milled and annealed powders. The morphological and microstructural evolutions were studied by SEM and TEM. Results showed that the formation of this composite begins after 20 h and completes after 35 h of milling with stainless steel cup and balls. In contrast, there is no reaction during milling (up to 80 h with ZrO2 cup and balls. Fe and ZrO2 were the major impurities introduced during milling with stainless steel and ZrO2 cups, respectively. The Fe impurity was removed by leaching in 3HCl·HNO3 solution for 4 days. Mean grain size less than 7 nm was achieved at the end of milling. In spite of grain growth, this composite maintained its nanocrystalline nature after annealing at 1000°C.

  8. Colloidal Precursors from 'Ball-Milling in Liquid Medium' Process for CuInSe{sub 2} Thin Film

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Jae Hoon; Kim, Seung Joo [Ajou University, Suwon (Korea, Republic of)

    2010-09-15

    CIS thin film can be fabricated by using the precursor obtained through ball-milling the elemental reagents in liquid media. The amorphous colloidal precursor with good dispersity was prepared in the medium that contains strong base and polar solvent (2 M ethylenediamine in DMF solution as used in this study). The 'ball-milling in liquid medium' method requires only elemental sources as starting materials and a proper solution so that it can be employed without additional processes for separation and purification. As a simple and less-toxic preparative route, this method would be practically available to prepare CIS-related solar cells. CuInSe{sub 2} (CIS) and related chalcopyrite compounds are very promising materials for thin film solar cells due to their favorable band gap, high optical absorption coefficient and long-term stability. CIS-based solar cells have shown the highest conversion efficiency reaching a value of 20%. However, the vacuum-based processes that are used to fabricate CIS thin-films have some drawbacks such as the complexity in process, high production cost and difficulty in scaling up. Recently, several research groups have proposed different non-vacuum deposition processes for CIS solar cell. For example, H. W. Hillhouse et al. prepared the CIS absorber layer by using 'nanocrystal ink method' in which a colloidal nanocrystal ink was obtained from reaction of CuCl, InCl{sub 3} and Se in oleylamine. D. B. Mitzi et al. used a solution-based precursor that was prepared by dissolution of Cu{sub 2}Se, In{sub 2}Se{sub 3}, Ga{sub 2}Se{sub 3} and Se in hydrazine to fabricate the Ga-containing absorber layer, Cu(In,Ga)Se{sub 2}.

  9. Mechanical alloying and reactive milling in a high energy planetary mill

    International Nuclear Information System (INIS)

    Jiang Xianjin; Trunov, Mikhaylo A.; Schoenitz, Mirko; Dave, Rajesh N.; Dreizin, Edward L.

    2009-01-01

    Powder refinement in a planetary mill (Retsch PM 400-MA) is investigated experimentally and analyzed using discrete element modeling (DEM). Refinement is defined as the average size of the individual components in a composite powder. The specific milling dose, defined as the product of charge ratio and milling time, is used as an experimental parameter tracking the progress of the material refinement. This parameter is determined experimentally for milling of boron and titanium powders, for which the time of initiation of a self-sustained reaction is measured under different milling conditions. It is assumed that the reaction becomes self-sustaining when the same powder refinement is achieved. The DEM calculations established that the milling balls primarily roll along the milling container's perimeter. The inverse of the rate of energy dissipation resulting from this rolling motion is used as the DEM analog of the specific milling dose. The results correlate well with experimental observations.

  10. Liquid-assisted grinding and ion pairing regulates percentage conversion and diastereoselectivity of the Wittig reaction under mechanochemical conditions.

    Science.gov (United States)

    Denlinger, Kendra Leahy; Ortiz-Trankina, Lianna; Carr, Preston; Benson, Kingsley; Waddell, Daniel C; Mack, James

    2018-01-01

    Mechanochemistry is maturing as a discipline and continuing to grow, so it is important to continue understanding the rules governing the system. In a mechanochemical reaction, the reactants are added into a vessel along with one or more grinding balls and the vessel is shaken at high speeds to facilitate a chemical reaction. The dielectric constant of the solvent used in liquid-assisted grinding (LAG) and properly chosen counter-ion pairing increases the percentage conversion of stilbenes in a mechanochemical Wittig reaction. Utilizing stepwise addition/evaporation of ethanol in liquid-assisted grinding also allows for the tuning of the diastereoselectivity in the Wittig reaction.

  11. Colloidal Precursors from 'Ball-Milling in Liquid Medium' Process for CuInSe2 Thin Film

    International Nuclear Information System (INIS)

    Chung, Jae Hoon; Kim, Seung Joo

    2010-01-01

    CIS thin film can be fabricated by using the precursor obtained through ball-milling the elemental reagents in liquid media. The amorphous colloidal precursor with good dispersity was prepared in the medium that contains strong base and polar solvent (2 M ethylenediamine in DMF solution as used in this study). The 'ball-milling in liquid medium' method requires only elemental sources as starting materials and a proper solution so that it can be employed without additional processes for separation and purification. As a simple and less-toxic preparative route, this method would be practically available to prepare CIS-related solar cells. CuInSe 2 (CIS) and related chalcopyrite compounds are very promising materials for thin film solar cells due to their favorable band gap, high optical absorption coefficient and long-term stability. CIS-based solar cells have shown the highest conversion efficiency reaching a value of 20%. However, the vacuum-based processes that are used to fabricate CIS thin-films have some drawbacks such as the complexity in process, high production cost and difficulty in scaling up. Recently, several research groups have proposed different non-vacuum deposition processes for CIS solar cell. For example, H. W. Hillhouse et al. prepared the CIS absorber layer by using 'nanocrystal ink method' in which a colloidal nanocrystal ink was obtained from reaction of CuCl, InCl 3 and Se in oleylamine. D. B. Mitzi et al. used a solution-based precursor that was prepared by dissolution of Cu 2 Se, In 2 Se 3 , Ga 2 Se 3 and Se in hydrazine to fabricate the Ga-containing absorber layer, Cu(In,Ga)Se 2

  12. Investigation of finely dispersed grind of magnetically hard SmCo5 and Nd2Fe14B alloys

    International Nuclear Information System (INIS)

    Balalaev, Yu.N.; Kosobudskij, I.D.

    2000-01-01

    Possibility of preparation of finely dispersed powders of SmCo 5 and Nd 2 Fe 14 B allays investigated and comparison of different types of grinding processes is conducted. Results of comparison of the processes in vibrational mills and disintegrators permit to conclude that density and structure of grindable materials effect on the rate and quality of grinding of magnetically hard alloys [ru

  13. Superthermostability of nanoscale TIC-reinforced copper alloys manufactured by a two-step ball-milling process

    Science.gov (United States)

    Wang, Fenglin; Li, Yunping; Xu, Xiandong; Koizumi, Yuichiro; Yamanaka, Kenta; Bian, Huakang; Chiba, Akihiko

    2015-12-01

    A Cu-TiC alloy, with nanoscale TiC particles highly dispersed in the submicron-grained Cu matrix, was manufactured by a self-developed two-step ball-milling process on Cu, Ti and C powders. The thermostability of the composite was evaluated by high-temperature isothermal annealing treatments, with temperatures ranging from 727 to 1273 K. The semicoherent nanoscale TiC particles with Cu matrix, mainly located along the grain boundaries, were found to exhibit the promising trait of blocking grain boundary migrations, which leads to a super-stabilized microstructures up to approximately the melting point of copper (1223 K). Furthermore, the Cu-TiC alloys after annealing at 1323 K showed a slight decrease in Vickers hardness as well as the duplex microstructure due to selective grain growth, which were discussed in terms of hardness contributions from various mechanisms.

  14. Performance of Disk Mill Type Mechanical Grinder for Size Reducing Process of Robusta Roasted Beans

    Directory of Open Access Journals (Sweden)

    Sri Mulato

    2006-12-01

    Full Text Available One of improtant steps in secondary coffee processing that influence on final product quality such as consistency and uniformity is milling process. Usually, Indonesian smallholder used "lumpang" for milling coffee roasted beans to coffee powder product which caused the final product not uniformed and consistent, and low productivity. Milling process of coffee roasted beans can be done by disk mill type mechanical grinder which is used by smallholder for milling several cereals. Indonesian Coffee and Cocoa Research Institute have developed disk mill type grinding machine for milling coffee roasted beans. Objective of this research is to find performance of disk mill type grinding machine for size reducing process of Robusta roasted beans from several size dried beans and roasting level treatments. Robusta dried beans which are taken from dry processing method have 13—14% moisture content (wet basis, 680—685 kg/m3 density, and classified in 3 sizes level. The result showed that the disk mill type of grinding machine could be used for milling Robusta roasted beans. Machine hascapacity 31—54 kg/h on 5,310—5,610 rpm axle rotation and depend on roasting level. Other technical parameters were 91—98% process efficientcy, 19—31 ml/ kg fuel consumption, 0.3—1% slips, 50—55% particles had diameter less than 230 mesh and 38—44% particles had diameter bigger than 100 mesh, 32—38% lightness was increased, 0.6—12.6% density was decreased, and solubility of coffee powder between 28—30%. Cost milling process per kilogram of Robusta roasted beans which light roast on capacity 30 kg/hour was Rp362.9. Key words : Coffee roasted, Robusta, disk mill, mechanical grinder, size reduction.

  15. Effect of Stiffness of Rolling Joints on the Dynamic Characteristic of Ball Screw Feed Systems in a Milling Machine

    Directory of Open Access Journals (Sweden)

    Dazhong Wang

    2015-01-01

    Full Text Available Dynamic characteristic of ball screw feed system in a milling machine is studied numerically in this work. In order to avoid the difficulty in determining the stiffness of rolling joints theoretically, a dynamic modeling method for analyzing the feed system is discussed, and a stiffness calculation method of the rolling joints is proposed based on the Hertz contact theory. Taking a 3-axis computer numerical control (CNC milling machine set ermined as a research object, the stiffness of its fixed joint between the column and the body together with the stiffness parameters of the rolling joints is evaluated according to the Takashi Yoshimura method. Then, a finite element (FE model is established for the machine tool. The correctness of the FE model and the stiffness calculation method of the rolling joints are validated by theoretical and experimental modal analysis results of the machine tool’s workbench. Under the two modeling methods of joints incorporating the stiffness parameters and rigid connection, a theoretical modal analysis is conducted for the CNC milling machine. The natural frequencies and modal shapes reveal that the joints’ dynamic characteristic has an important influence on the dynamic performance of a whole machine tool, especially for the case with natural frequency and higher modes.

  16. Modeling of Surface Geometric Structure State After Integratedformed Milling and Finish Burnishing

    Science.gov (United States)

    Berczyński, Stefan; Grochała, Daniel; Grządziel, Zenon

    2017-06-01

    The article deals with computer-based modeling of burnishing a surface previously milled with a spherical cutter. This method of milling leaves traces, mainly asperities caused by the cutting crossfeed and cutter diameter. The burnishing process - surface plastic treatment - is accompanied by phenomena that take place right in the burnishing ball-milled surface contact zone. The authors present the method for preparing a finite element model and the methodology of tests for the assessment of height parameters of a surface geometrical structure (SGS). In the physical model the workpieces had a cuboidal shape and these dimensions: (width × height × length) 2×1×4.5 mm. As in the process of burnishing a cuboidal workpiece is affected by plastic deformations, the nonlinearities of the milled item were taken into account. The physical model of the process assumed that the burnishing ball would be rolled perpendicularly to milling cutter linear traces. The model tests included the application of three different burnishing forces: 250 N, 500 N and 1000 N. The process modeling featured the contact and pressing of a ball into the workpiece surface till the desired force was attained, then the burnishing ball was rolled along the surface section of 2 mm, and the burnishing force was gradually reduced till the ball left the contact zone. While rolling, the burnishing ball turned by a 23° angle. The cumulative diagrams depict plastic deformations of the modeled surfaces after milling and burnishing with defined force values. The roughness of idealized milled surface was calculated for the physical model under consideration, i.e. in an elementary section between profile peaks spaced at intervals of crossfeed passes, where the milling feed fwm = 0.5 mm. Also, asperities after burnishing were calculated for the same section. The differences of the obtained values fall below 20% of mean values recorded during empirical experiments. The adopted simplification in after-milling

  17. Ultra-Fine Friction Grinding of Sunflower Kernels – Thereof Tahini and Halva Production and Rheological Characterization

    Directory of Open Access Journals (Sweden)

    Emil RACOLŢA

    2016-11-01

    Full Text Available Tahini is a paste obtained by milling the roasted sunflower kernel. Usually, a time and energy consuming two-steps process is involved, a three-roll refiner and a beating machine. The aim of this work was to identify and test a milling process for roasted sunflower kernels with lower time and energy consumption. Different particle size sunflower tahini and halva samples were produced by Ultra-Fine Friction Grinding machine Masuko Sangyo “Supermasscolloider” MKCA6-2 and compared to standard technology. The rheological properties of tahini and textural parameters of halva were assessed. Rheological analysis revealed that all tahini samples produced by “Supermasscolloider” showed a different viscosity profile, as compared to control, the sample milled with the gap set at 100µm being the most viscous and the one at 200µm being the most fluid. When testing the halva samples texture, the sample obtained from the tahini milled at 200µm was clearly highlighted as having the lowest hardness values, while the other samples showed similar texture profiles. The feasibility of using an Ultra-Fine Friction Grinding machine for obtaining sunflower tahini and thereof halva with improved textural properties, was assessed successfully.

  18. Comparison of particle sizes between 238PuO2 before aqueous processing, after aqueous processing, and after ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Mulford, Roberta Nancy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-06

    Particle sizes determined for a single lot of incoming Russian fuel and for a lot of fuel after aqueous processing are compared with particle sizes measured on fuel after ball-milling. The single samples of each type are believed to have particle size distributions typical of oxide from similar lots, as the processing of fuel lots is fairly uniform. Variation between lots is, as yet, uncharacterized. Sampling and particle size measurement methods are discussed elsewhere.

  19. Preliminary study of sintering of metallic niobium processed for mechanical milling

    International Nuclear Information System (INIS)

    Tamura, H.M.; Vurobi Junior, S.; Cintho, O.M.; Sandim, H.R.Z.; Leite, G.S.

    2010-01-01

    In present study was preliminary study of mechanical milling influence on preparing of metallic niobium powder for sintering. Sample of metallic niobium in powder passing in sieve no. 635 mesh was processed by mechanical milling in SPEX mill for 8 hours using power grinding of 7:1 and a nitrogen atmosphere. The powder was annealed at different temperatures, 900 deg C, 1000 deg C, 1100 deg C and 1200 deg C for 1 hour in an atmosphere of hydrogen and argon to study their crystallization, which then were formed into blank for analysis of the curves compressibility. These samples were also subjected to x-ray diffraction in that their data were compared between the annealing temperatures. We also evaluate the compressibility curves of niobium samples with and without grinding these samples were subjected to x-ray diffraction and fluorescence. (author)

  20. Investigation of planetary milling for nano-silicon carbide reinforced aluminium metal matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Kollo, Lauri, E-mail: lauri.kollo@staff.ttu.e [Laboratory of Advanced Materials Processing, EMPA, Feuerwerkerstrasse 39, 3602 Thun (Switzerland); Department of Materials Engineering, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn (Estonia); Leparoux, Marc; Bradbury, Christopher R.; Jaeggi, Christian [Laboratory of Advanced Materials Processing, EMPA, Feuerwerkerstrasse 39, 3602 Thun (Switzerland); Carreno-Morelli, Efrain; Rodriguez-Arbaizar, Mikel [University of Applied Sciences of Western Switzerland, Design and Materials Unit, 1950 Sion (Switzerland)

    2010-01-21

    High-energy planetary milling was used for mixing aluminium powders with 1 vol.% of silicon carbide (SiC) nanoparticles. A number of milling parameters were modified for constituting the relationship between the energy input from the balls and the hardness of the bulk nanocomposite materials. It was shown that mixing characteristics and reaction kinetics with stearic acid as process control agent can be estimated by normalised input energy from the milling bodies. For this, the additional parameter characterising the vial filling was determined experimentally. Depending on the ball size, a local minimum in filling parameter was found, laying at 25 or 42% filling of the vial volume for the balls with diameter of 10 and 20 mm, respectively. These regions should be avoided to achieve the highest milling efficiency.After a hot compaction, fourfold difference of hardness for different milling conditions was detected. Therewith the hardness of the Al-1 vol.% nanoSiC composite could be increased from 47 HV{sub 0.5} of pure aluminium to 163 HV{sub 0.5} when milling at the highest input energy levels.

  1. The Influence of Milling on the Dissolution Performance of Simvastatin

    Directory of Open Access Journals (Sweden)

    Thomas Rades

    2010-12-01

    Full Text Available Particle size reduction is a simple means to enhance the dissolution rate of poorly water soluble BCS-class II and IV drugs. However, the major drawback of this process is the possible introduction of process induced disorder. Drugs with different molecular arrangements may exhibit altered properties such as solubility and dissolution rate and, therefore, process induced solid state modifications need to be monitored. The aim of this study was two-fold: firstly, to investigate the dissolution rates of milled and unmilled simvastatin; and secondly, to screen for the main milling factors, as well as factor interactions in a dry ball milling process using simvastatin as model drug, and to optimize the milling procedure with regard to the opposing responses particle size and process induced disorder by application of a central composite face centered design. Particle size was assessed by scanning electron microscopy (SEM and image analysis. Process induced disorder was determined by partial least squares (PLS regression modeling of respective X-ray powder diffractograms (XRPD and Raman spectra. Valid and significant quadratic models were built. The investigated milling factors were milling frequency, milling time and ball quantity at a set drug load, out of which milling frequency was found to be the most important factor for particle size as well as process induced disorder. Milling frequency and milling time exhibited an interaction effect on the responses. The optimum milling settings using the maximum number of milling balls (60 balls with 4 mm diameter was determined to be at a milling frequency of 21 Hz and a milling time of 36 min with a resulting primary particle size of 1.4 μm and a process induced disorder of 6.1% (assessed by Raman spectroscopy and 8.4% (assessed by XRPD, at a set optimization limit of < 2 μm for particle size and < 10% for process induced disorder. This optimum was tested experimentally and the process induced disorder

  2. Solvent-Free Biginelli Reactions Catalyzed by Hierarchical Zeolite Utilizing a Ball Mill Technique: A Green Sustainable Process

    Directory of Open Access Journals (Sweden)

    Ameen Shahid

    2017-03-01

    Full Text Available A sustainable, green one-pot process for the synthesis of dihydropyrimidinones (DHPMs derivatives by a three-component reaction of β-ketoester derivatives, aldehyde and urea or thiourea over the alkali-treated H-ZSM-5 zeolite under ball-milling was developed. Isolation of the product with ethyl acetate shadowed by vanishing of solvent was applied. The hierachical zeolite catalyst (MFI27_6 showed high yield (86%–96% of DHPMs in a very short time (10–30 min. The recyclability of the catalyst for the subsequent reactions was examined in four subsequent runs. The catalyst was shown to be robust without a detectable reduction in catalytic activity, and high yields of products showed the efficient protocol of the Biginelli reactions.

  3. Optimization of Parameters for Manufacture Nanopowder Bioceramics at Machine Pulverisette 6 by Taguchi and ANOVA Method

    Science.gov (United States)

    Van Hoten, Hendri; Gunawarman; Mulyadi, Ismet Hari; Kurniawan Mainil, Afdhal; Putra, Bismantoloa dan

    2018-02-01

    This research is about manufacture nanopowder Bioceramics from local materials used Ball Milling for biomedical applications. Source materials for the manufacture of medicines are plants, animal tissues, microbial structures and engineering biomaterial. The form of raw material medicines is a powder before mixed. In the case of medicines, research is to find sources of biomedical materials that will be in the nanoscale powders can be used as raw material for medicine. One of the biomedical materials that can be used as raw material for medicine is of the type of bioceramics is chicken eggshells. This research will develop methods for manufacture nanopowder material from chicken eggshells with Ball Milling using the Taguchi method and ANOVA. Eggshell milled using a variation of Milling rate on 150, 200 and 250 rpm, the time variation of 1, 2 and 3 hours and variations the grinding balls to eggshell powder weight ratio (BPR) 1: 6, 1: 8, 1: 10. Before milled with Ball Milling crushed eggshells in advance and calcinate to a temperature of 900°C. After the milled material characterization of the fine powder of eggshell using SEM to see its size. The result of this research is optimum parameter of Taguchi Design analysis that is 250 rpm milling rate, 3 hours milling time and BPR is 1: 6 with the average eggshell powder size is 1.305 μm. Milling speed, milling time and ball to powder weight of ratio have contribution successively equal to 60.82%, 30.76% and 6.64% by error equal to 1.78%.

  4. Bioethanol production from ball milled bagasse using an on-site produced fungal enzyme cocktail and xylose-fermenting Pichia stipitis.

    Science.gov (United States)

    Buaban, Benchaporn; Inoue, Hiroyuki; Yano, Shinichi; Tanapongpipat, Sutipa; Ruanglek, Vasimon; Champreda, Verawat; Pichyangkura, Rath; Rengpipat, Sirirat; Eurwilaichitr, Lily

    2010-07-01

    Sugarcane bagasse is one of the most promising agricultural by-products for conversion to biofuels. Here, ethanol fermentation from bagasse has been achieved using an integrated process combining mechanical pretreatment by ball milling, with enzymatic hydrolysis and fermentation. Ball milling for 2 h was sufficient for nearly complete cellulose structural transformation to an accessible amorphous form. The pretreated cellulosic residues were hydrolyzed by a crude enzyme preparation from Penicillium chrysogenum BCC4504 containing cellulase activity combined with Aspergillus flavus BCC7179 preparation containing complementary beta-glucosidase activity. Saccharification yields of 84.0% and 70.4% for glucose and xylose, respectively, were obtained after hydrolysis at 45 degrees C, pH 5 for 72 h, which were slightly higher than those obtained with a commercial enzyme mixture containing Acremonium cellulase and Optimash BG. A high conversion yield of undetoxified pretreated bagasse (5%, w/v) hydrolysate to ethanol was attained by separate hydrolysis and fermentation processes using Pichia stipitis BCC15191, at pH 5.5, 30 degrees C for 24 h resulting in an ethanol concentration of 8.4 g/l, corresponding to a conversion yield of 0.29 g ethanol/g available fermentable sugars. Comparable ethanol conversion efficiency was obtained by a simultaneous saccharification and fermentation process which led to production of 8.0 g/l ethanol after 72 h fermentation under the same conditions. This study thus demonstrated the potential use of a simple integrated process with minimal environmental impact with the use of promising alternative on-site enzymes and yeast for the production of ethanol from this potent lignocellulosic biomass. 2009. Published by Elsevier B.V.

  5. Physicochemical properties of direct compression tablets with spray dried and ball milled solid dispersions of tadalafil in PVP-VA.

    Science.gov (United States)

    Wlodarski, K; Tajber, L; Sawicki, W

    2016-12-01

    The aim of this research was to develop immediate release tablets comprising solid dispersion (IRSDTs) of tadalafil (Td) in a vinylpyrrolidone and vinyl acetate block copolymer (PVP-VA), characterized by improved dissolution profiles. The solid dispersion of Td in PVP-VA (Td/PVP-VA) in a weight ratio of 1:1 (w/w) was prepared using two different processes i.e. spray drying and ball milling. While the former process has been well established in the formulation of IRSDTs the latter has not been exploited in these systems yet. Regardless of the preparation method, both Td/PVP-VA solid dispersions were amorphous as confirmed by PXRD, DSC and FTIR. However, different morphology of particles (SEM) resulted in differences in water apparent solubility and disk intrinsic dissolution rate (DIDR). Both solid dispersions and crystalline Td were successfully made into directly compressible tablets at three doses of Td, i.e. 2.5mg, 10mgand20mg, yielding nine different formulations (D 1 -D 9 ). Each of the lots met the requirements set by Ph.Eur. and was evaluated with respect to appearance, diameter, thickness, mass, hardness, friability, disintegration time and content of Td. IRSDTs performed as supersaturable formulations and had significantly improved water dissolution profiles in comparison with equivalent tablets containing crystalline Td and the marketed formulations. Tablets with both spray dried and ball milled Td/PVP-VA revealed the greatest improvement in dissolution depending on the investigated doses, i.e. 2.5mgand20mg, respectively. Also, dissolution of Td from Td/PVP-VA delivered in different forms occurred in the following order: powders>tablets>capsules. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. modeling grinding modeling grinding processes as micro processes

    African Journals Online (AJOL)

    eobe

    industrial precision grinding processes are cylindrical, center less and ... Several model shave been proposed and used to study grinding ..... grinding force for the two cases were 9.07237N/mm ..... International Journal of Machine Tools &.

  7. Effect of ball milling and dynamic compaction on magnetic properties of Al{sub 2}O{sub 3}/Co(P) composite particles

    Energy Technology Data Exchange (ETDEWEB)

    Denisova, E. A. [Kirensky Institute of Physics SB RAS, Krasnoyarsk (Russian Federation); Krasnoyarsk Institute of Railways Transport, Krasnoyarsk (Russian Federation); Kuzovnikova, L. A. [Krasnoyarsk Institute of Railways Transport, Krasnoyarsk (Russian Federation); Iskhakov, R. S., E-mail: rauf@iph.krasn.ru; Eremin, E. V. [Kirensky Institute of Physics SB RAS, Krasnoyarsk (Russian Federation); Bukaemskiy, A. A. [Institut fur Sicherheitsforschung und Reaktortechnik, D-52425 Juelich (Germany); Nemtsev, I. V. [Krasnoyarsk Scientific Center SB RAS, Krasnoyarsk (Russian Federation)

    2014-05-07

    The evolution of the magnetic properties of composite Al{sub 2}O{sub 3}/Co(P) particles during ball milling and dynamic compaction is investigated. To prepare starting composite particles, the Al{sub 2}O{sub 3} granules were coated with a Co{sub 95}P{sub 5} shell by electroless plating. The magnetic and structural properties of the composite particles are characterized by scanning electron microscopy, X-ray diffraction, and the use of the Physical Property Measurement System. The use of composite core-shell particles as starting powder for mechanoactivation allows to decrease treatment duration to 1 h and to produce a more homogeneous bulk sample than in the case of the mixture of Co and Al{sub 2}O{sub 3} powders. The magnetic properties of the milled composite particles are correlated with changes in the microstructure. Reduction in grain size of Co during milling leads to an increase of the volume fraction of superparamagnetic particles and to a decrease of the saturation magnetization. The local magnetic anisotropy field depends on the amount of hcp-Co phase in sample. The anisotropy field value decreases from 8.4 kOe to 3.8 kOe with an increase in milling duration up to 75 min. The regimes of dynamic compaction were selected so that the magnetic characteristics—saturation magnetization and coercive field—remained unchanged.

  8. Magneto-optical properties of α-Fe2O3@ZnO nanocomposites prepared by the high energy ball-milling technique

    Science.gov (United States)

    Chaudhury, Chandana Roy; Roychowdhury, Anirban; Das, Anusree; Das, Dipankar

    2016-05-01

    Magnetic-fluorescent nanocomposites (NCs) with 10 wt% of α-Fe2O3 in ZnO have been prepared by the high energy ball-milling. The crystallite sizes of α-Fe2O3 and ZnO in the NCs are found to vary from 65 nm to 20 nm and 47 nm to 15 nm respectively as milling time is increased from 2 to 30 h. XRD analysis confirms presence of α-Fe2O3 and ZnO in pure form in all the NCs. UV-vis study of the NCs shows a continuous blue-shift of the absorption peak and a steady increase of band gap of ZnO with increasing milling duration that are assigned to decreasing particle size of ZnO in the NCs. Photoluminescence (PL) spectra of the NCs reveal three weak emission bands in the visible region at 421, 445 and 485 nm along with the strong near band edge emission at 391 nm. These weak emission bands are attributed to different defect - related energy levels e.g. Zn-vacancy, Zn interstitial and oxygen vacancy. Dc and ac magnetization measurements show presence of weakly interacting superparamagnetic (SPM) α-Fe2O3 particles in the NCs. 57Fe-Mössbauer study confirms presence of SPM hematite in the sample milled for 30 h. Positron annihilation lifetime measurements indicate presence of cation vacancies in ZnO nanostructures confirming results of PL studies.

  9. The Influence of Wet Dressing of Grinding Wheel on the Grinding Performance

    OpenAIRE

    重松, 日出見; 冨田, 進

    1989-01-01

    Experiments on the relation between the form of working plane of grinding wheel which was formed by dressing, and the grinding performance of working plane of grinding wheel in the early stage of grinding, were carried out supplying the same grinding fluid in dressing time and grinding time. As a result, it was found that the difference of the action or the effect of grinding fluids on the working plane of grinding fluid were related to the grinding performance in the early stage of grinding....

  10. Similarities and Differences in Mechanical Alloying Processes of V-Si-B and Mo-Si-B Powders

    Directory of Open Access Journals (Sweden)

    Manja Krüger

    2016-10-01

    Full Text Available V-Si-B and Mo-Si-B alloys are currently the focus of materials research due to their excellent high temperature capabilities. To optimize the mechanical alloying (MA process for these materials, we compare microstructures, morphology and particles size as well as hardness evolution during the milling process for the model alloys V-9Si-13B and Mo-9Si-8B. A variation of the rotational speed of the planetary ball mill and the type of grinding materials is therefore investigated. These modifications result in different impact energies during ball-powder-wall collisions, which are quantitatively described in this comparative study. Processing with tungsten carbide vials and balls provides slightly improved impact energies compared to vials and balls made of steel. However, contamination of the mechanically alloyed powders with flaked particles of tungsten carbide is unavoidable. In the case of using steel grinding materials, Fe contaminations are also detectable, which are solved in the V and Mo solid solution phases, respectively. Typical mechanisms that occur during the MA process such as fracturing and comminution are analyzed using the comminution rate KP. In both alloys, the welding processes are more pronounced compared to the fracturing processes.

  11. Synthesis, thermal properties and recrystallization of ball-milled high Tc superconductors. (Topological stabilization of metastable phases)

    International Nuclear Information System (INIS)

    Schulz, R.; Lanteigne, J.; Simoneau, M.; Tessier, P.; Neste, A. van; Strom Olsen, J.O.

    1995-01-01

    Amorphous and nanocrystalline phases have been formed by ball-milling Y-Ba-Cu-O and Bi-Ca-Sr-Cu-O. The strong mechanical deformations induce disorder on the oxygen sublattice and on the cation sites. These order-disorder transformations often produce simple cubic perovskite structures. During recrystallization, the chemical order is restored. Small ordered regions nucleate, grow and produce particular metastable configurations which minimize the total elastic strain energy. The sequence of events giving rise to the various metastable phases has been followed by x-ray diffraction and differential scanning calorimetry and is explained in terms of free energy diagrams. The stress and strain fields associated with the Y-Ba disorder are calculated using the elastic properties of the Y-Ba-Cu-O superconductor. A simple model is proposed to explain the stability of the structures observed after thermal treatments. (orig.)

  12. Effect of zirconium on grain growth and mechanical properties of a ball-milled nanocrystalline FeNi alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kotan, Hasan, E-mail: hkotan@ncsu.edu [Department of Materials Science and Engineering, NC State University, 911 Partners Way, Room 3078, Raleigh, NC 27606-7907 (United States); Darling, Kris A. [U.S. Army Research Laboratory, Weapons and Materials Research Directorate, RDRL-WMM-F, Aberdeen Proving Ground, MD 21005-5069 (United States); Saber, Mostafa; Koch, Carl C.; Scattergood, Ronald O. [Department of Materials Science and Engineering, NC State University, 911 Partners Way, Room 3078, Raleigh, NC 27606-7907 (United States)

    2013-02-25

    Highlights: Black-Right-Pointing-Pointer Pure Fe, Fe{sub 92}Ni{sub 8}, and Fe{sub 91}Ni{sub 8}Zr{sub 1} powders were hardened up to 10 GPa by ball milling. Black-Right-Pointing-Pointer Annealing of Fe and Fe{sub 92}Ni{sub 8} leads to reduced hardness and extensive grain growth. Black-Right-Pointing-Pointer The addition of Zr to Fe{sub 92}Ni{sub 8} increases its stability and strength by second phases. Black-Right-Pointing-Pointer The second phases are found to promote the stability of Fe{sub 91}Ni{sub 8}Zr{sub 1} by Zener pinning. Black-Right-Pointing-Pointer The Zr-containing precipitates contribute to the overall strength of the material. - Abstract: Grain growth of ball-milled pure Fe, Fe{sub 92}Ni{sub 8}, and Fe{sub 91}Ni{sub 8}Zr{sub 1} alloys has been studied using X-ray diffractometry (XRD), focused ion beam (FIB) microscopy and transmission electron microscopy (TEM). Mechanical properties with respect to compositional changes and annealing temperatures have been investigated using microhardness and shear punch tests. We found the rate of grain growth of the Fe{sub 91}Ni{sub 8}Zr{sub 1} alloy to be much less than that of pure Fe and the Fe{sub 92}Ni{sub 8} alloy at elevated temperatures. The microstructure of the ternary Fe{sub 91}Ni{sub 8}Zr{sub 1} alloy remains nanoscale up to 700 Degree-Sign C where only a few grains grow abnormally whereas annealing of pure iron and the Fe{sub 92}Ni{sub 8} alloy leads to extensive grain growth. The grain growth of the ternary alloy at high annealing temperatures is coupled with precipitation of Fe{sub 2}Zr. A fine dispersion of precipitated second phase is found to promote the microstructural stability at high annealing temperatures and to increase the hardness and ultimate shear strength of ternary Fe{sub 91}Ni{sub 8}Zr{sub 1} alloy drastically when the grain size is above nanoscale.

  13. Corrosion of Cast Iron Mill Plates in Wet Grinding

    Directory of Open Access Journals (Sweden)

    Anthony ANDREWS

    2010-12-01

    Full Text Available Corrosion studies were carried out on two different maize grinding plates. Maize was soaked in water for three days and the water decanted and used as electrolyte. Mass loss and pH measurements were carried out every 3 days for 15-day period. Results show that, for each plate, mass loss and pH increased with exposure time. Corrosion rates determined from mass loss data was found to be strongly dependent on pH. The observed behaviour may be explained in terms of the chemical composition and/or microstructures of the plates. Results are briefly discussed in terms of the contribution of corrosion to wear.

  14. Nanograin formation in milled MoO3 powders

    International Nuclear Information System (INIS)

    Guerrero-Paz, J; Dorantes-Rosales, H; Aguilar-Martínez, J A; Garibay-Febles, V

    2013-01-01

    Powder of Molybdenum trioxide was milled for different times in horizontal ball mills. Such powder was characterized by TEM and XRD. Powder was rapidly de-agglomerated and fragmented up to attain nanoplates of two types, amorphous and crystalline. Finally, cold-welding of nanoplates occurred permitting some relaxation process to obtain a more stable energized structure consisting of equiaxial crystalline nanograins after 16 hours of milling.

  15. Efek Waktu Wet Milling dan Suhu Annealing Terhadap Sifat Fisis, Mikrostruktur dan Magnet dari Flakes NdFeB

    OpenAIRE

    Sipahutar, Wahyu Solafide

    2015-01-01

    Had made research manufacture NdFeB magnets of flakes of wet milling process using a ball mill to the physic properties, microstructure, and magnetic properties with variations milling time is 16 hours, 24 hours, 48 hours, 72 hours. Powder result of mechanical milling using a ball mill and then analyzed the resulting particle size by using PSA and XRD. Then do the manufacture of test samples in the form of pellets by compaction process through print isotropy. Having obtained a sample of pelle...

  16. Mechanochemistry assisted asymmetric organocatalysis: A sustainable approach

    Directory of Open Access Journals (Sweden)

    Pankaj Chauhan

    2012-12-01

    Full Text Available Ball-milling and pestle and mortar grinding have emerged as powerful methods for the development of environmentally benign chemical transformations. Recently, the use of these mechanochemical techniques in asymmetric organocatalysis has increased. This review highlights the progress in asymmetric organocatalytic reactions assisted by mechanochemical techniques.

  17. Grinding assembly, grinding apparatus, weld joint defect repair system, and methods

    Science.gov (United States)

    Larsen, Eric D.; Watkins, Arthur D.; Bitsoi, Rodney J.; Pace, David P.

    2005-09-27

    A grinding assembly for grinding a weld joint of a workpiece includes a grinder apparatus, a grinder apparatus includes a grinding wheel configured to grind the weld joint, a member configured to receive the grinding wheel, the member being configured to be removably attached to the grinder apparatus, and a sensor assembly configured to detect a contact between the grinding wheel and the workpiece. The grinding assembly also includes a processing circuitry in communication with the grinder apparatus and configured to control operations of the grinder apparatus, the processing circuitry configured to receive weld defect information of the weld joint from an inspection assembly to create a contour grinding profile to grind the weld joint in a predetermined shape based on the received weld defect information, and a manipulator having an end configured to carry the grinder apparatus, the manipulator further configured to operate in multiple dimensions.

  18. Control of Natural Zeolite Properties by Mechanical Activation in Stirred Media Mill

    Directory of Open Access Journals (Sweden)

    Bohács K.

    2017-06-01

    Full Text Available Due to the special characteristics of zeolites, they can be applied in a very wide range of industries, i.e. agricultural, environmental or water treatment purposes. Generally, high added value zeolite products are manufactured by micro- or nanogrinding. However, these processes require high energy input and cause significant wearing of the mill parts. Therefore, the optimization of zeolite grinding, as well as the control of its properties are of a great importance. In the present paper a Hungarian natural zeolite was mechanically activated in stirred media mill for various residence times in distilled water, meanwhile the particle size distribution and the grinding energy were measured. Additionally, on-line tube rheometer was used to study the rheology of the suspension during the grinding process. The particle interaction and the suspension aggregation stability were detected by zeta-potential measurements. Structural changes due to the mechanical activation process were monitored by FTIR. It was found that the material structure of the zeolite, as well as the rheological behaviour of the zeolite suspension and its aggregation stability had been altered due to the mechanical activation in the stirred media mill. It can be concluded that the zeolite product properties can be modified by mechanical activation in order to produce a high added value tailored material.

  19. Comparison of Two Powder Processing Techniques on the Properties of Cu-NbC Composites

    Directory of Open Access Journals (Sweden)

    B. D. Long

    2014-01-01

    Full Text Available An in situ Cu-NbC composite was successfully synthesized from Cu, Nb, and C powders using ball milling and high pressure torsion (HPT techniques. The novelty of the new approach, HPT, is the combination of high compaction pressure and large shear strain to simultaneously refine, synthesize, and consolidate composite powders at room temperature. The HPTed Cu-NbC composite was formed within a short duration of 20 min without Fe contamination from the HPT’s die. High porosity of 3–9%, Fe and niobium oxidations, from grinding media and ethanol during ball milling led to low electrical conductivity of the milled Cu-NbC composite. The electrical conductivity of the HPTed Cu-NbC composite showed a value 50% higher than that of milled Cu-NbC composite of the same composition.

  20. Effect of sample preparation method on quantification of polymorphs using PXRD.

    Science.gov (United States)

    Alam, Shahnwaz; Patel, Sarsvatkumar; Bansal, Arvind Kumar

    2010-01-01

    The purpose of this study was to improve the sensitivity and accuracy of quantitative analysis of polymorphic mixtures. Various techniques such as hand grinding and mixing (in mortar and pestle), air jet milling and ball milling for micronization of particle and mixing were used to prepare binary mixtures. Using these techniques, mixtures of form I and form II of clopidogrel bisulphate were prepared in various proportions from 0-5% w/w of form I in form II and subjected to x-ray powder diffraction analysis. In order to obtain good resolution in minimum time, step time and step size were varied to optimize scan rate. Among the six combinations, step size of 0.05 degrees with step time of 5 s demonstrated identification of maximum characteristic peaks of form I in form II. Data obtained from samples prepared using both grinding and mixing in ball mill showed good analytical sensitivity and accuracy compared to other methods. Powder x-ray diffraction method was reproducible, precise with LOD of 0.29% and LOQ of 0.91%. Validation results showed excellent correlation between actual and predicted concentration with R2 > 0.9999.

  1. Tool grinding machine

    Science.gov (United States)

    Dial, Sr., Charles E.

    1980-01-01

    The present invention relates to an improved tool grinding mechanism for grinding single point diamond cutting tools to precise roundness and radius specifications. The present invention utilizes a tool holder which is longitudinally displaced with respect to the remainder of the grinding system due to contact of the tool with the grinding surface with this displacement being monitored so that any variation in the grinding of the cutting surface such as caused by crystal orientation or tool thickness may be compensated for during the grinding operation to assure the attainment of the desired cutting tool face specifications.

  2. the quality of locally-manufactured corn- mill grinding plates

    African Journals Online (AJOL)

    User

    sumers of foods prepared from such contaminated milled maize. Keywords: maize ... age of the local plates stem from the fact that they are relatively ..... and also regulates cell growth and differentia- .... with iron supplements”, MCN Am J Ma-.

  3. Production of talc nano sheets via fine grinding and sonication processes

    International Nuclear Information System (INIS)

    Samayamutthirian Palaniandy; Noorina Hidayu Jamil Khairun Azizi Mohd Azizli; Syed Fuad Saiyid Hashim; Hashim Hussin

    2009-01-01

    Fine grinding of high purity talc in jet mill at low grinding pressure was carried out by varying the feed rate and classifier rotational speed. These ground particles were sonicated in laboratory ultrasonic bath by varying the soniction period at five levels. The ground and sonicated particles were characterized in terms of particle size and particle size distribution. Mechanochemical and sonochemical effect of talc was determine via X-ray diffraction. Particle shape and surface texture of the ground and sonicated product was determined via scanning electron microscope and transmission electron microscope. The ground particle size exhibited particle size below 10 μm with narrow size distribution. The reduction of peak intensity in (002) plane indicated the layered structure has been distorted. The sonicated talc shows that the thickness of the talc particles after the sonication process is 20 nm but the lateral particle size still remains in micron range. The reduction of the XRD peak intensity for (002) plane and thickness of sonicated talc as shown in SEM and TEM micrographs proves that fine grinding and sonication process produces talc nano sheets. (author)

  4. Crush Grinding

    International Nuclear Information System (INIS)

    Nguyen, T.Q.

    2005-01-01

    Crush Grinding is a special process used at the Kansas City Plant to finish stem sections of reservoir products. In this process, a precise profile of the desired product is formed on a tungsten carbide roll. This roll slowly transfers a mirror image of the profile onto the grinding surface of a wheel. The transfer rate of the profile is between 0.001 and 0.010 inches per minute. Crush grinding is desirable since it provides consistent surface finishes and thin walls at a high production rate. In addition, it generates very sharp fillet radii. However, crush grinding is a complex process since many variables affect the final product. Therefore, the process requires more attention and knowledge beyond basic metal removal practices. While the Kansas City Plant began using these machines in 1995, a formal study regarding crush grinding has not been conducted there. In addition, very little literature is available in the grinding industry regarding this process. As a result, new engineers at the Kansas City Plant must learn the process through trial and error. The purpose of this document is to address this literature deficit while specifically promoting a better understanding of the stem crush grinding process at the Kansas City Plant.

  5. Investigation of nanostructured Al-10 wt.% Zr material prepared by ball milling for high temperature applications

    International Nuclear Information System (INIS)

    Prosviryakov, A.S.; Shcherbachev, K.D.; Tabachkova, N.Yu.

    2017-01-01

    Ground chips of as-cast Al-10 wt.% Zr alloy were subjected to mechanical alloying (MA) with 5 vol.% of nanodiamond addition in a high energy planetary ball-mill. The aim of this work was to investigate the microstructure, phase transformation and mechanical properties of the material both after MA and after subsequent annealing. Optical and transmission electron microscopes were used for morphological and microstructural analysis. The effect of milling time on powder microhardness, Al lattice parameter, lattice microstrain and crystallite size was determined. It was shown that mechanical alloying of as-cast Al-10wt.%Zr alloy during 20 h leads to a complete dissolution of the primary tetragonal Al 3 Zr crystals in aluminum. At the same time, the powder microhardness increases to 370 HV. Metastable cubic Al 3 Zr phase nanoparticles precipitate from the Al solution due to its decomposition after annealing, however, the Al solid solution remains supersaturated and nanocrystalline. Compression tests at room temperature and at 300 °C showed that the strength values of the hot-pressed samples reach 822 MPa and 344 MPa, respectively. - Highlights: •As-cast Al-10 wt.% Zr alloy was mechanically alloyed with 5 vol.% nanodiamond. •The primary tetragonal Al 3 Zr crystals were completely dissolved in Al after 20 h. •Cubic Al 3 Zr phase nanoparticles precipitated from Al solution after aging. •The aged bulk material showed a high strength at room and elevated temperatures.

  6. Investigation of nanostructured Al-10 wt.% Zr material prepared by ball milling for high temperature applications

    Energy Technology Data Exchange (ETDEWEB)

    Prosviryakov, A.S., E-mail: pro.alex@mail.ru; Shcherbachev, K.D.; Tabachkova, N.Yu.

    2017-01-15

    Ground chips of as-cast Al-10 wt.% Zr alloy were subjected to mechanical alloying (MA) with 5 vol.% of nanodiamond addition in a high energy planetary ball-mill. The aim of this work was to investigate the microstructure, phase transformation and mechanical properties of the material both after MA and after subsequent annealing. Optical and transmission electron microscopes were used for morphological and microstructural analysis. The effect of milling time on powder microhardness, Al lattice parameter, lattice microstrain and crystallite size was determined. It was shown that mechanical alloying of as-cast Al-10wt.%Zr alloy during 20 h leads to a complete dissolution of the primary tetragonal Al{sub 3}Zr crystals in aluminum. At the same time, the powder microhardness increases to 370 HV. Metastable cubic Al{sub 3}Zr phase nanoparticles precipitate from the Al solution due to its decomposition after annealing, however, the Al solid solution remains supersaturated and nanocrystalline. Compression tests at room temperature and at 300 °C showed that the strength values of the hot-pressed samples reach 822 MPa and 344 MPa, respectively. - Highlights: •As-cast Al-10 wt.% Zr alloy was mechanically alloyed with 5 vol.% nanodiamond. •The primary tetragonal Al{sub 3}Zr crystals were completely dissolved in Al after 20 h. •Cubic Al{sub 3}Zr phase nanoparticles precipitated from Al solution after aging. •The aged bulk material showed a high strength at room and elevated temperatures.

  7. C, N co-doped TiO_2/TiC_0_._7N_0_._3 composite coatings prepared from TiC_0_._7N_0_._3 powder using ball milling followed by oxidation

    International Nuclear Information System (INIS)

    Hao, Liang; Wang, Zhenwei; Zheng, Yaoqing; Li, Qianqian; Guan, Sujun; Zhao, Qian; Cheng, Lijun; Lu, Yun; Liu, Jizi

    2017-01-01

    Highlights: • TiO_2/TiC_0_._7N_0_._3 coatings were prepared by ball milling followed by oxidation. • In situ co-doping of C and N with simultaneous TiO_2 formation was observed. • Improved photocatalytic activity under UV/visible light was noticed. • Synergism in co-doping and heterojunction formation promoted carrier separation. - Abstract: Ball milling followed by heat oxidation was used to prepared C, N co-doped TiO_2 coatings on the surfaces of Al_2O_3 balls from TiC_0_._7N_0_._3 powder. The as-prepared coatings were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and ultraviolet-visible spectrophotometer (UV–vis). The results show that continuous TiC_0_._7N_0_._3 coatings were formed after ball milling. C, N co-doped TiO_2/TiC_0_._7N_0_._3 composite coatings were prepared after the direct oxidization of TiC_0_._7N_0_._3 coatings in the atmosphere. However, TiO_2 was hardly formed in the surface layer of TiC_0_._7N_0_._3 coatings within a depth less than 10 nm during the heat oxidation of TiC_0_._7N_0_._3 coatings in carbon powder. Meanwhile, the photocatalytic activity evaluation of these coatings was conducted under the irradiation of UV and visible light. All the coatings showed photocatalytic activity in the degradation of MB no matter under the irradiation of UV or visible light. The C, N co-doped TiO_2/TiC_0_._7N_0_._3 composite coatings showed the most excellent performance. The enhancement under visible light irradiation should attribute to the co-doping of carbon and nitrogen, which enhances the absorption of visible light. The improvement of photocatalytic activity under UV irradiation should attribute to the synergistic effect of C, N co-doping, the formation of rutile-anatase mixed phases and the TiO_2/TiC_0_._7N_0_._3 composite microstructure.

  8. Effect of grain size on structural and dielectric properties of barium titanate piezoceramics synthesized by high energy ball milling

    Science.gov (United States)

    Verma, Narendra Kumar; Patel, Sandeep Kumar Singh; Kumar, Dinesh; Singh, Chandra Bhal; Singh, Akhilesh Kumar

    2018-05-01

    We have investigated the effect of sintering temperature on the densification behaviour, grain size, structural and dielectric properties of BaTiO3 ceramics, prepared by high energy ball milling method. The Powder x-ray diffraction reveals the tetragonal structure with space group P4mm for all the samples. The samples were sintered at four different temperatures, (T = 900°C, 1000°C, 1100°C, 1200°C and 1300°C). Density increased with increasing sintering temperature, reaching up to 97% at 1300°C. A grain growth was observed with increasing sintering temperature. Impedance analyses of the sintered samples at various temperatures were performed. Increase in dielectric constant and Curie temperature is observed with increasing sintering temperature.

  9. Comparison of various milling modes combined to the enzymatic hydrolysis of lignocellulosic biomass for bioenergy production: Glucose yield and energy efficiency

    International Nuclear Information System (INIS)

    Licari, A.; Monlau, F.; Solhy, A.; Buche, P.; Barakat, A.

    2016-01-01

    Bagasse is an abundant by-product from sugarcane production that can be used for conversion into biofuels. Nonetheless, the recalcitrant structures of lignocellulosic fibers required a pretreatment prior conversion into biofuels. In this study, four mechanical deconstruction methods were compared in terms of energy demand and energy efficiency at lab scale: BM (ball mill), VBM (vibratory ball mill), CM (centrifugal mill) and JM (jet mill). Results indicate that VBM was more effective compared to BM, JM and CM in enzymatic accessibility and sugars solubilization: VBM-3h > BM-72 h > JM-5000 rpm > CM-0.12 mm. However, preliminary energetic assessment showed that at lab scale, the CM (centrifugal mill) as mechanical fractionation process appears to be the most efficient in terms of energy-efficiency (kg glucose/kWh) compared to BM, VBM and JM. A comparison with literature pretreatments data highlighted that fine and/or ultrafine milling process (BM, VBM, CM) are simpler saccharification technologies, which not required any chemical or water inputs, thus minimizing waste generation and treatment. - Highlights: • VBM (vibro ball milling) was the most effective in decreasing of cellulose crystallinity. • BM (ball milling) was the most effective in increasing surface area. • The highest energy efficiency was obtained with CM (centrifugal milling).

  10. Electrochemical corrosion of grinding media and effect of anions present in industrial waters; Corrosion electroquimica de medios de molienda y efecto de aniones presentes en aguas industriales

    Energy Technology Data Exchange (ETDEWEB)

    Magne, L.; Navarro, P.; Vargas, C.; Carrasco, S.

    2001-07-01

    The steel used in the minerals processing as grinding media (balls or bars), is an important input in terms of cost of the process. Considering the importance of the steel consumption in these processes, this work is guided to evaluate to laboratory scale the effect of the anions present in the industrial waters on the electrochemical corrosion of grinding media. Tests in electrochemical cell, were accomplished measuring potential and corrosion current to four electrodes that were manufactured using sufficiently pure sample of chalcopyrite, bornite, enargite and steel ball. The ions used in the tests were chlorides, sulfates, nitrates and carbonates in concentrations from 1 to 180 ppm in individual form or in mixtures, according to the levels measurement of these in industrial waters. (Author) 10 refs.

  11. Effects of high energy grinding under different atmospheres on the solubility of lithium in copper an pure copper

    International Nuclear Information System (INIS)

    Rojas, P.A; Penaloza, A; Worner, C.H; Zuniga, A; Ordonez, S

    2006-01-01

    The mechanical alloying process (MA) has successfully obtained supersaturated solid solutions in a great many binary systems. Increased solubility of over 90% compared to the maximum in equilibrium for the solutes Ag and Co and increases greater than 50% for Cr and Fe have been reported after using MA for the production of copper-based alloys. This has led to the development of much research to determine the maximum solubilities in solid state that can be reached with this process and for different solutes. Lithium is one of the elements investigated. Unlike other metallic elements, lithium has had, comparatively speaking, a recent introduction in the area of investigation of structural materials. The reason is simple, none of lithium's properties had been fundamental in this field until a little more than three decades ago. Lithium is an element with exceptional chemical and physical properties but due to its high reactivity, obtaining it complicates the operating conditions under which it is processed. The formation of a copper-based alloy with lithium has major theoretical advantages particularly relative to reducing the density of the copper-based alloy. However, these elements have other physical and chemical properties that complicate this development when using conventional alloying production processes, particularly those involving a fusion stage, so the use of mechanical alloying as an alternative process has been proposed. Besides developing in solid state, MA has proven to be particularly efficient in obtaining solid solutions of elements that, under conditions of equilibrium, show very limited or even no solubility. This work has studied the effects of two control atmospheres on the high energy grinding of Cu and Li and pure copper, as well as the effect of milling time for both atmospheres. The milling for this study was carried out in a SPEX 8000D mill using a balls to powder ratio of 10:1, with steel containers and balls. The milling times varied

  12. The effects of pf grind quality on coal burnout in a 1 MW combustion test facility

    Energy Technology Data Exchange (ETDEWEB)

    Richelieu Barranco; Michael Colechin; Michael Cloke; Will Gibb; Edward Lester [University of Nottingham, Nottingham (United Kingdom). School of Chemical, Environmental and Mining Engineering, Nottingham Fuel and Energy Centre

    2006-05-15

    A study was carried out to determine the effect of pf particle size distribution on coal burnout propensity in a 1 MW pulverised fuel burner. The specific aim of the work was to assess the improvement in combustion performance achievable by retrofitting commercially available high performance static or dynamic classifiers to existing plants. Two coals were used and were selected as representative of extremes in fuel characteristics experienced by coal importing utilities in Europe. Each coal was fired in the unit at a range of grind sizes to determine the overall impact of a variable performance from a mill. The levels of unburnt carbon in the resultant flyashes for the two coals showed significantly different behaviour. For the higher volatile coal, the unburnt carbon was found to be insensitive to grind quality. However, the coarser grinds of the other coal produced significantly lower unburnt carbon than expected when compared with the finest grinds. Generally the results indicate that the installation of improved classification technology, leading to a finer product, will help to lower unburnt carbon levels. Nevertheless, further work will be necessary to establish the levels of diminishing returns for grind size, burnout performance and grind costs. 21 refs., 4 figs., 4 tabs.

  13. Effect of Grinding on Chrysotile, Amosite and Crocidolite and Implications for Thermal Treatment

    Directory of Open Access Journals (Sweden)

    Andrea Bloise

    2018-03-01

    Full Text Available Nowadays, due to the adverse health effects associated with exposure to asbestos, its inertization is one of the most important issues of waste risk management. Based on the research line of mechano-chemical and thermal treatment of asbestos containing materials, the aim of this study was to examine the effects of dry grinding on the structure, temperature stability and fibre size of chrysotile from Balangero (Italy, as well as standard UICC (Union for International Cancer Control amosite and standard UICC (Union for International Cancer Control crocidolite. Dry grinding was accomplished in an eccentric vibration mill by varying the grinding time (30 s, 5 and 10 min. Results show a decrease in crystallinity, the formation of lattice defects and size reduction with progressive formation of agglomerates in the samples after the mechanical treatment. Transmission electron microscopy (TEM results show that the final product obtained after 10 min of grinding is composed of non-crystalline particles and a minor residue of crystalline fibres that are not regulated because they do not meet the size criteria for a regulated fibre. Grinding results in a decrease of temperature and enthalpy of dehydroxylation (ΔHdehy of chrysotile, amosite and crocidolite. This permits us to completely destroy these fibres in thermal inertization processes using a lower net thermal energy than that used for the raw samples.

  14. Converting the Key Lake mill process for McArthur River ore

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, C. [McArthur River Operation, Cameco Corporation, Saskatoon, Saskatchewan (Canada)

    2000-07-01

    The Key Lake mill was commissioned in 1983 to process the two Key Lake ore deposits. With the depletion of these ore bodies in 1999, the plant was converted to mill the exceptionally rich McArthur River deposit located seventy eight kilometers northeast of the Key Lake mine site. This paper describes in detail the Key Lake milling process. The mill consists of a grinding circuit, a leach/counter current decantation circuit, a solvent extraction circuit, a yellowcake precipitation/calciner circuit, an ammonium sulphate crystallization circuit, and a waste treatment circuit. The paper also describes process changes to handle McArthur River ore, including the ore receiving station. (author)

  15. Effects of Homogenization Scheme of TiO2 Screen-Printing Paste for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Seigo Ito

    2012-01-01

    Full Text Available TiO2 porous electrodes have been fabricated for photoelectrodes in dye-sensitized solar cells (DSCs using TiO2 screen-printing paste from nanocrystalline TiO2 powder dried from the synthesized sol. We prepared the TiO2 screen-printing paste by two different methods to disperse the nanocrystalline TiO2 powder: a “ball-milling route” and a “mortal-grinding route.” The TiO2 ball-milling (TiO2-BM route gave monodisperse TiO2 nanoparticles, resulting in high photocurrent density (14.2 mA cm−2 and high photoconversion efficiency (8.27%. On the other hand, the TiO2 mortal-grinding (TiO2-MG route gave large aggregate of TiO2 nanoparticles, resulting in low photocurrent density (11.5 mA cm−2 and low photoconversion efficiency (6.43%. To analyze the photovoltaic characteristics, we measured the incident photon-to-current efficiency, light absorption spectroscopy, and electrical impedance spectroscopy of DSCs.

  16. Use of high energy ball milling to study the role of graphene nanoplatelets and carbon nanotubes reinforced magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Rashad, Muhammad, E-mail: rashadphy87@gmail.com [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Pan, Fusheng, E-mail: fspan@cqu.edu.cn [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Chongqing Academy of Science and Technology, Chongqing, Chongqing 401123 (China); Zhang, Jianyue [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Asif, Muhammad [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China)

    2015-10-15

    Graphene nanoplatelets (few layer graphene) and carbon nanotubes were used as reinforcement fillers to enhance the mechanical properties of AZ31 magnesium alloy through high energy ball milling, sintering, and hot extrusion techniques. Experimental results revealed that tensile fracture strain of AZ31 magnesium alloy was enhanced by +49.6% with 0.3 wt.% graphene nanoplatelets compared to −8.3% regression for 0.3 wt.% carbon nanotubes. The tensile strength of AZ31 magnesium alloy was decreased (−11.2%) with graphene nanoplatelets addition, while increased (+7.7%) with carbon nanotubes addition. Unlike tensile test, compression tests showed different trend. The compression strength of carbon nanotubes-AZ31 composite was +51.2% greater than AZ31 magnesium alloy as compared to +0.6% increase for graphene nanoplatelets. The compressive fracture strain of carbon nanotubes-AZ31 composite was decreased (−14.1%) while no significant change in fracture strain of graphene nanoplatelets-AZ31 composite was observed. The X-ray diffraction results revealed that addition of reinforcement particles weaken the basal textures which affect the composite's yield asymmetry. Microstructure evaluation revealed the absence of intermetallic phase formation between reinforcements and matrix. The carbon reinforcements in AZ31 magnesium alloy dissolve and isolate β phases throughout the matrix. The increased fracture strain and mechanical strength of graphene nanoplatelets and carbon nanotubes-AZ31 composites are attributed to large specific surface area of graphene nanoplatelets and stiffer nature of carbon nanotubes respectively. - Highlights: • Powder metallurgy method was used to fabricate magnesium composites. • The AZ31-carbon materials composite were blended using ball milling. • The reinforcement particles weaken the basal texture which affects yield asymmetry of composites. • AZ31-graphene nanoplatelets composite exhibited impressive increase in tensile elongation

  17. Use of high energy ball milling to study the role of graphene nanoplatelets and carbon nanotubes reinforced magnesium alloy

    International Nuclear Information System (INIS)

    Rashad, Muhammad; Pan, Fusheng; Zhang, Jianyue; Asif, Muhammad

    2015-01-01

    Graphene nanoplatelets (few layer graphene) and carbon nanotubes were used as reinforcement fillers to enhance the mechanical properties of AZ31 magnesium alloy through high energy ball milling, sintering, and hot extrusion techniques. Experimental results revealed that tensile fracture strain of AZ31 magnesium alloy was enhanced by +49.6% with 0.3 wt.% graphene nanoplatelets compared to −8.3% regression for 0.3 wt.% carbon nanotubes. The tensile strength of AZ31 magnesium alloy was decreased (−11.2%) with graphene nanoplatelets addition, while increased (+7.7%) with carbon nanotubes addition. Unlike tensile test, compression tests showed different trend. The compression strength of carbon nanotubes-AZ31 composite was +51.2% greater than AZ31 magnesium alloy as compared to +0.6% increase for graphene nanoplatelets. The compressive fracture strain of carbon nanotubes-AZ31 composite was decreased (−14.1%) while no significant change in fracture strain of graphene nanoplatelets-AZ31 composite was observed. The X-ray diffraction results revealed that addition of reinforcement particles weaken the basal textures which affect the composite's yield asymmetry. Microstructure evaluation revealed the absence of intermetallic phase formation between reinforcements and matrix. The carbon reinforcements in AZ31 magnesium alloy dissolve and isolate β phases throughout the matrix. The increased fracture strain and mechanical strength of graphene nanoplatelets and carbon nanotubes-AZ31 composites are attributed to large specific surface area of graphene nanoplatelets and stiffer nature of carbon nanotubes respectively. - Highlights: • Powder metallurgy method was used to fabricate magnesium composites. • The AZ31-carbon materials composite were blended using ball milling. • The reinforcement particles weaken the basal texture which affects yield asymmetry of composites. • AZ31-graphene nanoplatelets composite exhibited impressive increase in tensile elongation

  18. Conduit grinding apparatus

    Science.gov (United States)

    Nachbar, Henry D.; Korytkowski, Alfred S.

    1991-01-01

    A grinding apparatus for grinding the interior portion of a valve stem receiving area of a valve. The apparatus comprises a faceplate, a plurality of cams mounted to an interior face of the faceplate, a locking bolt to lock the faceplate at a predetermined position on the valve, a movable grinder and a guide tube for positioning an optical viewer proximate the area to be grinded. The apparatus can either be rotated about the valve for grinding an area of the inner diameter of a valve stem receiving area or locked at a predetermined position to grind a specific point in the receiving area.

  19. Measurement of the wear rate of cast grinding balls using radioactive tracers; Evaluation de l'usure des boulets pour concasseurs, au moyen des indicateurs radioactifs; Izmerenie skorosti iznosa litykh drobil'nykh sharov pri pomoshchi mechenykh atomov; Medicion de la velocidad de desgaste de bolas trituradoras de acero colado con ayuda de indicadores radiactivos

    Energy Technology Data Exchange (ETDEWEB)

    Keys, J D; Eichholz, G G [Department of Mines and Technical Surveys, Ottawa, ON (Canada)

    1962-01-15

    The wear rate of grinding balls used in ball mills is usually hard to determine under operational conditions and little is known-about the factors determining ball life. Radioactive tracers have been used successfully to mark cast steel balls to obtain information on their life under various operating conditions for comparison with balls of different type or composition. A batch of marked steel balls has been followed through a milling operation over several weeks and statistics on wear and loss of weight have been obtained. In the test runs cobalt-60 was added to the molten metal before casting and the balls were then observed in use at an iron mine. The radioactive batch was added to a ball mill with a normal charge of about 75 tons and the mill charge was sampled at weekly intervals to pick out active balls. These balls were inspected and weighed, and the wear rate has been calculated. This procedure has proved to be a practical way of investigating wear properties under plant operating conditions. (author) [French] Il est en general difficile de determiner le taux d'usure des boulets de broyeurs dans des conditions normales d'utilisation et l'on ne sait pas grand-chose des facteurs qui determinent la longevite des boulets. Les auteurs ont employe avec succes des indicateurs radioactifs pour marquer des boulets d'acier moule, en vue d'obtenir des indications sur leur duree dans diverses conditions de. fonctionnement et de faire une comparaison entre des boulets de type different ou de. composition differente. Ils ont suivi un lot de boulets, d'acier ainsi marques pendant une operation de broyage qui a dirre plusieurs semaines, ce qui a permis de recueillir des donnees statistiques sur leur usure et leur perte de poids. Au cours des essais, du cobalt-60 a ete ajoute au metal fondu avant le moulage des boulets. Ceux-ci ont ete ensuite maintenus en observation pendant leur emploi dans une mine de fer et une mine d'or. Le lot radioactif a ete introduit danfe un

  20. Rock Characteristics and Ball Mill Energy Requirements at ...

    African Journals Online (AJOL)

    These changes can have great impact on milling operations. ... Goldfields Ghana Limited, Tarkwa Gold Mine (TGM), processes ores which occur in ... The parameters examined had deviated from the design; Work Index (WI) for example was ...

  1. Improved tool grinding machine

    Science.gov (United States)

    Dial, C.E. Sr.

    The present invention relates to an improved tool grinding mechanism for grinding single point diamond cutting tools to precise roundness and radius specifications. The present invention utilizes a tool holder which is longitudinally displaced with respect to the remainder of the grinding system due to contact of the tool with the grinding surface with this displacement being monitored so that any variation in the grinding of the cutting surface such as caused by crystal orientation or tool thicknesses may be compensated for during the grinding operation to assure the attainment of the desired cutting tool face specifications.

  2. Specific grinding energy and surface roughness of nanoparticle jet minimum quantity lubrication in grinding

    Directory of Open Access Journals (Sweden)

    Zhang Dongkun

    2015-04-01

    Full Text Available Nanoparticles with the anti-wear and friction reducing features were applied as cooling lubricant in the grinding fluid. Dry grinding, flood grinding, minimal quantity of lubrication (MQL, and nanoparticle jet MQL were used in the grinding experiments. The specific grinding energy of dry grinding, flood grinding and MQL were 84, 29.8, 45.5 J/mm3, respectively. The specific grinding energy significantly decreased to 32.7 J/mm3 in nanoparticle MQL. Compared with dry grinding, the surface roughness values of flood grinding, MQL, and nanoparticle jet MQL were significantly reduced with the surface topography profile values reduced by 11%, 2.5%, and 10%, respectively, and the ten point height of microcosmic unflatness values reduced by 1.5%, 0.5%, and 1.3%, respectively. These results verified the satisfactory lubrication effects of nanoparticle MQL. MoS2, carbon nanotube (CNT, and ZrO2 nanoparticles were also added in the grinding fluid of nanoparticle jet MQL to analyze their grinding surface lubrication effects. The specific grinding energy of MoS2 nanoparticle was only 32.7 J/mm3, which was 8.22% and 10.39% lower than those of the other two nanoparticles. Moreover, the surface roughness of workpiece was also smaller with MoS2 nanoparticle, which indicated its remarkable lubrication effects. Furthermore, the role of MoS2 particles in the grinding surface lubrication at different nanoparticle volume concentrations was analyzed. MoS2 volume concentrations of 1%, 2%, and 3% were used. Experimental results revealed that the specific grinding energy and the workpiece surface roughness initially increased and then decreased as MoS2 nanoparticle volume concentration increased. Satisfactory grinding surface lubrication effects were obtained with 2% MoS2 nanoparticle volume concentration.

  3. Effect of mechanical milling on barium titanate (BaTiO3) perovskite

    Science.gov (United States)

    Singh, Rajan Kumar; Sanodia, Sagar; Jain, Neha; Kumar, Ranveer

    2018-05-01

    Commercial Barium Titanate BaTiO3 (BT) is milled by planetary ball mill in acetone medium using stainless steel bowl & ball for different hours. BT is an important perovskite oxide with structure ABO3. BT has applications in electro-optic devices, energy storing devices such as photovoltaic cells, thermistors, multiceramic capacitors & DRAMs etc. BT is non-toxic & environment friendly ceramic with high dielectric and piezoelectric property so it can be used as the substitute of PZT & PbTiO3. Here, we have investigated the effect of milling time and temperature on particle size and phase transition of BT powder. We used use Raman spectroscopy for studying the spectra of BT; XRD is used for structural study. Intensity (height) of Raman spectra and XRD spectra continuously decrease with increasing the milling hours and width if these spectra increases which indicates, decrease in BT size.

  4. Surface grinding characteristics of ferrous metals under high-speed and speed-stroke grinding conditions

    International Nuclear Information System (INIS)

    Ghani, A.K.; Choudhury, I.A.; Ahim, M.B.

    1999-01-01

    Some ferrous metals have been ground under different conditions with high-speed and speed-stroke in surface grinding operation. The paper describes experimental investigation of grinding forces in grinding some ferrous metals with the application of cutting fluids. Grinding tests have been carried out on mild steel, assab steel and stainless steel with different combinations of down feed and cross feed. The wheel speed was 27 m/sec while the table speed was maintained at the maximum possible 25 m/min. The grindability has been evaluated by measuring the grinding forces, grinding ratio, and surface finish. Grinding forces have been plotted against down feed of the grinding wheel and cross feed of the table. It has been observed that the radial and tangential grinding forces in stainless steel were higher than those in assab steel and mild steel

  5. The Effects of Wear upon the Axial Profile of a Grinding Wheel in the Construction of Innovative Grinding Wheels for Internal Cylindrical Grinding

    OpenAIRE

    Nadolny, K.; Słowiński, B.

    2011-01-01

    The article describes the effects of wear upon the axial profile of a grinding wheel in the axial cylindrical grinding processes. This mechanism was used to develop a grinding wheel with zone diversified structure made of microcrystalline sintered corundum abrasive grains and vitrifies bond. Such a grinding wheel is characterized by the conical rough grinding zone that is made by grains of a relatively large size, and a cylindrical finish grinding zone with grains of a smaller size and can be...

  6. The study of grinding patterns and factors influencing the grinding areas during sleep bruxism.

    Science.gov (United States)

    Tao, Jianxiang; Liu, Weicai; Wu, Junhua; Zhang, Xuying; Zhang, Yongting

    2015-10-01

    The purpose of this study is to investigate the grinding patterns and discuss the factors influencing the position relationship between intercuspal position (ICP) and grinding area during sleep bruxism. Lateral condylar inclination, inclination of lateral incisal path and freedom in long centric of thirty subjects were measured. The grinding patterns during sleep bruxism were recorded with a bruxism recording device, BruxChecker. The position relationship between ICP and the grinding area was examined. Spearman's rank correlation coefficient was used for correlation analysis between grinding area and free factors (grinding patterns, freedom in long centric and discrepancy between lateral condylar inclination and inclination of lateral incisal path). All 12 subjects with 0mm-freedom in long centric exhibited that ICP of both sides located within the grinding areas. 4 subjects showed that ICP of both sides located outside the grinding areas. There is a significant correlation between 0mm-freedom in long centric and ICP within the grinding areas (p grinding area. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. PARAMETER DETERMINATION FOR ADDITIONAL OPERATING FORCE MECHANISM IN DEVICE FOR PNEUMO-CENTRIFUGAL MACHINING OF BALL-SHAPED WORKPIECES

    Directory of Open Access Journals (Sweden)

    A. A. Sukhotsky

    2014-01-01

    Full Text Available The paper describes development of the methodology for optimization of parameters for an additional operating force mechanism in a device for pneumo-centrifugal machining of glass balls. Specific feature in manufacturing glass balls for micro-optics in accordance with technological process for obtaining ball-shaped workpieces is grinding and polishing of spherical surface in a free state. In this case component billets of future balls are made in the form of cubes and the billets are given preliminary a form of ball with the help of rough grinding. An advanced method for obtaining ball-shaped work-pieces from brittle materials is a pneumocentrifugal machining. This method presupposes an application of two conic rings with abrasive working surfaces which are set coaxially with large diameters to each other and the billets are rolled along these rings. Rotation of the billets is conveyed by means of pressure medium.The present devices for pneumo-centrifugal machining are suitable for obtaining balls up to 6 mm. Machining of the work-pieces with full spherical surfaces and large diameter is non-productive due to impossibility to ensure a sufficient force on the billet in the working zone. For this reason the paper proposes a modified device where an additional force on the machined billet is created by upper working disc that is making a reciprocating motion along an axis of abrasive conic rings. The motion is realized with the help of a cylindrical camshaft mechanism in the form of a ring with a profile working end face and the purpose of present paper is to optimize parameters of the proposed device.The paper presents expressions for calculation of constitutive parameters of the additional operating force mechanism including parameters of loading element motion, main dimensions of the additional operating force mechanism and parameters of a profile element in the additional operating force mechanism.Investigation method is a mathematical

  8. Texture formation in iron particles using mechanical milling with graphite as a milling aid

    Energy Technology Data Exchange (ETDEWEB)

    Motozuka, S.; Hayashi, K. [Department of Mechanical Engineering, Gifu National College of Technology, 2236-2 Kamimakuwa, Motosu, Gifu 501-0495 (Japan); Tagaya, M. [Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188 (Japan); Morinaga, M. [Toyota Physical and Chemical Research Institute, 41-1, Yokomichi, Nagakute, Aichi 480-1192 (Japan)

    2015-09-15

    Crystallographically anisotropic platelet iron particles were successfully prepared using a conventional ball mill with addition of graphite (Gp) particles. The morphological and structural changes resulting from the milling were investigated using scanning electron microscopy and X-ray diffraction. The spherical iron particles were plastically deformed into platelet shapes during the milling. Simultaneously, it is suggested that the size of the Gp particles decreased and adhered as nanoparticles on the surface of the iron particles. The adhered Gp particles affected the plastic deformation behavior of the iron particles: the (001) planes of α-iron were oriented parallel to the particle face, and no preferred in-plane orientation was observed. This study not only details the preparation of soft magnetic metal particles that crystallographically oriented to enhance their magnetic properties but also provides new insight into the activities of the well-established and extensively studied mechanical milling method.

  9. Texture formation in iron particles using mechanical milling with graphite as a milling aid

    International Nuclear Information System (INIS)

    Motozuka, S.; Hayashi, K.; Tagaya, M.; Morinaga, M.

    2015-01-01

    Crystallographically anisotropic platelet iron particles were successfully prepared using a conventional ball mill with addition of graphite (Gp) particles. The morphological and structural changes resulting from the milling were investigated using scanning electron microscopy and X-ray diffraction. The spherical iron particles were plastically deformed into platelet shapes during the milling. Simultaneously, it is suggested that the size of the Gp particles decreased and adhered as nanoparticles on the surface of the iron particles. The adhered Gp particles affected the plastic deformation behavior of the iron particles: the (001) planes of α-iron were oriented parallel to the particle face, and no preferred in-plane orientation was observed. This study not only details the preparation of soft magnetic metal particles that crystallographically oriented to enhance their magnetic properties but also provides new insight into the activities of the well-established and extensively studied mechanical milling method

  10. Fabrication of Fe1.1Se0.5Te0.5 bulk by a high energy ball milling technique

    Science.gov (United States)

    Liu, Jixing; Li, Chengshan; Zhang, Shengnan; Feng, Jianqing; Zhang, Pingxiang; Zhou, Lian

    2017-11-01

    Fe1.1Se0.5Te0.5 superconducting bulks were successfully synthesized by a high energy ball milling (HEBM) aided sintering technique. Two advantages of this new technique have been revealed compared with traditional solid state sintering method. One is greatly increased the density of sintered bulks. It is because the precursor powders with β-Fe(Se, Te) and δ-Fe(Se, Te) were obtained directly by the HEBM process and without formation of liquid Se (and Te), which could avoid the huge volume expansion. The other is the obvious decrease of sintering temperature and dwell time due to the effective shortened length of diffusion paths. The superconducting critical temperature Tc of 14.2 K in our sample is comparable with those in previous reports, and further optimization of chemical composition is on the way.

  11. Structural and magnetic properties of Fe60Al40 alloys prepared by means of a magnetic mill

    International Nuclear Information System (INIS)

    Bernal-Correa, R.; Rosales-Rivera, A.; Pineda-Gomez, P.; Salazar, N.A.

    2010-01-01

    A study on synthesis, structural and magnetic characterization of Fe 60 Al 40 (at.%) alloys prepared by means of mechanical alloying process is presented. The mechanical alloying was performed using a milling device with magnetically controlled ball movement (Uni-Ball-Mill 5 equipment) at several milling times. The characterization was carried out via X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). The effects of milling time on the structural state, morphological evolution and magnetic behaviour of the Fe 60 Al 40 (at.%) alloys are discussed. Besides, in this current study we emphasize the result that indicating a ferro-para-ferromagnetic transition from a correlation between X-ray diffraction and magnetization data.

  12. In situ Fabrication of Fe-TiB{sub 2} Nanocomposite Powder by Planetary Ball Milling and Subsequent Heat-treatment of FeB and TiH{sub 2} Powder Mixture

    Energy Technology Data Exchange (ETDEWEB)

    Huynh, Xuan-Khoa [Hanoi Uneversity of Science and Technology, Hanoi (Viet Nam); Bae, Sun-Woo; Kim, Ji Soon [University of Ulsan, Ulsan (Korea, Republic of)

    2017-01-15

    Fe-TiB{sub 2} powder was synthesized in-situ by the planetary ball milling and subsequent heat-treatment of an iron boride (FeB) and titanium hydride (TiH{sub 2}) powder mixture. Mechanical activation of the (FeB+TiH{sub 2}) powder mixtures was observed after a milling time of 3 hours at 700 rpm of rotation speed, but activation was not the same after 1 hour milling time. The particle size of the (FeB+ TiH{sub 2}) powder mixture was reduced to the nanometer scale, and each constituent was homogeneously distributed. A sharp exothermic peak was observed at a lower temperature (749 ℃) on the DSC curves for the (FeB+TiH{sub 2}) powder mixture milled for 3 hours, compared to the one milled for 1 hour (774 ℃). These peaks were confirmed to have resulted from the formation reaction of the TiB{sub 2} phase, from Ti and B elements in the FeB. The Fe-TiB{sub 2} composite powder fabricated in situ exhibited only two phases of Fe and TiB{sub 2} with homogeneous distribution. The size of the TiB{sub 2} particulates in the Fe matrix was less than 5 nm.

  13. Processing of Polysulfone to Free Flowing Powder by Mechanical Milling and Spray Drying Techniques for Use in Selective Laser Sintering

    Directory of Open Access Journals (Sweden)

    Nicolas Mys

    2016-04-01

    Full Text Available Polysulfone (PSU has been processed into powder form by ball milling, rotor milling, and spray drying technique in an attempt to produce new materials for Selective Laser Sintering purposes. Both rotor milling and spray drying were adept to make spherical particles that can be used for this aim. Processing PSU pellets by rotor milling in a three-step process resulted in particles of 51.8 μm mean diameter, whereas spray drying could only manage a mean diameter of 26.1 μm. The resulting powders were characterized using Differential Scanning Calorimetry (DSC, Gel Permeation Chromatography (GPC and X-ray Diffraction measurements (XRD. DSC measurements revealed an influence of all processing techniques on the thermal behavior of the material. Glass transitions remained unaffected by spray drying and rotor milling, yet a clear shift was observed for ball milling, along with a large endothermic peak in the high temperature region. This was ascribed to the imparting of an orientation into the polymer chains due to the processing method and was confirmed by XRD measurements. Of all processed powder samples, the ball milled sample was unable to dissolve for GPC measurements, suggesting degradation by chain scission and subsequent crosslinking. Spray drying and rotor milling did not cause significant degradation.

  14. The coercivity mechanism of Pr–Fe–B nanoflakes prepared by surfactant-assisted ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Wen-Liang, E-mail: wlzuo@iphy.ac.cn; Zhang, Ming; Niu, E.; Shao, Xiao-Ping; Hu, Feng-Xia; Sun, Ji-Rong; Shen, Bao-Gen, E-mail: shenbg@aphy.iphy.ac.cn

    2015-09-15

    The strong (00l) textured Pr{sub 12+x}Fe{sub 82−x}B{sub 6} (x=0, 1, 2, 3, 4) nanoflakes with high coercivity were prepared by surfactant-assisted ball milling (SABM). The thickness and length of the flakes are mainly in the range of 50−200 nm and 0.5−2 μm, respectively. A coercivity of 4.16 kOe for Pr{sub 15}Fe{sub 79}B{sub 6} nanoflakes was obtained, which is the maximum coercivity of R{sub 2}Fe{sub 14}B (R=Pr, Nd) nanoflakes or nanoparticles reported up to now. The results of XRD and SEM for the aligned Pr{sub 15}Fe{sub 79}B{sub 6} nanoflakes indicate that a strong (00l) texture is obtained and the easy magnetization direction is parallel to the surface of the flakes. The angular dependence of coercivity for aligned sample indicates that the coercivity mechanism of the as-milled nanoflakes is mainly dominated by domain wall pinning. Meanwhile, the field dependence of coercivity, isothermal (IRM) and dc demagnetizing (DCD) remanence curves also indicate that the coercivity is mainly determined by domain wall pinning, and nucleation also has an important effect. In addition, the mainly interaction of flakes is dipolar coupling. The research of coercivity mechanism for Pr{sub 15}Fe{sub 79}B{sub 6} nanoflakes is important for guidance the further increase its value, and is useful for the future development of the high performance nanocomposite magnets and soft/hard exchange spring magnets. - Highlights: • A coercivity of 4.16 kOe for Pr{sub 15}Fe{sub 79}B{sub 6} nanoflakes was obtained. • The strong (00l) textured is obtained for Pr{sub 15}Fe{sub 79}B{sub 6} nanoflakes. • The interaction of nanoflakes is mainly dipolar coupling. • Domain wall pinning is the mainly coercivity mechanism.

  15. Formation of ultra-fine grained SUS316L steels by ball-milling and their mechanical properties after neutron irradiation

    International Nuclear Information System (INIS)

    Zheng, Y.J.; Yamasaki, T.; Fukami, T.; Terasawa, M.; Mitamura, T.

    2003-01-01

    In order to overcome the irradiation embrittlement in austenitic stainless steels, ultra-fine grained SUS316L steels with very fine TiC particles have been developed. The SUS316L-TiC nanocomposite powders having 1.0 to 2.0 mass% TiC were prepared by ball-milling SUS316L-TiC powder mixtures for 125 h in an argon gas atmosphere. The milled powders were consolidated by hot isostatic pressing (HIP) under a pressure of 200 MPa at temperatures between 700 and 1000 C, and the bulk materials with grain sizes between 100 and 400 nm have been produced. The possibility of using fine-grained TiC particles to pin grain boundaries and thereby maintain the ultra-fine grained structures has been discussed. In order to clarify the effects of the neutron irradiation on mechanical properties of the ultra-fine grained SUS316L steels, Vickers microhardness measurements were performed before and after the irradiation of 1.14 x 10 23 n/m 2 and 1.14 x 10 24 n/m 2 . The hardness increased with increasing the dose of the irradiation. However, these increasing rates of the ultra-fine grained steels were much smaller than those of the coarse-grained SUS316L steels having grain sizes between 13 and 50 μm. (orig.)

  16. Structure and electrochemical hydrogen storage properties of Ti2Ni alloy synthesized by ball milling

    International Nuclear Information System (INIS)

    Hosni, B.; Li, X.; Khaldi, C.; ElKedim, O.; Lamloumi, J.

    2014-01-01

    Highlights: • The Ti 2 Ni alloy activation requires only one cycle of charge and discharge, regardless of the temperature. • By increasing the temperature the capacity loss, undergoes an increase and it is more pronounced for the 60 °C. • A good correlation is found between the evolutions of the different electrochemical parameters according to the temperature. - Abstract: The structure and the electrochemical hydrogen storage properties of amorphous Ti 2 Ni alloy synthesized by ball milling and used as an anode in nickel–metal hydride batteries were studied. Nominal Ti 2 Ni was synthesized under argon atmosphere at room temperature using a planetary high-energy ball mill. The structural and morphological characterization of the amorphous Ti 2 Ni alloy is carried out by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The electrochemical characterization of the Ti 2 Ni electrodes is carried out by the galvanostatic charging and discharging, the constant potential discharge, the open circuit potential and the potentiodynamic polarization techniques. The Ti 2 Ni alloy activation requires only one cycle of charge and discharge, regardless of the temperature. The electrochemical discharge capacity of the Ti 2 Ni alloy, during the first eight cycles, and at a temperature of 30 °C, remained practically unchanged and a good held cycling is observed. By increasing the temperature, the electrochemical discharge capacity loss after eight cycles undergoes an increase and it is more pronounced for the temperature 60 °C. At 30 °C, the anodic corrosion current density is 1 mA cm −2 and then it undergoes a rapid drop, remaining substantially constant (0.06 mA cm −2 ) in the range 40–60 °C, before undergoing a slight increase to 70 °C (0.3 mA cm −2 ). This variation is in good agreement with the maximum electrochemical discharge capacity values found for the different temperatures. By increasing the

  17. Error Correction of Radial Displacement in Grinding Machine Tool Spindle by Optimizing Shape and Bearing Tuning

    OpenAIRE

    Khairul Jauhari; Achmad Widodo; Ismoyo Haryanto

    2015-01-01

    In this article, the radial displacement error correction capability of a high precision spindle grinding caused by unbalance force was investigated. The spindle shaft is considered as a flexible rotor mounted on two sets of angular contact ball bearing. Finite element methods (FEM) have been adopted for obtaining the equation of motion of the spindle. In this paper, firstly, natural frequencies, critical frequencies, and amplitude of the unbalance response caused by resi...

  18. Hydrogen storage performances of LaMg{sub 11}Ni + x wt% Ni (x = 100, 200) alloys prepared by mechanical milling

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanghuan, E-mail: zhangyh59@sina.com [Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010 (China); Department of Functional Material Research, Central Iron and Steel Research Institute, Beijing 100081 (China); Wang, Haitao [Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010 (China); Department of Functional Material Research, Central Iron and Steel Research Institute, Beijing 100081 (China); Zhai, Tingting; Yang, Tai; Yuan, Zeming; Zhao, Dongliang [Department of Functional Material Research, Central Iron and Steel Research Institute, Beijing 100081 (China)

    2015-10-05

    Highlights: • Amorphous and nanostructured alloys were prepared by mechanical milling. • The maximum discharge capacity of ball milled alloys reaches to 1053.5 mA h/g. • The addition of Ni significantly increases the discharge capacity. • Increasing milling time reduces the kinetic performances of ball milled alloys. - Abstract: In order to improve the hydrogen storage performances of Mg-based materials, LaMg{sub 11}Ni alloy was prepared by vacuum induction melting. Then the nanocrystalline/amorphous LaMg{sub 11}Ni + x wt% Ni (x = 100, 200) hydrogen storage alloys were synthesized by ball milling technology. The structure characterizations of the alloys were carried out by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The electrochemical hydrogen storage characteristics were tested by using programmed control battery testing system. The electrochemical impedance spectra (EIS), potentiodynamic polarization curves and potential-step curves were also plotted by an electrochemical workstation (PARSTAT 2273). The results indicate that the as-milled alloys exhibit a nanocrystalline and amorphous structure, and the amorphization degree of the alloys visibly increases with extending milling time. Prolonging the milling duration markedly enhances the electrochemical discharge capacity and cyclic stability of the alloys. The electrochemical kinetics, including high rate discharge ability (HRD), charge transfer rate, limiting current density (I{sub L}), hydrogen diffusion coefficient (D), monotonously decrease with milling time prolonging.

  19. Influence of Process Control Agent on Characterization and Structure of Micron Chitosan Powders Prepared by Ball Milling Method

    Directory of Open Access Journals (Sweden)

    ZHANG Chuan-jie

    2016-12-01

    Full Text Available With ethyl alcohol or distilled water as process control agent (PCA, micron chitosan powder was prepared by ball milling method. The yield rate, particle size distribution, micro morphology, viscosity average molecular mass, chemical and crystal structures, and thermal properties of these different micron chitosan powders were measured. The results indicate that the yield rate of micron chitosan powders prepared with ethyl alcohol as PCA increases significantly, and improves to 94.7% from 25% while the amount of ethyl alcohol is 0.75mL/g. The particle size distribution of micron chitosan powder prepared with ethyl alcohol as PCA is concentrated, while the D50 and D90 in size are 824nm and 1629nm respectively. Chitosan do not react with ethyl alcohol used as PCA, but the viscosity average molecular mass of prepared micron chitosan powder decreases by 23%, the crystal structures are destroyed slightly, and its thermal stability is slightly weakened.

  20. Exploitation of tidal power in the Bay of Cadiz: ancient tidal mills

    Directory of Open Access Journals (Sweden)

    José J. Alonso del Rosario

    2006-03-01

    Full Text Available Tidal mills were the main industrial activity in the Bay of Cadiz for centuries. They were the last step in the production of salt and flour made by grinding grains. They were installed along the shallow channels, called “caños”, around the Bay, where the frictional and geometrical effects are very strong. The authors have analyzed the propagation of the semidiurnal tidal waves along the Caño de Sancti Petri and the available tidal power in the area. The ancient tidal mills were located where the available tidal potential energy is highest, which ensured productivity for grinding salt and wheat in ancient times. Some considerations about the possibility of installing tidal power plants in the Bay of Cadiz now are given, which show that it could be a real and renewal alternative source of energy for the area.

  1. Phase evolution during early stages of mechanical alloying of Cu–13 wt.% Al powder mixtures in a high-energy ball mill

    International Nuclear Information System (INIS)

    Dudina, Dina V.; Lomovsky, Oleg I.; Valeev, Konstantin R.; Tikhov, Serguey F.; Boldyreva, Natalya N.; Salanov, Aleksey N.; Cherepanova, Svetlana V.; Zaikovskii, Vladimir I.; Andreev, Andrey S.; Lapina, Olga B.; Sadykov, Vladislav A.

    2015-01-01

    Highlights: • Phase formation during early stages of Cu–Al mechanical alloying was studied. • The products of mechanical alloying are of highly non-equilibrium character. • X-ray amorphous phases are present in the products of mechanical alloying. • An Al-rich X-ray amorphous phase is distributed between the crystallites. - Abstract: We report the phase and microstructure evolution of the Cu–13 wt.% Al mixture during treatment in a high-energy planetary ball mill with a particular focus on the early stages of mechanical alloying. Several characterization techniques, including X-ray diffraction phase analysis, nuclear magnetic resonance spectroscopy, differential dissolution, thermal analysis, and electron microscopy/elemental analysis, have been combined to study the evolution of the phase composition of the mechanically alloyed powders and describe the microstructure of the multi-phase products of mechanical alloying at different length scales. The following reaction sequence has been confirmed: Cu + Al → CuAl 2 (+Cu) → Cu 9 Al 4 + (Cu) → Cu(Al). The phase evolution was accompanied by the microstructure changes, the layered structure of the powder agglomerates disappearing with milling time. This scheme is further complicated by the processes of copper oxidation, reduction of copper oxides by metallic aluminum, and by variation of the stoichiometry of Cu(Al) solid solutions with milling time. Substantial amounts of X-ray amorphous phases were detected as well. Differential dissolution technique has revealed that a high content of aluminum in the Cu(Al) solid solution-based powders is due to the presence of Al-rich phases distributed between the Cu(Al) crystallites

  2. Analytical Prediction of Three Dimensional Chatter Stability in Milling

    Science.gov (United States)

    Altintas, Yusuf

    The chip regeneration mechanism during chatter is influenced by vibrations in three directions when milling cutters with ball end, bull nose, or inclined cutting edges are used. A three dimensional chatter stability is modeled analytically in this article. The dynamic milling system is formulated as a function of cutter geometry, the frequency response of the machine tool structure at the cutting zone in three Cartesian directions, cutter engagement conditions and material property. The dynamic milling system with nonlinearities and periodic delayed differential equations is reduced to a three dimensional linear stability problem by approximations based on the physics of milling. The chatter stability lobes are predicted in the frequency domain using the proposed analytical solution, and verified experimentally in milling a Titanium alloy with a face milling cutter having circular inserts.

  3. Alkaline autoclave leaching of refractory uranium-thorium minerals

    International Nuclear Information System (INIS)

    Milani, S. A.; Sam, S.

    2011-01-01

    This paper deals with the study of an innovative method for processing the Oman placer ores by alkaline leaching in ball mill autoclaves, where grinding and leaching of the refractory minerals take place simultaneously. This was followed by the selective separation of thorium and uranium from lanthanides by autoclave leaching of the hydroxide cake with ammonium carbonate-bicarbonate solutions. The introduced method is based on the fact that thorium and uranium form soluble carbonate complexes with ammonium carbonate, while lanthanides form sparingly soluble double carbonates. It was found that a complete alkaline leaching of Oman placer ores (98.0 P ercent ) was attained at 150 and 175 d egree C within 2.5 and 2h, respectively. Oman placer ores leaching was intensified and accelerated in a ball mill autoclaves as a result of the grinding action of steel balls, removal of the hydroxide layer covering ores grains and the continuous contact of fresh ore grains with alkaline solution. The study of selective carbonate processing of hydroxide cake with ammonium carbonate-bicarbonate solutions on autoclave under pressure revealed that the complete thorium recovery (97.5 P ercent ) with uranium recovery (90.8 P ercent ) and their separation from the lanthanides were attained at 70-80 d egree C during l-2h. The extraction of lanthanides in carbonate solution was low and did not exceed 4.6 P ercent .

  4. Ball-milling synthesis of ZnO@sulphur/carbon nanotubes and Ni(OH)_2@sulphur/carbon nanotubes composites for high-performance lithium-sulphur batteries

    International Nuclear Information System (INIS)

    Gu, Xingxing; Tong, Chuan-jia; Wen, Bo; Liu, Li-min; Lai, Chao; Zhang, Shanqing

    2016-01-01

    Highlights: • Metal oxides or hydroxides coating sulfur-based composite are successfully prepared. • Large-scale synthesis can be realized via the facile wet ball-milling strategy. • Density functional theory (DFT) calculation is applied to calculate adsorption energy. • ZnO exhibits a higher adsorption energy for Li_2S_8 than that Ni(OH)_2. • ZnO@sulphur/carbon nanotubes composite show excellent cycle and discharge performance. - Abstract: Zinc oxide wrapped sulphur/carbon nanotubes (ZnO@S/CNT) and nickel hydroxide wrapped sulphur/carbon nanotubes (Ni(OH)_2@S/CNT) nanocomposites are prepared using a simple, low cost and scalable ball-milling method. As the cathodes in Li-S batteries, the as-prepared ZnO@S/CNT composite illustrates a superior high initial capacity of 1663 mAh g"−"1 at a charge/discharge rate of 160 mA g"−"1, and maintains a reversible capacity at approximately 942 mAh g"−"1 after 70 cycles. While for Ni(OH)_2@S/CNT composites, its initial capacity is also as high as 1331 mAh g"−"1, but a poorer cycling stability is presented. When the charge/discharge current is increased to 1600 mA g"−"1, a high reversible capacity of 698 mAh g"−"1 after 200 cycles still can be obtained for the ZnO@S/CNT composite, far better than that of Ni(OH)_2@S/CNT composites. The better cycling performance and high discharge capacity can be attributed to the strong interactions between ZnO and S_x"2"− species, which is verified by the density functional theory (DFT) calculation result that the ZnO exhibits a higher adsorption energy for Li_2S_8 than the Ni(OH)_2.

  5. The use of Bayesian Networks in Detecting the States of Ventilation Mills in Power Plants

    Directory of Open Access Journals (Sweden)

    Sanja Vujnović

    2014-06-01

    Full Text Available The main objective of this paper is to present a new method of predictive maintenance which can detect the states of coal grinding mills in thermal power plants using Bayesian networks. Several possible structures of Bayesian networks are proposed for solving this problem and one of them is implemented and tested on an actual system. This method uses acoustic signals and statistical signal pre-processing tools to compute the inputs of the Bayesian network. After that the network is trained and tested using signals measured in the vicinity of the mill in the period of 2 months. The goal of this algorithm is to increase the efficiency of the coal grinding process and reduce the maintenance cost by eliminating the unnecessary maintenance checks of the system.

  6. Development of a Laser-Guided Deep-Hole Internal-Grinding Tool (Series 1) : Grinding Forces

    OpenAIRE

    Katsuki, Akio; Onikura, Hiromichi; Sajima, Takao; Park, Hyunkoo

    2005-01-01

    The laser-guided deep-hole internal grinding tool is developed to bore accurate and straight deep-holes with high surface quality. The tool consists of a grinding head, the front and rear actuators mounted on an actuator holder and a laser diode set in the back end of the holder. The grinding head consists of a diamond or CBN wheel, an air motor, and the piezoelectric actuators for the compensation of tool diameter. The grinding wheel is located eccentrically at the grinding head. The grindin...

  7. Surface modification of calcined kaolin with toluene diisocyanate based on high energy ball milling

    International Nuclear Information System (INIS)

    Yuan, Yongbing; Chen, Hongling; Lin, Jinbin; Ji, Yan

    2013-01-01

    The surface of calcined kaolin particle was modified with toluene diisocyanate (TDI) by using high energy ball milling. The prepared hybrids were characterized by FT-IR, MAS NMR, thermal analysis (TGA-DSC), static water contact angle (CA), apparent viscosity and transmission electron microscopy (TEM). FT-IR and MAS NMR spectra demonstrated that TDI molecules were chemically anchored to kaolin surface after modification. The results of thermal analysis showed that the maximum grafting ratio reached up to 446.61% when the mass ratio of TDI/kaolin was 0.5:1.0, and CA measurements revealed that the resultant hybrids exhibited strong hydrophobicity (148.82°). Apparent viscosity and TEM were employed to examine the dispersion properties of blank and modified kaolin particles in poly (dimenthylsiloxane) matrix. The results illustrated that the dispersion stability depended strongly on the grafting ratio of TDI, neither too low nor too high achieved uniform and stable dispersion, and the favorable grafting ratio was obtained when the mass ratio of TDI/kaolin was 0.2:1.0. Further modification of TDI/kaolin (mass ration of TDI/kaolin, 1.0:1.0) particles with bis(aminopropyl)-terminated-poly(dimethylsiloxane) (APS) was also investigated. TEM evidenced that the dispersion properties of the obtained TDI/APS/kaolin particles were remarkably improved in octamethyl cyclotetrasiloxane compared with the original TDI/kaolin particles.

  8. Surface modification of calcined kaolin with toluene diisocyanate based on high energy ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Yongbing; Chen, Hongling, E-mail: hlchen@njut.edu.cn; Lin, Jinbin; Ji, Yan

    2013-11-01

    The surface of calcined kaolin particle was modified with toluene diisocyanate (TDI) by using high energy ball milling. The prepared hybrids were characterized by FT-IR, MAS NMR, thermal analysis (TGA-DSC), static water contact angle (CA), apparent viscosity and transmission electron microscopy (TEM). FT-IR and MAS NMR spectra demonstrated that TDI molecules were chemically anchored to kaolin surface after modification. The results of thermal analysis showed that the maximum grafting ratio reached up to 446.61% when the mass ratio of TDI/kaolin was 0.5:1.0, and CA measurements revealed that the resultant hybrids exhibited strong hydrophobicity (148.82°). Apparent viscosity and TEM were employed to examine the dispersion properties of blank and modified kaolin particles in poly (dimenthylsiloxane) matrix. The results illustrated that the dispersion stability depended strongly on the grafting ratio of TDI, neither too low nor too high achieved uniform and stable dispersion, and the favorable grafting ratio was obtained when the mass ratio of TDI/kaolin was 0.2:1.0. Further modification of TDI/kaolin (mass ration of TDI/kaolin, 1.0:1.0) particles with bis(aminopropyl)-terminated-poly(dimethylsiloxane) (APS) was also investigated. TEM evidenced that the dispersion properties of the obtained TDI/APS/kaolin particles were remarkably improved in octamethyl cyclotetrasiloxane compared with the original TDI/kaolin particles.

  9. High Performance Grinding and Advanced Cutting Tools

    CERN Document Server

    Jackson, Mark J

    2013-01-01

    High Performance Grinding and Advanced Cutting Tools discusses the fundamentals and advances in high performance grinding processes, and provides a complete overview of newly-developing areas in the field. Topics covered are grinding tool formulation and structure, grinding wheel design and conditioning and applications using high performance grinding wheels. Also included are heat treatment strategies for grinding tools, using grinding tools for high speed applications, laser-based and diamond dressing techniques, high-efficiency deep grinding, VIPER grinding, and new grinding wheels.

  10. Comparison of Grinding Characteristics of Converter Steel Slag with and without Pretreatment and Grinding Aids

    Directory of Open Access Journals (Sweden)

    Jihui Zhao

    2016-10-01

    Full Text Available The converter steel slag cannot be widely used in building materials for its poor grindability. In this paper, the grinding characteristics of untreated and pretreated (i.e., magnetic separation steel slag were compared. Additionally, the grinding property of pretreated steel slag was also studied after adding grinding aids. The results show that the residues (i.e., oversize substance that passed a 0.9 mm square-hole screen can be considered as the hardly grinding phases (HGP and its proportion is about 1.5%. After the initial 20 min grinding, the RO phase (RO phase is a continuous solid solution which is composed of some divalent metal oxides, such as FeO, MgO, MnO, CaO, etc., calcium ferrite, and metallic iron phase made up most of the proportion of the HGP, while the metallic iron made up the most component after 70 min grinding. The D50 of untreated steel slag could only reach 32.89 μm after 50 min grinding, but that of pretreated steel slag could reach 18.16 μm after the same grinding time. The grinding efficiency of steel slag was obviously increased and the particle characteristics were improved after using grinding aids (GA, especially the particle proportions of 3–32 μm were obviously increased by 7.24%, 7.22%, and 10.63% after 40 min, 50 min, and 60 min grinding, respectively. This is mainly because of the reduction of agglomeration and this effect of GA was evidenced by SEM (scanning electron microscope images.

  11. Surface Roughness Analysis in the Hard Milling of JIS SKD61 Alloy Steel

    Directory of Open Access Journals (Sweden)

    Huu-That Nguyen

    2016-06-01

    Full Text Available Hard machining is an efficient solution that can be used to replace the grinding operation in the mold and die manufacturing industry. In this study, an attempt is made to analyze the effect of process parameters on workpiece surface roughness (Ra in the hard milling of JIS (Japanese Industrial Standard SKD61 steel, based on a combination of the Taguchi method and response surface methodology (RSM. The cutting parameters are selected based on the structural dynamic analysis of the machine tool. A set of experiments is designed according to the Taguchi technique. The average Ra is measured by a Mitutoyo Surftest SJ-400, and then analysis of variance (ANOVA is performed to determine the influences of cutting parameters on the given Ra. Quadratic mathematical modeling is introduced for prediction of the Ra during the hard milling process. The predicted values are in reasonable agreement with the observation of experiments. In an effort to obtain the minimizing Ra, a single objective optimization is employed based on the desirability function. The result shows that the percentage error between measured and predicted values of Ra is 3.2%, which is found to be insignificant. Eventually, the milled surface roughness under the optimized machining conditions is 0.122 µm. This finding shows that grinding may be replaced by finish hard milling in the mold and die manufacturing field.

  12. Fabrication and characterization of Cu/YSZ cermet high-temperature electrolysis cathode material prepared by high-energy ball-milling method

    International Nuclear Information System (INIS)

    Lee, Sungkyu; Kang, Kyoung-Hoon; Kim, Jong-Min; Hong, Hyun Seon; Yun, Yongseung; Woo, Sang-Kook

    2008-01-01

    Cu/YSZ composites (40 and 60 vol.% Cu powder with balance YSZ) was successfully fabricated by high-energy ball-milling of Cu and YSZ powders at 400 rpm for 24 h, pressing into pellets (O 13 mm x 2 mm) and subsequent sintering process at 900 deg. C under flowing 5%-H 2 /Ar gas for use as cermet cathode material of high-temperature electrolysis (HTE) of water vapor in a more economical way compared with conventional Ni/YSZ cermet cathode material. The Cu/YSZ composite powders thus synthesized and sintered were characterized using various analytical tools such as XRD, SEM, and laser diffraction and scattering method. Electrical conductivity of sintered Cu/YSZ cermet pellets thus fabricated was measured using 4-probe technique and compared with that of Ni/YSZ cermets. The effect of composites composition on the electrical conductivity was investigated and marked increase in electrical conductivity for copper contents greater than 40 vol.% in the composite was explained by percolation threshold

  13. Structure and electrochemical hydrogen storage properties of Ti{sub 2}Ni alloy synthesized by ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Hosni, B. [Equipe des Hydrures Métalliques, Laboratoire de Mécanique, Matériaux et Procédés, Ecole Nationale Supérieure d’Ingénieurs de Tunis, ENSIT Ex ESSTT, Université de Tunis, 5 Avenue Taha Hussein, 1008 Tunis (Tunisia); Li, X. [FEMTO-ST, MN2S, Université de Technologie de Belfort-Montbéliard, Site de Sévenans, 90010 Belfort cedex (France); Khaldi, C., E-mail: chokri.khaldi@esstt.rnu.tn [Equipe des Hydrures Métalliques, Laboratoire de Mécanique, Matériaux et Procédés, Ecole Nationale Supérieure d’Ingénieurs de Tunis, ENSIT Ex ESSTT, Université de Tunis, 5 Avenue Taha Hussein, 1008 Tunis (Tunisia); ElKedim, O. [FEMTO-ST, MN2S, Université de Technologie de Belfort-Montbéliard, Site de Sévenans, 90010 Belfort cedex (France); Lamloumi, J. [Equipe des Hydrures Métalliques, Laboratoire de Mécanique, Matériaux et Procédés, Ecole Nationale Supérieure d’Ingénieurs de Tunis, ENSIT Ex ESSTT, Université de Tunis, 5 Avenue Taha Hussein, 1008 Tunis (Tunisia)

    2014-12-05

    Highlights: • The Ti{sub 2}Ni alloy activation requires only one cycle of charge and discharge, regardless of the temperature. • By increasing the temperature the capacity loss, undergoes an increase and it is more pronounced for the 60 °C. • A good correlation is found between the evolutions of the different electrochemical parameters according to the temperature. - Abstract: The structure and the electrochemical hydrogen storage properties of amorphous Ti{sub 2}Ni alloy synthesized by ball milling and used as an anode in nickel–metal hydride batteries were studied. Nominal Ti{sub 2}Ni was synthesized under argon atmosphere at room temperature using a planetary high-energy ball mill. The structural and morphological characterization of the amorphous Ti{sub 2}Ni alloy is carried out by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The electrochemical characterization of the Ti{sub 2}Ni electrodes is carried out by the galvanostatic charging and discharging, the constant potential discharge, the open circuit potential and the potentiodynamic polarization techniques. The Ti{sub 2}Ni alloy activation requires only one cycle of charge and discharge, regardless of the temperature. The electrochemical discharge capacity of the Ti{sub 2}Ni alloy, during the first eight cycles, and at a temperature of 30 °C, remained practically unchanged and a good held cycling is observed. By increasing the temperature, the electrochemical discharge capacity loss after eight cycles undergoes an increase and it is more pronounced for the temperature 60 °C. At 30 °C, the anodic corrosion current density is 1 mA cm{sup −2} and then it undergoes a rapid drop, remaining substantially constant (0.06 mA cm{sup −2}) in the range 40–60 °C, before undergoing a slight increase to 70 °C (0.3 mA cm{sup −2}). This variation is in good agreement with the maximum electrochemical discharge capacity values found for the

  14. Ball-milling and AlB2 addition effects on the hydrogen sorption properties of the CaH2 + MgB2 system

    International Nuclear Information System (INIS)

    Schiavo, B.; Girella, A.; Agresti, F.; Capurso, G.; Milanese, C.

    2011-01-01

    Research highlights: → Calcium hydride + magnesium-aluminum borides as candidates for hydrogen storage. → Long time ball milling improves hydrogen sorption kinetics of the CaH 2 +MgB 2 system. → Coexistence of MgB 2 and AlB 2 does not improve hydrogen sorption performances. → Total substitution of MgB 2 with AlB 2 improves the system kinetics and reversibility. → Below 400 deg. C almost the full hydrogen capacity of the CaH 2 + AlB 2 system is reached. - Abstract: Among the borohydrides proposed for solid state hydrogen storage, Ca(BH 4 ) 2 is particularly interesting because of its favourable thermodynamics and relatively cheap price. Composite systems, where other species are present in addition to the borohydride, show some advantages in hydrogen sorption properties with respect to the borohydrides alone, despite a reduction of the theoretical storage capacity. We have investigated the milling time influence on the sorption properties of the CaH 2 + MgB 2 system from which Ca(BH 4 ) 2 and MgH 2 can be synthesized by hydrogen absorption process. Manometric and calorimetric measurements showed better kinetics for long time milled samples. We found that the total substitution of MgB 2 with AlB 2 in the starting material can improve the sorption properties significantly, while the co-existence of both magnesium and aluminum borides in the starting mixture did not cause any improvement. Rietveld refinements of the X-ray powder diffraction spectra were used to confirm the hypothesized reactions.

  15. Grinding mechanism of zirconia toughened alumina

    International Nuclear Information System (INIS)

    Tsukuda, A.; Kondo, Y.; Yokota, K.

    1998-01-01

    In the grinding process, physical properties of ceramics affect both grinding mechanism and quality of ground surface. In this study we focused on fracture toughness of ceramics and the effect on grinding. A grinding test was carried out by single point grinding for ten different zirconia toughened alumina ceramics with different monoclinic zirconia contents. Effects of zirconia contents on the grinding mechanism and crack initiation were discussed. Copyright (1998) AD-TECH - International Foundation for the Advancement of Technology Ltd

  16. Grinding Fluid Jet Characteristics and Their Effect on a Gear Profile Grinding Process

    Directory of Open Access Journals (Sweden)

    Philip Geilert

    2017-10-01

    Full Text Available Profile gear grinding is characterized by a high level of achievable process performance and workpiece quality. However, the wide contact length between the workpiece and the grinding wheel is disadvantageous for the fluid supply to the contact zone and leads to the risk of locally burning the workpiece surface. For the reduction of both the thermal load and the risk of thermo-mechanical damage, the usage of a grinding fluid needs to be investigated and optimized. For this purpose, different kinds of grinding fluid nozzles were tested, which provide different grinding fluid jet characteristics. Through a specific design of the nozzles, it is possible to control the fluid flow inside the nozzle. It was found that this internal fluid flow directly influences the breakup of the coolant fluid jet. There are three groups of jet breakup (“droplet”, “wave & droplet”, and “atomization”. The first experimental results show that the influence of the jet breakup on the process performance is significant. The “wave & droplet” jet breakup can achieve a high process performance, in contrast to the “atomization” jet breakup. It can therefore be assumed that the wetting of the grinding wheel by the grinding fluid jet is significantly influenced by the jet breakup.

  17. Structural and magnetic properties of Fe{sub 60}Al{sub 40} alloys prepared by means of a magnetic mill

    Energy Technology Data Exchange (ETDEWEB)

    Bernal-Correa, R. [Laboratorio de Magnetismo y Materiales Avanzados, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Colombia, Manizales (Colombia); Rosales-Rivera, A., E-mail: arosalesr@unal.edu.c [Laboratorio de Magnetismo y Materiales Avanzados, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Colombia, Manizales (Colombia); Pineda-Gomez, P. [Laboratorio de Magnetismo y Materiales Avanzados, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Colombia, Manizales (Colombia); Universidad de Caldas, Manizales (Colombia); Salazar, N.A. [Laboratorio de Magnetismo y Materiales Avanzados, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Colombia, Manizales (Colombia)

    2010-04-16

    A study on synthesis, structural and magnetic characterization of Fe{sub 60}Al{sub 40} (at.%) alloys prepared by means of mechanical alloying process is presented. The mechanical alloying was performed using a milling device with magnetically controlled ball movement (Uni-Ball-Mill 5 equipment) at several milling times. The characterization was carried out via X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). The effects of milling time on the structural state, morphological evolution and magnetic behaviour of the Fe{sub 60}Al{sub 40} (at.%) alloys are discussed. Besides, in this current study we emphasize the result that indicating a ferro-para-ferromagnetic transition from a correlation between X-ray diffraction and magnetization data.

  18. Grinding kinetics and equilibrium states

    Science.gov (United States)

    Opoczky, L.; Farnady, F.

    1984-01-01

    The temporary and permanent equilibrium occurring during the initial stage of cement grinding does not indicate the end of comminution, but rather an increased energy consumption during grinding. The constant dynamic equilibrium occurs after a long grinding period indicating the end of comminution for a given particle size. Grinding equilibrium curves can be constructed to show the stages of comminution and agglomeration for certain particle sizes.

  19. Characterization of Al2O3-Co ceramic composite obtained by high energy mill

    International Nuclear Information System (INIS)

    Souza, J.L.; Assis, R.B. de; Carlos, E.M.; Oliveira, T.P.; Costa, F.A. da

    2014-01-01

    This work aims to characterize the ceramic composite Al 2 O3-Co obtained by high energy grinding. The composites were obtained by milling Al 2 O 3 and Co in a high energy mill at a speed of 400 rpm, in proportions of 5 to 20% Cobalt (Co). Ceramic composites with 5 and 20% cobalt were sintered at 1200 and 1300 ° C, with a 60-minute plateau and a heating rate of 10 ° C / min. The samples were characterized by X-ray diffraction (XRD), thermogravimetry and differential scanning calorimetry (TG / DSC) and scanning electron microscopy (SEM). The results show the significant effect of cobalt percentage and high energy grinding on the final properties of the Al 2 O 3 - Co ceramic composite, presenting satisfactory values for the composite with a 20% cobalt percentage, showing to be a promising material for application in cutting tools

  20. Improved oral bioavailability of probucol by dry media-milling.

    Science.gov (United States)

    Li, Jia; Yang, Yan; Zhao, Meihui; Xu, Hui; Ma, Junyuan; Wang, Shaoning

    2017-09-01

    The polymer/probucol co-milled mixtures were prepared to improve drug dissolution rate and oral bioavailability. Probucol, a BCS II drug, was co-milled together with Copovidone (Kollidon VA64, VA64), Soluplus, or MCC using the dry media-milling process with planetary ball-milling equipment. The properties of the milled mixtures including morphology, crystal form, vitro drug dissolution and in vivo oral bioavailability in rats were evaluated. Probucol existed as an amorphous in the matrix of the co-milled mixtures containing VA64, which helped to enhance drug dissolution. The ternary mixture composed of VA64, RH40, and probucol showed increased dissolution rates in both sink and non-sink conditions. It also had a higher oral bioavailability compared to the reference formulation. Dry-media milling of binary or ternary mixtures composed of drug, polymer and surfactant possibly have wide applications to improve dissolution rate and oral bioavailability of water-insoluble drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Production of titanium silicate compositions from technogenic titanium containing waste of Khibiny ores' enrichment

    Directory of Open Access Journals (Sweden)

    Shchukina E. S.

    2017-03-01

    Full Text Available The low level of complexity in the processing of raw materials at mining and processing enterprises adversely affect the environment causing considerable damage to it. Meanwhile technological waste is a cheap source of raw materials for liquid products of functional purpose, particularly inorganic filler which are widely used in the manufacture of paints and building materials, paper, plastics, insulating and protective materials. Improved performance and physical and chemical properties of materials are achieved by optimizing the composition and dispersion of the particles. By the example of the research subjects received from the flotation waste nepheline ore-dressing, it has been shown that a high degree of homogenization to obtain fine mixtures (75 % of 3–4 micron fraction composite filler powders the ultrafine grinding method achieved by using a planetary ball mill for a short period of time (at least 1 hours. The use of other grinding methods, for example by means of ball mill or a vibration such effect is not obtained. At the conditions of ultrafine grinding the ionization and amorphization of the surface layer of powder material particles (mechanical activated processing are occurred. This increases its activity by reacting with organic and inorganic binding, and provides high performance. The obtained filler has been tested in the composition of temperature-controlled sealants and glues used in the aerospace industry, shipbuilding and electronics. To obtain such materials sphene and nepheline received from industrial tailings of Khibiny apatite-nepheline ore deposits are used

  2. DEM modeling of ball mills with experimental validation: influence of contact parameters on charge motion and power draw

    Science.gov (United States)

    Boemer, Dominik; Ponthot, Jean-Philippe

    2017-01-01

    Discrete element method simulations of a 1:5-scale laboratory ball mill are presented in this paper to study the influence of the contact parameters on the charge motion and the power draw. The position density limit is introduced as an efficient mathematical tool to describe and to compare the macroscopic charge motion in different scenarios, i.a. with different values of the contact parameters. While the charge motion and the power draw are relatively insensitive to the stiffness and the damping coefficient of the linear spring-slider-damper contact law, the coefficient of friction has a strong influence since it controls the sliding propensity of the charge. Based on the experimental calibration and validation by charge motion photographs and power draw measurements, the descriptive and predictive capabilities of the position density limit and the discrete element method are demonstrated, i.e. the real position of the charge is precisely delimited by the respective position density limit and the power draw can be predicted with an accuracy of about 5 %.

  3. Fabrication of Al-20 wt%Si powder using scrap Si by ultra high-energy milling process

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Won-Kyung [Division of Advanced Materials Engineering and Institute for Rare Metals, Kongju National University, 275, Budae-dong, Cheonan, Chungnam 330-717 (Korea, Republic of); Y Latin-Small-Letter-Dotless-I lmaz, Fikret [Department of Physics, Faculty of Art and Science, Gaziosmanpasa University, Tasliciftlik Campus, 60240 Tokat (Turkey); Kim, Hyo-Seob; Koo, Jar-Myung [Division of Advanced Materials Engineering and Institute for Rare Metals, Kongju National University, 275, Budae-dong, Cheonan, Chungnam 330-717 (Korea, Republic of); Hong, Soon-Jik, E-mail: hongsj@kongju.ac.kr [Division of Advanced Materials Engineering and Institute for Rare Metals, Kongju National University, 275, Budae-dong, Cheonan, Chungnam 330-717 (Korea, Republic of)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer High energy ball milling process has been successfully employed to produce Al-20Si alloy using scrap Si powders. Black-Right-Pointing-Pointer Fully finer and homogenous structure could be achieved after 60 min of milling time. Black-Right-Pointing-Pointer Si particles were not dissolved but uniformly dispersed in the Al matrix in a milled state. Black-Right-Pointing-Pointer The hardness of as-milled Al-20Si powder increased steadily with the increase of milling time. Black-Right-Pointing-Pointer Grain size and dispersion strengthening are two mechanisms being responsible for hardness increment. - Abstract: In this study, microstructural evolution and mechanical properties of Al-20 wt%Si and pure Al powders fabricated by ultra high-energy ball milling technique were investigated as a function of milling time. The microstructure and mechanical properties of the as-milled powders were examined by scanning electron microscope (SEM), energy dispersive spectrometry (EDS), X-ray diffractometer (XRD) and Vickers hardness tester. SEM observation showed that the particle size increased at an early stage of milling, and then decreased drastically with further milling. XRD and cross-sectional EDS-mapping analyses revealed that Si particles were not dissolved but uniformly dispersed in the Al matrix in a milled state. Vickers hardness of both pure Al and Al-Si powder increases with milling time, which attributes to the grain size strengthening and dispersion strengthening.

  4. 17th Business Report Meeting of New Energy Industrial Technology Development Organization (NEDO). Section Meeting on International Cooperation Projects; Dai 17 kai jigyo hokokukai. Kokusai kyoryoku jigyo bunkakai

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    In this section meeting, reports were made on the following themes: 1) pregrinder model project; 2) power recovery model project; 3) energy conservation model project and the importance of the spread. In 1), this model project aims to demonstrate that the electric power unit requirement for cement production can be reduced by installing a pregrinder at the front step of ball mill as the finish process at a cement factory in Indonesia, increasing capacity of ball mill grinding, and reducing operational loads of the ball mill which is large in power consumption. In 2), this project aims to supply China a technology to recover power from high temperature/high pressure exhaust gas via gas expander as electric power of 5.8MW after separating FCC catalyst associated with from the exhaust gas from the generative tower of fluid catalytic cracking equipment for oil refining. To come up to expectations for Japan from neighboring countries in Asia, NEDO Information Center carried out the energy conservation model project, etc. as the international cooperation related project in the energy/environment field. The center is now developing 10 projects. (NEDO)

  5. Force characteristics in continuous path controlled crankpin grinding

    Science.gov (United States)

    Zhang, Manchao; Yao, Zhenqiang

    2015-03-01

    Recent research on the grinding force involved in cylindrical plunge grinding has focused mainly on steady-state conditions. Unlike in conventional external cylindrical plunge grinding, the conditions between the grinding wheel and the crankpin change periodically in path controlled grinding because of the eccentricity of the crankpin and the constant rotational speed of the crankshaft. The objective of this study is to investigate the effects of various grinding conditions on the characteristics of the grinding force during continuous path controlled grinding. Path controlled plunge grinding is conducted at a constant rotational speed using a cubic boron nitride (CBN) wheel. The grinding force is determined by measuring the torque. The experimental results show that the force and torque vary sinusoidally during dry grinding and load grinding. The variations in the results reveal that the resultant grinding force and torque decrease with higher grinding speeds and increase with higher peripheral speeds of the pin and higher grinding depths. In path controlled grinding, unlike in conventional external cylindrical plunge grinding, the axial grinding force cannot be disregarded. The speeds and speed ratios of the workpiece and wheel are also analyzed, and the analysis results show that up-grinding and down-grinding occur during the grinding process. This paper proposes a method for describing the force behavior under varied process conditions during continuous path controlled grinding, which provides a beneficial reference for describing the material removal mechanism and for optimizing continuous controlled crankpin grinding.

  6. Effect of grinding and polishing on roughness and strength of zirconia.

    Science.gov (United States)

    Khayat, Waad; Chebib, Najla; Finkelman, Matthew; Khayat, Samer; Ali, Ala

    2018-04-01

    The clinical applications of high-translucency monolithic zirconia restorations have increased. Chairside and laboratory adjustments of these restorations are inevitable, which may lead to increased roughness and reduced strength. The influence of grinding and polishing on high-translucency zirconia has not been investigated. The purpose of this in vitro study was to compare the roughness averages (Ra) of ground and polished zirconia and investigate whether roughness influenced strength after aging. High-translucency zirconia disks were milled, sintered, and glazed according to the manufacturer's recommendations. Specimens were randomized to 4 equal groups. Group G received only grinding; groups GPB and GPK received grinding and polishing with different polishing systems; and group C was the (unground) control group. All specimens were subjected to hydrothermal aging in an autoclave at 134°C at 200 kPa for 3 hours. Roughness average was measured using a 3-dimensional (3D) optical interferometer at baseline (Ra1), after grinding and polishing (Ra2), and after aging (Ra3). A biaxial flexural strength test was performed at a rate of 0.5 mm/min. Statistical analyses were performed using commercial software (α=.05). Group G showed a significantly higher mean value of Ra3 (1.96 ±0.32 μm) than polished and glazed groups (P.05). Compared with baseline, the roughness of groups G and GPB increased significantly after surface treatments and after aging, whereas aging did not significantly influence the roughness of groups GPK or C. Group G showed the lowest mean value of biaxial flexural strength (879.01 ±157.99 MPa), and the highest value was achieved by group C (962.40 ±113.84 MPa); no statistically significant differences were found among groups (P>.05). Additionally, no significant correlation was detected between the Ra and flexural strength of zirconia. Grinding increased the roughness of zirconia restorations, whereas proper polishing resulted in smoothness

  7. Stress and accidental defect detection on rolling mill rolls

    International Nuclear Information System (INIS)

    Auzas, J.-D.

    1999-01-01

    During the rolling mill process, rolls are submitted to high pressures that can lead to local decohesion or metallurgical changes. Both these cracks or softened areas must be detected as soon as they appear because of the risk of spalling, marks on the product, and mill wreck. These defects can be detected using the eddy current method, and particularly sensors specially developed for micro-defects detection. These sensors must be adapted to the environment of a roll grinding machine on which they must be installed. Users' schedule of conditions also require them to be attached to a wide range of eddy current generator and automatic computerized interpretation. Mill requirements for new high tech roll grades and quality lead to continuous development and improvement of the tools that will provide immediate 'go - no go' information. This paper is an update of these developments. (author)

  8. A highly stable (SnOx-Sn)@few layered graphene composite anode of sodium-ion batteries synthesized by oxygen plasma assisted milling

    Science.gov (United States)

    Cheng, Deliang; Liu, Jiangwen; Li, Xiang; Hu, Renzong; Zeng, Meiqing; Yang, Lichun; Zhu, Min

    2017-05-01

    The (SnOx-Sn)@few layered graphene ((SnOx-Sn)@FLG) composite has been synthesized by oxygen plasma-assisted milling. Owing to the synergistic effect of rapid plasma heating and ball mill grinding, SnOx (1 ≤ x ≤ 2) nanoparticles generated from the reaction of Sn with oxygen are tightly wrapped by FLG nanosheets which are simultaneously exfoliated from expanded graphite, forming secondary micro granules. Inside the granules, the small size of the SnOx nanoparticles enables the fast kinetics for Na+ transfer. The in-situ formed FLG and residual Sn nanoparticles improve the electrical conductivity of the composite, meanwhile alleviate the aggregation of SnOx nanoparticles and relieve the volume change during the cycling, which is beneficial for the cyclic stability for the Na+ storage. As an anode material for sodium-ion batteries, the (SnOx-Sn)@FLG composite exhibits a high reversible capacity of 448 mAh g-1 at a current density of 100 mA g-1 in the first cycle, with 82.6% capacity retention after 250 cycles. Even when the current density increases to 1000 mA g-1, this composite retains 316.5 mAh g-1 after 250 cycles. With superior Na+ storage stability, the (SnOx-Sn)@FLG composite can be a promising anode material for high performance sodium-ion batteries.

  9. C, N co-doped TiO{sub 2}/TiC{sub 0.7}N{sub 0.3} composite coatings prepared from TiC{sub 0.7}N{sub 0.3} powder using ball milling followed by oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Liang, E-mail: haoliang@tust.edu.cn [Tianjin Key Lab of Integrated Design and On-line Monitoring for Light Industry & Food Machinery and Equipment, Tianjin (China); College of Mechanical Engineering, Tianjin University of Science & Technology, No. 1038 Dagu Nanlu, Hexi District, Tianjin 300222 (China); Wang, Zhenwei, E-mail: 1004329228@qq.com [School of Naval Architecture and Ocean Engineering, Harbin Institute of Technology, Weihai, No. 2, Wenhua West Road, Weihai 264209 (China); Zheng, Yaoqing, E-mail: 13612177268@163.com [College of Mechanical Engineering, Tianjin University of Science & Technology, No. 1038 Dagu Nanlu, Hexi District, Tianjin 300222 (China); Li, Qianqian, E-mail: 1482471595@qq.com [College of Mechanical Engineering, Tianjin University of Science & Technology, No. 1038 Dagu Nanlu, Hexi District, Tianjin 300222 (China); Guan, Sujun, E-mail: sujunguan1221@gmail.com [College of Mechanical Engineering & Graduate School, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan); Zhao, Qian, E-mail: zhaoqian@tust.edu.cn [Tianjin Key Lab of Integrated Design and On-line Monitoring for Light Industry & Food Machinery and Equipment, Tianjin (China); College of Mechanical Engineering, Tianjin University of Science & Technology, No. 1038 Dagu Nanlu, Hexi District, Tianjin 300222 (China); Cheng, Lijun, E-mail: chenglijun@tust.edu.cn [Tianjin Key Lab of Integrated Design and On-line Monitoring for Light Industry & Food Machinery and Equipment, Tianjin (China); College of Mechanical Engineering, Tianjin University of Science & Technology, No. 1038 Dagu Nanlu, Hexi District, Tianjin 300222 (China); Lu, Yun, E-mail: luyun@faculty.chiba-u.jp [College of Mechanical Engineering & Graduate School, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan); Liu, Jizi, E-mail: jzliu@njust.edu.cn [Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, No. 200, Xiaolingwei Street, Nanjing 210094 (China)

    2017-01-01

    Highlights: • TiO{sub 2}/TiC{sub 0.7}N{sub 0.3} coatings were prepared by ball milling followed by oxidation. • In situ co-doping of C and N with simultaneous TiO{sub 2} formation was observed. • Improved photocatalytic activity under UV/visible light was noticed. • Synergism in co-doping and heterojunction formation promoted carrier separation. - Abstract: Ball milling followed by heat oxidation was used to prepared C, N co-doped TiO{sub 2} coatings on the surfaces of Al{sub 2}O{sub 3} balls from TiC{sub 0.7}N{sub 0.3} powder. The as-prepared coatings were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and ultraviolet-visible spectrophotometer (UV–vis). The results show that continuous TiC{sub 0.7}N{sub 0.3} coatings were formed after ball milling. C, N co-doped TiO{sub 2}/TiC{sub 0.7}N{sub 0.3} composite coatings were prepared after the direct oxidization of TiC{sub 0.7}N{sub 0.3} coatings in the atmosphere. However, TiO{sub 2} was hardly formed in the surface layer of TiC{sub 0.7}N{sub 0.3} coatings within a depth less than 10 nm during the heat oxidation of TiC{sub 0.7}N{sub 0.3} coatings in carbon powder. Meanwhile, the photocatalytic activity evaluation of these coatings was conducted under the irradiation of UV and visible light. All the coatings showed photocatalytic activity in the degradation of MB no matter under the irradiation of UV or visible light. The C, N co-doped TiO{sub 2}/TiC{sub 0.7}N{sub 0.3} composite coatings showed the most excellent performance. The enhancement under visible light irradiation should attribute to the co-doping of carbon and nitrogen, which enhances the absorption of visible light. The improvement of photocatalytic activity under UV irradiation should attribute to the synergistic effect of C, N co-doping, the formation of rutile-anatase mixed phases and the TiO{sub 2}/TiC{sub 0.7}N{sub 0.3} composite microstructure.

  10. Grinding Wheel Profile

    Science.gov (United States)

    2004-01-01

    This graphic dubbed by engineers as the 'Grinding Wheel Profile' is the detective's tool used by the Opportunity team to help them understand one of the processes that formed the interior of a rock called 'McKittrick.' Scientists are looking for clues as to how layers, grains and minerals helped create this rock, and the engineers who built the rock abrasion tool (RAT) wanted to ensure that their instrument's handiwork did not get confused with natural processes.In the original microscopic image underlaying the graphics, engineers and scientists noticed 'layers' or 'scratches' on the spherical object nicknamed 'blueberry' in the lower right part of the image. The designers of the rock abrasion tool noticed that the arc length and width of the scratches were similar to the shape and size of the rock abrasion tool's grinding wheel, which is made out of a pad of diamond teeth.The scrapes on the bottom right blueberry appear to be caused by the fact that the berry got dislodged slightly and its surface was scraped with the grinding pad. In this image, the largest yellow circle is the overall diameter of the hole ground by the rock abrasion tool and the largest yellow rectangular shape is the area of the grinding wheel bit. The smaller yellow semi-circle is the path that the center of the grinding tool follows. The orange arrow arcing around the solid yellow circle (center of grinding tool) indicates the direction that the grinding tool spins around its own center at 3,000 revolutions per minute. The tool simultaneously spins in an orbit around the center of the hole, indicated by the larger orange arrow to the left.The grinding tool is 22 millimeters (0.9 inches) in length and the actual grinding surface, which consists of the diamond pad, is 1.5 millimeters (0.06 inches) in length, indicated by the two smaller rectangles. You can see that the smaller bottom rectangle fits exactly the width of the scrape marks.The grooves on the blueberry are also the same as the

  11. Grinding Wheel System

    Science.gov (United States)

    Malkin, Stephen; Gao, Robert; Guo, Changsheng; Varghese, Biju; Pathare, Sumukh

    2003-08-05

    A grinding wheel system includes a grinding wheel with at least one embedded sensor. The system also includes an adapter disk containing electronics that process signals produced by each embedded sensor and that transmits sensor information to a data processing platform for further processing of the transmitted information.

  12. The influence of milling on the dissolution performance of simvastatin

    DEFF Research Database (Denmark)

    Zimper, Ulrike; Aaltonen, Jaakko; Krauel-Goellner, Karen

    2012-01-01

    properties such as solubility and dissolution rate and, therefore, process induced solid state modifications need to be monitored. The aim of this study was two-fold: firstly, to investigate the dissolution rates of milled and unmilled simvastatin; and secondly, to screen for the main milling factors......, as well as factor interactions in a dry ball milling process using simvastatin as model drug, and to optimize the milling procedure with regard to the opposing responses particle size and process induced disorder by application of a central composite face centered design. Particle size was assessed...... by scanning electron microscopy (SEM) and image analysis. Process induced disorder was determined by partial least squares (PLS) regression modeling of respective X-ray powder diffractograms (XRPD) and Raman spectra. Valid and significant quadratic models were built. The investigated milling factors were...

  13. Crystallization degree change of expanded graphite by milling and annealing

    International Nuclear Information System (INIS)

    Tang Qunwei; Wu Jihuai; Sun Hui; Fang Shijun

    2009-01-01

    Expanded graphite was ball milled with a planetary mill in air atmosphere, and subsequently thermal annealed. The samples were characterized by using X-ray diffraction spectroscopy (XRD), scanning electron microscopy (SEM) and thermal gravimetric analysis (TGA). It was found that in the milling initial stage (less than 12 h), the crystallization degree of the expanded graphite declined gradually, but after milling more than 16 h, a recrystallization of the expanded graphite toke place, and ordered nanoscale expanded graphite was formed gradually. In the annealing initial stage, the non-crystallization of the graphite occurred, but, beyond an annealing time, recrystallizations of the graphite arise. Higher annealing temperature supported the recrystallization. The milled and annealed expanded graphite still preserved the crystalline structure as raw material and hold high thermal stability.

  14. Effect of mechanical activation of fly ash added to Moroccan Portland cement

    Directory of Open Access Journals (Sweden)

    Ez-zaki H.

    2018-01-01

    This study aims to investigate the influence of grinding fly ash on the physico-chemical and mechanical properties of fly ash blended CPJ45 cement. The addition of the fly ash particles to the grinder leads respectively to the breakage of the particles and to reduce the agglomeration effect in the balls of cement grinder. Fly ash milling was found to improve particles fineness, and increase the silica and alumina content in the cement. Furthermore, milled fly ash blended cements show higher compressive strength compared to unmilled fly ash blended cements, due to improved fly ash reactivity through their mechanical activation.

  15. Catalytic effect of halide additives ball milled with magnesium hydride

    Energy Technology Data Exchange (ETDEWEB)

    Malka, I.E.; Bystrzycki, J. [Department of Advanced Materials and Technologies, Military University of Technology, Kaliskiego 2, 00-908 Warsaw (Poland); Czujko, T. [Department of Advanced Materials and Technologies, Military University of Technology, Kaliskiego 2, 00-908 Warsaw (Poland); CanmetENERGY, Hydrogen Fuel Cells and Transportation Energy, Natural Resources (Canada)

    2010-02-15

    The influence of various halide additives milled with magnesium hydride (MgH{sub 2}) on its decomposition temperature was studied. The optimum amount of halide additive and milling conditions were evaluated. The MgH{sub 2} decomposition temperature and energy of activation reduction were measured by temperature programmed desorption (TPD) and differential scanning calorimetry (DSC). The difference in catalytic efficiency between chlorides and fluorides of the various metals studied is presented. The effects of oxidation state, valence and position in the periodic table for selected halides on MgH{sub 2} decomposition temperature were also studied. The best catalysts, from the halides studied, for magnesium hydride decomposition were ZrF{sub 4}, TaF{sub 5}, NbF{sub 5}, VCl{sub 3} and TiCl{sub 3}. (author)

  16. Grinding Away Microfissures

    Science.gov (United States)

    Booth, Gary N.; Malinzak, R. Michael

    1990-01-01

    Treatment similar to dental polishing used to remove microfissures from metal parts without reworking adjacent surfaces. Any variety of abrasive tips attached to small motor used to grind spot treated. Configuration of grinding head must be compatible with configurations of motor and workpiece. Devised to eliminate spurious marks on welded parts.

  17. Low specific-grinding energy machining of ceramics by a laser dressed diamond grinding stone

    International Nuclear Information System (INIS)

    Jodan, K.; Matsumaru, K.; Ishizaki, K.

    2003-01-01

    A laser dressing is an effective dressing method to accomplish efficient ceramic grinding. Since laser dressing achieves protrusion heights of abrasive-grains without grain dislodgment, the number of abrasive-grains in a laser dressed grinding stone (LGS) is higher than that in a mechanically dressed grinding stone (MGS), remaining the initial grain distribution. Thus, the LGS contains higher number of effective cutting edges, and forms higher number of ground grooves on a ground surface than the MGS. Consequently, the LGS can achieve lower specific grinding energy than the MGS. Copyright (2003) AD-TECH - International Foundation for the Advancement of Technology Ltd

  18. Characterization of Tool Wear in High-Speed Milling of Hardened Powder Metallurgical Steels

    Directory of Open Access Journals (Sweden)

    Fritz Klocke

    2011-01-01

    Full Text Available In this experimental study, the cutting performance of ball-end mills in high-speed dry-hard milling of powder metallurgical steels was investigated. The cutting performance of the milling tools was mainly evaluated in terms of cutting length, tool wear, and cutting forces. Two different types of hardened steels were machined, the cold working steel HS 4-2-4 PM (K490 Microclean/66 HRC and the high speed steel HS 6-5-3 PM (S790 Microclean/64 HRC. The milling tests were performed at effective cutting speeds of 225, 300, and 400 m/min with a four fluted solid carbide ball-end mill (0 = 6, TiAlN coating. It was observed that by means of analytically optimised chipping parameters and increased cutting speed, the tool life can be drastically enhanced. Further, in machining the harder material HS 4-2-4 PM, the tool life is up to three times in regard to the less harder material HS 6-5-3 PM. Thus, it can be assumed that not only the hardness of the material to be machined plays a vital role for the high-speed dry-hard cutting performance, but also the microstructure and thermal characteristics of the investigated powder metallurgical steels in their hardened state.

  19. Amorphous phase formation in intermetallic Mg2Ni alloy synthesized by ethanol wet milling

    International Nuclear Information System (INIS)

    Wang, H.-W.; Chyou, S.-D.; Wang, S.-H.; Yang, M.-W.; Hsu, C.-Y.; Tien, H.-C.; Huang, N.-N.

    2009-01-01

    The hydriding/dehydriding properties of an intermetallic Mg 2 Ni alloy synthesized by wet ball milling in ethanol have been investigated. The appearance of the particle surface after different milling methods is one obvious difference. The alloyed powders prepared by either dry milling or wet milling under ethanol were characterized for phase content by X-ray diffractometer (XRD). The results show that two broad diffuse peaks, which are an ionic-organic-Mg amorphous material, appear in addition to the nickel element peaks. This unexpected amorphous phase has the special hydrogen absorbing/desorbing features.

  20. Preliminary study of sintering of metallic niobium processed for mechanical milling; Estudo preliminar da sinterizacao de niobio metalico processado por moagem de alta energia

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, H.M.; Vurobi Junior, S.; Cintho, O.M., E-mail: lenatamura@interponta.com.b [Universidade Estadual de Ponta Grossa (UEPG), PR (Brazil); Sandim, H.R.Z.; Leite, G.S. [Universidade de Sao Paulo (EEL/USP), Lorena, SP (Brazil). Escola de Engenharia

    2010-07-01

    In present study was preliminary study of mechanical milling influence on preparing of metallic niobium powder for sintering. Sample of metallic niobium in powder passing in sieve no. 635 mesh was processed by mechanical milling in SPEX mill for 8 hours using power grinding of 7:1 and a nitrogen atmosphere. The powder was annealed at different temperatures, 900 deg C, 1000 deg C, 1100 deg C and 1200 deg C for 1 hour in an atmosphere of hydrogen and argon to study their crystallization, which then were formed into blank for analysis of the curves compressibility. These samples were also subjected to x-ray diffraction in that their data were compared between the annealing temperatures. We also evaluate the compressibility curves of niobium samples with and without grinding these samples were subjected to x-ray diffraction and fluorescence. (author)

  1. Ceramic-bonded abrasive grinding tools

    Science.gov (United States)

    Holcombe, Jr., Cressie E.; Gorin, Andrew H.; Seals, Roland D.

    1994-01-01

    Abrasive grains such as boron carbide, silicon carbide, alumina, diamond, cubic boron nitride, and mullite are combined with a cement primarily comprised of zinc oxide and a reactive liquid setting agent and solidified into abrasive grinding tools. Such grinding tools are particularly suitable for grinding and polishing stone, such as marble and granite.

  2. Ceramic-bonded abrasive grinding tools

    Science.gov (United States)

    Holcombe, C.E. Jr.; Gorin, A.H.; Seals, R.D.

    1994-11-22

    Abrasive grains such as boron carbide, silicon carbide, alumina, diamond, cubic boron nitride, and mullite are combined with a cement primarily comprised of zinc oxide and a reactive liquid setting agent and solidified into abrasive grinding tools. Such grinding tools are particularly suitable for grinding and polishing stone, such as marble and granite.

  3. Surface grinding of intermetallic titanium aluminides

    CERN Document Server

    Gröning, Holger Andreas

    2014-01-01

    A deductive kinematic model of creep-feed and speed-stroke grinding processes is developed to identify possibilities to reduce the energy introduced into the workpiece. By computer tomography analysis and tactile measurements of the grinding wheel the pore volume and the static cutting edge number are determined and included in the model. Based on the kinematic model and the grinding wheel characteristics an analytical evaluation of the specific grinding energy for speed-stroke and creep-feed grinding is carried out. The deducted process design is evaluated in experimental investigations. The

  4. Influence of Cooling Condition on the Performance of Grinding Hardened Layer in Grind-hardening

    Science.gov (United States)

    Wang, G. C.; Chen, J.; Xu, G. Y.; Li, X.

    2018-02-01

    45# steel was grinded and hardened on a surface grinding machine to study the effect of three different cooling media, including emulsion, dry air and liquid nitrogen, on the microstructure and properties of the hardened layer. The results show that the microstructure of material surface hardened with emulsion is pearlite and no hardened layer. The surface roughness is small and the residual stress is compressive stress. With cooling condition of liquid nitrogen and dry air, the specimen surface are hardened, the organization is martensite, the surface roughness is also not changed, but high hardness of hardened layer and surface compressive stress were obtained when grinding using liquid nitrogen. The deeper hardened layer grinded with dry air was obtained and surface residual stress is tensile stress. This study provides an experimental basis for choosing the appropriate cooling mode to effectively control the performance of grinding hardened layer.

  5. Obtention of the TiFe compound by high-energy milling of Ti+Fe and TiH{sub 2}+Fe powder mixtures; Obtencao do composto TiFe a partir da moagem de alta energia de misturas Ti+Fe e TiH{sub 2}+Fe

    Energy Technology Data Exchange (ETDEWEB)

    Falcao, R.B.; Dammann, E.D.C.C.; Rocha, C.J.; Leal Neto, R.M., E-mail: railson.falcao@usp.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Ciencias e Tecnologia de Materiais. Lab. de Intermetalicos

    2010-07-01

    In this work TiFe compound was obtained by two process routes involving high-energy ball milling: mechanical alloying from Ti and Fe powders (route 1) and mechanical milling from TiH{sub 2} and Fe powders, both followed by an annealing heat treatment. Shaker and planetary ball mills were utilized for times varying from 1-25 hours. Milled and annealed powders were characterized by SEM and X-ray diffraction analyses. TiFe compound was formed in both routes. A strong powder adherence in the milling vial and balls occurred with route 1 in both mills. Powder adherence was significantly reduced by using TiH{sub 2} (route 2) mainly in the planetary mill, in spite of TiFe formation has only occurred after the annealing treatment. (author)

  6. Utilization of aluminum to obtaining a duplex type stainless steel using high energy ball milling; Obtencao de um aco inoxidavel de estrutura duplex do sistema FeMnAl processado por moagem de alta energia

    Energy Technology Data Exchange (ETDEWEB)

    Pavlak, I.E.; Cintho, O.M., E-mail: eng.igorpavlak@yahoo.com.b [Universidade Estadual de Ponta Grossa (UEPG), PR (Brazil); Capocchi, J.D.T. [Universidade de Sao Paulo (USP), SP (Brazil)

    2010-07-01

    The obtaining of stainless steel using aluminum in its composition - FeMnAl system, has been researches subject since the sixties, by good mechanical properties and resistance to oxidation presented, when compared with conventional FeNiCr stainless steel system. In another point, the aluminum and manganese are low cost then traditional elements. This work, metallic powders of iron, manganese and pure aluminum, were processed in a Spex type high-energy ball mill in nitrogen atmosphere. The milling products were compressed into pastille form and sintered under inert atmosphere. The final products were characterized by optical and electronic microscopy and microhardness test. The metallographic analysis shows a typical austenite and ferrite duplex type microstructure. The presence of these phases was confirmed according X ray diffraction analysis. (author)

  7. Analysis on the grinding quality of palm oil fibers by using combined grinding equipment

    Science.gov (United States)

    Gan, H. L.; Gan, L. M.; Law, H. C.

    2015-12-01

    As known, Malaysia is the second largest palm oil producer worldwide after Indonesia, therefore indicating the abundance of its wastes within the country. The plantation would be seen to increase to at least 5.2 million ha by 2020, and the waste generation would be 50-70 times the plantation. However, the efficiency of bulk density is reduced. This is one of the main reasons of the initiation of this size reduction/ grinding research. With appropriate parameters, grinding will be seen to be helping in enhancing the inter-particle bindings, subsequently increasing the quality of final products. This paper focuses on the grinding quality involving palm oil wastes by using the Scanning Electron Microscope (SEM). The samples would first be ground to powder at varying grinding speed and finally got the randomly chosen particles measured to obtain the size range. The grinding speed was manipulated from 15 Hz to 40 Hz. From the data obtained, it was found the particles fineness increased with increasing grinding speed. In general, the size ranged from 45 μm to about 600 μm, where the finest was recorded at the speed of 40 Hz. It was also found that the binding was not so encouraging at very low speeds. Therefore, the optimum grinding speed for oil palm residues lied in the range of 25 Hz to 30 Hz. However, there were still limitations to be overcome if the accuracy of the image clarity is to be enhanced.

  8. Bearing restoration by grinding

    Science.gov (United States)

    Hanau, H.; Parker, R. J.; Zaretsky, E. V.; Chen, S. M.; Bull, H. L.

    1976-01-01

    A joint program was undertaken by the NASA Lewis Research Center and the Army Aviation Systems Command to restore by grinding those rolling-element bearings which are currently being discarded at aircraft engine and transmission overhaul. Three bearing types were selected from the UH-1 helicopter engine (T-53) and transmission for the pilot program. No bearing failures occurred related to the restoration by grinding process. The risk and cost of a bearing restoration by grinding programs was analyzed. A microeconomic impact analysis was performed.

  9. Synthesis by mechanical alloying and characterization of 95.5Sn/4.0Ag/0.5Cu, (wt%) nanopowder

    International Nuclear Information System (INIS)

    Barreto, Karen Lyn Lima; Manzato, Lizandro; Rivera, Jose Anglada; Oliveira, Marceli Falcao de

    2010-01-01

    This work aims at sintering and characterizing the 95.5Sn/4.0Ag/0.5Cu (wt%) nanopowder, produced by high energy milling. The nano-sized particles reduce the melting point of this solder, which is usually higher for such alloys, for example, when compared with the usual 63Sn/37Pb (wt%) solder. The alloy was processed in a Spex mill with the following parameters: (I) different times of milling, 12, 24 and 48 hours. (II) the ratio of ball/mass powder of 40:1 and (II) hydrogen milling atmosphere. The microstructural evolution during milling was studied by X-ray diffraction and differential calorimetry. Combining these three variables, after grinding, a reduction of the particle size and the melting point of the solder were observed. This material is promising for applications in microelectronics packaging as a lead free solder. (author)

  10. The influence of parent concrete and milling intensity on the properties of recycled aggregates

    NARCIS (Netherlands)

    Lotfi, Somayeh; Rem, P.C.; Deja, J; Mroz, R; Di Maio, F.; Lotfi, S.; Bakker, M.; Hu, M.; Vahidi, A.

    2017-01-01

    The C2CA concrete recycling process consists of a combination of smart demolition, gentle grinding of the crushed concrete in an autogenous mill, and a novel dry classification technology called ADR to remove the fines. The` main factors in the C2CA process which influence the properties of Recycled

  11. Production of ultra-thin nano-scaled graphene platelets from meso-carbon micro-beads

    Science.gov (United States)

    Zhamu, Aruna; Guo, Jiusheng; Jang, Bor Z

    2014-11-11

    A method of producing nano-scaled graphene platelets (NGPs) having an average thickness no greater than 50 nm, typically less than 2 nm, and, in many cases, no greater than 1 nm. The method comprises (a) intercalating a supply of meso-carbon microbeads (MCMBs) to produce intercalated MCMBs; and (b) exfoliating the intercalated MCMBs at a temperature and a pressure for a sufficient period of time to produce the desired NGPs. Optionally, the exfoliated product may be subjected to a mechanical shearing treatment, such as air milling, air jet milling, ball milling, pressurized fluid milling, rotating-blade grinding, or ultrasonicating. The NGPs are excellent reinforcement fillers for a range of matrix materials to produce nanocomposites. Nano-scaled graphene platelets are much lower-cost alternatives to carbon nano-tubes or carbon nano-fibers.

  12. Co-grinding Effect on Crystalline Zaltoprofen with β-cyclodextrin/Cucurbit[7]uril in Tablet Formulation

    Science.gov (United States)

    Li, Shanshan; Lin, Xiang; Xu, Kailin; He, Jiawei; Yang, Hongqin; Li, Hui

    2017-04-01

    This work aimed to investigate the co-grinding effects of β-cyclodextrin (β-CD) and cucurbit[7]uril (CB[7]) on crystalline zaltoprofen (ZPF) in tablet formulation. Crystalline ZPF was prepared through anti-solvent recrystallization and fully analyzed through single-crystal X-ray diffraction. Co-ground dispersions and mono-ground ZPF were prepared using a ball grinding process. Results revealed that mono-ground ZPF slightly affected the solid state, solubility, and dissolution of crystalline ZPF. Co-ground dispersions exhibited completely amorphous states and elicited a significant reinforcing effect on drug solubility. UV-vis spectroscopy, XRPD, FT-IR, DSC, ssNMR, and molecular docking demonstrated the interactions in the amorphous product. Hardness tests on blank tablets with different β-CD and CB[7] contents suggested the addition of β-CD or CB[7] could enhance the compressibility of the powder mixture. Disintegration tests showed that CB[7] could efficiently shorten the disintegrating time. Dissolution tests indicated that β-CD and CB[7] could accelerate the drug dissolution rate via different mechanisms. Specifically, CB[7] could accelerate the dissolution rate by improving disintegration and β-CD showed a distinct advantage in solubility enhancement. Based on the comparative study on β-CD and CB[7] for tablet formulation combined with co-grinding, we found that CB[7] could be considered a promising drug delivery, which acted as a disintegrant.

  13. Co-grinding Effect on Crystalline Zaltoprofen with β-cyclodextrin/Cucurbit[7]uril in Tablet Formulation

    Science.gov (United States)

    Li, Shanshan; Lin, Xiang; Xu, Kailin; He, Jiawei; Yang, Hongqin; Li, Hui

    2017-01-01

    This work aimed to investigate the co-grinding effects of β-cyclodextrin (β-CD) and cucurbit[7]uril (CB[7]) on crystalline zaltoprofen (ZPF) in tablet formulation. Crystalline ZPF was prepared through anti-solvent recrystallization and fully analyzed through single-crystal X-ray diffraction. Co-ground dispersions and mono-ground ZPF were prepared using a ball grinding process. Results revealed that mono-ground ZPF slightly affected the solid state, solubility, and dissolution of crystalline ZPF. Co-ground dispersions exhibited completely amorphous states and elicited a significant reinforcing effect on drug solubility. UV-vis spectroscopy, XRPD, FT-IR, DSC, ssNMR, and molecular docking demonstrated the interactions in the amorphous product. Hardness tests on blank tablets with different β-CD and CB[7] contents suggested the addition of β-CD or CB[7] could enhance the compressibility of the powder mixture. Disintegration tests showed that CB[7] could efficiently shorten the disintegrating time. Dissolution tests indicated that β-CD and CB[7] could accelerate the drug dissolution rate via different mechanisms. Specifically, CB[7] could accelerate the dissolution rate by improving disintegration and β-CD showed a distinct advantage in solubility enhancement. Based on the comparative study on β-CD and CB[7] for tablet formulation combined with co-grinding, we found that CB[7] could be considered a promising drug delivery, which acted as a disintegrant. PMID:28368030

  14. Fe-FeS2 adsorbent prepared with iron powder and pyrite by facile ball milling and its application for arsenic removal.

    Science.gov (United States)

    Min, Xiaobo; Li, Yangwenjun; Ke, Yong; Shi, Meiqing; Chai, Liyuan; Xue, Ke

    2017-07-01

    Arsenic is one of the major pollutants and a worldwide concern because of its toxicity and chronic effects on human health. An adsorbent of Fe-FeS 2 mixture for effective arsenic removal was successfully prepared by mechanical ball milling. The products before and after arsenic adsorption were characterized with scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The adsorbent shows high arsenic removal efficiency when molar ratio of iron to pyrite is 5:5. The experimental data of As(III) adsorption are fitted well with the Langmuir isotherm model with a maximal adsorption capacity of 101.123 mg/g. And As(V) data were described perfectly by the Freundlich model with a maximal adsorption capacity of 58.341 L/mg. As(III) is partial oxidized to As(V) during the adsorption process. High arsenic uptake capability and cost-effectiveness of waste make it potentially attractive for arsenic removal.

  15. Multifunctional centrifugal grinding unit

    Science.gov (United States)

    Sevostyanov, V. S.; Uralskij, V. I.; Uralskij, A. V.; Sinitsa, E. V.

    2018-03-01

    The article presents scientific and engineering developments of multifunctional centrifugal grinding unit in which the selective effect of grinding bodies on the crushing material is realized, depending on its physical and mechanical characteristics and various schemes for organizing the technological process

  16. A study of grinding characteristic of ferrule

    International Nuclear Information System (INIS)

    Lee, S. W.; Choi, H. Z.; Choi, Y. J.; Ahn, G. J.

    2003-01-01

    As recently optical communication industry is developed, request of optical communication part is increased. Ferrule is very important part which determines transmission efficiency and quality of information in the optical communication part. Most of ferrule processes are grinding which request high processing precision. Particularly, concentricity and cylindricity of inner and outer diameter is very important. The co-axle grinding process of ferrule is to make its concentricity all of uniform before centerless grinding. Surface integrity of ferrule is affected by kind of grinding wheels, grinding conditions, and characteristic of workpiece and equipment. In this study, surface integrity of workpiece according to change of grinding wheel speed, feed rate, regulating wheel speed and grinding force is investigate to improve the concentricity and roundness of ferrule from many experiments

  17. NaCl as a solid solvent to assist the mechanochemical synthesis and post-synthesis of hierarchical porous MOFs with high I2 vapour uptake.

    Science.gov (United States)

    Yang, Junyi; Feng, Xiao; Lu, Guangnong; Li, Yulin; Mao, Chaochao; Wen, Zhongliang; Yuan, Wenbing

    2018-04-03

    The use of salts as grinding media to assist the mechanosynthesis, and the following one-pot mechanochemical post-synthesis, of hierarchically porous MOFs was carried out efficiently by ball milling. NaCl or KCl were used as a solid solvent to initially pre-grind with 1,3,5-benzenetricarboxylic acid (H3BTC) and copper acetate monhydrate, respectively, for 1 minute, then both mixtures were combined together for a further 20 minutes of grinding, and the resultant mixture was finally washed with ethanol and water to obtain the hierarchically micro-, meso- and macroporous HKUST-1 with a high yield. Moreover, the post-synthesis of these as-obtained hierarchically porous HKUST-1 was easily performed via grinding triethylenediamine (TED) with the above unwashed crude-products for 20 minutes. By adjusting the amount of NaCl and TED added, we simply fabricated the pore- and function-adjustable hierarchically porous HKUST-1. Furthermore, these as-obtained HKUST-1 products showed high performance in the capture of volatile iodine.

  18. Effect of grinding intensity and pelleting of the diet on indoor particulate matter concentrations and growth performance of weanling pigs.

    Science.gov (United States)

    Ulens, T; Demeyer, P; Ampe, B; Van Langenhove, H; Millet, S

    2015-02-01

    This study evaluated the effect of feed form and grinding intensity of the pig diet and the interaction between both on the particulate matter (PM) concentrations inside a pig nursery and the growth performances of weanling pigs. Four diets were compared: finely ground meal, coarsely ground meal, finely ground pellets, and coarsely ground pellets. Four weaning rounds with 144 pigs per weaning round, divided over 4 identical compartments, were monitored. Within each weaning round, each compartment was randomly assigned to 1 of 4 treatments. A hammer mill with a screen of 1.5 or 6 mm was used to grind the ingredients of the finely ground and coarsely ground feeds, respectively. Indoor concentrations of the following PM fractions were measured: PM that passes through a size-selective inlet with a 50 % efficiency cutoff at 10 (PM10) , 2.5 (PM2.5), or 1 (PM1) μm aerodynamic diameter, respectively (USEPA, 2004). Feeding pelleted diets instead of meal diets gave rise to higher PM10 (P Grinding intensity had an effect only on PM10 (P grinding intensity was found for any of the PM fractions. Interactions (P grinding intensity on ADFI and ADG were found. Grinding intensity had an effect only on the meal diets with higher ADFI for the coarsely ground meal. Pigs fed the finely ground meal had a lower (P grinding intensity. Pelleting the feed gave rise to a higher G:F. In conclusion, a contradiction between environmental concerns and performance results was found. Feeding pelleted diets to the piglets improved growth performance but also increased indoor PM concentrations.

  19. Experimental Setup for Diamond Grinding Using Electrochemical InProcess Controlled Dressing (ECD of Grinding Wheel

    Directory of Open Access Journals (Sweden)

    M. A. Shavva

    2014-01-01

    Full Text Available The most effective method for finish machining of hard-metals and alloys is to use the diamond grinding wheels for grinding. An application of diamond wheels significantly increases the employee output, reduces costs, and raises manufacturing efficiency with achieving the high performance properties of treated surfaces.During grinding a working surface of diamond wheel wears out. It adversely affects the cutting capability of the diamond grains, and depending on the grinding conditions can occur through different mechanisms. Wear of diamond wheel causes distortion of its shape and reduces cutting properties. However, dressing of diamond wheels is a complicated and time-consuming operation in terms of manufacturing technique.Methods to make dressing of diamond grinding wheel have different types of classification. Classification of dressing methods by the type of energy used is as follows: mechanical, chemical, electrophysical, electromechanical, and electrochemical. All these methods have their advantages and disadvantages.Electrochemical method of dressing is the most productive and efficient. Electrochemical method comprises anode-mechanical dressing and electrochemical (electrolytic one. The paper presents the electrochemical in-process dressing (ECD and the electrolytic in-process dressing (ELID.The source of energy, grinding a wheel with metal bond, and an electrode are necessary for providing ELID. The ELID consists of several stages. The first stage is preliminary electrolytic dressing of diamond wheel. The electrolyte is placed into the gap between the wheel and electrode. The bond of the wheel is oxidized. An insulating layer is formed. It reduces an electrical conductivity of the wheel and controls consumption of diamond grains, as well as polishes the surface of the work piece. Further, the insulating layer is destroyed. The cycle of dressing begins anew.The ECD proceeds in the same way as ELID. However during the ECD-process there

  20. Characterisation and management of concrete grinding residuals.

    Science.gov (United States)

    Kluge, Matt; Gupta, Nautasha; Watts, Ben; Chadik, Paul A; Ferraro, Christopher; Townsend, Timothy G

    2018-02-01

    Concrete grinding residue is the waste product resulting from the grinding, cutting, and resurfacing of concrete pavement. Potential beneficial applications for concrete grinding residue include use as a soil amendment and as a construction material, including as an additive to Portland cement concrete. Concrete grinding residue exhibits a high pH, and though not hazardous, it is sufficiently elevated that precautions need to be taken around aquatic ecosystems. Best management practices and state regulations focus on reducing the impact on such aquatic environment. Heavy metals are present in concrete grinding residue, but concentrations are of the same magnitude as typically recycled concrete residuals. The chemical composition of concrete grinding residue makes it a useful product for some soil amendment purposes at appropriate land application rates. The presence of unreacted concrete in concrete grinding residue was examined for potential use as partial replacement of cement in new concrete. Testing of Florida concrete grinding residue revealed no dramatic reactivity or improvement in mortar strength.

  1. Bismuth-ceramic nanocomposites through ball milling and liquid crystal synthetic methods

    Science.gov (United States)

    Dellinger, Timothy Michael

    Three methods were developed for the synthesis of bismuth-ceramic nanocomposites, which are of interest due to possible use as thermoelectric materials. In the first synthetic method, high energy ball milling of bismuth metal with either MgO or SiO2 was found to produce nanostructured bismuth dispersed on a ceramic material. The morphology of the resulting bismuth depended on its wetting behavior with respect to the ceramic: the metal wet the MgO, but did not wet on the SiO2. Differential Scanning Calorimetry measurements on these composites revealed unusual thermal stability, with nanostructure retained after multiple cycles of heating and cooling through the metal's melting point. The second synthesis methodology was based on the use of lyotropic liquid crystals. These mixtures of water and amphiphilic molecules self-assemble to form periodic structures with nanometer-scale hydrophilic and hydrophobic domains. A novel shear mixing methodology was developed for bringing together reactants which were added to the liquid crystals as dissolved salts. The liquid crystals served to mediate synthesis by acting as nanoreactors to confine chemical reactions within the nanoscale domains of the mesophase, and resulted in the production of nanoparticles. By synthesizing lead sulfide (PbS) and bismuth (Bi) particles as proof-of-concept, it was shown that nanoparticle size could be controlled by controlling the dimensionality of the nanoreactors through control of the liquid crystalline phase. Particle size was shown to decrease upon going from three-dimensionally percolating nanoreactors, to two dimensional sheet-like nanoreactors, to one dimensional rod-like nanoreactors. Additionally, particle size could be controlled by varying the precursor salt concentration. Since the nanoparticles did not agglomerate in the liquid crystal immediately after synthesis, bismuth-ceramic nanocomposites could be prepared by synthesizing Bi nanoparticles and mixing in SiO2 particles which

  2. Ball Screw Actuator Including a Compliant Ball Screw Stop

    Science.gov (United States)

    Wingett, Paul T. (Inventor); Hanlon, Casey (Inventor)

    2017-01-01

    An actuator includes a ball nut, a ball screw, and a ball screw stop. The ball nut is adapted to receive an input torque and in response rotates and supplies a drive force. The ball screw extends through the ball nut and has a first end and a second end. The ball screw receives the drive force from the ball nut and in response selectively translates between a retract position and a extend position. The ball screw stop is mounted on the ball screw proximate the first end to translate therewith. The ball screw stop engages the ball nut when the ball screw is in the extend position, translates, with compliance, a predetermined distance toward the first end upon engaging the ball nut, and prevents further rotation of the ball screw upon translating the predetermined distance.

  3. Determination of milling parameters to obtain mechanosynthesized ZnFe2O4

    International Nuclear Information System (INIS)

    Jean, Malick; Nachbaur, Virginie

    2008-01-01

    In this work, the mechanosynthesis of zinc ferrite in WC vials is studied. Millings are performed under air, with a planetary ball-milling, starting from elemental oxides α-Fe 2 O 3 and ZnO. As-milled powders are structurally and magnetically characterized by X-ray diffraction and Moessbauer spectroscopy. Milling parameters as rotational speeds of main disc and vials are particularly discussed in terms of influence on the obtaining of a pure zinc ferrite phase. These parameters have a strong influence on injected power, on radial and tangential components of the impact force. Friction phenomenon, associated with injected power, have been found to be the governing parameters of the end product

  4. AUTOMATION OF IN FEED CENTERLESS GRINDING MACHINE

    OpenAIRE

    Piyusha P. Jadhav*, Sachin V. Lomte, Sudhir Surve

    2017-01-01

    In-feed centerless grinding technique offers a major contribution to the industries. This is the alternative in-feed centerless grinding technique using regulating wheel. Mainly centerless grinding is divided in three types, and those are End feed, in-feed and through feed Centerless grinding. This paper mainly deals with low cost automation on in-feed Centerless grinding machine using regulating wheel suitable for multiple in-feed type jobs. It deals with the development of a Centerless grin...

  5. Unravelling the relationship between degree of disorder and the dissolution behavior of milled glibenclamide

    DEFF Research Database (Denmark)

    Mah, Pei T; Laaksonen, Timo; Rades, Thomas

    2014-01-01

    Milling is an attractive method to prepare amorphous formulations as it does not require the use of solvents and is suitable for thermolabile drugs. One of the key critical quality attributes of milled amorphous formulations is their dissolution behavior. However, there are limited studies...... that have investigated the relationship between degree of disorder induced by milling and dissolution behavior. The main aim of this study was to identify the analytical technique used to characterize degree of disorder that correlates best with the recrystallization behavior during dissolution of milled...... glibenclamide samples. Solid state and surface changes during dissolution of milled glibenclamide samples were monitored in order to elucidate the processes that influence the dissolution behavior of milled glibenclamide samples. Glibenclamide was ball milled for different durations and analyzed using X...

  6. Research on the characterization and conditioning of uranium mill tailings. II. Thermal stabilization of uranium mill tailings: technical and economic evaluation. Volume 2

    International Nuclear Information System (INIS)

    Dreesen, D.R.; Cokal, E.J.; Thode, E.F.; Wangen, L.E.; Williams, J.M.

    1983-06-01

    A method of conditioning uranium mill tailings has been devised to greatly reduce radon emanation and contaminant leachability by using high-temperature treatments, i.e., thermal stabilization. The thermally stabilized products appear resistant to weathering as measured by the effects of grinding and water leaching. The technical feasibility of the process has been partially verified in pilot-scale experiments. A conceptual thermal stabilization process has been designed and the economics of the process show that the thermal stabilization of tailings can be cost competitive compared with relocation of tailings during remedial action. The alteration of morphology, structure, and composition during thermal treatment would indicate that this stabilization method may be a long-lasting solution to uranium mill tailings disposal problems

  7. Local structural order in nanostructured hematite

    International Nuclear Information System (INIS)

    Florez, J. M.; Mazo-Zuluaga, J.; Restrepo, J.

    2005-01-01

    Nanostructured α-Fe 2 O 3 powders were prepared by high-energy ball milling. The milling process spans grinding times from 30 min to 24 h. The as-milled samples were characterized by means of 57 Fe Moessbauer spectrometry, Rietveld analysis of X-ray diffraction data and particle size analysis. The obtained results evidence the presence of disordered hematite characterized by a hyperfine field distribution with a well-behaved dependence on the mean crystallite size for which the mean hyperfine field decreases asymptotically as the grain size decreases. A new relationship is proposed in order to describe such behavior. Finally the presence of superparamagnetic grains, the occurrence of a partial topotactic phase transformation into a spinel phase and tool induced contamination are also presented and discussed.

  8. Milling condition effects on the Nd15 Fe77 B8 powder magnetic properties

    International Nuclear Information System (INIS)

    Landgraf, Fernando J.G.; Missell, Frank P.

    1992-01-01

    As a result of the first part of a study of the development of permanent magnets, an investigation of the effect of milling on the magnetic properties of the alloy Nd 15 Fe 77 B 8 showed differences in efficiency between ball milling and vibration milling, as well as a dependence of the intrinsic coercive field on particle size. The maximum value of the coercive field was obtained for a particle size of 1.7 μm in samples compacted without magnetic orientation. (author)

  9. Towards High Productivity in Precision Grinding

    Directory of Open Access Journals (Sweden)

    W. Brian Rowe

    2018-04-01

    Full Text Available Over the last century, substantial advances have been made, based on improved understanding of the requirements of grinding processes, machines, control systems, materials, abrasives, wheel preparation, coolants, lubricants, and coolant delivery. This paper reviews a selection of areas in which the application of scientific principles and engineering ingenuity has led to the development of new grinding processes, abrasives, tools, machines, and systems. Topics feature a selection of areas where relationships between scientific principles and new techniques are yielding improved productivity and better quality. These examples point towards further advances that can fruitfully be pursued. Applications in modern grinding technology range from high-precision kinematics for grinding very large lenses and reflectors through to medium size grinding machine processes and further down to grinding very small components used in micro electro-mechanical systems (MEMS devices. The importance of material issues is emphasized for the range of conventional engineering steels, through to aerospace materials, ceramics, and composites. It is suggested that future advances in productivity will include the wider application of artificial intelligence and robotics to improve precision, process efficiency, and features required to integrate grinding processes into wider manufacturing systems.

  10. Grinding temperature and energy ratio coefficient in MQL grinding of high-temperature nickel-base alloy by using different vegetable oils as base oil

    Directory of Open Access Journals (Sweden)

    Li Benkai

    2016-08-01

    Full Text Available Vegetable oil can be used as a base oil in minimal quantity of lubrication (MQL. This study compared the performances of MQL grinding by using castor oil, soybean oil, rapeseed oil, corn oil, sunflower oil, peanut oil, and palm oil as base oils. A K-P36 numerical-control precision surface grinder was used to perform plain grinding on a workpiece material with a high-temperature nickel base alloy. A YDM–III 99 three-dimensional dynamometer was used to measure grinding force, and a clip-type thermocouple was used to determine grinding temperature. The grinding force, grinding temperature, and energy ratio coefficient of MQL grinding were compared among the seven vegetable oil types. Results revealed that (1 castor oil-based MQL grinding yields the lowest grinding force but exhibits the highest grinding temperature and energy ratio coefficient; (2 palm oil-based MQL grinding generates the second lowest grinding force but shows the lowest grinding temperature and energy ratio coefficient; (3 MQL grinding based on the five other vegetable oils produces similar grinding forces, grinding temperatures, and energy ratio coefficients, with values ranging between those of castor oil and palm oil; (4 viscosity significantly influences grinding force and grinding temperature to a greater extent than fatty acid varieties and contents in vegetable oils; (5 although more viscous vegetable oil exhibits greater lubrication and significantly lower grinding force than less viscous vegetable oil, high viscosity reduces the heat exchange capability of vegetable oil and thus yields a high grinding temperature; (6 saturated fatty acid is a more efficient lubricant than unsaturated fatty acid; and (7 a short carbon chain transfers heat more effectively than a long carbon chain. Palm oil is the optimum base oil of MQL grinding, and this base oil yields 26.98 N tangential grinding force, 87.10 N normal grinding force, 119.6 °C grinding temperature, and 42.7% energy

  11. Non-isothermal synergetic catalytic effect of TiF{sub 3} and Nb{sub 2}O{sub 5} on dehydrogenation high-energy ball milled MgH{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Tiebang, E-mail: tiebangzhang@nwpu.edu.cn; Hou, Xiaojiang; Hu, Rui; Kou, Hongchao; Li, Jinshan

    2016-11-01

    MgH{sub 2}-M (M = TiF{sub 3} or Nb{sub 2}O{sub 5} or both of them) composites prepared by high-energy ball milling are used in this work to illustrate the dehydrogenation behavior of MgH{sub 2} with the addition of catalysts. The phase compositions, microstructures, particle morphologies and distributions of MgH{sub 2} with catalysts have been evaluated. The non-isothermal synergetic catalytic-dehydrogenation effect of TiF{sub 3} and Nb{sub 2}O{sub 5} evaluated by differential scanning calorimetry gives the evidences that the addition of catalysts is an effective strategy to destabilize MgH{sub 2} and reduce hydrogen desorption temperatures and activation energies. Depending on additives, the desorption peak temperatures of catalyzed MgH{sub 2} reduce from 417 °C to 341 °C for TiF{sub 3} and from 417 °C to 336 °C for Nb{sub 2}O{sub 5}, respectively. The desorption peak temperature reaches as low as 310 °C for MgH{sub 2} catalyzed by TiF{sub 3} coupling with Nb{sub 2}O{sub 5}. The non-isothermal synergetic catalytic effect of TiF{sub 3} and Nb{sub 2}O{sub 5} is mainly attributed to electronic exchange reactions with hydrogen molecules, which improve the recombination of hydrogen atoms during dehydrogenation process of MgH{sub 2}. - Highlights: • Catalytic surface for MgH{sub 2} is achieved by high-energy ball milling. • Non-isothermal dehydrogenation behavior of MgH{sub 2} with TiF{sub 3} and/or Nb{sub 2}O{sub 5} is illustrated. • Dehydrogenation activation energies of synergetic catalyzed MgH{sub 2} are obtained. • Synergetic catalytic-dehydrogenation mechanism of TiF{sub 3} and Nb{sub 2}O{sub 5} is proposed.

  12. High resolution Transmission Electron Microscopy characterization of a milled oxide dispersion strengthened steel powder

    Energy Technology Data Exchange (ETDEWEB)

    Loyer-Prost, M., E-mail: marie.loyer-prost@cea.fr [DEN-Service de Recherches de Métallurgie Physique, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France); Merot, J.-S. [Laboratoire d’Etudes des Microstructures – UMR 104, CNRS/ONERA, BP72-29, Avenue de la Division Leclerc, 92 322, Châtillon (France); Ribis, J. [DEN-Service de Recherches de Métallurgie Appliquée, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France); Le Bouar, Y. [Laboratoire d’Etudes des Microstructures – UMR 104, CNRS/ONERA, BP72-29, Avenue de la Division Leclerc, 92 322, Châtillon (France); Chaffron, L. [DEN-Service de Recherches de Métallurgie Appliquée, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France); Legendre, F. [DEN-Service de la Corrosion et du Comportement des Matériaux dans leur Environnement, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France)

    2016-10-15

    Oxide Dispersion Strengthened (ODS) steels are promising materials for generation IV fuel claddings as their dense nano-oxide dispersion provides good creep and irradiation resistance. Even if they have been studied for years, the formation mechanism of these nano-oxides is still unclear. Here we report for the first time a High Resolution Transmission Electron Microscopy and Energy Filtered Transmission Electron Microscopy characterization of an ODS milled powder. It provides clear evidence of the presence of small crystalline nanoclusters (NCs) enriched in titanium directly after milling. Small NCs (<5 nm) have a crystalline structure and seem partly coherent with the matrix. They have an interplanar spacing close to the (011) {sub bcc} iron structure. They coexist with larger crystalline spherical precipitates of 15–20 nm in size. Their crystalline structure may be metastable as they are not consistent with any Y-Ti-O or Ti-O structure. Such detailed observations in the as-milled grain powder confirm a mechanism of Y, Ti, O dissolution in the ferritic matrix followed by a NC precipitation during the mechanical alloying process of ODS materials. - Highlights: • We observed an ODS ball-milled powder by high resolution transmission microscopy. • The ODS ball-milled powder exhibits a lamellar microstructure. • Small crystalline nanoclusters were detected in the milled ODS powder. • The nanoclusters in the ODS milled powder are enriched in titanium. • Larger NCs of 15–20 nm in size are, at least, partly coherent with the matrix.

  13. Study on Effect of Ultrasonic Vibration on Grinding Force and Surface Quality in Ultrasonic Assisted Micro End Grinding of Silica Glass

    Directory of Open Access Journals (Sweden)

    Zhang Jianhua

    2014-01-01

    Full Text Available Ultrasonic vibration assisted micro end grinding (UAMEG is a promising processing method for micro parts made of hard and brittle materials. First, the influence of ultrasonic assistance on the mechanism of this processing technology is theoretically analyzed. Then, in order to reveal the effects of ultrasonic vibration and grinding parameters on grinding forces and surface quality, contrast grinding tests of silica glass with and without ultrasonic assistance using micro radial electroplated diamond wheel are conducted. The grinding forces are measured using a three-component dynamometer. The surface characteristics are detected using the scanning electron microscope. The experiment results demonstrate that grinding forces are significantly reduced by introducing ultrasonic vibration into conventional micro end grinding (CMEG of silica glass; ultrasonic assistance causes inhibiting effect on variation percentages of tangential grinding force with grinding parameters; ductile machining is easier to be achieved and surface quality is obviously improved due to ultrasonic assistance in UAMEG. Therefore, larger grinding depth and feed rate adopted in UAMEG can lead to the improvement of removal rate and machining efficiency compared with CMEG.

  14. Nitramine Drying & Fine Grinding Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Nitramine Drying and Fine Grinding Facility provides TACOM-ARDEC with a state-of-the-art facility capable of drying and grinding high explosives (e.g., RDX and...

  15. Aluminum-graphite composite produced by mechanical milling and hot extrusion

    International Nuclear Information System (INIS)

    Flores-Zamora, M.I.; Estrada-Guel, I.; Gonzalez-Hernandez, J.; Miki-Yoshida, M.; Martinez-Sanchez, R.

    2007-01-01

    Aluminum-graphite composites were produced by mechanical milling followed by hot extrusion. Graphite content was varied between 0 and 1 wt.%. Al-graphite mixtures were initially mixed in a shaker mill without ball, followed by mechanical milling in a High-energy simoloyer mill for 2 h under argon atmosphere. Milled powders were subsequently pressed at ∼950 MPa for 2 min, and next sintered under vacuum for 3 h at 823 K. Finally, sintered products were held for 0.5 h at 823 K and hot extruded using indirect extrusion. Tension and compression tests were carried out to determine the yield stress and maximum stress of the materials. We found that the mechanical resistance increased as the graphite content increased. Microstructural characterization was done by transmission electron microscopy. Al-O-C nanofibers and graphite nanoparticles were observed in extruded samples by transmission electron microscopy. These nanoparticles and nanofibers seemed to be responsible of the reinforcement phenomenon

  16. Mechanically Strain-Induced Modification of Selenium Powders in the Amorphization Process

    International Nuclear Information System (INIS)

    Fuse, Makoto; Shirakawa, Yoshiyuki; Shimosaka, Atsuko; Hidaka, Jusuke

    2003-01-01

    For the fabrication of particles designed in the nanoscale structure, or the nanostructural modification of particles using mechanical grinding process, selenium powders ground by a planetary ball mill at various rotational speeds have been investigated. Structural analyses, such as particle size distributions, crystallite sizes, lattice strains and nearest neighbour distances were performed using X-ray diffraction, scanning electron microscopy and dynamical light scattering.By grinding powder particles became spherical composites consisting of nanocrystalline and amorphous phase, and had a distribution with the average size of 2.7 μm. Integral intensities of diffraction peaks of annealed crystal selenium decreased with increasing grinding time, and these peaks broadened due to lattice strains and reducing crystallite size during the grinding. The ground powder at 200 rpm did not have the lattice strain and showed amorphization for the present grinding periods. It indicates that the amorphization of Se by grinding accompanies the lattice strain, and the lattice strain arises from a larger energy concerning intermolecular interaction. In this process, the impact energy is spent on thermal and structural changes according to energy accumulation in macroscopic (the particle size distribution) and microscopic (the crystallite size and the lattice strain) range

  17. Size effect of primary Y{sub 2}O{sub 3} additions on the characteristics of the nanostructured ferritic ODS alloys: Comparing as-milled and as-milled/annealed alloys using S/TEM

    Energy Technology Data Exchange (ETDEWEB)

    Saber, Mostafa, E-mail: msaber@ncsu.edu; Xu, Weizong; Li, Lulu; Zhu, Yuntian; Koch, Carl C.; Scattergood, Ronald O.

    2014-09-15

    The need for providing S/TEM evidence to clarify the mechanisms of nano-scale precipitate formation was the motivation of this investigation. In this study, an Fe–14Cr–0.4Ti alloy was ball-milled with different amounts of Y{sub 2}O{sub 3} content up to 10 wt.%, and then annealed at temperatures up to 1100 °C. Micron-size Y{sub 2}O{sub 3} particles were substituted for the nano-size counterpart to elucidate the mechanism of oxide precipitate formation. The S/TEM studies revealed that the microstructure of the alloy with 10 wt.% yttria contained amorphous undissolved Y{sub 2}O{sub 3} after ball milling, while a small part of the initial oxide particles were dissolved into the solid solution. Consequently, when the amount of yttria was reduced to 1 wt.%, the amorphous phase of the yttria vanished and the whole content of Y{sub 2}O{sub 3} was dissolved into the BCC solid solution. Defect analysis of precipitates on the annealed samples via S/TEM and micro-hardness studies revealed that the use of micron-size primary oxide particles can produce nano-size precipitates, stable up to temperatures as high as 1100 °C, and uniformly distributed throughout the microstructure. This study indicates that the use of high energy ball milling along with micron-size primary oxide particles can lead to nanostructured ferritic ODS alloys without the use of nano-size primary oxide additions.

  18. Investigation of the milling-induced thermal behavior of crystalline and amorphous griseofulvin.

    Science.gov (United States)

    Trasi, Niraj S; Boerrigter, Stephan X M; Byrn, Stephen Robert

    2010-07-01

    To gain a better understanding of the physical state and the unusual thermal behavior of milled griseofulvin. Griseofulvin crystals and amorphous melt quench samples were milled in a vibrating ball mill for different times and then analyzed using differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD). Modulated DSC (mDSC) and annealing studies were done for the milled amorphous samples to further probe the effects of milling. Milling of griseofulvin crystals results in decrease in crystallinity and amorphization of the compound. A double peak is seen for crystallization in the DSC, which is also seen for the milled melt quench sample. Both enthalpy and temperature of crystallization decrease for the milled melt quenched sample. Tg is visible under the first peak with the mDSC, and annealing shows that increasing milling time results in faster crystallization upon storage. Milling of griseofulvin results in the formation of an amorphous form and not a mesophase. It increases the amount of surface created and the overall energy of the amorphous griseofulvin, which leads to a decreased temperature of crystallization. The two exotherms in the DSC are due to some particles having nuclei on the surface.

  19. Control of grinding polygonal surfaces

    Directory of Open Access Journals (Sweden)

    Юрій Володимирович Петраков

    2017-12-01

    Full Text Available Grinding of non-round surfaces, in particular polygonal surfaces of dies, is characterized by substantial non stationary. At different sections of the profile, the change in the main characteristic (Material Removal Rate – MRR process reaches tens of times. To stabilize the grinding process, it is recommended to control the spindle speed of the workpiece CNC grinding machine. Created software that allows to design the control program on the basis of mathematical model of the system. The determination of MRR is realized automatically in the simulation of the grinding process which uses the algorithm developed for solving problems in geometric interaction of the workpiece and the wheel. In forming the control program is possible takes into account the limitations on the maximum circumferential force of cutting, and the maximum allowable acceleration of the machine spindle. Practice has shown that full stabilization is not obtained, even though the performance is increased more than 2 times, while ensuring the quality of the surface. The developed block diagram of the grinding process can serve as a basis for further improvement in the solution of dynamic problems.

  20. Energy requirement for fine grinding of torrefied wood

    Energy Technology Data Exchange (ETDEWEB)

    Repellin, Vincent; Govin, Alexandre; Guyonnet, Rene [Department of Powder and Multi-Components Materials (PMMC), SPIN Research Center, Ecole des Mines de Saint Etienne (EMSE), 158 Cours Fauriel, F-42023 Saint-Etienne (France); Rolland, Matthieu [Process Developments and Engineering Division, Chemical Engineering Department, Institut Francais du Petrole (IFP-Lyon), F-69390 Vernaison (France)

    2010-07-15

    The purpose of this study is to investigate the influence of torrefaction on wood grinding energy. Wood chips were torrefied at different temperatures and durations. The energy required to obtain fine powder was measured. Particle size analyses were carried out on each powder sample. It is showed that torrefaction decreases both grinding energy and particle size distribution. A criterion to compare grindability of natural and torrefied wood is proposed. It takes into account both grinding energy and particle size distribution. It accounts the energy required for grinding particles to sizes inferior to 200 {mu}m, for given grinding conditions. Torrefaction is characterised by the anhydrous weight loss (AWL) of wood. For AWL inferior to around 8%, grinding energy decreases fast. Over 8%, grinding energy decreases at a slow rate. Particle size distribution decreases linearly as the AWL increases. Both for spruce and beech, the grinding criterion is decreased of 93% when the AWL is around 28%. (author)

  1. Degradation of Trichloroethene with a Novel Ball Milled Fe–C Nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Jie; Wang, Wei [Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Rondinone, Adam J. [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); He, Feng, E-mail: fenghe@zjut.edu.cn [College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032 (China); Liang, Liyuan [Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2015-12-30

    Highlights: • Novel, inexpensive iron–carbon (Fe–C) nanocomposite was obtained by milling. • Fe–C instantaneously sorbed >90% of trichloroethene and continuously degraded them. • The carbon reduced the generation of C{sub 3}−C{sub 6} intermediates and mainly produced C{sub 2}H{sub 4}. • Fe–C can attach to the DNAPL phase thus enhancing degradation efficiency. - Abstract: Nanoscale zero-valent iron (NZVI) is effective in reductively degrading dense non-aqueous phase liquids (DNAPLs), such as trichloroethene (TCE), in groundwater (i.e., dechlorination) although the NZVI technology itself still suffers from high material costs and inability to target hydrophobic contaminants in source zones. To address these problems, we developed a novel, inexpensive iron–carbon (Fe–C) nanocomposite material by simultaneously milling micron-size iron and activated carbon powder. Microscopic and X-ray diffraction (XRD) characterization of the composite material revealed that nanoparticles of Fe were dispersed in activated carbon and a new iron carbide phase was formed. Bench-scale studies showed that this material instantaneously sorbed >90% of TCE from aqueous solutions and subsequently decomposed TCE into non-chlorinated products. Compared to milled Fe, Fe–C nanocomposite dechlorinated TCE at a slightly slower rate and favored the production of ethene over other TCE degradation products such as C{sub 3}−C{sub 6} compounds. When placed in hexane-water mixture, the Fe–C nanocomposite materials are preferentially partitioned into the organic phase, indicating the ability of the composite materials to target DNAPL during remediation.

  2. Zirconia changes after grinding and regeneration firing.

    Science.gov (United States)

    Hatanaka, Gabriel R; Polli, Gabriela S; Fais, Laiza M G; Reis, José Maurício Dos S N; Pinelli, Lígia A P

    2017-07-01

    Despite improvements in computer-aided design and computer-aided manufacturing (CAD-CAM) systems, grinding during either laboratory procedures or clinical adjustments is often needed to modify the shape of 3 mol(%) yttria-tetragonal zirconia polycrystal (3Y-TZP) restorations. However, the best way to achieve adjustment is unclear. The purpose of this in vitro study was to evaluate the microstructural and crystallographic phase changes, flexural strength, and Weibull modulus of a 3Y-TZP zirconia after grinding with or without water cooling and regeneration firing. Ninety-six bar-shaped specimens were obtained and divided as follows: as-sintered, control; as-sintered with regeneration firing; grinding without water cooling; grinding and regeneration firing with water cooling; and grinding and regeneration firing. Grinding (0.3 mm) was performed with a 150-μm diamond rotary instrument in a high-speed handpiece. For regeneration firing, the specimens were annealed at 1000°C for 30 minutes. The crystalline phases were evaluated by using x-ray powder diffraction. A 4-point bending test was conducted (10 kN; 0.5 mm/min). The Weibull modulus was used to analyze strength reliability. The microstructure was analyzed by scanning electron microscopy. Data from the flexural strength test were evaluated using the Kruskal-Wallis and Dunn tests (α=.05). Tetragonal-to-monoclinic phase transformation was identified in the ground specimens; R regeneration firing groups showed only the tetragonal phase. The median flexural strength of as-sintered specimens was 642.0; 699.3 MPa for as-sintered specimens with regeneration firing; 770.1 MPa for grinding and water-cooled specimens; 727.3 MPa for specimens produced using water-cooled grinding and regeneration firing; 859.9 MPa for those produced by grinding; and 764.6 for those produced by grinding and regeneration firing; with statistically higher values for the ground groups. The regenerative firing did not affect the flexural

  3. Grinding temperature and energy ratio coe cient in MQL grinding of high-temperature nickel-base alloy by using di erent vegetable oils as base oil

    Institute of Scientific and Technical Information of China (English)

    Li Benkai; Li Changhe; Zhang Yanbin; Wang Yaogang; Jia Dongzhou; Yang Min

    2016-01-01

    Vegetable oil can be used as a base oil in minimal quantity of lubrication (MQL). This study compared the performances of MQL grinding by using castor oil, soybean oil, rapeseed oil, corn oil, sunflower oil, peanut oil, and palm oil as base oils. A K-P36 numerical-control precision surface grinder was used to perform plain grinding on a workpiece material with a high-temperature nickel base alloy. A YDM–III 99 three-dimensional dynamometer was used to measure grinding force, and a clip-type thermocouple was used to determine grinding temperature. The grinding force, grind-ing temperature, and energy ratio coefficient of MQL grinding were compared among the seven veg-etable oil types. Results revealed that (1) castor oil-based MQL grinding yields the lowest grinding force but exhibits the highest grinding temperature and energy ratio coefficient;(2) palm oil-based MQL grinding generates the second lowest grinding force but shows the lowest grinding temperature and energy ratio coefficient;(3) MQL grinding based on the five other vegetable oils produces similar grinding forces, grinding temperatures, and energy ratio coefficients, with values ranging between those of castor oil and palm oil;(4) viscosity significantly influences grinding force and grinding tem-perature to a greater extent than fatty acid varieties and contents in vegetable oils;(5) although more viscous vegetable oil exhibits greater lubrication and significantly lower grinding force than less vis-cous vegetable oil, high viscosity reduces the heat exchange capability of vegetable oil and thus yields a high grinding temperature;(6) saturated fatty acid is a more efficient lubricant than unsaturated fatty acid;and (7) a short carbon chain transfers heat more effectively than a long carbon chain. Palm oil is the optimum base oil of MQL grinding, and this base oil yields 26.98 N tangential grinding force, 87.10 N normal grinding force, 119.6 °C grinding temperature, and 42.7%energy ratio coefficient

  4. USE OF HIGH SPEED STEEL WORK ROLLS (HSS ON APERAM STECKEL MILL

    Directory of Open Access Journals (Sweden)

    Arísio de Abreu Barbosa

    2013-12-01

    Full Text Available This paper outlines the main actions taken to reinforce the decision to use HSS work rolls on the Aperam Steckel Mill. These are: work roll cooling improvements, systematically analyzing Eddy Current and Ultrasonic non destructive tests, mechanical adjustment of work roll crown and critically examining the rolling process. These actions applied together have contributed to the success of HSS rolls state of the art application, and provide the Steckel Mill with a much improved performance. Significant results have been achieved, such as: increasing of work roll change intervals, increasing of the available production time, a yield gain, a product quality improvement, less working hours needed for the roll grinding operation, etc

  5. Automatic grinding apparatus to control uniform specimen thicknesses

    Science.gov (United States)

    Bryner, Joseph S.

    1982-01-01

    This invention is directed to a new and improved grinding apparatus comprising (1) a movable grinding surface, (2) a specimen holder, (3) a displacing device for moving the holder and/or grinding surface toward one another, and (4) at least three devices for limiting displacement of the holder to the grinding surface.

  6. Local structural order in nanostructured hematite

    Energy Technology Data Exchange (ETDEWEB)

    Florez, J. M.; Mazo-Zuluaga, J.; Restrepo, J., E-mail: jrestre@fisica.udea.edu.co [Universidad de Antioquia, Grupo de Estado Solido, Instituto de Fisica (Colombia)

    2005-09-15

    Nanostructured {alpha}-Fe{sub 2}O{sub 3} powders were prepared by high-energy ball milling. The milling process spans grinding times from 30 min to 24 h. The as-milled samples were characterized by means of {sup 57}Fe Moessbauer spectrometry, Rietveld analysis of X-ray diffraction data and particle size analysis. The obtained results evidence the presence of disordered hematite characterized by a hyperfine field distribution with a well-behaved dependence on the mean crystallite size for which the mean hyperfine field decreases asymptotically as the grain size decreases. A new relationship is proposed in order to describe such behavior. Finally the presence of superparamagnetic grains, the occurrence of a partial topotactic phase transformation into a spinel phase and tool induced contamination are also presented and discussed.

  7. The grinding of uranium dioxide from fluidized beds

    International Nuclear Information System (INIS)

    Alonso Folgueras, J. A.

    1974-01-01

    This work deals with the UO 2 vibratory grinding, the UO 2 obtained from fluidized beds. In this study the grinding time has been correlated with surface area, stoichiometry, granulometry and grinded product contamination. The efficiency losses in the grinding of moisten UO 2 are outlined. Finally it is made a brief study of the granulate obtained from the grinded UO 2 as well as the green pellets resulting from it, taking into consideration the dispersion of its density and height. (Author)

  8. 30 CFR 57.14115 - Stationary grinding machines.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Stationary grinding machines. 57.14115 Section... and Equipment Safety Devices and Maintenance Requirements § 57.14115 Stationary grinding machines. Stationary grinding machines, other than special bit grinders, shall be equipped with— (a) Peripheral hoods...

  9. Agar agar-stabilized milled zerovalent iron particles for in situ groundwater remediation

    Energy Technology Data Exchange (ETDEWEB)

    Velimirovic, Milica; Schmid, Doris; Wagner, Stephan; Micić, Vesna; Kammer, Frank von der; Hofmann, Thilo, E-mail: thilo.hofmann@univie.ac.at

    2016-09-01

    Submicron-scale milled zerovalent iron (milled ZVI) particles produced by grinding macroscopic raw materials could provide a cost-effective alternative to nanoscale zerovalent iron (nZVI) particles for in situ degradation of chlorinated aliphatic hydrocarbons in groundwater. However, the aggregation and settling of bare milled ZVI particles from suspension presents a significant obstacle to their in situ application for groundwater remediation. In our investigations we reduced the rapid aggregation and settling rate of bare milled ZVI particles from suspension by stabilization with a “green” agar agar polymer. The transport potential of stabilized milled ZVI particle suspensions in a diverse array of natural heterogeneous porous media was evaluated in a series of well-controlled laboratory column experiments. The impact of agar agar on trichloroethene (TCE) removal by milled ZVI particles was assessed in laboratory-scale batch reactors. The use of agar agar significantly enhanced the transport of milled ZVI particles in all of the investigated porous media. Reactivity tests showed that the agar agar-stabilized milled ZVI particles were reactive towards TCE, but that their reactivity was an order of magnitude less than that of bare, non-stabilized milled ZVI particles. Our results suggest that milled ZVI particles could be used as an alternative to nZVI particles as their potential for emplacement into contaminated zone, their reactivity, and expected longevity are beneficial for in situ groundwater remediation. - Highlights: • Rapid aggregation and sedimentation were observed in bare milled ZVI particles. • Agar agar improved the stability of milled ZVI particle suspensions. • Agar agar enhanced the transport of milled ZVI particles in heterogeneous sands. • Agar agar reduced the reactivity of milled ZVI particles towards TCE.

  10. Agar agar-stabilized milled zerovalent iron particles for in situ groundwater remediation

    International Nuclear Information System (INIS)

    Velimirovic, Milica; Schmid, Doris; Wagner, Stephan; Micić, Vesna; Kammer, Frank von der; Hofmann, Thilo

    2016-01-01

    Submicron-scale milled zerovalent iron (milled ZVI) particles produced by grinding macroscopic raw materials could provide a cost-effective alternative to nanoscale zerovalent iron (nZVI) particles for in situ degradation of chlorinated aliphatic hydrocarbons in groundwater. However, the aggregation and settling of bare milled ZVI particles from suspension presents a significant obstacle to their in situ application for groundwater remediation. In our investigations we reduced the rapid aggregation and settling rate of bare milled ZVI particles from suspension by stabilization with a “green” agar agar polymer. The transport potential of stabilized milled ZVI particle suspensions in a diverse array of natural heterogeneous porous media was evaluated in a series of well-controlled laboratory column experiments. The impact of agar agar on trichloroethene (TCE) removal by milled ZVI particles was assessed in laboratory-scale batch reactors. The use of agar agar significantly enhanced the transport of milled ZVI particles in all of the investigated porous media. Reactivity tests showed that the agar agar-stabilized milled ZVI particles were reactive towards TCE, but that their reactivity was an order of magnitude less than that of bare, non-stabilized milled ZVI particles. Our results suggest that milled ZVI particles could be used as an alternative to nZVI particles as their potential for emplacement into contaminated zone, their reactivity, and expected longevity are beneficial for in situ groundwater remediation. - Highlights: • Rapid aggregation and sedimentation were observed in bare milled ZVI particles. • Agar agar improved the stability of milled ZVI particle suspensions. • Agar agar enhanced the transport of milled ZVI particles in heterogeneous sands. • Agar agar reduced the reactivity of milled ZVI particles towards TCE.

  11. Numerical Simulation of a Grinding Process for the Spatial Work-pieces: a Model of the Workpiece and Grinding Wheel

    Directory of Open Access Journals (Sweden)

    I. A. Kiselev

    2015-01-01

    Full Text Available The paper describes a spatial grinding dynamics mathematical model. This model includes a grinding wheel dynamics model, a work-piece dynamics model, and a numerical algorithm of geometric modeling as well. The geometric modeling algorithm is based on the Z-buffer method with author’s modifications. This algorithm allows us to simulate the formation of a new workpiece surface when removing material and as well as to determine the cutting layer thickness for each abrasive grain of the grinding wheel. The use of the surface cell bilinear approximation and the simultaneous use of multiple projection directions are the special features of the algorithm. These features improve modeling quality of machined surface. The grinding wheel model is represented as cutting micro-edges (grains set. Abrasive grains are randomly distributed on the wheel outer surface. Grains size, shape, wheel structure and graininess are taken into account. To determine the uncut chip thickness, which is cut off by each grain of the grinding wheel is used the algorithm, which finds intersection point of uncut work-piece surface with radial ray passing through the grain cutting edge. Grinding forces for each grain are defined based on the cutting layer thickness value using the phenomenological models described in the literature. Using transformations described in the article, grinding forces determined for each grain are reduced to the total grinding force, which acts on the tool and machined work-piece in the appropriate coordinate systems. Work-piece dynamics is modeled with the help of the finite element method using quadratic tetrahedral elements. The described model of spatial grinding dynamics makes it possible to evaluate the level of vibration and grinding forces, as well as the shape errors and surface quality of machined work-piece.

  12. Abridged acid-base wet-milling synthesis of high purity hydroyapatite

    Directory of Open Access Journals (Sweden)

    Sandi Carolina Ruiz-Mendoza

    2008-06-01

    Full Text Available There is a plethora of routes to produce hydroxyapatite(HA and in general calcium phosphates(CP but production usually leads to a mixture of several phases. Besides ionic contamination, most of these methods are cumbersome, restricted to small volumes of product and require a lot of thermal energy. The acid-base route eliminates foreign ions or additives and its only byproduct is water. Heterogeneous reaction drawback is that solid reactants do not easily come in contact with each other and therefore addition and stirring times become very lengthy and still the product is a mixture. The synthesis started from calcium hydroxide and phosphoric acid (PA. Ball milling was used to favor kinetics and stoichiometry. Six sets of PA addition, paddle stirring and ball milling times were used. Products were evaluated by X ray diffraction (XRD, Fourier Transform Infrared (FTIR, scanning electron microscopy (SEM, X ray fluorescence (XRF and Ca/P ratio. Chemical analysis for calcium proceeded through oxalate precipitate and phosphorus by the phosphomolibdate technique. A set of conditions yielding high purity HA was established.

  13. 30 CFR 56.14115 - Stationary grinding machines.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Stationary grinding machines. 56.14115 Section... Equipment Safety Devices and Maintenance Requirements § 56.14115 Stationary grinding machines. Stationary grinding machines, other than special bit grinders, shall be equipped with— (a) Peripheral hoods capable of...

  14. Absence of evidence of decomposition of Fe2B during mechanical grinding

    International Nuclear Information System (INIS)

    Balogh, J.; Horvath, Z.E.; Pusztai, T.; Kemeny, T.; Vincze, I.

    1998-01-01

    The appearance of bcc Fe after grinding Fe 2 B for a long time has been formerly interpreted as being due to the decomposition of the thermodynamically stable intermetallic compound when the crystallite size is reduced to a few nanometers. The results of our control experiments performed by tungsten-carbide milling tools show that the appearance of bcc Fe has no relation to the grain size but should be connected to contamination when tools made of steel are used to pulverize this material. Moessbauer spectroscopy was applied to search for the appearance of bcc Fe while changes in the grain size were checked by x-ray diffraction and transmission electron microscopy. copyright 1998 The American Physical Society

  15. Precision diamond grinding of ceramics and glass

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S.; Paul, H.; Scattergood, R.O.

    1988-12-01

    A new research initiative will be undertaken to investigate the effect of machine parameters and material properties on precision diamond grinding of ceramics and glass. The critical grinding depth to initiate the plastic flow-to-brittle fracture regime will be directly measured using plunge-grind tests. This information will be correlated with machine parameters such as wheel bonding and diamond grain size. Multiaxis grinding tests will then be made to provide data more closely coupled with production technology. One important aspect of the material property studies involves measuring fracture toughness at the very short crack sizes commensurate with grinding damage. Short crack toughness value`s can be much less than the long-crack toughness values measured in conventional fracture tests.

  16. Mechanical ball-milling preparation of fullerene/cobalt core/shell nanocomposites with high electrochemical hydrogen storage ability.

    Science.gov (United States)

    Bao, Di; Gao, Peng; Shen, Xiande; Chang, Cheng; Wang, Longqiang; Wang, Ying; Chen, Yujin; Zhou, Xiaoming; Sun, Shuchao; Li, Guobao; Yang, Piaoping

    2014-02-26

    The design and synthesis of new hydrogen storage nanomaterials with high capacity at low cost is extremely desirable but remains challenging for today's development of hydrogen economy. Because of the special honeycomb structures and excellent physical and chemical characters, fullerenes have been extensively considered as ideal materials for hydrogen storage materials. To take the most advantage of its distinctive symmetrical carbon cage structure, we have uniformly coated C60's surface with metal cobalt in nanoscale to form a core/shell structure through a simple ball-milling process in this work. The X-ray diffraction (XRD), scanning electron microscope (SEM), Raman spectra, high-solution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectrometry (EDX) elemental mappings, and X-ray photoelectron spectroscopy (XPS) measurements have been conducted to evaluate the size and the composition of the composites. In addition, the blue shift of C60 pentagonal pinch mode demonstrates the formation of Co-C chemical bond, and which enhances the stability of the as-obtained nanocomposites. And their electrochemical experimental results demonstrate that the as-obtained C60/Co composites have excellent electrochemical hydrogen storage cycle reversibility and considerably high hydrogen storage capacities of 907 mAh/g (3.32 wt % hydrogen) under room temperature and ambient pressure, which is very close to the theoretical hydrogen storage capacities of individual metal Co (3.33 wt % hydrogen). Furthermore, their hydrogen storage processes and the mechanism have also been investigated, in which the quasi-reversible C60/Co↔C60/Co-Hx reaction is the dominant cycle process.

  17. Adhesive wear mechanism under combined electric diamond grinding

    Directory of Open Access Journals (Sweden)

    Popov Vyacheslav

    2017-01-01

    Full Text Available The article provides a scientific substantiation of loading of metal-bond diamond grinding wheels and describes the mechanism of contact interaction (interlocking of wheels with tool steel as well as its general properties having an influence on combined electric diamond grinding efficiency. The study concluded that a loaded layer can be formed in a few stages different by nature. It is known, that one of the causes of grinding degradation is a continuous loading of active grits (abrasive grinding tool by workpiece chips. It all affects the diamond grinding wheels efficiency and grinding ability with a result in increase of tool pressure, contact temperature and wheels specific removal rate. Science has partially identified some various methods to minimize grinding wheel loading, however, as to loading of metal-bond diamond grinding wheels the search is still in progress. Therefore, research people have to state, that in spite of the fact that the wheels made of cubic boron nitride are of little use as applied to ceramic, ultrahard, hard-alloyed hard-to-machine and nano-materials of the time, but manufactures have to apply cubic boron nitride wheels wherein diamond ones preferable.

  18. High surface area niobium oxides as catalysts for improved hydrogen sorption properties of ball milled MgH2

    International Nuclear Information System (INIS)

    Bhat, V.V.; Rougier, A.; Aymard, L.; Nazri, G.A.; Tarascon, J.-M.

    2008-01-01

    We report, high surface area (up to 200 m 2 /g) nanocrystalline niobium oxide (so called p-Nb 2 O 5 ) synthesized by 'chimie douce' route and its importance in enhancing the hydrogen sorption properties of MgH 2 . p-Nb 2 O 5 induces faster kinetics than commonly used commercial Nb 2 O 5 (c-Nb 2 O 5 ) when ball milled with MgH 2 (named (MgH 2 ) catalyst ) by reducing the time of desorption from 35 min in (MgH 2 ) c-Nb 2 O 5 to 12 min in (MgH 2 ) p-Nb 2 O 5 at 300 deg. C. The BET surface area of as-prepared Nb 2 O 5 was tuned by heat treatment and its effect on sorption properties was studied. Among them, both p-Nb 2 O 5 and Nb 2 O 5 :350 (p-Nb 2 O 5 heated to 350 deg. C with a BET specific surface area of 46 m 2 /g) desorb 5 wt.% within 12 min, exhibiting the best catalytic activity. Furthermore, thanks to the addition of high surface area Nb 2 O 5 , the desorption temperature was successfully lowered down to 200 deg. C, with a significant amount of desorbed hydrogen (4.5 wt.%). In contrast, the composite (MgH 2 ) c-Nb 2 O 5 shows no desorption at this 'low' temperature

  19. 30 CFR 75.1723 - Stationary grinding machines; protective devices.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Stationary grinding machines; protective....1723 Stationary grinding machines; protective devices. (a) Stationary grinding machines other than... the wheel. (3) Safety washers. (b) Grinding wheels shall be operated within the specifications of the...

  20. TECHNOLOGICAL FEATURES OF MILLING AND FRACTIONATION OF FLAXSEEDS

    Directory of Open Access Journals (Sweden)

    A. Feskova

    2015-01-01

    Full Text Available Summary. The optimal parameters of milling and fractionation of flaxseeds were substantiated. It was found that the hull fraction with the highest content of lignan secoisolariciresinol diglucoside SDG was obtained when flaxseeds were grinded using a rotatory impact continuous operation mill at the rotation 1380-1640 rpm. Studies have shown that with the increasing of the rotor speed the number of unbriken seeds decreased. However, due to the fact that the shells are crushed more, they become more difficult to separate from the cotyledons. For identification and quantification of SDG the HPLC-MS method was used. It is found that the optimum separation membranes and cotyledon fraction occurs at sifting milled seeds sequentially through the sieves having meshes of 1 and 0.5 mm. The technology of industrial production of lignans-containing fraction and flour on the basis of flaxseeds processing were proposed. This technology includes milling flaxseeds at the rotation 1380-1640 rpm, with subsequent 2% silicon dioxide addition and stepwise sieving using sieves with the mesh size 2 mm. To use a fraction membranes high in lignans as raw material for biologically active additives to food it needed additional enforcement-ground to a size not more than 0.4 mm (technological features of capsulation. The developed technology allowed getting with maximum yields of lignans-containing fraction (10% yield and flaxseed flour (80% yield.