WorldWideScience

Sample records for bakers yeast saccharomyces

  1. Accumulation of gold using Baker's yeast, Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Authors have reported preconcentration of 152Eu, a long-lived fission product, by yeast cells, Saccharomyces cerevisiae. Gold being a precious metal is used in electroplating, hydrogenation catalyst, etc. Heterogeneous composition of samples and low concentration offers renewed interest in its selective extraction of gold using various extractants. Gold can be recovered from different solutions using various chemical reagents like amines, organophosphorus compounds, and extractants containing sulphur as donor atom, etc. In the present work, two different strains of baker's yeast, Saccharomyces cerevisiae have been used to study the preconcentration of gold at various experimental conditions

  2. Effects of mill stream flours technological quality on fermentative activity of baker's yeast Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Mirić Katarina V.

    2008-01-01

    Full Text Available This work in concerned with the interdependence between technological quality of mill stream flours and fermentative activity of baker's yeast Saccharomyces cerevisiae. Each mill stream flour has its own specific properties, determined by the particle size, technological phase of its formation and part of the wheat kernel it consists of. Biochemical complexity of dough during examination of fermentative activity of baker's yeast confirmed the influence of a number of physical and biochemical flour properties, such as ash content, wet gluten content, rheological flour properties, phytic acid content and amylograph peak viscosity. Abudance of significant flour characteristic, their interaction and different behavior in the presence of the yeast, showed diversity and variation of result within the same category of the mill stream flour.

  3. De Novo Biosynthesis of Vanillin in Fission Yeast (Schizosaccharomyces pombe) and Baker's Yeast (Saccharomyces cerevisiae) ▿

    OpenAIRE

    Hansen, Esben H.; Møller, Birger Lindberg; Kock, Gertrud R.; Bünner, Camilla M.; Kristensen, Charlotte; Jensen, Ole R.; Okkels, Finn T.; Olsen, Carl E.; Motawia, Mohammed S.; Hansen, Jørgen

    2009-01-01

    Vanillin is one of the world's most important flavor compounds, with a global market of 180 million dollars. Natural vanillin is derived from the cured seed pods of the vanilla orchid (Vanilla planifolia), but most of the world's vanillin is synthesized from petrochemicals or wood pulp lignins. We have established a true de novo biosynthetic pathway for vanillin production from glucose in Schizosaccharomyces pombe, also known as fission yeast or African beer yeast, as well as in baker's yeast...

  4. Saccharomyces cerevisiae, the Baker's Yeast, suppresses the growth of Ehrlich carcinoma-bearing mice.

    Science.gov (United States)

    Ghoneum, Mamdooh; Badr El-Din, Nariman K; Noaman, Eman; Tolentino, Lucilene

    2008-04-01

    This study was undertaken to evaluate the effectiveness and mechanisms of anti-tumor activity of Baker's yeast, Saccharomyces cerevisiae, in immunocompetent mice. Swiss albino mice were inoculated intramuscularly in the right thigh with Ehrlich Ascites Carcinoma (EAC) cells. At day 8, mice bearing Solid Ehrlich Carcinoma tumor (SEC) were intratumorally (IT) injected with killed S. cerevisiae (10 x 10(6) and 20 x 10(6) cells) for 35 days. Histopathology of yeast-treated mice showed extensive tumor degeneration, apoptosis, and ischemic (coagulative) and liquefactive necrosis. These changes are associated with a tumor growth curve that demonstrates a significant antitumor response that peaked at 35 days. Yeast treatment (20 x 10(6) cells) three times a week resulted in a significant decrease in tumor volume (TV) (67.1%, P Yeast administered three and two times per week induced significant decrease in TV as early as 9 and 25 days post-treatment, respectively. Administration of yeast significantly enhanced the recruitment of leukocytes, including macrophages, into the tumors and triggered apoptosis in SEC cells as determined by flow cytometry (78.6%, P yeast treatment elevated TNF-alpha and IFN-gamma plasma levels and lowered the elevated IL-10 levels. No adverse side effects from the yeast treatment were observed, including feeding/drinking cycle and life activity patterns. Indeed, yeast-treated mice showed significant final body weight gain (+21.5%, P yeast, which is known to be safe for human consumption. PMID:17891396

  5. An improved, bias-reduced probabilistic functional gene network of baker's yeast, Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Insuk Lee

    Full Text Available BACKGROUND: Probabilistic functional gene networks are powerful theoretical frameworks for integrating heterogeneous functional genomics and proteomics data into objective models of cellular systems. Such networks provide syntheses of millions of discrete experimental observations, spanning DNA microarray experiments, physical protein interactions, genetic interactions, and comparative genomics; the resulting networks can then be easily applied to generate testable hypotheses regarding specific gene functions and associations. METHODOLOGY/PRINCIPAL FINDINGS: We report a significantly improved version (v. 2 of a probabilistic functional gene network of the baker's yeast, Saccharomyces cerevisiae. We describe our optimization methods and illustrate their effects in three major areas: the reduction of functional bias in network training reference sets, the application of a probabilistic model for calculating confidences in pair-wise protein physical or genetic interactions, and the introduction of simple thresholds that eliminate many false positive mRNA co-expression relationships. Using the network, we predict and experimentally verify the function of the yeast RNA binding protein Puf6 in 60S ribosomal subunit biogenesis. CONCLUSIONS/SIGNIFICANCE: YeastNet v. 2, constructed using these optimizations together with additional data, shows significant reduction in bias and improvements in precision and recall, in total covering 102,803 linkages among 5,483 yeast proteins (95% of the validated proteome. YeastNet is available from http://www.yeastnet.org.

  6. Stress tolerance in doughs of Saccharomyces cerevisiae trehalase mutants derived from commercial Baker's yeast.

    Science.gov (United States)

    Shima, J; Hino, A; Yamada-Iyo, C; Suzuki, Y; Nakajima, R; Watanabe, H; Mori, K; Takano, H

    1999-07-01

    Accumulation of trehalose is widely believed to be a critical determinant in improving the stress tolerance of the yeast Saccharomyces cerevisiae, which is commonly used in commercial bread dough. To retain the accumulation of trehalose in yeast cells, we constructed, for the first time, diploid homozygous neutral trehalase mutants (Deltanth1), acid trehalase mutants (Deltaath1), and double mutants (Deltanth1 ath1) by using commercial baker's yeast strains as the parent strains and the gene disruption method. During fermentation in a liquid fermentation medium, degradation of intracellular trehalose was inhibited with all of the trehalase mutants. The gassing power of frozen doughs made with these mutants was greater than the gassing power of doughs made with the parent strains. The Deltanth1 and Deltaath1 strains also exhibited higher levels of tolerance of dry conditions than the parent strains exhibited; however, the Deltanth1 ath1 strain exhibited lower tolerance of dry conditions than the parent strain exhibited. The improved freeze tolerance exhibited by all of the trehalase mutants may make these strains useful in frozen dough. PMID:10388673

  7. Growth characteristics of freeze-tolerant baker's yeast Saccharomyces cerevisiae AFY in aerobic batch culture.

    Science.gov (United States)

    Ji, Meng; Miao, Yelian; Chen, Jie Yu; You, Yebing; Liu, Feilong; Xu, Lin

    2016-01-01

    Saccharomyces cerevisiae AFY is a novel baker's yeast strain with strong freeze-tolerance, and can be used for frozen-dough processing. The present study armed to clarify the growth characteristics of the yeast AFY. Aerobic batch culture experiments of yeast AFY were carried out using media with various initial glucose concentrations, and the culture process was analyzed kinetically. The growth of the yeast AFY exhibited a diauxic pattern with the first growth stage consuming glucose and the second growth stage consuming ethanol. The cell yield decreased with increasing initial glucose concentration in the first growth stage, and also decreased with increasing initial ethanol concentration in the second growth stage. In the initial glucose concentration range of 5.0-40.0 g/L, the simultaneous equations of Monod equation, Luedeking-Piret equation and pseudo-Luedeking-Piret equation could be used to describe the concentrations of cell, ethanol and glucose in either of the two exponential growth phases. At the initial glucose concentrations of 5.0, 10.0 and 40.0 g/L, the first exponential growth phase had a maximal specific cell growth rate of 0.52, 0.98 and 0.99 h(-1), while the second exponential growth phase had a maximal specific cell growth rate of 0.11, 0.06 and 0.07 h(-1), respectively. It was indicated that the efficiency of the yeast production could be improved by reducing the ethanol production in the first growth stage. PMID:27186467

  8. The three zinc-containing alcohol dehydrogenases from baker's yeast, Saccharomyces cerevisiae.

    Science.gov (United States)

    Leskovac, Vladimir; Trivić, Svetlana; Pericin, Draginja

    2002-12-01

    This review is a summary of our current knowledge of the structure, function and mechanism of action of the three zinc-containing alcohol dehydrogenases, YADH-1, YADH-2 and YADH-3, in baker's yeast, Saccharomyces cerevisiae. The opening section deals with the substrate specificity of the enzymes, covering the steady-state kinetic data for its most known substrates. In the following sections, the kinetic mechanism for this enzyme is reported, along with the values of all rate constants in the mechanism. The complete primary structures of the three isoenzymes of YADH are given, and the model of the 3D structure of the active site is presented. All known artificial mutations in the primary structure of the YADH are covered in full and described in detail. Further, the chemical mechanism of action for YADH is presented along with the complement of steady-state and ligand-binding data supporting this mechanism. Finally, the bio-organic chemistry of the hydride-transfer reactions catalyzed by the enzyme is covered: this chemistry explains the narrow substrate specificity and the enantioselectivity of the yeast enzyme.

  9. Uranium uptake by baker's yeast (Saccharomyces cerevisiae) - development of a biological ion exchanger

    International Nuclear Information System (INIS)

    The use of micro-organisms for decontamination of, and heavy metal recovery from industrial waste water is a modern, low-cost, and environmentally friendly alternative to the conventional chemical and physical methods. The uptake of uranium by baker's yeast is investigated under the aspect of application in biotechnology. A novel, regenerable biological ion exchanger was produced by immobilisation of the yeast in agar gel. (orig.)

  10. 21 CFR 184.1983 - Bakers yeast extract.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Bakers yeast extract. 184.1983 Section 184.1983... Listing of Specific Substances Affirmed as GRAS § 184.1983 Bakers yeast extract. (a) Bakers yeast extract... a selected strain of yeast, Saccharomyces cerevisiae. It may be concentrated or dried. (b)...

  11. Acetate but not propionate induces oxidative stress in bakers' yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Semchyshyn, Halyna M; Abrat, Oleksandra B; Miedzobrodzki, Jacek; Inoue, Yoshiharu; Lushchak, Volodymyr I

    2011-01-01

    The influence of acetic and propionic acids on baker's yeast was investigated in order to expand our understanding of the effect of weak organic acid food preservatives on eukaryotic cells. Both acids decreased yeast survival in a concentration-dependent manner, but with different efficiencies. The acids inhibited the fluorescein efflux from yeast cells. The inhibition constant of fluorescein extrusion from cells treated with acetate was significantly lower in parental strain than in either PDR12 (ABC-transporter Pdr12p) or WAR1 (transcriptional factor of Pdr12p) defective mutants. The constants of inhibition by propionate were virtually the same in all strains used. Yeast exposure to acetate increased the level of oxidized proteins and the activity of antioxidant enzymes, while propionate did not change these parameters. This suggests that various mechanisms underlie the yeast toxicity by acetic and propionic acids. Our studies with mutant cells clearly indicated the involvement of Yap1p transcriptional regulator and de novo protein synthesis in superoxide dismutase up-regulation by acetate. The up-regulation of catalase was Yap1p independent. Yeast pre-incubation with low concentrations of H₂O₂ caused cellular cross-protection against high concentrations of acetate. The results are discussed from the point of view that acetate induces a prooxidant effect in vivo, whereas propionate does not. PMID:21605494

  12. Physical, functional and structural characterization of the cell wall fractions from baker's yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Borchani, Chema; Fonteyn, Fabienne; Jamin, Guilhem; Paquot, Michel; Thonart, Philippe; Blecker, Christophe

    2016-03-01

    The yeast cell wall of Saccharomyces cerevisiae is an important source of β-d-glucan, a glucose homopolymer with many functional, nutritional and human health benefits. In the present study, the yeast cell wall fractionation process involving enzymatic treatments (savinase and lipolase enzymes) affected most of the physical and functional characteristics of extracted fractions. Thus, the fractionation process showed that β-d-glucan fraction F4 had significantly higher swelling power and fat binding capacity compared to other fractions (F1, F2 and F3). It also exhibited a viscosity of 652.12mPas and a high degree of brightness of extracted β-d-glucan fraction. Moreover, the fractionation process seemed to have an effect on structural and thermal properties of extracted fractions. Overall, results showed that yeast β-d-glucan had good potential for use as a prebiotic ingredient in food, as well as medicinal and pharmaceutical products.

  13. Physical, functional and structural characterization of the cell wall fractions from baker's yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Borchani, Chema; Fonteyn, Fabienne; Jamin, Guilhem; Paquot, Michel; Thonart, Philippe; Blecker, Christophe

    2016-03-01

    The yeast cell wall of Saccharomyces cerevisiae is an important source of β-d-glucan, a glucose homopolymer with many functional, nutritional and human health benefits. In the present study, the yeast cell wall fractionation process involving enzymatic treatments (savinase and lipolase enzymes) affected most of the physical and functional characteristics of extracted fractions. Thus, the fractionation process showed that β-d-glucan fraction F4 had significantly higher swelling power and fat binding capacity compared to other fractions (F1, F2 and F3). It also exhibited a viscosity of 652.12mPas and a high degree of brightness of extracted β-d-glucan fraction. Moreover, the fractionation process seemed to have an effect on structural and thermal properties of extracted fractions. Overall, results showed that yeast β-d-glucan had good potential for use as a prebiotic ingredient in food, as well as medicinal and pharmaceutical products. PMID:26471666

  14. Beta-glucan-depleted, glycopeptide-rich extracts from Brewer's and Baker's yeast (Saccharomyces cerevisiae) lower interferon-gamma production by stimulated human blood cells in vitro.

    Science.gov (United States)

    Williams, Roderick; Dias, Daniel A; Jayasinghe, Nirupama; Roessner, Ute; Bennett, Louise E

    2016-04-15

    Regulation of the human immune system requires controlled pro- and anti-inflammatory responses for host defence against infection and disease states. Yeasts (Saccharomyces cerevisiae), as used in brewing and baking, are mostly known for ability to stimulate the human immune-system predominantly reflecting the pro-inflammatory cell wall β-glucans. However, in this study, using food-compatible processing methods, glycopeptide-enriched and β-glucan-depleted products were each prepared from Brewer's and Baker's yeasts, which suppressed production of interferon-γ (IFN-γ) in human whole blood cell assay, signifying that anti-inflammatory factors are also present in yeast. Anti-inflammatory bioactivities of products prepared from Brewer's and Baker's yeast were compared with the commercial yeast product, Epicor®. While unfractionated Epicor was inactive, the C18 resin-binding fractions of Brewer's and Baker's yeast products and Epicor dose-dependently lowered IFN-γ, demonstrating that Epicor also contained both pro-inflammatory (β-glucans) and anti-inflammatory components. Anti-inflammatory activity was attributed to C18 resin-binding species glyco-peptides in Epicor and experimental yeast products. This study demonstrated that pro- and anti-inflammatory factors could be resolved and enriched in yeasts by suitable processing, with potential to improve specific activities.

  15. O emprego de fermento de pão, Saccharomyces cerevisiae, na síntese de feromônios Baker's yeast, Saccharomyces cerevisiae, as a tool for the synthesis of pheromones

    Directory of Open Access Journals (Sweden)

    Patrícia T. Baraldi

    2004-06-01

    Full Text Available The use of pheromones in integrated pest management has been increasing in the last years due to environmental concern. This development is accompanied by the search for simple, efficient and less aggressive synthetic methodologies for the preparation of pheromones. One of these methodologies includes microbiological reactions, more specifically biocatalytic reduction of carbonyl compounds using baker's yeast (Saccharomyces cerevisiae. This review presents the use of baker's yeast as an easy and cheap alternative to obtain enantiomerically enriched compounds employed in the synthesis of pheromones.

  16. Ethanol yield and volatile compound content in fermentation of agave must by Kluyveromyces marxianus UMPe-1 comparing with Saccharomyces cerevisiae baker's yeast used in tequila production.

    Science.gov (United States)

    López-Alvarez, Arnoldo; Díaz-Pérez, Alma Laura; Sosa-Aguirre, Carlos; Macías-Rodríguez, Lourdes; Campos-García, Jesús

    2012-05-01

    In tequila production, fermentation is an important step. Fermentation determines the ethanol productivity and organoleptic properties of the beverage. In this study, a yeast isolated from native residual agave must was identified as Kluyveromyces marxianus UMPe-1 by 26S rRNA sequencing. This yeast was compared with the baker's yeast Saccharomyces cerevisiae Pan1. Our findings demonstrate that the UMPe-1 yeast was able to support the sugar content of agave must and glucose up to 22% (w/v) and tolerated 10% (v/v) ethanol concentration in the medium with 50% cells survival. Pilot and industrial fermentation of agave must tests showed that the K. marxianus UMPe-1 yeast produced ethanol with yields of 94% and 96% with respect to fermentable sugar content (glucose and fructose, constituting 98%). The S. cerevisiae Pan1 baker's yeast, however, which is commonly used in some tequila factories, showed 76% and 70% yield. At the industrial level, UMPe-1 yeast shows a maximum velocity of fermentable sugar consumption of 2.27g·L(-1)·h(-1) and ethanol production of 1.38g·L(-1)·h(-1), providing 58.78g ethanol·L(-1) at 72h fermentation, which corresponds to 96% yield. In addition, the major and minor volatile compounds in the tequila beverage obtained from UMPe-1 yeast were increased. Importantly, 29 volatile compounds were identified, while the beverage obtained from Pan1-yeast contained fewer compounds and in lower concentrations. The results suggest that the K. marxianus UMPe-1 is a suitable yeast for agave must fermentation, showing high ethanol productivity and increased volatile compound content comparing with a S. cerevisiae baker's yeast used in tequila production.

  17. Disruption of the CAR1 gene encoding arginase enhances freeze tolerance of the commercial baker's yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Shima, Jun; Sakata-Tsuda, Yuko; Suzuki, Yasuo; Nakajima, Ryouichi; Watanabe, Hajime; Kawamoto, Shinichi; Takano, Hiroyuki

    2003-01-01

    The effect of intracellular charged amino acids on freeze tolerance in dough was determined by constructing homozygous diploid arginase-deficient mutants of commercial baker's yeast. An arginase mutant accumulated higher levels of arginine and/or glutamate and showed increased leavening ability during the frozen-dough baking process, suggesting that disruption of the CAR1 gene enhances freeze tolerance. PMID:12514069

  18. Utilization of baker's yeast (Saccharomyces cerevisiae for the production of yeast extract: effects of different enzymatic treatments on solid, protein and carbohydrate recovery

    Directory of Open Access Journals (Sweden)

    TATJANA VUKASINOVIC MILIC

    2007-05-01

    Full Text Available Yeast extract (YE was produced from commercial pressed baker's yeast (active and inactivated using two enzymes: papain and lyticase. The effects of enzyme concentration and hydrolysis time on the recovery of solid, protein and carbohydrate were investigated. Autolysis, as a basic method for cell lysis was also used and the results compared. The optimal extraction conditions were investigated. The optimal concentrations of papain and lyticase were found to be 2.5 % and 0.025 %, respectively.

  19. Utilization of baker's yeast (Saccharomyces cerevisiae) for the production of yeast extract: effects of different enzymatic treatments on solid, protein and carbohydrate recovery

    OpenAIRE

    TATJANA VUKASINOVIC MILIC; MARICA RAKIN; SLAVICA SILER-MARINKOVIC

    2007-01-01

    Yeast extract (YE) was produced from commercial pressed baker's yeast (active and inactivated) using two enzymes: papain and lyticase. The effects of enzyme concentration and hydrolysis time on the recovery of solid, protein and carbohydrate were investigated. Autolysis, as a basic method for cell lysis was also used and the results compared. The optimal extraction conditions were investigated. The optimal concentrations of papain and lyticase were found to be 2.5 % and 0.025 %, respectively.

  20. Thiamine increases the resistance of baker's yeast Saccharomyces cerevisiae against oxidative, osmotic and thermal stress, through mechanisms partly independent of thiamine diphosphate-bound enzymes.

    Science.gov (United States)

    Wolak, Natalia; Kowalska, Ewa; Kozik, Andrzej; Rapala-Kozik, Maria

    2014-12-01

    Numerous recent studies have established a hypothesis that thiamine (vitamin B1 ) is involved in the responses of different organisms against stress, also suggesting that underlying mechanisms are not limited to the universal role of thiamine diphosphate (TDP) in the central cellular metabolism. The current work aimed at characterising the effect of exogenously added thiamine on the response of baker's yeast Saccharomyces cerevisiae to the oxidative (1 mM H2 O2 ), osmotic (1 M sorbitol) and thermal (42 °C) stress. As compared to the yeast culture in thiamine-free medium, in the presence of 1.4 μM external thiamine, (1) the relative mRNA levels of major TDP-dependent enzymes under stress conditions vs. unstressed control (the 'stress/control ratio') were moderately lower, (2) the stress/control ratio was strongly decreased for the transcript levels of several stress markers localised to the cytoplasm, peroxisomes, the cell wall and (with the strongest effect observed) the mitochondria (e.g. Mn-superoxide dismutase), (3) the production of reactive oxygen and nitrogen species under stress conditions was markedly decreased, with the significant alleviation of concomitant protein oxidation. The results obtained suggest the involvement of thiamine in the maintenance of redox balance in yeast cells under oxidative stress conditions, partly independent of the functions of TDP-dependent enzymes.

  1. Projeto e construção de um bioreator para síntese orgânica assimétrica catalisada por saccharomyces cerevisiae (fermento biológico de padaria Project and construction of a bioreactor for reactions catalyzed by baker's yeast (saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Ricardo de Souza Pereira

    1997-10-01

    Full Text Available A model for the construction of a simple and cheap apparatus to be used as bioreactor for reactions catalyzed by baker's yeast (Saccharomyces cerevisiae is described. The bioconversion and separation of cells from products and residual substrates are obtained at the same time. The reactions carried out in this type of reactor are faster than those catalyzed by immobilized cells. Yeast cells can be cultivated in this bioreactor operating with cell recycling at appropriated conditions using glucose and other nutrients.

  2. 21 CFR 172.325 - Bakers yeast protein.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Bakers yeast protein. 172.325 Section 172.325 Food... Special Dietary and Nutritional Additives § 172.325 Bakers yeast protein. Bakers yeast protein may be safely used in food in accordance with the following conditions: (a) Bakers yeast protein is...

  3. Biosorption of Copper Ions by Caustic Treated Waste Baker's Yeast Biomass

    OpenAIRE

    Göksungur, Yekta; ÜREN, Sibel; Güvenç, Ulgar

    2003-01-01

    Waste baker's yeast (Saccharomyces cerevisiae) was used as a biosorbent for Cu+2 biosorption. The yeast cells were treated with caustic soda, ethanol and heat to increase their biosorption capacity. Among the treatment methods used, the highest copper uptake (21.1 mg g-1) was obtained with the caustic treatment of baker's yeast. The effect of initial copper concentration and pH on biosorption for caustic treated yeast was studied. The highest Cu+2 uptake (120.7 mg g-1) was obtained ...

  4. Baker's yeast: production of D- and L-3-hydroxy esters

    DEFF Research Database (Denmark)

    Dahl, Allan Carsten; Madsen, Jørgen Øgaard

    1998-01-01

    Baker's yeast grown under oxygen limited conditions and used in the reduction of 3-oxo esters results in a shift of the stereoselectivity of the yeast towards D-hydroxy esters as compared with ordinary baker's yeast. The highest degree of stereoselectivity was obtained with growing yeast or yeast...... harvested while growing. In contrast, the stereoselectivity was shifted towards L-hydroxy esters when the oxo esters were added slowly to ordinary baker's yeast supplied with gluconolactone as co-substrate. The reduction rate with gluconolactone was increased by active aeration. Ethyl L-(S)-3......-hydroxybutanoate was afforded in >99% ee. Both enantiomers of ethyl 3-hydroxypentanoate, D-(R) in 96% ee and L-(S) in 93% ee, and of ethyl 4-chloro-3-hydroxybutanoate, D-(S) in 98% ee and L-(R) in 94% ee, were obtained. The results demonstrate that the stereoselectivity of baker's yeast can be controlled...

  5. Lipid content and cryotolerance of bakers' yeast in frozen doughs.

    Science.gov (United States)

    Gélinas, P; Fiset, G; Willemot, C; Goulet, J

    1991-02-01

    The relationship between lipid content and tolerance to freezing at -50 degrees C was studied in Saccharomyces cerevisiae grown under batch or fed-batch mode and various aeration and temperature conditions. A higher free-sterol-to-phospholipid ratio as well as higher free sterol and phospholipid contents correlated with the superior cryoresistance in dough or in water of the fed-batch-grown compared with the batch-grown cells. For both growth modes, the presence of excess dissolved oxygen in the culture medium greatly improved yeast cryoresistance and trehalose content (P. Gélinas, G. Fiset, A. LeDuy, and J. Goulet, Appl. Environ. Microbiol. 26:2453-2459, 1989) without significantly changing the lipid profile. Under the batch or fed-batch modes, no correlation was found between the cryotolerance of bakers' yeast and the total cellular lipid content, the total sterol content, the phospholipid unsaturation index, the phosphate or crude protein content, or the yeast cell morphology (volume and roundness). PMID:16348412

  6. Osmotolerance and leavening ability in sweet and frozen sweet dough. Comparative analysis between Torulaspora delbrueckii and Saccharomyces cerevisiae baker's yeast strains.

    Science.gov (United States)

    Hernandez-Lopez, M J; Prieto, J A; Randez-Gil, F

    2003-01-01

    The response of Saccharomyces cerevisiae and freeze-tolerant Torulaspora delbrueckii strains to osmotic stress and their CO2 production capacity in sweet and frozen-sweet dough has been examined. T. delbrueckii strains, IGC5321 and IGC5323 showed higher leavening ability than Saccharomyces, specially after exposure to hyperosmotic stress of bread dough containing 20% sucrose and 2% salt added. In addition, Torulaspora and especially T. delbrueckii IGC5321 exhibited no loss of CO2 production capacity during freeze-thaw stress. Overall, these results appeared to indicate that Torulaspora cells are more tolerant than Saccharomyces to osmotic stress of bread dough. This trait correlated with a low invertase activity, a slow rate of trehalose mobilisation and the ability to respond rapidly to osmotic stress. Growth behaviour on high osmotic synthetic media was also examined. Cells of the IGC5321 strain showed intrinsic osmotolerance and ion toxicity resistance. However, T. delbrueckii IGC5323 exhibited a clear phenotype of osmosensitivity. Hence, this characteristic may not be essential or the only determinant for leavening ability in salted high-sugar dough. PMID:14533716

  7. Natural and modified promoters for tailored metabolic engineering of the yeast Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Hubmann, Georg; Thevelein, Johan M; Nevoigt, Elke

    2014-01-01

    The ease of highly sophisticated genetic manipulations in the yeast Saccharomyces cerevisiae has initiated numerous initiatives towards development of metabolically engineered strains for novel applications beyond its traditional use in brewing, baking, and wine making. In fact, baker's yeast has be

  8. Analysis of the Effects of Hyperosmotic Stress on the Derepression of Invertase Activities and the Growth of Different Baker's Yeast Strains

    OpenAIRE

    Türkel, Sezai

    2002-01-01

    The growth of baker's yeast Saccharomyces cerevisiae in medium containing sucrose requires a high level of extracellular invertase enzyme activity. However, the expression of invertase is under the strict control of glucose repression in S. cerevisiae. In addition, invertase enzyme activity is also affected by physiological stress conditions that baker's yeast is exposed to during the various stages of industrial level production and downstream processing. We analyzed the effect of ...

  9. Effect of yeast storage temperature and flour composition on fermentative activities of baker's yeast

    Directory of Open Access Journals (Sweden)

    Pejin Dušanka J.

    2009-01-01

    Full Text Available Baker's yeast is a set of living cells of Saccharomyces cerevisiae. It contains around 70-72% of water, 42-45% of proteins, around 40% of carbohydrates, around 7.5% of lipids (based on dry matter, and vitamin B-complex. On the basis of yeast cell analysis it can be concluded that yeast is a complex biological system which changes in time. The intensity of the changes depends on temperature. Yeast sample was stored at 4°C i 24°C for 12 days. During storage at 4°C, the content of total carbohydrates decreased from 48.81% to 37.50% (dry matter, whereas carbohydrate loss ranged from 40.81% to 29.28% at 24°C. The content of trehalose was 12.33% in the yeast sample stored at 4°C and 0.24% at 24°C. Loss of fermentative activity was 81.76% in the sample stored at 24°C for 12 days. The composition of five samples of 1st category flour was investigated. It was found that flours containing more reducing sugars and maltose enable higher fermentation activities. The flours with higher ash content (in the range 0.5-0.94% had higher contents of phytic acid. Higher ash and phytic contents in flour increased the yeast fermentative efficiency. In bakery industry, a range of ingredients has been applied to improve the product's quality such as surface active substances (emulsifiers, enzymes, sugars and fats. In the paper, the effect of some ingredients added to dough (margarine, saccharose, sodium chloride and malted barley on the yeast fermentative activity was studied. The mentioned ingredients were added to dough at different doses: 0.5, 1.0, 1.5 and 2.0%, flour basis. It was found that the investigated ingredients affected the fermentative activity of yeast and improved the bread quality.

  10. Construction from a single parent of baker's yeast strains with high freeze tolerance and fermentative activity in both lean and sweet doughs.

    Science.gov (United States)

    Nakagawa, S; Ouchi, K

    1994-10-01

    From a freeze-tolerant baker's yeast (Saccharomyces cerevisiae), 2,333 spore clones were obtained. To improve the leavening ability in lean dough of the parent strain, we selected 555 of the high-maltose-fermentative spore clones by using a method in which a soft agar solution containing maltose and bromocresol purple was overlaid on yeast colonies. By measuring the gassing power in the dough, we selected 66 spore clones with a good leavening ability in lean dough and a total of 694 hybrids were constructed by crossing them. Among these hybrids, we obtained 50 novel freeze-tolerant strains with good leavening ability in all lean, regular, and sweet doughs comparable to that of commercial baker's yeast. Hybrids with improved leavening ability or freeze tolerance compared with the parent yeast and commercial baker's yeasts were also obtained. These results suggest that hybridization between spore clones derived from a single parent strain is effective for improving the properties of baker's yeasts.

  11. Baker's Yeast Mediated Reduction of Optically Active Diketone

    Institute of Scientific and Technical Information of China (English)

    ZHENG, Guo-Jun(郑国君); GAO, Xiao-Lei(高晓蕾); CHEN, Jin-Chun(陈锦春); LI, Yu-Lin(李裕林)

    2004-01-01

    Baker's yeast mediated reduction of optically active diketone is described. The two keto groups are efficiently differentiated and the ee value of the recovered material is considerably raised. It affords highly optically active key intermediates efficiently for the synthesis of natural polyhydroxylated agarofuran products.

  12. Isolation of a tyrosine-activating enzyme from baker's yeast

    NARCIS (Netherlands)

    Ven, A.M. van de; Koningsberger, V.V.; Overbeek, J.Th.G.

    1958-01-01

    The extracts of ether-CO2-frozen baker's yeast contain enzymes that catalyze the ATP-linked amino acid activation by way of pyrophosphate elimination. From the extract a tyrosine-activating enzyme could be isolated, which, judging from ultracentrifugation and electrophoretic data, was about 70% pure

  13. Construction of a lactose-assimilating strain of baker's yeast.

    Science.gov (United States)

    Adam, A C; Prieto, J A; Rubio-Texeira, M; Polaina, J

    1999-09-30

    A recombinant strain of baker's yeast has been constructed which can assimilate lactose efficiently. This strain has been designed to allow its propagation in whey, the byproduct resulting from cheese-making. The ability to metabolize lactose is conferred by the functional expression of two genes from Kluyveromyces lactis, LAC12 and LAC4, which encode a lactose permease and a beta-galactosidase, respectively. To make the recombinant strain more acceptable for its use in bread-making, the genetic transformation of the host baker's yeast was carried out with linear fragments of DNA of defined sequence, carrying as the only heterologous material the coding regions of the two K. lactis genes. Growth of the new strain on cheese whey affected neither the quality of bread nor the yeast gassing power. The significance of the newly developed strain is two-fold: it affords a cheap alternative to the procedure generally used for the propagation of baker's yeast, and it offers a profitable use for cheese whey.

  14. Genetic engineering of baker's and wine yeasts using formaldehyde hyperresistance-mediating plasmids

    Directory of Open Access Journals (Sweden)

    M. Schmidt

    1997-12-01

    Full Text Available Yeast multi-copy vectors carrying the formaldehyde-resistance marker gene SFA have proved to be a valuable tool for research on industrially used strains of Saccharomyces cerevisiae. The genetics of these strains is often poorly understood, and for various reasons it is not possible to simply subject these strains to protocols of genetic engineering that have been established for laboratory strains of S. cerevisiae. We tested our vectors and protocols using 10 randomly picked baker's and wine yeasts all of which could be transformed by a simple protocol with vectors conferring hyperresistance to formaldehyde. The application of formaldehyde as a selecting agent also offers the advantage of its biodegradation to CO2 during fermentation, i.e., the selecting agent will be consumed and therefore its removal during down-stream processing is not necessary. Thus, this vector provides an expression system which is simple to apply and inexpensive to use

  15. Baker's Yeast: improving the D-stereoselectivity in reduction of 3-oxo esters

    DEFF Research Database (Denmark)

    Madsen, Jørgen Øgaard

    1999-01-01

    The stereoselectivity of baker's yeast in the reduction of ethyl 3-oxopentanoate was shifted towards the corresponding (R)-hydroxy ester by sugar, heat treatment and allyl alcohol. The highest enantiomeric excesses obtained with baker's yeast with a good reduction capacity, 92-97%, were achieved...... of the (R)-enantiomer of ethyl 3-hydroxybutanoate was obtained with ordinary baker's yeast. (C) 1999 Elsevier Science Ltd. All rights reserved....

  16. 'Yeast mail': a novel Saccharomyces application (NSA) to encrypt messages.

    Science.gov (United States)

    Rosemeyer, Helmut; Paululat, Achim; Heinisch, Jürgen J

    2014-09-01

    The universal genetic code is used by all life forms to encode biological information. It can also be used to encrypt semantic messages and convey them within organisms without anyone but the sender and recipient knowing, i.e., as a means of steganography. Several theoretical, but comparatively few experimental, approaches have been dedicated to this subject, so far. Here, we describe an experimental system to stably integrate encrypted messages within the yeast genome using a polymerase chain reaction (PCR)-based, one-step homologous recombination system. Thus, DNA sequences encoding alphabetical and/or numerical information will be inherited by yeast propagation and can be sent in the form of dried yeast. Moreover, due to the availability of triple shuttle vectors, Saccharomyces cerevisiae can also be used as an intermediate construction device for transfer of information to either Drosophila or mammalian cells as steganographic containers. Besides its classical use in alcoholic fermentation and its modern use for heterologous gene expression, we here show that baker's yeast can thus be employed in a novel Saccharomyces application (NSA) as a simple steganographic container to hide and convey messages.

  17. Removal of heavy metal from industrial effluents using Baker's yeast

    Science.gov (United States)

    Ferdous, Anika; Maisha, Nuzhat; Sultana, Nayer; Ahmed, Shoeb

    2016-07-01

    Bioremediation of wastewater containing heavy metals is one of the major challenges in environmental biotechnology. Heavy metals are not degraded and as a result they remain in the ecosystem, and pose serious health hazards as it comes in contact with human due to anthropogenic activities. Biological treatment with various microorganisms has been practiced widely in recent past, however, accessing and maintaining the microorganisms have always been a challenge. Microorganisms like Baker's yeast can be very promising biosorbents as they offer high surface to volume ratio, large availability, rapid kinetics of adsorption and desorption and low cost. The main aim of this study is to evaluate the applicability of the biosorption process using baker's yeast. Here we present an experimental investigation of biosorption of Chromium (Cr) from water using commercial Baker's Yeast. It was envisaged that yeast, dead or alive, would adsorb heavy metals, however, operating parameters could play vital roles in determining the removal efficiency. Parameters, such as incubation time, pH, amount of biosorbent and heavy metal concentration were varied to investigate the impacts of those parameters on removal efficiency. Rate of removal was found to be inversely proportional to the initial Cr (+6) concentrations but the removal rate per unit biomass was a weakly dependent on initial Cr(+6) concentrations. Biosorption process was found to be more efficient at lower pH and it exhibited lower removal with the increase in solution pH. The optimum incubation time was found to be between 6-8 hours and optimum pH for the metal ion solution was 2. The effluents produced in leather industries are the major source of chromium pollution in Bangladesh and this study has presented a very cost effective yet efficient heavy metal removal approach that can be adopted for such kind of wastewater.

  18. Improvement of fermentation ability under baking-associated stress conditions by altering the POG1 gene expression in baker's yeast.

    Science.gov (United States)

    Sasano, Yu; Haitani, Yutaka; Hashida, Keisuke; Oshiro, Satoshi; Shima, Jun; Takagi, Hiroshi

    2013-08-01

    During the bread-making process, yeast cells are exposed to many types of baking-associated stress. There is thus a demand within the baking industry for yeast strains with high fermentation abilities under these stress conditions. The POG1 gene, encoding a putative transcription factor involved in cell cycle regulation, is a multicopy suppressor of the yeast Saccharomyces cerevisiae E3 ubiquitin ligase Rsp5 mutant. The pog1 mutant is sensitive to various stresses. Our results suggested that the POG1 gene is involved in stress tolerance in yeast cells. In this study, we showed that overexpression of the POG1 gene in baker's yeast conferred increased fermentation ability in high-sucrose-containing dough, which is used for sweet dough baking. Furthermore, deletion of the POG1 gene drastically increased the fermentation ability in bread dough after freeze-thaw stress, which would be a useful characteristic for frozen dough baking. Thus, the engineering of yeast strains to control the POG1 gene expression level would be a novel method for molecular breeding of baker's yeast. PMID:23800735

  19. Improved vanillin production in baker's yeast through in silico design

    DEFF Research Database (Denmark)

    Brochado, Ana Rita; Matos, Cláudia; Møller, Birger L.;

    2010-01-01

    Background: Vanillin is one of the most widely used flavouring agents, originally obtained from cured seed pods of the vanilla orchid Vanilla planifolia. Currently vanillin is mostly produced via chemical synthesis. A de novo synthetic pathway for heterologous vanillin production from glucose has...... recently been implemented in baker's yeast, Saccharamyces cerevisiae. In this study we aimed at engineering this vanillin cell factory towards improved productivity and thereby at developing an attractive alternative to chemical synthesis. Results: Expression of a glycosyltransferase from Arabidopsis...... thaliana in the vanillin producing S. cerevisiae strain served to decrease product toxicity. An in silico metabolic engineering strategy of this vanillin glucoside producing strain was designed using a set of stoichiometric modelling tools applied to the yeast genome-scale metabolic network. Two targets...

  20. Generation of thiols by biotransformation of cysteine-aldehyde conjugates with baker's yeast.

    Science.gov (United States)

    Huynh-Ba, Tuong; Matthey-Doret, Walter; Fay, Laurent B; Bel Rhlid, Rachid

    2003-06-01

    Baker's yeast was shown to catalyze the transformation of cysteine-furfural conjugate into 2-furfurylthiol. The biotransformation's yield and kinetics were influenced by the reaction parameters such as pH, incubation mode (aerobic and anaerobic), and substrate concentration. 2-Furfurylthiol was obtained in an optimal 37% yield when cysteine-furfural conjugate at a 20 mM concentration was anaerobically incubated with whole cell baker's yeast at pH 8.0 and 30 degrees C. Similarly to 2-furfurylthiol, 5-methyl-2-furfurylthiol (11%), benzylthiol (8%), 2-thiophenemethanethiol (22%), 3-methyl-2-thiophenemethanethiol (3%), and 2-pyrrolemethanethiol (6%) were obtained from the corresponding cysteine-aldehyde conjugates by incubation with baker's yeast. This work indicates the versatile bioconversion capacity of baker's yeast for the generation of thiols from cysteine-aldehyde conjugates. Thanks to its food-grade character, baker's yeast provides a biochemical tool to produce thiols, which can be used as flavorings in foods and beverages.

  1. Stationary phase in the yeast Saccharomyces cerevisiae.

    OpenAIRE

    Werner-Washburne, M; Braun, E.; Johnston, G C; Singer, R A

    1993-01-01

    Growth and proliferation of microorganisms such as the yeast Saccharomyces cerevisiae are controlled in part by the availability of nutrients. When proliferating yeast cells exhaust available nutrients, they enter a stationary phase characterized by cell cycle arrest and specific physiological, biochemical, and morphological changes. These changes include thickening of the cell wall, accumulation of reserve carbohydrates, and acquisition of thermotolerance. Recent characterization of mutant c...

  2. Improved vanillin production in baker's yeast through in silico design

    Directory of Open Access Journals (Sweden)

    Hansen Jørgen

    2010-11-01

    Full Text Available Abstract Background Vanillin is one of the most widely used flavouring agents, originally obtained from cured seed pods of the vanilla orchid Vanilla planifolia. Currently vanillin is mostly produced via chemical synthesis. A de novo synthetic pathway for heterologous vanillin production from glucose has recently been implemented in baker's yeast, Saccharamyces cerevisiae. In this study we aimed at engineering this vanillin cell factory towards improved productivity and thereby at developing an attractive alternative to chemical synthesis. Results Expression of a glycosyltransferase from Arabidopsis thaliana in the vanillin producing S. cerevisiae strain served to decrease product toxicity. An in silico metabolic engineering strategy of this vanillin glucoside producing strain was designed using a set of stoichiometric modelling tools applied to the yeast genome-scale metabolic network. Two targets (PDC1 and GDH1 were selected for experimental verification resulting in four engineered strains. Three of the mutants showed up to 1.5 fold higher vanillin β-D-glucoside yield in batch mode, while continuous culture of the Δpdc1 mutant showed a 2-fold productivity improvement. This mutant presented a 5-fold improvement in free vanillin production compared to the previous work on de novo vanillin biosynthesis in baker's yeast. Conclusion Use of constraints corresponding to different physiological states was found to greatly influence the target predictions given minimization of metabolic adjustment (MOMA as biological objective function. In vivo verification of the targets, selected based on their predicted metabolic adjustment, successfully led to overproducing strains. Overall, we propose and demonstrate a framework for in silico design and target selection for improving microbial cell factories.

  3. Aquaporin expression correlates with freeze tolerance in baker's yeast, and overexpression improves freeze tolerance in industrial strains.

    Science.gov (United States)

    Tanghe, An; Van Dijck, Patrick; Dumortier, Françoise; Teunissen, Aloys; Hohmann, Stefan; Thevelein, Johan M

    2002-12-01

    Little information is available about the precise mechanisms and determinants of freeze resistance in baker's yeast, Saccharomyces cerevisiae. Genomewide gene expression analysis and Northern analysis of different freeze-resistant and freeze-sensitive strains have now revealed a correlation between freeze resistance and the aquaporin genes AQY1 and AQY2. Deletion of these genes in a laboratory strain rendered yeast cells more sensitive to freezing, while overexpression of the respective genes, as well as heterologous expression of the human aquaporin gene hAQP1, improved freeze tolerance. These findings support a role for plasma membrane water transport activity in determination of freeze tolerance in yeast. This appears to be the first clear physiological function identified for microbial aquaporins. We suggest that a rapid, osmotically driven efflux of water during the freezing process reduces intracellular ice crystal formation and resulting cell damage. Aquaporin overexpression also improved maintenance of the viability of industrial yeast strains, both in cell suspensions and in small doughs stored frozen or submitted to freeze-thaw cycles. Furthermore, an aquaporin overexpression transformant could be selected based on its improved freeze-thaw resistance without the need for a selectable marker gene. Since aquaporin overexpression does not seem to affect the growth and fermentation characteristics of yeast, these results open new perspectives for the successful development of freeze-resistant baker's yeast strains for use in frozen dough applications. PMID:12450819

  4. Simple improvement in freeze-tolerance of bakers' yeast with poly-gamma-glutamate.

    Science.gov (United States)

    Yokoigawa, Kumio; Sato, Machiko; Soda, Kenji

    2006-09-01

    We examined the effect of poly-gamma-glutamate (PGA) on the freeze-tolerance of four types of commercial bakers' yeast (freeze-tolerant, osmotic-tolerant, low-temperature-sensitive, and ordinary bakers' yeasts). The survival ratio of ordinary bakers' yeast cells frozen at -30 degrees C for 3 d in a medium (0.5% yeast extract, 0.5% peptone, and 2% glucose: YPD medium) was improved by adding more than 1% PGA to the medium; the survival ratio increased from about 10% to more than 70%. All PGA preparations, which differed in average molecular mass (50, 2,000, 4,000, 6,000, 8,000, and 10,000 kDa), showed a similar cryoprotecive effect on the cells. Similar results were also obtained with other types of bakers' yeast, sake yeast and beer yeast. When the four types of bakers' yeast cell were frozen at -30 degrees C for 3 d in dough supplemented with more than 1% PGA, the cells (after freezing and thawing) showed higher leavening ability than those frozen in dough without PGA, irrespective of the molecular mass of PGA. Thus, PGA appears to protect bakers' yeast from lethal freeze injury, leading to a high leavening ability after freezing and thawing. PGA did not decrease the original leavening ability of the bakers' yeast, and was not decomposed by the yeast cells. PGA suppressed the decrease in leavening ability during a prolonged fermentation time, probably because PGA adsorbed inhibitory metabolites accumulated in the dough. PGA could prove useful for improving the freeze-tolerance of bakers' yeast by its addition to dough. PMID:17046536

  5. Enhancement of the proline and nitric oxide synthetic pathway improves fermentation ability under multiple baking-associated stress conditions in industrial baker's yeast

    Directory of Open Access Journals (Sweden)

    Sasano Yu

    2012-04-01

    Full Text Available Abstract Background During the bread-making process, industrial baker's yeast, mostly Saccharomyces cerevisiae, is exposed to baking-associated stresses, such as air-drying and freeze-thaw stress. These baking-associated stresses exert severe injury to yeast cells, mainly due to the generation of reactive oxygen species (ROS, leading to cell death and reduced fermentation ability. Thus, there is a great need for a baker's yeast strain with higher tolerance to baking-associated stresses. Recently, we revealed a novel antioxidative mechanism in a laboratory yeast strain that is involved in stress-induced nitric oxide (NO synthesis from proline via proline oxidase Put1 and N-acetyltransferase Mpr1. We also found that expression of the proline-feedback inhibition-less sensitive mutant γ-glutamyl kinase (Pro1-I150T and the thermostable mutant Mpr1-F65L resulted in an enhanced fermentation ability of baker's yeast in bread dough after freeze-thaw stress and air-drying stress, respectively. However, baker's yeast strains with high fermentation ability under multiple baking-associated stresses have not yet been developed. Results We constructed a self-cloned diploid baker's yeast strain with enhanced proline and NO synthesis by expressing Pro1-I150T and Mpr1-F65L in the presence of functional Put1. The engineered strain increased the intracellular NO level in response to air-drying stress, and the strain was tolerant not only to oxidative stress but also to both air-drying and freeze-thaw stresses probably due to the reduced intracellular ROS level. We also showed that the resultant strain retained higher leavening activity in bread dough after air-drying and freeze-thaw stress than that of the wild-type strain. On the other hand, enhanced stress tolerance and fermentation ability did not occur in the put1-deficient strain. This result suggests that NO is synthesized in baker's yeast from proline in response to oxidative stresses that induce ROS

  6. Evaluation of baker's yeast strains exhibiting significant growth on Japanese beet molasses and compound analysis of the molasses types.

    Science.gov (United States)

    Nakata, Hiroaki; Tamura, Masahiko; Shintani, Takahiro; Gomi, Katsuya

    2014-06-01

    Cane molasses, most of which is imported, is used as a raw material for production of baker's yeast (Saccharomyces cerevisiae) in Japan. On the other hand, beet molasses is scarcely used for this purpose, but it can be of great advantage to cane molasses because it is domestically produced in relatively high amounts as a by-product of beet sugar processing. However, the yield of baker's yeast is sometimes low with Japanese beet molasses compared to imported cane molasses. For the production of baker's yeast with Japanese beet molasses, we evaluated S. cerevisiae strains, including industrial and laboratory strains, to group them according to the growth profile on beet and cane molasses. To discuss the factors affecting growth, we further analyzed the major compounds in both types of molasses. Beet molasses seems to contain compounds that promote the growth of beet molasses-favoring strains rather than inhibit the growth of cane molasses-favoring strains. It was assumed that α-amino acid was one of the growth promotion factors for beet molasses-favoring strains. PMID:24333188

  7. Effect of Sodium Chloride on Bakers' Yeast Growing in Gelatin

    OpenAIRE

    Wei, Chia-Jenn; Robert D. Tanner; Malaney, George W.

    1982-01-01

    In recent years, industrial fermentation researchers have shifted their attention from liquid to solid and semisolid culture conditions. We converted liquid cultures to the semisolid mode by adding high levels of gelatin. Previous studies on liquid cultures have revealed the inhibitory activity of mineral salts, such as NaCl, on the fermentation of sugars by yeasts. We made a kinetic study of the effects of 1 to 5% (wt/vol) NaCl on the alcoholic fermentations of glucose by Saccharomyces cerev...

  8. Disruption of phospholipase B gene, PLB1, increases the survival of baker's yeast Torulaspora delbrueckii.

    Science.gov (United States)

    Watanabe, Y; Imai, K; Oishi, H; Tamai, Y

    1996-12-15

    An uracil auxotrophic mutant of baker's yeast Torulaspora delbrueckii, which is resistant to 5-fluoro-orotic acid, was complemented by transformation with YEp24 which harbors 2 microns origin and URA3 derived from Saccharomyces cerevisiae. The phospholipase B in T. delbrueckii cells is active in both acidic and alkaline conditions. However, activity of phospholipase B gene (PLB1) in cells of disruption mutant (plb1:: URA3) was lost in both conditions, which indicates that all phospholipase B activity is encoded by a single gene (or a single polypeptide) in these yeast cells. Over-expression of PLB1 with YEp plasmid vector in T. delbrueckii cells showed approximately 2.5-fold increase in phospholipase B activity, comparing with that in wild-type cells. Cells of plb1 delta mutant showed increased survival when cells of plb1 delta mutant and wild-type strain were incubated in water at 30 degrees C. Cells of PLB1-over-expressed strain died rapidly even during the cultivation period, indicating that phospholipase B activity may be a determinant for the survival of this yeast.

  9. Construction from a single parent of baker's yeast strains with high freeze tolerance and fermentative activity in both lean and sweet doughs.

    Science.gov (United States)

    Nakagawa, S; Ouchi, K

    1994-10-01

    From a freeze-tolerant baker's yeast (Saccharomyces cerevisiae), 2,333 spore clones were obtained. To improve the leavening ability in lean dough of the parent strain, we selected 555 of the high-maltose-fermentative spore clones by using a method in which a soft agar solution containing maltose and bromocresol purple was overlaid on yeast colonies. By measuring the gassing power in the dough, we selected 66 spore clones with a good leavening ability in lean dough and a total of 694 hybrids were constructed by crossing them. Among these hybrids, we obtained 50 novel freeze-tolerant strains with good leavening ability in all lean, regular, and sweet doughs comparable to that of commercial baker's yeast. Hybrids with improved leavening ability or freeze tolerance compared with the parent yeast and commercial baker's yeasts were also obtained. These results suggest that hybridization between spore clones derived from a single parent strain is effective for improving the properties of baker's yeasts. PMID:7986027

  10. Superior molasses assimilation, stress tolerance, and trehalose accumulation of baker's yeast isolated from dried sweet potatoes (hoshi-imo).

    Science.gov (United States)

    Nishida, Osamu; Kuwazaki, Seigo; Suzuki, Chise; Shima, Jun

    2004-07-01

    Yeast strains were isolated from dried sweet potatoes (hoshi-imo), a traditional preserved food in Japan. Dough fermentation ability, freeze tolerance, and growth rates in molasses, which are important characteristics of commercial baker's yeast, were compared between these yeast strains and a commercial yeast derivative that had typical characteristics of commercial strains. Classification tests including pulse-field gel electrophoresis and fermentation/assimilation ability of sugars showed that almost the stains isolated belonged to Saccharomyces cerevisiae. One strain, ONY1, accumulated intracellular trehalose at a higher level than commercial strain T128. Correlated with intracellular trehalose contents, the fermentation ability of high-sugar dough containing ONY1 was higher. ONY1 also showed higher freeze tolerance in both low-sugar and high-sugar doughs. The growth rate of ONY1 was significantly higher under batch and fed-batch cultivation conditions using either molasses or synthetic medium than that of strain T128. These results suggest that ONY1 has potential commercial use as baker's yeast for frozen dough and high-sugar dough. PMID:15277748

  11. Application of synthetic biology for production of chemicals in yeast Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Borodina, Irina; Li, Mingji

    2015-01-01

    biology has the potential to bring down this cost by improving our ability to predictably engineer biological systems. This review highlights synthetic biology applications for design, assembly, and optimization of non-native biochemical pathways in baker's yeast Saccharomyces cerevisiae. We describe......-of-concept chemicals have been made in yeast, only a very small fraction of those has reached commercial-scale production so far. The limiting factor is the high research cost associated with the development of a robust cell factory that can produce the desired chemical at high titer, rate, and yield. Synthetic...

  12. Experiments on the formation of carboxylase and thiamine pyrophosphate in living bakers' yeast

    NARCIS (Netherlands)

    Leijnse, B.; Terpstra, W.

    1951-01-01

    The formation of carboxylase by living bakers' yeast was demonstrated upon incubation of the yeast with either thiamine or 2-methyl-4-amino-5-ethoxymethylpyrimidine, in the presence and in the absence of glucose. Carboxylase is also formed upon incubation of the yeast with NH4 sulfate and glucose. I

  13. Enzyme contribution of non-Saccharomyces yeasts to wine production

    OpenAIRE

    Maicas i Prieto, Sergi; Mateo Tolosa, José Juan

    2015-01-01

    The fermentation of grape must to produce wine is a biologically complex process, carried on by yeasts and malolactic bacteria. The yeasts present in spontaneous fermentation may be divided into two groups, the Saccharomyces yeasts, particularly S. cerevisiae, and the non-Saccharomyces yeasts which include members of the genera Rhodotorula, Pichia, Candida, Debaryomyces, Metschtnikowia, Hansenula and Hanseniaspora. S. cerevisiae yeasts are able to convert sugar into ethanol and CO2 via fermen...

  14. Formulation and evaluation of acyclovir microcapsules using bakers yeast

    Institute of Scientific and Technical Information of China (English)

    Krishnan PN; Saraswathi R; Dilip C; Ramarao N

    2010-01-01

    Objective:To formulate and evaluate acyclovir microcapsules using bakers yeast. Methods:Acyclovir, pretreated yeast and deionised water were taken at a volumetric ratio of 1:2:4 respectively. This suspension was agitated in a magnetic stirrer at 25℃, 30℃, 35℃, and 40℃for 4 hours. The suspension was then centrifuged for 10 minutes at 2 000 rpm. The supernatant solution was decanted and the cells were washed 5 times with deionised water. Then the suspended drug entrapped yeast cells were dried in a lyophillizer for 48 hours. The yield was noted. Results:The first four formulations were done with 200 mg of the drug, followed by 400 mg for the next four formulations and 800 mg the last four formulations. SEM showed that the surface of the microcapsules was intact, with no burst characteristics. FTIR showed no interaction between acyclovir and the cell wall. DSC showed that the peak was within the standard values. The mean particle size for all the samples was 8 μm in diameter. The dissolution studies were done for all the twelve samples and showed a Fickian model of diffusion. Conclusions:From the results it is inferred that the samples prepared at 40℃(FY-4, FY-8, FY-12) show better entrapment and release. So these samples are formulated in the form of a suspension and compared with marketed acyclovir suspension using HPLC technique. The formulated suspensions with FY-4, FY-8 and FY-12 shows drug content in accordance with the standards of the pharmacopoeial limits.

  15. Effect of growth conditions and trehalose content on cryotolerance of bakers' yeast in frozen doughs.

    Science.gov (United States)

    Gélinas, P; Fiset, G; Leduy, A; Goulet, J

    1989-10-01

    The cryotolerance in frozen doughs and in water suspensions of bakers' yeast (Saccharomyces cerevisiae) previously grown under various industrial conditions was evaluated on a laboratory scale. Fed-batch cultures were very superior to batch cultures, and strong aeration enhanced cryoresistance in both cases for freezing rates of 1 to 56 degrees C min. Loss of cell viability in frozen dough or water was related to the duration of the dissolved-oxygen deficit during fed-batch growth. Strongly aerobic fed-batch cultures grown at a reduced average specific rate (mu = 0.088 h compared with 0.117 h) also showed greater trehalose synthesis and improved frozen-dough stability. Insufficient aeration (dissolved-oxygen deficit) and lower growth temperature (20 degrees C instead of 30 degrees C) decreased both fed-batch-grown yeast cryoresistance and trehalose content. Although trehalose had a cryoprotective effect in S. cerevisiae, its effect was neutralized by even a momentary lack of excess dissolved oxygen in the fed-batch growth medium. PMID:16348024

  16. The relationship of freeze tolerance with intracellular compounds in baker's yeasts.

    Science.gov (United States)

    Shi, Xiaojian; Miao, Yelian; Chen, Jie Yu; Chen, Jun; Li, Wenli; He, Xun; Wang, Jining

    2014-03-01

    Freeze-tolerant baker's yeasts are required for the processing of frozen doughs. The present study was carried out to investigate the cell survival rate after frozen storage and the change of fermentability in dough due to frozen storage, and to discuss quantitatively the relationship of freeze tolerance with intracellular trehalose, amino acids, and glycerol, using six types of baker's yeasts as the test materials. The experimental results showed that the fermentability of yeast cells in frozen dough was strongly correlated with the cell survival rate. The baker's yeast with a higher level of cell survival rate had a larger increase in the total intracellular compound content after frozen storage, and the cell survival rate increased linearly with increasing total intracellular compound content in frozen yeast cells. Trehalose was a primary compound affecting freeze tolerance, followed by glutamic acid, arginine, proline, asparagic acid, and glycerol. The basic information provided by the present study is useful for exploring the freeze-tolerance mechanisms of baker's yeast cells, breeding better freeze-tolerant baker's yeast strains, and developing more effective cryoprotectants. PMID:24482281

  17. Overexpression of the transcription activator Msn2 enhances the fermentation ability of industrial baker's yeast in frozen dough.

    Science.gov (United States)

    Sasano, Yu; Haitani, Yutaka; Hashida, Keisuke; Ohtsu, Iwao; Shima, Jun; Takagi, Hiroshi

    2012-01-01

    We constructed a self-cloning diploid baker's yeast strain that overexpressed the transcription activator Msn2. It showed higher tolerance to freeze-thaw stress and higher intracellular trehalose level than observed in the wild-type strain. Overexpression of Msn2 also enhanced the fermentation ability of baker's yeast cells in frozen dough. Hence, Msn2-overexpressing baker's yeast should be useful in frozen-dough baking. PMID:22451415

  18. Synchronization of the Budding Yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Foltman, Magdalena; Molist, Iago; Sanchez-Diaz, Alberto

    2016-01-01

    A number of model organisms have provided the basis for our understanding of the eukaryotic cell cycle. These model organisms are generally much easier to manipulate than mammalian cells and as such provide amenable tools for extensive genetic and biochemical analysis. One of the most common model organisms used to study the cell cycle is the budding yeast Saccharomyces cerevisiae. This model provides the ability to synchronise cells efficiently at different stages of the cell cycle, which in turn opens up the possibility for extensive and detailed study of mechanisms regulating the eukaryotic cell cycle. Here, we describe methods in which budding yeast cells are arrested at a particular phase of the cell cycle and then released from the block, permitting the study of molecular mechanisms that drive the progression through the cell cycle.

  19. Simultaneous accumulation of proline and trehalose in industrial baker's yeast enhances fermentation ability in frozen dough.

    Science.gov (United States)

    Sasano, Yu; Haitani, Yutaka; Hashida, Keisuke; Ohtsu, Iwao; Shima, Jun; Takagi, Hiroshi

    2012-05-01

    Freeze tolerance is a necessary characteristic for industrial baker's yeast because frozen-dough baking is one of the key technologies for supplying oven-fresh bakery products to consumers. Both proline and trehalose are known to function as cryoprotectants in yeast cells. In order to enhance the freeze tolerance of yeast cells, we constructed a self-cloning diploid baker's yeast strain with simultaneous accumulation of proline, by expressing the PRO1-I150T allele, encoding the proline-feedback inhibition-less sensitive γ-glutamyl kinase, and trehalose, by disrupting the NTH1 gene, encoding neutral trehalase. The resultant strain retained higher tolerance to oxidative and freezing stresses than did the single proline- or trehalose-accumulating strain. Interestingly, our results suggest that proline and trehalose protect yeast cells from short-term and long-term freezing, respectively. Simultaneous accumulation of proline and trehalose in industrial baker's yeast also enhanced the fermentation ability in the frozen dough compared with the single accumulation of proline or trehalose. These results indicate that baker's yeast that accumulates both proline and trehalose is applicable for frozen-dough baking. PMID:22280966

  20. Global expression studies in baker's yeast reveal target genes for the improvement of industrially-relevant traits: the cases of CAF16 and ORC2

    Directory of Open Access Journals (Sweden)

    Randez-Gil Francisca

    2010-07-01

    Full Text Available Abstract Background Recent years have seen a huge growth in the market of industrial yeasts with the need for strains affording better performance or to be used in new applications. Stress tolerance of commercial Saccharomyces cerevisiae yeasts is, without doubt, a trait that needs improving. Such trait is, however, complex, and therefore only in-depth knowledge of their biochemical, physiological and genetic principles can help us to define improvement strategies and to identify the key factors for strain selection. Results We have determined the transcriptional response of commercial baker's yeast cells to both high-sucrose and lean dough by using DNA macroarrays and liquid dough (LD model system. Cells from compressed yeast blocks display a reciprocal transcription program to that commonly reported for laboratory strains exposed to osmotic stress. This discrepancy likely reflects differences in strain background and/or experimental design. Quite remarkably, we also found that the transcriptional response of starved baker's yeast cells was qualitatively similar in the presence or absence of sucrose in the LD. Nevertheless, there was a set of differentially regulated genes, which might be relevant for cells to adapt to high osmolarity. Consistent with this, overexpression of CAF16 or ORC2, two transcriptional factor-encoding genes included in this group, had positive effects on leavening activity of baker's yeast. Moreover, these effects were more pronounced during freezing and frozen storage of high-sucrose LD. Conclusions Engineering of differentially regulated genes opens the possibility to improve the physiological behavior of baker's yeast cells under stress conditions like those encountered in downstream applications.

  1. Application of hybrid yeasts for molasses fermentation during the production of alcohol and bakers' yeast

    Energy Technology Data Exchange (ETDEWEB)

    Raev, Z.A.; Kovalenko, A.D.; Korobkova, L.A.; Sadovnikova, T.A.; Bespalaya, M.K.

    1973-01-01

    Various hybrids of brewers yeasts were studied and their technological properties established. It was shown that hybrid 75 was suitable for increasing alcohol yields from molasses. Hybrid 112 was suitable for increasing the maltase activity of bakers' yeast. Efficient exploitation of the above properties of yeast hybrids may be achieved in a 2 stage molasses fermentation process developed at the Ukrainian Res. Inst. of Distillery Ind. The method is based on 2-stage yeast addition: strain B yeasts in the 1st stage and an appropriate hybrid in the second.

  2. In situ selective determination of methylmercury in river water by diffusive gradient in thin films technique (DGT) using baker's yeast (Saccharomyces cerevisiae) immobilized in agarose gel as binding phase

    International Nuclear Information System (INIS)

    Saccharomyces cerevisiae immobilized in agarose gel as binding phase and polyacrylamide as diffusive layer in the diffusive gradient in thin films technique (DGT) was used for selective determination of methylmercury (MeHg). Deployment tests showed good linearity in mass uptake up to 48 h (3276 ng). When coupling the DGT technique with Cold Vapor Atomic Fluorescence Spectrometry, the method has a limit of detection of 0.44 ng L−1 (pre concentration factor of 11 for 48 h deployment). Diffusion coefficient of 7.03 ± 0.77 × 10−6 cm2 s−1 at 23 °C in polyacrylamide gel (pH = 5.5 and ionic strength = 0.05 mol L−1 NaCl) was obtained. Influence of ionic strength (from 0.0005 mol L−1 to 0.1 mol L−1 NaCl) and pH (from 3.5 to 8.5) on MeHg uptake were evaluated. For these range, recoveries of 84–105% and 84–98% were obtained for ionic strength and pH respectively. Potential interference due to presence of Cu, Fe, Mn, Zn was also assessed showing good recoveries (70–87%). The selectivity of the proposed approach was tested by deployments in solutions containing MeHg and Hg(II). Results obtained showed recoveries of 102–115 % for MeHg, while the uptake of Hg(II) was insignificant. The proposed approach was successfully employed for in situ measurements in the Negro River (Manaus-AM, Brazil). - Highlights: • A method for in situ selective determination of MeHg by DGT technique is proposed. • Saccharomyces cerevisiae immobilized in agarose gel was used as binding agent. • Effects of pH, ionic strength and concomitant ions on uptake of MeHg were evaluated. • DGT device containing polyacrylamide gel as diffusive layer showed better selectivity. • The proposed approach was successfully applied for analysis of river water

  3. In situ selective determination of methylmercury in river water by diffusive gradient in thin films technique (DGT) using baker's yeast (Saccharomyces cerevisiae) immobilized in agarose gel as binding phase

    Energy Technology Data Exchange (ETDEWEB)

    Tafurt-Cardona, Makenly [Programa de Pós-graduação em Geociências e Meio Ambiente, Instituto de Geociências e Ciências Exatas, UNESP – Univ. Estadual Paulista, Av. 24-A, 1515, CEP: 13506-900, Rio Claro, SP (Brazil); Centro de Estudos Ambientais, UNESP – Univ. Estadual Paulista, Av. 24-A, 1515, CEP: 13506-900, Rio Claro, SP (Brazil); Eismann, Carlos Eduardo; Suárez, Carlos Alfredo [Centro de Estudos Ambientais, UNESP – Univ. Estadual Paulista, Av. 24-A, 1515, CEP: 13506-900, Rio Claro, SP (Brazil); Menegário, Amauri Antonio, E-mail: amenega@rc.unesp.br [Programa de Pós-graduação em Geociências e Meio Ambiente, Instituto de Geociências e Ciências Exatas, UNESP – Univ. Estadual Paulista, Av. 24-A, 1515, CEP: 13506-900, Rio Claro, SP (Brazil); Centro de Estudos Ambientais, UNESP – Univ. Estadual Paulista, Av. 24-A, 1515, CEP: 13506-900, Rio Claro, SP (Brazil); Silva Luko, Karen [Programa de Pós-graduação em Geociências e Meio Ambiente, Instituto de Geociências e Ciências Exatas, UNESP – Univ. Estadual Paulista, Av. 24-A, 1515, CEP: 13506-900, Rio Claro, SP (Brazil); Centro de Estudos Ambientais, UNESP – Univ. Estadual Paulista, Av. 24-A, 1515, CEP: 13506-900, Rio Claro, SP (Brazil); and others

    2015-08-05

    Saccharomyces cerevisiae immobilized in agarose gel as binding phase and polyacrylamide as diffusive layer in the diffusive gradient in thin films technique (DGT) was used for selective determination of methylmercury (MeHg). Deployment tests showed good linearity in mass uptake up to 48 h (3276 ng). When coupling the DGT technique with Cold Vapor Atomic Fluorescence Spectrometry, the method has a limit of detection of 0.44 ng L{sup −1} (pre concentration factor of 11 for 48 h deployment). Diffusion coefficient of 7.03 ± 0.77 × 10{sup −6} cm{sup 2} s{sup −1} at 23 °C in polyacrylamide gel (pH = 5.5 and ionic strength = 0.05 mol L{sup −1} NaCl) was obtained. Influence of ionic strength (from 0.0005 mol L{sup −1} to 0.1 mol L{sup −1} NaCl) and pH (from 3.5 to 8.5) on MeHg uptake were evaluated. For these range, recoveries of 84–105% and 84–98% were obtained for ionic strength and pH respectively. Potential interference due to presence of Cu, Fe, Mn, Zn was also assessed showing good recoveries (70–87%). The selectivity of the proposed approach was tested by deployments in solutions containing MeHg and Hg(II). Results obtained showed recoveries of 102–115 % for MeHg, while the uptake of Hg(II) was insignificant. The proposed approach was successfully employed for in situ measurements in the Negro River (Manaus-AM, Brazil). - Highlights: • A method for in situ selective determination of MeHg by DGT technique is proposed. • Saccharomyces cerevisiae immobilized in agarose gel was used as binding agent. • Effects of pH, ionic strength and concomitant ions on uptake of MeHg were evaluated. • DGT device containing polyacrylamide gel as diffusive layer showed better selectivity. • The proposed approach was successfully applied for analysis of river water.

  4. Self-cloning baker's yeasts that accumulate proline enhance freeze tolerance in doughs.

    Science.gov (United States)

    Kaino, Tomohiro; Tateiwa, Tetsuya; Mizukami-Murata, Satomi; Shima, Jun; Takagi, Hiroshi

    2008-09-01

    We constructed self-cloning diploid baker's yeast strains by disrupting PUT1, encoding proline oxidase, and replacing the wild-type PRO1, encoding gamma-glutamyl kinase, with a pro1(D154N) or pro1(I150T) allele. The resultant strains accumulated intracellular proline and retained higher-level fermentation abilities in the frozen doughs than the wild-type strain. These results suggest that proline-accumulating baker's yeast is suitable for frozen-dough baking. PMID:18641164

  5. Activation of waste brewer's yeast Saccharomyces cerevisiae for bread production

    Directory of Open Access Journals (Sweden)

    Popov Stevan D.

    2005-01-01

    Full Text Available The waste brewer's yeast S. cerevisiae (activated and non-activated was compared with the commercial baker's yeast regarding the volume of developed gas in dough, volume and freshness stability of produced bread. The activation of waste brewer's yeast resulted in the increased volume of developed gas in dough by 100% compared to non-activated brewer's yeast, and the obtained bread is of more stable freshness compared to bread produced with baker's yeast. The activation of BY affects positively the quality of produced bread regarding bread volume. The volume of developed gas in dough prepared with the use of non-activated BY was not sufficient, therefore, it should not be used as fermentation agent, but only as an additive in bread production process for bread freshness preservation. Intense mixing of dough results in more compressible crumb 48 hrs after baking compared to high-speed mixing.

  6. TOTAL ANTIOXIDANT ACTIVITY OF YEAST SACCHAROMYCES CEREVISIAE

    Directory of Open Access Journals (Sweden)

    Blažena Lavová

    2013-02-01

    Full Text Available Antioxidants are health beneficial compounds that can protect cells and macromolecules (e.g. fats, lipids, proteins and DNA from the damage of reactive oxygen species (ROS. Sacchamomyces cerevisiae are know as organisms with very important antioxidative enzyme systems such as superoxide dismutase or catalase. The total antioxidant activity (mmol Trolox equivalent – TE.g-1 d.w. of Saccharomyces cerevisiae was measured by 2,2´-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid during the yeast cultivation. It was found that the total antioxidant activity was the highest (1.08 mmol TE.g-1 d.w. in the strain Kolín after 32 hours of cultivation and the lowest (0.26 mmol TE.g-1 d.w. in the strain Gyöng after 12 hours of cultivation.

  7. [The cloning and expression of the gene for beta-galactosidase from Candida pseudotropicalis yeasts in Saccharomyces cerevisiae cells].

    Science.gov (United States)

    Tretiak, K A; Zakal'skiĭ, A E; Gudz', S P

    1998-01-01

    The gene of beta-galactosidase of lactose-assimilating yeast Candida pseudotropicalis was cloned in pG2 and pBG2-3 hybrid shuttle vectors and expressed in Saccharomyces cerevisiae laboratory strains under the control of own promoter. The plasmids were able to replicate autonomously with relative stability in transformants of baker's yeasts. The availability of glucose or lactose in the medium influenced the recombinant plasmid stability and the expression of the cloned gene. A number of experiments have shown that the LAC+ phenotype in pG2-transformed Saccharomyces cerevisiae was due to the expression of the Candida pseudotropicalis lactose permease gene that is probably located in SaIG1/XhoI DNA fragment about 4.3 kb long. Southern hybridization experiments showed that LAC(+)-transformants of Saccharomyces cerevisiae contained both autonomously-replicative, and integrative pG2 plasmid.

  8. Baker's yeast catalyzed asymmetric reduction of methyl acetoacetate in glycerol containing systems

    Directory of Open Access Journals (Sweden)

    Adi Wolfson

    2008-09-01

    Full Text Available The asymmetric hydrogenation of methyl acetoacetate was successfully performed with baker's yeast in pure glycerol and mixtures of glycerol and water. Though yeast viability was very low after exposure to glycerol, the enzymatic activity in pure glycerol was preserved for some days. In addition, a mixture of glycerol and water combined the advantageous of each individual solvent and resulted in high catalytic performance and efficient product extraction yield

  9. Baker's yeast catalyzed asymmetric reduction of methyl acetoacetate in glycerol containing systems

    OpenAIRE

    Adi Wolfson; Nisim Haddad; Chrstina Dlugy; Dorith Tavor; Yoram Shotland

    2008-01-01

    The asymmetric hydrogenation of methyl acetoacetate was successfully performed with baker's yeast in pure glycerol and mixtures of glycerol and water. Though yeast viability was very low after exposure to glycerol, the enzymatic activity in pure glycerol was preserved for some days. In addition, a mixture of glycerol and water combined the advantageous of each individual solvent and resulted in high catalytic performance and efficient product extraction yield

  10. Analysis of the RNA Content of the Yeast "Saccharomyces Cerevisiae"

    Science.gov (United States)

    Deutch, Charles E.; Marshall, Pamela A.

    2008-01-01

    In this article, the authors describe an interconnected set of relatively simple laboratory experiments in which students determine the RNA content of yeast cells and use agarose gel electrophoresis to separate and analyze the major species of cellular RNA. This set of experiments focuses on RNAs from the yeast "Saccharomyces cerevisiae", a…

  11. Some Aspects of Catalase Induction in Baker's Yeast (Saccharomyces cerevisiae)

    Science.gov (United States)

    Freeland, P. W.

    1974-01-01

    Described are experiments for demonstrating essential features of substrate-induced enzyme synthesis based on the Jacob-Monod model, and for showing that the activity of certain genes can be modified by environmental temperature. (RH)

  12. Studies of Saccharomyces cerevisiae and Non-Saccharomyces Yeasts during Alcoholic Fermentation

    DEFF Research Database (Denmark)

    Kemsawasd, Varongsiri

    , other yeast-yeast interactions, such as cell-cell contact mediated growth arrest and/or toxininduced death may also be a significant factor in the relative fragility of these non-Saccharomyces yeasts in mixed culture fermentation. In the present work we evaluate the combined roles of cell-cell contact...... and/or antimicrobial peptides on the early death of Lachancea thermotolerans during mixed culture fermentations with Saccharomyces cerevisiae. Using a specially designed double compartment fermentation system, we established that both cell-to-cell contact and antimicrobial peptides contribute......The early death of non-Saccharomyces yeasts during mixed culture spontaneous wine fermentation has traditionally been attributed to the lower capacity of these yeast species to withstand high levels of ethanol, low pH, and other media properties that are a part of progressing fermentation. However...

  13. Probiotic Properties of Non-Saccharomyces Yeasts

    DEFF Research Database (Denmark)

    Smith, Ida Mosbech

    mobilization. In contrast, our findings reveal K. marxianus as a potent inducer of Foxp3+ regulatory T cells, a characteristic that may benefit human health in conditions characterized by excessive inflammation. In a third study, we evaluated non-Saccharomyces yeast modulation of human intestinal epithelial...... cell barrier function in vitro, and explored yeast properties of pathogen inhibition in a challenge assay with enteropathogenic Salmonella Typhimurium. Our findings demonstrate distinct patterns of non-Saccharomyces yeast modulation of epithelial cell barrier function, and identify K. marxianus...... and Metschnikowia gruessii as capable of significantly delaying Salmonella-induced disruption of epithelial cell barrier function. In conclusion, data presented in the current thesis demonstrate significant interactions between non-Saccharomyces yeasts and cells of the human gastrointestinal tract and identify K...

  14. Introducing a new breed of wine yeast: interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast and Saccharomyces mikatae.

    Directory of Open Access Journals (Sweden)

    Jennifer R Bellon

    Full Text Available Interspecific hybrids are commonplace in agriculture and horticulture; bread wheat and grapefruit are but two examples. The benefits derived from interspecific hybridisation include the potential of generating advantageous transgressive phenotypes. This paper describes the generation of a new breed of wine yeast by interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast strain and Saccharomyces mikatae, a species hitherto not associated with industrial fermentation environs. While commercially available wine yeast strains provide consistent and reliable fermentations, wines produced using single inocula are thought to lack the sensory complexity and rounded palate structure obtained from spontaneous fermentations. In contrast, interspecific yeast hybrids have the potential to deliver increased complexity to wine sensory properties and alternative wine styles through the formation of novel, and wider ranging, yeast volatile fermentation metabolite profiles, whilst maintaining the robustness of the wine yeast parent. Screening of newly generated hybrids from a cross between a S. cerevisiae wine yeast and S. mikatae (closely-related but ecologically distant members of the Saccharomyces sensu stricto clade, has identified progeny with robust fermentation properties and winemaking potential. Chemical analysis showed that, relative to the S. cerevisiae wine yeast parent, hybrids produced wines with different concentrations of volatile metabolites that are known to contribute to wine flavour and aroma, including flavour compounds associated with non-Saccharomyces species. The new S. cerevisiae x S. mikatae hybrids have the potential to produce complex wines akin to products of spontaneous fermentation while giving winemakers the safeguard of an inoculated ferment.

  15. Validation of antifreeze properties of glutathione based on its thermodynamic characteristics and protection of baker's yeast during cryopreservation.

    Science.gov (United States)

    Zhang, Chao; Zhang, Hui; Wang, Li; Yao, Huiyuan

    2007-06-13

    The antifreeze ability of glutathione was evaluated on the basis of its thermodynamic characteristics and protection of baker's yeast during cryopreservation at -30 degrees C. The thermodynamic characteristics and protection of baker's yeast of glutathione were similar to those of known antifreeze proteins, such as carrot antifreeze protein and holly antifreeze protein. These properties included lowering the freezing point at about 0.20 degrees C non-colligatively, decreasing freezable water content, controlling the movement of free water for its strong hydrophilicity, and improving baker's yeast survival during the simulated processing of frozen dough. Therefore, glutathione was viewed to be an antifreeze protein like substance on the basis of its unique thermodynamic characteristics and protection of baker's yeast. The method combining thermodynamic characteristic analysis and protection evaluation is a new and simple way to screen new antifreeze proteins. PMID:17508758

  16. 21 CFR 172.898 - Bakers yeast glycan.

    Science.gov (United States)

    2010-04-01

    ...) Less than 10,000 organisms/gram by aerobic plate count. (2) Less than 10 yeasts and molds/gram. (3... used or intended for use in the following foods when standards of identity established under...

  17. Baker's yeast mediated reduction of substituted acenaphthenequinones: Regio- and enantioselective preparation of mono-hydroxyacenaphthenones

    Institute of Scientific and Technical Information of China (English)

    Xing Yong Wang; Jing Nan Cui; Wei Min Ren; Feng Li; Chun Liang Lu; Xu Hong Qian

    2007-01-01

    Baker's yeast mediated reduction of acenaphthenequinone within 4-10 h afforded mono-hydroxyacenaphthenone mainly with low enantioselectivity, the substrate and mono-hydroxyacenaphthenone product almost converted to dihydroxyacenaphthene after 48 h.By control of the reaction time and in the presence of DMF as co-solvent, the reduction of 6-substituted acenaphthenequinones under vigorous agitation afforded the corresponding 2-hydroxyacenaphthenones in 24-84% yields with 10-93% ee.

  18. Improved vanillin production in baker's yeast through in silico design

    OpenAIRE

    Hansen Jørgen; Møller Birger L; Matos Claudia; Brochado Ana; Mortensen Uffe H; Patil Kiran

    2010-01-01

    Abstract Background Vanillin is one of the most widely used flavouring agents, originally obtained from cured seed pods of the vanilla orchid Vanilla planifolia. Currently vanillin is mostly produced via chemical synthesis. A de novo synthetic pathway for heterologous vanillin production from glucose has recently been implemented in baker's yeast, Saccharamyces cerevisiae. In this study we aimed at engineering this vanillin cell factory towards improved productivity and thereby at developing ...

  19. Teaching microbial physiology using glucose repression phenomenon in baker's yeast as an examplele

    DEFF Research Database (Denmark)

    Vijayendran, Raghavendran; Nielsen, Jens; Olsson, Lisbeth

    2005-01-01

    The yeast Saccharomyces cerevisiae has been used by human beings since ancient times for its ability to convert sugar to alcohol. Continual exposure to glucose in the natural environment for innumerable generations has probably enabled S. cerevisiae to grow in fermentative mode on sugars by switc......The yeast Saccharomyces cerevisiae has been used by human beings since ancient times for its ability to convert sugar to alcohol. Continual exposure to glucose in the natural environment for innumerable generations has probably enabled S. cerevisiae to grow in fermentative mode on sugars...

  20. Construction of a Trp- commercial baker's yeast strain by using food-safe-grade dominant drug resistance cassettes.

    Science.gov (United States)

    Estruch, Francisco; Prieto, José Antonio

    2003-12-01

    We have designed a food-safe-grade module for gene disruptions in commercial baker's yeast strains, which contains the G418 resistance cassette, KanMX4, flanked by direct repeats from the MEL1 gene of Saccharomyces cerevisiae. This module was used to obtain a Trp(-) auxotrophic mutant of the polyploid HY strain by successive targeting to the TRP1 locus and later in vivo excision of the kan(r) marker. Southern blot analysis indicated that HY contains five copies of the TRP1 gene. However, after four disruption rounds, a strain named HYtrpM(4), unable to grow in the absence of tryptophan, was selected. Southern and Northern analysis of HYtrpM(4) cells showed that a remaining functional wild-type copy was still present, suggesting that the level of phosphoribosylanthranylate isomerase activity, resulting from a single copy of TRP1, is too low to sustain growth. Accordingly, a high reversion frequency of the Trp(-) phenotype, through gene conversion, was found in cells of the mutant strain. Nevertheless, this was not a drawback for its use as a recipient strain of heterologous genes. Indeed, YEpACT-X24 transformants were stable after 25 generations and expressed and secreted high levels of active recombinant xylanase. These data indicate that the new Trp(-) strain can be used to generate a stable recombinant yeast that fulfils all the requirements and market criteria for commercial utilisation.

  1. Determination of cellular carbohydrates in peanut fungal pathogens and baker's yeast by capillary electrophoresis and electrochromatography.

    Science.gov (United States)

    Zhang, M; Melouk, H A; Chenault, K; El Rassi, Z

    2001-11-01

    In this work, the quantitation of cellular carbohydrates, namely chitin and glucan, in peanut fungal pathogens and baker's yeast was carried out by capillary electrophoresis (CE) and capillary electrochromatography (CEC). The chitin and glucan of the fungi were hydrolyzed by the enzymes chitinase and glucanase, respectively, to their corresponding sugar monomers N-acetylglucosamine (GlcNAc) and glucose (Glc). These two monosaccharides were then tagged with 6-aminoquinoline (6-AQ) to allow their separation and detection in CE and CEC. The 6-AQ derivatives of GlcNAc and Glc formed the basis for the determination by CE and CEC of chitin and glucan in peanut fungi and baker's yeast. Several parameters affecting the separation of the 6-AQ derivatives of GlcNAc and Glc, including the separation voltage and the composition of the running electrolyte, were investigated. Under the optimized separation conditions, the contents of cellular carbohydrates including N-acetylglucosamine, chitin, glucose, and glucan in some fungi, such as Sclerotinia minor, Sclerotium rolfsii, and baker's yeast, were successfully determined. The method described here allowed the assessment of genetic differences in Sclerotium rolfsii isolates from various locations. PMID:11714314

  2. The Treasure of the Humble: Lessons from Baker's Yeast

    Science.gov (United States)

    Sitaraman, Ramakrishnan

    2011-01-01

    The study of model organisms is a powerful and proven experimental strategy for understanding biological processes. This paper describes an attempt to utilize advances in yeast molecular biology to enhance student understanding by presenting a more comprehensive view of several interconnected molecular processes in the overall functioning of an…

  3. Lipid composition of commercial bakers' yeasts having different freeze-tolerance in frozen dough.

    Science.gov (United States)

    Murakami, Y; Yokoigawa, K; Kawai, F; Kawai, H

    1996-11-01

    The lipid composition of some commercial bakers' yeasts having different freeze-sensitivity in frozen dough was investigated to clarify the correlation between their lipid composition and freeze-tolerance. The total lipid content including neutral lipid, free fatty acid, sterol, and phospholipid ranged between 23.0 to 32.2 mg/100 mg protein of the yeasts tested. Phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, and phosphatidylserine were the main phospholipids found in all yeast strains, but no distinct difference in these components between freeze-tolerant and freeze-sensitive strains was observed. Palmitoleic (C16:1), oleic (C18:1), palmitic (16:0), and stearic (C18:0) acids were the major fatty acids present in total lipid and phospholipid, and unsaturation indices of fatty acid in these lipid components were almost equal by the strains. The molar ratios of sterol to phospholipid of freeze-sensitive strains were higher than those of freeze-tolerant strains. The difference in the sterol-phospholipid ratio that influences the fluidity of plasma membranes in yeast cells was supposed to reflect the difference in freeze-sensitivity of bakers' yeast. PMID:8987866

  4. New type of postirradiation recovery of diploid yeast Saccharomyces cerevisae

    Energy Technology Data Exchange (ETDEWEB)

    Glazunov, A.V.; Kapul' tsevich, Yu.G. (Vsesoyuznyj Nauchno-Issledovatel' skij Inst. Genetiki i Selektsii Promyshlennykh Mikroorganizmov, Moscow (USSR))

    It was shown that the survival of diploid yeast Saccharomyces cerevisiae plated on the nutrient medium containing 8% NaCl rapidly increases with time of postirradiation keeping the cells in water at 28 deg C. The process is completed in 30-40 min. One fails to observe this phenomenon with the exposed cells plated on a standard culture medium for, in this case, the recovery has been fully completed before the first postirradiation division occurs. Haploid yeast Saccharomyces cerevisiae and diploid Pichia pinus are not capable of ''rapid'' repair of the studied type.

  5. Improvement of tolerance to freeze-thaw stress of baker's yeast by cultivation with soy peptides.

    Science.gov (United States)

    Izawa, Shingo; Ikeda, Kayo; Takahashi, Nobuyuki; Inoue, Yoshiharu

    2007-06-01

    The tolerance to freeze-thaw stress of yeast cells is critical for frozen-dough technology in the baking industry. In this study, we examined the effects of soy peptides on the freeze-thaw stress tolerance of yeast cells. We found that the cells cultured with soy peptides acquired improved tolerance to freeze-thaw stress and retained high leavening ability in dough after frozen storage for 7 days. The final quality of bread regarding its volume and texture was also improved by using yeast cells cultured with soy peptides. These findings promote the utilization of soy peptides as ingredients of culture media to improve the quality of baker's yeast. PMID:17505771

  6. Periodic operation of a continuous culture of Baker's yeast.

    Science.gov (United States)

    Abulesz, E M; Lyberatos, G

    1989-09-01

    The possibility of enhancing the biomass productivity of a continuous culture of Saccharomyces cerevisiae growing on a glucose-limited medium is addressed. An unstructured Monod-type model is first identified using steady-state data. The culture is subjected to step changes in dilution rate, and it is seen that the Monod model is unable to predict even qualitatively the dynamic response of the culture. Incorporation of a time delay allows significant improvement in the transient fit. It is found that the culture has a time lag of about 3 h in adapting its growth rate. Cycling the dilution rate with a period of 3 h leads to substantial improvement in the average biomass productivity. PMID:18588160

  7. Reduction of toxic effects of aflatoxin B1 by using baker yeast (Saccharomyces cerevisiae in growing broiler chicks diets Redução dos efeitos tóxicos da aflatoxina B1, utilizando-se levedura de panificação (Saccharomyces cerevisiae, na dieta de pintos de corte em crescimento

    Directory of Open Access Journals (Sweden)

    Kemal Çelýk

    2003-06-01

    Full Text Available This study was carried out to investigate the effects of adding baker yeast (BY, chlortetracycline (CTC and both BY + CTC to a control diet containing 200 ng/g of aflatoxin B1 (C + AFB1 on performance, serum parameters and pathologyc alterations of broilers. A total 100 chicks (Ross PM 3 were divided into five groups in individual cages and each containing 20 animals. BY, a rich source of protein and vitamin B complex, was mixed into the diets at 2.0 %, CTC was mixed into the diet at 2.5 ng/g. Feed consumption, body weight and feed efficiency were recorded weekly. Serum parameters and pathologyc alterations were determined at the end of the study. Dead animals were recorded daily. Liver changes were clearly apparent in the C+AFB1and C+ AFB1+CTC most of the livers were enlarged, yellow and had pethecial hemorrhages. Canalicula cholestosis was absent in group C+AFB1 and C+ AFB1+CTC, but not others. When compared to the control (C group, alkaline phosphatase (ALP, appear to be significantly increased in the C+AFB1 and C+CTC+ AFB1 groups. Serum glutamic oxalacetic transaminase (GOTwas increased in C+AFB1 birds. Serum alphaphetoprotein was not affected by the treatments. Feed consumption and body weight were significantly reduced in group AFB1. Birds receiving BY + AFB1, CTC + AFB1 and BY + CTC + AFB1 had a significantly higher body weight than group C+AFB1. Feed efficiency was better in group CTC + AFB1 than the others. The findings of this research suggest tha BY (2% can partly counteract some of the toxic effects of AFB1.Este estudo foi desenvolvido para avaliar os efeitos da adição de Levedura de panificação (BY e cortetraciclina (CTC e ambos BY+CTC a uma dieta controle © contendo 200 ng/g de aflatoxina B1 (C+AFB1 sobre desempenho, parâmetros séricos e alterações patológicas de frangos de corte. Um total de 100 pintinhos (Ross PM3 foi dividido em cinco grupos, em gaiolas individuais, contendo 20 animais para cada grupo. A levedura de

  8. Expression of LIP1 and LIP2 genes from Geotrichum species in Baker's yeast strains and their application to the bread-making process.

    Science.gov (United States)

    Monfort, A; Blasco, A; Sanz, P; Prieto, J A

    1999-02-01

    Lipolytic baker's yeast strains able to produce extracellular active lipase have been constructed by transformation with plasmids containing the LIP1 and LIP2 genes from Geotrichum sp. under the control of the Saccharomyces cerevisiae actin promoter (pACT1). Lipase productivity differed between both constructs, YEpACT-LIP1-t and YEpACT-LIP2-t, being higher for the strain bearing the LIP2 gene in all culture media tested. This result appeared not to be the consequence of a defect in the transcription of the LIP1 gene as revealed by Northern blot analysis. Replacing the signal sequence of LIP1 by that of LIP2 in the YEpACT-LIP1-t plasmid enhanced significantly the secretion of lipase 1, but the levels of lipase activity were still lower than those found for the YEpACT-LIP2-t transformant. Recombinant lipase 2 protein produced by baker's yeast exhibited biochemical properties similar to those of the natural enzyme. Fermented dough prepared with YEpACT-LIP2-t-carrying cells rendered a bread with a higher loaf volume and a more uniform crumb structure than that prepared with control yeast. These effects were stronger by the addition in the bread dough formulas of a preferment enriched in recombinant lipase 2.

  9. A vaccine grade of yeast Saccharomyces cerevisiae expressing mammalian myostatin

    Directory of Open Access Journals (Sweden)

    Zhang Tingting

    2012-12-01

    Full Text Available Abstract Background Yeast Saccharomyces cerevisiae is a widely-used system for protein expression. We previously showed that heat-killed whole recombinant yeast vaccine expressing mammalian myostatin can modulate myostatin function in mice, resulting in increase of body weight and muscle composition in these animals. Foreign DNA introduced into yeast cells can be lost soon unless cells are continuously cultured in selection media, which usually contain antibiotics. For cost and safety concerns, it is essential to optimize conditions to produce quality food and pharmaceutical products. Results We developed a simple but effective method to engineer a yeast strain stably expressing mammalian myostatin. This method utilized high-copy-number integration of myostatin gene into the ribosomal DNA of Saccharomyces cerevisiae. In the final step, antibiotic selection marker was removed using the Cre-LoxP system to minimize any possible side-effects for animals. The resulting yeast strain can be maintained in rich culture media and stably express mammalian myostatin for two years. Oral administration of the recombinant yeast was able to induce immune response to myostatin and modulated the body weight of mice. Conclusions Establishment of such yeast strain is a step further toward transformation of yeast cells into edible vaccine to improve meat production in farm animals and treat human muscle-wasting diseases in the future.

  10. Proline accumulation in baker's yeast enhances high-sucrose stress tolerance and fermentation ability in sweet dough.

    Science.gov (United States)

    Sasano, Yu; Haitani, Yutaka; Ohtsu, Iwao; Shima, Jun; Takagi, Hiroshi

    2012-01-01

    During bread-making processes, yeast cells are exposed to various baking-associated stresses. High-sucrose concentrations exert severe osmotic stress that seriously damages cellular components by generation of reactive oxygen species (ROS). Previously, we found that the accumulation of proline conferred freeze-thaw stress tolerance and the baker's yeast strain that accumulated proline retained higher-level fermentation abilities in frozen doughs than the wild-type strain. In this study, we constructed self-cloning diploid baker's yeast strains that accumulate proline. These resultant strains showed higher cell viability and lower intracellular oxidation levels than that observed in the wild-type strain under high-sucrose stress condition. Proline accumulation also enhanced the fermentation ability in high-sucrose-containing dough. These results demonstrate the usefulness of proline-accumulating baker's yeast for sweet dough baking. PMID:22041027

  11. Production of Aromatic Plant Terpenoids in Recombinant Baker's Yeast.

    Science.gov (United States)

    Emmerstorfer-Augustin, Anita; Pichler, Harald

    2016-01-01

    Plant terpenoids are high-value compounds broadly applied as food additives or fragrances in perfumes and cosmetics. Their biotechnological production in yeast offers an attractive alternative to extraction from plants. Here, we provide two optimized protocols for the production of the plant terpenoid trans-nootkatol with recombinant S. cerevisiae by either (I) converting externally added (+)-valencene with resting cells or (II) cultivating engineered self-sufficient production strains. By synthesis of the hydrophobic compounds in self-sufficient production cells, phase transfer issues can be avoided and the highly volatile products can be enriched in and easily purified from n-dodecane, which is added to the cell broth as second phase. PMID:26843167

  12. Isolation and Kinetic Characterization of Fumarase from Baker's Yeast

    Directory of Open Access Journals (Sweden)

    Vasić-Rački, D.

    2012-05-01

    Full Text Available Isolation and purification of fumarase (fumarate hydratase EC 4.2.1.2 from baker’s yeast was carried out. Yeast cells were disrupted by three methods: glass beads, ultrasound, and the combination of these two methods. Cell disruption methods were compared in their efficiency in Fig. 1. Protein fractionation was carried out by precipitation with ammonium sulphate. The concentrations of ammonium sulphate necessary for fumarase precipitation were found ex- perimentally and are presented in Fig. 2. After precipitation, fumarase samples were purified by gel filtration chromatography on columns filled with Sephadex G50 and Sephadex G100. Examples of the elution curve of one protein suspension sample on both columns are presented in Fig. 3 and Fig. 4. Only the samples having high fumarase activity were used in the next purifying step. Table 1 presents the collective results of the fumarase purification procedure. The tech- niques used enabled purification of fumarase with a yield of 25 %. The purified enzyme was employed in the hydration of fumaric acid to L-malic acid. Kinetic constants of fumarase were estimated and are presented in Table 2. They were determined from the experimental data measured by the initial reaction rate method. The hydration of fumaric acid to L-malic acid was carried out in a batch reactor and the results are presented in Fig. 5. The kinetic model was developed on the basis of kinetic data and reaction scheme, as presented by equations 1 and 2. It was combined with the mass balances in the batch reactor presented by equations 3 and 4. Considering that fumarase deactivation occurs, it was proposed that the activity loss could be described by a first-order kinetic model (equation 5. Fumarase activity was followed during the batch experiment by the enzyme assay and it was found that activity decay occurs. Deactivation constant was estimated from the independent experimental results and found to be 0.0031 min–1.

  13. Pyruvate decarboxylases from the petite-negative yeast Saccharomyces kluyveri

    DEFF Research Database (Denmark)

    Møller, Kasper; Langkjær, Rikke Breinhold; Nielsen, Jens;

    2004-01-01

    Saccharomyces kluyveri is a petite-negative yeast, which is less prone to form ethanol under aerobic conditions than is S. cerevisiae. The first reaction on the route from pyruvate to ethanol is catalysed by pyruvate decarboxylase, and the differences observed between S. kluyveri and S. cerevisiae...... was controlled by variations in the amount of mRNA. The mRNA level and the pyruvate decarboxylase activity responded to anaerobiosis and growth on different carbon sources in essentially the same fashion as in S. cerevisiae. This indicates that the difference in ethanol formation between these two yeasts...... is not due to differences in the regulation of pyruvate decarboxylase(s), but rather to differences in the regulation of the TCA cycle and the respiratory machinery. However, the PDC genes of Saccharomyces/Kluyveromyces yeasts differ in their genetic organization and phylogenetic origin. While S. cerevisiae...

  14. Saccharomyces cerevisiae: a sexy yeast with a prion problem.

    Science.gov (United States)

    Kelly, Amy C; Wickner, Reed B

    2013-01-01

    Yeast prions are infectious proteins that spread exclusively by mating. The frequency of prions in the wild therefore largely reflects the rate of spread by mating counterbalanced by prion growth slowing effects in the host. We recently showed that the frequency of outcross mating is about 1% of mitotic doublings with 23-46% of total matings being outcrosses. These findings imply that even the mildest forms of the [PSI+], [URE3] and [PIN+] prions impart > 1% growth/survival detriment on their hosts. Our estimate of outcrossing suggests that Saccharomyces cerevisiae is far more sexual than previously thought and would therefore be more responsive to the adaptive effects of natural selection compared with a strictly asexual yeast. Further, given its large effective population size, a growth/survival detriment of > 1% for yeast prions should strongly select against prion-infected strains in wild populations of Saccharomyces cerevisiae. PMID:23764836

  15. Effect of nitrogen and phosphate on the levels of intermediates in bakers' yeast grown in continuous culture

    Energy Technology Data Exchange (ETDEWEB)

    Franco, C.M.M.; Smith, J.E.; Berry, D.R.

    1984-01-01

    Bakers' yeast (Saccharomyces cerevisiae) was grown in continuous culture using a control medium and media which contained low levels of NH4 and phosphate. The effects of medium composition and growth rate on the levels of intermediates of the glycolytic pathways, the tricarboxylic acid cycle, and the glyoxylate cycle were investigated. The energy charge varied only between 0.7 and 0.9 over the range of dilution rates studied; however, the level of ATP decreased by 50% at higher aerobic growth rates. Intermediates of the Embden-Meyerhoff-Parnas pathway were higher at the low aerobic growth rates and decreased as the dilution rate was increased. However, higher levels of these intermediates were also observed at even higher dilution rates at which EtOH formation and fermentative metabolism occurred. Significant differences in levels of intermediates were observed between control experiments and fermentations using the low N and phosphate media. The greatest differences were observed in the levels of glucose 6-phosphate, 6-phosphogluconate, pyruvate, citrate and glyoxlate. Twenty-one different steady states were investigated and each had a unique composition.

  16. Genetic analysis of baker's yeast Msh4-Msh5 reveals a threshold crossover level for meiotic viability.

    Directory of Open Access Journals (Sweden)

    K T Nishant

    2010-08-01

    Full Text Available During meiosis, the Msh4-Msh5 complex is thought to stabilize single-end invasion intermediates that form during early stages of recombination and subsequently bind to Holliday junctions to facilitate crossover formation. To analyze Msh4-Msh5 function, we mutagenized 57 residues in Saccharomyces cerevisiae Msh4 and Msh5 that are either conserved across all Msh4/5 family members or are specific to Msh4 and Msh5. The Msh5 subunit appeared more sensitive to mutagenesis. We identified msh4 and msh5 threshold (msh4/5-t mutants that showed wild-type spore viability and crossover interference but displayed, compared to wild-type, up to a two-fold decrease in crossing over on large and medium sized chromosomes (XV, VII, VIII. Crossing over on a small chromosome, however, approached wild-type levels. The msh4/5-t mutants also displayed synaptonemal complex assembly defects. A triple mutant containing a msh4/5-t allele and mutations that decreased meiotic double-strand break levels (spo11-HA and crossover interference (pch2Δ showed synergistic defects in spore viability. Together these results indicate that the baker's yeast meiotic cell does not require the ∼90 crossovers maintained by crossover homeostasis to form viable spores. They also show that Pch2-mediated crossover interference is important to maintain meiotic viability when crossovers become limiting.

  17. Baker's Yeast Deficient in Storage Lipid Synthesis Uses cis-Vaccenic Acid to Reduce Unsaturated Fatty Acid Toxicity.

    Science.gov (United States)

    Sec, Peter; Garaiova, Martina; Gajdos, Peter; Certik, Milan; Griac, Peter; Hapala, Ivan; Holic, Roman

    2015-07-01

    The role of cis-vaccenic acid (18:1n-7) in the reduction of unsaturated fatty acids toxicity was investigated in baker's yeast Saccharomyces cerevisiae. The quadruple mutant (QM, dga1Δ lro1Δ are1Δ are2Δ) deficient in enzymes responsible for triacylglycerol and steryl ester synthesis has been previously shown to be highly sensitive to exogenous unsaturated fatty acids. We have found that cis-vaccenic acid accumulated during cultivation in the QM cells but not in the corresponding wild type strain. This accumulation was accompanied by a reduction in palmitoleic acid (16:1n-7) content in the QM cells that is consistent with the proposed formation of cis-vaccenic acid by elongation of palmitoleic acid. Fatty acid analysis of individual lipid classes from the QM strain revealed that cis-vaccenic acid was highly enriched in the free fatty acid pool. Furthermore, production of cis-vaccenic acid was arrested if the mechanism of fatty acids release to the medium was activated. We also showed that exogenous cis-vaccenic acid did not affect viability of the QM strain at concentrations toxic for palmitoleic or oleic acids. Moreover, addition of cis-vaccenic acid to the growth medium provided partial protection against the lipotoxic effects of exogenous oleic acid. Transformation of palmitoleic acid to cis-vaccenic acid is thus a rescue mechanism enabling S. cerevisiae cells to survive in the absence of triacylglycerol synthesis as the major mechanism for unsaturated fatty acid detoxification.

  18. Regio- and Stereo-selective Bioreduction of Diketo-n-butylphosphonate by Baker's Yeast

    Institute of Scientific and Technical Information of China (English)

    WANG,Ke(王科); LI,Jin-Feng(李晋峰); YUAN,Cheng-Ye(袁承业); LI,Zu-Yi(李祖义)

    2002-01-01

    A regio- and stereo-selective reduction of diketo-n-butylphos-phonates by baker's yeast was reported. The chemical yield and ee value of these reactions are highly dependent on the structure of substrates. the resulting optical active hydroxyalkanephosphonates can be used as chirons for the synthesis of polyfunctional organophosphorus compounds. As useful building block, a series of α,β-unsaturated ketones bearing chiral hydroxy group in addition to trifluoromethyl moiety was prepared via the Horner-Wadsorth-Emmons (HWE) reaction of the biotransformation products.

  19. Heterologous expression of type I antifreeze peptide GS-5 in baker's yeast increases freeze tolerance and provides enhanced gas production in frozen dough.

    Science.gov (United States)

    Panadero, Joaquin; Randez-Gil, Francisca; Prieto, Jose Antonio

    2005-12-28

    The demand for frozen-dough products has increased notably in the baking industry. Nowadays, no appropriate industrial baker's yeast with optimal gassing capacity in frozen dough is, however, available, and it is unlikely that classical breeding programs could provide significant improvements of this trait. Antifreeze proteins, found in diverse organisms, display the ability to inhibit the growth of ice, allowing them to survive at temperatures below 0 degrees C. In this study a recombinant antifreeze peptide GS-5 was expressed from the polar fish grubby sculpin (Myoxocephalus aenaeus) in laboratory and industrial baker's yeast strains of Saccharomyces cerevisiae. Production of the recombinant protein increased freezing tolerance in both strains tested. Furthermore, expression of the GS-5 encoding gene enhanced notably the gassing rate and total gas production in frozen and frozen sweet doughs. These effects are unlikely to be due to reduced osmotic damage during freezing/thawing, because recombinant cells showed growth behavior similar to that of the parent under hypermosmotic stress conditions. PMID:16366681

  20. TOTAL ANTIOXIDANT ACTIVITY OF YEAST SACCHAROMYCES CEREVISIAE

    OpenAIRE

    Blažena Lavová; Dana Urminská

    2013-01-01

    Antioxidants are health beneficial compounds that can protect cells and macromolecules (e.g. fats, lipids, proteins and DNA) from the damage of reactive oxygen species (ROS). Sacchamomyces cerevisiae are know as organisms with very important antioxidative enzyme systems such as superoxide dismutase or catalase. The total antioxidant activity (mmol Trolox equivalent – TE.g-1 d.w.) of Saccharomyces cerevisiae was measured by 2,2´-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) during the yeas...

  1. Domestication and Divergence of Saccharomyces cerevisiae Beer Yeasts.

    Science.gov (United States)

    Gallone, Brigida; Steensels, Jan; Prahl, Troels; Soriaga, Leah; Saels, Veerle; Herrera-Malaver, Beatriz; Merlevede, Adriaan; Roncoroni, Miguel; Voordeckers, Karin; Miraglia, Loren; Teiling, Clotilde; Steffy, Brian; Taylor, Maryann; Schwartz, Ariel; Richardson, Toby; White, Christopher; Baele, Guy; Maere, Steven; Verstrepen, Kevin J

    2016-09-01

    Whereas domestication of livestock, pets, and crops is well documented, it is still unclear to what extent microbes associated with the production of food have also undergone human selection and where the plethora of industrial strains originates from. Here, we present the genomes and phenomes of 157 industrial Saccharomyces cerevisiae yeasts. Our analyses reveal that today's industrial yeasts can be divided into five sublineages that are genetically and phenotypically separated from wild strains and originate from only a few ancestors through complex patterns of domestication and local divergence. Large-scale phenotyping and genome analysis further show strong industry-specific selection for stress tolerance, sugar utilization, and flavor production, while the sexual cycle and other phenotypes related to survival in nature show decay, particularly in beer yeasts. Together, these results shed light on the origins, evolutionary history, and phenotypic diversity of industrial yeasts and provide a resource for further selection of superior strains. PAPERCLIP.

  2. Domestication and Divergence of Saccharomyces cerevisiae Beer Yeasts.

    Science.gov (United States)

    Gallone, Brigida; Steensels, Jan; Prahl, Troels; Soriaga, Leah; Saels, Veerle; Herrera-Malaver, Beatriz; Merlevede, Adriaan; Roncoroni, Miguel; Voordeckers, Karin; Miraglia, Loren; Teiling, Clotilde; Steffy, Brian; Taylor, Maryann; Schwartz, Ariel; Richardson, Toby; White, Christopher; Baele, Guy; Maere, Steven; Verstrepen, Kevin J

    2016-09-01

    Whereas domestication of livestock, pets, and crops is well documented, it is still unclear to what extent microbes associated with the production of food have also undergone human selection and where the plethora of industrial strains originates from. Here, we present the genomes and phenomes of 157 industrial Saccharomyces cerevisiae yeasts. Our analyses reveal that today's industrial yeasts can be divided into five sublineages that are genetically and phenotypically separated from wild strains and originate from only a few ancestors through complex patterns of domestication and local divergence. Large-scale phenotyping and genome analysis further show strong industry-specific selection for stress tolerance, sugar utilization, and flavor production, while the sexual cycle and other phenotypes related to survival in nature show decay, particularly in beer yeasts. Together, these results shed light on the origins, evolutionary history, and phenotypic diversity of industrial yeasts and provide a resource for further selection of superior strains. PAPERCLIP. PMID:27610566

  3. Genome annotation of a Saccharomyces sp. lager brewer's yeast

    Directory of Open Access Journals (Sweden)

    Patricia Marcela De León-Medina

    2016-09-01

    Full Text Available The genome of lager brewer's yeast is a hybrid, with Saccharomyces eubayanus and Saccharomyces cerevisiae as sub-genomes. Due to their specific use in the beer industry, relatively little information is available. The genome of brewing yeast was sequenced and annotated in this study. We obtained a genome size of 22.7 Mbp that consisted of 133 scaffolds, with 65 scaffolds larger than 10 kbp. With respect to the annotation, 9939 genes were obtained, and when they were submitted to a local alignment, we found that 53.93% of these genes corresponded to S. cerevisiae, while another 42.86% originated from S. eubayanus. Our results confirm that our strain is a hybrid of at least two different genomes.

  4. Genome annotation of a Saccharomyces sp. lager brewer's yeast.

    Science.gov (United States)

    De León-Medina, Patricia Marcela; Elizondo-González, Ramiro; Damas-Buenrostro, Luis Cástulo; Geertman, Jan-Maarten; Van den Broek, Marcel; Galán-Wong, Luis Jesús; Ortiz-López, Rocío; Pereyra-Alférez, Benito

    2016-09-01

    The genome of lager brewer's yeast is a hybrid, with Saccharomyces eubayanus and Saccharomyces cerevisiae as sub-genomes. Due to their specific use in the beer industry, relatively little information is available. The genome of brewing yeast was sequenced and annotated in this study. We obtained a genome size of 22.7 Mbp that consisted of 133 scaffolds, with 65 scaffolds larger than 10 kbp. With respect to the annotation, 9939 genes were obtained, and when they were submitted to a local alignment, we found that 53.93% of these genes corresponded to S. cerevisiae, while another 42.86% originated from S. eubayanus. Our results confirm that our strain is a hybrid of at least two different genomes. PMID:27330999

  5. Biogeographical characterization of Saccharomyces cerevisiae wine yeast by molecular methods

    OpenAIRE

    Tofalo, Rosanna; Perpetuini, Giorgia; Schirone, Maria; Fasoli, Giuseppe; Aguzzi, Irene; Corsetti, Aldo; Suzzi, Giovanna

    2013-01-01

    Biogeography is the descriptive and explanatory study of spatial patterns and processes involved in the distribution of biodiversity. Without biogeography, it would be difficult to study the diversity of microorganisms because there would be no way to visualize patterns in variation. Saccharomyces cerevisiae, “the wine yeast,” is the most important species involved in alcoholic fermentation, and in vineyard ecosystems, it follows the principle of “everything is everywhere.” Agricultural pract...

  6. Diversity and adaptive evolution of Saccharomyces wine yeast: a review

    OpenAIRE

    Marsit, Souhir; Dequin, Sylvie

    2015-01-01

    Saccharomyces cerevisiae and related species, the main workhorses of wine fermentation, have been exposed to stressful conditions for millennia, potentially resulting in adaptive differentiation. As a result, wine yeasts have recently attracted considerable interest for studying the evolutionary effects of domestication. The widespread use of whole-genome sequencing during the last decade has provided new insights into the biodiversity, population structure, phylogeography and evolutionary hi...

  7. Dissection of transcriptional regulation networks and prediction of gene functions in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    A. Boorsma

    2008-01-01

    Molecular biology aims to unravel the functions of cells by studying cellular processes at the molecular level. Amodel organism that is well established in molecular biology is bakers yeast (Saccharomyces cerevisiae). Bakers yeast cells are remarkably similar to human cells, but much easier to grow

  8. Growth of non-Saccharomyces yeasts affects nutrient availability for Saccharomyces cerevisiae during wine fermentation.

    Science.gov (United States)

    Medina, Karina; Boido, Eduardo; Dellacassa, Eduardo; Carrau, Francisco

    2012-07-01

    Yeast produces numerous secondary metabolites during fermentation that impact final wine quality. Although it is widely recognized that growth of diverse non-Saccharomyces (NS) yeast can positively affect flavor complexity during Saccharomyces cerevisiae wine fermentation, the inability to control spontaneous or co-fermentation processes by NS yeast has restricted their use in winemaking. We selected two NS yeasts from our Uruguayan native collection to study NS-S. cerevisiae interactions during wine fermentation. The selected strains of Hanseniaspora vineae and Metschnikowia pulcherrima had different yeast assimilable nitrogen consumption profiles and had different effects on S. cerevisiae fermentation and growth kinetics. Studies in which we varied inoculum size and using either simultaneous or sequential inoculation of NS yeast and S. cerevisiae suggested that competition for nutrients had a significant effect on fermentation kinetics. Sluggish fermentations were more pronounced when S. cerevisiae was inoculated 24h after the initial stage of fermentation with a NS strain compared to co-inoculation. Monitoring strain populations using differential WL nutrient agar medium and fermentation kinetics of mixed cultures allowed for a better understanding of strain interactions and nutrient addition effects. Limitation of nutrient availability for S. cerevisiae was shown to result in stuck fermentations as well as to reduce sensory desirability of the resulting wine. Addition of diammonium phosphate (DAP) and a vitamin mix to a defined medium allowed for a comparison of nutrient competition between strains. Addition of DAP and the vitamin mix was most effective in preventing stuck fermentations. PMID:22687186

  9. Biosorption behavior of strontium ions and mechanism analysis on baker's yeast

    International Nuclear Information System (INIS)

    The baker's yeast was utilized as biosorption material to remove Sr2+ from simulant aqueous solution. The effect factors on biosorption were analyzed, which included pH values, initial concentration (co) , adsorbent concentration (ρm), and temperature (t). Meanwhile, the correlation biosorption thermodynamics was analyzed and the mechanism of biosorption was researched. The results show that the optimum condition for biosorption is as follows: pH=4.5, t=30℃, c0 =1.0 mmol/L, ρm =4.0 g/L. The isotherm adsorption curve of Sr2+ under different temperatures accords well with the Langmuir and Freunlich absorption models, and both R2 are above 0.988. The biosorption of Sr2+ by yeast can proceed spontaneously under different temperatures. And the higher temperature is in favour of the spontaneous process of Sr2+ biosorption at the range of 10-30℃. The analysis indicates that there is chemisorption in the course of Sr2+ biosorption by yeast. The components of yeast cell, including polysaccharide and amide protein, are involved in the Sr2+ biosorption. And the principal absorption sites are the active sites on the cell wall surface. (authors)

  10. The Isolation of Invertase from Baker's Yeast: A Four-Part Exercise in Protein Purification and Characterization

    Science.gov (United States)

    Timerman, Anthony P.; Fenrick, Angela M.; Zamis, Thomas M.

    2009-01-01

    A sequence of exercises for the isolation and characterization of invertase (E.C. 3.1.2.26) from baker's yeast obtained from a local grocery store is outlined. Because the enzyme is colorless, the use of colored markers and the sequence of purification steps are designed to "visualize" the process by which a colorless protein is selectively…

  11. Diversity and adaptive evolution of Saccharomyces wine yeast: a review.

    Science.gov (United States)

    Marsit, Souhir; Dequin, Sylvie

    2015-11-01

    Saccharomyces cerevisiae and related species, the main workhorses of wine fermentation, have been exposed to stressful conditions for millennia, potentially resulting in adaptive differentiation. As a result, wine yeasts have recently attracted considerable interest for studying the evolutionary effects of domestication. The widespread use of whole-genome sequencing during the last decade has provided new insights into the biodiversity, population structure, phylogeography and evolutionary history of wine yeasts. Comparisons between S. cerevisiae isolates from various origins have indicated that a variety of mechanisms, including heterozygosity, nucleotide and structural variations, introgressions, horizontal gene transfer and hybridization, contribute to the genetic and phenotypic diversity of S. cerevisiae. This review will summarize the current knowledge on the diversity and evolutionary history of wine yeasts, focusing on the domestication fingerprints identified in these strains.

  12. Optimization of feeding strategy for the ergosterol production by yeasts Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Mojmir Rychtera

    2010-08-01

    Full Text Available Objective of this study was to optimize ergosterol production by yeast strain Saccharomyces cerevisiae with the use of computer controlled feeding of cultivation medium. Baker´s yeasts strain of Saccharomyces cerevisiae originally modified and selected as mutant D7 was further applied in an industrial scale and also in this investigation. Composition of cultivation medium was optimized with the use of a modified Rosenbrock´s method with regard to following components: glucose, yeast extract, ammonium sulphate, potassium dihydrogen phosphate, magnesium sulphate and calcium chloride. Cultivation of yeast culture was performed in 7 L laboratory bioreactor with a working volume of 5 L equipped with a control unit and linked to a computer, with dissolved oxygen tension measurement, oxygen and carbon dioxide analyzers. BIOGENES prototype software was created from the commercial control system Genesis for Windows 3.0 (GFW, from Iconics and CLIPS 6.04 for the PC-Windows platform. From various factors affecting sterol biosynthesis a specific growth rate was chosen. Feed rate was controlled according to mathematical model. In this case it dealt with a design of optimal profile of specific growth rate with consequent calculation of carbon dioxide profile. Sterol concentration in the dry biomass increased from 1.0 % up to 3 %. Key words: Saccharomyces cerevisiae yeasts, ergosterol, fed-batch cultivation control, effect of the specific growth rate. Resumen: El objetivo de este estudio fue optimizar la producción de ergosterol por una cepa de levadura Saccharomyces cerevisiae, controlando la alimentación de medio de cultivo por computadora. La cepa de levadura panadera Saccharomyces cerevisiae originalmente modificada y seleccionada como mutante D7 fue posteriormente utilizada a escala industrial y también para esta investigación. La composición del medio de cultivo fue optimizada usando el método modificado de Rosenbrock respecto a los siguientes

  13. Selection of yeasts for breadmaking by the frozen-dough method.

    Science.gov (United States)

    Oda, Y; Uno, K; Ohta, S

    1986-10-01

    Eleven yeast strains suitable for frozen dough were selected from over 300 Saccharomyces strains. All of these were identified as Saccharomyces cerevisiae from morphological, cultural, and physiological characteristics. The selected yeast cells accumulated a higher amount of trehalose than did commercial bakers' yeast cells. PMID:16347187

  14. Selection of Yeasts for Breadmaking by the Frozen-Dough Method

    OpenAIRE

    Oda, Yuji; UNO, Kazuo; Ohta, Shigenori

    1986-01-01

    Eleven yeast strains suitable for frozen dough were selected from over 300 Saccharomyces strains. All of these were identified as Saccharomyces cerevisiae from morphological, cultural, and physiological characteristics. The selected yeast cells accumulated a higher amount of trehalose than did commercial bakers' yeast cells.

  15. Effect of Yeast : Saccharomyces cerevisiae and Marine Yeast as probiotic supplement on performance of poultry

    Directory of Open Access Journals (Sweden)

    I Putu Kompiang

    2002-03-01

    Full Text Available An experiment had been conducted to evaluate the effect of marine yeast and Saccharomyces cerevisiae (Sc as probiotic supplement on poultry performance. Marine yeast isolated from rotten sea-weed and commercial Saccharomyces cerevisiae were used. Evaluation was conducted by comparing performance of broiler chicken supplemented with marine yeast or Sc, which were given through drinking water (5 ml/l to negative control (feed without antibiotic growth promotor/GPA, positive control (feed with GPA, and reference commercial probiotic. Forty DOC broiler birds were used for each treatment, divided into 4 replicates (10 birds/replicate and raised in wire cages for 5 weeks. Body weight and feed consumption were measured weekly and mortality was recorded during the trial. The results showed that there were no significant difference on the birds performance among marine yeast, Sc, positive control and probiotic reference control treatments. However their effects on bird performance were better (P<0.05 than treatment of negative control. It is concluded that marine yeast or Saccharomyces cerevisiae could replace the function of antibiotic as a growth promotant.

  16. Interactions between Drosophila and its natural yeast symbionts-Is Saccharomyces cerevisiae a good model for studying the fly-yeast relationship?

    Science.gov (United States)

    Hoang, Don; Kopp, Artyom; Chandler, James Angus

    2015-01-01

    Yeasts play an important role in the biology of the fruit fly, Drosophila melanogaster. In addition to being a valuable source of nutrition, yeasts affect D. melanogaster behavior and interact with the host immune system. Most experiments investigating the role of yeasts in D. melanogaster biology use the baker's yeast, Saccharomyces cerevisiae. However, S. cerevisiae is rarely found with natural populations of D. melanogaster or other Drosophila species. Moreover, the strain of S. cerevisiae used most often in D. melanogaster experiments is a commercially and industrially important strain that, to the best of our knowledge, was not isolated from flies. Since disrupting natural host-microbe interactions can have profound effects on host biology, the results from D. melanogaster-S. cerevisiae laboratory experiments may not be fully representative of host-microbe interactions in nature. In this study, we explore the D. melanogaster-yeast relationship using five different strains of yeast that were isolated from wild Drosophila populations. Ingested live yeasts have variable persistence in the D. melanogaster gastrointestinal tract. For example, Hanseniaspora occidentalis persists relative to S. cerevisiae, while Brettanomyces naardenensis is removed. Despite these differences in persistence relative to S. cerevisiae, we find that all yeasts decrease in total abundance over time. Reactive oxygen species (ROS) are an important component of the D. melanogaster anti-microbial response and can inhibit S. cerevisiae growth in the intestine. To determine if sensitivity to ROS explains the differences in yeast persistence, we measured yeast growth in the presence and absence of hydrogen peroxide. We find that B. naardenesis is completely inhibited by hydrogen peroxide, while H. occidentalis is not, which is consistent with yeast sensitivity to ROS affecting persistence within the D. melanogaster gastrointestinal tract. We also compared the feeding preference of D

  17. Improved synchronous light scattering method for measuring baker's yeast biomass using thickened suspensions.

    Science.gov (United States)

    Wang, Zhen; Guo, Xiangfeng; Jia, Lihua; Ding, Ying

    2013-08-01

    Measuring yeast biomass is important in the processes of microbial fermentations. It has been demonstrated that synchronous light scattering (SLS) signals could be applied for the quantification of model bioparticles such as Saccharomyces cerevisiae. In this study, an improved synchronous light scattering method was developed for yeast biomass estimation. The settlement of yeast cells during SLS signals measuring process was studied, and hydrolysis anionic polyacrylamide was added into yeast suspensions to increase the stability of the cells in liquid environment. By simultaneously scanning both the excitation and emission monochromators of a common spectrofluorometer with same starting excitation and emission wavelength (namely, ∆λ = 0), the SLS intensity was found to be proportional to the yeast concentration in the range from 0 to 4.9 × 10(6) cell/mL (R (2) = 0.9907), the detection limit is 8.1 × 10(3) cell/mL. The developed method exhibited good stability and sensitivity in the recovery test and growth curve drawing process, demonstrating the potential of the method in practical application of biomass estimation. PMID:23529355

  18. Thermal resistance of Saccharomyces yeast ascospores in beers.

    Science.gov (United States)

    Milani, Elham A; Gardner, Richard C; Silva, Filipa V M

    2015-08-01

    The industrial production of beer ends with a process of thermal pasteurization. Saccharomyces cerevisiae and Saccharomyces pastorianus are yeasts used to produce top and bottom fermenting beers, respectively. In this research, first the sporulation rate of 12 Saccharomyces strains was studied. Then, the thermal resistance of ascospores of three S. cerevisiae strains (DSMZ 1848, DSMZ 70487, Ethanol Red(®)) and one strain of S. pastorianus (ATCC 9080) was determined in 4% (v/v) ethanol lager beer. D60 °C-values of 11.2, 7.5, 4.6, and 6.0 min and z-values of 11.7, 14.3, 12.4, and 12.7 °C were determined for DSMZ 1848, DSMZ 70487, ATCC 9080, and Ethanol Red(®), respectively. Lastly, experiments with 0 and 7% (v/v) beers were carried out to investigate the effect of ethanol content on the thermal resistance of S. cerevisiae (DSMZ 1848). D55 °C-values of 34.2 and 15.3 min were obtained for 0 and 7% beers, respectively, indicating lower thermal resistance in the more alcoholic beer. These results demonstrate similar spore thermal resistance for different Saccharomyces strains and will assist in the design of appropriate thermal pasteurization conditions for preserving beers with different alcohol contents. PMID:25996521

  19. Functional Genomics Using the Saccharomyces cerevisiae Yeast Deletion Collections.

    Science.gov (United States)

    Nislow, Corey; Wong, Lai Hong; Lee, Amy Huei-Yi; Giaever, Guri

    2016-01-01

    Constructed by a consortium of 16 laboratories, the Saccharomyces genome-wide deletion collections have, for the past decade, provided a powerful, rapid, and inexpensive approach for functional profiling of the yeast genome. Loss-of-function deletion mutants were systematically created using a polymerase chain reaction (PCR)-based gene deletion strategy to generate a start-to-stop codon replacement of each open reading frame by homologous recombination. Each strain carries two molecular barcodes that serve as unique strain identifiers, enabling their growth to be analyzed in parallel and the fitness contribution of each gene to be quantitatively assessed by hybridization to high-density oligonucleotide arrays or through the use of next-generation sequencing technologies. Functional profiling of the deletion collections, using either strain-by-strain or parallel assays, provides an unbiased approach to systematically survey the yeast genome. The Saccharomyces yeast deletion collections have proved immensely powerful in contributing to the understanding of gene function, including functional relationships between genes and genetic pathways in response to diverse genetic and environmental perturbations. PMID:27587784

  20. Improving freeze-tolerance of baker's yeast through seamless gene deletion of NTH1 and PUT1.

    Science.gov (United States)

    Dong, Jian; Chen, Didi; Wang, Guanglu; Zhang, Cuiying; Du, Liping; Liu, Shanshan; Zhao, Yu; Xiao, Dongguang

    2016-06-01

    Baker's yeast strains with freeze-tolerance are highly desirable to maintain high leavening ability after freezing. Enhanced intracellular concentration of trehalose and proline in yeast is linked with freeze-tolerance. In this study, we constructed baker's yeast with enhanced freeze-tolerance by simultaneous deletion of the neutral trehalase-encoded gene NTH1 and the proline oxidase-encoded gene PUT1. We first used the two-step integration-based seamless gene deletion method to separately delete NTH1 and PUT1 in haploid yeast. Subsequently, through two rounds of hybridization and sporulation-based allelic exchange and colony PCR-mediated tetrad analysis, we obtained strains with restored URA3 and deletion of NTH1 and/or PUT1. The resulting strain showed higher cell survival and dough-leavening ability after freezing compared to the wild-type strain due to enhanced accumulation of trehalose and/or proline. Moreover, mutant with simultaneous deletion of NTH1 and PUT1 exhibits the highest relative dough-leavening ability after freezing compared to mutants with single-gene deletion perhaps due to elevated levels of both trehalose and proline. These results verified that it is applicable to construct frozen dough baker's yeast using the method proposed in this paper. PMID:26965428

  1. Sequence analysis of three mitochondrial DNA molecules reveals interesting differences among Saccharomyces yeasts

    DEFF Research Database (Denmark)

    Langkjær, Rikke Breinhold; Casaregola, S.; Ussery, David;

    2003-01-01

    The complete sequences of mitochondrial DNA ( mtDNA) from the two budding yeasts Saccharomyces castellii and Saccharomyces servazzii, consisting of 25 753 and 30 782 bp, respectively, were analysed and compared to Saccharomyces cerevisiae mtDNA. While some of the traits are very similar among...

  2. Gene engineering in yeast for biodegradation: Immunological cross-reactivity among cytochrome p-450 system proteins of saccharomyces cerevisiae and candida tropicalis

    Energy Technology Data Exchange (ETDEWEB)

    Loper, J.C.; Chen, C.; Dey, C.R.

    1993-01-01

    Yeasts are eukaryotic microorganisms whose cytochrome P-450 monooxygenase systems may be amenable to genetic engineering for the hydroxylation and detoxication of polychlorinated aromatic hydrocarbons. The molecular genetic properties of strains of bakers yeast, Saccharomyces cerevisiae, and an n-alkane utilizing yeast, Candida tropicalis ATCC750 are examined. Standard methods were used to purify cytochrome P-450 and NADPH-cytochrome c (P-450) reductase proteins from cells cultured by semi-anaerobic glucose fermentation (S. cerevisiae, C. tropicalis) and by growth on tetradecane (C. tropicalis). Polyvalent antisera prepared in rabbits to some of these proteins were used in tests of immunological relatedness among the purified proteins using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and nitrocellulose filter immunoblots. The results provide evidence for gene relationships which should prove useful in gene isolation and subsequent engineering of P-450 enzyme systems in yeast.

  3. Use of bimolecular fluorescence complementation in yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Skarp, Kari-Pekka; Zhao, Xueqiang; Weber, Marion; Jantti, Jussi

    2008-01-01

    Visualization of protein-protein interactions in vivo offers a powerful tool to resolve spatial and temporal aspects of cellular functions. Bimolecular fluorescence complementation (BiFC) makes use of nonfluorescent fragments of green fluorescent protein or its variants that are added as "tags" to target proteins under study. Only upon target protein interaction is a fluorescent protein complex assembled and the site of interaction can be monitored by microscopy. In this chapter, we describe the method and tools for use of BiFC in the yeast Saccharomyces cerevisiae. PMID:19066026

  4. Symmetric cell division in pseudohyphae of the yeast Saccharomyces cerevisiae.

    OpenAIRE

    Kron, S J; Styles, C. A.; Fink, G R

    1994-01-01

    Laboratory strains of Saccharomyces cerevisiae are dimorphic; in response to nitrogen starvation they switch from a yeast form (YF) to a filamentous pseudohyphal (PH) form. Time-lapse video microscopy of dividing cells reveals that YF and PH cells differ in their cell cycles and budding polarity. The YF cell cycle is controlled at the G1/S transition by the cell-size checkpoint Start. YF cells divide asymmetrically, producing small daughters from full-sized mothers. As a result, mothers and d...

  5. Effect of menadione and hydrogen peroxide on catalase activity in Saccharomyces yeast strains

    OpenAIRE

    Nadejda EFREMOVA; Elena MOLODOI; Agafia USATÎI; Ludmila FULGA; Tamara BORISOVA

    2013-01-01

    It has been studied the possibility of utilization of two important oxidant factors as regulators of catalase activity in Saccharomyces yeasts. In this paper results of the screening of some Saccharomyces yeast strains for potential producers of catalase are presented. Results of the screening for potential catalase producer have revealed that Saccharomyces cerevisiae CNMN-Y-11 strain possesses the highest catalase activity (2900 U/mg protein) compared with other samples. Maximum increase of ...

  6. [Constructing recombinant plasmid pSH-CUP and knockout of acid trehalase gene in baker's yeast].

    Science.gov (United States)

    He, Dongqin; Xiao, Dongguang; Lv, Ye

    2008-02-01

    The ATH1 gene encoded acid trehalase in Saccharomyces cerevisiae. The gene disruption cassette combined the heterologous dominant kan(r) resistance marker with a Cre/loxP-mediated marker removal procedure. The gene disruption cassette was produced by PCR using the same long oligonucleotides comprising 50 nucleotides that annealed to sites upstream or downstream of the genomic target sequence to be deleted. After transformation of the linear disruption cassettes with a Cre/loxP-mediated marker into the cells of Saccharomyces cerevisiae BY-6, selected transformants were checked by PCR for correct the integration of the cassette and concurrent deletion of the chromosomal target sequence. The copper-resistance gene (CUP1-MT1) was cloned into pSH47, which yielded pSH-CUP. The recombinant plasmid pSH-CUP was transformed into the cells of Saccharomyces cerevisiae BY-6(delta ATH1, G418(r)), and transformants were selected for copper resistance. Upon expression of the Cre recombinase results in removal of the kan(r) gene, leaving behind a single loxP site at the chromosomal locus. Construction of the recombinant plasmid pSH-CUP avoided inserting non-yeast gene and made the loxP - kanMX - loxP gene disruption cassette more conventional for eukaryotic organism gene disruption.

  7. Long-chain alkane production by the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Buijs, Nicolaas A; Zhou, Yongjin J; Siewers, Verena; Nielsen, Jens

    2015-06-01

    In the past decade industrial-scale production of renewable transportation biofuels has been developed as an alternative to fossil fuels, with ethanol as the most prominent biofuel and yeast as the production organism of choice. However, ethanol is a less efficient substitute fuel for heavy-duty and maritime transportation as well as aviation due to its low energy density. Therefore, new types of biofuels, such as alkanes, are being developed that can be used as drop-in fuels and can substitute gasoline, diesel, and kerosene. Here, we describe for the first time the heterologous biosynthesis of long-chain alkanes by the yeast Saccharomyces cerevisiae. We show that elimination of the hexadecenal dehydrogenase Hfd1 and expression of a redox system are essential for alkane biosynthesis in yeast. Deletion of HFD1 together with expression of an alkane biosynthesis pathway resulted in the production of the alkanes tridecane, pentadecane, and heptadecane. Our study provides a proof of principle for producing long-chain alkanes in the industrial workhorse S. cerevisiae, which was so far limited to bacteria. We anticipate that these findings will be a key factor for further yeast engineering to enable industrial production of alkane based drop-in biofuels, which can allow the biofuel industry to diversify beyond bioethanol.

  8. Membrane Trafficking in the Yeast Saccharomyces cerevisiae Model

    Directory of Open Access Journals (Sweden)

    Serge Feyder

    2015-01-01

    Full Text Available The yeast Saccharomyces cerevisiae is one of the best characterized eukaryotic models. The secretory pathway was the first trafficking pathway clearly understood mainly thanks to the work done in the laboratory of Randy Schekman in the 1980s. They have isolated yeast sec mutants unable to secrete an extracellular enzyme and these SEC genes were identified as encoding key effectors of the secretory machinery. For this work, the 2013 Nobel Prize in Physiology and Medicine has been awarded to Randy Schekman; the prize is shared with James Rothman and Thomas Südhof. Here, we present the different trafficking pathways of yeast S. cerevisiae. At the Golgi apparatus newly synthesized proteins are sorted between those transported to the plasma membrane (PM, or the external medium, via the exocytosis or secretory pathway (SEC, and those targeted to the vacuole either through endosomes (vacuolar protein sorting or VPS pathway or directly (alkaline phosphatase or ALP pathway. Plasma membrane proteins can be internalized by endocytosis (END and transported to endosomes where they are sorted between those targeted for vacuolar degradation and those redirected to the Golgi (recycling or RCY pathway. Studies in yeast S. cerevisiae allowed the identification of most of the known effectors, protein complexes, and trafficking pathways in eukaryotic cells, and most of them are conserved among eukaryotes.

  9. Membrane trafficking in the yeast Saccharomyces cerevisiae model.

    Science.gov (United States)

    Feyder, Serge; De Craene, Johan-Owen; Bär, Séverine; Bertazzi, Dimitri L; Friant, Sylvie

    2015-01-09

    The yeast Saccharomyces cerevisiae is one of the best characterized eukaryotic models. The secretory pathway was the first trafficking pathway clearly understood mainly thanks to the work done in the laboratory of Randy Schekman in the 1980s. They have isolated yeast sec mutants unable to secrete an extracellular enzyme and these SEC genes were identified as encoding key effectors of the secretory machinery. For this work, the 2013 Nobel Prize in Physiology and Medicine has been awarded to Randy Schekman; the prize is shared with James Rothman and Thomas Südhof. Here, we present the different trafficking pathways of yeast S. cerevisiae. At the Golgi apparatus newly synthesized proteins are sorted between those transported to the plasma membrane (PM), or the external medium, via the exocytosis or secretory pathway (SEC), and those targeted to the vacuole either through endosomes (vacuolar protein sorting or VPS pathway) or directly (alkaline phosphatase or ALP pathway). Plasma membrane proteins can be internalized by endocytosis (END) and transported to endosomes where they are sorted between those targeted for vacuolar degradation and those redirected to the Golgi (recycling or RCY pathway). Studies in yeast S. cerevisiae allowed the identification of most of the known effectors, protein complexes, and trafficking pathways in eukaryotic cells, and most of them are conserved among eukaryotes.

  10. INVESTIGATIONS INTO MAGNESIUM BIOSORPTION BY WASTE BREWERY YEAST SACCHAROMYCES UVARUM

    Directory of Open Access Journals (Sweden)

    Małgorzata Gniewosz

    2007-03-01

    Full Text Available Investigations were carried out into the capacity of waste brewery yeast Saccharomyces uvarum for biosorption of magnesium originated from a solution of dehydrated salt of magnesium chloride, depending on the number of cells and diferent pH of the suspension during 6 hours. The concentration of MgCl2•6H2O in the solution was adjusted so as to maintain a stable content of magnesium as expressed per pure element, i.e. 1.25 g/dm3 of solution. In the first stage, the number of cells was differentiated in yeast slurry through either condensation or dilution. In the second stage, pH of yeast suspension was differentiated (pH 5.5, 6.0 and 7.0 at a constant number of cells. The solutions examined were kept under anaerobic and aerobic conditions. Determination of magnesium content of yeast biomass was carried out with the method of atomic adsorption spectroscopy after 15 min, 1 h, 2 h, 4 h and 6 h of experiments. The highest content of magnesium (13.76 mg/g d.m. was obtained at the lowest number of cells in the solution, i.e. 3.5 × 108 cells/cm3 under aerobic conditions. An increase in solution pH facilitated biosorption of magnesium by the yeast. At pH 7.0, after 6 hours of the experiment, the yeasts contained 15.19 mg Mg/g d.m. when kept under anaerobic conditions and 17.22 mg Mg/g d.m. when kept under aerobic conditions.

  11. PHENOTYPES INVESTIGATION IN THE YEAST SACCHAROMYCES CEREVISIAE ISOLATED FROM DIFFERENT GRAPE CULTIVARS FOLLOWIG FERMENTATION

    OpenAIRE

    Bayraktar V. N.

    2012-01-01

    Micobiological investigation was carried out on Saccharomyces cerevisiae yeast cultures, which were isolated from different varieties of vintage grape harvested from the ―Koblevo‖ winery, Nikolaev region of Ukraine. It was determined that wild yeast cultures tend to be of one of three different phenotypes. For comparison and reference, investigation of test cultures was performed with previously known phenotypes and yeast cultures Saccharomyces cerevisiae used in wine industry. It was noted...

  12. Effect of sodium chloride on bakers' yeast growing in gelatin

    Energy Technology Data Exchange (ETDEWEB)

    Wei, C.J.; Tanner, R.D.; Malaney, G.W.

    1982-04-01

    In recent years, industrial fermentation researchers have shifted their attention from liquid to solid and semisolid culture conditions. We converted liquid cultures to the semisolid mode by adding high levels of gelatin. Previous studies on liquid cultures have revealed the inhibitory activity of mineral salts, such as NaCl, on the fermentation of sugars by yeasts. We made a kinetic study of the effects of 1 to 5% (wt/vol) NaCl on the alcoholic fermentations of glucose by Saccharomyces cerevisiae in a growth medium containing 16% gelatin. Our results showed that the effect of high salt content on semisolid culture is essentially the same as the effect on liquid culture; i.e., as the salt content increased, the following occurred: (i) the growth of yeasts decreased, (ii) the lag period of the yeast biomass curve lengthened, (iii) the sugar intake was lowered, (iv) the yield of ethanol was reduced and (v) the production of glycerol was increased. We observed a new relationship correlating the area of kinetic hysteresis with ethanol production rate, acetaldehyde concentration, and the initial NaCl concentration. (Refs. 20).

  13. The comparison of Cu(Ⅱ) adsorption capability of baker's yeast, nano-titania and their composite adsorbent

    Institute of Scientific and Technical Information of China (English)

    ZHANG YunSong; WANG RenGuo; WANG XianXiang; LEI SanZhong; TONG DongMei

    2008-01-01

    The anatase nano-TiO2 powder, with crystal size between 40 and 80 nm, was prepared by the liquid phase hydrolysis of TiOCI4. At the same time, the nano-TiO2was utilized with the baker's yeast biomass as a composite adsorbent to adsorb the Cu ions in the artificial aqueous solution. The investigation showed that the composite adsorbent had a fine adsorption efficiency. The TiO2 in the composite ad-sorbent could cooperate well with baker's yeast to improve the adsorbing capability of Cu2+ under the following experimental conditions as well: a quantity of composite adsorbent of 5 g·L-1, pH≥4.0, an adsorption time of 40 rain and an initial concentration of Cu ions of 10 mg·L-1. In addition, the results of measurements, obtained with a scanning electron microscope, an infrared spectrophotometer and a Zeta potential analyzer, revealed that the baker's yeast and nano-TiO2 produced the composite ad-sorbent through coordination and hydrogen bonds in particular, etc. The stability of the composite adsorbent and the amount of titania loaded were largely dependent on the concentration of hydrogen ion in the solution.

  14. On-line optimal control for fed-batch culture of baker's yeast production

    Energy Technology Data Exchange (ETDEWEB)

    Wu, W.T.; Chen, K.C.; Chiou, H.W.

    1985-05-01

    A method of on-line optimal control for fed-batch culture of bakers yeast production is proposed. The feed rate is taken as the control variable. The specific growth rate of the yeast is the output variable and is determined from the balance equation of oxygen. A moving model is obtained by using the data from the feed rate and the specific growth rate. Based on the moving model, an optimal feed rate for fed-batch culture is then achieved. 11 references.

  15. Tanshinones extend chronological lifespan in budding yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Wu, Ziyun; Song, Lixia; Liu, Shao Quan; Huang, Dejian

    2014-10-01

    Natural products with anti-aging property have drawn great attention recently but examples of such compounds are exceedingly scarce. By applying a high-throughput assay based on yeast chronological lifespan measurement, we screened the anti-aging activity of 144 botanical materials and found that dried roots of Salvia miltiorrhiza Bunge have significant anti-aging activity. Tanshinones isolated from the plant including cryptotanshione, tanshinone I, and tanshinone IIa, are the active components. Among them, cryptotanshinone can greatly extend the budding yeast Saccharomyces cerevisiae chronological lifespan (up to 2.5 times) in a dose- and the-time-of-addition-dependent manner at nanomolar concentrations without disruption of cell growth. We demonstrate that cryptotanshinone prolong chronological lifespan via a nutrient-dependent regime, especially essential amino acid sensing, and three conserved protein kinases Tor1, Sch9, and Gcn2 are required for cryptotanshinone-induced lifespan extension. In addition, cryptotanshinone significantly increases the lifespan of SOD2-deleted mutants. Altogether, those data suggest that cryptotanshinone might be involved in the regulation of, Tor1, Sch9, Gcn2, and Sod2, these highly conserved longevity proteins modulated by nutrients from yeast to humans.

  16. Treatment of the baker's yeast wastewater by electrocoagulation

    Energy Technology Data Exchange (ETDEWEB)

    Kobya, M. [Department of Environmental Engineering, Gebze Institute of Technology, 41400 Gebze (Turkey)], E-mail: kobya@gyte.edu.tr; Delipinar, S. [Department of Environmental Engineering, Gebze Institute of Technology, 41400 Gebze (Turkey)

    2008-06-15

    In the laboratory-scale experiments, treatment of baker's yeast production wastewater has been investigated by electrocoagulation (EC) using a batch reactor. Effects of the process variables such as pH, electrode material (Fe and Al), current density, and operating time are investigated in terms of removal efficiencies of chemical oxygen demand (COD), total organic carbon (TOC), turbidity, and operating cost, respectively. The maximum removal efficiencies of COD, TOC and turbidity under optimal operating conditions, i.e., pH 6.5 for Al electrode and pH 7 for Fe electrode, current density of 70 A/m{sup 2} and operating time of 50 min were 71, 53 and 90% for Al electrode and 69, 52 and 56% for Fe electrode, respectively. Al electrode gave 4.4 times higher removal efficiency of turbidity than Fe electrode due to interference from color of dissolved iron. The operating costs for Al and Fe electrodes in terms of $/m{sup 3} or $/kg COD were 1.54 and 0.82, 0.51 and 0.27, respectively.

  17. Matrix factorization-based data fusion for gene function prediction in baker's yeast and slime mold.

    Science.gov (United States)

    Zitnik, Marinka; Zupan, Blaž

    2014-01-01

    The development of effective methods for the characterization of gene functions that are able to combine diverse data sources in a sound and easily-extendible way is an important goal in computational biology. We have previously developed a general matrix factorization-based data fusion approach for gene function prediction. In this manuscript, we show that this data fusion approach can be applied to gene function prediction and that it can fuse various heterogeneous data sources, such as gene expression profiles, known protein annotations, interaction and literature data. The fusion is achieved by simultaneous matrix tri-factorization that shares matrix factors between sources. We demonstrate the effectiveness of the approach by evaluating its performance on predicting ontological annotations in slime mold D. discoideum and on recognizing proteins of baker's yeast S. cerevisiae that participate in the ribosome or are located in the cell membrane. Our approach achieves predictive performance comparable to that of the state-of-the-art kernel-based data fusion, but requires fewer data preprocessing steps. PMID:24297565

  18. Impairment of the glycolytic system and actin in baker's yeast during frozen storage.

    Science.gov (United States)

    Hatano, S; Udou, M; Koga, N; Honjoh, K; Miyamoto, T

    1996-01-01

    After frozen storage for 7 d, the viability and CO2 productivity of a conventional baker's yeast strain D greatly decreased. The viability of a freeze-tolerant strain, DFT, used for the frozen dough method slightly decreased after the same storage period, while the CO2 productivity greatly decreased. The CO2 productivity and DNase I inhibitory activity of actin of the cell-free extracts prepared immediately after thawing from 7-d frozen-stored cells markedly decreased in both strains. In DFT, however, the productivity and the inhibitory activity of the cell-free extract increased when the extract was prepared after incubation of the frozen-thawed cells at 30 degrees C. The increase in the inhibitory activity first occurred and then the increase in the CO2 productivity. Gel filtration patterns of actin and glycolytic enzymes were compared between cell-free extracts of both strains. Peaks of actin and activity peaks of hexokinase and pyruvate kinase decreased in the strain D after frozen storage, but only slightly in the strain DFT. After frozen storage, phosphofructokinase activity peak shifted to a lower molecular weight in strain D. PMID:8824826

  19. Molecular Cloning and Yeast Expression of Cinnamate 4-Hydroxylase from Ornithogalum saundersiae Baker

    Directory of Open Access Journals (Sweden)

    Jian-Qiang Kong

    2014-01-01

    Full Text Available OSW-1, isolated from the bulbs of Ornithogalum saundersiae Baker, is a steroidal saponin endowed with considerable antitumor properties. Biosynthesis of the 4-methoxybenzoyl group on the disaccharide moiety of OSW-1 is known to take place biochemically via the phenylpropanoid biosynthetic pathway, but molecular biological characterization of the related genes has been insufficient. Cinnamic acid 4-hydroxylase (C4H, EC 1.14.13.11, catalyzing the hydroxylation of trans-cinnamic acid to p-coumaric acid, plays a key role in the ability of phenylpropanoid metabolism to channel carbon to produce the 4-methoxybenzoyl group on the disaccharide moiety of OSW-1. Molecular isolation and functional characterization of the C4H genes, therefore, is an important step for pathway characterization of 4-methoxybenzoyl group biosynthesis. In this study, a gene coding for C4H, designated as OsaC4H, was isolated according to the transcriptome sequencing results of Ornithogalum saundersiae. The full-length OsaC4H cDNA is 1,608-bp long, with a 1,518-bp open reading frame encoding a protein of 505 amino acids, a 55-bp 5′ non-coding region and a 35-bp 3'-untranslated region. OsaC4H was functionally characterized by expression in Saccharomyces cerevisiae and shown to catalyze the oxidation of trans-cinnamic acid to p-coumaric acid, which was identified by high performance liquid chromatography with diode array detection (HPLC-DAD, HPLC-MS and nuclear magnetic resonance (NMR analysis. The identification of the OsaC4H gene was expected to open the way to clarification of the biosynthetic pathway of OSW-1.

  20. ACTIVITY OF SUPEROXIDE DISMUTASE ENZYME IN YEAST SACCHAROMYCES CEREVISIAE

    Directory of Open Access Journals (Sweden)

    Blažena Lavová

    2014-02-01

    Full Text Available Reactive oxygen species (ROS with reactive nitrogen species (RNS are known to play dual role in biological systems, they can be harmful or beneficial to living systems. ROS can be important mediators of damage to cell structures, including proteins, lipids and nucleic acids termed as oxidative stress. The antioxidant enzymes protect the organism against the oxidative damage caused by active oxygen forms. The role of superoxide dismutase (SOD is to accelerate the dismutation of the toxic superoxide radical, produced during oxidative energy processes, to hydrogen peroxide and molecular oxygen. In this study, SOD activity of three yeast strains Saccharomyces cerevisiae was determined. It was found that SOD activity was the highest (23.7 U.mg-1 protein in strain 612 after 28 hours of cultivation. The lowest SOD activity from all tested strains was found after 56 hours of cultivation of strain Gyöng (0.7 U.mg-1 protein.

  1. Research progress on improvement in freeze-tolerance of baker's yeast%提高面包酵母耐冷冻性的研究进展

    Institute of Scientific and Technical Information of China (English)

    苏从毅; 王辛; 王四维; 张福钊

    2012-01-01

    Baker yeast is a necessary material of bread making, and improvement in freeze- tolerance of baker's yeast is very important to the development of frozen dough. In this paper, the species and effects of baker's yeast were introduced, and the freeze-tolerance mechanism of baker's yeast and the development review on improvement in freeze-tolerance of baker's yeast were emphasized.%面包酵母是制作面包不可缺少的原料,提高面包酵母的耐冷冻性对冷冻面团工业的发展有着十分重要的作用。本文介绍了面包酵母的种类和作用,重点讲述了面包酵母的耐冷冻机理及国内外对提高面包酵母耐冷冻性的研究进展。

  2. Stable high-copy-number integration of Aspergillus oryzae alpha-AMYLASE cDNA in an industrial baker's yeast strain.

    Science.gov (United States)

    Nieto, A; Prieto, J A; Sanz, P

    1999-01-01

    The Aspergillus oryzae alpha-amylase cDNA was placed under the control of the Saccharomyces cerevisiae actin promoter (pACT1) and introduced into the ribosomal DNA locus of an industrial baker's yeast strain. To obtain a strain eligible for commercial use, we constructed an integrative cassette lacking bacterial DNA sequences but containing the alpha-amylase cDNA and ribosomal DNA sequences to target the integration to this locus. High-copy-number integrants were obtained including a defective TRP1d promoter in the integrative cassette. We selected one transformant, Rib-AMY (CECT10872), in which the multi-integrated sequences were stable even after 200 generations of growth in nonselective medium. This transformant also expressed and secreted high levels of alpha-amylase. Bread made with this strain had a higher volume, lower density, and softer crumbs than bread made with a control strain. The Rib-AMY transformant also was useful in retarding bread firming. This new strain fulfills all the requirements for commercial utilization and should reduce or eliminate the requirement for addition of exogenous alpha-amylase to the flour, reducing allergenic work-related symptoms due to this enzyme.

  3. 利用枣汁生产面包酵母%Production of Baker's Yeast Using Date Juice

    Institute of Scientific and Technical Information of China (English)

    A.; Beiroti; S.; N.; Hosseini

    2007-01-01

    Baker's yeast is an important additive among the products which improves bread quality and for present time is being produced in different countries by batch,fed batch or continuous cultures.Saccharomyces cerevisiae is used in fermentation of starch in dough,giving a favourable taste and produces a variety of vitamins and proteins.The main ingredient in yeast production is carbon source such as beet molasses,cane molasses,and so on.Since beet molasses has other major function as in high yield alcohol production and also due to the bioenvironmental issues and related wastewater treatment,the use of other carbohydrate sources may be considered.One of these carbohydrate sources is date which is wasted a great deal annually in this country (Iran).In this study,the capability of date to act as a suitable carbon sources was investigated.The waste date turned into juice and consequently production and growth rate of Sacchromyces cervisiae were studied with this juice.A maximum possible yield of 50% was obtained by the optimum medium (P3),at pH 3.4,30°C,1.4vvm aeration mte and agitation of 500r/min.%面包酵母是一类用来提高面包质量的重要添加荆.目前,不同国家主要采用分批培养、补料分批培养或连续培养的方式来生产面包酵母.酿酒酵母是用来发酵面团中淀粉的理想微生物,除了提升食品香味,增加口感之外,这一发酵过程可以产生多种维生素和蛋白质.用于生产酵母生物量的主要成分包括各种碳源,如甜菜糖蜜和甘蔗糖蛮等.由于甜菜糖蜜可用于高产率地生产乙醇,加之其带来的生物环境污染和废水处理问题,因此需要考虑用其他糖类来生产面包酵母.其中一个代替性糖源是枣.由于各种原因,伊朗每年都浪费大量的枣.研究了用枣作为培养基碳源的可行性.将废枣榨成汁,然后研究了酵母的产量和生长速率.结果发现,在pH3.4,温度30℃,通风量1.4wm,发酵罐搅拌速度500r/min时,

  4. Identification and dissection of a complex DNA repair sensitivity phenotype in Baker's yeast.

    Directory of Open Access Journals (Sweden)

    Ann Demogines

    2008-07-01

    Full Text Available Complex traits typically involve the contribution of multiple gene variants. In this study, we took advantage of a high-density genotyping analysis of the BY (S288c and RM strains of Saccharomyces cerevisiae and of 123 derived spore progeny to identify the genetic loci that underlie a complex DNA repair sensitivity phenotype. This was accomplished by screening hybrid yeast progeny for sensitivity to a variety of DNA damaging agents. Both the BY and RM strains are resistant to the ultraviolet light-mimetic agent 4-nitroquinoline 1-oxide (4-NQO; however, hybrid progeny from a BYxRM cross displayed varying sensitivities to the drug. We mapped a major quantitative trait locus (QTL, RAD5, and identified the exact polymorphism within this locus responsible for 4-NQO sensitivity. By using a backcrossing strategy along with array-assisted bulk segregant analysis, we identified one other locus, MKT1, and a QTL on Chromosome VII that also link to the hybrid 4-NQO-sensitive phenotype but confer more minor effects. This work suggests an additive model for sensitivity to 4-NQO and provides a strategy for mapping both major and minor QTL that confer background-specific phenotypes. It also provides tools for understanding the effect of genetic background on sensitivity to genotoxic agents.

  5. Effect of menadione and hydrogen peroxide on catalase activity in Saccharomyces yeast strains

    Directory of Open Access Journals (Sweden)

    Nadejda EFREMOVA

    2013-05-01

    Full Text Available It has been studied the possibility of utilization of two important oxidant factors as regulators of catalase activity in Saccharomyces yeasts. In this paper results of the screening of some Saccharomyces yeast strains for potential producers of catalase are presented. Results of the screening for potential catalase producer have revealed that Saccharomyces cerevisiae CNMN-Y-11 strain possesses the highest catalase activity (2900 U/mg protein compared with other samples. Maximum increase of catalase activity with 50-60% compared to the reference sample was established in the case of hydrogen peroxide and menadione utilization in optimal concentrations of 15 and 10 mM. This research has been demonstrated the potential benefits of application of hydrogen peroxide and menadione as stimulatory factors of catalase activity in Saccharomyces yeasts.

  6. Functional co-operation between the nuclei of Saccharomyces cerevisiae and mitochondria from other yeast species

    DEFF Research Database (Denmark)

    Spirek, M.; Horvath, A.; Piskur, Jure;

    2000-01-01

    We elaborated a simple method that allows the transfer of mitochondria from collection yeasts to Saccharomyces cerevisiae. Protoplasts prepared from different yeasts were fused to the protoplasts of the ade2-1, ura3-52, kar1-1, rho (0) strain of S. cerevisiae and were selected for respiring cybrids...

  7. The uptake of different iron salts by the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Gaensly, Fernanda; Picheth, Geraldo; Brand, Debora; Bonfim, Tania M B

    2014-01-01

    Yeasts can be enriched with microelements, including iron; however, special physicochemical conditions are required to formulate a culture media that promotes both yeast growth and iron uptake. Different iron sources do not affect biomass formation; however, considering efficacy, cost, stability, and compatibility with Saccharomyces cerevisiae metabolism, ferrous sulphate is recommended. PMID:25242932

  8. The uptake of different iron salts by the yeast Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Fernanda Gaensly

    2014-06-01

    Full Text Available Yeasts can be enriched with microelements, including iron; however, special physicochemical conditions are required to formulate a culture media that promotes both yeast growth and iron uptake. Different iron sources do not affect biomass formation; however, considering efficacy, cost, stability, and compatibility with Saccharomyces cerevisiae metabolism, ferrous sulphate is recommended.

  9. The uptake of different iron salts by the yeast Saccharomyces cerevisiae

    OpenAIRE

    Fernanda Gaensly; Geraldo Picheth; Debora Brand; Tania M. B. Bonfim

    2014-01-01

    Yeasts can be enriched with microelements, including iron; however, special physicochemical conditions are required to formulate a culture media that promotes both yeast growth and iron uptake. Different iron sources do not affect biomass formation; however, considering efficacy, cost, stability, and compatibility with Saccharomyces cerevisiae metabolism, ferrous sulphate is recommended.

  10. Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals

    DEFF Research Database (Denmark)

    Borodina, Irina; Nielsen, Jens

    2014-01-01

    Yeast Saccharomyces cerevisiae is an important industrial host for production of enzymes, pharmaceutical and nutraceutical ingredients and recently also commodity chemicals and biofuels. Here, we review the advances in modeling and synthetic biology tools and how these tools can speed up the deve......Yeast Saccharomyces cerevisiae is an important industrial host for production of enzymes, pharmaceutical and nutraceutical ingredients and recently also commodity chemicals and biofuels. Here, we review the advances in modeling and synthetic biology tools and how these tools can speed up...... the development of yeast cell factories. We also present an overview of metabolic engineering strategies for developing yeast strains for production of polymer monomers: lactic, succinic, and cis,cis-muconic acids. S. cerevisiae has already firmly established itself as a cell factory in industrial biotechnology...... and the advances in yeast strain engineering will stimulate development of novel yeast-based processes for chemicals production....

  11. Early manifestations of replicative aging in the yeast Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Maksim I. Sorokin

    2014-01-01

    Full Text Available The yeast Saccharomyces cerevisiae is successfully used as a model organism to find genes responsible for lifespan control of higher organisms. As functional decline of higher eukaryotes can start as early as one quarter of the average lifespan, we asked whether S. cerevisiae can be used to model this manifestation of aging. While the average replicative lifespan of S. cerevisiae mother cells ranges between 15 and 30 division cycles, we found that resistances to certain stresses start to decrease much earlier. Looking into the mechanism, we found that knockouts of genes responsible for mitochondriato-nucleus (retrograde signaling, RTG1 or RTG3, significantly decrease the resistance of cells that generated more than four daughters, but not of the younger ones. We also found that even young mother cells frequently contain mitochondria with heterogeneous transmembrane potential and that the percentage of such cells correlates with replicative age. Together, these facts suggest that retrograde signaling starts to malfunction in relatively young cells, leading to accumulation of heterogeneous mitochondria within one cell. The latter may further contribute to a decline in stress resistances.

  12. A vaccine grade of yeast Saccharomyces cerevisiae expressing mammalian myostatin

    OpenAIRE

    Zhang Tingting; Sun Lin; Xin Ying; Ma Lixia; Zhang Youyou; Wang Xin; Xu Kun; Ren Chonghua; Zhang Cunfang; Chen Zhilong; Yang Hanjiang; Zhang Zhiying

    2012-01-01

    Abstract Background Yeast Saccharomyces cerevisiae is a widely-used system for protein expression. We previously showed that heat-killed whole recombinant yeast vaccine expressing mammalian myostatin can modulate myostatin function in mice, resulting in increase of body weight and muscle composition in these animals. Foreign DNA introduced into yeast cells can be lost soon unless cells are continuously cultured in selection media, which usually contain antibiotics. For cost and safety concern...

  13. Reduções enantiosseletivas de cetonas utilizando-se fermento de pão Enantioselective reductions of ketones using baker's yeast

    Directory of Open Access Journals (Sweden)

    José Augusto R. Rodrigues

    2001-12-01

    Full Text Available Baker's yeast has been successful employed to reduce carbonyl compounds carrying appropriated substituents at distances under the electronic influence of the keto group. High yields and enantiomeric excess (ee were obtained with 1,2-alkanedione, 1,2-alkanedione (2-O-methyloxime and 1,3-alkanedione. Potential chiral building blocks were obtained and applied for stereoselective synthesis of valuable compounds. Evidence for a free radical chain process was obtained with baker's yeast reduction of a-iodoacetophenone using radical inhibitors.

  14. Tangential Ultrafiltration of Aqueous "Saccharomyces Cerevisiae" Suspensions

    Science.gov (United States)

    Silva, Carlos M.; Neves, Patricia S.; Da Silva, Francisco A.; Xavier, Ana M. R. B.; Eusebio, M. F. J.

    2008-01-01

    Experimental work on ultrafiltration is presented to illustrate the practical and theoretical principles of this separation technique. The laboratory exercise comprises experiments with pure water and with aqueous "Saccharomyces cerevisiae" (from commercial Baker's yeast) suspensions. With this work students detect the characteristic phenomena…

  15. Persistence of two non-Saccharomyces yeasts (Hanseniaspora and Starmerella in the cellar

    Directory of Open Access Journals (Sweden)

    Cedric eGrangeteau

    2016-03-01

    Full Text Available Different genera and/or species of yeasts present on grape-berries, in musts and wines are widely described. Nevertheless, the community of non-Saccharomyces yeasts present in the cellar is still given little attention. Thus it is not known if the cellar is a real ecological niche for these yeasts or if it is merely a transient habitat for populations brought in by grape-berries during the winemaking period. This study focused on three species of non-Saccharomyces yeasts commonly encountered during vinification: Starmerella bacillaris (synonymy with Candida zemplinina, Hanseniaspora guilliermondii and Hanseniaspora uvarum. More than 1200 isolates were identified at the strain level by FT-IR spectroscopy (207 different FTIR strain pattern. Only a small proportion of non-Saccharomyces yeasts present in musts came directly from grape-berries for the three species studied. Some strains were found in the must in 2 consecutive years and some of them were also found in the cellar environment before the arrival of the harvest of second vintage. This study demonstrates for the first time the persistence of non-Saccharomyces yeast strains from year to year in the cellar. Sulfur dioxide can affect yeast populations in the must and therefore their persistence in the cellar environment.

  16. A Comparison of the Beneficial Effects of Live and Heat-Inactivated Baker's Yeast on Nile Tilapia: Suggestions on the Role and Function of the Secretory Metabolites Released from the Yeast.

    Science.gov (United States)

    Ran, Chao; Huang, Lu; Liu, Zhi; Xu, Li; Yang, Yalin; Tacon, Philippe; Auclair, Eric; Zhou, Zhigang

    2015-01-01

    Yeast is frequently used as a probiotic in aquaculture with the potential to substitute for antibiotics. In this study, the involvement and extent to which the viability of yeast cells and thus the secretory metabolites released from the yeast contribute to effects of baker's yeast was investigated in Nile tilapia. No yeast, live yeast or heat-inactivated baker's yeast were added to basal diets high in fishmeal and low in soybean (diet A) or low in fishmeal and high in soybean (diet B), which were fed to fish for 8 weeks. Growth, feed utilization, gut microvilli morphology, and expressions of hsp70 and inflammation-related cytokines in the intestine and head kidney were assessed. Intestinal microbiota was investigated using 16S rRNA gene pyrosequencing. Gut alkaline phosphatase (AKP) activity was measured after challenging the fish with Aeromonas hydrophila. Results showed that live yeast significantly improved FBW and WG (P diet A) and il1β (P = 0.08). Intestinal Lactococcus spp. numbers were enriched by both live and inactivated yeast. Lastly, both live and inactivated yeast reduced the gut AKP activity compared to the control (P diets supplemented with baker's yeast. PMID:26696403

  17. The baker's yeast diploid genome is remarkably stable in vegetative growth and meiosis.

    Directory of Open Access Journals (Sweden)

    K T Nishant

    2010-09-01

    Full Text Available Accurate estimates of mutation rates provide critical information to analyze genome evolution and organism fitness. We used whole-genome DNA sequencing, pulse-field gel electrophoresis, and comparative genome hybridization to determine mutation rates in diploid vegetative and meiotic mutation accumulation lines of Saccharomyces cerevisiae. The vegetative lines underwent only mitotic divisions while the meiotic lines underwent a meiotic cycle every ∼20 vegetative divisions. Similar base substitution rates were estimated for both lines. Given our experimental design, these measures indicated that the meiotic mutation rate is within the range of being equal to zero to being 55-fold higher than the vegetative rate. Mutations detected in vegetative lines were all heterozygous while those in meiotic lines were homozygous. A quantitative analysis of intra-tetrad mating events in the meiotic lines showed that inter-spore mating is primarily responsible for rapidly fixing mutations to homozygosity as well as for removing mutations. We did not observe 1-2 nt insertion/deletion (in-del mutations in any of the sequenced lines and only one structural variant in a non-telomeric location was found. However, a large number of structural variations in subtelomeric sequences were seen in both vegetative and meiotic lines that did not affect viability. Our results indicate that the diploid yeast nuclear genome is remarkably stable during the vegetative and meiotic cell cycles and support the hypothesis that peripheral regions of chromosomes are more dynamic than gene-rich central sections where structural rearrangements could be deleterious. This work also provides an improved estimate for the mutational load carried by diploid organisms.

  18. The Interaction between Saccharomyces cerevisiae and Non-Saccharomyces Yeast during Alcoholic Fermentation is Species and Strain Specific

    Directory of Open Access Journals (Sweden)

    Chunxiao eWang

    2016-04-01

    Full Text Available The present study analyzes the lack of culturability of different non-Saccharomyces strains due to interaction with Saccharomyces cerevisiae during alcoholic fermentation. Interaction was followed in mixed fermentations with 1:1 inoculation of S. cerevisiae and ten non-Saccharomyces strains. Starmerella bacillaris and Torulaspora delbrueckii indicated longer coexistence in mixed fermentations compared with Hanseniaspora uvarum and Metschnikowia pulcherrima. Strain differences in culturability and nutrient consumption (glucose, alanine, ammonium, arginine or glutamine were found within each species in mixed fermentation with S. cerevisiae. The interaction was further analyzed using cell-free supernatant from S. cerevisiae and synthetic media mimicking both single fermentations with S. cerevisiae and using mixed fermentations with the corresponding non-Saccharomyces species. Cell-free S. cerevisiae supernatants induced faster culturability loss than synthetic media corresponding to the same fermentation stage. This demonstrated that some metabolites produced by S. cerevisiae played the main role in the decreased culturability of the other non-Saccharomyces yeasts. However, changes in the concentrations of main metabolites had also an effect. Culturability differences were observed among species and strains in culture assays and thus showed distinct tolerance to S. cerevisiae metabolites and fermentation environment. Viability kit and recovery analyses on non-culturable cells verified the existence of viable but not-culturable status. These findings are discussed in the context of interaction between non-Saccharomyces and S. cerevisiae.

  19. Bread, beer and wine: yeast domestication in the Saccharomyces sensu stricto complex.

    Science.gov (United States)

    Sicard, Delphine; Legras, Jean-Luc

    2011-03-01

    Yeasts of the Saccharomyces sensu stricto species complex are able to convert sugar into ethanol and CO(2) via fermentation. They have been used for thousands years by mankind for fermenting food and beverages. In the Neolithic times, fermentations were probably initiated by naturally occurring yeasts, and it is unknown when humans started to consciously add selected yeast to make beer, wine or bread. Interestingly, such human activities gave rise to the creation of new species in the Saccharomyces sensu stricto complex by interspecies hybridization or polyploidization. Within the S. cerevisiae species, they have led to the differentiation of genetically distinct groups according to the food process origin. Although the evolutionary history of wine yeast populations has been well described, the histories of other domesticated yeasts need further investigation.

  20. Past and future of non-Saccharomyces yeasts: from spoilage microorganisms to biotechnological tools for improving wine aroma complexity

    Directory of Open Access Journals (Sweden)

    Beatriz ePadilla

    2016-03-01

    Full Text Available It is well established that non-Saccharomyces wine yeasts, considered in the past as undesired or spoilage yeasts, can enhance the analytical composition and aroma profile of the wine. The contribution of non-Saccharomyces yeasts, including the ability to secret enzymes and produce secondary metabolites, glycerol and ethanol, release of mannoproteins or contributions to color stability, is species- and strain-specific, pointing out the key importance of a clever strain selection. The use of mixed starters of selected non-Saccharomyces yeasts with strains of Saccharomyces cerevisiae represents an alternative to both spontaneous and inoculated wine fermentations, taking advantage of the potential positive role that non-Saccharomyces wine yeast species play in the organoleptic characteristics of wine. In this context mixed starters can meet the growing demand for new and improved wine yeast strains adapted to different types and styles of wine. With the aim of presenting old and new evidences on the potential of non-Saccharomyces yeasts to address this market trend, we mainly review the studies focused on non-Saccharomyces strain selection and design of mixed starters directed to improve primary and secondary aroma of wines. The ability of non-Saccharomyces wine yeasts to produce enzymes and metabolites of oenological relevance is also discussed.

  1. Past and Future of Non-Saccharomyces Yeasts: From Spoilage Microorganisms to Biotechnological Tools for Improving Wine Aroma Complexity

    Science.gov (United States)

    Padilla, Beatriz; Gil, José V.; Manzanares, Paloma

    2016-01-01

    It is well established that non-Saccharomyces wine yeasts, considered in the past as undesired or spoilage yeasts, can enhance the analytical composition, and aroma profile of the wine. The contribution of non-Saccharomyces yeasts, including the ability to secret enzymes and produce secondary metabolites, glycerol and ethanol, release of mannoproteins or contributions to color stability, is species- and strain-specific, pointing out the key importance of a clever strain selection. The use of mixed starters of selected non-Saccharomyces yeasts with strains of Saccharomyces cerevisiae represents an alternative to both spontaneous and inoculated wine fermentations, taking advantage of the potential positive role that non-Saccharomyces wine yeast species play in the organoleptic characteristics of wine. In this context mixed starters can meet the growing demand for new and improved wine yeast strains adapted to different types and styles of wine. With the aim of presenting old and new evidences on the potential of non-Saccharomyces yeasts to address this market trend, we mainly review the studies focused on non-Saccharomyces strain selection and design of mixed starters directed to improve primary and secondary aroma of wines. The ability of non-Saccharomyces wine yeasts to produce enzymes and metabolites of oenological relevance is also discussed. PMID:27065975

  2. Inheritance and organisation of the mitochondrial genome differ between two Saccharomyces yeasts

    DEFF Research Database (Denmark)

    Petersen, Randi Føns; Langkjær, Rikke Breinhold; Hvidtfeldt, J.;

    2002-01-01

    Petite-positive Saccharomyces yeasts can be roughly divided into the sensu stricto, including Saccharomyces cerevisiae, and sensu lato group, including Saccharomyces castellii; the latter was recently studied for transmission and the organisation of its mitochondrial genome. S. castellii mitochon......Petite-positive Saccharomyces yeasts can be roughly divided into the sensu stricto, including Saccharomyces cerevisiae, and sensu lato group, including Saccharomyces castellii; the latter was recently studied for transmission and the organisation of its mitochondrial genome. S. castellii...... mitochondrial molecules (mtDNA) carrying point mutations, which confer antibiotic resistance, behaved in genetic crosses as the corresponding point mutants of S. cerevisiae. While S. castellii generated spontaneous petite mutants in a similar way as S. cerevisiae, the petites exhibited a different inheritance...... pattern. In crosses with the wild type strains a majority of S. castellii petites was neutral, and the suppressivity in suppressive petites was never over 50%. The two yeasts also differ in organisation of their mtDNA molecules. The 25,753 bp sequence of S. castellii mtDNA was determined and the coding...

  3. Use of non-saccharomyces Torulaspora delbrueckii yeast strains in winemaking and brewing

    Directory of Open Access Journals (Sweden)

    Tataridis Panagiotis

    2013-01-01

    Full Text Available Selected Saccharomyces yeast strains have been used for more than 150 years in brewing and for several decades in winemaking. They are necessary in brewing because of the boiling of the wort, which results in the death of all yeast cells, with the exception of some Belgian style beers (ex. Lambic, where the wort is left to be colonized by indigenous yeast and bacteria from the environment and ferment naturally. In winemaking their use is also pertinent because they provide regular and timely fermentations, inhibit the growth of indigenous spoilage microorganisms and contribute to the desired sensory characters. Even though the use of selected Saccharomyces strains provides better quality assurance in winemaking in comparison to the unknown microbial consortia in the must, it has been debated for a long time now whether the use of selected industrial Saccharomyces strains results in wines with less sensory complexity and “terroir” character. In previous decades, non-Saccharomyces yeasts were mainly considered as spoilage/problematic yeast, since they exhibited low fermentation ability and other negative traits. In the last decades experiments have shown that there are some non-Saccharomyces strains (Candida, Pichia, Kluyveromyces, Torulaspora, etc which, even though they are not able to complete the fermentation they can still be used in sequential inoculation-fermentation with Saccharomyces to increase sensory complexity of the wines. Through fermentation in a laboratory scale, we have observed that the overall effects of selected Torulaspora delbrueckii yeast strains, is highly positive, leading to products with pronounced sensory complexity and floral/fruity aroma in winemaking and brewing.

  4. Genetic Diversity of Indigenous Saccharomyces sensu stricto Yeasts Isolated from Southern Croatia

    Directory of Open Access Journals (Sweden)

    Andrea Skelin

    2008-06-01

    Full Text Available Alcoholic fermentation is a polimicrobial process involving a large number of genera and species of yeast and bacteria. The major yeast genera involved in this process belongs to the Saccharomyces spp. The aim of this study was the isolation, identification and determination of genetic diversity of indigenous Saccharomyces cerevisiae natural population taken from cv. Plavac mali from secluded wine growing areas of Southern Croatia. Must samples were taken during the spontaneous alcoholic fermentation followed by yeast isolation. A total of 40 isolates that were physiologically confirmed to belong to the Saccharomyces sensu stricto group were furthermore differentiated by molecular methods. PCR-RFLP analyses of the internal transcribed spacer (ITS1 region of the 18S ribosomal DNA identified 37 of the isolates as S. cerevisiae and two of the isolates as S. bayanus/pastorianus. All isolates were further analyzed by RAPD fingerprinting. The results of this study showed that in some cases the RAPD assay may be useful to separate species within the Saccharomyces sensu stricto group. The molecular analysis confirmed genetic diversity of S. cerevisiae indigenous population and additionally the involvement of indigenous S. paradoxus and S. bayanus was determined.The population structure of Saccharomyces cerevisiae has indicated that each vineyard is characterized with particular S. cerevisiae microflora. It is an important step towards the preservation and exploitation of yeast biodiversity in Southern Croatia.

  5. Scheffersomyces stipitis: a comparative systems biology study with the Crabtree positive yeast Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Papini, Marta; Nookaew, Intawat; Uhlén, Mathias;

    2012-01-01

    Background: Scheffersomyces stipitis is a Crabtree negative yeast, commonly known for its capacity to ferment pentose sugars. Differently from Crabtree positive yeasts such as Saccharomyces cerevisiae, the onset of fermentation in S. stipitis is not dependent on the sugar concentration...... for the possibility to incorporate these data into recently developed genome-scaled metabolic, thus contributing to improve future industrial applications of S. stipitis as cell factory....

  6. Past and future of non-Saccharomyces yeasts: from spoilage microorganisms to biotechnological tools for improving wine aroma complexity

    OpenAIRE

    Beatriz ePadilla; José Vicente Gil; Paloma eManzanares

    2016-01-01

    It is well established that non-Saccharomyces wine yeasts, considered in the past as undesired or spoilage yeasts, can enhance the analytical composition and aroma profile of the wine. The contribution of non-Saccharomyces yeasts, including the ability to secret enzymes and produce secondary metabolites, glycerol and ethanol, release of mannoproteins or contributions to color stability, is species- and strain-specific, pointing out the key importance of a clever strain selection. The use of m...

  7. Past and Future of Non-Saccharomyces Yeasts: From Spoilage Microorganisms to Biotechnological Tools for Improving Wine Aroma Complexity

    OpenAIRE

    Padilla, Beatriz; Gil, José V.; Manzanares, Paloma

    2016-01-01

    It is well established that non-Saccharomyces wine yeasts, considered in the past as undesired or spoilage yeasts, can enhance the analytical composition, and aroma profile of the wine. The contribution of non-Saccharomyces yeasts, including the ability to secret enzymes and produce secondary metabolites, glycerol and ethanol, release of mannoproteins or contributions to color stability, is species- and strain-specific, pointing out the key importance of a clever strain selection. The use of ...

  8. A mathematical model of the mating signal transduction pathway in the yeast Saccharomyces cerevisiae. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Ivan Milac

    1998-09-14

    Outline of two major goals in my proposal for this fellowship. First goal having no previous training in biology, was to become knowledgeable of the paradigms, experimental techniques, and current research interests of molecular biology. Second goal was to construct a mathematical model of the mating signal transduction pathway in the yeast Saccharomyces cerevisiae.

  9. Saccharomyces cerevisiae and non-Saccharomyces yeasts in grape varieties of the São Francisco Valley

    Science.gov (United States)

    de Ponzzes-Gomes, Camila M.P.B.S.; de Mélo, Dângelly L.F.M.; Santana, Caroline A.; Pereira, Giuliano E.; Mendonça, Michelle O.C.; Gomes, Fátima C.O.; Oliveira, Evelyn S.; Barbosa, Antonio M.; Trindade, Rita C.; Rosa, Carlos A.

    2014-01-01

    The aims of this work was to characterise indigenous Saccharomyces cerevisiae strains in the naturally fermented juice of grape varieties Cabernet Sauvignon, Grenache, Tempranillo, Sauvignon Blanc and Verdejo used in the São Francisco River Valley, northeastern Brazil. In this study, 155 S. cerevisiae and 60 non-Saccharomyces yeasts were isolated and identified using physiological tests and sequencing of the D1/D2 domains of the large subunit of the rRNA gene. Among the non-Saccharomyces species, Rhodotorula mucilaginosa was the most common species, followed by Pichia kudriavzevii, Candida parapsilosis, Meyerozyma guilliermondii, Wickerhamomyces anomalus, Kloeckera apis, P. manshurica, C. orthopsilosis and C. zemplinina. The population counts of these yeasts ranged among 1.0 to 19 × 105 cfu/mL. A total of 155 isolates of S. cerevisiae were compared by mitochondrial DNA restriction analysis, and five molecular mitochondrial DNA restriction profiles were detected. Indigenous strains of S. cerevisiae isolated from grapes of the São Francisco Valley can be further tested as potential starters for wine production. PMID:25242923

  10. A Comparison of the Beneficial Effects of Live and Heat-Inactivated Baker's Yeast on Nile Tilapia: Suggestions on the Role and Function of the Secretory Metabolites Released from the Yeast.

    Directory of Open Access Journals (Sweden)

    Chao Ran

    Full Text Available Yeast is frequently used as a probiotic in aquaculture with the potential to substitute for antibiotics. In this study, the involvement and extent to which the viability of yeast cells and thus the secretory metabolites released from the yeast contribute to effects of baker's yeast was investigated in Nile tilapia. No yeast, live yeast or heat-inactivated baker's yeast were added to basal diets high in fishmeal and low in soybean (diet A or low in fishmeal and high in soybean (diet B, which were fed to fish for 8 weeks. Growth, feed utilization, gut microvilli morphology, and expressions of hsp70 and inflammation-related cytokines in the intestine and head kidney were assessed. Intestinal microbiota was investigated using 16S rRNA gene pyrosequencing. Gut alkaline phosphatase (AKP activity was measured after challenging the fish with Aeromonas hydrophila. Results showed that live yeast significantly improved FBW and WG (P < 0.05, and tended to improve FCR (P = 0.06 of fish compared to the control (no yeast. No significant differences were observed between inactivated yeast and control. Live yeast improved gut microvilli length (P < 0.001 and density (P < 0.05 while inactivated yeast did not. The hsp70 expression level in both the intestine and head kidney of fish was significantly reduced by live yeast (P < 0.05 but not inactivated yeast. Live yeast but not inactivated yeast reduced intestinal expression of tnfα (P < 0.05, tgfβ (P < 0.05 under diet A and il1β (P = 0.08. Intestinal Lactococcus spp. numbers were enriched by both live and inactivated yeast. Lastly, both live and inactivated yeast reduced the gut AKP activity compared to the control (P < 0.001, indicating protection of the host against infection by A. hydrophila. In conclusion, secretory metabolites did not play major roles in the growth promotion and disease protection effects of yeast. Nevertheless, secretory metabolites were the major contributing factor towards improved gut

  11. Asymmetric bioreduction of acetophenones by Baker's yeast and its cell-free extract encapsulated in sol–gel silica materials

    International Nuclear Information System (INIS)

    Baker's yeast (BY) encapsulated in silica materials was synthesized using a yeast cell suspension and its cell-free extract during a sol–gel reaction of tetramethoxysilane with nitric acid as a catalyst. The synthesized samples were fully characterized using various methods, such as scanning electron microscopy, nitrogen adsorption–desorption, Fourier transform infrared spectroscopy, thermogravimetry, and differential thermal analysis. The BY cells were easily encapsulated inside silica-gel networks, and the ratio of the cells in the silica gel was approximately 75 wt%, which indicated that a large volume of BY was trapped with a small amount of silica. The enzyme activity (asymmetric reduction of prochiral ketones) of BY and its cell-free extract encapsulated in silica gel was investigated in detail. The activities and enantioselectivities of free and encapsulated BY were similar to those of acetophenone and its fluorine derivatives, which indicated that the conformation structure of BY enzymes inside silica-gel networks did not change. In addition, the encapsulated BY exhibited considerably better solvent (methanol) stability and recyclability compared to free BY solution. We expect that the development of BY encapsulated in sol–gel silica materials will significantly impact the industrial-scale advancement of high-efficiency and low-cost biocatalysts for the synthesis of valuable chiral alcohols.

  12. Asymmetric bioreduction of acetophenones by Baker's yeast and its cell-free extract encapsulated in sol-gel silica materials

    Science.gov (United States)

    Kato, Katsuya; Nakamura, Hitomi; Nakanishi, Kazuma

    2014-02-01

    Baker's yeast (BY) encapsulated in silica materials was synthesized using a yeast cell suspension and its cell-free extract during a sol-gel reaction of tetramethoxysilane with nitric acid as a catalyst. The synthesized samples were fully characterized using various methods, such as scanning electron microscopy, nitrogen adsorption-desorption, Fourier transform infrared spectroscopy, thermogravimetry, and differential thermal analysis. The BY cells were easily encapsulated inside silica-gel networks, and the ratio of the cells in the silica gel was approximately 75 wt%, which indicated that a large volume of BY was trapped with a small amount of silica. The enzyme activity (asymmetric reduction of prochiral ketones) of BY and its cell-free extract encapsulated in silica gel was investigated in detail. The activities and enantioselectivities of free and encapsulated BY were similar to those of acetophenone and its fluorine derivatives, which indicated that the conformation structure of BY enzymes inside silica-gel networks did not change. In addition, the encapsulated BY exhibited considerably better solvent (methanol) stability and recyclability compared to free BY solution. We expect that the development of BY encapsulated in sol-gel silica materials will significantly impact the industrial-scale advancement of high-efficiency and low-cost biocatalysts for the synthesis of valuable chiral alcohols.

  13. Changes in trehalose content of baker's yeast as affected by octanoic acid Alterações no teor de trealose de levedura de panificação provocadas por ácido octanóico

    Directory of Open Access Journals (Sweden)

    L.E. Gutierrez

    1993-12-01

    Full Text Available Octanoic acid inhibited ethanolic fermentation by Saccharomyces cerevisiae (bakers yeast and the trehalose accumulation, however did not affect the endogenous degradation of trehalose. This inhibition may be explained by the binding of octanoic acid to hexokinase or other proteins of plasma membrane because they are not necessary for endogenous fermentation. The degradation of trehalose may be due to an activation of trehalase.A adição de ácido octanóico inibiu a fermentação alcoólica realizada por Saccharomyces cerevisiae (levedura de panificação e o acúmulo de trealose, contudo não afetou a degradação endógena de trealose. Esta inibição poderia ser explicada pela ligação do ácido octanóico a hexoquinase ou outra proteína da membrana plasmática porque não são necessárias para a fermentação endógena. A degradação da trealose poderia ser devida a uma ativação da trealase.

  14. Budding yeast for budding geneticists: a primer on the Saccharomyces cerevisiae model system.

    Science.gov (United States)

    Duina, Andrea A; Miller, Mary E; Keeney, Jill B

    2014-05-01

    The budding yeast Saccharomyces cerevisiae is a powerful model organism for studying fundamental aspects of eukaryotic cell biology. This Primer article presents a brief historical perspective on the emergence of this organism as a premier experimental system over the course of the past century. An overview of the central features of the S. cerevisiae genome, including the nature of its genetic elements and general organization, is also provided. Some of the most common experimental tools and resources available to yeast geneticists are presented in a way designed to engage and challenge undergraduate and graduate students eager to learn more about the experimental amenability of budding yeast. Finally, a discussion of several major discoveries derived from yeast studies highlights the far-reaching impact that the yeast system has had and will continue to have on our understanding of a variety of cellular processes relevant to all eukaryotes, including humans.

  15. The golden root, Rhodiola rosea, prolongs lifespan but decreases oxidative stress resistance in yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Bayliak, Maria M; Lushchak, Volodymyr I

    2011-11-15

    The effect of aqueous extract from R. rosea root on lifespan and the activity of antioxidant enzymes in budding yeast Saccharomyces cerevisiae have been studied. The supplementation of the growth medium with R. rosea extract decreased survival of exponentially growing S. cerevisiae cells under H(2)O(2)-induced oxidative stress, but increased viability and reproduction success of yeast cells in stationary phase. The extract did not significantly affect catalase activity and decreased SOD activity in chronologically aged yeast population. These results suggest that R. rosea acts as a stressor for S. cerevisiae cells, what sensitizes yeast cells to oxidative stress at exponential phase, but induces adaptation in stationary phase cells demonstrating the positive effect on yeast survival without activation of major antioxidant enzymes.

  16. The golden root, Rhodiola rosea, prolongs lifespan but decreases oxidative stress resistance in yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Bayliak, Maria M; Lushchak, Volodymyr I

    2011-11-15

    The effect of aqueous extract from R. rosea root on lifespan and the activity of antioxidant enzymes in budding yeast Saccharomyces cerevisiae have been studied. The supplementation of the growth medium with R. rosea extract decreased survival of exponentially growing S. cerevisiae cells under H(2)O(2)-induced oxidative stress, but increased viability and reproduction success of yeast cells in stationary phase. The extract did not significantly affect catalase activity and decreased SOD activity in chronologically aged yeast population. These results suggest that R. rosea acts as a stressor for S. cerevisiae cells, what sensitizes yeast cells to oxidative stress at exponential phase, but induces adaptation in stationary phase cells demonstrating the positive effect on yeast survival without activation of major antioxidant enzymes. PMID:21802922

  17. Survival of genetically modified and self-cloned strains of commercial baker's yeast in simulated natural environments: environmental risk assessment.

    Science.gov (United States)

    Ando, Akira; Suzuki, Chise; Shima, Jun

    2005-11-01

    Although genetic engineering techniques for baker's yeast might improve the yeast's fermentation characteristics, the lack of scientific data on the survival of such strains in natural environments as well as the effects on human health prevent their commercial use. Disruption of acid trehalase gene (ATH1) improves freeze tolerance, which is a crucial characteristic in frozen-dough baking. In this study, ATH1 disruptants constructed by genetic modification (GM) and self-cloning (SC) techniques were used as models to study such effects because these strains have higher freeze tolerance and are expected to be used commercially. Behavior of the strains in simulated natural environments, namely, in soil and water, was studied by measuring the change in the number of viable cells and in the concentration of DNA that contains ATH1 loci. Measurements were made using a real-time PCR method during 40 days of cultivation. Results showed that the number of viable cells of GM and SC strains decreased in a time-dependent manner and that the decrease rate was nearly equal to or higher than that for wild-type (WT) yeast. For all three strains (SC, GM, and WT) in the two simulated natural environments (water and soil), the DNA remained longer than did viable cells but the decrease patterns of either the DNA or the viable cells of SC and GM strains had tendencies similar to those of the WT strain. In conclusion, disruption of ATH1 by genetic engineering apparently does not promote the survival of viable cells and DNA in natural environments. PMID:16269743

  18. Sequential fermentation using non-Saccharomyces yeasts for the reduction of alcohol content in wine

    Directory of Open Access Journals (Sweden)

    Ciani Maurizio

    2014-01-01

    Full Text Available Over the last few decades there has been a progressive increase in wine ethanol content due to global climate change and modified wine styles that involved viticulture and oenology practices. Among the different approaches and strategies to reduce alcohol content in wine we propose a sequential fermentation using immobilized non-Saccharomyces wine yeasts. Preliminary results showed that sequential fermentations with Hanseniaspora osmophila, Hanseniaspora uvarum, Metschnikowia pulcherrima, Starmerella bombicola and Saccharomyces cerevisiae strains showed an ethanol reduction when compared with pure S. cerevisiae fermentation trials.

  19. Primers-4-Yeast: a comprehensive web tool for planning primers for Saccharomyces cerevisiae.

    Science.gov (United States)

    Yofe, Ido; Schuldiner, Maya

    2014-02-01

    The budding yeast Saccharomyces cerevisiae is a key model organism of functional genomics, due to its ease and speed of genetic manipulations. In fact, in this yeast, the requirement for homologous sequences for recombination purposes is so small that 40 base pairs (bp) are sufficient. Hence, an enormous variety of genetic manipulations can be performed by simply planning primers with the correct homology, using a defined set of transformation plasmids. Although designing primers for yeast transformations and for the verification of their correct insertion is a common task in all yeast laboratories, primer planning is usually done manually and a tool that would enable easy, automated primer planning for the yeast research community is still lacking. Here we introduce Primers-4-Yeast, a web tool that allows primers to be designed in batches for S. cerevisiae gene-targeting transformations, and for the validation of correct insertions. This novel tool enables fast, automated, accurate primer planning for large sets of genes, introduces consistency in primer planning and is therefore suggested to serve as a standard in yeast research. Primers-4-Yeast is available at: http://www.weizmann.ac.il/Primers-4-Yeast

  20. Beyond the Whole-Genome Duplication: Phylogenetic Evidence for an Ancient Interspecies Hybridization in the Baker's Yeast Lineage.

    Directory of Open Access Journals (Sweden)

    Marina Marcet-Houben

    2015-08-01

    Full Text Available Whole-genome duplications have shaped the genomes of several vertebrate, plant, and fungal lineages. Earlier studies have focused on establishing when these events occurred and on elucidating their functional and evolutionary consequences, but we still lack sufficient understanding of how genome duplications first originated. We used phylogenomics to study the ancient genome duplication occurred in the yeast Saccharomyces cerevisiae lineage and found compelling evidence for the existence of a contemporaneous interspecies hybridization. We propose that the genome doubling was a direct consequence of this hybridization and that it served to provide stability to the recently formed allopolyploid. This scenario provides a mechanism for the origin of this ancient duplication and the lineage that originated from it and brings a new perspective to the interpretation of the origin and consequences of whole-genome duplications.

  1. Scientific Opinion on the safety of vitamin D-enriched UV-treated baker’s yeast

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA

    2014-01-01

    Full Text Available Following a request from the European Commission, the EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA was asked to deliver a scientific opinion on the safety of “UV-treated baker’s yeast” (Lallemand SAS as a novel food ingredient in the context of Regulation (EC No 258/97, taking into account the comments and objections of a scientific nature raised by Member States. The novel food ingredient (NFI is baker’s yeast treated with UV irradiation to induce the conversion of ergosterol to vitamin D2. The applicant intends to use the NFI during the production of yeast-leavened bread, rolls, fine pastry and food supplements. The Panel considers that the provided compositional data, the specification, the data from batch testing, data on the stability on the production process are sufficient and do not give rise to safety concerns. The Panel concludes that the data provided are sufficient and do not give rise to safety concerns.The applicant intends to use the NFI as an alternative source of vitamin D for food supplements and for fortification of yeast-leavened bread, rolls and fine pastry at maximum concentrations of 5 μg vitamin D2 per 100 g of these foods. The applicant provided combined intake estimates for these two food categories for “all subjects” and “consumers only”. The source for the production of the NFI is Saccharomyces cerevisiae, an organism with a long history of safe food use. Even if the NFI is used at the maximum intended use levels, which deliver 5 µg vitamin D/100 g bread, rolls and fine pastry, it is highly unlikely that Tolerable Upper Intake Levels as established by EFSA (EFSA NDA Panel, 2012 are exceeded. The Panel considers that UV-treated baker’s yeast exhibiting an enhanced content of vitamin D2 is safe under the intended conditions of use.

  2. The yeast Saccharomyces cerevisiae- the main character in beer brewing.

    Science.gov (United States)

    Lodolo, Elizabeth J; Kock, Johan L F; Axcell, Barry C; Brooks, Martin

    2008-11-01

    Historically, mankind and yeast developed a relationship that led to the discovery of fermented beverages. Numerous inventions have led to improved technologies and capabilities to optimize fermentation technology on an industrial scale. The role of brewing yeast in the beer-making process is reviewed and its importance as the main character is highlighted. On considering the various outcomes of functions in a brewery, it has been found that these functions are focused on supporting the supply of yeast requirements for fermentation and ultimately to maintain the integrity of the product. The functions/processes include: nutrient supply to the yeast (raw material supply for brewhouse wort production); utilities (supply of water, heat and cooling); quality assurance practices (hygiene practices, microbiological integrity measures and other specifications); plant automation (vessels, pipes, pumps, valves, sensors, stirrers and centrifuges); filtration and packaging (product preservation until consumption); distribution (consumer supply); and marketing (consumer awareness). Considering this value chain of beer production and the 'bottle neck' during production, the spotlight falls on fermentation, the age-old process where yeast transforms wort into beer.

  3. Non-Saccharomyces yeasts protect against epithelial cell barrier disruption induced by Salmonella enterica subsp. enterica serovar Typhimurium

    DEFF Research Database (Denmark)

    Smith, Ida Mosbech; Baker, A; Arneborg, Nils;

    2015-01-01

    . In addition, probiotic strains may be able to reduce epithelial barrier disruption caused by pathogenic species. The aim of this study was to explore non-Saccharomyces yeast modulation of epithelial cell barrier function in vitro. Benchmarking against established probiotic strains, we evaluated the ability...... of four nonpathogenic yeast species to modulate transepithelial electrical resistance (TER) across a monolayer of differentiated human colonocytes (Caco-2 cells). Further, we assessed yeast modulation of a Salmonella Typhimurium-induced epithelial cell barrier function insult. Our findings demonstrate...... distinct patterns of non-Saccharomyces yeast modulation of epithelial cell barrier function. While the established probiotic yeast Saccharomyces boulardii increased TER across a Caco-2 monolayer by 30%, Kluyveromyces marxianus exhibited significantly stronger properties of TER enhancement (50% TER increase...

  4. Effects of Dietary Yeast (Saccharomyces cerevisia Supplementation in Practical Diets of Tilapia (Oreochromis niloticus

    Directory of Open Access Journals (Sweden)

    José E. P. Cyrino

    2012-01-01

    Full Text Available A 51-day feeding trial was carried out to determine the effects of various dietary levels of brewer’s yeast, Saccharomyces cerevisiae, in the growth performance, body composition and nutrient utilization in Nile tilapia, Oreochromis niloticus, juveniles. Fish (7.6 ± 0.3 g were stocked into eighteen 1,000-L tanks (100 fish per tank; n = 3 and fed to apparent satiation six isonitrogenous (27% crude protein and isoenergetic (19 kJ/g diets, formulated to contain different dried yeast levels (0%, 10%, 15%, 20%, 30% or 40% diet in substitution to fishmeal. Body weight tripled at the end of the feeding trial for fish fed up to 20% dietary yeast incorporation. Daily growth coefficient (DGC, % body weight/day decreased with increasing dietary yeast level (P < 0.0001. Voluntary feed intake (VFI, %BW/day did not vary significantly with increasing yeast level. Fish fed 40% yeast showed significant reduction in protein efficiency rate, protein retention and nitrogen gain. Increasing levels of dietary yeast did not significantly affect protein or lipid digestibility. Dietary dried yeast was seemingly palatable to tilapia juveniles and was suitable up to 15% inclusion to promote growth and efficient diet utilization, without affecting body composition.

  5. Translational control of catalase synthesis by hemin in the yeast Saccharomyces cerevisiae

    OpenAIRE

    Hamilton, Barbara; Hofbauer, Reinhold; Ruis, Helmut

    1982-01-01

    mRNA-dependent cell-free protein synthesis systems were prepared from a heme-deficient ole3 mutant of the yeast Saccharomyces cerevisiae grown either in the absence or in the presence of the heme precursor δ-aminolevulinate. When supplemented with total yeast mRNA, the two systems—from heme-deficient and from heme-containing cells—translate most mRNAs with comparable efficiencies. mRNAs coding for the hemoproteins catalase T and catalase A, however, are translated at a low rate by the system ...

  6. Screening for new brewing yeasts in the non-Saccharomyces sector with Torulaspora delbrueckii as model.

    Science.gov (United States)

    Michel, Maximilian; Kopecká, Jana; Meier-Dörnberg, Tim; Zarnkow, Martin; Jacob, Fritz; Hutzler, Mathias

    2016-04-01

    This study describes a screening system for future brewing yeasts focusing on non-Saccharomyces yeasts. The aim was to find new yeast strains that can ferment beer wort into a respectable beer. Ten Torulaspora delbrueckii strains were put through the screening system, which included sugar utilization tests, hop resistance tests, ethanol resistance tests, polymerase chain reaction fingerprinting, propagation tests, amino acid catabolism and anabolism, phenolic off-flavour tests and trial fermentations. Trial fermentations were analysed for extract reduction, pH drop, yeast concentration in bulk fluid and fermentation by-products. All investigated strains were able to partly ferment wort sugars and showed high tolerance to hop compounds and ethanol. One of the investigated yeast strains fermented all the wort sugars and produced a respectable fruity flavour and a beer of average ethanol content with a high volatile flavour compound concentration. Two other strains could possibly be used for pre-fermentation as a bio-flavouring agent for beers that have been post-fermented by Saccharomyces strains as a consequence of their low sugar utilization but good flavour-forming properties. PMID:26647111

  7. The pch2Delta mutation in baker's yeast alters meiotic crossover levels and confers a defect in crossover interference.

    Directory of Open Access Journals (Sweden)

    Sarah Zanders

    2009-07-01

    Full Text Available Pch2 is a widely conserved protein that is required in baker's yeast for the organization of meiotic chromosome axes into specific domains. We provide four lines of evidence suggesting that it regulates the formation and distribution of crossover events required to promote chromosome segregation at Meiosis I. First, pch2Delta mutants display wild-type crossover levels on a small (III chromosome, but increased levels on larger (VII, VIII, XV chromosomes. Second, pch2Delta mutants show defects in crossover interference. Third, crossovers observed in pch2Delta require both Msh4-Msh5 and Mms4-Mus81 functions. Lastly, the pch2Delta mutation decreases spore viability and disrupts crossover interference in spo11 hypomorph strains that have reduced levels of meiosis-induced double-strand breaks. Based on these and previous observations, we propose a model in which Pch2 functions at an early step in crossover control to ensure that every homolog pair receives an obligate crossover.

  8. Bio sorption of Uranium by baker's yeast in the presence of Lead and Cadmium and modeling of equilibrium data

    International Nuclear Information System (INIS)

    Bio sorption technology is one of the novel technologies used for removal and recovery of radioactive metals from aqueous solutions. Scheduled researches are required for this technique. In this research, bio sorption of uranium, lead and cadmium by immobilized baker's yeast on calcium alginate was investigated. Equilibrium parameters in single systems and binary systems (uranium-lead and uranium-cadmium) were studied. The obtained results in single systems showed that the uranium uptake capacity is higher than that of lead and cadmium. Also, according to the observations in binary systems, the uranium uptake capacity was decreased by interferences of lead or cadmium ions. Nevertheless, uranium uptake capacity in these binary systems is high (more than 130 mg g-1 in uranium-lead and 200 mg g-1 in uranium-cadmium binary systems). The equilibrium isotherms were modeled by Langmuir, Freundlich and combination Langmuir-Freundlich models in single systems and the competitive Langmuir, modified extended Langmuir, extended Freundlich and combination Langmuir-Freundlich models in binary systems. According to the results, the Freundlich model in single systems and the extended Freundlich model in binary systems were found to be better than the others.

  9. A Cadmium-transporting P1B-type ATPase in Yeast Saccharomyces cerevisiae*

    OpenAIRE

    Adle, David J.; Sinani, Devis; Kim, Heejeong; Lee, Jaekwon

    2006-01-01

    Detoxification and homeostatic acquisition of metal ions are vital for all living organisms. We have identified PCA1 in yeast Saccharomyces cerevisiae as an overexpression suppressor of copper toxicity. PCA1 possesses signatures of a P1B-type heavy metal-transporting ATPase that is widely distributed from bacteria to humans. Copper resistance conferred by PCA1 is not dependent on catalytic activity, but it appears that a cysteine-rich region located in the N terminus sequesters copper. Unexpe...

  10. Topological basis of signal integration in the transcriptional-regulatory network of the yeast, Saccharomyces cerevisiae

    OpenAIRE

    Chennubhotla Chakra; Wu Chuang; Farkas Illés J; Bahar Ivet; Oltvai Zoltán N

    2006-01-01

    Abstract Background Signal recognition and information processing is a fundamental cellular function, which in part involves comprehensive transcriptional regulatory (TR) mechanisms carried out in response to complex environmental signals in the context of the cell's own internal state. However, the network topological basis of developing such integrated responses remains poorly understood. Results By studying the TR network of the yeast Saccharomyces cerevisiae we show that an intermediate l...

  11. Intensification of alcoholic fermentation upon dehydration-rehydration of the yeast Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Zikmanis, P.B.; Kruce, R.V.; Auzina, L.P.; Margevica, M.V.; Beker, M.J.

    1988-02-01

    In comparison with intact yeast, dehydrated-rehydrated cells of Saccharomyces cerevisiae show significantly higher ethanol production from exogenous substrate under both anaerobic and aerobic conditions, particularly when low concentration (0.1%) of glucose are used. For populations with a higher percentage of viable rehydrated cells (above 70%) a more notable decrease in the Pasteur effect (the difference between the quantity of ethanol formed under anaerobic and aerobic conditions) is observed. (orig.)

  12. L-Histidine Inhibits Biofilm Formation and FLO11-Associated Phenotypes in Saccharomyces cerevisiae Flor Yeasts

    OpenAIRE

    Marc Bou Zeidan; Giacomo Zara; Carlo Viti; Francesca Decorosi; Ilaria Mannazzu; Marilena Budroni; Luciana Giovannetti; Severino Zara

    2014-01-01

    Flor yeasts of Saccharomyces cerevisiae have an innate diversity of Flo11p which codes for a highly hydrophobic and anionic cell-wall glycoprotein with a fundamental role in biofilm formation. In this study, 380 nitrogen compounds were administered to three S. cerevisiae flor strains handling Flo11p alleles with different expression levels. S. cerevisiae strain S288c was used as the reference strain as it cannot produce Flo11p. The flor strains generally metabolized amino acids and dipeptides...

  13. Effects of dietary live and heat-inactive baker's yeast on growth, gut health, and disease resistance of Nile tilapia under high rearing density.

    Science.gov (United States)

    Ran, Chao; Huang, Lu; Hu, Jun; Tacon, Philippe; He, Suxu; Li, Zhimin; Wang, Yibing; Liu, Zhi; Xu, Li; Yang, Yalin; Zhou, Zhigang

    2016-09-01

    In this study, the effects of baker's yeast as probiotics was evaluated in Nile tilapia reared at high density. Juvenile tilapia were distributed to tanks at high density (436 fish/m(3)) and fed with basal diet (CK) or diets supplemented with live (LY) or heat-inactivated yeast (HIY). Another group of fish reared at low density (218 fish/m(3)) and fed with basal diet was also included (LowCK). After 8 weeks of feeding, growth, feed utilization, gut microvilli morphology, digestive enzymes, and expressions of hsp70 and inflammation-related cytokines in the intestine were assessed. Intestinal microbiota was investigated using 16S rRNA gene pyrosequencing. Fish were challenged with Aeromonas hydrophila to evaluate disease resistance. High rearing density significantly decreased the growth, feed utilization, microvilli length, and disease resistance of fish (CK versus LowCK). Moreover, the intestinal hsp70 expression was increased in fish reared at high density, supporting a stress condition. Compared to CK group, supplementation of live yeast significantly increased gut microvilli length and trypsin activity, decreased intestinal hsp70 expression, and enhanced resistance of fish against A. hydrophila (reflected by reduced intestinal alkaline phosphatase activity 24 h post infection). The gut microbiota was not markedly influenced by either rearing density or yeast supplementation. Heat-inactivated yeast (HIY) didn't display the beneficial effects observed in LY except an increase in gut trypsin activity, suggesting the importance of yeast viability and thus secretory metabolites of yeast. In conclusion, live baker's yeast may alleviate the negative effects induced by crowding stress, and has the potential to be used as probiotics for tilapia reared at high density. PMID:27393237

  14. Exploring the phenotypic space of non-Saccharomyces wine yeast biodiversity.

    Science.gov (United States)

    Rossouw, Debra; Bauer, Florian F

    2016-05-01

    Tremendous microbial diversity exists in vineyards, and the potential to harness this diversity for novel mixed or pure starter cultures for wine fermentation has received significant attention in recent years. However, most studies are limited to a small subset of strains and species. Here we present data from a systematic screen of 91 yeast isolates from South African grape must and vineyard samples for oenologically relevant traits. One focus area was finding non-Saccharomyces isolates showing both reduced ethanol yields, as well as improved aromatic characteristics. Of the 91 isolates evaluated initially, 21 showed lower ethanol yields when compared to commercial wine yeast strain controls. Collectively, the metabolic data (primary fermentation and secondary aroma compounds) highlight the enormity of the 'phenotypic space' of yeast communities in South African vineyards. The data also emphasise intraspecies variability, challenging our concept of species typicity. Of particular oenological interest was the ability of several isolates to produce high levels of terpenoid compounds. A few strains were ultimately found which showed a substantial reduction (>1.5%) in the final ethanol content of sequential fermentations, as well as unique aroma compound production profiles. Four of these strains were selected for comprehensive wine trials in both red and white grape musts, complete with microbial, chemical and sensory analyses of the red wines. This presents, for the first time, a full bench-to-bottle characterisation of non-Saccharomyces strains showing the most potential for commercial application. The findings of this study enlarge the potential range of oenological applications for non-Saccharomyces yeast, while also suggesting the potential usefulness of several yeast species that have previously not been considered for winemaking applications. PMID:26742614

  15. Exploring the phenotypic space of non-Saccharomyces wine yeast biodiversity.

    Science.gov (United States)

    Rossouw, Debra; Bauer, Florian F

    2016-05-01

    Tremendous microbial diversity exists in vineyards, and the potential to harness this diversity for novel mixed or pure starter cultures for wine fermentation has received significant attention in recent years. However, most studies are limited to a small subset of strains and species. Here we present data from a systematic screen of 91 yeast isolates from South African grape must and vineyard samples for oenologically relevant traits. One focus area was finding non-Saccharomyces isolates showing both reduced ethanol yields, as well as improved aromatic characteristics. Of the 91 isolates evaluated initially, 21 showed lower ethanol yields when compared to commercial wine yeast strain controls. Collectively, the metabolic data (primary fermentation and secondary aroma compounds) highlight the enormity of the 'phenotypic space' of yeast communities in South African vineyards. The data also emphasise intraspecies variability, challenging our concept of species typicity. Of particular oenological interest was the ability of several isolates to produce high levels of terpenoid compounds. A few strains were ultimately found which showed a substantial reduction (>1.5%) in the final ethanol content of sequential fermentations, as well as unique aroma compound production profiles. Four of these strains were selected for comprehensive wine trials in both red and white grape musts, complete with microbial, chemical and sensory analyses of the red wines. This presents, for the first time, a full bench-to-bottle characterisation of non-Saccharomyces strains showing the most potential for commercial application. The findings of this study enlarge the potential range of oenological applications for non-Saccharomyces yeast, while also suggesting the potential usefulness of several yeast species that have previously not been considered for winemaking applications.

  16. Preconcentrating (within the broth) secreted extracellular proteins during a bakers' yeast fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Effler, W.T. Jr.; Pandey, N.K.; Tanner, R.D.; Malaney, G.W.; Scott, C.D. (ed.)

    1986-01-01

    Proteins secreted by yeast during the fermentation process are spacially fractionated (concentrated at a particular vertical position) within the fermentation vessel due to the phenomenon of bubble fractionation, despite moderately vigorous mixing. The degree of fractionation is influenced by the conditions in which the fermentation takes place. The broth pH strongly influences the extent of fractionation of specific proteins. In addition fractionation is enhanced under anaerobic conditions, presumably because there are more CO2 bubbles present for hydrophobic protein adsorption. The addition of moderate levels of salt to the broth reduces the fractionation for most (but not all) of the proteins.

  17. Scientific Opinion on the safety of vitamin D-enriched UV-treated bakers yeast

    OpenAIRE

    EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA)

    2014-01-01

    Following a request from the European Commission, the EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) was asked to deliver a scientific opinion on the safety of “UV-treated baker’s yeast” (Lallemand SAS) as a novel food ingredient in the context of Regulation (EC) No 258/97, taking into account the comments and objections of a scientific nature raised by Member States. The novel food ingredient (NFI) is baker’s yeast treated with UV irradiation to induce the conversion of ergos...

  18. Baker's yeast catalyzed asymmetric reduction of prochiral ketones in different reaction mediums

    Directory of Open Access Journals (Sweden)

    Adi Wolfson

    2013-03-01

    Full Text Available Baker’s yeast catalyzes the asymmetric reduction of prochiral ketones in water and in various organic solvents. The reaction in water, which is the first solvent of choice for bio-reactions, led to a high product yield and enantiomeric excess, but the low miscibility of organic molecules in water resulted in lower conversions when more hydrophobic ketones were used. Petroleum-based solvents such as hexane and petroleum ether were also successfully employed as reaction mediums, but the viability of the yeast in these solvents was negligible, and they have severe environmental impacts due to their high toxicity levels. Performing the reaction in green solvents, like ionic liquids, fluorous media, and glycerol-based solvents, which have low volatilities and can be recycled, enabled dissolution of the substrates and of the energy source and also promoted isolation of the product. Among all tested green solvents, glycerol-based solvents are preferable due to their biodegradable natures and their origins from renewable sources.

  19. Influence of addition of amylase preparation to dough on fermentative activity of baker's yeast

    Directory of Open Access Journals (Sweden)

    Dodić Jelena M.

    2005-01-01

    Full Text Available Dough samples with different content of amylases were investigated immediately after mixing and after 7, 14 and 30 days of frozen storage. The obtained results show that the fermentation time is shorter, both in fresh and frozen samples, when amylase sample 1 was added, compared to dough without enzymes. The addition of amylase 2 to dough resulted in minimal decrease of "rising" time, both is frozen and fresh dough samples. The rising time of fresh samples was shorter when amylase 3 was added to dough. The specific fermentative activity of fresh dough samples is increasing by about 10% compared to the control sample, for all amounts of amylase 1 and 2 added to the do- ugh. The fermentative activity of yeast in frozen samples increased by 5-10%, after keeping of dough with the addition of amylase 1 for 14 days. The specific fermentative activity of fresh dough samples increased compared to the control, for all amounts of added amylase 3 to the dough. In frozen dough samples the fermentative activity of yeast decreased by 10% for all added amounts of amylase 3. Baked goods made of fresh and frozen dough, prepared with the addition of amylase 1, are better than the ones made of control dough sample, considering all evaluated parameters.

  20. Fructanase and fructosyltransferase activity of non-Saccharomyces yeasts isolated from fermenting musts of Mezcal.

    Science.gov (United States)

    Arrizon, Javier; Morel, Sandrine; Gschaedler, Anne; Monsan, Pierre

    2012-04-01

    Fructanase and fructosyltransferase are interesting for the tequila process and prebiotics production (functional food industry). In this study, one hundred thirty non-Saccharomyces yeasts isolated from "Mezcal de Oaxaca" were screened for fructanase and fructosyltransferase activity. On solid medium, fifty isolates grew on Agave tequilana fructans (ATF), inulin or levan. In liquid media, inulin and ATF induced fructanase activities of between 0.02 and 0.27U/ml depending of yeast isolate. High fructanase activity on sucrose was observed for Kluyveromyces marxianus and Torulaspora delbrueckii, while the highest fructanase activity on inulin and ATF was observed for Issatchenkia orientalis, Cryptococcus albidus, and Candida apicola. Zygosaccharomyces bisporus and Candida boidinii had a high hydrolytic activity on levan. Sixteen yeasts belonging to K. marxianus, T. delbrueckii and C. apicola species were positive for fructosyltransferase activity. Mezcal microbiota proved to showed to be a source for new fructanase and fructosyltransferases with potential application in the tequila and food industry.

  1. Producing human ceramide-NS by metabolic engineering using yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Murakami, Suguru; Shimamoto, Toshi; Nagano, Hideaki; Tsuruno, Masahiro; Okuhara, Hiroaki; Hatanaka, Haruyo; Tojo, Hiromasa; Kodama, Yukiko; Funato, Kouichi

    2015-01-01

    Ceramide is one of the most important intercellular components responsible for the barrier and moisture retention functions of the skin. Because of the risks involved with using products of animal origin and the low productivity of plants, the availability of ceramides is currently limited. In this study, we successfully developed a system that produces sphingosine-containing human ceramide-NS in the yeast Saccharomyces cerevisiae by eliminating the genes for yeast sphingolipid hydroxylases (encoded by SUR2 and SCS7) and introducing the gene for a human sphingolipid desaturase (encoded by DES1). The inactivation of the ceramidase gene YDC1, overexpression of the inositol phosphosphingolipid phospholipase C gene ISC1, and endoplasmic reticulum localization of the DES1 gene product resulted in enhanced production of ceramide-NS. The engineered yeast strains can serve as hosts not only for providing a sustainable source of ceramide-NS but also for developing further systems to produce sphingosine-containing sphingolipids.

  2. A new biological test of water toxicity-yeast Saccharomyces cerevisiae conductometric test.

    Science.gov (United States)

    Dolezalova, Jaroslava; Rumlova, Lubomira

    2014-11-01

    This new biological test of water toxicity is based on monitoring of specific conductivity changes of yeast Saccharomyces cerevisiae suspension as a result of yeast fermentation activity inhibition in toxic conditions. The test was verified on ten substances with various mechanisms of toxic effect and the results were compared with two standard toxicity tests based on Daphnia magna mobility inhibition (EN ISO 6341) and Vibrio fischeri bioluminescence inhibition (EN ISO 11348-2) and with the results of the S. cerevisiae lethal test (Rumlova and Dolezalova, 2012). The new biological test - S. cerevisiae conductometric test - is an express method developed primarily for field conditions. It is applicable in case of need of immediate information about water toxicity. Fast completion is an advantage of this test (time necessary for test completion is about 60min), the test is simple and the test organism - dried instant yeast - belongs among its biggest advantages because of its long-term storage life and broad availability.

  3. Eukaryote-to-eukaryote gene transfer events revealed by the genome sequence of the wine yeast Saccharomyces cerevisiae EC1118

    OpenAIRE

    Novo, Maite; Bigey, Frederic; Beyne, Emmanuelle; Galeote, Virginie; Gavory, Frédérick; Mallet, Sandrine; Cambon, Brigitte; Legras, Jean Luc; Wincker, Patrick; Casaregola, Serge; Dequin, Sylvie

    2009-01-01

    Saccharomyces cerevisiae has been used for millennia in winemaking, but little is known about the selective forces acting on the wine yeast genome. We sequenced the complete genome of the diploid commercial wine yeast EC1118, resulting in an assembly of 31 scaffolds covering 97% of the S288c reference genome. The wine yeast differed strikingly from the other S. cerevisiae isolates in possessing 3 unique large regions, 2 of which were subtelomeric, the other being inserted within an EC1...

  4. Molecular Basis of Fructose Utilization by the Wine Yeast Saccharomyces cerevisiae: a Mutated HXT3 Allele Enhances Fructose Fermentation▿

    OpenAIRE

    Guillaume, Carole; Delobel, Pierre; Sablayrolles, Jean-Marie; Blondin, Bruno

    2007-01-01

    Fructose utilization by wine yeasts is critically important for the maintenance of a high fermentation rate at the end of alcoholic fermentation. A Saccharomyces cerevisiae wine yeast able to ferment grape must sugars to dryness was found to have a high fructose utilization capacity. We investigated the molecular basis of this enhanced fructose utilization capacity by studying the properties of several hexose transporter (HXT) genes. We found that this wine yeast harbored a mutated HXT3 allel...

  5. Yeast 5 – an expanded reconstruction of the Saccharomyces cerevisiae metabolic network

    Directory of Open Access Journals (Sweden)

    Heavner Benjamin D

    2012-06-01

    Full Text Available Abstract Background Efforts to improve the computational reconstruction of the Saccharomyces cerevisiae biochemical reaction network and to refine the stoichiometrically constrained metabolic models that can be derived from such a reconstruction have continued since the first stoichiometrically constrained yeast genome scale metabolic model was published in 2003. Continuing this ongoing process, we have constructed an update to the Yeast Consensus Reconstruction, Yeast 5. The Yeast Consensus Reconstruction is a product of efforts to forge a community-based reconstruction emphasizing standards compliance and biochemical accuracy via evidence-based selection of reactions. It draws upon models published by a variety of independent research groups as well as information obtained from biochemical databases and primary literature. Results Yeast 5 refines the biochemical reactions included in the reconstruction, particularly reactions involved in sphingolipid metabolism; updates gene-reaction annotations; and emphasizes the distinction between reconstruction and stoichiometrically constrained model. Although it was not a primary goal, this update also improves the accuracy of model prediction of viability and auxotrophy phenotypes and increases the number of epistatic interactions. This update maintains an emphasis on standards compliance, unambiguous metabolite naming, and computer-readable annotations available through a structured document format. Additionally, we have developed MATLAB scripts to evaluate the model’s predictive accuracy and to demonstrate basic model applications such as simulating aerobic and anaerobic growth. These scripts, which provide an independent tool for evaluating the performance of various stoichiometrically constrained yeast metabolic models using flux balance analysis, are included as Additional files 1, 2 and 3. Additional file 1 Function testYeastModel.m.m. Click here for file Additional file 2 Function model

  6. Effect of temperature on replicative aging of the budding yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Molon, Mateusz; Zadrag-Tecza, Renata

    2016-04-01

    The use of the budding yeast Saccharomyces cerevisiae in gerontological studies was based on the assumption that the reproduction limit of a single cell (replicative aging) is a consequence of accumulation of a hypothetical universal "senescence factor" within the mother cell. However, some evidence suggests that molecules or structures proposed as the "aging factor", such as rDNA circles, oxidatively damaged proteins (with carbonyl groups) or mitochondria, have little effect on replicative lifespan of yeast cells. Our results also suggest that protein aggregates associated with Hsp104, treated as a marker of yeast aging, do not seem to affect the numeric value of replicative lifespan of yeast. What these results indicate, however, is the need for finding a different way of expressing age and longevity of yeast cells instead of the commonly used number of daughters produced over units of time, as in the case of other organisms. In this paper, we show that the temperature has a stronger influence on the time of life (the total lifespan) than on the reproductive potential of yeast cells.

  7. Breeding of lager yeast with Saccharomyces cerevisiae improves stress resistance and fermentation performance.

    Science.gov (United States)

    Garcia Sanchez, Rosa; Solodovnikova, Natalia; Wendland, Jürgen

    2012-08-01

    Lager beer brewing relies on strains collectively known as Saccharomyces carlsbergensis, which are hybrids between S. cerevisiae and S. eubayanus-like strains. Lager yeasts are particularly adapted to low-temperature fermentations. Selection of new yeast strains for improved traits or fermentation performance is laborious, due to the allotetraploid nature of lager yeasts. Initially, we have generated new F1 hybrids by classical genetics, using spore clones of lager yeast and S. cerevisiae and complementation of auxotrophies of the single strains upon mating. These hybrids were improved on several parameters, including growth at elevated temperature and resistance against high osmolarity or high ethanol concentrations. Due to the uncertainty of chromosomal make-up of lager yeast spore clones, we introduced molecular markers to analyse mating-type composition by PCR. Based on these results, new hybrids between a lager and an ale yeast strain were isolated by micromanipulation. These hybrids were not subject to genetic modification. We generated and verified 13 hybrid strains. All of these hybrid strains showed improved stress resistance as seen in the ale parent, including improved survival at the end of fermentation. Importantly, some of the strains showed improved fermentation rates using 18° Plato at 18-25°C. Uniparental mitochondrial DNA inheritance was observed mostly from the S. cerevisiae parent.

  8. Inactivation of Bakers' yeast glucose-6-phosphate dehydrogenase by aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sungwoo; Joshi, J.G. (Univ. of Tennessee, Knoxville (USA))

    1989-04-18

    Preincubation of yeast glucose-6-phosphate dehydrogenase (G6PD) with Al(III) produced an inactive enzyme containing 1 mol of Al(III)/mol of enzyme subunit. None of the enzyme-bound Al(III) was dissociated by dialysis against 10 mM Tris-HCl, pH 7.0, containing 0.2 mM EDTA at 4{degree}C for 24 h. Citrate, NADP{sup +}, EDTA, or NaF protected the enzyme against the Al(III) inactivation. The Al(III)-inactivated enzyme, however, was completely reactivated only by citrate and NaF. The dissociation constant for the enzyme-aluminum complex was calculated to be 4 {times} 10{sup {minus}6} M with NaF, a known reversible chelator for aluminum. Modification of histidine and lysine residues of the enzyme with diethyl pyrocarbonate and acetylsalicylic acid, respectively, inactivated the enzyme. However, the modified enzyme still bound 1 mol of Al(III)/mol of enzyme subunit. Circular dichroism studies showed that the binding of Al(III) to the enzyme induced a decrease in {alpha}-helix and {beta}-sheet and an increase in random coil. Therefore, it is suggested that inactivation of G6PD by Al(III) is due to the conformational change induced by Al(III) binding.

  9. Physiological impact and context dependency of transcriptional responses: a chemostat study in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Tai, S.L.

    2007-01-01

    This thesis is a compilation of a four-year PhD project on bakers' yeast (Saccharomyces cerevisiae). Since the entire S. cerevisiae genome sequence became available in 1996, DNA-microarray analysis has become a popular high-information-density tool for analyzing gene expression in this important ind

  10. Enhanced freeze tolerance of baker's yeast by overexpressed trehalose-6-phosphate synthase gene (TPS1) and deleted trehalase genes in frozen dough.

    Science.gov (United States)

    Tan, Haigang; Dong, Jian; Wang, Guanglu; Xu, Haiyan; Zhang, Cuiying; Xiao, Dongguang

    2014-08-01

    Several recombinant strains with overexpressed trehalose-6-phosphate synthase gene (TPS1) and/or deleted trehalase genes were obtained to elucidate the relationships between TPS1, trehalase genes, content of intracellular trehalose and freeze tolerance of baker's yeast, as well as improve the fermentation properties of lean dough after freezing. In this study, strain TL301(TPS1) overexpressing TPS1 showed 62.92 % higher trehalose-6-phosphate synthase (Tps1) activity and enhanced the content of intracellular trehalose than the parental strain. Deleting ATH1 exerted a significant effect on trehalase activities and the degradation amount of intracellular trehalose during the first 30 min of prefermentation. This finding indicates that acid trehalase (Ath1) plays a role in intracellular trehalose degradation. NTH2 encodes a functional neutral trehalase (Nth2) that was significantly involved in intracellular trehalose degradation in the absence of the NTH1 and/or ATH1 gene. The survival ratio, freeze-tolerance ratio and relative fermentation ability of strain TL301(TPS1) were approximately twice as high as those of the parental strain (BY6-9α). The increase in freeze tolerance of strain TL301(TPS1) was accompanied by relatively low trehalase activity, high Tps1 activity and high residual content of intracellular trehalose. Our results suggest that overexpressing TPS1 and deleting trehalase genes are sufficient to improve the freeze tolerance of baker's yeast in frozen dough. The present study provides guidance for the commercial baking industry as well as the research on the intracellular trehalose mobilization and freeze tolerance of baker's yeast. PMID:24951963

  11. The YeastGenome app: the Saccharomyces Genome Database at your fingertips.

    Science.gov (United States)

    Wong, Edith D; Karra, Kalpana; Hitz, Benjamin C; Hong, Eurie L; Cherry, J Michael

    2013-01-01

    The Saccharomyces Genome Database (SGD) is a scientific database that provides researchers with high-quality curated data about the genes and gene products of Saccharomyces cerevisiae. To provide instant and easy access to this information on mobile devices, we have developed YeastGenome, a native application for the Apple iPhone and iPad. YeastGenome can be used to quickly find basic information about S. cerevisiae genes and chromosomal features regardless of internet connectivity. With or without network access, you can view basic information and Gene Ontology annotations about a gene of interest by searching gene names and gene descriptions or by browsing the database within the app to find the gene of interest. With internet access, the app provides more detailed information about the gene, including mutant phenotypes, references and protein and genetic interactions, as well as provides hyperlinks to retrieve detailed information by showing SGD pages and views of the genome browser. SGD provides online help describing basic ways to navigate the mobile version of SGD, highlights key features and answers frequently asked questions related to the app. The app is available from iTunes (http://itunes.com/apps/yeastgenome). The YeastGenome app is provided freely as a service to our community, as part of SGD's mission to provide free and open access to all its data and annotations. PMID:23396302

  12. A Gondwanan imprint on global diversity and domestication of wine and cider yeast Saccharomyces uvarum

    Science.gov (United States)

    Almeida, Pedro; Gonçalves, Carla; Teixeira, Sara; Libkind, Diego; Bontrager, Martin; Masneuf-Pomarède, Isabelle; Albertin, Warren; Durrens, Pascal; Sherman, David James; Marullo, Philippe; Todd Hittinger, Chris; Gonçalves, Paula; Sampaio, José Paulo

    2014-06-01

    In addition to Saccharomyces cerevisiae, the cryotolerant yeast species S. uvarum is also used for wine and cider fermentation but nothing is known about its natural history. Here we use a population genomics approach to investigate its global phylogeography and domestication fingerprints using a collection of isolates obtained from fermented beverages and from natural environments on five continents. South American isolates contain more genetic diversity than that found in the Northern Hemisphere. Moreover, coalescence analyses suggest that a Patagonian sub-population gave rise to the Holarctic population through a recent bottleneck. Holarctic strains display multiple introgressions from other Saccharomyces species, those from S. eubayanus being prevalent in European strains associated with human-driven fermentations. These introgressions are absent in the large majority of wild strains and gene ontology analyses indicate that several gene categories relevant for wine fermentation are overrepresented. Such findings constitute a first indication of domestication in S. uvarum.

  13. A Gondwanan Imprint on Global Diversity and Domestication of Wine and Cider Yeast Saccharomyces uvarum

    Science.gov (United States)

    Almeida, Pedro; Gonçalves, Carla; Teixeira, Sara; Libkind, Diego; Bontrager, Martin; Masneuf-Pomarède, Isabelle; Albertin, Warren; Durrens, Pascal; Sherman, David; Marullo, Philippe; Hittinger, Chris Todd; Gonçalves, Paula; Sampaio, José Paulo

    2016-01-01

    In addition to Saccharomyces cerevisiae, the cryotolerant yeast species S. uvarum is also used for wine and cider fermentation but nothing is known about its natural history. Here we use a population genomics approach to investigate its global phylogeography and domestication fingerprints using a collection of isolates obtained from fermented beverages and from natural environments on five continents. South American isolates contain more genetic diversity than that found in the Northern Hemisphere. Moreover, coalescence analyses suggest that a Patagonian sub-population gave rise to the Holarctic population through a recent bottleneck. Holarctic strains display multiple introgressions from other Saccharomyces species, those from S. eubayanus being prevalent in European strains associated with human-driven fermentations. These introgressions are absent in the large majority of wild strains and gene ontology analyses indicate that several gene categories relevant for wine fermentation are overrepresented. Such findings constitute a first indication of domestication in S. uvarum. PMID:24887054

  14. Covalent aspartylation of aspartyl-tRNA synthetase from Bakers' yeast by its cognat aspartyl adenylate: identification of the labeled residues

    Energy Technology Data Exchange (ETDEWEB)

    Mejdoub, H.; Kern, D.; Giege, R.; Ebel, J.P.; Boulanger, Y.; Reinbolt, J.

    1987-04-07

    Aspartyl-tRNA synthetase from bakers' yeast gives an unstable complex with the cognate adenylate, which reacts after dissociation with amino acid side chains of the protein. This leads to a covalent incorporation of (/sup 14/C)-aspartic acid into aspartyl-tRNA synthetase via amide or ester bonds formed between the ..cap alpha..-carboxyl group of activated aspartic acid and accessible lysines, serines, and threonines. This property is used to label the peptides at the surface of the enzyme. The main labeled residues have been identified, and their location in the primary structure is discussed in relation to structural properties of aspartyl-tRNA synthetase.

  15. [Modification changes of the genetic material in Saccharomyces yeasts].

    Science.gov (United States)

    Repnevskaia, M V; Kashkin, P K; Inge-Vechtomov, S G

    1989-03-01

    The problem of mating-type switches in heterothallic yeast cells was investigated. In selective system for cytoduction in alpha x alpha crosses alpha-cytoductants were predominantly obtained. Thus matings in alpha x alpha crosses can proceed through non-heritable changes (modifications) of the mating type alpha----a. The frequency of alpha-cytoductants after UV-irradiation of the recipient cells exceeded the control value 50-90 times. The extra copy of MAT alpha dramatically decreased the frequency of cytoductants in alpha x alpha crosses, either spontaneously or after UV-irradiation. The rad18 recipient defective in postreplication repair had 70-times increased level of mating-type modifications, as compared with isogenic Rad+ strain. An explanation consistent with these data is that mating-type modifications are due to phenotypic expression of primary lesions of MAT alpha locus. Such lesions might be expressed as transient a-mating type. After the mating event, these lesions can be repaired or turned to true mutations within the MAT locus. In fact, approximately half of non-mating cytoductants from alpha x alpha crosses had the phenotype of mat alpha 2 mutants.

  16. The Snf1 Protein Kinase in the Yeast Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Usaite, Renata

    2008-01-01

    that the stable isotope labeling approach is highly reproducible among biological replicates when complex protein mixtures containing small expression changes were analyzed. Where poor correlation between stable isotope labeling and spectral counting was found, the major reason behind the discrepancy was the lack...... catabolism was SNF1 or SNF4 gene deletion specific. In comparison to the reference strain, growth delay on galactose was found to last 2.4 times (7 hours) longer for the Δsnf4, 3.1 times (10.5 hours) longer for the Δsnf1, and 9.6 times (43 hours) longer for the Δsnf1Δsnf4 strains. The maximum specific growth...... of reproducible sampling for proteins with low spectral counts. To reconstruct a regulatory map of the yeast Snf1 protein kinase, I used the abundances of 5716 mRNAs, 2388 proteins, and 44 metabolites measured for the wild-type, Δsnf1, Δsnf4, and Δsnf1Δsnf4 strains. By integrating these measurements with global...

  17. Effect of live yeast culture Saccharomyces cerevisiae on milk production and some blood parameters

    Directory of Open Access Journals (Sweden)

    Judit Peter Szucs

    2013-05-01

    Full Text Available The aim of this study was to investigate the effect of live yeast culture (Saccharomyces cerevisiae Sc 47 on milk yield, milk composition and some blood parameters of dairy cows during their early lactation on farm conditions. The live yeast culture was given in the diet of heifers and cows (5 g day-1 solid Actisaf for 14 days before calving and exclusively for the treated cows 12 g day-1 dissolved in 500 ml of water, during 14 days after calving. The experiment took until 100th day of lactation on farm conditions. Yeast culture supplementation was the most effective for the performance of primiparous cows: It was advantageous for blod plasma parameters: decreased the beta-hydroxy butyrate (BHB content and free fatty acids (FFA which indicated the protection of the animals against ketosis or other metabolic disorders. Increased the daily milk production and the lactose /glucose content of the milk. The live yeast culture increased the lactose content of the milk and decreased the somatic cell count of multiparous cows. The listed parameters were not significant (P<0.05 compare to the results of positive control groups. The applied live yeast culture supplementation did not significant affect for other performance of the cows.

  18. Interaction of Lactobacillus vini with the ethanol-producing yeasts Dekkera bruxellensis and Saccharomyces cerevisiae.

    Science.gov (United States)

    Tiukova, Ievgeniia; Eberhard, Thomas; Passoth, Volkmar

    2014-01-01

    Lactobacillus vini was recently described as a contaminant in industrial ethanol fermentations and its co-occurrence with Dekkera bruxellensis was noted. We investigated the growth characteristics of L. vini in cocultivation together with either Saccharomyces cerevisiae or D. bruxellensis. Lower cell numbers of both the yeasts and L. vini as well as a decrease in ethanol and lactate formation in mixed batch cultures compared with pure cultures were noted. L. vini formed cell aggregates (flocs) in all cultivation media with different shapes in Man-Rogosa-Sharpe and yeast extract-peptone-dextrose media. Flocs' size and proportion of cells bound to flocs increased with increasing ethanol concentration. In coculture, formation of lactic acid bacteria-yeast cell aggregates consisting of a bacterial core with an outer layer of yeast cells was observed. L. vini-D. bruxellensis flocs had a bigger surface, due to cells protruding from the pseudomycelium. The involvement of mannose residues in the flocculation between L. vini and yeasts was tested. The presence of mannose induced deflocculation in a concentration-dependent manner. Less mannose was required for the deflocculation of D. bruxellensis as compared with S. cerevisiae.

  19. Investigation of Arsenic-Stressed Yeast (Saccharomyces cerevisiae as a Bioassay in Homeopathic Basic Research

    Directory of Open Access Journals (Sweden)

    Tim Jäger

    2011-01-01

    Full Text Available This study investigated the response of arsenic-stressed yeast (Saccharomyces cerevisiae towards homeopathically potentized Arsenicum album, a duckweed nosode, and gibberellic acid. The three test substances were applied in five potency levels (17x, 18x, 24x, 28x, 30x and compared to controls (unsuccussed and succussed water with respect to influencing specific growth parameters. Five independent experiments were evaluated for each test substance. Additionally, five water control experiments were analyzed to investigate the stability of the experimental setup (systematic negative control experiments. All experiments were randomized and blinded. Yeast grew in microplates over a period of 38 h in either potentized substances or water controls with 250 mg/l arsenic(V added over the entire cultivation period. Yeast's growth kinetics (slope, Et50, and yield were measured photometrically. The test system exhibited a low coefficient of variation (slope 1.2%, Et50 0.3%, yield 2.7%. Succussed water did not induce any significant differences compared to unsuccussed water. Data from the control and treatment groups were both pooled to increase statistical power. In this study with yeast, no significant effects were found for any outcome parameter or any homeopathic treatment. Since in parallel experiments arsenic-stressed duckweed showed highly significant effects after application of potentized Arsenicum album and duckweed nosode preparations from the same batch as used in the present study, some specific properties of this experimental setup with yeast must be responsible for the lacking response.

  20. The lager yeast Saccharomyces pastorianus removes and transforms Fusarium trichothecene mycotoxins during fermentation of brewer's wort.

    Science.gov (United States)

    Nathanail, Alexis V; Gibson, Brian; Han, Li; Peltonen, Kimmo; Ollilainen, Velimatti; Jestoi, Marika; Laitila, Arja

    2016-07-15

    An investigation was conducted to determine the fate of deoxynivalenol, deoxynivalenol-3-glucoside, HT-2 toxin and T-2 toxin, during a four-day fermentation with the lager yeast Saccharomyces pastorianus. The influence of excessive mycotoxin concentrations on yeast growth, productivity and viability were also assessed. Mycotoxins were dosed at varying concentrations to 11.5° Plato wort. Analysis of yeast revealed that presence of the toxins even at concentrations up to 10,000 μg/L had little or no effect on sugar utilisation, alcohol production, pH, yeast growth or cell viability. Of the dosed toxin amounts 9-34% were removed by the end of fermentation, due to physical binding and/or biotransformation by yeast. Deoxynivalenol-3-glucoside was not reverted to its toxic precursor during fermentation. Processing of full-scan liquid chromatography-quadrupole time-of-flight-mass spectrometry (LC-QTOF-MS) data with MetaboLynx and subsequent LC-QTOF-MS/MS measurements resulted in annotation of several putative metabolites. De(acetylation), glucosylation and sulfonation were the main metabolic pathways activated. PMID:26948637

  1. Evaluation of Yeast (Saccharomyces Cerevisiae in Weight Gain of Crossbred Sheep

    Directory of Open Access Journals (Sweden)

    Oscar Daniel Cifuentes Ruiz

    2013-05-01

    Full Text Available Probiotics has been used to substitute antibiotic treatments used as growth promoters and to improve productive performance. The term probiotic is used to namelive micro-organisms such as microbes and bacteria with beneficial effects to livestock farms when consumed as dietary supplements. This review investigates the evidence for the use of probiotics in sheep’s final body weight gain combined with livestock grazing management system with yeast (Saccharomyces cerevisiae. Twenty one native sheep were chosen randomly for this study, with an average weight of 14.71 kg ± 1.9 under continuous grazing; the meadows are used as sheep pastures where Kikuyo grass grows (Pennisetum clandestinum and water ad libitum. Sheep were classified in three different treatments: T1, control treatment, without adding yeast; T2, added with 5 g/day of yeast; and T3, supplemented with 15 g/day of yeast. Throughout this study was possible to find a beneficial effect on final weight and average daily gain. The results were compared by ANOVA with a significance level of 95%. A significant difference was observed on final body weight of sheep for T3 (p ≤ 0.05. In addition, it was found that daily weight gain was 100 g, 120 g and 220 g for T1, T2 and T3 respectively. This research leads us to conclude that the addition of 15 g of yeast improves daily bodyweight gain and final weight of grazing native sheep.

  2. Adsorption and interfacial electron transfer of Saccharomyces cerevisiae yeast cytochrome c monolayers on Au(111) electrodes

    DEFF Research Database (Denmark)

    Hansen, Allan Glargaard; Boisen, Anja; Nielsen, Jens Ulrik;

    2003-01-01

    We have studied the adsorption and electron-transfer dynamics of Saccharomyces cerevisiae (yeast) iso-1-cytochrome c adsorbed on Au(111) electrodes in aqueous phosphate buffer media. This cytochrome possesses a thiol group close to the protein surface (Cys102) suitable for linking the protein....... The voltammetric data display a thiol reductive desorption signal corresponding to close to monolayer coverage. Reductive desorption is also reflected in a capacitance peak. Voltammetric signals from the heme group in both native and partially denatured states could also be detected. XPS shows clear Au-S bond...

  3. Global organization of protein complexome in the yeast Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Lee Sang

    2011-08-01

    Full Text Available Abstract Background Proteins in organisms, rather than act alone, usually form protein complexes to perform cellular functions. We analyze the topological network structure of protein complexes and their component proteins in the budding yeast in terms of the bipartite network and its projections, where the complexes and proteins are its two distinct components. Compared to conventional protein-protein interaction networks, the networks from the protein complexes show more homogeneous structures than those of the binary protein interactions, implying the formation of complexes that cause a relatively more uniform number of interaction partners. In addition, we suggest a new optimization method to determine the abundance and function of protein complexes, based on the information of their global organization. Estimating abundance and biological functions is of great importance for many researches, by providing a quantitative description of cell behaviors, instead of just a "catalogues" of the lists of protein interactions. Results With our new optimization method, we present genome-wide assignments of abundance and biological functions for complexes, as well as previously unknown abundance and functions of proteins, which can provide significant information for further investigations in proteomics. It is strongly supported by a number of biologically relevant examples, such as the relationship between the cytoskeleton proteins and signal transduction and the metabolic enzyme Eno2's involvement in the cell division process. Conclusions We believe that our methods and findings are applicable not only to the specific area of proteomics, but also to much broader areas of systems biology with the concept of optimization principle.

  4. Fed-batch cultivation of baker's yeast followed by nitrogen or carbon starvation: effects on fermentative capacity and content of trehalose and glycogen

    DEFF Research Database (Denmark)

    Jørgensen, Henning; Olsson, Lisbeth; Rønnow, B.;

    2002-01-01

    An industrial strain of Saccharomyces cerevisiae (DGI 342) was cultivated in fed-batch cultivations at a specific growth rate of 0.2 h(-1). The yeast was then exposed to carbon or nitrogen starvation for up to 8 h, to study the effect of starvation on fermentative capacity and content of protein...... increased from 45 to 64 mg (g dry-weight)(-1), whereas the glycogen content in the same period was reduced from 55 to 5 mg (g dry-weight)(-1). Glycogen was consumed faster than trehalose during storage of the starved yeast for 1 month. Nitrogen starvation resulted in a decrease in the protein content...... of the yeast cells, and the fermentative capacity per gram dry-weight decreased by 40%. The protein content in the carbon-starved yeast increased as a result of starvation due to the fact that the content of glycogen was reduced. The fermentative capacity per gram dry-weight was, however, unaltered....

  5. Effects of mal62-overexpression on leavening ability of baker's yeast%mal62基因高表达对工业面包酵母发酵力的影响

    Institute of Scientific and Technical Information of China (English)

    孙溪; 张翠英; 董建; 王光路; 吴鸣月; 肖冬光

    2012-01-01

    [目的]构建高麦芽糖利用能力的面包酵母菌株,以期提高面包酵母在不加糖面团中的发酵力,增加经济效益的同时减少成本消耗.[方法]克隆工业面包酵母BY-14的麦芽糖酶基因mal62,以PGKl强启动子和终止子为调控元件,以酵母-大肠穿梭型质粒Yep-C为载体,构建重组表达质粒Yep-CPM,并转化酿酒酵母(Saccharomyces cerevisiae)BY-14,经筛选鉴定获得酵母转化子BYCPM.进行转化子的酶活力、mal62基因表达水平及发酵力测定,检测目的基因的功能性表达.[结果]工业酵母转化子BYCPM的最大麦芽糖酶活力比对照菌提高15% -52%,发酵力提高40%,比发酵力提高5.6%.[结论]转化子BYCPM具有更高的麦芽糖酶活力和更强的抗葡萄糖阻遏能力.并且在不加糖面团中,转化子具有更高的发酵力,可以在更短的时间内获得更大的产气量且消耗更少的碳源.%[Objective] To increase the leavening ability in the lean dough, the maltose utilization ability of baker's yeast was enhanced. [Methods] A 1.7kb PGK1 promoter and terminator were ligated and inserted into vector Yep-C to give the expression plasmid named Yep-CP. Then a 1. 7kb DNA fragment containing the open reading frame and terminator of mal62 gene was amplified from Saccharomyces cerevisiae BY-14 by PCR, and inserted into Yep-CP to generate recombinant plasmid Yep-CPM. To express mal62 gene properly in S. cerevisiae, the recombinant expression plasmids Yep-CPM with copper resistance gene as the selection marker for yeast transformation were introduced into S. cerevisiae BY-14. The resulting yeast transformant BYCPM was screened on YEPD with 4 mmol/L CuS04and identified by colony PCR. Target protein was detected by qRT-PCR, and the enzyme activities and the leavening ability of the recombinant strain BYCPM were determined to confirm whether functional expression was achieved. [ Results ] The maximum maltase activity of recombinant strain BYCPM was 15

  6. Reconstruction of the carnitine biosynthesis pathway from Neurospora crassa in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Franken, Jaco; Burger, Anita; Swiegers, Jan H; Bauer, Florian F

    2015-08-01

    Industrial synthesis of L-carnitine is currently performed by whole-cell biotransformation of industrial waste products, mostly D-carnitine and cronobetaine, through specific bacterial species. No comparable system has been established using eukaryotic microorganisms, even though there is a significant and growing international demand for either the pure compound or carnitine-enriched consumables. In eukaryotes, including the fungus Neurospora crassa, L-carnitine is biosynthesized through a four-step metabolic conversion of trimethyllysine to L-carnitine. In contrast, the industrial yeast, Saccharomyces cerevisiae lacks the enzymes of the eukaryotic biosynthesis pathway and is unable to synthesize carnitine. This study describes the cloning of all four of the N. crassa carnitine biosynthesis genes and the reconstruction of the entire pathway in S. cerevisiae. The engineered yeast strains were able to catalyze the synthesis of L-carnitine, which was quantified using hydrophilic interaction liquid chromatography electrospray ionization mass spectrometry (HILIC-ESI-MS) analyses, from trimethyllysine. Furthermore, the yeast threonine aldolase Gly1p was shown to effectively catalyze the second step of the pathway, fulfilling the role of a serine hydroxymethyltransferase. The analyses also identified yeast enzymes that interact with the introduced pathway, including Can1p, which was identified as the yeast transporter for trimethyllysine, and the two yeast serine hydroxymethyltransferases, Shm1p and Shm2p. Together, this study opens the possibility of using an engineered, carnitine-producing yeast in various industrial applications while providing insight into possible future strategies aimed at tailoring the production capacity of such strains.

  7. Polyphosphates and Polyphosphatase Activity in the Yeast Saccharomyces cerevisiae during Overexpression of the DDP1 Gene.

    Science.gov (United States)

    Trilisenko, L V; Andreeva, N A; Eldarov, M A; Dumina, M V; Kulakovskaya, T V

    2015-10-01

    The effects of overexpression of yeast diphosphoinositol polyphosphate phosphohydrolase (DDP1) having endopolyphosphatase activity on inorganic polyphosphate metabolism in Saccharomyces cerevisiae were studied. The endopolyphosphatase activity in the transformed strain significantly increased compared to the parent strain. This activity was observed with polyphosphates of different chain length, being suppressed by 2 mM tripolyphosphate or ATP. The content of acid-soluble and acid-insoluble polyphosphates under DDP1 overexpression decreased by 9 and 28%, respectively. The average chain length of salt-soluble and alkali-soluble fractions did not change in the overexpressing strain, and that of acid-soluble polyphosphate increased under phosphate excess. At the initial stage of polyphosphate recovery after phosphorus starvation, the chain length of the acid-soluble fraction in transformed cells was lower compared to the recipient strain. This observation suggests the complex nature of DDP1 involvement in the regulation of polyphosphate content and chain length in yeasts.

  8. Direct conversion of starch into ethanol in a gas-solid fluidized bed fermenter with technical amylases and baker's yeast

    Energy Technology Data Exchange (ETDEWEB)

    Moebus, O.; Teuber, M.

    1985-02-01

    Our experiments have shown that solid substrate fermentations in a gas-solid fluidized bed reactor can be used with starch for producing ethanol. Ground modified rice (0,3 mm mesh) was fluidized with pressed baker's yeast particles and powdered enzyme preparations of ..cap alpha..-amylase and amyloglucosidase in the reactor, gassed with carbon dioxide, which was added before fermentation or produced by the fermentation, and humidified by spraying deionized water with a two phase nozzle into the bed. The modified starch absorbed water, which allowed the amylases to attack the starch. The glucose set free was transformed by the yeast into ethanol and carbon dioxide. This system offers an alternative to the recently developed methods of coimmobilisation.

  9. Isolation and characterization of a freeze-tolerant diploid derivative of an industrial baker's yeast strain and its use in frozen doughs.

    Science.gov (United States)

    Teunissen, Aloys; Dumortier, Françoise; Gorwa, Marie-Françoise; Bauer, Jürgen; Tanghe, An; Loïez, Annie; Smet, Peter; Van Dijck, Patrick; Thevelein, Johan M

    2002-10-01

    The routine production and storage of frozen doughs are still problematic. Although commercial baker's yeast is highly resistant to environmental stress conditions, it rapidly loses stress resistance during dough preparation due to the initiation of fermentation. As a result, the yeast loses gassing power significantly during storage of frozen doughs. We obtained freeze-tolerant mutants of polyploid industrial strains following screening for survival in doughs prepared with UV-mutagenized yeast and subjected to 200 freeze-thaw cycles. Two strains in the S47 background with a normal growth rate and the best freeze tolerance under laboratory conditions were selected for production in a 20-liter pilot fermentor. Before frozen storage, the AT25 mutant produced on the 20-liter pilot scale had a 10% higher gassing power capacity than the S47 strain, while the opposite was observed for cells produced under laboratory conditions. AT25 also retained more freeze tolerance during the initiation of fermentation in liquid cultures and more gassing power during storage of frozen doughs. Other industrially important properties (yield, growth rate, nitrogen assimilation, and phosphorus content) were very similar. AT25 had only half of the DNA content of S47, and its cell size was much smaller. Several diploid segregants of S47 had freeze tolerances similar to that of AT25 but inferior performance for other properties, while an AT25-derived tetraploid, TAT25, showed only slightly improved freeze tolerance compared to S47. When AT25 was cultured in a 20,000-liter fermentor under industrial conditions, it retained its superior performance and thus appears to be promising for use in frozen dough production. Our results also show that a diploid strain can perform at least as well as a tetraploid strain for commercial baker's yeast production and usage. PMID:12324320

  10. L-histidine inhibits biofilm formation and FLO11-associated phenotypes in Saccharomyces cerevisiae flor yeasts.

    Directory of Open Access Journals (Sweden)

    Marc Bou Zeidan

    Full Text Available Flor yeasts of Saccharomyces cerevisiae have an innate diversity of Flo11p which codes for a highly hydrophobic and anionic cell-wall glycoprotein with a fundamental role in biofilm formation. In this study, 380 nitrogen compounds were administered to three S. cerevisiae flor strains handling Flo11p alleles with different expression levels. S. cerevisiae strain S288c was used as the reference strain as it cannot produce Flo11p. The flor strains generally metabolized amino acids and dipeptides as the sole nitrogen source, although with some exceptions regarding L-histidine and histidine containing dipeptides. L-histidine completely inhibited growth and its effect on viability was inversely related to Flo11p expression. Accordingly, L-histidine did not affect the viability of the Δflo11 and S288c strains. Also, L-histidine dramatically decreased air-liquid biofilm formation and adhesion to polystyrene of the flor yeasts with no effect on the transcription level of the Flo11p gene. Moreover, L-histidine modified the chitin and glycans content on the cell-wall of flor yeasts. These findings reveal a novel biological activity of L-histidine in controlling the multicellular behavior of yeasts [corrected].

  11. The Genome Sequence of Saccharomyces eubayanus and the Domestication of Lager-Brewing Yeasts.

    Science.gov (United States)

    Baker, EmilyClare; Wang, Bing; Bellora, Nicolas; Peris, David; Hulfachor, Amanda Beth; Koshalek, Justin A; Adams, Marie; Libkind, Diego; Hittinger, Chris Todd

    2015-11-01

    The dramatic phenotypic changes that occur in organisms during domestication leave indelible imprints on their genomes. Although many domesticated plants and animals have been systematically compared with their wild genetic stocks, the molecular and genomic processes underlying fungal domestication have received less attention. Here, we present a nearly complete genome assembly for the recently described yeast species Saccharomyces eubayanus and compare it to the genomes of multiple domesticated alloploid hybrids of S. eubayanus × S. cerevisiae (S. pastorianus syn. S. carlsbergensis), which are used to brew lager-style beers. We find that the S. eubayanus subgenomes of lager-brewing yeasts have experienced increased rates of evolution since hybridization, and that certain genes involved in metabolism may have been particularly affected. Interestingly, the S. eubayanus subgenome underwent an especially strong shift in selection regimes, consistent with more extensive domestication of the S. cerevisiae parent prior to hybridization. In contrast to recent proposals that lager-brewing yeasts were domesticated following a single hybridization event, the radically different neutral site divergences between the subgenomes of the two major lager yeast lineages strongly favor at least two independent origins for the S. cerevisiae × S. eubayanus hybrids that brew lager beers. Our findings demonstrate how this industrially important hybrid has been domesticated along similar evolutionary trajectories on multiple occasions.

  12. Removal of lead, mercury and nickel using the yeast Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Cherlys Infante J.

    2014-06-01

    Full Text Available Objective. In this study the biomass of the yeast Saccharomyces cerevisiae was used to remove lead, mercury and nickel in the form of ions dissolved in water. Materials and methods. Synthetic solutions were prepared containing the three heavy metals, which were put in contact with viable microorganisms at different conditions of pH, temperature, aeration and agitation. Results. Both individual variables and the interaction effects influenced the biosorption process. Throughout the experimental framework it was observed that the biomass of Saccharomyces cerevisiae removed a higher percentage of lead (86.4% as compared to mercury and nickel (69.7 and 47.8% respectively. When the pH was set at a value of 5 the effect was positive for all three metals. Conclusions. pH was the variable that had a greater influence on the biosorption of lead on the biomass of Saccharomyces cerevisiae. The affinity of the heavy metals for the biomass followed the order Pb>Hg>Ni.

  13. Sequential Fermentation with Selected Immobilized Non-Saccharomyces Yeast for Reduction of Ethanol Content in Wine.

    Science.gov (United States)

    Canonico, Laura; Comitini, Francesca; Oro, Lucia; Ciani, Maurizio

    2016-01-01

    The average ethanol content of wine has increased over the last two decades. This increase was due to consumer preference, and also to climate change that resulted in increased grape maturity at harvest. In the present study, to reduce ethanol content in wine, a microbiological approach was investigated, using immobilized selected strains of non-Saccharomyces yeasts namely Starmerella bombicola, Metschnikowia pulcherrima, Hanseniaspora osmophila, and Hanseniaspora uvarum to start fermentation, followed by inoculation of free Saccharomyces cerevisiae cells. The immobilization procedures, determining high reaction rates, led a feasible sequential inoculation management avoiding possible contamination under actual winemaking. Under these conditions, the immobilized cells metabolized almost 50% of the sugar in 3 days, while S. cerevisiae inoculation completed all of fermentation. The S. bombicola and M. pulcherrima initial fermentations showed the best reductions in the final ethanol content (1.6 and 1.4% v/v, respectively). Resulting wines did not have any negative fermentation products with the exception of H. uvarum sequential fermentation that showed significant amount of ethyl acetate. On the other hand, there were increases in desirable compounds such as glycerol and succinic acid for S. bombicola, geraniol for M. pulcherrima and isoamyl acetate and isoamyl alcohol for H. osmophila sequential fermentations. The overall results indicated that a promising ethanol reduction could be obtained using sequential fermentation of immobilized selected non-Saccharomyces strains. In this way, a suitable timing of second inoculation and an enhancement of analytical profile of wine were obtained. PMID:27014203

  14. Sequential Fermentation with Selected Immobilized Non-Saccharomyces Yeast for Reduction of Ethanol Content in Wine

    Science.gov (United States)

    Canonico, Laura; Comitini, Francesca; Oro, Lucia; Ciani, Maurizio

    2016-01-01

    The average ethanol content of wine has increased over the last two decades. This increase was due to consumer preference, and also to climate change that resulted in increased grape maturity at harvest. In the present study, to reduce ethanol content in wine, a microbiological approach was investigated, using immobilized selected strains of non-Saccharomyces yeasts namely Starmerella bombicola, Metschnikowia pulcherrima, Hanseniaspora osmophila, and Hanseniaspora uvarum to start fermentation, followed by inoculation of free Saccharomyces cerevisiae cells. The immobilization procedures, determining high reaction rates, led a feasible sequential inoculation management avoiding possible contamination under actual winemaking. Under these conditions, the immobilized cells metabolized almost 50% of the sugar in 3 days, while S. cerevisiae inoculation completed all of fermentation. The S. bombicola and M. pulcherrima initial fermentations showed the best reductions in the final ethanol content (1.6 and 1.4% v/v, respectively). Resulting wines did not have any negative fermentation products with the exception of H. uvarum sequential fermentation that showed significant amount of ethyl acetate. On the other hand, there were increases in desirable compounds such as glycerol and succinic acid for S. bombicola, geraniol for M. pulcherrima and isoamyl acetate and isoamyl alcohol for H. osmophila sequential fermentations. The overall results indicated that a promising ethanol reduction could be obtained using sequential fermentation of immobilized selected non-Saccharomyces strains. In this way, a suitable timing of second inoculation and an enhancement of analytical profile of wine were obtained. PMID:27014203

  15. Study of the plant COPII vesicle coat subunits by functional complementation of yeast Saccharomyces cerevisiae mutants.

    Science.gov (United States)

    De Craene, Johan-Owen; Courte, Fanny; Rinaldi, Bruno; Fitterer, Chantal; Herranz, Mari Carmen; Schmitt-Keichinger, Corinne; Ritzenthaler, Christophe; Friant, Sylvie

    2014-01-01

    The formation and budding of endoplasmic reticulum ER-derived vesicles depends on the COPII coat protein complex that was first identified in yeast Saccharomyces cerevisiae. The ER-associated Sec12 and the Sar1 GTPase initiate the COPII coat formation by recruiting the Sec23-Sec24 heterodimer following the subsequent recruitment of the Sec13-Sec31 heterotetramer. In yeast, there is usually one gene encoding each COPII protein and these proteins are essential for yeast viability, whereas the plant genome encodes multiple isoforms of all COPII subunits. Here, we used a systematic yeast complementation assay to assess the functionality of Arabidopsis thaliana COPII proteins. In this study, the different plant COPII subunits were expressed in their corresponding temperature-sensitive yeast mutant strain to complement their thermosensitivity and secretion phenotypes. Secretion was assessed using two different yeast cargos: the soluble α-factor pheromone and the membranous v-SNARE (vesicle-soluble NSF (N-ethylmaleimide-sensitive factor) attachment protein receptor) Snc1 involved in the fusion of the secretory vesicles with the plasma membrane. This complementation study allowed the identification of functional A. thaliana COPII proteins for the Sec12, Sar1, Sec24 and Sec13 subunits that could represent an active COPII complex in plant cells. Moreover, we found that AtSec12 and AtSec23 were co-immunoprecipitated with AtSar1 in total cell extract of 15 day-old seedlings of A. thaliana. This demonstrates that AtSar1, AtSec12 and AtSec23 can form a protein complex that might represent an active COPII complex in plant cells.

  16. An insight into the complex prion-prion interaction network in the budding yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Du, Zhiqiang; Valtierra, Stephanie; Li, Liming

    2014-01-01

    The budding yeast Saccharomyces cerevisiae is a valuable model system for studying prion-prion interactions as it contains multiple prion proteins. A recent study from our laboratory showed that the existence of Swi1 prion ([SWI(+)]) and overproduction of Swi1 can have strong impacts on the formation of 2 other extensively studied yeast prions, [PSI(+)] and [PIN(+)] ([RNQ(+)]) (Genetics, Vol. 197, 685-700). We showed that a single yeast cell is capable of harboring at least 3 heterologous prion elements and these prions can influence each other's appearance positively and/or negatively. We also showed that during the de novo [PSI(+)] formation process upon Sup35 overproduction, the aggregation patterns of a preexisting inducer ([RNQ(+)] or [SWI(+)]) can undergo significant remodeling from stably transmitted dot-shaped aggregates to aggregates that co-localize with the newly formed Sup35 aggregates that are ring/ribbon/rod- shaped. Such co-localization disappears once the newly formed [PSI(+)] prion stabilizes. Our finding provides strong evidence supporting the "cross-seeding" model for prion-prion interactions and confirms earlier reports that the interactions among different prions and their prion proteins mostly occur at the initiation stages of prionogenesis. Our results also highlight a complex prion interaction network in yeast. We believe that elucidating the mechanism underlying the yeast prion-prion interaction network will not only provide insight into the process of prion de novo generation and propagation in yeast but also shed light on the mechanisms that govern protein misfolding, aggregation, and amyloidogenesis in higher eukaryotes.

  17. Effects of the supplementation with yeast (saccharomyces cerevisiae) on milk yield, and milk components of water buffalo cows from northeast of Colombia

    OpenAIRE

    T. Cifuentes; García, N.; Medina, S.; J. F. Ramírez

    2010-01-01

    The objective of this study was to evaluate the effects of supplementation of the diet with a commercial yeast (Saccharomyces cerevisiae) on yield and milk composition in water buffalo dairy herd located in northeast of Colombia. Multiparous water buffalo cows (n = 24) in second third of lactation were assigned into two treatments: 1) experimental group (n=12) fed with 100 g/day of commercial yeast cultures (Saccharomyces cerevisiae) and 2) Control group (n=12) without yeast, during two month...

  18. Robust experimental methods to study in-vivo pre-steady state kinetics of primary metabolism in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Mashego, M.R.

    2005-01-01

    In this thesis, robust experimental methods and experimental designs for quantitative analysis of the metabolome (concentrations of relevant metabolites in the cell) of Saccharomyces cerevisiae (Bakers yeast) have been presented. In this research, it is essential to obtain a snapshot of intracellula

  19. Anhydrobiosis in yeast: cell wall mannoproteins are important for yeast Saccharomyces cerevisiae resistance to dehydration.

    Science.gov (United States)

    Borovikova, Diana; Teparić, Renata; Mrša, Vladimir; Rapoport, Alexander

    2016-08-01

    The state of anhydrobiosis is linked with the reversible delay of metabolism as a result of strong dehydration of cells, and is widely distributed in nature. A number of factors responsible for the maintenance of organisms' viability in these conditions have been revealed. This study was directed to understanding how changes in cell wall structure may influence the resistance of yeasts to dehydration-rehydration. Mutants lacking various cell wall mannoproteins were tested to address this issue. It was revealed that mutants lacking proteins belonging to two structurally and functionally unrelated groups (proteins non-covalently attached to the cell wall, and Pir proteins) possessed significantly lower cell resistance to dehydration-rehydration than the mother wild-type strain. At the same time, the absence of the GPI-anchored cell wall protein Ccw12 unexpectedly resulted in an increase of cell resistance to this treatment; this phenomenon is explained by the compensatory synthesis of chitin. The results clearly indicate that the cell wall structure/composition relates to parameters strongly influencing yeast viability during the processes of dehydration-rehydration, and that damage to cell wall proteins during yeast desiccation can be an important factor leading to cell death. Copyright © 2016 John Wiley & Sons, Ltd.

  20. The utilization of some iron and zinc compounds as regulators of catalase activity at Saccharomyces cerevisiae

    OpenAIRE

    Efremova, N.; Molodoi, E.; Usatîi, A.; Fulga, L.

    2013-01-01

    The main aim of this study was to examine the impact of some zinc and iron compounds as oxidative stress factors on catalase activity, which is known to be important defense system of microorganisms to metal stress. For the investigation was used baker's yeast strain - Saccharomyces cerevisiae CNMN-Y-11 previously selected as a source of protein and catalase. The obtained results have revealed that compounds of iron and zinc with citrate and acetate contributes to the accumulation of yeast bi...

  1. Crystallization and preliminary X-ray analysis of beta-alanine synthase from the yeast Saccharomyces kluyveri

    DEFF Research Database (Denmark)

    Dobritzsch, D.; Gojkovic, Zoran; Andersen, Birgit;

    2003-01-01

    In eukaryotes and some bacteria, the third step of reductive pyrimidine catabolism is catalyzed by beta-alanine synthase (EC 3.5.1.6). Crystals of the recombinant enzyme from the yeast Saccharomyces kluyveri were obtained using sodium citrate as a precipitant. The crystals belong to space group P2...

  2. The rate of metabolism as a factor determining longevity of the Saccharomyces cerevisiae yeast.

    Science.gov (United States)

    Molon, Mateusz; Szajwaj, Monika; Tchorzewski, Marek; Skoczowski, Andrzej; Niewiadomska, Ewa; Zadrag-Tecza, Renata

    2016-02-01

    Despite many controversies, the yeast Saccharomyces cerevisiae continues to be used as a model organism for the study of aging. Numerous theories and hypotheses have been created for several decades, yet basic mechanisms of aging have remained unclear. Therefore, the principal aim of this work is to propose a possible mechanism leading to increased longevity in yeast. In this paper, we suggest for the first time that there is a link between decreased metabolic activity, fertility and longevity expressed as time of life in yeast. Determination of reproductive potential and total lifespan with the use of fob1Δ and sfp1Δ mutants allows us to compare the "longevity" presented as the number of produced daughters with the longevity expressed as the time of life. The results of analyses presented in this paper suggest the need for a change in the definition of longevity of yeast by taking into consideration the time parameter. The mutants that have been described as "long-lived" in the literature, such as the fob1Δ mutant, have an increased reproductive potential but live no longer than their standard counterparts. On the other hand, the sfp1Δ mutant and the wild-type strain produce a similar number of daughter cells, but the former lives much longer. Our results demonstrate a correlation between the decreased efficiency of the translational apparatus and the longevity of the sfp1Δ mutant. We suggest that a possible factor regulating the lifespan is the rate of cell metabolism. To measure the basic metabolism of the yeast cells, we used the isothermal microcalorimetry method. In the case of sfp1Δ, the flow of energy, ATP concentration, polysome profile and translational fitness are significantly lower in comparison with the wild-type strain and the fob1Δ mutant.

  3. [Studies of viability and vitality after freezing of the probiotic yeast Saccharomyces boulardii: physiological preconditioning effect].

    Science.gov (United States)

    Pardo, Silvina; Galvagno, Miguel Angel; Cerrutti, Patricia

    2009-06-30

    The aim of this study was to evaluate the vitality and viability of the probiotic yeast Saccharomyces boulardii after freezing/thawing and the physiological preconditioning effect on these properties. The results indicate that the specific growth rate (0.3/h(-1)) and biomass (2-3 x10(8)cells/ml) of S. boulardii obtained in flasks shaken at 28 degrees C and at 37 degrees C were similar. Batch cultures of the yeast in bioreactors using glucose or sugar-cane molasses as carbon sources, reached yields of 0.28 g biomass/g sugar consumed, after 10h incubation at 28 degrees C; the same results were obtained in fed batch fermentations. On the other hand, in batch cultures, the vitality of cells recovered during the exponential growth phase was greater than the vitality of cells from the stationary phase of growth. Vitality of cells from fed-batch fermentations was similar to that of stationary growing cells from batch fermentations. Survival to freezing at -20 degrees C and subsequent thawing of cells from batch cultures was 0.31% for cells in exponential phase of growth and 11.5% for cells in stationary phase. Pre-treatment of this yeast in media with water activity (a(w)) 0.98 increased the survival to freezing of S. boulardii cells stored at -20 degrees C for 2 months by 10 fold. Exposure of the yeast to media of reduced a(w) and/or freezing/thawing process negatively affected cell vitality. It was concluded that stress conditions studied herein decrease vitality of S. boulardii. Besides, the yeast strain studied presented good tolerance to bile salts even at low pH values. PMID:19631167

  4. Chromium uptake by Saccharomyces cerevisiae and isolation of glucose tolerance factor from yeast biomass

    Indian Academy of Sciences (India)

    Vlatka Gulan Zetic; Vesna Stehlik-Tomas; Slobodan Grba; Lavoslav Lutilsky; Damir Kozlek

    2001-06-01

    Fermentations with yeast Saccharomyces cerevisiae in semiaerobic and in static conditions with the addition of chromic chloride into the used molasses medium were analysed. It was proved that the addition of optimal amounts of CrCl3 into the basal medium enhanced the kinetics of alcohol fermentations. The addition of 200 mg/l CrCl3 into the medium stimulated both the yeast growth and the ethanol production in all experimental conditions. On the other hand, the results showed that Cr3+ ions were incorporated into yeast cells during fermentation. Under these conditions the accumulation of Cr3+ ions was performed by yeast cells during the exponential growth phase, and with enriched amounts of 30–45 g/gd.m. of cells. Yeast biomass enriched with chromium ions was extracted with 0.1 mol/l NH4OH assuming that the extracts had the glucose tolerance factor (GTF). Then the extracts were passed through a gel-filtration column in order to isolate and purify the GTF. The presence of GTF in the purified fractions was determined by measuring the absorbance at 260 nm. It is evident from the obtained results that the added purified fractions enhanced the rates of CO2 production as well as the glucose utilization during alcoholic fermentation. As expected, the enhancement of both rates depended on the amounts of extracts added to the fermentation substrate. Thus, it is evident that purified extracts contained the GTF compound, and that Cr3+ ions were bonded to the protein molecule.

  5. Effects of feeding yeast (Saccharomyces cerevisiae), organic selenium and chromium mixed on growth performance and carcass traits of hair lambs

    Institute of Scientific and Technical Information of China (English)

    Pedro A Hernndez-Garca; Alejandro Lara-Bueno; Germn D Mendoza-Martnez; Jos R Brcena-Gama; Fernando X Plata-Prez; Ruifno Lpez-Ordaz; Jos A Martnez-Garca

    2015-01-01

    Yeasts and organic minerals are used in diets to improve health, productive performance and some carcass characteristics of ruminants and non-ruminants. Thirty-two lambs (Pelibuey×Katahdin;BW=(30.55±1.67) kg;n=8) were used in a 56-d feeding experiment to study the effects of different levels of live yeast (Saccharomyces cerevisiae;yeast), selenium (Se) and chromium (Cr) mixed (Se-Cr), and a mixture of yeast-Se-Cr on growth performance and carcass traits. Animals were stratiifed by body weight (BW) and randomly assigned to one of four treatments:1) control group (0.0 g kg–1 yeast);2) yeast (1.50 g kg–1 dry matter intake (DMI) d–1);3) Se-Cr premix (1.5 mg kg–1 DMI d–1 for each mineral);and 4) yeast-Se-Cr mixture. There were no treatment effects on ifnal BW;whereas lambs fed Se-Cr or yeast-Se-Cr had higher (P0.05) among treatment groups. In conclusion, supplementation with yeast, Se-Cr mixed or yeast-Se-Cr did not improve ADG, ifnal BW, back fat content and carcass yield of growing of Pelibuey×Katahdin lambs. Supplementation with Se-Cr and yeast-Se-Cr increased DMI, and approximately 250 g ADG animal–1 d–1 was produced with no negative effects on growth and health of the animals.

  6. K2 killer toxin-induced physiological changes in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Orentaite, Irma; Poranen, Minna M; Oksanen, Hanna M; Daugelavicius, Rimantas; Bamford, Dennis H

    2016-03-01

    Saccharomyces cerevisiae cells produce killer toxins, such as K1, K2 and K28, that can modulate the growth of other yeasts giving advantage for the killer strains. Here we focused on the physiological changes induced by K2 toxin on a non-toxin-producing yeast strain as well as K1, K2 and K28 killer strains. Potentiometric measurements were adjusted to observe that K2 toxin immediately acts on the sensitive cells leading to membrane permeability. This correlated with reduced respiration activity, lowered intracellular ATP content and decrease in cell viability. However, we did not detect any significant ATP leakage from the cells treated by killer toxin K2. Strains producing heterologous toxins K1 and K28 were less sensitive to K2 than the non-toxin producing one suggesting partial cross-protection between the different killer systems. This phenomenon may be connected to the observed differences in respiratory activities of the killer strains and the non-toxin-producing strain at low pH. This might also have practical consequences in wine industry; both as beneficial ones in controlling contaminating yeasts and non-beneficial ones causing sluggish fermentation. PMID:26818855

  7. The neglected nano-specific toxicity of ZnO nanoparticles in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Zhang, Weicheng; Bao, Shaopan; Fang, Tao

    2016-04-20

    Nanoparticles (NPs) with unique physicochemical properties induce nano-specific (excess) toxicity in organisms compared with their bulk counterparts. Evaluation and consideration of nano-specific toxicity are meaningful for the safe design and environmental risk assessment of NPs. However, ZnO NPs have been reported to lack excess toxicity for diverse organisms. In the present study, the nano-specific toxicity of ZnO NPs was evaluated in the yeast Saccharomyces cerevisiae. Nano-specific toxicity of ZnO NPs was not observed in the wild type yeast. However, the ZnO NPs induced very similar nano-specific toxicities in the three mutants with comparable log Te ((particle)) values (0.64 vs 0.65 vs 0.62), suggesting that the mutants were more sensitive and specific for the NPs' nano-specific toxicity. The toxic effects in the yeast were slightly attributable to dissolved zinc ions from the ZnO (nano or bulk) particles. Oxidative damage and mechanical damage contributed to the toxic effect of the ZnO particles. The mechanism of mechanical damage is proposed to be an inherent characteristic underlying the nano-specific toxicity in the mutants. The log Te ((particle)) was a useful parameter for evaluation of NPs nano-specific toxicity, whereas log Te ((ion)) efficiently determined the NPs toxicity associated with released ions.

  8. The neglected nano-specific toxicity of ZnO nanoparticles in the yeast Saccharomyces cerevisiae

    Science.gov (United States)

    Zhang, Weicheng; Bao, Shaopan; Fang, Tao

    2016-04-01

    Nanoparticles (NPs) with unique physicochemical properties induce nano-specific (excess) toxicity in organisms compared with their bulk counterparts. Evaluation and consideration of nano-specific toxicity are meaningful for the safe design and environmental risk assessment of NPs. However, ZnO NPs have been reported to lack excess toxicity for diverse organisms. In the present study, the nano-specific toxicity of ZnO NPs was evaluated in the yeast Saccharomyces cerevisiae. Nano-specific toxicity of ZnO NPs was not observed in the wild type yeast. However, the ZnO NPs induced very similar nano-specific toxicities in the three mutants with comparable log Te (particle) values (0.64 vs 0.65 vs 0.62), suggesting that the mutants were more sensitive and specific for the NPs’ nano-specific toxicity. The toxic effects in the yeast were slightly attributable to dissolved zinc ions from the ZnO (nano or bulk) particles. Oxidative damage and mechanical damage contributed to the toxic effect of the ZnO particles. The mechanism of mechanical damage is proposed to be an inherent characteristic underlying the nano-specific toxicity in the mutants. The log Te (particle) was a useful parameter for evaluation of NPs nano-specific toxicity, whereas log Te (ion) efficiently determined the NPs toxicity associated with released ions.

  9. Effects of the supplementation with yeast (saccharomyces cerevisiae) on weight gain and development of water buffalo calves

    OpenAIRE

    García, N.; Medina, S.; J. F. Ramírez

    2010-01-01

    The objective of this study was to evaluate the effects of a commercial yeast culture (Saccharomyces cerevisiae) on weight gain and development of buffalo calves from water buffalo herd in north of Colombia. The buffalo calves (age: 71,12 +/- 22 days old) were randomly assigned to one of two treatments, during 45 days. One group (n=13) received 50 gr/day of commercial product of yeast and the other group (n = 13) don’t received yeast. The buffalo calves grazed in same pastures under sam...

  10. The genome of wine yeast Dekkera bruxellensis provides a tool to explore its food-related properties

    OpenAIRE

    Piskur, Jure

    2012-01-01

    The yeast Dekkera/Brettanomyces bruxellensis can cause enormous economic losses in wine industry due to production of phenolic off-flavor compounds. D. bruxellensis is a distant relative of baker's yeast Saccharomyces cerevisiae. Nevertheless, these two yeasts are often found in the same habitats and share several food-related traits, such as production of high ethanol levels and ability to grow without oxygen. In some food products, like lambic beer, D. bruxellensis can importantly contribut...

  11. Photocatalytic activity of biogenic silver nanoparticles synthesized using yeast ( Saccharomyces cerevisiae) extract

    Science.gov (United States)

    Roy, Kaushik; Sarkar, C. K.; Ghosh, C. K.

    2015-11-01

    Synthesis of metallic and semiconductor nanoparticles through physical and chemical route is quiet common but biological synthesis procedures are gaining momentum due to their simplicity, cost-effectivity and eco-friendliness. Here, we report green synthesis of silver nanoparticles from aqueous solution of silver salts using yeast ( Saccharomyces cerevisiae) extract. The nanoparticles formation was gradually investigated by UV-Vis spectrometer. X-ray diffraction analysis was done to identify different phases of biosynthesized Ag nanoparticles. Transmission electron microscopy was performed to study the particle size and morphology of silver nanoparticles. Fourier transform infrared spectroscopy of the nanoparticles was performed to study the role of biomolecules capped on the surface of Ag nanoparticles during interaction. Photocatalytic activity of these biosynthesized nanoparticles was studied using an organic dye, methylene blue under solar irradiation and these nanoparticles showed efficacy in degrading the dye within a few hours of exposure.

  12. New aspects of the glucose activation of the H(+)-ATPase in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Souza, M A; Trópia, M J; Brandão, R L

    2001-10-01

    The glucose-induced activation of plasma membrane ATPase from Saccharomyces cerevisiae was first described by Serrano in 1983. Many aspects of this signal transduction pathway are still obscure. In this paper, evidence is presented for the involvement of Snf3p as the glucose sensor related to this activation process. It is shown that, in addition to glucose detection by Snf3p, sugar transport is also necessary for activation of the ATPase. The participation of the G protein, Gpa2p, in transducing the internal signal (phosphorylated sugars) is also demonstrated. Moreover, the involvement of protein kinase C in the regulation of ATPase activity is confirmed. Finally, a model pathway is presented for sensing and transmission of the glucose activation signal of the yeast H(+)-ATPase.

  13. Topological basis of signal integration in the transcriptional-regulatory network of the yeast, Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Chennubhotla Chakra

    2006-10-01

    Full Text Available Abstract Background Signal recognition and information processing is a fundamental cellular function, which in part involves comprehensive transcriptional regulatory (TR mechanisms carried out in response to complex environmental signals in the context of the cell's own internal state. However, the network topological basis of developing such integrated responses remains poorly understood. Results By studying the TR network of the yeast Saccharomyces cerevisiae we show that an intermediate layer of transcription factors naturally segregates into distinct subnetworks. In these topological units transcription factors are densely interlinked in a largely hierarchical manner and respond to external signals by utilizing a fraction of these subnets. Conclusion As transcriptional regulation represents the 'slow' component of overall information processing, the identified topology suggests a model in which successive waves of transcriptional regulation originating from distinct fractions of the TR network control robust integrated responses to complex stimuli.

  14. Expression of a bacterial ice nucleation gene in a yeast Saccharomyces cerevisiae and its possible application in food freezing processes.

    Science.gov (United States)

    Hwang, W Z; Coetzer, C; Tumer, N E; Lee, T C

    2001-10-01

    A 3.6 kb ice nucleation gene (ina) isolated from Erwinia herbicola was placed under control of the galactose-inducible promoter (GAL1) and introduced into Saccharomyces cerevisiae. Yeast transformants showed increased ice nucleation activity over untransformed controls. The freezing temperature of a small volume of water droplets containing yeast cells was increased from approximately -13 degrees C in the untransformed controls to -6 degrees C in ina-expressing (Ina(+)) transformants. Lower temperature growth of Ina(+) yeast at temperatures below 25 degrees C was required for the expression of ice nucleation activity. Shift of temperature to 5-20 degrees C could induce the ice nucleation activity of Ina(+) yeast when grown at 25 degrees C, and maximum ice nucleation activity was achieved after induction at 5 degrees C for approximately 12 h. The effects of Ina(+) yeast on freezing and texturization of several food materials was also demonstrated. PMID:11600004

  15. Unconventional genomic architecture in the budding yeast saccharomyces cerevisiae masks the nested antisense gene NAG1.

    Science.gov (United States)

    Ma, Jun; Dobry, Craig J; Krysan, Damian J; Kumar, Anuj

    2008-08-01

    The genomic architecture of the budding yeast Saccharomyces cerevisiae is typical of other eukaryotes in that genes are spatially organized into discrete and nonoverlapping units. Inherent in this organizational model is the assumption that protein-coding sequences do not overlap completely. Here, we present evidence to the contrary, defining a previously overlooked yeast gene, NAG1 (for nested antisense gene) nested entirely within the coding sequence of the YGR031W open reading frame in an antisense orientation on the opposite strand. NAG1 encodes a 19-kDa protein, detected by Western blotting of hemagglutinin (HA)-tagged Nag1p with anti-HA antibodies and by beta-galactosidase analysis of a NAG1-lacZ fusion. NAG1 is evolutionarily conserved as a unit with YGR031W in bacteria and fungi. Unlike the YGR031WP protein product, however, which localizes to the mitochondria, Nag1p localizes to the cell periphery, exhibiting properties consistent with those of a plasma membrane protein. Phenotypic analysis of a site-directed mutant (nag1-1) disruptive for NAG1 but silent with respect to YGR031W, defines a role for NAG1 in yeast cell wall biogenesis; microarray profiling of nag1-1 indicates decreased expression of genes contributing to cell wall organization, and the nag1-1 mutant is hypersensitive to the cell wall-perturbing agent calcofluor white. Furthermore, production of Nag1p is dependent upon the presence of the cell wall integrity pathway mitogen-activated protein kinase Slt2p and its downstream transcription factor Rlm1p. Thus, NAG1 is important for two reasons. First, it contributes to yeast cell wall biogenesis. Second, its genomic context is novel, raising the possibility that other nested protein-coding genes may exist in eukaryotic genomes.

  16. The number and transmission of [PSI] prion seeds (Propagons in the yeast Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Lee J Byrne

    Full Text Available BACKGROUND: Yeast (Saccharomyces cerevisiae prions are efficiently propagated and the on-going generation and transmission of prion seeds (propagons to daughter cells during cell division ensures a high degree of mitotic stability. The reversible inhibition of the molecular chaperone Hsp104p by guanidine hydrochloride (GdnHCl results in cell division-dependent elimination of yeast prions due to a block in propagon generation and the subsequent dilution out of propagons by cell division. PRINCIPAL FINDINGS: Analysing the kinetics of the GdnHCl-induced elimination of the yeast [PSI+] prion has allowed us to develop novel statistical models that aid our understanding of prion propagation in yeast cells. Here we describe the application of a new stochastic model that allows us to estimate more accurately the mean number of propagons in a [PSI+] cell. To achieve this accuracy we also experimentally determine key cell reproduction parameters and show that the presence of the [PSI+] prion has no impact on these key processes. Additionally, we experimentally determine the proportion of propagons transmitted to a daughter cell and show this reflects the relative cell volume of mother and daughter cells at cell division. CONCLUSIONS: While propagon generation is an ATP-driven process, the partition of propagons to daughter cells occurs by passive transfer via the distribution of cytoplasm. Furthermore, our new estimates of n(0, the number of propagons per cell (500-1000, are some five times higher than our previous estimates and this has important implications for our understanding of the inheritance of the [PSI+] and the spontaneous formation of prion-free cells.

  17. A set of haploid strains available for genetic studies of Saccharomyces cerevisiae flor yeasts.

    Science.gov (United States)

    Coi, Anna Lisa; Legras, Jean-Luc; Zara, Giacomo; Dequin, Sylvie; Budroni, Marilena

    2016-09-01

    Flor yeasts of Saccharomyces cerevisiae have been extensively studied for biofilm formation, however the lack of specific haploid model strains has limited the application of genetic approaches such as gene knockout, allelic replacement and Quantitative Trait Locus mapping for the deciphering of the molecular basis of velum formation under biological ageing. The aim of this work was to construct a set of flor isogenic haploid strains easy to manipulate genetically. The analysis of the allelic variations at 12 minisatellite loci of 174 Saccharomyces cerevisiae strains allowed identifying three flor parental strains with different phylogenic positions. These strains were characterized for sporulation efficiency, growth on galactose, adherence to polystyrene, agar invasion, growth on wine and ability to develop a biofilm. Interestingly, the inability to grow on galactose was found associated with a frameshift in GAL4 gene that seems peculiar of flor strains. From these wild flor strains, isogenic haploid strains were constructed by deleting HO gene with a loxP-KanMX-loxP cassette followed by the removal of the kanamycin cassette. Haploid strains obtained were characterized for their phenotypic and genetic properties and compared with the parental strains. Preliminary results showed that the haploid strains represent new tools for genetic studies and breeding programs on biofilm formation. PMID:27527101

  18. Dowex anion exchanger-loaded-baker's yeast as bi-functionalized biosorbents for selective extraction of anionic and cationic mercury(II) species

    International Nuclear Information System (INIS)

    Dowex anion exchanger-immobilized-baker's yeast [Dae-yeast] were synthesized and potentially applied as environmental friendly biosorbents to evaluate the up-take process of anionic and cationic mercury(II) species as well as other metal ions. Optimization of mass ratio of Dowex anion exchanger versus yeast (1:1-1:10) in presence of various interacting buffer solutions (pH 4.0-9.0) was performed and evaluated. Surface modification of [Dae-yeast] was characterized by scanning electron microscopy (SEM) and infrared spectroscopy. The maximum metal biosorption capacity values of [Dae-yeast] towards mercury(II) were found in the range of 0.800-0.960, 0.840-0.950 and 0.730-0.900 mmol g-1 in presence of buffer solutions pH 2.0, 4.0 and 7.0, respectively. Three possible and different mechanisms are proposed to account for the biosorption of mercury and mercuric species under these three buffering conditions based on ion exchange, ion pair and chelation interaction processes. Factors affecting biosorption of mercury from aqueous medium including the pH effect of aqueous solutions (1.0-7.0), shaking time (1-30 min) and interfering ions were searched. The potential applications of modified biosorbents for selective biosorption and extraction of mercury from different real matrices including dental filling waste materials, industrial waste water samples and mercury lamp waste materials were also explored. The results denote to excellent percentage extraction values, from nitric acid as the dissolution solvent with a pH 2.0, as determined in the range of 90.77-97.91 ± 3.00-5.00%, 90.00-93.40 ± 4.00-5.00% and 92.31-100.00 ± 3.00-4.00% for the three tested samples, respectively.

  19. Isolation and Screening of Haploid of Baker's Yeast with High Sugar Tolerance%耐高糖面包酵母单倍体的分离筛选

    Institute of Scientific and Technical Information of China (English)

    封冰; 张翠英; 肖冬光

    2014-01-01

    Spore-producing culture of baker's yeast BY-6 with high sugar tolerance was carried out to obtain its haploids. 6 strains of type alpha haploid and 5 strains of type a haploid were separated and identified by matching and PCR authentication. Compared with the parental strain, a-70 strain andα-24 strain were obtained based on their excellent performance in biomass, growth curve, fermentation ability in high-sugar dough, and gas production in the simulation of high-sugar dough. This study laid a good foundation for genetic breeding of baker's yeast with high sugar toler-ance in the future.%以耐高糖面包酵母BY-6为出发菌株进行生孢培养制备单倍体,通过单倍体的分离、配型验证和PCR验证,获得6株α型单倍体,5株a型单倍体。通过比较单倍体菌株的生长和发酵性能,筛选出生长性能较好,在高糖模拟面团中产气量较大,并且在高糖面团中发酵力较高的优良单倍体菌株70a和24α,这为后续通过基因工程改造提高面包酵母的高糖耐性奠定了良好的基础。

  20. Scheffersomyces stipitis: a comparative systems biology study with the Crabtree positive yeast Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Papini Marta

    2012-10-01

    Full Text Available Abstract Background Scheffersomyces stipitis is a Crabtree negative yeast, commonly known for its capacity to ferment pentose sugars. Differently from Crabtree positive yeasts such as Saccharomyces cerevisiae, the onset of fermentation in S. stipitis is not dependent on the sugar concentration, but is regulated by a decrease in oxygen levels. Even though S. stipitis has been extensively studied due to its potential application in pentoses fermentation, a limited amount of information is available about its metabolism during aerobic growth on glucose. Here, we provide a systems biology based comparison between the two yeasts, uncovering the metabolism of S. stipitis during aerobic growth on glucose under batch and chemostat cultivations. Results Starting from the analysis of physiological data, we confirmed through 13C-based flux analysis the fully respiratory metabolism of S. stipitis when growing both under glucose limited or glucose excess conditions. The patterns observed showed similarity to the fully respiratory metabolism observed for S. cerevisiae under chemostat cultivations however, intracellular metabolome analysis uncovered the presence of several differences in metabolite patterns. To describe gene expression levels under the two conditions, we performed RNA sequencing and the results were used to quantify transcript abundances of genes from the central carbon metabolism and compared with those obtained with S. cerevisiae. Interestingly, genes involved in central pathways showed different patterns of expression, suggesting different regulatory networks between the two yeasts. Efforts were focused on identifying shared and unique families of transcription factors between the two yeasts through in silico transcription factors analysis, suggesting a different regulation of glycolytic and glucoenogenic pathways. Conclusions The work presented addresses the impact of high-throughput methods in describing and comparing the physiology of

  1. A Comparison of Two Yeast MnSODs: Mitochondrial Saccharomyces cerevisiae versus Cytosolic Candida albicans

    Energy Technology Data Exchange (ETDEWEB)

    Sheng Y.; Cabelli D.; Stich, T.A.; Barnese, K.; Gralla, E.B.; Cascio, D.; Britt, R.D.; Valentine, J.S.

    2011-12-28

    Human MnSOD is significantly more product-inhibited than bacterial MnSODs at high concentrations of superoxide (O{sub 2}{sup -}). This behavior limits the amount of H{sub 2}O{sub 2} produced at high [O{sub 2}{sup -}]; its desirability can be explained by the multiple roles of H{sub 2}O{sub 2} in mammalian cells, particularly its role in signaling. To investigate the mechanism of product inhibition in MnSOD, two yeast MnSODs, one from Saccharomyces cerevisiae mitochondria (ScMnSOD) and the other from Candida albicans cytosol (CaMnSODc), were isolated and characterized. ScMnSOD and CaMnSODc are similar in catalytic kinetics, spectroscopy, and redox chemistry, and they both rest predominantly in the reduced state (unlike most other MnSODs). At high [O{sub 2}{sup -}], the dismutation efficiencies of the yeast MnSODs surpass those of human and bacterial MnSODs, due to very low level of product inhibition. Optical and parallel-mode electron paramagnetic resonance (EPR) spectra suggest the presence of two Mn{sup 3+} species in yeast Mn{sup 3+}SODs, including the well-characterized 5-coordinate Mn{sup 3+} species and a 6-coordinate L-Mn{sup 3+} species with hydroxide as the putative sixth ligand (L). The first and second coordination spheres of ScMnSOD are more similar to bacterial than to human MnSOD. Gln154, an H-bond donor to the Mn-coordinated solvent molecule, is slightly further away from Mn in yeast MnSODs, which may result in their unusual resting state. Mechanistically, the high efficiency of yeast MnSODs could be ascribed to putative translocation of an outer-sphere solvent molecule, which could destabilize the inhibited complex and enhance proton transfer from protein to peroxide. Our studies on yeast MnSODs indicate the unique nature of human MnSOD in that it predominantly undergoes the inhibited pathway at high [O{sub 2}{sup -}].

  2. Yeast as a platform to explore polyglutamine toxicity and aggregation.

    Science.gov (United States)

    Duennwald, Martin L

    2013-01-01

    Protein misfolding is associated with many neurodegenerative diseases, including neurodegenerative diseases caused by polyglutamine expansion proteins, such as Huntington's disease. The model organism baker's yeast (Saccharomyces cerevisiae) has provided important general insights into the basic cellular mechanisms underlying protein misfolding. Furthermore, experiments in yeast have identified cellular factors that modulate the toxicity and the aggregation associated with polyglutamine expansion proteins. Notably, many features discovered in yeast have been proven to be highly relevant in other model organisms and in human pathology. The experimental protocols depicted here serve to reliably determine polyglutamine toxicity and polyglutamine aggregation in yeast. PMID:23719914

  3. Baker cyst

    Science.gov (United States)

    Popliteal cyst; Bulge-knee ... A Baker cyst is caused by swelling in the knee. The swelling is due to an increase in the fluid that ... squeezes into the back of the knee. Baker cyst commonly occurs with: A tear in the meniscal ...

  4. Use of Saccharomyces cerevisiae yeasts in the chemo selective bioreduction of (1E,4E)-1,5-bis(4-methoxyphenyl)-1,4-pentadien-3-one in biphasic system

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Cesar A.; Silva, Vanessa D.; Nascimento, Maria da G., E-mail: maria.nascimento@ufsc.br [Departamento de Quimica, Universidade Federal de Santa Catarina, Florianopolis-SC (Brazil); Stambuk, Boris U. [Departamento de Bioquimica, Universidade Federal de Santa Catarina, Florianopolis-SC (Brazil)

    2013-07-15

    This work describes the chemoselective bioreduction of (1E,4E)-1,5-bis(4-methoxyphenyl)- 1,4-pentadien-3-one (1) mediated by baker's yeast (BY, Saccharomyces cerevisiae cells) in an aqueous/organic solvent biphasic system. The biotransformation of this compound was chemoselective and formed only the corresponding saturated ketone 1,5-bis(4-methoxyphenyl)- 3-pentanone (2). The influence of various factors which may alter the bioreduction of 1, such as the type and percentage of co-solvents, use of six different S. cerevisiae yeast samples (four commercial and two industrial), variations in the substrate and yeast concentrations, temperature, pH and volume of aqueous and organic phases, was investigated. The best reaction conditions were 66.7 g L{sup -1} of Fleischmann BY, 8.3 Multiplication-Sign 10{sup -3} mol L{sup -1} of substrate, pH 6.5 at 35 deg C in the presence of 2.5% (v/v) of N,N-dimethyl sulfoxide (DMSO) as an additive and a V{sub aq}/V{sub org} ratio of 70/30. Under these conditions, the product 2 was recovered in conversions of 82% in 5 h reaction. (author)

  5. Identification and characterization of major lipid particle proteins of the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Athenstaedt, K; Zweytick, D; Jandrositz, A; Kohlwein, S D; Daum, G

    1999-10-01

    Lipid particles of the yeast Saccharomyces cerevisiae were isolated at high purity, and their proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Major lipid particle proteins were identified by mass spectrometric analysis, and the corresponding open reading frames (ORFs) were deduced. In silicio analysis revealed that all lipid particle proteins contain several hydrophobic domains but none or only few (hypothetical) transmembrane spanning regions. All lipid particle proteins identified by function so far, such as Erg1p, Erg6p, and Erg7p (ergosterol biosynthesis) and Faa1p, Faa4p, and Fat1p (fatty acid metabolism), are involved in lipid metabolism. Based on sequence homology, another group of three lipid particle proteins may be involved in lipid degradation. To examine whether lipid particle proteins of unknown function are also involved in lipid synthesis, mutants with deletions of the respective ORFs were constructed and subjected to systematic lipid analysis. Deletion of YDL193w resulted in a lethal phenotype which could not be suppressed by supplementation with ergosterol or fatty acids. Other deletion mutants were viable under standard conditions. Strains with YBR177c, YMR313c, and YKL140w deleted exhibited phospholipid and/or neutral lipid patterns that were different from the wild-type strain and thus may be further candidate ORFs involved in yeast lipid metabolism.

  6. Physicochemical characterization of pomegranate wines fermented with three different Saccharomyces cerevisiae yeast strains.

    Science.gov (United States)

    Berenguer, María; Vegara, Salud; Barrajón, Enrique; Saura, Domingo; Valero, Manuel; Martí, Nuria

    2016-01-01

    Three commercial Saccharomyces cerevisiae yeast strains: Viniferm Revelación, Viniferm SV and Viniferm PDM were evaluated for the production of pomegranate wine from a juice coupage of the two well-known varieties Mollar and Wonderfull. Further malolactic fermentation was carried out spontaneously. The same fermentation patterns were observed for pH, titratable acidity, density, sugar consumption, and ethanol and glycerol production. Glucose was exhausted while fructose residues remained at the end of alcoholic fermentation. A high ethanol concentration (10.91 ± 0.27% v/v) in combination with 1.49 g/L glycerol was achieved. Citric acid concentration increased rapidly a 31.7%, malic acid disappeared as result of malolactic fermentation and the lactic acid levels reached values between 0.40 and 0.96 g/L. The analysis of CIEa parameter and total anthocyanin content highlights a lower degradation of monomeric anthocyanins during winemaking with Viniferm PDM yeast. The resulting wine retains a 34.5% of total anthocyanin content of pomegranate juice blend.

  7. Change in activity of serine palmitoyltransferase affects sensitivity to syringomycin E in yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Toume, Moeko; Tani, Motohiro

    2014-09-01

    Syringomycin E is a cyclic lipodepsipeptide produced by strains of the plant bacterium Pseudomonas syringae pv. syringae. Genetic studies involving the yeast Saccharomyces cerevisiae have revealed that complex sphingolipids play important roles in the action of syringomycin E. Here, we found a novel mutation that confers resistance to syringomycin E on yeast; that is, a deletion mutant of ORM1 and ORM2, which encode negative regulators of serine palmitoyltransferase catalyzing the initial step of sphingolipid biosynthesis, exhibited resistance to syringomycin E. On the contrary, overexpression of Orm2 resulted in high sensitivity to the toxin. Moreover, overexpression of Lcb1 and Lcb2, catalytic subunits of serine palmitoyltransferase, causes resistance to the toxin, whereas partial repression of expression of Lcb1 had the opposite effect. Partial reduction of complex sphingolipids by repression of expression of Aur1, an inositol phosphorylceramide synthase, also resulted in high sensitivity to the toxin. These results suggested that an increase in sphingolipid biosynthesis caused by a change in the activity of serine palmitoyltransferase causes resistance to syringomycin E.

  8. Effect of source-separated urine storage on estrogenic activity detected using bioluminescent yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Jaatinen, Sanna; Kivistö, Anniina; Palmroth, Marja R T; Karp, Matti

    2016-09-01

    The objective was to demonstrate that a microbial whole cell biosensor, bioluminescent yeast, Saccharomyces cerevisiae (BMAEREluc/ERα) can be applied to detect overall estrogenic activity from fresh and stored human urine. The use of source-separated urine in agriculture removes a human originated estrogen source from wastewater influents, subsequently enabling nutrient recycling. Estrogenic activity in urine should be diminished prior to urine usage in agriculture in order to prevent its migration to soil. A storage period of 6 months is required for hygienic reasons; therefore, estrogenic activity monitoring is of interest. The method measured cumulative female hormone-like activity. Calibration curves were prepared for estrone, 17β-estradiol, 17α- ethinylestradiol and estriol. Estrogen concentrations of 0.29-29,640 μg L(-1) were detectable while limit of detection corresponded to 0.28-35 μg L(-1) of estrogens. The yeast sensor responded well to fresh and stored urine and gave high signals corresponding to 0.38-3,804 μg L(-1) of estrogens in different urine samples. Estrogenic activity decreased during storage, but was still higher than in fresh urine implying insufficient storage length. The biosensor was suitable for monitoring hormonal activity in urine and can be used in screening anthropogenic estrogen-like compounds interacting with the receptor.

  9. Effect of source-separated urine storage on estrogenic activity detected using bioluminescent yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Jaatinen, Sanna; Kivistö, Anniina; Palmroth, Marja R T; Karp, Matti

    2016-09-01

    The objective was to demonstrate that a microbial whole cell biosensor, bioluminescent yeast, Saccharomyces cerevisiae (BMAEREluc/ERα) can be applied to detect overall estrogenic activity from fresh and stored human urine. The use of source-separated urine in agriculture removes a human originated estrogen source from wastewater influents, subsequently enabling nutrient recycling. Estrogenic activity in urine should be diminished prior to urine usage in agriculture in order to prevent its migration to soil. A storage period of 6 months is required for hygienic reasons; therefore, estrogenic activity monitoring is of interest. The method measured cumulative female hormone-like activity. Calibration curves were prepared for estrone, 17β-estradiol, 17α- ethinylestradiol and estriol. Estrogen concentrations of 0.29-29,640 μg L(-1) were detectable while limit of detection corresponded to 0.28-35 μg L(-1) of estrogens. The yeast sensor responded well to fresh and stored urine and gave high signals corresponding to 0.38-3,804 μg L(-1) of estrogens in different urine samples. Estrogenic activity decreased during storage, but was still higher than in fresh urine implying insufficient storage length. The biosensor was suitable for monitoring hormonal activity in urine and can be used in screening anthropogenic estrogen-like compounds interacting with the receptor. PMID:26804108

  10. Requirement of copper for 1st-log growth of the yeast Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Como, S.A.; Valerio, V.; Nickless, S.; Connelly, J.L.

    1986-05-01

    Routine evaluation of the role of copper (Cu) in the growth of various mutants of the yeast Saccharomyces Cerevisiae disclosed an unexpected effect of Cu on the fermentative first-log growth. The authors subsequent studies are attempting to ascertain the nature and significance of this observation. Cells are grown on glucose in a supplemented minimal media at 29/sup 0/C for 48-72 hrs. using New Brunswick incubator shaking at 200 rpm. Cu concentration was varied by addition of Cu salts or bathocuproine disulfonate (BC), a highly specific Cu chelator. Samples were removed periodically from flasks and dry weights were determined. Growth curve plots of normal yeasts grown in the presence of 1mM to 38mM Cu showed little variation in the expected 1st log; diauxi; 2nd log; stationary phase picture. However, in the presence of BC growth rate in the 1st log was significantly slowed and as expected 2nd log growth was essentially stopped. The low 1st log growth rate could be titrated to normal (+Cu) levels by increments of added Cu but not by added iron. The effect was not seen when Rho-minus strains were used nor when growth was followed under anaerobic conditions. Results to date implicate a mitochondrial protein, oxygen and copper in the 1st log growth of S Cerevisiae. The character of the protein agent and the possible contribution of cytochrome oxidase activity to the lst log growth are being evaluated.

  11. Non-repair pathways for minimizing protein isoaspartyl damage in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Patananan, Alexander N; Capri, Joseph; Whitelegge, Julian P; Clarke, Steven G

    2014-06-13

    The spontaneous degradation of asparaginyl and aspartyl residues to isoaspartyl residues is a common type of protein damage in aging organisms. Although the protein-l-isoaspartyl (d-aspartyl) O-methyltransferase (EC 2.1.1.77) can initiate the repair of l-isoaspartyl residues to l-aspartyl residues in most organisms, no gene homolog or enzymatic activity is present in the budding yeast Saccharomyces cerevisiae. Therefore, we used biochemical approaches to elucidate how proteins containing isoaspartyl residues are metabolized in this organism. Surprisingly, the level of isoaspartyl residues in yeast proteins (50-300 pmol of isoaspartyl residues/mg of protein extract) is comparable with organisms with protein-l-isoaspartyl (d-aspartyl) O-methyltransferase, suggesting a novel regulatory pathway. Interfering with common protein quality control mechanisms by mutating and inhibiting the proteasomal and autophagic pathways in vivo did not increase isoaspartyl residue levels compared with wild type or uninhibited cells. However, the inhibition of metalloproteases in in vitro aging experiments by EDTA resulted in an ∼3-fold increase in the level of isoaspartyl-containing peptides. Characterization by mass spectrometry of these peptides identified several proteins involved in metabolism as targets of isoaspartyl damage. Further analysis of these peptides revealed that many have an N-terminal isoaspartyl site and originate from proteins with short half-lives. These results suggest that one or more metalloproteases participate in limiting isoaspartyl formation by robust proteolysis.

  12. Horizontally acquired oligopeptide transporters favour adaptation of Saccharomyces cerevisiae wine yeast to oenological environment.

    Science.gov (United States)

    Marsit, Souhir; Sanchez, Isabelle; Galeote, Virginie; Dequin, Sylvie

    2016-04-01

    In the past decade, horizontal gene transfer (HGT) has emerged as a major evolutionary process that has shaped the genome of Saccharomyces cerevisiae wine yeasts. We recently showed that a large Torulaspora microellipsoides genomic island carrying two oligopeptide transporters encoded by FOT genes increases the fitness of wine yeast during fermentation of grape must. However, the impact of these genes on the metabolic network of S. cerevisiae remained uncharacterized. Here we show that Fot-mediated peptide uptake substantially affects the glutamate node and the NADPH/NADP(+) balance, resulting in the delayed uptake of free amino acids and altered profiles of metabolites and volatile compounds. Transcriptome analysis revealed that cells using a higher amount of oligopeptides from grape must are less stressed and display substantial variation in the expression of genes in the central pathways of carbon and nitrogen metabolism, amino acid and protein biosynthesis, and the oxidative stress response. These regulations shed light on the molecular and metabolic mechanisms involved in the higher performance and fitness conferred by the HGT-acquired FOT genes, pinpointing metabolic effects that can positively affect the organoleptic balance of wines. PMID:26549518

  13. The yeast Saccharomyces cerevisiae: an overview of methods to study autophagy progression

    Science.gov (United States)

    Delorme-Axford, Elizabeth; Guimaraes, Rodrigo Soares; Reggiori, Fulvio; Klionsky, Daniel J.

    2014-01-01

    Macroautophagy (hereafter autophagy) is a highly evolutionarily conserved process essential for sustaining cellular integrity, homeostasis, and survival. Most eukaryotic cells constitutively undergo autophagy at a low basal level. However, various stimuli, including starvation, organelle deterioration, stress, and pathogen infection, potently upregulate autophagy. The hallmark morphological feature of autophagy is the formation of the double-membrane vesicle known as the autophagosome. In yeast, flux through the pathway culminates in autophagosome-vacuole fusion, and the subsequent degradation of the resulting autophagic bodies and cargo by vacuolar hydrolases, followed by efflux of the breakdown products. Importantly, aberrant autophagy is associated with diverse human pathologies. Thus, there is a need for ongoing work in this area to further understand the cellular factors regulating this process. The field of autophagy research has grown exponentially in recent years, and although numerous model organisms are being used to investigate autophagy, the baker’s yeast Saccharomyces cerevisiae remains highly relevant, as there are significant and unique benefits to working with this organism. In this review, we will focus on the current methods available to evaluate and monitor autophagy in S. cerevisiae, which in several cases have also been subsequently exploited in higher eukaryotes. PMID:25526918

  14. Raspberry wine fermentation with suspended and immobilized yeast cells of two strains of Saccharomyces cerevisiae.

    Science.gov (United States)

    Djordjević, Radovan; Gibson, Brian; Sandell, Mari; de Billerbeck, Gustavo M; Bugarski, Branko; Leskošek-Čukalović, Ida; Vunduk, Jovana; Nikićević, Ninoslav; Nedović, Viktor

    2015-01-01

    The objectives of this study were to assess the differences in fermentative behaviour of two different strains of Saccharomyces cerevisiae (EC1118 and RC212) and to determine the differences in composition and sensory properties of raspberry wines fermented with immobilized and suspended yeast cells of both strains at 15 °C. Analyses of aroma compounds, glycerol, acetic acid and ethanol, as well as the kinetics of fermentation and a sensory evaluation of the wines, were performed. All fermentations with immobilized yeast cells had a shorter lag phase and faster utilization of sugars and ethanol production than those fermented with suspended cells. Slower fermentation kinetics were observed in all the samples that were fermented with strain RC212 (suspended and immobilized) than in samples fermented with strain EC1118. Significantly higher amounts of acetic acid were detected in all samples fermented with strain RC212 than in those fermented with strain EC1118 (0.282 and 0.602 g/l, respectively). Slightly higher amounts of glycerol were observed in samples fermented with strain EC1118 than in those fermented with strain RC212.

  15. EasyClone: method for iterative chromosomal integration of multiple genes in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Jensen, Niels Bjerg; Strucko, Tomas; Kildegaard, Kanchana Rueksomtawin;

    2014-01-01

    Development of strains for efficient production of chemicals and pharmaceuticals requires multiple rounds of genetic engineering. In this study, we describe construction and characterization of EasyClone vector set for baker's yeast Saccharomyces cerevisiae, which enables simultaneous expression...... in the chromosome and show unchanged expression levels. Hence, this system is suitable for metabolic engineering in yeast where multiple rounds of gene introduction and marker recycling can be carried out....

  16. Regulatory link between steryl ester formation and hydrolysis in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Ploier, Birgit; Korber, Martina; Schmidt, Claudia; Koch, Barbara; Leitner, Erich; Daum, Günther

    2015-07-01

    Steryl esters and triacylglycerols are the major storage lipids of the yeast Saccharomyces cerevisiae. Steryl esters are formed in the endoplasmic reticulum by the two acyl-CoA:sterol acyltransferases Are1p and Are2p, whereas steryl ester hydrolysis is catalyzed by the three steryl ester hydrolases Yeh1p, Yeh2p and Tgl1p. To shed light on the regulatory link between steryl ester formation and hydrolysis in the maintenance of cellular sterol and free fatty acid levels we employed yeast mutants which lacked the enzymes catalyzing the degradation of steryl esters. These studies revealed feedback regulation of steryl ester formation by steryl ester hydrolysis although in a Δtgl1Δyeh1Δyeh2 triple mutant the gene expression levels of ARE1 and ARE2 as well as protein levels and stability of Are1p and Are2p were not altered. Nevertheless, the capacity of the triple mutant to synthesize steryl esters was significantly reduced as shown by in vitro and in vivo labeling of lipids with [(14)C]oleic acid and [(14)C]acetate. Enzymatic analysis revealed that inhibition of steryl ester formation occurred at the enzyme level. As the amounts and the formation of sterols and fatty acids were also decreased in the triple mutant we concluded that defects in steryl ester hydrolysis also caused feedback inhibition on the formation of sterols and fatty acids which serve as precursors for steryl ester formation. In summary, this study demonstrates a regulatory link within the steryl ester metabolic network which contributes to non-polar lipid homeostasis in yeast cells.

  17. Influence the oxidant action of selenium in radiosensitivity induction and cell death in yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Ionizing radiations are from both natural sources such as from anthropogenic sources. Recently, radiotherapy has emerged as one of the most common therapies against cancer. Co-60 irradiators (cobalt-60 linear accelerators) are used to treat of malignant tumors routinely in hospitals around the world. Exposure to ionizing radiation can induce changes in cellular macromolecules and affect its functions, because they cause radiolysis of the water molecule generating reactive oxygen species, which can cause damage to virtually all organelles and cell components known as oxidative damage that can culminate in oxidative stress. Oxidative stress is a situation in which the balance between oxidants and antioxidants is broken resulting in excessive production of reactive species, it is not accompanied by the increase in antioxidant capacity, making it impossible to neutralize them. Selenium is a micronutrient considered as antioxidant, antiinflammatory, which could prevent cancer. Selenium in biological system exists as seleno proteins. Nowadays, 25 human seleno proteins have been identified, including glutathione peroxidase, an antioxidant enzyme. Yeasts have the ability to incorporate various metals such as iron, cadmium, zinc and selenium, as well as all biological organisms. The yeast Saccharomyces cerevisiae, unlike mammalian cells is devoid of seleno proteins, being considered as a practical model for studies on the toxicity of selenium, without any interference from the metabolism of seleno proteins. Moreover, yeast cells proliferate through the fermentation, the microbial equivalent of aerobic glycolysis in mammals and the process is also used by tumors. Several reports show that the pro-oxidante effects and induced toxic selenium compounds occur at lower doses and in malignant cells compared with benign cells. Therefore selenium giving a great therapeutic potential in cancer treatment .Our objective was to determine whether selenium is capable to sensitize yeasts

  18. Yeast genome duplication was followed by asynchronous differentiation of duplicated genes

    DEFF Research Database (Denmark)

    Langkjær, Rikke Breinhold; Cliften, P.F.; Johnston, M.;

    2003-01-01

    Gene redundancy has been observed in yeast, plant and human genomes, and is thought to be a consequence of whole-genome duplications(1-3). Baker's yeast, Saccharomyces cerevisiae, contains several hundred duplicated genes(1). Duplication(s) could have occurred before or after a given speciation....... To understand the evolution of the yeast genome, we analysed orthologues of some of these genes in several related yeast species. On the basis of the inferred phylogeny of each set of genes, we were able to deduce whether the gene duplicated and/or specialized before or after the divergence of two yeast...

  19. The mammalian AMP-activated protein kinase complex mediates glucose regulation of gene expression in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Ye, Tian; Bendrioua, Loubna; Carmena, David; García-Salcedo, Raúl; Dahl, Peter; Carling, David; Hohmann, Stefan

    2014-06-01

    The AMP-activated protein kinase (AMPK) controls energy homeostasis in eukaryotic cells. Here we expressed hetero-trimeric mammalian AMPK complexes in a Saccharomyces cerevisiae mutant lacking all five genes encoding yeast AMPK/SNF1 components. Certain mammalian complexes complemented the growth defect of the yeast mutant on non-fermentable carbon sources. Phosphorylation of the AMPK α1-subunit was glucose-regulated, albeit not by the Glc7-Reg1/2 phosphatase, which performs this function on yeast AMPK/SNF1. AMPK could take over SNF1 function in glucose derepression. While indirectly acting anti-diabetic drugs had no effect on AMPK in yeast, compound 991 stimulated α1-subunit phosphorylation. Our results demonstrate a remarkable functional conservation of AMPK and that glucose regulation of AMPK may not be mediated by regulatory features of a specific phosphatase.

  20. [Cloning and expression of bacteriophage FMV lysocyme gene in cells of yeasts Saccharomyces cerevisiae and Pichia pastoris].

    Science.gov (United States)

    Kozlov, D G; Cheperigin, S E; Chestkov, A V; Krylov, V N; Tsygankov, Iu D

    2010-03-01

    Cloning, sequencing, and expression of the gene for soluble lysozyme of bacteriophage FMV from Gram-negative Pseudomonas aeruginosa bacteria were conducted in yeast cells. Comparable efficiency of two lysozyme expression variants (as intracellular or secreted proteins) was estimated in cells of Saccharomyces cerevisiae and Pichia pastoris. Under laboratory conditions, yeast S. cerevisiae proved to be more effective producer of phage lysozyme than P. pastoris, the yield of the enzyme in the secreted form being significantly higher than that produced in the intracellular form. PMID:20391778

  1. Asymmetric bioreduction of acetophenones by Baker's yeast and its cell-free extract encapsulated in sol–gel silica materials

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Katsuya, E-mail: katsuya-kato@aist.go.jp [National Institute of Advanced Industrial Science and Technology (AIST), 2266-98 Anagahora, Shimoshidami, Moriyama-ku, Nagoya, 463-8560 (Japan); Nakamura, Hitomi [National Institute of Advanced Industrial Science and Technology (AIST), 2266-98 Anagahora, Shimoshidami, Moriyama-ku, Nagoya, 463-8560 (Japan); Nakanishi, Kazuma [Department of Chemistry for Materials, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie, 514-8570 (Japan)

    2014-02-28

    Baker's yeast (BY) encapsulated in silica materials was synthesized using a yeast cell suspension and its cell-free extract during a sol–gel reaction of tetramethoxysilane with nitric acid as a catalyst. The synthesized samples were fully characterized using various methods, such as scanning electron microscopy, nitrogen adsorption–desorption, Fourier transform infrared spectroscopy, thermogravimetry, and differential thermal analysis. The BY cells were easily encapsulated inside silica-gel networks, and the ratio of the cells in the silica gel was approximately 75 wt%, which indicated that a large volume of BY was trapped with a small amount of silica. The enzyme activity (asymmetric reduction of prochiral ketones) of BY and its cell-free extract encapsulated in silica gel was investigated in detail. The activities and enantioselectivities of free and encapsulated BY were similar to those of acetophenone and its fluorine derivatives, which indicated that the conformation structure of BY enzymes inside silica-gel networks did not change. In addition, the encapsulated BY exhibited considerably better solvent (methanol) stability and recyclability compared to free BY solution. We expect that the development of BY encapsulated in sol–gel silica materials will significantly impact the industrial-scale advancement of high-efficiency and low-cost biocatalysts for the synthesis of valuable chiral alcohols.

  2. Fsy1, the sole hexose-proton transporter characterized in Saccharomyces yeasts, exhibits a variable fructose:H(+) stoichiometry.

    Science.gov (United States)

    Anjos, Jorge; Rodrigues de Sousa, Helena; Roca, Christophe; Cássio, Fernanda; Luttik, Marijke; Pronk, Jack T; Salema-Oom, Madalena; Gonçalves, Paula

    2013-02-01

    In the model yeast Saccharomyces cerevisiae, hexose uptake is mediated exclusively by a family of facilitators (Hxt, hexose transporters). Some other Saccharomyces species (e.g. Saccharomyces bayanus and Saccharomyces pastorianus) possess, in addition, a specific fructose transporter (Fsy1, fructose symporter) that has been previously described to function as a proton symporter. In the present work, we compared growth of a yeast strain in which FSY1 occurs naturally in anaerobic, fructose- and glucose-limited chemostat cultures. Especially at low specific growth rates, fructose-proton symport was shown to have a strong impact on the biomass yield on sugar. We subsequently employed energized hybrid plasma membrane vesicles to confirm previous observations concerning the mode of operation and specificity of Fsy1 mediated transport. Surprisingly, these experiments suggested that the carrier exhibits an unusual fructose:H(+) stoichiometry of 1:2. This energetically expensive mode of operation was also found consistently in vivo, in shake flask and in chemostat cultures, and both when Fsy1 is the sole transporter and when the Hxt carriers are present. However, it is observed only when Fsy1 is operating at higher glycolytic fluxes, a situation that is normally prevented by downregulation of the gene. Taken together, our results suggest the possibility that fructose symport with more than one proton may constitute an energetically unfavorable mode of operation of the Fsy1 transporter that, in growing cultures, is prevented by transcriptional regulation.

  3. Measurement of the gassing power of bakers' yeast: correlation between the dough volume and the incubation time

    OpenAIRE

    Walter Borzani

    2004-01-01

    An empirical equation is proposed to correlate the dough volume and the incubation time during cylinder tests using thin flour dough carried out to evaluate the gassing power of compressed yeast. The above equation permitted to correlate the gassing power of the yeast and the proof time, as well as to calculate the specific rate of the dough volume variation at any time. It provided more information regarding the fermentation power of the yeast than the sole value of its gas-producing power. ...

  4. Cytosolic re-localization and optimization of valine synthesis and catabolism enables inseased isobutanol production with the yeast Saccharomyces cerevisiae

    OpenAIRE

    Brat Dawid; Weber Christian; Lorenzen Wolfram; Bode Helge B; Boles Eckhard

    2012-01-01

    Abstract Background The branched chain alcohol isobutanol exhibits superior physicochemical properties as an alternative biofuel. The yeast Saccharomyces cerevisiae naturally produces low amounts of isobutanol as a by-product during fermentations, resulting from the catabolism of valine. As S. cerevisiae is widely used in industrial applications and can easily be modified by genetic engineering, this microorganism is a promising host for the fermentative production of higher amounts of isobut...

  5. Cytosolic re-localization and optimization of valine synthesis and catabolism enables increased isobutanol production with the yeast Saccharomyces cerevisiae

    OpenAIRE

    Brat, Dawid; Weber, Christian; Lorenzen, Wolfram; Bode, Helge Björn; Boles, Eckhard

    2012-01-01

    Background: The branched chain alcohol isobutanol exhibits superior physicochemical properties as an alternative biofuel. The yeast Saccharomyces cerevisiae naturally produces low amounts of isobutanol as a by-product during fermentations, resulting from the catabolism of valine. As S. cerevisiae is widely used in industrial applications and can easily be modified by genetic engineering, this microorganism is a promising host for the fermentative production of higher amounts of isobutanol. ...

  6. YeastFab: the design and construction of standard biological parts for metabolic engineering in Saccharomyces cerevisiae

    OpenAIRE

    Guo, Yakun; Dong, Junkai; Zhou, Tong; Auxillos, Jamie; Li, Tianyi; Zhang, Weimin; Wang, LiHui; Shen, Yue; Luo, Yisha; Zheng, Yijing; Lin, Jiwei; Chen, Guo-Qiang; Wu, Qingyu; Cai, Yizhi; Dai, Junbiao

    2015-01-01

    It is a routine task in metabolic engineering to introduce multicomponent pathways into a heterologous host for production of metabolites. However, this process sometimes may take weeks to months due to the lack of standardized genetic tools. Here, we present a method for the design and construction of biological parts based on the native genes and regulatory elements in Saccharomyces cerevisiae. We have developed highly efficient protocols (termed YeastFab Assembly) to synthesize these genet...

  7. The putative phosphoinositide-specific phospholipase C gene, PLC1, of the yeast Saccharomyces cerevisiae is important for cell growth.

    OpenAIRE

    Yoko-o, T; Matsui, Y; Yagisawa, H; Nojima, H; Uno, I; Toh-E, A

    1993-01-01

    Using the polymerase chain reaction technique, we have isolated a gene that encodes a putative phosphoinositide-specific phospholipase C (PLC) in the yeast Saccharomyces cerevisiae. The nucleotide sequence indicates that the gene encodes a polypeptide of 869 amino acid residues with a calculated molecular mass of 101 kDa. This polypeptide has both the X and Y regions conserved among mammalian PLC-beta, -gamma, and -delta, and the structure is most similar to that of mammalian PLC-delta. This ...

  8. Generation of a Uracil Auxotroph Strain of the Probiotic Yeast Saccharomyces boulardii as a Host for the Recombinant Protein Production.

    OpenAIRE

    Hamedi, Hassan; Misaghi, Ali; Modarressi, Mohammad Hossein; Salehi, Taghi Zahraei; Khorasanizadeh, Dorsa; Khalaj, Vahid

    2013-01-01

    BACKGROUND: Saccharomyces boulardii (S. boulardii) is the best known probiotic yeast. The genetic engineering of this probiotic strain requires the availability of appropriate mutants to accept various gene constructs carrying different selection markers. As the auxotrophy selection markers are under focus, we have generated a ura3 auxotroph mutant of S. boulardii for use in further genetic manipulations. METHODS: Classical UV mutagenesis was used for the generation of auxotroph mutants. The ...

  9. Yeast: a microbe with macro-implications to antimicrobial drug discovery.

    Science.gov (United States)

    Balibar, Carl J; Roemer, Terry

    2016-03-01

    Paramount to any rational discovery of new antibiotics displaying novel mechanisms of action is a deep knowledge of the genetic basis of microbial growth, division and virulence. The bakers' yeast,Saccharomyces cerevisiae, illustrates the highest understanding of the genetic underpinnings of microbial life, and from this framework, a systems biology paradigm has evolved, begging to be emulated in antibacterial discovery. Here, we review landmark events in the history of yeast genomics that provide this new foundation for antibacterial drug discovery. PMID:26443612

  10. COMPARATIVE ASSESSMENT OF THE LABORATORY SELECTED AND ACTIVE DRIED SACCHAROMYCES CEREVISIAE YEAST CULTURE IN BIOTECHNOLOGY OF THE BRANDY PRODUCTION

    Directory of Open Access Journals (Sweden)

    Bayraktar V.N.

    2015-04-01

    C and low temperature (+6°C, growth at low pH 2.6–3.0 (acid resistance, growth in the presence of 5, 10, and 15% ethanol (ethanol resistance, and growth in the presence of high concentration potassium bisulfite (bisulfite resistance. Hydrosulfide synthesis (H2S gassing production was studied in addition. Parameters of cellular metabolism in yeast suspension, such as concentration of nitrogen, protein, triglicerides, enzymatic activity and total sugar (which include glucose, fructose, and galactose were determined. Macro- and micro-element concentrations in fermented grape must, which contained pure yeast culture was determined and included: potassium, sodium, calcium, phosphorus, magnesium, iron, chlorides. In addition to identifying parameters of macro- and micro- element concentration in grape must during and following fermentation based on a principle of photometric analysis, carried out using a biochemical analyser Respons-920 (DiaSys Diagnostic Systems GmbH, Germany. Laboratory selected Saccharomyces cerevisiae wine yeast showed high enzymatic activity with short lag phase. Since of fermentation started on third day concentration of Triglicerides, Protein (total, Potassium and Sodium increased and then level of Protein (total on the 5th day of fermentation twice decreased. Trigliceride concentration on the 5th day of fermentation continued to increase. Concentration of Iron on the 5th day of fermentation increase in geometrical progression, concentration increase in 4-5 times. Contrary Chloride concentration on the 5th day of fermentation decreased in 3-4 times. Enzymatic activity on 3rd day of fermentation maximal for Lactate Dehydrogenase, Alanine aminotransferase, Aspartate aminotransferase, Phosphatase. Since of 5th day of fermentation Enzymatic activity for Lactate Dehydrogenase, Alanine aminotransferase, Aspartate aminotransferase 3-4 times. Especially level of Phosphatase activity very decreased in 6-7 times. Comparative assessment between our Laboratory

  11. Genome Sequences of Industrially Relevant Saccharomyces cerevisiae Strain M3707, Isolated from a Sample of Distillers Yeast and Four Haploid Derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Steven D.; Klingeman, Dawn M.; Johnson, Courtney M.; Clum, Alicia; Aerts, Andrea; Salamov, Asaf; Sharma, Aditi; Zane, Matthew; Barry, Kerrie; Grigoriev, Igor V.; Davison, Brian H.; Lynd, Lee R.; Gilna, Paul; Hau, Heidi; Hogsett, David A.; Froehlich, Allan C.

    2013-04-19

    Saccharomyces cerevisiae strain M3707 was isolated from a sample of commercial distillers yeast, and its genome sequence together with the genome sequences for the four derived haploid strains M3836, M3837, M3838, and M3839 has been determined. Yeasts have potential for consolidated bioprocessing (CBP) for biofuel production, and access to these genome sequences will facilitate their development.

  12. Alteration of complex sphingolipid composition and its physiological significance in yeast Saccharomyces cerevisiae lacking vacuolar ATPase.

    Science.gov (United States)

    Tani, Motohiro; Toume, Moeko

    2015-12-01

    In the yeast Saccharomyces cerevisiae, complex sphingolipids have three types of polar head group and five types of ceramide; however, the physiological significance of the structural diversity is not fully understood. Here, we report that deletion of vacuolar H+-ATPase (V-ATPase) in yeast causes dramatic alteration of the complex sphingolipid composition, which includes decreases in hydroxylation at the C-4 position of long-chain bases and the C-2 position of fatty acids in the ceramide moiety, decreases in inositol phosphorylceramide (IPC) levels, and increases in mannosylinositol phosphorylceramide (MIPC) and mannosyldiinositol phosphorylceramide [M(IP)2C] levels. V-ATPase-deleted cells exhibited slow growth at pH 7.2, whereas the increase in MIPC levels was significantly enhanced when V-ATPase-deleted cells were incubated at pH 7.2. The protein expression levels of MIPC and M(IP)2C synthases were significantly increased in V-ATPase-deleted cells incubated at pH 7.2. Loss of MIPC synthesis or an increase in the hydroxylation level of the ceramide moiety of sphingolipids on overexpression of Scs7 and Sur2 sphingolipid hydroxylases enhanced the growth defect of V-ATPase-deleted cells at pH 7.2. On the contrary, the growth rate of V-ATPase-deleted cells was moderately increased on the deletion of SCS7 and SUR2. In addition, supersensitivities to Ca2+, Zn2+ and H2O2, which are typical phenotypes of V-ATPase-deleted cells, were enhanced by the loss of MIPC synthesis. These results indicate the possibility that alteration of the complex sphingolipid composition is an adaptation mechanism for a defect of V-ATPase.

  13. Biosynthesis of levan, a bacterial extracellular polysaccharide, in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Franken, Jaco; Brandt, Bianca A; Tai, Siew L; Bauer, Florian F

    2013-01-01

    Levans are fructose polymers synthesized by a broad range of micro-organisms and a limited number of plant species as non-structural storage carbohydrates. In microbes, these polymers contribute to the formation of the extracellular polysaccharide (EPS) matrix and play a role in microbial biofilm formation. Levans belong to a larger group of commercially important polymers, referred to as fructans, which are used as a source of prebiotic fibre. For levan, specifically, this market remains untapped, since no viable production strategy has been established. Synthesis of levan is catalysed by a group of enzymes, referred to as levansucrases, using sucrose as substrate. Heterologous expression of levansucrases has been notoriously difficult to achieve in Saccharomyces cerevisiae. As a strategy, this study used an invertase (Δsuc2) null mutant and two separate, engineered, sucrose accumulating yeast strains as hosts for the expression of the levansucrase M1FT, previously cloned from Leuconostoc mesenteroides. Intracellular sucrose accumulation was achieved either by expression of a sucrose synthase (Susy) from potato or the spinach sucrose transporter (SUT). The data indicate that in both Δsuc2 and the sucrose accumulating strains, the M1FT was able to catalyse fructose polymerisation. In the absence of the predicted M1FT secretion signal, intracellular levan accumulation was significantly enhanced for both sucrose accumulation strains, when grown on minimal media. Interestingly, co-expression of M1FT and SUT resulted in hyper-production and extracellular build-up of levan when grown in rich medium containing sucrose. This study presents the first report of levan production in S. cerevisiae and opens potential avenues for the production of levan using this well established industrial microbe. Furthermore, the work provides interesting perspectives when considering the heterologous expression of sugar polymerizing enzymes in yeast. PMID:24147008

  14. Biosynthesis of levan, a bacterial extracellular polysaccharide, in the yeast Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Jaco Franken

    Full Text Available Levans are fructose polymers synthesized by a broad range of micro-organisms and a limited number of plant species as non-structural storage carbohydrates. In microbes, these polymers contribute to the formation of the extracellular polysaccharide (EPS matrix and play a role in microbial biofilm formation. Levans belong to a larger group of commercially important polymers, referred to as fructans, which are used as a source of prebiotic fibre. For levan, specifically, this market remains untapped, since no viable production strategy has been established. Synthesis of levan is catalysed by a group of enzymes, referred to as levansucrases, using sucrose as substrate. Heterologous expression of levansucrases has been notoriously difficult to achieve in Saccharomyces cerevisiae. As a strategy, this study used an invertase (Δsuc2 null mutant and two separate, engineered, sucrose accumulating yeast strains as hosts for the expression of the levansucrase M1FT, previously cloned from Leuconostoc mesenteroides. Intracellular sucrose accumulation was achieved either by expression of a sucrose synthase (Susy from potato or the spinach sucrose transporter (SUT. The data indicate that in both Δsuc2 and the sucrose accumulating strains, the M1FT was able to catalyse fructose polymerisation. In the absence of the predicted M1FT secretion signal, intracellular levan accumulation was significantly enhanced for both sucrose accumulation strains, when grown on minimal media. Interestingly, co-expression of M1FT and SUT resulted in hyper-production and extracellular build-up of levan when grown in rich medium containing sucrose. This study presents the first report of levan production in S. cerevisiae and opens potential avenues for the production of levan using this well established industrial microbe. Furthermore, the work provides interesting perspectives when considering the heterologous expression of sugar polymerizing enzymes in yeast.

  15. Yeast systems for the commercial production of heterologous proteins.

    Science.gov (United States)

    Buckholz, R G; Gleeson, M A

    1991-11-01

    Yeasts are attractive hosts for the production of heterologous proteins. Unlike prokaryotic systems, their eukaryotic subcellular organization enables them to carry out many of the post-translational folding, processing and modification events required to produce "authentic" and bioactive mammalian proteins. In addition, they retain the advantages of a unicellular microorganism, with respect to rapid growth and ease of genetic manipulation. The vast majority of yeast expression work has focused on the well-characterized baker's yeast Saccharomyces cerevisiae. However, with the development of DNA transformation technologies, a growing number of non-Saccharomyces yeasts are becoming available as hosts for recombinant polypeptide production. These include Hansenula polymorpha, Kluyveromyces lactis, Pichia pastoris, Schizosaccharomyces pombe, Schwanniomyces occidentalis and Yarrowia lipolytica. The performance of these alternative yeast expression systems is reviewed here relative to S. cerevisiae, and the advantages and limitations of these systems are discussed.

  16. Chemoselective biohydrogenation of chalcone (2{Epsilon})-3-(1,3-benzodioxole-5-yl)-1-phenyl-2-propen-1-one mediated by baker yeasts immobilized in polymeric supports; Bioidrogenacao quimioseletiva da chalcona (2{Epsilon})-3-(1,3-benzodioxol-5-il)-1-fenil-2-propen-1-ona mediada por fermentos de pao imobilizado em suportes polimericos

    Energy Technology Data Exchange (ETDEWEB)

    Mundstock, Flavia L.S.; Silva, Vanessa D.; Nascimento, Maria da G., E-mail: mundstock@qmc.ufsc.b [Universidade Federal de Santa Catarina (DQ/UFSC), Florianopolis, SC (Brazil). Dept. de Quimica

    2009-07-01

    In this study, the yeast Saccharomyces cerevisiae, baker's yeast (BY) was immobilized in poly(ethylene oxide) (PEO), poly(vinyl alcohol) (PVA), sodium caseinate (SC), gelatin (G) films and in agar (A) and gelatin (G) gels, and used as a biocatalyst in the biohydrogenation reaction of (2{Epsilon})-3-(1,3-benzodioxyl-5-yl)-1-phenyl-2-propen-1-one (1). The transformation of (1) into the corresponding dehydro chalcone (2) through biohydrogenation reactions was carried out in n-hexane at 25 or 35 deg C, for 4-48 h reaction. The product conversion, under different experimental conditions, was evaluated by hydrogen nuclear magnetic resonance, {sup 1}H NMR.The highest conversion degrees were achieved using BY immobilized in agar gel, (29-47%), depending also on the temperature. Using BY immobilized in PEO, PVA, SC and G films, the conversion into (2) was lower (0-21%). The results show the feasibility of the use of BY immobilized in polymeric materials to reduce a,b-unsaturated carbonyl compounds. (author)

  17. Recombinant Expression and Phenotypic Screening of a Bioactive Cyclotide Against α-Synuclein-Induced Cytotoxicity in Baker's Yeast.

    Science.gov (United States)

    Jagadish, Krishnappa; Gould, Andrew; Borra, Radhika; Majumder, Subhabrata; Mushtaq, Zahid; Shekhtman, Alexander; Camarero, Julio A

    2015-07-13

    We report for the first time the recombinant expression of fully folded bioactive cyclotides inside live yeast cells by using intracellular protein trans-splicing in combination with a highly efficient split-intein. This approach was successfully used to produce the naturally occurring cyclotide MCoTI-I and the engineered bioactive cyclotide MCoCP4. Cyclotide MCoCP4 was shown to reduce the toxicity of human α-synuclein in live yeast cells. Cyclotide MCoCP4 was selected by phenotypic screening from cells transformed with a mixture of plasmids encoding MCoCP4 and inactive cyclotide MCoTI-I in a ratio of 1:5×10(4). This demonstrates the potential for using yeast to perform phenotypic screening of genetically encoded cyclotide-based libraries in eukaryotic cells.

  18. Involvement of Sac1 phosphoinositide phosphatase in the metabolism of phosphatidylserine in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Tani, Motohiro; Kuge, Osamu

    2014-04-01

    Sac1 is a phosphoinositide phosphatase that preferentially dephosphorylates phosphatidylinositol 4-phosphate. Mutation of SAC1 causes not only the accumulation of phosphoinositides but also reduction of the phosphatidylserine (PS) level in the yeast Saccharomyces cerevisiae. In this study, we characterized the mechanism underlying the PS reduction in SAC1-deleted cells. Incorporation of (32) P into PS was significantly delayed in sac1∆ cells. Such a delay was also observed in SAC1- and PS decarboxylase gene-deleted cells, suggesting that the reduction in the PS level is caused by a reduction in the rate of biosynthesis of PS. A reduction in the PS level was also observed with repression of STT4 encoding phosphatidylinositol 4-kinase or deletion of VPS34 encoding phophatidylinositol 3-kinase. However, the combination of mutations of SAC1 and STT4 or VPS34 did not restore the reduced PS level, suggesting that both the synthesis and degradation of phosphoinositides are important for maintenance of the PS level. Finally, we observed an abnormal PS distribution in sac1∆ cells when a specific probe for PS was expressed. Collectively, these results suggested that Sac1 is involved in the maintenance of a normal rate of biosynthesis and distribution of PS.

  19. Ribosomal protein methyltransferases in the yeast Saccharomyces cerevisiae: Roles in ribosome biogenesis and translation.

    Science.gov (United States)

    Al-Hadid, Qais; White, Jonelle; Clarke, Steven

    2016-02-12

    A significant percentage of the methyltransferasome in Saccharomyces cerevisiae and higher eukaryotes is devoted to methylation of the translational machinery. Methylation of the RNA components of the translational machinery has been studied extensively and is important for structure stability, ribosome biogenesis, and translational fidelity. However, the functional effects of ribosomal protein methylation by their cognate methyltransferases are still largely unknown. Previous work has shown that the ribosomal protein Rpl3 methyltransferase, histidine protein methyltransferase 1 (Hpm1), is important for ribosome biogenesis and translation elongation fidelity. In this study, yeast strains deficient in each of the ten ribosomal protein methyltransferases in S. cerevisiae were examined for potential defects in ribosome biogenesis and translation. Like Hpm1-deficient cells, loss of four of the nine other ribosomal protein methyltransferases resulted in defects in ribosomal subunit synthesis. All of the mutant strains exhibited resistance to the ribosome inhibitors anisomycin and/or cycloheximide in plate assays, but not in liquid culture. Translational fidelity assays measuring stop codon readthrough, amino acid misincorporation, and programmed -1 ribosomal frameshifting, revealed that eight of the ten enzymes are important for translation elongation fidelity and the remaining two are necessary for translation termination efficiency. Altogether, these results demonstrate that ribosomal protein methyltransferases in S. cerevisiae play important roles in ribosome biogenesis and translation.

  20. Involvement of complex sphingolipids and phosphatidylserine in endosomal trafficking in yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Tani, Motohiro; Kuge, Osamu

    2012-12-01

    Sphingolipids play critical roles in many physiologically important events in the yeast Saccharomyces cerevisiae. In this study, we found that csg2Δ mutant cells defective in the synthesis of mannosylinositol phosphorylceramide exhibited abnormal intracellular accumulation of an exocytic v-SNARE, Snc1, under phosphatidylserine synthase gene (PSS1)-repressive conditions, although in wild-type cells, Snc1 was known to cycle between plasma membranes and the late Golgi via post-Golgi endosomes. The mislocalized Snc1 was co-localized with an endocytic marker dye, FM4-64, upon labelling for a short time. The abnormal distribution of Snc1 was suppressed by deletion of GYP2 encoding a GTPase-activating protein that negatively regulates endosomal vesicular trafficking, or expression of GTP-restricted form of Ypt32 GTPase. Furthermore, an endocytosis-deficient mutant of Snc1 was localized to plasma membranes in PSS1-repressed csg2Δ mutant cells as well as wild-type cells. Thus, the PSS1-repressed csg2Δ mutant cells were indicated to be defective in the trafficking of Snc1 from post-Golgi endosomes to the late Golgi. In contrast, the vesicular trafficking pathways via pre-vacuolar endosomes in the PSS1-repressed csg2Δ mutant cells seemed to be normal. These results suggested that specific complex sphingolipids and phosphatidylserine are co-ordinately involved in specific vesicular trafficking pathway. PMID:23062277

  1. Biosynthesis and function of GPI proteins in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Pittet, Martine; Conzelmann, Andreas

    2007-03-01

    Like most other eukaryotes, Saccharomyces cerevisiae harbors a GPI anchoring machinery and uses it to attach proteins to membranes. While a few GPI proteins reside permanently at the plasma membrane, a majority of them gets further processed and is integrated into the cell wall by a covalent attachment to cell wall glucans. The GPI biosynthetic pathway is necessary for growth and survival of yeast cells. The GPI lipids are synthesized in the ER and added onto proteins by a pathway comprising 12 steps, carried out by 23 gene products, 19 of which are essential. Some of the estimated 60 GPI proteins predicted from the genome sequence serve enzymatic functions required for the biosynthesis and the continuous shape adaptations of the cell wall, others seem to be structural elements of the cell wall and yet others mediate cell adhesion. Because of its genetic tractability S. cerevisiae is an attractive model organism not only for studying GPI biosynthesis in general, but equally for investigating the intracellular transport of GPI proteins and the peculiar role of GPI anchoring in the elaboration of fungal cell walls.

  2. Construction of novel Saccharomyces cerevisiae strains for bioethanol active dry yeast (ADY production.

    Directory of Open Access Journals (Sweden)

    Daoqiong Zheng

    Full Text Available The application of active dry yeast (ADY in bioethanol production simplifies operation processes and reduces the risk of bacterial contamination. In the present study, we constructed a novel ADY strain with improved stress tolerance and ethanol fermentation performances under stressful conditions. The industrial Saccharomyces cerevisiae strain ZTW1 showed excellent properties and thus subjected to a modified whole-genome shuffling (WGS process to improve its ethanol titer, proliferation capability, and multiple stress tolerance for ADY production. The best-performing mutant, Z3-86, was obtained after three rounds of WGS, producing 4.4% more ethanol and retaining 2.15-fold higher viability than ZTW1 after drying. Proteomics and physiological analyses indicated that the altered expression patterns of genes involved in protein metabolism, plasma membrane composition, trehalose metabolism, and oxidative responses contribute to the trait improvement of Z3-86. This work not only successfully developed a novel S. cerevisiae mutant for application in commercial bioethanol production, but also enriched the current understanding of how WGS improves the complex traits of microbes.

  3. Display of wasp venom allergens on the cell surface of Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Borodina, Irina; Jensen, B. M.; Søndergaard, Ib;

    2010-01-01

    Background: Yeast surface display is a technique, where the proteins of interest are expressed as fusions with yeast surface proteins and thus remain attached to the yeast cell wall after expression. Our purpose was to study whether allergens expressed on the cell surface of baker's yeast...... Saccharomyces cerevisiae preserve their native allergenic properties and whether the yeast native surface glycoproteins interfere with IgE binding. We chose to use the major allergens from the common wasp Vespula vulgaris venom: phospholipase A1, hyaluronidase and antigen 5 as the model. Results: The proteins...... their enzymatic activities. Phospholipase A1 severely inhibited the growth of the yeast cells. Antigen 5 - expressing yeast cells bound IgE antibodies from wasp venom allergic patient sera but not from control sera as demonstrated by FACS. Moreover, antigen 5 - expressing yeast cells were capable of mediating...

  4. A Genetics Laboratory Module Involving Selection and Identification of Lysine Synthesis Mutants in the Yeast Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Jill B. Keeney

    2009-12-01

    Full Text Available We have developed a laboratory exercise, currently being used with college sophomores, which uses the yeast Saccharomyces cerevisiae to convey the concepts of amino acid biosynthesis, mutation, and gene complementation. In brief, selective medium is used to isolate yeast cells carrying a mutation in the lysine biosynthesis pathway. A spontaneous mutation in any one of three separate genetic loci will allow for growth on selective media; however, the frequency of mutations isolated from each locus differs. Following isolation of a mutated strain, students use complementation analysis to identify which gene contains the mutation. Since the yeast genome has been mapped and sequenced, students with access to the Internet can then research and develop hypotheses to explain the differences in frequencies of mutant genes obtained.

  5. Genomic, genetic and physiological effects of bio-electrospraying on live cells of the model yeast Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Greig, Duncan [Department of Biology, University College London, Gower Street, London, WC1E 6BT (United Kingdom); Jayasinghe, Suwan N [Department of Mechanical Engineering, University College London, Torrington Place, London, WC1E 7JE (United Kingdom)], E-mail: s.jayasinghe@ucl.ac.uk

    2008-09-01

    The ability to directly engineer living cells is rapidly becoming a hot field of research for a wide range of applications within the life sciences. 'Bio-electrospraying' cells, a recently developed technique, has great potential in this area. In this paper, we quantify genetic, genomic and physiological effects of bio-electrospraying cells of a model eukaryote, the yeast Saccharomyces cerevisiae. Our results demonstrate that yeast cells bio-electrosprayed at 30 kV have not incurred any detectable damage at a genomic or genetic level, and that the detectable physiological stress of the procedure is negligible. These results support our proposal to use yeast as a model system to develop bio-electrospray devices and protocols.

  6. Size and position of intervening sequences are critical for the splicing efficiency of pre-mRNA in the yeast Saccharomyces cerevisiae.

    OpenAIRE

    Klinz, F. J.; Gallwitz, D

    1985-01-01

    The size of the 309 bp actin gene intron of the yeast Saccharomyces cerevisiae was enlarged by inserting DNA fragments of different lengths and sequence. Enlarging the intron above 551 bp, the largest known yeast intron, led to a decrease in splicing efficiency. The effect on transcript splicing was dependent on the length of the inserted fragments rather than their sequence. It was also observed that insertion of the actin gene intron into different regions of the normally unsplit yeast YP2 ...

  7. [Expression of the Drosophila melanogaster limk1 gene 3'-UTRs mRNA in Yeast Saccharomyces cerevisiae].

    Science.gov (United States)

    Rumyantsev, A M; Zakharov, G A; Zhuravlev, A V; Padkina, M V; Savvateeva-Popova, E V; Sambuk, E V

    2014-06-01

    The stability of mRNA and its translation efficacy in higher eukaryotes are influenced by the interaction of 3'-untranscribed regions (3'-UTRs) with microRNAs and RNA-binding proteins. Since Saccharomyces cerevisiae lack microRNAs, it is possible to evaluate the contribution of only 3'-UTRs' and RNA-binding proteins' interaction in post-transcriptional regulation. For this, the post-transcriptional regulation of Drosophila limk1 gene encoding for the key enzyme of actin remodeling was studied in yeast. Analysis of limkl mRNA 3'-UTRs revealed the potential sites of yeast transcriptional termination. Computer remodeling demonstrated the possibility of secondary structure formation in limkl mRNA 3'-UTRs. For an evaluation of the functional activity of Drosophila 3'-UTRs in yeast, the reporter gene PHO5 encoding for yeast acid phosphatase (AP) fused to different variants of Drosophila limk1 mRNA 3'-UTRs (513, 1075, 1554 bp) was used. Assessments of AP activity and RT-PCR demonstrated that Drosophila limkl gene 3'-UTRs were functionally active and recognized in yeast. Therefore, yeast might be used as an appropriate model system for studies of 3'-UTR's role in post-transcriptional regulation.

  8. Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis

    DEFF Research Database (Denmark)

    Nissen, Torben Lauesgaard; Hamann, Claus Wendelboe; Kielland-Brandt, M. C.;

    2000-01-01

    Glycerol is formed as a by-product in production of ethanol and baker's yeast during fermentation of Saccharomyces cerevisiae under anaerobic and aerobic growth conditions, respectively. One physiological role of glycerol formation by yeast is to reoxidize NADH, formed in synthesis of biomass...... and secondary fermentation products, to NAD(+). The objective of this study was to evaluate whether introduction of a new pathway for reoxidation of NADH, in a yeast strain where glycerol synthesis had been impaired, would result in elimination of glycerol production and lead to increased yields of ethanol...

  9. Dynamics of the Heat Stress Response of Ceramides with Different Fatty-Acyl Chain Lengths in Baker's Yeast.

    Directory of Open Access Journals (Sweden)

    Po-Wei Chen

    2015-08-01

    Full Text Available The article demonstrates that computational modeling has the capacity to convert metabolic snapshots, taken sequentially over time, into a description of cellular, dynamic strategies. The specific application is a detailed analysis of a set of actions with which Saccharomyces cerevisiae responds to heat stress. Using time dependent metabolic concentration data, we use a combination of mathematical modeling, reverse engineering, and optimization to infer dynamic changes in enzyme activities within the sphingolipid pathway. The details of the sphingolipid responses to heat stress are important, because they guide some of the longer-term alterations in gene expression, with which the cells adapt to the increased temperature. The analysis indicates that all enzyme activities in the system are affected and that the shapes of the time trends in activities depend on the fatty-acyl CoA chain lengths of the different ceramide species in the system.

  10. Optimising enzyme production by bakers yeast in continuous culture: physiological knowledge useful for process design and control

    Energy Technology Data Exchange (ETDEWEB)

    Gregory, M.E. [Centre for Process Systems Engineering, Imperial Coll. of Science, Technology and Medicine, London (United Kingdom); Bulmer, M. [Advanced Centre for Biochemical Engineering, University Coll., London (United Kingdom); Bogle, I.D.L. [Advanced Centre for Biochemical Engineering, University Coll., London (United Kingdom); Titchener-Hooker, N. [Advanced Centre for Biochemical Engineering, University Coll., London (United Kingdom)

    1996-10-01

    Saccharomyces cerevisiae was grown in aerobic continuous culture on a defined minimal medium, with glucose (40 g.l{sup -1}) as the growth-limiting carbon source, to acquire knowledge useful in process design and for model-based control. Steady-state concentrations of biomass, glucose, ethanol and activities of model products alcohol dehydrogenase, hexokinase, malate dehydrogenase, glucose-6-phosphate dehydrogenase and iso-citrate dehydrogenase were determined at dilution rates (D) between 0.06 h{sup -1} and 0.323 h{sup -1} (close to {mu}{sub max}). Enzyme activities showed productivity trends related to the transition from oxidative to oxido-reductive growth. Conclusions are drawn from the data with regard to designing a new process for production of intracellular enzymes. Issues of process stability as well as productivity are discussed. (orig.). With 5 figs.

  11. Volatile flavour profile of reduced alcohol wines fermented with the non-conventional yeast species Metschnikowia pulcherrima and Saccharomyces uvarum.

    Science.gov (United States)

    Varela, C; Sengler, F; Solomon, M; Curtin, C

    2016-10-15

    Production of quality wines with decreased alcohol concentration continues to be one of the major challenges facing wine producers. Therefore, there is considerable interest in the isolation or generation of wine yeasts less efficient at transforming grape sugars into ethanol. We recently demonstrated that Metschnikowia pulcherrima AWRI1149 and Saccharomyces uvarum AWRI2846 were both able to produce reduced alcohol wine when used in sequential inoculation with Saccharomyces cerevisiae. This effect is additive when both strains are co-inoculated in grape must. Here we describe the volatile flavour profile of Chardonnay and Shiraz wines produced with these two strains. Wines fermented with M. pulcherrima showed concentrations of ethyl acetate likely to affect negatively wine aroma. Wines fermented with S. uvarum and with a combination of M. pulcherrima and S. uvarum were characterised by increased concentrations of 2-phenyl ethanol and 2-phenylethyl acetate, both associated with positive sensory attributes. PMID:27173534

  12. [Certain properties of "biosynthetic" L-threonine dehydratase from subcellular structures of brewers' yeast Saccharomyces carlsbergensis].

    Science.gov (United States)

    Kovaleva, S V; Korozhko, A I; Beliaeva, N F; Kagan, Z S

    1981-01-01

    The paper is concerned with kinetic properties of the "biosynthetic" L-threonine dehydratase (EC 4.2.1.16) solubilized from subcellular structures of brewers' yeast Saccharomyces carlsbergensis in the absence and presence of the allosteric inhibitor, L-isoleucine, at three pH-values (pH 6.5, 7.8 and 9.5). The curve of the initial reaction rate versus initial substrate concentration in the absence of L-isoleucine at pH 6.5 was of hyperbolic character (Km = 5.5.10(-2) M), and at pH 7.8 and 9.5 the kinetic curve had a weakly sigmoidal pattern with a sharp going into the saturation plateaux; the values of [S] 0.5 are 1.10(-2) and 8.7.10(-3) M, respectively. An addition of L-isoleucine to the reaction mixture led to the appearance (at pH 6.5) or to an increase (at pH 7.8 and 9.5) of the sigmoidality of these kinetic curves and to a decrease in values of the maximum reaction rate V. The enzyme sensibility to the inhibitory effect of L-isoleucine decreased with an increase in pH values. Low L-isoleucine concentrations at low substrate concentrations activated the enzyme. The pH optimum for L-threonine dehydratase under study was 9.5-10.0. The enzyme molecular weight is about 300 000.

  13. Horizontal gene transfer promoted evolution of the ability to propagate under anaerobic conditions in yeasts

    DEFF Research Database (Denmark)

    Gojkovic, Zoran; Knecht, Wolfgang; Warneboldt, J.;

    2004-01-01

    The ability to propagate under anaerobic conditions is an essential and unique trait of brewer's or baker's yeast (Saccharomyces cervisiae). To understand the evolution of facultative anaerobiosis we studied the dependence of de novo pyrimidine biosynthesis, more precisely the fourth enzymic...... activity catalysed by dihydroorotate dehydrogenase (DHODase), on the enzymes of the respiratory chain in several yeast species. While the majority of yeasts possess a mitochondrial DHODase, Saccharomyces cerevisiae has a cytoplasmatic enzyme, whose activity is independent of the presence of oxygen. From....... We show that these two S. kluyveri enzymes, and their coding genes, differ in their dependence on the presence of oxygen. Only the cytoplasmic DHODase promotes growth in the absence of oxygen. Apparently a Saccharomyces yeast progenitor which had a eukaryotic-like mitochondrial DHODase acquired...

  14. Spectrophotometric evaluation of selenium binding by Saccharomyces cerevisiae ATCC MYA-2200 and Candida utilis ATCC 9950 yeast.

    Science.gov (United States)

    Kieliszek, Marek; Błażejak, Stanisław; Płaczek, Maciej

    2016-05-01

    In this study, the ability of selenium binding the biomas of Saccharomyces cerevisiae ATCC MYA-2200 and Candida utilis ATCC 9950 was investigated. Sodium selenite(IV) salts were added to the experimental media at concentrations of 10, 20, 40, and 60 mg Se(4+) L(-1). In the tested concentration range, one concentration reported a significant reduction in the biomass yield of both yeast strains. Intense growth was observed for C. utilis yeast, which reached the highest biomass yield of 15 gd.w.L(-1) after 24h cultivation in the presence of 10mg Se(4+) L(-1). Based on the use of spectrophotometric method for the determination of selenium content by using Variamine Blue as a chromogenic agent, efficient accumulation of this element in the biomass of the investigated yeast was observed. The highest amount of selenium, that is, 5.64 mg Se(4+)gd.w.(-1), was bound from the environment by S. cerevisiae ATCC MYA-2200 cultured in the presence of 60 mg Se(4+) L(-1) medium 72h Slightly less amount, 5.47 mg Se(4+) gd.w.(-1), was absorbed by C. utilis ATCC 9950 during similar cultural conditions. Based on the results of the biomass yield and the use of selenium from the medium, it can be observed that yeasts of the genus Candida are more efficient in binding this element, and this property finds practical application in the production of selenium-enriched yeast.

  15. Saccharomyces cerivisiae as a model system for kidney disease: what can yeast tell us about renal function?

    Science.gov (United States)

    Kolb, Alexander R; Buck, Teresa M; Brodsky, Jeffrey L

    2011-07-01

    Ion channels, solute transporters, aquaporins, and factors required for signal transduction are vital for kidney function. Because mutations in these proteins or in associated regulatory factors can lead to disease, an investigation into their biogenesis, activities, and interplay with other proteins is essential. To this end, the yeast, Saccharomyces cerevisiae, represents a powerful experimental system. Proteins expressed in yeast include the following: 1) ion channels, including the epithelial sodium channel, members of the inward rectifying potassium channel family, and cystic fibrosis transmembrane conductance regulator; 2) plasma membrane transporters, such as the Na(+)-K(+)-ATPase, the Na(+)-phosphate cotransporter, and the Na(+)-H(+) ATPase; 3) aquaporins 1-4; and 4) proteins such as serum/glucocorticoid-induced kinase 1, phosphoinositide-dependent kinase 1, Rh glycoprotein kidney, and trehalase. The variety of proteins expressed and studied emphasizes the versatility of yeast, and, because of the many available tools in this organism, results can be obtained rapidly and economically. In most cases, data gathered using yeast have been substantiated in higher cell types. These attributes validate yeast as a model system to explore renal physiology and suggest that research initiated using this system may lead to novel therapeutics.

  16. Spectrophotometric evaluation of selenium binding by Saccharomyces cerevisiae ATCC MYA-2200 and Candida utilis ATCC 9950 yeast.

    Science.gov (United States)

    Kieliszek, Marek; Błażejak, Stanisław; Płaczek, Maciej

    2016-05-01

    In this study, the ability of selenium binding the biomas of Saccharomyces cerevisiae ATCC MYA-2200 and Candida utilis ATCC 9950 was investigated. Sodium selenite(IV) salts were added to the experimental media at concentrations of 10, 20, 40, and 60 mg Se(4+) L(-1). In the tested concentration range, one concentration reported a significant reduction in the biomass yield of both yeast strains. Intense growth was observed for C. utilis yeast, which reached the highest biomass yield of 15 gd.w.L(-1) after 24h cultivation in the presence of 10mg Se(4+) L(-1). Based on the use of spectrophotometric method for the determination of selenium content by using Variamine Blue as a chromogenic agent, efficient accumulation of this element in the biomass of the investigated yeast was observed. The highest amount of selenium, that is, 5.64 mg Se(4+)gd.w.(-1), was bound from the environment by S. cerevisiae ATCC MYA-2200 cultured in the presence of 60 mg Se(4+) L(-1) medium 72h Slightly less amount, 5.47 mg Se(4+) gd.w.(-1), was absorbed by C. utilis ATCC 9950 during similar cultural conditions. Based on the results of the biomass yield and the use of selenium from the medium, it can be observed that yeasts of the genus Candida are more efficient in binding this element, and this property finds practical application in the production of selenium-enriched yeast. PMID:27049131

  17. Measurement of the gassing power of bakers' yeast: correlation between the dough volume and the incubation time

    Directory of Open Access Journals (Sweden)

    Walter Borzani

    2004-06-01

    Full Text Available An empirical equation is proposed to correlate the dough volume and the incubation time during cylinder tests using thin flour dough carried out to evaluate the gassing power of compressed yeast. The above equation permitted to correlate the gassing power of the yeast and the proof time, as well as to calculate the specific rate of the dough volume variation at any time. It provided more information regarding the fermentation power of the yeast than the sole value of its gas-producing power. A physical interpretation of the proposed equation is presented.Propõe-se uma equação empírica que correlaciona o volume da pasta com o tempo de incubação na medida, pelo método do cilindro graduado e pasta de baixa concentração, da capacidade do fermento prensado de aumentar o volume da pasta (usualmente denominada "poder de levantamento" ou "poder de fermentação" do fermento. A equação proposta permite não apenas correlacionar o valor daquela capacidade com o tempo de incubação, mas também calcular a velocidade específica de aumento do volume da pasta em cada instante, fornecendo assim muito mais informações sobre o desempenho do fermento. Apresenta-se, também, uma possível explicação da fórmula empírica proposta.

  18. Saccharomyces boulardii

    Science.gov (United States)

    ... bowel syndrome. Some people use Saccharomyces boulardii for lactose intolerance, urinary tract infections (UTIs), vaginal yeast infections, high ... cholesterol. Lyme disease. Hives. Fever blisters. Canker sores. Lactose intolerance. Other conditions. More evidence is needed to rate ...

  19. Growth of Saccharomyces cerevisiae in form of solid particles in a gaseous fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Moebus, O.; Teuber, M.; Reuter, H.

    1981-01-01

    The growth of yeast paricles in a pneumatic bioreactor (gaseous fluidized bed) is described. Pressed bakers yeast was grated into small particles suitable for fluidization. The growth medium was sprayed onto the fluidized particles. Growth of yeasts in the new type of bioreactor was proven by: production of yeast biomass (growth yield 45.7 g yeast dry matter per 100 g glucose; technical generation time = 17 h); assimilation of glucose (99%) and nitrogen (100%) from the medium. Production of enough biological heat to effect direct evaporation of the water content of the medium; proof of the Crabtree-effect (production of ethanol at high substrate supply rates); and proof of the viability of the yeast cells in the yeast particles during pneumatic fermentation. The conditions (temperature, humidity and speed of the supporting air flow) for the aerobic fermentation of glucose by Saccharomyces cerevisiae are described.

  20. Biodiversity of Saccharomyces yeast strains from grape berries of wine-producing areas using starters commercial yeasts

    OpenAIRE

    Valero, Eva; Cambon, Brigitte; Schuller, Dorit Elisabeth; Casal, Margarida; Dequin, Sylvie

    2007-01-01

    The use of commercial wine yeast strains as starters has been extensively generalised over the past two decades. In this study, a large scale sampling plan was devised over a period of three years in three different vineyards in the south of France, to evaluate autochthonous wine yeast biodiversity in vineyards around wineries where active dry yeasts have been used as fermentation starters during more than 5 years. 72 spontaneous fermentations were performed from a total of 106 grape samples,...

  1. An investigation into the proteins responsible for the translational inhibition seen in the yeast Saccharomyces cerevisiae following fusel alcohol exposure

    OpenAIRE

    Keenan, Jemma

    2013-01-01

    Fusel alcohols signal nitrogen scarcity to elicit a range of responses in the yeast Saccharomyces cerevisiae. These alcohols activate pseudohyphal growth and cause rapid inhibition of translation initiation. Previous work from our lab has highlighted that the translation initiation factor eIF2B is a target for this regulation. eIF2B is the guanine nucleotide exchange factor required for recycling eIF2•GDP to eIF2•GTP. The GTP bound form of eIF2 can interact with the Methionyl initiator tRNA ...

  2. Contribution by Saccharomyces cerevisiae yeast to fermentative flavour compounds in wines from cv. Albariño.

    Science.gov (United States)

    Vilanova, Mar; Sieiro, Carmen

    2006-11-01

    A comparative study was made of the fermentation products of Spanish Albariño wines produced with spontaneous yeast flora and an indigenous selected Saccharomyces cerevisiae strain (Alb16). The content of fermentative volatile compounds was determined by gas-chromatography-FID. Fifteen compounds (5 alcohols, 7 esters and 3 acetates) were identified in the two Albariño wines studied. Higher alcohols, ethyl esters (except ethyl hexanoate and ethyl octanoate) and acetates were in greater concentration in the spontaneous fermentation wine than in that with selected Alb16 strain. Principal components analysis showed good separation between the different wines.

  3. Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations with Saccharomyces cerevisiae on alcoholic fermentation behaviour and wine aroma of cherry wines.

    Science.gov (United States)

    Sun, Shu Yang; Gong, Han Sheng; Jiang, Xiao Man; Zhao, Yu Ping

    2014-12-01

    This study examined the effect of mixed fermentation of non-Saccharomyces (Torulaspora delbrueckii ZYMAFLORE Alpha(TD n. Sacch) and Metschnikowia pulcherrima JS22) and Saccharomyces cerevisiae yeasts (D254 and EC1118) on the production of cherry wines, in comparison with commonly used mono-culture. Results obtained during AF demonstrated that negligible inhibitory effect was observed in S. cerevisiae/Alpha pair, whereas a strong antagonistic effect was detected between MJS22 and S. cerevisiae strain, resulting in an early death of MJS22. For volatile components determined, S. cerevisiae/MJS22 couple was found to significantly boost the production of most detected compounds, more particularly in higher alcohols, esters, acids and terpenes; while the characteristic of S. cerevisiae/Alpha pair is an increase in fruity esters, higher alcohols and decrease in acid production. Sensory evaluation revealed that S. cerevisiae/MJS22 pair reinforced sweet, green and fatty notes to the cherry wines, and S. cerevisiae/Alpha trial enhanced the fruity odour and reduced green note.

  4. Production of bioethanol from heart and pineapple shell using the yeast Saccharomyces Cerevisiae

    International Nuclear Information System (INIS)

    The performance of bioethanol production was evaluated from heart and pineapple shell, using the yeast Saccharomyces Cerevisiae, in which has been obtained a maximum output of 1,6% v/v. The research was divided into a phase of characterization and five experimental phases. The heart and pineapple shell were used as substrate for the study. The contents of glucose, reducing sugars and total, moisture, ash, crude fiber and soluble solids content were determined of the heart and golden pineapple shell (MD2). The shell has had a higher content of soluble solids, fiber content, ash and lower moisture content and reducing sugars. In the first experimental phase was made a fermentation of commercial sucrose, with the objective to corroborate the method of measurement of CO2 and the pH was measured of the water that is collected the gas. Great variation between samples has not been observed, comparing the method to estimate the losses of gas, so it is reproducible and the losses of CO2 has been at least of 22%. In the second experimental stage to compare measurement methods of ethanol, for collection of CO2 and gas chromatography, it has been found that for concentrations from 0 to 0,79% v/v, the results have shown a quadratic behavior (second-degree polynomial with 0,83173x2 +0,0024 x, R2=0,9984), while that for higher concentrations to 0,79% the relation has been linear (0,6372 x -0,099, R2=0,9424), in which x is the %v/v of ethanol, of the chromatographic method. In the third experimental stage were compared the effects of the filtration. The significant differences of this effect were not found for either of the two substrates used: hearts and shells. The adjustment parameters of the modified Gompertz equation for mixtures of 53% heart and 47% shell, and concentration of 280 g/L have been: Pm 0,72 %v/v; λ 0,3 h, Rm 0,047 (%v/v)/h; for a concentration of 400 g/L, have been Pm 1,3 %v/v λ 1,8 h and Rm 0,068 (%v/v)/h and for 523 g/L, using extract of yeast have been Pm 1

  5. TORC1 activity is partially reduced under nitrogen starvation conditions in sake yeast Kyokai no. 7, Saccharomyces cerevisiae.

    Science.gov (United States)

    Nakazawa, Nobushige; Sato, Aya; Hosaka, Masahiro

    2016-03-01

    Industrial yeasts are generally unable to sporulate but treatment with the immunosuppressive drug rapamycin restores this ability in a sake yeast strain Kyokai no. 7 (K7), Saccharomyces cerevisiae. This finding suggests that TORC1 is active under sporulation conditions. Here, using a reporter gene assay, Northern and Western blots, we tried to gain insight into how TORC1 function under nitrogen starvation conditions in K7 cells. Similarly to a laboratory strain, RPS26A transcription was repressed and Npr1 was dephosphorylated in K7 cells, indicative of the expected loss of TORC1 function under nitrogen starvation. The expression of nitrogen catabolite repression-sensitive genes, however, was not induced, the level of Cln3 remained constant, and autophagy was more slowly induced than in a laboratory strain, all suggestive of active TORC1. We conclude that TORC1 activity is partially reduced under nitrogen starvation conditions in K7 cells.

  6. Vacuolar carboxypeptidase Y of Saccharomyces cerevisiae is glycosylated, sorted and matured in the fission yeast Schizosaccharomyces pombe.

    Science.gov (United States)

    Simeon, A; Egner, R; Gascon, S; Suarez-Rendueles, P

    1995-03-01

    Vacuolar carboxypeptidase Y of Saccharomyces cerevisiae (CPYsc) has been expressed in a Schizosaccharomyces pombe strain devoid of the endogenous equivalent peptidase, employing a 2 mu derived plasmid. Immunoblot analysis revealed that CPYsc produced in the fission yeast has a higher molecular mass than mature CPYsc produced by the budding yeast. CPYsc is glycosylated when expressed in S. pombe and uses four N-linked glycosylation sites as shown by endoglycosidase H digestion. Carbohydrate removal leads to a protein moiety which is indistinguishable in size from deglycosylated CPYsc produced by S. cerevisiae. CPYsc isolated from S. pombe soluble extracts is enzymatically active and thus is presumed to undergo correct proteolytic maturation. Subcellular fractionation experiments showed a cofractionation of CPYsc with the S. pombe endoproteinases PrA and PrB, suggesting that the protein is correctly sorted to the vacuole and that these peptidases might be responsible for zymogen activation.

  7. Yeast (Saccharomyces cerevisiae) Polarizes Both M-CSF- and GM-CSF-Differentiated Macrophages Toward an M1-Like Phenotype.

    Science.gov (United States)

    Seif, Michelle; Philippi, Anja; Breinig, Frank; Kiemer, Alexandra K; Hoppstädter, Jessica

    2016-10-01

    Macrophages are a heterogeneous and plastic cell population with two main phenotypes: pro-inflammatory classically activated macrophages (M1) and anti-inflammatory alternatively activated macrophages (M2). Saccharomyces cerevisiae is a promising vehicle for the delivery of vaccines. It is well established that S. cerevisiae is taken up by professional phagocytic cells. However, the response of human macrophages to S. cerevisiae is ill-defined. In this study, we characterized the interaction between S. cerevisiae and M1- or M2-like macrophages. M1-like macrophages had a higher yeast uptake capacity than M2-like macrophages, but both cell types internalized opsonized yeast to the same extent. The M1 surface markers HLAII and CD86 were upregulated after yeast uptake in M1- and M2-like macrophages. Moreover, mRNA expression levels of pro-inflammatory cytokines, such as TNF-α, IL-12, and IL-6, increased, whereas the expression of anti-inflammatory mediators did not change. These results demonstrate that S. cerevisiae can target both M1 and M2 macrophages, paralleled by skewing toward an M1 phenotype. Thus, the use of yeast-based delivery systems might be a promising approach for the treatment of pathologic conditions that would benefit from the presence of M1-polarized macrophages, such as cancer.

  8. Effects of the supplementation with yeast (saccharomyces cerevisiae on weight gain and development of water buffalo calves

    Directory of Open Access Journals (Sweden)

    N. García

    2010-02-01

    Full Text Available The objective of this study was to evaluate the effects of a commercial yeast culture (Saccharomyces cerevisiae on weight gain and development of buffalo calves from water buffalo herd in north of Colombia. The buffalo calves (age: 71,12 +/- 22 days old were randomly assigned to one of two treatments, during 45 days. One group (n=13 received 50 gr/day of commercial product of yeast and the other group (n = 13 don’t received yeast. The buffalo calves grazed in same pastures under same milking system. All animals were weighed and measured weekly. During the test the animals gain 11,38 +/- 5,2 Kgr y 13.92 +/- 5,0 Kgr by treated and non treated calves, respectively. The increase of the corporal measures during the test was (cm: Toraxic Circumference 7,0 +/- 5,58 Vs 9,23 +/- 4,02, Height 5,77 +/- 6,81 Vs 5,92 +/- 4,5 and Length 2,92 +/- 8,17 Vrs 0,54 +/- 4,86 by treated and no treated calves, respectively. No statistic difference was found between groups. In conclusion, the feeding with yeast culture didn’t increase significantly the weight gain and development in water buffalo calves.

  9. Production of tranilast [N-(3',4'-dimethoxycinnamoyl)-anthranilic acid] and its analogs in yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Eudes, Aymerick; Baidoo, Edward E K; Yang, Fan; Burd, Helcio; Hadi, Masood Z; Collins, F William; Keasling, Jay D; Loqué, Dominique

    2011-02-01

    Biological synthesis of therapeutic drugs beneficial for human health using microbes offers an alternative production strategy to the methods that are commonly employed such as direct extraction from source organisms or chemical synthesis. In this study, we evaluated the potential for yeast (Saccharomyces cerevisiae) to be used as a catalyst for the synthesis of tranilast and various tranilast analogs (cinnamoyl anthranilates). Several studies have demonstrated that these phenolic amides have antioxidant properties and potential therapeutic benefits including antiinflammatory, antiproliferative, and antigenotoxic effects. The few cinnamoyl anthranilates naturally produced in plants such as oats and carnations result from the coupling of various hydroxycinnamoyl-CoAs to anthranilic acid. In order to achieve the microbial production of tranilast and several of its analogs, we engineered a yeast strain to co-express a 4-coumarate/CoA ligase (4CL, EC 6.2.1.12) from Arabidopsis thaliana and a hydroxycinnamoyl/benzoyl-CoA/anthranilate N-hydroxycinnamoyl/benzoyltransferase (HCBT, EC 2.3.1.144) from Dianthus caryophyllus. This modified yeast strain allowed us to produce tranilast and 26 different cinnamoyl anthranilate molecules within a few hours after exogenous supply of various combinations of cinnamic acids and anthranilate derivatives. Our data demonstrate the feasibility of rapidly producing a wide range of defined cinnamoyl anthranilates in yeast and underline a potential for the biological designed synthesis of naturally and non-naturally occurring molecules.

  10. Forces in yeast flocculation

    Science.gov (United States)

    El-Kirat-Chatel, Sofiane; Beaussart, Audrey; Vincent, Stéphane P.; Abellán Flos, Marta; Hols, Pascal; Lipke, Peter N.; Dufrêne, Yves F.

    2015-01-01

    In the baker's yeast Saccharomyces cerevisiae, cell-cell adhesion (``flocculation'') is conferred by a family of lectin-like proteins known as the flocculin (Flo) proteins. Knowledge of the adhesive and mechanical properties of flocculins is important for understanding the mechanisms of yeast adhesion, and may help controlling yeast behaviour in biotechnology. We use single-molecule and single-cell atomic force microscopy (AFM) to explore the nanoscale forces engaged in yeast flocculation, focusing on the role of Flo1 as a prototype of flocculins. Using AFM tips labelled with mannose, we detect single flocculins on Flo1-expressing cells, showing they are widely exposed on the cell surface. When subjected to force, individual Flo1 proteins display two distinct force responses, i.e. weak lectin binding forces and strong unfolding forces reflecting the force-induced extension of hydrophobic tandem repeats. We demonstrate that cell-cell adhesion bonds also involve multiple weak lectin interactions together with strong unfolding forces, both associated with Flo1 molecules. Single-molecule and single-cell data correlate with microscale cell adhesion behaviour, suggesting strongly that Flo1 mechanics is critical for yeast flocculation. These results favour a model in which not only weak lectin-sugar interactions are involved in yeast flocculation but also strong hydrophobic interactions resulting from protein unfolding.

  11. On-line determination of Sb(III) and total Sb using baker's yeast immobilized on polyurethane foam and hydride generation inductively coupled plasma optical emission spectrometry

    International Nuclear Information System (INIS)

    The yeast Saccharomyces cerevisiae was immobilized in cubes of polyurethane foam and the ability of this immobilized material to separate Sb(III) and Sb(V) was investigated. A method based on sequential determination of total Sb (after on-line reduction of Sb(V) to Sb(III) with thiourea) and Sb(III) (after on-line solid-liquid phase extraction) by hydride generation inductively coupled plasma optical emission spectrometry is proposed. A flow system assembled with solenoid valves was used to manage all stages of the process. The effects of pH, sample loading and elution flow rates on solid-liquid phase extraction of Sb(III) were evaluated. Also, the parameters related to on-line pre-reduction (reaction coil and flow rates) were optimized. Detection limits of 0.8 and 0.15 μg L-1 were obtained for total Sb and Sb(III), respectively. The proposed method was applied to the analysis of river water and effluent samples. The results obtained for the determination of total Sb were in agreement with expected values, including the river water Standard Reference Material 1640 certified by the National Institute of Standards and Technology (NIST). Recoveries of Sb(III) and Sb(V) in spiked samples were between 81 ± 19 and 111 ±15% when 120 s of sample loading were used

  12. Phenotypic evaluation of natural and industrial Saccharomyces yeasts for different traits desirable in industrial bioethanol production

    OpenAIRE

    Mukherjee, Vaskar; Steensels, Jan; Lievens, Bart; Van De Voorde, Ilse; Verplaetse, Alex; Aerts, Guido; Willems, Kris; Thevelein, Johan; Verstrepen, Kevin; Ruyters, Stefan

    2014-01-01

    Saccharomyces cerevisiae is the organism of choice for many food and beverage fermentations because it thrives in high-sugar and high-ethanol conditions. However, the conditions encountered in bioethanol fermentation pose specific challenges, including extremely high sugar and ethanol concentrations, high temperature, and the presence of specific toxic compounds. It is generally considered that exploring the natural biodiversity of Saccharomyces strains may be an interesting route to find sup...

  13. The Budding YeastSaccharomyces cerevisiae” as a Drug Discovery Tool to Identify Plant-Derived Natural Products with Anti-Proliferative Properties

    Directory of Open Access Journals (Sweden)

    Bouchra Qaddouri

    2011-01-01

    Full Text Available The budding yeast Saccharomyces cerevisiae is a valuable system to study cell-cycle regulation, which is defective in cancer cells. Due to the highly conserved nature of the cell-cycle machinery between yeast and humans, yeast studies are directly relevant to anticancer-drug discovery. The budding yeast is also an excellent model system for identifying and studying antifungal compounds because of the functional conservation of fungal genes. Moreover, yeast studies have also contributed greatly to our understanding of the biological targets and modes of action of bioactive compounds. Understanding the mechanism of action of clinically relevant compounds is essential for the design of improved second-generation molecules. Here we describe our methodology for screening a library of plant-derived natural products in yeast in order to identify and characterize new compounds with anti-proliferative properties.

  14. Complex Ancestries of Lager-Brewing Hybrids Were Shaped by Standing Variation in the Wild Yeast Saccharomyces eubayanus.

    Directory of Open Access Journals (Sweden)

    David Peris

    2016-07-01

    Full Text Available Lager-style beers constitute the vast majority of the beer market, and yet, the genetic origin of the yeast strains that brew them has been shrouded in mystery and controversy. Unlike ale-style beers, which are generally brewed with Saccharomyces cerevisiae, lagers are brewed at colder temperatures with allopolyploid hybrids of Saccharomyces eubayanus x S. cerevisiae. Since the discovery of S. eubayanus in 2011, additional strains have been isolated from South America, North America, Australasia, and Asia, but only interspecies hybrids have been isolated in Europe. Here, using genome sequence data, we examine the relationships of these wild S. eubayanus strains to each other and to domesticated lager strains. Our results support the existence of a relatively low-diversity (π = 0.00197 lineage of S. eubayanus whose distribution stretches across the Holarctic ecozone and includes wild isolates from Tibet, new wild isolates from North America, and the S. eubayanus parents of lager yeasts. This Holarctic lineage is closely related to a population with higher diversity (π = 0.00275 that has been found primarily in South America but includes some widely distributed isolates. A second diverse South American population (π = 0.00354 and two early-diverging Asian subspecies are more distantly related. We further show that no single wild strain from the Holarctic lineage is the sole closest relative of lager yeasts. Instead, different parts of the genome portray different phylogenetic signals and ancestry, likely due to outcrossing and incomplete lineage sorting. Indeed, standing genetic variation within this wild Holarctic lineage of S. eubayanus is responsible for genetic variation still segregating among modern lager-brewing hybrids. We conclude that the relationships among wild strains of S. eubayanus and their domesticated hybrids reflect complex biogeographical and genetic processes.

  15. Complex Ancestries of Lager-Brewing Hybrids Were Shaped by Standing Variation in the Wild Yeast Saccharomyces eubayanus.

    Science.gov (United States)

    Peris, David; Langdon, Quinn K; Moriarty, Ryan V; Sylvester, Kayla; Bontrager, Martin; Charron, Guillaume; Leducq, Jean-Baptiste; Landry, Christian R; Libkind, Diego; Hittinger, Chris Todd

    2016-07-01

    Lager-style beers constitute the vast majority of the beer market, and yet, the genetic origin of the yeast strains that brew them has been shrouded in mystery and controversy. Unlike ale-style beers, which are generally brewed with Saccharomyces cerevisiae, lagers are brewed at colder temperatures with allopolyploid hybrids of Saccharomyces eubayanus x S. cerevisiae. Since the discovery of S. eubayanus in 2011, additional strains have been isolated from South America, North America, Australasia, and Asia, but only interspecies hybrids have been isolated in Europe. Here, using genome sequence data, we examine the relationships of these wild S. eubayanus strains to each other and to domesticated lager strains. Our results support the existence of a relatively low-diversity (π = 0.00197) lineage of S. eubayanus whose distribution stretches across the Holarctic ecozone and includes wild isolates from Tibet, new wild isolates from North America, and the S. eubayanus parents of lager yeasts. This Holarctic lineage is closely related to a population with higher diversity (π = 0.00275) that has been found primarily in South America but includes some widely distributed isolates. A second diverse South American population (π = 0.00354) and two early-diverging Asian subspecies are more distantly related. We further show that no single wild strain from the Holarctic lineage is the sole closest relative of lager yeasts. Instead, different parts of the genome portray different phylogenetic signals and ancestry, likely due to outcrossing and incomplete lineage sorting. Indeed, standing genetic variation within this wild Holarctic lineage of S. eubayanus is responsible for genetic variation still segregating among modern lager-brewing hybrids. We conclude that the relationships among wild strains of S. eubayanus and their domesticated hybrids reflect complex biogeographical and genetic processes. PMID:27385107

  16. The rhp6+ gene of Schizosaccharomyces pombe: a structural and functional homolog of the RAD6 gene from the distantly related yeast Saccharomyces cerevisiae.

    NARCIS (Netherlands)

    P. Reynolds (Paul); M.H.M. Koken (Marcel); J.H.J. Hoeijmakers (Jan); S. Prakash; L. Prakash

    1990-01-01

    textabstractThe RAD6 gene of Saccharomyces cerevisiae encodes a ubiquitin conjugating enzyme and is required for DNA repair, DNA-damage-induced mutagenesis and sporulation. Here, we show that RAD6 and the rhp6+ gene from the distantly related yeast Schizosaccharomyces pombe share a high degree of st

  17. Genome and transcriptome analyses reveal that MAPK- and phosphatidylinositol-signaling pathways mediate tolerance to 5-hydroxymethyl-2-furaldehyde for industrial yeast Saccharomyces cerevisiae

    Science.gov (United States)

    The industrial ethanologenic yeast Saccharomyces cerevisiae is a promising biocatalyst for next-generation advanced biofuels applications including lignocellulose-to-ethanol conversion. Here we present the first insight into the genomic background of NRRL Y-12632, a type strain from a worldwide coll...

  18. Studying Coxiella burnetii Type IV Substrates in the Yeast Saccharomyces cerevisiae: Focus on Subcellular Localization and Protein Aggregation.

    Science.gov (United States)

    Rodríguez-Escudero, María; Cid, Víctor J; Molina, María; Schulze-Luehrmann, Jan; Lührmann, Anja; Rodríguez-Escudero, Isabel

    2016-01-01

    Coxiella burnetii is a Gram-negative obligate parasitic bacterium that causes the disease Q-fever in humans. To establish its intracellular niche, it utilizes the Icm/Dot type IVB secretion system (T4BSS) to inject protein effectors into the host cell cytoplasm. The host targets of most cognate and candidate T4BSS-translocated effectors remain obscure. We used the yeast Saccharomyces cerevisiae as a model to express and study six C. burnetii effectors, namely AnkA, AnkB, AnkF, CBU0077, CaeA and CaeB, in search for clues about their role in C. burnetii virulence. When ectopically expressed in HeLa cells, these effectors displayed distinct subcellular localizations. Accordingly, GFP fusions of these proteins produced in yeast also decorated distinct compartments, and most of them altered cell growth. CaeA was ubiquitinated both in yeast and mammalian cells and, in S. cerevisiae, accumulated at juxtanuclear quality-control compartments (JUNQs) and insoluble protein deposits (IPODs), characteristic of aggregative or misfolded proteins. AnkA, which was not ubiquitinated, accumulated exclusively at the IPOD. CaeA, but not AnkA or the other effectors, caused oxidative damage in yeast. We discuss that CaeA and AnkA behavior in yeast may rather reflect misfolding than recognition of conserved targets in the heterologous system. In contrast, CBU0077 accumulated at vacuolar membranes and abnormal ER extensions, suggesting that it interferes with vesicular traffic, whereas AnkB associated with the yeast nucleolus. Both effectors shared common localization features in HeLa and yeast cells. Our results support the idea that C. burnetii T4BSS effectors manipulate multiple host cell targets, which can be conserved in higher and lower eukaryotic cells. However, the behavior of CaeA and AnkA prompt us to conclude that heterologous protein aggregation and proteostatic stress can be a limitation to be considered when using the yeast model to assess the function of bacterial effectors.

  19. Chromosome VIII disomy influences the nonsense suppression efficiency and transition metal tolerance of the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Zadorsky, S P; Sopova, Y V; Andreichuk, D Y; Startsev, V A; Medvedeva, V P; Inge-Vechtomov, S G

    2015-06-01

    The SUP35 gene of the yeast Saccharomyces cerevisiae encodes the translation termination factor eRF3. Mutations in this gene lead to the suppression of nonsense mutations and a number of other pleiotropic phenotypes, one of which is impaired chromosome segregation during cell division. Similar effects result from replacing the S. cerevisiae SUP35 gene with its orthologues. A number of genetic and epigenetic changes that occur in the sup35 background result in partial compensation for this suppressor effect. In this study we showed that in S. cerevisiae strains in which the SUP35 orthologue from the yeast Pichia methanolica replaces the S. cerevisiae SUP35 gene, chromosome VIII disomy results in decreased efficiency of nonsense suppression. This antisuppressor effect is not associated with decreased stop codon read-through. We identified SBP1, a gene that localizes to chromosome VIII, as a dosage-dependent antisuppressor that strongly contributes to the overall antisuppressor effect of chromosome VIII disomy. Disomy of chromosome VIII also leads to a change in the yeast strains' tolerance of a number of transition metal salts.

  20. Imaging single mRNAs to study dynamics of mRNA export in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Bensidoun, Pierre; Raymond, Pascal; Oeffinger, Marlene; Zenklusen, Daniel

    2016-04-01

    Regulation of mRNA and protein expression occurs at many levels, initiated at transcription and followed by mRNA processing, export, localization, translation and mRNA degradation. The ability to study mRNAs in living cells has become a critical tool to study and analyze how the various steps of the gene expression pathway are carried out. Here we describe a detailed protocol for real time fluorescent RNA imaging using the PP7 bacteriophage coat protein, which allows mRNA detection with high spatial and temporal resolution in the yeast Saccharomyces cerevisiae, and can be applied to study various stages of mRNA metabolism. We describe the different parameters required for quantitative single molecule imaging in yeast, including strategies for genomic integration, expression of a PP7 coat protein GFP fusion protein, microscope setup and analysis strategies. We illustrate the method's use by analyzing the behavior of nuclear mRNA in yeast and the role of the nuclear basket in mRNA export.

  1. Bio-Technological Characterization of the Saccharomyces bayanus Yeast Strains in Order to Preserve the Local Specificity

    Directory of Open Access Journals (Sweden)

    Enikő Gaspar

    2011-05-01

    Full Text Available The wine yeasts have multiple and important applications in the industry, aiming to obtain pure cultures and the selection of those strains which, according to the lab investigations, present superior bio-technological properties. In this study we monitored three types of Saccharomyces bayanus yeast strains, isolated from indigenous grapes varieties, Apold Iordana, Italian Blaj Riesling and Royal Feteasca from Jidvei area, which are present in the collection of the Biotechnologies and Microbiology Research Center of SAIAPM University. The yeast strains were subject to alcoholic fermentation in malt must at different temperatures, in the presence of alcohol, sugar and SO2 in various concentrations. The obtained results led to selecting of those strains which had best results regarding the alcoholic tolerance, osmo-tolerance, fermentation speed under stress conditions and resistance to SO2. These results can have practical applications in using the indigenous strains, isolated from grapes which are from inside the country, so that we preserve the local specificity, and reduce imports regarding this area.

  2. Detection of Active Yeast Cells (Saccharomyces cerevisiae) in Frozen Dough Sections.

    Science.gov (United States)

    Autio, K; Mattila-Sandholm, T

    1992-07-01

    A new method based on fluorescence microscopy was developed to detect active yeast cells in cryosections of wheat dough. The sections were stained with 4',6-diamidino-2-phenylindole (DAPI) and counterstained with Evans blue. The active yeast cells in the sections appeared brilliant yellow and were readily distinguished from the red dough matrix. The dead cells allowed penetration of the Evans blue through the cell membrane, which interfered with the DAPI staining and caused the dead cells to blend into the red environment. The number of active yeast cells in fermenting dough sections containing different proportions of living and dead yeast cells correlated well with the gas-forming capability of the yeast in the dough but not with the results of the conventional plate count method. The new method allows the study of yeast activity not only during the different stages of frozen dough processing but also during the fermentation of doughs. PMID:16348731

  3. Aroma profile of Montepulciano d’Abruzzo wine fermented by single and co-culture starters of autochthonous Saccharomyces and non-Saccharomyces yeasts

    Directory of Open Access Journals (Sweden)

    Rosanna eTofalo

    2016-04-01

    Full Text Available Montepulciano d’Abruzzo is a native grape variety of Vitis vinifera L., grown in central Italy and used for production of high quality red wines. Limited studies have been carried out to improve its enological characteristics through the use of indigenous strains of Saccharomyces cerevisiae. The main objective of the present work was to test two indigenous strains of S. cerevisiae (SRS1, RT73, a strain of Starm. bacillaris (STS12, one of H. uvarum (STS45 and a co-culture of S. cerevisiae (SRS1 and Starm. bacillaris (STS12, in an experimental cellar to evaluate their role in the sensory characteristic of Montepulciano d’Abruzzo wine. A S. cerevisiae commercial strain was used. Fermentations were conducted under routine Montepulciano d’Abruzzo wine production, in which the main variables were the yeast strains used for fermentation. Basic winemaking parameters, some key chemical analysis and aroma compounds were considered. Saccharomyces cerevisiae strain dynamics during fermentation were determined by molecular methods. The musts inoculated with the co-culture were characterized by a faster fermentation start and a higher content of glycerol after three days of fermentation, as well as the musts added with strains Starm. bacillaris (STS12 and H. uvarum (STS45. At the end of fermentation the parameters studied were quite similar in all the wines. Total biogenic amines (BA content of all the wines was low. Ethanolamine was the predominant BA, with a concentration ranging from 21 to 24 mg/l. Wines were characterized by esters and alcohols. In particular, 2-phenylethanol, 3-methylbut-1-yl methanoate and ethyl ethanoate were the major aroma volatile compounds in all wines. Statistical analysis highlighted the different role played by aroma compounds in the differentiation of wines, even if it was impossible to select a single class as the most important for a specific yeast. The present study represents a further step towards the use of tailored

  4. Iron enriched Saccharomyces cerevisiae maintains its fermenting power and bakery properties

    Directory of Open Access Journals (Sweden)

    Fernanda Gaensly

    2011-12-01

    Full Text Available Iron is an essential micronutrient in the metabolism of almost all living organisms; however, its deficiency is well documented especially in pregnant women and in children. Iron salts as a dietary supplement have low bioavailability and can cause gastrointestinal discomforts. Iron enriched yeasts can provide a supplementation of this micronutrient to the diet because this mineral has a better bioavailability when bonded to yeast cell macromolecules. These yeasts can be used as feed supplement for human and animals and also as baker's yeast. Baker's yeast Saccharomyces cerevisiae was cultivated in a reactor employing yeast media supplemented with 497 mg ferrous sulfate.L-1, and the resultant biomass incorporated 8 mg Fe.g-1 dry matter. This biomass maintained its fermenting power regarding both water displace measurement through carbonic dioxide production and bakery characteristics. The bread produced using the yeast obtained by cultivation in yeast media supplemented with iron presented six times more iron than the bread produced using the yeast obtained by cultivation without iron supplementation.

  5. Impact of xylose and mannose on central metabolism of yeast Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Pitkaenen, J.P.

    2005-07-01

    In this study, understanding of the central metabolism was improved by quantification of metabolite concentrations, enzyme activities, protein abundances, and gene transcript concentrations. Intracellular fluxes were estimated by applying stoichiometric models of metabolism. The methods were applied in the study of yeast Saccharomyces cerevisiae in two separate projects. A xylose project aimed at improved utilization of D- xylose as a substrate for, e.g., producing biomaterial- based fuel ethanol. A mannose project studied the production of GDP-mannose from D-mannose in a strain lacking the gene for phosphomannose isomerase (PMI40 deletion). Hexose, D-glucose is the only sugar more abundant than pentose D-xylose. D-xylose is common in hardwoods (e.g. birch) and crop residues (ca. 25% of dry weight). However, S. cerevisiae is unable to utilize D- xylose without a recombinant pathway where D-xylose is converted to Dxylulose. In this study D-xylose was converted in two steps via xylitol: by D-xylose reductase and xylitol dehydrogenase encoded by XYL1 and XYL2 from Pichia stipitis, respectively. Additionally, endogenous xylulokinase (XKS1) was overexpressed in order to increase the consumption of D-xylose by enhancing the phosphorylation of D-xylulose. Despite of the functional recombinant pathway the utilization rates of D xylose still remained low. This study proposes a set of limitations that are responsible for the low utilization rates of D-xylose under microaerobic conditions. Cells compensated for the cofactor imbalance, caused by the conversion of D-xylose to D- xylulose, by increasing the flux through the oxidative pentose phosphate pathway and by shuttling NADH redox potential to mitochondrion to be oxidized in oxidative phosphorylation. However, mitochondrial NADH inhibits citrate synthase in citric acid cycle, and consequently lower flux through citric acid cycle limits oxidative phosphorylation. Further, limitations in the uptake of D- xylose, in the

  6. Influence of Calcium Ion on Ethanol Tolerance of Saccharomyces bayanus and Alcoholic Fermentation by Yeasts

    OpenAIRE

    Nabais, Regina C.; Sá-Correia, Isabel; Viegas, Cristina A.; Novais, Júlio M.

    1988-01-01

    The addition of Ca2+ (as CaCl2) in optimal concentrations (0.75 to 2.0 mM) to a fermentation medium with a trace contaminating concentration of Ca2+ (0.025 mM) led to the rapid production of higher concentrations of ethanol by Saccharomyces cerevisiae, Saccharomyces bayanus, and Kluyveromyces marxianus. The positive effect of calcium supplementation (0.75 mM) on alcoholic fermentation by S. bayanus was explained by the increase in its ethanol tolerance. The ethanol inhibition of growth and fe...

  7. 游离高表达Mal62基因对面包酵母耐冷冻性的影响%Effects of High-expressed Ma162 Gene on Freezing Tolerance of Baker's Yeast

    Institute of Scientific and Technical Information of China (English)

    孙溪; 张翠英; 董建; 吴鸣月; 王光路; 肖冬光

    2012-01-01

    通过测定胞内海藻糖积累量、冷冻前后相对发酵力以及存活率的变化,对比游离高表达麦芽糖酶基因(Md62)的突变株BYCPM与亲本BY14的海藻糖合成能力,研究Ma/62基因游离高表达与酵母耐冷冻性之间的关系。结果表明.Ma/62基因游离高表达与酵母耐冷冻性有一定的相关性,突变株耐冷冻性改善,其在烘焙产业中具有潜在商业价值。%AThe relations between high-expressed Ma162 gene and freezing tolerance of baker's yeast were investigated through measuring the accumulating quantity of intracellular trehalose, observing the change of cell fermenting power and cell viability before and after freezing, and com- paring trehalose synthesis of parent strain BY14 and mutant strain BYCPM. The results showed that there was certain relativity between high-expressed ma/62 gene and freezing tolerance of baker' s yeast (freezing tolerance got improved for mutant strain). Accordingly, the improved freezing tolerance of BYCPM may make it useful in commercial baking industry.

  8. Yeast β-1,6-glucan is a primary target for the Saccharomyces cerevisiae K2 toxin.

    Science.gov (United States)

    Lukša, Juliana; Podoliankaitė, Monika; Vepštaitė, Iglė; Strazdaitė-Žielienė, Živilė; Urbonavičius, Jaunius; Servienė, Elena

    2015-04-01

    Certain Saccharomyces cerevisiae strains secrete different killer proteins of double-stranded-RNA origin. These proteins confer a growth advantage to their host by increasing its survival. K2 toxin affects the target cell by binding to the cell surface, disrupting the plasma membrane integrity, and inducing ion leakage. In this study, we determined that K2 toxin saturates the yeast cell surface receptors in 10 min. The apparent amount of K2 toxin, bound to a single cell of wild type yeast under saturating conditions, was estimated to be 435 to 460 molecules. It was found that an increased level of β-1,6-glucan directly correlates with the number of toxin molecules bound, thereby impacting the morphology and determining the fate of the yeast cell. We observed that the binding of K2 toxin to the yeast surface receptors proceeds in a similar manner as in case of the related K1 killer protein. It was demonstrated that the externally supplied pustulan, a poly-β-1,6-glucan, but not the glucans bearing other linkage types (such as laminarin, chitin, and pullulan) efficiently inhibits the K2 toxin killing activity. In addition, the analysis of toxin binding to the intact cells and spheroplasts confirmed that majority of K2 protein molecules attach to the β-1,6-glucan, rather than the plasma membrane-localized receptors. Taken together, our results reveal that β-1,6-glucan is a primary target of K2 toxin and is important for the execution of its killing property.

  9. Produksi Bioetanol dari Bahan Baku Singkong, Jagung dan Iles-iles :Pengaruh Suhu Fermentasi dan Berat Yeast Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    K. Kusmiyati

    2014-12-01

    Full Text Available Kebutuhan bahan bakar di masa sekarang semakin bertambah besar sehingga berdampak pada menipisnya sumber bahan bakar dan meningkatnya polusi udara di lingkungan. Penggunaan bahan bakar alternatif dari sumber non fosil merupakan pilihan terbaik sebagai pengganti bahan bakar fosil. Bioetanol merupakan salah satu energi alternatif yang tepat digunakan baik di masa sekarang ataupun di masa yang akan datang. Bahan baku etanol yang digunakan pada penelitian ini adalah singkong, dan iles-iles.Variabel penelitian yang diamati temperatur fermentasi (30°C; 40°C;­­ 50°C dan komposisi Saccharomyces cerevisiae (2,5 g; 5 g; 10 g; 15 g Proses pembuatan bioetanol terdiri dari hidrolisis enzim yaitun likuifikasi menggunakan a-amylase1,6% v/w (t = 1 jam; T = 95-100°C; pH 6 dan sakarifikasi menggunakan b-amylase 3,2% v/w (t = 4 jam; T = 60°C; pH 5 serta proses fermentasi menggunakan Saccharomyces cerevisiae ( t = 120 jam; pH 4,5; yeast 5 g. Kadar etanol tertinggi dihasilkan pada temperatur fermentasi 30°C untuk semua bahan baku dengan kadar etanol masing-masing 83,43 g/L untuk singkong,80,77 g/L untuk jagung,dan 79,94 g/L untuk iles-iles. Normal 0 false false false EN-US X-NONE X-NONE

  10. KMnO4修饰面包酵母菌对Cd2+的吸附研究%Cd2+ adsorption by KMnO4 modified baker's yeast

    Institute of Scientific and Technical Information of China (English)

    姜友军; 张云松; 王仁国; 尹元江; 曾武; 肖朝萍

    2011-01-01

    研究了用KMnO4修饰面包酵母菌对溶液中Cd2+的吸附作用,探讨了不同KMnO4浓度、pH、吸附时间、Cd2+初始浓度、修饰酵母菌用量等5个因素对KMnO4修饰面包酵母菌吸附Cd2+的影响.结果表明,随着修饰剂KMnO4浓度的增大,修饰面包酵母菌的吸附能力增强,KMnO4浓度达到20 mmol·L-1时,吸附能力是相同条件下原菌的2倍.在pH为5.0~7.0范围内,吸附效果最好;反应30 min后,吸附可达到平衡;Cd2+初始浓度为100 mg·L-1时,吸附基本达到饱和;KMnO4修饰面包酵母菌的最佳用量为6 g·L-1左右.KMnO4修饰面包酵母菌吸附Cd2+的过程适宜用准二级速率方程来描述,而Langmuir方程对其吸附等温线的描述效果最好.SEM、FTIR、XPS等分析结果表明,面包酵母菌主要通过表面的羟基、羧基、氨基、磷酰基等基团进行吸附.KMnO4修饰可使面包酵母菌表面变得较为粗糙,表面结构发生变化,提高菌表面吸附镉活性位点的数量.同时,KMnO4氧化面包酵母菌时在表面被还原成纳米MnO2和Mn2+,其对Cd2+吸附也起到了协同作用.%The adsorption of aqueous Cd2+ by baker's yeast modified by KMnO4 was explored. Several factors, including the concentration of KMnO4 used to modify the baker's yeast, pH, adsorption time, the initial concentration of Cd2 + , and the dosage of KMnO4 modified yeast, were investigated to evaluate the adsorption effect. The results showed that the adsorption capacity of modified baker's yeast was improved with the increasing KMnO4 concentration and the optimal amount of KMnO4 modified baker's yeast was about 6 g·L-1. When the concentration of KMnO4 was 20 mmol·L-1 , the adsorption capacity was double that of untreated yeast under the same conditions. In the range of pH 5.0 ~ 7. 0, the adsorption was the best; adsorption equilibrium was reached at 30 min. When the initial concentration of Cd2+ was 100 mg·L-1 , KMnO4 modified baker's yeast

  11. New hybrids between Saccharomyces sensu stricto yeast species found among wine and cider production strains

    DEFF Research Database (Denmark)

    Masneuf, I; Hansen, J.; Groth, C;

    1998-01-01

    Two yeast isolates, a wine-making yeast first identified as a Mel(+) strain (ex. S. uvarum) and a cider-making yeast, were characterized for their nuclear and mitochondrial genomes, Electrophoretic karyotyping analyses, restriction fragment length polymorphism maps of PCR-amplified MET2 gene...... as different sequences of the OLI1 gene. The sequence of the OLI1 gene from the wine hybrid strain appeared to be the same as that of the S. cerevisiae gene, whereas the OLI1 gene of the cider hybrid strain its equally divergent from both putative parents, S. bayanus and S, cerevisiae, Some fermentative...

  12. Evaluation of growth and survival rate of Artemia parthenogenetica feed with micro algae (Isochrysis galbana and Chlorella vulgaris and bakery yeast (Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Mehdi Dehghan

    2011-10-01

    Full Text Available This study was done to evaluate growth and survival rate of Maharloo lake artemia (ArtemiaParthenogenetica (Bowen & Sterling, 1978 which feed with two species of microalgae (IsochrysisGalbana and Chlorella vulgaris and bakery yeast (Saccharomyces cerevisiae with different nutritiousingredients for 15 days. We evaluated them in 3rd, 7th, 11th and 15thdays of cultivation period for 4 times. This experiment was done in completely randomized design with 4 treatments (3 treatments and 1 control and each treatment has 3 replicates. Artemia parthenogenetica nauplii were feed with three different types of food that includes Isochrysis galbana microalgae (T1, Chlorella vulgaris (T2 and Saccharomyces cerevisiae yeast (T4. Control had feed with blend of these three matters. After 15 days the highest survival rate was observed in control (84.00 and the lowest one was related to the T4 (59.58 which feed with Saccharomyces cerevisiae yeast (p<0.05. The highest growth rate was observed in T4, T3, followed by T1 and T2 respectively. Achievement results showed significantdifferences between control and other treatments (p<0.05. This study proved that treatments whichfeed with blend of two micro algae's species and bakery yeast have higher survival ability than theother treatments.

  13. Concentration-Dependent Effects of Rhodiola Rosea on Long-Term Survival and Stress Resistance of Yeast Saccharomyces Cerevisiae: The Involvement of YAP 1 and MSN2/4 Regulatory Proteins

    OpenAIRE

    Bayliak, Maria M.; Burdyliuk, Nadia I.; Izers’ka, Lilia I.; Lushchak, Volodymyr I.

    2013-01-01

    Concentration-dependent effects of aqueous extract from R. rosea root on long-term survival and stress resistance of budding yeast Saccharomyces cerevisiae were studied. At low concentrations, R. rosea aqueous extract extended yeast chronological lifespan, enhanced oxidative stress resistance of stationary-phase cells and resistance to number stressors in exponentially growing cultures. At high concentrations, R. rosea extract sensitized yeast cells to stresses and shortened yeast lifespan. T...

  14. Partial purification of histone H3 proteolytic activity from the budding yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Azad, Gajendra Kumar; Tomar, Raghuvir Singh

    2016-06-01

    The proteolytic clipping of histone tails has recently emerged as a novel form of irreversible post-translational modification (PTM) of histones. Histone clipping has been implicated as a regulatory process leading to the permanent removal of PTMs from histone proteins. However, there is scarcity of literature that describes the identification and characterization of histone-specific proteases. Here, we employed various biochemical methods to report histone H3-specific proteolytic activity from budding yeast. Our results demonstrate that H3 proteolytic activity was associated with sepharose bead matrices and activity was not affected by a variety of stress conditions. We have also identified the existence of an unknown protein that acts as a physiological inhibitor of the H3-clipping activity of yeast H3 protease. Moreover, through protease inhibition assays, we have also characterized yeast H3 protease as a serine protease. Interestingly, unlike glutamate dehydrogenase (GDH), yeast H3 proteolytic activity was not inhibited by Stefin B. Together, our findings suggest the existence of a novel H3 protease in yeast that is different from other reported histone H3 proteases. The presence of histone H3 proteolytic activity, along with the physiological inhibitor in yeast, suggests an interesting molecular mechanism that regulates the activity of histone proteases. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Indigenous Saccharomyces cerevisiae yeasts as a source of biodiversity for the selection of starters for specific fermentations

    Directory of Open Access Journals (Sweden)

    Capece Angela

    2014-01-01

    Full Text Available The long-time studies on wine yeasts have determined a wide diffusion of inoculated fermentations by commercial starters, mainly of Saccharomyces. Although the use of starter cultures has improved the reproducibility of wine quality, the main drawback to this practice is the lack of the typical traits of wines produced by spontaneous fermentation. These findings have stimulated wine-researchers and wine-makers towards the selection of autochthonous strains as starter cultures. The objective of this study was to investigate the biodiversity of 167 S. cerevisiae yeasts, isolated from spontaneous fermentation of grapes. The genetic variability of isolates was evaluated by PCR amplification of inter-δ region with primer pair δ2/δ12. The same isolates were investigated for characteristics of oenological interest, such as resistance to sulphur dioxide, ethanol and copper and hydrogen sulphide production. On the basis of technological and molecular results, 20 strains were chosen and tested into inoculated fermentations at laboratory scale. The experimental wines were analyzed for the content of some by-products correlated to wine aroma, such as higher alcohols, acetaldehyde, ethyl acetate and acetic acid. One selected strain was used as starter culture to perform fermentation at cellar level. The selection program followed during this research project represents an optimal combination between two different trends in modern winemaking: the use of S. cerevisiae as starter cultures and the starter culture selection for specific fermentations.

  16. [Control levels of Sin3 histone deacetylase for spontaneous and UV-induced mutagenesis in yeasts Saccharomyces cerevisiae].

    Science.gov (United States)

    Lebovka, I Iu; Kozhina, T N; Fedorova, I V; Peshekhonov, V T; Evstiukhina, T A; Chernenkov, A Iu; Korolev, V G

    2014-01-01

    SIN3 gene product operates as a repressor for a huge amount of genes in Saccharomyces cerevisiae. Sin3 protein with a mass of about 175 kDa is a member of the RPD3 protein complex with an assessed mass of greater than 2 million Da. It was previously shownthat RPD3 gene mutations influence recombination and repair processes in S. cerevisiae yeasts. We studied the impacts of the sin3 mutation on UV-light sensitivity and UV-induced mutagenesis in budding yeast cells. The deletion ofthe SIN3 gene causes weak UV-sensitivity of mutant budding cells as compared to the wild-type strain. These results show that the sin3 mutation decreases both spontaneous and UV-induced levels of levels. This fact is hypothetically related to themalfunction of ribonucleotide reductase activity regulation, which leads to a decrease in the dNTP pool and the inaccurate error-prone damage bypass postreplication repair pathway, which in turn provokes a reduction in the incidence of mutations.

  17. Nitrogen and carbon source balance determines longevity, independently of fermentative or respiratory metabolism in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Santos, Júlia; Leitão-Correia, Fernanda; Sousa, Maria João; Leão, Cecília

    2016-04-26

    Dietary regimens have proven to delay aging and age-associated diseases in several eukaryotic model organisms but the input of nutritional balance to longevity regulation is still poorly understood. Here, we present data on the role of single carbon and nitrogen sources and their interplay in yeast longevity. Data demonstrate that ammonium, a rich nitrogen source, decreases chronological life span (CLS) of the prototrophic Saccharomyces cerevisiae strain PYCC 4072 in a concentration-dependent manner and, accordingly, that CLS can be extended through ammonium restriction, even in conditions of initial glucose abundance. We further show that CLS extension depends on initial ammonium and glucose concentrations in the growth medium, as long as other nutrients are not limiting. Glutamine, another rich nitrogen source, induced CLS shortening similarly to ammonium, but this effect was not observed with the poor nitrogen source urea. Ammonium decreased yeast CLS independently of the metabolic process activated during aging, either respiration or fermentation, and induced replication stress inhibiting a proper cell cycle arrest in G0/G1 phase. The present results shade new light on the nutritional equilibrium as a key factor on cell longevity and may contribute for the definition of interventions to promote life span and healthy aging. PMID:27072582

  18. Nitrogen and carbon source balance determines longevity, independently of fermentative or respiratory metabolism in the yeast Saccharomyces cerevisiae

    Science.gov (United States)

    Santos, Júlia; Leitão-Correia, Fernanda

    2016-01-01

    Dietary regimens have proven to delay aging and age-associated diseases in several eukaryotic model organisms but the input of nutritional balance to longevity regulation is still poorly understood. Here, we present data on the role of single carbon and nitrogen sources and their interplay in yeast longevity. Data demonstrate that ammonium, a rich nitrogen source, decreases chronological life span (CLS) of the prototrophic Saccharomyces cerevisiae strain PYCC 4072 in a concentration-dependent manner and, accordingly, that CLS can be extended through ammonium restriction, even in conditions of initial glucose abundance. We further show that CLS extension depends on initial ammonium and glucose concentrations in the growth medium, as long as other nutrients are not limiting. Glutamine, another rich nitrogen source, induced CLS shortening similarly to ammonium, but this effect was not observed with the poor nitrogen source urea. Ammonium decreased yeast CLS independently of the metabolic process activated during aging, either respiration or fermentation, and induced replication stress inhibiting a proper cell cycle arrest in G0/G1 phase. The present results shade new light on the nutritional equilibrium as a key factor on cell longevity and may contribute for the definition of interventions to promote life span and healthy aging. PMID:27072582

  19. Differing effects of 2 active dried yeast (Saccharomyces cerevisiae) strains on ruminal acidosis and methane production in nonlactating dairy cows.

    Science.gov (United States)

    Chung, Y-H; Walker, N D; McGinn, S M; Beauchemin, K A

    2011-05-01

    Fifteen ruminally cannulated, nonlactating Holstein cows were used to measure the effects of 2 strains of Saccharomyces cerevisiae, fed as active dried yeasts, on ruminal pH and fermentation and enteric methane (CH(4)) emissions. Nonlactating cows were blocked by total duration (h) that their ruminal pH was below 5.8 during a 6-d pre-experimental period. Within each block, cows were randomly assigned to control (no yeast), yeast strain 1 (Levucell SC), or yeast strain 2 (a novel strain selected for enhanced in vitro fiber degradation), with both strains (Lallemand Animal Nutrition, Montréal, QC, Canada) providing 1 × 10(10) cfu/head per day. Cows were fed once daily a total mixed ration consisting of a 50:50 forage to concentrate ratio (dry matter basis). The yeast strains were dosed via the rumen cannula daily at the time of feeding. During the 35-d experiment, ruminal pH was measured continuously for 7 d (d 22 to 28) by using an indwelling system, and CH(4) gas was measured for 4 d (d 32 to 35) using the sulfur hexafluoride tracer gas technique (with halters and yokes). Rumen contents were sampled on 2 d (d 22 and 26) at 0, 3, and 6h after feeding. Dry matter intake, body weight, and apparent total-tract digestibility of nutrients were not affected by yeast feeding. Strain 2 decreased the average daily minimum (5.35 vs. 5.65 or 5.66), mean (5.98 vs. 6.24 or 6.34), and maximum ruminal pH (6.71 vs. 6.86 or 6.86), and prolonged the time that ruminal pH was below 5.8 (7.5 vs. 3.3 or 1.0 h/d) compared with the control or strain 1, respectively. The molar percentage of acetate was lower and that of propionate was greater in the ruminal fluid of cows receiving strain 2 compared with cows receiving no yeast or strain 1. Enteric CH(4) production adjusted for intake of dry matter or gross energy, however, did not differ between either yeast strain compared with the control but it tended to be reduced by 10% when strain 2 was compared with strain 1. The study shows that

  20. Acetic acid inhibits nutrient uptake in Saccharomyces cerevisiae: auxotrophy confounds the use of yeast deletion libraries for strain improvement.

    Science.gov (United States)

    Ding, Jun; Bierma, Jan; Smith, Mark R; Poliner, Eric; Wolfe, Carole; Hadduck, Alex N; Zara, Severino; Jirikovic, Mallori; van Zee, Kari; Penner, Michael H; Patton-Vogt, Jana; Bakalinsky, Alan T

    2013-08-01

    Acetic acid inhibition of yeast fermentation has a negative impact in several industrial processes. As an initial step in the construction of a Saccharomyces cerevisiae strain with increased tolerance for acetic acid, mutations conferring resistance were identified by screening a library of deletion mutants in a multiply auxotrophic genetic background. Of the 23 identified mutations, 11 were then introduced into a prototrophic laboratory strain for further evaluation. Because none of the 11 mutations was found to increase resistance in the prototrophic strain, potential interference by the auxotrophic mutations themselves was investigated. Mutants carrying single auxotrophic mutations were constructed and found to be more sensitive to growth inhibition by acetic acid than an otherwise isogenic prototrophic strain. At a concentration of 80 mM acetic acid at pH 4.8, the initial uptake of uracil, leucine, lysine, histidine, tryptophan, phosphate, and glucose was lower in the prototrophic strain than in a non-acetic acid-treated control. These findings are consistent with two mechanisms by which nutrient uptake may be inhibited. Intracellular adenosine triphosphate (ATP) levels were severely decreased upon acetic acid treatment, which likely slowed ATP-dependent proton symport, the major form of transport in yeast for nutrients other than glucose. In addition, the expression of genes encoding some nutrient transporters was repressed by acetic acid, including HXT1 and HXT3 that encode glucose transporters that operate by facilitated diffusion. These results illustrate how commonly used genetic markers in yeast deletion libraries complicate the effort to isolate strains with increased acetic acid resistance.

  1. Comparative physiology and fermentation performance of Saaz and Frohberg lager yeast strains and the parental species Saccharomyces eubayanus.

    Science.gov (United States)

    Gibson, Brian R; Storgårds, Erna; Krogerus, Kristoffer; Vidgren, Virve

    2013-07-01

    Two distinct genetic groups (Saaz and Frohberg) exist within the hybrid Saccharomyces pastorianus (S. cerevisiae × S. eubayanus) taxon. However, physiological/technological differences that exist between the two groups are not known. Fermentative capability of the parental S. eubayanus has likewise never been studied. Here, 58 lager strains were screened to determine which hybrid group they belonged to, and selected strains were characterized to determine salient characteristics. In 15 °P all-malt wort fermentations at 22 °C, Frohberg strains showed greater growth and superior fermentation (80% apparent attenuation, 6.5% alcohol by volume in 3-4 days) compared to all other strains and maintained highest viability values (>93%). Fermentation with S. eubayanus was poor at the same temperature (33% apparent attenuation, 2.7% alcohol by volume at 6 days and viability reduced to 75%). Saaz strains and S. eubayanus were the least sensitive to cold (10 °C), though this did not translate to greater fermentation performance. Fermentation with S. eubayanus was poor at 10 °C but equal to or greater than that of the Saaz strains. Performance of Saaz yeast/S. eubayanus was limited by an inability to use wort maltotriose. [(14)C]-Maltotriose transport assays also showed negligible activity in these strains (≤0.5 µmol min(-1) g(-1) dry yeast). Beers from Saaz fermentations were characterized by two- to sixfold lower production of the flavour compounds methyl butanol, ethyl acetate and 3-methylbutyl acetate compared to Frohberg strains. Higher alcohol and ester production by S. eubayanus was similar to that of Frohberg strains. PMID:23695993

  2. Cytosolic re-localization and optimization of valine synthesis and catabolism enables inseased isobutanol production with the yeast Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Brat Dawid

    2012-09-01

    Full Text Available Abstract Background The branched chain alcohol isobutanol exhibits superior physicochemical properties as an alternative biofuel. The yeast Saccharomyces cerevisiae naturally produces low amounts of isobutanol as a by-product during fermentations, resulting from the catabolism of valine. As S. cerevisiae is widely used in industrial applications and can easily be modified by genetic engineering, this microorganism is a promising host for the fermentative production of higher amounts of isobutanol. Results Isobutanol production could be improved by re-locating the valine biosynthesis enzymes Ilv2, Ilv5 and Ilv3 from the mitochondrial matrix into the cytosol. To prevent the import of the three enzymes into yeast mitochondria, N-terminally shortened Ilv2, Ilv5 and Ilv3 versions were constructed lacking their mitochondrial targeting sequences. SDS-PAGE and immunofluorescence analyses confirmed expression and re-localization of the truncated enzymes. Growth tests or enzyme assays confirmed enzymatic activities. Isobutanol production was only increased in the absence of valine and the simultaneous blockage of the mitochondrial valine synthesis pathway. Isobutanol production could be even more enhanced after adapting the codon usage of the truncated valine biosynthesis genes to the codon usage of highly expressed glycolytic genes. Finally, a suitable ketoisovalerate decarboxylase, Aro10, and alcohol dehydrogenase, Adh2, were selected and overexpressed. The highest isobutanol titer was 0.63 g/L at a yield of nearly 15 mg per g glucose. Conclusion A cytosolic isobutanol production pathway was successfully established in yeast by re-localization and optimization of mitochondrial valine synthesis enzymes together with overexpression of Aro10 decarboxylase and Adh2 alcohol dehydrogenase. Driving forces were generated by blocking competition with the mitochondrial valine pathway and by omitting valine from the fermentation medium. Additional deletion of

  3. Yeast population dynamics reveal a potential 'collaboration' between Metschnikowia pulcherrima and Saccharomyces uvarum for the production of reduced alcohol wines during Shiraz fermentation.

    Science.gov (United States)

    Contreras, A; Curtin, C; Varela, C

    2015-02-01

    The wine sector is actively seeking strategies and technologies that facilitate the production of wines with lower alcohol content. One of the simplest approaches to achieve this aim would be the use of wine yeast strains which are less efficient at transforming grape sugars into ethanol; however, commercial wine yeasts have very similar ethanol yields. We recently demonstrated that Metschnikowia pulcherrima AWRI1149 was able to produce wine with reduced alcohol concentration when used in sequential inoculation with a wine strain of Saccharomyces cerevisiae. Here, different inoculation regimes were explored to study the effect of yeast population dynamics and potential yeast interactions on the metabolism of M. pulcherrima AWRI1149 during fermentation of non-sterile Shiraz must. Of all inoculation regimes tested, only ferments inoculated with M. pulcherrima AWRI1149 showed reduced ethanol concentration. Population dynamics revealed the presence of several indigenous yeast species and one of these, Saccharomyces uvarum (AWRI 2846), was able to produce wine with reduced ethanol concentration in sterile conditions. Both strains however, were inhibited when a combination of three non-Saccharomyces strains, Hanseniaspora uvarum AWRI863, Pichia kluyveri AWRI1896 and Torulaspora delbrueckii AWRI2845 were inoculated into must, indicating that the microbial community composition might impact on the growth of M. pulcherrima AWRI1149 and S. uvarum AWRI 2846. Our results indicate that mixed cultures of M. pulcherrima AWRI1149 and S. uvarum AWRI2846 enable an additional reduction of wine ethanol concentration compared to the same must fermented with either strain alone. This work thus provides a foundation to develop inoculation regimes for the successful application of non-cerevisiae yeast to the production of wines with reduced alcohol.

  4. Aroma Profile of Montepulciano d'Abruzzo Wine Fermented by Single and Co-culture Starters of Autochthonous Saccharomyces and Non-saccharomyces Yeasts

    Science.gov (United States)

    Tofalo, Rosanna; Patrignani, Francesca; Lanciotti, Rosalba; Perpetuini, Giorgia; Schirone, Maria; Di Gianvito, Paola; Pizzoni, Daniel; Arfelli, Giuseppe; Suzzi, Giovanna

    2016-01-01

    Montepulciano d'Abruzzo is a native grape variety of Vitis vinifera L., grown in central Italy and used for production of high quality red wines. Limited studies have been carried out to improve its enological characteristics through the use of indigenous strains of Saccharomyces cerevisiae. The main objective of the present work was to test two indigenous strains of S. cerevisiae (SRS1, RT73), a strain of Starmerella bacillaris (STS12), one of Hanseniaspora uvarum (STS45) and a co-culture of S. cerevisiae (SRS1) and S. bacillaris (STS12), in an experimental cellar to evaluate their role in the sensory characteristic of Montepulciano d'Abruzzo wine. A S. cerevisiae commercial strain was used. Fermentations were conducted under routine Montepulciano d'Abruzzo wine production, in which the main variables were the yeast strains used for fermentation. Basic winemaking parameters, some key chemical analysis and aroma compounds were considered. S. cerevisiae strain dynamics during fermentation were determined by molecular methods. The musts inoculated with the co-culture were characterized by a faster fermentation start and a higher content of glycerol after 3 days of fermentation, as well as the musts added with strains S. bacillaris (STS12) and H. uvarum (STS45). At the end of fermentation the parameters studied were quite similar in all the wines. Total biogenic amines (BA) content of all the wines was low. Ethanolamine was the predominant BA, with a concentration ranging from 21 to 24 mg/l. Wines were characterized by esters and alcohols. In particular, 2-phenylethanol, 3-methylbut-1-yl methanoate, and ethyl ethanoate were the major aroma volatile compounds in all wines. Statistical analysis highlighted the different role played by aroma compounds in the differentiation of wines, even if it was impossible to select a single class of compounds as the most important for a specific yeast. The present study represents a further step toward the use of tailored

  5. Pinostrobin from Boesenbergia pandurata is an inhibitor of Ca2+-signal-mediated cell-cycle regulation in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Wangkangwan, Wachirasak; Boonkerd, Saipin; Chavasiri, Warinthorn; Sukapirom, Kasama; Pattanapanyasat, Kovit; Kongkathip, Ngampong; Miyakawa, Tokichi; Yompakdee, Chulee

    2009-07-01

    Upon searching plant extracts for inhibitors of the Ca(2+) signaling pathway using the zds1Delta-yeast proliferation based assay, a crude rhizome extract of Boesenbergia pandurata was found to be strongly positive, and from this extract pinostrobin, alpinetin, and pinocembrin chalcone were isolated as active components. Further biochemical experiments confirmed that pinostrobin possesses inhibitory activity on the Ca(2+) signals involved in the control of G2/M phase cell cycle progression in Saccharomyces cerevisiae. PMID:19584530

  6. Impact of the co-culture of Saccharomyces cerevisiae–Oenococcus oenion malolactic fermentation and partial characterization of a yeast-derived inhibitory peptidic fraction

    OpenAIRE

    Nehme, Nancy; Mathieu, Florence; Taillandier, Patricia

    2010-01-01

    The present study was aimed to evaluate the impact of the co-culture on the output of malolactic fermentation and to further investigate the reasons of the antagonism exerted by yeasts towards bacteria during sequential cultures. The Saccharomyces cerevisiae D strain/Oenococcus oeni X strain combination was tested by applying both sequential culture and co-culture strategies. This pair was chosen amongst others because the malolactic fermentation was particularly difficult to realize during t...

  7. Expression and secretion of Bacillus amyloliquefaciens alpha-amylase by using the yeast pheromone alpha-factor promoter and leader sequence in Saccharomyces cerevisiae.

    OpenAIRE

    Southgate, V J; Steyn, A J; Pretorius, I. S.; van Vuuren, H J

    1993-01-01

    Replacement of the regulatory and secretory signals of the alpha-amylase gene (AMY) from Bacillus amylolique-faciens with the complete yeast pheromone alpha-factor prepro region (MF alpha 1p) resulted in increased levels of extracellular alpha-amylase production in Saccharomyces cerevisiae. However, the removal of the (Glu-Ala)2 peptide from the MF alpha 1 spacer region (Lys-Arg-Glu-Ala-Glu-Ala) yielded decreased levels of extracellular alpha-amylase.

  8. L-Histidine inhibits biofilm formation and FLO11- associated phenotypes in Saccharomyces cerevisiae flor yeasts

    OpenAIRE

    Bou Zeidan, Marc; Zara, Giacomo; Viti, Carlo; Decorosi, Francesca; Mannazzu, Ilaria Maria; Budroni, Marilena; Giovannetti, Luciana; Zara, Severino

    2014-01-01

    Flor yeasts of Saccharomyces cerevisiae have an innate diversity of FLO11 which codes for a highly hydrophobic and anionic cell-wall glycoprotein with a fundamental role in biofilm formation. In this study, 380 nitrogen compounds were administered to three S. cerevisiae flor strains handling FLO11 alleles with different expression levels. S. cerevisiae strain S288c was used as the reference strain as it cannot produce FLO11p. The flor strains generally metabolized amino acids and dipeptides a...

  9. Genome-wide prediction of stop codon readthrough during translation in the yeast Saccharomyces cerevisiae

    OpenAIRE

    Williams, I; Richardson, J.; Starkey, A.; Stansfield, I

    2004-01-01

    In-frame stop codons normally signal termination during mRNA translation, but they can be read as ‘sense’ (readthrough) depending on their context, comprising the 6 nt preceding and following the stop codon. To identify novel contexts directing readthrough, under-represented 5′ and 3′ stop codon contexts from Saccharomyces cerevisiae were identified by genome-wide survey in silico. In contrast with the nucleotide bias 3′ of the stop codon, codon bias in the two codon positions 5′ of the termi...

  10. Mitotic chromosome loss in a radiation-sensitive strain of the yeast Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Mortimer, R.K.; Contopoulou, R.; Schild, D.

    1981-09-01

    Cells of Saccharomyces cerevisiae with mutations in the RAD52 gene have previously been shown to be defective in meiotic and mitotic recombination, in sporulation, and in repair of radiation-induced damage to DNA. In this study we show that diploid cells homozygous for rad52 lose chromosomes at high frequencies and that these frequencies of loss can be increased dramatically by exposure of these cells to x-rays. Genetic analyses of survivors of x-ray treatment demonstrate that chromosome loss events result in the conversion of diploid cells to cells with near haploid chromosome numbers.

  11. Prevention of post weaning diarrhoea by a Saccharomyces cerevisiae-derived product based on whole yeast

    DEFF Research Database (Denmark)

    Jensen, K. H.; Damgaard, B. M.; Andresen, Lars Ole;

    2013-01-01

    The aim of this study was to examine whether yeast derivate (YD) based on whole brewery yeast added to the creep feed of suckling and newly weaned piglets or to the creep feed of the piglets and the sow's diet prevented post weaning diarrhoea (PWD) or affected performance. Thirty sows and their l......The aim of this study was to examine whether yeast derivate (YD) based on whole brewery yeast added to the creep feed of suckling and newly weaned piglets or to the creep feed of the piglets and the sow's diet prevented post weaning diarrhoea (PWD) or affected performance. Thirty sows...... and their litters were randomly allocated to three treatment groups: PSP (1.5 g/kg of YD to the sows’ feed from 1 wk before expected farrowing to weaning; 3 g/kg or 2 g/kg of YD added to the piglets’ creep feed from 2 wk of age until 2 wk post weaning (PW) and from wk 2 to 5 PW, respectively); PP (YD added...... from each litter. In individually housed piglets the faecal consistency score (FCS) was affected by an interaction between days PW, treatment group, and challenge group (P=0.005). In general, FCS was lower in placebo than in E. coli-challenged piglets and in PSP and PP piglets than in C piglets...

  12. Analysis of protein localization and secretory pathway function using the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Vallen, Elizabeth

    2002-01-01

    The isolation and characterization of mutants has been crucial in understanding a number of processes in the field of cell biology. In this exercise, students examine the effects of mutations in the secretory pathway on protein localization. Yeast strains deficient for synthesis of histidinol dehydrogenase are transformed with a plasmid encoding a chimeric protein. The chimera contains a signal sequence fused to histidinol dehydrogenase. A strain with a defect in the translocation of secretory proteins into the endoplasmic reticulum (ER) accumulates sufficient histidinol dehydrogenase in the cytoplasm to grow on media lacking histidine. In contrast, yeast proficient for secretion, or yeast with secretion defects later in the pathway, are unable to grow on media lacking histidine. Student analysis of the experimental yeast transformants and appropriate controls allows investigation into the effects of conditional defects in the secretory pathway on both cell viability and protein localization. The exercise is usually performed in a manner that allows students to execute a number of techniques common in molecular biology laboratories, including plasmid minipreps, restriction digestions, and Southern blots. Student understanding and enjoyment of the exercise was assessed by laboratory reports, oral and written examinations, and questionnaires. After completion of these experiments, students can describe the utility of protein fusions, the roles of mutant analysis in cell biology, and the steps taken by proteins transiting the secretory pathway.

  13. Mechanisms of in situ detoxification of furfural and HMF by ethanologenic yeast Saccharomyces cerevisiae

    Science.gov (United States)

    Furfural and 5-hydroxymethylfurfural (HMF) are major inhibitory compounds generated from biomass pretreatment using dilute acid hydrolysis. Remediation of inhibitors adds cost and generates extra waste products. Few yeast strains tolerant to inhibitors are available and the need for tolerant strai...

  14. Correlation between the trehalose content and the stress resistance of the baker yeasts%面包酵母海藻糖含量与酵母耐性之间的关系

    Institute of Scientific and Technical Information of China (English)

    陈丽君; 肖冬光; 郭学武; 张翠英; 盖伟东

    2011-01-01

    The freeze-tolerance,the stress resistance and the trehalose content of different baker yeasts in the different periods was discussed.It was found that there was a correlation between the trehalose content and the stress resistance,and there was a better stress resistance with the higher trehalose content.%以存活率为指标,探讨了不同时期不同面包酵母的耐盐性能、耐酒精性能、耐高温性能以及耐冷冻性能,并且测定了不同时期菌体胞内海藻糖含量,研究结果表明胞内海藻糖含量与酵母的耐受性之间存在一定的相关性,海藻糖含量越高,酵母的耐性越好。

  15. Entropy of Baker's Transformation

    Institute of Scientific and Technical Information of China (English)

    栾长福

    2003-01-01

    Four theorems about four different kinds of entropies for Baker's transformation are presented. The Kolmogorov entropy of Baker's transformation is sensitive to the initial flips by the time. The topological entropy of Baker's transformation is found to be log k. The conditions for the state of Baker's transformation to be forbidden are also derived. The relations among the Shanonn, Kolmogorov, topological and Boltzmann entropies are discussed in details.

  16. Whole-cell imaging of the budding yeast Saccharomyces cerevisiae by high-voltage scanning transmission electron tomography

    Energy Technology Data Exchange (ETDEWEB)

    Murata, Kazuyoshi, E-mail: kazum@nips.ac.jp [National Institute for Physiological Sciences, Okazaki, Aichi 444-8585 (Japan); Esaki, Masatoshi; Ogura, Teru [Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811 (Japan); Arai, Shigeo; Yamamoto, Yuta; Tanaka, Nobuo [Ecotopia Science Institute, Nagoya University, Nagoya, Aichi 464-8603 (Japan)

    2014-11-15

    Electron tomography using a high-voltage electron microscope (HVEM) provides three-dimensional information about cellular components in sections thicker than 1 μm, although in bright-field mode image degradation caused by multiple inelastic scattering of transmitted electrons limit the attainable resolution. Scanning transmission electron microscopy (STEM) is believed to give enhanced contrast and resolution compared to conventional transmission electron microscopy (CTEM). Samples up to 1 μm in thickness have been analyzed with an intermediate-voltage electron microscope because inelastic scattering is not a critical limitation, and probe broadening can be minimized. Here, we employed STEM at 1 MeV high-voltage to extend the useful specimen thickness for electron tomography, which we demonstrate by a seamless tomographic reconstruction of a whole, budding Saccharomyces cerevisiae yeast cell, which is ∼3 μm in thickness. High-voltage STEM tomography, especially in the bright-field mode, demonstrated sufficiently enhanced contrast and intensity, compared to CTEM tomography, to permit segmentation of major organelles in the whole cell. STEM imaging also reduced specimen shrinkage during tilt-series acquisition. The fidelity of structural preservation was limited by cytoplasmic extraction, and the spatial resolution was limited by the relatively large convergence angle of the scanning probe. However, the new technique has potential to solve longstanding problems of image blurring in biological specimens beyond 1 μm in thickness, and may facilitate new research in cellular structural biology. - Highlights: • High voltage TEM and STEM tomography were compared to visualize whole yeast cells. • 1-MeV STEM-BF tomography had significant improvements in image contrast and SNR. • 1-MeV STEM tomography showed less specimen shrinkage than the TEM tomography. • KMnO{sub 4} post-treatment permitted segmenting the major cellular components.

  17. Adjustable under-expression of yeast mating pathway proteins in Saccharomyces cerevisiae using a programmed ribosomal frameshift.

    Science.gov (United States)

    Choi, Min-Yeon; Park, Sang-Hyun

    2016-06-01

    Experimental research in molecular biology frequently relies on the promotion or suppression of gene expression, an important tool in the study of its functions. Although yeast is among the most studied model systems with the ease of maintenance and manipulation, current experimental methods are mostly limited to gene deletion, suppression or overexpression of genes. Therefore, the ability to reduce protein expressions and then observing the effects would promote a better understanding of the exact functions and their interactions. Reducing protein expression is mainly limited by the difficulties associated with controlling the reduction level, and in some cases, the initial endogenous abundance is too low. For the under-expression to be useful as an experimental tool, repeatability and stability of reduced expression is important. We found that cis-elements in programmed -1 ribosomal frameshifting (-1RFS) of beet western yellow virus (BWYV) could be utilized to reduced protein expression in Saccharomyces cerevisiae. The two main advantages of using -1RFS are adjustable reduction rates and ease of use. To demonstrate the utility of this under-expression system, examples of reduced protein abundance were shown using yeast mating pathway components. The abundance of MAP kinase Fus3 was reduced to approximately 28-75 % of the wild-type value. Other MAP kinase mating pathway components, including Ste5, Ste11, and Ste7, were also under-expressed to verify that the -1RFS system works with different proteins. Furthermore, reduced Fus3 abundance altered the overall signal transduction outcome of the mating pathway, demonstrating the potential for further studies of signal transduction adjustment via under-expression. PMID:26837218

  18. Whole-cell imaging of the budding yeast Saccharomyces cerevisiae by high-voltage scanning transmission electron tomography

    International Nuclear Information System (INIS)

    Electron tomography using a high-voltage electron microscope (HVEM) provides three-dimensional information about cellular components in sections thicker than 1 μm, although in bright-field mode image degradation caused by multiple inelastic scattering of transmitted electrons limit the attainable resolution. Scanning transmission electron microscopy (STEM) is believed to give enhanced contrast and resolution compared to conventional transmission electron microscopy (CTEM). Samples up to 1 μm in thickness have been analyzed with an intermediate-voltage electron microscope because inelastic scattering is not a critical limitation, and probe broadening can be minimized. Here, we employed STEM at 1 MeV high-voltage to extend the useful specimen thickness for electron tomography, which we demonstrate by a seamless tomographic reconstruction of a whole, budding Saccharomyces cerevisiae yeast cell, which is ∼3 μm in thickness. High-voltage STEM tomography, especially in the bright-field mode, demonstrated sufficiently enhanced contrast and intensity, compared to CTEM tomography, to permit segmentation of major organelles in the whole cell. STEM imaging also reduced specimen shrinkage during tilt-series acquisition. The fidelity of structural preservation was limited by cytoplasmic extraction, and the spatial resolution was limited by the relatively large convergence angle of the scanning probe. However, the new technique has potential to solve longstanding problems of image blurring in biological specimens beyond 1 μm in thickness, and may facilitate new research in cellular structural biology. - Highlights: • High voltage TEM and STEM tomography were compared to visualize whole yeast cells. • 1-MeV STEM-BF tomography had significant improvements in image contrast and SNR. • 1-MeV STEM tomography showed less specimen shrinkage than the TEM tomography. • KMnO4 post-treatment permitted segmenting the major cellular components

  19. Exogenous addition of histidine reduces copper availability in the yeast Saccharomyces cerevisiae

    OpenAIRE

    Daisuke Watanabe; Rie Kikushima; Miho Aitoku; Akira Nishimura; Iwao Ohtsu; Ryo Nasuno; Hiroshi Takag

    2014-01-01

    The basic amino acid histidine inhibited yeast cell growth more severely than lysine and arginine. Overexpression of CTR1, which encodes a high-affinity copper transporter on the plasma membrane, or addition of copper to the medium alleviated this cytotoxicity. However, the intracellular level of copper ions was not decreased in the presence of excess histidine. These results indicate that histidine cytotoxicity is associated with low copper availability inside cells, not with impaired copper...

  20. Efeito da temperatura de estocagem de leveduras de panificação sobre a atividade da glicerol-3-fosfato desidrogenase The effect of storage temperature on the glycerol-3-phosphate dehydrogenase activity of baker's yeasts

    Directory of Open Access Journals (Sweden)

    Claudia Regina Cançado Sgorlon Tininis

    2002-03-01

    Full Text Available Níveis intracelulares de G-3-PDH (sn-glicerol-3-fosfato:NAD+ 2oxidoredutase, EC 1.1.1.8 de levedura de panificação foram acompanhados durante a estocagem sob três diferentes temperaturas. Semelhantes valores de biomassa final e de atividade específica da enzima foram obtidos após crescimento por 48 horas de duas linhagens de leveduras de panificação. O melhor meio (meio indutor para obtenção de G-3-PDH foi: extrato de levedura (1%,p/v, peptona (2%,p/v, glicerol (3%,v/v e etanol (1%,v/v. O choque osmótico com adição de NaCl 0,6 M provocou aumento da atividade de G-3-PDH de 1,2 vezes para leveduras crescidas em meio indutor por 48 horas e transferidas para o meio salino, por 2 horas. A estocagem (até 10 dias da linhagem de levedura GD0, sob temperatura ambiente (27 ºC estimulou a síntese da G-3-PDH de células propagadas no meio indutor, lavadas e liofilizadas. Estocagens em geladeira (temperatura de 4 - 5 ºC ou em ''freezer'' (temperatura de -18 ºC mantiveram a atividade da G-3-PDH por até 8 meses.Intracellular levels of glycerol-3-phosphate dehydrogenase (G-3-PDH in baker's yeasts were monitored during storage at 3 different temperatures. Similar values for final biomass and specific activity of the enzyme were found, in each of two strains of baker's yeast, after 48 hours growth. The best medium tested, for the induction of G-3-PDH, contained: yeast extract (1% w/v, peptone (2% w/v, glycerol (3% w/vand ethanol (1% w/v. Osmotic shock, provoked by suspending cells, after 48 hours growth in inducing medium, in 0.6 M NaCl solution for 2 hours, caused the activity to increase by a factor of 1.2. Cells of the GDO yeast strain, grown in inducing conditions, washed and lyophilized, exhibited a 35% rise in G-3-PDH activity during storage (10 days at ambient temperature (about 27 ºC. Both refrigeration (4-5 ºC and freezer storage (-18 ºC maintained the G-3-PDH activity for up to 8 months.

  1. Ethanol fermentation of mahula (Madhuca latifolia L.) flowers using free and immobilized yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Swain, M R; Kar, S; Sahoo, A K; Ray, R C

    2007-01-01

    There is a growing interest to find alternate bioresources for production of ethanol, apart from cane/sugar beet molasses and starchy crops like sweet sorghum, cassava and sweet potato. Mahula (Madhuca latifolia L.) is a forest tree abundantly available in the Indian subcontinent and its flowers are very rich in fermentable sugars (28.1-36.3 g 100 g(-1)). Batch fermentation of fresh and 12-month-stored flowers with free (whole cells) and immobilized cells of Saccharomyces cerevisiae (strain CTCRI) was carried out in 2-l Erlenmeyer flasks. The ethanol yields were 193 and 148 g kg(-1) (using free cells) and 205 and 152 g kg(-1) (using immobilized cells) from fresh and 12-month-stored mahula flowers, respectively. PMID:16580830

  2. Phytoceramide and sphingoid bases derived from brewer's yeast Saccharomyces pastorianus activate peroxisome proliferator-activated receptors

    Directory of Open Access Journals (Sweden)

    Mitsutake Susumu

    2011-08-01

    Full Text Available Abstract Background Peroxisome proliferator-activated receptors (PPARs are ligand-activated transcription factors that regulate lipid and glucose metabolism. PPARα is highly expressed in the liver and controls genes involved in lipid catabolism. We previously reported that synthetic sphingolipid analogs, part of which contains shorter-length fatty acid chains than natural sphingolipids, stimulated the transcriptional activities of PPARs. Sphingosine and dihydrosphingosine (DHS are abundant sphingoid bases, and ceramide and dihydroceramide are major ceramide species in mammals. In contrast, phytosphingosine (PHS and DHS are the main sphingoid bases in fungi. PHS and phytoceramide exist in particular tissues such as the epidermis in mammals, and involvement of ceramide species in PPARβ activation in cultured keratinocytes has been reported. The purpose of the present study is to investigate whether natural sphingolipids with C18 fatty acid and yeast-derived sphingoid bases activate PPARs as PPAR agonists. Method Lipids of brewer's yeast contain PHS- and DHS-based sphingolipids. To obtain the sphingoid bases, lipids were extracted from brewer's yeast and acid-hydrolyzed. The sphingoid base fraction was purified and quantified. To assess the effects of sphingolipids on PPAR activation, luciferase reporter assay was carried out. NIH/3T3 and human hepatoma (HepG2 cells were transfected with expression vectors for PPARs and retinoid × receptors, and PPAR responsive element reporter vector. When indicated, the PPAR/Gal4 chimera system was performed to enhance the credibility of experiments. Sphingolipids were added to the cells and the dual luciferase reporter assay was performed to determine the transcriptional activity of PPARs. Results We observed that phytoceramide increased the transcriptional activities of PPARs significantly, whereas ceramide and dihydroceramide did not change PPAR activities. Phytoceramide also increased transactivation of

  3. The gene ICS3 from the yeast Saccharomyces cerevisiae is involved in copper homeostasis dependent on extracellular pH.

    Science.gov (United States)

    Alesso, C A; Discola, K F; Monteiro, G

    2015-09-01

    In the yeast Saccharomyces cerevisiae, many genes are involved in the uptake, transport, storage and detoxification of copper. Large scale studies have noted that deletion of the gene ICS3 increases sensitivity to copper, Sortin 2 and acid exposure. Here, we report a study on the Δics3 strain, in which ICS3 is related to copper homeostasis, affecting the intracellular accumulation of this metal. This strain is sensitive to hydrogen peroxide and copper exposure, but not to other tested transition metals. At pH 6.0, the Δics3 strain accumulates a larger amount of intracellular copper than the wild-type strain, explaining the sensitivity to oxidants in this condition. Unexpectedly, sensitivity to copper exposure only occurs in acidic conditions. This can be explained by the fact that the exposure of Δics3 cells to high copper concentrations at pH 4.0 results in over-accumulation of copper and iron. Moreover, the expression of ICS3 increases in acidic pH, and this is correlated with CCC2 gene expression, since both genes are regulated by Rim101 from the pH regulon. CCC2 is also upregulated in Δics3 in acidic pH. Together, these data indicate that ICS3 is involved in copper homeostasis and is dependent on extracellular pH.

  4. Surface functionalization of chitosan-coated magnetic nanoparticles for covalent immobilization of yeast alcohol dehydrogenase from Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Li Guiyin [Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078 (China); Biomedical Engineering Research Centre of Guilin University of Electronic Technology, Guilin, Guangxi 541014 (China); Zhou Zhide [Biomedical Engineering Research Centre of Guilin University of Electronic Technology, Guilin, Guangxi 541014 (China); Li Yuanjian, E-mail: yuan_jianli@yahoo.co [Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078 (China); Huang Kelong, E-mail: klhuang@mail.csu.edu.c [College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083 (China); Zhong Ming [College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083 (China)

    2010-12-15

    A novel and efficient immobilization of yeast alcohol dehydrogenase (YADH, EC1.1.1.1) from Saccharomyces cerevisiae has been developed by using the surface functionalization of chitosan-coated magnetic nanoparticles (Fe{sub 3}O{sub 4}/KCTS) as support. The magnetic Fe{sub 3}O{sub 4}/KCTS nanoparticles were prepared by binding chitosan alpha-ketoglutaric acid (KCTS) onto the surface of magnetic Fe{sub 3}O{sub 4} nanoparticles. Later, covalent immobilization of YADH was attempted onto the Fe{sub 3}O{sub 4}/KCTS nanoparticles. The effect of various preparation conditions on the immobilized YADH process such as immobilization time, enzyme concentration and pH was investigated. The influence of pH and temperature on the activity of the free and immobilized YADH using phenylglyoxylic acid as substrate has also been studied. The optimum reaction temperature and pH value for the enzymatic conversion catalyzed by the immobilized YADH were 30 {sup o}C and 7.4, respectively. Compared to the free enzyme, the immobilized YADH retained 65% of its original activity and exhibited significant thermal stability and good durability.

  5. Surface functionalization of chitosan-coated magnetic nanoparticles for covalent immobilization of yeast alcohol dehydrogenase from Saccharomyces cerevisiae

    Science.gov (United States)

    Li, Gui-yin; Zhou, Zhi-de; Li, Yuan-jian; Huang, Ke-long; Zhong, Ming

    2010-12-01

    A novel and efficient immobilization of yeast alcohol dehydrogenase (YADH, EC1.1.1.1) from Saccharomyces cerevisiae has been developed by using the surface functionalization of chitosan-coated magnetic nanoparticles (Fe 3O 4/KCTS) as support. The magnetic Fe 3O 4/KCTS nanoparticles were prepared by binding chitosan alpha-ketoglutaric acid (KCTS) onto the surface of magnetic Fe 3O 4 nanoparticles. Later, covalent immobilization of YADH was attempted onto the Fe 3O 4/KCTS nanoparticles. The effect of various preparation conditions on the immobilized YADH process such as immobilization time, enzyme concentration and pH was investigated. The influence of pH and temperature on the activity of the free and immobilized YADH using phenylglyoxylic acid as substrate has also been studied. The optimum reaction temperature and pH value for the enzymatic conversion catalyzed by the immobilized YADH were 30 °C and 7.4, respectively. Compared to the free enzyme, the immobilized YADH retained 65% of its original activity and exhibited significant thermal stability and good durability.

  6. Astragalin from Cassia alata induces DNA adducts in vitro and repairable DNA damage in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Saito, Samuel; Silva, Givaldo; Santos, Regineide Xavier; Gosmann, Grace; Pungartnik, Cristina; Brendel, Martin

    2012-01-01

    Reverse phase-solid phase extraction from Cassia alata leaves (CaRP) was used to obtain a refined extract. Higher than wild-type sensitivity to CaRP was exhibited by 16 haploid Saccharomyces cerevisiae mutants with defects in DNA repair and membrane transport. CaRP had a strong DPPH free radical scavenging activity with an IC(50) value of 2.27 μg mL(-1) and showed no pro-oxidant activity in yeast. CaRP compounds were separated by HPLC and the three major components were shown to bind to DNA in vitro. The major HPLC peak was identified as kampferol-3-O-β-d-glucoside (astragalin), which showed high affinity to DNA as seen by HPLC-UV measurement after using centrifugal ultrafiltration of astragalin-DNA mixtures. Astragalin-DNA interaction was further studied by spectroscopic methods and its interaction with DNA was evaluated using solid-state FTIR. These and computational (in silico) docking studies revealed that astragalin-DNA binding occurs through interaction with G-C base pairs, possibly by intercalation stabilized by H-bond formation.

  7. Important role of catalase in the cellular response of the budding yeast Saccharomyces cerevisiae exposed to ionizing radiation.

    Science.gov (United States)

    Nishimoto, Takuto; Furuta, Masakazu; Kataoka, Michihiko; Kishida, Masao

    2015-03-01

    Ionizing radiation indirectly causes oxidative stress in cells via reactive oxygen species (ROS), such as hydroxyl radicals (OH(-)) generated by the radiolysis of water. We investigated how the catalase function was affected by ionizing radiation and analyzed the phenotype of mutants with a disrupted catalase gene in Saccharomyces cerevisiae exposed to radiation. The wild-type yeast strain and isogenic mutants with disrupted catalase genes were exposed to various doses of (60)Co gamma-rays. There was no difference between the wild-type strain and the cta1 disruption mutant following exposure to gamma-ray irradiation. In contrast, there was a significant decrease in the ctt1 disruption mutant, suggesting that this strain exhibited decreased survival on gamma-ray exposure compared with other strains. In all three strains, stationary phase cells were more tolerant to the exposure of gamma-rays than exponential phase cells, whereas the catalase activity in the wild-type strain and cta1 disruption mutant was higher in the stationary phase than in the exponential phase. These data suggest a correlation between catalase activity and survival following gamma-ray exposure. However, this correlation was not clear in the ctt1 disruption mutant, suggesting that other factors are involved in the tolerance to ROS induced by irradiation.

  8. Proteins involved in wine aroma compounds metabolism by a Saccharomyces cerevisiae flor-velum yeast strain grown in two conditions.

    Science.gov (United States)

    Moreno-García, Jaime; García-Martínez, Teresa; Millán, M Carmen; Mauricio, Juan Carlos; Moreno, Juan

    2015-10-01

    A proteomic and exometabolomic study was conducted on Saccharomyces cerevisiae flor yeast strain growing under biofilm formation condition (BFC) with ethanol and glycerol as carbon sources and results were compared with those obtained under no biofilm formation condition (NBFC) containing glucose as carbon source. By using modern techniques, OFFGEL fractionator and LTQ-Orbitrap for proteome and SBSE-TD-GC-MS for metabolite analysis, we quantified 84 proteins including 33 directly involved in the metabolism of glycerol, ethanol and 17 aroma compounds. Contents in acetaldehyde, acetic acid, decanoic acid, 1,1-diethoxyethane, benzaldehyde and 2-phenethyl acetate, changed above their odor thresholds under BFC, and those of decanoic acid, ethyl octanoate, ethyl decanoate and isoamyl acetate under NBFC. Of the twenty proteins involved in the metabolism of ethanol, acetaldehyde, acetoin, 2,3-butanediol, 1,1-diethoxyethane, benzaldehyde, organic acids and ethyl esters, only Adh2p, Ald4p, Cys4p, Fas3p, Met2p and Plb1p were detected under BFC and as many Acs2p, Ald3p, Cem1p, Ilv2p, Ilv6p and Pox1p, only under NBFC. Of the eight proteins involved in glycerol metabolism, Gut2p was detected only under BFC while Pgs1p and Rhr2p were under NBFC. Finally, of the five proteins involved in the metabolism of higher alcohols, Thi3p was present under BFC, and Aro8p and Bat2p were under NBFC. PMID:26187821

  9. Proteins involved in wine aroma compounds metabolism by a Saccharomyces cerevisiae flor-velum yeast strain grown in two conditions.

    Science.gov (United States)

    Moreno-García, Jaime; García-Martínez, Teresa; Millán, M Carmen; Mauricio, Juan Carlos; Moreno, Juan

    2015-10-01

    A proteomic and exometabolomic study was conducted on Saccharomyces cerevisiae flor yeast strain growing under biofilm formation condition (BFC) with ethanol and glycerol as carbon sources and results were compared with those obtained under no biofilm formation condition (NBFC) containing glucose as carbon source. By using modern techniques, OFFGEL fractionator and LTQ-Orbitrap for proteome and SBSE-TD-GC-MS for metabolite analysis, we quantified 84 proteins including 33 directly involved in the metabolism of glycerol, ethanol and 17 aroma compounds. Contents in acetaldehyde, acetic acid, decanoic acid, 1,1-diethoxyethane, benzaldehyde and 2-phenethyl acetate, changed above their odor thresholds under BFC, and those of decanoic acid, ethyl octanoate, ethyl decanoate and isoamyl acetate under NBFC. Of the twenty proteins involved in the metabolism of ethanol, acetaldehyde, acetoin, 2,3-butanediol, 1,1-diethoxyethane, benzaldehyde, organic acids and ethyl esters, only Adh2p, Ald4p, Cys4p, Fas3p, Met2p and Plb1p were detected under BFC and as many Acs2p, Ald3p, Cem1p, Ilv2p, Ilv6p and Pox1p, only under NBFC. Of the eight proteins involved in glycerol metabolism, Gut2p was detected only under BFC while Pgs1p and Rhr2p were under NBFC. Finally, of the five proteins involved in the metabolism of higher alcohols, Thi3p was present under BFC, and Aro8p and Bat2p were under NBFC.

  10. Surface functionalization of chitosan-coated magnetic nanoparticles for covalent immobilization of yeast alcohol dehydrogenase from Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    A novel and efficient immobilization of yeast alcohol dehydrogenase (YADH, EC1.1.1.1) from Saccharomyces cerevisiae has been developed by using the surface functionalization of chitosan-coated magnetic nanoparticles (Fe3O4/KCTS) as support. The magnetic Fe3O4/KCTS nanoparticles were prepared by binding chitosan alpha-ketoglutaric acid (KCTS) onto the surface of magnetic Fe3O4 nanoparticles. Later, covalent immobilization of YADH was attempted onto the Fe3O4/KCTS nanoparticles. The effect of various preparation conditions on the immobilized YADH process such as immobilization time, enzyme concentration and pH was investigated. The influence of pH and temperature on the activity of the free and immobilized YADH using phenylglyoxylic acid as substrate has also been studied. The optimum reaction temperature and pH value for the enzymatic conversion catalyzed by the immobilized YADH were 30 oC and 7.4, respectively. Compared to the free enzyme, the immobilized YADH retained 65% of its original activity and exhibited significant thermal stability and good durability.

  11. Important role of catalase in the cellular response of the budding yeast Saccharomyces cerevisiae exposed to ionizing radiation.

    Science.gov (United States)

    Nishimoto, Takuto; Furuta, Masakazu; Kataoka, Michihiko; Kishida, Masao

    2015-03-01

    Ionizing radiation indirectly causes oxidative stress in cells via reactive oxygen species (ROS), such as hydroxyl radicals (OH(-)) generated by the radiolysis of water. We investigated how the catalase function was affected by ionizing radiation and analyzed the phenotype of mutants with a disrupted catalase gene in Saccharomyces cerevisiae exposed to radiation. The wild-type yeast strain and isogenic mutants with disrupted catalase genes were exposed to various doses of (60)Co gamma-rays. There was no difference between the wild-type strain and the cta1 disruption mutant following exposure to gamma-ray irradiation. In contrast, there was a significant decrease in the ctt1 disruption mutant, suggesting that this strain exhibited decreased survival on gamma-ray exposure compared with other strains. In all three strains, stationary phase cells were more tolerant to the exposure of gamma-rays than exponential phase cells, whereas the catalase activity in the wild-type strain and cta1 disruption mutant was higher in the stationary phase than in the exponential phase. These data suggest a correlation between catalase activity and survival following gamma-ray exposure. However, this correlation was not clear in the ctt1 disruption mutant, suggesting that other factors are involved in the tolerance to ROS induced by irradiation. PMID:25416226

  12. The utilization of some iron and zinc compounds as regulators of catalase activity at Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Efremova, N.

    2013-11-01

    Full Text Available The main aim of this study was to examine the impact of some zinc and iron compounds as oxidative stress factors on catalase activity, which is known to be important defense system of microorganisms to metal stress. For the investigation was used baker's yeast strain - Saccharomyces cerevisiae CNMN-Y-11 previously selected as a source of protein and catalase. The obtained results have revealed that compounds of iron and zinc with citrate and acetate contributes to the accumulation of yeast biomass and have beneficial effect on the catalase activity at selected yeast strain. The maximum increase of catalase activity in yeast biomass was established in case of iron and zinc citrate supplementation to the nutritive medium in optimal concentration of 15.0 mg/l. Results of the present study could be used for the elaboration of new procedures of catalase obtaining by directed synthesis with the utilization of selected metal compounds.

  13. Cryoprotective Role of Combined Emulsifiers with Soybean Lecithin and Sucrose Ester on Baker's Yeast%复配大豆磷脂和蔗糖酯对面包酵母冷冻保护作用

    Institute of Scientific and Technical Information of China (English)

    徐云峰; 杨哪; 金征宇; 谢正军; 徐学明

    2011-01-01

    The cryoprotective role of emulsifiers combined with two molar soybean lecithin and one molar sucrose ester on baker's yeast was examined in this study.The results showed that the survival ratio of yeast cultivated for 48 hours after frozen at - 30 ℃ for 5 days in a culture medium with 4 g/dL combined emulsifers increased by 60% compared with that of the control group, and the adaptive phase shorten by 10 hours.The dough made from yeast dealed with emulsifiers after frozen at -30 ℃ for 60 days had a relatively stronger ability to leaven within a short time.The phenomenon of yeast congregated with enulsifiers, which was imaged by scanning electron microscope (SEM), indicated that there might be some interaction effects between the two substances.%以质量比为2:1的大豆磷脂和蔗糖酯复配处理面包酵母,研究了其对酵母抗冻性的影响.结果表明,与未添加乳化剂组相比,酵母在-30℃含复配乳化剂质量分数为4 g/dL的YPD 培养液中冷冻贮藏5 d,解冻并于30℃平板培养48 h,存活率提高了60%,酵母生长适应期缩短了10 h左右.将乳化剂处理酵母应用于冷冻面团体系,面团经-30℃冷冻贮藏60 d后醒发时间缩短,醒发体积增大.扫描电镜观察表明酵母与乳化剂呈聚集状,存在一定的交互作用.

  14. Effect of diet supplementation with live yeast Saccharomyces cerevisiae on growth performance, caecal ecosystem and health of growing rabbits

    Directory of Open Access Journals (Sweden)

    T. Belhassen

    2016-09-01

    Full Text Available The aim of this study was to determine the effect of the live yeast Saccharomyces cerevisiae on the growth performance, caecal ecosystem and overall health of growing rabbits. A control diet was formulated (crude protein: 15.9%; neutral detergent fibre: 31.6% and another diet obtained by supplementing the control diet with 1 g of Saccharomyces cerevisiae (6.5×109 colony-forming units per kg of diet. Ninety 35-d old rabbits were allotted into 3 groups: TT (rabbits offered the supplemented diet from 17 d of age onwards, CT (rabbits offered supplemented diet from 35 d and CC (rabbits fed non-supplemented diet. Body weight (BW and feed intake were measured weekly and mortality was controlled daily. At 35, 42 and 77 d of age, 6 rabbits from each group were slaughtered and digestive physiological traits, serum clinical chemistry parameters, fermentation traits, and the composition of caecal microbiota examined. At 42 and 56 d of age, 10 rabbits from each group were injected intraperitoneally with 100 μg/animal of ovalbumin and blood samples were collected for examination of plasma immunological parameters. Throughout the experiment (5-11 wk, weight gain and feed intake (37.8 and 112.6 g/d, on av. were not affected by yeast, except for weight gain in the first week after weaning, which was the highest in TT animals among the 3 groups (48.1 vs. 43.9 and 44.2 g/d for TT, CC and CT, respectively; P=0.012. This may be due to the increased trend in feed intake (P=0.072 in the TT group (96.4 g/d compared to the others. Mortality (5/90 was low and did not differ among the 3 groups. Treatments had no effect on slaughter traits at the 3 sampling dates (35, 42 and 77 d. Only the weight of the empty caecum (% BW was higher (P=0.02 in CC (2.2% and CT (2.3% than in TT group (1.8% at 77 d of age. Treatments did not overtly affect the caecal microbiota, although the number of total anaerobic bacteria and Bacteroides were lower (108 and 107/g caecal digesta

  15. Synchronous protein cycling in batch cultures of the yeast Saccharomyces cerevisiae at log growth phase.

    Science.gov (United States)

    Romagnoli, Gabriele; Cundari, Enrico; Negri, Rodolfo; Crescenzi, Marco; Farina, Lorenzo; Giuliani, Alessandro; Bianchi, Michele M

    2011-12-10

    The assumption that cells are temporally organized systems, i.e. showing relevant dynamics of their state variables such as gene expression or protein and metabolite concentration, while tacitly given for granted at the molecular level, is not explicitly taken into account when interpreting biological experimental data. This conundrum stems from the (undemonstrated) assumption that a cell culture, the actual object of biological experimentation, is a population of billions of independent oscillators (cells) randomly experiencing different phases of their cycles and thus not producing relevant coordinated dynamics at the population level. Moreover the fact of considering reproductive cycle as by far the most important cyclic process in a cell resulted in lower attention given to other rhythmic processes. Here we demonstrate that growing yeast cells show a very repeatable and robust cyclic variation of the concentration of proteins with different cellular functions. We also report experimental evidence that the mechanism governing this basic oscillator and the cellular entrainment is resistant to external chemical constraints. Finally, cell growth is accompanied by cyclic dynamics of medium pH. These cycles are observed in batch cultures, different from the usual continuous cultures in which yeast metabolic cycles are known to occur, and suggest the existence of basic, spontaneous, collective and synchronous behaviors of the cell population as a whole.

  16. The yeast Saccharomyces cerevisiae DNA polymerase IV: possible involvement in double strand break DNA repair.

    Science.gov (United States)

    Leem, S H; Ropp, P A; Sugino, A

    1994-08-11

    We identified and purified a new DNA polymerase (DNA polymerase IV), which is similar to mammalian DNA polymerase beta, from Saccharomyces cerevisiae and suggested that it is encoded by YCR14C (POLX) on chromosome III. Here, we provided a direct evidence that the purified DNA polymerase IV is indeed encoded by POLX. Strains harboring a pol4 deletion mutation exhibit neither mitotic growth defect nor a meiosis defect, suggesting that DNA polymerase IV participates in nonessential functions in DNA metabolism. The deletion strains did not exhibit UV-sensitivity. However, they did show weak sensitivity to MMS-treatment and exhibited a hyper-recombination phenotype when intragenic recombination was measured during meiosis. Furthermore, MAT alpha pol4 delta segregants had a higher frequency of illegitimate mating with a MAT alpha tester strain than that of wild-type cells. These results suggest that DNA polymerase IV participates in a double-strand break repair pathway. A 3.2kb of the POL4 transcript was weakly expressed in mitotically growing cells. During meiosis, a 2.2 kb POL4 transcript was greatly induced, while the 3.2 kb transcript stayed at constant levels. This induction was delayed in a swi4 delta strain during meiosis, while no effect was observed in a swi6 delta strain.

  17. Genome-wide mapping of the cohesin complex in the yeast Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Earl F Glynn

    2004-09-01

    Full Text Available In eukaryotic cells, cohesin holds sister chromatids together until they separate into daughter cells during mitosis. We have used chromatin immunoprecipitation coupled with microarray analysis (ChIP chip to produce a genome-wide description of cohesin binding to meiotic and mitotic chromosomes of Saccharomyces cerevisiae. A computer program, PeakFinder, enables flexible, automated identification and annotation of cohesin binding peaks in ChIP chip data. Cohesin sites are highly conserved in meiosis and mitosis, suggesting that chromosomes share a common underlying structure during different developmental programs. These sites occur with a semiperiodic spacing of 11 kb that correlates with AT content. The number of sites correlates with chromosome size; however, binding to neighboring sites does not appear to be cooperative. We observed a very strong correlation between cohesin sites and regions between convergent transcription units. The apparent incompatibility between transcription and cohesin binding exists in both meiosis and mitosis. Further experiments reveal that transcript elongation into a cohesin-binding site removes cohesin. A negative correlation between cohesin sites and meiotic recombination sites suggests meiotic exchange is sensitive to the chromosome structure provided by cohesin. The genome-wide view of mitotic and meiotic cohesin binding provides an important framework for the exploration of cohesins and cohesion in other genomes.

  18. Nucleotide-excision repair of DNA in cell-free extracts of the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    A wide spectrum of DNA lesions are repaired by the nucleotide-excision repair (NER) pathway in both eukaryotic and prokaryotic cells. We have developed a cell-free system in Saccharomyces cerevisiae that supports NER. NER was monitored by measuring repair synthesis in DNA treated with cisplatin or with UV radiation. Repair synthesis in vitro was defective in extracts of rad1, rad2, and rad10 mutant cells, all of which have mutations in genes whose products are known to be required for NER in vivo. Additionally, repair synthesis was complemented by mixing different mutant extracts, or by adding purified Rad1 or Rad10 protein to rad1 or rad10 mutant extracts, respectively. The latter observation demonstrates that the Rad1 and Rad10 proteins directly participate in the biochemical pathway of NER. NER supported by nuclear extracts requires ATP and Mg2+ and is stimulated by polyethylene glycol and by small amounts of whole cell extract containing overexpressed Rad2 protein. The nuclear extracts also contain base-excision repair activity that is present at wild-type levels in rad mutant extracts. This cell-free system is expected to facilitate studies on the biochemical pathway of NER in S. cerevisiae

  19. Transcription coupled nucleotide excision repair in the yeast Saccharomyces cerevisiae: The ambiguous role of Rad26.

    Science.gov (United States)

    Li, Shisheng

    2015-12-01

    Transcription coupled nucleotide excision repair (TC-NER) is believed to be triggered by an RNA polymerase stalled at a lesion in the transcribed strand of actively transcribed genes. Rad26, a DNA-dependent ATPase in the family of SWI2/SNF2 chromatin remodeling proteins, plays an important role in TC-NER in Saccharomyces cerevisiae. However, Rad26 is not solely responsible for TC-NER and Rpb9, a nonessential subunit of RNA polymerase II (RNAP II), is largely responsible for Rad26-independent TC-NER. The Rad26-dependent and Rpb9-dependent TC-NER have different efficiencies in genes with different transcription levels and in different regions of a gene. Rad26 becomes entirely or partially dispensable for TC-NER in the absence of Rpb4, another nonessential subunit of RNAP II, or a number of transcription elongation factors (Spt4, Spt5 and the RNAP II associated factor complex). Rad26 may not be a true transcription-repair coupling factor that recruits the repair machinery to the damaged sites where RNAP II stalls. Rather, Rad26 may facilitate TC-NER indirectly, by antagonizing the action of TC-NER repressors that normally promote transcription elongation. The underlying mechanism of how Rad26 functions in TC-NER remains to be elucidated.

  20. Evidence for the presence of phospholipase A1 in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    The cause of the autolysis of pressed Baker's yeast was examined. Softened pressed yeast cells (Saccharomyces cerevisiae), after about 10 days of storage at 30 deg C, was subjected to a series of extraction: the extraction with acetone was made to the supernatant after the centrifugation of the water-suspended yeast cell at 1000 x g for 10 min, and the obtained precipitation was mechanically (with a Potter teflon homogenizer) homogenized. After removing the residues by centrifugation, the protein was salted out with ammonium sulfate up to 0.6 saturation. An enzyme, phospholipase A1 was thus obtained from the softened yeast cells. The activity of the enzyme thus obtained was assayed using L-α-phosphatidylethanolamine as the substrate. It was previously found that 14C-labelled free fatty acids liberated from phosphatidylcholine (PC) accumulated in the softened yeast packed cake. The enzyme was identified as phospholipase A1 having the optimal pH at around 8. Another evidence, obtained previously, together with the present finding suggest that the softening of the pressed Baker's yeast may be caused by the degradation of phospholipid by the combined action of phospholipase A1 and lysophospholipase L2. (Yamashita, S.)

  1. Yeast redoxyendonuclease, a DNA repair enzyme similar to Escherichia coli endonuclease III

    Energy Technology Data Exchange (ETDEWEB)

    Gossett, J.; Lee, K.; Cunningham, R.P.; Doetsch, P.W.

    1988-04-05

    A DNA repair endonuclease (redoxyendonuclease) was isolated from bakers' yeast (Saccharomyces cerevisiae). The enzyme has been purified by a series of column chromatography steps and cleaves OsO/sub 4/-damaged, double-stranded DNA at sites of thymine glycol and heavily UV-irradiated DNA at sites of cytosine, thymine, and guanine photoproducts. The base specificity and mechanism of phosphodiester bond cleavage for the yeast redoxyendonuclease appear to be identical with those of Escherichia coli endonuclease III when thymine glycol containing, end-labeled DNA fragments of defined sequence are employed as substrates. Yeast redoxyendonuclease has an apparent molecular size of 38,000-42,000 daltons and is active in the absence of divalent metal cations. The identification of such an enzyme in yeast may be of value in the elucidation of the biochemical basis for radiation sensitivity in certain yeast mutants.

  2. Trehalose levels and survival ratio of freeze-tolerant versus freeze-sensitive yeasts.

    Science.gov (United States)

    Hino, A; Mihara, K; Nakashima, K; Takano, H

    1990-05-01

    Five freeze-tolerant yeast strains suitable for frozen dough were compared with ordinary commercial bakers' yeast. Kluyveromyces thermotolerans FRI 501 cells showed high survival ability after freezing when their resting cells were fermented for 0 to 180 min in modified liquid medium, and they grew to log and stationary phases. Among the freeze-tolerant strains of Saccharomyces cerevisiae, FRI 413 and FRI 869 showed higher surviving and trehalose-accumulating abilities than other S. cerevisiae strains, but were affected by a prolonged prefermentation period and by growth phases. The freeze tolerance of the yeasts was, to some extent, associated with the basal amount of intracellular trehalose after rapid degradation at the onset of the prefermentation period. In the freeze-sensitive yeasts, the degree of hydrolysis of trehalose may thus be affected by the kind of saccharide, unlike in freeze-tolerant yeasts. PMID:2339891

  3. Radiation-induced mating-type switching in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Luggen-Hölscher, J; Kiefer, J

    1988-09-01

    Haploid yeast cells possess two different mating types which are controlled genetically by the MAT locus. Information of the opposite mating type is stored on the same chromosome but not expressed. Radiation may initiate a gene conversion event leading to 'mating-type switching'. This was studied by using X-rays and 254 nm ultraviolet light. X-ray-induced mating type switching shows an oxygen enhancement ratio of 2.9 which is higher than that for survival (1.8) and equals that for double-strand break induction. Mating-type switching by UV is not photoreactivable and depends on a functioning excision repair system. The results are compatible with the interpretation that mating type switching is initiated by a double-strand break in the MAT coding region.

  4. [Hybridization of cells of the same mating type in Saccharomyces yeasts].

    Science.gov (United States)

    Inge-Vechtomov, S G; Repnevskaia, M V; Karpova, T S

    1986-11-01

    The problem of mating-type switches in heterothallic yeast cells was investigated. 93% of non-mating hybrids were obtained in a X a crosses. The hybrids obtained in alpha X alpha crosses expressed alpha-mating type predominantly. Hybrids with no major rearrangements or loss of chromosome III were detected among these hybrids. In the selective system for cytoduction in a X a crosses the significant part of all cytoductants were alpha-maters, i.e. those originated through a----alpha switches. In alpha X alpha crosses alpha cytoductants were predominantly obtained either spontaneously or after UV-irradiation, though the frequency of cytoductants after UV-irradiation exceeded the control value several times. So, we developed the method for selection of mating-type "switchers" (a in equilibrium alpha), avoiding the diploid stage, and demonstrated the possibility of hybridization among the alpha-cells without hereditary changes at the MAT locus.

  5. Drug resistance is conferred on the model yeast Saccharomyces cerevisiae by expression of full-length melanoma-associated human ATP-binding cassette transporter ABCB5.

    Science.gov (United States)

    Keniya, Mikhail V; Holmes, Ann R; Niimi, Masakazu; Lamping, Erwin; Gillet, Jean-Pierre; Gottesman, Michael M; Cannon, Richard D

    2014-10-01

    ABCB5, an ATP-binding cassette (ABC) transporter, is highly expressed in melanoma cells, and may contribute to the extreme resistance of melanomas to chemotherapy by efflux of anti-cancer drugs. Our goal was to determine whether we could functionally express human ABCB5 in the model yeast Saccharomyces cerevisiae, in order to demonstrate an efflux function for ABCB5 in the absence of background pump activity from other human transporters. Heterologous expression would also facilitate drug discovery for this important target. DNAs encoding ABCB5 sequences were cloned into the chromosomal PDR5 locus of a S. cerevisiae strain in which seven endogenous ABC transporters have been deleted. Protein expression in the yeast cells was monitored by immunodetection using both a specific anti-ABCB5 antibody and a cross-reactive anti-ABCB1 antibody. ABCB5 function in recombinant yeast cells was measured by determining whether the cells possessed increased resistance to known pump substrates, compared to the host yeast strain, in assays of yeast growth. Three ABCB5 constructs were made in yeast. One was derived from the ABCB5-β mRNA, which is highly expressed in human tissues but is a truncation of a canonical full-size ABC transporter. Two constructs contained full-length ABCB5 sequences: either a native sequence from cDNA or a synthetic sequence codon-harmonized for S. cerevisiae. Expression of all three constructs in yeast was confirmed by immunodetection. Expression of the codon-harmonized full-length ABCB5 DNA conferred increased resistance, relative to the host yeast strain, to the putative substrates rhodamine 123, daunorubicin, tetramethylrhodamine, FK506, or clorgyline. We conclude that full-length ABCB5 can be functionally expressed in S. cerevisiae and confers drug resistance.

  6. Characterization of oligosaccharides from an antigenic mannan of Saccharomyces cerevisiae.

    Science.gov (United States)

    Young, M; Davies, M J; Bailey, D; Gradwell, M J; Smestad-Paulsen, B; Wold, J K; Barnes, R M; Hounsell, E F

    1998-08-01

    Mannans of the yeast Saccharomyces cerevisiae have been implicated as containing the allergens to which bakers and brewers are sensitive and also the antigen recognized by patients with Crohn's disease. A fraction of S. cerevisiae mannan, Sc500, having high affinity for antibodies in Crohn's patients has been characterized by NMR spectroscopy followed by fragmentation using alkaline elimination, partial acid hydrolysis and acetolysis. The released oligosaccharides were separated by gel filtration on a Biogel P4 column and analyzed by fluorescence labeling, HPLC and methylation analysis. The relationship between structure and antigen activity was measured by competitive ELISA. The antigenic activity of the original high molecular weight mannan could be ascribed to terminal Manalpha1-->3Manalpha1-->2 sequences which are rarely found in human glycoproteins but were over-represented in Sc500 compared to other yeast mannans.

  7. Novel E3 ubiquitin ligases that regulate histone protein levels in the budding yeast Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Rakesh Kumar Singh

    Full Text Available Core histone proteins are essential for packaging the genomic DNA into chromatin in all eukaryotes. Since multiple genes encode these histone proteins, there is potential for generating more histones than what is required for chromatin assembly. The positively charged histones have a very high affinity for negatively charged molecules such as DNA, and any excess of histone proteins results in deleterious effects on genomic stability and cell viability. Hence, histone levels are known to be tightly regulated via transcriptional, posttranscriptional and posttranslational mechanisms. We have previously elucidated the posttranslational regulation of histone protein levels by the ubiquitin-proteasome pathway involving the E2 ubiquitin conjugating enzymes Ubc4/5 and the HECT (Homologous to E6-AP C-Terminus domain containing E3 ligase Tom1 in the budding yeast. Here we report the identification of four additional E3 ligases containing the RING (Really Interesting New Gene finger domains that are involved in the ubiquitylation and subsequent degradation of excess histones in yeast. These E3 ligases are Pep5, Snt2 as well as two previously uncharacterized Open Reading Frames (ORFs YKR017C and YDR266C that we have named Hel1 and Hel2 (for Histone E3 Ligases respectively. Mutants lacking these E3 ligases are sensitive to histone overexpression as they fail to degrade excess histones and accumulate high levels of endogenous histones on histone chaperones. Co-immunoprecipitation assays showed that these E3 ligases interact with the major E2 enzyme Ubc4 that is involved in the degradation related ubiquitylation of histones. Using mutagenesis we further demonstrate that the RING domains of Hel1, Hel2 and Snt2 are required for histone regulation. Lastly, mutants corresponding to Hel1, Hel2 and Pep5 are sensitive to replication inhibitors. Overall, our results highlight the importance of posttranslational histone regulatory mechanisms that employ multiple E3

  8. VID22 is required for transcriptional activation of the PSD2 gene in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Miyata, Non; Miyoshi, Takuya; Yamaguchi, Takanori; Nakazono, Toshimitsu; Tani, Motohiro; Kuge, Osamu

    2015-12-15

    Phosphatidylethanolamine (PE) in the yeast Saccharomyces cerevisiae is synthesized through decarboxylation of phosphatidylserine (PS), catalysed by PS decarboxylase 1 (Psd1p) and 2 (Psd2p) and the cytidine 5'-diphosphate (CDP)-ethanolamine (CDP-Etn) pathway. PSD1 null (psd1Δ) and PSD2 null (psd2Δ) mutants are viable in a synthetic minimal medium, but a psd1Δ psd2Δ double mutant exhibits Etn auxotrophy, which is incorporated into PE through the CDP-Etn pathway. We have previously shown that psd1Δ is synthetic lethal with deletion of VID22 (vid22Δ) [Kuroda et al. (2011) Mol. Microbiol. 80: , 248-265]. In the present study, we found that vid22Δ mutant exhibits Etn auxotrophy under PSD1-depressed conditions. Deletion of VID22 in wild-type and PSD1-depressed cells caused partial defects in PE formation through decarboxylation of PS. The enzyme activity of PS decarboxylase in an extract of vid22Δ cells was ∼70% of that in wild-type cells and similar to that in psd2Δ cells and the PS decarboxylase activity remaining in the PSD1-depressed cells became almost negligible with deletion of VID22. Thus, the vid22Δ mutation was suggested to cause a defect in the Psd2p activity. Furthermore, vid22Δ cells were shown to be defective in expression of the PSD2 gene tagged with 6×HA, the defect being ameliorated by replacement of the native promoter of the PSD2 gene with a CYC1 promoter. In addition, an α-galactosidase reporter assay revealed that the activity of the promoter of the PSD2 gene in vid22Δ cells was ∼5% of that in wild-type cells. These results showed that VID22 is required for transcriptional activation of the PSD2 gene.

  9. Biological methylation of inorganic mercury by Saccharomyces cerevisiae - a possible environmental process

    Energy Technology Data Exchange (ETDEWEB)

    Reisinger, K.; Stoeppler, M.; Nuernberg, H.W.

    1983-11-01

    The biological methylation of inorganic mercury by S-adenosylmethione (SAM) was investigated by incubation experiments with Saccharomyces cerevisae (''bakers' yeast''). The methyl donor (methionine) and the acceptor (Hg/sup 2 +/ as HgCl/sub 2/) were also applied in their labelled form (double labelling). Methylmercury as a result of a possibly biological methyl group transfer could not be detected. As reaction product only small amounts (0.01per mille yield) of elemental mercury (Hg/sup 0/) were found, while the overwhelming amount of HgCl/sub 2/ had not reacted.

  10. Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Jakociunas, Tadas; Bonde, Ida; Herrgard, Markus;

    2015-01-01

    CRISPR/Cas9 is a simple and efficient tool for targeted and marker-free genome engineering. Here, we report the development and successful application of a multiplex CRISPR/Cas9 system for genome engineering of up to 5 different genomic loci in one transformation step in baker's yeast Saccharomyces...... cerevisiae. To assess the specificity of the tool we employed genome re-sequencing to screen for off-target sites in all single knock-out strains targeted by different gRNAs. This extensive analysis identified no more genome variants in CRISPR/Cas9 engineered strains compared to wild-type reference strains...

  11. Engineering the pentose phosphate pathway of Saccharomyces cerevisiae for production of ethanol and xylitol

    OpenAIRE

    Toivari, Mervi

    2007-01-01

    The baker s yeast Saccharomyces cerevisiae has a long tradition in alcohol production from D-glucose of e.g. starch. However, without genetic modifications it is unable to utilise the 5-carbon sugars D-xylose and L arabinose present in plant biomass. In this study, one key metabolic step of the catabolic D-xylose pathway in recombinant D-xylose-utilising S. cerevisiae strains was studied. This step, carried out by xylulokinase (XK), was shown to be rate-limiting, because overexpression of the...

  12. Phenotypic expression of primary lesions of genetic material in Saccharomyces yeasts.

    Science.gov (United States)

    Inge-Vechtomov, S G; Repnevskaya, M V

    1989-01-01

    "Illegitimate" mating of yeasts (alpha x alpha), either spontaneous or induced by uv light or ethyl methanesulfanate, in a selective system for "cytoduction" revealed that about 95% of cytoductants expressed their original (alpha) mating type. Inducing the mating by treating the recipient of cytoplasm with uv light reached two orders of magnitude. An additional copy of MAT alpha in the alpha recipient almost completely eliminated the effect, which means that nonheritable mating type changes observed are formally recessive and are localized within MAT alpha complex. About 1% of cytoductants obtained were nonmating types and some of them were identified as mat alpha l mutants. Radl8 mutant as a recipient showed a considerably elevated spontaneous frequency of illegitimate hybridization and cytoduction. The cytoductants also preserved the original mating type. These facts suggest that nonheritable changes of mating type are due to repairable primary (premutational) lesions in MAT alpha genetic material. The significance of these results for understanding the mechanism of nonheritable variability is discussed.

  13. a/alpha-control of DNA repair in the yeast Saccharomyces cerevisiae: genetic and physiological aspects.

    Science.gov (United States)

    Heude, M; Fabre, F

    1993-03-01

    It has long been known that diploid strains of yeast are more resistant to gamma-rays than haploid cells, and that this is in part due to heterozygosity at the mating type (MAT) locus. It is shown here that the genetic control exerted by the MAT genes on DNA repair involves the a1 and alpha 2 genes, in a RME1-independent way. In rad18 diploids, affected in the error-prone repair, the a/alpha effects are of a very large amplitude, after both UV and gamma-rays, and also depends on a1 and alpha 2. The coexpression of a and alpha in rad18 haploids suppresses the sensitivity of a subpopulation corresponding to the G2 phase cells. Related to this, the coexpression of a and alpha in RAD+ haploids depresses UV-induced mutagenesis in G2 cells. For srs2 null diploids, also affected in the error-prone repair pathway, we show that their G1 UV sensitivity, likely due to lethal recombination events, is partly suppressed by MAT homozygosity. Taken together, these results led to the proposal that a1-alpha 2 promotes a channeling of some DNA structures from the mutagenic into the recombinational repair process.

  14. L-carnosine enhanced reproductive potential of the Saccharomyces cerevisiae yeast growing on medium containing glucose as a source of carbon.

    Science.gov (United States)

    Kwolek-Mirek, Magdalena; Molon, Mateusz; Kaszycki, Pawel; Zadrag-Tecza, Renata

    2016-08-01

    Carnosine is an endogenous dipeptide composed of β-alanine and L-histidine, which occurs in vertebrates, including humans. It has a number of favorable properties including buffering, chelating, antioxidant, anti-glycation and anti-aging activities. In our study we used the Saccharomyces cerevisiae yeast as a model organism to examine the impact of L-carnosine on the cell lifespan. We demonstrated that L-carnosine slowed down the growth and decreased the metabolic activity of cells as well as prolonged their generation time. On the other hand, it allowed for enhancement of the yeast reproductive potential and extended its reproductive lifespan. These changes may be a result of the reduced mitochondrial membrane potential and decreased ATP content in the yeast cells. However, due to reduction of the post-reproductive lifespan, L-carnosine did not have an influence on the total lifespan of yeast. In conclusion, L-carnosine does not extend the total lifespan of S. cerevisiae but rather it increases the yeast's reproductive capacity by increasing the number of daughter cells produced. PMID:27040824

  15. Production of intracellular enzymes by enzymatic treatment of yeast

    Energy Technology Data Exchange (ETDEWEB)

    Zomer, E.; Er-El, Z.; Rokem, J.S.

    1987-01-01

    Enzymatic extraction of intracellular enzymes from various yeasts by glucanase was investigated. Favourable conditions for lysis and release of intracellular enzymes were established. The effects of yeast concentration, growth phase of yeast, storage temperature and pretreatment of yeast were studied. The yeasts investigated can be divided into two groups. The first, Kluyveromyces lactis, Saccharomyces cerevisiae, Saccharomyces oviformis, Torulopsis glabrata, Hansenula polymorpha and local bakers' yeast, lysed relatively easily (70-80% of the cells), especially when cells from the logarithmic growth phase were treated. The second, Candida utilis and Candida vini, were more susceptible to lysis (40-50%) when cells were taken from the stationary phase. Release of two enzymes, glycerol kinase from Candida utilis grown on glycerol and formate dehydrogenase from Torulopsis glabrata grown on methanol was examined. The highest specific activities were obtained by incubating the cells with glucanase for 1.5 hours at 37 degrees C. Inactivation of the released enzyme was relatively low. After 12 hours of enzymatic treatment at 28 degrees C glycerol kinase maintained about 50%, and formate dehydrogenase over 80%, of the original activities. (Refs. 12).

  16. A Thermodynamic Model of Monovalent Cation Homeostasis in the Yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Gerber, Susanne; Fröhlich, Martina; Lichtenberg-Fraté, Hella; Shabala, Sergey; Shabala, Lana; Klipp, Edda

    2016-01-01

    Cationic and heavy metal toxicity is involved in a substantial number of diseases in mammals and crop plants. Therefore, the understanding of tightly regulated transporter activities, as well as conceiving the interplay of regulatory mechanisms, is of substantial interest. A generalized thermodynamic description is developed for the complex interplay of the plasma membrane ion transporters, membrane potential and the consumption of energy for maintaining and restoring specific intracellular cation concentrations. This concept is applied to the homeostasis of cation concentrations in the yeast cells of S. cerevisiae. The thermodynamic approach allows to model passive ion fluxes driven by the electrochemical potential differences, but also primary or secondary active transport processes driven by the inter- play of different ions (symport, antiport) or by ATP consumption (ATPases). The model-confronted with experimental data-reproduces the experimentally observed potassium and proton fluxes induced by the external stimuli KCl and glucose. The estimated phenomenological constants combine kinetic parameters and transport coefficients. These are in good agreement with the biological understanding of the transporters thus providing a better understanding of the control exerted by the coupled fluxes. The model predicts the flux of additional ion species, like e.g. chloride, as a potential candidate for counterbalancing positive charges. Furthermore, the effect of a second KCl stimulus is simulated, predicting a reduced cellular response for cells that were first exposed to a high KCl stimulus compared to cells pretreated with a mild KCl stimulus. By describing the generalized forces that are responsible for a given flow, the model provides information and suggestions for new experiments. Furthermore, it can be extended to other systems such as e.g. Candida albicans, or selected plant cells.

  17. A Thermodynamic Model of Monovalent Cation Homeostasis in the Yeast Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Susanne Gerber

    2016-01-01

    Full Text Available Cationic and heavy metal toxicity is involved in a substantial number of diseases in mammals and crop plants. Therefore, the understanding of tightly regulated transporter activities, as well as conceiving the interplay of regulatory mechanisms, is of substantial interest. A generalized thermodynamic description is developed for the complex interplay of the plasma membrane ion transporters, membrane potential and the consumption of energy for maintaining and restoring specific intracellular cation concentrations. This concept is applied to the homeostasis of cation concentrations in the yeast cells of S. cerevisiae. The thermodynamic approach allows to model passive ion fluxes driven by the electrochemical potential differences, but also primary or secondary active transport processes driven by the inter- play of different ions (symport, antiport or by ATP consumption (ATPases. The model-confronted with experimental data-reproduces the experimentally observed potassium and proton fluxes induced by the external stimuli KCl and glucose. The estimated phenomenological constants combine kinetic parameters and transport coefficients. These are in good agreement with the biological understanding of the transporters thus providing a better understanding of the control exerted by the coupled fluxes. The model predicts the flux of additional ion species, like e.g. chloride, as a potential candidate for counterbalancing positive charges. Furthermore, the effect of a second KCl stimulus is simulated, predicting a reduced cellular response for cells that were first exposed to a high KCl stimulus compared to cells pretreated with a mild KCl stimulus. By describing the generalized forces that are responsible for a given flow, the model provides information and suggestions for new experiments. Furthermore, it can be extended to other systems such as e.g. Candida albicans, or selected plant cells.

  18. Novel starters for old processes: use of Saccharomyces cerevisiae strains isolated from artisanal sourdough for craft beer production at a brewery scale.

    Science.gov (United States)

    Marongiu, Antonella; Zara, Giacomo; Legras, Jean-Luc; Del Caro, Alessandra; Mascia, Ilaria; Fadda, Costantino; Budroni, Marilena

    2015-01-01

    The deliberate inoculation of yeast strains isolated from food matrices such as wine or bread, could allow the transfer of novel properties to beer. In this work, the feasibility of the use of baker's yeast strains as starters for craft beer production has been evaluated at laboratory and brewery scale. Nine out of 12 Saccharomyces cerevisiae strains isolated from artisanal sourdoughs metabolized 2 % maltose, glucose and trehalose and showed growth rates and cell populations higher than those of the brewer's strain Safbrew-S33. Analysis of allelic variation at 12 microsatellite loci clustered seven baker's strains and Safbrew-S33 in the main group of bread isolates. Chemical analyses of beers produced at a brewery scale showed significant differences among the beers produced with the baker's strain S38 or Safbrew-S33, while no significant differences were observed when S38 or the brewer's strain Safbrew-F2 was used for re-fermentation. The sensory profile of beers obtained with S38 or the brewer's yeasts did not show significant differences, thus suggesting that baker's strains of S. cerevisiae could represent a reservoir of biodiversity for the selection of starter strains for craft beer production. PMID:25387611

  19. The resistance of the yeast Saccharomyces cerevisiae to the biocide polyhexamethylene biguanide: involvement of cell wall integrity pathway and emerging role for YAP1

    Directory of Open Access Journals (Sweden)

    de Morais Marcos A

    2011-08-01

    Full Text Available Abstract Background Polyhexamethylene biguanide (PHMB is an antiseptic polymer that is mainly used for cleaning hospitals and pools and combating Acantamoeba infection. Its fungicide activity was recently shown by its lethal effect on yeasts that contaminate the industrial ethanol process, and on the PE-2 strain of Saccharomyces cerevisiae, one of the main fermenting yeasts in Brazil. This pointed to the need to know the molecular mechanism that lay behind the cell resistance to this compound. In this study, we examined the factors involved in PHMB-cell interaction and the mechanisms that respond to the damage caused by this interaction. To achieve this, two research strategies were employed: the expression of some genes by RT-qPCR and the analysis of mutant strains. Results Cell Wall integrity (CWI genes were induced in the PHMB-resistant Saccharomyces cerevisiae strain JP-1, although they are poorly expressed in the PHMB-sensitive Saccharomyces cerevisiae PE2 strain. This suggested that PHMB damages the glucan structure on the yeast cell wall. It was also confirmed by the observed sensitivity of the yeast deletion strains, Δslg1, Δrom2, Δmkk2, Δslt2, Δknr4, Δswi4 and Δswi4, which showed that the protein kinase C (PKC regulatory mechanism is involved in the response and resistance to PHMB. The sensitivity of the Δhog1 mutant was also observed. Furthermore, the cytotoxicity assay and gene expression analysis showed that the part played by YAP1 and CTT1 genes in cell resistance to PHMB is unrelated to oxidative stress response. Thus, we suggested that Yap1p can play a role in cell wall maintenance by controlling the expression of the CWI genes. Conclusion The PHMB treatment of the yeast cells activates the PKC1/Slt2 (CWI pathway. In addition, it is suggested that HOG1 and YAP1 can play a role in the regulation of CWI genes.

  20. Signaling of chloroquine-induced stress in the yeast Saccharomyces cerevisiae requires the Hog1 and Slt2 mitogen-activated protein kinase pathways.

    Science.gov (United States)

    Baranwal, Shivani; Azad, Gajendra Kumar; Singh, Vikash; Tomar, Raghuvir S

    2014-09-01

    Chloroquine (CQ) has been under clinical use for several decades, and yet little is known about CQ sensing and signaling mechanisms or about their impact on various biological pathways. We employed the budding yeast Saccharomyces cerevisiae as a model organism to study the pathways targeted by CQ. Our screening with yeast mutants revealed that it targets histone proteins and histone deacetylases (HDACs). Here, we also describe the novel role of mitogen-activated protein kinases Hog1 and Slt2, which aid in survival in the presence of CQ. Cells deficient in Hog1 or Slt2 are found to be CQ hypersensitive, and both proteins were phosphorylated in response to CQ exposure. CQ-activated Hog1p is translocated to the nucleus and facilitates the expression of GPD1 (glycerol-3-phosphate dehydrogenase), which is required for the synthesis of glycerol (one of the major osmolytes). Moreover, cells treated with CQ exhibited an increase in intracellular reactive oxygen species (ROS) levels and the effects were rescued by addition of reduced glutathione to the medium. The deletion of SOD1, the superoxide dismutase in yeast, resulted in hypersensitivity to CQ. We have also observed P38 as well as P42/44 phosphorylation in HEK293T human cells upon exposure to CQ, indicating that the kinds of responses generated in yeast and human cells are similar. In summary, our findings define the multiple biological pathways targeted by CQ that might be useful for understanding the toxicity modulated by this pharmacologically important molecule.

  1. Yeasts isolated from Algerian infants's feces revealed a burden of Candida albicans species, non-albicans Candida species and Saccharomyces cerevisiae.

    Science.gov (United States)

    Seddik, Hamza Ait; Ceugniez, Alexandre; Bendali, Farida; Cudennec, Benoit; Drider, Djamel

    2016-01-01

    This study aimed at showing the yeast diversity in feces of Algerian infants, aged between 1 and 24 months, hospitalized at Bejaia hospital (northeast side of the country). Thus, 20 colonies with yeast characteristics were isolated and identified using biochemical (ID32C Api system) and molecular (sequencing of ITS1-5.8S-ITS2 region) methods. Almost all colonies isolated (19 strains) were identified as Candida spp., with predominance of Candida albicans species, and one strain was identified as Saccharomyces cerevisiae. Screening of strains with inhibitory activities unveiled the potential of Candida parapsilosis P48L1 and Candida albicans P51L1 to inhibit the growth of Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923. Further studies performed with these two Candida strains revealed their susceptibility to clinically used antifungal compounds and were then characterized for their cytotoxicity and hemolytic properties. On the other hand, Saccharomyces cerevisiae P9L1 isolated as well in this study was shown to be devoid of antagonism but resulted safe and overall usable as probiotic.

  2. Pleiotropic effects of heterozygosity at the mating-type locus of the yeast Saccharomyces cerevisiae on repair, recombination and transformation.

    Science.gov (United States)

    Durand, J; Birdsell, J; Wills, C

    1993-12-01

    Sexual (MAT a/alpha) and asexual (MAT a/a) strains of the yeast Saccharomyces cerevisiae, which are completely isogenic except at the MAT locus, were compared in their response to ultraviolet radiation. The effects of UV on survival, mitotic intragenic recombination, photoreactivation, and transformation efficiency with UV-irradiated plasmid DNA were examined. The sexual strain had enhanced survival and higher rates of mitotic intragenic recombination compared with the asexual strain. Exposure to visible light subsequent to irradiation increased the survival of both sexual and asexual strains, and decreased their rates of mitotic intragenic recombination. Similar results were obtained by Haladus and Zuk (1980) in their examination of sexual strains homozygous for rad6-1, and wild-type sexuals. Our sexual strain was also consistently more proficient at transforming plasmid DNA, whether that DNA had been irradiated or not. When pre-irradiated with 25 J/m2 of UV, MAT a/alpha cells transformed more efficiently than MAT a/a cells. When subsequently exposed to light, the ability of these pre-irradiated cells to transform decreased for both strains with increasing irradiation of the plasmid. A smaller decrease in transformation efficiency occurred when cells of both strains were kept in the dark. When pre-irradiated with 100 J/m2, the MAT a/alpha cells showed a 2-fold increase in their transformation efficiency of both irradiated and unirradiated plasmids by up to 2-fold, a phenomenon not seen in the MAT a/a cells even when pre-irradiated with much higher doses of UV. This increase in transformation efficiency was not, however, seen in the MAT a/alpha cells when they were exposed to visible light after UV irradiation. These results suggest that cells with the MAT a/alpha genotype have a UV-inducible system that increases the efficiency of transformation in the absence of visible light. This increase in transformation is not an induced increase in the repair of plasmid DNA

  3. SFH2 regulates fatty acid synthase activity in the yeast Saccharomyces cerevisiae and is critical to prevent saturated fatty acid accumulation in response to haem and oleic acid depletion

    OpenAIRE

    Desfougères, Thomas; Ferreira, Thierry; Bergès, Thierry; Régnacq, Matthieu

    2007-01-01

    Abstract The yeast Saccharomyces cerevisiae is a facultative anaerobic organism. In anaerobiosis, sustained growth relies on the presence of exogenously supplied unsaturated fatty acids and ergosterol that yeast is unable to synthesize in the absence of oxygen or upon haem depletion. In the absence of exogenous supplementation with unsaturated fatty acid, a net accumulation of saturated fatty acid (SFA) is observed that induces significant modification of phospholipid profile [1]. ...

  4. 40 CFR 180.1246 - Yeast Extract Hydrolysate from Saccharomyces cerevisiae: exemption from the requirement of a...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Yeast Extract Hydrolysate from... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1246 Yeast Extract Hydrolysate from... exemption from the requirement of a tolerance for residues of the biochemical pesticide Yeast...

  5. Direct Cloning of Yeast Genes from an Ordered Set of Lambda Clones in Saccharomyces Cerevisiae by Recombination in Vivo

    OpenAIRE

    Erickson, J. R.; Johnston, M

    1993-01-01

    We describe a technique that facilitates the isolation of yeast genes that are difficult to clone. This technique utilizes a plasmid vector that rescues lambda clones as yeast centromere plasmids. The source of these lambda clones is a set of clones whose location in the yeast genome has been determined by L. Riles et al. in 1993. The Esherichia coli-yeast shuttle plasmid carries URA3, ARS4 and CEN6, and contains DNA fragments from the lambda vector that flank the cloned yeast insert. When ye...

  6. Overexpression of O‐methyltransferase leads to improved vanillin production in baker's yeast only when complemented with model‐guided network engineering

    DEFF Research Database (Denmark)

    Brochado, Ana Rita; Patil, Kiran R.

    2013-01-01

    limited in eukaryotic systems. In this study, we compared the effects of overexpressing a key gene in de novo vanillin biosynthesis (coding for O‐methyltransferase, hsOMT) in two yeast strains, with and without model‐guided global network modifications. Overexpression of hsOMT resulted in increased...... vanillin production only in the strain with model‐guided modifications, exemplifying advantage of using a global strategy prior to local pathway manipulation. Biotechnol. Bioeng. 2013; 110: 656–659. © 2012 Wiley Periodicals, Inc....

  7. Effect of in vitro digested cod liver oil of different quality on oxidative, proteomic and inflammatory responses in the yeast Saccharomyces cerevisiae and human monocyte-derived dendritic cells

    DEFF Research Database (Denmark)

    Larsson, Karin; Istenič, Katja; Wulff, Tune;

    2015-01-01

    digested fresh and oxidised cod liver oils in vitro, monitored the levels of lipid peroxidation products and evaluated oxidative, proteomic and inflammatory responses to the two types of digests in the yeast Saccharomyces cerevisiae and human monocyte-derived dendritic cells. RESULTS: Digests of cod liver...

  8. Produção de álcoois superiores por linhagens de Saccharomyces durante a fermentação alcoólica Production of higher alcohols by Saccharomyces strains during alcoholic fermentation

    Directory of Open Access Journals (Sweden)

    L.E. Gutierrez

    1993-12-01

    Full Text Available A produção de álcoois superiores pelas leveduras Saccharomyces cerevisiae M-300-A, Saccharomyces uvarum IZ-1904 e levedura de panificação (Saccharomyces cerevisiae foi estudada em diversas condições de temperatura, concentração de sacarose, pH, fontes de nitrogênio e com inibidor 2-4 dinitrofenol (DNP. Em todas as condições estudadas, a levedura Saccharomyces uvarum IZ-1904 apresentou a menor formação de álcoois superiores enquanto a levedura de panifícação apresentou os teores mais elevados. Com o aumento de temperatura e da concentração de sacarose ocorreu maior formação de álcool isoamílico pelas leveduras estudadas. Em pH 4,5 ocorreu menor produção de álcoois superiores do que em pH 3,0. Na presença do inibidor DNP ocorreu significativa redução (pThe production of higher alcohols by Saccharomyces cerevisiae M-300-A, Saccharomyces uvarum IZ-1904 and baker's yeast (5. cerevisiae was studied under several temperature conditions, sucrose level, pH, nitrogen sources and with 2-4 dinitrophenol (DNP. The yeast IZ-1904 showed lower production of higher alcohols than other yeasts in all conditions studied. With the increase of temperature and higher level of sucrose an increase of isoamyl alcohol production was observed. A lower formation of higher alcohols was observed at pH 4.5 than at pH 3.0. With the addition of DNP occurred a significant reduction in isoamyl alcohol content. The yeasts did not show the sanie production of higher alcohols in relation to urea and ammonium sulfate.

  9. D-xylulose fermentation to ethanol by Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, L.C.; Gong, C.S.; Chen, L.F.; Tsao, G.T.

    1981-08-01

    Commercial bakers' yeast (Saccharomyces cerevisiae) was used to study the conversion of D-xylulose to ethanol in the presence of D-xylose. The rate of ethanol production increased with an increase in yeast cell density. The optimal temperature for D-xylulose fermentation was 35 degrees Celcius, and the optimal pH range was 4 to 6. The fermentation of D-xylulose by yeast resulted in the production of ethanol as the major product; small amounts of xylitol and glycerol were also produced. The production of xylitol was influenced by pH as well as temperature. High pH values and low temperatures enhanced xylitol production. The rate of D-xylulose fermentation decreased when the production of ethanol yielded concentrations of 4% or more. The slow conversion rate of D-xylulose to ethanol was increased by increasing the yeast cell density. The overall production of ethanol from D-xylulose by yeast cells under optimal conditions was 90% of the theoretical yield. (Refs. 21).

  10. Partial methylation at Am100 in 18S rRNA of baker's yeast reveals ribosome heterogeneity on the level of eukaryotic rRNA modification.

    Directory of Open Access Journals (Sweden)

    Markus Buchhaupt

    Full Text Available Ribosome heterogeneity is of increasing biological significance and several examples have been described for multicellular and single cells organisms. In here we show for the first time a variation in ribose methylation within the 18S rRNA of Saccharomyces cerevisiae. Using RNA-cleaving DNAzymes, we could specifically demonstrate that a significant amount of S. cerevisiae ribosomes are not methylated at 2'-O-ribose of A100 residue in the 18S rRNA. Furthermore, using LC-UV-MS/MS of a respective 18S rRNA fragment, we could not only corroborate the partial methylation at A100, but could also quantify the methylated versus non-methylated A100 residue. Here, we exhibit that only 68% of A100 in the 18S rRNA of S.cerevisiae are methylated at 2'-O ribose sugar. Polysomes also contain a similar heterogeneity for methylated Am100, which shows that 40S ribosome subunits with and without Am100 participate in translation. Introduction of a multicopy plasmid containing the corresponding methylation guide snoRNA gene SNR51 led to an increased A100 methylation, suggesting the cellular snR51 level to limit the extent of this modification. Partial rRNA modification demonstrates a new level of ribosome heterogeneity in eukaryotic cells that might have substantial impact on regulation and fine-tuning of the translation process.

  11. Breeding of Excellent Baker's Yeast Strain with Good Flocculation%絮凝性强的优良面包酵母菌株的选育

    Institute of Scientific and Technical Information of China (English)

    刘春秀; 何秀萍; 蒋思欣; 曲娜; 张博润

    2003-01-01

    通过初筛、单倍体分离、DES诱变、絮凝基因的克隆表达及杂交等育种技术成功构建了高生物量、耐高糖、强絮凝的优良面包酵母菌株(Saccharomyces cerevisiae) ZLTH-58(MATa/α,leu,FLO1).菌株ZLTH-58具有双亲的优良性状,遗传性状稳定.对其生物量、耐高糖能力、絮凝特性进行了检测,结果表明,菌株ZLTH-58的生物量是原始亲株BL56的1.21倍;耐高糖能力优于原始亲株BL61;絮凝性能明显优于原始亲株BL56和BL61.对其培养条件进行了优化,在优化的培养条件下,生物量可以达到83.06g/L,为初始培养条件下的1.35倍.

  12. Partial methylation at Am100 in 18S rRNA of baker's yeast reveals ribosome heterogeneity on the level of eukaryotic rRNA modification.

    Science.gov (United States)

    Buchhaupt, Markus; Sharma, Sunny; Kellner, Stefanie; Oswald, Stefanie; Paetzold, Melanie; Peifer, Christian; Watzinger, Peter; Schrader, Jens; Helm, Mark; Entian, Karl-Dieter

    2014-01-01

    Ribosome heterogeneity is of increasing biological significance and several examples have been described for multicellular and single cells organisms. In here we show for the first time a variation in ribose methylation within the 18S rRNA of Saccharomyces cerevisiae. Using RNA-cleaving DNAzymes, we could specifically demonstrate that a significant amount of S. cerevisiae ribosomes are not methylated at 2'-O-ribose of A100 residue in the 18S rRNA. Furthermore, using LC-UV-MS/MS of a respective 18S rRNA fragment, we could not only corroborate the partial methylation at A100, but could also quantify the methylated versus non-methylated A100 residue. Here, we exhibit that only 68% of A100 in the 18S rRNA of S.cerevisiae are methylated at 2'-O ribose sugar. Polysomes also contain a similar heterogeneity for methylated Am100, which shows that 40S ribosome subunits with and without Am100 participate in translation. Introduction of a multicopy plasmid containing the corresponding methylation guide snoRNA gene SNR51 led to an increased A100 methylation, suggesting the cellular snR51 level to limit the extent of this modification. Partial rRNA modification demonstrates a new level of ribosome heterogeneity in eukaryotic cells that might have substantial impact on regulation and fine-tuning of the translation process.

  13. iAID: an improved auxin-inducible degron system for the construction of a 'tight' conditional mutant in the budding yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Tanaka, Seiji; Miyazawa-Onami, Mayumi; Iida, Tetsushi; Araki, Hiroyuki

    2015-08-01

    Isolation of a 'tight' conditional mutant of a gene of interest is an effective way of studying the functions of essential genes. Strategies that use ubiquitin-mediated protein degradation to eliminate the product of a gene of interest, such as heat-inducible degron (td) and auxin-inducible degron (AID), are powerful methods for constructing conditional mutants. However, these methods do not work with some genes. Here, we describe an improved AID system (iAID) for isolating tight conditional mutants in the budding yeast Saccharomyces cerevisiae. In this method, transcriptional repression by the 'Tet-OFF' promoter is combined with proteolytic elimination of the target protein by the AID system. To provide examples, we describe the construction of tight mutants of the replication factors Dpb11 and Mcm10, dpb11-iAID, and mcm10-iAID. Because Dpb11 and Mcm10 are required for the initiation of DNA replication, their tight mutants are unable to enter S phase. This is the case for dpb11-iAID and mcm10-iAID cells after the addition of tetracycline and auxin. Both the 'Tet-OFF' promoter and the AID system have been shown to work in model eukaryotes other than budding yeast. Therefore, the iAID system is not only useful in budding yeast, but also can be applied to other model systems to isolate tight conditional mutants.

  14. Overexpression of ACC gene from oleaginous yeast Lipomyces starkeyi enhanced the lipid accumulation in Saccharomyces cerevisiae with increased levels of glycerol 3-phosphate substrates.

    Science.gov (United States)

    Wang, Jiancai; Xu, Ronghua; Wang, Ruling; Haque, Mohammad Enamul; Liu, Aizhong

    2016-06-01

    The conversion of acetyl-CoA to malonyl-CoA by acetyl-CoA carboxylase (ACC) is the rate-limiting step in fatty acid biosynthesis. In this study, a gene coding for ACC was isolated and characterized from an oleaginous yeast, Lipomyces starkeyi. Real-time quantitative PCR (qPCR) analysis of L. starkeyi acetyl-CoA carboxylase gene (LsACC1) showed that the expression levels were upregulated with the fast accumulation of lipids. The LsACC1 was co-overexpressed with the glycerol 3-phosphate dehydrogenase gene (GPD1), which regulates lipids biosynthesis by supplying another substrates glycerol 3-phosphate for storage lipid assembly, in the non-oleaginous yeast Saccharomyces cerevisiae. Further, the S. cerevisiae acetyl-CoA carboxylase (ScACC1) was transferred with GPD1 and its function was analyzed in comparison with LsACC1. The results showed that overexpressed LsACC1 and GPD1 resulted in a 63% increase in S. cerevisiae. This study gives new data in understanding of the molecular mechanisms underlying the regulation of fatty acids and lipid biosynthesis in yeasts.

  15. Yeast fuel cell: Application for desalination

    Science.gov (United States)

    Mardiana, Ummy; Innocent, Christophe; Cretin, Marc; Buchari, Buchari; Gandasasmita, Suryo

    2016-02-01

    Yeasts have been implicated in microbial fuel cells as biocatalysts because they are non-pathogenic organisms, easily handled and robust with a good tolerance in different environmental conditions. Here we investigated baker's yeast Saccharomyces cerevisiae through the oxidation of glucose. Yeast was used in the anolyte, to transfer electrons to the anode in the presence of methylene blue as mediator whereas K3Fe(CN)6 was used as an electron acceptor for the reduction reaction in the catholyte. Power production with biofuel cell was coupled with a desalination process. The maximum current density produced by the cell was 88 mA.m-2. In those conditions, it was found that concentration of salt was removed 64% from initial 0.6 M after 1-month operation. This result proves that yeast fuel cells can be used to remove salt through electrically driven membrane processes and demonstrated that could be applied for energy production and desalination. Further developments are in progress to improve power output to make yeast fuel cells applicable for water treatment.

  16. APPROBATION OF GENOTYPING METHOD OF WINE YEAST (GENUS SACCHAROMYCES) BY THE ANALYSIS OF INTER-DELTA GENOMIC REGION

    OpenAIRE

    Suprun I. I.; Tokmakov S. V.; Ageeva N. M.; Prakh A. V.

    2015-01-01

    The study was performed to genotype some commercial wine yeast strains using the assay of Interdelta genomic sequences. Experimental parameters of PCR to identify were optimized and optimal simplified method of DNA extraction from dried preparations of yeast cultures was define. Proven method showed a high level of resolution and can be used for the analysis of genetic diversity wine yeast in combination with SSR-markers

  17. Main and interaction effects of acetic acid, furfural, and p-hydroxybenzoic acid on growth and ethanol productivity of yeasts

    Energy Technology Data Exchange (ETDEWEB)

    Palmqvist, E.; Grage, H.; Meinander, N.Q.; Hahn-Haegerdal, B. [Univ. of Lund (Sweden)

    1999-04-05

    The influence of the factors acetic acid, furfural, and p-hydroxybenzoic acid on the ethanol yield (Y{sub EtOH}) of Saccharomyces cerevisiae, bakers` yeast, S. cerevisiae ATCC 96581, and Candida shehatae NJ 23 was investigated using a 2{sup 3}-full factorial design with 3 centerpoints. The results indicated that acetic acid inhibited the fermentation by C. shehatae NJ 23 markedly more than by bakers` yeast, whereas no significant difference in tolerance towards the compounds was detected between the S. cerevisiae strains. Furfural and the lignin derived compound p-hydroxybenzoic acid did not affect any of the yeasts at the cell mass concentration used. The results indicated that the linear model was not adequate to describe the experimental data. Based on the results from the 2{sup 3}-full factorial experiment, an extended experiment was designed based on a central composite design to investigate the influence of the factors on the specific growth rate ({mu}), biomass yield (Y{sub x}), volumetric ethanol productivity (Q{sub EtOH}), and Y{sub EtOH}. Bakers` yeast was chosen in the extended experiment due to its better tolerance towards acetic acid, which makes it a more interesting organism for use in industrial fermentations of lignocellulosic hydrolysates.

  18. Modular pathway rewiring of Saccharomyces cerevisiae enables high-level production of L-ornithine

    DEFF Research Database (Denmark)

    Qin, Jiufu; Zhou, Yongjin J.; Krivoruchko, Anastasia;

    2015-01-01

    Baker's yeast Saccharomyces cerevisiae is an attractive cell factory for production of chemicals and biofuels. Many different products have been produced in this cell factory by reconstruction of heterologous biosynthetic pathways; however, endogenous metabolism by itself involves many metabolites......-batch fermentations, leading to an L-ornithine titre of 1,041±47 mg l-1 with a yield of 67 mg (g glucose)-1 in shake-flask cultures and a titre of 5.1 g l-1 in fed-batch cultivations. Our study represents the first comprehensive study on overproducing an amino-acid intermediate in yeast, and our results demonstrate...... the potential to use yeast more extensively for low-cost production of many high-value amino-acid-derived chemicals....

  19. Purification, crystallization and preliminary X-ray diffraction analysis of a soluble variant of the monoglyceride lipase Yju3p from the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    A soluble variant of the monoglyceride lipase Yju3p was successfully expressed, purified and crystallized. Diffraction data were collected to 2.4 Å resolution. The protein Yju3p is the orthologue of monoglyceride lipases in the yeast Saccharomyces cerevisiae. A soluble variant of this lipase termed s-Yju3p (38.3 kDa) was generated and purified to homogeneity by affinity and size-exclusion chromatography. s-Yju3p was crystallized in a vapour-diffusion setup at 293 K and a complete data set was collected to 2.4 Å resolution. The crystal form was orthorhombic (space group P212121), with unit-cell parameters a = 77.2, b = 108.6, c = 167.7 Å. The asymmetric unit contained four molecules with a solvent content of 46.4%

  20. Purification, crystallization and preliminary X-ray diffraction analysis of a soluble variant of the monoglyceride lipase Yju3p from the yeast Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Rengachari, Srinivasan; Aschauer, Philipp; Sturm, Christian; Oberer, Monika, E-mail: m.oberer@uni-graz.at [University of Graz, Humboldtstrasse 50/3, 8010 Graz (Austria)

    2015-01-28

    A soluble variant of the monoglyceride lipase Yju3p was successfully expressed, purified and crystallized. Diffraction data were collected to 2.4 Å resolution. The protein Yju3p is the orthologue of monoglyceride lipases in the yeast Saccharomyces cerevisiae. A soluble variant of this lipase termed s-Yju3p (38.3 kDa) was generated and purified to homogeneity by affinity and size-exclusion chromatography. s-Yju3p was crystallized in a vapour-diffusion setup at 293 K and a complete data set was collected to 2.4 Å resolution. The crystal form was orthorhombic (space group P2{sub 1}2{sub 1}2{sub 1}), with unit-cell parameters a = 77.2, b = 108.6, c = 167.7 Å. The asymmetric unit contained four molecules with a solvent content of 46.4%.

  1. Influence of the Addition of Riboflavin in Culture Medium on Delivering Biomass Using Yeast Strains of Saccharomyces Carlsbengensis

    Directory of Open Access Journals (Sweden)

    Cornelia Nicoară

    2010-05-01

    Full Text Available Yeasts requirements for growth factors should be considered both in terms of ability to summarize the simpleaverage and the dependence on external supplies. Vitamins are components of coenzymes or enzymes prostheticgroups and thus they are growth factors for yeast. The study concerns about the influence of the addition ofriboflavin in culture medium in different quantities, the accumulation of yeast biomass under the action of yeaststrains of beer. The process of cultivation has been made for 24 hours at a temperature of 220C. The addition ofriboflavin in culture medium of yeast biomass increased in each strain of yeast compared with the witness - thesample without added riboflavin. Biomass obtained by follow this procedure could be used to create new foodproducts with high ration nutritional value.

  2. Biosorption Behavior of Strontium Ions and Mechanism Analysis on Baker's Yeast%面包酵母菌对锶离子的吸附行为及其机理研究

    Institute of Scientific and Technical Information of China (English)

    代群威; 董发勤; 张伟; 李琼芳; 周世平

    2012-01-01

    The baker's yeast was utilized as biosorption material to remove Sr2+ from simulant aquous solution. The effect factors on biosorption were analyzed, which included pH values, initial concentration (c0), adsorbent concentration (pm), and temperature (0. Meanwhile, the correlation biosorption thermodynamics was analyzed and the mechanism of biosorption was researched. The results show that the optimum condition for biosorption is as follows: pH = 4. 5, t = 30 °C , c0 = 1. 0 mmol/L, pm = i. 0 g/L. The isotherm adsorption curve of Sr2+ under different temperatures accords well with the Langmuir and Freunlich absorption models, and both R2 are above 0. 988. The biosorption of Sr2+ by yeast can proceed spontaneously under different temperatures. And the higher temperature is in favour of the spontaneous process of Sr2+biosorption at the range of 10-30 °C. The analysis indicates that there is chemisorption in the course of Sr2+ biosorption by yeast. The components of yeast cell, including polysaccharide and amide protein, are involved in the Sr2+ biosorption. And the principal absorption sites are the active sites on the cell wall surface.%采用面包酵母菌为生物吸附剂,进行了模拟含锶废液中Sr2+的批量吸附实验研究.分析了液相pH、Sr2+初始浓度、菌体加入量、温度等因素对吸附效果的影响,进行了吸附热力学相关分析,并通过红外光谱、扫描电镜等探讨了其吸附机理.结果表明:实验室环境下的最佳吸附条件为pH=4.5,t=30℃,c0=1.0 mmol/L,ρm=4.0 g/L.不同温度下对Sr2-的等温吸附结果均很好地符合了Langmuir和Freunlich两个吸附模型,R2均在0.988以上.不同温度条件下酵母菌对Sr2+的吸附反应均能够自发进行,且在一定温度范围(10~30℃)内提高温度有利于酵母菌对Sr2+吸附反应的自发进行.FTIR与SEM分析结果认为,酵母菌吸附Sr2+的过程的确存在化学吸附过程,酵母菌细胞上的多糖、蛋白质酰胺

  3. Leavening ability and freeze tolerance of yeasts isolated from traditional corn and rye bread doughs.

    Science.gov (United States)

    Almeida, M J; Pais, C

    1996-12-01

    Strains of Saccharomyces cerevisiae and Torulaspora delbrueckii isolated from traditional bread doughs displayed dough-raising capacities similar to the ones found in baker's yeasts. During storage of frozen doughs, strains of T. delbrueckii (IGC 5321, IGC 5323, and IGC 4478) presented approximately the same leavening ability for 30 days. Cell viability was not significantly affected by freezing, but when the dough was submitted to a bulk fermentation before being stored at -20 degrees C, there was a decrease in the survival ratio which depended on the yeast strain. Furthermore, the leavening ability after 4 days of storage decreased as the prefermentation period of the dough before freezing increased, except for strains IGC 5321 and IGC 5323. These two strains retained their fermentative activity after 15 days of storage and 2.5 h of prefermentation, despite showing a reduction of viable cells under the same conditions. The intracellular trehalose content was higher than 20% (wt/wt) in four of the yeasts tested: the two commercial strains of baker's yeast (S. cerevisiae IGC 5325 and IGC 5326) and the two mentioned strains of T. delbrueckii (IGC 5321 and IGC 5323). However, the strains of S. cerevisiae were clearly more susceptible to freezing damages, indicating that other factors may contribute to the freeze tolerance of these yeasts. PMID:8953712

  4. Production of high concentrations of yeast

    Energy Technology Data Exchange (ETDEWEB)

    1981-11-10

    A microbe is aerobically cultured using O/sub 2/ or a gas rich in O/sub 2/. The grown cells are washed, concentrated and a portion of the cells used as a seed culture. Thus, Saccharomyces cerevisiae (bakers' yeast) was cultured in a jar fermentor by flow down system maintaining the dissolved O/sub 2/ at 2-5 mg/L; volume of the initial medium containing 30% glucose was 350 mL and the initial washed cell concentration was 50 g dry cells/L. After 12 hours of cultivation, the volume of the medium increased to 750 mL and the cell concentration rose to 102 g dry cells/L; the yield was 49% with respect to glucose. The cells were washed and the cultivation was repeated by use of the washed cells; cell concentration reached 105 g dry cells/L.

  5. Non-Genetic Engineering Approaches for Isolating and Generating Novel Yeasts for Industrial Applications

    Science.gov (United States)

    Chambers, P. J.; Bellon, J. R.; Schmidt, S. A.; Varela, C.; Pretorius, I. S.

    Generating novel yeast strains for industrial applications should be quite straightforward; after all, research into the genetics, biochemistry and physiology of Baker's Yeast, Saccharomyces cerevisiae, has paved the way for many advances in the modern biological sciences. We probably know more about this humble eukaryote than any other, and it is the most tractable of organisms for manipulation using modern genetic engineering approaches. In many countries, however, there are restrictions on the use of genetically-modified organisms (GMOs), particularly in foods and beverages, and the level of consumer acceptance of GMOs is, at best, variable. Thus, many researchers working with industrial yeasts use genetic engineering techniques primarily as research tools, and strain development continues to rely on non-GM technologies. This chapter explores the non-GM tools and strategies available to such researchers.

  6. Comparative Study on Two Commercial Strains of Saccharomyces cerevisiae for Optimum Ethanol Production on Industrial Scale

    Directory of Open Access Journals (Sweden)

    K. Mukhtar

    2010-01-01

    Full Text Available Two commercial strains of Saccharomyces cerevisiae, Saf-Instant (Baker's yeast and Ethanol red (Mutant were compared for ethanol production during hot summer season, using molasses diluted up to 6-7∘ Brix containing 4%-5% sugars. The yeasts were then propagated in fermentation vessels to study the effects of yeast cell count and varying concentrations of Urea, DAP, inoculum size and Lactrol (Antibiotic. Continuous circulation of mash was maintained for 24 hours and after this fermenter was allowed to stay for a period of 16 hours to give time for maximum conversion of sugars into ethanol. Saccharomyces cerevisiae strain (Saf-instant with cell concentration of 400 millions/mL at molasses sugar level of 13%–15% (pH 4.6±0.2, Temp. 32∘C±1, inoculum size of 25% (v/v, urea concentration, 150 ppm, DAP, 53.4 ppm and Lactrol,150 ppm supported maximum ethanol production (8.8% with YP/S=250 L ethanol per tone molasses (96.5% yield, and had significantly lower concentrations of byproducts. By selecting higher ethanol yielding yeast strain and optimizing the fermentation parameters both yield and economics of the fermentation process can be improved.

  7. Multiway real-time PCR gene expression profiling in yeast Saccharomyces cerevisiae reveals altered transcriptional response of ADH-genes to glucose stimuli

    Directory of Open Access Journals (Sweden)

    Andrade-Garda José

    2008-04-01

    Full Text Available Abstract Background The large sensitivity, high reproducibility and essentially unlimited dynamic range of real-time PCR to measure gene expression in complex samples provides the opportunity for powerful multivariate and multiway studies of biological phenomena. In multiway studies samples are characterized by their expression profiles to monitor changes over time, effect of treatment, drug dosage etc. Here we perform a multiway study of the temporal response of four yeast Saccharomyces cerevisiae strains with different glucose uptake rates upon altered metabolic conditions. Results We measured the expression of 18 genes as function of time after addition of glucose to four strains of yeast grown in ethanol. The data are analyzed by matrix-augmented PCA, which is a generalization of PCA for 3-way data, and the results are confirmed by hierarchical clustering and clustering by Kohonen self-organizing map. Our approach identifies gene groups that respond similarly to the change of nutrient, and genes that behave differently in mutant strains. Of particular interest is our finding that ADH4 and ADH6 show a behavior typical of glucose-induced genes, while ADH3 and ADH5 are repressed after glucose addition. Conclusion Multiway real-time PCR gene expression profiling is a powerful technique which can be utilized to characterize functions of new genes by, for example, comparing their temporal response after perturbation in different genetic variants of the studied subject. The technique also identifies genes that show perturbed expression in specific strains.

  8. Multiway real-time PCR gene expression profiling in yeast Saccharomyces cerevisiae reveals altered transcriptional response of ADH-genes to glucose stimuli

    Science.gov (United States)

    Ståhlberg, Anders; Elbing, Karin; Andrade-Garda, José Manuel; Sjögreen, Björn; Forootan, Amin; Kubista, Mikael

    2008-01-01

    Background The large sensitivity, high reproducibility and essentially unlimited dynamic range of real-time PCR to measure gene expression in complex samples provides the opportunity for powerful multivariate and multiway studies of biological phenomena. In multiway studies samples are characterized by their expression profiles to monitor changes over time, effect of treatment, drug dosage etc. Here we perform a multiway study of the temporal response of four yeast Saccharomyces cerevisiae strains with different glucose uptake rates upon altered metabolic conditions. Results We measured the expression of 18 genes as function of time after addition of glucose to four strains of yeast grown in ethanol. The data are analyzed by matrix-augmented PCA, which is a generalization of PCA for 3-way data, and the results are confirmed by hierarchical clustering and clustering by Kohonen self-organizing map. Our approach identifies gene groups that respond similarly to the change of nutrient, and genes that behave differently in mutant strains. Of particular interest is our finding that ADH4 and ADH6 show a behavior typical of glucose-induced genes, while ADH3 and ADH5 are repressed after glucose addition. Conclusion Multiway real-time PCR gene expression profiling is a powerful technique which can be utilized to characterize functions of new genes by, for example, comparing their temporal response after perturbation in different genetic variants of the studied subject. The technique also identifies genes that show perturbed expression in specific strains. PMID:18412983

  9. 21 CFR 172.896 - Dried yeasts.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Dried yeasts. 172.896 Section 172.896 Food and... Multipurpose Additives § 172.896 Dried yeasts. Dried yeast (Saccharomyces cerevisiae and Saccharomyces fragilis) and dried torula yeast (Candida utilis) may be safely used in food provided the total folic...

  10. Phosphorylation site on yeast pyruvate dehydrogenase complex

    International Nuclear Information System (INIS)

    The pyruvate dehydrogenase complex was purified to homogeneity from baker's yeast (Saccharomyces cerevisiae). Yeast cells were disrupted in a Manton-Gaulin laboratory homogenizer. The pyruvate dehydrogenase complex was purified by fractionation with polyethylene glycol, isoelectric precipitation, ultracentrifugation and chromatography on hydroxylapatite. Final purification of the yeast pyruvate dehydrogenase complex was achieved by cation-exchange high pressure liquid chromatography (HPLC). No endogenous pyruvate dehydrogenase kinase activity was detected during the purification. However, the yeast pyruvate dehydrogenase complex was phosphorylated and inactivated with purified pyruvate dehydrogenase kinase from bovine kidney. Tryptic digestion of the 32P-labeled complex yielded a single phosphopeptide which was purified to homogeniety. The tryptic digest was subjected to chromatography on a C-18 reverse phase HPLC column with a linear gradient of acetonitrile. Radioactive fractions were pooled, concentrated, and subjected to anion-exchange HPLC. The column was developed with a linear gradient of ammonium acetate. Final purification of the phosphopeptide was achieved by chromatography on a C-18 reverse phase HPLC column developed with a linear gradient of acetonitrile. The amino acid sequence of the homogeneous peptide was determined by manual modified Edman degradation

  11. Baker Omitted Value

    OpenAIRE

    Chakra, Tarun Kumar; Chakraborty, Gorachand; Nayak, Tarakanta

    2015-01-01

    We define Baker omitted value, in short bov, of an entire or meromorphic function f in the complex plane as an omitted value for which there exists r0 > 0 such that for each ball Dr(a) centered at a and with radius r satisfying 0 < r < r0, every component of the boundary of f only asymptotic value. An entire function has bov if and only if the image of every unbounded curve is unbounded. It follows that an entire function has bov whenever it has a Baker wandering domain. Functions with bov ha...

  12. Novel Interactome of Saccharomyces cerevisiae Myosin Type II Identified by a Modified Integrated Membrane Yeast Two-Hybrid (iMYTH Screen

    Directory of Open Access Journals (Sweden)

    Ednalise Santiago

    2016-05-01

    Full Text Available Nonmuscle myosin type II (Myo1p is required for cytokinesis in the budding yeast Saccharomyces cerevisiae. Loss of Myo1p activity has been associated with growth abnormalities and enhanced sensitivity to osmotic stress, making it an appealing antifungal therapeutic target. The Myo1p tail-only domain was previously reported to have functional activity equivalent to the full-length Myo1p whereas the head-only domain did not. Since Myo1p tail-only constructs are biologically active, the tail domain must have additional functions beyond its previously described role in myosin dimerization or trimerization. The identification of new Myo1p-interacting proteins may shed light on the other functions of the Myo1p tail domain. To identify novel Myo1p-interacting proteins, and determine if Myo1p can serve as a scaffold to recruit proteins to the bud neck during cytokinesis, we used the integrated split-ubiquitin membrane yeast two-hybrid (iMYTH system. Myo1p was iMYTH-tagged at its C-terminus, and screened against both cDNA and genomic prey libraries to identify interacting proteins. Control experiments showed that the Myo1p-bait construct was appropriately expressed, and that the protein colocalized to the yeast bud neck. Thirty novel Myo1p-interacting proteins were identified by iMYTH. Eight proteins were confirmed by coprecipitation (Ape2, Bzz1, Fba1, Pdi1, Rpl5, Tah11, and Trx2 or mass spectrometry (AP-MS (Abp1. The novel Myo1p-interacting proteins identified come from a range of different processes, including cellular organization and protein synthesis. Actin assembly/disassembly factors such as the SH3 domain protein Bzz1 and the actin-binding protein Abp1 represent likely Myo1p interactions during cytokinesis.

  13. Use of sugarcane molasses "B" as an alternative for ethanol production with wild-type yeast Saccharomyces cerevisiae ITV-01 at high sugar concentrations.

    Science.gov (United States)

    Fernández-López, C L; Torrestiana-Sánchez, B; Salgado-Cervantes, M A; García, P G Mendoza; Aguilar-Uscanga, M G

    2012-05-01

    Molasses "B" is a rich co-product of the sugarcane process. It is obtained from the second step of crystallization and is richer in fermentable sugars (50-65%) than the final molasses, with a lower non-sugar solid content (18-33%); this co-product also contains good vitamin and mineral levels. The use of molasses "B" for ethanol production could be a good option for the sugarcane industry when cane sugar prices diminish in the market. In a complex medium like molasses, osmotolerance is a desirable characteristic for ethanol producing strains. The aim of this work was to evaluate the use of molasses "B" for ethanol production using Saccharomyces cerevisiae ITV-01 (a wild-type yeast isolated from sugarcane molasses) using different initial sugar concentrations (70-291 g L(-1)), two inoculum sizes and the addition of nutrients such as yeast extract, urea, and ammonium sulphate to the culture medium. The results obtained showed that the strain was able to grow at 291 g L(-1) total sugars in molasses "B" medium; the addition of nutrients to the culture medium did not produce a statistically significant difference. This yeast exhibits high osmotolerance in this medium, producing high ethanol yields (0.41 g g(-1)). The best conditions for ethanol production were 220 g L(-1) initial total sugars in molasses "B" medium, pH 5.5, using an inoculum size of 6 × 10(6) cell mL(-1); ethanol production was 85 g L(-1), productivity 3.8 g L(-1 )h(-1) with 90% preserved cell viability.

  14. Identification of yeasts isolated from raffia wine (Raphia hookeri) produced in Côte d'Ivoire and genotyping of Saccharomyces cerevisiae strains by PCR inter-delta.

    Science.gov (United States)

    Tra Bi, Charles Y; N'guessan, Florent K; Kouakou, Clémentine A; Jacques, Noemie; Casaregola, Serge; Djè, Marcellin K

    2016-08-01

    Raffia wine is a traditional alcoholic beverage produced in several African countries where it plays a significant role in traditional customs and population diet. Alcoholic fermentation of this beverage is ensured by a complex natural yeast flora which plays a decisive role in the quality of the final product. This present study aims to evaluate the distribution and the diversity of the yeast strains isolated in raffia wine from four sampling areas (Abengourou, Alépé, Grand-Lahou and Adzopé) in Côte d'Ivoire. Based on the D1/D2 domain of the LSU rDNA sequence analysis, nine species belonging to six genera were distinguished. With a percentage of 69.5 % out of 171 yeast isolates, Saccharomyces cerevisiae was the predominant species in the raffia wine, followed by Kodamaea ohmeri (20.4 %). The other species isolated were Candida haemulonii (4.1 %), Candida phangngensis (1.8 %), Pichia kudriavzevii (1.2 %), Hanseniaspora jakobsenii (1.2 %), Candida silvae (0.6 %), Hanseniaspora guilliermondii (0.6 %) and Meyerozyma caribbica (0.6 %). The molecular characterization of S. cerevisiae isolates at the strain level using the PCR-interdelta method revealed the presence of 21 profiles (named I to XXI) within 115 isolates. Only four profiles (I, III, V and XI) were shared by the four areas under study. Phenotypic characterization of K. ohmeri strains showed two subgroups for sugar fermentation and no diversity for the nitrogen compound assimilations and the growth at different temperatures. PMID:27339306

  15. Use of sugarcane molasses "B" as an alternative for ethanol production with wild-type yeast Saccharomyces cerevisiae ITV-01 at high sugar concentrations.

    Science.gov (United States)

    Fernández-López, C L; Torrestiana-Sánchez, B; Salgado-Cervantes, M A; García, P G Mendoza; Aguilar-Uscanga, M G

    2012-05-01

    Molasses "B" is a rich co-product of the sugarcane process. It is obtained from the second step of crystallization and is richer in fermentable sugars (50-65%) than the final molasses, with a lower non-sugar solid content (18-33%); this co-product also contains good vitamin and mineral levels. The use of molasses "B" for ethanol production could be a good option for the sugarcane industry when cane sugar prices diminish in the market. In a complex medium like molasses, osmotolerance is a desirable characteristic for ethanol producing strains. The aim of this work was to evaluate the use of molasses "B" for ethanol production using Saccharomyces cerevisiae ITV-01 (a wild-type yeast isolated from sugarcane molasses) using different initial sugar concentrations (70-291 g L(-1)), two inoculum sizes and the addition of nutrients such as yeast extract, urea, and ammonium sulphate to the culture medium. The results obtained showed that the strain was able to grow at 291 g L(-1) total sugars in molasses "B" medium; the addition of nutrients to the culture medium did not produce a statistically significant difference. This yeast exhibits high osmotolerance in this medium, producing high ethanol yields (0.41 g g(-1)). The best conditions for ethanol production were 220 g L(-1) initial total sugars in molasses "B" medium, pH 5.5, using an inoculum size of 6 × 10(6) cell mL(-1); ethanol production was 85 g L(-1), productivity 3.8 g L(-1 )h(-1) with 90% preserved cell viability. PMID:21971607

  16. Studying Functions of All Yeast Genes Simultaneously

    Science.gov (United States)

    Stolc, Viktor; Eason, Robert G.; Poumand, Nader; Herman, Zelek S.; Davis, Ronald W.; Anthony Kevin; Jejelowo, Olufisayo

    2006-01-01

    A method of studying the functions of all the genes of a given species of microorganism simultaneously has been developed in experiments on Saccharomyces cerevisiae (commonly known as baker's or brewer's yeast). It is already known that many yeast genes perform functions similar to those of corresponding human genes; therefore, by facilitating understanding of yeast genes, the method may ultimately also contribute to the knowledge needed to treat some diseases in humans. Because of the complexity of the method and the highly specialized nature of the underlying knowledge, it is possible to give only a brief and sketchy summary here. The method involves the use of unique synthetic deoxyribonucleic acid (DNA) sequences that are denoted as DNA bar codes because of their utility as molecular labels. The method also involves the disruption of gene functions through deletion of genes. Saccharomyces cerevisiae is a particularly powerful experimental system in that multiple deletion strains easily can be pooled for parallel growth assays. Individual deletion strains recently have been created for 5,918 open reading frames, representing nearly all of the estimated 6,000 genetic loci of Saccharomyces cerevisiae. Tagging of each deletion strain with one or two unique 20-nucleotide sequences enables identification of genes affected by specific growth conditions, without prior knowledge of gene functions. Hybridization of bar-code DNA to oligonucleotide arrays can be used to measure the growth rate of each strain over several cell-division generations. The growth rate thus measured serves as an index of the fitness of the strain.

  17. Baker: Apprenticeship Course Outline. Apprenticeship and Industry Training. 2412

    Science.gov (United States)

    Alberta Advanced Education and Technology, 2012

    2012-01-01

    The graduate of the Baker apprenticeship program is a certified journeyperson who will be able to: (1) prepare and bake all types of high quality yeast raised products in commercial quantities; (2) produce and decorate various types of cakes, cookies and pastries commonly available in commercial bakeries; (3) use efficiently and safely all hand…

  18. Ca(2+) homeostasis in the budding yeast Saccharomyces cerevisiae: Impact of ER/Golgi Ca(2+) storage.

    Science.gov (United States)

    D'hooge, Petra; Coun, Catherina; Van Eyck, Vincent; Faes, Liesbeth; Ghillebert, Ruben; Mariën, Lore; Winderickx, Joris; Callewaert, Geert

    2015-08-01

    Yeast has proven to be a powerful tool to elucidate the molecular aspects of several biological processes in higher eukaryotes. As in mammalian cells, yeast intracellular Ca(2+) signalling is crucial for a myriad of biological processes. Yeast cells also bear homologs of the major components of the Ca(2+) signalling toolkit in mammalian cells, including channels, co-transporters and pumps. Using yeast single- and multiple-gene deletion strains of various plasma membrane and organellar Ca(2+) transporters, combined with manipulations to estimate intracellular Ca(2+) storage, we evaluated the contribution of individual transport systems to intracellular Ca(2+) homeostasis. Yeast strains lacking Pmr1 and/or Cod1, two ion pumps implicated in ER/Golgi Ca(2+) homeostasis, displayed a fragmented vacuolar phenotype and showed increased vacuolar Ca(2+) uptake and Ca(2+) influx across the plasma membrane. In the pmr1Δ strain, these effects were insensitive to calcineurin activity, independent of Cch1/Mid1 Ca(2+) channels and Pmc1 but required Vcx1. By contrast, in the cod1Δ strain increased vacuolar Ca(2+) uptake was not affected by Vcx1 deletion but was largely dependent on Pmc1 activity. Our analysis further corroborates the distinct roles of Vcx1 and Pmc1 in vacuolar Ca(2+) uptake and point to the existence of not-yet identified Ca(2+) influx pathways.

  19. Importância da parede celular de levedura (Saccharomyces sp. como fonte de fibra na alimentação Importance of yeast (Saccharomyces cerevisiae cell wall as source of dietary fiber

    Directory of Open Access Journals (Sweden)

    Eloísa A. PÁDUA

    2000-08-01

    Full Text Available O principal objetivo desta pesquisa foi estudar a influência da adição de 10% e 20% da fração parede celular de levedura (Saccharomyces sp., a uma dieta hipercolesterolêmica (5% gordura de coco mais 2% colesterol em ratos Wistar. A justificativa para o trabalho está relacionada com a quantidade crescente de levedura gerada como subproduto nas indústrias de álcool e de cerveja e o interesse na utilização de derivados de levedura como ingredientes funcionais em alimentação humana. Utilizou-se como padrão uma dieta de caseína (AIN-93G com 5% de celulose. Foram também utilizadas dietas hipercolesterolêmicas com 10 ou 20% de celulose, para comparação. Foram avaliados os índices: digestibilidade, valor biológico e utilização líquida aparentes da proteína, quociente de eficiência alimentar, velocidade de trânsito do conteúdo intestinal, comprimento do intestino delgado e as concentrações séricas de lipídios totais, triacilgliceróis e colesterol total. A fração parede celular, assim como a celulose provocaram uma diminuição da digestibilidade da proteína e do quociente de eficiência alimentar, mas não se observou influência no valor biológico da proteína e no ganho de peso. A adição de 10% ou 20%, tanto de parede celular como de celulose promoveu aumento da velocidade de trânsito do conteúdo intestinal e aumento no comprimento do intestino delgado. A fração parede celular nas concentrações de 10% (1° ensaio ou 20% (2° ensaio promoveu abaixamento nos níveis de triacilgliceróis séricos, contudo não influiu no abaixamento das concentrações de lipídios totais e de colesterol total.The main objective of this investigation was to study the influence of 10 and 20% addition of yeast (Saccharomyces sp. cell wall into a hypercholesterolemic (5% coconut fat plus 2% cholesterol diet, on Wistar rats. The work is justified by the increasing amount of yeast generated as byproduct of the alcohol and brewer

  20. Concentration-Dependent Effects of Rhodiola Rosea on Long-Term Survival and Stress Resistance of Yeast Saccharomyces Cerevisiae: The Involvement of YAP 1 and MSN2/4 Regulatory Proteins.

    Science.gov (United States)

    Bayliak, Maria M; Burdyliuk, Nadia I; Izers'ka, Lilia I; Lushchak, Volodymyr I

    2014-01-01

    Concentration-dependent effects of aqueous extract from R. rosea root on long-term survival and stress resistance of budding yeast Saccharomyces cerevisiae were studied. At low concentrations, R. rosea aqueous extract extended yeast chronological lifespan, enhanced oxidative stress resistance of stationary-phase cells and resistance to number stressors in exponentially growing cultures. At high concentrations, R. rosea extract sensitized yeast cells to stresses and shortened yeast lifespan. These biphasic concentration-responses describe a common hormetic phenomenon characterized by a low-dose stimulation and a high-dose inhibition. Yeast pretreatment with low doses of R. rosea extract enhanced yeast survival and prevented protein oxidation under H2O2-induced oxidative stress. Positive effect of R. rosea extract on yeast survival under heat shock exposure was not accompanied with changes in antioxidant enzyme activities and levels of oxidized proteins. The deficiency in transcriptional regulators, Msn2/Msn4 and Yap1, abolished the positive effect of low doses of R. rosea extract on yeast viability under stress challenges. Potential involvement of Msn2/Msn4 and Yap1 regulatory proteins in realization of R. rosea beneficial effects is discussed.

  1. Bcl-2 family members inhibit oxidative stress-induced programmed cell death in Saccharomyces cerevisiae.

    Science.gov (United States)

    Chen, Shao-Rong; Dunigan, David D; Dickman, Martin B

    2003-05-15

    Selected antiapoptotic genes were expressed in baker's yeast (Saccharomyces cerevisiae) to evaluate cytoprotective effects during oxidative stress. When exposed to treatments resulting in the generation of reactive oxygen species (ROS), including H(2)O(2), menadione, or heat shock, wild-type yeast died and exhibited apoptotic-like characteristics, consistent with previous studies. Yeast strains were generated expressing nematode ced-9, human bcl-2, or chicken bcl-xl genes. These transformants tolerated a range of oxidative stresses, did not display features associated with apoptosis, and remained viable under conditions that were lethal to wild-type yeast. Yeast strains expressing a mutant antiapoptotic gene (bcl-2 deltaalpha 5-6), known to be nonfunctional in mammalian cells, were unable to tolerate any of the ROS-generating insults. These data are the first report showing CED-9 has cytoprotective effects against oxidative stress, and add CED-9 to the list of Bcl-2 protein family members that modulate ROS-mediated programmed cell death. In addition, these data indicate that Bcl-2 family members protect wild-type yeast from physiological stresses. Taken together, these data support the concept of the broad evolutionary conservation and functional similarity of the apoptotic processes in eukaryotic organisms.

  2. Baker & Taylor's George Coe

    Science.gov (United States)

    Fialkoff, Francine

    2009-01-01

    In his 30 years as a library wholesaler, first as VP and general manager of Brodart Books, Library, and School Automation divisions and since 2000 as president of the Library & Education division of Baker & Taylor (B&T), George Coe has been instrumental in a whole host of innovations. They go way beyond the selection, processing, and delivery of…

  3. Reaction Characteristics of Asymmetric Synthesis of (2S,5S)-2,5-Hexanediol Catalyzed with Baker's Yeast Number 6%面包酵母No.6催化不对称合成(2S,5S)-2,5-已二醇反应特性

    Institute of Scientific and Technical Information of China (English)

    肖美添; 叶静; 张亚武; 黄雅燕

    2009-01-01

    Baker's yeast number 6 was selected by screening. It showed good catalytic activity and enantioselec-tivity for asymmetric reduction of 2,5-hexancdione to produce (2S,5S)-2,5-hexanediol. Gas chromatography-mass spectrometry (GC-MS) revealed that the intermediate was (S)-5-hydroxyhexane-2-one. Reduction of 2,5-hexanedione proceeded in a two-step reaction. The hydroxyketone was initially formed, and this intermediate was further re-duced to the diol. Factors influencing the product yield and the enantiomeric excess of the reduction of 2,5-hexandione catalyzed by baker's yeast number 6 were investigated. Higher concentration (≤100 mmol·L-1) of 2,5-hexandione did not influence 5-hydroxyhexane-2-one production, but 2,5-hexanediol production was inhibited by excess accumulation (>30 mmol·L-1) of intermediate. The optimal conditions were glucose as the co-substrate at an initial glucose concentration of 20 g·L-1, 34℃, pH 7.0 and cell concentration 60 g-L"1 (cell dry mass). Under the optimal condition and an initial substrate concentration of 30 mmol·L-1, the yield of 2,5-hexandiol was 78.7% and the enantiomeric excess of (2S,5S)-2,5-hexandiol was 94.4% for 24-h reduction.

  4. [Defects in TOR regulatory complexes retard aging and carbonyl/oxidative stress development in yeast Saccharomyces cerevisiae].

    Science.gov (United States)

    Homza, B V; Vasyl'kovs'ka, R A; Semchyshyn, H M

    2014-01-01

    TOR signaling pathway first described in yeast S. cerevisiae is the highly conserved regulator of eukaryotic cell growth, aging and stress resistance. The effect of nitrogen sources, in particular amino acids, on the activity of TOR signaling pathway is well studied, however its relation to carbohydrates is poor understood. The aim of the present study is expanding of our understanding of potential role of TOR regulatory complexes in development of carbonyl/oxidative stress that can result from yeast cultivation on glucose and fructose. It has been shown that the level of alpha-dicarbonyl compounds and protein carbonyl groups increased with time of yeast cultivation and was higher in cells grown on fructose that demonstrated their accelerated aging and carbonyl/oxidative stress development as compared with cells grown on glucose. The strains defective in TOR proteins cultivated in the presence of glucose as well as fructose demonstrated lower markers of the stress and aging than parental strain. Thus these data confirmed the previous conclusion on fructose more potent ability to cause carbonyl/oxidative stress and accelerated aging in S. cerevisiae as compared with glucose. However, defects in TOR regulatory complexes retard aging and development of the stress in yeast independent on the type of carbohydrate in the cultivation medium. PMID:24834721

  5. Polygenic analysis and targeted improvement of the complex trait of high acetic acid tolerance in the yeast Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Meijnen, Jean-Paul; Randazzo, Paola; Foulquié-Moreno, María R; van den Brink, Joost; Vandecruys, Paul; Stojiljkovic, Marija; Dumortier, Françoise; Zalar, Polona; Boekhout, Teun; Gunde-Cimerman, Nina; Kokošar, Janez; Štajdohar, Miha; Curk, Tomaž; Petrovič, Uroš; Thevelein, Johan M

    2016-01-01

    BACKGROUND: Acetic acid is one of the major inhibitors in lignocellulose hydrolysates used for the production of second-generation bioethanol. Although several genes have been identified in laboratory yeast strains that are required for tolerance to acetic acid, the genetic basis of the high acetic

  6. Functional conservation between Schizosaccharomyces pombe ste8 and Saccharomyces cerevisiae STE11 protein kinases in yeast signal transduction

    DEFF Research Database (Denmark)

    Styrkársdóttir, U; Egel, R; Nielsen, O;

    1992-01-01

    In fission yeast (Schizosaccharomyces pombe), the mat1-Pm gene, which is required for entry into meiosis, is expressed in response to a pheromone signal. Cells carrying a mutation in the ste8 gene are unable to induce transcription of mat1-Pm in response to pheromone, suggesting that the ste8 gen...

  7. Glucose-based microbial production of the hormone melatonin in yeast Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Germann, Susanne Manuela; Jacobsen, Simo Abdessamad; Schneider, Konstantin;

    2016-01-01

    , a 5-hydroxy-L-tryptophan decarboxylase, a serotonin acetyltransferase, an acetylserotonin O-methyltransferase, and means for providing the cofactor tetrahydrobiopterin via heterologous biosynthesis and recycling pathways. We thereby achieved de novo melatonin biosynthesis from glucose. We furthermore...... the basis for further developing a yeast cell factory for biological production of melatonin....

  8. Yeast artificial chromosomes employed for random assembly of biosynthetic pathways and production of diverse compounds in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Mitra Partha P

    2009-08-01

    Full Text Available Abstract Background Natural products are an important source of drugs and other commercially interesting compounds, however their isolation and production is often difficult. Metabolic engineering, mainly in bacteria and yeast, has sought to circumvent some of the associated problems but also this approach is impeded by technical limitations. Here we describe a novel strategy for production of diverse natural products, comprising the expression of an unprecedented large number of biosynthetic genes in a heterologous host. Results As an example, genes from different sources, representing enzymes of a seven step flavonoid pathway, were individually cloned into yeast expression cassettes, which were then randomly combined on Yeast Artificial Chromosomes and used, in a single transformation of yeast, to create a variety of flavonoid producing pathways. Randomly picked clones were analysed, and approximately half of them showed production of the flavanone naringenin, and a third of them produced the flavonol kaempferol in various amounts. This reflected the assembly of 5–7 step multi-species pathways converting the yeast metabolites phenylalanine and/or tyrosine into flavonoids, normally only produced by plants. Other flavonoids were also produced that were either direct intermediates or derivatives thereof. Feeding natural and unnatural, halogenated precursors to these recombinant clones demonstrated the potential to further diversify the type of molecules that can be produced with this technology. Conclusion The technology has many potential uses but is particularly suited for generating high numbers of structurally diverse compounds, some of which may not be amenable to chemical synthesis, thus greatly facilitating access to a huge chemical space in the search for new commercially interesting compounds

  9. Display of wasp venom allergens on the cell surface of Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Poulsen Lars K

    2010-09-01

    Full Text Available Abstract Background Yeast surface display is a technique, where the proteins of interest are expressed as fusions with yeast surface proteins and thus remain attached to the yeast cell wall after expression. Our purpose was to study whether allergens expressed on the cell surface of baker's yeast Saccharomyces cerevisiae preserve their native allergenic properties and whether the yeast native surface glycoproteins interfere with IgE binding. We chose to use the major allergens from the common wasp Vespula vulgaris venom: phospholipase A1, hyaluronidase and antigen 5 as the model. Results The proteins were expressed on the surface as fusions with a-agglutinin complex protein AGA2. The expression was confirmed by fluorescent cytometry (FACS after staining the cells with antibody against a C-tag attached to the C-terminal end of the allergens. Phospholipase A1 and hyaluronidase retained their enzymatic activities. Phospholipase A1 severely inhibited the growth of the yeast cells. Antigen 5 - expressing yeast cells bound IgE antibodies from wasp venom allergic patient sera but not from control sera as demonstrated by FACS. Moreover, antigen 5 - expressing yeast cells were capable of mediating allergen-specific histamine release from human basophils. Conclusions All the three major wasp venom allergens were expressed on the yeast surface. A high-level expression, which was observed only for antigen 5, was needed for detection of IgE binding by FACS and for induction of histamine release. The non-modified S. cerevisiae cells did not cause any unspecific reaction in FACS or histamine release assay despite the expression of high-mannose oligosaccharides. In perspective the yeast surface display may be used for allergen discovery from cDNA libraries and possibly for sublingual immunotherapy as the cells can serve as good adjuvant and can be produced in large amounts at a low price.

  10. Resistance of yeasts to weak organic acid food preservatives.

    Science.gov (United States)

    Piper, Peter W

    2011-01-01

    Carboxylate weak acids are invaluable for large-scale food and beverage preservation. However, in response to safety concerns, there is now desire to reduce the use of these additives. The resistance to these compounds displayed by spoilage yeasts and fungi is a major reason why these preservatives often have to be used in millimolar levels. This chapter summarizes the mechanisms whereby yeasts are rendered resistant to acetate, propionate, sorbate, and benzoate. In baker's yeast (Saccharomyces cerevisiae), resistance to high acetic acid is acquired partly by loss of the plasma membrane aquaglyceroporin that facilitates the passive diffusional entry of undissociated acid into cells (Fps1), and partly through a transcriptional response mediated by the transcription factor Haa1. Other carboxylate preservatives are too large to enter cells through the Fps1 channel but instead penetrate at appreciable rates by passive diffusion across the plasma membrane. In Saccharomyces and Candida albicans though not, it seems, in the Zygosaccharomyces, resistance to the latter acids involves activation of the War1 transcription factor, which in turn generates strong induction of a specific plasma membrane ATP-binding cassette transporter (Pdr12). The latter actively pumps the preservative anion from the cell. Other contributors to weak acid resistance include enzymes that allow preservative degradation, members of the Tpo family of major facilitator superfamily transporters, and changes to the cell envelope that minimize the diffusional entry of the preservative into the cell.

  11. 基于BP神经网络和遗传算法的面包酵母高密度发酵培养基优化%Optimization of baker's yeast high density fermentation medium by optimized BP neural network based on genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    谈亚丽; 李啸; 邹嫚; 张江; 姚娟; 李知洪; 俞学锋

    2013-01-01

    为实现面包酵母的高密度发酵培养,构建一个BP神经网络模型,用于回归面包酵母高密度发酵培养基中显著影响因子与菌体密度之间的非线性关系,并在此基础上结合遗传算法进对此模型进行全局寻优,得到关键因子最佳浓度分别为:葡萄糖52.3 g/L,酵母浸出粉10.4 g/L,(NH4)2SO41.9 g/L.采用此优化配方进行摇瓶培养,所得菌体密度为3.95×108个/mL,比对照提高了61.2%.结果证实了人工神经网络的模拟和预测功能在微生物培养基优化方面有一定应用价值.%In order to fulfill the high density cultivation of baker's yeast, the back-propagation neural network was adopted to construct a nonlinear predictable model which suggested the relationship between the key factors of the culture medium and the biomass of bakers yeast. And then the global optimization on this model with the genetic algorithm was conducted. Finally the optimal dose of these significant factors was obtained; glucose 52.3 g/L, yeast extract powder 10.4 g/L, (NH4)2SO41. 9 g/L. Using this optimal medium, the biomass of the bakers yeast cultivated in shake flasks was as high as 3. 95108/mL, increased by 61. 2% compared with that of the primitive culture medium. It demonstrated that the application of artificial neural network in the optimization of microbiological culture media was feasible and efficient.

  12. Reduction of ethanol yield and improvement of glycerol formation by adaptive evolution of the wine yeast Saccharomyces cerevisiae under hyperosmotic conditions.

    Science.gov (United States)

    Tilloy, Valentin; Ortiz-Julien, Anne; Dequin, Sylvie

    2014-04-01

    There is a strong demand from the wine industry for methodologies to reduce the alcohol content of wine without compromising wine's sensory characteristics. We assessed the potential of adaptive laboratory evolution strategies under hyperosmotic stress for generation of Saccharomyces cerevisiae wine yeast strains with enhanced glycerol and reduced ethanol yields. Experimental evolution on KCl resulted, after 200 generations, in strains that had higher glycerol and lower ethanol production than the ancestral strain. This major metabolic shift was accompanied by reduced fermentative capacities, suggesting a trade-off between high glycerol production and fermentation rate. Several evolved strains retaining good fermentation performance were selected. These strains produced more succinate and 2,3-butanediol than the ancestral strain and did not accumulate undesirable organoleptic compounds, such as acetate, acetaldehyde, or acetoin. They survived better under osmotic stress and glucose starvation conditions than the ancestral strain, suggesting that the forces that drove the redirection of carbon fluxes involved a combination of osmotic and salt stresses and carbon limitation. To further decrease the ethanol yield, a breeding strategy was used, generating intrastrain hybrids that produced more glycerol than the evolved strain. Pilot-scale fermentation on Syrah using evolved and hybrid strains produced wine with 0.6% (vol/vol) and 1.3% (vol/vol) less ethanol, more glycerol and 2,3-butanediol, and less acetate than the ancestral strain. This work demonstrates that the combination of adaptive evolution and breeding is a valuable alternative to rational design for remodeling the yeast metabolic network. PMID:24532067

  13. Laboratory evolution of copper tolerant yeast strains

    Directory of Open Access Journals (Sweden)

    Adamo Giusy

    2012-01-01

    Full Text Available Abstract Background Yeast strains endowed with robustness towards copper and/or enriched in intracellular Cu might find application in biotechnology processes, among others in the production of functional foods. Moreover, they can contribute to the study of human diseases related to impairments of copper metabolism. In this study, we investigated the molecular and physiological factors that confer copper tolerance to strains of baker's yeasts. Results We characterized the effects elicited in natural strains of Candida humilis and Saccharomyces cerevisiae by the exposure to copper in the culture broth. We observed that, whereas the growth of Saccharomyces cells was inhibited already at low Cu concentration, C. humilis was naturally robust and tolerated up to 1 g · L-1 CuSO4 in the medium. This resistant strain accumulated over 7 mg of Cu per gram of biomass and escaped severe oxidative stress thanks to high constitutive levels of superoxide dismutase and catalase. Both yeasts were then "evolved" to obtain hyper-resistant cells able to proliferate in high copper medium. While in S. cerevisiae the evolution of robustness towards Cu was paralleled by the increase of antioxidative enzymes, these same activities decreased in evolved hyper-resistant Candida cells. We also characterized in some detail changes in the profile of copper binding proteins, that appeared to be modified by evolution but, again, in a different way in the two yeasts. Conclusions Following evolution, both Candida and Saccharomyces cells were able to proliferate up to 2.5 g · L-1 CuSO4 and to accumulate high amounts of intracellular copper. The comparison of yeasts differing in their robustness, allowed highlighting physiological and molecular determinants of natural and acquired copper tolerance. We observed that different mechanisms contribute to confer metal tolerance: the control of copper uptake, changes in the levels of enzymes involved in oxidative stress response and

  14. Comparisons of radiosensitivity and damage repair potential between mutants from the Saccharomyces cerevisiae strain of yeast and laboratory-bred wild yeasts with particular attention being given to giant cell formation after X-radiation. Strahlenempfindlichkeit und Erholungsvermoegen von Mutanten der Hefe Saccharomyces cerevisiae im Vergleich zu Wildtyphefen unter Beruecksichtigung der Riesenzellbildung nach Roentgenbestrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Heinen, A.

    1988-06-01

    Yeast cells were exposed to X-rays at dose levels up to 10 kGy to induce damage to the DNA and investigate its effects on cellular growth patterns. For this purpose, comparisons were carried out between one diploid strain and six haploid strains of the Saccharomyces uvarum and Saccharomyces cerevisiae species, which permitted the individual recovery and damage repair pathways to be described in more detail. The laboratory-bred wild strains ATCC 9080, 211 and 706 were judged to have unimpaired repair mechanisms as compared to the auxotrophs, which fact was evident from the higher radiosensitivity of the latter. A further parameter in this evaluation of growth behaviours was giant cell formation. The results here provided evidence in confirmation of deviations between wild strains and mutants. Even though the ceiling values for the formation of giant cells were similarly high in all strains, impairments of cell division and initial development were observed for the mutants already at considerably lower dose levels. (orig./MG).

  15. Irreversible quantum baker map.

    Science.gov (United States)

    Łoziński, Artur; Pakoński, Prot; Zyczkowski, Karol

    2002-12-01

    We propose a generalization of the model of classical baker map on the torus, in which the images of two parts of the phase space do overlap. This transformation is irreversible and cannot be quantized by means of a unitary Floquet operator. A corresponding quantum system is constructed as a completely positive map acting in the space of density matrices. We investigate spectral properties of this superoperator and their link with the increase of the entropy of initially pure states.

  16. Irreversible Quantum Baker Map

    CERN Document Server

    Lozinski, A; Zyczkowski, K; Lozinski, Artur; Pakonski, Prot; Zyczkowski, Karol

    2002-01-01

    We propose a generalization of the model of classical baker map on the torus, in which the images of two parts of the phase space do overlap. This transformation is irreversible and cannot be quantized by means of a unitary Floquet operator. A corresponding quantum system is constructed as a completely positive map acting in the space of density matrices. We investigate spectral properties of this super-operator and their link with the increase of the entropy of initially pure states.

  17. Improved production of fatty acids by Saccharomyces cerevisiae through screening a cDNA library from the oleaginous yeast Yarrowia lipolytica.

    Science.gov (United States)

    Shi, Shuobo; Ji, Haichuan; Siewers, Verena; Nielsen, Jens

    2016-02-01

    Biological production of fatty acid (FA)-derived products has gained increasing attention to replace petroleum-based fuels and chemicals. FA biosynthesis is highly regulated, and usually it is challenging to design rational engineering strategies. In addition, the conventional 'one sample at a time' method for lipid determination is time consuming and laborious, and it is difficult to screen large numbers of samples. Here, a method for detecting free FAs in viable cells using Nile red staining was developed for use in large-scale screening. Following optimization of the method, it was used for screening a cDNA library from the oleaginous yeast Yarrowia lipolytica for identification of genes/enzymes that were able to enhance free FA accumulation in Saccharomyces cerevisiae. Several novel enzymes resulting in increasing FA accumulation were discovered. These targets include a GPI anchor protein, malate dehydrogenase, glyceraldehyde 3-phosphate dehydrogenase, FA hydroxylase, farnesyltransferase, anoctamin, dihydrolipoamide dehydrogenase and phosphatidylethanolamine-binding protein. The best enzyme resulted in a 2.5-fold improvement in production of free FAs. Our findings not only provide a novel method for high-throughput evaluation of the content of free FAs, but also give new insight into how enzymes from Y. lipolytica may increase the production of fatty acids in S. cerevisiae.

  18. [Dot1 and Set2 Histone Methylases Control the Spontaneous and UV-Induced Mutagenesis Levels in the Saccharomyces cerevisiae Yeasts].

    Science.gov (United States)

    Kozhina, T N; Evstiukhina, T A; Peshekhonov, V T; Chernenkov, A Yu; Korolev, V G

    2016-03-01

    In the Saccharomyces cerevisiae yeasts, the DOT1 gene product provides methylation of lysine 79 (K79) of hi- stone H3 and the SET2 gene product provides the methylation of lysine 36 (K36) of the same histone. We determined that the dot1 and set2 mutants suppress the UV-induced mutagenesis to an equally high degree. The dot1 mutation demonstrated statistically higher sensitivity to the low doses of MMC than the wild type strain. The analysis of the interaction between the dot1 and rad52 mutations revealed a considerable level of spontaneous cell death in the double dot1 rad52 mutant. We observed strong suppression of the gamma-in- duced mutagenesis in the set2 mutant. We determined that the dot1 and set2 mutations decrease the sponta- neous mutagenesis rate in both single and d ouble mutants. The epistatic interaction between the dot1 and set2 mutations and almost similar sensitivity of the corresponding mutants to the different types of DNA damage allow one to conclude that both genes are involved in the control of the same DNA repair pathways, the ho- mologous-recombination-based and the postreplicative DNA repair.

  19. Co-precipitation of phosphate and iron limits mitochondrial phosphate availability in Saccharomyces cerevisiae lacking the yeast frataxin homologue (YFH1).

    Science.gov (United States)

    Seguin, Alexandra; Santos, Renata; Pain, Debkumar; Dancis, Andrew; Camadro, Jean-Michel; Lesuisse, Emmanuel

    2011-02-25

    Saccharomyces cerevisiae cells lacking the yeast frataxin homologue (Δyfh1) accumulate iron in the mitochondria in the form of nanoparticles of ferric phosphate. The phosphate content of Δyfh1 mitochondria was higher than that of wild-type mitochondria, but the proportion of mitochondrial phosphate that was soluble was much lower in Δyfh1 cells. The rates of phosphate and iron uptake in vitro by isolated mitochondria were higher for Δyfh1 than wild-type mitochondria, and a significant proportion of the phosphate and iron rapidly became insoluble in the mitochondrial matrix, suggesting co-precipitation of these species after oxidation of iron by oxygen. Increasing the amount of phosphate in the medium decreased the amount of iron accumulated by Δyfh1 cells and improved their growth in an iron-dependent manner, and this effect was mostly transcriptional. Overexpressing the major mitochondrial phosphate carrier, MIR1, slightly increased the concentration of soluble mitochondrial phosphate and significantly improved various mitochondrial functions (cytochromes, [Fe-S] clusters, and respiration) in Δyfh1 cells. We conclude that in Δyfh1 cells, soluble phosphate is limiting, due to its co-precipitation with iron.

  20. Engineering Cofactor Preference of Ketone Reducing Biocatalysts: A Mutagenesis Study on a γ-Diketone Reductase from the Yeast Saccharomyces cerevisiae Serving as an Example

    Directory of Open Access Journals (Sweden)

    Michael Katzberg

    2010-04-01

    Full Text Available The synthesis of pharmaceuticals and catalysts more and more relies on enantiopure chiral building blocks. These can be produced in an environmentally benign and efficient way via bioreduction of prochiral ketones catalyzed by dehydrogenases. A productive source of these biocatalysts is the yeast Saccharomyces cerevisiae, whose genome also encodes a reductase catalyzing the sequential reduction of the γ-diketone 2,5-hexanedione furnishing the diol (2S,5S-hexanediol and the γ-hydroxyketone (5S-hydroxy-2-hexanone in high enantio- as well as diastereoselectivity (ee and de >99.5%. This enzyme prefers NADPH as the hydrogen donating cofactor. As NADH is more stable and cheaper than NADPH it would be more effective if NADH could be used in cell-free bioreduction systems. To achieve this, the cofactor binding site of the dehydrogenase was altered by site-directed mutagenesis. The results show that the rational approach based on a homology model of the enzyme allowed us to generate a mutant enzyme having a relaxed cofactor preference and thus is able to use both NADPH and NADH. Results obtained from other mutants are discussed and point towards the limits of rationally designed mutants.

  1. Defining the Pathogenesis of the Human Atp12p W94R Mutation Using a Saccharomyces cerevisiae Yeast Model*

    OpenAIRE

    Meulemans, Ann; Seneca, Sara; Pribyl, Thomas; Smet, Joel; Alderweirldt, Valerie; Waeytens, Anouk; Lissens, Willy; Van Coster, Rudy; De Meirleir, Linda; di Rago, Jean-Paul; Gatti, Domenico L; Ackerman, Sharon H.

    2009-01-01

    Studies in yeast have shown that a deficiency in Atp12p prevents assembly of the extrinsic domain (F1) of complex V and renders cells unable to make ATP through oxidative phosphorylation. De Meirleir et al. (De Meirleir, L., Seneca, S., Lissens, W., De Clercq, I., Eyskens, F., Gerlo, E., Smet, J., and Van Coster, R. (2004) J. Med. Genet. 41, 120–124) have reported that a homozygous missense mutation in the gene for human Atp12p (HuAtp12p), which replaces Trp-94 with Arg, was linked to the dea...

  2. Heterologous Expression of Membrane and Soluble Proteins Derepresses GCN4 mRNA Translation in the Yeast Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Steffensen, L.; Pedersen, P. A.

    2006-01-01

    p is a transcription factor initially found to be required for transcriptional induction of genes responsible for amino acid or purine biosynthesis. Using various GCN4-lacZ fusions, knockout yeast strains, and anti-eIF-2 -P/anti-eIF-2 antibodies, we observed that heterologous expression......, as a density of 1 of heterologous membrane protein derepressed translation maximally. Translational derepression of GCN4 was not triggered by misfolding in the endoplasmic reticulum, as expression of the wild type or temperature-sensitive folding mutants of the Na,K-ATPase increased GCN4 translation...

  3. 优良非酿酒酵母的分离与发酵性能研究%Isolation of Quality Non-Saccharomyces Yeasts and Study on Their Fermentation Performance

    Institute of Scientific and Technical Information of China (English)

    王晓昌; 李京宁; 张惠玲; 刘亚; 付丽霞

    2016-01-01

    非酿酒酵母对葡萄酒的风味有重要影响.本实验利用WL培养基对宁夏贺兰山东麓采集的葡萄种植园土样和葡萄果实表面上附着的非酿酒酵母进行了初步的分离鉴定,为酿造出具有宁夏地区独具风格和特色的地域性酒种提供基础性探索依据.本实验鉴定出:戴尔有孢圆酵母、葡萄汁有孢汉生酵母、异常汉生酵母和东方伊萨酵母.并且初步对4种非酿酒酵母进行发酵性能研究.结果表明,戴尔有孢圆酵母在耐SO2、耐酒精度和产酒度实验中均有良好表现.%Non-Saccharomyces yeasts have important influence on grape wine flavor. In the experiments, non-Saccharomyces yeasts were iso-lated from soil samples and grapes in vineyards in Ningxia Helan Mountain by WL culture mediums and then identified, which could provide basic research evidence for Ningxia local wine yeast. Four kinds of non-Saccharomyces yeasts including Torulaspora delbrueckii, Hanseniaspo-ra uvarum, Hansenula anomala and Issatchenkia orientalis were identified and their fermentation performance was explored. The results sug-gested that Torulaspora delbrueckii had good performance in SO2 resistance, alcohol resistance and the production of alcohol.

  4. Electro-stimulation of Saccharomyces cerevisiae wine yeasts by Pulsed Electric Field and its effect on fermentation performance

    CERN Document Server

    Mattar, J; Nonus, M; Lebovka, N I; Zakhem, H El; Vorobiev, E

    2013-01-01

    The batch fermentation process, inoculated by pulsed electric field (PEF) treated wine yeasts (S. cerevisiae Actiflore F33), was studied. PEF treatment was applied to the aqueous yeast suspensions (0.12 % wt.) at the electric field strengths of E=100 and 6000 V/cm using the same pulse protocol (number of pulses of n=1000, pulse duration of ti=100 mks, and pulse repetition time of dt=100 ms). Electro-stimulation was confirmed by the observed growth of electrical conductivity of suspensions. The fermentation was running at 30{\\deg}C for 150 hours in an incubator with synchronic agitation. The obtained results clearly evidence the positive impact of PEF treatment on the batch fermentation process. Electro-stimulation resulted in improvement of such process characteristics as mass losses, consumption of soluble matter content ({\\deg}Brix) and synthesis of proteins. It also resulted in a noticeable acceleration of consumption of sugars at the initial stage of fermentation in the lag phase. At the end of the lag ph...

  5. Succinic acid in levels produced by yeast (Saccharomyces cerevisiae) during fermentation strongly impacts wheat bread dough properties.

    Science.gov (United States)

    Jayaram, Vinay B; Cuyvers, Sven; Verstrepen, Kevin J; Delcour, Jan A; Courtin, Christophe M

    2014-05-15

    Succinic acid (SA) was recently shown to be the major pH determining metabolite produced by yeast during straight-dough fermentation (Jayaram et al., 2013), reaching levels as high as 1.6 mmol/100 g of flour. Here, the impact of such levels of SA (0.8, 1.6 and 2.4 mmol/100 g flour) on yeastless dough properties was investigated. SA decreased the development time and stability of dough significantly. Uniaxial extension tests showed a consistent decrease in dough extensibility upon increasing SA addition. Upon biaxial extension in the presence of 2.4 mmol SA/100 g flour, a dough extensibility decrease of 47-65% and a dough strength increase of 25-40% were seen. While the SA solvent retention capacity of flour increased with increasing SA concentration in the solvent, gluten agglomeration decreased with gluten yield reductions of over 50%. The results suggest that SA leads to swelling and unfolding of gluten proteins, thereby increasing their interaction potential and dough strength, but simultaneously increasing intermolecular electrostatic repulsive forces. These phenomena lead to the reported changes in dough properties. Together, our results establish SA as an important yeast metabolite for dough rheology. PMID:24423552

  6. Improvement on the productivity of continuous tequila fermentation by Saccharomyces cerevisiae of Agave tequilana juice with supplementation of yeast extract and aeration.

    Science.gov (United States)

    Hernández-Cortés, Guillermo; Valle-Rodríguez, Juan Octavio; Herrera-López, Enrique J; Díaz-Montaño, Dulce María; González-García, Yolanda; Escalona-Buendía, Héctor B; Córdova, Jesús

    2016-12-01

    Agave (Agave tequilana Weber var. azul) fermentations are traditionally carried out employing batch systems in the process of tequila manufacturing; nevertheless, continuous cultures could be an attractive technological alternative to increase productivity and efficiency of sugar to ethanol conversion. However, agave juice (used as a culture medium) has nutritional deficiencies that limit the implementation of yeast continuous fermentations, resulting in high residual sugars and low fermentative rates. In this work, fermentations of agave juice using Saccharomyces cerevisiae were put into operation to prove the necessity of supplementing yeast extract, in order to alleviate nutritional deficiencies of agave juice. Furthermore, continuous fermentations were performed at two different aeration flow rates, and feeding sterilized and non-sterilized media. The obtained fermented musts were subsequently distilled to obtain tequila and the preference level was compared against two commercial tequilas, according to a sensorial analysis. The supplementation of agave juice with air and yeast extract augmented the fermentative capacity of S. cerevisiae S1 and the ethanol productivities, compared to those continuous fermentations non supplemented. In fact, aeration improved ethanol production from 37 to 40 g L(-1), reducing sugars consumption from 73 to 88 g L(-1) and ethanol productivity from 3.0 to 3.2 g (Lh)(-1), for non-aerated and aerated (at 0.02 vvm) cultures, respectively. Supplementation of yeast extract allowed an increase in specific growth rate and dilution rates (0.12 h(-1), compared to 0.08 h(-1) of non-supplemented cultures), ethanol production (47 g L(-1)), reducing sugars consumption (93 g L(-1)) and ethanol productivity [5.6 g (Lh)(-1)] were reached. Additionally, the effect of feeding sterilized or non-sterilized medium to the continuous cultures was compared, finding no significant differences between both types of cultures. The overall effect

  7. Improvement on the productivity of continuous tequila fermentation by Saccharomyces cerevisiae of Agave tequilana juice with supplementation of yeast extract and aeration.

    Science.gov (United States)

    Hernández-Cortés, Guillermo; Valle-Rodríguez, Juan Octavio; Herrera-López, Enrique J; Díaz-Montaño, Dulce María; González-García, Yolanda; Escalona-Buendía, Héctor B; Córdova, Jesús

    2016-12-01

    Agave (Agave tequilana Weber var. azul) fermentations are traditionally carried out employing batch systems in the process of tequila manufacturing; nevertheless, continuous cultures could be an attractive technological alternative to increase productivity and efficiency of sugar to ethanol conversion. However, agave juice (used as a culture medium) has nutritional deficiencies that limit the implementation of yeast continuous fermentations, resulting in high residual sugars and low fermentative rates. In this work, fermentations of agave juice using Saccharomyces cerevisiae were put into operation to prove the necessity of supplementing yeast extract, in order to alleviate nutritional deficiencies of agave juice. Furthermore, continuous fermentations were performed at two different aeration flow rates, and feeding sterilized and non-sterilized media. The obtained fermented musts were subsequently distilled to obtain tequila and the preference level was compared against two commercial tequilas, according to a sensorial analysis. The supplementation of agave juice with air and yeast extract augmented the fermentative capacity of S. cerevisiae S1 and the ethanol productivities, compared to those continuous fermentations non supplemented. In fact, aeration improved ethanol production from 37 to 40 g L(-1), reducing sugars consumption from 73 to 88 g L(-1) and ethanol productivity from 3.0 to 3.2 g (Lh)(-1), for non-aerated and aerated (at 0.02 vvm) cultures, respectively. Supplementation of yeast extract allowed an increase in specific growth rate and dilution rates (0.12 h(-1), compared to 0.08 h(-1) of non-supplemented cultures), ethanol production (47 g L(-1)), reducing sugars consumption (93 g L(-1)) and ethanol productivity [5.6 g (Lh)(-1)] were reached. Additionally, the effect of feeding sterilized or non-sterilized medium to the continuous cultures was compared, finding no significant differences between both types of cultures. The overall effect

  8. Differential importance of trehalose in stress resistance in fermenting and nonfermenting Saccharomyces cerevisiae cells.

    Science.gov (United States)

    Van Dijck, P; Colavizza, D; Smet, P; Thevelein, J M

    1995-01-01

    The trehalose content in laboratory and industrial baker's yeast is widely believed to be a major determinant of stress resistance. Fresh and dried baker's yeast is cultured to obtain a trehalose content of more than 10% of the dry weight. Initiation of fermentation, e.g., during dough preparation, is associated with a rapid loss of stress resistance and a rapid mobilization of trehalose. Using specific Saccharomyces cerevisiae mutants affected in trehalose metabolism, we confirm the correlation between trehalose content and stress resistance but only in the absence of fermentation. We demonstrate that both phenomena can be dissociated clearly once the cells initiate fermentation. This was accomplished both for cells with moderate trehalose levels grown under laboratory conditions and for cells with trehalose contents higher than 10% obtained under pilot-scale conditions. Retention of a high trehalose level during fermentation also does not prevent the loss of fermentation capacity during preparation of frozen doughs. Although higher trehalose levels are always correlated with higher stress resistance before the addition of fermentable sugar, our results show that the initiation of fermentation causes the disappearance of any other factor(s) required for the maintenance of stress resistance, even in the presence of a high trehalose content. PMID:7887593

  9. Effects of ice-seeding temperature and intracellular trehalose contents on survival of frozen Saccharomyces cerevisiae cells.

    Science.gov (United States)

    Nakamura, Toshihide; Takagi, Hiroshi; Shima, Jun

    2009-04-01

    Freezing tolerance is an important characteristic for baker's yeast, Saccharomyces cerevisiae, as it is used to make frozen dough. The ability of yeast cells to survive freezing is thought to depend on various factors. The purpose of this work was to study the viability of yeast cells during the freezing process. We examined factors potentially affecting their survival, including the growth phase, ice-seeding temperature, intracellular trehalose content, freezing period, and duration of supercooling. The results showed that the ice-seeding temperature significantly affected cell viability. In the stationary phase, trehalose accumulation did not affect the viability of yeast cells after brief freezing, although it did significantly affect the viability after prolonged freezing. In the log phase, the ice-seeding temperature was more important for cell survival than the presence of trehalose during prolonged freezing. The importance of increasing the extracellular ice-seeding temperature was verified by comparing frozen yeast survival rates in a freezing test with ice-seeding temperatures of -5 degrees C and -15 degrees C. We also found that the cell survival rates began to increase at 3h of supercooling. The yeast cells may adapt to subzero temperatures and/or acquire tolerance to freezing stress during the supercooling. PMID:19126409

  10. Sensitive determination of L-lysine with a new amperometric microbial biosensor based on Saccharomyces cerevisiae yeast cells.

    Science.gov (United States)

    Akyilmaz, Erol; Erdoğan, Ali; Oztürk, Ramazan; Yaşa, Ihsan

    2007-01-15

    A new amperometric microbial biosensor based on Saccharomyces cerevisiae NRRL-12632 cells, which had been induced for lysine oxidase enzyme and immobilized in gelatin by a cross-linking agent was developed for the sensitive determination of L-lysine amino acid. To construct the microbial biosensor S. cerevisiae cells were activated and cultured in a suitable culture medium. By using gelatine (8.43 mg cm(-2)) and glutaraldehyde (0.25%), cells obtained in the logarithmic phase of the growth curve at the end of a 14 h period were immobilized and fixed on a pretreated oxygen sensitive Teflon membrane of a dissolved oxygen probe. The assay procedure of the microbial biosensor is based on the determination of the differences of the respiration activity of the cells on the oxygenmeter in the absence and the presence of L-lysine. According to the end point measurement technique used in the experiments it was determined that the microbial biosensor response depended linearly on L-lysine concentrations between 1.0 and 10.0 microM with a 1 min response time. In optimization studies of the microbial biosensor, the most suitable microorganism quantities were found to be 0.97x10(5)CFU cm(-2). In addition phosphate buffer (pH 7.5; 50 mM) and 30 degrees C were obtained as the optimum working conditions. In characterization studies of the microbial biosensor some parameters such as substrate specificity, interference effects of some substances on the microbial biosensor responses, reproducibility of the biosensor and operational and storage stability were investigated. PMID:16759846

  11. Comparison of cell components in low sugar adaptation and freeze-tolerance baker's yeast with common yeast%低糖适应性耐冻酵母菌与普通酵母菌细胞构成成分的比较

    Institute of Scientific and Technical Information of China (English)

    宋振玉; 李楠; 张姝; 王雷; 居勇

    2009-01-01

    采用气相、液相色谱法和分光光度比色法,对筛选出的低糖适应性耐冻面包酵母BY-03和FY-03与普通高糖面包酵母(PT)细胞构成成分,即胞内海藻糖含量,脂肪酸组成,麦角固醇,磷脂和氨基酸组成进行了分析与比较,进而了解其对酵母耐冻性的影响.结果表明,FY-03海藻糖含量是PT含量的1.40倍,BY-03的海藻糖含量与PT含量基本持平.从3种酵母中皆检出18种氨基酸,其中有助于提高酵母耐冻性的3种带电荷氨基酸即精氨酸,脯氨酸和谷氨酸的含量,BY-03和FY-03均高于PT.从3种酵母中检出了8种饱和与不饱和的脂肪酸,其中BY-03、FY-03的不饱和脂肪酸比例分别为79.82%和78.62%,明显高于PT 64.96%,其中棕榈油酸C16∶ 1和油酸C18∶ 1的含量相差较大.麦角固醇的含量BY-03和FY-03分别为4.99mg/g和4.77mg/g显著高于PT的2.56mg/g,而三者的磷脂含量没有明显差别.%The cell components, including trehalose, fatty acid component, ergosterol, phospholipid and amino acid in the BY-03 and FY-03 were qualitatively and quantitatively determined and compared with the common baker's yeast (PT) by GC, HPLC and UV-spectrophotometer in order to find out the effects of these index on freeze-tolerance of yeast.The results suggest that the content of the trehalose in FY-03 was 1.4 times more than that in PT, while the one in BY-03 was similar to PT.Meanwhile, eighteen kinds of known amino acid were detected from three kinds of yeast.The content of the arginine, proline and glutamate, which were helpful for enhancing the ability of freeze-tolerance, in BY-03 and FY-03 were more than those in PT.Eight kinds of known saturated and unsaturated fatty acid components were detected in three kinds of yeasts. The unsaturated fatty acid in BY-03 and FY-03 were 79.82% and 78.62%, 4.99 mg/g and 4.77 mg/g, but 2.57 mg/g in PT, while the phospholipid contents were similar in all samples.

  12. Biocavity laser spectroscopy of genetically altered yeast cells and isolated yeast mitochondria

    Science.gov (United States)

    Gourley, Paul L.; Hendricks, Judy K.; McDonald, Anthony E.; Copeland, R. Guild; Naviaux, Robert K.; Yaffe, Michael P.

    2006-02-01

    We report an analysis of 2 yeast cell mutants using biocavity laser spectroscopy. The two yeast strains differed only by the presence or absence of mitochondrial DNA. Strain 104 is a wild-type (ρ +) strain of the baker's yeast, Saccharomyces cerevisiae. Strain 110 was derived from strain 104 by removal of its mitochondrial DNA (mtDNA). Removal of mtDNA causes strain 110 to grow as a "petite" (ρ -), named because it forms small colonies (of fewer cells because it grows more slowly) on agar plates supplemented with a variety of different carbon sources. The absence of mitochondrial DNA results in the complete loss of all the mtDNA-encoded proteins and RNAs, and loss of the pigmented, heme-containing cytochromes a and b. These cells have mitochondria, but the mitochondria lack the normal respiratory chain complexes I, III, IV, and V. Complex II is preserved because its subunits are encoded by genes located in nuclear DNA. The frequency distributions of the peak shifts produced by wild-type and petite cells and mitochondria show striking differences in the symmetry and patterns of the distributions. Wild-type ρ + cells (104) and mitochondria produced nearly symmetric, Gaussian distributions. The ρ - cells (110) and mitochondria showed striking asymmetry and skew that appeared to follow a Poisson distribution.

  13. Yeast Bax inhibitor, Bxi1p, is an ER-localized protein that links the unfolded protein response and programmed cell death in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    James Cebulski

    Full Text Available Bax inhibitor-1 (BI-1 is an anti-apoptotic gene whose expression is upregulated in a wide range of human cancers. Studies in both mammalian and plant cells suggest that the BI-1 protein resides in the endoplasmic reticulum and is involved in the unfolded protein response (UPR that is triggered by ER stress. It is thought to act via a mechanism involving altered calcium dynamics. In this paper, we provide evidence that the Saccharomyces cerevisiae protein encoded by the open reading frame, YNL305C, is a bona fide homolog for BI-1. First, we confirm that yeast cells from two different strain backgrounds lacking YNL305C, which we have renamed BXI1, are more sensitive to heat-shock induced cell death than wildtype controls even though they have indistinguishable growth rates at 30°C. They are also more susceptible both to ethanol-induced and to glucose-induced programmed cell death. Significantly, we show that Bxi1p-GFP colocalizes with the ER localized protein Sec63p-RFP. We have also discovered that Δbxi1 cells are not only more sensitive to drugs that induce ER stress, but also have a decreased unfolded protein response as measured with a UPRE-lacZ reporter. Finally, we have discovered that deleting BXI1 diminishes the calcium signaling response in response to the accumulation of unfolded proteins in the ER as measured by a calcineurin-dependent CDRE-lacZ reporter. In toto, our data suggests that the Bxi1p, like its metazoan homologs, is an ER-localized protein that links the unfolded protein response and programmed cell death.

  14. Effects of Endogenous and/or Exogenous Trehalose on Freezing-tolerance of Baker's Yeast%内源与(或)外源海藻糖对面包酵母耐冷冻性的影响研究

    Institute of Scientific and Technical Information of China (English)

    王碧莹; 孙溪; 肖冬光

    2015-01-01

    通过测定胞内海藻糖降解、冷冻前后细胞存活率以及发酵力的变化,研究内源与(或)外源海藻糖对面包酵母耐冷冻性的影响。结果表明,含有较高内源海藻糖的BY14α+Tps1菌株具有更高的冷冻后细胞生存率与发酵力。外源添加5%海藻糖仅能改善较低胞内基本海藻糖含量(<10%)菌株的耐冷冻性,并且预发酵过程中海藻糖的稳定性较差(尤其前15 min)。因此,使用内源法提高胞内海藻糖含量对提升面包酵母的耐冷冻性更具可行性。%The effects of endogenous and/or exogenous trehalose on freezing-tolerance of baker's yeast were investigated through the measure-ment of cell viability and fermenting power before and after intracellular trehalose hydrolysis and freezing. The experimental results showed that BY14α+Tps1 strain with higher content of endogenous trehalose had higher cell viability and fermenting power after the freezing, and the added exogenous trehalose at the concentration of 5%could only improve the freezing-tolerance of cells with low trehalose content (<10%) but the added exogenous trehalose was apparently unstable in the prefermentation process (especially at the first 15 min after inoculation). Therefore, the method of improving endogenous trehalose in cells were feasible to strengthen freezing tolerance of baker's yeast.

  15. Requirements of Slm proteins for proper eisosome organization, endocytic trafficking and recycling in the yeast Saccharomyces cerevisiae

    Indian Academy of Sciences (India)

    Chitra Kamble; Sandhya Jain; Erin Murphy; Kyoungtae Kim

    2011-03-01

    Eisosomes are large immobile assemblies at the cortex of a cell under the membrane compartment of Can1 (MCC) in yeast. Slm1 has recently been identified as an MCC component that acts downstream of Mss4 in a pathway that regulates actin cytoskeleton organization in response to stress. In this study, we showed that inactivation of Slm proteins disrupts proper localization of the primary eisosome marker Pil1, providing evidence that Slm proteins play a role in eisosome organization. Furthermore, we found that slmts mutant cells exhibit actin defects in both the ability to polarize cortical F-actin and the formation of cytoplasmic actin cables even at the permissive temperature (30°C). We further demonstrated that the actin defect accounts for the slow traffic of FM4-64-labelled endosome in the cytoplasm, supporting the notion that intact actin is essential for endosome trafficking. However, our real-time microscopic analysis of Abp1-RFP revealed that the actin defect in slmts cells was not accompanied by a noticeable defect in actin patch internalization during receptor-mediated endocytosis. In addition, we found that slmts cells displayed impaired membrane recycling and that recycling occurred in an actin-independent manner. Our data provide evidence for the requirement of Slm proteins in eisosome organization and endosome trafficking and recycling.

  16. Oral Intake of Carboxymethyl-Glucan (CM-G from Yeast (Saccharomyces uvarum Reduces Malondialdehyde Levels in Healthy Men

    Directory of Open Access Journals (Sweden)

    Vilma Barbosa da Silva Araújo

    2015-08-01

    Full Text Available Carboxymethyl-glucan (CM-G is a water-soluble derivative of β(1→3(1→6 glucan, a well-known immunostimulant and antioxidant compound. In this experimental, randomized and placebo-controlled study, the effects of oral CM-G intake over a 60-day period on the peripheral blood, cholesterol, glycemic index and malondialdehyde (MDA levels of healthy men was assessed. The CM-G was obtained from spent brewer’s yeast (S. uvarum with DS 0.8 and molecular weight of 2.2 × 105 Da. Following CM-G administration, no changes were observed in red and white blood cell, hematocrit, hemoglobin and platelet counts, or in cholesterol and glycemic indices. After 30 days of CM-G administration, the MDA levels decreased significantly (p ≤ 0.05 in men receiving CM-G. The results showed for the first time that CM-G may act as an adjuvant in preventing oxidative damage in healthy humans.

  17. Antitumor and radiation protection effects of β-1,3-D-glucan extracted from yeast (saccharomyces cerevisiae)

    International Nuclear Information System (INIS)

    Various natural extracts are manufactured and on sale as health food products, which are raising popular consciousness of being fit, because they are considered effective or suppressible for cancer. In the current experiment, we measured the immunological activity, antitumor effects, and radioprotective effects of β-1,3-D-glucan (Macroglucan) extracted from bread yeast. Macroglucan of 0, 200, 400, and 800 mg/kg were administered intraperitoneally to C3H/HeJ mice, respectively. The antitumor effects of Macroglucan were examined by measuring natural killer (NK) and lymphokine activated killer (LAK) cell activity and tumor volume. Change in weight, survival, and microscopic manifestation of the intestine were evaluated in the C3H/HeJ mice received total body irradiation to measure radioprotective effect of Macroglucan. According to measurements of cellular cytotoxicity, levels of NK and LAK cell activity were significantly higher in the group administered Macroglucan than in the control group. Macroglucan's role in immunological activity was suggested by the observed suppression of tumor growth in the Macroglucan-administered group. That group also experienced suppression of weight loss after irradiation in the experiment for radioprotection, and a consequent increase in the survival rate compared with the control group. Protective effects appeared in photomicrographs of the intestinal cells. These results confirmed Macroglucan's radioprotective effects. These effects may be related to the suppression of infection accompanying immunological activation due to Macroglucan administration, antioxidant activity, and radical scavenging capacity. (author)

  18. Hypermutability of damaged single-strand DNA formed at double-strand breaks and uncapped telomeres in yeast Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Yong Yang

    2008-11-01

    Full Text Available The major DNA repair pathways operate on damage in double-strand DNA because they use the intact strand as a template after damage removal. Therefore, lesions in transient single-strand stretches of chromosomal DNA are expected to be especially threatening to genome stability. To test this hypothesis, we designed systems in budding yeast that could generate many kilobases of persistent single-strand DNA next to double-strand breaks or uncapped telomeres. The systems allowed controlled restoration to the double-strand state after applying DNA damage. We found that lesions induced by UV-light and methyl methanesulfonate can be tolerated in long single-strand regions and are hypermutagenic. The hypermutability required PCNA monoubiquitination and was largely attributable to translesion synthesis by the error-prone DNA polymerase zeta. In support of multiple lesions in single-strand DNA being a source of hypermutability, analysis of the UV-induced mutants revealed strong strand-specific bias and unexpectedly high frequency of alleles with widely separated multiple mutations scattered over several kilobases. Hypermutability and multiple mutations associated with lesions in transient stretches of long single-strand DNA may be a source of carcinogenesis and provide selective advantage in adaptive evolution.

  19. Trace enrichment of metal ions in aquatic environments by Saccharomyces cerevisiae.

    Science.gov (United States)

    Mapolelo, M; Torto, N

    2004-09-01

    Sorption properties of baker's yeast cells, characterised as Saccharomyces cerevisiae were evaluated for trace enrichment of metal ions: Cd(2+), Cr(3+), Cr(6+), Cu(2+), Pb(2+) and Zn(2+) from aqueous environments. Metal concentration was determined by flame atomic absorption spectrometry (FAAS). Parameters affecting metal uptake such as solution pH, incubation time, amount of yeast biomass and effect of glucose concentration (energy source) were optimised. Further studies were carried out to evaluate the effects on metal uptake after treating yeast with glucose as well as with an organic solvent. The results showed that trace enrichment of the metals under study with yeast, depends upon the amount of yeast biomass, pH and incubation time. Treatment of yeast cells with 10-20mM glucose concentration enhanced metal uptake with exception to Cr(6+), whose metal enrichment capacity decreased at glucose concentration of 60mM. Of the investigated organic solvents THF and DMSO showed the highest and lowest capacity, respectively, to enhance metal uptake by yeast cells. Trace enrichment of metal ions from stream water, dam water, treated wastewater from a sewage plant and wastewater from an electroplating plant achieved enrichment factors (EF) varying from 1 to 98, without pre-treatment of the sample. pH adjustment further enhanced the EF for all samples. The results from these studies demonstrate that yeast is a viable trace metal enrichment media that can be used freely suspended in solution to achieve very high EF in aquatic environments. PMID:18969566

  20. Avaliação de compostos com atividade antioxidante em células da levedura Saccharomyces cerevisiae Evaluation of compounds with antioxidant activity in Saccharomyces cerevisiae yeast cells

    Directory of Open Access Journals (Sweden)

    Daniele Grazziotin Soares

    2005-03-01

    biological tests, the antioxidant capacity of L- ascorbic acid, vitamin E (alpha-tocoferol and the flavonoids hesperidin, naringin, naringenin, quercetin, rutin and sukuranetin. The study was carried out on eukaryotic cells of the yeast Saccharomyces cerevisiae treated with the above mentioned antioxidants in the presence of the stressing agent apomorphine. The results obtained showed that rutin, hesperidin, sakuranetin, quercetin and naringin were the most effective/potent antioxidant compounds followed by naringenin and a-tocopherol. Vitamin C and a mixture of vitamins C and E did not show antioxidant activity against apomorphine in the performed conditions of this work.