WorldWideScience

Sample records for ball indentation abi

  1. Mechanical properties of bovine cortical bone based on the automated ball indentation technique and graphics processing method.

    Science.gov (United States)

    Zhang, Airong; Zhang, Song; Bian, Cuirong

    2018-02-01

    Cortical bone provides the main form of support in humans and other vertebrates against various forces. Thus, capturing its mechanical properties is important. In this study, the mechanical properties of cortical bone were investigated by using automated ball indentation and graphics processing at both the macroscopic and microstructural levels under dry conditions. First, all polished samples were photographed under a metallographic microscope, and the area ratio of the circumferential lamellae and osteons was calculated through the graphics processing method. Second, fully-computer-controlled automated ball indentation (ABI) tests were performed to explore the micro-mechanical properties of the cortical bone at room temperature and a constant indenter speed. The indentation defects were examined with a scanning electron microscope. Finally, the macroscopic mechanical properties of the cortical bone were estimated with the graphics processing method and mixture rule. Combining ABI and graphics processing proved to be an effective tool to obtaining the mechanical properties of the cortical bone, and the indenter size had a significant effect on the measurement. The methods presented in this paper provide an innovative approach to acquiring the macroscopic mechanical properties of cortical bone in a nondestructive manner. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Evaluation of strength property variations across 9Cr-1Mo steel weld joints using automated ball indentation (ABI) technique

    International Nuclear Information System (INIS)

    Nagaraju, S.; GaneshKumar, J.; Vasantharaja, P.; Vasudevan, M.; Laha, K.

    2017-01-01

    The variations of strength properties across 9Cr-1Mo steel weld joints fabricated by different arc welding processes such as shielded metal arc welding (SMAW), tungsten inert gas (TIG) and activated tungsten inert gas (A-TIG) have been evaluated employing automatic ball indentation (ABI) technique. ABI tests were conducted at 298 K across various zones of the weld joints comprising of base metal, weld metal, heat affected zone (HAZ) and intercritical HAZ (ICHAZ) regions. The flow curves obtained from ABI tests were correlated with corresponding conventional tensile test results. In general, the tensile strength decreased systematically across the weld joint from weld metal to base metal. Inter critical HAZ exhibited the least strength implying that it is the weakest zone. The incomplete phase transformation in the ICHAZ during weld thermal cycle caused the softening. The A-TIG weld metal exhibited higher UTS and strain hardening values due to higher carbon in the martensite. The strain hardening exponent exhibited only slight variation across the various regions of the weld joints. A-TIG weld joint exhibited higher weld metal and HAZ strength, marginally higher UTS to YS ratio in the weld metal and HAZ compared to that of the other two processes. Hence, among the three welding processes chosen, A-TIG welding process is found to be superior in producing a 9Cr-1Mo steel weld joint with better strength properties.

  3. Evaluation of strength property variations across 9Cr-1Mo steel weld joints using automated ball indentation (ABI) technique

    Energy Technology Data Exchange (ETDEWEB)

    Nagaraju, S. [Nuclear Recycle Board, BARCF, Kalpakkam (India); GaneshKumar, J.; Vasantharaja, P. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Vasudevan, M., E-mail: dev@igcar.gov.in [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Laha, K. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2017-05-17

    The variations of strength properties across 9Cr-1Mo steel weld joints fabricated by different arc welding processes such as shielded metal arc welding (SMAW), tungsten inert gas (TIG) and activated tungsten inert gas (A-TIG) have been evaluated employing automatic ball indentation (ABI) technique. ABI tests were conducted at 298 K across various zones of the weld joints comprising of base metal, weld metal, heat affected zone (HAZ) and intercritical HAZ (ICHAZ) regions. The flow curves obtained from ABI tests were correlated with corresponding conventional tensile test results. In general, the tensile strength decreased systematically across the weld joint from weld metal to base metal. Inter critical HAZ exhibited the least strength implying that it is the weakest zone. The incomplete phase transformation in the ICHAZ during weld thermal cycle caused the softening. The A-TIG weld metal exhibited higher UTS and strain hardening values due to higher carbon in the martensite. The strain hardening exponent exhibited only slight variation across the various regions of the weld joints. A-TIG weld joint exhibited higher weld metal and HAZ strength, marginally higher UTS to YS ratio in the weld metal and HAZ compared to that of the other two processes. Hence, among the three welding processes chosen, A-TIG welding process is found to be superior in producing a 9Cr-1Mo steel weld joint with better strength properties.

  4. Evaluation of the mechanical properties of SA 333 Gr.6, AISI 304 and Zr-2.5% Nb through Automated Ball Indentation (ABI) technique

    International Nuclear Information System (INIS)

    Balakrishnan, K.S.; Rath, B.N.; Shriwastaw, R.S.; Ramadasan, E.; Kulkarni, R.V.; Sahoo, K.C.

    2009-08-01

    Automated Ball Indentation (ABI) technique has been employed in evaluating the tensile property data on three materials, namely SA333 Gr.6 carbon steel (used as PHT piping), AISI 304 (used as calandria vessel) and Zr-2.5% Nb (used as coolant tube) in Pressurised Heavy Water Reactors (PHWRs) with a view to exploring the applicability of ABI technique in providing reliable mechanical property data. The exercise was carried out in cooperation with a second laboratory where conventional tension tests alone were conducted such that the output of the study could be independently monitored and evaluated in an unbiased manner. The results generated in the authors' laboratory were found to be fully in agreement with what were obtained through conventional tension tests. Thus the study has been successful in establishing the reliability of the data obtained through miniature route especially in the case of coolant tube which has immense applications. (author)

  5. Evaluation of deformation and fracture characteristics of nuclear reactor materials using ball indentation test technique

    International Nuclear Information System (INIS)

    Byun, T. S.; Hong, J. H.; Lee, B. S.; Park, D. G.; Kim, J. H.; Oh, Y. J.; Yoon, J. H.; Chi, S. H.; Kuk, I. H.; Kwon, D. I.; Lee, J. H.

    1998-05-01

    The present report describes the automated ball indentation test techniques and the results of their applications. The ball indentation test technique is an innovative method for evaluating the key mechanical properties from the indentation load-depth data. In the 1st chapter, the existing technique for evaluating basic deformation (tensile) properties is described in detail, and also the application result of the technique is presented. The through-thickness variations of mechanical properties in SA 508 C1.3 reactor pressure vessel steels were measured using an automated ball indentation (ABI) technique. In the 2nd chapter, a method under development, which is similar to that in the 1st chapter, is new method is based on the theoretical solutions rather than experimental relationships. The result of the application showed that the stress-strain curves of various metals were successfully determined with the method. In the 3rd chapter, a new theoretical model was proposed to estimate the fracture toughness of ferritic steels in the transition temperature region. The key concept of the model is that the indention energy to a critical load is related to the fracture energy of the material. The theory was applied to the reactor pressure vessel (RPV) base and weld metals. (author). 24 refs., 3 tabs., 6 figs

  6. Determination of area reduction rate by continuous ball indentation test

    International Nuclear Information System (INIS)

    Zou, Bin; Guan, Kai Shu; Wu, Sheng Bao

    2016-01-01

    Rate of area reduction is an important mechanical property to appraise the plasticity of metals, which is always obtained from the uniaxial tensile test. A methodology is proposed to determine the area reduction rate by continuous ball indentation test technique. The continuum damage accumulation theory has been adopted in this work to identify the failure point in the indentation. The corresponding indentation depth of this point can be obtained and used to estimate the area reduction rate. The local strain limit criterion proposed in the ASME VIII-2 2007 alternative rules is also adopted in this research to convert the multiaxial strain of indentation test to uniaxial strain of tensile test. The pile-up and sink-in phenomenon which can affect the result significantly is also discussed in this paper. This method can be useful in engineering practice to evaluate the material degradation under severe working condition due to the non-destructive nature of ball indentation test. In order to validate the method, continuous ball indentation test is performed on ferritic steel 16MnR and ASTM (A193B16), then the results are compared with that got from the traditional uniaxial tensile test.

  7. Mechanical property estimation with ABI and FEM simulation

    International Nuclear Information System (INIS)

    Sharma, Kamal; Singh, P.K.; Das, Gautam; Bhasin, Vivek; Vaze, K.K.; Ghosh, A.K.

    2007-01-01

    A combined mechanical property evaluation methodology with ABI (Automated Ball Indentation) simulation and Artificial Neural Network (ANN) analysis is evolved to evaluate the mechanical properties for material. The experimental load deflection data is converted into meaningful mechanical properties for this material. An ANN database is generated with the help of contact type finite element analysis by numerically simulating the ABI process for various magnitudes of yield strength (σ yp ) (200 MPa - 500 MPa) with a range of strain hardening exponent (n) (0.1 - 0.5) and strength coefficient (K) (500 MPa - 1500 MPa). For the present problem, a ball indenter of 1.57 mm diameter having Young's modulus approximately 100 times more than the test piece is used to minimize the error due to indenter deformation. Test piece dimension is kept large enough in comparison to the indenter configuration in the simulation to minimize the deflection at the outer edge of the test piece. Further this database after the neural network training; is used to analyze measured material properties of different test pieces. The ANN predictions are reconfirmed with contact type finite element analysis for an arbitrary selected test sample. The methodology evolved in this work can be extended to predict material properties for any irradiated nuclear material in the service. (author)

  8. The use of field indentation microprobe in measuring mechanical properties of welds

    International Nuclear Information System (INIS)

    Haggag, F.M.; Wong, H.; Alexander, D.J.; Nanstad, R.K.

    1989-01-01

    A field indentation microprobe (FIM) was conceived for evaluating the structural integrity of metallic components (including base metal, welds, and heat-affected zones) in situ in a nondestructive manner. The FIM consists of an automated ball indentation (ABI) unit for determining the mechanical properties (yield strength, flow properties, estimates of fracture toughness, etc.) and a nondestructive evaluation (NDE) unit (consisting of ultrasonic transducers and a video camera) for determining the physical properties such as crack size, material pileup around indentation, and residual stress presence and orientation. The laboratory version used in this work performs only ABI testing. ABI tests were performed on stainless steel base metal (type 316L), heat-affected zone, and welds (type 308). Excellent agreement was obtained between yield strength and flow properties (true-stress/true-plastic-strain curve) measured by the ABI tests and those from uniaxial tensile tests conducted on 308 stainless steel welds, thermally aged at 343/degree/C for different times, and on the base material. 4 refs., 17 figs

  9. A phenomenological method of mechanical properties definition of reactor pressure vessels (RPV) steels VVER according to the ball indentation diagram

    International Nuclear Information System (INIS)

    Bakirov, M. B.; Potapov, V.V.; Massoud, J.P.

    2002-01-01

    This work presents specimen-free methods of a standard uniaxial tension diagram construction and RPV (reactor pressure vessel) steels VVER strength properties definition out of a continuous ball indentation diagram. A similarity phenomenon of uniaxial tension strain curves at a hardening area and an area of a ball indentation constitutes the ground of the methods. The methods are developed on the basis of the uniform graphic representation of elasto-plastic strain processes by indentation and tension and with the reception of the unified yield curve at a hardening area. The calculation results on the phenomenological method conducted for a wide range of RPV steels conditions of nuclear reactors have shown a good precision as far as strain curves construction by the uniaxial tension out of the elasto-plastic indentation diagram is concerned. (authors)

  10. Life management of Zr 2.5% Nb pressure tube through estimation of fracture properties by cyclic ball indentation technique

    International Nuclear Information System (INIS)

    Chatterjee, S.; Madhusoodanan, K.; Rama Rao, A.

    2015-01-01

    In Pressurised Heavy Water Reactors (PHWRs) fuel bundles are located inside horizontal pressure tubes. Pressure tubes made up of Zr 2.5 wt% Nb undergo degradation during in-service environmental conditions. Measurement of mechanical properties of degraded pressure tubes is important for assessing its fitness for further service in the reactor. The only way to accomplish this important objective is to develop a system based on insitu measurement technique. Considering the importance of such measurement, an In-situ Property Measurement System (IProMS) based on cyclic ball indentation technique has been designed and developed indigenously. The remotely operable system is capable of carrying out indentation trial on the inside surface of the pressure tube and to estimate important mechanical properties like yield strength, ultimate tensile strength, hardness etc. It is known that fracture toughness is one of the important life limiting parameters of the pressure tube. Hence, five spool pieces of Zr 2.5 wt% Nb pressure tube of different mechanical properties have been used for estimation of fracture toughness by ball indentation method. Curved Compact Tension (CCT) specimens were also prepared from the five spool pieces for measurement of fracture toughness from conventional tests. The conventional fracture toughness values were used as reference data. A methodology has been developed to estimate the fracture properties of Zr 2.5 wt% Nb pressure tube material from the analysis of the ball indentation test data. This paper highlights the comparison between tensile properties measured from conventional tests and IProMS trials and relates the fracture toughness parameters measured from conventional tests with the IProMS estimated fracture properties like Indentation Energy to Fracture. (author)

  11. In-situ measurement of mechanical properties of structural components using cyclic ball indentation technique

    International Nuclear Information System (INIS)

    Chatterjee, S.; Madhusoodanan, K.; Panwar, Sanjay; Rupani, B.B.

    2007-01-01

    Material properties of components change during service due to environmental conditions. Measurement of mechanical properties of the components is important for assessing their fitness for service. In many instances, it is not possible to remove sizable samples from the component for doing the measurement in laboratory. In-situ technique for measurement of mechanical properties has great significance in such cases. One of the nondestructive methods that can be adopted for in-situ application is based on cyclic ball indentation technique. It involves multiple indentation cycles (at the same penetration location) on a metallic surface by a spherical indenter. Each cycle consists of indentation, partial unload and reload sequences. Presently, commercial systems are available for doing indentation test on structural component for limited applications. But, there is a genuine need of remotely operable compact in-situ property measurement system. Considering the importance of such applications Reactor Engineering Division of BARC has developed an In-situ Property Measurement System (IProMS), which can be used for in-situ measurement of mechanical properties of a flat or tubular component. This paper highlights the basic theory of measurement, qualification tests on IProMS and results from tests done on flat specimens and tubular component. (author)

  12. A study on the evaluation of material degradation using ball indentation method

    International Nuclear Information System (INIS)

    Kim, Jeong Pyo; Seok, Chang Sung; Ahn, Ha Neul

    2000-01-01

    As huge energy transfer systems like a nuclear power plant, steam power plant and petrochemical plant are operated for a long time, mechanical properties are changed by degradation. The life time of the systems can be affected by the mechanical properties. BI(Ball Indentation) test has a potential to replace conventional fracture tests like a uniaxial tensile test, fracture toughness test, hardness test and so on. In this paper, we would like to present the aging evaluation technique by the BI method. The four classes of the thermally aged 1Cr-1Mo-0.25V specimens were prepared using an artificially accelerated aging method. Tensile tests, fracture toughness tests, hardness tests and BI tests were performed. The results of the BI tests were in good agreement with fracture characteristics by a standard fracture test method. The IDE(Indentation Deformation Energy) of a BI technique as a new parameter for evaluating a degradation was suggested and the new IDE parameter clearly depicts the degradation degree

  13. Measurement of mechanical properties of a reactor operated Zr–2.5Nb pressure tube using an in situ cyclic ball indentation system

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, S., E-mail: subrata@barc.gov.in; Panwar, Sanjay; Madhusoodanan, K.

    2015-07-15

    Highlights: • Measurement of mechanical properties of pressure tube is required for its fitness assessment. • Pressure tube removal from the core consumes large amount of radiation for laboratory test. • A remotely operable In situProperty Measurement System has been designed in house. • The tool head is capable to carry out in situ ball indentation trials inside pressure tube. • The paper describes the theory and results of the trials conducted on irradiated pressure tube. - Abstract: Periodic measurement of mechanical properties of pressure tubes of Indian Pressurised Heavy Water Reactors is required for assessment of their fitness for continued operation. Removal of pressure tube from the core for preparation of specimens to test for mechanical properties in laboratories consumes large amounts of radiation and hence is to be avoided as far as possible. In the field of in situ estimation of properties of materials, cyclic ball indentation is an emerging technique. Presently, commercial systems are available for doing indentation test either on outside surface of a component at site or on a test piece in a laboratory. However, these systems cannot be used inside a pressure tube for carrying out ball indentation trials under in situ condition. Considering this, a remotely operable hydraulic In situProperty Measurement System (IProMS) based on cyclic ball indentation technique has been designed and developed in house. The tool head of IProMS can be located inside a pressure tube at any axial location under in situ condition and the properties can be estimated from an analysis of the data on load and depth of indentation, recorded during the test. In order to qualify the system, a number of experimental trials have been conducted on spool pieces and specimens prepared from Zr–2.5Nb pressure tube having different mechanical properties. Based on the encouraging results obtained from the qualification trials, IProMS has been used inside a reactor operated

  14. Measurement of mechanical properties of a reactor operated Zr–2.5Nb pressure tube using an in situ cyclic ball indentation system

    International Nuclear Information System (INIS)

    Chatterjee, S.; Panwar, Sanjay; Madhusoodanan, K.

    2015-01-01

    Highlights: • Measurement of mechanical properties of pressure tube is required for its fitness assessment. • Pressure tube removal from the core consumes large amount of radiation for laboratory test. • A remotely operable In situProperty Measurement System has been designed in house. • The tool head is capable to carry out in situ ball indentation trials inside pressure tube. • The paper describes the theory and results of the trials conducted on irradiated pressure tube. - Abstract: Periodic measurement of mechanical properties of pressure tubes of Indian Pressurised Heavy Water Reactors is required for assessment of their fitness for continued operation. Removal of pressure tube from the core for preparation of specimens to test for mechanical properties in laboratories consumes large amounts of radiation and hence is to be avoided as far as possible. In the field of in situ estimation of properties of materials, cyclic ball indentation is an emerging technique. Presently, commercial systems are available for doing indentation test either on outside surface of a component at site or on a test piece in a laboratory. However, these systems cannot be used inside a pressure tube for carrying out ball indentation trials under in situ condition. Considering this, a remotely operable hydraulic In situProperty Measurement System (IProMS) based on cyclic ball indentation technique has been designed and developed in house. The tool head of IProMS can be located inside a pressure tube at any axial location under in situ condition and the properties can be estimated from an analysis of the data on load and depth of indentation, recorded during the test. In order to qualify the system, a number of experimental trials have been conducted on spool pieces and specimens prepared from Zr–2.5Nb pressure tube having different mechanical properties. Based on the encouraging results obtained from the qualification trials, IProMS has been used inside a reactor operated

  15. Estimation of fracture toughness of Zr 2.5% Nb pressure tube of Pressurised Heavy Water Reactor using cyclic ball indentation technique

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, S., E-mail: subrata@barc.gov.in; Panwar, Sanjay; Madhusoodanan, K.; Rama Rao, A.

    2016-08-15

    Highlights: • Measurement of fracture toughness of pressure tube is required for its fitness assessment. • Pressure tube removal from the core consumes large amount of radiation for laboratory test. • A remotely operable In situ Property Measurement System (IProMS) has been designed in house. • Conventional and IProMS tests conducted on pressure tube spool pieces having different mechanical properties. • Correlation has been established between the conventional and IProMS estimated fracture properties. - Abstract: In Pressurised Heavy Water Reactors (PHWRs) fuel bundles are located inside horizontal pressure tubes made up of Zr 2.5 wt% Nb alloy. Pressure tubes undergo degradation during its service life due to high pressure, high temperature and radiation environment. Measurement of mechanical properties of degraded pressure tubes is important for assessing their fitness for further operation. Presently as per safety guidelines imposed by the regulatory body, a few pre-decided pressure tubes are removed from the reactor core at regular intervals during the planned reactor shut down to carry out post irradiation examination (PIE) in a laboratory which consumes lots of man-rem and imposes economic penalties. Hence a system is indeed felt necessary which can carry out experimental trials for measurement of mechanical properties of pressure tubes under in situ conditions. The only way to accomplish this important objective is to develop a system based on an in situ measurement technique. In the field of in situ estimation of properties of materials, cyclic ball indentation is an emerging technique. Presently, commercial systems are available for doing an indentation test either on the outside surface of a component at site or on a test piece in a laboratory. However, these systems cannot be used inside a pressure tube for carrying out ball indentation trials under in situ conditions. Considering the importance of such measurements, an In situ Property

  16. Evaluation of flow properties in the weldments of vanadium alloys using a novel indentation technique

    Energy Technology Data Exchange (ETDEWEB)

    Gubbi, A.N.; Rowcliffe, A.F.; Lee, E.H.; King, J.F.; Goodwin, G.M. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    Automated Ball Indentation (ABI) testing, was successfully employed to determine the flow properties of the fusion zone, heat affected zone (HAZ), and base metal of the gas tungsten arc (GTA) and electron beam (EB) welds of the V-4Cr-4Ti (large heat no. 832665) and the V-5Cr-5Ti (heat 832394) alloys. ABI test results showed a clear distinction among the properties of the fusion zone, HAZ, and base metal in both GTA and EB welds of the two alloys. GTA and EB welds of both V-4Cr-4Ti and V-5Cr-5Ti alloys show strengthening of both the fusion zone and the HAZ (compared to base metal) with the fusion zone having higher strength than the HAZ. These data correlate well with the Brinell hardness. On the other hand, GTA welds of both alloys, after a post-weld heat treatment of 950{degrees}C for 2 h, show a recovery of the properties to base metal values with V-5Cr-5Ti showing a higher degree of recovery compared to V-4Cr-4Ti. These measurements correlate with the reported recovery of the Charpy impact properties.

  17. Evaluation of the degradation characteristics of CF-8A cast stainless steel using EDS and nano-indentation

    International Nuclear Information System (INIS)

    Baek, Seung; Koo, Jae Mean; Seok, Chang Sung

    2004-01-01

    Cast austenitic stainless steel piping pump, valve casings, and elbows are susceptible to reductions in toughness and ductility because of long term exposure at the operating temperatures in LWR(Light Water Reactor). In this paper, we have measured the material properties of long term aged CF-8A cast stainless steel, accelerated aging at 400 .deg. C. These studies have been carried out using indentation tests(automated ball indentation and nano-indentation) and EDS(Energy Dispersive Spectroscopy). The fracture toughness of Cf-8A cast stainless steel was also determined by using standard fracture toughness and automated ball indentation

  18. Effectiveness of the lactococcal abortive infection systems AbiA, AbiE, AbiF and AbiG against P335 type phages.

    Science.gov (United States)

    Tangney, Mark; Fitzgerald, Gerald F

    2002-04-23

    Four lactococcal abortive infection mechanisms were introduced into strains which were sensitive hosts for P335 type phages and plaque assay experiments performed to assess their effect on five lactococcal bacteriophages from this family. Results indicate that AbiA inhibits all five P335 phages tested, while AbiG affects phiP335 itself and phiQ30 but not the other P335 species phages. AbiA was shown to retard phage Q30 DNA replication as previously reported for other phages. It was also demonstrated that AbiG, previously shown to act at a point after DNA replication in the cases of c2 type and 936 type phages, acts at the level of, or prior to phage Q30 DNA replication. AbiE and AbiF had no effect on the P335 type phages examined.

  19. A comparison of conventional mechanical testing techniques with innovative testing techniques for the evaluation of mechanical properties of NPP structural materials

    International Nuclear Information System (INIS)

    Liddell, P.A.; Kopriva, R.

    2015-01-01

    The innovative testing methods of Small Punch (SP) and Automated Ball Indentation (ABI) tests are based on the determination of material properties from sub-sized samples. These methods are promising to evaluate the components of nuclear power plants since they preserve the structural integrity of the component. The SP test is a semi-destructive method that employs miniaturised plate-shaped samples of various geometries. The method is based on the penetration of a sample with a semi-spherical punch. The sample deflection is measured throughout the test. The ABI test is a fully automatic test based on multiple indentations at a single penetration location on a polished sample surface with a spherical indenter of various diameters. The purpose of the test is to determine the tensile properties of materials in a non-destructive and localised fashion. A comparison has been made between SP, ABI and conventional tensile tests on the measurement of yield strength for the A533B (JRQ) ferritic steel which is a base metal of the pressure vessels of western PWR. The results show an excellent correlation for both innovative methods and the conventional tensile tests

  20. On the mechanical properties of tooth enamel under spherical indentation.

    Science.gov (United States)

    Chai, Herzl

    2014-11-01

    The mechanical properties of tooth enamel generally exhibit large variations, which reflect its structural and material complexity. Some key properties were evaluated under localized contact, simulating actual functioning conditions. Prominent cusps of extracted human molar teeth were polished down ~0.7 mm below the cusp tip and indented by tungsten carbide balls. The internal damage was assessed after unloading from longitudinal or transverse sections. The ultimate tensile stress (UTS) was determined using a novel bilayer specimen. The damage is characterized by penny-like radial cracks driven by hoop stresses and cylindrical cracks driven along protein-rich interrod materials by shear stresses. Shallow cone cracks typical of homogeneous materials which may cause rapid tooth wear under repeat contact are thus avoided. The mean stress vs. indentation strain curve is highly nonlinear, attributable to plastic shearing of protein between and within enamel rods. This curve is also affected by damage, especially radial cracks, the onset of which depends on ball radius. Several material properties were extracted from the tests, including shear strain at the onset of ring cracks γ(F) (=0.14), UTS (=119 MPa), toughness K(C) (=0.94 MPa m(1/2)), a crack propagation law and a constitutive response determined by trial and error with the aid of a finite-element analysis. These quantities, which are only slightly sensitive to anatomical location within the enamel region tested, facilitate a quantitative assessment of crown failure. Causes for variations in published UTS and K(C) values are discussed. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Physical and Tribological Properties of Nitrided AISI 316 Stainless Steel Balls

    Directory of Open Access Journals (Sweden)

    Yang Shicai

    2016-01-01

    Full Text Available AISI 316 austenitic stainless steel balls (diameters 5.0 and 12.0 mm, typical hardness 250 HV0.3 and flat samples (20×20×2.0 mm were nitrided by a pulsed glow discharge Ar/N2 plasma. Hardness of the ball surfaces was analysed using Vickers indentation. Thermal stability of the nitrided balls (diameter 12.0 mm was studied using a furnace to heat them in air for 8 hours at temperatures up to 700.0°C and then, after cooling to room temperature, the surface hardness of the heated balls was re-measured. Scanning electron microscopy and X-ray diffraction were used to study the microstructures, composition and phase formation of the nitrided sublayers. Unlubricated pin-on-disc wear testing was used to evaluate the wear resistance of nitrided stainless steel balls (5.0 mm diameter and the results were compared with similar testing on hardened Cr-Steel balls (5 mm diameter with hardness of about 650 HV0.3. All the test results indicated that the nitrided AISI 316 austenitic stainless steel balls have advantages over the hardened Cr-Steel balls in terms of retaining high hardness after heat treatment and high resistance to sliding wear at room temperature under higher counterpart stress. These properties are expected to be beneficial for wide range of bearing applications.

  2. Effect of indentation temperature on nickel-titanium indentation-induced two-way shape-memory surfaces

    International Nuclear Information System (INIS)

    Brinckmann, Stephan A.; Frensemeier, Mareike; Laursen, Christopher M.; Maier, Hans J.; Britz, Dominik; Schneider, Andreas S.; Mücklich, Frank; Frick, Carl P.

    2016-01-01

    This study investigated the effect of temperature on indentation-induced one-way and two-way shape memory properties in Ti-50.3 at% Ni alloy. Indentation temperatures ranged from below the martensite finish temperature (M f ) to above the austenite finish temperature (A f ) with the explicit intent of varying the indented phase. Samples used in the study were characterized by differential scanning calorimetry and transmission electron microscopy (TEM). The topographical behavior of the shape memory effect was investigated through Vickers indentation and laser scanning 3D confocal measurements. The magnitudes of deformation recovery associated with the one-way and two-way shape-memory effect (OWSME, TWSME) decreased with increasing indentation temperatures, which is a reflection of the decreasing volume of material experiencing martensitic reorientation during indentation. Indented and subsequently planarized samples exhibited TWSME protrusions when thermally cycled. Laser scanning measurements were used to characterize the height of the protrusions as increasing depths of material were polished away, which provided insight into the overall affected volume beneath the indent. As indentation temperatures increased, both the height of the protrusions, and consequently the polish depth necessary to completely remove the effect, decreased. TEM investigations revealed that directly underneath a nanoindent the microstructure was very fine due to the high-strain deformation; this was contrasted with a much coarser grain size in the undeformed bulk material. Overall these results strongly imply that the deformation recovery associated with the OWSME and TWSME can be maximized by indenting at temperatures at M f or below because the volume of deformed microstructure beneath the indent is maximized. This finding has important practical value for any potential application that utilizes indentation-induced phase transformation deformation recovery in NiTi.

  3. Effect of indentation temperature on nickel-titanium indentation-induced two-way shape-memory surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Brinckmann, Stephan A. [University of Wyoming, Mechanical Engineering Department, Laramie (United States); Frensemeier, Mareike [INM - Leibniz Institute for New Materials, Saarbrücken (Germany); Laursen, Christopher M. [University of Wyoming, Mechanical Engineering Department, Laramie (United States); Maier, Hans J. [Leibniz Universität Hannover, Institut für Werkstoffkunde (Materials Science), Garbsen (Germany); Britz, Dominik [Saarland University, Department of Materials Science and Engineering, Saarbrücken (Germany); Schneider, Andreas S. [AG der Dillinger Hüttenwerke, Department for Research, Development and Plate-Design, Dillingen (Germany); Mücklich, Frank [Saarland University, Department of Materials Science and Engineering, Saarbrücken (Germany); Frick, Carl P., E-mail: cfrick@uwyo.edu [University of Wyoming, Mechanical Engineering Department, Laramie (United States)

    2016-10-15

    This study investigated the effect of temperature on indentation-induced one-way and two-way shape memory properties in Ti-50.3 at% Ni alloy. Indentation temperatures ranged from below the martensite finish temperature (M{sub f}) to above the austenite finish temperature (A{sub f}) with the explicit intent of varying the indented phase. Samples used in the study were characterized by differential scanning calorimetry and transmission electron microscopy (TEM). The topographical behavior of the shape memory effect was investigated through Vickers indentation and laser scanning 3D confocal measurements. The magnitudes of deformation recovery associated with the one-way and two-way shape-memory effect (OWSME, TWSME) decreased with increasing indentation temperatures, which is a reflection of the decreasing volume of material experiencing martensitic reorientation during indentation. Indented and subsequently planarized samples exhibited TWSME protrusions when thermally cycled. Laser scanning measurements were used to characterize the height of the protrusions as increasing depths of material were polished away, which provided insight into the overall affected volume beneath the indent. As indentation temperatures increased, both the height of the protrusions, and consequently the polish depth necessary to completely remove the effect, decreased. TEM investigations revealed that directly underneath a nanoindent the microstructure was very fine due to the high-strain deformation; this was contrasted with a much coarser grain size in the undeformed bulk material. Overall these results strongly imply that the deformation recovery associated with the OWSME and TWSME can be maximized by indenting at temperatures at M{sub f} or below because the volume of deformed microstructure beneath the indent is maximized. This finding has important practical value for any potential application that utilizes indentation-induced phase transformation deformation recovery in NiTi.

  4. Investigation of Quasi-Static Indentation Response of Inkjet Printed Sandwich Structures under Various Indenter Geometries

    Science.gov (United States)

    Dikshit, Vishwesh; Nagalingam, Arun Prasanth; Yap, Yee Ling; Sing, Swee Leong; Yeong, Wai Yee; Wei, Jun

    2017-01-01

    The objective of this investigation was to determine the quasi-static indentation response and failure mode in three-dimensional (3D) printed trapezoidal core structures, and to characterize the energy absorbed by the structures. In this work, the trapezoidal sandwich structure was designed in the following two ways. Firstly, the trapezoidal core along with its facesheet was 3D printed as a single element comprising a single material for both core and facesheet (type A); Secondly, the trapezoidal core along with facesheet was 3D printed, but with variation in facesheet materials (type B). Quasi-static indentation was carried out using three different indenters, namely standard hemispherical, conical, and flat indenters. Acoustic emission (AE) technique was used to capture brittle cracking in the specimens during indentation. The major failure modes were found to be brittle failure and quasi-brittle fractures. The measured indentation energy was at a maximum when using a conical indenter at 9.40 J and 9.66 J and was at a minimum when using a hemispherical indenter at 6.87 J and 8.82 J for type A and type B series specimens respectively. The observed maximum indenter displacements at failure were the effect of material variations and composite configurations in the facesheet. PMID:28772649

  5. The difference of phase distributions in silicon after indentation with Berkovich and spherical indenters

    International Nuclear Information System (INIS)

    Zarudi, I.; Zhang, L.C.; Cheong, W.C.D.; Yu, T.X.

    2005-01-01

    This study analyses the microstructure of monocrystalline silicon after indentation with a Berkovich and spherical indenter. Transmission electron microscopy on cross section view samples was used to explore the detailed distributions of various phases in the subsurfaces of indented silicon. It was found that an increase of the P max would promote the growth of the crystalline R8/BC8 phase at the bottom of the deformation zone. Microcracks were always generated in the range of the P max studied. It was also found that the deformation zones formed by the Berkovich and spherical indenters have very different phase distribution characteristics. A molecular dynamics simulation and finite element analysis supported the experimental observations and suggested that the distribution of the crystalline phases in the transformation zone after indentation was highly stress-dependent

  6. Adhesion analysis of polycrystalline diamond films on molybdenum by means of scratch, indentation and sand abrasion testing

    Energy Technology Data Exchange (ETDEWEB)

    Buijnsters, J.G. [Applied Physics, IMM, Department of Applied Physics, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen (Netherlands); Shankar, P. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam-603 102 (India); Enckevort, W.J.P. van [Solid State Chemistry, IMM, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen (Netherlands); Schermer, J.J. [Experimental Solid State Physics III, IMM, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen (Netherlands); Meulen, J.J. ter [Applied Physics, IMM, Department of Applied Physics, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen (Netherlands)]. E-mail: htmeulen@sci.kun.nl

    2005-03-01

    Diamond films have been grown by hot-filament chemical vapour deposition (CVD) on molybdenum substrates under different growth conditions. The films grown with increasing substrate temperatures show a higher interconnection of diamond grains, whereas increasing methane concentrations in the 0.5-4.0% range lead to a transition from micro- towards nanocrystalline films. X-ray diffraction analysis shows Mo{sub 2}C interlayer formation. Indentation, scratch and sand erosion tests are used to evaluate the adhesion strength of the diamond films. Using steel ball indenters (diameter 750 {mu}m), indentation and scratch adhesion tests are performed up to final loads of 200 N. Upon indentation, the load values at which diamond film failure such as flaking and detachment is first observed, increase for increasing temperatures in the deposition temperature range of 450-850 deg C. The scratch adhesion tests show critical load values in the range of 16-40 N normal load for films grown for 4 h. In contrast, diamond films grown for 24 h at a methane concentration of 0.5% do not show any failure at all upon scratching up to 75 N. Film failure upon indenting and scratching is also found to decrease for increasing methane concentration in the CVD gas mixture. The sand abrasion tests show significant differences in coating failure for films grown at varying CH{sub 4}/H{sub 2} ratios. In contrast to the other tests, here best coating performance is observed for the films deposited with a methane concentration of 4%.

  7. Residual stresses around Vickers indents

    International Nuclear Information System (INIS)

    Pajares, A.; Guiberteau, F.; Steinbrech, R.W.

    1995-01-01

    The residual stresses generated by Vickers indentation in brittle materials and their changes due to annealing and surface removal were studied in 4 mol% yttria partially stabilized zirconia (4Y-PSZ). Three experimental methods to gain information about the residual stress field were applied: (i) crack profile measurements based on serial sectioning, (ii) controlled crack propagation in post indentation bending tests and (iii) double indentation tests with smaller secondary indents located around a larger primary impression. Three zones of different residual stress behavior are deduced from the experiments. Beneath the impression a crack free spherical zone of high hydrostatic stresses exists. This core zone is followed by a transition regime where indentation cracks develop but still experience hydrostatic stresses. Finally, in an outward third zone, the crack contour is entirely governed by the tensile residual stress intensity (elastically deformed region). Annealing and surface removal reduce this crack driving stress intensity. The specific changes of the residual stresses due to the post indentation treatments are described and discussed in detail for the three zones

  8. Study of the interaction between the indentation size effect and Hall-Petch effect with spherical indenters on annealed polycrystalline copper

    International Nuclear Information System (INIS)

    Hou, X D; Bushby, A J; Jennett, N M

    2008-01-01

    Methods to obtain tensile stress-strain properties of materials from a practically non-destructive indentation test are of great industrial interest. Nanoindentation is a good candidate. However, to do this successfully, indentation size effects must be accounted for. An indentation size effect with spherical indenters has been shown for a range of fcc metals with relatively large grain size (Spary et al 2006 Phil. Mag. 86 5581-93); the increase in yield stress being proportional to the inverse cube root of indenter radius. Here, we investigate these differences further and present results for the indentation size effect with spherical indenters on Cu samples with a range of different grain sizes from 1 μm to single crystal. The important experimental control parameter, of the relative size of the indentation compared with the grain size, is also explored by using indenters of different radii on the different grain sized samples. When the grain size, d, is less than 6 times the radius of the projected contact area, a, a Hall-Petch-like behaviour is observed superimposed on the indentation size effect. For d > 6a the indentation size effect dominates. The two effects may be combined by addition in quadrature. This new parametric function is able to predict the indentation pressure in annealed copper given input values of indenter radius and grain size

  9. Indentation and Observation of Anisotropic Soft Tissues Using an Indenter Device

    Directory of Open Access Journals (Sweden)

    Parinaz ASHRAFI

    2015-01-01

    Full Text Available Soft tissues of human body have complex structures and different mechanical behaviors than those of traditional engineering materials. There is a great urge to understand tissue behavior of human body. Experimental data is needed for improvement of soft tissue modeling and advancement in implants and prosthesis, as well as diagnosis of diseases. Mechanical behavior and responses change when tissue loses its liveliness and viability. One of the techniques for soft tissue testing is indentation, which is applied on live tissue in its physiological environment. Indentation affords several advantages over other types of tests such as uniaxial tension, biaxial tension, and simple shear and suction, thus it is of interest to develop new indentation techniques from which more valid data can be extracted. In this study a new indenter device was designed and constructed. Displacement and force rate cyclic loading, and relaxation experiments were conducted on human arm. The in-vivo force rate controlled cyclic loading test method which is novel is compared with the traditional displacement controlled cyclic loading tests. Anisotropic behavior of tissue cannot be determined by axisymmetric tips, therefore ellipsoid tips were used for examining anisotropy and inplane material direction of bulk soft tissues

  10. Standard practice for instrumented indentation testing

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This practice defines the basic steps of Instrumented Indentation Testing (IIT) and establishes the requirements, accuracies, and capabilities needed by an instrument to successfully perform the test and produce the data that can be used for the determination of indentation hardness and other material characteristics. IIT is a mechanical test that measures the response of a material to the imposed stress and strain of a shaped indenter by forcing the indenter into a material and monitoring the force on, and displacement of, the indenter as a function of time during the full loading-unloading test cycle. 1.2 The operational features of an IIT instrument, as well as requirements for Instrument Verification Annex A1), Standardized Reference Blocks (Annex A2) and Indenter Requirements (Annex A3) are defined. This practice is not intended to be a complete purchase specification for an IIT instrument. 1.3 With the exception of the non-mandatory Appendix X4, this practice does not define the analysis necessary...

  11. The effect of friction on indentation test results

    International Nuclear Information System (INIS)

    Harsono, E; Swaddiwudhipong, S; Liu, Z S

    2008-01-01

    A smooth contact analysis is commonly adopted in simulated indentation. Limited studies have been performed to investigate the possibility of deviation due to this simplification. This study involves the finite element simulation of indentation by conical indenters and the Berkovich family of indenters with three different apex angles of indenter tips of 50°, 60° and 70.3°. Loading curvatures and the ratio of the remaining work done to the total work done of the load-indentation curves resulting from the simulated indentation tests considering friction and smooth contact surfaces were compared and discussed. A wide range of elasto-plastic materials obeying the power law strain hardening model were considered in this study. The results as presented herein demonstrate that the effect of friction on the two essential basic parameters from the load–indentation curves, namely, the loading curvatures and the ratio of the work done, varies depending on both mechanical properties of the target materials and the geometries of the indenter tips adopted in the investigation

  12. A simple model for indentation creep

    Science.gov (United States)

    Ginder, Ryan S.; Nix, William D.; Pharr, George M.

    2018-03-01

    A simple model for indentation creep is developed that allows one to directly convert creep parameters measured in indentation tests to those observed in uniaxial tests through simple closed-form relationships. The model is based on the expansion of a spherical cavity in a power law creeping material modified to account for indentation loading in a manner similar to that developed by Johnson for elastic-plastic indentation (Johnson, 1970). Although only approximate in nature, the simple mathematical form of the new model makes it useful for general estimation purposes or in the development of other deformation models in which a simple closed-form expression for the indentation creep rate is desirable. Comparison to a more rigorous analysis which uses finite element simulation for numerical evaluation shows that the new model predicts uniaxial creep rates within a factor of 2.5, and usually much better than this, for materials creeping with stress exponents in the range 1 ≤ n ≤ 7. The predictive capabilities of the model are evaluated by comparing it to the more rigorous analysis and several sets of experimental data in which both the indentation and uniaxial creep behavior have been measured independently.

  13. Nucleation at hardness indentations in cold rolled Al

    DEFF Research Database (Denmark)

    Xu, C.L.; Zhang, Yubin; Wu, G.L.

    2015-01-01

    Nucleation of recrystallization near hardness indentations has been investigated in slightly cold rolled high purity aluminium. Samples were cold rolled to 12% and 20% reductions in thickness and indentations were done with two different loads (500 g and 2000 g). The samples were annealed at 300 °C...... for 1 h and nuclei were identified. It is found that the indentations are preferential nucleation sites. With EBSD maps around indentation tips, the orientation relationship between nuclei and matrix is analyzed. Finally, effects of rolling reduction and indentation load on local misorientations...... and stored energy distributions and thus on nucleation are discussed....

  14. Indentation of Ellipsoidal and Cylindrical Elastic Shells

    KAUST Repository

    Vella, Dominic

    2012-10-01

    Thin shells are found in nature at scales ranging from viruses to hens\\' eggs; the stiffness of such shells is essential for their function. We present the results of numerical simulations and theoretical analyses for the indentation of ellipsoidal and cylindrical elastic shells, considering both pressurized and unpressurized shells. We provide a theoretical foundation for the experimental findings of Lazarus etal. [following paper, Phys. Rev. Lett. 109, 144301 (2012)PRLTAO0031-9007] and for previous work inferring the turgor pressure of bacteria from measurements of their indentation stiffness; we also identify a new regime at large indentation. We show that the indentation stiffness of convex shells is dominated by either the mean or Gaussian curvature of the shell depending on the pressurization and indentation depth. Our results reveal how geometry rules the rigidity of shells. © 2012 American Physical Society.

  15. Comparison of different experimental and analytical measures of the thermal annealing response of neutron-irradiated RPV steels

    International Nuclear Information System (INIS)

    Iskander, S.K.; Sokolov, M.A.; Nanstad, R.K.

    1997-01-01

    The thermal annealing response of several materials as indicated by Charpy transition temperature (TT) and upper-shelf energy (USE), crack initiation toughness, K Jc , predictive models, and automated-ball indentation (ABI) testing are compared. The materials investigated are representative reactor pressure vessel (RPV) steels (several welds and a plate) that were irradiated for other tasks of the Heavy-Section Steel Irradiation (HSSI) Program and are relatively well characterized in the unirradiated and irradiated conditions. They have been annealed at two temperatures, 343 and 454 C (650 and 850 F) for varying lengths of time. The correlation of the Charpy response and the fracture toughness, ABI, and the response predicted by the annealing model of Eason et al. for these conditions and materials appears to be reasonable. The USE after annealing at the temperature of 454 C appears to recover at a faster rate than the TT, and even over-recovers (i.e., the recovered USE exceeds that of the unirradiated material)

  16. Plasticity characteristic obtained by indentation

    International Nuclear Information System (INIS)

    Milman, Yu V

    2008-01-01

    A dimensionless parameter δ H = ε p /ε t (where ε p and ε t are the average values of plastic and total deformation of material on the contact area indenter-specimen) may be used as the plasticity characteristic of materials, which made it possible to characterize the plasticity of materials that are brittle in standard mechanical tests. δ H may be calculated from the values of microhardness HM, Young's modulus E and Poisson's ratio ν. In instrumented indentation the plasticity characteristic δ A = A p /A t (A p and A t are the work of plastic and total deformation during indentation) may be calculated. δ A ∼ δ H for materials with δ H > 0.5, i.e. for all metals and the majority of ceramic materials. In this case, the theoretical equation δ A ∼ δ H = 1-10.2 · (1 - ν - 2ν 2 )(HM/E) is satisfied in experiments with the Berkovich indenter. The influence of the temperature and structural parameters (dislocation density and grain size including nanostructured materials) on δ H is discussed

  17. Ball Screw Actuator Including a Compliant Ball Screw Stop

    Science.gov (United States)

    Wingett, Paul T. (Inventor); Hanlon, Casey (Inventor)

    2017-01-01

    An actuator includes a ball nut, a ball screw, and a ball screw stop. The ball nut is adapted to receive an input torque and in response rotates and supplies a drive force. The ball screw extends through the ball nut and has a first end and a second end. The ball screw receives the drive force from the ball nut and in response selectively translates between a retract position and a extend position. The ball screw stop is mounted on the ball screw proximate the first end to translate therewith. The ball screw stop engages the ball nut when the ball screw is in the extend position, translates, with compliance, a predetermined distance toward the first end upon engaging the ball nut, and prevents further rotation of the ball screw upon translating the predetermined distance.

  18. Discrete dislocation modelling of submicron indentation

    NARCIS (Netherlands)

    Widjaja, A; Van der Giessen, E; Needleman, A

    2005-01-01

    Indentation of a planar single crystal by a circular rigid indenter is analyzed using discrete dislocation plasticity. The crystal has three slip systems and is initially dislocation-free, but edge dislocations can nucleate from point sources inside the crystal. The lattice resistance to dislocation

  19. Selective-catalyst formation for carbon nanotube growth by local indentation pressure

    Energy Technology Data Exchange (ETDEWEB)

    Yasui, T. [Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188 (Japan)], E-mail: yst@mech.nagaokaut.ac.jp; Nakai, Y.; Onozuka, Y. [Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188 (Japan)

    2008-01-15

    We studied the selective formation of Co catalyst particles as a function of indentation pressure. We subjected a Co (8 nm thickness)/Si substrate pre-annealed at 600 deg. C to indentation processing. The catalytic function was confirmed in the indentations by the selective growth of carbon nanotubes (CNTs) at 800 deg. C. The number density of CNTs against the indentation pressure was investigated against indentation loads for two types of indenter: a Berkovich indenter with a ridge angle of 115{sup o} and a Berkovich indenter with a ridge angle of 90{sup o}. The pressures above 7 GPa applied by the former indenter enhanced Co atomization acting as a catalyst function for CNT growth (35 CNTs in one indentation). In contrast to this, the number of CNTs was markedly reduced when the latter indenter was used with pressures less than 3 GPa. The pop-out phenomenon was observed in unloading curves at pressures above 7 GPa. These results indicate that metastable Si promotes the self-aggregation of catalyst particles (Co) leading to the selective growth of CNTs within indentations at pressures above 7 GPa.

  20. Indentation of elastically soft and plastically compressible solids

    DEFF Research Database (Denmark)

    Needleman, A.; Tvergaard, Viggo; Van der Giessen, E.

    2015-01-01

    rapidly for small deviations from plastic incompressibility and then decreases rather slowly for values of the plastic Poisson's ratio less than 0.25. For both soft elasticity and plastic compressibility, the main reason for the lower values of indentation hardness is related to the reduction......The effect of soft elasticity, i.e., a relatively small value of the ratio of Young's modulus to yield strength and plastic compressibility on the indentation of isotropically hardening elastic-viscoplastic solids is investigated. Calculations are carried out for indentation of a perfectly sticking...... rigid sharp indenter into a cylinder modeling indentation of a half space. The material is characterized by a finite strain elastic-viscoplastic constitutive relation that allows for plastic as well as elastic compressibility. Both soft elasticity and plastic compressibility significantly reduce...

  1. A New Method for Evaluating the Indentation Toughness of Hardmetals

    Directory of Open Access Journals (Sweden)

    Prem C. Jindal

    2018-05-01

    Full Text Available This paper proposes a new method of evaluating the indentation toughness of hardmetals using the length of Palmqvist cracks (C and Vickers indentation diagonal size (di. Indentation load “P” is divided into two parts: Pi for plastic indentation size and Pc for Palmqvist cracks. Pi depends upon the square of the indentation size (di2 and Pc depends upon (C3/2. The new method produces a very good linear relationship between the calculated indentation toughness values and the standard conventional linear elastic fracture mechanics toughness values with the same cemented carbide materials for a large number of standard Kennametal grades for both straight WC-Co carbide grades and grades containing cubic carbides. The new method also works on WC-Co hardmetal data selected from recently published literature. The technique compares the indentation toughness values of WC-Co materials before and after vacuum annealing at high temperature. The indentation toughness values of annealed carbide samples were lower than for un-annealed WC-Co hardmetals.

  2. Prediction of three-dimensional residual stresses at localised indentations in pipes

    International Nuclear Information System (INIS)

    Hyde, T.H.; Luo, R.; Becker, A.A.

    2012-01-01

    Residual stresses are investigated using Finite Element (FE) analyses at localised indentations in pipes with and without internal pressures due to reverse plasticity caused by springback of the surrounding material after removal of the indenter. The indentation loading is applied via rigid 3D short indenters. The effects of the residual indentation depth, internal pressure, indenter size and different material properties on the residual stresses for different pipes have been investigated by carrying out parametric sensitivity studies. In order to predict the residual stresses, empirical formulations have been developed, which show a good correlation with the FE for residual stresses for pipes with diameter to thickness ratios of 35–72. - Highlights: ► A comprehensive elastic–plastic FE analysis of residual stresses caused by localised pipe indentations is presented. ► The effects of residual indentation depth, internal pressure, indenter size and material properties have been studied. ► Empirical formulations have been developed, which show a good correlation with the FE for residual stresses for pipes with diameter to thickness ratios of 35–72.

  3. Cathodoluminescence study of vickers indentations in magnesium ...

    African Journals Online (AJOL)

    Vickers diamond pyramid indentations made in single crystal of magnesium oxide (MgO) were examined in an environmental scanning electron microscope interfaced with an AVS-2000 spectrophotometer for luminescence. Three distinct zones around the indentations were identified to exhibit cathodoluminescence, which ...

  4. Cooperation of three WRKY-domain transcription factors WRKY18, WRKY40, and WRKY60 in repressing two ABA-responsive genes ABI4 and ABI5 in Arabidopsis

    OpenAIRE

    Liu, Zhi-Qiang; Yan, Lu; Wu, Zhen; Mei, Chao; Lu, Kai; Yu, Yong-Tao; Liang, Shan; Zhang, Xiao-Feng; Wang, Xiao-Fang; Zhang, Da-Peng

    2012-01-01

    Three evolutionarily closely related WRKY-domain transcription factors WRKY18, WRKY40, and WRKY60 in Arabidopsis were previously identified as negative abscisic acid (ABA) signalling regulators, of which WRKY40 regulates ABI4 and ABI5 expression, but it remains unclear whether and how the three transcription factors cooperate to regulate expression of ABI4 and ABI5. In the present experiments, it was shown that WRKY18 and WRKY60, like WRKY40, interact with the W-box in the promoters of ABI4 a...

  5. A method to separate and quantify the effects of indentation size, residual stress and plastic damage when mapping properties using instrumented indentation

    International Nuclear Information System (INIS)

    Hou, X D; Jennett, N M

    2017-01-01

    Instrumented indentation is a convenient and increasingly rapid method of high resolution mapping of surface properties. There is, however, significant untapped potential for the quantification of these properties, which is only possible by solving a number of serious issues that affect the absolute values for mechanical properties obtained from small indentations. The three most pressing currently are the quantification of: the indentation size effect (ISE), residual stress, and pile-up and sink-in—which is itself affected by residual stress and ISE. Hardness based indentation mapping is unable to distinguish these effects. We describe a procedure that uses an elastic modulus as an internal reference and combines the information available from an indentation modulus map, a hardness map, and a determination of the ISE coefficient (using self-similar geometry indentation) to correct for the effects of stress, pile up and the indentation size effect, to leave a quantified map of plastic damage and grain refinement hardening in a surface. This procedure is used to map the residual stress in a cross-section of the machined surface of a previously stress free metal. The effect of surface grinding is compared to milling and is shown to cause different amounts of work hardening, increase in residual stress, and surface grain size reduction. The potential use of this procedure for mapping coatings in cross-section is discussed. (paper)

  6. A method to separate and quantify the effects of indentation size, residual stress and plastic damage when mapping properties using instrumented indentation

    Science.gov (United States)

    Hou, X. D.; Jennett, N. M.

    2017-11-01

    Instrumented indentation is a convenient and increasingly rapid method of high resolution mapping of surface properties. There is, however, significant untapped potential for the quantification of these properties, which is only possible by solving a number of serious issues that affect the absolute values for mechanical properties obtained from small indentations. The three most pressing currently are the quantification of: the indentation size effect (ISE), residual stress, and pile-up and sink-in—which is itself affected by residual stress and ISE. Hardness based indentation mapping is unable to distinguish these effects. We describe a procedure that uses an elastic modulus as an internal reference and combines the information available from an indentation modulus map, a hardness map, and a determination of the ISE coefficient (using self-similar geometry indentation) to correct for the effects of stress, pile up and the indentation size effect, to leave a quantified map of plastic damage and grain refinement hardening in a surface. This procedure is used to map the residual stress in a cross-section of the machined surface of a previously stress free metal. The effect of surface grinding is compared to milling and is shown to cause different amounts of work hardening, increase in residual stress, and surface grain size reduction. The potential use of this procedure for mapping coatings in cross-section is discussed.

  7. Indentation of aluminium foam at low velocity

    Directory of Open Access Journals (Sweden)

    Shi Xiaopeng

    2015-01-01

    Full Text Available The indentation behaviour of aluminium foams at low velocity (10 m/s ∼ 30 m/s was investigated both in experiments and numerical simulation in this paper. A flat-ended indenter was used and the force-displacement history was recorded. The Split Hopkinson Pressure bar was used to obtain the indentation velocity and forces in the dynamic experiments. Because of the low strength of the aluminium foam, PMMA bar was used, and the experimental data were corrected using Bacon's method. The energy absorption characteristics varying with impact velocity were then obtained. It was found that the energy absorption ability of aluminium foam gradually increases in the quasi-static regime and shows a significant increase at ∼10 m/s velocity. Numerical simulation was also conducted to investigate this process. A 3D Voronoi model was used and models with different relative densities were investigated as well as those with different failure strain. The indentation energy increases with both the relative density and failure strain. The analysis of the FE model implies that the significant change in energy absorption ability of aluminium foam in indentation at ∼10 m/s velocity may be caused by plastic wave effect.

  8. Micro-indentation fracture behavior of human enamel.

    Science.gov (United States)

    Padmanabhan, Sanosh Kunjalukkal; Balakrishnan, Avinash; Chu, Min-Cheol; Kim, Taik Nam; Cho, Seong Jai

    2010-01-01

    The purpose of this study was to determine the crack resistance behavior (K(R)) of human enamel in relation to its microstructure. Human molar teeth were precision cut, polished and tested using Vickers micro-indentation at different loads ranging from 0.98 to 9.8 N. Five indentation load levels were considered, 20 indentation cracks for each load level were introduced on the surface of the test specimen (10 indentations per tooth) and their variability was evaluated using Weibull statistics and an empirical model. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to analyze the crack morphology and propagation mechanisms involved. The results showed that enamel exhibited increasing cracking resistance (K(R)) with increasing load. It was found that the crack propagation mainly depended on the location and the microstructure it encountered. SEM showed the formation of crack bridges and crack deflection near the indentation crack tip. The crack mode was of Palmqvist type even at larger loads of 9.8 N. This was mainly attributed to the large process zone created by the interwoven lamellar rod like microstructure exhibited by the enamel surface. This study shows that there are still considerable prospects for improving dental ceramics and for mimicking the enamel structure developed by nature.

  9. Plastic Indentation Analysis Used in Study of Colliding Robotic Elements

    Directory of Open Access Journals (Sweden)

    Florina Carmen Ciornei

    2014-06-01

    Full Text Available In robotic system there are frequent situations when on the robotic parts percutions develop. The impact plastic imprints are unique source of data remaining after collision, but complications occur in the analysis and the work models a general impact and presents the manner of processing the experimental data. The paper presents the characteristics occurring in the analysis of the indentation remnant after the oblique impact between a free falling ball and the surface of an inclined metallic prism. A series of difficulties arise while trying to approximate the collision’s imprint profile with a parabola having oblique symmetry axis. Both these impediments and the manner of surmounting them are presented. Finally, the impasse that takes place in the actual analysis of an imprint profile is presented. A first method of surpassing this aspect uses the intrinsic characteristics of osculating circle in a point of the profile is applicable only for smooth signals. The second proposed method is applied to the real signal and provides fine results.

  10. Local density measurement of additive manufactured copper parts by instrumented indentation

    Science.gov (United States)

    Santo, Loredana; Quadrini, Fabrizio; Bellisario, Denise; Tedde, Giovanni Matteo; Zarcone, Mariano; Di Domenico, Gildo; D'Angelo, Pierpaolo; Corona, Diego

    2018-05-01

    Instrumented flat indentation has been used to evaluate local density of additive manufactured (AM) copper samples with different relative density. Indentations were made by using tungsten carbide (WC) flat pins with 1 mm diameter. Pure copper powders were used in a selective laser melting (SLM) machine to produce samples to test. By changing process parameters, samples density was changed from the relative density of 63% to 71%. Indentation tests were performed on the xy surface of the AM samples. In order to make a correlation between indentation test results and sample density, the indentation pressure at fixed displacement was selected. Results show that instrumented indentation is a valid technique to measure density distribution along the geometry of an SLM part. In fact, a linear trend between indentation pressure and sample density was found for the selected density range.

  11. Assessment of the Local Residual Stresses of 7050-T7452 Aluminum Alloy in Microzones by the Instrumented Indentation with the Berkovich Indenter

    Science.gov (United States)

    He, M.; Huang, C. H.; Wang, X. X.; Yang, F.; Zhang, N.; Li, F. G.

    2017-10-01

    The local residual stresses in microzones are investigated by the instrumented indentation method with the Berkovich indenter. The parameters required for determination of residual stresses are obtained from indentation load-penetration depth curves constructed during instrumented indentation tests on flat square 7050-T7452 aluminum alloy specimens with a central hole containing the compressive residual stresses generated by the cold extrusion process. The force balance system with account of the tensile and compressive residual stresses is used to explain the phenomenon of different contact areas produced by the same indentation load. The effect of strain-hardening exponent on the residual stress is tuned-off by application of the representative stress σ_{0.033} in the average contact pressure assessment using the Π theorem, while the yield stress value is obtained from the constitutive function. Finally, the residual stresses are calculated according to the proposed equations of the force balance system, and their feasibility is corroborated by the XRD measurements.

  12. Experiences from Auditory Brainstem Implantation (ABIs) in four paediatric patients.

    Science.gov (United States)

    Lundin, Karin; Stillesjö, Fredrik; Nyberg, Gunnar; Rask-Andersen, Helge

    2016-01-01

    Indications for auditory brainstem implants (ABIs) have been widened from patients with neurofibromatosis type 2 (NF2) to paediatric patients with congenital cochlear malformations, cochlear nerve hypoplasia/aplasia, or cochlear ossification after meningitis. We present four ABI surgeries performed in children at Uppsala University Hospital in Sweden since 2009. Three children were implanted with implants from Cochlear Ltd. (Lane Cove, Australia) and one child with an implant from MedEl GMBH (Innsbruck, Austria). A boy with Goldenhar syndrome was implanted with a Cochlear Nucleus ABI24M at age 2 years (patient 1). Another boy with CHARGE syndrome was implanted with a Cochlear Nucleus ABI541 at age 2.5 years (patient 2). Another boy with post-ossification meningitis was implanted with a Cochlear Nucleus ABI24M at age 4 years (patient 3). A girl with cochlear aplasia was implanted with a MedEl Synchrony ABI at age 3 years (patient 4). In patients 1, 2, and 3, the trans-labyrinthine approach was used, and in patient 4 the retro-sigmoid approach was used. Three of the four children benefited from their ABIs and use it full time. Two of the full time users had categories of auditory performance (CAP) score of 4 at their last follow up visit (6 and 2.5 years postoperative) which means they can discriminate consistently any combination of two of Ling's sounds. One child has not been fully evaluated yet, but is a full time user and had CAP 2 (responds to speech sounds) after 3 months of ABI use. No severe side or unpleasant stimulation effects have been observed so far. There was one case of immediate electrode migration and one case of implant device failure after 6.5 years. ABI should be considered as an option in the rehabilitation of children with similar diagnoses.

  13. Crystal plasticity study of single crystal tungsten by indentation tests

    International Nuclear Information System (INIS)

    Yao, Weizhi

    2012-01-01

    Owing to its favorable material properties, tungsten (W) has been studied as a plasma-facing material in fusion reactors. Experiments on W heating in plasma sources and electron beam facilities have shown an intense micro-crack formation at the heated surface and sub-surface. The cracks go deep inside the irradiated sample, and often large distorted areas caused by local plastic deformation are present around the cracks. To interpret the crack-induced microscopic damage evolution process in W, one needs firstly to understand its plasticity on a single grain level, which is referred to as crystal plasticity. In this thesis, the crystal plasticity of single crystal tungsten (SCW) has been studied by spherical and Berkovich indentation tests and the finite element method with a crystal plasticity model. Appropriate values of the material parameters included in the crystal plasticity model are determined by fitting measured load-displacement curves and pile-up profiles with simulated counterparts for spherical indentation. The numerical simulations reveal excellent agreement with experiment. While the load-displacement curves and the deduced indentation hardness exhibit little sensitivity to the indented plane at small indentation depths, the orientation of slip directions within the crystals governs the development of deformation hillocks at the surface. It is found that several factors like friction, indentation depth, active slip systems, misoriented crystal orientation, misoriented sample surface and azimuthal orientation of the indenter can affect the indentation behavior of SCW. The Berkovich indentation test was also used to study the crystal plasticity of SCW after deuterium irradiation. The critical load (pop-in load) for triggering plastic deformation under the indenter is found to depend on the crystallographic orientation. The pop-in loads decrease dramatically after deuterium plasma irradiation for all three investigated crystallographic planes.

  14. On indentation and scratching of thin films on hard substrates

    International Nuclear Information System (INIS)

    Larsson, Per-Lennart; Wredenberg, Fredrik

    2008-01-01

    Indentation and scratching of thin film/substrate structures, using sharp conical indenters, are studied theoretically and numerically and discussed in particular with material characterization in mind. For simplicity, but not out of necessity, the material behaviour is described by classical elastoplasticity accounting for large deformations. Explicit material parameters are chosen in order to arrive at representative results as regards material behaviour and indenter geometry. The main efforts are devoted towards an understanding of the influence from the film/substrate boundary on global indentation (scratching) properties at different material combinations. Global quantities to be investigated include indentation and scratching hardness, contact area and apparent coefficient of friction at scratching. A comparison of the mechanical behaviour at normal indentation and at scratching is also included. In addition, the behaviour of different field variables is studied and in this case the discussion is focused on fracture initiation governed by a critical stress criterion. The numerical investigation is performed using the finite element method and the numerical strategy is discussed in some detail. Throughout the analysis it is assumed that the substrate is considerably harder than the indented film and consequently the deformation of the substrate is neglected

  15. The effect of adhesion on the contact radius in atomic force microscopy indentation

    International Nuclear Information System (INIS)

    Sirghi, L; Rossi, F

    2009-01-01

    The effect of adhesion on nanoscale indentation experiments makes the interpretation of force-displacement curves acquired in these experiments very difficult. The indentation force results from the addition of adhesive and elastic forces at the indenter-sample contact. The evolution of the two forces during the indentation is determined by the variation of the indenter-sample contact radius. In the present work the variation of contact radius during atomic force microscopy (AFM) indentation of elastic and adhesive samples with conical indenters (AFM tips) is indirectly determined by measurements of the contact dynamic stiffness. For weak sample deformations, the contact radius is determined mainly by the adhesion force and indenter apex radius. For strong sample deformations, the contact radius increases linearly with the increase of the indenter displacement, the slope of this linear dependence being in agreement with Sneddon's theory of indentation (Sneddon 1965 Int. J. Eng. Sci. 3 47). Based on these results, a theoretical expression of indentation force dependence on displacement is found. This expression allows for determination of the thermodynamic work of adhesion at the indenter-sample interface and the sample elasticity modulus.

  16. Indentation techniques in nuclear applications: a review paper

    International Nuclear Information System (INIS)

    Spino, J.; Goll, W.; Toscano, E.H.

    2005-01-01

    Indentation testing, in particular micro-indentation tests, is a straightforward method to determine several properties of irradiated materials. In fact, with this type of tests, material constants and fracture properties can be deduced from measurements performed on a relatively small surface, which constitutes an important advantage when dealing with highly radioactive specimens. On the other hand, since the material response to indentation is complex, with the occurring elastic and plastic deformations being affected by radiation damage, impurities and temperature variations, careful analysis of the data is required. In the nuclear field, materials of direct interest range from carbide-, nitride- and oxide-fuels, to diverse ceramic and glasses utilized for the immobilization of high level nuclear waste, as well as simulated fuels and fuel-rod cladding materials, the later which are tested to analyze the loss of ductility after irradiation and its recovery after high temperature annealing. This paper describes the most common indentation techniques and the essential properties that can be determined by these techniques. A review of the main results obtained by indentation testing in fuels, waste glasses and cladding materials is also provided. (Author)

  17. Evaluation of material property of austenitic stainless steel using nano-indentation

    Energy Technology Data Exchange (ETDEWEB)

    Suyama, Takeshi [Institute of Nuclear Safety Systems Inc., Mihama, Fukui (Japan)

    2001-09-01

    In order to evaluate some material properties of very small area on small specimens which are sampled from components in service and to predict macroscopic material properties from the data of the small specimens, nano-indentation is considered to be quite effective. However, there are few reports formularize the dependence of load on hardness values evaluated from the results of indentation tests with loads from 10 mg to 100 g. In this study, systematic tests of indentation were conducted to specimens of austenitic stainless steel SUS304 using a Berkovich indenter and a Vickers indenter with loads varying from 10 mg to 100 g. From these results numerical formulae which relate the calculated hardness values to the loads were made. In addition, the relation between Vickers hardness and nano-indentation hardness was obtained. As a result, it became possible to predict Vickers hardness from nano-indentation with loads as low as about 100 mg. (author)

  18. Phase field modeling of twinning in indentation of transparent crystals

    International Nuclear Information System (INIS)

    Clayton, J D; Knap, J

    2011-01-01

    Continuum phase field theory is applied to study elastic twinning in calcite and sapphire single crystals subjected to indentation loading by wedge-shaped indenters. An order parameter is associated with the magnitude of stress-free twinning shear. Geometrically linear and nonlinear theories are implemented and compared, the latter incorporating neo-Hookean elasticity. Equilibrium configurations of deformed and twinned crystals are attained numerically via direct energy minimization. Results are in qualitative agreement with experimental observations: a long thin twin forms asymmetrically under one side of the indenter, the tip of the twin is sharp and the length of the twin increases with increasing load. Qualitatively similar results are obtained using isotropic and anisotropic elastic constants, though the difference between isotropic and anisotropic results is greater in sapphire than in calcite. Similar results are also obtained for nanometer-scale specimens and millimeter-scale specimens. Indentation forces are greater in the nonlinear model than the linear model because of the increasing tangent bulk modulus with increasing pressure in the former. Normalized relationships between twin length and indentation force are similar for linear and nonlinear theories at both nanometer and millimeter scales. Twin morphologies are similar for linear and nonlinear theories for indentation with a 90° wedge. However, in the nonlinear model, indentation with a 120° wedge produces a lamellar twin structure between the indenter and the long sharp primary twin. This complex microstructure is not predicted by the linear theory

  19. Elastic response of thermal spray deposits under indentation tests

    International Nuclear Information System (INIS)

    Leigh, S.H.; Lin, C.K.; Berndt, C.C.

    1997-01-01

    The elastic response behavior of thermal spray deposits at Knoop indentations has been investigated using indentation techniques. The ration of hardness to elastic modulus, which is an important prerequisite for the evaluation of indentation fracture toughness, is determined by measuring the elastic recovery of the in-surface dimensions of Knoop indentations. The elastic moduli of thermal spray deposits are in the range of 12%--78% of the comparable bulk materials and reveal the anisotropic behavior of thermal spray deposits. A variety of thermal spray deposits has been examined, including Al 2 O 3 , yttria-stabilized ZrO 2 (YSZ), and NiAl. Statistical tools have been used to evaluate the error estimates of the data

  20. Investigation of the mechanical properties of silica glasses by indentation tests

    Energy Technology Data Exchange (ETDEWEB)

    Juhasz, A. (Inst. for General Physics, Lorand Eoetvoes Univ., Budapest (Hungary)); Voeroes, G. (Inst. for General Physics, Lorand Eoetvoes Univ., Budapest (Hungary)); Tasnadi, P. (Inst. for General Physics, Lorand Eoetvoes Univ., Budapest (Hungary)); Kovacs, I. (Inst. for General Physics, Lorand Eoetvoes Univ., Budapest (Hungary)); Somogyi, I. (Inst. for General Physics, Lorand Eoetvoes Univ., Budapest (Hungary) Brody Research Center, G.E. Tungsram, Budapest (Hungary)); Szoellosi, J. (Inst. for General Physics, Lorand Eoetvoes Univ., Budapest (Hungary) Brody Research Center, G.E. Tungsram, Budapest (Hungary))

    1993-11-01

    Soda lime silica glasses were investigated by continuous indentation tests. The load indentation depth curves were taken during the loading as well as the unloading period by a computer controlled MTS machine. It was found that the loading force is a quadratic function of the indentation depth during both the loading and unloading stage of the deformation. The validity of the quadratic relationship in the case of the unloading stage seems to be characteristic only for glasses. Taking into account the elastic relaxation of the indentation depth an estimation is given for the size of the hydrostatic core which is necessary to symmetrize the stress field around the indenter. Using the measured length of the radial cracks started from the corners of the Vickers indentation pattern the K[sub IC] values were calculated. (orig.).

  1. The determination of flow distribution by analysis of indentation geometry

    International Nuclear Information System (INIS)

    Jayakumar, M.; Lucas, G.E.

    1984-01-01

    The purpose of this study was to investigate a means of characterizing localized plastic flow in irradiated metals with indentation hardness. Seven alloys, heat treatable to a range of strengths and ductilities, were investigated in both uniaxial tension and static indentation hardness tests. Deformation surfaces were examined by replication and by multiple beam and differential interference techniques. It was observed that specimens exhibiting very coarse slip produced quite asymmetric pile-ups around the indentations, whereas specimens exhibiting fine slip produced indentations which were symmetric in their pile-up. (orig.)

  2. Fluency over the monoclinic zirconia indentation

    International Nuclear Information System (INIS)

    Pereira, A.S.; Jornada, J.A.H. da

    1992-01-01

    It was investigated the environment and the time dependence of the Vickers microhardness of monoclinic zirconia single-crystals. The samples were kept at room temperature and the identifications were performed for different environments (air, toluene and water). An indentation creep process was observed for the samples indented is moist media, indicating for a water activated plastic relaxation mechanism. The possible influence of such effect in the fatigue and phase transformations mechanisms of zirconia based ceramics is discussed. (author)

  3. AbiA, a Lactococcal Abortive Infection Mechanism Functioning in Streptococcus thermophilus

    OpenAIRE

    Tangney, Mark; Fitzgerald, Gerald F.

    2002-01-01

    The lactococcal abortive infection mechanisms AbiA and AbiG were introduced into Streptococcus thermophilus 4035, and a range of phages capable of infecting this host were examined for sensitivity to these mechanisms. AbiA proved effective against six phages when examined at a growth temperature of 30°C but had no effect on any of the phages when tested at 37 or 42°C. AbiG failed to affect any of the S. thermophilus phages at 30, 37, or 42°C.

  4. AbiA, a lactococcal abortive infection mechanism functioning in Streptococcus thermophilus.

    Science.gov (United States)

    Tangney, Mark; Fitzgerald, Gerald F

    2002-12-01

    The lactococcal abortive infection mechanisms AbiA and AbiG were introduced into Streptococcus thermophilus 4035, and a range of phages capable of infecting this host were examined for sensitivity to these mechanisms. AbiA proved effective against six phages when examined at a growth temperature of 30 degrees C but had no effect on any of the phages when tested at 37 or 42 degrees C. AbiG failed to affect any of the S. thermophilus phages at 30, 37, or 42 degrees C.

  5. Ball clay

    Science.gov (United States)

    Virta, R.L.

    2001-01-01

    Part of the 2000 annual review of the industrial minerals sector. A general overview of the ball clay industry is provided. In 2000, sales of ball clay reached record levels, with sanitary ware and tile applications accounting for the largest sales. Ball clay production, consumption, prices, foreign trade, and industry news are summarized. The outlook for the ball clay industry is also outlined.

  6. Indentation of elastically soft and plastically compressible solids

    NARCIS (Netherlands)

    Needleman, A.; Tvergaard, V.; Van der Giessen, E.

    The effect of soft elasticity, i.e., a relatively small value of the ratio of Young's modulus to yield strength and plastic compressibility on the indentation of isotropically hardening elastic-viscoplastic solids is investigated. Calculations are carried out for indentation of a perfectly sticking

  7. Influence of the molecular structure on indentation size effect in polymers

    International Nuclear Information System (INIS)

    Han, Chung-Souk

    2010-01-01

    Size dependent deformation of polymers has been observed by various researchers in various experimental settings including micro beam bending, foams and indentation testing. Here in this article the indentation size effect in polymers is examined which manifests itself in increased hardness at decreasing indentation depths. Based on previously suggested rationale of size dependent deformation and depth dependent hardness model the depth dependent hardness of various polymers are analyzed. It is found that polymers containing aromatic rings in their molecular structure exhibit depth dependent hardness above the micron length scale. For polymers not containing aromatic rings polymers the indentation size effect starts at smaller indentation depths if they are present at all.

  8. Fatigue Life of Postbuckled Structures with Indentation Damage

    Science.gov (United States)

    Davila, Carlos G.; Bisagni, Chiara

    2016-01-01

    The fatigue life of composite stiffened panels with indentation damage was investigated experimentally using single stringer compression specimens. Indentation damage was induced on one of the two flanges of the stringer. The experiments were conducted using advanced instrumentation, including digital image correlation, passive thermography, and in-situ ultrasonic scanning. Specimens with initial indentation damage lengths of 37 millimeters to 56 millimeters were tested in fatigue and the effects of cyclic load amplitude and damage size were studied. A means of comparison of the damage propagation rates and collapse loads based on a stress intensity measure and the Paris law is proposed.

  9. Indentation of a floating elastic sheet: geometry versus applied tension.

    Science.gov (United States)

    Box, Finn; Vella, Dominic; Style, Robert W; Neufeld, Jerome A

    2017-10-01

    The localized loading of an elastic sheet floating on a liquid bath occurs at scales from a frog sitting on a lily pad to a volcano supported by the Earth's tectonic plates. The load is supported by a combination of the stresses within the sheet (which may include applied tensions from, for example, surface tension) and the hydrostatic pressure in the liquid. At the same time, the sheet deforms, and may wrinkle, because of the load. We study this problem in terms of the (relatively weak) applied tension and the indentation depth. For small indentation depths, we find that the force-indentation curve is linear with a stiffness that we characterize in terms of the applied tension and bending stiffness of the sheet. At larger indentations, the force-indentation curve becomes nonlinear and the sheet is subject to a wrinkling instability. We study this wrinkling instability close to the buckling threshold and calculate both the number of wrinkles at onset and the indentation depth at onset, comparing our theoretical results with experiments. Finally, we contrast our results with those previously reported for very thin, highly bendable membranes.

  10. Fatigue Life of Postbuckled Structures with Indentation Damages

    Science.gov (United States)

    Davila, Carlos G.; Bisagni, Chiara

    2016-01-01

    The fatigue life of composite stiffened panels with indentation damage was investigated experimentally using single stringer compression specimens. Indentation damage was induced on one of the two flanges of each stringer. The experiments were conducted using advanced instrumentation, including digital image correlation, passive thermography, and in-situ ultrasonic scanning. Specimens with initial indentation damage lengths of 32 millimeters to 56 millimeters were tested quasi-statically and in fatigue, and the effects of cyclic load amplitude and damage size were studied. A means of comparison of the damage propagation rates and collapse loads based on a stress intensity measure and the Paris law is proposed.

  11. Annealing-induced recovery of indents in thin Au(Fe bilayer films

    Directory of Open Access Journals (Sweden)

    Anna Kosinova

    2016-12-01

    Full Text Available We employed depth-sensing nanoindentation to produce ordered arrays of indents on the surface of 50 nm-thick Au(Fe films deposited on sapphire substrates. The maximum depth of the indents was approximately one-half of the film thickness. The indented films were annealed at a temperature of 700 °C in a forming gas atmosphere. While the onset of solid-state dewetting was observed in the unperturbed regions of the film, no holes to the substrate were observed in the indented regions. Instead, the film annealing resulted in the formation of hillocks at the indent locations, followed by their dissipation and the formation of shallow depressions nearby after subsequent annealing treatments. This annealing-induced evolution of nanoindents was interpreted in terms of annihilation of dislocation loops generated during indentation, accompanied by the formation of nanopores at the grain boundaries and their subsequent dissolution. The application of the processes uncovered in this work show great potential for the patterning of thin films.

  12. Correlation development between indentation parameters and uniaxial compressive strength for Colombian sandstones

    International Nuclear Information System (INIS)

    Mateus, Jefferson; Saavedra, Nestor Fernando; Calderon Carrillo, Zuly; Mateus, Darwin

    2007-01-01

    A new way to characterize the perforated formation strength has been implemented using the indentation test. This test can be performed on irregular cuttings mounted in acrylic resins forming a disc. The test consists of applying load on each sample by means of a flat and indenter. A graph of the load applied VS penetration of the indenter is developed, and the modules of the test, denominated indentation modulus (IM) and Critical Transition Force (CTF) are obtained (Ringstad et al., 1998). Based on the success of previous studies we developed correlations between indentation and mechanical properties for some Colombian sandstone. These correlations were obtained using o set of 248 indentation tests and separate compression fasts on parallel sandstone samples from the same depth. This analysis includes Barco Formation, Mirador Formation, and Tambor Formation. For the correlations, IM-UCS and CTF-UCS, the correlation coefficient is 0.81 and 0.70 respectively. The use of the correlations and the indentation test is helpful for in-situ calibration of the geomechanical models since the indentation test can be performed in real time thus reducing costs and time associated with delayed conventional characterization

  13. Characterization of strain rate sensitivity and activation volume using the indentation relaxation test

    International Nuclear Information System (INIS)

    Xu Baoxing; Chen Xi; Yue Zhufeng

    2010-01-01

    We present the possibility of extracting the strain rate sensitivity, activation volume and Helmholtz free energy (for dislocation activation) using just one indentation stress relaxation test, and the approach is demonstrated with polycrystalline copper. The Helmholtz free energy measured from indentation relaxation agrees well with that from the conventional compression relaxation test, which validates the proposed approach. From the indentation relaxation test, the measured indentation strain rate sensitivity exponent is found to be slightly larger, and the indentation activation volume much smaller, than their counterparts from the compression test. The results indicate the involvement of multiple dislocation mechanisms in the indentation test.

  14. The Effect of Pre-Stressing on the Static Indentation Load Capacity of the Superelastic 60NiTi

    Science.gov (United States)

    DellaCorte, Christopher; Moore, Lewis E., III; Clifton, Joshua S.

    2013-01-01

    Superelastic nickel-titanium alloys, such as 60NiTi (60Ni-40Ti by wt.%), are under development for use in mechanical components like rolling element bearings and gears. Compared to traditional bearing steels, these intermetallic alloys, when properly heat-treated, are hard but exhibit much lower elastic modulus (approx.100 GPa) and a much broader elastic deformation range (approx.3 percent or more). These material characteristics lead to high indentation static load capacity, which is important for certain applications especially space mechanisms. To ensure the maximum degree of elastic behavior, superelastic materials must be pre-stressed, a process referred to as "training" in shape memory effect (SME) terminology, at loads and stresses beyond expected use conditions. In this paper, static indentation load capacity tests are employed to assess the effects of pre-stressing on elastic response behavior of 60NiTi. The static load capacity is measured by pressing 12.7 mm diameter ceramic Si3N4 balls into highly polished, hardened 60NiTi flat plates that have previously been exposed to varying levels of pre-stress (up to 2.7 GPa) to determine the load that results in shallow but measurable (0.6 m, 25 in. deep) permanent dents. Hertz stress calculations are used to estimate contact stress. Without exposure to pre-stress, the 60NiTi surface can withstand an approximately 3400 kN load before significant denting (>0.4 m deep) occurs. When pre-stressed to 2.7 GPa, a static load of 4900 kN is required to achieve a comparable dent, a 30 percent increase. These results suggest that stressing contact surfaces prior to use enhances the static indentation load capacity of the superelastic 60NiTi. This approach may be adaptable to the engineering and manufacture of highly resilient mechanical components such as rolling element bearings.

  15. Elastic layer under axisymmetric indentation and surface energy effects

    Science.gov (United States)

    Intarit, Pong-in; Senjuntichai, Teerapong; Rungamornrat, Jaroon

    2018-04-01

    In this paper, a continuum-based approach is adopted to investigate the contact problem of an elastic layer with finite thickness and rigid base subjected to axisymmetric indentation with the consideration of surface energy effects. A complete Gurtin-Murdoch surface elasticity is employed to consider the influence of surface stresses. The indentation problem of a rigid frictionless punch with arbitrary axisymmetric profiles is formulated by employing the displacement Green's functions, derived with the aid of Hankel integral transform technique. The problem is solved by assuming the contact pressure distribution in terms of a linear combination of admissible functions and undetermined coefficients. Those coefficients are then obtained by employing a collocation technique and an efficient numerical quadrature scheme. The accuracy of proposed solution technique is verified by comparing with existing solutions for rigid indentation on an elastic half-space. Selected numerical results for the indenters with flat-ended cylindrical and paraboloidal punch profiles are presented to portray the influence of surface energy effects on elastic fields of the finite layer. It is found that the presence of surface stresses renders the layer stiffer, and the size-dependent behavior of elastic fields is observed in the present solutions. In addition, the surface energy effects become more pronounced with smaller contact area; thus, the influence of surface energy cannot be ignored in the analysis of indentation problem especially when the indenter size is very small such as in the case of nanoindentation.

  16. The conserved splicing factor SUA controls alternative splicing of the developmental regulator ABI3 in Arabidopsis.

    NARCIS (Netherlands)

    Sugliani, M.; Brambilla, V.; Clerkx, E.J.M.; Koornneef, M.; Soppe, W.J.J.

    2010-01-01

    ABSCISIC ACID INSENSITIVE3 (ABI3) is a major regulator of seed maturation in Arabidopsis thaliana. We detected two ABI3 transcripts, ABI3- and ABI3-ß, which encode full-length and truncated proteins, respectively. Alternative splicing of ABI3 is developmentally regulated, and the ABI3-ß transcript

  17. Crystallographic Analysis of Nucleation at Hardness Indentations in High-Purity Aluminum

    DEFF Research Database (Denmark)

    Xu, Chaoling; Zhang, Yubin; Lin, Fengxiang

    2016-01-01

    Nucleation at Vickers hardness indentations has been studied in high-purity aluminum cold-rolled 12 pct. Electron channeling contrast was used to measure the size of the indentations and to detect nuclei, while electron backscattering diffraction was used to determine crystallographic orientations....... It is found that indentations are preferential nucleation sites. The crystallographic orientations of the deformed grains affect the hardness and the nucleation potentials at the indentations. Higher hardness gives increased nucleation probabilities. Orientation relationships between nuclei developed...... they form. Finally, possible nucleation mechanisms are briefly discussed....

  18. The mechanical response of tetragonal zirconia polycrystal to conical indentation

    International Nuclear Information System (INIS)

    Asif, S.A.S.; Biswas, S.K.

    1994-01-01

    Blocks of 3Y-TZP were indented with conical diamond indenters. Indentation caused tetragonal to monoclinic phase transformation in a subsurface. Of the cracks generated in the subsurface, radial and lateral cracks can be accounted for by a continuum model of the indented subsurface, built using a combination of the Boussinesq and blister stress fields. Additional ring, median and cone cracks were also observed. It is hypothesized that the latter are motivated by the reduction in blister strength or residual energy brought about by the material damage caused by the phase transformation. This damage reduces the load bearing capacity of the material progressively with increasing normal load. (author). 13 refs., 5 figs., 2 tabs

  19. Buckling of Single-Crystal Silicon Nanolines under Indentation

    Directory of Open Access Journals (Sweden)

    Min K. Kang

    2008-01-01

    Full Text Available Atomic force microscope-(AFM- based indentation tests were performed to examine mechanical properties of parallel single-crystal silicon nanolines (SiNLs of sub-100-nm line width, fabricated by a process combining electron-beam lithography and anisotropic wet etching. The SiNLs have straight and nearly atomically flat sidewalls, and the cross section is almost perfectly rectangular with uniform width and height along the longitudinal direction. The measured load-displacement curves from the indentation tests show an instability with large displacement bursts at a critical load ranging from 480 μN to 700 μN. This phenomenon is attributed to a transition of the buckling mode of the SiNLs under indentation. Using a set of finite element models with postbuckling analyses, we analyze the indentation-induced buckling modes and investigate the effects of tip location, contact friction, and substrate deformation on the critical load of mode transition. The results demonstrate a unique approach for the study of nanomaterials and patterned nanostructures via a combination of experiments and modeling.

  20. Poroviscoelastic cartilage properties in the mouse from indentation.

    Science.gov (United States)

    Chiravarambath, Sidharth; Simha, Narendra K; Namani, Ravi; Lewis, Jack L

    2009-01-01

    A method for fitting parameters in a poroviscoelastic (PVE) model of articular cartilage in the mouse is presented. Indentation is performed using two different sized indenters and then these data are fitted using a PVE finite element program and parameter extraction algorithm. Data from a smaller indenter, a 15 mum diameter flat-ended 60 deg cone, is first used to fit the viscoelastic (VE) parameters, on the basis that for this tip size the gel diffusion time (approximate time constant of the poroelastic (PE) response) is of the order of 0.1 s, so that the PE response is negligible. These parameters are then used to fit the data from a second 170 mum diameter flat-ended 60 deg cone for the PE parameters, using the VE parameters extracted from the data from the 15 mum tip. Data from tests on five different mouse tibial plateaus are presented and fitted. Parameter variation studies for the larger indenter show that for this case the VE and PE time responses overlap in time, necessitating the use of both models.

  1. Indentation size effects in single crystal copper as revealed by synchrotron x-ray microdiffraction

    Science.gov (United States)

    Feng, G.; Budiman, A. S.; Nix, W. D.; Tamura, N.; Patel, J. R.

    2008-08-01

    For a Cu single crystal, we find that indentation hardness increases with decreasing indentation depth, a phenomenon widely observed before and called the indentation size effect (ISE). To understand the underlying mechanism, we measure the lattice rotations in indentations of different sizes using white beam x-ray microdiffraction (μXRD); the indentation-induced lattice rotations are directly measured by the streaking of x-ray Laue spots associated with the indentations. The magnitude of the lattice rotations is found to be independent of indentation size, which is consistent with the basic tenets of the ISE model. Using the μXRD data together with an ISE model, we can estimate the effective radius of the indentation plastic zone, and the estimate is consistent with the value predicted by a finite element analysis. Using these results, an estimate of the average dislocation densities within the plastic zones has been made; the findings are consistent with the ISE arising from a dependence of the dislocation density on the depth of indentation.

  2. ABI3 ectopic expression reduces in vitro and in vivo cell growth properties while inducing senescence

    Directory of Open Access Journals (Sweden)

    Riggins Gregory J

    2011-01-01

    Full Text Available Abstract Background Mounting evidence has indicated that ABI3 (ABI family member 3 function as a tumor suppressor gene, although the molecular mechanism by which ABI3 acts remains largely unknown. Methods The present study investigated ABI3 expression in a large panel of benign and malignant thyroid tumors and explored a correlation between the expression of ABI3 and its potential partner ABI3-binding protein (ABI3BP. We next explored the biological effects of ABI3 ectopic expression in thyroid and colon carcinoma cell lines, in which its expression was reduced or absent. Results We not only observed that ABI3 expression is reduced or lost in most carcinomas but also that there is a positive correlation between ABI3 and ABI3BP expression. Ectopic expression of ABI3 was sufficient to lead to a lower transforming activity, reduced tumor in vitro growth properties, suppressed in vitro anchorage-independent growth and in vivo tumor formation while, cellular senescence increased. These responses were accompanied by the up-regulation of the cell cycle inhibitor p21 WAF1 and reduced ERK phosphorylation and E2F1 expression. Conclusions Our result links ABI3 to the pathogenesis and progression of some cancers and suggests that ABI3 or its pathway might have interest as therapeutic target. These results also suggest that the pathways through which ABI3 works should be further characterized.

  3. Indentation and needle insertion properties of the human eye.

    Science.gov (United States)

    Matthews, A; Hutnik, C; Hill, K; Newson, T; Chan, T; Campbell, G

    2014-07-01

    Characterization of the biomechanical properties of the human eye has a number of potential utilities. One novel purpose is to provide the basis for development of suitable tissue-mimicking material. The purpose of this study was to determine the indentation and needle insertion characteristics on human eye globes and tissue strips. An indenter assessed the elastic response of human eye globes and tissue strips under increasing compressive loads. Needle insertion determined the force (N) needed to penetrate various areas of the eye wall. The results demonstrated that globes underwent slightly greater indentation at the midline than at the central cornea, and corneal strips indented twofold more than scleral strips, although neither difference was significant (P=0.400 and P=0.100, respectively). Significant differences were observed among various areas of needle insertion (Phuman eye construct with potential utility as a model for use in ophthalmology research and surgical teaching.

  4. Defect formation by pristine indenter at the initial stage of nanoindentation

    International Nuclear Information System (INIS)

    Chen, I-Hsien; Hsiao, Chun-I; Behera, Rakesh K.; Hsu, Wen-Dung

    2013-01-01

    Nano-indentation is a sophisticated method to characterize mechanical properties of materials. This method samples a very small amount of material during each indentation. Therefore, this method is extremely useful to measure mechanical properties of nano-materials. The measurements using nanoindentation is very sensitive to the surface topology of the indenter and the indenting surfaces. The mechanisms involved in the entire process of nanoindentation require an atomic level understanding of the interplay between the indenter and the substrate. In this paper, we have used atomistic simulation methods with empirical potentials to investigate the effect of various types of pristine indenter on the defect nucleation and growth. Using molecular dynamics simulations, we have predicted the load-depth curve for conical, vickers, and sperical tip. The results are analyzed based on the coherency between the indenter tip and substrate surface for a fixed depth of 20 Å. The depth of defect nucleation and growth is observed to be dependent on the tip geometry. A tip with larger apex angle nucleates defects at a shallower depth. However, the type of defect generated is dependent on the crystalline orientation of the tip and substrate. For coherent systems, prismatic loops were generated, which released into the substrate along the close-packed directions with continued indentation. For incoherent systems, pyramidal shaped dislocation junctions formed in the FCC systems and disordered atomic clusters formed in the BCC systems. These defect nucleation and growth process provide the atomistic mechanisms responsible for the observed load-depth response during nanoindentation

  5. Mechanical properties study of particles reinforced aluminum matrix composites by micro-indentation experiments

    Directory of Open Access Journals (Sweden)

    Yuan Zhanwei

    2014-04-01

    Full Text Available By using instrumental micro-indentation technique, the microhardness and Young’s modulus of SiC particles reinforced aluminum matrix composites were investigated with micro-compression-tester (MCT. The micro-indentation experiments were performed with different maximum loads, and with three loading speeds of 2.231, 4.462 and 19.368 mN/s respectively. During the investigation, matrix, particle and interface were tested by micro-indentation experiments. The results exhibit that the variations of Young’s modulus and microhardness at particle, matrix and interface were highly dependent on the loading conditions (maximum load and loading speed and the locations of indentation. Micro-indentation hardness experiments of matrix show the indentation size effects, i.e. the indentation hardness decreased with the indentation depth increasing. During the analysis, the effect of loading conditions on Young’s modulus and microhardness were explained. Besides, the elastic–plastic properties of matrix were analyzed. The validity of calculated results was identified by finite element simulation. And the simulation results had been preliminarily analyzed from statistical aspect.

  6. Validation of early GOES-16 ABI on-orbit geometrical calibration accuracy using SNO method

    Science.gov (United States)

    Yu, Fangfang; Shao, Xi; Wu, Xiangqian; Kondratovich, Vladimir; Li, Zhengping

    2017-09-01

    The Advanced Baseline Imager (ABI) onboard the GOES-16 satellite, which was launched on 19 November 2016, is the first next-generation geostationary weather instrument in the west hemisphere. It has 16 spectral solar reflective and emissive bands located in three focal plane modules (FPM): one visible and near infrared (VNIR) FPM, one midwave infrared (MWIR), and one longwave infrared (LWIR) FPM. All the ABI bands are geometeorically calibrated with new techniques of Kalman filtering and Global Positioning System (GPS) to determine the accurate spacecraft attitude and orbit configuration to meet the challenging image navigation and registration (INR) requirements of ABI data. This study is to validate the ABI navigation and band-to-band registration (BBR) accuracies using the spectrally matched pixels of the Suomi National Polar-orbiting Partnership (SNPP) Visible Infrared Imaging Radiometer Suite (VIIRS) M-band data and the ABI images from the Simultaneous Nadir Observation (SNO) images. The preliminary results showed that during the ABI post-launch product test (PLPT) period, the ABI BBR errors at the y-direction (along the VIIRS track direction) is smaller than at the x-direction (along the VIIRS scan direction). Variations in the ABI BBR calibration residuals and navigation difference to VIIRS can be observed. Note that ABI is not operational yet and the data is experimental and still under testing. Effort is still ongoing to improve the ABI data quality.

  7. Finite element analysis of cylindrical indentation for determining plastic properties of materials in small volumes

    International Nuclear Information System (INIS)

    Lu, Y Charles; Kurapati, Siva N V R K; Yang Fuqian

    2008-01-01

    The cylindrical indentation is analysed, using the finite element method, for determining the plastic properties of elastic-plastic materials and the effect of strain hardening. The results are compared with those obtained from spherical indentation, the commonly used technique for measuring plastic properties of materials in small volumes. The analysis shows that the deformation under a cylindrical indenter quickly reaches a fully plastic state and that the size (diameter) of the plastic zone remains constant during further indentation. The indentation load is proportional to the indentation depth at large indentation depth, from which the indentation pressure P m at the onset of yielding can be readily extrapolated. The analysis of cylindrical indentation suggests that it does not need parameters such as impression radius (a) and contact stiffness (S) for determining the plastic behaviour of materials. Thus, the cylindrical indentation can suppress the uncertainties in measuring material properties

  8. Ball Nut Preload Diagnosis of the Hollow Ball Screw through Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Yi-Cheng Huang

    2018-01-01

    Full Text Available This paper studies the diagnostic results of hollow ball screws with different ball nut preload through the support vector machine (SVM process. The method is testified by considering the use of ball screw pretension and different ball nut preload. SVM was used to discriminate the hollow ball screw preload status through the vibration signals and servo motor current signals. Maximum dynamic preloads of 2%, 4%, and 6% ball screws were predesigned, manufactured, and conducted experimentally. Signal patterns with different preload features are separatedby SVM. The irregularity development of the ball screw driving motion current and rolling balls vibration of the ball screw can be discriminated via SVM based on complexity perception. The experimental results successfully show that the prognostic status of ball nut preload can be envisaged by the proposed methodology. The smart reasoning for the health of the ball screw is available based on classification of SVM. This diagnostic method satisfies the purposes of prognostic effectiveness on knowing the ball nut preload status

  9. The Arabidopsis CROWDED NUCLEI genes regulate seed germination by modulating degradation of ABI5 protein.

    Science.gov (United States)

    Zhao, Wenming; Guan, Chunmei; Feng, Jian; Liang, Yan; Zhan, Ni; Zuo, Jianru; Ren, Bo

    2016-07-01

    In Arabidopsis, the phytohormone abscisic acid (ABA) plays a vital role in inhibiting seed germination and in post-germination seedling establishment. In the ABA signaling pathway, ABI5, a basic Leu zipper transcription factor, has important functions in the regulation of seed germination. ABI5 protein localizes in nuclear bodies, along with AFP, COP1, and SIZ1, and was degraded through the 26S proteasome pathway. However, the mechanisms of ABI5 nuclear body formation and ABI5 protein degradation remain obscure. In this study, we found that the Arabidopsis CROWDED NUCLEI (CRWN) proteins, predicted nuclear matrix proteins essential for maintenance of nuclear morphology, also participate in ABA-controlled seed germination by regulating the degradation of ABI5 protein. During seed germination, the crwn mutants are hypersensitive to ABA and have higher levels of ABI5 protein compared to wild type. Genetic analysis suggested that CRWNs act upstream of ABI5. The observation that CRWN3 colocalizes with ABI5 in nuclear bodies indicates that CRWNs might participate in ABI5 protein degradation in nuclear bodies. Moreover, we revealed that the extreme C-terminal of CRWN3 protein is necessary for its function in the response to ABA in germination. Our results suggested important roles of CRWNs in ABI5 nuclear body organization and ABI5 protein degradation during seed germination. © 2015 Institute of Botany, Chinese Academy of Sciences.

  10. Having a Ball with Fitness Balls

    Science.gov (United States)

    McNulty, Betty

    2011-01-01

    Fitness programs can be greatly enhanced with the addition of fitness balls. They are a fun, challenging, economical, and safe way to incorporate a cardiovascular, strength, and stretching program for all fitness levels in a physical education setting. The use of these balls has become more popular during the last decade, and their benefits and…

  11. Indentation deformation and fracture of thin polystyrene films

    International Nuclear Information System (INIS)

    Li Min; Palacio, Manuel L.; Barry Carter, C.; Gerberich, William W.

    2002-01-01

    Nanoindentation-induced deformation and fracture of thin polystyrene (PS) films on glass substrates were characterized using visible-light microscopy and atomic force microscopy (AFM). Two film thicknesses, 2 and 3.5 μm were studied. It was difficult to induce delamination in the 2-μm film while the 3.5-μm film delaminated easily under indentation loads of 150 mN and higher. AFM cross-section analysis of the deformation and fracture geometry revealed that the ratio of the delamination radius to contact radius was between 3 and 4. Analysis of the fracture surface on the glass side indicates that substrate cracking acts as a trigger for initiation and propagation of interfacial cracks. Crack-arrest marks and process-zone marks were also observed by AFM imaging. The interfacial fracture toughness, or practical work of adhesion, was evaluated following two methods based on the indentation-induced delamination and a process-zone analysis. The fracture toughness was found to be approximately 0.6 J/m 2 for the 3.5-μm PS film on glass. AFM examination of the glass surface after indentation also showed fine flow lines around the indentation impression, indicating plastic deformation of glass

  12. Indentation deformation and fracture of thin polystyrene films

    Energy Technology Data Exchange (ETDEWEB)

    Li Min; Palacio, Manuel L.; Barry Carter, C.; Gerberich, William W

    2002-09-02

    Nanoindentation-induced deformation and fracture of thin polystyrene (PS) films on glass substrates were characterized using visible-light microscopy and atomic force microscopy (AFM). Two film thicknesses, 2 and 3.5 {mu}m were studied. It was difficult to induce delamination in the 2-{mu}m film while the 3.5-{mu}m film delaminated easily under indentation loads of 150 mN and higher. AFM cross-section analysis of the deformation and fracture geometry revealed that the ratio of the delamination radius to contact radius was between 3 and 4. Analysis of the fracture surface on the glass side indicates that substrate cracking acts as a trigger for initiation and propagation of interfacial cracks. Crack-arrest marks and process-zone marks were also observed by AFM imaging. The interfacial fracture toughness, or practical work of adhesion, was evaluated following two methods based on the indentation-induced delamination and a process-zone analysis. The fracture toughness was found to be approximately 0.6 J/m{sup 2} for the 3.5-{mu}m PS film on glass. AFM examination of the glass surface after indentation also showed fine flow lines around the indentation impression, indicating plastic deformation of glass.

  13. In situ determination of pipelines mechanical properties; Determinacao de propriedades mecanicas in situ de dutos terrestres

    Energy Technology Data Exchange (ETDEWEB)

    Paes, Marcelo Torres Piza [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas; Souza Filho, Byron Goncalves de [PETROBRAS Transportes S.A. (TRANSPETRO), Rio de Janeiro, RJ (Brazil); Ramos Neto, Francisco F.; Franco, Vera Lucia D.S.; Franco, Sinesio Domingues [Universidade Federal de Uberlandia, MG (Brazil). Dept. de Engenharia Mecanica; Cardoso, Flavia Cristina; Soares, Alcimar Barbosa [Universidade Federal de Uberlandia, MG (Brazil). Dept. de Engenharia Eletrica

    2005-07-01

    The possibility of having technical data regarding pipeline mechanical properties (yield strength, engineering ultimate strength and real stress-strain curve) may be of great importance for pipeline operators specially for old pipes from which there are seldom precise information. The use of portable equipment based on the ball indentation technique offers the possibility of having such properties with high accuracy and speed, without the necessity of pipe specimen removal, being only necessary a ball indentation with a maximum depth of 300{mu}m, and totally nondestructive. This paper presents the calculation methodology used for obtaining the related properties trough use of the ball indentation technique as well as the final version of portable equipment with such features, named 'Propinsitu', developed by a government-company-university partnership. Finally, initial results comparing the ball indentation tests with those derived from tension test are presented for typical API steel X42 and X60. (author)

  14. Method to determine the optimal constitutive model from spherical indentation tests

    Directory of Open Access Journals (Sweden)

    Tairui Zhang

    2018-03-01

    Full Text Available The limitation of current indentation theories was investigated and a method to determine the optimal constitutive model through spherical indentation tests was proposed. Two constitutive models, the Power-law and the Linear-law, were used in Finite Element (FE calculations, and then a set of indentation governing equations was established for each model. The load-depth data from the normal indentation depth was used to fit the best parameters in each constitutive model while the data from the further loading part was compared with those from FE calculations, and the model that better predicted the further deformation was considered the optimal one. Moreover, a Yang’s modulus calculation model which took the previous plastic deformation and the phenomenon of pile-up (or sink-in into consideration was also proposed to revise the original Sneddon-Pharr-Oliver model. The indentation results on six materials, 304, 321, SA508, SA533, 15CrMoR, and Fv520B, were compared with tensile ones, which validated the reliability of the revised E calculation model and the optimal constitutive model determination method in this study. Keywords: Optimal constitutive model, Spherical indentation test, Finite Element calculations, Yang’s modulus

  15. Cable indenter aging monitor

    International Nuclear Information System (INIS)

    Shook, T.A.; Gardner, J.B.

    1988-07-01

    This project was undertaken to develop a hand-held, nondestructive test device to assess the aged condition of electrical cable by in situ measurement of mechanical properties of polymeric jackets and insulations. The device is an indenter similar to those used to make hardness measurements. Comparison of measurements made on installed cables with previous measurements serving as baseline aging/mechanical property data will determine the state of aging of the field cables. Such a device will be valuable in nuclear and fossil plant life extension programs. Preliminary laboratory tests on cables covered with ethylene propylene rubber (EPR) and chlorosulfated polyethylene (CSPE) point to the measurement of the rate of force increase resulting from constant rate deformation as having the best correlation with progressive thermal aging. This first phase of the work has demonstrated the technical feasibility of the method. A second phase will include the generation of additional groundwork data and the design of the portable indenter for in situ plant measurements

  16. Disturbance induced by surface preparation on instrumented indentation test

    International Nuclear Information System (INIS)

    Li, Yugang; Kanouté, Pascale; François, Manuel

    2015-01-01

    Surface preparation, which may induce considerable sample disturbance, plays an important role in instrumented indentation test (IIT). In this study, the sample disturbance (mainly divided into residual stresses and plastic strain) induced by the surface preparation process of instrumented indentation test specimens were investigated with both experimental tests and numerical simulations. Grazing incidence X-ray diffractions (GIXRD) and uniaxial tensile tests were conducted for characterizing the residual stresses and high plastic strain in the top surface layers of a carefully mechanically polished indentation sample, which, in the present work, is made of commercially pure titanium. Instrumented indentation tests and the corresponding finite element simulations were performed as well. For comparison, a reference sample (carefully mechanically polished & electrolytically polished) which represents the raw material was prepared and tested. Results showed that a careful mechanical polishing procedure can effectively reduce the level of residual stresses induced by this process. However, the high plastic strain in the surface region imposed by the polishing process is significant. The induced plastic strain can affect a depth up to 5 µm, which is deeper than the maximum penetration depth h max (3 µm) used for the instrumented indentation tests. In the near surface layer (in the range of depth about 350 nm), the plastic strain levels are fairly high. In the very top layer, the plastic strain was even estimated to reach more than 60%. The simultaneous use of indentation tests and numerical simulations showed that the existence of high plastic strain in the surface region will make the load vs depth (P–h) curve shift upwards, the contact hardness (H) increase and the contact stiffness (S) decrease

  17. Disturbance induced by surface preparation on instrumented indentation test

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yugang, E-mail: yugang.li@utt.fr [Université de Technologie de Troyes (UTT), ICD-LASMIS, UMR CNRS 6281, 12, rue Marie Curie-CS 42060, 10010 Troyes Cedex (France); Kanouté, Pascale, E-mail: pascale.kanoute@onera.fr [Université de Technologie de Troyes (UTT), ICD-LASMIS, UMR CNRS 6281, 12, rue Marie Curie-CS 42060, 10010 Troyes Cedex (France); The French Aerospace Lab (ONERA), DMSM/MCE, 29 avenue de la Division Leclerc-BP 72, F-92322 Chatillon Cedex (France); François, Manuel, E-mail: manuel.francois@utt.fr [Université de Technologie de Troyes (UTT), ICD-LASMIS, UMR CNRS 6281, 12, rue Marie Curie-CS 42060, 10010 Troyes Cedex (France)

    2015-08-26

    Surface preparation, which may induce considerable sample disturbance, plays an important role in instrumented indentation test (IIT). In this study, the sample disturbance (mainly divided into residual stresses and plastic strain) induced by the surface preparation process of instrumented indentation test specimens were investigated with both experimental tests and numerical simulations. Grazing incidence X-ray diffractions (GIXRD) and uniaxial tensile tests were conducted for characterizing the residual stresses and high plastic strain in the top surface layers of a carefully mechanically polished indentation sample, which, in the present work, is made of commercially pure titanium. Instrumented indentation tests and the corresponding finite element simulations were performed as well. For comparison, a reference sample (carefully mechanically polished & electrolytically polished) which represents the raw material was prepared and tested. Results showed that a careful mechanical polishing procedure can effectively reduce the level of residual stresses induced by this process. However, the high plastic strain in the surface region imposed by the polishing process is significant. The induced plastic strain can affect a depth up to 5 µm, which is deeper than the maximum penetration depth h{sub max} (3 µm) used for the instrumented indentation tests. In the near surface layer (in the range of depth about 350 nm), the plastic strain levels are fairly high. In the very top layer, the plastic strain was even estimated to reach more than 60%. The simultaneous use of indentation tests and numerical simulations showed that the existence of high plastic strain in the surface region will make the load vs depth (P–h) curve shift upwards, the contact hardness (H) increase and the contact stiffness (S) decrease.

  18. Twin pattern evolution in a fine-grained Mg alloy subjected to indentation

    International Nuclear Information System (INIS)

    Liu, Zhe; Xin, Renlong; Yu, Hongni; Guo, Changfa; Liu, Qing

    2016-01-01

    A Vickers diamond pyramid indenter was impressed on a fine-grained polycrystalline Mg–3Al–1Zn alloy. Serial polishing in combination with quasi-in-situ electron backscatter diffraction (EBSD) examinations revealed the presence and the 3D spatial distributions of {10–12} extension twins around the indent. Twin chains and completely twinned areas were found in some regions close to the indent. A model of twin pattern evolution around the indent was proposed based on the experimental observations and local strain accommodation analysis.

  19. Analysis of indentation creep

    Science.gov (United States)

    Don S. Stone; Joseph E. Jakes; Jonathan Puthoff; Abdelmageed A. Elmustafa

    2010-01-01

    Finite element analysis is used to simulate cone indentation creep in materials across a wide range of hardness, strain rate sensitivity, and work-hardening exponent. Modeling reveals that the commonly held assumption of the hardness strain rate sensitivity (mΗ) equaling the flow stress strain rate sensitivity (mσ...

  20. Modelling of excavation depth and fractures in rock caused by tool indentation

    International Nuclear Information System (INIS)

    Kou Shaoquan; Tan Xiangchun; Lindqvist, P.A.

    1997-10-01

    The hydraulic regime after excavation in the near-field rock around deposition holes and deposition tunnels in a spent nuclear fuel repository is of concern for prediction of the saturation process of bentonite buffer and tunnel backfill. The hydraulic condition of main interest in this context is a result of the fracture network that is caused by the excavation. Modelling of the excavation disturbed zone in hard rocks caused by mechanical excavation has been carried out in the Division of Mining Engineering since 1993. This report contains an overview of the work conducted. The mechanical excavation is reasonably simplified as an indentation process of the interaction between rigid indenters and rocks. A large number of experiments have been carried out in the laboratory, and the results used for identifying crushed zones and fracture systems in rock under indentation are presented based on these experiments. The indentation causes crushing and damage of the rock and results in a crushed zone and a cracked zone. The indenter penetrates the rock with a certain depth when the force is over a threshold value relevant to the rock and tool. Outside the cracked zone there are basically three systems of cracks: median cracks, radial cracks, and side cracks. Fully developed radial cracks on each side of the indented area can connect with each other and join with median crack. This forms the so-called radial/median crack system. The influence of the mechanical properties of the rock is discussed based on our conceptual model, and the main factors governing the indentation event are summarised. The cracked zone is dealt with by an analytical fracture model. The side crack is simulated by applying the boundary element method coupled with fracture mechanics. Functional relationships are established relating either the indentation depth or the length of radial/median cracks to the various quantities characterising the physical event, namely the shape and the size of the

  1. Modelling of excavation depth and fractures in rock caused by tool indentation

    Energy Technology Data Exchange (ETDEWEB)

    Kou Shaoquan; Tan Xiangchun; Lindqvist, P.A. [Luleaa Univ. of Technology (Sweden)

    1997-10-01

    The hydraulic regime after excavation in the near-field rock around deposition holes and deposition tunnels in a spent nuclear fuel repository is of concern for prediction of the saturation process of bentonite buffer and tunnel backfill. The hydraulic condition of main interest in this context is a result of the fracture network that is caused by the excavation. Modelling of the excavation disturbed zone in hard rocks caused by mechanical excavation has been carried out in the Division of Mining Engineering since 1993. This report contains an overview of the work conducted. The mechanical excavation is reasonably simplified as an indentation process of the interaction between rigid indenters and rocks. A large number of experiments have been carried out in the laboratory, and the results used for identifying crushed zones and fracture systems in rock under indentation are presented based on these experiments. The indentation causes crushing and damage of the rock and results in a crushed zone and a cracked zone. The indenter penetrates the rock with a certain depth when the force is over a threshold value relevant to the rock and tool. Outside the cracked zone there are basically three systems of cracks: median cracks, radial cracks, and side cracks. Fully developed radial cracks on each side of the indented area can connect with each other and join with median crack. This forms the so-called radial/median crack system. The influence of the mechanical properties of the rock is discussed based on our conceptual model, and the main factors governing the indentation event are summarised. The cracked zone is dealt with by an analytical fracture model. The side crack is simulated by applying the boundary element method coupled with fracture mechanics. Functional relationships are established relating either the indentation depth or the length of radial/median cracks to the various quantities characterising the physical event, namely the shape and the size of the

  2. A dual triangular pyramidal indentation technique based on FEA solutions for Material property evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Minsoo; Hyun, Hong Chul [Sogana Univ., Seoul (Korea, Republic of); Lee, Jin Haeng; Lee, Hyungyil [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-01-15

    In this study, we suggest a method for material property evaluation by dual triangular pyramidal indenters using the reverse analysis. First, we demonstrated that load displacement curves of conical and triangular pyramidal indenters are different for the same material. For this reason, an independent research on the triangular pyramidal indenter is needed. From FE indentation analyses on various materials, we then investigated the relationships among material properties, indentation parameters and load displacement curves. From this, we established property evaluation formula using dual triangular pyramidal indenters having two different half included angles. The approach provides the values of elastic modulus, yield strength and strain hardening exponent within an average error of 3% for various materials.

  3. Master-slave robotic system for needle indentation and insertion.

    Science.gov (United States)

    Shin, Jaehyun; Zhong, Yongmin; Gu, Chengfan

    2017-12-01

    Bilateral control of a master-slave robotic system is a challenging issue in robotic-assisted minimally invasive surgery. It requires the knowledge on contact interaction between a surgical (slave) robot and soft tissues. This paper presents a master-slave robotic system for needle indentation and insertion. This master-slave robotic system is able to characterize the contact interaction between the robotic needle and soft tissues. A bilateral controller is implemented using a linear motor for robotic needle indentation and insertion. A new nonlinear state observer is developed to online monitor the contact interaction with soft tissues. Experimental results demonstrate the efficacy of the proposed master-slave robotic system for robotic needle indentation and needle insertion.

  4. Cartilage microindentation using cylindrical and spherical optical fiber indenters with integrated Bragg gratings as force sensors

    Science.gov (United States)

    Marchi, G.; Canti, O.; Baier, V.; Micallef, W.; Hartmann, B.; Alberton, P.; Aszodi, A.; Clausen-Schaumann, H.; Roths, J.

    2018-02-01

    Fiber optic microindentation sensors that have the potential to be integrated into arthroscopic instruments and to allow localizing degraded articular cartilage are presented in this paper. The indenters consist of optical fibers with integrated Bragg gratings as force sensors. In a basic configuration, the tip of the fiber optic indenter consists of a cleaved fiber end, forming a cylindrical flat punch indenter geometry. When using this indenter geometry, high stresses at the edges of the cylinder are present, which can disrupt the tissue structure. This is avoided with an improved version of the indenter. A spherical indenter tip that is formed by melting the end of the glass fiber. The spherical fiber tip shows the additional advantage of strongly reducing reflections from the fiber end. This allows a reduction of the length of the fiber optic sensor element from 65 mm of the flat punch type to 27 mm of the spherical punch. In order to compare the performance of both indenter types, in vitro stress-relaxation indentation experiments were performed on bovine articular cartilage with both indenter types, to assess biomechanical properties of bovine articular cartilage. For indentation depths between 60 μm and 300 μm, the measurements with both indenter types agreed very well with each other. This shows that both indenter geometries are suitable for microindentation measuremnts . The spherical indenter however has the additional advantage that it minimizes the risk to damage the surface of the tissue and has less than half dimensions than the flat indenter.

  5. The crack-initiation threshold in ceramic materials subject to elastic/plastic indentation

    International Nuclear Information System (INIS)

    Lankford, J.; Davidson, D.L.

    1979-01-01

    The threshold for indentation cracking is established for a range of ceramic materials, using the techniques of scanning electron microscopy and acoustic emission. It is found that by taking into account indentation plasticity, current theories may be successfully combined to predict threshold indentation loads and crack sizes. Threshold cracking is seen to relate to radial rather than median cracking. (author)

  6. Site-controlled fabrication of silicon nanotips by indentation-induced selective etching

    Science.gov (United States)

    Jin, Chenning; Yu, Bingjun; Liu, Xiaoxiao; Xiao, Chen; Wang, Hongbo; Jiang, Shulan; Wu, Jiang; Liu, Huiyun; Qian, Linmao

    2017-12-01

    In the present study, the indentation-induced selective etching approach is proposed to fabricate site-controlled pyramidal nanotips on Si(100) surface. Without any masks, the site-controlled nanofabrication can be realized by nanoindentation and post etching in potassium hydroxide (KOH) solution. The effect of indentation force and etching time on the formation of pyramidal nanotips was investigated. It is found that the height and radius of the pyramidal nanotips increase with the indentation force or etching time, while long-time etching can lead to the collapse of the tips. The formation of pyramidal tips is ascribed to the anisotropic etching of silicon and etching stop of (111) crystal planes in KOH aqueous solution. The capability of this fabrication method was further demonstrated by producing various tip arrays on silicon surface by selective etching of the site-controlled indent patterns, and the maximum height difference of these tips is less than 10 nm. The indentation-induced selective etching provides a new strategy to fabricate well site-controlled tip arrays for multi-probe SPM system, Si nanostructure-based sensors and high-quality information storage.

  7. Method to determine the optimal constitutive model from spherical indentation tests

    Science.gov (United States)

    Zhang, Tairui; Wang, Shang; Wang, Weiqiang

    2018-03-01

    The limitation of current indentation theories was investigated and a method to determine the optimal constitutive model through spherical indentation tests was proposed. Two constitutive models, the Power-law and the Linear-law, were used in Finite Element (FE) calculations, and then a set of indentation governing equations was established for each model. The load-depth data from the normal indentation depth was used to fit the best parameters in each constitutive model while the data from the further loading part was compared with those from FE calculations, and the model that better predicted the further deformation was considered the optimal one. Moreover, a Yang's modulus calculation model which took the previous plastic deformation and the phenomenon of pile-up (or sink-in) into consideration was also proposed to revise the original Sneddon-Pharr-Oliver model. The indentation results on six materials, 304, 321, SA508, SA533, 15CrMoR, and Fv520B, were compared with tensile ones, which validated the reliability of the revised E calculation model and the optimal constitutive model determination method in this study.

  8. Atomic mechanism of shear localization during indentation of a nanostructured metal

    International Nuclear Information System (INIS)

    Sansoz, F.; Dupont, V.

    2007-01-01

    Shear localization is an important mode of deformation in nanocrystalline metals. However, it is very difficult to verify the existence of local shear planes in nanocrystalline metals experimentally. Sharp indentation techniques may provide novel opportunities to investigate the effect of shear localization at different length scales, but the relationship between indentation response and atomic-level shear band formation has not been fully addressed. This paper describes an effort to provide direct insight on the mechanism of shear localization during indentation of nanocrystalline metals from atomistic simulations. Molecular statics is performed with the quasi-continuum method to simulate the indentation of single crystal and nanocrystalline Al with a sharp cylindrical probe. In the nanocrystalline regime, two grain sizes are investigated, 5 nm and 10 nm. We find that the indentation of nanocrystalline metals is characterized by serrated plastic flow. This effect seems to be independent of the grain size. Serration in nanocrystalline metals is found to be associated with the formation of shear bands by sliding of aligned interfaces and intragranular slip, which results in deformation twinning

  9. The incredible shrinking ball

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Maurice

    2011-12-15

    In the oil and gas industry, the implementation of fracture systems using ball and seat technology helped make multistage fracturing possible. However, frac balls can obstruct later production flow by staying in the well. Baker Hughes Inc. developed a technology to solve this problem: IN-Tallic frac balls. The unique feature of these frac balls is that they are made of an electrolytic metallic nanostructured material which is light and strong and which melts away with salt water or brine through a decomposition process governed by electrochemical reactions controlled by nanoscale coatings. These balls need to be kept away from moisture in order to prevent degradation. This technology is more expensive than traditional frac balls but it prevents the need to mill out obstructions created by the balls. The IN-Tallic frac balls are a new technology which provides operators with peace of mind.

  10. Indentation size effect and the plastic compressibility of glass

    Energy Technology Data Exchange (ETDEWEB)

    Smedskjaer, Morten M., E-mail: mos@bio.aau.dk [Section of Chemistry, Aalborg University, 9000 Aalborg (Denmark)

    2014-06-23

    Oxide glasses exhibit significant densification under an applied isostatic pressure at the glass transition temperature. The glass compressibility is correlated with the chemical composition and atomic packing density, e.g., borate glasses with planar triangular BO{sub 3} units are more disposed for densification than silicate glasses with tetrahedral units. We here show that there is a direct relation between the plastic compressibility following hot isostatic compression and the extent of the indentation size effect (ISE), which is the decrease of hardness with indentation load exhibited by most materials. This could suggest that the ISE is correlated with indentation-induced shear bands, which should form in greater density when the glass network is more adaptable to volume changes through structural and topological rearrangements under an applied pressure.

  11. Force-deflection analysis of offset indentations on pressurised pipes

    International Nuclear Information System (INIS)

    Hyde, T.H.; Luo, R.; Becker, A.A.

    2007-01-01

    The indenter force vs. deflection characteristics of pressurised pipes with long offset indentations under plane strain conditions have been investigated using finite element (FE) and analytical methods with four experimental tests performed on aluminium rings. Two different materials and five different geometries were used to investigate their effects on the elastic-plastic behaviour. A comparison of the experimental, FE and the analytical results indicates that the analytical formulation developed in this paper, for predicting the force-deflection curves for pressurised pipes with offset indenters, is reasonably accurate. Also, all of the analyses presented in this paper indicate that by using a representative flow stress, which is defined as the average of the yield and ultimate tensile stresses, the analytical method can accurately predict the force-deflection curves

  12. Sub-micron indent induced plastic deformation in copper and irradiated steel

    International Nuclear Information System (INIS)

    Robertson, Ch.

    1998-09-01

    In this work we aim to study the indent induced plastic deformation. For this purpose, we have developed a new approach, whereby the indentation curves provides the mechanical behaviour, while the deformation mechanisms are observed thanks to Transmission Electron Microscopy (TEM). In order to better understand how an indent induced dislocation microstructure forms, numerical modeling of the indentation process at the scale of discrete dislocations has been worked out as well. Validation of this modeling has been performed through direct comparison of the computed microstructures with TEM micrographs of actual indents in pure Cu [001]. Irradiation induced modifications of mechanical behaviour of ion irradiated 316L have been investigated, thanks to the mentioned approach. An important hardening effect was reported from indentation data (about 50%), on helium irradiated 316L steel. TEM observations of the damage zone clearly show that this behaviour is associated with the presence of He bubbles. TEM observations of the indent induced plastic zone also showed that the extent of the plastic zone is strongly correlated with hardness, that is to say: harder materials gets a smaller plastic zone. These results thus clearly established that the selected procedure can reveal any irradiation induced hardening in sub-micron thick ion irradiated layers. The behaviour of krypton irradiated 316L steel is somewhat more puzzling. In one hand indeed, a strong correlation between the defect cluster size and densities on the irradiation temperature is observed in the 350 deg C -600 deg C range, thanks to TEM observations of the damage zone. On the other hand, irradiation induced hardening reported from indentation data is relatively small (about 10%) and shows no dependence upon the irradiation temperature (within the mentioned range). In addition, it has been shown that the reported hardening vanishes following appropriate post-irradiation annealing, although most of the TEM

  13. Finite element analysis of stresses in Berkovich, Vickers and Knoop indentation for densifying and non-densifying glasses

    Science.gov (United States)

    Chen, Kanghua

    2002-08-01

    A constitutive law for fused silica accounting for its permanent densification under large compressive stresses is presented. The implementation of the constitutive equations in the general-purpose finite element code ABAQUS via user subroutine is proposed and carefully verified. The three-dimensional indentation mechanics under Berkovich, Vickers and Knoop indenters is extensively investigated based on the proposed constitutive relation. The results of stress distribution and plastic zone for both densifying and non-densifying optical glasses are systematically compared. These numerical results are in good agreement with the experimental observations of optical manufacturing. That is, fused silica shows lower material removal rate, smaller surface roughness and subsurface damage in contrast to non-densifying optical glasses under the same grinding condition. Material densification of fused silica is thoroughly studied through numerical simulations of indentation mechanics. The exact amount of densification and shear strain of fused silica under Berkovich indentation is calculated to show the deformation mechanism of glass materials under three-dimensional indentations. The surface profiles show the material "pile-up" around the indenter tip for non-densifying glasses and "sink-in" for fused silica after the indentation load is removed. An important inverse problem is studied: estimation of abrasive size and indentation load through the examination of residual indentation footprints. A series of 2D axisymmetric spherical indentation simulations generate a wide range of relationships among the indentation load, indenter size, residual indentation depth and size of residual indentation zone for the five selected brittle materials: glass fused silica (FS), BK7, semiconductor Si, laser glass LHG8, and optical crystal CaF2.. The application of the inverse problem is verified by the good agreement between the estimated abrasive size and the actual abrasive size found

  14. Analysis of the Indented Cylinder by the use of Computer Vision

    DEFF Research Database (Denmark)

    Buus, Ole Thomsen

    and two journal papers. These three papers, referred to as Paper I, Paper II, and Paper III can be found in Appendix A, B, and C, respectively. These three papers represent the very first examples of published/submitted work that thoroughly analyse and verify the separation ability of the indented...... in system identification of the indented cylinder. The technical solutions developed are currently novel and represent an ideal platform for future applied research into empirical model development. Finally, this work should also be considered as an early step toward a paradigm shift where the best...... parameters for the indented cylinder are not mainly determined by “rule of thumb” and other forms of heuristics, but are instead optimized parameters tied to an actual theory of seed separation in the indented cylinder....

  15. The adhesion behavior of carbon coating studied by re-indentation during in situ TEM nanoindentation

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Xue; Diao, Dongfeng, E-mail: dfdiao@szu.edu.cn

    2016-01-30

    Graphical abstract: Nanoscale adhesion induced response in terms of re-indentation was directly observed. During unloading (start from B), the re-indentation phenomenon with the displacement sudden drop and the external loading force change from tension (C) to compression (D) within 0.1 s was captured by in situ TEM nanoindentation. - Highlights: • In situ TEM nanoindentation was performed on carbon coating. • Adhesion induced nano-response of re-indentation was directly observed. • Adhesive forces were measured from the load–displacement curves. • Adhesion energies released for re-indentation were quantitatively analyzed. • Carbon coating reduced the impact of adhesion for silicon substrate. - Abstract: We report a nanoscale adhesion induced nano-response in terms of re-indentation during in situ transmission electron microscope (TEM) nanoindentation on the carbon coating with silicon substrate. The adhesive force generated with nanoindentation was measured, and re-indentation phenomenon during unloading with displacement sudden drop and external loading force change from tension to compression was found. The occurrence of re-indentation during unloading was ascribed to the adhesive force of the contact interface between the indenter and the coating surface. Adhesion energies released for re-indentation processes were quantitatively analyzed from the re-indentation load–displacement curves, and carbon coating reduced the impact of adhesion for silicon substrate. The adhesion induced nano-response of contact surfaces would affect the reliability and performance of nano devices.

  16. Indentation versus Rolling: Dependence of Adhesion on Contact Geometry for Biomimetic Structures.

    Science.gov (United States)

    Moyle, Nichole; He, Zhenping; Wu, Haibin; Hui, Chung-Yuen; Jagota, Anand

    2018-04-03

    Numerous biomimetic structures made from elastomeric materials have been developed to produce enhancement in properties such as adhesion, static friction, and sliding friction. As a property, one expects adhesion to be represented by an energy per unit area that is usually sensitive to the combination of shear and normal stresses at the crack front but is otherwise dependent only on the two elastic materials that meet at the interface. More specifically, one would expect that adhesion measured by indentation (a popular and convenient technique) could be used to predict adhesion hysteresis in the more practically important rolling geometry. Previously, a structure with a film-terminated fibrillar geometry exhibited dramatic enhancement of adhesion by a crack-trapping mechanism during indentation with a rigid sphere. Roughly isotropic structures such as the fibrillar geometry show a strong correlation between adhesion enhancement in indentation versus adhesion hysteresis in rolling. However, anisotropic structures, such as a film-terminated ridge-channel geometry, surprisingly show a dramatic divergence between adhesion measured by indentation versus rolling. We study this experimentally and theoretically, first comparing the adhesion of the anisotropic ridge-channel structure to the roughly isotropic fibrillar structure during indentation with a rigid sphere, where only the isotropic structure shows adhesion enhancement. Second, we examine in more detail the anomalous anisotropic film-terminated ridge-channel structure during indentation with a rigid sphere versus rolling to show why these structures show a dramatic adhesion enhancement for the rolling case and no adhesion enhancement for indentation.

  17. Indentation induced mechanical and electrical response in ferroelectric crystal investigated by acoustic mode AFM

    Science.gov (United States)

    Yu, H. F.; Zeng, H. R.; Ma, X. D.; Chu, R. Q.; Li, G. R.; Luo, H. S.; Yin, Q. R.

    2005-01-01

    The mechanical and electrical response of Pb (Mg1/3Nb2/3)- O3-PbTiO3 single crystals to micro-indentation are investigated using the newly developed low frequency scanning probe acoustic microscopy which is based on the atomic force microscope. There are three ways to release the stress produced by indentation. Plastic deformation emerged directly underneath the indentor and along the indentation diagonals. In addition, indentation-induced micro-cracks and new non-180° domain structures which are perpendicular to each other are also observed in the indented surface. Based on the experimental results, the relationship between the cracks and the domain patterns was discussed.

  18. Dolphin underwater bait-balling behaviors in relation to group and prey ball sizes.

    Science.gov (United States)

    Vaughn-Hirshorn, Robin L; Muzi, Elisa; Richardson, Jessica L; Fox, Gabriella J; Hansen, Lauren N; Salley, Alyce M; Dudzinski, Kathleen M; Würsig, Bernd

    2013-09-01

    We characterized dusky dolphin (Lagenorhynchus obscurus) feeding behaviors recorded on underwater video, and related behaviors to variation in prey ball sizes, dolphin group sizes, and study site (Argentina versus New Zealand, NZ). Herding behaviors most often involved dolphins swimming around the side or under prey balls, but dolphins in Argentina more often swam under prey balls (48% of passes) than did dolphins in NZ (34% of passes). This result may have been due to differences in group sizes between sites, since groups are larger in Argentina. Additionally, in NZ, group size was positively correlated with proportion of passes that occurred under prey balls (pdolphins in Argentina more often swam through prey balls (8% of attempts) than did dolphins in NZ (4% of attempts). This result may have been due to differences in prey ball sizes between sites, since dolphins fed on larger prey balls in Argentina (>74m(2)) than in NZ (maximum 33m(2)). Additionally, in NZ, dolphins were more likely to swim through prey balls to capture fish when they fed on larger prey balls (p=0.025). Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Golf Ball

    Science.gov (United States)

    1998-01-01

    The Ultra 500 Series golf balls, introduced in 1995 by Wilson Sporting Goods Company, has 500 dimples arranged in a pattern of 60 spherical triangles. The design employs NASA's aerodynamics technology analysis of air loads of the tank and Shuttle orbiter that was performed under the Space Shuttle External Tank program. According to Wilson, this technology provides 'the most symmetrical ball surface available, sustaining initial velocity longer and producing the most stable ball flight for unmatched accuracy and distance.' The dimples are in three sizes, shapes and depths mathematically positioned for the best effect. The selection of dimples and their placement optimizes the interaction of opposing forces of lift and drag. Large dimples reduce air drag, enhance lift, and maintain spin for distance. Small dimples prevent excessive lift that destabilizes the ball flight and the medium size dimples blend the other two.

  20. Finite element analysis of the cyclic indentation of bilayer enamel

    International Nuclear Information System (INIS)

    Jia, Yunfei; Xuan, Fu-zhen; Chen, Xiaoping; Yang, Fuqian

    2014-01-01

    Tooth enamel is often subjected to repeated contact and often experiences contact deformation in daily life. The mechanical strength of the enamel determines the biofunctionality of the tooth. Considering the variation of the rod arrangement in outer and inner enamel, we approximate enamel as a bilayer structure and perform finite element analysis of the cyclic indentation of the bilayer structure, to mimic the repeated contact of enamel during mastication. The dynamic deformation behaviour of both the inner enamel and the bilayer enamel is examined. The material parameters of the inner and outer enamel used in the analysis are obtained by fitting the finite element results with the experimental nanoindentation results. The penetration depth per cycle at the quasi-steady state is used to describe the depth propagation speed, which exhibits a two-stage power-law dependence on the maximum indentation load and the amplitude of the cyclic load, respectively. The continuous penetration of the indenter reflects the propagation of the plastic zone during cyclic indentation, which is related to the energy dissipation. The outer enamel serves as a protective layer due to its great resistance to contact deformation in comparison to the inner enamel. The larger equivalent plastic strain and lower stresses in the inner enamel during cyclic indentation, as calculated from the finite element analysis, indicate better crack/fracture resistance of the inner enamel. (paper)

  1. Finite element analysis of the cyclic indentation of bilayer enamel

    Science.gov (United States)

    Jia, Yunfei; Xuan, Fu-zhen; Chen, Xiaoping; Yang, Fuqian

    2014-04-01

    Tooth enamel is often subjected to repeated contact and often experiences contact deformation in daily life. The mechanical strength of the enamel determines the biofunctionality of the tooth. Considering the variation of the rod arrangement in outer and inner enamel, we approximate enamel as a bilayer structure and perform finite element analysis of the cyclic indentation of the bilayer structure, to mimic the repeated contact of enamel during mastication. The dynamic deformation behaviour of both the inner enamel and the bilayer enamel is examined. The material parameters of the inner and outer enamel used in the analysis are obtained by fitting the finite element results with the experimental nanoindentation results. The penetration depth per cycle at the quasi-steady state is used to describe the depth propagation speed, which exhibits a two-stage power-law dependence on the maximum indentation load and the amplitude of the cyclic load, respectively. The continuous penetration of the indenter reflects the propagation of the plastic zone during cyclic indentation, which is related to the energy dissipation. The outer enamel serves as a protective layer due to its great resistance to contact deformation in comparison to the inner enamel. The larger equivalent plastic strain and lower stresses in the inner enamel during cyclic indentation, as calculated from the finite element analysis, indicate better crack/fracture resistance of the inner enamel.

  2. Indentation creep behaviors of amorphous Cu-based composite alloys

    Science.gov (United States)

    Song, Defeng; Ma, Xiangdong; Qian, Linfang

    2018-04-01

    This work reports the indentation creep behaviors of two Si2Zr3/amorphous Cu-based composite alloys utilizing nanoindentation technique. By analysis with Kelvin model, the retardation spectra of alloys at different positions, detached and attached regions to the intermetallics, were deduced. For the indentation of detached regions to Si2Zr3 intermetallics in both alloys, very similarity in creep displacement can be observed and retardation spectra show a distinct disparity in the second retardation peak. For the indentation of detached regions, the second retardation spectra also display distinct disparity. At both positions, the retardation spectra suggest that Si elements may lead to the relatively dense structure in the amorphous matrix and to form excessive Si2Zr3 intermetallics which may deteriorate the plastic deformation of current Cu-based composite alloys.

  3. Students' Attitudes toward ABI/INFORM on CD-ROM: A Factor Analysis.

    Science.gov (United States)

    Wang, Vicky; Lau, Shuk-fong

    Two years after the introduction of CD-ROM bibliographic database searching in the Memphis State University libraries (Tennessee), a survey was conducted to examine students' attitudes toward the business database, ABI/INFORM. ABI/INFORM contains indexes and abstracts of articles from over 800 journals on management, accounting, banking, human…

  4. ABI3 mediates dehydration stress recovery response in Arabidopsis thaliana by regulating expression of downstream genes.

    Science.gov (United States)

    Bedi, Sonia; Sengupta, Sourabh; Ray, Anagh; Nag Chaudhuri, Ronita

    2016-09-01

    ABI3, originally discovered as a seed-specific transcription factor is now implicated to act beyond seed physiology, especially during abiotic stress. In non-seed plants, ABI3 is known to act in desiccation stress signaling. Here we show that ABI3 plays a role in dehydration stress response in Arabidopsis. ABI3 gene was upregulated during dehydration stress and its expression was maintained during subsequent stress recovery phases. Comparative gene expression studies in response to dehydration stress and stress recovery were done with genes which had potential ABI3 binding sites in their upstream regulatory regions. Such studies showed that several genes including known seed-specific factors like CRUCIFERIN1, CRUCIFERIN3 and LEA-group of genes like LEA76, LEA6, DEHYDRIN LEA and LEA-LIKE got upregulated in an ABI3-dependent manner, especially during the stress recovery phase. ABI3 got recruited to regions upstream to the transcription start site of these genes during dehydration stress response through direct or indirect DNA binding. Interestingly, ABI3 also binds to its own promoter region during such stress signaling. Nucleosomes covering potential ABI3 binding sites in the upstream sequences of the above-mentioned genes alter positions, and show increased H3 K9 acetylation during stress-induced transcription. ABI3 thus mediates dehydration stress signaling in Arabidopsis through regulation of a group of genes that play a role primarily during stress recovery phase. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. The relation between ankle-brachial index (ABI and coronary artery disease severity and risk factors: an angiographic study

    Directory of Open Access Journals (Sweden)

    Masoumeh Sadeghi

    2011-07-01

    Full Text Available BACKGROUND: The current study aims to determine the relation between ankle–brachialindex (ABI and angiographic findings and major cardiovascular risk factors in patients withsuspected coronary artery diseases (CAD in Isfahan.METHODS: In this cross-sectional descriptive-analytic research, patients with suspected CADwere studied. Characteristics of studied subjects including demographics, familial history, pastmedical history and atherosclerotic risk factors such as diabetes mellitus, hypertension,hyperlipidemia and smoking were obtained using a standard questionnaire. ABI was measuredin all studied patients. ABI ≤ 0.9 (ABI+ was considered as peripheral vessel disease and ABI >0.9 (ABI- was considered as normal. Then, all studied patients underwent coronary arteryangiography. The results of the questionnaire and angiographic findings were compared in ABI+and ABI- groups. Data were analyzed by SPSS 15 using ANOVA, t-test, Spearman's rankcorrelation coefficient, and discriminant analysis.RESULTS: In this study, 125 patients were investigated. ABI ≤ 0.9 was seen in 25 patients (20%.The prevalence of ABI+ among men and women was 25.9% and 7.5%, respectively (P = 0.01. Theprevalence of atherosclerotic risk factors was significantly higher in ABI+ patients than in ABIones(P < 0.05. ABI+ patients had more significant stenosis than ABI- ones. The mean ofocclusion was significantly higher in ABI+ patients with left main artery (LMA, right coronaryartery (RCA, left anterior descending artery (LAD, diagonal artery 1 (D1 and left circumflexartery (LCX involvements (P < 0.05.CONCLUSION: The findings of this research indicated that ABI could be a useful method inassessing both the atherosclerotic risk factors and the degree of coronary involvements insuspected patients. However, in order to make more accurate decisions for using this method indiagnosing and preventing CAD, we should plan further studies in large sample sizes of generalpopulation

  6. Finite-element modeling of soft tissue rolling indentation.

    Science.gov (United States)

    Sangpradit, Kiattisak; Liu, Hongbin; Dasgupta, Prokar; Althoefer, Kaspar; Seneviratne, Lakmal D

    2011-12-01

    We describe a finite-element (FE) model for simulating wheel-rolling tissue deformations using a rolling FE model (RFEM). A wheeled probe performing rolling tissue indentation has proven to be a promising approach for compensating for the loss of haptic and tactile feedback experienced during robotic-assisted minimally invasive surgery (H. Liu, D. P. Noonan, B. J. Challacombe, P. Dasgupta, L. D. Seneviratne, and K. Althoefer, "Rolling mechanical imaging for tissue abnormality localization during minimally invasive surgery, " IEEE Trans. Biomed. Eng., vol. 57, no. 2, pp. 404-414, Feb. 2010; K. Sangpradit, H. Liu, L. Seneviratne, and K. Althoefer, "Tissue identification using inverse finite element analysis of rolling indentation," in Proc. IEEE Int. Conf. Robot. Autom. , Kobe, Japan, 2009, pp. 1250-1255; H. Liu, D. Noonan, K. Althoefer, and L. Seneviratne, "The rolling approach for soft tissue modeling and mechanical imaging during robot-assisted minimally invasive surgery," in Proc. IEEE Int. Conf. Robot. Autom., May 2008, pp. 845-850; H. Liu, P. Puangmali, D. Zbyszewski, O. Elhage, P. Dasgupta, J. S. Dai, L. Seneviratne, and K. Althoefer, "An indentation depth-force sensing wheeled probe for abnormality identification during minimally invasive surgery," Proc. Inst. Mech. Eng., H, vol. 224, no. 6, pp. 751-63, 2010; D. Noonan, H. Liu, Y. Zweiri, K. Althoefer, and L. Seneviratne, "A dual-function wheeled probe for tissue viscoelastic property identification during minimally invasive surgery," in Proc. IEEE Int. Conf. Robot. Autom. , 2008, pp. 2629-2634; H. Liu, J. Li, Q. I. Poon, L. D. Seneviratne, and K. Althoefer, "Miniaturized force indentation-depth sensor for tissue abnormality identification," IEEE Int. Conf. Robot. Autom., May 2010, pp. 3654-3659). A sound understanding of wheel-tissue rolling interaction dynamics will facilitate the evaluation of signals from rolling indentation. In this paper, we model the dynamic interactions between a wheeled probe and a

  7. Frictional performance of ball screw

    International Nuclear Information System (INIS)

    Nakashima, Katuhiro; Takafuji, Kazuki

    1985-01-01

    As feed screws, ball screws have become to be adopted in place of trapezoidal threads. The structure of ball screws is complex, but those are the indispensable component of NC machine tools and machining centers, and are frequently used for industrial robots. As the problems in the operation of ball screws, there are damage, life and the performance related to friction. As to the damage and life, though there is the problem of the load distribution on balls, the results of the research on rolling bearings are applied. The friction of ball screws consists of the friction of balls and a spiral groove, the friction of a ball and a ball, the friction in a ball-circulating mechanism and the viscous friction of lubricating oil. It was decided to synthetically examine the frictional performance of ball screws, such as driving torque, the variation of driving torque, efficiency, the formation of oil film and so on, under the working condition of wide range, using the screws with different accuracy and the nuts of various circuit number. The experimental setup and the processing of the experimental data, the driving performance of ball screws and so on are reported. (Kako, I.)

  8. An indentation depth-force sensing wheeled probe for abnormality identification during minimally invasive surgery.

    Science.gov (United States)

    Liu, H; Puangmali, P; Zbyszewski, D; Elhage, O; Dasgupta, P; Dai, J S; Seneviratne, L; Althoefer, K

    2010-01-01

    This paper presents a novel wheeled probe for the purpose of aiding a surgeon in soft tissue abnormality identification during minimally invasive surgery (MIS), compensating the loss of haptic feedback commonly associated with MIS. Initially, a prototype for validating the concept was developed. The wheeled probe consists of an indentation depth sensor employing an optic fibre sensing scheme and a force/torque sensor. The two sensors work in unison, allowing the wheeled probe to measure the tool-tissue interaction force and the rolling indentation depth concurrently. The indentation depth sensor was developed and initially tested on a homogenous silicone phantom representing a good model for a soft tissue organ; the results show that the sensor can accurately measure the indentation depths occurring while performing rolling indentation, and has good repeatability. To validate the ability of the wheeled probe to identify abnormalities located in the tissue, the device was tested on a silicone phantom containing embedded hard nodules. The experimental data demonstrate that recording the tissue reaction force as well as rolling indentation depth signals during rolling indentation, the wheeled probe can rapidly identify the distribution of tissue stiffness and cause the embedded hard nodules to be accurately located.

  9. Strain mapping under spherical indentations using transmission Kikuchi diffraction

    International Nuclear Information System (INIS)

    Cackett, A.; Hardie, C.; Wilkinson, A.; Dicks, K.

    2015-01-01

    Due to restrictions on both the specimen volumes available and the activity levels research facilities can handle, testing techniques on the micron-scale are very attractive for the study of irradiated material. However, the results of such small tests are convoluted by plasticity size-effects. Spherical nano-indentation is increasingly used to probe irradiated material, but to characterise the area of plastic deformation surrounding indentations a method capable of providing crystallographic information at extremely high spatial resolution is required. Transmission Kikuchi Diffraction (TKD) is a novel diffraction technique that can be performed in a scanning electron microscope. Using this technique, spatial resolutions below 10 nm have been achieved. Initial results, shown here, demonstrate the use of TKD in mapping the lattice rotations caused by indentation produced with a spherical diamond tip. With the addition of strain mapping software the plastic zone size was also evaluated for the first time using diffraction patterns generated via TKD. For a tip of radius 15 μm, inserted into Fe to a strain of 0.07, the plastic zone was observed to extend 1.3 μm to either side of the incident location of indentation and the deformation depth was approximately 0.5 μm. (authors)

  10. Methylated Fatty Acids from Heartwood and Bark of Pinus sylvestris, Abies alba, Picea abies, and Larix decidua: Effect of Strong Acid Treatment

    Directory of Open Access Journals (Sweden)

    Mohamed Zidan Mohamed Salem

    2015-09-01

    Full Text Available Methylated fatty acid (FA compounds in the heartwood and bark of some softwood species, specifically Pinus sylvestris, Abies alba, Picea abies, and Larix decidua, grown in the Czech Republic were evaluated. Strong H2SO4 was used for methylation of the lipids. The highest content of lipid was found in P. abies bark (40.132 mg/g o.d. sample, and the lowest content was in A. alba wood (11.027 mg/g o.d. sample. The highest concentration of FAs was observed in L. decidua bark. The highest percentages of FAs in wood of P. sylvestris were arachidic acid and oleic acid. In bark, the highest percentages of FAs were stearic acid, palmitic acid, and oleic acid. The FAs with the highest concentrations in A. alba wood were arachidic acid, palmitic acid, pentadecanoic acid, and margarinic, and those in bark were behenic acid, lignoceric acid, and arachidic acid. P. abies wood FAs showed arachidic acid, palmitic acid, and margarinic acid, and the bark contained lignoceric acid and arachidic acid. The FAs of L. decidua wood were arachidic acid, palmitic acid, and stearic acid, and in bark they were pentacosylic acid, docosahexaenoic acid (DHA, lignoceric acid, arachidic acid, and behenic acid. The lack of typically dominant unsaturated fatty acids (e.g. 18:1, 18:2, compared to literature values were attributed to the application of strong acid for the hydrolysis.

  11. Alternate approach for calculating hardness based on residual indentation depth: Comparison with experiments

    Science.gov (United States)

    Ananthakrishna, G.; K, Srikanth

    2018-03-01

    It is well known that plastic deformation is a highly nonlinear dissipative irreversible phenomenon of considerable complexity. As a consequence, little progress has been made in modeling some well-known size-dependent properties of plastic deformation, for instance, calculating hardness as a function of indentation depth independently. Here, we devise a method of calculating hardness by calculating the residual indentation depth and then calculate the hardness as the ratio of the load to the residual imprint area. Recognizing the fact that dislocations are the basic defects controlling the plastic component of the indentation depth, we set up a system of coupled nonlinear time evolution equations for the mobile, forest, and geometrically necessary dislocation densities. Within our approach, we consider the geometrically necessary dislocations to be immobile since they contribute to additional hardness. The model includes dislocation multiplication, storage, and recovery mechanisms. The growth of the geometrically necessary dislocation density is controlled by the number of loops that can be activated under the contact area and the mean strain gradient. The equations are then coupled to the load rate equation. Our approach has the ability to adopt experimental parameters such as the indentation rates, the geometrical parameters defining the Berkovich indenter, including the nominal tip radius. The residual indentation depth is obtained by integrating the Orowan expression for the plastic strain rate, which is then used to calculate the hardness. Consistent with the experimental observations, the increasing hardness with decreasing indentation depth in our model arises from limited dislocation sources at small indentation depths and therefore avoids divergence in the limit of small depths reported in the Nix-Gao model. We demonstrate that for a range of parameter values that physically represent different materials, the model predicts the three characteristic

  12. Individual ball possession in soccer.

    Directory of Open Access Journals (Sweden)

    Daniel Link

    Full Text Available This paper describes models for detecting individual and team ball possession in soccer based on position data. The types of ball possession are classified as Individual Ball Possession (IBC, Individual Ball Action (IBA, Individual Ball Control (IBC, Team Ball Possession (TBP, Team Ball Control (TBC und Team Playmaking (TPM according to different starting points and endpoints and the type of ball control involved. The machine learning approach used is able to determine how long the ball spends in the sphere of influence of a player based on the distance between the players and the ball together with their direction of motion, speed and the acceleration of the ball. The degree of ball control exhibited during this phase is classified based on the spatio-temporal configuration of the player controlling the ball, the ball itself and opposing players using a Bayesian network. The evaluation and application of this approach uses data from 60 matches in the German Bundesliga season of 2013/14, including 69,667 IBA intervals. The identification rate was F = .88 for IBA and F = .83 for IBP, and the classification rate for IBC was κ = .67. Match analysis showed the following mean values per match: TBP 56:04 ± 5:12 min, TPM 50:01 ± 7:05 min and TBC 17:49 ± 8:13 min. There were 836 ± 424 IBC intervals per match and their number was significantly reduced by -5.1% from the 1st to 2nd half. The analysis of ball possession at the player level indicates shortest accumulated IBC times for the central forwards (0:49 ± 0:43 min and the longest for goalkeepers (1:38 ± 0:58 min, central defenders (1:38 ± 1:09 min and central midfielders (1:27 ± 1:08 min. The results could improve performance analysis in soccer, help to detect match events automatically, and allow discernment of higher value tactical structures, which is based on individual ball possession.

  13. An Approximate Solution to the Plastic Indentation of Circular Sandwich Panels

    Science.gov (United States)

    Xie, Z.

    2018-05-01

    The plastic indentation response of circular sandwich panels loaded by the flat end of a cylinder is investigated employing a velocity field model. Using the principles of virtual velocities and minimum work, an expression for the indenter load in relation to the indenter displacement and displacement field of the deformed face sheet is derived. The analytical solutions obtained are in good agreement with those found by simulations using the ABAQUS code. The radial tensile strain of the deformed face sheet and the ratio of energy absorption rate of the core to that of the face sheet are discussed.

  14. Indentation size effects in the nano- and micro-hardness of a Fe-based bulk metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Xu, F., E-mail: xufu@xtu.edu.cn; Ding, Y.H.; Deng, X.H.; Zhang, P.; Long, Z.L.

    2014-10-01

    Hardness of a Fe-based bulk metallic glass (BMG) was evaluated by both atomic force microscopy (AFM) nanoindentation (nano-hardness) and instrumented indentation with a traditional indenter setup (micro-hardness) under different maximum loads at room temperature. The nano-hardness and the micro-hardness were found to be comparable. For both of the indentation methods, indentation size effect (ISE) is detected as increase in hardness with decrease in indentation peak load. It is proposed that strain rate dependent softening, loading history and the lag between free volume creation and mechanical softening should be responsible for the ISE in this BMG. Furthermore, ISE is found to be more significant in AFM nanoindentation than in instrumented indentation. This can be explained by taking into account the effect of exerted peak load and the face angle of the indenter in a qualitative manner.

  15. Arabidopsis ABI5 plays a role in regulating ROS homeostasis by activating CATALASE 1 transcription in seed germination.

    Science.gov (United States)

    Bi, Chao; Ma, Yu; Wu, Zhen; Yu, Yong-Tao; Liang, Shan; Lu, Kai; Wang, Xiao-Fang

    2017-05-01

    It has been known that ABA INSENSITIVE 5 (ABI5) plays a vital role in regulating seed germination. In the present study, we showed that inhibition of the catalase activity with 3-amino-1,2,4-triazole (3-AT) inhibits seed germination of Col-0, abi5 mutants and ABI5-overexpression transgenic lines. Compared with Col-0, the seeds of abi5 mutants showed more sensitive to 3-AT during seed germination, while the seeds of ABI5-overexpression transgenic lines showed more insensitive. H 2 O 2 showed the same effect on seed germination of Col-0, abi5 mutants and ABI5-overexpression transgenic lines as 3-AT. These results suggest that ROS is involved in the seed germination mediated by ABI5. Further, we observed that T-DNA insertion mutants of the three catalase members in Arabidopsis displayed 3-AT-insensitive or -hypersensitive phenotypes during seed germination, suggesting that these catalase members regulate ROS homeostasis in a highly complex way. ABI5 affects reactive oxygen species (ROS) homeostasis by affecting CATALASE expression and catalase activity. Furthermore, we showed that ABI5 directly binds to the CAT1 promoter and activates CAT1 expression. Genetic evidence supports the idea that CAT1 functions downstream of ABI5 in ROS signaling during seed germination. RNA-sequencing analysis indicates that the transcription of the genes involved in ROS metabolic process or genes responsive to ROS stress is impaired in abi5-1 seeds. Additionally, expression changes in some genes correlative to seed germination were showed due to the change in ABI5 expression under 3-AT treatment. Together, all the findings suggest that ABI5 regulates seed germination at least partly by affecting ROS homeostasis.

  16. Spherical indentation of a freestanding circular membrane revisited: Analytical solutions and experiments

    International Nuclear Information System (INIS)

    Jin, Congrui; Davoodabadi, Ali; Li, Jianlin; Wang, Yanli; Singler, Timothy

    2017-01-01

    Because of the development of novel micro-fabrication techniques to produce ultra-thin materials and increasing interest in thin biological membranes, in recent years, the mechanical characterization of thin films has received a significant amount of attention. To provide a more accurate solution for the relationship among contact radius, load and deflection, the fundamental and widely applicable problem of spherical indentation of a freestanding circular membrane have been revisited. The work presented here significantly extends the previous contributions by providing an exact analytical solution to the governing equations of Föppl–Hecky membrane indented by a frictionless spherical indenter. In this study, experiments of spherical indentation has been performed, and the exact analytical solution presented in this article is compared against experimental data from existing literature as well as our own experimental results.

  17. On the Measurement of Power Law Creep Parameters from Instrumented Indentation

    Science.gov (United States)

    Sudharshan Phani, P.; Oliver, W. C.; Pharr, G. M.

    2017-11-01

    Recently the measurement of the creep response of materials at small scales has received renewed interest largely because the equipment required to perform high-temperature nanomechanical testing has become available to an increasing number of researchers. Despite that increased access, there remain several significant experimental and modeling challenges in small-scale mechanical testing at elevated temperatures that are as yet unresolved. In this regard, relating the creep response observed with high-temperature instrumented indentation experiments to macroscopic uniaxial creep response is of great practical value. In this review, we present an overview of various methods currently being used to measure creep with instrumented indentation, with a focus on geometrically self-similar indenters, and their relative merits and demerits from an experimental perspective. A comparison of the various methods to use those instrumented indentation results to predict the uniaxial power law creep response of a wide range of materials will be presented to assess their validity.

  18. Residual stress estimation of ceramic thin films by X-ray diffraction and indentation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Atar, Erdem; Sarioglu, Cevat; Demirler, Ugur; Sabri Kayali, E.; Cimenoglu, Huseyin

    2003-05-15

    The residual stresses in ceramic thin films obtained by the indentation method have been found to be three times higher than those of the X-ray diffraction method. This discrepancy can be eliminated by setting the geometrical factor for the Vickers pyramid indenter to 1 in the relevant equation of the indentation method.

  19. Residual stress estimation of ceramic thin films by X-ray diffraction and indentation techniques

    International Nuclear Information System (INIS)

    Atar, Erdem; Sarioglu, Cevat; Demirler, Ugur; Sabri Kayali, E.; Cimenoglu, Huseyin

    2003-01-01

    The residual stresses in ceramic thin films obtained by the indentation method have been found to be three times higher than those of the X-ray diffraction method. This discrepancy can be eliminated by setting the geometrical factor for the Vickers pyramid indenter to 1 in the relevant equation of the indentation method

  20. Nondestructive/in-situ evaluation of the tensile properties in industrial facilities using indentation system

    International Nuclear Information System (INIS)

    Jang, Jae Il; Choi, Yeol; Son, Dong Il; Kwon, Dong Il

    2001-01-01

    Exact reliability evaluation and lifetime prediction through the in-field diagnosis of materials properties is needed for safe usage of degraded industrial structures. But, conventional standard testing methods having destructive procedures are not applicable to in-field assessment of mechanical property. Therefore, an advanced indentation technique was proposed for simple and non-destructive testing of in-field structures and for selected testing of local range such as heat affected zone and weldment. This test measures indentation load-depth curve during indentation and analyzes the mechanical properties related to deformation and fracture. First of all, flow properties such as yield strength, tensile strength and work hardening index can be evaluated through the analysis of the deformation behavior beneath the spherical indenter. Additionally, case studies of advanced indentation techniques are introduced.

  1. Ceramic Rail-Race Ball Bearings

    Science.gov (United States)

    Balzer, Mark A.; Mungas, Greg S.; Peters, Gregory H.

    2010-01-01

    Non-lubricated ball bearings featuring rail races have been proposed for use in mechanisms that are required to function in the presence of mineral dust particles in very low-pressure, dry environments with extended life. Like a conventional ball bearing, the proposed bearing would include an inner and an outer ring separated by balls in rolling contact with the races. However, unlike a conventional ball bearing, the balls would not roll in semi-circular or gothic arch race grooves in the rings: instead, the races would be shaped to form two or more rails (see figure). During operation, the motion of the balls would push dust particles into the spaces between the rails where the particles could not generate rolling resistance for the balls

  2. Puncture mechanics of soft elastomeric membrane with large deformation by rigid cylindrical indenter

    Science.gov (United States)

    Liu, Junjie; Chen, Zhe; Liang, Xueya; Huang, Xiaoqiang; Mao, Guoyong; Hong, Wei; Yu, Honghui; Qu, Shaoxing

    2018-03-01

    Soft elastomeric membrane structures are widely used and commonly found in engineering and biological applications. Puncture is one of the primary failure modes of soft elastomeric membrane at large deformation when indented by rigid objects. In order to investigate the puncture failure mechanism of soft elastomeric membrane with large deformation, we study the deformation and puncture failure of silicone rubber membrane that results from the continuous axisymmetric indentation by cylindrical steel indenters experimentally and analytically. In the experiment, effects of indenter size and the friction between the indenter and the membrane on the deformation and puncture failure of the membrane are investigated. In the analytical study, a model within the framework of nonlinear field theory is developed to describe the large local deformation around the punctured area, as well as to predict the puncture failure of the membrane. The deformed membrane is divided into three parts and the friction contact between the membrane and indenter is modeled by Coulomb friction law. The first invariant of the right Cauchy-Green deformation tensor I1 is adopted to predict the puncture failure of the membrane. The experimental and analytical results agree well. This work provides a guideline in designing reliable soft devices featured with membrane structures, which are present in a wide variety of applications.

  3. Functional analysis of the isoforms of an ABI3-like factor of Pisum sativum generated by alternative splicing.

    Science.gov (United States)

    Gagete, Andrés P; Riera, Marta; Franco, Luis; Rodrigo, M Isabel

    2009-01-01

    At least seven isoforms (PsABI3-1 to PsABI3-7) of a putative, pea ABI3-like factor, originated by alternative splicing, have been identified after cDNA cloning. A similar variability had previously only been described for monocot genes. The full-length isoform, PsABI3-1, contains the typical N-terminal acidic domains and C-terminal basic subdomains, B1 to B3. Reverse transcriptase-PCR analysis revealed that the gene is expressed just in seeds, starting at middle embryogenesis; no gene products are observed in embryo axes after 18 h post-imbibition although they are more persistent in cotyledons. The activity of the isoforms was studied by yeast one-hybrid assays. When yeast was transformed with the isoforms fused to the DNA binding domain of Gal4p, only the polypeptides PsABI3-2 and PsABI3-7 failed to complement the activity of Gal4p. Acidic domains A1 and A2 exhibit transactivating activity, but the former requires a small C-terminal extension to be active. Yeast two-hybrid analysis showed that PsABI3 is able to heterodimerize with Arabidopsis thaliana ABI5, thus proving that PsABI3 is functionally active. The minimum requirement for the interaction PsABI3-AtABI5 is the presence of the subdomain B1 with an extension, 81 amino acids long, at their C-terminal side. Finally, a transient onion transformation assay showed that both the active PsABI3-1 and the inactive PsABI3-2 isoforms are localized to nuclei. Considering that the major isoforms remain approximately constant in developing seeds although their relative proportion varied, the possible role of splicing in the regulatory network of ABA signalling is discussed.

  4. Effect of a ball skill intervention on children's ball skills and cognitive functions.

    Science.gov (United States)

    Westendorp, Marieke; Houwen, Suzanne; Hartman, Esther; Mombarg, Remo; Smith, Joanne; Visscher, Chris

    2014-02-01

    This study examined the effect of a 16-wk ball skill intervention on the ball skills, executive functioning (in terms of problem solving and cognitive flexibility), and in how far improved executive functioning leads to improved reading and mathematics performance of children with learning disorders. Ninety-one children with learning disorders (age 7-11 yr old) were recruited from six classes in a Dutch special-needs primary school. The six classes were assigned randomly either to the intervention or to the control group. The control group received the school's regular physical education lessons. In the intervention group, ball skills were practiced in relative static, simple settings as well as in more dynamic and cognitive demanding settings. Both groups received two 40-min lessons per week. Children's scores on the Test of Gross Motor Development-2 (ball skills), Tower of London (problem solving), Trail Making Test (cognitive flexibility), Dutch Analysis of Individual Word Forms (reading), and the Dutch World in Numbers test (mathematics) at pretest, posttest, and retention test were used to examine intervention effects. The results showed that the intervention group significantly improved their ball skills, whereas the control group did not. No intervention effects were found on the cognitive parameters. However, within the intervention group, a positive relationship (r = 0.41, P = 0.007) was found between the change in ball skill performance and the change in problem solving: the larger children's improvement in ball skills, the larger their improvement in problem solving. The present ball skill intervention is an effective instrument to improve the ball skills of children with learning disorders. Further research is needed to examine the effect of the ball skill intervention on the cognitive parameters in this population.

  5. Thinking Allowed: Use of Egocentric Speech after Acquired Brain Injury (ABI)

    Science.gov (United States)

    Rees, Sian A.; Skidmore, David

    2011-01-01

    This paper explores the use of thinking aloud made by young people who have sustained a severe acquired brain injury (ABI). The phenomenon is compared with the concepts of egocentric speech and inner speech before the form of thinking aloud by pupils with ABI is examined. It is suggested that by using thinking aloud, this group of pupils is able…

  6. Dealing with imperfection: quantifying potential length scale artefacts from nominally spherical indenter probes

    International Nuclear Information System (INIS)

    Constantinides, G; Silva, E C C M; Blackman, G S; Vliet, K J Van

    2007-01-01

    Instrumented nanoindenters are commonly employed to extract elastic, plastic or time-dependent mechanical properties of the indented material surface. In several important cases, accurate determination of the indenter probe radii is essential for the proper analytical interpretation of the experimental response, and it cannot be circumvented by an experimentally determined expression for the contact area as a function of depth. Current approaches quantify the indenter probe radii via inference from a series of indents on a material with known elastic modulus (e.g., fused quartz) or through the fitting of two-dimensional projected images acquired via atomic force microscopy (AFM) or scanning electron microscopy (SEM) images. Here, we propose a more robust methodology, based on concepts of differential geometry, for the accurate determination of three-dimensional indenter probe geometry. The methodology is presented and demonstrated for four conospherical indenters with probe radii of the order of 1-10 μm. The deviation of extracted radii with manufacturer specifications is emphasized and the limits of spherical approximations are presented. All four probes deviate from the assumed spherical geometry, such that the effective radii are not independent of distance from the probe apex. Significant errors in interpretation of material behaviour will result if this deviation is unaccounted for during the analysis of indentation load-depth responses obtained from material surfaces of interest, including observation of an artificial length scale that could be misinterpreted as an effect attributable to material length scales less than tens of nanometres in size or extent

  7. Spherical Indentation Techniques for Creep Property Evaluation Considering Transient Creep

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Dongkyu; Kim, Minsoo; Lee, Hyungyil [Sogang Univ., Seoul, (Korea, Republic of); Lee, Jin Haeng [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-11-15

    Creep through nanoindentations has attracted increasing research attention in recent years. Many studies related to indentation creep tests, however, have simply focused on the characteristics of steady-state creep, and there exist wide discrepancies between the uniaxial test and the indentation test. In this study, we performed a computational simulation of spherical indentations, and we proposed a method for evaluating the creep properties onsidering transient creep. We investigated the material behavior with variation of creep properties and expressed it using regression equations for normalized variables. We finally developed a program to evaluate the creep properties considering transient creep. By using the proposed method, we successfully obtained creep exponents with an average error less than 1.1 and creep coefficients with an average error less than 2.3 from the load-depth curve.

  8. Spherical Indentation Techniques for Creep Property Evaluation Considering Transient Creep

    International Nuclear Information System (INIS)

    Lim, Dongkyu; Kim, Minsoo; Lee, Hyungyil; Lee, Jin Haeng

    2013-01-01

    Creep through nanoindentations has attracted increasing research attention in recent years. Many studies related to indentation creep tests, however, have simply focused on the characteristics of steady-state creep, and there exist wide discrepancies between the uniaxial test and the indentation test. In this study, we performed a computational simulation of spherical indentations, and we proposed a method for evaluating the creep properties onsidering transient creep. We investigated the material behavior with variation of creep properties and expressed it using regression equations for normalized variables. We finally developed a program to evaluate the creep properties considering transient creep. By using the proposed method, we successfully obtained creep exponents with an average error less than 1.1 and creep coefficients with an average error less than 2.3 from the load-depth curve

  9. ABI4 regulates primary seed dormancy by regulating the biogenesis of abscisic acid and gibberellins in arabidopsis.

    Directory of Open Access Journals (Sweden)

    Kai Shu

    2013-06-01

    Full Text Available Seed dormancy is an important economic trait for agricultural production. Abscisic acid (ABA and Gibberellins (GA are the primary factors that regulate the transition from dormancy to germination, and they regulate this process antagonistically. The detailed regulatory mechanism involving crosstalk between ABA and GA, which underlies seed dormancy, requires further elucidation. Here, we report that ABI4 positively regulates primary seed dormancy, while negatively regulating cotyledon greening, by mediating the biogenesis of ABA and GA. Seeds of the Arabidopsis abi4 mutant that were subjected to short-term storage (one or two weeks germinated significantly more quickly than Wild-Type (WT, and abi4 cotyledons greened markedly more quickly than WT, while the rates of germination and greening were comparable when the seeds were subjected to longer-term storage (six months. The ABA content of dry abi4 seeds was remarkably lower than that of WT, but the amounts were comparable after stratification. Consistently, the GA level of abi4 seeds was increased compared to WT. Further analysis showed that abi4 was resistant to treatment with paclobutrazol (PAC, a GA biosynthesis inhibitor, during germination, while OE-ABI4 was sensitive to PAC, and exogenous GA rescued the delayed germination phenotype of OE-ABI4. Analysis by qRT-PCR showed that the expression of genes involved in ABA and GA metabolism in dry and germinating seeds corresponded to hormonal measurements. Moreover, chromatin immunoprecipitation qPCR (ChIP-qPCR and transient expression analysis showed that ABI4 repressed CYP707A1 and CYP707A2 expression by directly binding to those promoters, and the ABI4 binding elements are essential for this repression. Accordingly, further genetic analysis showed that abi4 recovered the delayed germination phenotype of cyp707a1 and cyp707a2 and further, rescued the non-germinating phenotype of ga1-t. Taken together, this study suggests that ABI4 is a key

  10. Stress Distribution around Laser-Welded Cutting Wheels Using a Spherical Indentation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yun Hee; Lee, Wan Kyu; Jeong, In Hyeon; Nahm, Seung Hoon [KRISS, Daejeon (Korea, Republic of)

    2008-04-15

    A spherical indentation has been proposed as a nondestructive method of measuring local residual stress field in laser-voided joints. The apparent yield strengths interpreted from the spherical indentation data of as-welded cutting wheel were compared with the intrinsic yield strengths measured at nearly equivalent locations in annealed wheel. Their difference along the distance from the welding line is welding stress distribution because the intrinsic yield strength is invariant regardless of the elastic residual stress. The spherical indentations show that the laser-welded diamond cutting wheel displays a 10 min-wide distribution of the welding residual stress and has peak compressive and tensile stresses in the shank and tip regions, respectively.

  11. Application of Indenting Method for Calculation of Activation Energy

    International Nuclear Information System (INIS)

    Kim, Jong-Seog; Kim, Tae-Ryong

    2006-01-01

    For the calculation of activation energy of cable materials, we used to apply the break-elongation test in accordance with ASTM D412(Stand Test Methods for Rubber Properties in Tension). For the cable jacket and insulation which have regular thickness, break-elongation test had been preferred since it showed linear character in the activation energy curve. But, for the cable which has irregular thickness or rugged surface of cable inside, break-elongation test show scattered data which can not be used for the calculation of activation energy. It is not easy to prepare break-elongation specimen for the cable smaller than 13mm diameter in accordance with ASTM D412. In the cases of above, we sometime use TGA method which heat the specimen from 50 .deg. C to 700 .deg. C at heating rates of 10, 15, 20 .deg. C/min. But, TGA is suspected for the representative of natural aging in the plant since it measure the weight decreasing rate during burning which may have different aging mechanism with that of natural aging. To solve above problems, we investigated alternatives such as indenter test. Indenter test is very convenient since it does not ask for a special test specimen as the break-elongation test does. Regular surface of cable outside is the only requirement of indenter test. Experience of activation energy calculation by using the indenter test is described herein

  12. Optical and Acoustic Sensor-Based 3D Ball Motion Estimation for Ball Sport Simulators †

    Directory of Open Access Journals (Sweden)

    Sang-Woo Seo

    2018-04-01

    Full Text Available Estimation of the motion of ball-shaped objects is essential for the operation of ball sport simulators. In this paper, we propose an estimation system for 3D ball motion, including speed and angle of projection, by using acoustic vector and infrared (IR scanning sensors. Our system is comprised of three steps to estimate a ball motion: sound-based ball firing detection, sound source localization, and IR scanning for motion analysis. First, an impulsive sound classification based on the mel-frequency cepstrum and feed-forward neural network is introduced to detect the ball launch sound. An impulsive sound source localization using a 2D microelectromechanical system (MEMS microphones and delay-and-sum beamforming is presented to estimate the firing position. The time and position of a ball in 3D space is determined from a high-speed infrared scanning method. Our experimental results demonstrate that the estimation of ball motion based on sound allows a wider activity area than similar camera-based methods. Thus, it can be practically applied to various simulations in sports such as soccer and baseball.

  13. The bowling balls

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    10 November 1972: CERN’s Bent Stumpe places an order for 12 bowling balls for a total cost of 95 US dollars. Although not evident at first sight, he is buying the heart of some of the first tracking devices to be used in the SPS control room. Today, Bent Stumpe’s device would be called a desktop mouse…   The first order for 4 bowling balls later changed to 12 balls. The bowling balls became the heart of Bent Stumpe's mouse. Almost 40 years ago, the web, Wikipedia and Google did not exist and it was much more difficult to know whether other people in other parts of the world or even in the same laboratory were facing the same problems or developing the same tools. At that time, Bent Stumpe was an electronics engineer, newly recruited to work on developments for the SPS Central Control room. One of the things his supervisor asked him to build as soon as possible was a device to control a pointer on a screen, also called a tracker ball. The heart of the device was the...

  14. Abscisic Acid Antagonizes Ethylene Production through the ABI4-Mediated Transcriptional Repression of ACS4 and ACS8 in Arabidopsis.

    Science.gov (United States)

    Dong, Zhijun; Yu, Yanwen; Li, Shenghui; Wang, Juan; Tang, Saijun; Huang, Rongfeng

    2016-01-04

    Increasing evidence has revealed that abscisic acid (ABA) negatively modulates ethylene biosynthesis, although the underlying mechanism remains unclear. To identify the factors involved, we conducted a screen for ABA-insensitive mutants with altered ethylene production in Arabidopsis. A dominant allele of ABI4, abi4-152, which produces a putative protein with a 16-amino-acid truncation at the C-terminus of ABI4, reduces ethylene production. By contrast, two recessive knockout alleles of ABI4, abi4-102 and abi4-103, result in increased ethylene evolution, indicating that ABI4 negatively regulates ethylene production. Further analyses showed that expression of the ethylene biosynthesis genes ACS4, ACS8, and ACO2 was significantly decreased in abi4-152 but increased in the knockout mutants, with partial dependence on ABA. Chromatin immunoprecipitation-quantitative PCR assays showed that ABI4 directly binds the promoters of these ethylene biosynthesis genes and that ABA enhances this interaction. A fusion protein containing the truncated ABI4-152 peptide accumulated to higher levels than its full-length counterpart in transgenic plants, suggesting that ABI4 is destabilized by its C terminus. Therefore, our results demonstrate that ABA negatively regulates ethylene production through ABI4-mediated transcriptional repression of the ethylene biosynthesis genes ACS4 and ACS8 in Arabidopsis. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  15. The spinning ball spiral

    International Nuclear Information System (INIS)

    Dupeux, Guillaume; Le Goff, Anne; Quere, David; Clanet, Christophe

    2010-01-01

    We discuss the trajectory of a fast revolving solid ball moving in a fluid of comparable density. As the ball slows down owing to drag, its trajectory follows an exponential spiral as long as the rotation speed remains constant: at the characteristic distance L where the ball speed is significantly affected by the drag, the bending of the trajectory increases, surprisingly. Later, the rotation speed decreases, which makes the ball follow a second kind of spiral, also described in the paper. Finally, the use of these highly curved trajectories is shown to be relevant to sports.

  16. Compact Q-balls

    Energy Technology Data Exchange (ETDEWEB)

    Bazeia, D., E-mail: bazeia@fisica.ufpb.br [Departamento de Física, Universidade Federal da Paraíba, 58051-970 João Pessoa, PB (Brazil); Losano, L.; Marques, M.A. [Departamento de Física, Universidade Federal da Paraíba, 58051-970 João Pessoa, PB (Brazil); Menezes, R. [Departamento de Ciências Exatas, Universidade Federal da Paraíba, 58297-000 Rio Tinto, PB (Brazil); Departamento de Física, Universidade Federal de Campina Grande, 58109-970 Campina Grande, PB (Brazil); Rocha, R. da [Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, 09210-580 Santo André (Brazil)

    2016-07-10

    In this work we deal with non-topological solutions of the Q-ball type in two space–time dimensions, in models described by a single complex scalar field that engenders global symmetry. The main novelty is the presence of stable Q-balls solutions that live in a compact interval of the real line and appear from a family of models controlled by two distinct parameters. We find analytical solutions and study their charge and energy, and show how to control the parameters to make the Q-balls classically and quantum mechanically stable.

  17. [Comparison of cell elasticity analysis methods based on atomic force microscopy indentation].

    Science.gov (United States)

    Wang, Zhe; Hao, Fengtao; Chen, Xiaohu; Yang, Zhouqi; Ding, Chong; Shang, Peng

    2014-10-01

    In order to investigate in greater detail the two methods based on Hertz model for analyzing force-distance curve obtained by atomic force microscopy, we acquired the force-distance curves of Hela and MCF-7 cells by atomic force microscopy (AFM) indentation in this study. After the determination of contact point, Young's modulus in different indentation depth were calculated with two analysis methods of "two point" and "slope fitting". The results showed that the Young's modulus of Hela cell was higher than that of MCF-7 cell,which is in accordance with the F-actin distribution of the two types of cell. We found that the Young's modulus of the cells was decreased with increasing indentation depth and the curve trends by "slope fitting". This indicated that the "slope fitting" method could reduce the error caused by the miscalculation of contact point. The purpose of this study was to provide a guidance for researcher to choose an appropriate method for analyzing AFM indentation force-distance curve.

  18. Transactivation of the Brassica napus napin promoter by ABI3 requires interaction of the conserved B2 and B3 domains of ABI3 with different cis-elements: B2 mediates activation through an ABRE, whereas B3 interacts with an RY/G-box.

    Science.gov (United States)

    Ezcurra, I; Wycliffe, P; Nehlin, L; Ellerström, M; Rask, L

    2000-10-01

    The transcriptional activator ABI3 is a key regulator of gene expression during embryo maturation in crucifers. In monocots, the related VP1 protein regulates the Em promoter synergistically with abscisic acid (ABA). We identified cis-elements in the Brassica napus napin napA promoter mediating regulation by ABI3 and ABA, by analyzing substitution mutation constructs of napA in transgenic tobacco plantlets ectopically expressing ABI3. In transient analysis using particle bombardment of tobacco leaf sections, a tetramer of the distB ABRE (abscisic acid-responsive element) mediated transactivation by ABI3 and ABI3-dependent response to ABA, whereas a tetramer of the composite RY/G complex, containing RY repeats and a G-box, mediated only ABA-independent transactivation by ABI3. Deletion of the conserved B2 and B3 domains of ABI3 abolished transactivation of napA by ABI3. The two domains of ABI3 interact with different cis-elements: B2 is necessary for ABA-independent and ABA-dependent activations through the distB ABRE, whereas B3 interacts with the RY/G complex. Thus B2 mediates the interaction of ABI3 with the protein complex at the ABRE. The regulation of napA by ABI3 differs from Em regulation by VP1, in that the B3 domain of ABI3 is essential for the ABA-dependent regulation of napA.

  19. Analysis of the equivalent indenter concept used to extract Young’s modulus from a nano-indentation test: some new insights into the Oliver–Pharr method

    DEFF Research Database (Denmark)

    Andriollo, Tito; Thorborg, Jesper; Hattel, Jesper Henri

    2017-01-01

    is initially used to prove that the shape of the axisymmetric equivalent indenter can be regarded as a material property, provided that size-effects are negligible. Subsequently, it is shown that such shape can effectively be employed to describe the nano-indentation unloading stage by means of Sneddon....... This provides a new physical explanation for the relatively good accuracy of the method even in presence of a non-negligible residual contact impression on the sample....

  20. Review of fracture properties of nuclear materials determined by Hertzian indentation

    International Nuclear Information System (INIS)

    Routbort, J.; Matzke, H.

    1985-01-01

    A brief description of the determination of the surface fracture energy and the fracture toughness from a Hertzian indentation test is given. A number of theoretical and experimental problems are discussed. Results obtained on a variety of nuclear fuels and nuclear-waste-containment materials are reviewed and compared with values measured by other techniques. The Hertzian indentation test yields reliable fracture parameters

  1. Simultaneous estimation of Poisson's ratio and Young's modulus using a single indentation: a finite element study

    International Nuclear Information System (INIS)

    Zheng, Y P; Choi, A P C; Ling, H Y; Huang, Y P

    2009-01-01

    Indentation is commonly used to determine the mechanical properties of different kinds of biological tissues and engineering materials. With the force–deformation data obtained from an indentation test, Young's modulus of the tissue can be calculated using a linear elastic indentation model with a known Poisson's ratio. A novel method for simultaneous estimation of Young's modulus and Poisson's ratio of the tissue using a single indentation was proposed in this study. Finite element (FE) analysis using 3D models was first used to establish the relationship between Poisson's ratio and the deformation-dependent indentation stiffness for different aspect ratios (indentor radius/tissue original thickness) in the indentation test. From the FE results, it was found that the deformation-dependent indentation stiffness linearly increased with the deformation. Poisson's ratio could be extracted based on the deformation-dependent indentation stiffness obtained from the force–deformation data. Young's modulus was then further calculated with the estimated Poisson's ratio. The feasibility of this method was demonstrated in virtue of using the indentation models with different material properties in the FE analysis. The numerical results showed that the percentage errors of the estimated Poisson's ratios and the corresponding Young's moduli ranged from −1.7% to −3.2% and 3.0% to 7.2%, respectively, with the aspect ratio (indentor radius/tissue thickness) larger than 1. It is expected that this novel method can be potentially used for quantitative assessment of various kinds of engineering materials and biological tissues, such as articular cartilage

  2. Study of microcracks morphology produced by Vickers indentation on AISI 1045 borided steels

    International Nuclear Information System (INIS)

    Campos, I.; Ramirez, G.; VillaVelazquez, C.; Figueroa, U.; Rodriguez, G.

    2008-01-01

    In this work, we analyzed the roughness morphology of indentation microcracks produced by the Vickers microindentation in the iron boride Fe 2 B. Using the paste boriding process, the boride layers were formed at the surface of AISI 1045 steels. The diffusion processes were carried out with 5 mm of boron paste thickness over the substrate surface at three different temperatures (1193, 1223 and 1273 K) with two different time exposures. The indentations in each Fe 2 B layer were made using a constant load of 200 g at four different distances from the surface. The fracture behavior of the Fe 2 B borided phase is found to be brittle in nature. The profiles of microcracks formed at the corners of the indentations were obtained using the scanning electronic microscopy and were analyzed within the framework of fractal geometry. We found that all indentation microcracks display a self-affine invariance characterized by the same roughness (Hurst) exponent H = 0.8 ± 0.1. The effect of the self-affine roughness of indentation microcracks on the measured fracture toughness is discussed within the framework of the mechanics of self-affine cracks. It is pointed out that the arrest of indentation microcracks is controlled by the fractal fracture toughness, which for the Fe 2 B borided phase is found to be K fc = 0.42 ± 0.02 MPa m 0.75 at all distances from the surface

  3. Two-step method to evaluate equibiaxial residual stress of metal surface based on micro-indentation tests

    International Nuclear Information System (INIS)

    Nishikawa, Masaaki; Soyama, Hitoshi

    2011-01-01

    Highlights: → The sensitivity to residual stress was improved by selecting the depth parameter. → Residual stress could be obtained while determining the effect of unknown parameters. → The estimated residual stress agreed well with those of X-ray diffraction. -- Abstract: The present study proposed a method to evaluate the equibiaxial compressive residual stress of a metal surface by means of a depth-sensing indentation method using a spherical indenter. Inverse analysis using the elastic-plastic finite-element model for an indentation test was established to evaluate residual stress from the indentation load-depth curve. The proposed inverse analysis utilizes two indentation test results for a reference specimen whose residual stress is already known and for a target specimen whose residual stress is unknown, in order to exclude the effect of other unknown mechanical properties, such as Young's modulus and yield stress. Residual stress estimated by using the indentation method is almost identical to that measured by X-ray diffraction for indentation loads of 0.49-0.98 N. Therefore, it can be concluded that the proposed method can effectively evaluate residual stress on metal surface.

  4. Indentations and Starting Points in Traveling Sales Tour Problems: Implications for Theory

    Science.gov (United States)

    MacGregor, James N.

    2012-01-01

    A complete, non-trivial, traveling sales tour problem contains at least one "indentation", where nodes in the interior of the point set are connected between two adjacent nodes on the boundary. Early research reported that human tours exhibited fewer such indentations than expected. A subsequent explanation proposed that this was because…

  5. Competing indentation deformation mechanisms in glass using different strengthening methods

    Directory of Open Access Journals (Sweden)

    Jian Luo

    2016-11-01

    Full Text Available Chemical strengthening via ion exchange, thermal tempering, and lamination are proven techniques for strengthening of oxide glasses. For each of these techniques, the strengthening mechanism is conventionally ascribed to the linear superposition of the compressive stress profile on the glass surface. However, in this work we use molecular dynamics simulations to reveal the underlying indentation deformation mechanism beyond the simple linear superposition of compressive and indentation stresses. In particular, the plastic zone can be dramatically different from the commonly assumed hemispherical shape, which leads to a completely different stress field and resulting crack system. We show that the indentation-induced fracture is controlled by two competing mechanisms: the compressive stress itself and a potential reduction in free volume that can increase the driving force for crack formation. Chemical strengthening via ion exchange tends to escalate the competition between these two effects, while thermal tempering tends to reduce it. Lamination of glasses with differential thermal expansion falls in between. The crack system also depends on the indenter geometry and the loading stage, i.e., loading vs. after unloading. It is observed that combining thermal tempering or high free volume content with ion exchange or lamination can impart a relatively high compressive stress and reduce the driving force for crack formation. Therefore, such a combined approach might offer the best overall crack resistance for oxide glasses.

  6. Sub-micron indent induced plastic deformation in copper and irradiated steel; Deformation plastique induite par l'essai d'indentation submicronique, dans le cuivre et l'acier 316L irradie

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Ch

    1999-07-01

    In this work we aim to study the indent induced plastic deformation. For this purpose, we have developed a new approach, whereby the indentation curves provides the mechanical behaviour, while the deformation mechanisms are observed thanks to Transmission Electron Microscopy (TEM). In order to better understand how an indent induced dislocation microstructure forms, numerical modeling of the indentation process at the scale of discrete dislocations has been worked out as well. Validation of this modeling has been performed through direct comparison of the computed microstructures with TEM micrographs of actual indents in pure Cu (001]. Irradiation induced modifications of mechanical behaviour of ion irradiated 316L have been investigated, thanks to the mentioned approach. An important hardening effect was reported from indentation data (about 50%), on helium irradiated 316L steel. TEM observations of the damage zone clearly show that this behaviour is associated with the presence of He bubbles. TEM observations of the indent induced plastic zone also showed that the extent of the plastic zone is strongly correlated with hardness, that is to say: harder materials gets a smaller plastic zone. These results thus clearly established that the selected procedure can reveal any irradiation induced hardening in sub-micron thick ion irradiated layers. The behaviour of krypton irradiated 316L steel is somewhat more puzzling. In one hand indeed, a strong correlation between the defect cluster size and densities on the irradiation temperature is observed in the 350 deg. C - 600 deg. C range, thanks to TEM observations of the damage zone. On the other hand, irradiation induced hardening reported from indentation data is relatively small (about 10%) and shows no dependence upon the irradiation temperature (within the mentioned range). In addition, it has been shown that the reported hardening vanishes following appropriate post-irradiation annealing, although most of the TEM

  7. Activation of mRNA translation by phage protein and low temperature: the case of Lactococcus lactis abortive infection system AbiD1

    Directory of Open Access Journals (Sweden)

    Ehrlich S Dusko

    2009-01-01

    Full Text Available Abstract Background Abortive infection (Abi mechanisms comprise numerous strategies developed by bacteria to avoid being killed by bacteriophage (phage. Escherichia coli Abis are considered as mediators of programmed cell death, which is induced by infecting phage. Abis were also proposed to be stress response elements, but no environmental activation signals have yet been identified. Abis are widespread in Lactococcus lactis, but regulation of their expression remains an open question. We previously showed that development of AbiD1 abortive infection against phage bIL66 depends on orf1, which is expressed in mid-infection. However, molecular basis for this activation remains unclear. Results In non-infected AbiD1+ cells, specific abiD1 mRNA is unstable and present in low amounts. It does not increase during abortive infection of sensitive phage. Protein synthesis directed by the abiD1 translation initiation region is also inefficient. The presence of the phage orf1 gene, but not its mutant AbiD1R allele, strongly increases abiD1 translation efficiency. Interestingly, cell growth at low temperature also activates translation of abiD1 mRNA and consequently the AbiD1 phenotype, and occurs independently of phage infection. There is no synergism between the two abiD1 inducers. Purified Orf1 protein binds mRNAs containing a secondary structure motif, identified within the translation initiation regions of abiD1, the mid-infection phage bIL66 M-operon, and the L. lactis osmC gene. Conclusion Expression of the abiD1 gene and consequently AbiD1 phenotype is specifically translationally activated by the phage Orf1 protein. The loss of ability to activate translation of abiD1 mRNA determines the molecular basis for phage resistance to AbiD1. We show for the first time that temperature downshift also activates abortive infection by activation of abiD1 mRNA translation.

  8. Analysis of the Indentation Size Effect in the Microhardness Measurements in B6O

    OpenAIRE

    Ronald Machaka; Trevor E. Derry; Iakovos Sigalas; Mathias Herrmann

    2011-01-01

    The Vickers microhardness measurements of boron suboxide (B6O) ceramics prepared by uniaxial hot-pressing was investigated at indentation test loads in the range from 0.10 to 2.0 kgf. Results from the investigation indicate that the measured microhardness exhibits an indentation load dependence. Based on the results, we present a comprehensive model intercomparison study of indentation size effects (ISEs) in the microhardness measurements of hot-pressed B6O discussed using existing models, th...

  9. Indentation Behavior of Permanently Densified Oxide Glasses

    DEFF Research Database (Denmark)

    Bechgaard, Tobias Kjær; Januchta, Kacper; Kapoor, Saurabh

    -induced changes in density, structure, and indentation behavior of a range of oxide glasses, including silicates, borates, and phosphates. The effect of compression on the structure is analyzed through both Raman and NMR spectroscopy, while the mechanical properties are investigated using Vickers micro......Hot isostatic compression can be used as a post treatment method to tune the properties of glass materials as well as to obtain improved understanding of the pressure-induced structural changes and densification mechanisms, e.g., during sharp contact loading. Here, we review the pressure......-indentation. The magnitude of the changes in all macroscopic properties (e.g., density, hardness, and crack resistance) is found to correlate well with the magnitude and type of structural change induced by hot compression. We show that the structural changes depend largely on the type of network former, the coordination...

  10. Indentation of Ellipsoidal and Cylindrical Elastic Shells

    KAUST Repository

    Vella, Dominic; Ajdari, Amin; Vaziri, Ashkan; Boudaoud, Arezki

    2012-01-01

    Thin shells are found in nature at scales ranging from viruses to hens' eggs; the stiffness of such shells is essential for their function. We present the results of numerical simulations and theoretical analyses for the indentation of ellipsoidal

  11. GC/MS Analysis of Oil Extractives from Wood and Bark of Pinus sylvestris, Abies alba, Picea abies, and Larix decidua

    Directory of Open Access Journals (Sweden)

    Mohamed Zidan Mohamed Salem

    2015-09-01

    Full Text Available Wood and bark oil extractives components (OECs of Pinus sylvestris, Abies alba, Picea abies, and Larix decidua grown in the Czech Republic were analyzed using gas chromatography/ mass spectrometry (GC/MS. The analysis showed the presence of monoterpene, sesquiterpene, diterpenoids, and resin acids. The highest percentages of OECs in the wood of P. sylvestris were α-fenchyl alcohol (26.04%, D-fenchyl alcohol (12.39%, and L-borneol (8.81%; the OECs in the bark included α-methyl-γ-butyrolactone (31.88% and isodecyl octyl phthalate (15.85%. The most frequently occurring OEC in A. alba wood were 4-hydroxy-4-methyl-2-pentanone (73.36%, α-cedrol (10.08%, and 2,6-dimethyl-1,3,6-heptatriene (7.35%; the most OECs in the bark were di(2-ethylhexylphthalate (59.83%, methyl cyclopentane (16.63%, and 13-epimanool (6.31%. P. abies wood OECs included 4-hydroxy-4-methyl-2-pentanone (29.42%, α-cedrol (26.98%, ∆3-carene (6.08%, and terpinen-4-ol (5.42%; the most OECs in the bark were di(2-ethylhexylphthalate (30.91%, cyclohexane (12.89%, caryophyllene oxide (8.90%, and α-pinene (4.59%. OECs of L. decidua wood were α-terpineol (26.06%, isoborneol (14.12%, camphene (11.78%, D-fenchyl alcohol (10.39%, and larixol (4.85%; OECs in the bark were larixol (33.29%, phthalic acid mono-2-ethylhexyl ester (16.96%, 13-epimanool (15.40%, and cyclohexane (8.44%.

  12. Nanoscale indent formation in shape memory polymers using a heated probe tip

    Energy Technology Data Exchange (ETDEWEB)

    Yang, F [Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801 (United States); Wornyo, E [School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Gall, K [Department of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States); King, W P [Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801 (United States)

    2007-07-18

    This paper presents experimental investigation of nanoscale indentation formation in shape memory polymers. The polymers were synthesized by photopolymerizing a tert-butyl acrylate (tBA) monomer with a poly(ethylene glycol dimethacrylate) (PEGDMA) crosslinker. The concentration and the molecular weight of the crosslinker were varied to produce five polymers with tailored properties. Nanoscale indentations were formed on the polymer surfaces by using a heated atomic force microscope (AFM) cantilever at various temperatures near or above the glass transition (between 84 and 215 deg. C) and a range of heating durations from 100 {mu}s to 8 ms. The images of the indents were obtained with the same probe tip at room temperature. The contact pressure, a measure of transient hardness, was derived from the indentation height data as a function of time and temperature for different polymers. With increasing crosslinker molecular weight and decreasing crosslinker concentration, the contact pressures decreased at a fixed maximum load due to increased crosslink spacing in the polymer system. The results provide insight into the nanoscale response of these novel materials.

  13. Derivation of tensile flow characteristics for austenitic materials from instrumented indentation technique

    International Nuclear Information System (INIS)

    Lee, K-W; Kim, K-H; Kim, J-Y; Kwon, D

    2008-01-01

    In this study, a method for deriving the tensile flow characteristics of austenitic materials from an instrumented indentation technique is presented along with its experimental verification. We proposed a modified algorithm for austenitic materials that takes their hardening behaviour into account. First, the true strain based on sine function instead of tangent function was adapted. It was proved that the sine function shows constant degrees of hardening which is a main characteristic of the hardening of austenitic materials. Second, a simple and linear constitutive equation was newly suggested to optimize indentation flow curves. The modified approach was experimentally verified by comparing tensile properties of five austenitic materials from uniaxial tensile test and instrumented indentation tests

  14. LHC gets the ball rolling

    CERN Multimedia

    2007-01-01

    A technique involving a small ball with a transmitter embedded inside it has been successfully tested in Sector 7-8. The ball is sent through the LHC beam pipes to check the LHC interconnections. The multidisciplinary team responsible for the RF ball project to check the interconnections. From left to right: Rhodri Jones (AB/BI), Eva Calvo (AB/BI), Francesco Bertinelli (AT/MCS), Sonia Bartolome Jimenez (TS/IC), Sylvain Weisz (TS/IC), Paul Cruikshank (AT/VAC), Willemjan Maan (AT/VAC), Alain Poncet (AT/MCS), Marek Gasior (AB/BI). During the tests the ball is inserted very carefully into the vacuum chamber.A game of ping-pong at the LHC? On 13 September a rather unusual test was carried out in Sector 7-8 of the accelerator. A ball just a bit smaller than a ping-pong ball was carefully introduced into one of the accelerator’s two vacuum pipes, where it travelled 800 metres in the space of a few mi...

  15. Assessing the mechanical properties of nuclear materials using spherical nano-indentation

    International Nuclear Information System (INIS)

    Hickey, J.; Hardie, C.

    2015-01-01

    This paper reports on the assessment of a nano-indentation test, using tips of spherical geometry, to calculate the mechanical properties of nuclear materials at the micron-scale. The test method is based on incrementally loading and unloading the tip into a sample of material with unknown mechanical properties. The incremental indentation stress, strain and elastic modulus are calculated by analysing each increment's unload curve. Two samples of iron and tungsten were used with a spherical indenter tip with an apparent radius of 30 μm. The method for calculating the mechanical properties is based on two markers that define the top and bottom of each load increment's unload curve. As such, the bottom marker can be moved down the unload curve to increase the proportion of data included in the results. This simulates increasing the percent unloaded from just one data set. The results showed that increasing the percent unloaded during each increment was beneficial as it reduced the effects of creep at the top of the unload curve and pile-up of material around the indenter tip as the test progressed. However, it is likely that increasing the percentage unloaded results in the inclusion of a higher proportion of reverse plasticity effects in the calculated results. (authors)

  16. ROOT and x32-ABI

    CERN Document Server

    Rauschmayr, N

    2013-01-01

    x32-ABI is an application binary interface, which has been introduced in Linux kernel 3.4. This interface is based on the x86-64 instruction set but uses 32-bit as size for pointers and C-datatype long instead of 64-bit. Thus software can profit from lower memory footprint but also form faster system calls. Several Root-benchmarks have been evaluated in this context and results regarding memory consumption and CPU-time are shown.

  17. Full-Field Indentation Damage Measurement Using Digital Image Correlation

    Directory of Open Access Journals (Sweden)

    Elías López-Alba

    2017-07-01

    Full Text Available A novel approach based on full-field indentation measurements to characterize and quantify the effect of contact in thin plates is presented. The proposed method has been employed to evaluate the indentation damage generated in the presence of bending deformation, resulting from the contact between a thin plate and a rigid sphere. For this purpose, the 3D Digital Image Correlation (3D-DIC technique has been adopted to quantify the out of plane displacements at the back face of the plate. Tests were conducted using aluminum thin plates and a rigid bearing sphere to evaluate the influence of the thickness and the material behavior during contact. Information provided by the 3D-DIC technique has been employed to perform an indirect measurement of the contact area during the loading and unloading path of the test. A symmetrical distribution in the contact damage region due to the symmetry of the indenter was always observed. In the case of aluminum plates, the presence of a high level of plasticity caused shearing deformation as the load increased. Results show the full-field contact damage area for different plates’ thicknesses at different loads. The contact damage region was bigger when the thickness of the specimen increased, and therefore, bending deformation was reduced. With the proposed approach, the elastic recovery at the contact location was quantified during the unloading, as well as the remaining permanent indentation damage after releasing the load. Results show the information obtained by full-field measurements at the contact location during the test, which implies a substantial improvement compared with pointwise techniques.

  18. Katastroofide järel heldelt lubatud abi pole alati kohale jõudnud / Kaivo Kopli

    Index Scriptorium Estoniae

    Kopli, Kaivo

    2005-01-01

    ÜRO peasekretär Kofi Annan kutsus üles täitma lubadusi anda abi Lõuna-Aasia tsunamis kannatanud riikidele. Artiklis tuuakse näiteid juhtumite kohta, kus looduskatastroofi järel on riikide abi jäänud lubatust väiksemaks

  19. Identification and functional analysis of two alternatively spliced transcripts of ABSCISIC ACID INSENSITIVE3 (ABI3) in linseed flax (Linum usitatissimum L.).

    Science.gov (United States)

    Wang, Yanyan; Zhang, Tianbao; Song, Xiaxia; Zhang, Jianping; Dang, Zhanhai; Pei, Xinwu; Long, Yan

    2018-01-01

    Alternative splicing is a popular phenomenon in different types of plants. It can produce alternative spliced transcripts that encode proteins with altered functions. Previous studies have shown that one transcription factor, ABSCISIC ACID INSENSITIVE3 (ABI3), which encodes an important component in abscisic acid (ABA) signaling, is subjected to alternative splicing in both mono- and dicotyledons. In the current study, we identified two homologs of ABI3 in the genome of linseed flax. We screened two alternatively spliced flax LuABI3 transcripts, LuABI3-2 and LuABI3-3, and one normal flax LuABI3 transcript, LuABI3-1. Sequence analysis revealed that one of the alternatively spliced transcripts, LuABI3-3, retained a 6 bp intron. RNA accumulation analysis showed that all three transcripts were expressed during seed development, while subcellular localization and transgene experiments showed that LuABI3-3 had no biological function. The two normal transcripts, LuABI3-1 and LuABI3-2, are the important functional isoforms in flax and play significant roles in the ABA regulatory pathway during seed development, germination, and maturation.

  20. Identification and functional analysis of two alternatively spliced transcripts of ABSCISIC ACID INSENSITIVE3 (ABI3 in linseed flax (Linum usitatissimum L..

    Directory of Open Access Journals (Sweden)

    Yanyan Wang

    Full Text Available Alternative splicing is a popular phenomenon in different types of plants. It can produce alternative spliced transcripts that encode proteins with altered functions. Previous studies have shown that one transcription factor, ABSCISIC ACID INSENSITIVE3 (ABI3, which encodes an important component in abscisic acid (ABA signaling, is subjected to alternative splicing in both mono- and dicotyledons. In the current study, we identified two homologs of ABI3 in the genome of linseed flax. We screened two alternatively spliced flax LuABI3 transcripts, LuABI3-2 and LuABI3-3, and one normal flax LuABI3 transcript, LuABI3-1. Sequence analysis revealed that one of the alternatively spliced transcripts, LuABI3-3, retained a 6 bp intron. RNA accumulation analysis showed that all three transcripts were expressed during seed development, while subcellular localization and transgene experiments showed that LuABI3-3 had no biological function. The two normal transcripts, LuABI3-1 and LuABI3-2, are the important functional isoforms in flax and play significant roles in the ABA regulatory pathway during seed development, germination, and maturation.

  1. Determination Plastic Properties of a Material by Spherical Indentation Base on the Representative Stress Approach

    Science.gov (United States)

    Budiarsa, I. N.; Gde Antara, I. N.; Dharma, Agus; Karnata, I. N.

    2018-04-01

    Under an indentation, the material undergoes a complex deformation. One of the most effective ways to analyse indentation has been the representative method. The concept coupled with finite element (FE) modelling has been used successfully in analysing sharp indenters. It is of great importance to extend this method to spherical indentation and associated hardness system. One particular case is the Rockwell B test, where the hardness is determined by two points on the P-h curve of a spherical indenter. In this case, an established link between materials parameters and P-h curves can naturally lead to direct hardness estimation from the materials parameters (e.g. yield stress (y) and work hardening coefficients (n)). This could provide a useful tool for both research and industrial applications. Two method to predict p-h curve in spherical indentation has been established. One is use method using C1-C2 polynomial equation approach and another one by depth approach. Both approach has been successfully. An effective method in representing the P-h curves using a normalized representative stress concept was established. The concept and methodology developed is used to predict hardness (HRB) values of materials through direct analysis and validated with experimental data on selected samples of steel.

  2. Evaluation of eyes with relative pupillary block by indentation ultrasound biomicroscopy gonioscopy.

    Science.gov (United States)

    Matsunaga, Koichi; Ito, Kunio; Esaki, Koji; Sugimoto, Kota; Sano, Toru; Miura, Katsuya; Sasoh, Mikio; Uji, Yukitaka

    2004-03-01

    To investigate changes in anterior chamber angle configuration with indentation ultrasound biomicroscopy gonioscopy of relative pupillary block (RPB). Cross-sectional study. This study included 26 eyes of 26 patients with RPB. We determined angle opening distance 500 and angle recess area using indentation ultrasound biomicroscopy gonioscopy and compared a small-sized standard eye cup with a new eye cup with an area for inducing pressure. Indentation ultrasound biomicroscopy images documented concavity of the iris in eyes with RPB. Both the new and the small standard eye cups widened the anterior chamber angle significantly (P gonioscopy is a useful technique for observation and diagnosis of RPB. Using a small standard or the newly designed eye cup, the procedure can be performed easily and without causing corneal damage.

  3. Influence of heat treatment and indenter tip material on depth sensing hardness tests at high temperatures of fusion relevant materials

    International Nuclear Information System (INIS)

    Bredl, Julian; Dany, Manuel; Albinski, Bartlomiej; Schneider, Hans-Christian; Kraft, Oliver

    2015-01-01

    Highlights: • Operation of a custom-made indentation device designed for test temperatures up to 650 °C and a remote handled operation in a Hot Cell. • Instrumented indentation and conventional hardness testing of unirradiated MANET II and EUROFER. • Comparison of diamond and sapphire as indenter tip materials. - Abstract: The instrumented indentation is a suitable method for testing of even small neutron-irradiated specimens. From the continuously recorded indentation depth and the indentation force, it is possible to deduce mechanical parameters of the tested material. In this paper, a brief description of the high temperature device is given and representative results are presented. In the study, unirradiated steels are investigated by instrumented indentation at temperatures up to 500 °C. It is shown that the hardness is highly depending on the testing-temperature and can be correlated to the results of conventional tensile testing experiments. A not negligible influence of the indenter tip material is observed. The results show the functionality of the high-temperature indentation device.

  4. Influence of heat treatment and indenter tip material on depth sensing hardness tests at high temperatures of fusion relevant materials

    Energy Technology Data Exchange (ETDEWEB)

    Bredl, Julian, E-mail: julian.bredl@kit.edu; Dany, Manuel; Albinski, Bartlomiej; Schneider, Hans-Christian; Kraft, Oliver

    2015-10-15

    Highlights: • Operation of a custom-made indentation device designed for test temperatures up to 650 °C and a remote handled operation in a Hot Cell. • Instrumented indentation and conventional hardness testing of unirradiated MANET II and EUROFER. • Comparison of diamond and sapphire as indenter tip materials. - Abstract: The instrumented indentation is a suitable method for testing of even small neutron-irradiated specimens. From the continuously recorded indentation depth and the indentation force, it is possible to deduce mechanical parameters of the tested material. In this paper, a brief description of the high temperature device is given and representative results are presented. In the study, unirradiated steels are investigated by instrumented indentation at temperatures up to 500 °C. It is shown that the hardness is highly depending on the testing-temperature and can be correlated to the results of conventional tensile testing experiments. A not negligible influence of the indenter tip material is observed. The results show the functionality of the high-temperature indentation device.

  5. Pengembangan Indentation Size Effect (ISE Dalam Penentuan Koefisien Pengerasan Regang Baja

    Directory of Open Access Journals (Sweden)

    I Nyoman Budiarsa

    2016-07-01

    Full Text Available Abstrak: Hubungan antara sifat material konstitutif dengan indentasi kekerasan (Hardness Indentation termasuk ISE (Indentation Size Effect telah dikembangkan dan dievaluasi dengan indentasi Vickers, hal Ini akan menjadi alat yang berguna dalam mengevaluasi kelayakan penggunaan nilai kekerasan dalam memprediksi parameter bahan konstitutif dengan mengacu pada syarat akurasi pada rentang semua potensi bahan. ISE dapat konsisten diukur dan dapat berpotensi dihubungkan dengan H/E rasio. Skala ISE dari sampel yang diuji menunjukkan pengulangan yang konsisten dan berhubungan kuat dengan sifat material secara signifikan. Hal Ini berpotensi memberikan set data eksperimen yang mencerminkan sifat material yang terkait dengan ketegangan gradien dan kerapatan dislokasi selama proses indentasi Konsep untuk menggunakan data ukuran indentasi Vickers telah dikembangkan untuk meningkatkan akurasi sifat invers pemodelan berdasarkan kekerasan menggunakan baja sebagai sistem bahan. Penelitian ini menunjukkan bahwa ada ISE signifikan dalam tes kekerasan Vickers dimana skala dan reliabilitas ISE dianalisis dengan fitting data mengikuti Power law and proportional resistance model Sebuah konsep baru menggunakan data ISE untuk memperkirakan Koefisien Pengerasan Regang (n nilai-nilai dari baja telah dievaluasi dan menunjukkan hasil yang baik untuk mempersempit kisaran sifat material yang diprediksi berdasarkan nilai-nilai kekerasan. . Kata kunci: ISE, H/E rasio, Koefisien Pengerasan Regang (n Abstract: The relationship between the constitutive material properties with Hardness indentation including ISE (indentation Size Effect has been developed and evaluated by Vickers indentation. This provided a useful tool in evaluating the feasibility of using of hardness value in predicting the constitutive material parameters with reference to the terms of accuracy in the all the potential materials range. ISE can be consistently measured and may potentially be associated with H

  6. Effect of Properties and Turgor Pressure on the Indentation Response of Plant Cells

    DEFF Research Database (Denmark)

    Tvergaard, Viggo; Needleman, Alan

    2018-01-01

    The indentation of plant cells by a conical indenter is modeled. The cell wall is represented as a spherical shell consisting of a relatively stiff thin outer layer and a softer thicker inner layer. The state of the interior of the cell is idealized as a specified turgor pressure. Attention...

  7. Nuclear Microsatellite Primers for the Endangered Relict Fir, Abies pinsapo (Pinaceae and Cross-Amplification in Related Mediterranean Species

    Directory of Open Access Journals (Sweden)

    Laura Navarro-Sampedro

    2012-11-01

    Full Text Available Twelve nuclear microsatellite primers (nSSR were developed for the endangered species Abies pinsapo Boiss. to enable the study of gene flow and genetic structure in the remaining distribution areas. Microsatellite primers were developed using next-generation sequencing (454 data from a single Abies pinsapo individual. Primers were applied to thirty individuals from the three extant localities. The number of alleles per locus ranged from one to four. Cross-amplification was tested for other Abies species from the Mediterranean Basin, and most of the loci showed higher polymorphisms in the Mediterranean species than in A. pinsapo. These microsatellite markers provide tools for conservation genetic studies in Abies pinsapo as well other Abies species from the Mediterranean Basin.

  8. Deformation Behavior of Press Formed Shell by Indentation and Its Numerical Simulation

    Directory of Open Access Journals (Sweden)

    Minoru Yamashita

    2015-01-01

    Full Text Available Deformation behavior and energy absorbing performance of the press formed aluminum alloy A5052 shells were investigated to obtain the basic information regarding the mutual effect of the shell shape and the indentor. Flat top and hemispherical shells were indented by the flat- or hemispherical-headed indentor. Indentation force in the rising stage was sharper for both shell shapes when the flat indentor was used. Remarkable force increase due to high in-plane compressive stress arisen by the appropriate tool constraint was observed in the early indentation stage, where the hemispherical shell was deformed with the flat-headed indentor. This aspect is preferable for energy absorption performance per unit mass. Less fluctuation in indentation force was achieved in the combination of the hemispherical shell and similar shaped indentor. The consumed energy in the travel length of the indentor equal to the shell height was evaluated. The increase ratio of the energy is prominent when the hemispherical indentor is replaced by a flat-headed one in both shell shapes. Finite element simulation was also conducted. Deformation behaviors were successfully predicted when the kinematic hardening plasticity was introduced in the material model.

  9. The Goldenrod Ball Gall

    Science.gov (United States)

    Fischer, Richard B.

    1974-01-01

    The paper presents a generalized life history of the goldenrod ball gall, a ball-shaped swelling found almost exclusively on the Canada goldenrod, Solidago canadensis, and caused by a peacock fly know as Eurosta soldiaginis. (KM)

  10. Indenting a Thin Floating Film: Force and First-fold Formation

    Science.gov (United States)

    Ripp, Monica; Paulsen, Joseph

    2017-11-01

    When a thin elastic sheet is gently pushed into a liquid bath, a pattern of radial wrinkles is generated where the film is locally compressed. Despite the simplicity of this setting, basic questions remain about the mechanics and morphology of indented thin films. Recent work shows that traditional post-buckling analysis must be supplanted with an analysis where wrinkles completely relax compressive stresses. Support for this ``far-from-threshold'' theory has been built on measurements of wrinkle extent and wavelength, but direct force measurements have been absent. Here we measure the force response of floating ultrathin ( 100 nm) polystyrene films in indentation experiments. Our measurements are in good agreement with recent predictions for two regimes of poking: Early on force depends on film properties (thickness and Young's modulus) and later is independent of film properties, simply transferring forces from the substrate (gravity and surface tension) to the poker. At larger indentations compression localizes into a single fold. We present scaling arguments and experiments that show the existing model of this transition must be modified. NSF IGERT, NSF CAREER.

  11. Dynamics of a Bouncing Ball

    Science.gov (United States)

    Liang, Shiuan-Ni; Lan, Boon Leong

    The dynamics of a bouncing ball undergoing repeated inelastic impacts with a table oscillating vertically in a sinusoidal fashion is studied using Newtonian mechanics and general relativistic mechanics. An exact mapping describes the bouncing ball dynamics in each theory. We show, contrary to expectation, that the trajectories predicted by Newtonian mechanics and general relativistic mechanics from the same parameters and initial conditions for the ball bouncing at low speed in a weak gravitational field can rapidly disagree completely. The bouncing ball system could be realized experimentally to test which of the two different predicted trajectories is correct.

  12. AbiV, a Novel Antiphage Abortive Infection Mechanism on the Chromosome of Lactococcus lactis subsp. cremoris MG1363

    DEFF Research Database (Denmark)

    Haaber, Jakob Brandt Borup; Moineau, Sylvain; Fortier, Louis-Charles

    2008-01-01

    phenotype was caused by a chromosomal gene turned on by a promoter from the inserted construct. Reverse transcription-PCR analysis confirmed that there were higher levels of transcription of a downstream open reading frame (ORF) in the phage-resistant integrants than in the phage-sensitive strain L. lactis...... searches revealed no homology to other phage resistance mechanisms, and thus, this novel Abi mechanism was designated AbiV. The mode of action of AbiV is unknown, but the activity of AbiV prevented cleavage of the replicated phage DNA of 936-like phages....

  13. Simulation of ball motion and energy transfer in a planetary ball mill

    International Nuclear Information System (INIS)

    Lu Sheng-Yong; Mao Qiong-Jing; Li Xiao-Dong; Yan Jian-Hua; Peng Zheng

    2012-01-01

    A kinetic model is proposed for simulating the trajectory of a single milling ball in a planetary ball mill, and a model is also proposed for simulating the local energy transfer during the ball milling process under no-slip conditions. Based on the kinematics of ball motion, the collision frequency and power are described, and the normal impact forces and effective power are derived from analyses of collision geometry. The Hertzian impact theory is applied to formulate these models after having established some relationships among the geometric, dynamic, and thermophysical parameters. Simulation is carried out based on two models, and the effects of the rotation velocity of the planetary disk Ω and the vial-to-disk speed ratio ω/Ω on other kinetic parameters is investigated. As a result, the optimal ratio ω/Ω to obtain high impact energy in the standard operating condition at Ω = 800 rpm is estimated, and is equal to 1.15. (interdisciplinary physics and related areas of science and technology)

  14. Ceramic ball grid array package stress analysis

    Science.gov (United States)

    Badri, S. H. B. S.; Aziz, M. H. A.; Ong, N. R.; Sauli, Z.; Alcain, J. B.; Retnasamy, V.

    2017-09-01

    The ball grid array (BGA), a form of chip scale package (CSP), was developed as one of the most advanced surface mount devices, which may be assembled by an ordinary surface ball bumps are used instead of plated nickel and gold (Ni/Au) bumps. Assembly and reliability of the BGA's printed circuit board (PCB), which is soldered by conventional surface mount technology is considered in this study. The Ceramic Ball Grid Array (CBGA) is a rectangular ceramic package or square-shaped that will use the solder ball for external electrical connections instead of leads or wire for connections. The solder balls will be arranged in an array or grid at the bottom of the ceramic package body. In this study, ANSYS software is used to investigate the stress on the package for 2 balls and 4 balls of the CBGA package with the various force range of 1-3 Newton applied to the top of the die, top of the substrate and side of the substrate. The highest maximum stress was analyzed and the maximum equivalent stress was observed on the solder ball and the die. From the simulation result, the CBGA package with less solder balls experience higher stress compared to the package with many solder balls. Therefore, less number of solder ball on the CBGA package results higher stress and critically affect the reliability of the solder balls itself, substrate and die which can lead to the solder crack and also die crack.

  15. Influence of strain gradients on lattice rotation in nano-indentation experiments: A numerical study

    KAUST Repository

    Demiral, Murat

    2014-07-01

    In this paper the texture evolution in nano-indentation experiments was investigated numerically. To achieve this, a three-dimensional implicit finite-element model incorporating a strain-gradient crystal-plasticity theory was developed to represent accurately the deformation of a body-centred cubic metallic material. A hardening model was implemented to account for strain hardening of the involved slip systems. The surface topography around indents in different crystallographic orientations was compared to corresponding lattice rotations. The influence of strain gradients on the prediction of lattice rotations in nano-indentation was critically assessed. © 2014 Elsevier B.V..

  16. Influence of strain gradients on lattice rotation in nano-indentation experiments: A numerical study

    KAUST Repository

    Demiral, Murat; Roy, Anish; El Sayed, Tamer S.; Silberschmidt, Vadim V.

    2014-01-01

    In this paper the texture evolution in nano-indentation experiments was investigated numerically. To achieve this, a three-dimensional implicit finite-element model incorporating a strain-gradient crystal-plasticity theory was developed to represent accurately the deformation of a body-centred cubic metallic material. A hardening model was implemented to account for strain hardening of the involved slip systems. The surface topography around indents in different crystallographic orientations was compared to corresponding lattice rotations. The influence of strain gradients on the prediction of lattice rotations in nano-indentation was critically assessed. © 2014 Elsevier B.V..

  17. Indentation Size Effects in Single Crystal Copper as Revealed by Synchrotron X-ray Microdiffraction

    Energy Technology Data Exchange (ETDEWEB)

    Feng, G.; Budiman, A. S.; Nix, W. D.; Tamura, N.; Patel, J. R.

    2007-11-19

    The indentation size effect (ISE) has been observed in numerous nanoindentation studies on crystalline materials; it is found that the hardness increases dramatically with decreasing indentation size - a 'smaller is stronger' phenomenon. Some have attributed the ISE to the existence of strain gradients and the geometrically necessary dislocations (GNDs). Since the GND density is directly related to the local lattice curvature, the Scanning X-ray Microdiffraction ({mu}SXRD) technique, which can quantitatively measure relative lattice rotations through the streaking of Laue diffractions, can used to study the strain gradients. The synchrotron {mu}SXRD technique we use - which was developed at the Advanced Light Source (ALS), Berkeley Lab - allows for probing the local plastic behavior of crystals with sub-micrometer resolution. Using this technique, we studied the local plasticity for indentations of different depths in a Cu single crystal. Broadening of Laue diffractions (streaking) was observed, showing local crystal lattice rotation due to the indentation-induced plastic deformation. A quantitative analysis of the streaking allows us to estimate the average GND density in the indentation plastic zones. The size dependence of the hardness, as found by nanoindentation, will be described, and its correlation to the observed lattice rotations will be discussed.

  18. 2012 Problem 15: Frustrating Golf Ball

    Science.gov (United States)

    Huang, Shan; Zhu, Zheyuan; Gao, Wenli; Wang, Sihui

    2015-10-01

    This paper studies the condition for a golf ball to escape from a hole. The two determining factors are the ball's initial velocity v0 and its deviation from the center of the hole d. There is a critical escaping velocity vc for every deviation d. The ball's motion is analyzed by calculating the change of velocity whenever the ball collides with the hole. The critical conditions predicted by our theory are verified through experiment.

  19. Using the discrete element method to simulate brittle fracture in the indentation of a silica glass with a blunt indenter

    International Nuclear Information System (INIS)

    Andre, Damien; Iordanoff, Ivan; Charles, Jean-luc; Jebahi, Mohamed; Neauport, Jerome

    2013-01-01

    The mechanical behavior of materials is usually simulated by a continuous mechanics approach. However, non-continuous phenomena such as multi-fracturing cannot be accurately simulated using a continuous description. The discrete element method (DEM) naturally accounts for discontinuities and is therefore a good alternative to the continuum approach. This work uses a discrete element model based on interaction given by 3D beam model. This model has proved to correctly simulate the elastic properties at the macroscopic scale. The simulation of brittle cracks is now tackled. This goal is attained by computing a failure criterion based on an equivalent hydrostatic stress. This microscopic criterion is then calibrated to fit experimental values of the macroscopic failure stress. Then, the simulation results are compared to experimental results of indentation tests in which a spherical indenter is used to load a silica glass, which is considered to be a perfectly brittle elastic material. (authors)

  20. Indentation modulus and hardness of viscoelastic thin films by atomic force microscopy: A case study

    International Nuclear Information System (INIS)

    Passeri, D.; Bettucci, A.; Biagioni, A.; Rossi, M.; Alippi, A.; Tamburri, E.; Lucci, M.; Davoli, I.; Berezina, S.

    2009-01-01

    We propose a nanoindentation technique based on atomic force microscopy (AFM) that allows one to deduce both indentation modulus and hardness of viscoelastic materials from the force versus penetration depth dependence, obtained by recording the AFM cantilever deflection as a function of the sample vertical displacement when the tip is pressed against (loading phase) and then removed from (unloading phase) the surface of the sample. Reliable quantitative measurements of both indentation modulus and hardness of the investigated sample are obtained by calibrating the technique through a set of different polymeric samples, used as reference materials, whose mechanical properties have been previously determined by standard indentation tests. By analyzing the dependence of the cantilever deflection versus time, the proposed technique allows one to evaluate and correct the effect of viscoelastic properties of the investigated materials, by adapting a post-experiment data processing procedure well-established for standard depth sensing indentation tests. The technique is described in the case of the measurement of indentation modulus and hardness of a thin film of poly(3,4-ethylenedioxythiophene) doped with poly(4-styrenesulfonate), deposited by chronoamperometry on an indium tin oxide (ITO) substrate.

  1. Indentation modulus and hardness of viscoelastic thin films by atomic force microscopy: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Passeri, D., E-mail: daniele.passeri@uniroma1.it [Dipartimento di Energetica, Universita di Roma ' La Sapienza' , Via A. Scarpa 16, 00161 Roma (Italy); Bettucci, A.; Biagioni, A.; Rossi, M.; Alippi, A. [Dipartimento di Energetica, Universita di Roma ' La Sapienza' , Via A. Scarpa 16, 00161 Roma (Italy); Tamburri, E. [Dipartimento di Scienze e Tecnologie Chimiche, Universita di Roma ' Tor Vergata' , Via della Ricerca Scientifica, 00133 Roma (Italy); Lucci, M.; Davoli, I. [Dipartimento di Fisica, Universita di Roma ' Tor Vergata' , Via della Ricerca Scientifica, 00133 Roma (Italy); Berezina, S. [Department of Physics, University of Zilina, 01026, Univerzitna 1 Zilina (Slovakia)

    2009-11-15

    We propose a nanoindentation technique based on atomic force microscopy (AFM) that allows one to deduce both indentation modulus and hardness of viscoelastic materials from the force versus penetration depth dependence, obtained by recording the AFM cantilever deflection as a function of the sample vertical displacement when the tip is pressed against (loading phase) and then removed from (unloading phase) the surface of the sample. Reliable quantitative measurements of both indentation modulus and hardness of the investigated sample are obtained by calibrating the technique through a set of different polymeric samples, used as reference materials, whose mechanical properties have been previously determined by standard indentation tests. By analyzing the dependence of the cantilever deflection versus time, the proposed technique allows one to evaluate and correct the effect of viscoelastic properties of the investigated materials, by adapting a post-experiment data processing procedure well-established for standard depth sensing indentation tests. The technique is described in the case of the measurement of indentation modulus and hardness of a thin film of poly(3,4-ethylenedioxythiophene) doped with poly(4-styrenesulfonate), deposited by chronoamperometry on an indium tin oxide (ITO) substrate.

  2. Twinning and martensitic transformations in nickel-enriched 304 austenitic steel during tensile and indentation deformations

    Energy Technology Data Exchange (ETDEWEB)

    Gussev, M.N., E-mail: gussevmn@ornl.gov; Busby, J.T.; Byun, T.S.; Parish, C.M.

    2013-12-20

    Twinning and martensitic transformation have been investigated in nickel-enriched AISI 304 stainless steel subjected to tensile and indentation deformation. Using electron backscatter diffraction (EBSD), the morphology of α- and ε-martensite and the effect of grain orientation to load axis on phase and structure transformations were analyzed in detail. It was found that the twinning occurred less frequently under indentation than under tension; also, twinning was not observed in [001] and [101] grains. In tensile tests, the martensite particles preferably formed at the deformation twins, intersections between twins, or at the twin-grain boundary intersections. Conversely, martensite formation in the indentation tests was not closely associated with twinning; instead, the majority of martensite was concentrated in the dense colonies near grain boundaries. Martensitic transformation seemed to be obstructed in the [001] grains in both tensile and indentation test cases. Under a tensile stress of 800 MPa, both α- and ε-martensites were found in the microstructure, but at 1100 MPa only α-martensite presented in the specimen. Under indentation, α- and ε-martensite were observed in the material regardless of the stress level.

  3. In-situ Indentation and Correlated Precession Electron Diffraction Analysis of a Polycrystalline Cu Thin Film

    Science.gov (United States)

    Guo, Qianying; Thompson, Gregory B.

    2018-04-01

    In-situ TEM nanoindentation of a polycrystalline Cu film was cross-correlated with precession electron diffraction (PED) to quantify the microstructural evolution. The use of PED is shown to clearly reveal features, such as grain size, that are easily masked by diffraction contrast created by the deformation. Using PED, the accompanying grain refinement and change in texture as well as the preservation of specific grain boundary structures, including a ∑3 boundary, under the indent impression were quantified. The nucleation of dislocations, evident in low-angle grain boundary formations, was also observed under the indent. PED quantification of texture gradients created by the indentation process linked well to bend contours observed in the bright-field images. Finally, PED enabled generating a local orientation spread map that gave an approximate estimation of the spatial distribution of strain created by the indentation impression.

  4. The ABA-INSENSITIVE-4 (ABI4) transcription factor links redox, hormone and sugar signaling pathways.

    Science.gov (United States)

    Foyer, Christine H; Kerchev, Pavel I; Hancock, Robert D

    2012-02-01

    The cellular reduction-oxidation (redox) hub processes information from metabolism and the environment and so regulates plant growth and defense through integration with the hormone signaling network. One key pathway of redox control involves interactions with ABSCISIC ACID (ABA). Accumulating evidence suggests that the ABA-INSENSITIVE-4 (ABI4) transcription factor plays a key role in transmitting information concerning the abundance of ascorbate and hence the ability of cells to buffer oxidative challenges. ABI4 is required for the ascorbate-dependent control of growth, a process that involves enhancement of salicylic acid (SA) signaling and inhibition of jasmonic acid (JA) signaling pathways. Low redox buffering capacity reinforces SA- JA- interactions through the mediation of ABA and ABI4 to fine-tune plant growth and defense in relation to metabolic cues and environmental challenges. Moreover, ABI4-mediated pathways of sugar sensitivity are also responsive to the abundance of ascorbate, providing evidence of overlap between redox and sugar signaling pathways.

  5. Effect of a ball skill intervention on children's ball skills and cognitive functions

    NARCIS (Netherlands)

    Westendorp-Haverdings, Marieke; Houwen, Suzanne; Hartman, Esther; Mombarg, Remo; Smith, Joanne; Visscher, Chris

    Purpose: This study examined the effect of a 16-wk ball skill intervention on the ball skills, executive functioning (in terms of problem solving and cognitive flexibility), and in how far improved executive functioning leads to improved reading and mathematics performance of children with learning

  6. Ball mounting fixture for a roundness gage

    Science.gov (United States)

    Gauler, Allen L.; Pasieka, Donald F.

    1983-01-01

    A ball mounting fixture for a roundness gage is disclosed. The fixture includes a pair of chuck assemblies oriented substantially transversely with respect to one another and mounted on a common base. Each chuck assembly preferably includes a rotary stage and a wobble plate affixed thereto. A ball chuck affixed to each wobble plate is operable to selectively support a ball to be measured for roundness, with the wobble plate permitting the ball chuck to be tilted to center the ball on the axis of rotation of the rotary stage. In a preferred embodiment, each chuck assembly includes a vacuum chuck operable to selectively support the ball to be measured for roundness. The mounting fixture enables a series of roundness measurements to be taken with a conventional rotating gagehead roundness instrument, which measurements can be utilized to determine the sphericity of the ball.

  7. Structure and magnetism of SmCo5 nanoflakes prepared by surfactant-assisted ball milling with different ball sizes

    International Nuclear Information System (INIS)

    Nie, Junwu; Han, Xianghua; Du, Juan; Xia, Weixing; Zhang, Jian; Guo, Zhaohui; Yan, Aru; Li, Wei; Ping Liu, J.

    2013-01-01

    Anisotropic magnetic SmCo 5 nanoflakes have been fabricated by surfactant-assisted ball milling (SABM) using hardened steel balls of one of the following sizes: 4, 6.5, 9.5 and 12.7 mm in diameters. The magnetic properties of SmCo 5 particles prepared by SABM with different milling ball sizes in diameters were investigated systematically. It was showed that the nanoflakes milled by amount of small size balls had a higher coercivity and lower anisotropy, i.e., worse grain orientation although in a short milling time while the nanoflakes prepared with same weight of big balls tend to have a lower coercivity, better grain orientation. The coercivity mechanism of the nanoflake was studied and it was mainly dominated with the domain-wall pinning. The SEM analysis shows that the morphology of nanoflakes prepared with different ball sizes are almost the same when the balls to powder weight ratio is fixed. The different magnetic properties caused by different ball sizes are mainly due to the different microstructure changes, i.e, grain refinement and c-axis orientation, which are demonstrated by X-ray diffraction (XRD) analysis and transmission electron microscope (TEM). Based on the experiments above, a combined milling process was suggested and done to improve magnetic properties as your need. - Highlights: • We fabricated anisotropic magnetic SmCo 5 nanoflakes by surfactant-assisted ball milling (SABM). • We investigated the magnetic properties of SmCo 5 particles systematically. It was showed that the coercivity, high or low, and grain orientation, good or bad, were influenced strongly by balls size. The different magnetisms caused by different ball sizes is mainly due to the different microstructure changes. • The coercivity mechanism of the nanoflake was studied and it was mainly dominated with the domain-wall pinning

  8. Study of soccer ball flight trajectory

    Directory of Open Access Journals (Sweden)

    Javorova Juliana

    2018-01-01

    Full Text Available In this paper the trajectories of a soccer ball for the most important kicks in the football game - a corner kick and a direct free kick are studied. The soccer ball is modelled as an ideal rigid hollow spherical body with six degrees of freedom, which performs a general motion in an immovable air environment with constant parameters. The ball 3D orientation is determined by the three Cardan angles. The aerodynamic forces and moments with which the air environment acts to the ball are taken into account. Two of the most dangerous areas of the football goal are defined. Differential equations which describe the motion of the soccer ball are solved numerically by MatLab-Simulink.

  9. Respiratory disease in ball pythons (Python regius) experimentally infected with ball python nidovirus.

    Science.gov (United States)

    Hoon-Hanks, Laura L; Layton, Marylee L; Ossiboff, Robert J; Parker, John S L; Dubovi, Edward J; Stenglein, Mark D

    2018-04-01

    Circumstantial evidence has linked a new group of nidoviruses with respiratory disease in pythons, lizards, and cattle. We conducted experimental infections in ball pythons (Python regius) to test the hypothesis that ball python nidovirus (BPNV) infection results in respiratory disease. Three ball pythons were inoculated orally and intratracheally with cell culture isolated BPNV and two were sham inoculated. Antemortem choanal, oroesophageal, and cloacal swabs and postmortem tissues of infected snakes were positive for viral RNA, protein, and infectious virus by qRT-PCR, immunohistochemistry, western blot and virus isolation. Clinical signs included oral mucosal reddening, abundant mucus secretions, open-mouthed breathing, and anorexia. Histologic lesions included chronic-active mucinous rhinitis, stomatitis, tracheitis, esophagitis and proliferative interstitial pneumonia. Control snakes remained negative and free of clinical signs throughout the experiment. Our findings establish a causal relationship between nidovirus infection and respiratory disease in ball pythons and shed light on disease progression and transmission. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. In vitro binding of Sorghum bicolor transcription factors ABI4 and ABI5 to a conserved region of a GA 2-OXIDASE promoter: possible role of this interaction in the expression of seed dormancy.

    Science.gov (United States)

    Cantoro, Renata; Crocco, Carlos Daniel; Benech-Arnold, Roberto Luis; Rodríguez, María Verónica

    2013-12-01

    The precise adjustment of the timing of dormancy release according to final grain usage is still a challenge for many cereal crops. Grain sorghum [Sorghum bicolor (L.) Moench] shows wide intraspecific variability in dormancy level and susceptibility to pre-harvest sprouting (PHS). Both embryo sensitivity to abscisic acid (ABA) and gibberellin (GA) metabolism play an important role in the expression of dormancy of the developing sorghum grain. In previous works, it was shown that, simultaneously with a greater embryo sensitivity to ABA and higher expression of SbABA-INSENSITIVE 4 (SbABI4) and SbABA-INSENSITIVE 5 (SbABI5), dormant grains accumulate less active GA4 due to a more active GA catabolism. In this work, it is demonstrated that the ABA signalling components SbABI4 and SbABI5 interact in vitro with a fragment of the SbGA 2-OXIDASE 3 (SbGA2ox3) promoter containing an ABA-responsive complex (ABRC). Both transcription factors were able to bind the promoter, although not simultaneously, suggesting that they might compete for the same cis-acting regulatory sequences. A biological role for these interactions in the expression of dormancy of sorghum grains is proposed: either SbABI4 and/or SbABI5 activate transcription of the SbGA2ox3 gene in vivo and promote SbGA2ox3 protein accumulation; this would result in active degradation of GA4, thus preventing germination of dormant grains. A comparative analysis of the 5'-regulatory region of GA2oxs from both monocots and dicots is also presented; conservation of the ABRC in closely related GA2oxs from Brachypodium distachyon and rice suggest that these species might share the same regulatory mechanism as proposed for grain sorghum.

  11. Modeling ramp-hold indentation measurements based on Kelvin-Voigt fractional derivative model

    Science.gov (United States)

    Zhang, Hongmei; zhe Zhang, Qing; Ruan, Litao; Duan, Junbo; Wan, Mingxi; Insana, Michael F.

    2018-03-01

    Interpretation of experimental data from micro- and nano-scale indentation testing is highly dependent on the constitutive model selected to relate measurements to mechanical properties. The Kelvin-Voigt fractional derivative model (KVFD) offers a compact set of viscoelastic features appropriate for characterizing soft biological materials. This paper provides a set of KVFD solutions for converting indentation testing data acquired for different geometries and scales into viscoelastic properties of soft materials. These solutions, which are mostly in closed-form, apply to ramp-hold relaxation, load-unload and ramp-load creep-testing protocols. We report on applications of these model solutions to macro- and nano-indentation testing of hydrogels, gastric cancer cells and ex vivo breast tissue samples using an atomic force microscope (AFM). We also applied KVFD models to clinical ultrasonic breast data using a compression plate as required for elasticity imaging. Together the results show that KVFD models fit a broad range of experimental data with a correlation coefficient typically R 2  >  0.99. For hydrogel samples, estimation of KVFD model parameters from test data using spherical indentation versus plate compression as well as ramp relaxation versus load-unload compression all agree within one standard deviation. Results from measurements made using macro- and nano-scale indentation agree in trend. For gastric cell and ex vivo breast tissue measurements, KVFD moduli are, respectively, 1/3-1/2 and 1/6 of the elasticity modulus found from the Sneddon model. In vivo breast tissue measurements yield model parameters consistent with literature results. The consistency of results found for a broad range of experimental parameters suggest the KVFD model is a reliable tool for exploring intrinsic features of the cell/tissue microenvironments.

  12. Supersymmetric Q-balls theory and cosmology

    CERN Document Server

    Kusenko, A

    1999-01-01

    MSSM predicts the existence of Q-balls, some of which can be entirely stable. Both stable and unstable Q-balls can play an important role in cosmology. In particular, Affleck-Dine baryogenesis can result in a copious production of stable baryonic Q-balls, which can presently exist as a form of dark matter.

  13. The relationships between impact location and post-impact ball speed, bat torsion, and ball direction in cricket batting.

    Science.gov (United States)

    Peploe, C; McErlain-Naylor, S A; Harland, A R; King, M A

    2018-06-01

    Three-dimensional kinematic data of bat and ball were recorded for 239 individual shots performed by twenty batsmen ranging from club to international standard. The impact location of the ball on the bat face was determined and assessed against the resultant instantaneous post-impact ball speed and measures of post-impact bat torsion and ball direction. Significant negative linear relationships were found between post-impact ball speed and the absolute distance of impact from the midline medio-laterally and sweetspot longitudinally. Significant cubic relationships were found between the distance of impact from the midline of the bat medio-laterally and both a measure of bat torsion and the post-impact ball direction. A "sweet region" on the bat face was identified whereby impacts within 2 cm of the sweetspot in the medio-lateral direction, and 4.5 cm in the longitudinal direction, caused reductions in ball speed of less than 6% from the optimal value, and deviations in ball direction of less than 10° from the intended target. This study provides a greater understanding of the margin for error afforded to batsmen, allowing researchers to assess shot success in more detail, and highlights the importance of players generating consistently central impact locations when hitting for optimal performance.

  14. Quantitative Imaging of the Stress/Strain Fields and Generation of Macroscopic Cracks from Indents in Silicon

    Directory of Open Access Journals (Sweden)

    Brian K. Tanner

    2017-11-01

    Full Text Available The crack geometry and associated strain field around Berkovich and Vickers indents on silicon have been studied by X-ray diffraction imaging and micro-Raman spectroscopy scanning. The techniques are complementary; the Raman data come from within a few micrometres of the indentation, whereas the X-ray image probes the strain field at a distance of typically tens of micrometres. For example, Raman data provide an explanation for the central contrast feature in the X-ray images of an indent. Strain relaxation from breakout and high temperature annealing are examined and it is demonstrated that millimetre length cracks, similar to those produced by mechanical damage from misaligned handling tools, can be generated in a controlled fashion by indentation within 75 micrometres of the bevel edge of 200 mm diameter wafers.

  15. A novel sample preparation method to avoid influence of embedding medium during nano-indentation

    Science.gov (United States)

    Yujie Meng; Siqun Wang; Zhiyong Cai; Timothy M. Young; Guanben Du; Yanjun Li

    2012-01-01

    The effect of the embedding medium on the nano-indentation measurements of lignocellulosic materials was investigated experimentally using nano-indentation. Both the reduced elastic modulus and the hardness of nonembedded cell walls were found to be lower than those of the embedded samples, proving that the embedding medium used for specimen preparation on cellulosic...

  16. A Progressive Damage Model for Predicting Permanent Indentation and Impact Damage in Composite Laminates

    Science.gov (United States)

    Ji, Zhaojie; Guan, Zhidong; Li, Zengshan

    2017-10-01

    In this paper, a progressive damage model was established on the basis of ABAQUS software for predicting permanent indentation and impact damage in composite laminates. Intralaminar and interlaminar damage was modelled based on the continuum damage mechanics (CDM) in the finite element model. For the verification of the model, low-velocity impact tests of quasi-isotropic laminates with material system of T300/5228A were conducted. Permanent indentation and impact damage of the laminates were simulated and the numerical results agree well with the experiments. It can be concluded that an obvious knee point can be identified on the curve of the indentation depth versus impact energy. Matrix cracking and delamination develops rapidly with the increasing impact energy, while considerable amount of fiber breakage only occurs when the impact energy exceeds the energy corresponding to the knee point. Predicted indentation depth after the knee point is very sensitive to the parameter μ which is proposed in this paper, and the acceptable value of this parameter is in range from 0.9 to 1.0.

  17. Resistance to Phytophthora cinnamomi in the Genus Abies

    Science.gov (United States)

    John Frampton; Fikret Isik; Mike Benson; Jaroslav Kobliha; Jan Stjskal

    2012-01-01

    A major limiting factor for the culture of true firs as Christmas trees is their susceptibility to Oomycete species belonging to the genus Phytophthora. In North Carolina alone, the Fraser fir (Abies fraseri [Pursh] Poir.) Christmas tree industry loses 6 to 7 million dollars annually to root rot primarily caused by ...

  18. Relation Between Hertz Stress-Life Exponent, Ball-Race Conformity, and Ball Bearing Life

    Science.gov (United States)

    Zaretsky, Erwin V.; Poplawski, Joseph V.; Root, Lawrence E.

    2008-01-01

    ANSI/ABMA and ISO standards based on Lundberg-Palmgren bearing life theory are normalized for ball bearings having inner- and outerrace conformities of 52 percent (0.52) and made from pre-1940 bearing steel. The Lundberg-Palmgren theory incorporates an inverse 9th power relation between Hertz stress and fatigue life for ball bearings. The effect of race conformity on ball set life independent of race life is not incorporated into the Lundberg-Palmgren theory. In addition, post-1960 vacuum-processed bearing steel exhibits a 12th power relation between Hertz stress and life. The work reported extends the previous work of Zaretsky, Poplawski, and Root to calculate changes in bearing life--that includes the life of the ball set--caused by race conformity, Hertz stress-life exponent, ball bearing type and bearing series. The bearing fatigue life in actual application will usually be equal to or greater than that calculated using the ANSI/ABMA and ISO standards that incorporate the Lundberg-Palmgren theory. The relative fatigue life of an individual race is more sensitive to changes in race conformity for Hertz stress-life exponent n of 12 than where n = 9. However, when the effects are combined to predict actual bearing life for a specified set of conditions and bearing geometry, the predicted life of the bearing will be greater for a value of n = 12 than n = 9.

  19. Oxidative stability of cnicken thigh meat after treatment of abies alba essential oil

    Directory of Open Access Journals (Sweden)

    Adriana Pavelková

    2015-12-01

    Full Text Available In the present work, the effect of the Abies alba essential oil in two different concentrations on oxidative stability of chicken thigh muscles during chilled storage was investigated. In the experiment were chickens of hybrid combination Cobb 500 after 42 days of the fattening period slaughtered.  All the broiler chickens were fed with the same feed mixtures and were kept under the same conditions. The feed mixtures were produced without any antibiotic preparations and coccidiostatics. After slaughtering was dissection obtained fresh chicken thigh with skin from left half-carcass which were divided into five groups (n = 5: C - control air-packaged group; A1 - vacuum-packaged experimental group; A2 - vacuum-packaged experimental group with ethylenediaminetetraacetic acid (EDTA solution 1.50% w/w; A3 - vacuum-packaged experimental group with Abies alba oil 0.10% v/w and A4 - vacuum-packaged experimental group with Abies alba oil 0.20% v/w. The Abies alba essential oil was applicate on ground chicken things and immediately after dipping, each sample was packaged using a vacuum packaging machine and storage in refrigerate at 4 ±0.5 °C. Thiobarbituric acid (TBA value expressed in number of malondialdehyde was measured in the process of first storage day of 1st, 4th, 8th, 12th and 16th day after slaughtering and expressed on the amount of malondialdehyde (MDA in 1 kg sample. The treatments of chicken things with Abies alba essential oil show statistically significant differences between all testing groups and control group, where higher average value of MDA measured in thigh muscle of broiler chickens was in samples of control group (0.4380 mg.kg-1 compared to experimental groups A1 (0.124 mg.kg-1, A2 (0.086 mg.kg-1, A3 (0.082 mg.kg-1 and A4 (0.077 mg.kg-1 after 16-day of chilled storage. Experiment results show that the treatment of chicken thigh with Abies alba essential oil positively influenced on the reduction of oxidative processes in thigh

  20. An optical coherence tomography (OCT)-based air jet indentation system for measuring the mechanical properties of soft tissues

    International Nuclear Information System (INIS)

    Huang, Yan-Ping; Zheng, Yong-Ping; Wang, Shu-Zhe; Huang, Qing-Hua; Chen, Zhong-Ping; He, Yong-Hong

    2009-01-01

    A novel noncontact indentation system with the combination of an air jet and optical coherence tomography (OCT) was presented in this paper for the quantitative measurement of the mechanical properties of soft tissues. The key idea of this method is to use a pressure-controlled air jet as an indenter to compress the soft tissue in a noncontact way and utilize the OCT signals to extract the deformation induced. This indentation system provides measurement and mapping of tissue elasticity for small specimens with high scanning speed. Experiments were performed on 27 silicone tissue-mimicking phantoms with different Young's moduli, which were also measured by uniaxial compression tests. The regression coefficient of the indentation force to the indentation depth (N mm −1 ) was used as an indicator of the stiffness of tissue under air jet indentation. Results showed that the stiffness coefficients measured by the current system correlated well with the corresponding Young's moduli obtained by conventional mechanical testing (r = 0.89, p < 0.001). Preliminary in vivo tests also showed that the change of soft tissue stiffness with and without the contraction of the underlying muscles in the hand could be differentiated by the current measurement. This system may have broad applications in tissue assessment and characterization where alterations of mechanical properties are involved, in particular with the potential of noncontact micro-indentation for tissues

  1. Phenotypic Consequences of Altering the Copy Number of abiA, a Gene Responsible for Aborting Bacteriophage Infections in Lactococcus lactis†

    OpenAIRE

    Dinsmore, Polly K.; Klaenhammer, Todd R.

    1994-01-01

    The abiA gene (formerly hsp) encodes an abortive phage infection mechanism which inhibits phage DNA replication. To analyze the effects of varying the abiA gene dosage on bacteriophage resistance in Lactococcus lactis, various genetic constructions were made. An IS946-based integration vector, pTRK75, was used to integrate a single copy of abiA into the chromosomes of two lactococcal strains, MG1363 and NCK203. In both strains, a single copy of abiA did not confer any significant phage resist...

  2. Lignin distribution in waterlogged archaeological Picea abies (L.) Karst degraded by erosion bacteria

    DEFF Research Database (Denmark)

    Pedersen, Nanna Bjerregaard; Schmitt, Uwe Schmitt; Koch, Gerald

    2014-01-01

    The lignin distribution in poles of waterlogged archaeological Picea abies (L.) Karst, which was decayed by erosion bacteria (EB) under anoxic conditions for approximately 400 years, was topochemically identified by transmission electron microscopy (TEM) and high resolution UV-microspectrophotome......The lignin distribution in poles of waterlogged archaeological Picea abies (L.) Karst, which was decayed by erosion bacteria (EB) under anoxic conditions for approximately 400 years, was topochemically identified by transmission electron microscopy (TEM) and high resolution UV...

  3. Laboratory demonstration of ball lightning

    International Nuclear Information System (INIS)

    Egorov, Anton I; Stepanov, Sergei I; Shabanov, Gennadii D

    2004-01-01

    A common laboratory facility for creating glowing flying plasmoids akin to a natural ball lightning, allowing a number of experiments to be performed to investigate the main properties of ball lightning, is described. (methodological notes)

  4. Determination of the Mechanical Properties of Plasma-Sprayed Hydroxyapatite Coatings Using the Knoop Indentation Technique

    Science.gov (United States)

    Hasan, Md. Fahad; Wang, James; Berndt, Christopher

    2015-06-01

    The microhardness and elastic modulus of plasma-sprayed hydroxyapatite coatings were evaluated using Knoop indentation on the cross section and on the top surface. The effects of indentation angle, testing direction, measurement location and applied load on the microhardness and elastic modulus were investigated. The variability and distribution of the microhardness and elastic modulus data were statistically analysed using the Weibull modulus distribution. The results indicate that the dependence of microhardness and elastic modulus on the indentation angle exhibits a parabolic shape. Dependence of the microhardness values on the indentation angle follows Pythagoras's theorem. The microhardness, Weibull modulus of microhardness and Weibull modulus of elastic modulus reach their maximum at the central position (175 µm) on the cross section of the coatings. The Weibull modulus of microhardness revealed similar values throughout the thickness, and the Weibull modulus of elastic modulus shows higher values on the top surface compared to the cross section.

  5. On size-effects in single crystal wedge indentation

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Kysar, Jeffrey W.

    2012-01-01

    constitutive length parameters to model sizeeffects. The problem is studied numerically using a strain gradient crystal visco-plasticity theory formulated along the lines proposed by Fleck andWillis (2009). It is shown how the force-indentation relation is affected due to size-dependence in the material. Size...

  6. A systematic study of ball passing frequencies based on dynamic modeling of rolling ball bearings with localized surface defects

    Science.gov (United States)

    Niu, Linkai; Cao, Hongrui; He, Zhengjia; Li, Yamin

    2015-11-01

    Ball passing frequencies (BPFs) are very important features for condition monitoring and fault diagnosis of rolling ball bearings. The ball passing frequency on outer raceway (BPFO) and the ball passing frequency on inner raceway (BPFI) are usually calculated by two well-known kinematics equations. In this paper, a systematic study of BPFs of rolling ball bearings is carried out. A novel method for accurately calculating BPFs based on a complete dynamic model of rolling ball bearings with localized surface defects is proposed. In the used dynamic model, three-dimensional motions, relative slippage, cage effects and localized surface defects are all considered. Moreover, localized surface defects are modeled accurately with consideration of the finite size of the ball, the additional clearance due to material absence, and changes of contact force directions. The reasonability of the proposed method for the prediction of dynamic behaviors of actual ball bearings with localized surface defects and for the calculation of BPFs is discussed by investigating the motion characteristics of a ball when it rolls through a defect. Parametric investigation shows that the shaft speed, external loads, the friction coefficient, raceway groove curvature factors, the initial contact angle, and defect sizes have great effects on BPFs. For a loaded ball bearing, the combination of rolling and sliding in contact region occurs, and the BPFs calculated by simple kinematical relationships are inaccurate, especially for high speed, low external load, and large initial contact angle conditions where severe skidding occurs. The hypothesis that the percentage variation of the spacing between impulses in a defective ball bearing was about 1-2% reported in previous investigations can be satisfied only for the conditions where the skidding effect in a bearing is slight. Finally, the proposed method is verified with two experiments.

  7. BALL - biochemical algorithms library 1.3

    Directory of Open Access Journals (Sweden)

    Stöckel Daniel

    2010-10-01

    Full Text Available Abstract Background The Biochemical Algorithms Library (BALL is a comprehensive rapid application development framework for structural bioinformatics. It provides an extensive C++ class library of data structures and algorithms for molecular modeling and structural bioinformatics. Using BALL as a programming toolbox does not only allow to greatly reduce application development times but also helps in ensuring stability and correctness by avoiding the error-prone reimplementation of complex algorithms and replacing them with calls into the library that has been well-tested by a large number of developers. In the ten years since its original publication, BALL has seen a substantial increase in functionality and numerous other improvements. Results Here, we discuss BALL's current functionality and highlight the key additions and improvements: support for additional file formats, molecular edit-functionality, new molecular mechanics force fields, novel energy minimization techniques, docking algorithms, and support for cheminformatics. Conclusions BALL is available for all major operating systems, including Linux, Windows, and MacOS X. It is available free of charge under the Lesser GNU Public License (LPGL. Parts of the code are distributed under the GNU Public License (GPL. BALL is available as source code and binary packages from the project web site at http://www.ball-project.org. Recently, it has been accepted into the debian project; integration into further distributions is currently pursued.

  8. Elastic Characterization of Transversely Isotropic Soft Materials by Dynamic Shear and Asymmetric Indentation

    Science.gov (United States)

    Namani, R.; Feng, Y.; Okamoto, R. J.; Jesuraj, N.; Sakiyama-Elbert, S. E.; Genin, G. M.; Bayly, P. V.

    2012-01-01

    The mechanical characterization of soft anisotropic materials is a fundamental challenge because of difficulties in applying mechanical loads to soft matter and the need to combine information from multiple tests. A method to characterize the linear elastic properties of transversely isotropic soft materials is proposed, based on the combination of dynamic shear testing (DST) and asymmetric indentation. The procedure was demonstrated by characterizing a nearly incompressible transversely isotropic soft material. A soft gel with controlled anisotropy was obtained by polymerizing a mixture of fibrinogen and thrombin solutions in a high field magnet (B = 11.7 T); fibrils in the resulting gel were predominantly aligned parallel to the magnetic field. Aligned fibrin gels were subject to dynamic (20–40 Hz) shear deformation in two orthogonal directions. The shear storage modulus was 1.08 ± 0. 42 kPa (mean ± std. dev.) for shear in a plane parallel to the dominant fiber direction, and 0.58 ± 0.21 kPa for shear in the plane of isotropy. Gels were indented by a rectangular tip of a large aspect ratio, aligned either parallel or perpendicular to the normal to the plane of transverse isotropy. Aligned fibrin gels appeared stiffer when indented with the long axis of a rectangular tip perpendicular to the dominant fiber direction. Three-dimensional numerical simulations of asymmetric indentation were used to determine the relationship between direction-dependent differences in indentation stiffness and material parameters. This approach enables the estimation of a complete set of parameters for an incompressible, transversely isotropic, linear elastic material. PMID:22757501

  9. Instrumented indentation for characterization of irradiated metals at room and high temperatures

    International Nuclear Information System (INIS)

    Sacksteder, Irene

    2011-01-01

    The reliability and sustainability of future fusion power plants will highly depend on the aptitude of materials to withstand severe irradiation conditions induced by the burning plasma in reactors. The so-called reduced-activation ferritic-martensitic (RAFM) steels are the current promising candidates for the structural applications considering the reactor's first wall. These steels exhibit irradiation embrittlement and hardening for defined irradiation conditions that are mainly characterized by the irradiation temperature and the irradiation dose. A proper characterization of such irradiated steels implies the use of adapted mechanical testing tools. In the present study, the instrumented indentation technique makes use of a post-processing tool based on neural networks. This technique has been selected for its ability to examine tensile properties by multistage indents on miniaturized irradiated metallic samples. The steel specimens studied in this project have been neutron-irradiated up to a dose of 15 dpa. They have been subsequently tested at room temperature in a Hot Cell by means of an adapted commercial indentation device. The significant irradiation-induced hardening effect present in the range of 250-350 deg C could be observed in the hardness and material's strength parameters. These two material parameters show a similar evolution with increasing irradiation temperatures. Post-irradiation annealing treatments of Eurofer97 have been realized and leads to a partial recovery of the irradiation damage. Considering the demands for characterization in irradiated steels at high temperature and for post-irradiation annealing experiments, the existing instrumented indentation device has been further developed during this work. A conceptual design has been proposed for an indentation testing machine, operating at up to 650 deg C, while remaining the critical temperature limit for tensile strength of the newly developed oxide dispersion strengthening ferritic

  10. Ball Screw Actuator Including a Stop with an Integral Guide

    Science.gov (United States)

    Wingett, Paul T. (Inventor); Perek, John (Inventor); Geck, Kellan (Inventor)

    2015-01-01

    An actuator includes a housing assembly, a ball nut, a ball screw, and a ball screw stop. The ball nut is rotationally mounted in the housing assembly, is adapted to receive an input torque, and is configured, upon receipt thereof, to rotate and supply a drive force. The ball screw is mounted within the housing assembly and extends through the ball nut. The ball screw has a first end and a second end, and is coupled to receive the drive force from the ball nut. The ball screw is configured, upon receipt of the drive force, to selectively translate between a stow position and a deploy position. The ball screw stop is mounted on the ball screw to translate therewith and is configured to at selectively engage the housing assembly while the ball screw is translating, and engage the ball nut when the ball screw is in the deploy position.

  11. Portugal palus ELilt abi põlengutega võitlemiseks / Kajar Kase

    Index Scriptorium Estoniae

    Kase, Kajar

    2005-01-01

    Sellel aastal on Portugali metsatulekahjudes hukkunud juba 15 inimest ja hetkel on kahjustatud 140 000 hektarit metsa. Appi on tõtanud Prantsusmaa, Saksamaa, Itaalia, Hispaania ja Hollandi helikopterid ja lennukid. Kaart: Abi Portugalile

  12. Encapsulated Ball Bearings for Rotary Micro Machines

    Science.gov (United States)

    2007-01-01

    occurrence as well as the overall tribological properties of the bearing mechanism. Firstly, the number of stainless steel balls influences not only the load...stacks.iop.org/JMM/17/S224 Abstract We report on the first encapsulated rotary ball bearing mechanism using silicon microfabrication and stainless steel balls...The method of capturing stainless steel balls within a silicon race to support a silicon rotor both axially and radially is developed for rotary micro

  13. How wind affects growth in treeline Picea abies

    Czech Academy of Sciences Publication Activity Database

    Kašpar, J.; Hošek, Jiří; Treml, V.

    2017-01-01

    Roč. 127, č. 2 (2017), s. 1-12 ISSN 1664-2201 Institutional support: RVO:68378289 Keywords : height increment * picea abies * radial growth * thigmomorphogenesis * tree rings Subject RIV: GK - Forestry OBOR OECD: Forestry Impact factor: 2.281, year: 2016 https://link.springer.com/content/pdf/10.1007%2Fs00035-017-0186-x.pdf

  14. Flight trajectory of a rotating golf ball with grooves

    Science.gov (United States)

    Baek, Moonheum; Kim, Jooha; Choi, Haecheon

    2014-11-01

    Dimples are known to reduce drag on a sphere by the amount of 50% as compared to a smooth surface. Despite the advantage of reducing drag, dimples deteriorate the putting accuracy owing to their sharp edges. To minimize this putting error but maintain the same flight distance, we have devised a grooved golf ball (called G ball hereafter) for several years. In this study, we modify the shape and pattern of grooves, and investigate the flow characteristics of the G ball by performing wind-tunnel experiments at the Reynolds numbers of 0 . 5 ×105 - 2 . 5 ×105 and the spin ratios (ratio of surface velocity to the free-stream velocity) of 0 - 0.6 that include the real golf-ball velocity and rotational speed. We measure the drag and lift forces on the rotating G ball and compare them with those of a smooth ball and two well-known dimpled balls. The lift-to-drag ratio of the G ball is much higher than that of a smooth ball and is in between those of the two dimpled balls. The trajectories of flying golf balls are computed. The flight distance of G ball is almost the same as that of one dimpled ball but slightly shorter than that of the other dimpled ball. The fluid-dynamic aspects of these differences will be discussed at the talk. Supported by 2011-0028032, 2014M3C1B1033980.

  15. How does gravity save or kill Q-balls?

    International Nuclear Information System (INIS)

    Tamaki, Takashi; Sakai, Nobuyuki

    2011-01-01

    We explore stability of gravitating Q-balls with potential V 4 (φ)=(m 2 /2)φ 2 -λφ 4 +(φ 6 /M 2 ) via catastrophe theory, as an extension of our previous work on Q-balls with potential V 3 (φ)=(m 2 /2)φ 2 -μφ 3 +λφ 4 . In flat spacetime Q-balls with V 4 in the thick-wall limit are unstable and there is a minimum charge Q min , where Q-balls with Q min are nonexistent. If we take self-gravity into account, on the other hand, there exist stable Q-balls with arbitrarily small charge, no matter how weak gravity is. That is, gravity saves Q-balls with small charge. We also show how stability of Q-balls changes as gravity becomes strong.

  16. Quantitative assessment and prediction of the contact area development during spherical tip indentation of glassy polymers.

    NARCIS (Netherlands)

    Pelletier, C.G.N.; Toonder, den J.M.J.; Govaert, L.E.; Hakiri, N.; Sakai, M.

    2008-01-01

    This paper describes the development of the contact area during indentation of polycarbonate. The contact area was measured in situ using an instrumented indentation microscope and compared with numerical simulations using an elasto-plastic constitutive model. The parameters in the model were

  17. Evaluating microhardness of plasma sprayed Al2O3 coatings using Vickers indentation technique

    International Nuclear Information System (INIS)

    Yin Zhijian; Tao Shunyan; Zhou Xiaming; Ding Chuanxian

    2007-01-01

    In this work, the microhardness of plasma sprayed Al 2 O 3 coatings was evaluated using the Vickers indentation technique, and the effects of measurement direction, location and applied loads were investigated. The measured data sets were then statistically analysed employing the Weibull distribution to evaluate their variability within the coatings. It was found that the Vickers hardness (VHN) increases with decreasing applied indenter load, which can be explained in terms of Kick's law and the Meyer index k of 1.93, as well as relating to the microstructural characteristics of plasma sprayed coatings and the elastic recovery taking place during indentation. In addition, VHN, measured on the cross section of coatings, was obviously higher than that on its top surface. The obtained Weibull modulus and variation coefficient indicate that the VHN was less variable when measured at a higher applied load and on the cross section of coating. The obvious dependence of the VHN on the specific indentation location within through-thickness direction was also realized. These phenomena described above in this work were related to the special microstructure and high anisotropic behaviour of plasma sprayed coatings

  18. Effects of Sample and Indenter Configurations of Nanoindentation Experiment on the Mechanical Behavior and Properties of Ductile Materials

    Directory of Open Access Journals (Sweden)

    Seyed Saeid Rahimian Koloor

    2018-06-01

    Full Text Available The nanoindentation test is frequently used as an alternate method to obtain the mechanical properties of ductile materials. However, due to the lack of information about the effects of the sample and indenter physical configurations, the accuracy of the extracted material properties in nanoindentation tests requires further evaluation that has been considered in this study. In this respect, a demonstrator ductile material, aluminum 1100, was tested using the Triboscope nanoindenter system with the Berkovich indenter. A 3D finite element simulation of the nanoindentation test was developed and validated through exact prediction of the structural response with measured data. The validated model was then employed to examine the effects of various test configurations on the load–displacement response of the sample material. These parameters were the different indenter edge-tip radii, different indentation depths, different sample tilts, and different friction conditions between the indenter and the material surface. Within the range of the indenter edge-tip radii examined, the average elastic modulus and hardness were 78.34 ± 14.58 and 1.6 ± 0.24 GPa, respectively. The different indentation depths resulted in average values for the elastic modulus and hardness of 77.03 ± 6.54 and 1.58 ± 0.17 GPa, respectively. The uneven surface morphology, as described by the inclination of the local indentation plane, indicated an exponential increase in the extracted values of elastic modulus and hardness, ranging from 71.83 and 1.47 GPa (for the reference case, θ = 0° to 243.39 and 5.05 GPa at θ = 12°. The mechanical properties that were obtained through nanoindentation on the surface with 6° tilt or higher were outside the range for aluminum properties. The effect of friction on the resulting mechanical response and the properties of the material was negligible.

  19. Pressure ulcers, indentation marks and pain from cervical spine immobilization with extrication collars and headblocks: An observational study.

    Science.gov (United States)

    Ham, Wietske H W; Schoonhoven, Lisette; Schuurmans, Marieke J; Leenen, Luke P H

    2016-09-01

    To describe the occurrence and severity of pressure ulcers, indentation marks and pain from the extrication collar combined with headblocks. Furthermore, the influence of time, injury severity and patient characteristics on the development of pressure ulcers, indentation marks and pain was explored. Observational. Level one trauma centre in the Netherlands. Adult trauma patients admitted to the Emergency Department in an extrication collar combined with headblocks. Between January and December 2013, 342 patients were included. Study outcomes were incidence and severity of pressure ulcers, indentation marks and pain. The following dependent variables were collected: time in the cervical collar and headblocks, Glasgow Coma Scale, Mean Arterial Pressure, haemoglobin, Injury Severity Score, gender, age, and Body Mass Index. 75.4% of the patients developed a category 1 and 2.9% a category 2 pressure ulcer. Indentation marks were observed in 221 (64.6%) patients; 96 (28.1%) had severe indentation marks. Pressure ulcers and indentation marks were observed most frequently at the back, shoulders and chest. 63.2% experienced pain, of which, 38.5% experienced severe pain. Pain was mainly located at the occiput. Female patients experienced significantly more pain (NRS>3) compared to male patients (OR=2.14, 95% CI 1.21-3.80) None of the investigated variables significantly increased the probability of developing PUs or indentation marks. The high incidence of category 1 pressure ulcers and severe indentation marks indicate an increased risk for pressure ulcer development and may well lead to more severe PU lesions. Pain due to the application of the extrication collar and headblocks may lead to undesirable movement (in order to relieve the pressure) or to bias clinical examination of the cervical spine. It is necessary to revise the current practice of cervical spine immobilization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Experimental research on ball lightning

    International Nuclear Information System (INIS)

    Ofuruton, H.; Ohtsuki, Y.H.

    1990-01-01

    Experiments on producing ball lightning were made with discharge in flammable gas and/or aerosol. A long lifetime (2 s) ball lightning was observed in 2.7 % ethane and 100 cm 3 cotton fibers, and in 1.5 % methane and 1.9 % ethane

  1. E3B1/ABI-1 Isoforms Are Down-Regulated in Cancers of Human Gastrointestinal Tract

    Directory of Open Access Journals (Sweden)

    Rafia A. Baba

    2012-01-01

    Full Text Available The expression of E3B1/ABI-1 protein and its role in cancer progression and prognosis are largely unknown in the majority of solid tumors. In this study, we examined the expression pattern of E3B1/ABI-1 protein in histologically confirmed cases of esophageal (squamous cell carcinoma and adenocarcinoma, gastro-esophageal junction, colorectal cancers and corresponding normal tissues freshly resected from a cohort of 135 patients, by Western Blotting and Immunofluorescence Staining. The protein is present in its phosphorylated form in cells and tissues. Depending on the extent of phosphorylation it is either present in hyper-phosphorylated (M. Wt. 72 kDa form or in hypo-phosphorylated form (M. Wt. 68 kDa and 65 kDa. A thorough analysis revealed that expression of E3B1/ABI-1 protein is significantly decreased in esophageal, gastro-esophageal junction and colorectal carcinomas irrespective of age, gender, dietary and smoking habits of the patients. The decrease in expression of E3B1/ABI-1 was consistently observed for all the three isoforms. However, the decrease in the expression of isoforms varied with different forms of cancers. Down-regulation of E3B1/ABI-1 expression in human carcinomas may play a critical role in tumor progression and in determining disease prognosis.

  2. Effect of abscisic acid on stomatal opening in isolated epidermal strips of abi mutants of Arabidopsis thaliana

    NARCIS (Netherlands)

    Roelfsema, MRG; Prins, HBA

    Abscisic acid-insensitive mutants of Arabidopsis thaliana L. var. Landsberg erecta were selected for their decreased sensitivity to ABA during germination. Two of these mutants, abi-1 and abi-2, display a wilty phenotype as adult plants, indicating disturbed water relations. Experiments were

  3. Fracture properties of ThO2-UO2 pellets by Hertzian indentation technique

    International Nuclear Information System (INIS)

    Kutty, T.R.G.; Rath, B.N.; Balakrishnan, K.S.

    2005-01-01

    Fracture toughness (K Ic ) and fracture surface energy (γ s ) of ThO 2 -UO 2 pellets with varying UO 2 contents were measured using Hertzian indentation technique. The knowledge of fracture toughness (K Ic ) and fracture surface energy values are important for fuel designers since these values are used in fuel modeling. Cracks in nuclear fuel act as a path for fission gas release and enhances fuel cladding mechanical interaction. Microstructural features like grain size and presence of second phase play a significant role in controlling the fracture behavior. Since the fracture properties of nuclear materials are of primary design consideration, it is important that these properties should be evaluated with good precision. There have been several attempts to use Hertzian indentation for evaluating the fracture toughness of brittle materials. The main principle of this method depends on the interaction of the elastic stress field with a pre-existing surface flaw of the sample. One significant advantage of Hertzian indentation over that of Vickers is that the substrate's deformation is entirely elastic until fracture occurs. This avoids the complications arising from the ill-defined residual stress that is normally associated with indentations brought about by pointed indenters like that of Vickers. The material properties that may be determined by this test include (a) fracture toughness and fracture surface energy of the near surface material, (b) the densities and sizes of surface cracks, and (c) residual stresses in the near surface material. This paper deals with experimental procedure for the evaluation of fracture properties of ThO 2 -UO 2 of varying U content and results thus obtained are also presented. The K Ic values thus obtained are explained in terms of their microstructures and the U content. (author)

  4. A dynamic fatigue study of soda-lime silicate and borosilicate glasses using small scale indentation flaws

    International Nuclear Information System (INIS)

    Dabbs, T.P.; Lawn, B.R.; Kelly, P.L.

    1982-01-01

    The dynamic fatigue characteristics of two glasses, soda-lime silicate and borosilicate, in water have been studied using a controlled indentation flaw technique. It is argued that the indentation approach offers several advantages over more conventional fatigue testing procedures: (i) the reproducibility of data is relatively high, eliminating statistics as a basis of analysis: (ii) the flaw ultimately responsible for failure is well defined and may be conveniently characterised before and after (and during, if necessary) the strength test; (iii) via adjustment of the indentation load, the size of the flaw can be suitably predetermined. Particular attention is devoted to the third point because of the facility it provides for systematic investigation of the range of flaw sizes over which macroscopic crack behaviour remains applicable. The first part of the paper summarises the essential fracture mechanics theory of the extension of an indentation flaw to failure. In the next part of the paper the results of dynamic fatigue tests on glass rods in distilled water are described. Data are obtained for Vickers indentation loads in the range 0.05 to 100 N, corresponding to contact dimensions of 2 to 100 μm. Finally, the implications of the results in relation to the response of 'natural' flaws are discussed. (author)

  5. Q-balls in flat potentials

    International Nuclear Information System (INIS)

    Copeland, Edmund J.; Tsumagari, Mitsuo I.

    2009-01-01

    We study the classical and absolute stability of Q-balls in scalar field theories with flat potentials arising in both gravity-mediated and gauge-mediated models. We show that the associated Q-matter formed in gravity-mediated potentials can be stable against decay into their own free particles as long as the coupling constant of the nonrenormalizable term is small, and that all of the possible three-dimensional Q-ball configurations are classically stable against linear fluctuations. Three-dimensional gauge-mediated Q-balls can be absolutely stable in the thin-wall limit, but are completely unstable in the thick-wall limit.

  6. Molecular characterization of a genomic region in a Lactococcus bacteriophage that is involved in its sensitivity to the phage defense mechanism AbiA.

    Science.gov (United States)

    Dinsmore, P K; Klaenhammer, T R

    1997-05-01

    A spontaneous mutant of the lactococcal phage phi31 that is insensitive to the phage defense mechanism AbiA was characterized in an effort to identify the phage factor(s) involved in sensitivity of phi31 to AbiA. A point mutation was localized in the genome of the AbiA-insensitive phage (phi31A) by heteroduplex analysis of a 9-kb region. The mutation (G to T) was within a 738-bp open reading frame (ORF245) and resulted in an arginine-to-leucine change in the predicted amino acid sequence of the protein. The mutant phi31A-ORF245 reduced the sensitivity of phi31 to AbiA when present in trans, indicating that the mutation in ORF245 is responsible for the AbiA insensitivity of phi31A. Transcription of ORF245 occurs early in the phage infection cycles of phi31 and phi31A and is unaffected by AbiA. Expansion of the phi31 sequence revealed ORF169 (immediately upstream of ORF245) and ORF71 (which ends 84 bp upstream of ORF169). Two inverted repeats lie within the 84-bp region between ORF71 and ORF169. Sequence analysis of an independently isolated AbiA-insensitive phage, phi31B, identified a mutation (G to A) in one of the inverted repeats. A 118-bp fragment from phi31, encompassing the 84-bp region between ORF71 and ORF169, eliminates AbiA activity against phi31 when present in trans, establishing a relationship between AbiA and this fragment. The study of this region of phage phi31 has identified an open reading frame (ORF245) and a 118-bp DNA fragment that interact with AbiA and are likely to be involved in the sensitivity of this phage to AbiA.

  7. LHC gets the ball rolling

    CERN Multimedia

    2007-01-01

    1. The multidisciplinary team responsible for the RF ball project to check the interconnections. From left to right: Rhodri Jones (AB/BI), Eva Calvo (AB/BI), Francesco Bertinelli (AT/MCS), Sonia Bartolome Jimenez (TS/IC), Sylvain Weisz (TS/IC), Paul Cruikshank (AT/VAC), Willemjan Maan (AT/VAC), Alain Poncet (AT/MCS), Marek Gasior (AB/BI).2. During the tests the ball is inserted very carefully into the vacuum chamber.1. Le groupe pluridisciplinaire qui a mené le projet de balle RF pour vérifier les interconnexions avec, de gauche à droite, Rhodri Jones (AB/BI), Eva Calvo (AB/BI), Francesco Bertinelli (AT/MCS), Sonia Bartolome Jimenez (TS/IC), Sylvain Weisz (TS/IC), Paul Cruikshank (AT/VAC), Willemjan Maan (AT/VAC), Alain Poncet (AT/MCS) et Marek Gasior (AB/BI).2. Lors des tests, la balle est insérée dans la chambre à vide avec beaucoup de précaution.

  8. Indentation theory on a half-space of transversely isotropic multi-ferroic composite medium: sliding friction effect

    Science.gov (United States)

    Wu, F.; Wu, T.-H.; Li, X.-Y.

    2018-03-01

    This article aims to present a systematic indentation theory on a half-space of multi-ferroic composite medium with transverse isotropy. The effect of sliding friction between the indenter and substrate is taken into account. The cylindrical flat-ended indenter is assumed to be electrically/magnetically conducting or insulating, which leads to four sets of mixed boundary-value problems. The indentation forces in the normal and tangential directions are related to the Coulomb friction law. For each case, the integral equations governing the contact behavior are developed by means of the generalized method of potential theory, and the corresponding coupling field is obtained in terms of elementary functions. The effect of sliding on the contact behavior is investigated. Finite element method (FEM) in the context of magneto-electro-elasticity is developed to discuss the validity of the analytical solutions. The obtained analytical solutions may serve as benchmarks to various simplified analyses and numerical codes and as a guide for future experimental studies.

  9. Mechanical properties of brain tissue by indentation : interregional variation

    NARCIS (Netherlands)

    Dommelen, van J.A.W.; Sande, van der T.P.J.; Hrapko, M.; Peters, G.W.M.

    2010-01-01

    Although many studies on the mechanical properties of brain tissue exist, some controversy concerning the possible differences in mechanical properties of white and gray matter tissue remains. Indentation experiments are conducted on white and gray matter tissue of various regions of the cerebrum

  10. Extrinsic stretching narrowing and anterior indentation of the rectosigmoid junction

    International Nuclear Information System (INIS)

    Schulman, A.; Fataar, S.

    1979-01-01

    Thirty-five cases of extrinsic narrowing or anterior indentation of the rectosigmoid junction (RSJ) have been studied. The RSJ lies directly behind the pouch of Douglas which is a favoured site for peritoneal metastasis, abscess and endometriosis. Any space-occupying lesion of sufficient size at this site will indent the anterior aspects of the RSJ. Causes include distension or tumour of the ileum or sigmoid colon, gross ascites (when the patient is erect), and tumours below the pelvic peritonium, such as gynaecological neoplasm and internal iliac artery aneurysm. When a desmoplastic metastasis in the pouch of Douglas infiltrates the outer layers of the RSJ, the fibrosis produces an eccentric shortening on its anterior aspect, which in turn causes a pleating of the mucosa with the folds radiating towards the shortened area. This is also seen with primary pelvic carcinomas directly adherent to the rectum, endometriosis with repeated bleeding and increasing eccentric, submucosal fibrosis, and chronic abscess in the pouch of Douglas. Not all extrinsic narrowing of the RSJ are pathological. One case of anterior indentation followed operation for rectal prolapse. Ten additional cases showed narrowing due to a technical artefact air-distended colon rising into the upper abdomen to cause stretching at the RSJ. As with ascites, this narrowing due to 'high-rise sigmoid' disappeared when the patients became recumbent and the colonic air redistributed. (author)

  11. Crack formation mechanisms during micro and macro indentation of diamond-like carbon coatings on elastic-plastic substrates

    DEFF Research Database (Denmark)

    Thomsen, N.B.; Fischer-Cripps, A.C.; Swain, M.V.

    1998-01-01

    of cracking and the fracture mechanisms taking place. In the study various diamond-like carbon (DLC) coatings deposited onto stainless steel and tool steel were investigated. Results primarily for one DLC system will be presented here. (C) 1998 Published by Elsevier Science S.A. All rights reserved.......In the present study crack formation is investigated on both micro and macro scale using spherical indenter tips. in particular, systems consisting of elastic coatings that are well adhered to elastic-plastic substrates are studied. Depth sensing indentation is used on the micro scale and Rockwell...... indentation on the macro scale. The predominant driving force for coating failure and crack formation during indentation is plastic deformation of the underlying substrate. The aim is to relate the mechanisms creating both delamination and cohesive cracking on both scales with fracture mechanical models...

  12. Finite element modeling of indentation-induced superelastic effect using a three-dimensional constitutive model for shape memory materials with plasticity

    International Nuclear Information System (INIS)

    Zhang, Yijun; Cheng, Yang-Tse; Grummon, David S.

    2007-01-01

    Indentation-induced shape memory and superelastic effects are recently discovered thermo-mechanical behaviors that may find important applications in many areas of science and engineering. Theoretical understanding of these phenomena is challenging because both martensitic phase transformation and slip plasticity exist under complex contact loading conditions. In this paper, we develop a three-dimensional constitutive model of shape memory alloys with plasticity. Spherical indentation-induced superelasticity in a NiTi shape memory alloy was simulated and compared to experimental results on load-displacement curves and recovery ratios. We show that shallow indents have complete recovery upon unloading, where the size of the phase transformation region is about two times the contact radius. Deep indents have only partial recovery when plastic deformation becomes more prevalent in the indent-affected zone

  13. Static Load Distribution in Ball Bearings

    Science.gov (United States)

    Ricci, Mario

    2010-01-01

    A numerical procedure for computing the internal loading distribution in statically loaded, single-row, angular-contact ball bearings when subjected to a known combined radial and thrust load is presented. The combined radial and thrust load must be applied in order to avoid tilting between inner and outer rings. The numerical procedure requires the iterative solution of Z + 2 simultaneous nonlinear equations - where Z is the number of the balls - to yield an exact solution for axial and radial deflections, and contact angles. Numerical results for a 218 angular-contact ball bearing have been compared with those from the literature and show significant differences in the magnitudes of the ball loads, contact angles, and the extent of the loading zone.

  14. Substrate-dependent cell elasticity measured by optical tweezers indentation

    Science.gov (United States)

    Yousafzai, Muhammad S.; Ndoye, Fatou; Coceano, Giovanna; Niemela, Joseph; Bonin, Serena; Scoles, Giacinto; Cojoc, Dan

    2016-01-01

    In the last decade, cell elasticity has been widely investigated as a potential label free indicator for cellular alteration in different diseases, cancer included. Cell elasticity can be locally measured by pulling membrane tethers, stretching or indenting the cell using optical tweezers. In this paper, we propose a simple approach to perform cell indentation at pN forces by axially moving the cell against a trapped microbead. The elastic modulus is calculated using the Hertz-model. Besides the axial component, the setup also allows us to examine the lateral cell-bead interaction. This technique has been applied to measure the local elasticity of HBL-100 cells, an immortalized human cell line, originally derived from the milk of a woman with no evidence of breast cancer lesions. In addition, we have studied the influence of substrate stiffness on cell elasticity by performing experiments on cells cultured on two substrates, bare and collagen-coated, having different stiffness. The mean value of the cell elastic modulus measured during indentation was 26±9 Pa for the bare substrate, while for the collagen-coated substrate it diminished to 19±7 Pa. The same trend was obtained for the elastic modulus measured during the retraction of the cell: 23±10 Pa and 13±7 Pa, respectively. These results show the cells adapt their stiffness to that of the substrate and demonstrate the potential of this setup for low-force probing of modifications to cell mechanics induced by the surrounding environment (e.g. extracellular matrix or other cells).

  15. Study of the Tool Geometry Influence in Indentation for the Analysis and Validation of the New Modular Upper Bound Technique

    Directory of Open Access Journals (Sweden)

    Carolina Bermudo

    2016-07-01

    Full Text Available Focusing on incremental bulk metal forming processes, the indentation process is gaining interest as a fundamental part of these kinds of processes. This paper presents the analysis of the pressure obtained in indentation under the influence of different punch geometries. To this end, an innovative Upper Bound Theorem (UBT based solution is introduced. This new solution can be easily applied to estimate the necessary force that guarantees plastic deformation by an indentation process. In this work, we propose an accurate analytical approach to analyse indentation under different punches. The new Modular Upper Bound (MUB method presents a simpler and faster application. Additionally, its complexity is not considerably increased by the addition of more Triangular Rigid Zones. In addition, a two-dimensional indentation model is designed and implemented using the Finite Element Method (FEM. The comparison of the two methods applied to the indentation process analysed—the new Modular Upper Bound technique and the Finite Element Method—reveal close similarities, the new Modular Upper Bound being more computationally efficient.

  16. Characterization of sandwich panels for indentation and impact

    International Nuclear Information System (INIS)

    Shazly, M; Salem, S; Bahei-El-Din, Y

    2013-01-01

    The integrity of sandwich structures which are susceptible to impact may deteriorate significantly due to collapse of the core material and delamination of the face sheets. The integration of a thin polyurethane interlayer between the composite face sheet and foam core is known to protect the core material and substantially improve the resistance to impact. The objective of the present work is to characterize the response of sandwich panels, as well as that of the constituents to impact. In particular, the response of polyurethane and foam samples under a range of quasi-static and dynamic loading rates is determined experimentally. Furthermore, the response of sandwich panels to quasi-static indentation and low velocity impact is examined to quantify the extent of damage and how it is affected by the integration of polyurethane interlayers in their construction. This information is useful in the modelling of high velocity impact of sandwich panels; an effort which is currently underway. The results illustrate the benefit of using polyurethane interlayers within the construction of sandwich panels in enhancing their performance under quasi-static indentation and impact loads

  17. Quasi-Static Indentation Analysis of Carbon-Fiber Laminates.

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, Timothy [Sandia National Lab. (SNL-CA), Livermore, CA (United States); English, Shawn Allen [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Nelson, Stacy Michelle [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2015-12-01

    A series of quasi - static indentation experiments are conducted on carbon fiber reinforced polymer laminates with a systematic variation of thicknesses and fixture boundary conditions. Different deformation mechanisms and their resulting damage mechanisms are activated b y changing the thickn ess and boundary conditions. The quasi - static indentation experiments have been shown to achieve damage mechanisms similar to impact and penetration, however without strain rate effects. The low rate allows for the detailed analysis on the load response. Moreover, interrupted tests allow for the incremental analysis of various damage mechanisms and pr ogressions. The experimentally tested specimens are non - destructively evaluated (NDE) with optical imaging, ultrasonics and computed tomography. The load displacement responses and the NDE are then utilized in numerical simulations for the purpose of model validation and vetting. The accompanying numerical simulation work serves two purposes. First, the results further reveal the time sequence of events and the meaning behind load dro ps not clear from NDE . Second, the simulations demonstrate insufficiencies in the code and can then direct future efforts for development.

  18. Multifractal properties of ball milling dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Budroni, M. A., E-mail: mabudroni@uniss.it; Pilosu, V.; Rustici, M. [Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, Via Vienna 2, Sassari 07100 (Italy); Delogu, F. [Dipartimento di Ingegneria Meccanica, Chimica, e dei Materiali, Università degli Studi di Cagliari, via Marengo 2, Cagliari 09123 (Italy)

    2014-06-15

    This work focuses on the dynamics of a ball inside the reactor of a ball mill. We show that the distribution of collisions at the reactor walls exhibits multifractal properties in a wide region of the parameter space defining the geometrical characteristics of the reactor and the collision elasticity. This feature points to the presence of restricted self-organized zones of the reactor walls where the ball preferentially collides and the mechanical energy is mainly dissipated.

  19. Indentation fatigue in silicon nitride, alumina and silicon carbide ...

    Indian Academy of Sciences (India)

    Unknown

    carbide ceramics. A K MUKHOPADHYAY. Central Glass and Ceramic Research Institute, Kolkata 700 032, India. Abstract. Repeated indentation fatigue (RIF) experiments conducted on the same spot of different structural ceramics viz. a hot pressed silicon nitride (HPSN), sintered alumina of two different grain sizes viz.

  20. Residual stress evaluation in brittle coatings using indentation technique combined with in-situ bending

    International Nuclear Information System (INIS)

    Futakawa, Masatoshi; Steinbrech, R.W.; Tanabe, Yuji; Hara, Toshiaki

    2000-01-01

    The indentation crack length approach was adopted and further elaborated to evaluate residual stress and toughness of the brittle coatings: two kinds of glass coatings on steel. The influence of the residual stress on indentation cracking was examined in as-received coating condition and by in-situ superimposing a counteracting tensile stress. For purpose of providing reference toughness values stress-free pieces of separated coating material have also been examined. Thus results of the two complementary sets of experiments were assumed to prove self-consistently toughness and residual stress data of the coating. In particular, the in-situ bending of specimen in combination with the indentation test allowed us to vary deliberately the residual stress situation in glass coating. Thus experiments which utilized the combination of bending test and micro-indentation were introduced as a method to provide unambiguous information about residual compressive stress. Toughness and residual compressive stress of glass coatings used in this study were 0.46-0.50 MPa·m 1/2 and 94-111 MPa, respectively. Furthermore, a thermoelastic calculation of the residual compressive stress was performed and it is found that the value of residual compressive stress at coating surface of specimen was 90-102 MPa. (author)

  1. Incipient plasticity and indentation response of MgO surfaces using molecular dynamics

    Science.gov (United States)

    Tran, Anh-Son; Hong, Zheng-Han; Chen, Ming-Yuan; Fang, Te-Hua

    2018-05-01

    The mechanical characteristics of magnesium oxide (MgO) based on nanoindentation are studied using molecular dynamics (MD) simulation. The effects of indenting speed and temperature on the structural deformation and loading-unloading curve are investigated. Results show that the strained surface of the MgO expands to produce a greater relaxation of atoms in the surroundings of the indent. The dislocation propagation and pile-up for MgO occur more significantly with the increasing temperature from 300 K to 973 K. In addition, with increasing temperature, the high strained atoms with a great perturbation appearing at the groove location.

  2. Analysis of the Indentation Size Effect in the Microhardness Measurements in B6O

    Directory of Open Access Journals (Sweden)

    Ronald Machaka

    2011-01-01

    Full Text Available The Vickers microhardness measurements of boron suboxide (B6O ceramics prepared by uniaxial hot-pressing was investigated at indentation test loads in the range from 0.10 to 2.0 kgf. Results from the investigation indicate that the measured microhardness exhibits an indentation load dependence. Based on the results, we present a comprehensive model intercomparison study of indentation size effects (ISEs in the microhardness measurements of hot-pressed B6O discussed using existing models, that is, the classical Meyer's law, Li and Bradt's proportional specimen resistance model (PSR, the modified proportional specimen resistance model (MPSR, and Carpinteri's multifractal scaling law (MFSL. The best correlation between literature-cited load-independent Vickers microhardness values, the measured values, and applied models was achieved in the case of the MPSR and the MFSL models.

  3. Evaluation and comparison of indentation ultrasound biomicroscopy gonioscopy in relative pupillary block, peripheral anterior synechia, and plateau iris configuration.

    Science.gov (United States)

    Matsunaga, Koichi; Ito, Kunio; Esaki, Koji; Sugimoto, Kota; Sano, Toru; Miura, Katsuya; Sasoh, Mikio; Uji, Yukitaka

    2004-12-01

    To evaluate and compare the findings and changes of the anterior chamber angle configuration with indentation ultrasound biomicroscopy (UBM) gonioscopy in relative pupillary block (RPB), peripheral anterior synechia (PAS), and plateau iris configuration (PIC). This study included 73 eyes of 52 patients with RPB (n = 26), PAS (n = 21), or PIC (n = 26). First, a conventional UBM scan was performed using a normal size standard eye cup before indentation. Then, for indentation UBM gonioscopy, scans were performed using a new eye cup that we designed. For evaluation of the angle, angle opening distance 500 and angle recess area were recorded and evaluated with regard to the effect of expansion on the anterior chamber angle. Indentation UBM gonioscopy showed the characteristic images in each of the eyes. The angle of all examined eyes was significantly widened with indentation (P gonioscopy is a very useful method for observing the angle and diagnosis of RPB, PAS, and PIC.

  4. Identification of the material properties of Al 2024 alloy by means of inverse analysis and indentation tests

    Energy Technology Data Exchange (ETDEWEB)

    Moy, Charles K.S. [School of Civil Engineering, University of Sydney, Sydney NSW 2006 (Australia); Australian Centre for Microscopy and Microanalysis, University of Sydney, Sydney NSW 2006 (Australia); ARC Centre of Excellence for Design in Light Metals, University of Sydney, Sydney NSW 2006 (Australia); Bocciarelli, Massimiliano, E-mail: massimiliano.bocciarelli@polimi.it [Department of Structural Engineering, Technical University of Milan (Politecnico di Milano), 20133 Milan (Italy); Ringer, Simon P. [Australian Centre for Microscopy and Microanalysis, University of Sydney, Sydney NSW 2006 (Australia); ARC Centre of Excellence for Design in Light Metals, University of Sydney, Sydney NSW 2006 (Australia); Ranzi, Gianluca [School of Civil Engineering, University of Sydney, Sydney NSW 2006 (Australia); Australian Centre for Microscopy and Microanalysis, University of Sydney, Sydney NSW 2006 (Australia); ARC Centre of Excellence for Design in Light Metals, University of Sydney, Sydney NSW 2006 (Australia)

    2011-11-25

    Highlights: {yields} Identification of mechanical properties by indentation test and inverse analysis. {yields} Pile-up height is also considered as experimental information. {yields} Inverse problem results to be well posed also in the case of mystical materials. {yields} 2024 Al alloy samples prepared using different age-hardening treatments are studied. - Abstract: This paper outlines an inverse analysis approach aimed at the identification of the mechanical properties of metallic materials based on the experimental results obtained from indentation tests. Previous work has shown the ill-posed nature of the inverse problem based on the load-penetration curve when dealing with mystical materials, which exhibit identical indentation curves even if possessing different yield and strain-hardening properties. For this reason, an additional measurement is used in the present study as input for the inverse analysis which consists of the maximum pile-up height measured after the indentation test. This approach lends itself for practical applications as the load-penetration curve can be easily obtained from commonly available micro-indenters while the pile-up present at the end of the test can be measured by different instruments depending on the size of the indented area, for example by means of an atomic force microscope or a laser profilometer. The inverse analysis procedure consists of a batch deterministic approach, and conventional optimization algorithms are employed for the minimization of the discrepancy norm. The first part of the paper outlines how the inclusion of both the maximum height of the pile-up and the indentation curve in the input data of the inverse analysis leads to a well-defined inverse problem using parameters of mystical materials. The approach is then applied to real experimental data obtained from three sets of 2024 Al alloy samples prepared using different age-hardening treatments. The accuracy of the identification process is validated

  5. Identification of the material properties of Al 2024 alloy by means of inverse analysis and indentation tests

    International Nuclear Information System (INIS)

    Moy, Charles K.S.; Bocciarelli, Massimiliano; Ringer, Simon P.; Ranzi, Gianluca

    2011-01-01

    Highlights: → Identification of mechanical properties by indentation test and inverse analysis. → Pile-up height is also considered as experimental information. → Inverse problem results to be well posed also in the case of mystical materials. → 2024 Al alloy samples prepared using different age-hardening treatments are studied. - Abstract: This paper outlines an inverse analysis approach aimed at the identification of the mechanical properties of metallic materials based on the experimental results obtained from indentation tests. Previous work has shown the ill-posed nature of the inverse problem based on the load-penetration curve when dealing with mystical materials, which exhibit identical indentation curves even if possessing different yield and strain-hardening properties. For this reason, an additional measurement is used in the present study as input for the inverse analysis which consists of the maximum pile-up height measured after the indentation test. This approach lends itself for practical applications as the load-penetration curve can be easily obtained from commonly available micro-indenters while the pile-up present at the end of the test can be measured by different instruments depending on the size of the indented area, for example by means of an atomic force microscope or a laser profilometer. The inverse analysis procedure consists of a batch deterministic approach, and conventional optimization algorithms are employed for the minimization of the discrepancy norm. The first part of the paper outlines how the inclusion of both the maximum height of the pile-up and the indentation curve in the input data of the inverse analysis leads to a well-defined inverse problem using parameters of mystical materials. The approach is then applied to real experimental data obtained from three sets of 2024 Al alloy samples prepared using different age-hardening treatments. The accuracy of the identification process is validated against the mechanical

  6. Aerodynamic drag of modern soccer balls.

    Science.gov (United States)

    Asai, Takeshi; Seo, Kazuya

    2013-12-01

    Soccer balls such as the Adidas Roteiro that have been used in soccer tournaments thus far had 32 pentagonal and hexagonal panels. Recently, the Adidas Teamgeist II and Adidas Jabulani, respectively having 14 and 8 panels, have been used at tournaments; the aerodynamic characteristics of these balls have not yet been verified. Now, the Adidas Tango 12, having 32 panels, has been developed for use at tournaments; therefore, it is necessary to understand its aerodynamic characteristics. Through a wind tunnel test and ball trajectory simulations, this study shows that the aerodynamic resistance of the new 32-panel soccer ball is larger in the high-speed region and lower in the middle-speed region than that of the previous 14- and 8-panel balls. The critical Reynolds number of the Roteiro, Teamgeist II, Jabulani, and Tango 12 was ~2.2 × 10(5) (drag coefficient, C d  ≈ 0.12), ~2.8 × 10(5) (C d  ≈ 0.13), ~3.3 × 10(5) (C d  ≈ 0.13), and ~2.4 × 10(5) (C d  ≈ 0.15), respectively. The flight trajectory simulation suggested that the Tango 12, one of the newest soccer balls, has less air resistance in the medium-speed region than the Jabulani and can thus easily acquire large initial velocity in this region. It is considered that the critical Reynolds number of a soccer ball, as considered within the scope of this experiment, depends on the extended total distance of the panel bonds rather than the small designs on the panel surfaces.

  7. A leucine repeat motif in AbiA is required for resistance of Lactococcus lactis to phages representing three species.

    Science.gov (United States)

    Dinsmore, P K; O'Sullivan, D J; Klaenhammer, T R

    1998-05-28

    The abiA gene encodes an abortive bacteriophage infection mechanism that can protect Lactococcus species from infection by a variety of bacteriophages including three unrelated phage species. Five heptad leucine repeats suggestive of a leucine zipper motif were identified between residues 232 and 266 in the predicted amino acid sequence of the AbiA protein. The biological role of residues in the repeats was investigated by incorporating amino acid substitutions via site-directed mutagenesis. Each mutant was tested for phage resistance against three phages, phi 31, sk1, and c2, belonging to species P335, 936, and c2, respectively. The five residues that comprise the heptad repeats were designated L234, L242, A249, L256, and L263. Three single conservative mutations of leucine to valine in positions L235, L242, and L263 and a double mutation of two leucines (L235 and L242) to valines did not affect AbiA activity on any phages tested. Non-conservative single substitutions of charged amino acids for three of the leucines (L235, L242, and L256) virtually eliminated AbiA activity on all phages tested. Substitution of the alanine residue in the third repeat (A249) with a charged residue did not affect AbiA activity. Replacement of L242 with an alanine elimination phage resistance against phi 31, but partial resistance to sk1 and c2 remained. Two single proline substitutions for leucines L242 and L263 virtually eliminated AbiA activity against all phages, indicating that the predicted alpha-helical structure of this region is important. Mutations in an adjacent region of basic amino acids had various effects on phage resistance, suggesting that these basic residues are also important for AbiA activity. This directed mutagenesis analysis of AbiA indicated that the leucine repeat structure is essential for conferring phage resistance against three species of lactococcal bacteriophages.

  8. Indentation stiffness does not discriminate between normal and degraded articular cartilage.

    Science.gov (United States)

    Brown, Cameron P; Crawford, Ross W; Oloyede, Adekunle

    2007-08-01

    Relative indentation characteristics are commonly used for distinguishing between normal healthy and degraded cartilage. The application of this parameter in surgical decision making and an appreciation of articular cartilage biomechanics has prompted us to hypothesise that it is difficult to define a reference stiffness to characterise normal articular cartilage. This hypothesis is tested for validity by carrying out biomechanical indentation of articular cartilage samples that are characterised as visually normal and degraded relative to proteoglycan depletion and collagen disruption. Compressive loading was applied at known strain rates to visually normal, artificially degraded and naturally osteoarthritic articular cartilage and observing the trends of their stress-strain and stiffness characteristics. While our results demonstrated a 25% depreciation in the stiffness of individual samples after proteoglycan depletion, they also showed that when compared to the stiffness of normal samples only 17% lie outside the range of the stress-strain behaviour of normal samples. We conclude that the extent of the variability in the properties of normal samples, and the degree of overlap (81%) of the biomechanical properties of normal and degraded matrices demonstrate that indentation data cannot form an accurate basis for distinguishing normal from abnormal articular cartilage samples with consequences for the application of this mechanical process in the clinical environment.

  9. On the formation of ball lightning

    International Nuclear Information System (INIS)

    Silberg, P.A.

    1981-01-01

    A plasma continuum model for the formation of ball lightning is developed based on a substantial number of reports that the ball is often in the discharge column of a previous lightning stroke. The usual method of setting up the plasma equation for a one-component electron plasma is used. An approximate equation for the plasma is derived from the describing equation which is then solved exactly in terms of the Jacobi elliptic functions. The formation of the ball is based on a nonlinearity of the plasma equation which uner certain circumstances permits the field to collapse into a small region. This collapse is interpreted to be ball lightning. The approximate equation derived for the plasma has the same form as a previous equation used to describe the formation of the fireball plasma. (author)

  10. Phase I and pharmacokinetic trial of carboplatin and albumin-bound paclitaxel, ABI-007 (Abraxane®) on three treatment schedules in patients with solid tumors

    Science.gov (United States)

    Stinchcombe, Thomas E.; Socinski, Mark A.; Walko, Christine M.; O’Neil, Bert H.; Collichio, Frances A.; Ivanova, Anastasia; Mu, Hua; Hawkins, Michael J.; Goldberg, Richard M.; Lindley, Celeste; Dees, E Claire

    2010-01-01

    Purpose Albumin-bound paclitaxel, ABI-007 (Abraxane ®), has a different toxicity profile than solvent-based paclitaxel, including a lower rate of severe neutropenia. The combination of ABI-007 and carboplatin may have significant activity in a variety of tumor types including non-small and small cell lung cancer, ovarian cancer, and breast cancer. The purpose of this study was to determine the maximum tolerated dose (MTD) of ABI-007, on three different schedules in combination with carboplatin. Methods Forty-one patients with solid tumors were enrolled, and received ABI-007 in combination with carboplatin AUC of 6 on day 1. Group A received ABI-007 at doses ranging from 220 to 340 mg/m2 on day 1 every 21 days; group B received ABI-007 at 100 or 125 mg/m2 on days 1, 8, and 15 every 28 days; and group C received ABI-007 125 or 150 mg/m2 on days 1 and 8 every 21 days. Dose-limiting toxicities were assessed after the first cycle. Doses were escalated in cohorts of three to six patients. Fifteen patients participated in a pharmacokinetic study investigating the effects of the sequence of infusion. ABI-007 was infused first followed by carboplatin in cycle 1, and vice versa in cycle 2. Results The MTD of ABI-007 in combination with carboplatin was 300, 100, and 125 mg/m2 in groups A, B, and C, respectively. Myelosuppression was the primary dose limiting toxicity. No unexpected or new toxicities were reported. Sequence of infusion did not affect either the pharmacokinetics of ABI-007 or the degree of neutropenia. Responses were seen in melanoma, lung, bladder, esophageal, pancreatic, breast cancer, and cancer of unknown primary. Conclusions The recommended dose for phase II studies of ABI-007 in combination with carboplatin (AUC of 6) is 300, 100, 125 mg/m2 for the schedules A, B, and C, respectively. The combination of ABI-007 and carboplatin is well tolerated and active in this heavily pretreated patient population. PMID:17285317

  11. Effect of indentation size on the nucleation and propagation of tensile twinning in pure magnesium

    International Nuclear Information System (INIS)

    Sánchez-Martín, R.; Pérez-Prado, M.T.; Segurado, J.; Molina-Aldareguia, J.M.

    2015-01-01

    Tensile twinning is a key deformation mode in magnesium and its alloys, as well as in other hcp metals. However, the fundamentals of this mechanism are still not fully understood. In this research, instrumented nanoindentation and crystal plasticity finite element simulations are utilized to investigate twin formation and propagation in pure Mg. With that purpose, several nanoindentations at different indentation depths were performed in pure Mg single crystals with a wide range of crystallographic orientations. A careful analysis of the deformation profile, by atomic force microscopy, and of the microtexture, by electron backscatter diffraction, in areas around and underneath the indents, reveals that twinning is subjected to strong size effects, i.e., that the relative activity of twinning increases dramatically with the indentation depth. Furthermore, the twin volume fraction is found to be related to the pile-up or sink-in areas close to the indentations. A decrease in hardness in orientations where the twinning activity is high was confirmed both experimentally and by crystal plasticity finite element simulations. Finally, our results support the thesis that twin activation is an energetic process that demands a concentration of high stresses in a certain activation volume

  12. Calibrated atomic force microscope measurements of vickers hardness indentations and tip production and characterisation for scanning tunelling microscope

    DEFF Research Database (Denmark)

    Jensen, Carsten P.

    Calibrated atomic force microscope measurements of vickers hardness indentations and tip production and characterisation for scanning tunelling microscope......Calibrated atomic force microscope measurements of vickers hardness indentations and tip production and characterisation for scanning tunelling microscope...

  13. Analytical/Empirical Study on Indentation Behavior of Sandwich Plate with Foam Core and Composite Face Sheets

    Directory of Open Access Journals (Sweden)

    Soheil Dariushi

    2017-07-01

    Full Text Available Sandwich structures are widely used in aerospace, automobile, high speed train and civil applications. Sandwich structures consist of two thin and stiff skins and a thick and light weight core. In this study, the obligatory mandate of a sandwich plate contact constitutes a flexible foam core and composite skins with a hemispherical rigid punch has been studied by an analytical/empirical method. In sandwich structures, calculation of force distribution under the punch nose is complicated, because the core is flexible and the difference between the modulus of elasticity of skin and core is large. In the present study, an exponential correlation between the contact force and indentation is proposed. The coefficient and numerical exponent were calculated using the experimental indentation results. A model based on a high-order sandwich panel theory was used to study the bending behavior of sandwich plate under hemispherical punch load. In the first method, the force distribution under the punch nose was calculated by the proposed method and multiplied to deformation of related point in the loading area to calculate the potential energy of the external loads. In the second method, the punch load was modeled as a point force and multiplied to deformation of maximum indented point. The results obtained from the two methods were compared with the experimental results. Indentation and bending tests were carried out on sandwich plates with glass/epoxy skins and a styrene/acrylonitrile foam core. In the bending test, a simply support condition was set and in the indentation test the sandwich specimens were put on a rigid support. Indeed, in this position the punch movement was equal the indentation. The comparison between the analytical and experimental results showed that the proposed method significantly improved the accuracy of analysis.

  14. A Nano-indentation Identification Technique for Viscoelastic Constitutive Characteristics of Periodontal Ligaments

    Directory of Open Access Journals (Sweden)

    Ashrafi H.

    2016-06-01

    Full Text Available Introduction: Nano-indentation has recently been employed as a powerful tool for determining the mechanical properties of biological tissues on nano and micro scales. A majority of soft biological tissues such as ligaments and tendons exhibit viscoelastic or time-dependent behaviors. The constitutive characterization of soft tissues is among very important subjects in clinical medicine and especially, biomechanics fields. Periodontal ligament plays an important role in initiating tooth movement when loads are applied to teeth with orthodontic appliances. It is also the most accessible ligament in human body as it can be directly manipulated without any surgical intervention. From a mechanical point of view, this ligament can be considered as a thin interface made by a solid phase, consisting mainly of collagen fibers, which is immersed into a so-called ground substance. However, the viscoelastic constitutive effects of biological tissues are seldom considered rigorous during Nano-indentation tests. Methods: In the present paper, a mathematical contact approach is developed to enable determining creep compliance and relaxation modulus of distinct periodontal ligaments, using constant–rate indentation and loading time histories, respectively. An adequate curve-fitting method is presented to determine these characteristics based on the Nano-indentation of rigid Berkovich tips. Generalized Voigt-Kelvin and Wiechert models are used to model constitutive equations of periodontal ligaments, in which the relaxation and creep functions are represented by series of decaying exponential functions of time. Results: Time-dependent creep compliance and relaxation function have been obtained for tissue specimens of periodontal ligaments. Conclusion: To improve accuracy, relaxation and creep moduli are measured from two tests separately. Stress relaxation effects appear more rapidly than creep in the periodontal ligaments.

  15. Critical aspects of nano-indentation technique in application to hardened cement paste

    International Nuclear Information System (INIS)

    Davydov, D.; Jirasek, M.; Kopecky, L.

    2011-01-01

    Several open questions related to the experimental protocol and processing of data acquired by the nano-indentation (NI) technique are investigated. The volume fractions of mechanically different phases obtained from statistical NI (SNI) analysis are shown to be different from those obtained by back-scattered electron (BSE) image analysis and X-ray diffraction (XRD) method on the same paste. Judging from transmission electron microscope (TEM) images, the representative volume element of low-density calcium-silicate hydrates (C-S-H) can be considered to be around 500 nm, whereas for high-density C-S-H it is about 100 nm. This raises the question how the appropriate penetration depth for NI experiments should be selected. Changing the maximum load from 1 mN to 5 mN, the effect of penetration depth on the experimental results is studied. As an alternative to the SNI method, a 'manual' indentation method is proposed, which combines information from BSE and atomic-force microscopy (AFM), coupled to the NI machine. The AFM allows to precisely indent a high-density C-S-H rim around unhydrated clinkers in cement paste. Yet the results from that technique still show a big scatter.

  16. Fragmentation of copper current collectors in Li-ion batteries during spherical indentation

    International Nuclear Information System (INIS)

    Wang, Hsin; Watkins, Thomas R.; Simunovic, Srdjan; Bingham, Philip R.; Allu, Srikanth; Turner, John A.

    2017-01-01

    Large, areal, brittle fracture of copper current collector foils was observed by 3D x-ray computed tomography (XCT) of a spherically indented Li-ion cell. This fracture was hidden and non-catastrophic to a degree because the graphite layers deformed plastically, and held the materials together so that the cracks in the foils could not be seen under optical and electron microscopy. 3D XCT on the indented cell showed “mud cracks” within the copper layer. The cracking of copper foils could not be immediately confirmed when the cell was opened for post-mortem examination. However, an X-ray radiograph on a single foil of the Cu anode showed clearly that the copper foil had broken into multiple pieces similar to the brittle cracking of a ceramic under indentation. This new failure mode of anodes on Li-ion cell has very important implications on the behavior of Li-ion cells under mechanical abuse conditions. Furthermore, the fragmentation of current collectors in the anode must be taken into consideration for the electrochemical responses which may lead to capacity loss and affect thermal runaway behavior of the cells.

  17. Using the ultrasound and instrumented indentation techniques to measure the elastic modulus of engineering materials

    International Nuclear Information System (INIS)

    Meza, J. M.; Franco, E. E.; Farias, M. C. M.; Buiochi, F.; Souza, R. M.; Cruz, J.

    2008-01-01

    Currently, the acoustic and nano indentation techniques are two of the most used techniques for materials elastic modulus measurement. In this article fundamental principles and limitations of both techniques are shown and discussed. Last advances in nano indentation technique are also reviewed. an experimental study in ceramic, metallic, composite and single crystals was also done. Results shown that ultrasonic technique is capable to provide results in agreement with those reported in literature. However, ultrasonic technique does not allow measuring the elastic modulus of some small samples and single crystals. On the other hand, the nano indentation technique estimates the elastic modulus values in reasonable agreement with those measured by acoustic methods, particularly in amorphous materials, while in some policristaline materials some deviation from expected values was obtained. (Author) 29 refs

  18. de Abies religiosa

    Directory of Open Access Journals (Sweden)

    J. G. Álvarez-Moctezuma

    2008-01-01

    Full Text Available Los bosques de Abies religiosa en el Ajusco (México están en declinación. Se requiere reestablecer poblaciones a partir de algunos árboles supervivientes en laderas afectadas. Los objetivos fueron evaluar las condiciones in vitro que permitan el establecimiento aséptico de semillas y seleccionar el inóculo más adecuado para la producción de plántulas en A. religiosa. Para la germinación in vitro se probaron desinfectantes (H2O2, C2H5OH, NaOCl. Se evaluaron inóculos (semilla completa, embriones aislados completos o mitades -corte transversal-, y cotiledones y primeras hojas verdaderas de plántulas germinadas in vitro para su establecimiento in vitro. El mejor tratamiento para desinfectar la semilla de A. religiosa es sumergirla en H2O2 (3 % v/v y agitar 24 h. Los mejores inóculos para la propagación in vitro fueron la semilla completa y primeras hojas primarias.

  19. Apparatus Would Measure Temperatures Of Ball Bearings

    Science.gov (United States)

    Gibson, John C.; Fredricks, Thomas H.

    1995-01-01

    Rig for testing ball bearings under radial and axial loads and measuring surface temperatures undergoing development. Includes extensible thermocouples: by means of bellows as longitudinal positioners, thermocouples driven into contact with bearing balls to sense temperatures immediately after test run. Not necessary to disassemble rig or to section balls to obtain indirect indications of maximum temperatures reached. Thermocouple measurements indicate temperatures better than temperature-sensitive paints.

  20. Hardness and elasticity of abrasive particles measured by instrumented indentation

    Czech Academy of Sciences Publication Activity Database

    Hvizdoš, P.; Zeleňák, Michal; Hloch, Sergej

    2016-01-01

    Roč. 8, č. 1 (2016), s. 869-871 ISSN 1805-0476 Institutional support: RVO:68145535 Keywords : abrasive * garnet * hardness * elasticity * instrumental indentation Subject RIV: JQ - Machines ; Tools http://www.mmscience.eu/content/file/archives/MM_Science_201601.pdf

  1. Redundant and distinct functions of the ABA response loci ABA-INSENSITIVE(ABI)5 and ABRE-BINDING FACTOR (ABF)3.

    Science.gov (United States)

    Finkelstein, Ruth; Gampala, Srinivas S L; Lynch, Tim J; Thomas, Terry L; Rock, Christopher D

    2005-09-01

    Abscisic acid-responsive gene expression is regulated by numerous transcription factors, including a subgroup of basic leucine zipper factors that bind to the conserved cis-acting sequences known as ABA-responsive elements. Although one of these factors, ABA-insensitive 5 (ABI5), was identified genetically, the paucity of genetic data for the other family members has left it unclear whether they perform unique functions or act redundantly to ABI5 or each other. To test for potential redundancy with ABI5, we identified the family members with most similar effects and interactions in transient expression systems (ABF3 and ABF1), then characterized loss-of-function lines for those loci. The abf1 and abf3 monogenic mutant lines had at most minimal effects on germination or seed-specific gene expression, but the enhanced ABA- and stress-resistance of abf3 abi5 double mutants revealed redundant action of these genes in multiple stress responses of seeds and seedlings. Although ABI5, ABF3, and ABF1 have some overlapping effects, they appear to antagonistically regulate each other's expression at specific stages. Consequently, loss of any one factor may be partially compensated by increased expression of other family members.

  2. Ball Screw Actuator Including an Axial Soft Stop

    Science.gov (United States)

    Wingett, Paul T. (Inventor); Forrest, Steven Talbert (Inventor); Abel, Steve (Inventor); Woessner, George (Inventor); Hanlon, Casey (Inventor)

    2016-01-01

    An actuator includes an actuator housing, a ball screw, and an axial soft stop assembly. The ball screw extends through the actuator housing and has a first end and a second end. The ball screw is coupled to receive a drive force and is configured, upon receipt of the drive force, to selectively move in a retract direction and an extend direction. The axial soft stop assembly is disposed within the actuator housing. The axial soft stop assembly is configured to be selectively engaged by the ball screw and, upon being engaged thereby, to translate, with compliance, a predetermined distance in the extend direction, and to prevent further movement of the ball screw upon translating the predetermined distance.

  3. Viscoelasticity of Edam cheese during its ripening

    Directory of Open Access Journals (Sweden)

    Šárka Nedomová

    2010-01-01

    Full Text Available Series of the indentation of the ball (10 mm in diameter by the constant speed into blocks of Edam cheese has been conducted. The indentation tests were performed at different speeds (1, 5, 10, 20 and 100 mm/min, and the corresponding force–displacement responses were fitted with an analytical solution to obtain the time-dependent constants and the instantaneous force–displacement response. The measurement has been performed for the cheeses of different stages of their maturity. The dependence of the indentation force on the penetration depth has been evaluated. This dependence can be fitted by a polynom. The indentation force decreases with cheese fat content. It increases with the loading rate. Its value also decreases with the time of the cheese ripening. The recently proposed method for the indenation of the ball into viscoelastic solids has been used for our data analysis. This procedure, which needs the use of the numeric methods, enables to obtain stress relaxation moduli, which describe the viscoelasticity of the tested materials. The obtained moduli describe the stage of the cheese maturity.

  4. Berkeley High-Resolution Ball

    International Nuclear Information System (INIS)

    Diamond, R.M.

    1984-10-01

    Criteria for a high-resolution γ-ray system are discussed. Desirable properties are high resolution, good response function, and moderate solid angle so as to achieve not only double- but triple-coincidences with good statistics. The Berkeley High-Resolution Ball involved the first use of bismuth germanate (BGO) for anti-Compton shield for Ge detectors. The resulting compact shield permitted rather close packing of 21 detectors around a target. In addition, a small central BGO ball gives the total γ-ray energy and multiplicity, as well as the angular pattern of the γ rays. The 21-detector array is nearly complete, and the central ball has been designed, but not yet constructed. First results taken with 9 detector modules are shown for the nucleus 156 Er. The complex decay scheme indicates a transition from collective rotation (prolate shape) to single- particle states (possibly oblate) near spin 30 h, and has other interesting features

  5. Image analysis of moving seeds in an indented cylinder

    DEFF Research Database (Denmark)

    Buus, Ole; Jørgensen, Johannes Ravn

    2010-01-01

    inspection in seed cleaning equipment. A prototype of an indented cylinder will be constructed. To make it more dynamic, the cylinder itself will be manufactured using 3D printing technology. The input will come either from 3D scans of existing cylinders or by defining their topology using parametric B...

  6. Pressure ulcers, indentation marks and pain from cervical spine immobilization with extrication collars and headblocks : An observational study

    NARCIS (Netherlands)

    Ham, Wietske H W; Schoonhoven, Lisette; Schuurmans, Marieke J; Leenen, Luke P H

    OBJECTIVES: To describe the occurrence and severity of pressure ulcers, indentation marks and pain from the extrication collar combined with headblocks. Furthermore, the influence of time, injury severity and patient characteristics on the development of pressure ulcers, indentation marks and pain

  7. Pressure ulcers, indentation marks and pain from cervical spine immobilization with extrication collars and headblocks: An observational study

    NARCIS (Netherlands)

    Ham, W.H.; Schoonhoven, L.; Schuurmans, M.J.; Leenen, L.P.

    2016-01-01

    OBJECTIVES: To describe the occurrence and severity of pressure ulcers, indentation marks and pain from the extrication collar combined with headblocks. Furthermore, the influence of time, injury severity and patient characteristics on the development of pressure ulcers, indentation marks and pain

  8. Modeling and Analyzing the Slipping of the Ball Screw

    Directory of Open Access Journals (Sweden)

    Nannan Xu

    Full Text Available AbstractThis paper aims to set up the ball systematic slipping model and analyze the slipping characteristics caused by different factors for a ball screw operating at high speeds. To investigate the ball screw slipping mechanism, transformed coordinate system should be established firstly. Then it is used to set up mathematical modeling for the ball slipping caused by the three main reasons and the speed of slipping can be calculated. Later, the influence of the contact angle, helix angle and screw diameter for ball screw slipping will be analyzed according to the ball slipping model and slipping speeds equation and the slipping analysis will be obtained. Finally, curve of slipping analysis and that of mechanical efficiency of the ball screw analysis by Lin are compared, which will indirectly verify the correctness of the slipping model. The slipping model and the curve of slipping analysis established in this paper will provide theory basis for reducing slipping and improving the mechanical efficiency of a ball screw operating at high speeds.

  9. Transcriptional regulation of ABI3- and ABA-responsive genes including RD29B and RD29A in seeds, germinating embryos, and seedlings of Arabidopsis.

    Science.gov (United States)

    Nakashima, Kazuo; Fujita, Yasunari; Katsura, Koji; Maruyama, Kyonoshin; Narusaka, Yoshihiro; Seki, Motoaki; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2006-01-01

    ABA-responsive elements (ABREs) are cis-acting elements and basic leucine zipper (bZIP)-type ABRE-binding proteins (AREBs) are transcriptional activators that function in the expression of RD29B in vegetative tissue of Arabidopsis in response to abscisic acid (ABA) treatment. Dehydration-responsive elements (DREs) function as coupling elements of ABRE in the expression of RD29A in response to ABA. Expression analysis using abi3 and abi5 mutants showed that ABI3 and ABI5 play important roles in the expression of RD29B in seeds. Base-substitution analysis showed that two ABREs function strongly and one ABRE coupled with DRE functions weakly in the expression of RD29A in embryos. In a transient transactivation experiment, ABI3, ABI5 and AREB1 activated transcription of a GUS reporter gene driven by the RD29B promoter strongly but these proteins activated the transcription driven by the RD29A promoter weakly. In 35S::ABI3 Arabidopsis plants, the expression of RD29B was up-regulated strongly, but that of RD29A was up-regulated weakly. These results indicate that the expression of RD29B having ABREs in the promoter is up-regulated strongly by ABI3, whereas that of RD29A having one ABRE coupled with DREs in the promoter is up-regulated weakly by ABI3. We compared the expression of 7000 Arabidopsis genes in response to ABA treatment during germination and in the vegetative growth stage, and that in 35S::ABI3 plants using a full-length cDNA microarray. The expression of ABI3- and/or ABA-responsive genes and cis-elements in the promoters are discussed.

  10. Hardening Effect Analysis by Modular Upper Bound and Finite Element Methods in Indentation of Aluminum, Steel, Titanium and Superalloys

    Directory of Open Access Journals (Sweden)

    Carolina Bermudo

    2017-05-01

    Full Text Available The application of incremental processes in the manufacturing industry is having a great development in recent years. The first stage of an Incremental Forming Process can be defined as an indentation. Because of this, the indentation process is starting to be widely studied, not only as a hardening test but also as a forming process. Thus, in this work, an analysis of the indentation process under the new Modular Upper Bound perspective has been performed. The modular implementation has several advantages, including the possibility of the introduction of different parameters to extend the study, such as the friction effect, the temperature or the hardening effect studied in this paper. The main objective of the present work is to analyze the three hardening models developed depending on the material characteristics. In order to support the validation of the hardening models, finite element analyses of diverse materials under an indentation are carried out. Results obtained from the Modular Upper Bound are in concordance with the results obtained from the numerical analyses. In addition, the numerical and analytical methods are in concordance with the results previously obtained in the experimental indentation of annealed aluminum A92030. Due to the introduction of the hardening factor, the new modular distribution is a suitable option for the analysis of indentation process.

  11. Influence of loading path and precipitates on indentation creep behavior of wrought Mg–6 wt% Al–1 wt% Zn magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Nautiyal, Pranjal [Discipline of Mechanical Engineering, Indian Institute of Information Technology, Design & Manufacturing, Jabalpur, Madhya Pradesh 482005 (India); Department of Applied Mechanics, Indian Institute of Technology, Delhi 110016 (India); Jain, Jayant [Department of Applied Mechanics, Indian Institute of Technology, Delhi 110016 (India); Agarwal, Arvind, E-mail: agarwala@fiu.edu [Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33174 (United States)

    2016-01-05

    This study reports the effect of loading path and precipitates on indentation induced creep behavior of AZ61 magnesium alloy. Indentation creep tests were performed on solution-treated and peak-aged extruded AZ61 magnesium alloy, and Atomic Force Microscopy (AFM) investigations were carried out to study deformation mechanisms. Twinning is the dominant creep mechanism for indentation along the extrusion direction (ED) in solution-treated alloy. A combination of slip and twinning appears to be the prominent mechanisms for indentation creep perpendicular to ED. Creep flow is arrested for indentation perpendicular to ED, due to slip–twin interactions. Influence of precipitates on creep deformation was also studied. Aged specimen exhibited higher creep resistance than solution-treated specimen. Unlike solution-treated specimens, twinning was not observed in aged alloy. Creep in aged specimen was attributed to slip.

  12. Mucormycosis (Mucor fungus ball) of the maxillary sinus.

    Science.gov (United States)

    Cho, Hang Sun; Yang, Hoon Shik; Kim, Kyung Soo

    2014-01-01

    A fungus ball is an extramucosal fungal proliferation that completely fills one or more paranasal sinuses and usually occurs as a unilateral infection. It is mainly caused by Aspergillus spp in an immunocompetent host, but some cases of paranasal fungal balls reportedly have been caused by Mucor spp. A Mucor fungus ball is usually found in the maxillary sinus and/or the sphenoid sinus and may be black in color. Patients with mucormycosis, or a Mucor fungal ball infection, usually present with facial pain or headache. On computed tomography, there are no pathognomonic findings that are conclusive for a diagnosis of mucormycosis. In this article we report a case of mucormycosis in a 56-year-old woman and provide a comprehensive review of the literature on the "Mucor fungus ball." To the best of our knowledge, 5 case reports (8 patients) have been published in which the fungus ball was thought to be caused by Mucor spp.

  13. Aerodynamics in the classroom and at the ball park

    Science.gov (United States)

    Cross, Rod

    2012-04-01

    Experiments suitable for classroom projects or demonstrations are described concerning the aerodynamics of polystyrene balls. A light ball with sufficient backspin can curve vertically upward through the air, defying gravity and providing a dramatic visual demonstration of the Magnus effect. A ball projected with backspin can also curve downward with a vertical acceleration greater than that due to gravity if the Magnus force is negative. These effects were investigated by filming the flight of balls projected in an approximately horizontal direction so that the lift and drag forces could be easily measured. The balls were also fitted with artificial raised seams and projected with backspin toward a vertical target in order to measure the sideways deflection over a known horizontal distance. It was found that (a) a ball with a seam on one side can deflect either left or right depending on its launch speed and (b) a ball with a baseball seam can also deflect sideways even when there is no sideways component of the drag or lift forces acting on the ball. Depending on the orientations of the seam and the spin axis, a sideways force on a baseball can arise either if there is rough patch on one side of the ball or if there is a smooth patch. A scuff ball with a rough patch on one side is illegal in baseball. The effect of a smooth patch is a surprising new observation.

  14. Direct observations of dislocation substructures formed by nano-indentation of the α-phase in an α/β titanium alloy

    International Nuclear Information System (INIS)

    Viswanathan, G.B.; Lee, Eunha; Maher, Dennis M.; Banerjee, Srikumar; Fraser, Hamish L.

    2005-01-01

    Nano-indentation has been used to assess the hardness of equiaxed grains of α-Ti as a function of orientation. Surface normals of these grains in metallographic sections were assessed using orientation imaging microscopy. Thin membranes of material from below a series of nano-indentations were excised by use of a dual-beam focused ion beam instrument. In this way, the dislocation substructures beneath individual indentations were characterized using transmission electron microscopy, permitting an identification of both statistically stored and geometrically necessary dislocations

  15. Effect of soccer shoe upper on ball behaviour in curve kicks

    Science.gov (United States)

    Ishii, Hideyuki; Sakurai, Yoshihisa; Maruyama, Takeo

    2014-08-01

    New soccer shoes have been developed by considering various concepts related to kicking, such as curving a soccer ball. However, the effects of shoes on ball behaviour remain unclear. In this study, by using a finite element simulation, we investigated the factors that affect ball behaviour immediately after impact in a curve kick. Five experienced male university soccer players performed one curve kick. We developed a finite element model of the foot and ball and evaluated the validity of the model by comparing the finite element results for the ball behaviour immediately after impact with the experimental results. The launch angle, ball velocity, and ball rotation in the finite element analysis were all in general agreement with the experimental results. Using the validated finite element model, we simulated the ball behaviour. The simulation results indicated that the larger the foot velocity immediately before impact, the larger the ball velocity and ball rotation. Furthermore, the Young's modulus of the shoe upper and the coefficient of friction between the shoe upper and the ball had little effect on the launch angle, ball velocity, and ball rotation. The results of this study suggest that the shoe upper does not significantly influence ball behaviour.

  16. Evaluation of the material’s damage in gas turbine rotors by instrumented spherical indentation

    Directory of Open Access Journals (Sweden)

    D. Nappini

    2014-10-01

    Full Text Available Experimental indentations are carried out on items of two different materials, taken in several location of various components from high pressure gas turbine rotor which have seen an extensive service. The components object of investigation consisted in 1st and 2nd high pressure turbine wheels made in nickel-base superalloy (Inconel 718, the spacer ring (Inconel 718 and the compressor shaft made in CrMoV low alloy steel (ASTM A471 type10. Aim of the work is to set up the capability of the instrumented spherical indentation testing system to evaluate variations in the material properties due to damage, resulting from temperature field and stresses acting on components during service. To perform this task load-indentation depth curves will be acquired in various zones of the above mentioned components. The analysis of the results has allowed to identify an energy parameter which shows a linear evolution with the mean temperature acting on the components.

  17. How does gravity save or kill Q-balls?

    OpenAIRE

    Tamaki, Takashi; Sakai, Nobuyuki

    2011-01-01

    We explore stability of gravitating Q-balls with potential $V_4(\\phi)={m^2\\over2}\\phi^2-\\lambda\\phi^4+\\frac{\\phi^6}{M^2}$ via catastrophe theory, as an extension of our previous work on Q-balls with potential $V_3(\\phi)={m^2\\over2}\\phi^2-\\mu\\phi^3+\\lambda\\phi^4$. In flat spacetime Q-balls with $V_4$ in the thick-wall limit are unstable and there is a minimum charge $Q_{{\\rm min}}$, where Q-balls with $Q

  18. Friction torque in thrust ball bearings grease lubricated

    Science.gov (United States)

    Ianuş, G.; Dumitraşcu, A. C.; Cârlescu, V.; Olaru, D. N.

    2016-08-01

    The authors investigated experimentally and theoretically the friction torque in a modified thrust ball bearing having only 3 balls operating at low axial load and lubricated with NGLI-00 and NGLI-2 greases. The experiments were made by using spin-down methodology and the results were compared with the theoretical values based on Biboulet&Houpert's rolling friction equations. Also, the results were compared with the theoretical values obtained with SKF friction model adapted for 3 balls. A very good correlation between experiments and Biboulet_&_Houpert's predicted results was obtained for the two greases. Also was observed that the theoretical values for the friction torque calculated with SKF model adapted for a thrust ball bearing having only 3 balls are smaller that the experimental values.

  19. Indentation fatigue in silicon nitride, alumina and silicon carbide ...

    Indian Academy of Sciences (India)

    Repeated indentation fatigue (RIF) experiments conducted on the same spot of different structural ceramics viz. a hot pressed silicon nitride (HPSN), sintered alumina of two different grain sizes viz. 1 m and 25 m, and a sintered silicon carbide (SSiC) are reported. The RIF experiments were conducted using a Vicker's ...

  20. Measurement of adherence of residually stressed thin films by indentation. I. Mechanics of interface delamination

    International Nuclear Information System (INIS)

    Marshall, D.B.; Evans, A.G.

    1984-01-01

    A fracture analysis of indentation-induced delamination of thin films is presented. The analysis is based on a model system in which the section of film above the delaminating crack is treated as a rigidly clamped disc, and the crack extension force is derived from changes in strain energy of the system as the crack extends. Residual deposition stresses influence the cracking response by inducing buckling of the film above the crack and by providing an additional crack driving force once buckling occurs. A relation for the equilibrium crack length is derived in terms of the indenter load and geometry, the film thickness and mechanical properties, the residual stress level and the fracture toughness of the interface. The analysis provides a basis for using controlled indentation cracking as a quantitative measure of interface toughness and for evaluating contact-induced damage in thin films

  1. Laser Sintering Technology and Balling Phenomenon.

    Science.gov (United States)

    Oyar, Perihan

    2018-02-01

    The aim of this review was to evaluate the balling phenomenon which occurs typically in Selective Laser Sintering (SLS). The balling phenomenon is a typical SLS defect, and observed in laser sintered powder, significantly reduces the quality of SLS, and hinders the further development of SLS Technology. Electronic database searches were performed using Google Scholar. The keywords "laser sintering, selective laser sintering, direct metal laser melting, and balling phenomenon" were searched in title/abstract of publications, limited to December 31, 2016. The inclusion criteria were SLS, balling phenomenon, some alloys (such as Cr-Co, iron, stainless steel, and Cu-based alloys) mechanical properties, microstructure and bond strength between metal-ceramic crown, laboratory studies, full text, and in English language. A total of 100 articles were found the initial search and yielded a total of 50 studies, 30 of which did not fulfill the inclusion criteria and were therefore excluded. In addition, 20 studies were found by screening the reference list of all included publications. Finally, 40 studies were selected for this review. The method in question is regulated by powder material characteristics and the conditions of laser processing. The procedure of formation, affecting factors, and the mechanism of the balling effect are very complex.

  2. THE BEHAVIOURAL REACTION OF WEANERS TO HANGING TOYS: WOODEN BALL AND AROMATIZED WOODEN BALL – WAY TO REDUCE AGGRESSION AFTER MIXING

    Directory of Open Access Journals (Sweden)

    Jacek NOWICKI

    2008-05-01

    Full Text Available The behaviour of weaners after mixing housed in pens equipped with hanging wooden ball, aromatized with vanilla fluid hanging wooden ball and without enrichment was evaluated. It was found that both enrichments reduced aggression, however the most interesting for weaners was the aromatized wooden ball.

  3. Conceptual design of ball-screw type control element drive mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Ho; Kim, Jong In; Huh, Hyung [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-10-01

    In this report, the design features of ball-screw type CEDM with fine-step movement capability are described. The contents of this report are as follows: -Review of Design Requirements for Ball-screw type CEDM -System Description for Ball-screw type CEDM -Design of Ball Bearing and Ball-screw Assembly -Detail Design of Rotary Step Motor -Detail Design of Angular Position Indicator -Materials. The Ball-screw type CEDM described in this report is to be utilized as the starting point for design development of CEDM for SMART. 11 refs., 43 figs., 3 tabs. (Author)

  4. Note: Evaluation of microfracture strength of diamond materials using nano-polycrystalline diamond spherical indenter

    Science.gov (United States)

    Sumiya, H.; Hamaki, K.; Harano, K.

    2018-05-01

    Ultra-hard and high-strength spherical indenters with high precision and sphericity were successfully prepared from nanopolycrystalline diamond (NPD) synthesized by direct conversion sintering from graphite under high pressure and high temperature. It was shown that highly accurate and stable microfracture strength tests can be performed on various super-hard diamond materials by using the NPD spherical indenters. It was also verified that this technique enables quantitative evaluation of the strength characteristics of single crystal diamonds and NPDs which have been quite difficult to evaluate.

  5. Two Balls' Collision of Mass Ratio 3:1

    Science.gov (United States)

    Ogawara, Yasuo; Hull, Michael M.

    2018-04-01

    Students will sometimes ask why momentum and kinetic energy concepts are both necessary. When physics teachers demonstrate situations that require both an understanding of kinetic energy and momentum, a favorite is Newton's cradle, or a comparable demonstration of two balls of equal mass hitting each other. However, in addition to the case of two balls of equal mass, if a ball hits another ball of three times the mass with equal speed, the results are also interesting, and, like the equal-mass demonstration, both kinetic energy and momentum are critical for understanding the motion.

  6. Biomechanics of Heading a Soccer Ball: Implications for Player Safety

    Directory of Open Access Journals (Sweden)

    Charles F. Babbs

    2001-01-01

    Full Text Available To better understand the risk and safety of heading a soccer ball, the author created a set of simple mathematical models based upon Newton�s second law of motion to describe the physics of heading. These models describe the player, the ball, the flight of the ball before impact, the motion of the head and ball during impact, and the effects of all of these upon the intensity and the duration of acceleration of the head. The calculated head accelerations were compared to those during presumably safe daily activities of jumping, dancing, and head nodding and also were related to established criteria for serious head injury from the motor vehicle crash literature. The results suggest heading is usually safe but occasionally dangerous, depending on key characteristics of both the player and the ball. Safety is greatly improved when players head the ball with greater effective body mass, which is determined by a player�s size, strength, and technique. Smaller youth players, because of their lesser body mass, are more at risk of potentially dangerous headers than are adults, even when using current youth size balls. Lower ball inflation pressure reduces risk of dangerous head accelerations. Lower pressure balls also have greater “touch” and “playability”, measured in terms of contact time and contact area between foot and ball during a kick. Focus on teaching proper technique, the re-design of age-appropriate balls for young players with reduced weight and inflation pressure, and avoidance of head contact with fast, rising balls kicked at close range can substantially reduce risk of subtle brain injury in players who head soccer balls.

  7. Pakistan vajab abi - kas maailma tõesti ei huvita? / Urmas Jaagant

    Index Scriptorium Estoniae

    Suurkask, Heiki, 1972-

    2010-01-01

    Pakistan saab igal aastal suurt rahvusvahelist abi. Mitmed riigid on üleujutustes Pakistani toetanud nüüdki kümnete miljonite dollaritega, kuid riikide tahe annetada on erinev, sest mitte iga abidollarit ei suunata Pakistanis sinna, kus seda tegelikult vajatakse

  8. Chrysophycean stomatocysts from Morskie Oko and Żabie Oko lakes in the Tatra National Park, Poland

    Directory of Open Access Journals (Sweden)

    Jolanta Cabała

    2011-01-01

    Full Text Available Sixteen chrysophycean stomatocysts are reported from the lakes Morskie Oko and Żabie Oko in the Tatra National Park, Poland. Of these, six morphotypes are new to Poland, and two morphotypes plus one forma are new to science. These stomatocysts are illustrated with SEM micrographs and described according to International Statospore Working Group (ISWG guidelines. The comparison of stomatocyst community between Morskie Oko and Żabie Oko lakes is given.

  9. Fracture toughness of glasses and hydroxyapatite: a comparative study of 7 methods by using Vickers indenter

    OpenAIRE

    HERVAS , Isabel; MONTAGNE , Alex; Van Gorp , Adrien; BENTOUMI , M.; THUAULT , A.; IOST , Alain

    2016-01-01

    International audience; Numerous methods have been proposed to estimate the indentation fracture toughness Kic for brittle materials. These methods generally uses formulæ established from empirical correlations between critical applied force, or average crack length, and classical fracture mechanics tests. This study compares several models of fracture toughness calculation obtained by using Vickers indenters. Two optical glasses (Crown and Flint), one vitroceramic (Zerodur) and one ceramic (...

  10. On longevity of I-ball/oscillon

    Energy Technology Data Exchange (ETDEWEB)

    Mukaida, Kyohei [Kavli IPMU (WPI), UTIAS, The University of Tokyo,Kashiwa, Chiba 277-8583 (Japan); Takimoto, Masahiro [Theory Center, KEK,1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Department of Particle Physics and Astrophysics, Weizmann Institute of Science,Rehovot 7610001 (Israel); Yamada, Masaki [Institute of Cosmology, Department of Physics and Astronomy, Tufts University,Medford, MA 02155 (United States); Department of Physics, Tohoku University,Sendai, Miyagi 980-8578 (Japan)

    2017-03-23

    We study I-balls/oscillons, which are long-lived, quasi-periodic, and spatially localized solutions in real scalar field theories. Contrary to the case of Q-balls, there is no evident conserved charge that stabilizes the localized configuration. Nevertheless, in many classical numerical simulations, it has been shown that they are extremely long-lived. In this paper, we clarify the reason for the longevity, and show how the exponential separation of time scales emerges dynamically. Those solutions are time-periodic with a typical frequency of a mass scale of a scalar field. This observation implies that they can be understood by the effective theory after integrating out relativistic modes. We find that the resulting effective theory has an approximate global U(1) symmetry reflecting an approximate number conservation in the non-relativistic regime. As a result, the profile of those solutions is obtained via the bounce method, just like Q-balls, as long as the breaking of the U(1) symmetry is small enough. We then discuss the decay processes of the I-ball/oscillon by the breaking of the U(1) symmetry, namely the production of relativistic modes via number violating processes. We show that the imaginary part is exponentially suppressed, which explains the extraordinary longevity of I-ball/oscillon. In addition, we find that there are some attractor behaviors during the evolution of I-ball/oscillon that further enhance the lifetime. The validity of our effective theory is confirmed by classical numerical simulations. Our formalism may also be useful to study condensates of ultra light bosonic dark matter, such as fuzzy dark matter, and axion stars, for instance.

  11. Contact problem for a solid indenter and a viscoelastic half-space described by the spectrum of relaxation and retardation times

    Science.gov (United States)

    Stepanov, F. I.

    2018-04-01

    The mechanical properties of a material which is modeled by an exponential creep kernel characterized by a spectrum of relaxation and retardation times are studied. The research is carried out considering a contact problem for a solid indenter sliding over a viscoelastic half-space. The contact pressure, indentation depth of the indenter, and the deformation component of the friction coefficient are analyzed with respect to the case of half-space material modeled by single relaxation and retardation times.

  12. A general theory for ball lightning structure and light output

    Science.gov (United States)

    Morrow, R.

    2018-03-01

    A general theory for free-floating ball lightning is presented which unifies the phantom plasma ball theory involving the production of very little light, with theories for ball lightning involving light output produced by burning particles from the soil. The mechanism for the formation of plasma balls is shown to be quite general, producing very similar plasma balls independent of initial ion densities over four orders of magnitude. All that is required is an excess of positive ions in the initial ball of ions. The central plasma density after 1 s is shown to be the reciprocal of the ion neutralization coefficient for all cases, both analytically and computationally. Further, the plasma region has zero electric field in all cases. Surrounding the plasma ball is a sphere of positive ions moving away from the centre via their own space-charge field; this space-charge field, which is the same in all cases near the plasma ball, drives negative ions and negative particles towards the plasma centre. The connection with burning particle theories is the proposition that the burning particles are highly-charged which is very likely after a lightning strike. Burning negatively charged particles would be driven into the plasma ball region and trapped while any positively charged particles would be driven away. The plasma ball structure is shown to last more than 10 s and the ‘burnout time’ for a typical coal particle (as an example) has been measured at 5-10 s this is comparable with the lifetimes observed for ball lightning. The light output from a few hundred particles is estimated to be ~1 W, a typical output for ball lightning. Finally, suggestions are made for the generation of ball lightning in the laboratory.

  13. Estimating Wear Of Installed Ball Bearings

    Science.gov (United States)

    Keba, John E.; Mcvey, Scott E.

    1993-01-01

    Simple inspection and measurement technique makes possible to estimate wear of balls in ball bearing, without removing bearing from shaft on which installed. To perform measurement, one observes bearing cage while turning shaft by hand to obtain integral number of cage rotations and to measure, to nearest 2 degrees, number of shaft rotations producing cage rotations. Ratio between numbers of cages and shaft rotations depends only on internal geometry of bearing and applied load. Changes in turns ratio reflect changes in internal geometry of bearing provided measurements made with similar bearing loads. By assuming all wear occurs on balls, one computes effective value for this wear from change in turns ratio.

  14. A novel numerical framework for self-similarity in plasticity: Wedge indentation in single crystals

    DEFF Research Database (Denmark)

    Juul, K. J.; Niordson, C. F.; Nielsen, K. L.

    2018-01-01

    -viscoplastic single crystal. However, the framework may be readily adapted to any constitutive law of interest. The main focus herein is the development of the self-similar framework, while the indentation study serves primarily as verification of the technique by comparing to existing numerical and analytical......A novel numerical framework for analyzing self-similar problems in plasticity is developed and demonstrated. Self-similar problems of this kind include processes such as stationary cracks, void growth, indentation etc. The proposed technique offers a simple and efficient method for handling...

  15. In Vitro antioxidant activity of extracts from the leaves of Abies ...

    African Journals Online (AJOL)

    Traditionally, the leaves of Abies pindrow Royle are employed as an ayurvedic remedy for fever, hypoglycaemic, respiratory and inflammatory conditions. In this study, dichloromethane, methanol and acetone extracts of A. pindrow leaves were analysed for their phytochemical content and in vitro antioxidant activities.

  16. Ball-and-socket ankle joint

    International Nuclear Information System (INIS)

    Pistoia, F.; Ozonoff, M.B.; Wintz, P.; Hartford Hospital, CT

    1987-01-01

    The ball-and-socket ankle joint is a malformation of the ankle in which the articular surface of the talus is hemispherical in both the anteroposterior and lateral projections and has a congruent, concave tibial articular surface. Fourteen patients with this condition were identified retrospectively. Thirteen patients were thought to have the congenital type of ball-and-socket ankle joint which in many was associated with tarsal coalition, short limb, and ray fusion and deletion anomalies. One case of the acquired type, demonstrating less geometric rounding of the talar margins, was seen in a patient with myelomeningocele, probably resulting from sensory and motor deficits. Although the exact etiology of the congenital type is unknown, its association with other malformations suggests that the ball-and-socket ankle joint results from an overall maldevelopment of the ankle and foot. (orig.)

  17. A Nano-indentation Identification Technique for Viscoelastic Constitutive Characteristics of Periodontal Ligaments.

    Science.gov (United States)

    Ashrafi, H; Shariyat, M

    2016-06-01

    Nano-indentation has recently been employed as a powerful tool for determining the mechanical properties of biological tissues on nano and micro scales. A majority of soft biological tissues such as ligaments and tendons exhibit viscoelastic or time-dependent behaviors. The constitutive characterization of soft tissues is among very important subjects in clinical medicine and especially, biomechanics fields. Periodontal ligament plays an important role in initiating tooth movement when loads are applied to teeth with orthodontic appliances. It is also the most accessible ligament in human body as it can be directly manipulated without any surgical intervention. From a mechanical point of view, this ligament can be considered as a thin interface made by a solid phase, consisting mainly of collagen fibers, which is immersed into a so-called ground substance. However, the viscoelastic constitutive effects of biological tissues are seldom considered rigorous during Nano-indentation tests. In the present paper, a mathematical contact approach is developed to enable determining creep compliance and relaxation modulus of distinct periodontal ligaments, using constant-rate indentation and loading time histories, respectively. An adequate curve-fitting method is presented to determine these characteristics based on the Nano-indentation of rigid Berkovich tips. Generalized Voigt-Kelvin and Wiechert models are used to model constitutive equations of periodontal ligaments, in which the relaxation and creep functions are represented by series of decaying exponential functions of time. Time-dependent creep compliance and relaxation function have been obtained for tissue specimens of periodontal ligaments. To improve accuracy, relaxation and creep moduli are measured from two tests separately. Stress relaxation effects appear more rapidly than creep in the periodontal ligaments.

  18. A Nano-indentation Identification Technique for Viscoelastic Constitutive Characteristics of Periodontal Ligaments

    Science.gov (United States)

    Ashrafi, H.; Shariyat, M.

    2016-01-01

    Introduction Nano-indentation has recently been employed as a powerful tool for determining the mechanical properties of biological tissues on nano and micro scales. A majority of soft biological tissues such as ligaments and tendons exhibit viscoelastic or time-dependent behaviors. The constitutive characterization of soft tissues is among very important subjects in clinical medicine and especially, biomechanics fields. Periodontal ligament plays an important role in initiating tooth movement when loads are applied to teeth with orthodontic appliances. It is also the most accessible ligament in human body as it can be directly manipulated without any surgical intervention. From a mechanical point of view, this ligament can be considered as a thin interface made by a solid phase, consisting mainly of collagen fibers, which is immersed into a so-called ground substance. However, the viscoelastic constitutive effects of biological tissues are seldom considered rigorous during Nano-indentation tests. Methods In the present paper, a mathematical contact approach is developed to enable determining creep compliance and relaxation modulus of distinct periodontal ligaments, using constant–rate indentation and loading time histories, respectively. An adequate curve-fitting method is presented to determine these characteristics based on the Nano-indentation of rigid Berkovich tips. Generalized Voigt-Kelvin and Wiechert models are used to model constitutive equations of periodontal ligaments, in which the relaxation and creep functions are represented by series of decaying exponential functions of time. Results Time-dependent creep compliance and relaxation function have been obtained for tissue specimens of periodontal ligaments. Conclusion To improve accuracy, relaxation and creep moduli are measured from two tests separately. Stress relaxation effects appear more rapidly than creep in the periodontal ligaments. PMID:27672630

  19. Abies semenovii B. Fedtsch. at the Peter the Great Botanical Garden

    Directory of Open Access Journals (Sweden)

    Tkachenko Kirill

    2016-12-01

    Full Text Available Abies semenovii B. Fedtsch. (Pinaceae is an extremely rare flora species of the Central Asia (Kirghizia; it has been cultivated at the Peter the Great Botanical Garden of the Komarov Botanical Institute of the Russian Academy of Sciences (RAS since 1949, where it was first introduced into general cultivation. Since 2000, upon reaching the age of 43 years, the seed reproduction of the plants is being marked. An X-ray test proved seeds, collected in 2014, to be filled and full. In spring 2015, first time in the 67 years of cultivating this specie in St. Petersburg area, first young crops were received. Abies semenovii – a cold hard and decorative tree – has to be introduced into the gardening of St. Petersburg and shall be promoted into the Karelia and further to the northern regions of the European part of the Russian Federation.

  20. Frictionless contact of a rigid punch indenting a transversely isotropic elastic layer

    Directory of Open Access Journals (Sweden)

    Rajesh Patra

    2016-03-01

    Full Text Available This article is concerned with the study of frictionless contact between a rigid punch and a transversely isotropic elastic layer. The rigid punch is assumed to be axially symmetric and is being pressed towards the layer by an applied concentrated load. The layer is resting on a rigid base and is assumed to be ufficiently thick in comparison with the amount of indentation by the rigid punch. The relationship between the applied load $P$ and the contact area is obtained by solving the mathematically formulated problem through use of Hankel transform of different order. Effect of indentation on the distribution of normal stress at the surface as well as the relationship between the applied load and the area of contact have been shown graphically.

  1. A novel numerical framework for self-similarity in plasticity: Wedge indentation in single crystals

    Science.gov (United States)

    Juul, K. J.; Niordson, C. F.; Nielsen, K. L.; Kysar, J. W.

    2018-03-01

    A novel numerical framework for analyzing self-similar problems in plasticity is developed and demonstrated. Self-similar problems of this kind include processes such as stationary cracks, void growth, indentation etc. The proposed technique offers a simple and efficient method for handling this class of complex problems by avoiding issues related to traditional Lagrangian procedures. Moreover, the proposed technique allows for focusing the mesh in the region of interest. In the present paper, the technique is exploited to analyze the well-known wedge indentation problem of an elastic-viscoplastic single crystal. However, the framework may be readily adapted to any constitutive law of interest. The main focus herein is the development of the self-similar framework, while the indentation study serves primarily as verification of the technique by comparing to existing numerical and analytical studies. In this study, the three most common metal crystal structures will be investigated, namely the face-centered cubic (FCC), body-centered cubic (BCC), and hexagonal close packed (HCP) crystal structures, where the stress and slip rate fields around the moving contact point singularity are presented.

  2. Indentation-Induced Mechanical Deformation Behaviors of AlN Thin Films Deposited on c-Plane Sapphire

    International Nuclear Information System (INIS)

    Jian, Sh.R.; Juang, J.Y.

    2012-01-01

    The mechanical properties and deformation behaviors of AlN thin films deposited on c-plane sapphire substrates by helicon sputtering method were determined using the Berkovich nano indentation and cross-sectional transmission electron microscopy (XTEM). The load-displacement curves show the 'pop-ins' phenomena during nano indentation loading, indicative of the formation of slip bands caused by the propagation of dislocations. No evidence of nano indentation-induced phase transformation or cracking patterns was observed up to the maximum load of 80 mN, from either XTEM or atomic force microscopy (AFM) of the mechanically deformed regions. Instead, XTEM revealed that the primary deformation mechanism in AlN thin films is via propagation of dislocations on both basal and pyramidal planes. Furthermore, the hardness and Young's modulus of AlN thin films estimated using the continuous contact stiffness measurements (CSMs) mode provided with the nanoindenter are 16.2 GPa and 243.5 GPa, respectively.

  3. Reactive-inspired ball-milling synthesis of an ODS steel: study of the influence of ball-milling and annealing

    International Nuclear Information System (INIS)

    Brocq, M.

    2010-10-01

    In the context of the development of new ODS (Oxide Dispersion Strengthened) steels as core materials in future nuclear reactors, we investigated a new process inspired by reactive ball-milling which consists in using YFe 3 andFe 2 O 3 as starting reactants instead of Y 2 O 3 to produce a dispersion of nano-oxides in a steel matrix and the influence of synthesis conditions on the nano-oxide characteristics were studied. For that aim, ODS steels were prepared by ball-milling and then annealed. Multi-scale characterizations were performed after each synthesis step, using notably atom probe tomography and small angle neutron scattering. The process inspired by reactive ball-milling was shown to be efficient for ODS steel synthesis, but it does not modify the nano-oxide characteristics as compared to those of oxides directly incorporated in the matrix by ball-milling. Broadly speaking, the nature of the starting oxygen bearing reactants has no influence on nano-oxide formation. Moreover, we showed that the nucleation of nano-oxides nucleation can start during milling and continues during annealing with a very fast kinetic. The final characteristics of nano-oxides formed in this way can be monitored through ball-milling parameters (intensity, temperature and atmosphere) and annealing parameters (duration and temperature). (author)

  4. CFD Analysis of Swing of Cricket Ball and Trajectory Prediction

    Science.gov (United States)

    G, Jithin; Tom, Josin; Ruishikesh, Kamat; Jose, Jyothish; Kumar, Sanjay

    2013-11-01

    This work aims to understand the aerodynamics associated with the flight and swing of a cricket ball and predict its flight trajectory over the course of the game: at start (smooth ball) and as the game progresses (rough ball). Asymmetric airflow over the ball due to seam orientation and surface roughness can cause flight deviation (swing). The values of Drag, Lift and Side forces which are crucial for determining the trajectory of the ball were found with the help of FLUENT using the standard K- ɛ model. Analysis was done to study how the ball velocity, spin imparted to be ball and the tilt of the seam affects the movement of the ball through air. The governing force balance equations in 3 dimensions in combination a MATLAB code which used Heun's method was used for obtaining the trajectory of the ball. The conditions for the conventional swing and reverse swing to occur were deduced from the analysis and found to be in alignment with the real life situation. Critical seam angle for maximum swing and transition speed for normal to reverse swing were found out. The obtained trajectories were compared to real life hawk eye trajectories for validation. The analysis results were in good agreement with the real life situation.

  5. NOAA GOES-R Series Advanced Baseline Imager (ABI) Level 1b Radiances

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Advanced Baseline Imager (ABI) instrument samples the radiance of the Earth in sixteen spectral bands using several arrays of detectors in the instrument’s...

  6. Training simulator for teaching a technique to the long transmission of ball in basket-ball by a method by an arcuated hand from above with threaten

    Directory of Open Access Journals (Sweden)

    Charikova K.M.

    2012-03-01

    Full Text Available Technical devices which used in basket-ball are considered. The features of constructing of trainers and method of their application are selected in a training process. A trainer is offered for teaching a technique to the long transmission of ball in basket-ball. A trainer is a moving on a rope imitator of basket-ball ball. This construction allows to design initial position, замах for implementation of transmission and line of acceleration of ball in the final phase of motion. The method of the use of trainer is developed in an educational process.

  7. Atomic force microscopy indentation of fluorocarbon thin films fabricated by plasma enhanced chemical deposition at low radio frequency power

    International Nuclear Information System (INIS)

    Sirghi, L.; Ruiz, A.; Colpo, P.; Rossi, F.

    2009-01-01

    Atomic force microscopy (AFM) indentation technique is used for characterization of mechanical properties of fluorocarbon (CF x ) thin films obtained from C 4 F 8 gas by plasma enhanced chemical vapour deposition at low r.f. power (5-30 W) and d.c. bias potential (10-80 V). This particular deposition method renders films with good hydrophobic property and high plastic compliance. Commercially available AFM probes with stiff cantilevers (10-20 N/m) and silicon sharpened tips (tip radius < 10 nm) are used for indentations and imaging of the resulted indentation imprints. Force depth curves and imprint characteristics are used for determination of film hardness, elasticity modulus and plasticity index. The measurements show that the decrease of the discharge power results in deposition of films with decreased hardness and stiffness and increased plasticity index. Nanolithography based on AFM indentation is demonstrated on thin films (thickness of 40 nm) with good plastic compliance.

  8. Inference of the phase-to-mechanical property link via coupled X-ray spectrometry and indentation analysis: Application to cement-based materials

    Energy Technology Data Exchange (ETDEWEB)

    Krakowiak, Konrad J.; Wilson, William [Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307 (United States); James, Simon [Schlumberger Riboud Product Center, 1 Rue Henri Becquerel, Clamart 92140 (France); Musso, Simone [Schlumberger-Doll Research Center, 1 Hampshire St., Cambridge, MA 02139-1578 (United States); Ulm, Franz-Josef, E-mail: ulm@mit.edu [Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307 (United States)

    2015-01-15

    A novel approach for the chemo-mechanical characterization of cement-based materials is presented, which combines the classical grid indentation technique with elemental mapping by scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDS). It is illustrated through application to an oil-well cement system with siliceous filler. The characteristic X-rays of major elements (silicon, calcium and aluminum) are measured over the indentation region and mapped back on the indentation points. Measured intensities together with indentation hardness and modulus are considered in a clustering analysis within the framework of Finite Mixture Models with Gaussian component density function. The method is able to successfully isolate the calcium-silica-hydrate gel at the indentation scale from its mixtures with other products of cement hydration and anhydrous phases; thus providing a convenient means to link mechanical response to the calcium-to-silicon ratio quantified independently via X-ray wavelength dispersive spectroscopy. A discussion of uncertainty quantification of the estimated chemo-mechanical properties and phase volume fractions, as well as the effect of chemical observables on phase assessment is also included.

  9. Ball lightning as a route to fusion energy

    International Nuclear Information System (INIS)

    Roth, J.R.

    1989-01-01

    The reality of ball lightning is attested to by observations reported in surveys of large populations, which are the subject of several books. These observations indicate that its characteristics may be relevant to fusion energy applications. Ball lightning can have a diameter up to several meters, a lifetime of over 100 seconds, an energy content in excess of 10 megajoules, and an energy density and a kinetic pressure greater than that of a reacting DT plasma. This paper reviews some of the properties of ball lightning which commend it to the attention of the fusion community, and it discusses some potential advantages and applications of ball lightning fusion reactors. 11 refs., 6 figs., 1 tab

  10. Indentation plasticity of barium titanate single crystals: Dislocation influence on ferroelectric domain walls

    International Nuclear Information System (INIS)

    Liu, D.; Chelf, M.; White, K.W.

    2006-01-01

    The plastic behaviors of barium titanate (001) and (110) single crystals are studied with atomic force microscopy and piezoresponse force microscopy (PFM) following nanoindendation damage. Plastic deformation mechanisms of ferroelectric barium titanate single crystals are discussed with a focus on the interaction between PFM response and dislocation activities. Nanoindentation tests indicate that the theoretical strength is approached prior to the first pop-in event, consistent with the creation of dislocation nucleation sites required for the onset of plasticity. Surface topographic and piezoelectric analyses indicate that pile-ups around indents result from dislocation activities on the primary slip system, {110} pc pc . The more complex indentation-induced domain patterns observed on (110) barium titanate are also discussed

  11. Nutrients in foliage and wet deposition of nitrate, ammonium and sulfate in washing tree top in Abies religiosa forests

    Science.gov (United States)

    E.R Peña-Mendoza; A. Gómez-Guerrero; Mark Fenn; P. Hernández de la Rosa; D. Alvarado Rosales

    2016-01-01

    The nutritional content and tree top in the forests are evaluated of Abies religiosa, San Miguel Tlaixpan (SMT) and Rio Frio (RF), State of Mexico. The work had two parts. In the first, the nutritional content was evaluated in new foliage (N, P, K, Ca and Mg) in Abies religiosa trees, in periods of spring, summer and winter, in...

  12. Effect of panel shape of soccer ball on its flight characteristics

    Science.gov (United States)

    Hong, Sungchan; Asai, Takeshi

    2014-05-01

    Soccer balls are typically constructed from 32 pentagonal and hexagonal panels. Recently, however, newer balls named Cafusa, Teamgeist 2, and Jabulani were respectively produced from 32, 14, and 8 panels with shapes and designs dramatically different from those of conventional balls. The newest type of ball, named Brazuca, was produced from six panels and will be used in the 2014 FIFA World Cup in Brazil. There have, however, been few studies on the aerodynamic properties of balls constructed from different numbers and shapes of panels. Hence, we used wind tunnel tests and a kick-robot to examine the relationship between the panel shape and orientation of modern soccer balls and their aerodynamic and flight characteristics. We observed a correlation between the wind tunnel test results and the actual ball trajectories, and also clarified how the panel characteristics affected the flight of the ball, which enabled prediction of the trajectory.

  13. An early record of ball lightning: Oliva (Spain), 1619

    Science.gov (United States)

    Domínguez-Castro, Fernando

    2018-05-01

    In a primary documentary source we found an early record of ball lightning (BL), which was observed in the monastery of Pi (Oliva, southeastern Spain) on 18 October 1619. The ball lightning was observed by at least three people and was described as a rolling burning vessel and a ball of fire. The ball lightning appeared following a lightning flash, showed a mainly horizontal motion, crossed a wall, smudged an image of the Lady of Rebollet (then known as Lady of Pi) and burnt her ruff, and overturned a cross.

  14. Sequential Indentation Tests to Investigate the Influence of Confining Stress on Rock Breakage by Tunnel Boring Machine Cutter in a Biaxial State

    Science.gov (United States)

    Liu, Jie; Cao, Ping; Han, Dongya

    2016-04-01

    The influence of confining stress on rock breakage by a tunnel boring machine cutter was investigated by conducting sequential indentation tests in a biaxial state. Combined with morphology measurements of breaking grooves and an analysis of surface and internal crack propagation between nicks, the effects of maximum confining stress and minimum stress on indentation efficiency, crack propagation and chip formation were investigated. Indentation tests and morphology measurements show that increasing a maximum confining stress will result in increased consumed energy in indentations, enlarged groove volumes and promoted indentation efficiency when the corresponding minimum confining stress is fixed. The energy consumed in indentations will increase with increase in minimum confining stress, however, because of the decreased groove volumes as the minimum confining stress increases, the efficiency will decrease. Observations of surface crack propagation show that more intensive fractures will be induced as the maximum confining stress increases, whereas the opposite occurs for an increase of minimum confining stress. An observation of the middle section, cracks and chips shows that as the maximum confining stress increases, chips tend to form in deeper parts when the minimum confining stress is fixed, whereas they tend to formed in shallower parts as the minimum confining stress increases when the maximum confining stress is fixed.

  15. Aby Warburg, Images and Exhibitions. Aby Warburg, Bilderreihen und Ausstellungen edited by Uwe Fleckner and Isabelle Woldt, Akademie Verlag, 2012

    Directory of Open Access Journals (Sweden)

    Matthew Rampley

    2012-12-01

    Full Text Available This article reviews the latest volume in the collected works of Aby Warburg published by Akademie Verlag. The volume consists of exhibitions and plates of images Warburg compiled to illustrate lectures in the period between 1925-1929. The review focuses on two key issues raised by the publication: the light it casts on the Mnemosyne Atlas Warburg was working on at the same time, and, in particular, how it helps shape perceptions of the broader intellectual direction of Warburg's thinking in the final half decade of his life.

  16. Measurement of diabetic wounds with optical coherence tomography-based air-jet indentation system and a material testing system.

    Science.gov (United States)

    Choi, M-C; Cheung, K-K; Ng, G Y-F; Zheng, Y-P; Cheing, G L-Y

    2015-11-01

    Material testing system is a conventional but destructive method for measuring the biomechanical properties of wound tissues in basic research. The recently developed optical coherence tomography-based air-jet indentation system is a non-destructive method for measuring these properties of soft tissues in a non-contact manner. The aim of the study was to examine the correlation between the biomechanical properties of wound tissues measured by the two systems. Young male Sprague-Dawley rats with streptozotocin-induced diabetic were wounded by a 6 mm biopsy punch on their hind limbs. The biomechanical properties of wound tissues were assessed with the two systems on post-wounding days 3, 7, 10, 14, and 21. Wound sections were stained with picro-sirius red for analysis on the collagen fibres. Data obtained on the different days were charted to obtain the change in biomechanical properties across the time points, and then pooled to examine the correlation between measurements made by the two devices. Qualitative analysis to determine any correlation between indentation stiffness measured by the air-jet indentation system and the orientation of collagen fibres. The indentation stiffness is significantly negatively correlated to the maximum load, maximum tensile stress, and Young's modulus by the material testing system (all pair-jet indentation system to evaluate the biomechanical properties of wounds in a non-contact manner. It is a potential clinical device to examine the biomechanical properties of chronic wounds in vivo in a repeatable manner.

  17. Tracking of ball and players in beach volleyball videos.

    Directory of Open Access Journals (Sweden)

    Gabriel Gomez

    Full Text Available This paper presents methods for the determination of players' positions and contact time points by tracking the players and the ball in beach volleyball videos. Two player tracking methods are compared, a classical particle filter and a rigid grid integral histogram tracker. Due to mutual occlusion of the players and the camera perspective, results are best for the front players, with 74,6% and 82,6% of correctly tracked frames for the particle method and the integral histogram method, respectively. Results suggest an improved robustness against player confusion between different particle sets when tracking with a rigid grid approach. Faster processing and less player confusions make this method superior to the classical particle filter. Two different ball tracking methods are used that detect ball candidates from movement difference images using a background subtraction algorithm. Ball trajectories are estimated and interpolated from parabolic flight equations. The tracking accuracy of the ball is 54,2% for the trajectory growth method and 42,1% for the Hough line detection method. Tracking results of over 90% from the literature could not be confirmed. Ball contact frames were estimated from parabolic trajectory intersection, resulting in 48,9% of correctly estimated ball contact points.

  18. Tracking of Ball and Players in Beach Volleyball Videos

    Science.gov (United States)

    Gomez, Gabriel; Herrera López, Patricia; Link, Daniel; Eskofier, Bjoern

    2014-01-01

    This paper presents methods for the determination of players' positions and contact time points by tracking the players and the ball in beach volleyball videos. Two player tracking methods are compared, a classical particle filter and a rigid grid integral histogram tracker. Due to mutual occlusion of the players and the camera perspective, results are best for the front players, with 74,6% and 82,6% of correctly tracked frames for the particle method and the integral histogram method, respectively. Results suggest an improved robustness against player confusion between different particle sets when tracking with a rigid grid approach. Faster processing and less player confusions make this method superior to the classical particle filter. Two different ball tracking methods are used that detect ball candidates from movement difference images using a background subtraction algorithm. Ball trajectories are estimated and interpolated from parabolic flight equations. The tracking accuracy of the ball is 54,2% for the trajectory growth method and 42,1% for the Hough line detection method. Tracking results of over 90% from the literature could not be confirmed. Ball contact frames were estimated from parabolic trajectory intersection, resulting in 48,9% of correctly estimated ball contact points. PMID:25426936

  19. Supersymmetric dark-matter Q-balls and their interactions in matter

    International Nuclear Information System (INIS)

    Kusenko, Alexander; Loveridge, Lee C.; Shaposhnikov, Mikhail

    2005-01-01

    Supersymmetric extensions of the Standard Model contain nontopological solitons, Q-balls, which can be stable and can be a form of cosmological dark matter. Understanding the interaction of SUSY Q-balls with matter fermions is important for both astrophysical limits and laboratory searches for these dark-matter candidates. We show that a baryon scattering off a baryonic SUSY Q-ball can convert into its antiparticle with a high probability, while the baryon number of the Q-ball is increased by two units. For a SUSY Q-ball interacting with matter, this process dominates over those previously discussed in the literature

  20. From America to Eurasia: a multigenomes history of the genus Abies.

    Science.gov (United States)

    Semerikova, Svetlana A; Khrunyk, Yuliya Y; Lascoux, Martin; Semerikov, Vladimir L

    2018-03-15

    The origin of conifer genera, the main components of mountain temperate and boreal forests, was deemed to arise in the Mesozoic, although paleontological records and molecular data point to a recent diversification, presumably related to Neogene cooling. The geographical area(s) where the modern lines of conifers emerged remains uncertain, as is the sequence of events leading to their present distribution. To gain further insights into the biogeography of firs (Abies), we conducted phylogenetic analyses of chloroplast, mitochondrial and nuclear markers. The species tree, generated from ten single-copy nuclear genes, yielded probably the best phylogenetic hypothesis available for Abies. The tree obtained from five regions of chloroplast DNA largely corresponded to the nuclear species tree. Ancestral area reconstructions based on fossil calibrated chloroplast DNA and nuclear DNA trees pointed to repeated intercontinental migrations. The mitochondrial DNA haplotype tree, however, disagreed with nuclear and chloroplast DNA trees. It consisted of two clusters: one included mainly American haplotypes, while the other was composed of only Eurasian haplotypes. Presumably, this conflict is due to inter-continental migrations and introgressive hybridization, accompanied by the capture of the mitotypes from aboriginal species by the invading firs. Given that several species inhabiting Northeastern Asia carry American mitotypes and mutations typical for the American cluster, whereas no Asian mitotypes were detected within the American species, we hypothesize that Abies migrated from America to Eurasia, but not in the opposite direction. The direction and age of intercontinental migrations in firs are congruent with other conifers, such as spruces and pines of subsection Strobus, suggesting that these events had the same cause. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Micro structrual characterization and analysis of ball milled silicon carbide

    Science.gov (United States)

    Madhusudan, B. M.; Raju, H. P.; Ghanaraja., S.

    2018-04-01

    Mechanical alloying has been one of the prominent methods of powder synthesis technique in solid state involving cyclic deformation, cold welding and fracturing of powder particles. Powder particles in this method are subjected to greater mechanical deformation due to the impact of ball-powder-ball and ball-powder-container collisions that occurs during mechanical alloying. Strain hardening and fracture of particles decreases the size of the particles and creates new surfaces. The objective of this Present work is to use ball milling of SiC powder for different duration of 5, 10, 15 and 20 hours by High energy planetary ball milling machine and to evaluate the effect of ball milling on SiC powder. Micro structural Studies using Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD) and EDAX has been investigated.

  2. A postal survey of data in general practice on the prevalence of Acquired Brain Injury (ABI) in patients aged 18-65 in one county in the west of Ireland.

    LENUS (Irish Health Repository)

    Finnerty, Fionnuala

    2009-01-01

    BACKGROUND: Very little is known about the prevalence of acquired brain injury (ABI) in Ireland. ABI prevalence has previously been obtained from Belgian general practitioners using a postal survey. We attempted to ascertain the prevalence of ABI in County Mayo through a postal survey of all general practitioners in the county.The specific objectives of this project were to:1. identify whether general practitioners are a. aware of patients with ABI aged 18-65 in their practices b. able to provide prevalence data on ABI in patients aged 18-65 c. able to provide data on age, gender and patient diagnosis 2. analyse prevalence of ABI from any available data from general practitioners. METHODS: A pilot postal survey was performed initially in order to assess the feasibility of the study. It was established that general practitioners did have the necessary information required to complete the questionnaire. A main postal survey was then undertaken. A postal questionnaire was administered to all general practices in County Mayo in the west of Ireland (n = 59). The response rate was 32.2% (n = 19). RESULTS: General practitioners who replied on behalf of their practice could provide data on patient age, gender and diagnosis. In the nineteen practices, there were 57 patients with ABI. The age-specific prevalence of ABI in the area surveyed was estimated at 183.7 per 100,000. The mean patient population per practice was 2,833 (SD = 950). There were found to be significantly more patients with ABI in rural areas than urban areas (p = 0.006). There were also significant differences in the ages of patients in the different ABI categories. Patients whose ABI was of traumatic origin were significantly younger than those patients with ABI of haemorrhagic origin (p = 0.002). CONCLUSION: Although this is a small-scale study, we have ascertained that general practitioners do have data on patients with ABI. Also, some prevalence data now exist where none was available before. These can

  3. The transcription factor ABI4 Is required for the ascorbic acid-dependent regulation of growth and regulation of jasmonate-dependent defense signaling pathways in Arabidopsis.

    Science.gov (United States)

    Kerchev, Pavel I; Pellny, Till K; Vivancos, Pedro Diaz; Kiddle, Guy; Hedden, Peter; Driscoll, Simon; Vanacker, Hélène; Verrier, Paul; Hancock, Robert D; Foyer, Christine H

    2011-09-01

    Cellular redox homeostasis is a hub for signal integration. Interactions between redox metabolism and the ABSCISIC ACID-INSENSITIVE-4 (ABI4) transcription factor were characterized in the Arabidopsis thaliana vitamin c defective1 (vtc1) and vtc2 mutants, which are defective in ascorbic acid synthesis and show a slow growth phenotype together with enhanced abscisic acid (ABA) levels relative to the wild type (Columbia-0). The 75% decrease in the leaf ascorbate pool in the vtc2 mutants was not sufficient to adversely affect GA metabolism. The transcriptome signatures of the abi4, vtc1, and vtc2 mutants showed significant overlap, with a large number of transcription factors or signaling components similarly repressed or induced. Moreover, lincomycin-dependent changes in LIGHT HARVESTING CHLOROPHYLL A/B BINDING PROTEIN 1.1 expression were comparable in these mutants, suggesting overlapping participation in chloroplast to nucleus signaling. The slow growth phenotype of vtc2 was absent in the abi4 vtc2 double mutant, as was the sugar-insensitive phenotype of the abi4 mutant. Octadecanoid derivative-responsive AP2/ERF-domain transcription factor 47 (ORA47) and AP3 (an ABI5 binding factor) transcripts were enhanced in vtc2 but repressed in abi4 vtc2, suggesting that ABI4 and ascorbate modulate growth and defense gene expression through jasmonate signaling. We conclude that low ascorbate triggers ABA- and jasmonate-dependent signaling pathways that together regulate growth through ABI4. Moreover, cellular redox homeostasis exerts a strong influence on sugar-dependent growth regulation.

  4. Water Bouncing Balls: how material stiffness affects water entry

    Science.gov (United States)

    Truscott, Tadd

    2014-03-01

    It is well known that one can skip a stone across the water surface, but less well known that a ball can also be skipped on water. Even though 17th century ship gunners were aware that cannonballs could be skipped on the water surface, they did not know that using elastic spheres rather than rigid ones could greatly improve skipping performance (yet would have made for more peaceful volleys). The water bouncing ball (Waboba®) is an elastic ball used in a game of aquatic keep away in which players pass the ball by skipping it along the water surface. The ball skips easily along the surface creating a sense that breaking the world record for number of skips could easily be achieved (51 rock skips Russell Byers 2007). We investigate the physics of skipping elastic balls to elucidate the mechanisms by which they bounce off of the water. High-speed video reveals that, upon impact with the water, the balls create a cavity and deform significantly due to the extreme elasticity; the flattened spheres resemble skipping stones. With an increased wetted surface area, a large hydrodynamic lift force is generated causing the ball to launch back into the air. Unlike stone skipping, the elasticity of the ball plays an important roll in determining the success of the skip. Through experimentation, we demonstrate that the deformation timescale during impact must be longer than the collision time in order to achieve a successful skip. Further, several material deformation modes can be excited upon free surface impact. The effect of impact velocity and angle on the two governing timescales and material wave modes are also experimentally investigated. Scaling for the deformation and collision times are derived and used to establish criteria for skipping in terms of relevant physical parameters.

  5. Neutrons and the crystal ball experiments

    International Nuclear Information System (INIS)

    Alyea, J.; Grosnick, D.; Koetke, D.; Manweiler, R.; Spinka, H.; Stanislaus, S.

    1997-01-01

    The Crystal Ball detector, as originally constructed, consisted of a set of 672 optically-isolated NaI crystals, forming an approximately spherical shell and each crystal viewed by a photomultiplier, a charged-particle tracker within the NaI shell, and two endcaps to cover angles close to two colliding beams. The detector geometry subtends a solid angle of about 93% of 4π st (20 degree le θ le 160degree and 0degree le φ le 360degree) from the center. The Crystal Ball detector was used for two long series of experiments at the e + e - colliding beam accelerators SPEAR [1, 2, 3, 4] at SLAC and DORIS [5, 6, 7, 8] at DESY. A new set of measurements using the Crystal Ball detector is planned at the Brookhaven National Laboratory Alternating Gradient Synchrotrons (BNL AGS). These new experiments will use the 672 NaI crystals from the original detector, but neither the tracker nor endcaps. The ''Crystal Ball'' in this note will refer only to the set of NaI crystals. Initially, the reactions to be studied will include π - pr a rrow neutrals with pion beam momenta approximately400-750 MeV/c and K - pr a rrow neutrals with kaon beam momenta approximately600-750 MeV/c. Each of these reactions will include a neutron in the final state. whereas the fraction of e + e - interactions with neutrons at SLAC or DESY was quite small. Consequently, there is relatively little experience understanding the behavior of neutrons in the Crystal Ball

  6. Protection of cortex by overlying meninges tissue during dynamic indentation of the adolescent brain.

    Science.gov (United States)

    MacManus, David B; Pierrat, Baptiste; Murphy, Jeremiah G; Gilchrist, Michael D

    2017-07-15

    Traumatic brain injury (TBI) has become a recent focus of biomedical research with a growing international effort targeting material characterization of brain tissue and simulations of trauma using computer models of the head and brain to try to elucidate the mechanisms and pathogenesis of TBI. The meninges, a collagenous protective tri-layer, which encloses the entire brain and spinal cord has been largely overlooked in these material characterization studies. This has resulted in a lack of accurate constitutive data for the cranial meninges, particularly under dynamic conditions such as those experienced during head impacts. The work presented here addresses this lack of data by providing for the first time, in situ large deformation material properties of the porcine dura-arachnoid mater composite under dynamic indentation. It is demonstrated that this tissue is substantially stiffer (shear modulus, μ=19.10±8.55kPa) and relaxes at a slower rate (τ 1 =0.034±0.008s, τ 2 =0.336±0.077s) than the underlying brain tissue (μ=6.97±2.26kPa, τ 1 =0.021±0.007s, τ 2 =0.199±0.036s), reducing the magnitudes of stress by 250% and 65% for strains that arise during indentation-type deformations in adolescent brains. We present the first mechanical analysis of the protective capacity of the cranial meninges using in situ micro-indentation techniques. Force-relaxation tests are performed on in situ meninges and cortex tissue, under large strain dynamic micro-indentation. A quasi-linear viscoelastic model is used subsequently, providing time-dependent mechanical properties of these neural tissues under loading conditions comparable to what is experienced in TBI. The reported data highlights the large differences in mechanical properties between these two tissues. Finite element simulations of the indentation experiments are also performed to investigate the protective capacity of the meninges. These simulations show that the meninges protect the underlying brain tissue

  7. BALL KINEMATICS IN FINE POLISHING BETWEEN MISALIGNED DISKS IN CONIC OPENINGS

    Directory of Open Access Journals (Sweden)

    K. G. Shchetnikovich

    2009-01-01

    Full Text Available The paper considers ball kinematics in polishing between misaligned disks rotating with equal angular velocity; one of these disks has conic openings. Analytical dependences have been obtained for calculation of an angular velocity and ball sliding speed in the conic opening. It has been revealed that at a constant contact of a ball with elastic coating of a flat disk and absence of vibrations in the technological system an instantaneous axis of ball rotation does not change its position in the moving ball. It has been ascertained that when a ball is in contact with a flat disk having elastic coating with grooves changes in the position of ball rotation instantaneous axis have a regular character and do not depend on vibrations in the technological system.

  8. A novel sample preparation method to avoid influence of embedding medium during nano-indentation

    Science.gov (United States)

    Meng, Yujie; Wang, Siqun; Cai, Zhiyong; Young, Timothy M.; Du, Guanben; Li, Yanjun

    2013-02-01

    The effect of the embedding medium on the nano-indentation measurements of lignocellulosic materials was investigated experimentally using nano-indentation. Both the reduced elastic modulus and the hardness of non-embedded cell walls were found to be lower than those of the embedded samples, proving that the embedding medium used for specimen preparation on cellulosic material during nano-indentation can modify cell-wall properties. This leads to structural and chemical changes in the cell-wall constituents, changes that may significantly alter the material properties. Further investigation was carried out to detect the influence of different vacuum times on the cell-wall mechanical properties during the embedding procedure. Interpretation of the statistical analysis revealed no linear relationships between vacuum time and the mechanical properties of cell walls. The quantitative measurements confirm that low-viscosity resin has a rapid penetration rate early in the curing process. Finally, a novel sample preparation method aimed at preventing resin diffusion into lignocellulosic cell walls was developed using a plastic film to wrap the sample before embedding. This method proved to be accessible and straightforward for many kinds of lignocellulosic material, but is especially suitable for small, soft samples.

  9. Nano indentation of particulate and polymer films

    International Nuclear Information System (INIS)

    Akram, Aisha

    2001-01-01

    A detailed knowledge of the formation and rupture mechanisms of agglomerates is essential when seeking to model equipment designed to produce and process such agglomerated particulate solids. In the work to be described the nano-indentation of two-dimensional agglomerate films was carried out in order to establish a means of identifying the generic breakage mechanisms of agglomerated systems. Data analysis techniques are developed that enable the individual inter-particle junction strengths to be calculated for a model system consisting of rather mono-dispersed colloidal silica particles (20-24 nm diameter) bound with a poly(methyl methacrylate). Applied load and penetration depth data in the range (10 mN and 500 nm respectively) are provided as a function of loading time during a continuous loading. It is argued that these data enable the sequence of the discrete binder bridge failures to be observed thus giving a quantitative indication of the breakage mechanism of this agglomerate system as well as reflect the agglomerate structure. The secondary objective of this work was to produce a range of agglomerates with different mechanical properties, without changing the type and amount of binder or prime particles used in the system. This was achieved by altering the mechanical properties of the binder, poly(methyl methacrylate), by the use of a variety of solvents. From data obtained using nano-indentation on thin films of the treated polymer, brittle and ductile forms of poly(methyl methacrylate) could be distinguished. These trends are reflected, to some degree, in the mechanical response of the agglomerated layers. (author)

  10. Evaluation of hot hardness, creep, fatigue and fracture properties of zirconia ceramics by an indentation technique

    International Nuclear Information System (INIS)

    Kutty, T.R.G.; Ganguly, C.; Upadhyaya, D.D.

    1996-01-01

    Zirconia ceramics have wide range engineering applications at room and elevated temperatures. For understanding the mechanical behaviour, the indentation technique was adapted for quick evaluation of hot hardness, creep, fatigue and fracture properties. A Vicker's diamond indentor with 10 N load was employed for hot hardness and creep measurement up to 1300 deg. The fatigue data were evaluated at room temperature by repeated indentation with a constant load (10-2500N) at the same location for a dwell time of 5s until it resulted in the formation of a lateral chip on the sample surface. Thus, the number of cycles for chip formation at a specific indentation load was obtained. The fracture toughness was evaluated at room temperature with a load of 300N using a Vicker's diamond indentor. The results of hot hardness, creep, fatigue, and fracture data ol 3Y-TZP and Mg-PSZ are discussed along with their microstructural features. (authors)

  11. Improved hydrogen sorption kinetics in wet ball milled Mg hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Li

    2011-05-04

    In this work, wet ball milling method is used in order to improve hydrogen sorption behaviour due to its improved microstructure of solid hydrogen materials. Compared to traditional ball milling method, wet ball milling has benefits on improvement of MgH{sub 2} microstructure and further influences on its hydrogen sorption behavior. With the help of solvent tetrahydrofuran (THF), wet ball milled MgH{sub 2} powder has much smaller particle size and its specific surface area is 7 times as large as that of dry ball milled MgH{sub 2} powder. Although after ball milling the grain size is decreased a lot compared to as-received MgH{sub 2} powder, the grain size of wet ball milled MgH{sub 2} powder is larger than that of dry ball milled MgH{sub 2} powder due to the lubricant effect of solvent THF during wet ball milling. The improved particle size and specific surface area of wet ball milled MgH{sub 2} powder is found to be determining its hydrogen sorption kinetics especially at relatively low temperatures. And it also shows good cycling sorption behavior, which decides on its industrial applicability. With three different catalysts MgH{sub 2} powder shows improved hydrogen sorption behavior as well as the cyclic sorption behavior. Among them, the Nb{sub 2}O{sub 5} catalyst is found to be the most effective one in this work. Compared to the wet ball milled MgH{sub 2} powder, the particle size and specific surface area of the MgH{sub 2} powder with catalysts are similar to the previous ones, while the grain size of the MgH{sub 2} with catalysts is much finer. In this case, two reasons for hydrogen sorption improvement are suggested: one is the reduction of the grain size. The other may be as pointed out in some literatures that formation of new oxidation could enhance the hydrogen sorption kinetics, which is also the reason why its hydrogen capacity is decreased compared to without catalysts. After further ball milling, the specific surface area of wet ball milled Mg

  12. Indentation plasticity of barium titanate single crystals: Dislocation influence on ferroelectric domain walls

    Energy Technology Data Exchange (ETDEWEB)

    Liu, D. [Department of Mechanical Engineering, University of Houston, 4800 Calhoun Road, Houston, TX 77204 (United States)]. E-mail: duo.liu@mail.uh.edu; Chelf, M. [Department of Mechanical Engineering, University of Houston, 4800 Calhoun Road, Houston, TX 77204 (United States); White, K.W. [Department of Mechanical Engineering, University of Houston, 4800 Calhoun Road, Houston, TX 77204 (United States)

    2006-10-15

    The plastic behaviors of barium titanate (001) and (110) single crystals are studied with atomic force microscopy and piezoresponse force microscopy (PFM) following nanoindendation damage. Plastic deformation mechanisms of ferroelectric barium titanate single crystals are discussed with a focus on the interaction between PFM response and dislocation activities. Nanoindentation tests indicate that the theoretical strength is approached prior to the first pop-in event, consistent with the creation of dislocation nucleation sites required for the onset of plasticity. Surface topographic and piezoelectric analyses indicate that pile-ups around indents result from dislocation activities on the primary slip system, {l_brace}110{r_brace}{sub pc}<11-bar 0>{sub pc}. The more complex indentation-induced domain patterns observed on (110) barium titanate are also discussed.

  13. BLEACHING NEPTUNE BALLS

    Directory of Open Access Journals (Sweden)

    BONET Maria Angeles

    2014-05-01

    Full Text Available Posidonia Oceanic is a seaweed from Mediterranean Sea and it is more concentrated at the Balerian SEA. This implies the Valencian Community also. It forms vaste underwater meadows in the sea and are part of the Mediterranean ecosystem. It is a sea-grass specie with fruits and flowers. Leaves are ribbon-like and they grow in winter and at the end of summer some of them are separated and arrive to some sea line. Fuit is separated and can floate, it is known as “the olive of the sea” mainly in Italy, or as the Neptune Balls. As it can be used in different fields, it is is being studied in order ro have the precitice tests. Some authors have reported the manufacturing of fully bio-based comites with a gluten matrix by hot-press molding. And it has been considered as an effective insulator for building industry or even though to determine the presence of mercure in the Mediterranean sea some years ago. As many applications can be designed from that fibers, it has been considered to be bleached in order to used them in fashionable products. Consequently, its original brown color is not the most suitable one and it should be bleached as many other cellulosic fibers. The aim of this paper is to bleache neptune balls however, the inner fibers were not accessible at all and it implied not to bleach the inner fibers in the neptune ball. Further studiesd will consider bleaching the individualized fibers.

  14. Stability of a Fermi ball against deformation from spherical shape

    International Nuclear Information System (INIS)

    Yoshida, T.; Ogure, K.; Arafune, J.

    2003-01-01

    The stability of a Fermi ball (F ball), which is a kind of nontopological soliton accompanying the breakdown of the approximate Z 2 symmetry, is investigated in three situations: when it is electrically neutral, when it is electrically charged and unscreened, and when it is electrically charged and screened. We argue only that the third case is physically meaningful since the neutral F ball is unstable and the case of an unscreened charged F ball is observationally excluded when it has a sizable contribution to CDM. We find that the energy scale of the breakdown of the approximate Z 2 symmetry v should satisfy v 6 GeV if the F ball is the main component of CDM

  15. Soccer Ball Lift Coefficients via Trajectory Analysis

    Science.gov (United States)

    Goff, John Eric; Carre, Matt J.

    2010-01-01

    We performed experiments in which a soccer ball was launched from a machine while two high-speed cameras recorded portions of the trajectory. Using the trajectory data and published drag coefficients, we extracted lift coefficients for a soccer ball. We determined lift coefficients for a wide range of spin parameters, including several spin…

  16. The effect of intermediate stop and ball size in fabrication of recycled steel powder using ball milling from machining steel chips

    International Nuclear Information System (INIS)

    Fitri, M.W.M.; Shun, C.H.; Rizam, S.S.; Shamsul, J.B.

    2007-01-01

    A feasibility study for producing recycled steel powder from steel scrap by ball milling was carried out. Steel scrap from machining was used as a raw material and was milled using planetary ball milling. Three samples were prepared in order to study the effect of intermediate stop and ball size. Sample with intermediate stop during milling process showed finer particle size compared to the sample with continuous milling. Decrease in the temperature of the vial during the intermediate stop milling gives less ductile behaviour to the steel powder, which is then easily work-hardened and fragmented to fine powder. Mixed small and big size ball give the best production of recycled steel powder where it gives higher impact force to the scrap and accelerate the fragmentation of the steel scrap into powder. (author)

  17. Polarity influence on the indentation punching of thin {111} GaAs foils at elevated temperatures

    International Nuclear Information System (INIS)

    Patriarche, G; Largeau, L; Riviere, J P; Bourhis, E Le

    2005-01-01

    Thin {111} GaAs substrates were deformed by a Vickers indenter at 350 deg. C-370 deg. C under loads ranging between 0.4 and 1.9 N. Optical microscopy and interferometry were used to observe the indented and opposite faces of the thin foils and hence to investigate the plastic flow through the samples. Attention was paid to the polarity (A or B) of the specimen surface, as GaAs is known to show a large difference between α and β dislocations mobilities. A model considering the influence of polarity is proposed to describe the material flow throughout thin samples

  18. Effect of Ball Weight on Speed, Accuracy, and Mechanics in Cricket Fast Bowling

    Directory of Open Access Journals (Sweden)

    Katharine L. Wickington

    2017-02-01

    Full Text Available The aims of this study were: (1 to quantify the acute effects of ball weight on ball release speed, accuracy, and mechanics in cricket fast bowling; and (2 to test whether a period of sustained training with underweight and overweight balls is effective in increasing a player’s ball release speed. Ten well-trained adult male cricket players performed maximum-effort deliveries using balls ranging in weight from 46% to 137% of the standard ball weight (156 g. A radar gun, bowling target, and 2D video analysis were used to obtain measures of ball speed, accuracy, and mechanics. The participants were assigned to either an intervention group, who trained with underweight and overweight balls, or to a control group, who trained with standard-weight balls. We found that ball speed decreased at a rate of about 1.1 m/s per 100 g increase in ball weight. Accuracy and bowling mechanics were not adversely affected by changes in ball weight. There was evidence that training with underweight and overweight balls might have produced a practically meaningful increase in bowling speed (>1.5 m/s in some players without compromising accuracy or increasing their risk of injury through inducing poor bowling mechanics. In cricket fast bowling, a wide range of ball weight might be necessary to produce an effective modified-implement training program.

  19. Combined effect of electric field and residual stress on propagation of indentation cracks in a PZT-5H ferroelectric ceramic

    International Nuclear Information System (INIS)

    Huang, H.Y.; Chu, W.Y.; Su, Y.J.; Qiao, L.J.; Gao, K.W.

    2005-01-01

    The combined effect of electric field and residual stress on propagation of unloaded indentation cracks in a PZT-5 ceramic has been studied. The results show that residual stress itself is too small to induce delayed propagation of the indentation cracks in silicon oil. If applied constant electric field is larger than 0.2 kV/cm, the combined effect of electric field and residual stress can cause delayed propagation of the indentation crack after passing an incubation time in silicon oil, but the crack will arrest after propagating for 10-30 μm because of decrease of the resultant stress intensity factor induced by the field and residual stress with increasing the crack length. The threshold electric field for delayed propagation of the indentation crack in silicon oil is E DP = 0.2 kV/cm. If the applied electric field is larger than 5.25 kV/cm, combined effect of the electric field and residual stress can cause instant propagation of the indentation crack, and under sustained electric field, the crack which has propagated instantly can propagate continuously, until arrest at last. The critical electric field for instant propagation of the indentation crack is E P = 5.25 kV/cm. If the applied electric field is larger than 12.6 kV/cm, the microcracks induced by the electric field initiate everywhere, grow and connect in a smooth specimen, resulting in delayed failure, even without residual stress. The threshold electric field for delayed failure of a smooth specimen in silicon oil is E DF = 12.6 kV/cm and the critical electric field for instant failure is E F = 19.1 kV/cm

  20. Visualization of air flow around soccer ball using a particle image velocimetry

    Science.gov (United States)

    Hong, Sungchan; Asai, Takeshi; Seo, Kazuya

    2015-10-01

    A traditional soccer ball is constructed using 32 pentagonal and hexagonal panels. In recent years, however, the likes of the Teamgeist and Jabulani balls, constructed from 14 and 8 panels, respectively, have entered the field, marking a significant departure from conventionality in terms of shape and design. Moreover, the recently introduced Brazuca ball features a new 6-panel design and has already been adopted by many soccer leagues. However, the shapes of the constituent panels of these balls differ substantially from those of conventional balls. Therefore, this study set out to investigate the flight and aerodynamic characteristics of different orientations of the soccer ball, which is constructed from panels of different shapes. A wind tunnel test showed substantial differences in the aerodynamic forces acting on the ball, depending on its orientation. Substantial differences were also observed in the aerodynamic forces acting on the ball in different directions, corresponding to its orientation and rotation. Moreover, two-dimensional particle image velocimetry (2D-PIV) measurements showed that the boundary separation varies depending on the orientation of the ball. Based on these results, we can conclude that the shape of the panels of a soccer ball substantially affects its flight trajectory.

  1. Hermitian harmonic maps into convex balls

    International Nuclear Information System (INIS)

    Li Zhenyang; Xi Zhang

    2004-07-01

    In this paper, we consider Hermitian harmonic maps from Hermitian manifolds into convex balls. We prove that there exist no non-trivial Hermitian harmonic maps from closed Hermitian manifolds into convex balls, and we use the heat flow method to solve the Dirichlet problem for Hermitian harmonic maps when the domain is compact Hermitian manifold with non-empty boundary. The case where the domain manifold is complete(noncompact) is also studied. (author)

  2. Indentation analysis of active viscoelastic microplasmodia of P. polycephalum

    Science.gov (United States)

    Fessel, Adrian; Oettmeier, Christina; Wechsler, Klaus; Döbereiner, Hans-Günther

    2018-01-01

    Simple organisms like Physarum polycephalum realize complex behavior, such as shortest path optimization or habituation, via mechanochemical processes rather than by a network of neurons. A full understanding of these phenomena requires detailed investigation of the underlying mechanical properties. To date, micromechanical measurements on P. polycephalum are sparse and lack reproducibility. This prompts study of microplasmodia, a reproducible and homogeneous form of P. polycephalum that resembles the plasmodial ectoplasm responsible for mechanical stability and generation of forces. We combine investigation of ultra-structure and dimension of P. polycephalum with the analysis of data obtained by indentation of microplasmodia, employing a novel nonlinear viscoelastic scaling model that accounts for finite dimension of the sample. We identify the multi-modal distribution of parameters such as Young’s moduls, Poisson’s ratio, and relaxation times associated with viscous processes that cover five orders of magnitude. Results suggest a characterization of microplasmodia as porous, compressible structures that act like elastic solids with high Young’s modulus on short time scales, whereas on long time-scales and upon repeated indentation viscous behavior dominates and the effective modulus is significantly decreased. Furthermore, Young’s modulus is found to oscillate in phase with shape of microplasmodia, emphasizing that modeling P. polycephalum oscillations as a driven oscillator with constant moduli is not practicable.

  3. Failure in lithium-ion batteries under transverse indentation loading

    Science.gov (United States)

    Chung, Seung Hyun; Tancogne-Dejean, Thomas; Zhu, Juner; Luo, Hailing; Wierzbicki, Tomasz

    2018-06-01

    Deformation and failure of constrained cells and modules in the battery pack under transverse loading is one of the most common conditions in batteries subjected to mechanical impacts. A combined experimental, numerical and analytical approach was undertaken to reveal the underlying mechanism and develop a new cell failure model. When large format pouch cells were subjected to local indentation all the way to failure, the post-mortem examination of the failure zones beneath the punches indicates a consistent slant fracture surface angle to the battery plane. This type of behavior can be described by the critical fracture plane theory in which fracture is caused by the shear stress modified by the normal stress. The Mohr-Coulomb fracture criterion is then postulated and it is shown how the two material constants can be determined from just one indentation test. The orientation of the fracture plane is invariant with respect to the type of loading and can be considered as a property of the cell stack. In addition, closed-form solutions are derived for the load-displacement relation for both plane-strain and axisymmetric cases. The results are in good agreement with the numerical simulation of the homogenized model and experimentally measured responses.

  4. TEM in situ cube-corner indentation analysis using ViBe motion detection algorithm

    Science.gov (United States)

    Yano, K. H.; Thomas, S.; Swenson, M. J.; Lu, Y.; Wharry, J. P.

    2018-04-01

    Transmission electron microscopic (TEM) in situ mechanical testing is a promising method for understanding plasticity in shallow ion irradiated layers and other volume-limited materials. One of the simplest TEM in situ experiments is cube-corner indentation of a lamella, but the subsequent analysis and interpretation of the experiment is challenging, especially in engineering materials with complex microstructures. In this work, we: (a) develop MicroViBE, a motion detection and background subtraction-based post-processing approach, and (b) demonstrate the ability of MicroViBe, in combination with post-mortem TEM imaging, to carry out an unbiased qualitative interpretation of TEM indentation videos. We focus this work around a Fe-9%Cr oxide dispersion strengthened (ODS) alloy, irradiated with Fe2+ ions to 3 dpa at 500 °C. MicroViBe identifies changes in Laue contrast that are induced by the indentation; these changes accumulate throughout the mechanical loading to generate a "heatmap" of features in the original TEM video that change the most during the loading. Dislocation loops with b = ½ identified by post-mortem scanning TEM (STEM) imaging correspond to hotspots on the heatmap, whereas positions of dislocation loops with b = do not correspond to hotspots. Further, MicroViBe enables consistent, objective quantitative approximation of the b = ½ dislocation loop number density.

  5. Giant panda׳s tooth enamel: Structure, mechanical behavior and toughening mechanisms under indentation.

    Science.gov (United States)

    Weng, Z Y; Liu, Z Q; Ritchie, R O; Jiao, D; Li, D S; Wu, H L; Deng, L H; Zhang, Z F

    2016-12-01

    The giant panda׳s teeth possess remarkable load-bearing capacity and damage resistance for masticating bamboos. In this study, the hierarchical structure and mechanical behavior of the giant panda׳s tooth enamel were investigated under indentation. The effects of loading orientation and location on mechanical properties of the enamel were clarified and the evolution of damage in the enamel under increasing load evaluated. The nature of the damage, both at and beneath the indentation surfaces, and the underlying toughening mechanisms were explored. Indentation cracks invariably were seen to propagate along the internal interfaces, specifically the sheaths between enamel rods, and multiple extrinsic toughening mechanisms, e.g., crack deflection/twisting and uncracked-ligament bridging, were active to shield the tips of cracks from the applied stress. The giant panda׳s tooth enamel is analogous to human enamel in its mechanical properties, yet it has superior hardness and Young׳s modulus but inferior toughness as compared to the bamboo that pandas primarily feed on, highlighting the critical roles of the integration of underlying tissues in the entire tooth and the highly hydrated state of bamboo foods. Our objective is that this study can aid the understanding of the structure-mechanical property relations in the tooth enamel of mammals and further provide some insight on the food habits of the giant pandas. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Microindentation deformation of lithium dihydrogen phosphate single crystals: Microhardness measurement and indentation size effect

    Energy Technology Data Exchange (ETDEWEB)

    Iurchenko, Anton [Institute for Single Crystals, National Academy of Sciences of Ukraine, Lenin Avenue 60, 61001 Kharkiv (Ukraine); Borc, Jarosław, E-mail: j.borc@pollub.pl [Department of Applied Physics, Lublin University of Technology, ul. Nadbystrzycka 38, 20-618 Lublin (Poland); Sangwal, Keshra [Department of Applied Physics, Lublin University of Technology, ul. Nadbystrzycka 38, 20-618 Lublin (Poland); Voronov, Alexei [Institute for Single Crystals, National Academy of Sciences of Ukraine, Lenin Avenue 60, 61001 Kharkiv (Ukraine)

    2016-02-15

    The Vickers microhardness H{sub V} of the (110) and (111) as-grown faces of lithium dihydrogen phosphate (LDP) crystals was investigated as a function of applied load P. The microhardness H{sub V} of the two faces increases with load P i.e. reverse indentation size effect (reverse ISE) and the hardness of the (110) face is somewhat lower than that of the (111) face but this difference is not easily recognized for these planes due to large scatter in the data. The origin of observed ISE was analyzed using different approaches. It was found that: (1) Hays–Kendall's and Begley–Hutchinson's relations do not explain the origin of reverse ISE but Meyer's law describes the reverse ISE satisfactorily and its constants provide a link between ISE and formation of radial cracks with applied indentation load P, (2) reverse ISE is associated with tensile surface stresses, (3) despite its failure to explain reverse ISE, Begley–Hutchinson's relation is reliable to obtain load-independent hardness H{sub 0}, is 2337 MPa for LDP, and (4) the value of fracture toughness K{sub C} of LDP crystals lies between 4.7 and 12 MPa m{sup 1/2}. The load-independent hardness H{sub 0} of LDP is higher by a factor of 1.5 than that reported for undoped KDP and ADP crystals whereas its fracture toughness K{sub C} is higher by factor of about 20 than that of undoped KDP crystals. - Highlights: • Vickers indentations on the (110) and (111) faces of LDP crystals were made. • The microhardness H{sub V} was investigated as a function of applied load P. • Reverse indentation size effect was observed. • Fracture toughness K{sub C} from the radial cracks was calculated.

  7. Microindentation deformation of lithium dihydrogen phosphate single crystals: Microhardness measurement and indentation size effect

    International Nuclear Information System (INIS)

    Iurchenko, Anton; Borc, Jarosław; Sangwal, Keshra; Voronov, Alexei

    2016-01-01

    The Vickers microhardness H_V of the (110) and (111) as-grown faces of lithium dihydrogen phosphate (LDP) crystals was investigated as a function of applied load P. The microhardness H_V of the two faces increases with load P i.e. reverse indentation size effect (reverse ISE) and the hardness of the (110) face is somewhat lower than that of the (111) face but this difference is not easily recognized for these planes due to large scatter in the data. The origin of observed ISE was analyzed using different approaches. It was found that: (1) Hays–Kendall's and Begley–Hutchinson's relations do not explain the origin of reverse ISE but Meyer's law describes the reverse ISE satisfactorily and its constants provide a link between ISE and formation of radial cracks with applied indentation load P, (2) reverse ISE is associated with tensile surface stresses, (3) despite its failure to explain reverse ISE, Begley–Hutchinson's relation is reliable to obtain load-independent hardness H_0, is 2337 MPa for LDP, and (4) the value of fracture toughness K_C of LDP crystals lies between 4.7 and 12 MPa m"1"/"2. The load-independent hardness H_0 of LDP is higher by a factor of 1.5 than that reported for undoped KDP and ADP crystals whereas its fracture toughness K_C is higher by factor of about 20 than that of undoped KDP crystals. - Highlights: • Vickers indentations on the (110) and (111) faces of LDP crystals were made. • The microhardness H_V was investigated as a function of applied load P. • Reverse indentation size effect was observed. • Fracture toughness K_C from the radial cracks was calculated.

  8. Determination of local constitutive properties of titanium alloy matrix in boron-modified titanium alloys using spherical indentation

    International Nuclear Information System (INIS)

    Sreeranganathan, A.; Gokhale, A.; Tamirisakandala, S.

    2008-01-01

    The constitutive properties of the titanium alloy matrix in boron-modified titanium alloys are different from those of the corresponding unreinforced alloy due to the microstructural changes resulting from the addition of boron. Experimental and finite-element analyses of spherical indentation with a large penetration depth to indenter radius ratio are used to compute the local constitutive properties of the matrix alloy. The results are compared with that of the corresponding alloy without boron, processed in the same manner

  9. Assessment of head injury of children due to golf ball impact.

    Science.gov (United States)

    Lee, Heow Pueh; Wang, Fang

    2010-10-01

    Head trauma injury due to impact by a flying golf ball is one of the most severe possible injury accidents on the golf course. Numerical simulations based on the finite element method are presented to investigate head injury in children due to impact by a flying golf ball. The stress and energy flow patterns in a head model during the golf ball impact are computed for various combinations of striking speed, falling angle of the golf ball before impact, and impact location. It is found that a child is more prone to head injury due to golf ball impact on the frontal and side/temporal areas. The simulated results are found to conform to the clinical reports on children's head injuries from flying golf balls.

  10. Final Scientific/Technical report for "ABI8: Prototype of a novel signaling factor"

    Energy Technology Data Exchange (ETDEWEB)

    Finkelstein, Ruth R. [Univ. of California, Santa Barbara, CA (United States)

    2013-02-21

    The Arabidopsis thaliana ABSCISIC ACID-INSENSITIVE8 locus encodes a highly conserved plant-specific protein that mediates abscisic acid (ABA) and sugar responses essential for growth. Although initial database comparisons revealed no domains of predictable function, it has recently been re-annotated as a member of the Glycosyltransferase family A. However, this function has not been demonstrated experimentally and no specific substrates have been identified. Mutations affecting ABI8 are near-lethal due to pleiotropic yet specific effects including altered ABA signaling, sugar transport, cell wall synthesis, root meristem maintenance, vascular patterning, and male sterility. Because the predicted sequence initially provided no clues, we used a guilt by association strategy to address function of this protein by determining its subcellular localization and identifying interacting proteins. Our studies showed that ABI8 is localized to the endomembrane system and may interact with proteins implicated in Golgi trafficking, lignification, and stress signaling. We found that the root meristem arrest reflects decreased auxin accumulation and resulting decreases in regulators required for meristem identity, all of which can be rescued by added glucose. Further studies showed that this glucose-dependence reflects reduced glucose uptake as well as the decreased expression of sugar-mobilizing enzymes. This work suggests that ABI8 may regulate trafficking of membrane proteins such as auxin transporters and cellulose synthase, but this hypothesis has not yet been tested. The altered gene expression is likely to be a secondary or later effect of this pleiotropic mutation.

  11. Ball check valve

    International Nuclear Information System (INIS)

    Bevilacqua, F.

    1978-01-01

    A pressurized nuclear reactor having an instrument assembly sheathed in a metallic tube which is extended vertically upward into the reactor core by traversing a metallic guide tube which is welded to the wall of the vessel is described. Sensors in each instrument assembly are connected to instruments outside the vessel to manifest the conditions within the core. Each instrument assembly probe is moved into position within a metallic guide channel. The guide channel penetrates the wall of the vessel and forms part of the barrier to the environment within the pressure vessel. Each channel includes a ball check valve which is opened by the instrument assembly probe when the probe passes through the valve. A ball valve element is moved from its seat by the probe to a position lateral of the bore of the channel and is guided to its seat along a sloped path within the valve body when the probe is removed. 5 claims, 3 figures

  12. The development of cobalt-base alloy ball bearing

    International Nuclear Information System (INIS)

    Yu Xinshui; Chen Jianting; Wang Zaishu; Wang Ximei; Huang Chongming.

    1986-01-01

    The main technologies and experiences in developing a Cobalt-base alloy ball bearing are described. In the hardfacing of bearing races, a lower-hardness alloy of type St-6 is used rather than an alloy with hardness similar to that of the ball and finally the hardness of race is increased to match that of the ball by heat treatment. This improvement has certain advantages. The experience of whole developing technology indicates that strict control of the technology in the bearing-race hardfacing is the key problem in the quality assurance of bearings

  13. Gladiolus hybridus ABSCISIC ACID INSENSITIVE 5 (GhABI5) is an important transcription factor in ABA signaling that can enhance Gladiolus corm dormancy and Arabidopsis seed dormancy.

    Science.gov (United States)

    Wu, Jian; Seng, Shanshan; Sui, Juanjuan; Vonapartis, Eliana; Luo, Xian; Gong, Benhe; Liu, Chen; Wu, Chenyu; Liu, Chao; Zhang, Fengqin; He, Junna; Yi, Mingfang

    2015-01-01

    The phytohormone abscisic acid (ABA) regulates plant development and is crucial for abiotic stress response. In this study, cold storage contributes to reducing endogenous ABA content, resulting in dormancy breaking of Gladiolus. The ABA inhibitor fluridone also promotes germination, suggesting that ABA is an important hormone that regulates corm dormancy. Here, we report the identification and functional characterization of the Gladiolus ABI5 homolog (GhABI5), which is a basic leucine zipper motif transcriptional factor (TF). GhABI5 is expressed in dormant vegetative organs (corm, cormel, and stolon) as well as in reproductive organs (stamen), and it is up-regulated by ABA or drought. Complementation analysis reveals that GhABI5 rescues the ABA insensitivity of abi5-3 during seed germination and induces the expression of downstream ABA response genes in Arabidopsis thaliana (EM1, EM6, and RD29B). Down-regulation of GhABI5 in dormant cormels via virus induced gene silence promotes sprouting and reduces the expression of downstream genes (GhLEA and GhRD29B). The results of this study reveal that GhABI5 regulates bud dormancy (vegetative organ) in Gladiolus in addition to its well-studied function in Arabidopsis seeds (reproductive organ).

  14. Gladiolus hybridus ABSCISIC ACID INSENSITIVE 5 (GhABI5 is an important transcription factor in ABA signaling that can enhance Gladiolus corm dormancy and Arabidopsis seed dormancy.

    Directory of Open Access Journals (Sweden)

    Jian eWu

    2015-11-01

    Full Text Available The phytohormone abscisic acid (ABA regulates plant development and is crucial for abiotic stress response. In this study, cold storage contributes to reducing endogenous ABA content, resulting in dormancy breaking of Gladiolus. The ABA inhibitor fluridone also promotes germination, suggesting that ABA is an important hormone that regulates corm dormancy. Here, we report the identification and functional characterization of the Gladiolus ABI5 homolog (GhABI5, which is a basic leucine zipper motif transcriptional factor (TF. GhABI5 is expressed in dormant vegetative organs (corm, cormel and stolon as well as in reproductive organs (stamen, and it is up-regulated by ABA or drought. Complementation analysis reveals that GhABI5 rescues the ABA insensitivity of abi5-3 during seed germination and induces the expression of downstream ABA response genes in Arabidopsis thaliana (EM1, EM6 and RD29B. Down-regulation of GhABI5 in dormant cormels via Virus Induced Gene Silence (VIGS promotes sprouting and reduces the expression of downstream genes (GhLEA and GhRD29B. The results of this study reveal that GhABI5 regulates bud dormancy (vegetative organ in Gladiolus in addition to its well-studied function in Arabidopsis seeds (reproductive organ.

  15. Launch Creativity with Ping-Pong Ball Challenge

    Science.gov (United States)

    Kornoelje, Joanne; Roman, Harry T.

    2011-01-01

    Educators at Thomas A. Edison Middle School have worked together to bring invention information and activities to life. One activity in particular, Ping-Pong Ball Invention Challenge, has proven a great success. The Ping-Pong Ball Invention Challenge was inspired by the basic rules for PBS's "Design Squad"'s "Pop Fly" activity. In this article,…

  16. Nonlinear dynamic model for skidding behavior of angular contact ball bearings

    Science.gov (United States)

    Han, Qinkai; Chu, Fulei

    2015-10-01

    A three-dimensional nonlinear dynamic model is proposed to predict the skidding behavior of angular contact ball bearings under combined load condition. The centrifugal and gyroscopic effects induced by ball rotation and revolution, Hertz contact between the ball and inner/outer races, discontinuous contact between the ball and cage and elastohydrodynamic lubrication are considered in the model. Through comparisons with the tested results of the reference, the dynamic model is verified. Based upon these, variations of ball slipping speed with time and space are discussed for the bearing under combined load condition. It is shown that radial load leads to the fluctuations in the slipping velocity of the ball contacting with inner/outer races, especially for the ball in load-decreasing regions. Adding the radial load would significantly increase the amplitude and range of slipping velocity, indicating that the skidding becomes more serious. As the ball still withstands contact load in the load-decreasing region, large slipping velocity would increase the temperature of both bearing and lubricant oil, intensify the wear and then might shorten the bearing service life. Therefore, the radial load should be considered carefully in the design and monitoring of rotating machinery.

  17. Characterization of Rubbers from Spherical Punch - Plate Indentation Tests

    Directory of Open Access Journals (Sweden)

    Florina Carmen Ciornei

    2016-12-01

    Full Text Available Rubber plates with different compositions and hardness were tested by continuous indentation, using a spherical punch and hysteretic phenomenon was evidenced. The experimental data interpolation with polynomial functions is accurate and permits estimation of the lost work during loading cycles. The interpolation by power law functions is more convenient by using less parameters and having a form accepted in literature. From the rubbers tested, two were considered to present good damping properties.

  18. Random power series in the unit ball of Cn

    International Nuclear Information System (INIS)

    Shi Jihuai.

    1989-07-01

    The random power series in the unit disc has been studied by many authors. In this paper, we studied the random power series in the unit ball of C n and generalized some results in the unit disc to the unit ball, in particular, the result obtained recently by Duren has been generalized to the unit ball. The main tool used here is the generalized Salem-Zygmund's theorem. (author). 12 refs

  19. Thermoelastoplastic Deformation of a Multilayer Ball

    Science.gov (United States)

    Murashkin, E. V.; Dats, E. P.

    2017-09-01

    The problem of centrally symmetric deformation of a multilayer elastoplastic ball in the process of successive accretion of preheated layers to its outer surface is considered in the framework of small elastoplastic deformations. The problems of residual stress formation in the elastoplastic ball with an inclusion and a cavity are solved under various mechanical boundary conditions on the inner surface and for prescribed thermal compression distributions. The graphs of residual stress and displacement fields are constructed.

  20. The measurement of Ksub(IC) in single crystal SiC using the indentation method

    International Nuclear Information System (INIS)

    Henshall, J.L.; Brookes, C.A.

    1985-01-01

    The present work has concentrated on investigating the underlying fracture toughness behaviour of SiC single crystals. This material was chosen because of the commercial importance of the various polycrystalline forms of SiC and the relative ready availability of reasonably sized single crystals. This study has examined the feasibility of using the indentation technique to determine Ksub(IC) in SiC single crystals. This requires much more less complex experimentation and also affords the possibility of being able to use this method to study the orientation dependence of Ksub(IC) in a similar manner to that used to investigate anisotropy in indentation hardness behaviour. A single crystal of 6H-SiC was used for all the hardness and conventional Ksub(IC) results reported here. The particular polytype and orientation were determined using the Laue X-ray method. All the measurements were made under ambient conditions. Three-point bend tests, with a 6 mm span on single edge notched beams, SENB, orientated such that the plane of the notch was brace 112-bar0 brace and the crack propagation direction were used for the conventional Ksub(IC) tests. The hardness indentations were all made on one particular SENB test piece after it had been fractured. The results are discussed. (author)

  1. A Numerical Framework for Self-Similar Problems in Plasticity: Indentation in Single Crystals

    DEFF Research Database (Denmark)

    Juul, Kristian Jørgensen; Niordson, Christian Frithiof; Nielsen, Kim Lau

    A new numerical framework specialized for analyzing self-similar problems in plasticity is developed. Self-similarity in plasticity is encountered in a number of different problems such as stationary cracks, void growth, indentation etc. To date, such problems are handled by traditional Lagrangian...... procedures that may be associated with severe numerical difficulties relating to sufficient discretization, moving contact points, etc. In the present work, self-similarity is exploited to construct the numerical framework that offers a simple and efficient method to handle self-similar problems in history...... numerical simulations [3] when possible. To mimic the condition for the analytical predictions, the wedge indenter is considered nearly flat and the material is perfectly plastic with a very low yield strain. Under these conditions, [1][2] proved analytically the existence of discontinuities in the slip...

  2. Molecular characterization of a genomic region in a Lactococcus bacteriophage that is involved in its sensitivity to the phage defense mechanism AbiA.

    OpenAIRE

    Dinsmore, P K; Klaenhammer, T R

    1997-01-01

    A spontaneous mutant of the lactococcal phage phi31 that is insensitive to the phage defense mechanism AbiA was characterized in an effort to identify the phage factor(s) involved in sensitivity of phi31 to AbiA. A point mutation was localized in the genome of the AbiA-insensitive phage (phi31A) by heteroduplex analysis of a 9-kb region. The mutation (G to T) was within a 738-bp open reading frame (ORF245) and resulted in an arginine-to-leucine change in the predicted amino acid sequence of t...

  3. On the isoperimetric rigidity of extrinsic minimal balls

    DEFF Research Database (Denmark)

    Markvorsen, Steen; Palmer, V.

    2003-01-01

    We consider an m-dimensional minimal submanifold P and a metric R-sphere in the Euclidean space R-n. If the sphere has its center p on P, then it will cut out a well defined connected component of P which contains this center point. We call this connected component an extrinsic minimal R-ball of P....... The quotient of the volume of the extrinsic ball and the volume of its boundary is not larger than the corresponding quotient obtained in the space form standard situation, where the minimal submanifold is the totally geodesic linear subspace R-m. Here we show that if the minimal submanifold has dimension...... larger than 3, if P is not too curved along the boundary of an extrinsic minimal R-ball, and if the inequality alluded to above is an equality for the extrinsic minimal ball, then the minimal submanifold is totally geodesic....

  4. Assessing strain mapping by electron backscatter diffraction and confocal Raman microscopy using wedge-indented Si

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, Lawrence H.; Vaudin, Mark D.; Stranick, Stephan J.; Stan, Gheorghe; Gerbig, Yvonne B.; Osborn, William; Cook, Robert F., E-mail: robert.cook@nist.gov

    2016-04-15

    The accuracy of electron backscatter diffraction (EBSD) and confocal Raman microscopy (CRM) for small-scale strain mapping are assessed using the multi-axial strain field surrounding a wedge indentation in Si as a test vehicle. The strain field is modeled using finite element analysis (FEA) that is adapted to the near-indentation surface profile measured by atomic force microscopy (AFM). The assessment consists of (1) direct experimental comparisons of strain and deformation and (2) comparisons in which the modeled strain field is used as an intermediate step. Direct experimental methods (1) consist of comparisons of surface elevation and gradient measured by AFM and EBSD and of Raman shifts measured and predicted by CRM and EBSD, respectively. Comparisons that utilize the combined FEA–AFM model (2) consist of predictions of distortion, strain, and rotation for comparison with EBSD measurements and predictions of Raman shift for comparison with CRM measurements. For both EBSD and CRM, convolution of measurements in depth-varying strain fields is considered. The interconnected comparisons suggest that EBSD was able to provide an accurate assessment of the wedge indentation deformation field to within the precision of the measurements, approximately 2×10{sup −4} in strain. CRM was similarly precise, but was limited in accuracy to several times this value. - Highlights: • We map strain by electron backscatter diffraction and confocal Raman microscopy. • The test vehicle is the multi-axial strain field of wedge-indented silicon. • Strain accuracy is assessed by direct experimental intercomparison. • Accuracy is also assessed by atomic force microscopy and finite element analyses. • Electron diffraction measurements are accurate; Raman measurements need refinement.

  5. Assessing strain mapping by electron backscatter diffraction and confocal Raman microscopy using wedge-indented Si

    International Nuclear Information System (INIS)

    Friedman, Lawrence H.; Vaudin, Mark D.; Stranick, Stephan J.; Stan, Gheorghe; Gerbig, Yvonne B.; Osborn, William; Cook, Robert F.

    2016-01-01

    The accuracy of electron backscatter diffraction (EBSD) and confocal Raman microscopy (CRM) for small-scale strain mapping are assessed using the multi-axial strain field surrounding a wedge indentation in Si as a test vehicle. The strain field is modeled using finite element analysis (FEA) that is adapted to the near-indentation surface profile measured by atomic force microscopy (AFM). The assessment consists of (1) direct experimental comparisons of strain and deformation and (2) comparisons in which the modeled strain field is used as an intermediate step. Direct experimental methods (1) consist of comparisons of surface elevation and gradient measured by AFM and EBSD and of Raman shifts measured and predicted by CRM and EBSD, respectively. Comparisons that utilize the combined FEA–AFM model (2) consist of predictions of distortion, strain, and rotation for comparison with EBSD measurements and predictions of Raman shift for comparison with CRM measurements. For both EBSD and CRM, convolution of measurements in depth-varying strain fields is considered. The interconnected comparisons suggest that EBSD was able to provide an accurate assessment of the wedge indentation deformation field to within the precision of the measurements, approximately 2×10"−"4 in strain. CRM was similarly precise, but was limited in accuracy to several times this value. - Highlights: • We map strain by electron backscatter diffraction and confocal Raman microscopy. • The test vehicle is the multi-axial strain field of wedge-indented silicon. • Strain accuracy is assessed by direct experimental intercomparison. • Accuracy is also assessed by atomic force microscopy and finite element analyses. • Electron diffraction measurements are accurate; Raman measurements need refinement.

  6. The Transcription Factor ABI4 Is Required for the Ascorbic Acid–Dependent Regulation of Growth and Regulation of Jasmonate-Dependent Defense Signaling Pathways in Arabidopsis[C][W

    Science.gov (United States)

    Kerchev, Pavel I.; Pellny, Till K.; Vivancos, Pedro Diaz; Kiddle, Guy; Hedden, Peter; Driscoll, Simon; Vanacker, Hélène; Verrier, Paul; Hancock, Robert D.; Foyer, Christine H.

    2011-01-01

    Cellular redox homeostasis is a hub for signal integration. Interactions between redox metabolism and the ABSCISIC ACID-INSENSITIVE-4 (ABI4) transcription factor were characterized in the Arabidopsis thaliana vitamin c defective1 (vtc1) and vtc2 mutants, which are defective in ascorbic acid synthesis and show a slow growth phenotype together with enhanced abscisic acid (ABA) levels relative to the wild type (Columbia-0). The 75% decrease in the leaf ascorbate pool in the vtc2 mutants was not sufficient to adversely affect GA metabolism. The transcriptome signatures of the abi4, vtc1, and vtc2 mutants showed significant overlap, with a large number of transcription factors or signaling components similarly repressed or induced. Moreover, lincomycin-dependent changes in LIGHT HARVESTING CHLOROPHYLL A/B BINDING PROTEIN 1.1 expression were comparable in these mutants, suggesting overlapping participation in chloroplast to nucleus signaling. The slow growth phenotype of vtc2 was absent in the abi4 vtc2 double mutant, as was the sugar-insensitive phenotype of the abi4 mutant. Octadecanoid derivative-responsive AP2/ERF-domain transcription factor 47 (ORA47) and AP3 (an ABI5 binding factor) transcripts were enhanced in vtc2 but repressed in abi4 vtc2, suggesting that ABI4 and ascorbate modulate growth and defense gene expression through jasmonate signaling. We conclude that low ascorbate triggers ABA- and jasmonate-dependent signaling pathways that together regulate growth through ABI4. Moreover, cellular redox homeostasis exerts a strong influence on sugar-dependent growth regulation. PMID:21926335

  7. The characterization of Vicker's microhardness indentations and pile-up profiles as a strain-hardening microprobe

    International Nuclear Information System (INIS)

    Santos, C. Jr.

    1998-04-01

    Microhardness measurements have long been used to examine strength properties and changes in strength properties in metals, for example, as induced by irradiation. Microhardness affords a relatively simple test that can be applied to very small volumes of material. Microhardness is nominally related to the flow stress of the material at a fixed level of plastic strain. Further, the geometry of the pile-up of material around the indentation is related to the strain-hardening behavior of a material; steeper pile-ups correspond to smaller strain-hardening rates. In this study the relationship between pile-up profiles and strain hardening is examined using both experimental and analytical methods. Vickers microhardness tests have been performed on a variety of metal alloys including low alloy, high Cr and austenitic stainless steels. The pile-up topology around the indentations has been quantified using confocal microscopy techniques. In addition, the indentation and pile-up geometry has been simulated using finite element method techniques. These results have been used to develop an improved quantification of the relationship between the pile-up geometry and the strain-hardening constitutive behavior of the test material

  8. A self-similar magnetohydrodynamic model for ball lightnings

    International Nuclear Information System (INIS)

    Tsui, K. H.

    2006-01-01

    Ball lightning is modeled by magnetohydrodynamic (MHD) equations in two-dimensional spherical geometry with azimuthal symmetry. Dynamic evolutions in the radial direction are described by the self-similar evolution function y(t). The plasma pressure, mass density, and magnetic fields are solved in terms of the radial label η. This model gives spherical MHD plasmoids with axisymmetric force-free magnetic field, and spherically symmetric plasma pressure and mass density, which self-consistently determine the polytropic index γ. The spatially oscillating nature of the radial and meridional field structures indicate embedded regions of closed field lines. These regions are named secondary plasmoids, whereas the overall self-similar spherical structure is named the primary plasmoid. According to this model, the time evolution function allows the primary plasmoid expand outward in two modes. The corresponding ejection of the embedded secondary plasmoids results in ball lightning offering an answer as how they come into being. The first is an accelerated expanding mode. This mode appears to fit plasmoids ejected from thundercloud tops with acceleration to ionosphere seen in high altitude atmospheric observations of sprites and blue jets. It also appears to account for midair high-speed ball lightning overtaking airplanes, and ground level high-speed energetic ball lightning. The second is a decelerated expanding mode, and it appears to be compatible to slowly moving ball lightning seen near ground level. The inverse of this second mode corresponds to an accelerated inward collapse, which could bring ball lightning to an end sometimes with a cracking sound

  9. Atomistic simulation of tantalum nanoindentation: Effects of indenter diameter, penetration velocity, and interatomic potentials on defect mechanisms and evolution

    International Nuclear Information System (INIS)

    Ruestes, C.J.; Stukowski, A.; Tang, Y.; Tramontina, D.R.; Erhart, P.; Remington, B.A.; Urbassek, H.M.; Meyers, M.A.; Bringa, E.M.

    2014-01-01

    Nanoindentation simulations are a helpful complement to experiments. There is a dearth of nanoindentation simulations for bcc metals, partly due to the lack of computationally efficient and reliable interatomic potentials at large strains. We carry out indentation simulations for bcc tantalum using three different interatomic potentials and present the defect mechanisms responsible for the creation and expansion of the plastic deformation zone: twins are initially formed, giving rise to shear loop expansion and the formation of sequential prismatic loops. The calculated elastic constants as function of pressure as well as stacking fault energy surfaces explain the significant differences found in the defect structures generated for the three potentials investigated in this study. The simulations enable the quantification of total dislocation length and twinning fraction. The indenter velocity is varied and, as expected, the penetration depth for the first pop-in (defect emission) event shows a strain rate sensitivity m in the range of 0.037–0.055. The effect of indenter diameter on the first pop-in is discussed. A new intrinsic length-scale model is presented based on the profile of the residual indentation and geometrically necessary dislocation theory

  10. Atomistic simulation of tantalum nanoindentation: Effects of indenter diameter, penetration velocity, and interatomic potentials on defect mechanisms and evolution

    Energy Technology Data Exchange (ETDEWEB)

    Ruestes, C.J., E-mail: cjruestes@hotmail.com [Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093 (United States); Facultad de Ciencias Exactas y Naturales, Univ. Nac. de Cuyo, Mendoza 5500 (Argentina); CONICET, Mendoza 5500 (Argentina); Stukowski, A. [Technische Universität Darmstadt, Darmstadt 64287 (Germany); Tang, Y. [Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072 (China); Tramontina, D.R. [Facultad de Ciencias Exactas y Naturales, Univ. Nac. de Cuyo, Mendoza 5500 (Argentina); Erhart, P. [Chalmers University of Technology, Department of Applied Physics, Gothenburg 41296 (Sweden); Remington, B.A. [Lawrence Livermore National Lab, Livermore, CA 94550 (United States); Urbassek, H.M. [Physics Department and Research Center OPTIMAS, University of Kaiserslautern, Kaiserslautern 67663 (Germany); Meyers, M.A. [Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093 (United States); Bringa, E.M. [Facultad de Ciencias Exactas y Naturales, Univ. Nac. de Cuyo, Mendoza 5500 (Argentina); CONICET, Mendoza 5500 (Argentina)

    2014-09-08

    Nanoindentation simulations are a helpful complement to experiments. There is a dearth of nanoindentation simulations for bcc metals, partly due to the lack of computationally efficient and reliable interatomic potentials at large strains. We carry out indentation simulations for bcc tantalum using three different interatomic potentials and present the defect mechanisms responsible for the creation and expansion of the plastic deformation zone: twins are initially formed, giving rise to shear loop expansion and the formation of sequential prismatic loops. The calculated elastic constants as function of pressure as well as stacking fault energy surfaces explain the significant differences found in the defect structures generated for the three potentials investigated in this study. The simulations enable the quantification of total dislocation length and twinning fraction. The indenter velocity is varied and, as expected, the penetration depth for the first pop-in (defect emission) event shows a strain rate sensitivity m in the range of 0.037–0.055. The effect of indenter diameter on the first pop-in is discussed. A new intrinsic length-scale model is presented based on the profile of the residual indentation and geometrically necessary dislocation theory.

  11. Structural and dynamical properties of Yukawa balls

    International Nuclear Information System (INIS)

    Block, D; Kroll, M; Arp, O; Piel, A; Kaeding, S; Ivanov, Y; Melzer, A; Henning, C; Baumgartner, H; Ludwig, P; Bonitz, M

    2007-01-01

    To study the structural and dynamical properties of finite 3D dust clouds (Yukawa balls) new diagnostic tools have been developed. This contribution describes the progress towards 3D diagnostics for measuring the particle positions. It is shown that these diagnostics are capable of investigating the structural and dynamical properties of Yukawa balls and gaining insight into their basic construction principles

  12. Validity and Reliability of a Medicine Ball Explosive Power Test.

    Science.gov (United States)

    Stockbrugger, Barry A.; Haennel, Robert G.

    2001-01-01

    Evaluated the validity and reliability of a medicine ball throw test to evaluate explosive power. Data on competitive sand volleyball players who performed a medicine ball throw and a standard countermovement jump indicated that the medicine ball throw test was a valid and reliable way to assess explosive power for an analogous total-body movement…

  13. Metabolite changes in conifer buds and needles during forced bud break in Norway spruce (Picea abies and European silver fir (Abies alba

    Directory of Open Access Journals (Sweden)

    Priyanka eDhuli

    2014-12-01

    Full Text Available Environmental changes such as early spring and warm spells induce bud burst and photosynthetic processes in cold-acclimated coniferous trees and consequently, cellular metabolism in overwintering needles and buds. The purpose of the study was to examine metabolism in conifers under forced deacclimation (artificially induced spring by exposing shoots of Picea abies (boreal species and Abies alba (temperate species to a greenhouse environment (22°C, 16/8 h D/N cycle over a nine week period. Each week, we scored bud opening and collected samples for GC/MS–based metabolite profiling. We detected a total of 169 assigned metabolites and 80 identified metabolites, comprising compounds such as mono- and disaccharides, Krebs cycle acids, amino acids, polyols, phenolics and phosphorylated structures. Untargeted multivariate statistical analysis based on PCA and cluster analysis segregated samples by species, tissue type, and stage of tissue deacclimations. Similar patterns of metabolic regulation in both species were observed in buds (amino acids, Krebs cycle acids and needles (hexoses, pentoses, and Krebs cycle acids. Based on correlation of bud opening score with compound levels, distinct metabolites could be associated with bud and shoot development, including amino acids, sugars and acids with known osmolyte function, and secondary metabolites. This study has shed light on how elevated temperature affects metabolism in buds and needles of conifer species during the deacclimation phase, and contributes to the discussion about how phenological characters in conifers may respond to future global warming.

  14. Gas-discharge particle detector with ball-tipped anodes

    International Nuclear Information System (INIS)

    Travkin, V.I.; Khazins, D.M.

    1987-01-01

    A new gas-discharge particle detector, whose anode is a set of balls 2mm in diameter is investigated. The chamber is blowing down by the argon-methane-methylal gas mixture with the ratio 3:1:1. The detector operates in the self-quenching streamer mode, has high efficiency and a wide counting characteristic plateau. The maximum counting rate of particles at one ball is ∼ 2.5x10 4 s -1 . The ball-tipped anodes allow making reliable complex-shaped detectors. Two-coordinate detection of multiparticle events can be naturally organized in detectors like that

  15. Cytokinin profiles in the conifer tree Abies nordmanniana

    DEFF Research Database (Denmark)

    Rasmussen, Hanne Nina; Veierskov, Bjarke; Hansen-Møller, Jens

    2009-01-01

    in the crown and root system were sampled destructively in 4- and 6-year-old trees and analyzed for a range of cytokinins by LC-MS/MS. No seasonal patterns were detected in the root samples, and a major portion of cytokinin was in conjugated forms. Dramatic and consistent seasonal changes occurred in the crown......Abstract  Conifer trees are routinely manipulated hormonally to increase flowering, branching, or adjust crown shape for production purposes. This survey of internal cytokinin levels provides a background for such treatments in Abies nordmanniana, a tree of great economic interest. Reference points...

  16. Real-time detecting and tracking ball with OpenCV and Kinect

    Science.gov (United States)

    Osiecki, Tomasz; Jankowski, Stanislaw

    2016-09-01

    This paper presents a way to detect and track ball with using the OpenCV and Kinect. Object and people recognition, tracking are more and more popular topics nowadays. Described solution makes it possible to detect ball based on the range, which is set by the user and capture information about ball position in three dimensions. It can be store in the computer and use for example to display trajectory of the ball.

  17. Estructura temporal y gestual del kin-ball

    Directory of Open Access Journals (Sweden)

    Rafael Díaz Amate

    2015-06-01

    Full Text Available El objetivo de este estudio es analizar la estructura temporal del kin-ball y cuantificar el número de golpeos, jugadas, puntos y los tipos de contacto utilizados, en cada período y partido. Se han analizado un total de 13 partidos, correspondientes a la fase de grupos, semifinales y final del VII Campeonato de España de Kin-ball. Es un deporte caracterizado por la realización de esfuerzos interválicos de intensidad media-alta y de corta duración. Un partido de kin-ball tiene una duración media de 46 min aproximadamente, siendo el ratio tiempo de trabajo y tiempo de descanso de 1:1,51 y la duración media por punto de 12,07 s. Así, un partido de kin-ball tiene un volumen de 73 puntos con un total de 390 golpeos. Los tipos de golpeos utilizados determinan que es un deporte defensivo. Todos estos análisis ayudan a tener un mayor conocimiento de esta disciplina deportiva por parte de los entrenadores y jugadores para tener un entrenamiento más específico.

  18. Depth-sensing nano-indentation on a myelinated axon at various stages

    International Nuclear Information System (INIS)

    Huang, Wei-Chin; Liao, Jiunn-Der; Lin, Chou-Ching K; Ju, Ming-Shaung

    2011-01-01

    A nano-mechanical characterization of a multi-layered myelin sheath structure, which enfolds an axon and plays a critical role in the transmission of nerve impulses, is conducted. Schwann cells co-cultured in vitro with PC12 cells for various co-culture times are differentiated to form a myelinated axon, which is then observed using a transmission electron microscope. Three major myelination stages, with distinct structural characteristics and thicknesses around the axon, can be produced by varying the co-culture time. A dynamic contact module and continuous depth-sensing nano-indentation are used on the myelinated structure to obtain the load-on-sample versus measured displacement curve of a multi-layered myelin sheath, which is used to determine the work required for the nano-indentation tip to penetrate the myelin sheath. By analyzing the harmonic contact stiffness versus the measured displacement profile, the results can be used to estimate the three stages of the multi-layered structure on a myelinated axon. The method can also be used to evaluate the development stages of myelination or demyelination during nerve regeneration.

  19. An Indentation Technique for Nanoscale Dynamic Viscoelastic Measurements at Elevated Temperature

    Science.gov (United States)

    Ye, Jiping

    2012-08-01

    Determination of nano/micro-scale viscoelasticity is very important to understand the local rheological behavior and degradation phenomena of multifunctional polymer blend materials. This article reviews research results concerning the development of indentation techniques for making nanoscale dynamic viscoelastic measurements at elevated temperature. In the last decade, we have achieved breakthroughs in noise floor reduction in air and thermal load drift/noise reduction at high temperature before taking on the challenge of nanoscale viscoelastic measurements. A high-temperature indentation technique has been developed that facilitates viscoelastic measurements up to 200 °C in air and 500 °C in a vacuum. During the last year, two viscoelastic measurement methods have been developed by making a breakthrough in suppressing the contact area change at high temperature. One is a sharp-pointed time-dependent nanoindentation technique for microscale application and the other is a spherical time-dependent nanoindentation technique for nanoscale application. In the near future, we expect to lower the thermal load drift and load noise floor even more substantially.

  20. Mechanisms of Deformation and Fracture of Thin Coatings on Different Substrates in Instrumented Indentation

    Science.gov (United States)

    Eremina, G. M.; Smolin, A. Yu.; Psakhie, S. G.

    2018-04-01

    Mechanical properties of thin surface layers and coatings are commonly studied using instrumented indentation and scratch testing, where the mechanical response of the coating - substrate system essentially depends on the substrate material. It is quite difficult to distinguish this dependence and take it into account in the course of full-scale experiments due to a multivariative and nonlinear character of the influence. In this study the process of instrumented indentation of a hardening coating formed on different substrates is investigated numerically by the method of movable cellular automata. As a result of modeling, we identified the features of the substrate material influence on the derived mechanical characteristics of the coating - substrate systems and the processes of their deformation and fracture.

  1. Formation and stabilization of multiple ball-like flames at Earth gravity

    KAUST Repository

    Zhou, Zhen

    2018-03-20

    Near-limit low-Lewis-number premixed flame behavior is studied experimentally and numerically for flames of H–CH–air mixtures that are located in a 55 mm diameter tube and below a perforated plate in a downward mixture flow. A combustion regime diagram is experimentally identified in terms of equivalence ratio and ratio of H to CH (variation of fuel Lewis number). Planar flames, cell-like flames, distorted cap-like flames, and arrays of ball-like flames are progressively observed in the experiments as the equivalence ratio is decreased. The experimentally observed ball-like lean limit flames experience chaotic motion, which is accompanied by sporadic events of flame splitting and extinction, while the total number of simultaneously burning flamelets remains approximately the same. In separate experiments, the multiple ball-like lean limit flames are stabilized by creating a slightly non-uniform mixture flow field. The CH* chemiluminescence distributions of the lean limit flames are recorded, showing that the ball-like lean limit flame front becomes more uniform in intensity and its shape approaches a spherical one with the increase of H content in the fuel. Numerical simulations are performed for single representative flames of the array of stabilized flamelets observed in the experiments. The simulated ball-like lean limit flame is further contrasted with the single ball-like flame that forms in a narrow tube (13.5 mm inner diameter) with an iso-thermal wall. The numerical results show that the ball-like lean limit flames present in the array of ball-like flames are more affected by the buoyancy-induced recirculation zone, compared with that in the narrow tube, revealing why the shape of the ball-like flame in the array deviates more from a spherical one. All in all, the wall confinement is not crucial for the formation of ball-like flames at terrestrial gravity.

  2. Optimization of BI test parameters to investigate mechanical properties of Grade 92 steel

    Science.gov (United States)

    Barbadikar, Dipika R.; Vincent, S.; Ballal, Atul R.; Peshwe, Dilip R.; Mathew, M. D.

    2018-04-01

    The ball indentation (BI) testing is used to evaluate the tensile properties of materials namely yield strength, strength coefficient, ultimate tensile strength, and strain hardening exponent. The properties evaluated depend on a number of BI test parameters. These parameters include the material constants like yield slope (YS), constraint factor (CF), yield offset parameter (YOP). Number of loading/unloading cycles, preload, indenter size and depth of penetration of indenter also affects the properties. In present investigation the effect of these parameters on the stress-strain curve of normalized and tempered Grade 92 steel is evaluated. Grade 92 is a candidate material for power plant application over austenitic stainless steel and derives its strength from M23C6, MX precipitates and high dislocation density. CF, YS and YOP changed the strength properties considerably. Indenter size effect resulted in higher strength for smaller indenter. It is suggested to use larger indenter diameter and higher number of loading cycles for GRADE 92 steel to get best results using BI technique.

  3. Ceramic tools insert assesment based on vickers indentation methodology

    Science.gov (United States)

    Husni; Rizal, Muhammad; Aziz M, M.; Wahyu, M.

    2018-05-01

    In the interrupted cutting process, the risk of tool chipping or fracture is higher than continues cutting. Therefore, the selection of suitable ceramic tools for interrupted cutting application become an important issue to assure that the cutting process is running effectively. At present, the performance of ceramics tools is assessed by conducting some cutting tests, which is required time and cost consuming. In this study, the performance of ceramic tools evaluated using hardness tester machine. The technique, in general, has a certain advantage compare with the more conventional methods; the experimental is straightforward involving minimal specimen preparation and the amount of material needed is small. Three types of ceramic tools AS10, CC650 and K090 have been used, each tool was polished then Vickers indentation test were performed with the load were 0.2, 0.5, 1, 2.5, 5 and 10 kgf. The results revealed that among the load used in the tests, the indentation loads of 5 kgf always produce well cracks as compared with others. Among the cutting tool used in the tests, AS10 has produced the shortest crack length and follow by CC 670, and K090. It is indicated that the shortest crack length of AS10 reflected that the tool has a highest dynamic load resistance among others insert.

  4. Determination of the mechanical and physical properties of cartilage by coupling poroelastic-based finite element models of indentation with artificial neural networks

    NARCIS (Netherlands)

    Arbabi, Vahid; Pouran, B; Campoli, Gianni; Weinans, Harrie; Zadpoor, Amir A

    2016-01-01

    One of the most widely used techniques to determine the mechanical properties of cartilage is based on indentation tests and interpretation of the obtained force-time or displacement-time data. In the current computational approaches, one needs to simulate the indentation test with finite element

  5. Anti-collapse mechanism of CBM fuzzy-ball drilling fluid

    Directory of Open Access Journals (Sweden)

    Lihui Zheng

    2016-03-01

    Full Text Available Although fuzzy-ball drilling fluid has been successfully applied in CBM well drilling, it is necessary to study its anti-collapse mechanism so that adjustable coalbed sealing effects, controllable sealing strength, rational sealing cost and controllable reservoir damage degree can be realized. In this paper, laboratory measurement was performed on the uniaxial compressive strength of the plungers of No. 3 coalbed in the Qinshui Basin and the inlet pressure of Ø38 mm coal plunger displacement. The strengths of coal plungers were tested and compared after 2% potassium chloride solution, low-solids polymer drilling fluid and fuzzy-ball drilling fluid were injected into the coal plungers respectively. It is shown that coal strength rises by 38.46% after the fuzzy-ball drilling fluid is injected (in three groups; and that no fuzzy-ball drilling fluid is lost at the displacement pressures of 20.73 and 21.46 MPa, nor 2% potassium chloride solution is leaked at such pressures of 24.79 and 25.64 MPa after the plunger was sealed by the fuzzy-ball drilling fluid. This indicates that the fuzzy-ball drilling fluid can increase the formation resistance to fluid. Indoor microscopic observation was conducted on the sealing process of the fuzzy-ball drilling fluid in sand packs with coal cuttings of three grain sizes (60–80, 80–100 and 100–120 mesh. It is shown that the leakage pathways of different sizes are sealed by the vesicles in the form of accumulation, stretch and blockage. And there are vesicles at the inlet ends of the flowing pathways in the shape of beaded blanket. The impact force of drilling tools on the sidewalls is absorbed by the vesicles due to their elasticity and tenacity, so the sidewall instability caused by drilling tools is relieved. It is concluded that the main anti-collapse mechanisms of the CBM fuzzy-ball drilling fluid are to raise the coal strength, increase the formation resistance to fluid, and buffer the impact of

  6. Long-Term Effects on Graphene Supercapacitors of Using a Zirconia Bowl and Zirconia Balls for Ball-Mill mixing of Active Materials

    Science.gov (United States)

    Song, Dae-Hoon; Kim, Jin-Young; Kahng, Yung Ho; Cho, Hoonsung; Kim, Eung-Sam

    2018-04-01

    Improving the energy storage performance of supercapacitor electrodes based on reduced graphene oxide (RGO) is one of the main subjects in this research field. However, when a zirconia bowl and zirconia balls were used for ball-mill mixing of the active materials for RGO supercapacitors, the energy storage performance deteriorated over time. Our study revealed that the source of the problem was the inclusion of zirconia bits from abrasion of the bowl and the balls during the ballmill mixing, which increased during a period of 1 year. We probed two solutions to this problem: 1) hydrofluoric (HF) acid treatment of the RGO supercapacitors and 2) use of a tempered steel bowl and tempered steel balls for the mixing. For both cases, the energy storage performance was restored to near the initial level, showing a specific capacitance ( C sp ) of 200 F/g. Our results should lead to progress in research on RGO supercapacitors.

  7. Wear numbers for ball cup and journal bearings

    NARCIS (Netherlands)

    Ligterink, D.J.; Moes, H.

    1980-01-01

    A wear number is defined for ball cup bearings and for journal bearings where the cup and the cylindrical bearing are made of soft material. This dimensionless wear number provides a relation between the following five quantities: the radius of the ball or the length of the journal bearing in

  8. Two balls and a string: from ordered motion to chaos

    International Nuclear Information System (INIS)

    Sacks, William; Mauger, Alain

    2013-01-01

    Two spherical balls are connected by a taught string passing through a small hole in a perfectly planar table: the first ball, subject to a central force, moves without friction on a two-dimensional plane, while the second ball moves only along the vertical axis directly below the hole. The pedagogical aspects of this novel two-body problem are given particular attention: Newton’s laws, central force motion, conservation laws, angular momentum, constraints, etc. The dynamics of the system is considered under various initial conditions wherein the ball on the table moves qualitatively in rotating ellipses or hypotrochoids. The conditions for closed or periodic orbits are examined. The more complex case of the inclined plane is then considered, revealing a rich variety of periodic, aperiodic and chaotic solutions as a function of the ball mass ratio and the plane inclination angle. The associated Poincaré phase-space maps are discussed. (paper)

  9. Stick-slip behaviour of a viscoelastic flat sliding along a rigid indenter

    NARCIS (Netherlands)

    Budi Setiyana, Budi; Ismail, Rifky; Jamari, J.; Schipper, Dirk Jan

    2016-01-01

    The sliding contact of soft material surface due to a rigid indenter is different from metal and some other polymers. A stick-slip motion is more frequently obtained than a smooth motion. By modeling the soft material as low damping viscoelastic material, this study proposes an analytical model to

  10. Behavior of hollow balls containing granules bouncing repeatedly off the ground

    Science.gov (United States)

    Hu, Min; Mu, Qing-song; Luo, Ning; Li, Gang; Peng, Ning-bo

    2013-07-01

    An experimental study of the behavior of hollow balls filled with some granules (mung beans or millets) bouncing repeatedly off a static flat horizontal surface is presented. We observed that the bounce number of the ball is limited and decreases regularly with an increasing number of granules. Moreover, for two balls containing a different kind of granules, their bounce numbers are basically equal when the two balls have the same mass of granules. While there is no clear relationship between the first rebound height of one ball and the number of granules, there appears an exponential decay of the second rebound height with an increase of the granule number. Furthermore, a two-dimensional numerical model has been created to find out the law of the ball's rebound height and the dissipation law of the granule nested system. A generalized prediction equation to reasonably explain the law of the bounce number has also been proposed.

  11. Dry grinding of talc in a stirred ball mill

    Directory of Open Access Journals (Sweden)

    Cayirli Serkan

    2016-01-01

    Full Text Available The aim of this work was to investigate micro fine size dry grindability of talc in a stirred ball mill. The effects of various parameters such as grinding time, stirrer speed, powder filling ratio and ball filling ratio were investigated. Alumina balls were used as grinding media. Experiments were carried out using the 24 full factorial design. The main and interaction effects were evaluated using the Yates method. Test results were evaluated on the basis of product size and surface area.

  12. Ball-milling-induced crystallization and ball-milling effect on thermal crystallization kinetics in an amorphous FeMoSiB alloy

    International Nuclear Information System (INIS)

    Guo, F.Q.; Lu, K.

    1997-01-01

    Microstructure evolution in a melt-spun amorphous Fe 77.2 Mo 0.8 Si 9 B 13 alloy subjected to high-energy ball milling was investigated by means of X-ray diffraction (XRD), a transmission electron microscope (TEM), and a differential scanning calorimeter (DSC). It was found that during ball milling, crystallization occurs in the amorphous ribbon sample with precipitation of an α-Fe solid solution, and the amorphous sample crystallizes completely into a single α-Fe nanostructure (rather than α-Fe and borides as in the usual thermal crystallization products) when the milling time exceeds 135 hours. The volume fraction of material crystallized was found to be approximately proportional to the milling time. The fully crystallized sample with a single α-Fe nanophase exhibits an intrinsic thermal stability against phase separation upon annealing at high temperatures. The ball-milling effect on the subsequent thermal crystallization of the amorphous phase in an as-milled sample was studied by comparison of the crystallization products and kinetic parameters between the as-quenched amorphous sample and the as-milled sample was studied by comparison of the crystallization products and kinetic parameters between the as-quenched amorphous sample and the as-milled partially crystallized samples. The crystallization temperatures and activation energies for the crystallization processes of the residual amorphous phase were considerably decreased due to ball milling, indicating that ball milling has a significant effect on the depression of thermal stability of the residual amorphous phase

  13. Determination of the boundary conditions of the grinding load in ball mills

    Science.gov (United States)

    Sharapov, Rashid R.

    2018-02-01

    The prospects of application in ball mills for grinding cement clinker with inclined partitions are shown. It is noted that ball mills with inclined partitions are more effective. An algorithm is proposed for calculating the power consumed by a ball mill with inclined inter-chamber partitions in which an axial movement of the ball load takes place. The boundary conditions in which the ball load is located are determined. The equations of bounding the grinding load are determined. The behavior of a grinding load is considered in view of the characteristic cross sections. The coordinates of the centers of gravity of the grinding load with a definite step and the shape of the cross sections are determined. It is theoretically shown that grinding load in some parts of the ball mill not only consumes, but also helps to rotate the ball mill. Methods for calculating complex analytical expressions for determining the coordinates of the centers of gravity of the grinding load under the conditions of its longitudinal motion have developed. The carried out researches allow to approach from the general positions to research of behavior of a grinding load in the ball mills equipped with various in-mill devices.

  14. Historiografia del “Ball de Torrent”: De la moixiganga barroca al quadre de balls populars valencians (1692-1929

    Directory of Open Access Journals (Sweden)

    Raül Sanchis Francés

    2013-06-01

    Full Text Available Resum: El Ball de Torrent és una moixiganga dramàtica popular escenificada a la ciutat de València i altres indrets del País Valencià des de finals del segle XVII fins a principis del segle XX. Estava organitzada per agrupacions gremials, juntes d’hospitals o clavaris de festes i protagonitzada per personatges agrupats en comparses que representaven una paròdia sobre les relacions entre les estructures de poder i les classes populars. Tot i la variabilitat segons el moment històric, es conforma com una mescla de quadres amb danses, música i jocs teatrals. El ball interacciona de diverses formes amb algunes festes valencianes i és, probablement, una de les mostres de teatre de carrer més nostrades i menys estudiades de la València Moderna. En aquest article es realitza una revisió bibliogràfica crítica i una primera anàlisi historiogràfica.Paraules clau: Ball de Torrent, Dansa i música tradicional, Teatre, Moixiganga, Festa valencianaAbstract: Ball de Torrent (Dance of Torrent is a popular dramatic masquerade staged in Valencia since the late seventeenth century to the early twentieth. It was organized by guilds, hospital managements or festival organizers. The actors were grouped in associations representing a parody on the relationships between power structures and popular classes. Despite the variability depending on the historical period, it consisted of a mixture of episodes or scenes with dance, music and theatre games. Any Festivals in Valencia are connected with the Ball de Torrent. It’s probably one of the most interesting samples of street theatre and studied under of the Modern Valencia. This paper analyses historical sources to review and critique bibliography.Keywords: Dance of Torrent, Traditional Dance and Music, Theatre, Masquerade, Feasts of Valencia

  15. Thermal Analysis of Ball screw Systems by Explicit Finite Difference Method

    Energy Technology Data Exchange (ETDEWEB)

    Min, Bog Ki [Hanyang Univ., Seoul (Korea, Republic of); Park, Chun Hong; Chung, Sung Chong [KIMM, Daejeon (Korea, Republic of)

    2016-01-15

    Friction generated from balls and grooves incurs temperature rise in the ball screw system. Thermal deformation due to the heat degrades positioning accuracy of the feed drive system. To compensate for the thermal error, accurate prediction of the temperature distribution is required first. In this paper, to predict the temperature distribution according to the rotational speed, solid and hollow cylinders are applied for analysis of the ball screw shaft and nut, respectively. Boundary conditions such as the convective heat transfer coefficient, friction torque, and thermal contact conductance (TCC) between balls and grooves are formulated according to operating and fabrication conditions of the ball screw. Explicit FDM (finite difference method) is studied for development of a temperature prediction simulator. Its effectiveness is verified through numerical analysis.

  16. The goalkeeper influence on ball possession effectiveness in futsal

    Directory of Open Access Journals (Sweden)

    Vicente-Vila Pedro

    2016-06-01

    Full Text Available The aim of this study was to identify which variables were the best predictors of success in futsal ball possession when controlling for space and task related indicators, situational variables and the participation of the goalkeeper as a regular field player or not (5 vs. 4 or 4 vs. 4. The sample consisted of 326 situations of ball possession corresponding to 31 matches played by a team from the Spanish Futsal League during the 2010–2011, 2011–2012 and 2012–2013 seasons. Multidimensional qualitative data obtained from 10 ordered categorical variables were used. Data were analysed using chi-square analysis and multiple logistic regression analysis. Overall, the highest ball possession effectiveness was achieved when the goalkeeper participated as a regular field player (p<0.01, the duration of the ball possession was less than 10 s (p<0.01, the ball possession ended in the penalty area (p<0.01 and the defensive pressure was low (p<0.01. The information obtained on the relative effectiveness of offensive playing tactics can be used to improve team’s goal-scoring and goal preventing abilities.

  17. An investigation of the generation and properties of laboratory-produced ball lightning

    Science.gov (United States)

    Oreshko, A. G.

    2015-06-01

    The experiments revealed that ball lightning is a self-confining quasi-neutral in a whole plasma system that rotates around its axis. Ball lightning has a structure of a spherical electric domain, consisting of a kernel with excess negative charge and an external spherical layer with excess positive charge. The excess of charges of one sort and the lack of charges of the other sort in the kernel or in the external spherical layer significantly reduces the possibility of electron capture by means of an electric field, created by the nearest ions and leads to a drastic slowdown of recombination process. Direct proof has been obtained that inside of ball lightning - in an external spherical layer that rotates around the axis - there is a circular current of sub-relativistic particles. This current creates and maintains its own poloidal magnetic field of ball lightning, i.e. it carries out the function of magnetic dynamo. The kernel of ball lightning is situated in a region with minimum values of induction of the magnetic field. The inequality of positive and negative charges in elements of ball lightning also significantly reduces losses of the charged plasma on bremsstrahlung. Ball lightning generation occurs in a plasmic vortex. The ball lightning energy in the region of its generation significantly differs from the ball lightning energy, which is drifting in space. The axial component of kinetic energy of particles slightly exceeds 100 keV and the rotational component of the ions energy is a bit greater than 1 MeV. Ball lightning is `embedded' in atmosphere autonomous accelerator of charged particles of a cyclotron type due to self-generation of strong crossed electric and magnetic fields. A discussion of the conditions of stability and long-term existence of ball lightning is given.

  18. An aerodynamic analysis of recent FIFA world cup balls

    Science.gov (United States)

    Kiratidis, Adrian L.; Leinweber, Derek B.

    2018-05-01

    Drag and lift coefficients of recent FIFA world cup balls are examined. We fit a novel functional form to drag coefficient curves and in the absence of empirical data provide estimates of lift coefficient behaviour via a consideration of the physics of the boundary layer. Differences in both these coefficients for recent balls, which result from surface texture modification, can significantly alter trajectories. Numerical simulations are used to quantify the effect these changes have on the flight paths of various balls. Altitude and temperature variations at recent world cup events are also discussed. We conclude by quantifying the influence these variations have on the three most recent world cup balls, the Brazuca, the Jabulani and the Teamgeist. While our paper presents findings of interest to the professional sports scientist, it remains accessible to students at the undergraduate level.

  19. Determination of the individual phase properties from the measured grid indentation data

    Czech Academy of Sciences Publication Activity Database

    Haušild, P.; Materna, A.; Kocmanová, L.; Matějíček, Jiří

    2016-01-01

    Roč. 31, č. 22 (2016), s. 3538-3548 ISSN 0884-2914 R&D Projects: GA ČR GB14-36566G Institutional support: RVO:61389021 Keywords : Composite * Tungsten * Steel * indentation Subject RIV: JI - Composite Materials Impact factor: 1.673, year: 2016 http://dx.doi.org/10.1557/jmr.2016.375

  20. Electrostatic charge bounds for ball lightning models

    International Nuclear Information System (INIS)

    Stephan, Karl D

    2008-01-01

    Several current theories concerning the nature of ball lightning predict a substantial electrostatic charge in order to account for its observed motion and shape (Turner 1998 Phys. Rep. 293 1; Abrahamson and Dinniss 2000 Nature 403 519). Using charged soap bubbles as a physical model for ball lightning, we show that the magnitude of charge predicted by some of these theories is too high to allow for the types of motion commonly observed in natural ball lightning, which includes horizontal motion above the ground and movement near grounded conductors. Experiments show that at charge levels of only 10-15 nC, 3-cm-diameter soap bubbles tend to be attracted by induced charges to the nearest grounded conductor and rupture. We conclude with a scaling rule that can be used to extrapolate these results to larger objects and surroundings

  1. Development of 3d micro-nano hybrid patterns using anodized aluminum and micro-indentation

    International Nuclear Information System (INIS)

    Shin, Hong Gue; Kwon, Jong Tae; Seo, Young Ho; Kim, Byeong Hee

    2008-01-01

    We developed a simple and cost-effective method of fabricating 3D micro-nano hybrid patterns in which micro-indentation is applied on the anodized aluminum substrate. Nano-patterns were formed first on the aluminum substrate, and then micro-patterns were fabricated by deforming the nano-patterned aluminum substrate. Hemispherical nano-patterns with a 150 nm-diameter on an aluminum substrate were fabricated by anodizing and alumina removing process. Then, micro-pyramid patterns with a side-length of 50 μm were formed on the nano-patterns using micro-indentation. To verify 3D micro-nano hybrid patterns, we replicated 3D micro-nano hybrid patterns by a hot-embossing process. 3D micro-nano hybrid patterns may be used in nano-photonic devices and nano-biochips applications

  2. Development of 3d micro-nano hybrid patterns using anodized aluminum and micro-indentation

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hong Gue; Kwon, Jong Tae [Division of Mechanical Engineering and Mechatronics, Kangwon National University, 1 Kangwondaehakgil, Chunchon, Gangwon-do, 200-701 (Korea, Republic of); Seo, Young Ho [Division of Mechanical Engineering and Mechatronics, Kangwon National University, 1 Kangwondaehakgil, Chunchon, Gangwon-do, 200-701 (Korea, Republic of)], E-mail: mems@kangwon.ac.kr; Kim, Byeong Hee [Division of Mechanical Engineering and Mechatronics, Kangwon National University, 1 Kangwondaehakgil, Chunchon, Gangwon-do, 200-701 (Korea, Republic of)

    2008-07-31

    We developed a simple and cost-effective method of fabricating 3D micro-nano hybrid patterns in which micro-indentation is applied on the anodized aluminum substrate. Nano-patterns were formed first on the aluminum substrate, and then micro-patterns were fabricated by deforming the nano-patterned aluminum substrate. Hemispherical nano-patterns with a 150 nm-diameter on an aluminum substrate were fabricated by anodizing and alumina removing process. Then, micro-pyramid patterns with a side-length of 50 {mu}m were formed on the nano-patterns using micro-indentation. To verify 3D micro-nano hybrid patterns, we replicated 3D micro-nano hybrid patterns by a hot-embossing process. 3D micro-nano hybrid patterns may be used in nano-photonic devices and nano-biochips applications.

  3. Deformation mechanism in graphene nanoplatelet reinforced tantalum carbide using high load in situ indentation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Cheng; Boesl, Benjamin [Plasma Forming Laboratory, Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33174 (United States); Silvestroni, Laura; Sciti, Diletta [Institute of Science and Technology for Ceramics (ISTEC), CNR-ISTEC, Via Granarolo 64, 48018 Faenza (Italy); Agarwal, Arvind, E-mail: agarwala@fiu.edu [Plasma Forming Laboratory, Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33174 (United States)

    2016-09-30

    High load in-situ indentation testing with real time SEM imaging was carried out on spark plasma sintered graphene nanoplatelets (GNP) reinforced TaC composites. The prime goal of this study was to understand the deformation behavior and the reinforcing mechanisms of GNPs. The results suggest that addition of GNPs had significant effect on dissipating indentation energy and confining the overall damage area to a localized region of TaC. The average crack length reduced by 26% whereas total damage area shrunk by 85% in TaC-5 vol% GNP sample as compared to pure TaC. TEM analysis concluded that well dispersed GNPs result in a strong and clean interface between TaC and GNP with trace amount of amorphous layer that leads to improved energy dissipation mechanism.

  4. Phase Transformation of Metastable Austenite in Steel during Nano indentation

    International Nuclear Information System (INIS)

    Ahn, Taehong; Lee, Sung Bo; Han, Heung Nam; Park, Kyungtae

    2013-01-01

    These can produce geometrical softening accompanied by a sudden displacement excursion during load-controlled nanoindentation, which referred to in the literature as a pop-in. In this study, phase transformation of metastable austenite to stress-induced ε martensite which causes pop-ins during nanoindentation of steel will be reported and discussed. This study investigated the relationship between pop-in behavior of austenite in the early stage of nanoindentation and formation of ε martensite based on microstructural analyses. The load-displacement curve obtained from nanoindentation revealed stepwise pop-ins in the early stage of plastic deformation. From analyses of high resolution TEM images, a cluster of banded structure under the indent turned out a juxtaposition of (111) planes of γ austenite and (0001) planes of ε martensite. The calculation of displacement along indentation axis for (111) slip system by formation of ε martensite showed that geometrical softening can also occur by ε martensite formation when considering that the stress-induced ε martensite transformation is the predominant deformation mode in the early stage of plastic deformation and its monopartial nature as well. These microstructural investigations strongly suggest that the pop-in behavior in the early stage of plastic deformation of austenite is closely related to the formation of ε martensite

  5. Phase Transformation of Metastable Austenite in Steel during Nano indentation

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Taehong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Sung Bo; Han, Heung Nam [Seoul National Univ., Seoul (Korea, Republic of); Park, Kyungtae [Hanbat National Univ., Daejeon (Korea, Republic of)

    2013-05-15

    These can produce geometrical softening accompanied by a sudden displacement excursion during load-controlled nanoindentation, which referred to in the literature as a pop-in. In this study, phase transformation of metastable austenite to stress-induced ε martensite which causes pop-ins during nanoindentation of steel will be reported and discussed. This study investigated the relationship between pop-in behavior of austenite in the early stage of nanoindentation and formation of ε martensite based on microstructural analyses. The load-displacement curve obtained from nanoindentation revealed stepwise pop-ins in the early stage of plastic deformation. From analyses of high resolution TEM images, a cluster of banded structure under the indent turned out a juxtaposition of (111) planes of γ austenite and (0001) planes of ε martensite. The calculation of displacement along indentation axis for (111) slip system by formation of ε martensite showed that geometrical softening can also occur by ε martensite formation when considering that the stress-induced ε martensite transformation is the predominant deformation mode in the early stage of plastic deformation and its monopartial nature as well. These microstructural investigations strongly suggest that the pop-in behavior in the early stage of plastic deformation of austenite is closely related to the formation of ε martensite.

  6. Numerical study of Q-ball formation in gravity mediation

    International Nuclear Information System (INIS)

    Hiramatsu, Takashi; Kawasaki, Masahiro; Takahashi, Fuminobu

    2010-01-01

    We study Q-ball formation in the expanding universe on 1D, 2D and 3D lattice simulations. We obtain detailed Q-ball charge distributions, and find that the distribution is peaked at Q 3D peak ≅ 1.9 × 10 −2 (|Φ in |/m) 2 , which is greater than the existing result by about 60%. Based on the numerical simulations, we discuss how the Q-ball formation proceeds. Also we make a comment on possible deviation of the charge distributions from what was conjectured in the past

  7. Massive decline of Cystoseira abies-marina forests in Gran Canaria Island (Canary Islands, eastern Atlantic

    Directory of Open Access Journals (Sweden)

    José Valdazo

    2017-12-01

    Full Text Available Brown macroalgae within the genus Cystoseira are some of the most relevant “ecosystem-engineers” found throughout the Mediterranean and the adjacent Atlantic coasts. Cystoseira-dominated assemblages are sensitive to anthropogenic pressures, and historical declines have been reported from some regions. In particular, Cystoseira abies-marina, thriving on shallow rocky shores, is a key species for the ecosystems of the Canary Islands. In this work, we analyse changes in the distribution and extension of C. abies-marina in the last decades on the island of Gran Canaria. This alga dominated the shallow rocky shores of the entire island in the 1980s; a continuous belt extended along 120.5 km of the coastline and occupied 928 ha. In the first decade of the 21st century, fragmented populations were found along 52.2 km of the coastline and occupied 12.6 ha. Today, this species is found along 37.8 km of the coastline and occupies only 7.4 ha, mainly as scattered patches. This regression has been drastic around the whole island, even in areas with low anthropogenic pressure; the magnitude of the decline over time and the intensity of local human impacts have not shown a significant correlation. This study highlights a real need to implement conservation and restoration policies for C. abies-marina in this region.

  8. Results from the crystal ball detector at SPEAR

    International Nuclear Information System (INIS)

    Bloom, E.D.

    1979-11-01

    The Crystal Ball detector is a device particularly suited to the measurement of photons with energies lower than 1 GeV. The detector has as its principal component a 16 radiation length thick, highly segmented shell of NaI(Tl) surrounding cylindrical, proportional, and magnetostrictive spark chambers. The main Ball and various elements of the central chambers cover 94% of 4π sr. Segmented endcap NaI(Tl) detectors of 20 radiation lengths behind magneto strictive spark chambers supplement the main Ball. The Ball and endcaps close the solid angle for charged particle and photon detection to 98% of 4π sr. In addition, detectors of interspersed iron and proportional tubes provide for μ-π separation over 15% of 4π sr, about theta/sub CM/ = 90 0 . In this report preliminary results are presented from the data obtained. In particular, QED at E/sub CM/ = 6.5 GeV, R/sub hadron/ and related inclusive distributions, eta branching fractions at J/psi and psi'', and a detailed study of the psionium system are discussed

  9. Measurements of the Motion of Plasma Filaments in a Plasma Ball

    International Nuclear Information System (INIS)

    Campanell, M.; Laird, J.; Provost, T.; Vasquez, S.; Zweben, S.J.

    2010-01-01

    Measurements were made of the motion of the filamentary structures in a plasma ball using high speed cameras and other optical detectors. These filaments traverse the ball radially at ∼106 cm/sec at the driving frequency of ∼26 kHz, and drift upward through the ball at ∼1 cm/sec. Varying the applied high voltage and frequency caused the number, length, and diameter of the filaments to change. A custom plasma ball was constructed to observe the effects of varying gas pressure and species on the filament structures.

  10. Measurements of the Motion of Plasma Filaments in a Plasma Ball

    Energy Technology Data Exchange (ETDEWEB)

    Campanell, M.; Laird, J.; Provost, T.; Vasquez, S.; Zweben, S. J.

    2010-01-26

    Measurements were made of the motion of the filamentary structures in a plasma ball using high speed cameras and other optical detectors. These filaments traverse the ball radially at ~106 cm/sec at the driving frequency of ~26 kHz, and drift upward through the ball at ~1 cm/sec. Varying the applied high voltage and frequency caused the number, length, and diameter of the filaments to change. A custom plasma ball was constructed to observe the effects of varying gas pressure and species on the filament structures.

  11. Indentation Creep Behavior of Nugget Zone of Friction Stir Welded 2014 Aluminum Alloy

    Science.gov (United States)

    Das, Jayashree; Robi, P. S.; Sankar, M. Ravi

    2018-04-01

    The present study is aimed at evaluating the creep behavior of the nugget zone of friction welded 2014 Aluminum alloy by indentation creep tests. Impression creep testing was carried out at different temperatures of 300°C, 350°C and 400 °C with stress 124.77MPa, 187.16MPa, 249.55 MPa using a 1.0 mm diameter WC indenter. Experiments were conducted till the curve enters the steady state creep region. Constitutive modeling of creep behavior was carried out considering the temperature, stress and steady state creep rate. Microstructural investigation of the crept specimen at 400°C temperature and 187.16 MPa load was carried out and found that the small precipitates accumulate along the grain boundaries at the favorable conditions of the creep temperature and stress, new precipitates evolve due to the ageing. The grains are broken and deformed due to the creep phenomena.

  12. Supermassive dark-matter Q-balls in galactic centers?

    Energy Technology Data Exchange (ETDEWEB)

    Troitsky, Sergey [Institute for Nuclear Research of the Russian Academy of Sciences,60th October Anniversary Prospect 7a, Moscow 117312 (Russian Federation); Moscow Institute for Physics and Technology,Institutskii per. 9, 141700, Dolgoprudny, Moscow Region (Russian Federation)

    2016-11-11

    Though widely accepted, it is not proven that supermassive compact objects (SMCOs) residing in galactic centers are black holes. In particular, the Milky Way’s SMCO can be a giant nontopological soliton, Q-ball, made of a scalar field: this fits perfectly all observational data. Similar but tiny Q-balls produced in the early Universe may constitute, partly or fully, the dark matter. This picture explains in a natural way, why our SMCO has very low accretion rate and why the observed angular size of the corresponding radio source is much smaller than expected. Interactions between dark-matter Q-balls may explain how SMCOs were seeded in galaxies and resolve well-known problems of standard (non-interacting) dark matter.

  13. A HRXRD and nano-indentation study on Ne-implanted 6H–SiC

    International Nuclear Information System (INIS)

    Xu, C.L.; Zhang, C.H.; Li, J.J.; Zhang, L.Q.; Yang, Y.T.; Song, Y.; Jia, X.J.; Li, J.Y.; Chen, K.Q.

    2012-01-01

    Specimens of 6H–SiC single crystal were irradiated at room temperature with 2.3 MeV neon ions to three successively increasing fluences of 2 × 10 14 , 1.1 × 10 15 and 3.8 × 10 15 ions/cm 2 and then annealed at room temperature, 500, 700 and 1000 °C, respectively. The strain in the specimens was investigated with a high resolution XRD spectrometer with an ω-2θ scanning. And the mechanical properties were investigated with the nano-indentation in the continuous stiffness measurement (CSM) mode with a diamond Berkovich indenter. The XRD curves of specimens after irradiation show the diffraction peaks arising at lower angles aside of the main Bragg peak Θ Bragg , indicating that a positive strain is produced in the implanted layer. In the as-implanted specimens, the strain increases with the increase of the ion fluence or energy deposition. Recovery of the strain occurs on subsequent thermal annealing treatment and two stages of defects evolution process are displayed. An interpretation of defects migration, annihilation and evolution is given to explain the strain variations of the specimens after annealing. The nano-indentation measurements show that the hardness in as-implanted specimens first increases with the increase of the ion fluence, and a degradation of hardness occurs when the ion fluence exceeds a threshold. On the subsequent annealing, the hardness variations are regarded to be a combined effect of the covalent bonding and the pinning effect of defect clusters.

  14. Structure Design and Performance Analysis of High-Speed Miniature Ball Bearing

    Science.gov (United States)

    Li, Songsheng; Zhang, Guoye; Chen, Bin; Shen, Yuan

    2017-07-01

    The working performances of miniature ball bearings are obviously affected by its’ geometric structure parameters. In this paper, quasi-static analysis theory is applied in the design of miniature ball bearings. Firstly, it is studied the influence of geometry structure, preload and rotating speed on the dynamic performance of bearing. Secondly, bearing dynamic characteristics are analyzed which include the bearing stiffness and Spin to roll Ratio. Lastly, the contact stress and bearing life are calculated. The results indicate that structure parameters play an importance role in bearing’s dynamic performances. Miniature ball bearings which have lager ball number, bigger ball diameter and smaller inner race groove radius can get better performances while velocity and preload have great impact on the bearing life. So that parameters of miniature bearing should be chosen cautiously.

  15. The complete chloroplast genome sequence of Abies nephrolepis (Pinaceae: Abietoideae

    Directory of Open Access Journals (Sweden)

    Dong-Keun Yi

    2016-06-01

    Full Text Available The plant chloroplast (cp genome has maintained a relatively conserved structure and gene content throughout evolution. Cp genome sequences have been used widely for resolving evolutionary and phylogenetic issues at various taxonomic levels of plants. Here, we report the complete cp genome of Abies nephrolepis. The A. nephrolepis cp genome is 121,336 base pairs (bp in length including a pair of short inverted repeat regions (IRa and IRb of 139 bp each separated by a small single copy (SSC region of 54,323 bp (SSC and a large single copy region of 66,735 bp (LSC. It contains 114 genes, 68 of which are protein coding genes, 35 tRNA and four rRNA genes, six open reading frames, and one pseudogene. Seventeen repeat units and 64 simple sequence repeats (SSR have been detected in A. nephrolepis cp genome. Large IR sequences locate in 42-kb inversion points (1186 bp. The A. nephrolepis cp genome is identical to Abies koreana’s which is closely related to taxa. Pairwise comparison between two cp genomes revealed 140 polymorphic sites in each. Complete cp genome sequence of A. nephrolepis has a significant potential to provide information on the evolutionary pattern of Abietoideae and valuable data for development of DNA markers for easy identification and classification.

  16. Static and dynamic bending has minor effects on xylem hydraulics of conifer branches (Picea abies, Pinus sylvestris).

    Science.gov (United States)

    Mayr, Stefan; Bertel, Clara; Dämon, Birgit; Beikircher, Barbara

    2014-09-01

    The xylem hydraulic efficiency and safety is usually measured on mechanically unstressed samples, although trees may be exposed to combined hydraulic and mechanical stress in the field. We analysed changes in hydraulic conductivity and vulnerability to drought-induced embolism during static bending of Picea abies and Pinus sylvestris branches as well as the effect of dynamic bending on the vulnerability. We hypothesized this mechanical stress to substantially impair xylem hydraulics. Intense static bending caused an only small decrease in hydraulic conductance (-19.5 ± 2.4% in P. abies) but no shift in vulnerability thresholds. Dynamic bending caused a 0.4 and 0.8 MPa decrease of the water potential at 50 and 88% loss of conductivity in P. sylvestris, but did not affect vulnerability thresholds in P. abies. With respect to applied extreme bending radii, effects on plant hydraulics were surprisingly small and are thus probably of minor eco-physiological importance. More importantly, results indicate that available xylem hydraulic analyses (of conifers) sufficiently reflect plant hydraulics under field conditions. © 2014 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.

  17. Neural extrapolation of motion for a ball rolling down an inclined plane.

    Science.gov (United States)

    La Scaleia, Barbara; Lacquaniti, Francesco; Zago, Myrka

    2014-01-01

    It is known that humans tend to misjudge the kinematics of a target rolling down an inclined plane. Because visuomotor responses are often more accurate and less prone to perceptual illusions than cognitive judgments, we asked the question of how rolling motion is extrapolated for manual interception or drawing tasks. In three experiments a ball rolled down an incline with kinematics that differed as a function of the starting position (4 different positions) and slope (30°, 45° or 60°). In Experiment 1, participants had to punch the ball as it fell off the incline. In Experiment 2, the ball rolled down the incline but was stopped at the end; participants were asked to imagine that the ball kept moving and to punch it. In Experiment 3, the ball rolled down the incline and was stopped at the end; participants were asked to draw with the hand in air the trajectory that would be described by the ball if it kept moving. We found that performance was most accurate when motion of the ball was visible until interception and haptic feedback of hand-ball contact was available (Experiment 1). However, even when participants punched an imaginary moving ball (Experiment 2) or drew in air the imaginary trajectory (Experiment 3), they were able to extrapolate to some extent global aspects of the target motion, including its path, speed and arrival time. We argue that the path and kinematics of a ball rolling down an incline can be extrapolated surprisingly well by the brain using both visual information and internal models of target motion.

  18. Neural extrapolation of motion for a ball rolling down an inclined plane.

    Directory of Open Access Journals (Sweden)

    Barbara La Scaleia

    Full Text Available It is known that humans tend to misjudge the kinematics of a target rolling down an inclined plane. Because visuomotor responses are often more accurate and less prone to perceptual illusions than cognitive judgments, we asked the question of how rolling motion is extrapolated for manual interception or drawing tasks. In three experiments a ball rolled down an incline with kinematics that differed as a function of the starting position (4 different positions and slope (30°, 45° or 60°. In Experiment 1, participants had to punch the ball as it fell off the incline. In Experiment 2, the ball rolled down the incline but was stopped at the end; participants were asked to imagine that the ball kept moving and to punch it. In Experiment 3, the ball rolled down the incline and was stopped at the end; participants were asked to draw with the hand in air the trajectory that would be described by the ball if it kept moving. We found that performance was most accurate when motion of the ball was visible until interception and haptic feedback of hand-ball contact was available (Experiment 1. However, even when participants punched an imaginary moving ball (Experiment 2 or drew in air the imaginary trajectory (Experiment 3, they were able to extrapolate to some extent global aspects of the target motion, including its path, speed and arrival time. We argue that the path and kinematics of a ball rolling down an incline can be extrapolated surprisingly well by the brain using both visual information and internal models of target motion.

  19. Ball lightning dynamics and stability at moderate ion densities

    International Nuclear Information System (INIS)

    Morrow, R

    2017-01-01

    A general mechanism is presented for the dynamics and structure of ball lightning and for the maintenance of the ball lightning structure for several seconds. Results are obtained using a spherical geometry for air at atmospheric pressure, by solving the continuity equations for electrons, positive ions and negative ions coupled with Poisson’s equation. A lightning strike can generate conditions in the lightning channel with a majority of positive nitrogen ions, and a minority of negative oxygen ions and electrons. The calculations are initiated with electrons included; however, at the moderate ion densities chosen the electrons are rapidly lost to form negative ions, and after 1 µ s their influence on the ion dynamics is negligible. Further development after 1 µ s is followed using a simpler set of equations involving only positive ions and negative ions, but including ion diffusion. The space-charge electric field generated by the majority positive ions drives them from the centre of the distribution and drives the minority negative ions and electrons towards the centre of the distribution. In the central region the positive and negative ion distributions eventually overlap exactly and their space-charge fields cancel resulting in zero electric field, and the plasma ball formed is quite stable for a number of seconds. The formation of such plasma balls is not critically dependent on the initial diameter of the ion distributions, or the initial density of minority negative ions. The ion densities decrease relatively slowly due to mutual neutralization of positive and negative ions. The radiation from this neutralization process involving positive nitrogen ions and negative oxygen ions is not sufficient to account for the reported luminosity of ball lightning and some other source of luminosity is shown to be required; the plasma ball model used could readily incorporate other ions in order to account for the luminosity and range of colours reported for ball

  20. Contribution of Visual Information about Ball Trajectory to Baseball Hitting Accuracy.

    Directory of Open Access Journals (Sweden)

    Takatoshi Higuchi

    Full Text Available The contribution of visual information about a pitched ball to the accuracy of baseball-bat contact may vary depending on the part of trajectory seen. The purpose of the present study was to examine the relationship between hitting accuracy and the segment of the trajectory of the flying ball that can be seen by the batter. Ten college baseball field players participated in the study. The systematic error and standardized variability of ball-bat contact on the bat coordinate system and pitcher-to-catcher direction when hitting a ball launched from a pitching machine were measured with or without visual occlusion and analyzed using analysis of variance. The visual occlusion timing included occlusion from 150 milliseconds (ms after the ball release (R+150, occlusion from 150 ms before the expected arrival of the launched ball at the home plate (A-150, and a condition with no occlusion (NO. Twelve trials in each condition were performed using two ball speeds (31.9 m·s-1 and 40.3 m·s-1. Visual occlusion did not affect the mean location of ball-bat contact in the bat's long axis, short axis, and pitcher-to-catcher directions. Although the magnitude of standardized variability was significantly smaller in the bat's short axis direction than in the bat's long axis and pitcher-to-catcher directions (p < 0.001, additional visible time from the R+150 condition to the A-150 and NO conditions resulted in a further decrease in standardized variability only in the bat's short axis direction (p < 0.05. The results suggested that there is directional specificity in the magnitude of standardized variability with different visible time. The present study also confirmed the limitation to visual information is the later part of the ball trajectory for improving hitting accuracy, which is likely due to visuo-motor delay.

  1. Knee Angle and Stride Length in Association with Ball Speed in Youth Baseball Pitchers

    Directory of Open Access Journals (Sweden)

    Bart van Trigt

    2018-05-01

    Full Text Available The purpose of this study was to determine whether stride length and knee angle of the leading leg at foot contact, at the instant of maximal external rotation of the shoulder, and at ball release are associated with ball speed in elite youth baseball pitchers. In this study, fifty-two elite youth baseball pitchers (mean age 15.2 SD (standard deviation 1.7 years pitched ten fastballs. Data were collected with three high-speed video cameras at a frequency of 240 Hz. Stride length and knee angle of the leading leg were calculated at foot contact, maximal external rotation, and ball release. The associations between these kinematic variables and ball speed were separately determined using generalized estimating equations. Stride length as percentage of body height and knee angle at foot contact were not significantly associated with ball speed. However, knee angles at maximal external rotation and ball release were significantly associated with ball speed. Ball speed increased by 0.45 m/s (1 mph with an increase in knee extension of 18 degrees at maximal external rotation and 19.5 degrees at ball release. In conclusion, more knee extension of the leading leg at maximal external rotation and ball release is associated with higher ball speeds in elite youth baseball pitchers.

  2. Exogenous putrescine affects endogenous polyamine levels and the development of Picea abies somatic embryos

    Czech Academy of Sciences Publication Activity Database

    Vondráková, Zuzana; Eliášová, Kateřina; Vágner, Martin; Martincová, Olga; Cvikrová, Milena

    2015-01-01

    Roč. 75, č. 2 (2015), s. 405-414 ISSN 0167-6903 R&D Projects: GA MŠk(CZ) LD13050 Institutional support: RVO:61389030 Keywords : Exogenous putrescine * Somatic embryogenesis * Picea abies Subject RIV: ED - Physiology Impact factor: 2.333, year: 2015

  3. Adaptive Evolution and Demographic History of Norway Spruce (Picea Abies)

    OpenAIRE

    Källman, Thomas

    2009-01-01

    One of the major challenges in evolutionary biology is to determine the genetic basis of adaptive variation. In Norway spruce (Picea abies) the timing of bud set shows a very strong latitudinal cline despite a very low genetic differentiation between populations. The timing of bud set in Norway spruce is under strong genetic control and triggered by changes in photoperiod, but no genes controlling this response have so far been described. In this thesis we used a combination of functional stu...

  4. Índice Tornozelo-Braquial (ITB determinado por esfigmomanômetros oscilométricos automáticos Assessing Ankle-Brachial Index (ABI by using automated oscillometric devices

    Directory of Open Access Journals (Sweden)

    Takao Kawamura

    2008-05-01

    Full Text Available FUNDAMENTO: Índice Tornozelo-Braquial (ITB é essencial na prática clínica, mas dificuldades técnicas na sua execução pelo padrão de referência Doppler vascular (DV tornam-no ainda pouco utilizado. OBJETIVO: Avaliar aplicabilidade da determinação do ITB com uso de esfigmomanômetros oscilométricos automáticos (EOA e sugerir a utilização dos índices delta-Bráquio-Braquial (delta-BB e delta-ITB como marcadores de risco cardiovascular. MÉTODOS: Estudo descritivo e observacional de 247 pacientes ambulatoriais (56,2% feminino, média 62,0 anos submetidos à determinação do ITB com aferição simultânea da pressão arterial (PA em membros superiores (MMSS e inferiores (MMII utilizando-se dois EOA (OMRON-HEM705CP. Nos casos em que não foi possível aferir PA em pelo menos um dos MMII utilizou-se DV. Os pacientes divididos em Grupo N (ITB normal: 0,91 a 1,30 e Grupo A (ITB alterado: 1,30 tiveram comparados entre si os valores de delta-ITB (diferença absoluta ITB/MMII e delta-BB (diferença absoluta PAS/MMSS. RESULTADOS: Utilizando-se EOA foi possível determinar ITB em 90,7%. Com dados do Grupo N determinaram-se valores de referência (VR no percentil 95 de delta-ITB (0-0,13 e delta-BB (0-8 mmHg. Quando comparado com o Grupo N, o Grupo A apresentou prevalência mais elevada tanto de delta-ITB (30/52 contra 10/195; Razão de Chances: 25,23; pBACKGROUND: Assessing Ankle-Brachial Index is an essential procedure in clinical settings, but since its measurement by the gold standard Doppler Ultrasonic (DU technique is impaired by technical difficulties, it is underperformed. OBJECTIVE: The aim of this study was to assess the efficacy of an automated oscillometric device (AOD by performing Ankle-Brachial Index (ABI assessments and to suggest delta brachial-brachial (delta-BB and delta-ABI as markers of cardiovascular risk. METHODS: In this observational and descriptive study, 247 patients (56.2% females, mean age 62.0 years had their

  5. Dynamic analysis of double-row self-aligning ball bearings due to applied loads, internal clearance, surface waviness and number of balls

    Science.gov (United States)

    Zhuo, Yaobin; Zhou, Xiaojun; Yang, Chenlong

    2014-11-01

    In this paper, a three degrees of freedom (dof) model was established for a double-row self-aligning ball bearing (SABB) system, and was applied to study the dynamic behavior of the system during starting process and constant speed rotating process. A mathematical model was developed concerning stiffness and damping characteristics of the bearing, as well as three-dimensional applied load, rotor centrifugal force, etc. Balls and races were all considered as nonlinear springs, and the contact force between ball and race was calculated based on classic Hertzian elastic contact deformation theory and deformation compatibility theory. The changes of each ball's contact force and loaded angle of each row were taken into account. In order to solve the nonlinear dynamical equilibrium equations of the system, these equations were rewritten as differential equations and the fourth order Runge-Kutta method was used to solve the equations iteratively. In order to verify accuracy of the dynamical model and correctness of the numerical solution method, a kind of SABB-BRF30 was chosen for case studies. The effects of several important governing parameters, such as radial and axial applied loads, normal internal, inner and outer races waviness, and number of balls were investigated. These parametric studies led to a complete characterization of the shaft-bearing system vibration transmission. The research provided a theoretical reference for new type bearing design, shaft-bearing system kinetic analysis, optimal design, etc.

  6. An overview of Ball Aerospace cryogen storage and delivery systems

    International Nuclear Information System (INIS)

    Marquardt, J; Keller, J; Mills, G; Schmidt, J

    2015-01-01

    Starting on the Gemini program in the 1960s, Beech Aircraft (now Ball Aerospace) has been designing and manufacturing dewars for a variety of cryogens including liquid hydrogen and oxygen. These dewars flew on the Apollo, Skylab and Space Shuttle spacecraft providing fuel cell reactants resulting in over 150 manned spaceflights. Since Space Shuttle, Ball has also built the liquid hydrogen fuel tanks for the Boeing Phantom Eye unmanned aerial vehicle. Returning back to its fuel cell days, Ball has designed, built and tested a volume-constrained liquid hydrogen and oxygen tank system for reactant delivery to fuel cells on unmanned undersea vehicles (UUVs). Herein past history of Ball technology is described. Testing has been completed on the UUV specific design, which will be described. (paper)

  7. A Novel Generic Ball Recognition Algorithm Based on Omnidirectional Vision for Soccer Robots

    Directory of Open Access Journals (Sweden)

    Hui Zhang

    2013-11-01

    Full Text Available It is significant for the final goal of RoboCup to realize the recognition of generic balls for soccer robots. In this paper, a novel generic ball recognition algorithm based on omnidirectional vision is proposed by combining the modified Haar-like features and AdaBoost learning algorithm. The algorithm is divided into offline training and online recognition. During the phase of offline training, numerous sub-images are acquired from various panoramic images, including generic balls, and then the modified Haar-like features are extracted from them and used as the input of the AdaBoost learning algorithm to obtain a classifier. During the phase of online recognition, and according to the imaging characteristics of our omnidirectional vision system, rectangular windows are defined to search for the generic ball along the rotary and radial directions in the panoramic image, and the learned classifier is used to judge whether a ball is included in the window. After the ball has been recognized globally, ball tracking is realized by integrating a ball velocity estimation algorithm to reduce the computational cost. The experimental results show that good performance can be achieved using our algorithm, and that the generic ball can be recognized and tracked effectively.

  8. Arabidopsis MADS-Box Transcription Factor AGL21 Acts as Environmental Surveillance of Seed Germination by Regulating ABI5 Expression.

    Science.gov (United States)

    Yu, Lin-Hui; Wu, Jie; Zhang, Zi-Sheng; Miao, Zi-Qing; Zhao, Ping-Xia; Wang, Zhen; Xiang, Cheng-Bin

    2017-06-05

    Seed germination is a crucial checkpoint for plant survival under unfavorable environmental conditions. Abscisic acid (ABA) signaling plays a vital role in integrating environmental information to regulate seed germination. It has been well known that MCM1/AGAMOUS/DEFICIENS/SRF (MADS)-box transcription factors are key regulators of seed and flower development in Arabidopsis. However, little is known about their functions in seed germination. Here we report that MADS-box transcription factor AGL21 is a negative regulator of seed germination and post-germination growth by controlling the expression of ABA-INSENSITIVE 5 (ABI5) in Arabidopsis. The AGL21-overexpressing plants were hypersensitive to ABA, salt, and osmotic stresses during seed germination and early post-germination growth, whereas agl21 mutants were less sensitive. We found that AGL21 positively regulated ABI5 expression in seeds. Consistently, genetic analyses showed that AGL21 is epistatic to ABI5 in controlling seed germination. Chromatin immunoprecipitation assays further demonstrated that AGL21 could directly bind to the ABI5 promoter in plant cells. Moreover, we found that AGL21 responded to multiple environmental stresses and plant hormones during seed germination. Taken together, our results suggest that AGL21 acts as a surveillance integrator that incorporates environmental cues and endogenous hormonal signals into ABA signaling to regulate seed germination and early post-germination growth. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  9. Apuntes sobre algunos reguladores del crecimiento vegetal que participan en la respuesta de las plantas frente al estrés abiótico

    OpenAIRE

    Chávez Suárez, Licet; Álvarez Fonseca, Alexander; Ramírez Fernández, Ramiro

    2012-01-01

    El estrés abiótico es una de las principales causas de las pérdidas de las producciones agrícolas a nivel mundial. Los reguladores del crecimiento vegetal tales como el ácido abscícico, el etileno, el ácido jasmónico y el ácido salicílico son esenciales en la respuesta de las plantas al estrés abiótico. Se describen las generalidades de estas moléculas así como su función en la respuesta de la planta frente al estrés abiótico. The abiotic stress is one of the most significative cause of th...

  10. The head tracks and gaze predicts: how the world's best batters hit a ball.

    Directory of Open Access Journals (Sweden)

    David L Mann

    Full Text Available Hitters in fast ball-sports do not align their gaze with the ball throughout ball-flight; rather, they use predictive eye movement strategies that contribute towards their level of interceptive skill. Existing studies claim that (i baseball and cricket batters cannot track the ball because it moves too quickly to be tracked by the eyes, and that consequently (ii batters do not - and possibly cannot - watch the ball at the moment they hit it. However, to date no studies have examined the gaze of truly elite batters. We examined the eye and head movements of two of the world's best cricket batters and found both claims do not apply to these batters. Remarkably, the batters coupled the rotation of their head to the movement of the ball, ensuring the ball remained in a consistent direction relative to their head. To this end, the ball could be followed if the batters simply moved their head and kept their eyes still. Instead of doing so, we show the elite batters used distinctive eye movement strategies, usually relying on two predictive saccades to anticipate (i the location of ball-bounce, and (ii the location of bat-ball contact, ensuring they could direct their gaze towards the ball as they hit it. These specific head and eye movement strategies play important functional roles in contributing towards interceptive expertise.

  11. Micro-ball lens structure fabrication based on drop on demand printing the liquid mold

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaoyang, E-mail: zhuxy1026@163.com; Zhu, Li, E-mail: zhuli@njust.edu.cn; Chen, Hejuan; Yang, Lijun; Zhang, Weiyi

    2016-01-15

    Graphical abstract: - Highlights: • The glycerol micro-ball droplet was introduced to be as liquid mold to fabricate micro-ball lens. • A molding process was used to fabricate the micro-ball lens and the scales of them can be controlled. • The accurate molding process is mainly attributed to the ultrahigh adhesion of the treated substrate. • The micro-ball lenses with contact angle of 120° and 150° were fabricated, analyzed and discussed. - Abstract: In this paper, we demonstrated a simple micro-ball lens array (MBLA) fabrication method using a drop-on-demand (DOD) droplet printing technique and liquid mold. The micro-ball droplet array on the hydrophobic surface is used as the liquid mold to fabricate the MBLA. The ultrahigh adhesion force between the micro-ball droplet and the substrate is ascribed to the Wenzel state of the micro-ball droplet, while the replication process with low position error is attributed to the ultrahigh adhesion force between the micro-ball droplet and the substrate and the high viscosity of the micro-ball droplet and polydimethylsiloxane (PDMS) liquid. The micro-ball lenses (MBLs) with a contact angle of 120° and 150° were fabricated and the important fabrication details were discussed. The optical performance and scanning electron microscope (SEM) data of the MBLs showed that the MBLs had high quality surface morphology and good optical performance.

  12. Predicting brain acceleration during heading of soccer ball

    Science.gov (United States)

    Taha, Zahari; Hasnun Arif Hassan, Mohd; Azri Aris, Mohd; Anuar, Zulfika

    2013-12-01

    There has been a long debate whether purposeful heading could cause harm to the brain. Studies have shown that repetitive heading could lead to degeneration of brain cells, which is similarly found in patients with mild traumatic brain injury. A two-degree of freedom linear mathematical model was developed to study the impact of soccer ball to the brain during ball-to-head impact in soccer. From the model, the acceleration of the brain upon impact can be obtained. The model is a mass-spring-damper system, in which the skull is modelled as a mass and the neck is modelled as a spring-damper system. The brain is a mass with suspension characteristics that are also defined by a spring and a damper. The model was validated by experiment, in which a ball was dropped from different heights onto an instrumented dummy skull. The validation shows that the results obtained from the model are in a good agreement with the brain acceleration measured from the experiment. This findings show that a simple linear mathematical model can be useful in giving a preliminary insight on what human brain endures during a ball-to-head impact.

  13. Inclined indentation of smooth wedge in rock mass

    Science.gov (United States)

    Chanyshev, AI; Podyminogin, GM; Lukyashko, OA

    2018-03-01

    The article focuses on the inclined rigid wedge indentation into a rigid-plastic half-plane of rocks with the Mohr–Coulomb-Mohr plasticity. The limiting loads on different sides of the wedge are determined versus the internal friction angle, cohesion and wedge angle. It is shown that when the force is applied along the symmetry axis of the wedge, the zone of plasticity is formed only on one wedge side. In order to form the plasticity zone on both sides of the wedge, it is necessary to apply the force asymmetrically relative to the wedge symmetry axis. An engineering solution for the asymmetrical case implementation is suggested.

  14. The methodology of composing the exercises system with fit balls.

    Directory of Open Access Journals (Sweden)

    Voronov N.P.

    2011-02-01

    Full Text Available The original methodology of composing the exercises system with fit balls was considered. More than 10 publications were analysed. On the lesson with fit balls the problem was revealed. In the experiment took part 30 students at the age from 18 till 21. All the famous exercises were systematized. As a result, a big attractiveness and assimilability of the proposed complex was revealed. The effectiveness of the complex of physical exercises with fit balls for students was proved.

  15. Stimulated leaks found with SmartBall tool

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2011-05-15

    Pure Technologies has developed a SmartBall leak detection tool which can be used in oil and gas pipelines. This tool contains acoustic sensors which listen for leaks and other problems in pipelines. Pig tracking units are used to track the tool along with receivers positioned on the pipe. With these technologies, SmartBall is able to detect small leaks that conventional methods would not detect and to assess their location accurately. Two runs on a Petrobras pipeline in Brazil highlighted the effectiveness of this technology, detecting three simulated leaks as small as 240mL/min. In addition, this system can give an estimation of the leak rate and traverse non piggable pipelines. Software is then used to analyze data and generate a report giving the size and location of the leaks identified. SmartBall is a technology capable of detecting small leaks and locating them in all sorts of oil and gas pipelines.

  16. Petrography and microanalysis of Pennsylvanian coal-ball concretions (Herrin Coal, Illinois Basin, USA): Bearing on fossil plant preservation and coal-ball origins

    Science.gov (United States)

    Siewers, Fredrick D.; Phillips, Tom L.

    2015-11-01

    Petrographic analyses of 25 coal balls from well-studied paleobotanical profiles in the Middle Pennsylvanian Herrin Coal (Westphalian D, Illinois Basin) and five select coal balls from university collections, indicate that Herrin Coal-ball peats were permineralized by fibrous and non-fibrous carbonates. Fibrous carbonates occur in fan-like to spherulitic arrays in many intracellular (within tissue) pores, and are best developed in relatively open extracellular (between plant) pore spaces. Acid etched fibrous carbonates appear white under reflected light and possess a microcrystalline texture attributable to abundant microdolomite. Scanning electron microscopy, X-ray diffraction, and electron microprobe analysis demonstrate that individual fibers have a distinct trigonal prism morphology and are notable for their magnesium content (≈ 9-15 mol% MgCO3). Non-fibrous carbonates fill intercrystalline spaces among fibers and pores within the peat as primary precipitates and neomorphic replacements. In the immediate vicinity of plant cell walls, non-fibrous carbonates cut across fibrous carbonates as a secondary, neomorphic phase attributed to coalification of plant cell walls. Dolomite occurs as diagenetic microdolomite associated with the fibrous carbonate phase, as sparite replacements, and as void-filling cement. Maximum dolomite (50-59 wt.%) is in the top-of-seam coal-ball zone at the Sahara Mine, which is overlain by the marine Anna Shale. Coal-ball formation in the Herrin Coal began with the precipitation of fibrous high magnesium calcite. The trigonal prism morphology of the carbonate fibers suggests rapid precipitation from super-saturated, meteoric pore waters. Carbonate precipitation from marine waters is discounted on the basis of stratigraphic, paleobotanical, and stable isotopic evidence. Most non-fibrous carbonate is attributable to later diagenetic events, including void-fill replacements, recrystallization, and post-depositional fracture fills. Evidence

  17. Effect of ball-milling to the surface morphology of CaCO3

    Science.gov (United States)

    Sulimai, N. H.; Rani, Rozina Abdul; Khusaimi, Z.; Abdullah, S.; Salifairus, M. J.; Alrokayan, Salman; Khan, Haseeb; Rusop, M.

    2018-05-01

    Calcium Carbonate can be synthesized in many approaches. This work studied on the physical changes to Calcium Carbonate (CaCO3) by ball-milling activity in different parameters; number of ball; collision duration; revolution per minute (RPM). Zirconia balls were used in the work because it has the best durability to withstand ball-milling conditions set. Industrial grade CaCO3 particles that were run in aforementioned parameters were characterized by Field Emission Scanning Electron Microscope (FE-SEM) to study the physical changes on the size and surface of the CaCO3. They were also characterized with Fourier Transform Infra-red Spectroscopy (FTIR) were fingerprint of CaCO3 regions were identified and any changes in the band position and intensity were discussed. Number of Zirconia balls and collision duration is directly proportional to the absorbance intensity whereas it is inversely proportional for the rpm. The best number of parameters producing the highest Absorbance is 100 Zirconia balls in duration of 1 hour and 100rpm.

  18. The COP9 Signalosome regulates seed germination by facilitating protein degradation of RGL2 and ABI5.

    Directory of Open Access Journals (Sweden)

    Dan Jin

    2018-02-01

    Full Text Available The control of seed germination and seed dormancy are critical for the successful propagation of plant species, and are important agricultural traits. Seed germination is tightly controlled by the balance of gibberellin (GA and abscisic acid (ABA, and is influenced by environmental factors. The COP9 Signalosome (CSN is a conserved multi-subunit protein complex that is best known as a regulator of the Cullin-RING family of ubiquitin E3 ligases (CRLs. Multiple viable mutants of the CSN showed poor germination, except for csn5b-1. Detailed analyses showed that csn1-10 has a stronger seed dormancy, while csn5a-1 mutants exhibit retarded seed germination in addition to hyperdormancy. Both csn5a-1 and csn1-10 plants show defects in the timely removal of the germination inhibitors: RGL2, a repressor of GA signaling, and ABI5, an effector of ABA responses. We provide genetic evidence to demonstrate that the germination phenotype of csn1-10 is caused by over-accumulation of RGL2, a substrate of the SCF (CRL1 ubiquitin E3 ligase, while the csn5a-1 phenotype is caused by over-accumulation of RGL2 as well as ABI5. The genetic data are consistent with the hypothesis that CSN5A regulates ABI5 by a mechanism that may not involve CSN1. Transcriptome analyses suggest that CSN1 has a more prominent role than CSN5A during seed maturation, but CSN5A plays a more important role than CSN1 during seed germination, further supporting the functional distinction of these two CSN genes. Our study delineates the molecular targets of the CSN complex in seed germination, and reveals that CSN5 has additional functions in regulating ABI5, thus the ABA signaling pathway.

  19. Prevalence and association of oral candidiasis with dysphagia in individuals with acquired brain injury (ABI)

    DEFF Research Database (Denmark)

    Odgaard, Lene; Nielsen, Jørgen Feldbæk; Kothari, Mohit

    Objective: To describe the prevalence of oral candidiasis (OC) in individuals with acquired brain injury (ABI) and to evaluate the association of OC with improvement in dysphagia. Design: Longitudinal observational study. Methods: Individuals with ABI admitted to a rehabilitation centre were...... recruited over a one-year period. OC-data were collected by clinical examinations and verified by cultivation/microscopy in every 3 weeks during first 10 weeks of admission. Data on dysphagia were collected through medical record reviews. Dysphagia improvement was defined by: 1) First positive change.......7%, respectively. The OC prevalence was 24.8% after one week of admission and reduced to 10.1% after ten weeks of admission. Adjusted hazard ratios for improvement in dysphagia were 0.64-0.77 in OC compared to without OC, though not statistically significant. Conclusion: Prevalence of OC was high at admission...

  20. A correlation between micro- and nano-indentation on materials irradiated by high-energy heavy ions

    Science.gov (United States)

    Yang, Yitao; Zhang, Chonghong; Ding, Zhaonan; Su, Changhao; Yan, Tingxing; Song, Yin; Cheng, Yuguang

    2018-01-01

    Hardness testing is an efficient means of assessing the mechanical properties of materials due to the small sampling volume requirement. Previous studies have established the correlation between flow stress and Vickers hardness. However, the damage layer produced by ions irradiation with low energy is too thin to perform Vickers hardness test, which is usually measured by nano-indentation. Therefore, it is necessary to correlate the Vickers hardness and nano-hardness for the convenience of assessing mechanical properties of materials under irradiation. In this study, various materials (pure nickel, nickel base alloys and oxide dispersion strengthened steel) were irradiated with high-energy heavy ions to different damage levels. After irradiation, micro- and nano-indentation were performed to characterize the change in hardness. Due to indentation size effect (ISE), the hardness was dependent of load or depth. Therefore, Nix-Gao model was used to obtain the hardness without ISE (Hv0 and Hnano_0). The determined Hv0 was plotted as a function of the corresponding Hnano_0, then a good linear relation was found between Vickers hardness and nano-hardness, and a coefficient was determined to be 81.0 ± 10.5, namely, Hv 0 = 81.0Hnano _ 0 (Hv0 with unit of kgf/mm2, Hnano_0 with unit of GPa). This correlation was based on the data from various materials, therefore it was independent of materials. Based on the established correlation and nano-indentation results, the change fraction in yield stress of Inconel 718 and pure Ni with ion irradiation was compared with that with neutron irradiation. The data of Inconel 718 with heavy ion irradiation was in good agreement with the data with neutron irradiation, which was a good demonstration for the validation of the established correlation. However, a distinctive difference in change fraction of yield stress was seen for pure Ni under heavy ion irradiation and neutron irradiation, which was attributed to the difference in samples

  1. The head tracks and gaze predicts: how the world's best batters hit the ball

    NARCIS (Netherlands)

    Mann, D.L.; Spratford, W.; Abernethy, B.

    2013-01-01

    Hitters in fast ball-sports do not align their gaze with the ball throughout ball-flight; rather, they use predictive eye movement strategies that contribute towards their level of interceptive skill. Existing studies claim that (i) baseball and cricket batters cannot track the ball because it moves

  2. The Use of Sphere Indentation Experiments to Characterize Ceramic Damage Models

    Science.gov (United States)

    2011-09-01

    cracking patterns ob- served in spherical indentation data indirectly quantify microheterogeneity. The evolution of damage in ceramics due to projectile...Kayenta model’s damage evolution and variability parameters. Figure 5 illustrates the relationship between the model implementation of variability...Materials by Design, ed., J. W. McCauley. Vol. 134, 11–18. Ceramic Transactions, Cocoa Beach, FL, 2002. 3. G. E. Hauver, et al. Interface Defeat of Long-Rod

  3. The Energy Cost of Running with the Ball in Soccer.

    Science.gov (United States)

    Piras, Alessandro; Raffi, Milena; Atmatzidis, Charalampos; Merni, Franco; Di Michele, Rocco

    2017-11-01

    Running with the ball is a soccer-specific activity frequently used by players during match play and training drills. Nevertheless, the energy cost (EC) of on-grass running with the ball has not yet been determined. The purpose of this study was therefore to assess the EC of constant-speed running with the ball, and to compare it with the EC of normal running. Eight amateur soccer players performed two 6- min runs at 10 km/h on artificial turf, respectively with and without the ball. EC was measured with indirect calorimetry and, furthermore, estimated with a method based on players' accelerations measured with a GPS receiver. The EC measured with indirect calorimetry was higher in running with the ball (4.60±0.42 J/kg/m) than in normal running (4.19±0.33 J/kg/m), with a very likely moderate difference between conditions. Instead, a likely small difference was observed between conditions for EC estimated from GPS data (4.87±0.07 vs. 4.83±0.08 J/kg/m). This study sheds light on the energy expenditure of playing soccer, providing relevant data about the EC of a typical soccer-specific activity. These findings may be a reference for coaches to precisely determine the training load in drills with the ball, such as soccer-specific circuits or small-sided games. © Georg Thieme Verlag KG Stuttgart · New York.

  4. The coefficient of restitution of pressurized balls: a mechanistic model

    Science.gov (United States)

    Georgallas, Alex; Landry, Gaëtan

    2016-01-01

    Pressurized, inflated balls used in professional sports are regulated so that their behaviour upon impact can be anticipated and allow the game to have its distinctive character. However, the dynamics governing the impacts of such balls, even on stationary hard surfaces, can be extremely complex. The energy transformations, which arise from the compression of the gas within the ball and from the shear forces associated with the deformation of the wall, are examined in this paper. We develop a simple mechanistic model of the dependence of the coefficient of restitution, e, upon both the gauge pressure, P_G, of the gas and the shear modulus, G, of the wall. The model is validated using the results from a simple series of experiments using three different sports balls. The fits to the data are extremely good for P_G > 25 kPa and consistent values are obtained for the value of G for the wall material. As far as the authors can tell, this simple, mechanistic model of the pressure dependence of the coefficient of restitution is the first in the literature. *%K Coefficient of Restitution, Dynamics, Inflated Balls, Pressure, Impact Model

  5. Effect of processing on fracture toughness of silicon carbide as determined by Vickers indentations

    Science.gov (United States)

    Dannels, Christine M.; Dutta, Sunil

    1989-01-01

    Several alpha-SiC materials were processed by hot isostatic pressing (HIPing) and by sintering an alpha-SiC powder containing boron and carbon. Several beta-SiC materials were processed by HIPing a beta-SiC powder with boron and carbon additions. The fracture toughnesses K(sub 1c) of these beta- and alpha-SiC materials were estimated from measurements of Vickers indentations. The three formulas used to estimate K(sub 1c) from the indentation fracture patterns resulted in three ranges of K(sub 1c) estimates. Furthermore, each formula measured the effects of processing differently. All three estimates indicated that fine-grained HIPed alpha-SiC has a higher K(sub 1c) than coarsed-grained sintered alpha-SiC. Hot isostatically pressed beta-SiC, which had an ultrafine grain structure, exhibited a K(sub 1c) comparable to that of HIPed alpha-SiC.

  6. In Vitro Antimicrobial Activity of Gel Containing the Herbal Ball Extract against Propionibacterium acnes

    Directory of Open Access Journals (Sweden)

    Chutima Jantarat

    2018-02-01

    Full Text Available The herbal ball has been used as a Thai traditional medicine for relieving many diseases including acne. However, the application process of the herbal ball in practice is complicated and time consuming. The objective of this work was to utilize an herbal ball extract to formulate a gel to reach a more favorable use of the herbal ball for acne treatment. An herbal ball consisting of Andrographis paniculata, Centella asiatica, the Benchalokawichian remedy and the stem bark powder of Hesperethusa crenulata was prepared. The obtained herbal ball was steamed and squeezed to obtain the extract. Gel formulations containing the herbal ball extract at concentrations of 0.1, 1 and 5% w/w were prepared based on a carbomer gel. The herbal ball extract had antioxidant (EC50 = 219.27 ± 36.98 μg/mL and anti Propionibacterium acnes activities (minimum inhibitory concentration (MIC and minimum bactericidal concentration (MBC = 31.25 μg/mL. The 5% w/w gel formulation had antimicrobial activity against P. acnes, showing an inhibition zone value of 10.00 ± 1.00 mm. This indicates that the developed gel formulation has potential for acne treatment. In comparison to the traditional method of herbal ball usage, the application of herbal ball extract in the form of gel should be more convenient to use.

  7. A necrotic lung ball caused by co-infection with Candida and Streptococcus pneumoniae

    Directory of Open Access Journals (Sweden)

    Yokoyama T

    2011-12-01

    Full Text Available Toshinobu Yokoyama, Jun Sasaki, Keita Matsumoto, Chie Koga, Yusuke Ito, Yoichiro Kaku, Morihiro Tajiri, Hiroki Natori, Masashi HirokawaDivision of Respirology, Neurology and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, Kurume, JapanIntroduction: A necrotic lung ball is a rare radiological feature that is sometimes seen in cases of pulmonary aspergillosis. This paper reports a rare occurrence of a necrotic lung ball in a young male caused by Candida and Streptococcus pneumoniae.Case report: A 28-year-old male with pulmonary candidiasis was found to have a lung ball on computed tomography (CT of the chest. The patient was treated with ß-lactams and itraconazole and then fluconazole, which improved his condition (as found on a following chest CT scan and serum ß-D-glucan level. The necrotic lung ball was suspected to have been caused by co-infection with Candida and S. pneumoniae.Conclusion: A necrotic lung ball can result from infection by Candida and/or S. pneumoniae, indicating that physicians should be aware that patients may still have a fungal infection of the lungs that could result in a lung ball, even when they do not have either Aspergillus antibodies or antigens.Keywords: lung ball, necrotic lung ball, Candida, Streptococcus pneumoniae

  8. Soccer ball lift coefficients via trajectory analysis

    International Nuclear Information System (INIS)

    Goff, John Eric; Carre, Matt J

    2010-01-01

    We performed experiments in which a soccer ball was launched from a machine while two high-speed cameras recorded portions of the trajectory. Using the trajectory data and published drag coefficients, we extracted lift coefficients for a soccer ball. We determined lift coefficients for a wide range of spin parameters, including several spin parameters that have not been obtained by today's wind tunnels. Our trajectory analysis technique is not only a valuable tool for professional sports scientists, it is also accessible to students with a background in undergraduate-level classical mechanics.

  9. Soccer ball lift coefficients via trajectory analysis

    Energy Technology Data Exchange (ETDEWEB)

    Goff, John Eric [Department of Physics, Lynchburg College, Lynchburg, VA 24501 (United States); Carre, Matt J, E-mail: goff@lynchburg.ed [Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2010-07-15

    We performed experiments in which a soccer ball was launched from a machine while two high-speed cameras recorded portions of the trajectory. Using the trajectory data and published drag coefficients, we extracted lift coefficients for a soccer ball. We determined lift coefficients for a wide range of spin parameters, including several spin parameters that have not been obtained by today's wind tunnels. Our trajectory analysis technique is not only a valuable tool for professional sports scientists, it is also accessible to students with a background in undergraduate-level classical mechanics.

  10. Topographic evolution of a continental indenter: The eastern Southern Alps

    Science.gov (United States)

    Robl, Jörg; Heberer, Bianca; Prasicek, Günther; Neubauer, Franz; Hergarten, Stefan

    2017-04-01

    The topographic evolution of the eastern Southern Alps (ESA) is controlled by the Late Oligocene - Early Miocene indentation of the Adriatic microplate into an overthickened orogenic wedge emplaced on top of the European plate. Rivers follow topographic gradients that evolve during continental collision and in turn incise into bedrock counteracting the formation of topography. In principle, erosional surface processes tend to establish a topographic steady state so that an interpretation of topographic metrics in terms of the latest tectonic history should be straightforward. However, a series of complications impede deciphering the topographic record of the ESA. The Pleistocene glaciations locally excavated alpine valleys and perturbed fluvial drainages. The Late Miocene desiccation of the Mediterranean Sea and the uplift of the northern Molasse Basin led to significant base level changes in the far field of the ESA and the Eastern Alps (EA), respectively. Among this multitude of mechanisms, the processes that dominate the current topographic evolution of the ESA and the ESA-EA drainage divide have not been identified and a number of questions regarding the interaction of crustal deformation, erosion and climate in shaping the present-day topography remain. We demonstrate the expected topographic effects of each mechanism in a 1-dimensional model and compare them with observed channel metrics. Modern uplift rates are largely consistent with long-term exhumation in the ESA and with variations in the normalized steepness index (ksn) indicating a stable uplift and erosion pattern since Miocene times. We find that ksn increases with uplift rate and declines from the indenter tip in the northwest to the foreland basin in the southeast. The number and magnitude of knickpoints and the distortion in longitudinal channel profiles similarly decrease towards the east. Most knickpoints probably evolved during Pleistocene glaciation cycles, but may represent the incrementally

  11. Simulating fullerene ball bearings of ultra-low friction

    International Nuclear Information System (INIS)

    Li Xiaoyan; Yang Wei

    2007-01-01

    We report the direct molecular dynamics simulations for molecular ball bearings composed of fullerene molecules (C 60 and C 20 ) and multi-walled carbon nanotubes. The comparison of friction levels indicates that fullerene ball bearings have extremely low friction (with minimal frictional forces of 5.283 x 10 -7 and 6.768 x 10 -7 nN/atom for C 60 and C 20 bearings) and energy dissipation (lowest dissipation per cycle of 0.013 and 0.016 meV/atom for C 60 and C 20 bearings). A single fullerene inside the ball bearings exhibits various motion statuses of mixed translation and rotation. The influences of the shaft's distortion on the long-ranged potential energy and normal force are discussed. The phonic dissipation mechanism leads to a non-monotonic function between the friction and the load rate for the molecular bearings

  12. Nuevos genes reguladores de la tolerancia a estrés abiótico en Arabidopsis.

    OpenAIRE

    MARTÍNEZ MACÍAS, FÉLIX

    2015-01-01

    Martínez Macías, F. (2015). Nuevos genes reguladores de la tolerancia a estrés abiótico en Arabidopsis [Tesis doctoral no publicada]. Universitat Politècnica de València. doi:10.4995/Thesis/10251/48560. TESIS

  13. Visual Illusions and the Control of Ball Placement in Goal-Directed Hitting

    Science.gov (United States)

    Caljouw, Simone R.; Van der Kamp, John; Savelsbergh, Geert J. P.

    2010-01-01

    When hitting, kicking, or throwing balls at targets, online control in the target area is impossible. We assumed this lack of late corrections in the target area would induce an effect of a single-winged Muller-Lyer illusion on ball placement. After extensive practice in hitting balls to different landing locations, participants (N = 9) had to hit…

  14. Kto zje żabę Haberschracka? : symbolika żaby w Poliptyku Augustiańskim Mikołaja Haberschracka, XV w

    OpenAIRE

    Tytko, Marek Mariusz

    1998-01-01

    Tekst dotyczy symboliki żaby w Poliptyku Augustiańskim namalowanym przez Mikołaja Haberschracka z Nowej Wsi koło Krakowa w XV w. Obraz powstał w 1468 r. Ufundowany był przez przeora klasztoru i konwent zakonu augustianów w Krakowie. Augustianie krakowscy byli twórcami programu ideowego tego poliptyku. W tekście opisano konteksty biblijne, teologiczne i historyczne dla tego obrazu. Autor artykułu stawia hipotezę o symbolicznym znaczeniu żab w obrazie. Żaby oznaczać mogą tam (alternatywnie): 1)...

  15. Linearly convergent stochastic heavy ball method for minimizing generalization error

    KAUST Repository

    Loizou, Nicolas; Richtarik, Peter

    2017-01-01

    In this work we establish the first linear convergence result for the stochastic heavy ball method. The method performs SGD steps with a fixed stepsize, amended by a heavy ball momentum term. In the analysis, we focus on minimizing the expected loss

  16. IceCube potential for detecting Q-ball dark matter in gauge mediation

    International Nuclear Information System (INIS)

    Kasuya, Shinta; Kawasaki, Masahiro; Yanagida, Tsutomu T.

    2015-01-01

    We study Q-ball dark matter in gauge-mediated supersymmetry breaking, and seek the possibility of detection in the IceCube experiment. We find that the Q balls would be the dark matter in the parameter region different from that for gravitino dark matter. In particular, the Q ball is a good dark matter candidate for low reheating temperature, which may be suitable for the Affleck–Dine baryogenesis and/or nonthermal leptogenesis. Dark matter Q balls are detectable by IceCube-like experiments in the future, which is a peculiar feature compared to the case of gravitino dark matter

  17. An assessment of dioxin levels in processed ball clay from the United States

    Energy Technology Data Exchange (ETDEWEB)

    Ferrario, J.; Byrne, C. [USEPA, Stennis Space Ctr. Mississippi (United States); Schaum, J. [USEPA, Washington, DC (United States)

    2004-09-15

    Introduction The presence of dioxin-like compounds in ball clay was discovered in 1996 as a result of an investigation to determine the sources of elevated levels of dioxin found in two chicken fat samples from a national survey of poultry. The investigation indicated that soybean meal added to chicken feed was the source of dioxin contamination. Further investigation showed that the dioxin contamination came from the mixing of a natural clay known as ''ball clay'' with the soybean meal as an anti-caking agent. The FDA subsequently discontinued the use of contaminated ball clay as an anti-caking agent in animal feeds. The source of the dioxins found in ball clay has yet to be established. A comparison of the characteristic dioxin profile found in ball clay to those of known anthropogenic sources from the U.S.EPA Source Inventory has been undertaken, and none of those examined match the features found in the clays. These characteristic features together with the fact that the geologic formations in which the clays are found are ancient suggest a natural origin for the dioxins. The plasticity of ball clays makes them an important commercial resource for a variety of commercial uses. The percentage of commercial uses of ball clay in 2000 included: 29% for floor and wall tile, 24% for sanitary ware, 10% pottery, and 37% for other industrial and commercial uses. The total mining of ball clay in the U.S. for 2003 was 1.12 million metric tons. EPA is examining the potential for the environmental release of dioxins from the processing/use of ball clays and evaluating potential exposure pathways. Part of this overall effort and the subject of this study includes the analysis of dioxin levels found in commercially available ball clays commonly used in ceramic art studios.

  18. Numerical simulation and analysis of ball valve three-dimensional flow based on CFD

    International Nuclear Information System (INIS)

    Zhang, S C; Zhang, Y L; Fang, Z M

    2012-01-01

    The new rotor oil-gas mixture pump that added ball valves in its export is a kind of innovative products, which can better adapt to the oil and gas mixed condition. In order to explore the rule of flow field in the export ball valve of new rotor oil-gas mixture pump, established the 3 d model of ball valve flow field was established. Using the FLUENT software, combining the standard k-ε turbulent model with multiphase flow technology and adopting the SIMPLE algorithm to simulate the 3 d gas-liquid two phase flow field in export ball valve of new rotor oil-gas mixture pump. In the different conditions that the volume of gas rate was 25%, 50%, 75%, through analyzing the velocity field, stress field and the distribution of the liquid and gas with the ball valve open height respectively at 3mm, 5mm, 7mm. Discussed how open height and different volume of gas rate to influence the field in export ball valve in the process of gas-liquid mixing was discussed. The simulation results showed that the greater the open height, the smaller the difference pressure of ball valve; the gap velocity decreasing with the open height increasing. The gas is mainly distributed in the vicinity of the valve ball in the process of gas-liquid mixing. The gas liquid ratio has a little effect on the gap velocity in the same open height. The results showed the flow field forms in the ball valve directly, to a certain degree, it had released the rules of gas-liquid flow in the valve and provided the theoretical guidance for design and optimization of the new rotor oil-gas mixture pump export ball valve.

  19. Size doesn't really matter: ambiguity aversion in Ellsberg urns with few balls.

    Science.gov (United States)

    Pulford, Briony D; Colman, Andrew M

    2008-01-01

    When attempting to draw a ball of a specified color either from an urn containing 50 red balls and 50 black balls or from an urn containing an unknown ratio of 100 red and black balls, a majority of decision makers prefer the known-risk urn, and this ambiguity aversion effect violates expected utility theory. In an experimental investigation of the effect of urn size on ambiguity aversion, 149 participants showed similar levels of aversion when choosing from urns containing 2, 10, or 100 balls. The occurrence of a substantial and significant ambiguity aversion effect even in the smallest urn suggests that influential theoretical interpretations of ambiguity aversion may need to be reconsidered.

  20. Space Shuttle Orbital Maneuvering Subsystem (OMS) Engine Propellant Leakage Ball-Valve Shaft Seals

    Science.gov (United States)

    Lueders, Kathy; Buntain, Nick; Fries, Joseph (Technical Monitor)

    1999-01-01

    Evidence of propellant leakage across ball-valve shaft seals has been noted during the disassembly of five flight engines and one test engine at the NASA Lyndon B. Johnson Space Center, White Sands Test Facility. Based on data collected during the disassembly of these five engines, the consequences of propellant leakage across the ball-valve shaft seals can be divided into four primary areas of concern: Damage to the ball-valve pinion shafts, damage to sleeved bearings inside the ball-valve and actuator assemblies, degradation of the synthetic rubber o-rings used in the actuator assemblies, and corrosion and degradation to the interior of the actuator assemblies. The exact time at which leakage across the ball-valve shaft seals occurs has not been determined, however, the leakage most likely occurs during engine firings when, depending on the specification used, ball-valve cavity pressures range as high as 453 to 550 psia. This potential pressure range for the ball-valve cavities greatly exceeds the acceptance leakage test pressure of 332 psia. Since redesign and replacement of the ball-valve shaft seals is unlikely, the near term solution to prevent damage that occurs from shaft-seal leakage is to implement a routine overhaul and maintenance program for engines in the fleet. Recommended repair, verification, and possible preventative maintenance measures are discussed in the paper.

  1. Biaxial testing for nuclear grade graphite by ball on three balls assessment

    International Nuclear Information System (INIS)

    Mohd Reusmaazran Yusof; Yusof Abdullah

    2012-01-01

    Nuclear grade (high-purity) graphite for fuel element and moderator material in Advanced Gas Cooling Reactors (AGR) displays large scatter in strength and a non-linear stress-strain response from the damage accumulation. These responses can be characterized as quasi-brittle behaviour. Current assessments of fracture in core graphite components are based on the linear elastic approximation and thus represent a major assumption. The quasi-brittle behaviour gives challenge to assess the real nuclear graphite component. The selected test method would help to bridge the gap between microscale to macro-scale in real reactor component. The small scale tests presented here can contribute some statistical data to manifests the failure in real component. The evaluation and choice of different solution design of biaxial test will be discussed in this paper. The ball on-three ball test method was used for assessment test follows by numerous of analytical method. The results shown that biaxial strength of the EY9 grade graphite depends on the method used for evaluation. Some of the analytical methods use to calculate biaxial strength were found not to be valid and therefore should not be used to assess the mechanical properties of nuclear graphite. (author)

  2. Suppressing Heavy Metal Leaching through Ball Milling of Fly Ash

    Directory of Open Access Journals (Sweden)

    Zhiliang Chen

    2016-07-01

    Full Text Available Ball milling is investigated as a method of reducing the leaching concentration (often termed stablilization of heavy metals in municipal solid waste incineration (MSWI fly ash. Three heavy metals (Cu, Cr, Pb loose much of their solubility in leachate by treating fly ash in a planetary ball mill, in which collisions between balls and fly ash drive various physical processes, as well as chemical reactions. The efficiency of stabilization is evaluated by analysing heavy metals in the leachable fraction from treated fly ash. Ball milling reduces the leaching concentration of Cu, Cr, and Pb, and water washing effectively promotes stabilization efficiency by removing soluble salts. Size distribution and morphology of particles were analysed by laser particle diameter analysis and scanning electron microscopy. X-ray diffraction analysis reveals significant reduction of the crystallinity of fly ash by milling. Fly ash particles can be activated through this ball milling, leading to a significant decrease in particle size, a rise in its BET-surface, and turning basic crystals therein into amorphous structures. The dissolution rate of acid buffering materials present in activated particles is enhanced, resulting in a rising pH value of the leachate, reducing the leaching out of some heavy metals.

  3. Finite Element Analysis of Aluminum Honeycombs Subjected to Dynamic Indentation and Compression Loads

    Directory of Open Access Journals (Sweden)

    A.S.M. Ayman Ashab

    2016-03-01

    Full Text Available The mechanical behavior of aluminum hexagonal honeycombs subjected to out-of-plane dynamic indentation and compression loads has been investigated numerically using ANSYS/LS-DYNA in this paper. The finite element (FE models have been verified by previous experimental results in terms of deformation pattern, stress-strain curve, and energy dissipation. The verified FE models have then been used in comprehensive numerical analysis of different aluminum honeycombs. Plateau stress, σpl, and dissipated energy (EI for indentation and EC for compression have been calculated at different strain rates ranging from 102 to 104 s−1. The effects of strain rate and t/l ratio on the plateau stress, dissipated energy, and tearing energy have been discussed. An empirical formula is proposed to describe the relationship between the tearing energy per unit fracture area, relative density, and strain rate for honeycombs. Moreover, it has been found that a generic formula can be used to describe the relationship between tearing energy per unit fracture area and relative density for both aluminum honeycombs and foams.

  4. On the determination of representative stress–strain relation of metallic materials using instrumented indentation

    International Nuclear Information System (INIS)

    Fu, Kunkun; Chang, Li; Zheng, Bailin; Tang, Youhong; Wang, Hongjian

    2015-01-01

    Highlights: • A method to convert indentation load–depth curve into representative stress–strain curve is presented. • Representative stress–strain curves of six metals are obtained using finite element analysis. • Different representative strain definitions are compared using finite element method. • Representative stress–strain curve of molybdenum films is obtained by nanoindentation tests. - Abstract: In this study, attempts have been made to estimate the representative stress–strain relation of metallic materials from indentation tests using an iterative method. Finite element analysis was performed to validate the method. The results showed that representative stress–strain relations of metallic materials using the present method were in a good agreement with those from tensile tests. Further, this method was extended to predict representative stress–strain relation of ultra-thin molybdenum films with a thickness of 485 nm using nanoindentation. Yielding strength and strain hardening exponent of the films were therefore obtained, which showed a good agreement with the published data

  5. CFD Study of Drag and Lift of Sepak Takraw Ball at Different Face Orientations

    Directory of Open Access Journals (Sweden)

    Abdul Syakir Abdul Mubin

    2015-01-01

    Full Text Available There have been a significant number of researches on computational fluid dynamic (CFD analysis of balls used in sports such as golf balls, tennis balls, and soccer balls. Sepak takraw is a high speed court game predominantly played in Southeast Asia using mainly the legs and head. The sepak takraw ball is unique because it is not enclosed and made of woven plastic. Hence a study of its aerodynamicswould give insight into its behaviour under different conditions of play. In this study the dynamics of the fluid around a static sepak takraw ball was investigated at different wind speeds for three different orientations using CFD. It was found that although the drag did not differ very much, increasing the wind velocity causes an increase in drag. The lift coefficientvaries as the velocity increases and does not show a regular pattern. The drag and lift coefficients are influenced by the orientation of the sepak takraw ball.

  6. Use of miniature and standard specimens to evaluate effects of irradiation temperature on pressure vessel steels

    International Nuclear Information System (INIS)

    Haggag, F.M.; Nanstad, R.K.; Byrne, S.T.

    1991-01-01

    The effects of neutron irradiation on the steel reactor vessel for the modular high-temperature gas-cooled reactor (MHTGR) are being investigated, primarily because the operating temperatures are low [121 to 210 degrees C (250--410 degrees F)] compared to those for commercial light-water reactors (LWRs) [∼288 degrees C (550 degrees F)]. The need for design data on the reference temperature shift necessitated the irradiation at different temperatures of A 533 grade B class 1 plate. A 508 class 3 forging, and welds used for the vessel shell, vessel closure head, the vessel flange. This paper presents results from the first four irradiation capsules of this program. The four capsules were irradiated in the University of Buffalo Reactor to an effective fast fluence of 1 x10 18 neutron/cm 2 [0.68 x 10 18 neutron/cm 2 (>1 MeV)] at temperatures of 288, 204, 163, and 121 degrees C (550, 400, 325, and 250 degrees F), respectively. The yield and ultimate strengths of both steel plate materials of the MHTGR Program increased with decreasing irradiation temperature. Similarly, the 41-J Charpy V-notch (CVN) transition temperature shift increased with decreasing irradiation temperature (in agreement with the increase in yield strength). The miniature tensile and automated ball indentation (ABI) test results (yield strength and flow properties) were in good agreement with those from standard tensile specimens. The miniature tensile and ABI test results were also used in a model that utilizes the changes in yield strength to estimate the CVN ductile-to-brittle transition temperature shift due to irradiation. The model predictions were compared with CVN test results obtained here and in earlier work. 5 refs., 11 figs., 6 tabs

  7. Response to Thermal Exposure of Ball-Milled Aluminum-Borax Powder Blends

    Science.gov (United States)

    Birol, Yucel

    2013-04-01

    Aluminum-borax powder mixtures were ball milled and heated above 873 K (600 °C) to produce Al-B master alloys. Ball-milled powder blends reveal interpenetrating layers of deformed aluminum and borax grains that are increasingly refined with increasing milling time. Thermal exposure of the ball-milled powder blends facilitates a series of thermite reactions between these layers. Borax, dehydrated during heating, is reduced by Al, and B thus generated reacts with excess Al to produce AlB2 particles dispersed across the aluminum grains starting at 873 K (600 °C). AlB2 particles start to form along the interface of the aluminum and borax layers. Once nucleated, these particles grow readily to become hexagonal-shaped crystals that traverse the aluminum grains with increasing temperatures as evidenced by the increase in the size as well as in the number of the AlB2 particles. Ball milling for 1 hour suffices to achieve a thermite reaction between borax and aluminum. Ball milling further does not impact the response of the powder blend to thermal exposure. The nucleation-reaction sites are multiplied, however, with increasing milling time and thus insure a higher number of smaller AlB2 particles. The size of the AlB2 platelets may be adjusted with the ball milling time.

  8. Exact solutions, energy, and charge of stable Q-balls

    Energy Technology Data Exchange (ETDEWEB)

    Bazeia, D.; Marques, M.A. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, PB (Brazil); Menezes, R. [Universidade Federal da Paraiba, Departamento de Ciencias Exatas, Rio Tinto, PB (Brazil); Universidade Federal de Campina Grande, Departamento de Fisica, Campina Grande, PB (Brazil)

    2016-05-15

    In this work we deal with nontopological solutions of the Q-ball type in two spacetime dimensions. We study models of current interest, described by a Higgs-like and other, similar potentials which unveil the presence of exact solutions. We use the analytic results to investigate how to control the energy and charge to make the Q-balls stable. (orig.)

  9. Attempted - to -Phase Conversion of Croconic Acid via Ball Milling

    Science.gov (United States)

    2017-05-18

    ARL-TN-0824 MAY 2017 US Army Research Laboratory Attempted α- to β-Phase Conversion of Croconic Acid via Ball Milling by...Laboratory Attempted α- to β-Phase Conversion of Croconic Acid via Ball Milling by Steven W Dean, Rose A Pesce-Rodriguez, and Jennifer A Ciezak...

  10. The breakage behaviour of Aspirin under quasi-static indentation and single particle impact loading: effect of crystallographic anisotropy.

    Science.gov (United States)

    Olusanmi, D; Roberts, K J; Ghadiri, M; Ding, Y

    2011-06-15

    The influence of crystallographic structural anisotropy on the breakage behaviour of Aspirin under impact loading is highlighted. Under both quasi-static testing conditions, using nano-indentation, and dynamic impact tests, Aspirin demonstrates clear anisotropy in its slip and fracture behaviour. During nano-indentation on the (100) and (001) faces, cracks were propagated along the [010] direction. While the hardness was found to be comparatively similar for both these faces, it was observed that slip due to plastic deformation occurred more readily on the (100) than the (001) crystal planes suggesting the former as the preferred slip plane. Furthermore, the fracture toughness on the (001) planes was found to be distinctly lower than that of the (100) planes, indicating the former as the preferred cleavage plane. Observations of the crystal morphology of damaged particles after dynamic impact testing showed that both the chipping and fragmentation of Aspirin mostly occurred via cleavage in a manner consistent with the observed fracture behaviour following nano-indentation. This work highlights the importance of cleavage as a dominant factor underpinning the fracture mechanism of Aspirin under both quasi-static and impact loading conditions. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Development of Stick and Ball Sports on Gateball

    Directory of Open Access Journals (Sweden)

    Indriyanti

    2017-10-01

    Full Text Available The purpose of this research is to make product design development of stick and ball sports in gateball. The approach used in this study is a method of Research and Development. The subject of this research is the Central Java on gateball club event gateball in Semarang and Yogyakarta. Experts and expert expert gateball expert in mechanical engineering. The data analysis phase the work field, and the data analysis stage include observation, observation, interviews, and documentation of the test kefektifan products, expert judgment expert expert gateball and expert mechanical engineering expert. The results of this research are stick and ball exercise for beginner players gateball gateball. The result of the validator 3 expert expert from the expert gateball and expert mechanical engineering product validation data beginning the first phase obtained a score above 73 definitions of the criteria of “good”, on the second stage of the product validation data obtained a score above the 81 criteria for “excellent”. The results of the interviews to the development of gateball players 19 stick and ball gateball can not be used to play in a match and can be used for subsequent exercises but for beginners a product development tool model stick and ball gateball “ INC. “can be used to enhance the ability of basic techniques in motion game for players, gateball.

  12. Crystalline cellulose elastic modulus predicted by atomistic models of uniform deformation and nanoscale indentation

    Science.gov (United States)

    Xiawa Wu; Robert J. Moon; Ashlie Martini

    2013-01-01

    The elastic modulus of cellulose Iß in the axial and transverse directions was obtained from atomistic simulations using both the standard uniform deformation approach and a complementary approach based on nanoscale indentation. This allowed comparisons between the methods and closer connectivity to experimental measurement techniques. A reactive...

  13. Investigation of a Ball Screw Feed Drive System Based on Dynamic Modeling for Motion Control

    Directory of Open Access Journals (Sweden)

    Yi-Cheng Huang

    2017-06-01

    Full Text Available This paper examines the frequency response relationship between the ball screw nut preload, ball screw torsional stiffness variations and table mass effect for a single-axis feed drive system. Identification for the frequency response of an industrial ball screw drive system is very important for the precision motion when the vibration modes of the system are critical for controller design. In this study, there is translation and rotation modes of a ball screw feed drive system when positioning table is actuated by a servo motor. A lumped dynamic model to study the ball nut preload variation and torsional stiffness of the ball screw drive system is derived first. The mathematical modeling and numerical simulation provide the information of peak frequency response as the different levels of ball nut preload, ball screw torsional stiffness and table mass. The trend of increasing preload will indicate the abrupt peak change in frequency response spectrum analysis in some mode shapes. This study provides an approach to investigate the dynamic frequency response of a ball screw drive system, which provides significant information for better control performance when precise motion control is concerned.

  14. Analytical method for establishing indentation rolling resistance

    Science.gov (United States)

    Gładysiewicz, Lech; Konieczna, Martyna

    2018-01-01

    Belt conveyors are highly reliable machines able to work in special operating conditions. Harsh environment, long distance of transporting and great mass of transported martials are cause of high energy usage. That is why research in the field of belt conveyor transportation nowadays focuses on reducing the power consumption without lowering their efficiency. In this paper, previous methods for testing rolling resistance are described, and new method designed by authors was presented. New method of testing rolling resistance is quite simple and inexpensive. Moreover it allows to conduct the experimental tests of the impact of different parameters on the value of indentation rolling resistance such as core design, cover thickness, ambient temperature, idler travel frequency, or load value as well. Finally results of tests of relationship between rolling resistance and idler travel frequency and between rolling resistance and idler travel speed was presented.

  15. Complex bud architecture and cell-specific chemical patterns enable supercooling of Picea abies bud primordial

    Science.gov (United States)

    Bud primordia of Picea abies, despite a frozen shoot, stay ice free down to -50 °C by a mechanism termed supercooling whose biophysical and biochemical requirements are poorly understood. Bud architecture was assessed by 3D-reconstruction, supercooling and freezing patterns by infrared video thermog...

  16. Surface modification of titanium hydride with epoxy resin via microwave-assisted ball milling

    International Nuclear Information System (INIS)

    Ning, Rong; Chen, Ding; Zhang, Qianxia; Bian, Zhibing; Dai, Haixiong; Zhang, Chi

    2014-01-01

    Highlights: • TiH 2 was modified with epoxy resin by microwave-assisted ball milling. • The epoxy ring was opened under the coupling effect of microwave and ball milling. • Microwave-assisted ball milling improved the compatibility of TiH 2 with epoxy. - Abstract: Surface modification of titanium hydride with epoxy resin was carried out via microwave-assisted ball milling and the products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), thermo-gravimetry (TG) and Fourier transform infrared spectroscopy (FT-IR). A sedimentation test was performed to investigate the compatibility of the modified nano titanium hydride with the epoxy resin. The results show that the epoxy resin molecules were grafted on the surface of nano titanium hydride particles during the microwave-assisted ball milling process, which led to the improvement of compatibility between the nanoparticles and epoxy resin. According to the FT-IR, the grafting site was likely to be located around the epoxy group due to the fact that the epoxy ring was opened. However, compared with microwave-assisted ball milling, the conventional ball milling could not realize the surface modification, indicating that the coupling effect of mechanical force and microwave played a key role during the process

  17. Visual strategies underpinning the development of visual-motor expertise when hitting a ball

    NARCIS (Netherlands)

    Sarpeshkar, Vishnu; Abernethy, B.; Mann, D.L.

    2017-01-01

    It is well known that skilled batters in fast-ball sports do not align their gaze with the ball throughout ball-flight, but instead adopt a unique sequence of eye and head movements that contribute toward their skill. However, much of what we know about visual-motor behavior in hitting is based on

  18. Ball tip method for thoracic pedicle screw placement in patients with adolescent idiopathic scoliosis

    International Nuclear Information System (INIS)

    Watanabe, Kota; Matsumoto, Morio; Iizuka, Shingo

    2008-01-01

    The purpose of this study was to evaluate the efficacy of ball tip method for thoracic pedicle screw placements in idiopathic scoliosis patients. 24 patients with adolescent idiopathic scoliosis were included in this study. Conventional method was performed in 12 patients. Ball tip method was performed in 12 patients. Accuracy of the pedicle screw placement was evaluated based on the postoperative CT. In the ball tip method, a probe which was consisted of ball tip with flexible shaft was used. After removing of cortical bone at a starting point, the probe was inserted manually or sometimes with gently tapping by hammer. During the maneuver, the probe will gradually progress into cancellous bone in the pedicle, without perforating cortical bone in the pedicle. Following expansion of the hole by a rigid gear shift probe, screw was placed in the pedicle. 65.1% of screws were located within pedicle in the conventional group and 86.5% in the ball tip group. 5.3% of screws were located out of pedicle within 2 mm in the conventional group and 8.2% in the ball tip group. 15.8% of screws were located out of pedicle beyond 2 mm and 1.8% in the ball tip group. The ball tip method enhanced the accuracy of thoracic pedicle screw placements in adolescent idiopathic scoliosis patients. The ball tip method may be effective for accurate pedicle screw placement in patients with adolescent idiopathic scoliosis. (author)

  19. Ball Bearings Equipped for In Situ Lubrication on Demand

    Science.gov (United States)

    Marchetti, Mario; Jones, William R., Jr.; Pepper, Stephen V.; Jansen, Mark; Predmore, Roamer

    2005-01-01

    In situ systems that provide fresh lubricants to ball/race contacts on demand have been developed to prolong the operational lives of ball bearings. These systems were originally intended to be incorporated into ball bearings in mechanisms that are required to operate in outer space for years, in conditions in which lubricants tend to deteriorate and/or evaporate. These systems may also be useful for similarly prolonging bearing lifetimes on Earth. Reservoirs have been among the means used previously to resupply lubricants. Lubricant- resupply reservoirs are bulky and add complexity to bearing assemblies. In addition, such a reservoir cannot be turned on or off as needed: it supplies lubricant continuously, often leading to an excess of lubricant in the bearing. A lubricator of the present type includes a porous ring cartridge attached to the inner or the outer ring of a ball bearing (see Figure 1). Oil is stored in the porous cartridge and is released by heating the cartridge: Because the thermal expansion of the oil exceeds that of the cartridge, heating causes the ejection of some oil. A metal film can be deposited on a face of the cartridge to serve as an electrical-resistance heater. The heater can be activated in response to a measured increase in torque that signals depletion of oil from the bearing/race contacts. Because the oil has low surface tension and readily wets the bearing-ring material, it spreads over the bearing ring and eventually reaches the ball/race contacts. The Marangoni effect (a surface-tension gradient associated with a temperature gradient) is utilized to enhance the desired transfer of lubricant to the ball/race contacts during heating. For a test, a ball bearing designed for use at low speed was assembled without lubricant and equipped with a porous-ring lubricator, the resistance heater of which consumed a power of less than 1 W when triggered on by a torque-measuring device. In the test, a load of 20 lb (.89 N) was applied and the

  20. New Q-ball solutions in gauge-mediation, Affleck-Dine baryogenesis and gravitino dark matter

    International Nuclear Information System (INIS)

    Doddato, Francesca; McDonald, John

    2012-01-01

    Affleck-Dine (AD) baryogenesis along a d = 6 flat direction in gauge-mediated supersymmetry-breaking (GMSB) models can produce unstable Q-balls which naturally have field strength similar to the messenger scale. In this case a new kind of Q-ball is formed, intermediate between the gravity-mediated and gauge-mediated types. We study in detail these new Q-ball solutions, showing how their properties interpolate between standard gravity-mediated and gauge-mediated Q-balls as the AD field becomes larger than the messenger scale. It is shown that E/Q for the Q-balls can be greater than the nucleon mass but less than the MSSM-LSP mass, leading to Q-ball decay primarily to Standard Model fermions. More significantly, if E/Q is greater than the MSSM-LSP mass, decaying Q-balls can provide a natural source of non-thermal MSSM-LSPs, which can subsequently decay to gravitino dark matter without violating nucleosynthesis constraints. The model therefore provides a minimal scenario for baryogenesis and gravitino dark matter in the gauge-mediated MSSM, requiring no new fields