WorldWideScience

Sample records for bakers yeast saccharomyces

  1. Effects of mill stream flours technological quality on fermentative activity of baker's yeast Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Mirić Katarina V.

    2008-01-01

    Full Text Available This work in concerned with the interdependence between technological quality of mill stream flours and fermentative activity of baker's yeast Saccharomyces cerevisiae. Each mill stream flour has its own specific properties, determined by the particle size, technological phase of its formation and part of the wheat kernel it consists of. Biochemical complexity of dough during examination of fermentative activity of baker's yeast confirmed the influence of a number of physical and biochemical flour properties, such as ash content, wet gluten content, rheological flour properties, phytic acid content and amylograph peak viscosity. Abudance of significant flour characteristic, their interaction and different behavior in the presence of the yeast, showed diversity and variation of result within the same category of the mill stream flour.

  2. An improved, bias-reduced probabilistic functional gene network of baker's yeast, Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Insuk Lee

    Full Text Available BACKGROUND: Probabilistic functional gene networks are powerful theoretical frameworks for integrating heterogeneous functional genomics and proteomics data into objective models of cellular systems. Such networks provide syntheses of millions of discrete experimental observations, spanning DNA microarray experiments, physical protein interactions, genetic interactions, and comparative genomics; the resulting networks can then be easily applied to generate testable hypotheses regarding specific gene functions and associations. METHODOLOGY/PRINCIPAL FINDINGS: We report a significantly improved version (v. 2 of a probabilistic functional gene network of the baker's yeast, Saccharomyces cerevisiae. We describe our optimization methods and illustrate their effects in three major areas: the reduction of functional bias in network training reference sets, the application of a probabilistic model for calculating confidences in pair-wise protein physical or genetic interactions, and the introduction of simple thresholds that eliminate many false positive mRNA co-expression relationships. Using the network, we predict and experimentally verify the function of the yeast RNA binding protein Puf6 in 60S ribosomal subunit biogenesis. CONCLUSIONS/SIGNIFICANCE: YeastNet v. 2, constructed using these optimizations together with additional data, shows significant reduction in bias and improvements in precision and recall, in total covering 102,803 linkages among 5,483 yeast proteins (95% of the validated proteome. YeastNet is available from http://www.yeastnet.org.

  3. The three zinc-containing alcohol dehydrogenases from baker's yeast, Saccharomyces cerevisiae.

    Science.gov (United States)

    Leskovac, Vladimir; Trivić, Svetlana; Pericin, Draginja

    2002-12-01

    This review is a summary of our current knowledge of the structure, function and mechanism of action of the three zinc-containing alcohol dehydrogenases, YADH-1, YADH-2 and YADH-3, in baker's yeast, Saccharomyces cerevisiae. The opening section deals with the substrate specificity of the enzymes, covering the steady-state kinetic data for its most known substrates. In the following sections, the kinetic mechanism for this enzyme is reported, along with the values of all rate constants in the mechanism. The complete primary structures of the three isoenzymes of YADH are given, and the model of the 3D structure of the active site is presented. All known artificial mutations in the primary structure of the YADH are covered in full and described in detail. Further, the chemical mechanism of action for YADH is presented along with the complement of steady-state and ligand-binding data supporting this mechanism. Finally, the bio-organic chemistry of the hydride-transfer reactions catalyzed by the enzyme is covered: this chemistry explains the narrow substrate specificity and the enantioselectivity of the yeast enzyme.

  4. 21 CFR 184.1983 - Bakers yeast extract.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Bakers yeast extract. 184.1983 Section 184.1983... Listing of Specific Substances Affirmed as GRAS § 184.1983 Bakers yeast extract. (a) Bakers yeast extract... a selected strain of yeast, Saccharomyces cerevisiae. It may be concentrated or dried. (b)...

  5. Physical, functional and structural characterization of the cell wall fractions from baker's yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Borchani, Chema; Fonteyn, Fabienne; Jamin, Guilhem; Paquot, Michel; Thonart, Philippe; Blecker, Christophe

    2016-03-01

    The yeast cell wall of Saccharomyces cerevisiae is an important source of β-d-glucan, a glucose homopolymer with many functional, nutritional and human health benefits. In the present study, the yeast cell wall fractionation process involving enzymatic treatments (savinase and lipolase enzymes) affected most of the physical and functional characteristics of extracted fractions. Thus, the fractionation process showed that β-d-glucan fraction F4 had significantly higher swelling power and fat binding capacity compared to other fractions (F1, F2 and F3). It also exhibited a viscosity of 652.12mPas and a high degree of brightness of extracted β-d-glucan fraction. Moreover, the fractionation process seemed to have an effect on structural and thermal properties of extracted fractions. Overall, results showed that yeast β-d-glucan had good potential for use as a prebiotic ingredient in food, as well as medicinal and pharmaceutical products.

  6. Beta-glucan-depleted, glycopeptide-rich extracts from Brewer's and Baker's yeast (Saccharomyces cerevisiae) lower interferon-gamma production by stimulated human blood cells in vitro.

    Science.gov (United States)

    Williams, Roderick; Dias, Daniel A; Jayasinghe, Nirupama; Roessner, Ute; Bennett, Louise E

    2016-04-15

    Regulation of the human immune system requires controlled pro- and anti-inflammatory responses for host defence against infection and disease states. Yeasts (Saccharomyces cerevisiae), as used in brewing and baking, are mostly known for ability to stimulate the human immune-system predominantly reflecting the pro-inflammatory cell wall β-glucans. However, in this study, using food-compatible processing methods, glycopeptide-enriched and β-glucan-depleted products were each prepared from Brewer's and Baker's yeasts, which suppressed production of interferon-γ (IFN-γ) in human whole blood cell assay, signifying that anti-inflammatory factors are also present in yeast. Anti-inflammatory bioactivities of products prepared from Brewer's and Baker's yeast were compared with the commercial yeast product, Epicor®. While unfractionated Epicor was inactive, the C18 resin-binding fractions of Brewer's and Baker's yeast products and Epicor dose-dependently lowered IFN-γ, demonstrating that Epicor also contained both pro-inflammatory (β-glucans) and anti-inflammatory components. Anti-inflammatory activity was attributed to C18 resin-binding species glyco-peptides in Epicor and experimental yeast products. This study demonstrated that pro- and anti-inflammatory factors could be resolved and enriched in yeasts by suitable processing, with potential to improve specific activities.

  7. O emprego de fermento de pão, Saccharomyces cerevisiae, na síntese de feromônios Baker's yeast, Saccharomyces cerevisiae, as a tool for the synthesis of pheromones

    Directory of Open Access Journals (Sweden)

    Patrícia T. Baraldi

    2004-06-01

    Full Text Available The use of pheromones in integrated pest management has been increasing in the last years due to environmental concern. This development is accompanied by the search for simple, efficient and less aggressive synthetic methodologies for the preparation of pheromones. One of these methodologies includes microbiological reactions, more specifically biocatalytic reduction of carbonyl compounds using baker's yeast (Saccharomyces cerevisiae. This review presents the use of baker's yeast as an easy and cheap alternative to obtain enantiomerically enriched compounds employed in the synthesis of pheromones.

  8. Ethanol yield and volatile compound content in fermentation of agave must by Kluyveromyces marxianus UMPe-1 comparing with Saccharomyces cerevisiae baker's yeast used in tequila production.

    Science.gov (United States)

    López-Alvarez, Arnoldo; Díaz-Pérez, Alma Laura; Sosa-Aguirre, Carlos; Macías-Rodríguez, Lourdes; Campos-García, Jesús

    2012-05-01

    In tequila production, fermentation is an important step. Fermentation determines the ethanol productivity and organoleptic properties of the beverage. In this study, a yeast isolated from native residual agave must was identified as Kluyveromyces marxianus UMPe-1 by 26S rRNA sequencing. This yeast was compared with the baker's yeast Saccharomyces cerevisiae Pan1. Our findings demonstrate that the UMPe-1 yeast was able to support the sugar content of agave must and glucose up to 22% (w/v) and tolerated 10% (v/v) ethanol concentration in the medium with 50% cells survival. Pilot and industrial fermentation of agave must tests showed that the K. marxianus UMPe-1 yeast produced ethanol with yields of 94% and 96% with respect to fermentable sugar content (glucose and fructose, constituting 98%). The S. cerevisiae Pan1 baker's yeast, however, which is commonly used in some tequila factories, showed 76% and 70% yield. At the industrial level, UMPe-1 yeast shows a maximum velocity of fermentable sugar consumption of 2.27g·L(-1)·h(-1) and ethanol production of 1.38g·L(-1)·h(-1), providing 58.78g ethanol·L(-1) at 72h fermentation, which corresponds to 96% yield. In addition, the major and minor volatile compounds in the tequila beverage obtained from UMPe-1 yeast were increased. Importantly, 29 volatile compounds were identified, while the beverage obtained from Pan1-yeast contained fewer compounds and in lower concentrations. The results suggest that the K. marxianus UMPe-1 is a suitable yeast for agave must fermentation, showing high ethanol productivity and increased volatile compound content comparing with a S. cerevisiae baker's yeast used in tequila production.

  9. Some Practical Aspects of Sugar Fermentation by Baker's Yeast (Saccharomyces cerevisiae)

    Science.gov (United States)

    Freeland, P. W.

    1973-01-01

    Describes simple quantitative determinations for ethanol and carbon dioxide, together with techniques for examining the effects of a number of environmental factors on their production. The experimental work centers around the growth of a cell population of yeast, and is suitable for senior high school students. (JR)

  10. Utilization of baker's yeast (Saccharomyces cerevisiae for the production of yeast extract: effects of different enzymatic treatments on solid, protein and carbohydrate recovery

    Directory of Open Access Journals (Sweden)

    TATJANA VUKASINOVIC MILIC

    2007-05-01

    Full Text Available Yeast extract (YE was produced from commercial pressed baker's yeast (active and inactivated using two enzymes: papain and lyticase. The effects of enzyme concentration and hydrolysis time on the recovery of solid, protein and carbohydrate were investigated. Autolysis, as a basic method for cell lysis was also used and the results compared. The optimal extraction conditions were investigated. The optimal concentrations of papain and lyticase were found to be 2.5 % and 0.025 %, respectively.

  11. Thiamine increases the resistance of baker's yeast Saccharomyces cerevisiae against oxidative, osmotic and thermal stress, through mechanisms partly independent of thiamine diphosphate-bound enzymes.

    Science.gov (United States)

    Wolak, Natalia; Kowalska, Ewa; Kozik, Andrzej; Rapala-Kozik, Maria

    2014-12-01

    Numerous recent studies have established a hypothesis that thiamine (vitamin B1 ) is involved in the responses of different organisms against stress, also suggesting that underlying mechanisms are not limited to the universal role of thiamine diphosphate (TDP) in the central cellular metabolism. The current work aimed at characterising the effect of exogenously added thiamine on the response of baker's yeast Saccharomyces cerevisiae to the oxidative (1 mM H2 O2 ), osmotic (1 M sorbitol) and thermal (42 °C) stress. As compared to the yeast culture in thiamine-free medium, in the presence of 1.4 μM external thiamine, (1) the relative mRNA levels of major TDP-dependent enzymes under stress conditions vs. unstressed control (the 'stress/control ratio') were moderately lower, (2) the stress/control ratio was strongly decreased for the transcript levels of several stress markers localised to the cytoplasm, peroxisomes, the cell wall and (with the strongest effect observed) the mitochondria (e.g. Mn-superoxide dismutase), (3) the production of reactive oxygen and nitrogen species under stress conditions was markedly decreased, with the significant alleviation of concomitant protein oxidation. The results obtained suggest the involvement of thiamine in the maintenance of redox balance in yeast cells under oxidative stress conditions, partly independent of the functions of TDP-dependent enzymes.

  12. 21 CFR 172.325 - Bakers yeast protein.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Bakers yeast protein. 172.325 Section 172.325 Food... Special Dietary and Nutritional Additives § 172.325 Bakers yeast protein. Bakers yeast protein may be safely used in food in accordance with the following conditions: (a) Bakers yeast protein is...

  13. Projeto e construção de um bioreator para síntese orgânica assimétrica catalisada por saccharomyces cerevisiae (fermento biológico de padaria Project and construction of a bioreactor for reactions catalyzed by baker's yeast (saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Ricardo de Souza Pereira

    1997-10-01

    Full Text Available A model for the construction of a simple and cheap apparatus to be used as bioreactor for reactions catalyzed by baker's yeast (Saccharomyces cerevisiae is described. The bioconversion and separation of cells from products and residual substrates are obtained at the same time. The reactions carried out in this type of reactor are faster than those catalyzed by immobilized cells. Yeast cells can be cultivated in this bioreactor operating with cell recycling at appropriated conditions using glucose and other nutrients.

  14. Growth requirements of san francisco sour dough yeasts and bakers' yeast.

    Science.gov (United States)

    Henry, N

    1976-03-01

    The growth requirements of several yeasts isolated from San Francisco sour dough mother sponges were compared with those of bakers' yeast. The sour dough yeasts studied were one strain of Saccharomyces uvarum, one strain of S. inusitatus, and four strains of S. exiguus. S. inusitatus was the only yeast found to have an amino acid requirement, namely, methionine. All of the yeasts had an absolute requirement for pantothenic acid and a partial requirement for biotin. Inositol was stimulatory to all except bakers' yeast. All strains of S. exiguus required niacin and thiamine. Interestingly, S. inusitatus, the only yeast that required methionine, also needed folic acid. For optimal growth of S. exiguus in a molasses medium, supplementation with thiamine was required.

  15. Baker's yeast: production of D- and L-3-hydroxy esters

    DEFF Research Database (Denmark)

    Dahl, Allan Carsten; Madsen, Jørgen Øgaard

    1998-01-01

    Baker's yeast grown under oxygen limited conditions and used in the reduction of 3-oxo esters results in a shift of the stereoselectivity of the yeast towards D-hydroxy esters as compared with ordinary baker's yeast. The highest degree of stereoselectivity was obtained with growing yeast or yeast...... harvested while growing. In contrast, the stereoselectivity was shifted towards L-hydroxy esters when the oxo esters were added slowly to ordinary baker's yeast supplied with gluconolactone as co-substrate. The reduction rate with gluconolactone was increased by active aeration. Ethyl L-(S)-3...

  16. Kazachstania gamospora and Wickerhamomyces subpelliculosus: Two alternative baker's yeasts in the modern bakery.

    Science.gov (United States)

    Zhou, Nerve; Schifferdecker, Anna Judith; Gamero, Amparo; Compagno, Concetta; Boekhout, Teun; Piškur, Jure; Knecht, Wolfgang

    2017-03-22

    Saccharomyces cerevisiae, the conventional baker's yeast, remains the most domesticated yeast monopolizing the baking industry. Its rapid consumption of sugars and production of CO2 are the most important attributes required to leaven the dough. New research attempts highlight that these attributes are not unique to S. cerevisiae, but also found in several non-conventional yeast species. A small number of these yeast species with similar properties have been described, but remain poorly studied. They present a vast untapped potential for the use as leavening agents and flavor producers due to their genetic and phylogenetic diversity. We assessed the potential of several non-conventional yeasts as leavening agents and flavor producers in dough-like conditions in the presence of high sugar concentrations and stressful environments mimicking conditions found in flour dough. We tested the capabilities of bread leavening and aroma formation in a microbread platform as well as in a bakery setup. Bread leavened with Kazachstania gamospora and Wickerhamomyces subpelliculosus had better overall results compared to control baker's yeast. In addition, both displayed higher stress tolerance and broader aroma profiles than the control baker's yeast. These attributes are important in bread and other farinaceous products, making K. gamospora and W. subpelliculosus highly applicable as alternative baker's yeasts.

  17. Inventions on baker's yeast strains and specialty ingredients.

    Science.gov (United States)

    Gélinas, Pierre

    2009-06-01

    Baker's yeast is one of the oldest food microbial starters. Between 1927 and 2008, 165 inventions on more than 337 baker's yeast strains were patented. The first generation of patented yeast strains claimed improved biomass yield at the yeast plant, higher gassing power in dough or better survival to drying to prepare active dry baker's yeast. Especially between 1980 and 1995, a major interest was given to strains for multiple bakery applications such as dough with variable sugar content and stored at refrigeration (cold) or freezing temperatures. During the same period, genetically engineered yeast strains became very popular but did not find applications in the baking industry. Since year 2000, patented baker's yeast strains claimed aroma, anti-moulding or nutritive properties to better meet the needs of the baking industry. In addition to patents on yeast strains, 47 patents were issued on baker's yeast specialty ingredients for niche markets. This review shows that patents on baker's yeast with improved characteristics such as aromatic or nutritive properties have regularly been issued since the 1920's. Overall, it also confirms recent interest for a very wide range of tailored-made yeast-based ingredients for bakery applications.

  18. Effects of SNF1 on Maltose Metabolism and Leavening Ability of Baker's Yeast in Lean Dough.

    Science.gov (United States)

    Zhang, Cui-Ying; Bai, Xiao-Wen; Lin, Xue; Liu, Xiao-Er; Xiao, Dong-Guang

    2015-12-01

    Maltose metabolism of baker's yeast (Saccharomyces cerevisiae) in lean dough is negatively influenced by glucose repression, thereby delaying the dough fermentation. To improve maltose metabolism and leavening ability, it is necessary to alleviate glucose repression. The Snf1 protein kinase is well known to be essential for the response to glucose repression and required for transcription of glucose-repressed genes including the maltose-utilization genes (MAL). In this study, the SNF1 overexpression and deletion industrial baker's yeast strains were constructed and characterized in terms of maltose utilization, growth and fermentation characteristics, mRNA levels of MAL genes (MAL62 encoding the maltase and MAL61 encoding the maltose permease) and maltase and maltose permease activities. Our results suggest that overexpression of SNF1 was effective to glucose derepression for enhancing MAL expression levels and enzymes (maltase and maltose permease) activities. These enhancements could result in an 18% increase in maltose metabolism of industrial baker's yeast in LSMLD medium (the low sugar model liquid dough fermentation medium) containing glucose and maltose and a 15% increase in leavening ability in lean dough. These findings provide a valuable insight of breeding industrial baker's yeast for rapid fermentation.

  19. Natural and modified promoters for tailored metabolic engineering of the yeast Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Hubmann, Georg; Thevelein, Johan M; Nevoigt, Elke

    2014-01-01

    The ease of highly sophisticated genetic manipulations in the yeast Saccharomyces cerevisiae has initiated numerous initiatives towards development of metabolically engineered strains for novel applications beyond its traditional use in brewing, baking, and wine making. In fact, baker's yeast has be

  20. Effect of yeast storage temperature and flour composition on fermentative activities of baker's yeast

    Directory of Open Access Journals (Sweden)

    Pejin Dušanka J.

    2009-01-01

    Full Text Available Baker's yeast is a set of living cells of Saccharomyces cerevisiae. It contains around 70-72% of water, 42-45% of proteins, around 40% of carbohydrates, around 7.5% of lipids (based on dry matter, and vitamin B-complex. On the basis of yeast cell analysis it can be concluded that yeast is a complex biological system which changes in time. The intensity of the changes depends on temperature. Yeast sample was stored at 4°C i 24°C for 12 days. During storage at 4°C, the content of total carbohydrates decreased from 48.81% to 37.50% (dry matter, whereas carbohydrate loss ranged from 40.81% to 29.28% at 24°C. The content of trehalose was 12.33% in the yeast sample stored at 4°C and 0.24% at 24°C. Loss of fermentative activity was 81.76% in the sample stored at 24°C for 12 days. The composition of five samples of 1st category flour was investigated. It was found that flours containing more reducing sugars and maltose enable higher fermentation activities. The flours with higher ash content (in the range 0.5-0.94% had higher contents of phytic acid. Higher ash and phytic contents in flour increased the yeast fermentative efficiency. In bakery industry, a range of ingredients has been applied to improve the product's quality such as surface active substances (emulsifiers, enzymes, sugars and fats. In the paper, the effect of some ingredients added to dough (margarine, saccharose, sodium chloride and malted barley on the yeast fermentative activity was studied. The mentioned ingredients were added to dough at different doses: 0.5, 1.0, 1.5 and 2.0%, flour basis. It was found that the investigated ingredients affected the fermentative activity of yeast and improved the bread quality.

  1. Genetic Analysis of Haploids from Industrial Strains of Baker's Yeast.

    Science.gov (United States)

    Oda, Y; Ouchi, K

    1989-07-01

    Strains of baker's yeast conventionally used by the baking industry in Japan were tested for the ability to sporulate and produce viable haploid spores. Three isolates which possessed the properties of baker's yeasts were obtained from single spores. Each strain was a haploid, and one of these strains, YOY34, was characterized. YOY34 fermented maltose and sucrose, but did not utilize galactose, unlike its parental strain. Genetic analysis showed that YOY34 carried two MAL genes, one functional and one cryptic; two SUC genes; and one defective gal gene. The genotype of YOY34 was identified as MATalpha MAL1 MAL3g SUC2 SUC4 gall. The MAL1 gene from this haploid was constitutively expressed, was dominant over other wild-type MAL tester genes, and gave a weak sucrose fermentation. YOY34 was suitable for both bakery products, like conventional baker's yeasts, and for genetic analysis, like laboratory strains.

  2. Construction from a single parent of baker's yeast strains with high freeze tolerance and fermentative activity in both lean and sweet doughs.

    Science.gov (United States)

    Nakagawa, S; Ouchi, K

    1994-10-01

    From a freeze-tolerant baker's yeast (Saccharomyces cerevisiae), 2,333 spore clones were obtained. To improve the leavening ability in lean dough of the parent strain, we selected 555 of the high-maltose-fermentative spore clones by using a method in which a soft agar solution containing maltose and bromocresol purple was overlaid on yeast colonies. By measuring the gassing power in the dough, we selected 66 spore clones with a good leavening ability in lean dough and a total of 694 hybrids were constructed by crossing them. Among these hybrids, we obtained 50 novel freeze-tolerant strains with good leavening ability in all lean, regular, and sweet doughs comparable to that of commercial baker's yeast. Hybrids with improved leavening ability or freeze tolerance compared with the parent yeast and commercial baker's yeasts were also obtained. These results suggest that hybridization between spore clones derived from a single parent strain is effective for improving the properties of baker's yeasts.

  3. Isolation of a tyrosine-activating enzyme from baker's yeast

    NARCIS (Netherlands)

    Ven, A.M. van de; Koningsberger, V.V.; Overbeek, J.Th.G.

    1958-01-01

    The extracts of ether-CO2-frozen baker's yeast contain enzymes that catalyze the ATP-linked amino acid activation by way of pyrophosphate elimination. From the extract a tyrosine-activating enzyme could be isolated, which, judging from ultracentrifugation and electrophoretic data, was about 70% pure

  4. Baker's Yeast Mediated Reduction of Optically Active Diketone

    Institute of Scientific and Technical Information of China (English)

    ZHENG, Guo-Jun(郑国君); GAO, Xiao-Lei(高晓蕾); CHEN, Jin-Chun(陈锦春); LI, Yu-Lin(李裕林)

    2004-01-01

    Baker's yeast mediated reduction of optically active diketone is described. The two keto groups are efficiently differentiated and the ee value of the recovered material is considerably raised. It affords highly optically active key intermediates efficiently for the synthesis of natural polyhydroxylated agarofuran products.

  5. The global effect of exposing bakers' yeast to 5-fluoruracil and nystatin; a view to Toxichip.

    Science.gov (United States)

    Graziano, Sara; Gullì, Mariolina; Maestri, Elena; Marmiroli, Nelson

    2016-02-01

    A genome-wide screen of a haploid deletion library of bakers' yeast (Saccharomyces cerevisiae) was conducted to document the phenotypic and transcriptional impact of exposure to each of the two pharmaceutical products 5-fluorouracil (an anti-tumor agent) and nystatin (an anti-fungal agent). The combined data set was handled by applying a systems biology perspective. A Gene Ontology analysis identified functional categories previously characterized as likely targets for both compounds. Induced transcription profiles were well correlated in yeast and human HepG2 cells. The identified molecular targets for both compounds were used to suggest a small set of human orthologues as appropriate for testing on human material. The yeast system developed here (denoted "Toxichip") has likely utility for identifying biomarkers relevant for health and environmental risk assessment applications required as part of the development process for novel pharmaceuticals.

  6. Construction of a lactose-assimilating strain of baker's yeast.

    Science.gov (United States)

    Adam, A C; Prieto, J A; Rubio-Texeira, M; Polaina, J

    1999-09-30

    A recombinant strain of baker's yeast has been constructed which can assimilate lactose efficiently. This strain has been designed to allow its propagation in whey, the byproduct resulting from cheese-making. The ability to metabolize lactose is conferred by the functional expression of two genes from Kluyveromyces lactis, LAC12 and LAC4, which encode a lactose permease and a beta-galactosidase, respectively. To make the recombinant strain more acceptable for its use in bread-making, the genetic transformation of the host baker's yeast was carried out with linear fragments of DNA of defined sequence, carrying as the only heterologous material the coding regions of the two K. lactis genes. Growth of the new strain on cheese whey affected neither the quality of bread nor the yeast gassing power. The significance of the newly developed strain is two-fold: it affords a cheap alternative to the procedure generally used for the propagation of baker's yeast, and it offers a profitable use for cheese whey.

  7. Post-fermentative production of glutathione by baker's yeast (S. cerevisiae) in compressed and dried forms.

    Science.gov (United States)

    Musatti, Alida; Manzoni, Matilde; Rollini, Manuela

    2013-01-25

    The study was aimed at investigating the best biotransformation conditions to increase intracellular glutathione (GSH) levels in samples of baker's yeast (Saccharomyces cerevisiae) employing either the commercially available compressed and dried forms. Glucose, GSH precursors amino acids, as well as other cofactors, were dissolved in a biotransformation solution and yeast cells were added (5%dcw). Two response surface central composite designs (RSCCDs) were performed in sequence: in the first step the influence of amino acid composition (cysteine, glycine, glutamic acid and serine) on GSH accumulation was investigated; once their formulation was set up, the influence of other components was studied. Initial GSH content was found 0.53 and 0.47%dcw for compressed and dried forms. GSH accumulation ability of baker's yeast in compressed form was higher at the beginning of shelf life, that is, in the first week, and a maximum of 2.04%dcw was obtained. Performance of yeast in dried form was not found satisfactory, as the maximum GSH level was 1.18%dcw. When cysteine lacks from the reaction solution, yeast cells do not accumulate GSH. With dried yeast, the highest GSH yields occurred when cysteine was set at 3 g/L, glycine and glutamic acid at least at 4 g/L, without serine. Employing compressed yeast, the highest GSH yields occurred when cysteine and glutamic acid were set at 2-3 g/L, while glycine and serine higher than 2 g/L. Results allowed to set up an optimal and feasible procedure to obtain GSH-enriched yeast biomass, with up to threefold increase with respect to initial content.

  8. Baker's Yeast: improving the D-stereoselectivity in reduction of 3-oxo esters

    DEFF Research Database (Denmark)

    Madsen, Jørgen Øgaard

    1999-01-01

    The stereoselectivity of baker's yeast in the reduction of ethyl 3-oxopentanoate was shifted towards the corresponding (R)-hydroxy ester by sugar, heat treatment and allyl alcohol. The highest enantiomeric excesses obtained with baker's yeast with a good reduction capacity, 92-97%, were achieved...... of the (R)-enantiomer of ethyl 3-hydroxybutanoate was obtained with ordinary baker's yeast. (C) 1999 Elsevier Science Ltd. All rights reserved....

  9. Genetic engineering of baker's and wine yeasts using formaldehyde hyperresistance-mediating plasmids

    Directory of Open Access Journals (Sweden)

    Schmidt M.

    1997-01-01

    Full Text Available Yeast multi-copy vectors carrying the formaldehyde-resistance marker gene SFA have proved to be a valuable tool for research on industrially used strains of Saccharomyces cerevisiae. The genetics of these strains is often poorly understood, and for various reasons it is not possible to simply subject these strains to protocols of genetic engineering that have been established for laboratory strains of S. cerevisiae. We tested our vectors and protocols using 10 randomly picked baker's and wine yeasts all of which could be transformed by a simple protocol with vectors conferring hyperresistance to formaldehyde. The application of formaldehyde as a selecting agent also offers the advantage of its biodegradation to CO2 during fermentation, i.e., the selecting agent will be consumed and therefore its removal during down-stream processing is not necessary. Thus, this vector provides an expression system which is simple to apply and inexpensive to use

  10. Sugar utilization patterns and respiro-fermentative metabolism in the baker's yeast Torulaspora delbrueckii.

    Science.gov (United States)

    Alves-Araújo, C; Pacheco, A; Almeida, M J; Spencer-Martins, I; Leão, C; Sousa, M J

    2007-03-01

    The highly osmo- and cryotolerant yeast species Torulaspora delbrueckii is an important case study among the non-Saccharomyces yeast species. The strain T. delbrueckii PYCC 5321, isolated from traditional corn and rye bread dough in northern Portugal, is considered particularly interesting for the baking industry. This paper reports the sugar utilization patterns of this strain, using media with glucose, maltose and sucrose, alone or in mixtures. Kinetics of growth, biomass and ethanol yields, fermentation and respiration rates, hydrolase activities and sugar uptake rates were used to infer the potential applied relevance of this yeast in comparison to a conventional baker's strain of Saccharomyces cerevisiae. The results showed that both maltase and maltose transport in T. delbrueckii were subject to glucose repression and maltose induction, whereas invertase was subject to glucose control but not dependent on sucrose induction. A comparative analysis of specific sugar consumption rates and transport capacities suggests that the transport step limits both glucose and maltose metabolism. Specific rates of CO(2) production and O(2) consumption showed a significantly higher contribution of respiration to the overall metabolism in T. delbrueckii than in S. cerevisiae. This was reflected in the biomass yields from batch cultures and could represent an asset for the large-scale production of the former species. This work contributes to a better understanding of the physiology of a non-conventional yeast species, with a view to the full exploitation of T. delbrueckii by the baking industry.

  11. Removal of heavy metal from industrial effluents using Baker's yeast

    Science.gov (United States)

    Ferdous, Anika; Maisha, Nuzhat; Sultana, Nayer; Ahmed, Shoeb

    2016-07-01

    Bioremediation of wastewater containing heavy metals is one of the major challenges in environmental biotechnology. Heavy metals are not degraded and as a result they remain in the ecosystem, and pose serious health hazards as it comes in contact with human due to anthropogenic activities. Biological treatment with various microorganisms has been practiced widely in recent past, however, accessing and maintaining the microorganisms have always been a challenge. Microorganisms like Baker's yeast can be very promising biosorbents as they offer high surface to volume ratio, large availability, rapid kinetics of adsorption and desorption and low cost. The main aim of this study is to evaluate the applicability of the biosorption process using baker's yeast. Here we present an experimental investigation of biosorption of Chromium (Cr) from water using commercial Baker's Yeast. It was envisaged that yeast, dead or alive, would adsorb heavy metals, however, operating parameters could play vital roles in determining the removal efficiency. Parameters, such as incubation time, pH, amount of biosorbent and heavy metal concentration were varied to investigate the impacts of those parameters on removal efficiency. Rate of removal was found to be inversely proportional to the initial Cr (+6) concentrations but the removal rate per unit biomass was a weakly dependent on initial Cr(+6) concentrations. Biosorption process was found to be more efficient at lower pH and it exhibited lower removal with the increase in solution pH. The optimum incubation time was found to be between 6-8 hours and optimum pH for the metal ion solution was 2. The effluents produced in leather industries are the major source of chromium pollution in Bangladesh and this study has presented a very cost effective yet efficient heavy metal removal approach that can be adopted for such kind of wastewater.

  12. Inventions on baker's yeast storage and activation at the bakery plant.

    Science.gov (United States)

    Gélinas, Pierre

    2010-01-01

    Baker's yeast is the gas-forming ingredient in bakery products. Methods have been invented to properly handle baker's yeast and optimize its activity at the bakery plant. Over the years, incentives for inventions on yeast storage and activation have greatly changed depending on trends in the baking industry. For example, retailer's devices for cutting bulk pressed yeast and techniques for activating dry yeast have now lost their importance. Review of patents for invention indicates that activation of baker's yeast activity has been a very important issue for bakers, for example, with baking ingredients called yeast foods. In the recent years and especially for highly automated bakeries, interest has moved to equipments and processes for optimized storage of liquid cream yeast to thoroughly control dough fermentation and bread quality.

  13. Enhanced leavening properties of baker's yeast by reducing sucrase activity in sweet dough.

    Science.gov (United States)

    Zhang, Cui-Ying; Lin, Xue; Feng, Bing; Liu, Xiao-Er; Bai, Xiao-Wen; Xu, Jia; Pi, Li; Xiao, Dong-Guang

    2016-07-01

    Leavening ability in sweet dough is required for the commercial applications of baker's yeast. This property depends on many factors, such as glycolytic activity, sucrase activity, and osmotolerance. This study explored the importance of sucrase level on the leavening ability of baker's yeast in sweet dough. Furthermore, the baker's yeast strains with varying sucrase activities were constructed by deleting SUC2, which encodes sucrase or replacing the SUC2 promoter with the VPS8/TEF1 promoter. The results verify that the sucrase activity negatively affects the leavening ability of baker's yeast strains under high-sucrose conditions. Based on a certain level of osmotolerance, sucrase level plays a significant role in the fermentation performance of baker's yeast, and appropriate sucrase activity is an important determinant for the leavening property of baker's yeast in sweet dough. Therefore, modification on sucrase activity is an effective method for improving the leavening properties of baker's yeast in sweet dough. This finding provides guidance for the breeding of industrial baker's yeast strains for sweet dough leavening. The transformants BS1 with deleted SUC2 genetic background provided decreased sucrase activity (a decrease of 39.3 %) and exhibited enhanced leavening property (an increase of 12.4 %). Such a strain could be useful for industrial applications.

  14. Evaluation of baker's yeast in honey using a real-time PCR assay.

    Science.gov (United States)

    Kast, Christina; Roetschi, Alexandra

    2017-04-01

    Occasionally, melissopalynological analysis reveals the presence of baker's yeast (Saccharomyces cerevisiae) in honey sediments. A field experiment reproducing a common spring bee feeding practice, using sugar paste containing baker's yeast, was performed to understand how S. cerevisiae are introduced into honey. Apart from classical microscopy, a real-time quantitative PCR (qPCR) system specific for S. cerevisiae was established for quantification of S. cerevisiae in honeys. Results showed that S. cerevisiae cells are stored in the honey of the brood combs and are also transferred into honey in the supers. The concentrations of S. cerevisiae were highest in honey of the brood frames immediately after the feeding and decreased over time to low concentrations at the end of the year. A high content of S. cerevisiae cells were also found in the honey from supers of the spring harvest. Observed S. cerevisiae cells were not able to multiply in a high-sugar environment, such as honey, and their viability decreased rapidly after addition to the honey. The screening of 200 Swiss honeys revealed the presence of S. cerevisiae in 4.5% of the samples, as determined by microscopy and qPCR. Finally, the method described here may indicate an unwanted sucrose addition to honey through bee-feeding.

  15. 'Yeast mail': a novel Saccharomyces application (NSA) to encrypt messages.

    Science.gov (United States)

    Rosemeyer, Helmut; Paululat, Achim; Heinisch, Jürgen J

    2014-09-01

    The universal genetic code is used by all life forms to encode biological information. It can also be used to encrypt semantic messages and convey them within organisms without anyone but the sender and recipient knowing, i.e., as a means of steganography. Several theoretical, but comparatively few experimental, approaches have been dedicated to this subject, so far. Here, we describe an experimental system to stably integrate encrypted messages within the yeast genome using a polymerase chain reaction (PCR)-based, one-step homologous recombination system. Thus, DNA sequences encoding alphabetical and/or numerical information will be inherited by yeast propagation and can be sent in the form of dried yeast. Moreover, due to the availability of triple shuttle vectors, Saccharomyces cerevisiae can also be used as an intermediate construction device for transfer of information to either Drosophila or mammalian cells as steganographic containers. Besides its classical use in alcoholic fermentation and its modern use for heterologous gene expression, we here show that baker's yeast can thus be employed in a novel Saccharomyces application (NSA) as a simple steganographic container to hide and convey messages.

  16. Generation of thiols by biotransformation of cysteine-aldehyde conjugates with baker's yeast.

    Science.gov (United States)

    Huynh-Ba, Tuong; Matthey-Doret, Walter; Fay, Laurent B; Bel Rhlid, Rachid

    2003-06-01

    Baker's yeast was shown to catalyze the transformation of cysteine-furfural conjugate into 2-furfurylthiol. The biotransformation's yield and kinetics were influenced by the reaction parameters such as pH, incubation mode (aerobic and anaerobic), and substrate concentration. 2-Furfurylthiol was obtained in an optimal 37% yield when cysteine-furfural conjugate at a 20 mM concentration was anaerobically incubated with whole cell baker's yeast at pH 8.0 and 30 degrees C. Similarly to 2-furfurylthiol, 5-methyl-2-furfurylthiol (11%), benzylthiol (8%), 2-thiophenemethanethiol (22%), 3-methyl-2-thiophenemethanethiol (3%), and 2-pyrrolemethanethiol (6%) were obtained from the corresponding cysteine-aldehyde conjugates by incubation with baker's yeast. This work indicates the versatile bioconversion capacity of baker's yeast for the generation of thiols from cysteine-aldehyde conjugates. Thanks to its food-grade character, baker's yeast provides a biochemical tool to produce thiols, which can be used as flavorings in foods and beverages.

  17. Improvement of fermentation ability under baking-associated stress conditions by altering the POG1 gene expression in baker's yeast.

    Science.gov (United States)

    Sasano, Yu; Haitani, Yutaka; Hashida, Keisuke; Oshiro, Satoshi; Shima, Jun; Takagi, Hiroshi

    2013-08-01

    During the bread-making process, yeast cells are exposed to many types of baking-associated stress. There is thus a demand within the baking industry for yeast strains with high fermentation abilities under these stress conditions. The POG1 gene, encoding a putative transcription factor involved in cell cycle regulation, is a multicopy suppressor of the yeast Saccharomyces cerevisiae E3 ubiquitin ligase Rsp5 mutant. The pog1 mutant is sensitive to various stresses. Our results suggested that the POG1 gene is involved in stress tolerance in yeast cells. In this study, we showed that overexpression of the POG1 gene in baker's yeast conferred increased fermentation ability in high-sucrose-containing dough, which is used for sweet dough baking. Furthermore, deletion of the POG1 gene drastically increased the fermentation ability in bread dough after freeze-thaw stress, which would be a useful characteristic for frozen dough baking. Thus, the engineering of yeast strains to control the POG1 gene expression level would be a novel method for molecular breeding of baker's yeast.

  18. Optimization of the flux values in multichannel ceramic membrane microfiltration of Baker`s yeast suspension

    Directory of Open Access Journals (Sweden)

    Milović Nemanja R.

    2016-01-01

    Full Text Available The objective of this work was to estimate the effects of the operating parameters on the baker's yeast microfiltration through multichannel ceramic membrane. The selected parameters were transmembrane pressure, suspension feed flow, and initial suspension concentration. In order to investigate the influence and interaction effects of these parameters on the microfiltration operation, two responses have been chosen: average permeate flux and flux decline. The Box-Behnken experimental design and response surface methodology was used for result processing and process optimization. According to the obtained results, the most important parameter influencing permeate flux during microfiltration is the initial suspension concentration. The maximum average flux value was achieved at an initial concentration of 0.1 g/L, pressure around 1.25 bars and a flow rate at 16 L/h. [Projekat Ministarstva nauke Republike Srbije, br. TR 31002

  19. Improved vanillin production in baker's yeast through in silico design

    Directory of Open Access Journals (Sweden)

    Hansen Jørgen

    2010-11-01

    Full Text Available Abstract Background Vanillin is one of the most widely used flavouring agents, originally obtained from cured seed pods of the vanilla orchid Vanilla planifolia. Currently vanillin is mostly produced via chemical synthesis. A de novo synthetic pathway for heterologous vanillin production from glucose has recently been implemented in baker's yeast, Saccharamyces cerevisiae. In this study we aimed at engineering this vanillin cell factory towards improved productivity and thereby at developing an attractive alternative to chemical synthesis. Results Expression of a glycosyltransferase from Arabidopsis thaliana in the vanillin producing S. cerevisiae strain served to decrease product toxicity. An in silico metabolic engineering strategy of this vanillin glucoside producing strain was designed using a set of stoichiometric modelling tools applied to the yeast genome-scale metabolic network. Two targets (PDC1 and GDH1 were selected for experimental verification resulting in four engineered strains. Three of the mutants showed up to 1.5 fold higher vanillin β-D-glucoside yield in batch mode, while continuous culture of the Δpdc1 mutant showed a 2-fold productivity improvement. This mutant presented a 5-fold improvement in free vanillin production compared to the previous work on de novo vanillin biosynthesis in baker's yeast. Conclusion Use of constraints corresponding to different physiological states was found to greatly influence the target predictions given minimization of metabolic adjustment (MOMA as biological objective function. In vivo verification of the targets, selected based on their predicted metabolic adjustment, successfully led to overproducing strains. Overall, we propose and demonstrate a framework for in silico design and target selection for improving microbial cell factories.

  20. Enhancement of the proline and nitric oxide synthetic pathway improves fermentation ability under multiple baking-associated stress conditions in industrial baker's yeast

    Directory of Open Access Journals (Sweden)

    Sasano Yu

    2012-04-01

    Full Text Available Abstract Background During the bread-making process, industrial baker's yeast, mostly Saccharomyces cerevisiae, is exposed to baking-associated stresses, such as air-drying and freeze-thaw stress. These baking-associated stresses exert severe injury to yeast cells, mainly due to the generation of reactive oxygen species (ROS, leading to cell death and reduced fermentation ability. Thus, there is a great need for a baker's yeast strain with higher tolerance to baking-associated stresses. Recently, we revealed a novel antioxidative mechanism in a laboratory yeast strain that is involved in stress-induced nitric oxide (NO synthesis from proline via proline oxidase Put1 and N-acetyltransferase Mpr1. We also found that expression of the proline-feedback inhibition-less sensitive mutant γ-glutamyl kinase (Pro1-I150T and the thermostable mutant Mpr1-F65L resulted in an enhanced fermentation ability of baker's yeast in bread dough after freeze-thaw stress and air-drying stress, respectively. However, baker's yeast strains with high fermentation ability under multiple baking-associated stresses have not yet been developed. Results We constructed a self-cloned diploid baker's yeast strain with enhanced proline and NO synthesis by expressing Pro1-I150T and Mpr1-F65L in the presence of functional Put1. The engineered strain increased the intracellular NO level in response to air-drying stress, and the strain was tolerant not only to oxidative stress but also to both air-drying and freeze-thaw stresses probably due to the reduced intracellular ROS level. We also showed that the resultant strain retained higher leavening activity in bread dough after air-drying and freeze-thaw stress than that of the wild-type strain. On the other hand, enhanced stress tolerance and fermentation ability did not occur in the put1-deficient strain. This result suggests that NO is synthesized in baker's yeast from proline in response to oxidative stresses that induce ROS

  1. Technological properties of bakers' yeasts in durum wheat semolina dough.

    Science.gov (United States)

    Giannone, Virgilio; Longo, Chiara; Damigella, Arcangelo; Raspagliesi, Domenico; Spina, Alfio; Palumbo, Massimo

    2010-04-01

    Properties of 13 Saccharomyces cerevisiae strains isolated from different sources (traditional sourdoughs, industrial baking yeasts etc.) were studied in dough produced with durum wheat (Sicilian semolina, variety Mongibello). Durum wheat semolina and durum wheat flour are products prepared from grain of durum wheat (Triticum durum Desf.) by grinding or milling processes in which the bran and germ are essentially removed and the remainder is comminuted to a suitable degree of fineness. Acidification and leavening properties of the dough were evaluated. Strains isolated from traditional sourdoughs (DSM PST18864, DSM PST18865 and DSM PST18866) showed higher leavening power, valuable after the first and second hours of fermentation, than commercial baking yeasts. In particular the strain DSM PST 18865 has also been successfully tested in bakery companies for the improvement of production processes. Baking and staling tests were carried out on five yeast strains to evaluate their fermentation ability directly and their resistance to the staling process. Amplified fragment length polymorphism (fAFLP) was used to investigate genetic variations in the yeast strains. This study showed an appreciable biodiversity in the microbial populations of both wild and commercial yeast strains.

  2. Disruption of phospholipase B gene, PLB1, increases the survival of baker's yeast Torulaspora delbrueckii.

    Science.gov (United States)

    Watanabe, Y; Imai, K; Oishi, H; Tamai, Y

    1996-12-15

    An uracil auxotrophic mutant of baker's yeast Torulaspora delbrueckii, which is resistant to 5-fluoro-orotic acid, was complemented by transformation with YEp24 which harbors 2 microns origin and URA3 derived from Saccharomyces cerevisiae. The phospholipase B in T. delbrueckii cells is active in both acidic and alkaline conditions. However, activity of phospholipase B gene (PLB1) in cells of disruption mutant (plb1:: URA3) was lost in both conditions, which indicates that all phospholipase B activity is encoded by a single gene (or a single polypeptide) in these yeast cells. Over-expression of PLB1 with YEp plasmid vector in T. delbrueckii cells showed approximately 2.5-fold increase in phospholipase B activity, comparing with that in wild-type cells. Cells of plb1 delta mutant showed increased survival when cells of plb1 delta mutant and wild-type strain were incubated in water at 30 degrees C. Cells of PLB1-over-expressed strain died rapidly even during the cultivation period, indicating that phospholipase B activity may be a determinant for the survival of this yeast.

  3. Superior molasses assimilation, stress tolerance, and trehalose accumulation of baker's yeast isolated from dried sweet potatoes (hoshi-imo).

    Science.gov (United States)

    Nishida, Osamu; Kuwazaki, Seigo; Suzuki, Chise; Shima, Jun

    2004-07-01

    Yeast strains were isolated from dried sweet potatoes (hoshi-imo), a traditional preserved food in Japan. Dough fermentation ability, freeze tolerance, and growth rates in molasses, which are important characteristics of commercial baker's yeast, were compared between these yeast strains and a commercial yeast derivative that had typical characteristics of commercial strains. Classification tests including pulse-field gel electrophoresis and fermentation/assimilation ability of sugars showed that almost the stains isolated belonged to Saccharomyces cerevisiae. One strain, ONY1, accumulated intracellular trehalose at a higher level than commercial strain T128. Correlated with intracellular trehalose contents, the fermentation ability of high-sugar dough containing ONY1 was higher. ONY1 also showed higher freeze tolerance in both low-sugar and high-sugar doughs. The growth rate of ONY1 was significantly higher under batch and fed-batch cultivation conditions using either molasses or synthetic medium than that of strain T128. These results suggest that ONY1 has potential commercial use as baker's yeast for frozen dough and high-sugar dough.

  4. Experiments on the formation of carboxylase and thiamine pyrophosphate in living bakers' yeast

    NARCIS (Netherlands)

    Leijnse, B.; Terpstra, W.

    1951-01-01

    The formation of carboxylase by living bakers' yeast was demonstrated upon incubation of the yeast with either thiamine or 2-methyl-4-amino-5-ethoxymethylpyrimidine, in the presence and in the absence of glucose. Carboxylase is also formed upon incubation of the yeast with NH4 sulfate and glucose. I

  5. Formulation and evaluation of acyclovir microcapsules using bakers yeast

    Institute of Scientific and Technical Information of China (English)

    Krishnan PN; Saraswathi R; Dilip C; Ramarao N

    2010-01-01

    Objective:To formulate and evaluate acyclovir microcapsules using bakers yeast. Methods:Acyclovir, pretreated yeast and deionised water were taken at a volumetric ratio of 1:2:4 respectively. This suspension was agitated in a magnetic stirrer at 25℃, 30℃, 35℃, and 40℃for 4 hours. The suspension was then centrifuged for 10 minutes at 2 000 rpm. The supernatant solution was decanted and the cells were washed 5 times with deionised water. Then the suspended drug entrapped yeast cells were dried in a lyophillizer for 48 hours. The yield was noted. Results:The first four formulations were done with 200 mg of the drug, followed by 400 mg for the next four formulations and 800 mg the last four formulations. SEM showed that the surface of the microcapsules was intact, with no burst characteristics. FTIR showed no interaction between acyclovir and the cell wall. DSC showed that the peak was within the standard values. The mean particle size for all the samples was 8 μm in diameter. The dissolution studies were done for all the twelve samples and showed a Fickian model of diffusion. Conclusions:From the results it is inferred that the samples prepared at 40℃(FY-4, FY-8, FY-12) show better entrapment and release. So these samples are formulated in the form of a suspension and compared with marketed acyclovir suspension using HPLC technique. The formulated suspensions with FY-4, FY-8 and FY-12 shows drug content in accordance with the standards of the pharmacopoeial limits.

  6. Variation in fatty acid composition of Artemia salina nauplii enriched with microalgae and baker's yeast for use in larviculture.

    Science.gov (United States)

    Chakraborty, Rekha D; Chakraborty, Kajal; Radhakrishnan, E V

    2007-05-16

    The high content of the essential fatty acids in some microalgae and baker's yeast has made them excellent diets for boosting the fatty acid content of livefood Artemia. The influences of baker's yeast (Saccharomyces cerevisiae) and three microalgae, viz., Chlorella salina, Chaetoceros calcitrans, and Nannochloropsis salina, were tested as diet components in marine livefeed brine shrimp Artemia salina nauplii to improve the polyunsaturated fatty acid (PUFA) composition. Artemia nauplii submerged in these diets for four different enrichment intervals (3, 6, 8, and 24 h) were found to incorporate essential fatty acids, and the percentage composition of different fatty acids was measured in the enriched Artemia nauplii and enrichment diets. N. salina produced higher levels of arachidonic acid (AA, 20:4n6, 9.50%), eicosapentaenoic acid (EPA, 20:5n3, 25.80%), and docosahexaenoic acid (DHA, 22:6n3, 4.18%) as compared to other diets. The total PUFA content of the enriched Artemia by N. salina increased by 56.50% with enrichment periods up to 8 h, followed by a significant reduction in the final 24 h. N. salina yielded Artemia nauplii with considerable EPA (8.05%), AA (14.15%), and DHA (1.85%) after 8 h of enrichment, which are significantly higher levels than in nauplii fed with the other three diets (p = 0.05). The DHA/EPA values in Artemia enriched for 6 h by N. salina and C. calcitrans were found to be, respectively, 88.46 and 25% higher than freshly hatched Artemia. Artemia enriched by C. salina and baker's yeast exhibited a reduction in PUFA content even at 6 h of enrichment. Significant relative decreases in DHA, EPA, and total PUFA in Artemia enriched with all of the diets were apparent, with a corresponding increase in the total saturated fatty acid content (26.95 +/- 9.75%) in the final stages (24 h) of enrichment (p = 0.05).

  7. Probiotic Properties of Non-Saccharomyces Yeasts

    DEFF Research Database (Denmark)

    Smith, Ida Mosbech

    to harmless luminal substances is a key feature of the intestinal immune system. In this context, dendritic cells (DCs) present in the tissues lining the human gut are central players involved in microbial sensing and shaping of appropriate adaptive immune responses. Probiotics are live microorganisms which...... when administered in adequate amounts confer a health benefit on the host. While the majority of probiotic microorganisms studied to date are lactic acid bacteria, research in yeasts with potentially beneficial influences on human health has mainly revolved around Saccharomyces boulardii. This yeast...... has shown a positive impact on disease outcome in clinical studies of inflammatory bowel disease, indicating an ability of S. boulardii to influence human immune responses underlying intestinal inflammation. Consequent to this focus on S. boulardii as the fundamental probiotic yeast, very little...

  8. Global expression studies in baker's yeast reveal target genes for the improvement of industrially-relevant traits: the cases of CAF16 and ORC2

    Directory of Open Access Journals (Sweden)

    Randez-Gil Francisca

    2010-07-01

    Full Text Available Abstract Background Recent years have seen a huge growth in the market of industrial yeasts with the need for strains affording better performance or to be used in new applications. Stress tolerance of commercial Saccharomyces cerevisiae yeasts is, without doubt, a trait that needs improving. Such trait is, however, complex, and therefore only in-depth knowledge of their biochemical, physiological and genetic principles can help us to define improvement strategies and to identify the key factors for strain selection. Results We have determined the transcriptional response of commercial baker's yeast cells to both high-sucrose and lean dough by using DNA macroarrays and liquid dough (LD model system. Cells from compressed yeast blocks display a reciprocal transcription program to that commonly reported for laboratory strains exposed to osmotic stress. This discrepancy likely reflects differences in strain background and/or experimental design. Quite remarkably, we also found that the transcriptional response of starved baker's yeast cells was qualitatively similar in the presence or absence of sucrose in the LD. Nevertheless, there was a set of differentially regulated genes, which might be relevant for cells to adapt to high osmolarity. Consistent with this, overexpression of CAF16 or ORC2, two transcriptional factor-encoding genes included in this group, had positive effects on leavening activity of baker's yeast. Moreover, these effects were more pronounced during freezing and frozen storage of high-sucrose LD. Conclusions Engineering of differentially regulated genes opens the possibility to improve the physiological behavior of baker's yeast cells under stress conditions like those encountered in downstream applications.

  9. Application of hybrid yeasts for molasses fermentation during the production of alcohol and bakers' yeast

    Energy Technology Data Exchange (ETDEWEB)

    Raev, Z.A.; Kovalenko, A.D.; Korobkova, L.A.; Sadovnikova, T.A.; Bespalaya, M.K.

    1973-01-01

    Various hybrids of brewers yeasts were studied and their technological properties established. It was shown that hybrid 75 was suitable for increasing alcohol yields from molasses. Hybrid 112 was suitable for increasing the maltase activity of bakers' yeast. Efficient exploitation of the above properties of yeast hybrids may be achieved in a 2 stage molasses fermentation process developed at the Ukrainian Res. Inst. of Distillery Ind. The method is based on 2-stage yeast addition: strain B yeasts in the 1st stage and an appropriate hybrid in the second.

  10. In situ selective determination of methylmercury in river water by diffusive gradient in thin films technique (DGT) using baker's yeast (Saccharomyces cerevisiae) immobilized in agarose gel as binding phase

    Energy Technology Data Exchange (ETDEWEB)

    Tafurt-Cardona, Makenly [Programa de Pós-graduação em Geociências e Meio Ambiente, Instituto de Geociências e Ciências Exatas, UNESP – Univ. Estadual Paulista, Av. 24-A, 1515, CEP: 13506-900, Rio Claro, SP (Brazil); Centro de Estudos Ambientais, UNESP – Univ. Estadual Paulista, Av. 24-A, 1515, CEP: 13506-900, Rio Claro, SP (Brazil); Eismann, Carlos Eduardo; Suárez, Carlos Alfredo [Centro de Estudos Ambientais, UNESP – Univ. Estadual Paulista, Av. 24-A, 1515, CEP: 13506-900, Rio Claro, SP (Brazil); Menegário, Amauri Antonio, E-mail: amenega@rc.unesp.br [Programa de Pós-graduação em Geociências e Meio Ambiente, Instituto de Geociências e Ciências Exatas, UNESP – Univ. Estadual Paulista, Av. 24-A, 1515, CEP: 13506-900, Rio Claro, SP (Brazil); Centro de Estudos Ambientais, UNESP – Univ. Estadual Paulista, Av. 24-A, 1515, CEP: 13506-900, Rio Claro, SP (Brazil); Silva Luko, Karen [Programa de Pós-graduação em Geociências e Meio Ambiente, Instituto de Geociências e Ciências Exatas, UNESP – Univ. Estadual Paulista, Av. 24-A, 1515, CEP: 13506-900, Rio Claro, SP (Brazil); Centro de Estudos Ambientais, UNESP – Univ. Estadual Paulista, Av. 24-A, 1515, CEP: 13506-900, Rio Claro, SP (Brazil); and others

    2015-08-05

    Saccharomyces cerevisiae immobilized in agarose gel as binding phase and polyacrylamide as diffusive layer in the diffusive gradient in thin films technique (DGT) was used for selective determination of methylmercury (MeHg). Deployment tests showed good linearity in mass uptake up to 48 h (3276 ng). When coupling the DGT technique with Cold Vapor Atomic Fluorescence Spectrometry, the method has a limit of detection of 0.44 ng L{sup −1} (pre concentration factor of 11 for 48 h deployment). Diffusion coefficient of 7.03 ± 0.77 × 10{sup −6} cm{sup 2} s{sup −1} at 23 °C in polyacrylamide gel (pH = 5.5 and ionic strength = 0.05 mol L{sup −1} NaCl) was obtained. Influence of ionic strength (from 0.0005 mol L{sup −1} to 0.1 mol L{sup −1} NaCl) and pH (from 3.5 to 8.5) on MeHg uptake were evaluated. For these range, recoveries of 84–105% and 84–98% were obtained for ionic strength and pH respectively. Potential interference due to presence of Cu, Fe, Mn, Zn was also assessed showing good recoveries (70–87%). The selectivity of the proposed approach was tested by deployments in solutions containing MeHg and Hg(II). Results obtained showed recoveries of 102–115 % for MeHg, while the uptake of Hg(II) was insignificant. The proposed approach was successfully employed for in situ measurements in the Negro River (Manaus-AM, Brazil). - Highlights: • A method for in situ selective determination of MeHg by DGT technique is proposed. • Saccharomyces cerevisiae immobilized in agarose gel was used as binding agent. • Effects of pH, ionic strength and concomitant ions on uptake of MeHg were evaluated. • DGT device containing polyacrylamide gel as diffusive layer showed better selectivity. • The proposed approach was successfully applied for analysis of river water.

  11. Synchronization of the Budding Yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Foltman, Magdalena; Molist, Iago; Sanchez-Diaz, Alberto

    2016-01-01

    A number of model organisms have provided the basis for our understanding of the eukaryotic cell cycle. These model organisms are generally much easier to manipulate than mammalian cells and as such provide amenable tools for extensive genetic and biochemical analysis. One of the most common model organisms used to study the cell cycle is the budding yeast Saccharomyces cerevisiae. This model provides the ability to synchronise cells efficiently at different stages of the cell cycle, which in turn opens up the possibility for extensive and detailed study of mechanisms regulating the eukaryotic cell cycle. Here, we describe methods in which budding yeast cells are arrested at a particular phase of the cell cycle and then released from the block, permitting the study of molecular mechanisms that drive the progression through the cell cycle.

  12. Improvement of tolerance to freeze-thaw stress of baker's yeast by cultivation with soy peptides.

    Science.gov (United States)

    Izawa, Shingo; Ikeda, Kayo; Takahashi, Nobuyuki; Inoue, Yoshiharu

    2007-06-01

    The tolerance to freeze-thaw stress of yeast cells is critical for frozen-dough technology in the baking industry. In this study, we examined the effects of soy peptides on the freeze-thaw stress tolerance of yeast cells. We found that the cells cultured with soy peptides acquired improved tolerance to freeze-thaw stress and retained high leavening ability in dough after frozen storage for 7 days. The final quality of bread regarding its volume and texture was also improved by using yeast cells cultured with soy peptides. These findings promote the utilization of soy peptides as ingredients of culture media to improve the quality of baker's yeast.

  13. Baker's yeast catalyzed asymmetric reduction of methyl acetoacetate in glycerol containing systems

    Directory of Open Access Journals (Sweden)

    Adi Wolfson

    2008-09-01

    Full Text Available The asymmetric hydrogenation of methyl acetoacetate was successfully performed with baker's yeast in pure glycerol and mixtures of glycerol and water. Though yeast viability was very low after exposure to glycerol, the enzymatic activity in pure glycerol was preserved for some days. In addition, a mixture of glycerol and water combined the advantageous of each individual solvent and resulted in high catalytic performance and efficient product extraction yield

  14. Harvesting yeast (Saccharomyces cerevisiae) at different physiological phases significantly affects its functionality in bread dough fermentation.

    Science.gov (United States)

    Rezaei, Mohammad N; Dornez, Emmie; Jacobs, Pieter; Parsi, Anali; Verstrepen, Kevin J; Courtin, Christophe M

    2014-05-01

    Fermentation of sugars into CO2, ethanol and secondary metabolites by baker's yeast (Saccharomyces cerevisiae) during bread making leads to leavening of dough and changes in dough rheology. The aim of this study was to increase our understanding of the impact of yeast on dough related aspects by investigating the effect of harvesting yeast at seven different points of the growth profile on its fermentation performance, metabolite production, and the effect on critical dough fermentation parameters, such as gas retention potential. The yeast cells harvested during the diauxic shift and post-diauxic growth phase showed a higher fermentation rate and, consequently, higher maximum dough height than yeast cells harvested in the exponential or stationary growth phase. The results further demonstrate that the onset of CO2 loss from fermenting dough is correlated with the fermentation rate of yeast, but not with the amount of CO2 that accumulated up to the onset point. Analysis of the yeast metabolites produced in dough yielded a possible explanation for this observation, as they are produced in different levels depending on physiological phase and in concentrations that can influence dough matrix properties. Together, our results demonstrate a strong effect of yeast physiology at the time of harvest on subsequent dough fermentation performance, and hint at an important role of yeast metabolites on the subsequent gas holding capacity.

  15. Preparation of selenium yeasts I. Preparation of selenium-enriched Saccharomyces cerevisiae.

    Science.gov (United States)

    Suhajda, A; Hegóczki, J; Janzsó, B; Pais, I; Vereczkey, G

    2000-04-01

    Selenium (Se) is an essential micronutrient for human and animal organisms. Organic selenium complexes and selenium-containing amino acids are considered the most bioavailable. Under appropriate conditions yeasts are capable of accumulating large amounts of trace elements, such as selenium, and incorporating them into organic compounds. It has been found that introduction of water-soluble selenium salt as a component of the culture medium for yeasts produced by conventional batch processing results in a substantial amount of selenium being absorbed by the yeast. Using a culture medium supplemented with 30 microg/mL sodium-selenite added during the exponential growth phase results in selenium-accumulation in the range of 1200-1400 microg/g dried baker's yeast (Saccharomyces cerevisiae) measured by ICP-AES method. In our previous studies it was shown that higher amounts of sodium-selenite in the culture medium have a strong inhibitory effect on the growth of this yeast. As a consequence of variations in cultivation conditions we obtained selenium yeast with different inorganic selenium content. The most important parameters influencing incorporated forms of selenium are pH value and dissolved oxygen level in the culture medium, and depending on these the selenium consumption rate of the yeast. A 0.40-0.50 mg/g h-1 specific selenium consumption rate was found to be appropriate to obtain selenium-enriched bakers' yeast of a high quality. Under suitable conditions the undesirable inorganic selenium content of the yeast could be suppressed to as low as 5-6% at the expense, however, of approximately a 20% decrease in the final biomass.

  16. Activation of waste brewer's yeast Saccharomyces cerevisiae for bread production

    Directory of Open Access Journals (Sweden)

    Popov Stevan D.

    2005-01-01

    Full Text Available The waste brewer's yeast S. cerevisiae (activated and non-activated was compared with the commercial baker's yeast regarding the volume of developed gas in dough, volume and freshness stability of produced bread. The activation of waste brewer's yeast resulted in the increased volume of developed gas in dough by 100% compared to non-activated brewer's yeast, and the obtained bread is of more stable freshness compared to bread produced with baker's yeast. The activation of BY affects positively the quality of produced bread regarding bread volume. The volume of developed gas in dough prepared with the use of non-activated BY was not sufficient, therefore, it should not be used as fermentation agent, but only as an additive in bread production process for bread freshness preservation. Intense mixing of dough results in more compressible crumb 48 hrs after baking compared to high-speed mixing.

  17. Overproduction of 2-phenylethanol by industrial yeasts to improve organoleptic properties of bakers' products.

    Science.gov (United States)

    Dueñas-Sánchez, Rafael; Pérez, Ana G; Codón, Antonio C; Benítez, Tahía; Rincón, Ana María

    2014-06-16

    2-Phenylethanol (PEA), an important alcohol derived from phenylalanine, is involved in aroma and flavour of bakers' products. Four spontaneous mutants of an industrial bakers' yeast, V1 strain, were isolated for their resistance to p-fluoro-DL-phenylalanine (PFP), a toxic analogue of L-phenylalanine. Mutants overproduced this amino acid and showed variations in their internal pool for several other amino acids. Moreover, a rise in PEA production after growth in industrial medium (MAB) was observed in three of the mutants, although their growth and fermentative capacities were slightly impaired. However, concentration of PEA remained higher during dough fermentation and also after baking, thus improving taste and aroma in bread.

  18. Comparison of melibiose utilizing baker's yeast strains produced by genetic engineering and classical breeding.

    Science.gov (United States)

    Vincent, S F; Bell, P J; Bissinger, P; Nevalainen, K M

    1999-02-01

    Yeast strains currently used in the baking industry cannot fully utilize the trisaccharide raffinose found in beet molasses due to the absence of melibiase (alpha-galactosidase) activity. To overcome this deficiency, the MEL1 gene encoding melibiase enzyme was introduced into baker's yeast by both classical breeding and recombinant DNA technology. Both types of yeast strains were capable of vigorous fermentation in the presence of high levels of sucrose, making them suitable for the rapidly developing Asian markets where high levels of sugar are used in bread manufacture. Melibiase expression appeared to be dosage-dependent, with relatively low expression sufficient for complete melibiose utilization in a model fermentation system.

  19. [The cloning and expression of the gene for beta-galactosidase from Candida pseudotropicalis yeasts in Saccharomyces cerevisiae cells].

    Science.gov (United States)

    Tretiak, K A; Zakal'skiĭ, A E; Gudz', S P

    1998-01-01

    The gene of beta-galactosidase of lactose-assimilating yeast Candida pseudotropicalis was cloned in pG2 and pBG2-3 hybrid shuttle vectors and expressed in Saccharomyces cerevisiae laboratory strains under the control of own promoter. The plasmids were able to replicate autonomously with relative stability in transformants of baker's yeasts. The availability of glucose or lactose in the medium influenced the recombinant plasmid stability and the expression of the cloned gene. A number of experiments have shown that the LAC+ phenotype in pG2-transformed Saccharomyces cerevisiae was due to the expression of the Candida pseudotropicalis lactose permease gene that is probably located in SaIG1/XhoI DNA fragment about 4.3 kb long. Southern hybridization experiments showed that LAC(+)-transformants of Saccharomyces cerevisiae contained both autonomously-replicative, and integrative pG2 plasmid.

  20. Some Aspects of Catalase Induction in Baker's Yeast (Saccharomyces cerevisiae)

    Science.gov (United States)

    Freeland, P. W.

    1974-01-01

    Described are experiments for demonstrating essential features of substrate-induced enzyme synthesis based on the Jacob-Monod model, and for showing that the activity of certain genes can be modified by environmental temperature. (RH)

  1. 21 CFR 172.898 - Bakers yeast glycan.

    Science.gov (United States)

    2010-04-01

    ...) Less than 10,000 organisms/gram by aerobic plate count. (2) Less than 10 yeasts and molds/gram. (3... used or intended for use in the following foods when standards of identity established under...

  2. Effects of MAL61 and MAL62 overexpression on maltose fermentation of baker's yeast in lean dough.

    Science.gov (United States)

    Zhang, Cui-Ying; Lin, Xue; Song, Hai-Yan; Xiao, Dong-Guang

    2015-08-01

    The predominant fermentable sugar in lean dough is maltose. To improve the leavening ability of baker's yeast in lean dough, maltose metabolism should be improved. Maltase (alpha-glucosidase, encoded by MAL62) and maltose permease (encoded by MAL61) are the major factors involved in maltose metabolism. The major rate-limiting factor in maltose metabolism and leavening ability of baker's yeast remains unclear. In this work, MAL61 and/or MAL62 overexpression strains were constructed to investigate the decisive factor for maltose metabolism of industrial baker's yeast in lean dough. Our results show that elevated maltose permease activity by MAL61 overexpression yielded less improvement in maltose fermentation compared to elevated maltase activity by MAL62 overexpression. Significant increase in maltase activity by MAL62 overexpression could result in a 44% increase in leavening ability of industrial baker's yeast in lean dough and a 39% increase in maltose metabolism in a medium containing glucose and maltose. Thus, maltase was the rate-limiting factor in maltose fermentation of industrial baker's yeast in lean dough. This study lays a foundation for breeding of industrial baker's yeast for quick dough leavening.

  3. Baker's yeast mediated reduction of substituted acenaphthenequinones: Regio- and enantioselective preparation of mono-hydroxyacenaphthenones

    Institute of Scientific and Technical Information of China (English)

    Xing Yong Wang; Jing Nan Cui; Wei Min Ren; Feng Li; Chun Liang Lu; Xu Hong Qian

    2007-01-01

    Baker's yeast mediated reduction of acenaphthenequinone within 4-10 h afforded mono-hydroxyacenaphthenone mainly with low enantioselectivity, the substrate and mono-hydroxyacenaphthenone product almost converted to dihydroxyacenaphthene after 48 h.By control of the reaction time and in the presence of DMF as co-solvent, the reduction of 6-substituted acenaphthenequinones under vigorous agitation afforded the corresponding 2-hydroxyacenaphthenones in 24-84% yields with 10-93% ee.

  4. Enhanced leavening ability of baker's yeast by overexpression of SNR84 with PGM2 deletion.

    Science.gov (United States)

    Lin, Xue; Zhang, Cui-Ying; Bai, Xiao-Wen; Xiao, Dong-Guang

    2015-06-01

    Dough-leavening ability is one of the main aspects considered when selecting a baker's yeast strain for baking industry. Generally, modification of maltose metabolic pathway and known regulatory networks of maltose metabolism were used to increase maltose metabolism to improve leavening ability in lean dough. In this study, we focus on the effects of PGM2 (encoding for the phosphoglucomutase) and SNR84 (encoding for the H/ACA snoRNA) that are not directly related to both the maltose metabolic pathway and known regulatory networks of maltose metabolism on the leavening ability of baker's yeast in lean dough. The results show that the modifications on PGM2 and/or SNR84 are effective ways in improving leavening ability of baker's yeast in lean dough. Deletion of PGM2 decreased cellular glucose-1-phosphate and overexpression of SNR84 increased the maltose permease activity. These changes resulted in 11, 19 and 21% increases of the leavening ability for PGM2 deletion, SNR84 overexpression and SNR84 overexpression combining deleted PGM2, respectively.

  5. Construction of a Trp- commercial baker's yeast strain by using food-safe-grade dominant drug resistance cassettes.

    Science.gov (United States)

    Estruch, Francisco; Prieto, José Antonio

    2003-12-01

    We have designed a food-safe-grade module for gene disruptions in commercial baker's yeast strains, which contains the G418 resistance cassette, KanMX4, flanked by direct repeats from the MEL1 gene of Saccharomyces cerevisiae. This module was used to obtain a Trp(-) auxotrophic mutant of the polyploid HY strain by successive targeting to the TRP1 locus and later in vivo excision of the kan(r) marker. Southern blot analysis indicated that HY contains five copies of the TRP1 gene. However, after four disruption rounds, a strain named HYtrpM(4), unable to grow in the absence of tryptophan, was selected. Southern and Northern analysis of HYtrpM(4) cells showed that a remaining functional wild-type copy was still present, suggesting that the level of phosphoribosylanthranylate isomerase activity, resulting from a single copy of TRP1, is too low to sustain growth. Accordingly, a high reversion frequency of the Trp(-) phenotype, through gene conversion, was found in cells of the mutant strain. Nevertheless, this was not a drawback for its use as a recipient strain of heterologous genes. Indeed, YEpACT-X24 transformants were stable after 25 generations and expressed and secreted high levels of active recombinant xylanase. These data indicate that the new Trp(-) strain can be used to generate a stable recombinant yeast that fulfils all the requirements and market criteria for commercial utilisation.

  6. The Treasure of the Humble: Lessons from Baker's Yeast

    Science.gov (United States)

    Sitaraman, Ramakrishnan

    2011-01-01

    The study of model organisms is a powerful and proven experimental strategy for understanding biological processes. This paper describes an attempt to utilize advances in yeast molecular biology to enhance student understanding by presenting a more comprehensive view of several interconnected molecular processes in the overall functioning of an…

  7. Analysis of the RNA Content of the Yeast "Saccharomyces Cerevisiae"

    Science.gov (United States)

    Deutch, Charles E.; Marshall, Pamela A.

    2008-01-01

    In this article, the authors describe an interconnected set of relatively simple laboratory experiments in which students determine the RNA content of yeast cells and use agarose gel electrophoresis to separate and analyze the major species of cellular RNA. This set of experiments focuses on RNAs from the yeast "Saccharomyces cerevisiae", a…

  8. A simple method to detect complement receptors using baker's yeast: Y C rosettes.

    Science.gov (United States)

    Rivero, I; Abaca, H E; Vallés, R; Vannucci, J D; Diumenjo, M S; Moravenik, M B

    1979-01-01

    A technique is described to identify complement-receptor-bearing cells, using serum-treated baker's yeast as a ligand. The method consists of incubation of heat-killed baker's yeasts with fresh AB normal serum, freezing, thawing, and washing of the particles, followed by mixing with the cells. Serum is required to coat the yeasts for the rosette formation. Experiments designed to establish the serum factors responsible for the attachment of the particles to cells show that heat inactivation, chelating agents, or anti-C3 treatment prevent rosette formation. This is taken as evidence that yeasts (Y) are coated with complement (C) to compose the reagent for the YC rosette technique. The application of this technique to twenty-five normal individuals demonstrated that a mean of 11.6 per 100 lymphocytes (+/- 4.3) form rosettes; absolute number: 275 (+/- 160) rosette-forming lymphocytes per mm3. Either AB or autologous fresh serum can be used to coat the yeasts. A combined technique for YC plus E rosettes can be performed allowing the identification and enumeration of four populations of lymphocytes: (a) those having receptors for sheep erythrocytes, (b) complement-receptor-bearing lymphocytes, (c) those having both receptors (D lymphocytes), and (d) non-rosette-forming non-phagocytic cells.

  9. Introducing a new breed of wine yeast: interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast and Saccharomyces mikatae.

    Directory of Open Access Journals (Sweden)

    Jennifer R Bellon

    Full Text Available Interspecific hybrids are commonplace in agriculture and horticulture; bread wheat and grapefruit are but two examples. The benefits derived from interspecific hybridisation include the potential of generating advantageous transgressive phenotypes. This paper describes the generation of a new breed of wine yeast by interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast strain and Saccharomyces mikatae, a species hitherto not associated with industrial fermentation environs. While commercially available wine yeast strains provide consistent and reliable fermentations, wines produced using single inocula are thought to lack the sensory complexity and rounded palate structure obtained from spontaneous fermentations. In contrast, interspecific yeast hybrids have the potential to deliver increased complexity to wine sensory properties and alternative wine styles through the formation of novel, and wider ranging, yeast volatile fermentation metabolite profiles, whilst maintaining the robustness of the wine yeast parent. Screening of newly generated hybrids from a cross between a S. cerevisiae wine yeast and S. mikatae (closely-related but ecologically distant members of the Saccharomyces sensu stricto clade, has identified progeny with robust fermentation properties and winemaking potential. Chemical analysis showed that, relative to the S. cerevisiae wine yeast parent, hybrids produced wines with different concentrations of volatile metabolites that are known to contribute to wine flavour and aroma, including flavour compounds associated with non-Saccharomyces species. The new S. cerevisiae x S. mikatae hybrids have the potential to produce complex wines akin to products of spontaneous fermentation while giving winemakers the safeguard of an inoculated ferment.

  10. Expression of LIP1 and LIP2 genes from Geotrichum species in Baker's yeast strains and their application to the bread-making process.

    Science.gov (United States)

    Monfort, A; Blasco, A; Sanz, P; Prieto, J A

    1999-02-01

    Lipolytic baker's yeast strains able to produce extracellular active lipase have been constructed by transformation with plasmids containing the LIP1 and LIP2 genes from Geotrichum sp. under the control of the Saccharomyces cerevisiae actin promoter (pACT1). Lipase productivity differed between both constructs, YEpACT-LIP1-t and YEpACT-LIP2-t, being higher for the strain bearing the LIP2 gene in all culture media tested. This result appeared not to be the consequence of a defect in the transcription of the LIP1 gene as revealed by Northern blot analysis. Replacing the signal sequence of LIP1 by that of LIP2 in the YEpACT-LIP1-t plasmid enhanced significantly the secretion of lipase 1, but the levels of lipase activity were still lower than those found for the YEpACT-LIP2-t transformant. Recombinant lipase 2 protein produced by baker's yeast exhibited biochemical properties similar to those of the natural enzyme. Fermented dough prepared with YEpACT-LIP2-t-carrying cells rendered a bread with a higher loaf volume and a more uniform crumb structure than that prepared with control yeast. These effects were stronger by the addition in the bread dough formulas of a preferment enriched in recombinant lipase 2.

  11. Biotechnology of non-Saccharomyces yeasts-the basidiomycetes.

    Science.gov (United States)

    Johnson, Eric A

    2013-09-01

    Yeasts are the major producer of biotechnology products worldwide, exceeding production in capacity and economic revenues of other groups of industrial microorganisms. Yeasts have wide-ranging fundamental and industrial importance in scientific, food, medical, and agricultural disciplines (Fig. 1). Saccharomyces is the most important genus of yeast from fundamental and applied perspectives and has been expansively studied. Non-Saccharomyces yeasts (non-conventional yeasts) including members of the Ascomycetes and Basidiomycetes also have substantial current utility and potential applicability in biotechnology. In an earlier mini-review, "Biotechnology of non-Saccharomyces yeasts-the ascomycetes" (Johnson Appl Microb Biotechnol 97: 503-517, 2013), the extensive biotechnological utility and potential of ascomycetous yeasts are described. Ascomycetous yeasts are particularly important in food and ethanol formation, production of single-cell protein, feeds and fodder, heterologous production of proteins and enzymes, and as model and fundamental organisms for the delineation of genes and their function in mammalian and human metabolism and disease processes. In contrast, the roles of basidiomycetous yeasts in biotechnology have mainly been evaluated only in the past few decades and compared to the ascomycetous yeasts and currently have limited industrial utility. From a biotechnology perspective, the basidiomycetous yeasts are known mainly for the production of enzymes used in pharmaceutical and chemical synthesis, for production of certain classes of primary and secondary metabolites such as terpenoids and carotenoids, for aerobic catabolism of complex carbon sources, and for bioremediation of environmental pollutants and xenotoxicants. Notwithstanding, the basidiomycetous yeasts appear to have considerable potential in biotechnology owing to their catabolic utilities, formation of enzymes acting on recalcitrant substrates, and through the production of unique primary

  12. Production of Aromatic Plant Terpenoids in Recombinant Baker's Yeast.

    Science.gov (United States)

    Emmerstorfer-Augustin, Anita; Pichler, Harald

    2016-01-01

    Plant terpenoids are high-value compounds broadly applied as food additives or fragrances in perfumes and cosmetics. Their biotechnological production in yeast offers an attractive alternative to extraction from plants. Here, we provide two optimized protocols for the production of the plant terpenoid trans-nootkatol with recombinant S. cerevisiae by either (I) converting externally added (+)-valencene with resting cells or (II) cultivating engineered self-sufficient production strains. By synthesis of the hydrophobic compounds in self-sufficient production cells, phase transfer issues can be avoided and the highly volatile products can be enriched in and easily purified from n-dodecane, which is added to the cell broth as second phase.

  13. Isolation and Kinetic Characterization of Fumarase from Baker's Yeast

    Directory of Open Access Journals (Sweden)

    Vasić-Rački, D.

    2012-05-01

    Full Text Available Isolation and purification of fumarase (fumarate hydratase EC 4.2.1.2 from baker’s yeast was carried out. Yeast cells were disrupted by three methods: glass beads, ultrasound, and the combination of these two methods. Cell disruption methods were compared in their efficiency in Fig. 1. Protein fractionation was carried out by precipitation with ammonium sulphate. The concentrations of ammonium sulphate necessary for fumarase precipitation were found ex- perimentally and are presented in Fig. 2. After precipitation, fumarase samples were purified by gel filtration chromatography on columns filled with Sephadex G50 and Sephadex G100. Examples of the elution curve of one protein suspension sample on both columns are presented in Fig. 3 and Fig. 4. Only the samples having high fumarase activity were used in the next purifying step. Table 1 presents the collective results of the fumarase purification procedure. The tech- niques used enabled purification of fumarase with a yield of 25 %. The purified enzyme was employed in the hydration of fumaric acid to L-malic acid. Kinetic constants of fumarase were estimated and are presented in Table 2. They were determined from the experimental data measured by the initial reaction rate method. The hydration of fumaric acid to L-malic acid was carried out in a batch reactor and the results are presented in Fig. 5. The kinetic model was developed on the basis of kinetic data and reaction scheme, as presented by equations 1 and 2. It was combined with the mass balances in the batch reactor presented by equations 3 and 4. Considering that fumarase deactivation occurs, it was proposed that the activity loss could be described by a first-order kinetic model (equation 5. Fumarase activity was followed during the batch experiment by the enzyme assay and it was found that activity decay occurs. Deactivation constant was estimated from the independent experimental results and found to be 0.0031 min–1.

  14. Reduction of toxic effects of aflatoxin B1 by using baker yeast (Saccharomyces cerevisiae in growing broiler chicks diets Redução dos efeitos tóxicos da aflatoxina B1, utilizando-se levedura de panificação (Saccharomyces cerevisiae, na dieta de pintos de corte em crescimento

    Directory of Open Access Journals (Sweden)

    Kemal Çelýk

    2003-06-01

    Full Text Available This study was carried out to investigate the effects of adding baker yeast (BY, chlortetracycline (CTC and both BY + CTC to a control diet containing 200 ng/g of aflatoxin B1 (C + AFB1 on performance, serum parameters and pathologyc alterations of broilers. A total 100 chicks (Ross PM 3 were divided into five groups in individual cages and each containing 20 animals. BY, a rich source of protein and vitamin B complex, was mixed into the diets at 2.0 %, CTC was mixed into the diet at 2.5 ng/g. Feed consumption, body weight and feed efficiency were recorded weekly. Serum parameters and pathologyc alterations were determined at the end of the study. Dead animals were recorded daily. Liver changes were clearly apparent in the C+AFB1and C+ AFB1+CTC most of the livers were enlarged, yellow and had pethecial hemorrhages. Canalicula cholestosis was absent in group C+AFB1 and C+ AFB1+CTC, but not others. When compared to the control (C group, alkaline phosphatase (ALP, appear to be significantly increased in the C+AFB1 and C+CTC+ AFB1 groups. Serum glutamic oxalacetic transaminase (GOTwas increased in C+AFB1 birds. Serum alphaphetoprotein was not affected by the treatments. Feed consumption and body weight were significantly reduced in group AFB1. Birds receiving BY + AFB1, CTC + AFB1 and BY + CTC + AFB1 had a significantly higher body weight than group C+AFB1. Feed efficiency was better in group CTC + AFB1 than the others. The findings of this research suggest tha BY (2% can partly counteract some of the toxic effects of AFB1.Este estudo foi desenvolvido para avaliar os efeitos da adição de Levedura de panificação (BY e cortetraciclina (CTC e ambos BY+CTC a uma dieta controle © contendo 200 ng/g de aflatoxina B1 (C+AFB1 sobre desempenho, parâmetros séricos e alterações patológicas de frangos de corte. Um total de 100 pintinhos (Ross PM3 foi dividido em cinco grupos, em gaiolas individuais, contendo 20 animais para cada grupo. A levedura de

  15. New type of postirradiation recovery of diploid yeast Saccharomyces cerevisae

    Energy Technology Data Exchange (ETDEWEB)

    Glazunov, A.V.; Kapul' tsevich, Yu.G. (Vsesoyuznyj Nauchno-Issledovatel' skij Inst. Genetiki i Selektsii Promyshlennykh Mikroorganizmov, Moscow (USSR))

    It was shown that the survival of diploid yeast Saccharomyces cerevisiae plated on the nutrient medium containing 8% NaCl rapidly increases with time of postirradiation keeping the cells in water at 28 deg C. The process is completed in 30-40 min. One fails to observe this phenomenon with the exposed cells plated on a standard culture medium for, in this case, the recovery has been fully completed before the first postirradiation division occurs. Haploid yeast Saccharomyces cerevisiae and diploid Pichia pinus are not capable of ''rapid'' repair of the studied type.

  16. Effect of nitrogen and phosphate on the levels of intermediates in bakers' yeast grown in continuous culture

    Energy Technology Data Exchange (ETDEWEB)

    Franco, C.M.M.; Smith, J.E.; Berry, D.R.

    1984-01-01

    Bakers' yeast (Saccharomyces cerevisiae) was grown in continuous culture using a control medium and media which contained low levels of NH4 and phosphate. The effects of medium composition and growth rate on the levels of intermediates of the glycolytic pathways, the tricarboxylic acid cycle, and the glyoxylate cycle were investigated. The energy charge varied only between 0.7 and 0.9 over the range of dilution rates studied; however, the level of ATP decreased by 50% at higher aerobic growth rates. Intermediates of the Embden-Meyerhoff-Parnas pathway were higher at the low aerobic growth rates and decreased as the dilution rate was increased. However, higher levels of these intermediates were also observed at even higher dilution rates at which EtOH formation and fermentative metabolism occurred. Significant differences in levels of intermediates were observed between control experiments and fermentations using the low N and phosphate media. The greatest differences were observed in the levels of glucose 6-phosphate, 6-phosphogluconate, pyruvate, citrate and glyoxlate. Twenty-one different steady states were investigated and each had a unique composition.

  17. Genetic analysis of baker's yeast Msh4-Msh5 reveals a threshold crossover level for meiotic viability.

    Directory of Open Access Journals (Sweden)

    K T Nishant

    2010-08-01

    Full Text Available During meiosis, the Msh4-Msh5 complex is thought to stabilize single-end invasion intermediates that form during early stages of recombination and subsequently bind to Holliday junctions to facilitate crossover formation. To analyze Msh4-Msh5 function, we mutagenized 57 residues in Saccharomyces cerevisiae Msh4 and Msh5 that are either conserved across all Msh4/5 family members or are specific to Msh4 and Msh5. The Msh5 subunit appeared more sensitive to mutagenesis. We identified msh4 and msh5 threshold (msh4/5-t mutants that showed wild-type spore viability and crossover interference but displayed, compared to wild-type, up to a two-fold decrease in crossing over on large and medium sized chromosomes (XV, VII, VIII. Crossing over on a small chromosome, however, approached wild-type levels. The msh4/5-t mutants also displayed synaptonemal complex assembly defects. A triple mutant containing a msh4/5-t allele and mutations that decreased meiotic double-strand break levels (spo11-HA and crossover interference (pch2Δ showed synergistic defects in spore viability. Together these results indicate that the baker's yeast meiotic cell does not require the ∼90 crossovers maintained by crossover homeostasis to form viable spores. They also show that Pch2-mediated crossover interference is important to maintain meiotic viability when crossovers become limiting.

  18. Baker's Yeast Deficient in Storage Lipid Synthesis Uses cis-Vaccenic Acid to Reduce Unsaturated Fatty Acid Toxicity.

    Science.gov (United States)

    Sec, Peter; Garaiova, Martina; Gajdos, Peter; Certik, Milan; Griac, Peter; Hapala, Ivan; Holic, Roman

    2015-07-01

    The role of cis-vaccenic acid (18:1n-7) in the reduction of unsaturated fatty acids toxicity was investigated in baker's yeast Saccharomyces cerevisiae. The quadruple mutant (QM, dga1Δ lro1Δ are1Δ are2Δ) deficient in enzymes responsible for triacylglycerol and steryl ester synthesis has been previously shown to be highly sensitive to exogenous unsaturated fatty acids. We have found that cis-vaccenic acid accumulated during cultivation in the QM cells but not in the corresponding wild type strain. This accumulation was accompanied by a reduction in palmitoleic acid (16:1n-7) content in the QM cells that is consistent with the proposed formation of cis-vaccenic acid by elongation of palmitoleic acid. Fatty acid analysis of individual lipid classes from the QM strain revealed that cis-vaccenic acid was highly enriched in the free fatty acid pool. Furthermore, production of cis-vaccenic acid was arrested if the mechanism of fatty acids release to the medium was activated. We also showed that exogenous cis-vaccenic acid did not affect viability of the QM strain at concentrations toxic for palmitoleic or oleic acids. Moreover, addition of cis-vaccenic acid to the growth medium provided partial protection against the lipotoxic effects of exogenous oleic acid. Transformation of palmitoleic acid to cis-vaccenic acid is thus a rescue mechanism enabling S. cerevisiae cells to survive in the absence of triacylglycerol synthesis as the major mechanism for unsaturated fatty acid detoxification.

  19. Regio- and Stereo-selective Bioreduction of Diketo-n-butylphosphonate by Baker's Yeast

    Institute of Scientific and Technical Information of China (English)

    WANG,Ke(王科); LI,Jin-Feng(李晋峰); YUAN,Cheng-Ye(袁承业); LI,Zu-Yi(李祖义)

    2002-01-01

    A regio- and stereo-selective reduction of diketo-n-butylphos-phonates by baker's yeast was reported. The chemical yield and ee value of these reactions are highly dependent on the structure of substrates. the resulting optical active hydroxyalkanephosphonates can be used as chirons for the synthesis of polyfunctional organophosphorus compounds. As useful building block, a series of α,β-unsaturated ketones bearing chiral hydroxy group in addition to trifluoromethyl moiety was prepared via the Horner-Wadsorth-Emmons (HWE) reaction of the biotransformation products.

  20. Heterologous expression of type I antifreeze peptide GS-5 in baker's yeast increases freeze tolerance and provides enhanced gas production in frozen dough.

    Science.gov (United States)

    Panadero, Joaquin; Randez-Gil, Francisca; Prieto, Jose Antonio

    2005-12-28

    The demand for frozen-dough products has increased notably in the baking industry. Nowadays, no appropriate industrial baker's yeast with optimal gassing capacity in frozen dough is, however, available, and it is unlikely that classical breeding programs could provide significant improvements of this trait. Antifreeze proteins, found in diverse organisms, display the ability to inhibit the growth of ice, allowing them to survive at temperatures below 0 degrees C. In this study a recombinant antifreeze peptide GS-5 was expressed from the polar fish grubby sculpin (Myoxocephalus aenaeus) in laboratory and industrial baker's yeast strains of Saccharomyces cerevisiae. Production of the recombinant protein increased freezing tolerance in both strains tested. Furthermore, expression of the GS-5 encoding gene enhanced notably the gassing rate and total gas production in frozen and frozen sweet doughs. These effects are unlikely to be due to reduced osmotic damage during freezing/thawing, because recombinant cells showed growth behavior similar to that of the parent under hypermosmotic stress conditions.

  1. Teaching microbial physiology using glucose repression phenomenon in baker's yeast as an examplele

    DEFF Research Database (Denmark)

    Vijayendran, Raghavendran; Nielsen, Jens; Olsson, Lisbeth

    2005-01-01

    The yeast Saccharomyces cerevisiae has been used by human beings since ancient times for its ability to convert sugar to alcohol. Continual exposure to glucose in the natural environment for innumerable generations has probably enabled S. cerevisiae to grow in fermentative mode on sugars by switc......The yeast Saccharomyces cerevisiae has been used by human beings since ancient times for its ability to convert sugar to alcohol. Continual exposure to glucose in the natural environment for innumerable generations has probably enabled S. cerevisiae to grow in fermentative mode on sugars...... by switching off the genes responsible for respiration even under aerobic conditions. This phenomenon is referred to as the Crabtree effect. The present review focuses on glucose repression in S. cerevisiae from a physiological perspective. Physiological studies presented involve batch and chemostat...

  2. Pyruvate decarboxylases from the petite-negative yeast Saccharomyces kluyveri

    DEFF Research Database (Denmark)

    Møller, Kasper; Langkjær, Rikke Breinhold; Nielsen, Jens;

    2004-01-01

    Saccharomyces kluyveri is a petite-negative yeast, which is less prone to form ethanol under aerobic conditions than is S. cerevisiae. The first reaction on the route from pyruvate to ethanol is catalysed by pyruvate decarboxylase, and the differences observed between S. kluyveri and S. cerevisiae...... was controlled by variations in the amount of mRNA. The mRNA level and the pyruvate decarboxylase activity responded to anaerobiosis and growth on different carbon sources in essentially the same fashion as in S. cerevisiae. This indicates that the difference in ethanol formation between these two yeasts...... is not due to differences in the regulation of pyruvate decarboxylase(s), but rather to differences in the regulation of the TCA cycle and the respiratory machinery. However, the PDC genes of Saccharomyces/Kluyveromyces yeasts differ in their genetic organization and phylogenetic origin. While S. cerevisiae...

  3. Tolerance of budding yeast Saccharomyces cerevisiae to ultra high pressure

    Science.gov (United States)

    Shibata, M.; Torigoe, M.; Matsumoto, Y.; Yamamoto, M.; Takizawa, N.; Hada, Y.; Mori, Y.; Takarabe, K.; Ono, F.

    2014-05-01

    Our studies on the tolerance of plants and animals against very high pressure of several GPa have been extended to a smaller sized fungus, the budding yeast Saccharomyces cerevisiae. Several pieces of budding yeast (dry yeast) were sealed in a small teflon capsule with a liquid pressure medium fluorinate, and exposed to 7.5 GPa by using a cubic anvil press. The pressure was kept constant for various duration of time from 2 to 24 h. After the pressure was released, the specimens were brought out from the teflon capsule, and they were cultivated on a potato dextrose agar. It was found that the budding yeast exposed to 7.5 GPa for up to 6 h showed multiplication. However, those exposed to 7.5 GPa for longer than 12 h were found dead. The high pressure tolerance of budding yeast is a little weaker than that of tardigrades.

  4. The Isolation of Invertase from Baker's Yeast: A Four-Part Exercise in Protein Purification and Characterization

    Science.gov (United States)

    Timerman, Anthony P.; Fenrick, Angela M.; Zamis, Thomas M.

    2009-01-01

    A sequence of exercises for the isolation and characterization of invertase (E.C. 3.1.2.26) from baker's yeast obtained from a local grocery store is outlined. Because the enzyme is colorless, the use of colored markers and the sequence of purification steps are designed to "visualize" the process by which a colorless protein is selectively…

  5. Preparation of iron-enriched baker's yeast and its efficiency in recovery of rats from dietary iron deficiency

    OpenAIRE

    Kyyaly, Mohammad Aref; Powell, Chris; Ramadan, Elshahat

    2015-01-01

    OBJECTIVES Iron is an important mineral, essential for the health and function of mammalian cells. Despite its key role, iron deficiency in humans is common worldwide, often leading to significant health issues within the population. The aim of this study was to evaluate the potential of using iron-enriched baker's yeast as a source of iron, especially for the protection and recovery from conditions related to anemia. METHODS Iron-enriched yeast was prepared by cultivating cells o...

  6. Genomics and Biochemistry of Saccharomyces cerevisiae Wine Yeast Strains.

    Science.gov (United States)

    Eldarov, M A; Kishkovskaia, S A; Tanaschuk, T N; Mardanov, A V

    2016-12-01

    Saccharomyces yeasts have been used for millennia for the production of beer, wine, bread, and other fermented products. Long-term "unconscious" selection and domestication led to the selection of hundreds of strains with desired production traits having significant phenotypic and genetic differences from their wild ancestors. This review summarizes the results of recent research in deciphering the genomes of wine Saccharomyces strains, the use of comparative genomics methods to study the mechanisms of yeast genome evolution under conditions of artificial selection, and the use of genomic and postgenomic approaches to identify the molecular nature of the important characteristics of commercial wine strains of Saccharomyces. Succinctly, data concerning metagenomics of microbial communities of grapes and wine and the dynamics of yeast and bacterial flora in the course of winemaking is provided. A separate section is devoted to an overview of the physiological, genetic, and biochemical features of sherry yeast strains used to produce biologically aged wines. The goal of the review is to convince the reader of the efficacy of new genomic and postgenomic technologies as tools for developing strategies for targeted selection and creation of new strains using "classical" and modern techniques for improving winemaking technology.

  7. Dissection of transcriptional regulation networks and prediction of gene functions in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Boorsma, A.

    2008-01-01

    Molecular biology aims to unravel the functions of cells by studying cellular processes at the molecular level. Amodel organism that is well established in molecular biology is bakers yeast (Saccharomyces cerevisiae). Bakers yeast cells are remarkably similar to human cells, but much easier to grow

  8. Baker's yeast effluent as a liquid feed for dairy cows and heifers.

    Science.gov (United States)

    Blauwiekel, R; Loney, K A; Riley, R E

    1995-02-01

    Liquid effluent from baker's yeast production was fed to dairy cows to determine whether effluent is an acceptable feed and whether it affects milk yield or composition. Effluent averaged 5.4% DM and 6.1% N (DM basis). In experiment 1, 20 Holstein cows were offered effluent free choice or no effluent for 8 wk. Milk yield, composition, and group feed intake were measured. In Experiment 2, 20 cows were fed effluent blended into the TMR (11.3 L/d per cow) or no effluent for 4 wk. In Experiment 3, six groups of 6 heifers were offered free choice or no effluent. Free choice intake of effluent peaked at 15 L/d per cow at wk 3 but declined to 5.3 L/d per cow by wk 6. Milk and 3.5% FCM yields were not affected by effluent regardless of feeding system. Milk protein and fat percentages were higher for cows offered effluent free choice. Milk protein percentage and yield were lower with effluent in the TMR. Intake of effluent by heifers was 1.05 L/d, and effluent did not affect DMI or weight gain. Acceptability of yeast effluent fed free choice is poor, but when yeast is blended into the TMR, cows consume effluent without adverse effects on milk yield or DMI.

  9. Domestication and Divergence of Saccharomyces cerevisiae Beer Yeasts.

    Science.gov (United States)

    Gallone, Brigida; Steensels, Jan; Prahl, Troels; Soriaga, Leah; Saels, Veerle; Herrera-Malaver, Beatriz; Merlevede, Adriaan; Roncoroni, Miguel; Voordeckers, Karin; Miraglia, Loren; Teiling, Clotilde; Steffy, Brian; Taylor, Maryann; Schwartz, Ariel; Richardson, Toby; White, Christopher; Baele, Guy; Maere, Steven; Verstrepen, Kevin J

    2016-09-01

    Whereas domestication of livestock, pets, and crops is well documented, it is still unclear to what extent microbes associated with the production of food have also undergone human selection and where the plethora of industrial strains originates from. Here, we present the genomes and phenomes of 157 industrial Saccharomyces cerevisiae yeasts. Our analyses reveal that today's industrial yeasts can be divided into five sublineages that are genetically and phenotypically separated from wild strains and originate from only a few ancestors through complex patterns of domestication and local divergence. Large-scale phenotyping and genome analysis further show strong industry-specific selection for stress tolerance, sugar utilization, and flavor production, while the sexual cycle and other phenotypes related to survival in nature show decay, particularly in beer yeasts. Together, these results shed light on the origins, evolutionary history, and phenotypic diversity of industrial yeasts and provide a resource for further selection of superior strains. PAPERCLIP.

  10. Genome annotation of a Saccharomyces sp. lager brewer's yeast

    Directory of Open Access Journals (Sweden)

    Patricia Marcela De León-Medina

    2016-09-01

    Full Text Available The genome of lager brewer's yeast is a hybrid, with Saccharomyces eubayanus and Saccharomyces cerevisiae as sub-genomes. Due to their specific use in the beer industry, relatively little information is available. The genome of brewing yeast was sequenced and annotated in this study. We obtained a genome size of 22.7 Mbp that consisted of 133 scaffolds, with 65 scaffolds larger than 10 kbp. With respect to the annotation, 9939 genes were obtained, and when they were submitted to a local alignment, we found that 53.93% of these genes corresponded to S. cerevisiae, while another 42.86% originated from S. eubayanus. Our results confirm that our strain is a hybrid of at least two different genomes.

  11. Fluid-phase endocytosis in yeasts other than Saccharomyces cerevisiae.

    Science.gov (United States)

    Fernandez, N; Puente, P; Leal, F

    1990-05-01

    A FITC-dextran internalization assay with Saccharomyces cerevisiae as positive control was used to determine whether fluid-phase endocytosis is a general characteristic of yeasts. Schizosaccharomyces pombe, Pichia polymorpha, Kluyveromyces phaseolosporus, Yarrowia lipolytica and Candida albicans were clearly positive, whereas results obtained with Debaryomyces marama were inconclusive. In all cases internalized FITC-dextran was found to be localized in the vacuoles and the process was always time- and temperature-dependent. Lower eucaryotes, particularly yeasts, appear to have the ability to incorporate substances from the extracellular medium through fluid-phase endocytosis.

  12. [Constructing recombinant plasmid pSH-CUP and knockout of acid trehalase gene in baker's yeast].

    Science.gov (United States)

    He, Dongqin; Xiao, Dongguang; Lv, Ye

    2008-02-01

    The ATH1 gene encoded acid trehalase in Saccharomyces cerevisiae. The gene disruption cassette combined the heterologous dominant kan(r) resistance marker with a Cre/loxP-mediated marker removal procedure. The gene disruption cassette was produced by PCR using the same long oligonucleotides comprising 50 nucleotides that annealed to sites upstream or downstream of the genomic target sequence to be deleted. After transformation of the linear disruption cassettes with a Cre/loxP-mediated marker into the cells of Saccharomyces cerevisiae BY-6, selected transformants were checked by PCR for correct the integration of the cassette and concurrent deletion of the chromosomal target sequence. The copper-resistance gene (CUP1-MT1) was cloned into pSH47, which yielded pSH-CUP. The recombinant plasmid pSH-CUP was transformed into the cells of Saccharomyces cerevisiae BY-6(delta ATH1, G418(r)), and transformants were selected for copper resistance. Upon expression of the Cre recombinase results in removal of the kan(r) gene, leaving behind a single loxP site at the chromosomal locus. Construction of the recombinant plasmid pSH-CUP avoided inserting non-yeast gene and made the loxP - kanMX - loxP gene disruption cassette more conventional for eukaryotic organism gene disruption.

  13. Optimization of feeding strategy for the ergosterol production by yeasts Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Mojmir Rychtera

    2010-08-01

    Full Text Available Objective of this study was to optimize ergosterol production by yeast strain Saccharomyces cerevisiae with the use of computer controlled feeding of cultivation medium. Baker´s yeasts strain of Saccharomyces cerevisiae originally modified and selected as mutant D7 was further applied in an industrial scale and also in this investigation. Composition of cultivation medium was optimized with the use of a modified Rosenbrock´s method with regard to following components: glucose, yeast extract, ammonium sulphate, potassium dihydrogen phosphate, magnesium sulphate and calcium chloride. Cultivation of yeast culture was performed in 7 L laboratory bioreactor with a working volume of 5 L equipped with a control unit and linked to a computer, with dissolved oxygen tension measurement, oxygen and carbon dioxide analyzers. BIOGENES prototype software was created from the commercial control system Genesis for Windows 3.0 (GFW, from Iconics and CLIPS 6.04 for the PC-Windows platform. From various factors affecting sterol biosynthesis a specific growth rate was chosen. Feed rate was controlled according to mathematical model. In this case it dealt with a design of optimal profile of specific growth rate with consequent calculation of carbon dioxide profile. Sterol concentration in the dry biomass increased from 1.0 % up to 3 %. Key words: Saccharomyces cerevisiae yeasts, ergosterol, fed-batch cultivation control, effect of the specific growth rate. Resumen: El objetivo de este estudio fue optimizar la producción de ergosterol por una cepa de levadura Saccharomyces cerevisiae, controlando la alimentación de medio de cultivo por computadora. La cepa de levadura panadera Saccharomyces cerevisiae originalmente modificada y seleccionada como mutante D7 fue posteriormente utilizada a escala industrial y también para esta investigación. La composición del medio de cultivo fue optimizada usando el método modificado de Rosenbrock respecto a los siguientes

  14. Prevention of GABA reduction during dough fermentation using a baker's yeast dal81 mutant.

    Science.gov (United States)

    Ando, Akira; Nakamura, Toshihide

    2016-10-01

    γ-Aminobutyric acid (GABA) is consumed by yeasts during fermentation. To prevent GABA reduction in bread dough, a baker's yeast mutant AY77 deficient in GABA assimilation was characterized and utilized for wheat dough fermentation. An amber mutation in the DAL81 gene, which codes for a positive regulator of multiple nitrogen degradation pathways, was found in the AY77 strain. The qPCR analyses of genes involved in nitrogen utilization showed that transcriptional levels of the UGA1 and DUR3 genes encoding GABA transaminase and urea transporter, respectively, are severely decreased in the AY77 cells. The AY77 strain cultivated by fed-batch culture using cane molasses exhibited inferior gas production during dough fermentation compared to that of wild-type strain AY13. However, when fed with molasses containing 0.5% ammonium sulfate, the mutant strain exhibited gas production comparable to that of the AY13 strain. In contrast to the AY13 strain, which completely consumed GABA in dough within 5 h, the AY77 strain consumed no GABA under either culture condition. Dough fermentation with the dal81 mutant strain should be useful for suppression of GABA reduction in breads.

  15. Interactions between Drosophila and its natural yeast symbionts-Is Saccharomyces cerevisiae a good model for studying the fly-yeast relationship?

    Science.gov (United States)

    Hoang, Don; Kopp, Artyom; Chandler, James Angus

    2015-01-01

    Yeasts play an important role in the biology of the fruit fly, Drosophila melanogaster. In addition to being a valuable source of nutrition, yeasts affect D. melanogaster behavior and interact with the host immune system. Most experiments investigating the role of yeasts in D. melanogaster biology use the baker's yeast, Saccharomyces cerevisiae. However, S. cerevisiae is rarely found with natural populations of D. melanogaster or other Drosophila species. Moreover, the strain of S. cerevisiae used most often in D. melanogaster experiments is a commercially and industrially important strain that, to the best of our knowledge, was not isolated from flies. Since disrupting natural host-microbe interactions can have profound effects on host biology, the results from D. melanogaster-S. cerevisiae laboratory experiments may not be fully representative of host-microbe interactions in nature. In this study, we explore the D. melanogaster-yeast relationship using five different strains of yeast that were isolated from wild Drosophila populations. Ingested live yeasts have variable persistence in the D. melanogaster gastrointestinal tract. For example, Hanseniaspora occidentalis persists relative to S. cerevisiae, while Brettanomyces naardenensis is removed. Despite these differences in persistence relative to S. cerevisiae, we find that all yeasts decrease in total abundance over time. Reactive oxygen species (ROS) are an important component of the D. melanogaster anti-microbial response and can inhibit S. cerevisiae growth in the intestine. To determine if sensitivity to ROS explains the differences in yeast persistence, we measured yeast growth in the presence and absence of hydrogen peroxide. We find that B. naardenesis is completely inhibited by hydrogen peroxide, while H. occidentalis is not, which is consistent with yeast sensitivity to ROS affecting persistence within the D. melanogaster gastrointestinal tract. We also compared the feeding preference of D

  16. Diversity and adaptive evolution of Saccharomyces wine yeast: a review.

    Science.gov (United States)

    Marsit, Souhir; Dequin, Sylvie

    2015-11-01

    Saccharomyces cerevisiae and related species, the main workhorses of wine fermentation, have been exposed to stressful conditions for millennia, potentially resulting in adaptive differentiation. As a result, wine yeasts have recently attracted considerable interest for studying the evolutionary effects of domestication. The widespread use of whole-genome sequencing during the last decade has provided new insights into the biodiversity, population structure, phylogeography and evolutionary history of wine yeasts. Comparisons between S. cerevisiae isolates from various origins have indicated that a variety of mechanisms, including heterozygosity, nucleotide and structural variations, introgressions, horizontal gene transfer and hybridization, contribute to the genetic and phenotypic diversity of S. cerevisiae. This review will summarize the current knowledge on the diversity and evolutionary history of wine yeasts, focusing on the domestication fingerprints identified in these strains.

  17. Effect of Yeast : Saccharomyces cerevisiae and Marine Yeast as probiotic supplement on performance of poultry

    Directory of Open Access Journals (Sweden)

    I Putu Kompiang

    2002-03-01

    Full Text Available An experiment had been conducted to evaluate the effect of marine yeast and Saccharomyces cerevisiae (Sc as probiotic supplement on poultry performance. Marine yeast isolated from rotten sea-weed and commercial Saccharomyces cerevisiae were used. Evaluation was conducted by comparing performance of broiler chicken supplemented with marine yeast or Sc, which were given through drinking water (5 ml/l to negative control (feed without antibiotic growth promotor/GPA, positive control (feed with GPA, and reference commercial probiotic. Forty DOC broiler birds were used for each treatment, divided into 4 replicates (10 birds/replicate and raised in wire cages for 5 weeks. Body weight and feed consumption were measured weekly and mortality was recorded during the trial. The results showed that there were no significant difference on the birds performance among marine yeast, Sc, positive control and probiotic reference control treatments. However their effects on bird performance were better (P<0.05 than treatment of negative control. It is concluded that marine yeast or Saccharomyces cerevisiae could replace the function of antibiotic as a growth promotant.

  18. Gene engineering in yeast for biodegradation: Immunological cross-reactivity among cytochrome p-450 system proteins of saccharomyces cerevisiae and candida tropicalis

    Energy Technology Data Exchange (ETDEWEB)

    Loper, J.C.; Chen, C.; Dey, C.R.

    1993-01-01

    Yeasts are eukaryotic microorganisms whose cytochrome P-450 monooxygenase systems may be amenable to genetic engineering for the hydroxylation and detoxication of polychlorinated aromatic hydrocarbons. The molecular genetic properties of strains of bakers yeast, Saccharomyces cerevisiae, and an n-alkane utilizing yeast, Candida tropicalis ATCC750 are examined. Standard methods were used to purify cytochrome P-450 and NADPH-cytochrome c (P-450) reductase proteins from cells cultured by semi-anaerobic glucose fermentation (S. cerevisiae, C. tropicalis) and by growth on tetradecane (C. tropicalis). Polyvalent antisera prepared in rabbits to some of these proteins were used in tests of immunological relatedness among the purified proteins using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and nitrocellulose filter immunoblots. The results provide evidence for gene relationships which should prove useful in gene isolation and subsequent engineering of P-450 enzyme systems in yeast.

  19. Effect of sodium chloride on bakers' yeast growing in gelatin

    Energy Technology Data Exchange (ETDEWEB)

    Wei, C.J.; Tanner, R.D.; Malaney, G.W.

    1982-04-01

    In recent years, industrial fermentation researchers have shifted their attention from liquid to solid and semisolid culture conditions. We converted liquid cultures to the semisolid mode by adding high levels of gelatin. Previous studies on liquid cultures have revealed the inhibitory activity of mineral salts, such as NaCl, on the fermentation of sugars by yeasts. We made a kinetic study of the effects of 1 to 5% (wt/vol) NaCl on the alcoholic fermentations of glucose by Saccharomyces cerevisiae in a growth medium containing 16% gelatin. Our results showed that the effect of high salt content on semisolid culture is essentially the same as the effect on liquid culture; i.e., as the salt content increased, the following occurred: (i) the growth of yeasts decreased, (ii) the lag period of the yeast biomass curve lengthened, (iii) the sugar intake was lowered, (iv) the yield of ethanol was reduced and (v) the production of glycerol was increased. We observed a new relationship correlating the area of kinetic hysteresis with ethanol production rate, acetaldehyde concentration, and the initial NaCl concentration. (Refs. 20).

  20. The comparison of Cu(Ⅱ) adsorption capability of baker's yeast, nano-titania and their composite adsorbent

    Institute of Scientific and Technical Information of China (English)

    ZHANG YunSong; WANG RenGuo; WANG XianXiang; LEI SanZhong; TONG DongMei

    2008-01-01

    The anatase nano-TiO2 powder, with crystal size between 40 and 80 nm, was prepared by the liquid phase hydrolysis of TiOCI4. At the same time, the nano-TiO2was utilized with the baker's yeast biomass as a composite adsorbent to adsorb the Cu ions in the artificial aqueous solution. The investigation showed that the composite adsorbent had a fine adsorption efficiency. The TiO2 in the composite ad-sorbent could cooperate well with baker's yeast to improve the adsorbing capability of Cu2+ under the following experimental conditions as well: a quantity of composite adsorbent of 5 g·L-1, pH≥4.0, an adsorption time of 40 rain and an initial concentration of Cu ions of 10 mg·L-1. In addition, the results of measurements, obtained with a scanning electron microscope, an infrared spectrophotometer and a Zeta potential analyzer, revealed that the baker's yeast and nano-TiO2 produced the composite ad-sorbent through coordination and hydrogen bonds in particular, etc. The stability of the composite adsorbent and the amount of titania loaded were largely dependent on the concentration of hydrogen ion in the solution.

  1. Oxygen requirements of yeasts. [Saccharomyces cerevisiae; Candida tropicalis

    Energy Technology Data Exchange (ETDEWEB)

    Visser, W.; Scheffers, W.A.; Batenburg-Van Der Vegte, W.H.; Van Dijken, J.P. (Delft Univ. of Technology (Netherlands))

    1990-12-01

    Type species of 75 yeast genera were examined for their ability to grow anaerobically in complex and mineral media. To define anaerobic conditions, we added a redox indicator, resazurin, to the media to determine low redox potentials. All strains tested were capable of fermenting glucose to ethanol in oxygen-limited shake-flask cultures, even those of species generally regarded as nonfermentative. However, only 23% of the yeast species tested grew under anaerobic conditions. A comparative study with a number of selected strains revealed that Saccharomyces cerevisiae stands out as a yeast capable of rapid growth at low redox potentials. Other yeasts, such as Torulaspora delbrueckii and Candida tropicalis, grew poorly ({mu}{sub max}, 0.03 and 0.05 h{sup {minus}1}, respectively) under anaerobic conditions in mineral medium supplemented with Tween 80 and ergosterol. The latter organisms grew rapidly under oxygen limitation and then displayed a high rate of alcoholic fermentation. It can be concluded that these yeasts have hitherto-unidentified oxygen requirements for growth.

  2. Studies of Saccharomyces cerevisiae and Non-Saccharomyces Yeasts during Alcoholic Fermentation

    DEFF Research Database (Denmark)

    Kemsawasd, Varongsiri

    to the early death of L. thermotolerans during mixed-culture alcoholic fermentation with S. cerevisiae. These data may be valuable for development of mixed- and sequential starter cultures for tailoring of wine quality and enhanced flavour profiles. As well, we studied the role of nitrogenous sources...... in completion of anaerobic alcoholic fermentation. For both S. cerevisiae and non-Saccharomyces yeasts, some 22 different nitrogenous sources were evaluated for effects on growth and fermentation ability during anaerobic alcoholic fermentation. The data revealed that nitrogen preference is a trait...... that is species-specific; as well, growth enhancement is also dependent upon the type of nitrogen supplementation for each yeast species. This work provides the first detailed analysis of appropriate nitrogen supplementation to improve yeast growth and alcoholic fermentative activity (i.e., glucose consumption...

  3. On-line optimal control for fed-batch culture of baker's yeast production

    Energy Technology Data Exchange (ETDEWEB)

    Wu, W.T.; Chen, K.C.; Chiou, H.W.

    1985-05-01

    A method of on-line optimal control for fed-batch culture of bakers yeast production is proposed. The feed rate is taken as the control variable. The specific growth rate of the yeast is the output variable and is determined from the balance equation of oxygen. A moving model is obtained by using the data from the feed rate and the specific growth rate. Based on the moving model, an optimal feed rate for fed-batch culture is then achieved. 11 references.

  4. Treatment of the baker's yeast wastewater by electrocoagulation

    Energy Technology Data Exchange (ETDEWEB)

    Kobya, M. [Department of Environmental Engineering, Gebze Institute of Technology, 41400 Gebze (Turkey)], E-mail: kobya@gyte.edu.tr; Delipinar, S. [Department of Environmental Engineering, Gebze Institute of Technology, 41400 Gebze (Turkey)

    2008-06-15

    In the laboratory-scale experiments, treatment of baker's yeast production wastewater has been investigated by electrocoagulation (EC) using a batch reactor. Effects of the process variables such as pH, electrode material (Fe and Al), current density, and operating time are investigated in terms of removal efficiencies of chemical oxygen demand (COD), total organic carbon (TOC), turbidity, and operating cost, respectively. The maximum removal efficiencies of COD, TOC and turbidity under optimal operating conditions, i.e., pH 6.5 for Al electrode and pH 7 for Fe electrode, current density of 70 A/m{sup 2} and operating time of 50 min were 71, 53 and 90% for Al electrode and 69, 52 and 56% for Fe electrode, respectively. Al electrode gave 4.4 times higher removal efficiency of turbidity than Fe electrode due to interference from color of dissolved iron. The operating costs for Al and Fe electrodes in terms of $/m{sup 3} or $/kg COD were 1.54 and 0.82, 0.51 and 0.27, respectively.

  5. Replication of Avocado Sunblotch Viroid in the Yeast Saccharomyces cerevisiae▿

    Science.gov (United States)

    Delan-Forino, Clémentine; Maurel, Marie-Christine; Torchet, Claire

    2011-01-01

    Viroids are the smallest known pathogenic agents. They are noncoding, single-stranded, closed-circular, “naked” RNAs, which replicate through RNA-RNA transcription. Viroids of the Avsunviroidae family possess a hammerhead ribozyme in their sequence, allowing self-cleavage during their replication. To date, viroids have only been detected in plant cells. Here, we investigate the replication of Avocado sunblotch viroid (ASBVd) of the Avsunviroidae family in a nonconventional host, the yeast Saccharomyces cerevisiae. We demonstrate that ASBVd RNA strands of both polarities are able to self-cleave and to replicate in a unicellular eukaryote cell. We show that the viroid monomeric RNA is destabilized by the nuclear 3′ and the cytoplasmic 5′ RNA degradation pathways. For the first time, our results provide evidence that viroids can replicate in other organisms than plants and that yeast contains all of the essential cellular elements for the replication of ASBVd. PMID:21270165

  6. Molecular Cloning and Yeast Expression of Cinnamate 4-Hydroxylase from Ornithogalum saundersiae Baker

    Directory of Open Access Journals (Sweden)

    Jian-Qiang Kong

    2014-01-01

    Full Text Available OSW-1, isolated from the bulbs of Ornithogalum saundersiae Baker, is a steroidal saponin endowed with considerable antitumor properties. Biosynthesis of the 4-methoxybenzoyl group on the disaccharide moiety of OSW-1 is known to take place biochemically via the phenylpropanoid biosynthetic pathway, but molecular biological characterization of the related genes has been insufficient. Cinnamic acid 4-hydroxylase (C4H, EC 1.14.13.11, catalyzing the hydroxylation of trans-cinnamic acid to p-coumaric acid, plays a key role in the ability of phenylpropanoid metabolism to channel carbon to produce the 4-methoxybenzoyl group on the disaccharide moiety of OSW-1. Molecular isolation and functional characterization of the C4H genes, therefore, is an important step for pathway characterization of 4-methoxybenzoyl group biosynthesis. In this study, a gene coding for C4H, designated as OsaC4H, was isolated according to the transcriptome sequencing results of Ornithogalum saundersiae. The full-length OsaC4H cDNA is 1,608-bp long, with a 1,518-bp open reading frame encoding a protein of 505 amino acids, a 55-bp 5′ non-coding region and a 35-bp 3'-untranslated region. OsaC4H was functionally characterized by expression in Saccharomyces cerevisiae and shown to catalyze the oxidation of trans-cinnamic acid to p-coumaric acid, which was identified by high performance liquid chromatography with diode array detection (HPLC-DAD, HPLC-MS and nuclear magnetic resonance (NMR analysis. The identification of the OsaC4H gene was expected to open the way to clarification of the biosynthetic pathway of OSW-1.

  7. Impact of oxygenation on the performance of three non-Saccharomyces yeasts in co-fermentation with Saccharomyces cerevisiae.

    Science.gov (United States)

    Shekhawat, Kirti; Bauer, Florian F; Setati, Mathabatha E

    2017-03-01

    The sequential or co-inoculation of grape must with non-Saccharomyces yeast species and Saccharomyces cerevisiae wine yeast strains has recently become a common practice in winemaking. The procedure intends to enhance unique aroma and flavor profiles of wine. The extent of the impact of non-Saccharomyces strains depends on their ability to produce biomass and to remain metabolically active for a sufficiently long period. However, mixed-culture wine fermentations tend to become rapidly dominated by S. cerevisiae, reducing or eliminating the non-Saccharomyces yeast contribution. For an efficient application of these yeasts, it is therefore essential to understand the environmental factors that modulate the population dynamics of such ecosystems. Several environmental parameters have been shown to influence population dynamics, but their specific effect remains largely uncharacterized. In this study, the population dynamics in co-fermentations of S. cerevisiae and three non-Saccharomyces yeast species: Torulaspora delbrueckii, Lachancea thermotolerans, and Metschnikowia pulcherrima, was investigated as a function of oxygen availability. In all cases, oxygen availability strongly influenced population dynamics, but clear species-dependent differences were observed. Our data show that L. thermotolerans required the least oxygen, followed by T. delbrueckii and M. pulcherrima. Distinct species-specific chemical volatile profiles correlated in all cases with increased persistence of non-Saccharomyces yeasts, in particular increases in some higher alcohols and medium chain fatty acids. The results highlight the role of oxygen in regulating the succession of yeasts during wine fermentations and suggests that more stringent aeration strategies would be necessary to support the persistence of non-Saccharomyces yeasts in real must fermentations.

  8. Membrane Trafficking in the Yeast Saccharomyces cerevisiae Model

    Directory of Open Access Journals (Sweden)

    Serge Feyder

    2015-01-01

    Full Text Available The yeast Saccharomyces cerevisiae is one of the best characterized eukaryotic models. The secretory pathway was the first trafficking pathway clearly understood mainly thanks to the work done in the laboratory of Randy Schekman in the 1980s. They have isolated yeast sec mutants unable to secrete an extracellular enzyme and these SEC genes were identified as encoding key effectors of the secretory machinery. For this work, the 2013 Nobel Prize in Physiology and Medicine has been awarded to Randy Schekman; the prize is shared with James Rothman and Thomas Südhof. Here, we present the different trafficking pathways of yeast S. cerevisiae. At the Golgi apparatus newly synthesized proteins are sorted between those transported to the plasma membrane (PM, or the external medium, via the exocytosis or secretory pathway (SEC, and those targeted to the vacuole either through endosomes (vacuolar protein sorting or VPS pathway or directly (alkaline phosphatase or ALP pathway. Plasma membrane proteins can be internalized by endocytosis (END and transported to endosomes where they are sorted between those targeted for vacuolar degradation and those redirected to the Golgi (recycling or RCY pathway. Studies in yeast S. cerevisiae allowed the identification of most of the known effectors, protein complexes, and trafficking pathways in eukaryotic cells, and most of them are conserved among eukaryotes.

  9. Long-chain alkane production by the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Buijs, Nicolaas A; Zhou, Yongjin J; Siewers, Verena; Nielsen, Jens

    2015-06-01

    In the past decade industrial-scale production of renewable transportation biofuels has been developed as an alternative to fossil fuels, with ethanol as the most prominent biofuel and yeast as the production organism of choice. However, ethanol is a less efficient substitute fuel for heavy-duty and maritime transportation as well as aviation due to its low energy density. Therefore, new types of biofuels, such as alkanes, are being developed that can be used as drop-in fuels and can substitute gasoline, diesel, and kerosene. Here, we describe for the first time the heterologous biosynthesis of long-chain alkanes by the yeast Saccharomyces cerevisiae. We show that elimination of the hexadecenal dehydrogenase Hfd1 and expression of a redox system are essential for alkane biosynthesis in yeast. Deletion of HFD1 together with expression of an alkane biosynthesis pathway resulted in the production of the alkanes tridecane, pentadecane, and heptadecane. Our study provides a proof of principle for producing long-chain alkanes in the industrial workhorse S. cerevisiae, which was so far limited to bacteria. We anticipate that these findings will be a key factor for further yeast engineering to enable industrial production of alkane based drop-in biofuels, which can allow the biofuel industry to diversify beyond bioethanol.

  10. MAP kinase pathways in the yeast Saccharomyces cerevisiae

    Science.gov (United States)

    Gustin, M. C.; Albertyn, J.; Alexander, M.; Davenport, K.; McIntire, L. V. (Principal Investigator)

    1998-01-01

    A cascade of three protein kinases known as a mitogen-activated protein kinase (MAPK) cascade is commonly found as part of the signaling pathways in eukaryotic cells. Almost two decades of genetic and biochemical experimentation plus the recently completed DNA sequence of the Saccharomyces cerevisiae genome have revealed just five functionally distinct MAPK cascades in this yeast. Sexual conjugation, cell growth, and adaptation to stress, for example, all require MAPK-mediated cellular responses. A primary function of these cascades appears to be the regulation of gene expression in response to extracellular signals or as part of specific developmental processes. In addition, the MAPK cascades often appear to regulate the cell cycle and vice versa. Despite the success of the gene hunter era in revealing these pathways, there are still many significant gaps in our knowledge of the molecular mechanisms for activation of these cascades and how the cascades regulate cell function. For example, comparison of different yeast signaling pathways reveals a surprising variety of different types of upstream signaling proteins that function to activate a MAPK cascade, yet how the upstream proteins actually activate the cascade remains unclear. We also know that the yeast MAPK pathways regulate each other and interact with other signaling pathways to produce a coordinated pattern of gene expression, but the molecular mechanisms of this cross talk are poorly understood. This review is therefore an attempt to present the current knowledge of MAPK pathways in yeast and some directions for future research in this area.

  11. Membrane trafficking in the yeast Saccharomyces cerevisiae model.

    Science.gov (United States)

    Feyder, Serge; De Craene, Johan-Owen; Bär, Séverine; Bertazzi, Dimitri L; Friant, Sylvie

    2015-01-09

    The yeast Saccharomyces cerevisiae is one of the best characterized eukaryotic models. The secretory pathway was the first trafficking pathway clearly understood mainly thanks to the work done in the laboratory of Randy Schekman in the 1980s. They have isolated yeast sec mutants unable to secrete an extracellular enzyme and these SEC genes were identified as encoding key effectors of the secretory machinery. For this work, the 2013 Nobel Prize in Physiology and Medicine has been awarded to Randy Schekman; the prize is shared with James Rothman and Thomas Südhof. Here, we present the different trafficking pathways of yeast S. cerevisiae. At the Golgi apparatus newly synthesized proteins are sorted between those transported to the plasma membrane (PM), or the external medium, via the exocytosis or secretory pathway (SEC), and those targeted to the vacuole either through endosomes (vacuolar protein sorting or VPS pathway) or directly (alkaline phosphatase or ALP pathway). Plasma membrane proteins can be internalized by endocytosis (END) and transported to endosomes where they are sorted between those targeted for vacuolar degradation and those redirected to the Golgi (recycling or RCY pathway). Studies in yeast S. cerevisiae allowed the identification of most of the known effectors, protein complexes, and trafficking pathways in eukaryotic cells, and most of them are conserved among eukaryotes.

  12. Storage lipids of yeasts: a survey of nonpolar lipid metabolism in Saccharomyces cerevisiae, Pichia pastoris, and Yarrowia lipolytica.

    Science.gov (United States)

    Koch, Barbara; Schmidt, Claudia; Daum, Günther

    2014-09-01

    Biosynthesis and storage of nonpolar lipids, such as triacylglycerols (TG) and steryl esters (SE), have gained much interest during the last decades because defects in these processes are related to severe human diseases. The baker's yeast Saccharomyces cerevisiae has become a valuable tool to study eukaryotic lipid metabolism because this single-cell microorganism harbors many enzymes and pathways with counterparts in mammalian cells. In this article, we will review aspects of TG and SE metabolism and turnover in the yeast that have been known for a long time and combine them with new perceptions of nonpolar lipid research. We will provide a detailed insight into the mechanisms of nonpolar lipid synthesis, storage, mobilization, and degradation in the yeast S. cerevisiae. The central role of lipid droplets (LD) in these processes will be addressed with emphasis on the prevailing view that this compartment is more than only a depot for TG and SE. Dynamic and interactive aspects of LD with other organelles will be discussed. Results obtained with S. cerevisiae will be complemented by recent investigations of nonpolar lipid research with Yarrowia lipolytica and Pichia pastoris. Altogether, this review article provides a comprehensive view of nonpolar lipid research in yeast.

  13. Tanshinones extend chronological lifespan in budding yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Wu, Ziyun; Song, Lixia; Liu, Shao Quan; Huang, Dejian

    2014-10-01

    Natural products with anti-aging property have drawn great attention recently but examples of such compounds are exceedingly scarce. By applying a high-throughput assay based on yeast chronological lifespan measurement, we screened the anti-aging activity of 144 botanical materials and found that dried roots of Salvia miltiorrhiza Bunge have significant anti-aging activity. Tanshinones isolated from the plant including cryptotanshione, tanshinone I, and tanshinone IIa, are the active components. Among them, cryptotanshinone can greatly extend the budding yeast Saccharomyces cerevisiae chronological lifespan (up to 2.5 times) in a dose- and the-time-of-addition-dependent manner at nanomolar concentrations without disruption of cell growth. We demonstrate that cryptotanshinone prolong chronological lifespan via a nutrient-dependent regime, especially essential amino acid sensing, and three conserved protein kinases Tor1, Sch9, and Gcn2 are required for cryptotanshinone-induced lifespan extension. In addition, cryptotanshinone significantly increases the lifespan of SOD2-deleted mutants. Altogether, those data suggest that cryptotanshinone might be involved in the regulation of, Tor1, Sch9, Gcn2, and Sod2, these highly conserved longevity proteins modulated by nutrients from yeast to humans.

  14. Identification of genes whose expressions are enhanced or reduced in baker's yeast during fed-batch culture process using molasses medium by DNA microarray analysis.

    Science.gov (United States)

    Shima, Jun; Kuwazaki, Seigo; Tanaka, Fumiko; Watanabe, Hajime; Yamamoto, Hideki; Nakajima, Ryoichi; Tokashiki, Tadaaki; Tamura, Hiromi

    2005-06-25

    Genes whose expression levels are enhanced or reduced during the cultivation process that uses cane molasses in baker's yeast production were identified in this study. The results showed that baker's yeast grown in molasses medium had higher fermentation ability and stress tolerance compared with baker's yeast grown in synthetic medium. Molasses apparently provided not only sugar as a carbon source but also provided functional components that enhanced or reduced expression of genes involved in fermentation ability and stress tolerance. To identify the genes whose expression is enhanced or reduced during cultivation in molasses medium, DNA microarray analysis was then used to compare the gene expression profile of cells grown in molasses with that of cells grown in synthetic medium. To simulate the commercial baker's yeast production process, cells were cultivated using a fed-batch culture system. In molasses medium, genes involved in the synthesis or uptake of vitamins (e.g., biotin, pyridoxine and thiamine) showed enhanced expression, suggesting that vitamin concentrations in molasses medium were lower than those in synthetic medium. Genes involved in formate dehydrogenase and maltose assimilation showed enhanced expression in molasses medium. In contrast, genes involved in iron utilization (e.g., siderophore, iron transporter and ferroxidase) showed enhanced expression in synthetic medium, suggesting that iron starvation occurred. The genes involved in the metabolism of amino acids also showed enhanced expression in synthetic medium. This identification of genes provides information that will help improve the baker's yeast production process.

  15. Research progress on improvement in freeze-tolerance of baker's yeast%提高面包酵母耐冷冻性的研究进展

    Institute of Scientific and Technical Information of China (English)

    苏从毅; 王辛; 王四维; 张福钊

    2012-01-01

    Baker yeast is a necessary material of bread making, and improvement in freeze- tolerance of baker's yeast is very important to the development of frozen dough. In this paper, the species and effects of baker's yeast were introduced, and the freeze-tolerance mechanism of baker's yeast and the development review on improvement in freeze-tolerance of baker's yeast were emphasized.%面包酵母是制作面包不可缺少的原料,提高面包酵母的耐冷冻性对冷冻面团工业的发展有着十分重要的作用。本文介绍了面包酵母的种类和作用,重点讲述了面包酵母的耐冷冻机理及国内外对提高面包酵母耐冷冻性的研究进展。

  16. Stable high-copy-number integration of Aspergillus oryzae alpha-AMYLASE cDNA in an industrial baker's yeast strain.

    Science.gov (United States)

    Nieto, A; Prieto, J A; Sanz, P

    1999-01-01

    The Aspergillus oryzae alpha-amylase cDNA was placed under the control of the Saccharomyces cerevisiae actin promoter (pACT1) and introduced into the ribosomal DNA locus of an industrial baker's yeast strain. To obtain a strain eligible for commercial use, we constructed an integrative cassette lacking bacterial DNA sequences but containing the alpha-amylase cDNA and ribosomal DNA sequences to target the integration to this locus. High-copy-number integrants were obtained including a defective TRP1d promoter in the integrative cassette. We selected one transformant, Rib-AMY (CECT10872), in which the multi-integrated sequences were stable even after 200 generations of growth in nonselective medium. This transformant also expressed and secreted high levels of alpha-amylase. Bread made with this strain had a higher volume, lower density, and softer crumbs than bread made with a control strain. The Rib-AMY transformant also was useful in retarding bread firming. This new strain fulfills all the requirements for commercial utilization and should reduce or eliminate the requirement for addition of exogenous alpha-amylase to the flour, reducing allergenic work-related symptoms due to this enzyme.

  17. 利用枣汁生产面包酵母%Production of Baker's Yeast Using Date Juice

    Institute of Scientific and Technical Information of China (English)

    A.; Beiroti; S.; N.; Hosseini

    2007-01-01

    Baker's yeast is an important additive among the products which improves bread quality and for present time is being produced in different countries by batch,fed batch or continuous cultures.Saccharomyces cerevisiae is used in fermentation of starch in dough,giving a favourable taste and produces a variety of vitamins and proteins.The main ingredient in yeast production is carbon source such as beet molasses,cane molasses,and so on.Since beet molasses has other major function as in high yield alcohol production and also due to the bioenvironmental issues and related wastewater treatment,the use of other carbohydrate sources may be considered.One of these carbohydrate sources is date which is wasted a great deal annually in this country (Iran).In this study,the capability of date to act as a suitable carbon sources was investigated.The waste date turned into juice and consequently production and growth rate of Sacchromyces cervisiae were studied with this juice.A maximum possible yield of 50% was obtained by the optimum medium (P3),at pH 3.4,30°C,1.4vvm aeration mte and agitation of 500r/min.%面包酵母是一类用来提高面包质量的重要添加荆.目前,不同国家主要采用分批培养、补料分批培养或连续培养的方式来生产面包酵母.酿酒酵母是用来发酵面团中淀粉的理想微生物,除了提升食品香味,增加口感之外,这一发酵过程可以产生多种维生素和蛋白质.用于生产酵母生物量的主要成分包括各种碳源,如甜菜糖蜜和甘蔗糖蛮等.由于甜菜糖蜜可用于高产率地生产乙醇,加之其带来的生物环境污染和废水处理问题,因此需要考虑用其他糖类来生产面包酵母.其中一个代替性糖源是枣.由于各种原因,伊朗每年都浪费大量的枣.研究了用枣作为培养基碳源的可行性.将废枣榨成汁,然后研究了酵母的产量和生长速率.结果发现,在pH3.4,温度30℃,通风量1.4wm,发酵罐搅拌速度500r/min时,

  18. ACTIVITY OF SUPEROXIDE DISMUTASE ENZYME IN YEAST SACCHAROMYCES CEREVISIAE

    Directory of Open Access Journals (Sweden)

    Blažena Lavová

    2014-02-01

    Full Text Available Reactive oxygen species (ROS with reactive nitrogen species (RNS are known to play dual role in biological systems, they can be harmful or beneficial to living systems. ROS can be important mediators of damage to cell structures, including proteins, lipids and nucleic acids termed as oxidative stress. The antioxidant enzymes protect the organism against the oxidative damage caused by active oxygen forms. The role of superoxide dismutase (SOD is to accelerate the dismutation of the toxic superoxide radical, produced during oxidative energy processes, to hydrogen peroxide and molecular oxygen. In this study, SOD activity of three yeast strains Saccharomyces cerevisiae was determined. It was found that SOD activity was the highest (23.7 U.mg-1 protein in strain 612 after 28 hours of cultivation. The lowest SOD activity from all tested strains was found after 56 hours of cultivation of strain Gyöng (0.7 U.mg-1 protein.

  19. Identification and dissection of a complex DNA repair sensitivity phenotype in Baker's yeast.

    Directory of Open Access Journals (Sweden)

    Ann Demogines

    2008-07-01

    Full Text Available Complex traits typically involve the contribution of multiple gene variants. In this study, we took advantage of a high-density genotyping analysis of the BY (S288c and RM strains of Saccharomyces cerevisiae and of 123 derived spore progeny to identify the genetic loci that underlie a complex DNA repair sensitivity phenotype. This was accomplished by screening hybrid yeast progeny for sensitivity to a variety of DNA damaging agents. Both the BY and RM strains are resistant to the ultraviolet light-mimetic agent 4-nitroquinoline 1-oxide (4-NQO; however, hybrid progeny from a BYxRM cross displayed varying sensitivities to the drug. We mapped a major quantitative trait locus (QTL, RAD5, and identified the exact polymorphism within this locus responsible for 4-NQO sensitivity. By using a backcrossing strategy along with array-assisted bulk segregant analysis, we identified one other locus, MKT1, and a QTL on Chromosome VII that also link to the hybrid 4-NQO-sensitive phenotype but confer more minor effects. This work suggests an additive model for sensitivity to 4-NQO and provides a strategy for mapping both major and minor QTL that confer background-specific phenotypes. It also provides tools for understanding the effect of genetic background on sensitivity to genotoxic agents.

  20. A Comparison of the Beneficial Effects of Live and Heat-Inactivated Baker's Yeast on Nile Tilapia: Suggestions on the Role and Function of the Secretory Metabolites Released from the Yeast.

    Science.gov (United States)

    Ran, Chao; Huang, Lu; Liu, Zhi; Xu, Li; Yang, Yalin; Tacon, Philippe; Auclair, Eric; Zhou, Zhigang

    2015-01-01

    Yeast is frequently used as a probiotic in aquaculture with the potential to substitute for antibiotics. In this study, the involvement and extent to which the viability of yeast cells and thus the secretory metabolites released from the yeast contribute to effects of baker's yeast was investigated in Nile tilapia. No yeast, live yeast or heat-inactivated baker's yeast were added to basal diets high in fishmeal and low in soybean (diet A) or low in fishmeal and high in soybean (diet B), which were fed to fish for 8 weeks. Growth, feed utilization, gut microvilli morphology, and expressions of hsp70 and inflammation-related cytokines in the intestine and head kidney were assessed. Intestinal microbiota was investigated using 16S rRNA gene pyrosequencing. Gut alkaline phosphatase (AKP) activity was measured after challenging the fish with Aeromonas hydrophila. Results showed that live yeast significantly improved FBW and WG (P yeast). No significant differences were observed between inactivated yeast and control. Live yeast improved gut microvilli length (P yeast did not. The hsp70 expression level in both the intestine and head kidney of fish was significantly reduced by live yeast (P yeast. Live yeast but not inactivated yeast reduced intestinal expression of tnfα (P Intestinal Lactococcus spp. numbers were enriched by both live and inactivated yeast. Lastly, both live and inactivated yeast reduced the gut AKP activity compared to the control (P yeast. Nevertheless, secretory metabolites were the major contributing factor towards improved gut microvilli morphology, relieved stress status, and reduced intestinal inflammation of Nile tilapia fed diets supplemented with baker's yeast.

  1. Biogeographical characterisation of Saccharomyces cerevisiae wine yeast by molecular methods

    Directory of Open Access Journals (Sweden)

    Rosanna eTofalo

    2013-06-01

    Full Text Available Biogeography is the descriptive and explanatory study of spatial patterns and processes involved in the distribution of biodiversity. Without biogeography, it would be difficult to study the diversity of microorganisms because there would be no way to visualise patterns in variation. Saccharomyces cerevisiae, the wine yeast, is the most important species involved in alcoholic fermentation, and in vineyard ecosystems, it follows the principle of everything is everywhere. Agricultural practices such as farming (organic versus conventional and floor management systems have selected different populations within this species that are phylogenetically distinct. In fact, recent ecological and geographic studies highlighted that unique strains are associated with particular grape varieties in specific geographical locations. These studies also highlighted that significant diversity and regional character, or ‘terroir’, have been introduced into the winemaking process via this association. This diversity of wild strains preserves typicity, the high quality and the unique flavour of wines. Recently, different molecular methods were developed to study population dynamics of S. cerevisiae strains in both vineyards and wineries. In this review, we will provide an update on the current molecular methods used to reveal the geographical distribution of S. cerevisiae wine yeast.

  2. Adhesion to the yeast cell surface as a mechanism for trapping pathogenic bacteria by Saccharomyces probiotics.

    Science.gov (United States)

    Tiago, F C P; Martins, F S; Souza, E L S; Pimenta, P F P; Araujo, H R C; Castro, I M; Brandão, R L; Nicoli, Jacques R

    2012-09-01

    Recently, much attention has been given to the use of probiotics as an adjuvant for the prevention or treatment of gastrointestinal pathology. The great advantage of therapy with probiotics is that they have few side effects such as selection of resistant bacteria or disturbance of the intestinal microbiota, which occur when antibiotics are used. Adhesion of pathogenic bacteria onto the surface of probiotics instead of onto intestinal receptors could explain part of the probiotic effect. Thus, this study evaluated the adhesion of pathogenic bacteria onto the cell wall of Saccharomyces boulardii and Saccharomyces cerevisiae strains UFMG 905, W303 and BY4741. To understand the mechanism of adhesion of pathogens to yeast, cell-wall mutants of the parental strain of Saccharomyces cerevisiae BY4741 were used because of the difficulty of mutating polyploid yeast, as is the case for Saccharomyces cerevisiae and Saccharomyces boulardii. The tests of adhesion showed that, among 11 enteropathogenic bacteria tested, only Escherichia coli, Salmonella Typhimurium and Salmonella Typhi adhered to the surface of Saccharomyces boulardii, Saccharomyces cerevisiae UFMG 905 and Saccharomyces cerevisiae BY4741. The presence of mannose, and to some extent bile salts, inhibited this adhesion, which was not dependent on yeast viability. Among 44 cell-wall mutants of Saccharomyces cerevisiae BY4741, five lost the ability to fix the bacteria. Electron microscopy showed that the phenomenon of yeast-bacteria adhesion occurred both in vitro and in vivo (in the digestive tract of dixenic mice). In conclusion, some pathogenic bacteria were captured on the surface of Saccharomyces boulardii, Saccharomyces cerevisiae UFMG 905 and Saccharomyces cerevisiae BY4741, thus preventing their adhesion to specific receptors on the intestinal epithelium and their subsequent invasion of the host.

  3. Reduções enantiosseletivas de cetonas utilizando-se fermento de pão Enantioselective reductions of ketones using baker's yeast

    Directory of Open Access Journals (Sweden)

    José Augusto R. Rodrigues

    2001-12-01

    Full Text Available Baker's yeast has been successful employed to reduce carbonyl compounds carrying appropriated substituents at distances under the electronic influence of the keto group. High yields and enantiomeric excess (ee were obtained with 1,2-alkanedione, 1,2-alkanedione (2-O-methyloxime and 1,3-alkanedione. Potential chiral building blocks were obtained and applied for stereoselective synthesis of valuable compounds. Evidence for a free radical chain process was obtained with baker's yeast reduction of a-iodoacetophenone using radical inhibitors.

  4. Application of fuzzy reasoning to control of glucose and ethanol concentrations in baker's yeast culture

    Energy Technology Data Exchange (ETDEWEB)

    Park, Y.S.; Shi Zhongping; Shiba, Sumihisa; Chantal, C.; Iijima, Shinji; Kobayashi, Takeshi (Dept. of Biotechnology, Nagoya Univ. (Japan))

    1993-02-01

    Fuzzy reasoning was applied to control both ethanol and glucose concentrations in fed-batch cultures of baker's yeast. This fuzzy controller consisted of three membership functions (concentrations of dissolved oxygen (DO), ethanol and glucose) and 18 production rules. Fuzzy inference was carried out by IF [l brace]A is a and B is b, ...[r brace], THEN [l brace]C is c[r brace] from the on-line measured concentrations of DO, ethanol and glucose. When 'medium' concentrations of ethanol and glucose in fed-batch culture of baker's yeast were set at 2 g/l and 0.2 g/l, both ethanol and glucose concentrations were controlled at 2.67[+-]0.35 g/l and 0.27[+-]0.25 g/l, respectively, ethanol production was reduced from 26 g/l to 3-4 g/l, cell yield increased from 0.38 to 0.53 g dry cell/g consumed glucose and ethanol yield decreased from 0.50 to 0.14 g ethanol/g consumed glucose, respectively, as compared with those of the glucose only control at 0.2 g/l. (orig.).

  5. The baker's yeast diploid genome is remarkably stable in vegetative growth and meiosis.

    Directory of Open Access Journals (Sweden)

    K T Nishant

    2010-09-01

    Full Text Available Accurate estimates of mutation rates provide critical information to analyze genome evolution and organism fitness. We used whole-genome DNA sequencing, pulse-field gel electrophoresis, and comparative genome hybridization to determine mutation rates in diploid vegetative and meiotic mutation accumulation lines of Saccharomyces cerevisiae. The vegetative lines underwent only mitotic divisions while the meiotic lines underwent a meiotic cycle every ∼20 vegetative divisions. Similar base substitution rates were estimated for both lines. Given our experimental design, these measures indicated that the meiotic mutation rate is within the range of being equal to zero to being 55-fold higher than the vegetative rate. Mutations detected in vegetative lines were all heterozygous while those in meiotic lines were homozygous. A quantitative analysis of intra-tetrad mating events in the meiotic lines showed that inter-spore mating is primarily responsible for rapidly fixing mutations to homozygosity as well as for removing mutations. We did not observe 1-2 nt insertion/deletion (in-del mutations in any of the sequenced lines and only one structural variant in a non-telomeric location was found. However, a large number of structural variations in subtelomeric sequences were seen in both vegetative and meiotic lines that did not affect viability. Our results indicate that the diploid yeast nuclear genome is remarkably stable during the vegetative and meiotic cell cycles and support the hypothesis that peripheral regions of chromosomes are more dynamic than gene-rich central sections where structural rearrangements could be deleterious. This work also provides an improved estimate for the mutational load carried by diploid organisms.

  6. Novel Pathway for Alcoholic Fermentation of 8-Gluconolactone in the Yeast Saccharomyces bulderi

    NARCIS (Netherlands)

    Dijken, van J.P.; Tuijl, van A.; Luttik, M.A.H.; Middelhoven, W.J.; Pronk, J.T.

    2002-01-01

    Under anaerobic conditions, the yeast Saccharomyces bulderi rapidly ferments -gluconolactone to ethanol and carbon dioxide. We propose that a novel pathway for -gluconolactone fermentation operates in this yeast. In this pathway, -gluconolactone is first reduced to glucose via an NADPH-dependent glu

  7. Tangential Ultrafiltration of Aqueous "Saccharomyces Cerevisiae" Suspensions

    Science.gov (United States)

    Silva, Carlos M.; Neves, Patricia S.; Da Silva, Francisco A.; Xavier, Ana M. R. B.; Eusebio, M. F. J.

    2008-01-01

    Experimental work on ultrafiltration is presented to illustrate the practical and theoretical principles of this separation technique. The laboratory exercise comprises experiments with pure water and with aqueous "Saccharomyces cerevisiae" (from commercial Baker's yeast) suspensions. With this work students detect the characteristic phenomena…

  8. Early manifestations of replicative aging in the yeast Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Maksim I. Sorokin

    2014-01-01

    Full Text Available The yeast Saccharomyces cerevisiae is successfully used as a model organism to find genes responsible for lifespan control of higher organisms. As functional decline of higher eukaryotes can start as early as one quarter of the average lifespan, we asked whether S. cerevisiae can be used to model this manifestation of aging. While the average replicative lifespan of S. cerevisiae mother cells ranges between 15 and 30 division cycles, we found that resistances to certain stresses start to decrease much earlier. Looking into the mechanism, we found that knockouts of genes responsible for mitochondriato-nucleus (retrograde signaling, RTG1 or RTG3, significantly decrease the resistance of cells that generated more than four daughters, but not of the younger ones. We also found that even young mother cells frequently contain mitochondria with heterogeneous transmembrane potential and that the percentage of such cells correlates with replicative age. Together, these facts suggest that retrograde signaling starts to malfunction in relatively young cells, leading to accumulation of heterogeneous mitochondria within one cell. The latter may further contribute to a decline in stress resistances.

  9. Persistence of two non-Saccharomyces yeasts (Hanseniaspora and Starmerella in the cellar

    Directory of Open Access Journals (Sweden)

    Cedric eGrangeteau

    2016-03-01

    Full Text Available Different genera and/or species of yeasts present on grape-berries, in musts and wines are widely described. Nevertheless, the community of non-Saccharomyces yeasts present in the cellar is still given little attention. Thus it is not known if the cellar is a real ecological niche for these yeasts or if it is merely a transient habitat for populations brought in by grape-berries during the winemaking period. This study focused on three species of non-Saccharomyces yeasts commonly encountered during vinification: Starmerella bacillaris (synonymy with Candida zemplinina, Hanseniaspora guilliermondii and Hanseniaspora uvarum. More than 1200 isolates were identified at the strain level by FT-IR spectroscopy (207 different FTIR strain pattern. Only a small proportion of non-Saccharomyces yeasts present in musts came directly from grape-berries for the three species studied. Some strains were found in the must in 2 consecutive years and some of them were also found in the cellar environment before the arrival of the harvest of second vintage. This study demonstrates for the first time the persistence of non-Saccharomyces yeast strains from year to year in the cellar. Sulfur dioxide can affect yeast populations in the must and therefore their persistence in the cellar environment.

  10. The Interaction between Saccharomyces cerevisiae and Non-Saccharomyces Yeast during Alcoholic Fermentation Is Species and Strain Specific.

    Science.gov (United States)

    Wang, Chunxiao; Mas, Albert; Esteve-Zarzoso, Braulio

    2016-01-01

    The present study analyzes the lack of culturability of different non-Saccharomyces strains due to interaction with Saccharomyces cerevisiae during alcoholic fermentation. Interaction was followed in mixed fermentations with 1:1 inoculation of S. cerevisiae and ten non-Saccharomyces strains. Starmerella bacillaris, and Torulaspora delbrueckii indicated longer coexistence in mixed fermentations compared with Hanseniaspora uvarum and Metschnikowia pulcherrima. Strain differences in culturability and nutrient consumption (glucose, alanine, ammonium, arginine, or glutamine) were found within each species in mixed fermentation with S. cerevisiae. The interaction was further analyzed using cell-free supernatant from S. cerevisiae and synthetic media mimicking both single fermentations with S. cerevisiae and using mixed fermentations with the corresponding non-Saccharomyces species. Cell-free S. cerevisiae supernatants induced faster culturability loss than synthetic media corresponding to the same fermentation stage. This demonstrated that some metabolites produced by S. cerevisiae played the main role in the decreased culturability of the other non-Saccharomyces yeasts. However, changes in the concentrations of main metabolites had also an effect. Culturability differences were observed among species and strains in culture assays and thus showed distinct tolerance to S. cerevisiae metabolites and fermentation environment. Viability kit and recovery analyses on non-culturable cells verified the existence of viable but not-culturable status. These findings are discussed in the context of interaction between non-Saccharomyces and S. cerevisiae.

  11. The Interaction between Saccharomyces cerevisiae and Non-Saccharomyces Yeast during Alcoholic Fermentation is Species and Strain Specific

    Directory of Open Access Journals (Sweden)

    Chunxiao eWang

    2016-04-01

    Full Text Available The present study analyzes the lack of culturability of different non-Saccharomyces strains due to interaction with Saccharomyces cerevisiae during alcoholic fermentation. Interaction was followed in mixed fermentations with 1:1 inoculation of S. cerevisiae and ten non-Saccharomyces strains. Starmerella bacillaris and Torulaspora delbrueckii indicated longer coexistence in mixed fermentations compared with Hanseniaspora uvarum and Metschnikowia pulcherrima. Strain differences in culturability and nutrient consumption (glucose, alanine, ammonium, arginine or glutamine were found within each species in mixed fermentation with S. cerevisiae. The interaction was further analyzed using cell-free supernatant from S. cerevisiae and synthetic media mimicking both single fermentations with S. cerevisiae and using mixed fermentations with the corresponding non-Saccharomyces species. Cell-free S. cerevisiae supernatants induced faster culturability loss than synthetic media corresponding to the same fermentation stage. This demonstrated that some metabolites produced by S. cerevisiae played the main role in the decreased culturability of the other non-Saccharomyces yeasts. However, changes in the concentrations of main metabolites had also an effect. Culturability differences were observed among species and strains in culture assays and thus showed distinct tolerance to S. cerevisiae metabolites and fermentation environment. Viability kit and recovery analyses on non-culturable cells verified the existence of viable but not-culturable status. These findings are discussed in the context of interaction between non-Saccharomyces and S. cerevisiae.

  12. Bread, beer and wine: yeast domestication in the Saccharomyces sensu stricto complex.

    Science.gov (United States)

    Sicard, Delphine; Legras, Jean-Luc

    2011-03-01

    Yeasts of the Saccharomyces sensu stricto species complex are able to convert sugar into ethanol and CO(2) via fermentation. They have been used for thousands years by mankind for fermenting food and beverages. In the Neolithic times, fermentations were probably initiated by naturally occurring yeasts, and it is unknown when humans started to consciously add selected yeast to make beer, wine or bread. Interestingly, such human activities gave rise to the creation of new species in the Saccharomyces sensu stricto complex by interspecies hybridization or polyploidization. Within the S. cerevisiae species, they have led to the differentiation of genetically distinct groups according to the food process origin. Although the evolutionary history of wine yeast populations has been well described, the histories of other domesticated yeasts need further investigation.

  13. Sequence analysis of three mitochondrial DNA molecules reveals interesting differences among Saccharomyces yeasts

    DEFF Research Database (Denmark)

    Langkjær, Rikke Breinhold; Casaregola, S.; Ussery, David;

    2003-01-01

    mtDNA, are not present. Surprisingly, four genes (ATP6, COX2, COX3 and COB) in the mtDNA of S. servazzii contain, in total, five + 1 frameshifts. mtDNAs of S. castellii, S. servazzii and S. cerevisiae contain all genes on the same strand, except for one tRNA gene. On the other hand, the gene order......The complete sequences of mitochondrial DNA ( mtDNA) from the two budding yeasts Saccharomyces castellii and Saccharomyces servazzii, consisting of 25 753 and 30 782 bp, respectively, were analysed and compared to Saccharomyces cerevisiae mtDNA. While some of the traits are very similar among...... Saccharomyces yeasts, others have highly diverged. The two mtDNAs are much more compact than that of S. cerevisiae and contain fewer introns and intergenic sequences, although they have almost the same coding potential. A few genes contain group I introns, but group II introns, otherwise found in S. cerevisiae...

  14. Past and Future of Non-Saccharomyces Yeasts: From Spoilage Microorganisms to Biotechnological Tools for Improving Wine Aroma Complexity

    Science.gov (United States)

    Padilla, Beatriz; Gil, José V.; Manzanares, Paloma

    2016-01-01

    It is well established that non-Saccharomyces wine yeasts, considered in the past as undesired or spoilage yeasts, can enhance the analytical composition, and aroma profile of the wine. The contribution of non-Saccharomyces yeasts, including the ability to secret enzymes and produce secondary metabolites, glycerol and ethanol, release of mannoproteins or contributions to color stability, is species- and strain-specific, pointing out the key importance of a clever strain selection. The use of mixed starters of selected non-Saccharomyces yeasts with strains of Saccharomyces cerevisiae represents an alternative to both spontaneous and inoculated wine fermentations, taking advantage of the potential positive role that non-Saccharomyces wine yeast species play in the organoleptic characteristics of wine. In this context mixed starters can meet the growing demand for new and improved wine yeast strains adapted to different types and styles of wine. With the aim of presenting old and new evidences on the potential of non-Saccharomyces yeasts to address this market trend, we mainly review the studies focused on non-Saccharomyces strain selection and design of mixed starters directed to improve primary and secondary aroma of wines. The ability of non-Saccharomyces wine yeasts to produce enzymes and metabolites of oenological relevance is also discussed. PMID:27065975

  15. Yeast expressing hepatitis B virus surface antigen determinants on its surface: Implications for a possible oral vaccine

    NARCIS (Netherlands)

    Schreuder, M.P.; Deen, C.; Boersma, W.J.A.; Pouwels, P.H.; Klis, F.M.

    1996-01-01

    The two major hydrophilic regions of the hepatitis B virus surface antigen (HBsAg) have been expressed in the outer mannoprotein layer of the cell wall of 'Bakers Yeast', Saccharomyces cerevisiae, by fusing them between the yeast invertase signal sequence and the yeast α-agglutinin carboxyterminal c

  16. The effect of Debina grapevine indigenous yeast strains of Metschnikowia and Saccharomyces on wine flavour.

    Science.gov (United States)

    Parapouli, Maria; Hatziloukas, Efstathios; Drainas, Constantin; Perisynakis, Angelos

    2010-01-01

    The spontaneous alcoholic fermentation of grape must is a complex microbiological process involving a large number of various yeast species, to which the flavour of every traditional wine is largely attributed. Whilst Saccharomyces cerevisiae is primarily responsible for the conversion of sugar to alcohol, the activities of various non-Saccharomyces species enhance wine flavour. In this study, indigenous yeast strains belonging to Metschnikowia pulcherrima var. zitsae as well as Saccharomyces cerevisiae were isolated and characterized from Debina must (Zitsa, Epirus, Greece). In addition, these strains were examined for their effect on the outcome of the wine fermentation process when used sequentially as starter cultures. The resulting wine, as analyzed over three consecutive years, was observed to possess a richer, more aromatic bouquet than wine from a commercial starter culture. These results emphasize the potential of employing indigenous yeast strains for the production of traditional wines with improved flavour.

  17. Inheritance and organisation of the mitochondrial genome differ between two Saccharomyces yeasts

    DEFF Research Database (Denmark)

    Petersen, Randi Føns; Langkjær, Rikke Breinhold; Hvidtfeldt, J.;

    2002-01-01

    Petite-positive Saccharomyces yeasts can be roughly divided into the sensu stricto, including Saccharomyces cerevisiae, and sensu lato group, including Saccharomyces castellii; the latter was recently studied for transmission and the organisation of its mitochondrial genome. S. castellii mitochon......Petite-positive Saccharomyces yeasts can be roughly divided into the sensu stricto, including Saccharomyces cerevisiae, and sensu lato group, including Saccharomyces castellii; the latter was recently studied for transmission and the organisation of its mitochondrial genome. S. castellii...... mitochondrial molecules (mtDNA) carrying point mutations, which confer antibiotic resistance, behaved in genetic crosses as the corresponding point mutants of S. cerevisiae. While S. castellii generated spontaneous petite mutants in a similar way as S. cerevisiae, the petites exhibited a different inheritance...... pattern. In crosses with the wild type strains a majority of S. castellii petites was neutral, and the suppressivity in suppressive petites was never over 50%. The two yeasts also differ in organisation of their mtDNA molecules. The 25,753 bp sequence of S. castellii mtDNA was determined and the coding...

  18. Use of non-saccharomyces Torulaspora delbrueckii yeast strains in winemaking and brewing

    Directory of Open Access Journals (Sweden)

    Tataridis Panagiotis

    2013-01-01

    Full Text Available Selected Saccharomyces yeast strains have been used for more than 150 years in brewing and for several decades in winemaking. They are necessary in brewing because of the boiling of the wort, which results in the death of all yeast cells, with the exception of some Belgian style beers (ex. Lambic, where the wort is left to be colonized by indigenous yeast and bacteria from the environment and ferment naturally. In winemaking their use is also pertinent because they provide regular and timely fermentations, inhibit the growth of indigenous spoilage microorganisms and contribute to the desired sensory characters. Even though the use of selected Saccharomyces strains provides better quality assurance in winemaking in comparison to the unknown microbial consortia in the must, it has been debated for a long time now whether the use of selected industrial Saccharomyces strains results in wines with less sensory complexity and “terroir” character. In previous decades, non-Saccharomyces yeasts were mainly considered as spoilage/problematic yeast, since they exhibited low fermentation ability and other negative traits. In the last decades experiments have shown that there are some non-Saccharomyces strains (Candida, Pichia, Kluyveromyces, Torulaspora, etc which, even though they are not able to complete the fermentation they can still be used in sequential inoculation-fermentation with Saccharomyces to increase sensory complexity of the wines. Through fermentation in a laboratory scale, we have observed that the overall effects of selected Torulaspora delbrueckii yeast strains, is highly positive, leading to products with pronounced sensory complexity and floral/fruity aroma in winemaking and brewing.

  19. Asymmetric bioreduction of acetophenones by Baker's yeast and its cell-free extract encapsulated in sol-gel silica materials

    Science.gov (United States)

    Kato, Katsuya; Nakamura, Hitomi; Nakanishi, Kazuma

    2014-02-01

    Baker's yeast (BY) encapsulated in silica materials was synthesized using a yeast cell suspension and its cell-free extract during a sol-gel reaction of tetramethoxysilane with nitric acid as a catalyst. The synthesized samples were fully characterized using various methods, such as scanning electron microscopy, nitrogen adsorption-desorption, Fourier transform infrared spectroscopy, thermogravimetry, and differential thermal analysis. The BY cells were easily encapsulated inside silica-gel networks, and the ratio of the cells in the silica gel was approximately 75 wt%, which indicated that a large volume of BY was trapped with a small amount of silica. The enzyme activity (asymmetric reduction of prochiral ketones) of BY and its cell-free extract encapsulated in silica gel was investigated in detail. The activities and enantioselectivities of free and encapsulated BY were similar to those of acetophenone and its fluorine derivatives, which indicated that the conformation structure of BY enzymes inside silica-gel networks did not change. In addition, the encapsulated BY exhibited considerably better solvent (methanol) stability and recyclability compared to free BY solution. We expect that the development of BY encapsulated in sol-gel silica materials will significantly impact the industrial-scale advancement of high-efficiency and low-cost biocatalysts for the synthesis of valuable chiral alcohols.

  20. A Comparison of the Beneficial Effects of Live and Heat-Inactivated Baker's Yeast on Nile Tilapia: Suggestions on the Role and Function of the Secretory Metabolites Released from the Yeast.

    Directory of Open Access Journals (Sweden)

    Chao Ran

    Full Text Available Yeast is frequently used as a probiotic in aquaculture with the potential to substitute for antibiotics. In this study, the involvement and extent to which the viability of yeast cells and thus the secretory metabolites released from the yeast contribute to effects of baker's yeast was investigated in Nile tilapia. No yeast, live yeast or heat-inactivated baker's yeast were added to basal diets high in fishmeal and low in soybean (diet A or low in fishmeal and high in soybean (diet B, which were fed to fish for 8 weeks. Growth, feed utilization, gut microvilli morphology, and expressions of hsp70 and inflammation-related cytokines in the intestine and head kidney were assessed. Intestinal microbiota was investigated using 16S rRNA gene pyrosequencing. Gut alkaline phosphatase (AKP activity was measured after challenging the fish with Aeromonas hydrophila. Results showed that live yeast significantly improved FBW and WG (P < 0.05, and tended to improve FCR (P = 0.06 of fish compared to the control (no yeast. No significant differences were observed between inactivated yeast and control. Live yeast improved gut microvilli length (P < 0.001 and density (P < 0.05 while inactivated yeast did not. The hsp70 expression level in both the intestine and head kidney of fish was significantly reduced by live yeast (P < 0.05 but not inactivated yeast. Live yeast but not inactivated yeast reduced intestinal expression of tnfα (P < 0.05, tgfβ (P < 0.05 under diet A and il1β (P = 0.08. Intestinal Lactococcus spp. numbers were enriched by both live and inactivated yeast. Lastly, both live and inactivated yeast reduced the gut AKP activity compared to the control (P < 0.001, indicating protection of the host against infection by A. hydrophila. In conclusion, secretory metabolites did not play major roles in the growth promotion and disease protection effects of yeast. Nevertheless, secretory metabolites were the major contributing factor towards improved gut

  1. Changes in trehalose content of baker's yeast as affected by octanoic acid Alterações no teor de trealose de levedura de panificação provocadas por ácido octanóico

    Directory of Open Access Journals (Sweden)

    L.E. Gutierrez

    1993-12-01

    Full Text Available Octanoic acid inhibited ethanolic fermentation by Saccharomyces cerevisiae (bakers yeast and the trehalose accumulation, however did not affect the endogenous degradation of trehalose. This inhibition may be explained by the binding of octanoic acid to hexokinase or other proteins of plasma membrane because they are not necessary for endogenous fermentation. The degradation of trehalose may be due to an activation of trehalase.A adição de ácido octanóico inibiu a fermentação alcoólica realizada por Saccharomyces cerevisiae (levedura de panificação e o acúmulo de trealose, contudo não afetou a degradação endógena de trealose. Esta inibição poderia ser explicada pela ligação do ácido octanóico a hexoquinase ou outra proteína da membrana plasmática porque não são necessárias para a fermentação endógena. A degradação da trealose poderia ser devida a uma ativação da trealase.

  2. A mathematical model of the mating signal transduction pathway in the yeast Saccharomyces cerevisiae. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Ivan Milac

    1998-09-14

    Outline of two major goals in my proposal for this fellowship. First goal having no previous training in biology, was to become knowledgeable of the paradigms, experimental techniques, and current research interests of molecular biology. Second goal was to construct a mathematical model of the mating signal transduction pathway in the yeast Saccharomyces cerevisiae.

  3. Production of Dengue 2 Envelope Protein in the Yeast Saccharomyces Cerevisiae. Phase 1

    Science.gov (United States)

    1990-02-15

    developing subunit dengue vaccines or recombinant live viral vaccines. Subunit vaccines may eventually include synthetic dengue peptides or recombinant... dengue proteins expressed in microorganisms, and live viral vectors such as vaccinia may express in vivo immunogenic dengue peptides . Durin...PRODUCTION OF DENGUE 2 ENVELOPE PROTEIN IN THE YEAST SACCHAROMYCES CEREVISIAE FINAL, PHASE I REPORT JOHN M. IVY KATHY HOUTCHENS FEBRUARY 15, 1990

  4. MAGNETIC FIELD EFFECT ON YEAST Saccharomyces cerevisiae ACTIVITY AT GRAPE MUST FERMENTATION

    Directory of Open Access Journals (Sweden)

    V. N. Bayraktar

    2013-02-01

    Full Text Available Treatment of yeast cultures using magnetic fields enables us to gain a better understanding of the magnetic fields’ action on enzyme activity and the fluctuation of macro- and micro-element concentrations within yeast cultures. For this purpose, the two following groups of yeast were studied: laboratory yeast cultures isolated from regional grape must and commercial yeast cultures that are commonly used in the wine industry. Both yeast groups were biochemically tested with and without magnetic field treatment exposure. We used the following parameters of magnetic field frequency: 160 Hz with an intensity of 5 mT and an exposure time of 30 minutes. Based on our laboratory tests, the yeast cultures that were not exposed to magnetic field treatment had a high correlation between the activities of alcohol dehydrogenase and cocarboxylase. The groups of yeast that underwent magnetic field treatment had a high correlation between the activities of alcohol dehydrogenase, alanine aminotransferase, amylase and phosphatase. Study of the morphology of Saccharomyces cerevisiae yeast followed by magnetic field treatment illustrated that between 30 and 70% of the magnetic field treated yeast died. The surviving yeast cultures in the grape must (confirmed by Gram staining revealed increased enzymatic activity and a high correlation between levels of potassium and calcium, as well as between levels of potassium and magnesium.

  5. Saccharomyces cerevisiae and non-Saccharomyces yeasts in grape varieties of the São Francisco Valley

    Directory of Open Access Journals (Sweden)

    Camila M.P.B.S. de Ponzzes-Gomes

    2014-06-01

    Full Text Available The aims of this work was to characterise indigenous Saccharomyces cerevisiae strains in the naturally fermented juice of grape varieties Cabernet Sauvignon, Grenache, Tempranillo, Sauvignon Blanc and Verdejo used in the São Francisco River Valley, northeastern Brazil. In this study, 155 S. cerevisiae and 60 non-Saccharomyces yeasts were isolated and identified using physiological tests and sequencing of the D1/D2 domains of the large subunit of the rRNA gene. Among the non-Saccharomyces species, Rhodotorula mucilaginosa was the most common species, followed by Pichia kudriavzevii, Candida parapsilosis, Meyerozyma guilliermondii, Wickerhamomyces anomalus, Kloeckera apis, P. manshurica, C. orthopsilosis and C. zemplinina. The population counts of these yeasts ranged among 1.0 to 19 x 10(5 cfu/mL. A total of 155 isolates of S. cerevisiae were compared by mitochondrial DNA restriction analysis, and five molecular mitochondrial DNA restriction profiles were detected. Indigenous strains of S. cerevisiae isolated from grapes of the São Francisco Valley can be further tested as potential starters for wine production.

  6. Saccharomyces cerevisiae and non-Saccharomyces yeasts in grape varieties of the São Francisco Valley

    Science.gov (United States)

    de Ponzzes-Gomes, Camila M.P.B.S.; de Mélo, Dângelly L.F.M.; Santana, Caroline A.; Pereira, Giuliano E.; Mendonça, Michelle O.C.; Gomes, Fátima C.O.; Oliveira, Evelyn S.; Barbosa, Antonio M.; Trindade, Rita C.; Rosa, Carlos A.

    2014-01-01

    The aims of this work was to characterise indigenous Saccharomyces cerevisiae strains in the naturally fermented juice of grape varieties Cabernet Sauvignon, Grenache, Tempranillo, Sauvignon Blanc and Verdejo used in the São Francisco River Valley, northeastern Brazil. In this study, 155 S. cerevisiae and 60 non-Saccharomyces yeasts were isolated and identified using physiological tests and sequencing of the D1/D2 domains of the large subunit of the rRNA gene. Among the non-Saccharomyces species, Rhodotorula mucilaginosa was the most common species, followed by Pichia kudriavzevii, Candida parapsilosis, Meyerozyma guilliermondii, Wickerhamomyces anomalus, Kloeckera apis, P. manshurica, C. orthopsilosis and C. zemplinina. The population counts of these yeasts ranged among 1.0 to 19 × 105 cfu/mL. A total of 155 isolates of S. cerevisiae were compared by mitochondrial DNA restriction analysis, and five molecular mitochondrial DNA restriction profiles were detected. Indigenous strains of S. cerevisiae isolated from grapes of the São Francisco Valley can be further tested as potential starters for wine production. PMID:25242923

  7. Beyond the Whole-Genome Duplication: Phylogenetic Evidence for an Ancient Interspecies Hybridization in the Baker's Yeast Lineage.

    Directory of Open Access Journals (Sweden)

    Marina Marcet-Houben

    2015-08-01

    Full Text Available Whole-genome duplications have shaped the genomes of several vertebrate, plant, and fungal lineages. Earlier studies have focused on establishing when these events occurred and on elucidating their functional and evolutionary consequences, but we still lack sufficient understanding of how genome duplications first originated. We used phylogenomics to study the ancient genome duplication occurred in the yeast Saccharomyces cerevisiae lineage and found compelling evidence for the existence of a contemporaneous interspecies hybridization. We propose that the genome doubling was a direct consequence of this hybridization and that it served to provide stability to the recently formed allopolyploid. This scenario provides a mechanism for the origin of this ancient duplication and the lineage that originated from it and brings a new perspective to the interpretation of the origin and consequences of whole-genome duplications.

  8. The pch2Delta mutation in baker's yeast alters meiotic crossover levels and confers a defect in crossover interference.

    Directory of Open Access Journals (Sweden)

    Sarah Zanders

    2009-07-01

    Full Text Available Pch2 is a widely conserved protein that is required in baker's yeast for the organization of meiotic chromosome axes into specific domains. We provide four lines of evidence suggesting that it regulates the formation and distribution of crossover events required to promote chromosome segregation at Meiosis I. First, pch2Delta mutants display wild-type crossover levels on a small (III chromosome, but increased levels on larger (VII, VIII, XV chromosomes. Second, pch2Delta mutants show defects in crossover interference. Third, crossovers observed in pch2Delta require both Msh4-Msh5 and Mms4-Mus81 functions. Lastly, the pch2Delta mutation decreases spore viability and disrupts crossover interference in spo11 hypomorph strains that have reduced levels of meiosis-induced double-strand breaks. Based on these and previous observations, we propose a model in which Pch2 functions at an early step in crossover control to ensure that every homolog pair receives an obligate crossover.

  9. Effects of dietary live and heat-inactive baker's yeast on growth, gut health, and disease resistance of Nile tilapia under high rearing density.

    Science.gov (United States)

    Ran, Chao; Huang, Lu; Hu, Jun; Tacon, Philippe; He, Suxu; Li, Zhimin; Wang, Yibing; Liu, Zhi; Xu, Li; Yang, Yalin; Zhou, Zhigang

    2016-09-01

    In this study, the effects of baker's yeast as probiotics was evaluated in Nile tilapia reared at high density. Juvenile tilapia were distributed to tanks at high density (436 fish/m(3)) and fed with basal diet (CK) or diets supplemented with live (LY) or heat-inactivated yeast (HIY). Another group of fish reared at low density (218 fish/m(3)) and fed with basal diet was also included (LowCK). After 8 weeks of feeding, growth, feed utilization, gut microvilli morphology, digestive enzymes, and expressions of hsp70 and inflammation-related cytokines in the intestine were assessed. Intestinal microbiota was investigated using 16S rRNA gene pyrosequencing. Fish were challenged with Aeromonas hydrophila to evaluate disease resistance. High rearing density significantly decreased the growth, feed utilization, microvilli length, and disease resistance of fish (CK versus LowCK). Moreover, the intestinal hsp70 expression was increased in fish reared at high density, supporting a stress condition. Compared to CK group, supplementation of live yeast significantly increased gut microvilli length and trypsin activity, decreased intestinal hsp70 expression, and enhanced resistance of fish against A. hydrophila (reflected by reduced intestinal alkaline phosphatase activity 24 h post infection). The gut microbiota was not markedly influenced by either rearing density or yeast supplementation. Heat-inactivated yeast (HIY) didn't display the beneficial effects observed in LY except an increase in gut trypsin activity, suggesting the importance of yeast viability and thus secretory metabolites of yeast. In conclusion, live baker's yeast may alleviate the negative effects induced by crowding stress, and has the potential to be used as probiotics for tilapia reared at high density.

  10. Yeast genome duplication was followed by asynchronous differentiation of duplicated genes

    DEFF Research Database (Denmark)

    Langkjær, Rikke Breinhold; Cliften, P.F.; Johnston, M.

    2003-01-01

    Gene redundancy has been observed in yeast, plant and human genomes, and is thought to be a consequence of whole-genome duplications(1-3). Baker's yeast, Saccharomyces cerevisiae, contains several hundred duplicated genes(1). Duplication(s) could have occurred before or after a given speciation. ...

  11. The golden root, Rhodiola rosea, prolongs lifespan but decreases oxidative stress resistance in yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Bayliak, Maria M; Lushchak, Volodymyr I

    2011-11-15

    The effect of aqueous extract from R. rosea root on lifespan and the activity of antioxidant enzymes in budding yeast Saccharomyces cerevisiae have been studied. The supplementation of the growth medium with R. rosea extract decreased survival of exponentially growing S. cerevisiae cells under H(2)O(2)-induced oxidative stress, but increased viability and reproduction success of yeast cells in stationary phase. The extract did not significantly affect catalase activity and decreased SOD activity in chronologically aged yeast population. These results suggest that R. rosea acts as a stressor for S. cerevisiae cells, what sensitizes yeast cells to oxidative stress at exponential phase, but induces adaptation in stationary phase cells demonstrating the positive effect on yeast survival without activation of major antioxidant enzymes.

  12. Budding yeast for budding geneticists: a primer on the Saccharomyces cerevisiae model system.

    Science.gov (United States)

    Duina, Andrea A; Miller, Mary E; Keeney, Jill B

    2014-05-01

    The budding yeast Saccharomyces cerevisiae is a powerful model organism for studying fundamental aspects of eukaryotic cell biology. This Primer article presents a brief historical perspective on the emergence of this organism as a premier experimental system over the course of the past century. An overview of the central features of the S. cerevisiae genome, including the nature of its genetic elements and general organization, is also provided. Some of the most common experimental tools and resources available to yeast geneticists are presented in a way designed to engage and challenge undergraduate and graduate students eager to learn more about the experimental amenability of budding yeast. Finally, a discussion of several major discoveries derived from yeast studies highlights the far-reaching impact that the yeast system has had and will continue to have on our understanding of a variety of cellular processes relevant to all eukaryotes, including humans.

  13. Preconcentrating (within the broth) secreted extracellular proteins during a bakers' yeast fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Effler, W.T. Jr.; Pandey, N.K.; Tanner, R.D.; Malaney, G.W.; Scott, C.D. (ed.)

    1986-01-01

    Proteins secreted by yeast during the fermentation process are spacially fractionated (concentrated at a particular vertical position) within the fermentation vessel due to the phenomenon of bubble fractionation, despite moderately vigorous mixing. The degree of fractionation is influenced by the conditions in which the fermentation takes place. The broth pH strongly influences the extent of fractionation of specific proteins. In addition fractionation is enhanced under anaerobic conditions, presumably because there are more CO2 bubbles present for hydrophobic protein adsorption. The addition of moderate levels of salt to the broth reduces the fractionation for most (but not all) of the proteins.

  14. Flor yeasts of Saccharomyces cerevisiae--their ecology, genetics and metabolism.

    Science.gov (United States)

    Alexandre, Hervé

    2013-10-15

    The aging of certain white wines is dependent on the presence of yeast strains that develop a biofilm on the wine surface after the alcoholic fermentation. These strains belong to the genus Saccharomyces and are called flor yeasts. These strains possess distinctive characteristics compared with Saccharomyces cerevisiae fermenting strain. The most important one is their capacity to form a biofilm on the air-liquid interface of the wine. The major gene involved in this phenotype is FLO11, however other genes are also involved in velum formation by these yeast and will be detailed. Other striking features presented in this review are their aneuploidy, and their mitochondrial DNA polymorphism which seems to reflect adaptive evolution of the yeast to a stressful environment where acetaldehyde and ethanol are present at elevated concentration. The biofilm assures access to oxygen and therefore permits continued growth on non-fermentable ethanol. This specific metabolism explains the peculiar organoleptic profile of these wines, especially their content in acetaldehyde and sotolon. This review deals with these different specificities of flor yeasts and will also underline the existing gaps regarding these astonishing yeasts.

  15. Self-tuning GMV control of glucose concentration in fed-batch baker's yeast production.

    Science.gov (United States)

    Hitit, Zeynep Yilmazer; Boyacioglu, Havva; Ozyurt, Baran; Ertunc, Suna; Hapoglu, Hale; Akay, Bulent

    2014-04-01

    A detailed system identification procedure and self-tuning generalized minimum variance (STGMV) control of glucose concentration during the aerobic fed-batch yeast growth were realized. In order to determine the best values of the forgetting factor (λ), initial value of the covariance matrix (α), and order of the Auto-Regressive Moving Average with eXogenous (ARMAX) model (n a, n b), transient response data obtained from the real process wereutilized. Glucose flow rate was adjusted according to the STGMV control algorithm coded in Visual Basic in an online computer connected to the system. Conventional PID algorithm was also implemented for the control of the glucose concentration in aerobic fed-batch yeast cultivation. Controller performances were examined by evaluating the integrals of squared errors (ISEs) at constant and random set point profiles. Also, batch cultivation was performed, and microorganism concentration at the end of the batch run was compared with the fed-batch cultivation case. From the system identification step, the best parameter estimation was accomplished with the values λ = 0.9, α = 1,000 and n a = 3, n b = 2. Theoretical control studies show that the STGMV control system was successful at both constant and random glucose concentration set profiles. In addition, random effects given to the set point, STGMV control algorithm were performed successfully in experimental study.

  16. Baker's yeast catalyzed asymmetric reduction of prochiral ketones in different reaction mediums

    Directory of Open Access Journals (Sweden)

    Adi Wolfson

    2013-03-01

    Full Text Available Baker’s yeast catalyzes the asymmetric reduction of prochiral ketones in water and in various organic solvents. The reaction in water, which is the first solvent of choice for bio-reactions, led to a high product yield and enantiomeric excess, but the low miscibility of organic molecules in water resulted in lower conversions when more hydrophobic ketones were used. Petroleum-based solvents such as hexane and petroleum ether were also successfully employed as reaction mediums, but the viability of the yeast in these solvents was negligible, and they have severe environmental impacts due to their high toxicity levels. Performing the reaction in green solvents, like ionic liquids, fluorous media, and glycerol-based solvents, which have low volatilities and can be recycled, enabled dissolution of the substrates and of the energy source and also promoted isolation of the product. Among all tested green solvents, glycerol-based solvents are preferable due to their biodegradable natures and their origins from renewable sources.

  17. Influence of addition of amylase preparation to dough on fermentative activity of baker's yeast

    Directory of Open Access Journals (Sweden)

    Dodić Jelena M.

    2005-01-01

    Full Text Available Dough samples with different content of amylases were investigated immediately after mixing and after 7, 14 and 30 days of frozen storage. The obtained results show that the fermentation time is shorter, both in fresh and frozen samples, when amylase sample 1 was added, compared to dough without enzymes. The addition of amylase 2 to dough resulted in minimal decrease of "rising" time, both is frozen and fresh dough samples. The rising time of fresh samples was shorter when amylase 3 was added to dough. The specific fermentative activity of fresh dough samples is increasing by about 10% compared to the control sample, for all amounts of amylase 1 and 2 added to the do- ugh. The fermentative activity of yeast in frozen samples increased by 5-10%, after keeping of dough with the addition of amylase 1 for 14 days. The specific fermentative activity of fresh dough samples increased compared to the control, for all amounts of added amylase 3 to the dough. In frozen dough samples the fermentative activity of yeast decreased by 10% for all added amounts of amylase 3. Baked goods made of fresh and frozen dough, prepared with the addition of amylase 1, are better than the ones made of control dough sample, considering all evaluated parameters.

  18. Primers-4-Yeast: a comprehensive web tool for planning primers for Saccharomyces cerevisiae.

    Science.gov (United States)

    Yofe, Ido; Schuldiner, Maya

    2014-02-01

    The budding yeast Saccharomyces cerevisiae is a key model organism of functional genomics, due to its ease and speed of genetic manipulations. In fact, in this yeast, the requirement for homologous sequences for recombination purposes is so small that 40 base pairs (bp) are sufficient. Hence, an enormous variety of genetic manipulations can be performed by simply planning primers with the correct homology, using a defined set of transformation plasmids. Although designing primers for yeast transformations and for the verification of their correct insertion is a common task in all yeast laboratories, primer planning is usually done manually and a tool that would enable easy, automated primer planning for the yeast research community is still lacking. Here we introduce Primers-4-Yeast, a web tool that allows primers to be designed in batches for S. cerevisiae gene-targeting transformations, and for the validation of correct insertions. This novel tool enables fast, automated, accurate primer planning for large sets of genes, introduces consistency in primer planning and is therefore suggested to serve as a standard in yeast research. Primers-4-Yeast is available at: http://www.weizmann.ac.il/Primers-4-Yeast

  19. Fed-batch cultivation of baker's yeast followed by nitrogen or carbon starvation: effects on fermentative capacity and content of trehalose and glycogen

    DEFF Research Database (Denmark)

    Jørgensen, Henning; Olsson, Lisbeth; Rønnow, B.

    2002-01-01

    An industrial strain of Saccharomyces cerevisiae (DGI 342) was cultivated in fed-batch cultivations at a specific growth rate of 0.2 h(-1). The yeast was then exposed to carbon or nitrogen starvation for up to 8 h, to study the effect of starvation on fermentative capacity and content of protein...... of the yeast cells, and the fermentative capacity per gram dry-weight decreased by 40%. The protein content in the carbon-starved yeast increased as a result of starvation due to the fact that the content of glycogen was reduced. The fermentative capacity per gram dry-weight was, however, unaltered....

  20. Investigation of nutrient sensing in the yeast Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Eckert-Boulet, Nadine

    2006-01-01

    Gæren Saccharomyces cerevisiae har udviklet komplekse regulatoriske systemer til at kontrollere ekspression af de proteiner, der importerer næringsstoffer, således at disse kun bliver produceret, når der er brug for dem. Dette er tilfældet for hexose-transportører samt aminosyre-transportører (di......Gæren Saccharomyces cerevisiae har udviklet komplekse regulatoriske systemer til at kontrollere ekspression af de proteiner, der importerer næringsstoffer, således at disse kun bliver produceret, når der er brug for dem. Dette er tilfældet for hexose-transportører samt aminosyre...

  1. Quantification and characterization of cell wall polysaccharides released by non-Saccharomyces yeast strains during alcoholic fermentation.

    Science.gov (United States)

    Giovani, Giovanna; Rosi, Iolanda; Bertuccioli, Mario

    2012-11-15

    In order to improve knowledge about the oenological characteristics of non-Saccharomyces yeast strains, and to reconsider their contribution to wine quality, we studied the release of polysaccharides by 13 non-Saccharomyces strains of different species (three wine yeasts, six grape yeasts, and three spoilage yeasts) during alcoholic fermentation in synthetic must. Three Saccharomyces cerevisiae strains were included for comparison. All of the non-Saccharomyces strains released polysaccharides into fermentation medium; the amount released depended on the yeast species, the number of cells formed and their physiological conditions. Normalizing the quantity of macromolecules released to the cell biomass revealed that most non-Saccharomyces strains produced a greater quantity of polysaccharides compared to S. cerevisiae strains after 7 and 14days of fermentation. This capacity was particularly expressed in the studied wine spoilage yeasts (Saccharomycodes ludwigii, Zygosaccharomyces bailii, and Brettanomyces bruxellensis). Chemical characterization of exocellular polysaccharides produced by non-Saccharomyces yeasts revealed them to essentially be mannoproteins with high mannose contents, ranging from 93% for S'codes. ludwigii to 73-74% for Pichia anomala and Starmerella bombicola. Protein contents varied from 9% for P. anomala to 29% for Z. bailii. These compositions were very similar to those of the S. cerevisiae strains, and to the chemical composition of the cell wall mannoproteins of different yeast species. The presence of galactose, in addition to mannose and glucose, in the exocellular polysaccharides released by Schizosaccharomyces pombe, confirmed the parietal nature of the polysaccharides released by non-Saccharomyces yeasts; only this species has a galactomannan located in the outer layer of the cell wall.

  2. The yeast Saccharomyces cerevisiae- the main character in beer brewing.

    Science.gov (United States)

    Lodolo, Elizabeth J; Kock, Johan L F; Axcell, Barry C; Brooks, Martin

    2008-11-01

    Historically, mankind and yeast developed a relationship that led to the discovery of fermented beverages. Numerous inventions have led to improved technologies and capabilities to optimize fermentation technology on an industrial scale. The role of brewing yeast in the beer-making process is reviewed and its importance as the main character is highlighted. On considering the various outcomes of functions in a brewery, it has been found that these functions are focused on supporting the supply of yeast requirements for fermentation and ultimately to maintain the integrity of the product. The functions/processes include: nutrient supply to the yeast (raw material supply for brewhouse wort production); utilities (supply of water, heat and cooling); quality assurance practices (hygiene practices, microbiological integrity measures and other specifications); plant automation (vessels, pipes, pumps, valves, sensors, stirrers and centrifuges); filtration and packaging (product preservation until consumption); distribution (consumer supply); and marketing (consumer awareness). Considering this value chain of beer production and the 'bottle neck' during production, the spotlight falls on fermentation, the age-old process where yeast transforms wort into beer.

  3. Transport and cytotoxicity of the anticancer drug 3-bromopyruvate in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Lis, Paweł; Zarzycki, Marek; Ko, Young H; Casal, Margarida; Pedersen, Peter L; Goffeau, Andre; Ułaszewski, Stanisław

    2012-02-01

    We have investigated the cytotoxicity in Saccharomyces cerevisiae of the novel antitumor agent 3-bromopyruvate (3-BP). 3-BP enters the yeast cells through the lactate/pyruvate H(+) symporter Jen1p and inhibits cell growth at minimal inhibitory concentration of 1.8 mM when grown on non-glucose conditions. It is not submitted to the efflux pumps conferring Pleiotropic Drug Resistance in yeast. Yeast growth is more sensitive to 3-BP than Gleevec (Imatinib methanesulfonate) which in contrast to 3-BP is submitted to the PDR network of efflux pumps. The sensitivity of yeast to 3-BP is increased considerably by mutations or chemical treatment by buthionine sulfoximine that decrease the intracellular concentration of glutathione.

  4. Effects of Dietary Yeast (Saccharomyces cerevisia Supplementation in Practical Diets of Tilapia (Oreochromis niloticus

    Directory of Open Access Journals (Sweden)

    José E. P. Cyrino

    2012-01-01

    Full Text Available A 51-day feeding trial was carried out to determine the effects of various dietary levels of brewer’s yeast, Saccharomyces cerevisiae, in the growth performance, body composition and nutrient utilization in Nile tilapia, Oreochromis niloticus, juveniles. Fish (7.6 ± 0.3 g were stocked into eighteen 1,000-L tanks (100 fish per tank; n = 3 and fed to apparent satiation six isonitrogenous (27% crude protein and isoenergetic (19 kJ/g diets, formulated to contain different dried yeast levels (0%, 10%, 15%, 20%, 30% or 40% diet in substitution to fishmeal. Body weight tripled at the end of the feeding trial for fish fed up to 20% dietary yeast incorporation. Daily growth coefficient (DGC, % body weight/day decreased with increasing dietary yeast level (P < 0.0001. Voluntary feed intake (VFI, %BW/day did not vary significantly with increasing yeast level. Fish fed 40% yeast showed significant reduction in protein efficiency rate, protein retention and nitrogen gain. Increasing levels of dietary yeast did not significantly affect protein or lipid digestibility. Dietary dried yeast was seemingly palatable to tilapia juveniles and was suitable up to 15% inclusion to promote growth and efficient diet utilization, without affecting body composition.

  5. Genomic diversity of Saccharomyces cerevisiae yeasts associated with alcoholic fermentation of bacanora produced by artisanal methods.

    Science.gov (United States)

    Álvarez-Ainza, M L; Zamora-Quiñonez, K A; Moreno-Ibarra, G M; Acedo-Félix, E

    2015-03-01

    Bacanora is a spirituous beverage elaborated with Agave angustifolia Haw in an artisanal process. Natural fermentation is mostly performed with native yeasts and bacteria. In this study, 228 strains of yeast like Saccharomyces were isolated from the natural alcoholic fermentation on the production of bacanora. Restriction analysis of the amplified region ITS1-5.8S-ITS2 of the ribosomal DNA genes (RFLPr) were used to confirm the genus, and 182 strains were identified as Saccharomyces cerevisiae. These strains displayed high genomic variability in their chromosomes profiles by karyotyping. Electrophoretic profiles of the strains evaluated showed a large number of chromosomes the size of which ranged between 225 and 2200 kpb approximately.

  6. Inactivation of Bakers' yeast glucose-6-phosphate dehydrogenase by aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sungwoo; Joshi, J.G. (Univ. of Tennessee, Knoxville (USA))

    1989-04-18

    Preincubation of yeast glucose-6-phosphate dehydrogenase (G6PD) with Al(III) produced an inactive enzyme containing 1 mol of Al(III)/mol of enzyme subunit. None of the enzyme-bound Al(III) was dissociated by dialysis against 10 mM Tris-HCl, pH 7.0, containing 0.2 mM EDTA at 4{degree}C for 24 h. Citrate, NADP{sup +}, EDTA, or NaF protected the enzyme against the Al(III) inactivation. The Al(III)-inactivated enzyme, however, was completely reactivated only by citrate and NaF. The dissociation constant for the enzyme-aluminum complex was calculated to be 4 {times} 10{sup {minus}6} M with NaF, a known reversible chelator for aluminum. Modification of histidine and lysine residues of the enzyme with diethyl pyrocarbonate and acetylsalicylic acid, respectively, inactivated the enzyme. However, the modified enzyme still bound 1 mol of Al(III)/mol of enzyme subunit. Circular dichroism studies showed that the binding of Al(III) to the enzyme induced a decrease in {alpha}-helix and {beta}-sheet and an increase in random coil. Therefore, it is suggested that inactivation of G6PD by Al(III) is due to the conformational change induced by Al(III) binding.

  7. Novel insights in genetic transformation of the probiotic yeast Saccharomyces boulardii

    Science.gov (United States)

    Douradinha, Bruno; Reis, Viviane CB; Rogers, Matthew B; Torres, Fernando AG; Evans, Jared D; Marques Jr, Ernesto TA

    2014-01-01

    Saccharomyces boulardii (S. boulardii) is a probiotic yeast related to Saccharomyces cerevisiae (S. cerevisiae) but with distinct genetic, taxonomic and metabolic properties. S. cerevisiae has been used extensively in biotechnological applications. Currently, many strains are available, and multiple genetic tools have been developed, which allow the expression of several exogenous proteins of interest with applications in the fields of medicine, biofuels, the food industry, and scientific research, among others. Although S. boulardii has been widely studied due to its probiotic properties against several gastrointestinal tract disorders, very few studies addressed the use of this yeast as a vector for expression of foreign genes of interest with biotechnological applications. Here we show that, despite the similarity of the two yeasts, not all genetic tools used in S. cerevisiae can be applied in S. boulardii. While transformation of the latter could be obtained using a commercial kit developed for the former, consequent screening of successful transformants had to be optimized. We also show that several genes frequently used in genetic manipulation of S. cerevisiae (e.g., promoters and resistance markers) are present in S. boulardii. Sequencing revealed a high rate of homology (>96%) between the orthologs of the two yeasts. However, we also observed some of them are not eligible to be targeted for transformation of S. boulardii. This work has important applications toward the potential of this probiotic yeast as an expression system for genes of interest. PMID:24013355

  8. Screening for new brewing yeasts in the non-Saccharomyces sector with Torulaspora delbrueckii as model.

    Science.gov (United States)

    Michel, Maximilian; Kopecká, Jana; Meier-Dörnberg, Tim; Zarnkow, Martin; Jacob, Fritz; Hutzler, Mathias

    2016-04-01

    This study describes a screening system for future brewing yeasts focusing on non-Saccharomyces yeasts. The aim was to find new yeast strains that can ferment beer wort into a respectable beer. Ten Torulaspora delbrueckii strains were put through the screening system, which included sugar utilization tests, hop resistance tests, ethanol resistance tests, polymerase chain reaction fingerprinting, propagation tests, amino acid catabolism and anabolism, phenolic off-flavour tests and trial fermentations. Trial fermentations were analysed for extract reduction, pH drop, yeast concentration in bulk fluid and fermentation by-products. All investigated strains were able to partly ferment wort sugars and showed high tolerance to hop compounds and ethanol. One of the investigated yeast strains fermented all the wort sugars and produced a respectable fruity flavour and a beer of average ethanol content with a high volatile flavour compound concentration. Two other strains could possibly be used for pre-fermentation as a bio-flavouring agent for beers that have been post-fermented by Saccharomyces strains as a consequence of their low sugar utilization but good flavour-forming properties.

  9. Phenotypic evaluation of natural and industrial Saccharomyces yeasts for different traits desirable in industrial bioethanol production.

    Science.gov (United States)

    Mukherjee, Vaskar; Steensels, Jan; Lievens, Bart; Van de Voorde, Ilse; Verplaetse, Alex; Aerts, Guido; Willems, Kris A; Thevelein, Johan M; Verstrepen, Kevin J; Ruyters, Stefan

    2014-11-01

    Saccharomyces cerevisiae is the organism of choice for many food and beverage fermentations because it thrives in high-sugar and high-ethanol conditions. However, the conditions encountered in bioethanol fermentation pose specific challenges, including extremely high sugar and ethanol concentrations, high temperature, and the presence of specific toxic compounds. It is generally considered that exploring the natural biodiversity of Saccharomyces strains may be an interesting route to find superior bioethanol strains and may also improve our understanding of the challenges faced by yeast cells during bioethanol fermentation. In this study, we phenotypically evaluated a large collection of diverse Saccharomyces strains on six selective traits relevant for bioethanol production with increasing stress intensity. Our results demonstrate a remarkably large phenotypic diversity among different Saccharomyces species and among S. cerevisiae strains from different origins. Currently applied bioethanol strains showed a high tolerance to many of these relevant traits, but several other natural and industrial S. cerevisiae strains outcompeted the bioethanol strains for specific traits. These multitolerant strains performed well in fermentation experiments mimicking industrial bioethanol production. Together, our results illustrate the potential of phenotyping the natural biodiversity of yeasts to find superior industrial strains that may be used in bioethanol production or can be used as a basis for further strain improvement through genetic engineering, experimental evolution, or breeding. Additionally, our study provides a basis for new insights into the relationships between tolerance to different stressors.

  10. The effect of millimeter waves at the yeast Saccharomyces cerevisiae during heliogeophysical disturbances

    Science.gov (United States)

    Rogacheva, Svetlana M.; Babaeva, Milena I.

    2013-02-01

    The isolated and combined effect of heliogeophysical factors and low intensive electromagnetic radiation of millimeter diapason at the metachromasia reaction of the yeast Saccharomyces cerevisiae was studied. It was established that longterm influence of EMR 65 GHz induced changes in the response of cells towards heliogeomagnetic disturbance. On our opinion millimeter waves may reduce the effect of heliogeophysical factors on living organisms because of destabilization of the intracellular water structure.

  11. [Expression of inulinase genes in the yeasts Saccharomyces cerevisiae and Kluyveromyces marxianus].

    Science.gov (United States)

    Sokolenko, G G; Karpechenko, N A

    2015-01-01

    Expression of the genes encoding the enzymes involved in inulin, sucrose, and glucose metabolism in the yeasts Saccharomyces cerevisiae and Kluyveromyces marxianus was studied. The exon-intron structure of the relevant genes was identified and the primers for quantitative PCR were optimized. Expression of the genes was found to depend on the carbon source. Glucose was shown to exhibit a repressive effect on inulinase synthesis by K. marxianus, while in S. cerevisiae glucose and sucrose were inulinase inducer and repressor, respectively.

  12. Intensification of alcoholic fermentation upon dehydration-rehydration of the yeast Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Zikmanis, P.B.; Kruce, R.V.; Auzina, L.P.; Margevica, M.V.; Beker, M.J.

    1988-02-01

    In comparison with intact yeast, dehydrated-rehydrated cells of Saccharomyces cerevisiae show significantly higher ethanol production from exogenous substrate under both anaerobic and aerobic conditions, particularly when low concentration (0.1%) of glucose are used. For populations with a higher percentage of viable rehydrated cells (above 70%) a more notable decrease in the Pasteur effect (the difference between the quantity of ethanol formed under anaerobic and aerobic conditions) is observed. (orig.)

  13. Some Experiments with Respiratory Deficient Mutants of Yeast (Saccharomyces cerevisiae)

    Science.gov (United States)

    Freeland, P. W.

    1978-01-01

    Methods are described for the induction and identification of respiratory deficient mutants in yeast. Practical schemes are given to enable students to obtain dose-response information for physical and chemical mutagens such as heat, ultraviolet light, or acriflavine. A simple test for environmental mutagens is described. (Author/MA)

  14. Enhanced freeze tolerance of baker's yeast by overexpressed trehalose-6-phosphate synthase gene (TPS1) and deleted trehalase genes in frozen dough.

    Science.gov (United States)

    Tan, Haigang; Dong, Jian; Wang, Guanglu; Xu, Haiyan; Zhang, Cuiying; Xiao, Dongguang

    2014-08-01

    Several recombinant strains with overexpressed trehalose-6-phosphate synthase gene (TPS1) and/or deleted trehalase genes were obtained to elucidate the relationships between TPS1, trehalase genes, content of intracellular trehalose and freeze tolerance of baker's yeast, as well as improve the fermentation properties of lean dough after freezing. In this study, strain TL301(TPS1) overexpressing TPS1 showed 62.92 % higher trehalose-6-phosphate synthase (Tps1) activity and enhanced the content of intracellular trehalose than the parental strain. Deleting ATH1 exerted a significant effect on trehalase activities and the degradation amount of intracellular trehalose during the first 30 min of prefermentation. This finding indicates that acid trehalase (Ath1) plays a role in intracellular trehalose degradation. NTH2 encodes a functional neutral trehalase (Nth2) that was significantly involved in intracellular trehalose degradation in the absence of the NTH1 and/or ATH1 gene. The survival ratio, freeze-tolerance ratio and relative fermentation ability of strain TL301(TPS1) were approximately twice as high as those of the parental strain (BY6-9α). The increase in freeze tolerance of strain TL301(TPS1) was accompanied by relatively low trehalase activity, high Tps1 activity and high residual content of intracellular trehalose. Our results suggest that overexpressing TPS1 and deleting trehalase genes are sufficient to improve the freeze tolerance of baker's yeast in frozen dough. The present study provides guidance for the commercial baking industry as well as the research on the intracellular trehalose mobilization and freeze tolerance of baker's yeast.

  15. Covalent aspartylation of aspartyl-tRNA synthetase from Bakers' yeast by its cognat aspartyl adenylate: identification of the labeled residues

    Energy Technology Data Exchange (ETDEWEB)

    Mejdoub, H.; Kern, D.; Giege, R.; Ebel, J.P.; Boulanger, Y.; Reinbolt, J.

    1987-04-07

    Aspartyl-tRNA synthetase from bakers' yeast gives an unstable complex with the cognate adenylate, which reacts after dissociation with amino acid side chains of the protein. This leads to a covalent incorporation of (/sup 14/C)-aspartic acid into aspartyl-tRNA synthetase via amide or ester bonds formed between the ..cap alpha..-carboxyl group of activated aspartic acid and accessible lysines, serines, and threonines. This property is used to label the peptides at the surface of the enzyme. The main labeled residues have been identified, and their location in the primary structure is discussed in relation to structural properties of aspartyl-tRNA synthetase.

  16. Exploring the phenotypic space of non-Saccharomyces wine yeast biodiversity.

    Science.gov (United States)

    Rossouw, Debra; Bauer, Florian F

    2016-05-01

    Tremendous microbial diversity exists in vineyards, and the potential to harness this diversity for novel mixed or pure starter cultures for wine fermentation has received significant attention in recent years. However, most studies are limited to a small subset of strains and species. Here we present data from a systematic screen of 91 yeast isolates from South African grape must and vineyard samples for oenologically relevant traits. One focus area was finding non-Saccharomyces isolates showing both reduced ethanol yields, as well as improved aromatic characteristics. Of the 91 isolates evaluated initially, 21 showed lower ethanol yields when compared to commercial wine yeast strain controls. Collectively, the metabolic data (primary fermentation and secondary aroma compounds) highlight the enormity of the 'phenotypic space' of yeast communities in South African vineyards. The data also emphasise intraspecies variability, challenging our concept of species typicity. Of particular oenological interest was the ability of several isolates to produce high levels of terpenoid compounds. A few strains were ultimately found which showed a substantial reduction (>1.5%) in the final ethanol content of sequential fermentations, as well as unique aroma compound production profiles. Four of these strains were selected for comprehensive wine trials in both red and white grape musts, complete with microbial, chemical and sensory analyses of the red wines. This presents, for the first time, a full bench-to-bottle characterisation of non-Saccharomyces strains showing the most potential for commercial application. The findings of this study enlarge the potential range of oenological applications for non-Saccharomyces yeast, while also suggesting the potential usefulness of several yeast species that have previously not been considered for winemaking applications.

  17. The Snf1 Protein Kinase in the Yeast Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Usaite, Renata

    2008-01-01

    . Failure in the AMPK regulatory cascade leads to metabolic disorders, such as obesity or type 2 diabetes. The knowledge about the Snf1 protein kinase remains to be of much interest in studying yeast carbon metabolism and human biology. To investigate the effect of Snf1 kinase and its regulatory subunit Snf......4 on the regulation of glucose and galactose metabolism, I physiologically characterized Δsnf1, Δsnf4, and Δsnf1Δsnf4 CEN.PK background yeast strains in glucose and glucose-galactose mixture batch cultivations (chapter 2). The results of this study showed that delayed induction of galactose...... proteome datasets (2388 proteins) to date was generated using Multidimensional Protein Identification Technology followed by quantitation using stable isotope labeling approach (chapter 3). The stable isotope labeling was compared to the spectral counting quantitative approach and the study showed...

  18. Acetaminophen toxicity and resistance in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Srikanth, Chittur V; Chakraborti, Asit K; Bachhawat, Anand K

    2005-01-01

    Acetaminophen (paracetamol), one of the most widely used analgesics, is toxic under conditions of overdose or in certain disease conditions, but the mechanism of acetaminophen toxicity is still not entirely understood. To obtain fresh insights into acetaminophen toxicity, this phenomenon was investigated in yeast. Acetaminophen was found to be toxic to yeast cells, with erg mutants displaying hypersensitivity. Yeast cells grown in the presence of acetaminophen were found to accumulate intracellular acetaminophen, but no metabolic products of acetaminophen could be detected in these extracts. The toxicity response did not lead to an oxidative stress response, although it did involve Yap1p. The cytochrome P450 enzymes of yeast, Erg5p and Erg11p, did not appear to participate in this process, unlike the mammalian systems. Furthermore, we could not establish a central role for glutathione depletion or the cellular glutathione redox status in acetaminophen toxicity, suggesting differences from mammalian systems in the pathways causing toxicity. Investigations of the resistance mechanisms revealed that deletion of the glutathione-conjugate pumps Ycf1p (a target of Yap1p) and Bpt1p, surprisingly, led to acetaminophen resistance, while overexpression of the multidrug resistance pumps Snq2p and Flr1p (also targets of Yap1p) led to acetaminophen resistance. The Yap1p-dependent resistance to acetaminophen required a functional Pdr1p or Pdr3p protein, but not a functional Yrr1p. In contrast, resistance mediated by Pdr1p/Pdr3p did not require a functional Yap1p, and revealed a distinct hierarchy in the resistance to acetaminophen.

  19. Biodiversity of non-Saccharomyces yeasts in distilleries of the La Mancha region (Spain).

    Science.gov (United States)

    Úbeda, Juan; Maldonado Gil, María; Chiva, Rosana; Guillamón, José M; Briones, Ana

    2014-06-01

    The aim of this pioneering study was to determine the biodiversity of non-Saccharomyces yeasts in ancient distilleries located in the La Mancha region, which is the principal area for the production of bioethanol and grape-based distillates in Spain. In this study, the yeast populations that were present during the process of extraction of alcohol and residual sugars from the byproducts of vinification, such as piquettes, pomace and grape skins, were studied. Non-Saccharomyces yeasts were identified by PCR-RFLP analysis of the 5.8S rRNA genes and, when necessary, by sequencing the D1/D2 domain of the 26S and/or 5.8S rRNA genes. Further, fermentation and the assimilation of carbon compounds were studied, to identify potential industrial applications. Phylogenetic trees and heat-maps were constructed for the genetic and phenotypic traits, respectively. Twenty yeast species belonging to eight genera were identified (Torulaspora, Candida, Zygosaccharomyces, Pichia, Hanseniaspora, Kluyveromyces, Ogataea and Saccharomycodes). Pichia galeiformis, Candida lactis-condensi, Hanseniaspora osmophila and Torulaspora delbrueckii were the most abundant species and were found principally in sweet and fermented piquettes.

  20. Producing human ceramide-NS by metabolic engineering using yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Murakami, Suguru; Shimamoto, Toshi; Nagano, Hideaki; Tsuruno, Masahiro; Okuhara, Hiroaki; Hatanaka, Haruyo; Tojo, Hiromasa; Kodama, Yukiko; Funato, Kouichi

    2015-01-01

    Ceramide is one of the most important intercellular components responsible for the barrier and moisture retention functions of the skin. Because of the risks involved with using products of animal origin and the low productivity of plants, the availability of ceramides is currently limited. In this study, we successfully developed a system that produces sphingosine-containing human ceramide-NS in the yeast Saccharomyces cerevisiae by eliminating the genes for yeast sphingolipid hydroxylases (encoded by SUR2 and SCS7) and introducing the gene for a human sphingolipid desaturase (encoded by DES1). The inactivation of the ceramidase gene YDC1, overexpression of the inositol phosphosphingolipid phospholipase C gene ISC1, and endoplasmic reticulum localization of the DES1 gene product resulted in enhanced production of ceramide-NS. The engineered yeast strains can serve as hosts not only for providing a sustainable source of ceramide-NS but also for developing further systems to produce sphingosine-containing sphingolipids.

  1. A new biological test of water toxicity-yeast Saccharomyces cerevisiae conductometric test.

    Science.gov (United States)

    Dolezalova, Jaroslava; Rumlova, Lubomira

    2014-11-01

    This new biological test of water toxicity is based on monitoring of specific conductivity changes of yeast Saccharomyces cerevisiae suspension as a result of yeast fermentation activity inhibition in toxic conditions. The test was verified on ten substances with various mechanisms of toxic effect and the results were compared with two standard toxicity tests based on Daphnia magna mobility inhibition (EN ISO 6341) and Vibrio fischeri bioluminescence inhibition (EN ISO 11348-2) and with the results of the S. cerevisiae lethal test (Rumlova and Dolezalova, 2012). The new biological test - S. cerevisiae conductometric test - is an express method developed primarily for field conditions. It is applicable in case of need of immediate information about water toxicity. Fast completion is an advantage of this test (time necessary for test completion is about 60min), the test is simple and the test organism - dried instant yeast - belongs among its biggest advantages because of its long-term storage life and broad availability.

  2. Permeabilization of yeast Saccharomyces cerevisiae cell walls using nanosecond high power electrical pulses

    Science.gov (United States)

    Stirke, A.; Zimkus, A.; Balevicius, S.; Stankevic, V.; Ramanaviciene, A.; Ramanavicius, A.; Zurauskiene, N.

    2014-12-01

    The electrical field-induced changes of the yeast Saccharomyces cerevisiae cells permeabilization to tetraphenylphosphonium (TPP+) ions were studied using square-shaped, nanosecond duration high power electrical pulses. It was obtained that pulses having durations ranging from 10 ns to 60 ns, and generating electric field strengths up to 190 kV/cm significantly (up to 65 times) increase the absorption rate of TPP+ ions without any detectible influence on the yeast cell viability. The modelling of the TPP+ absorption process using a second order rate equation demonstrates that depending on the duration of the pulses, yeast cell clusters of different sizes are homogeniously permeabilized. It was concluded, that nanosecond pulse-induced permeabilization can be applied to increase the operational speed of whole cell biosensors.

  3. Fructanase and fructosyltransferase activity of non-Saccharomyces yeasts isolated from fermenting musts of Mezcal.

    Science.gov (United States)

    Arrizon, Javier; Morel, Sandrine; Gschaedler, Anne; Monsan, Pierre

    2012-04-01

    Fructanase and fructosyltransferase are interesting for the tequila process and prebiotics production (functional food industry). In this study, one hundred thirty non-Saccharomyces yeasts isolated from "Mezcal de Oaxaca" were screened for fructanase and fructosyltransferase activity. On solid medium, fifty isolates grew on Agave tequilana fructans (ATF), inulin or levan. In liquid media, inulin and ATF induced fructanase activities of between 0.02 and 0.27U/ml depending of yeast isolate. High fructanase activity on sucrose was observed for Kluyveromyces marxianus and Torulaspora delbrueckii, while the highest fructanase activity on inulin and ATF was observed for Issatchenkia orientalis, Cryptococcus albidus, and Candida apicola. Zygosaccharomyces bisporus and Candida boidinii had a high hydrolytic activity on levan. Sixteen yeasts belonging to K. marxianus, T. delbrueckii and C. apicola species were positive for fructosyltransferase activity. Mezcal microbiota proved to showed to be a source for new fructanase and fructosyltransferases with potential application in the tequila and food industry.

  4. Effects of mal62-overexpression on leavening ability of baker's yeast%mal62基因高表达对工业面包酵母发酵力的影响

    Institute of Scientific and Technical Information of China (English)

    孙溪; 张翠英; 董建; 王光路; 吴鸣月; 肖冬光

    2012-01-01

    [目的]构建高麦芽糖利用能力的面包酵母菌株,以期提高面包酵母在不加糖面团中的发酵力,增加经济效益的同时减少成本消耗.[方法]克隆工业面包酵母BY-14的麦芽糖酶基因mal62,以PGKl强启动子和终止子为调控元件,以酵母-大肠穿梭型质粒Yep-C为载体,构建重组表达质粒Yep-CPM,并转化酿酒酵母(Saccharomyces cerevisiae)BY-14,经筛选鉴定获得酵母转化子BYCPM.进行转化子的酶活力、mal62基因表达水平及发酵力测定,检测目的基因的功能性表达.[结果]工业酵母转化子BYCPM的最大麦芽糖酶活力比对照菌提高15% -52%,发酵力提高40%,比发酵力提高5.6%.[结论]转化子BYCPM具有更高的麦芽糖酶活力和更强的抗葡萄糖阻遏能力.并且在不加糖面团中,转化子具有更高的发酵力,可以在更短的时间内获得更大的产气量且消耗更少的碳源.%[Objective] To increase the leavening ability in the lean dough, the maltose utilization ability of baker's yeast was enhanced. [Methods] A 1.7kb PGK1 promoter and terminator were ligated and inserted into vector Yep-C to give the expression plasmid named Yep-CP. Then a 1. 7kb DNA fragment containing the open reading frame and terminator of mal62 gene was amplified from Saccharomyces cerevisiae BY-14 by PCR, and inserted into Yep-CP to generate recombinant plasmid Yep-CPM. To express mal62 gene properly in S. cerevisiae, the recombinant expression plasmids Yep-CPM with copper resistance gene as the selection marker for yeast transformation were introduced into S. cerevisiae BY-14. The resulting yeast transformant BYCPM was screened on YEPD with 4 mmol/L CuS04and identified by colony PCR. Target protein was detected by qRT-PCR, and the enzyme activities and the leavening ability of the recombinant strain BYCPM were determined to confirm whether functional expression was achieved. [ Results ] The maximum maltase activity of recombinant strain BYCPM was 15

  5. Yeast 5 – an expanded reconstruction of the Saccharomyces cerevisiae metabolic network

    Directory of Open Access Journals (Sweden)

    Heavner Benjamin D

    2012-06-01

    Full Text Available Abstract Background Efforts to improve the computational reconstruction of the Saccharomyces cerevisiae biochemical reaction network and to refine the stoichiometrically constrained metabolic models that can be derived from such a reconstruction have continued since the first stoichiometrically constrained yeast genome scale metabolic model was published in 2003. Continuing this ongoing process, we have constructed an update to the Yeast Consensus Reconstruction, Yeast 5. The Yeast Consensus Reconstruction is a product of efforts to forge a community-based reconstruction emphasizing standards compliance and biochemical accuracy via evidence-based selection of reactions. It draws upon models published by a variety of independent research groups as well as information obtained from biochemical databases and primary literature. Results Yeast 5 refines the biochemical reactions included in the reconstruction, particularly reactions involved in sphingolipid metabolism; updates gene-reaction annotations; and emphasizes the distinction between reconstruction and stoichiometrically constrained model. Although it was not a primary goal, this update also improves the accuracy of model prediction of viability and auxotrophy phenotypes and increases the number of epistatic interactions. This update maintains an emphasis on standards compliance, unambiguous metabolite naming, and computer-readable annotations available through a structured document format. Additionally, we have developed MATLAB scripts to evaluate the model’s predictive accuracy and to demonstrate basic model applications such as simulating aerobic and anaerobic growth. These scripts, which provide an independent tool for evaluating the performance of various stoichiometrically constrained yeast metabolic models using flux balance analysis, are included as Additional files 1, 2 and 3. Additional file 1 Function testYeastModel.m.m. Click here for file Additional file 2 Function model

  6. Breeding of lager yeast with Saccharomyces cerevisiae improves stress resistance and fermentation performance.

    Science.gov (United States)

    Garcia Sanchez, Rosa; Solodovnikova, Natalia; Wendland, Jürgen

    2012-08-01

    Lager beer brewing relies on strains collectively known as Saccharomyces carlsbergensis, which are hybrids between S. cerevisiae and S. eubayanus-like strains. Lager yeasts are particularly adapted to low-temperature fermentations. Selection of new yeast strains for improved traits or fermentation performance is laborious, due to the allotetraploid nature of lager yeasts. Initially, we have generated new F1 hybrids by classical genetics, using spore clones of lager yeast and S. cerevisiae and complementation of auxotrophies of the single strains upon mating. These hybrids were improved on several parameters, including growth at elevated temperature and resistance against high osmolarity or high ethanol concentrations. Due to the uncertainty of chromosomal make-up of lager yeast spore clones, we introduced molecular markers to analyse mating-type composition by PCR. Based on these results, new hybrids between a lager and an ale yeast strain were isolated by micromanipulation. These hybrids were not subject to genetic modification. We generated and verified 13 hybrid strains. All of these hybrid strains showed improved stress resistance as seen in the ale parent, including improved survival at the end of fermentation. Importantly, some of the strains showed improved fermentation rates using 18° Plato at 18-25°C. Uniparental mitochondrial DNA inheritance was observed mostly from the S. cerevisiae parent.

  7. Effect of temperature on replicative aging of the budding yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Molon, Mateusz; Zadrag-Tecza, Renata

    2016-04-01

    The use of the budding yeast Saccharomyces cerevisiae in gerontological studies was based on the assumption that the reproduction limit of a single cell (replicative aging) is a consequence of accumulation of a hypothetical universal "senescence factor" within the mother cell. However, some evidence suggests that molecules or structures proposed as the "aging factor", such as rDNA circles, oxidatively damaged proteins (with carbonyl groups) or mitochondria, have little effect on replicative lifespan of yeast cells. Our results also suggest that protein aggregates associated with Hsp104, treated as a marker of yeast aging, do not seem to affect the numeric value of replicative lifespan of yeast. What these results indicate, however, is the need for finding a different way of expressing age and longevity of yeast cells instead of the commonly used number of daughters produced over units of time, as in the case of other organisms. In this paper, we show that the temperature has a stronger influence on the time of life (the total lifespan) than on the reproductive potential of yeast cells.

  8. Physiological impact and context dependency of transcriptional responses: a chemostat study in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Tai, S.L.

    2007-01-01

    This thesis is a compilation of a four-year PhD project on bakers' yeast (Saccharomyces cerevisiae). Since the entire S. cerevisiae genome sequence became available in 1996, DNA-microarray analysis has become a popular high-information-density tool for analyzing gene expression in this important ind

  9. Facile one-pot fabrication of nano-Fe3O4/carboxyl-functionalized baker's yeast composites and their application in methylene blue dye adsorption

    Science.gov (United States)

    Du, Zongjun; Zhang, Yue; Li, Zhengjie; Chen, Hui; Wang, Ying; Wang, Guangtu; Zou, Ping; Chen, Huaping; Zhang, Yunsong

    2017-01-01

    Nano-Fe3O4/carboxyl-functionalized baker's yeast composites (NF/CF-BYs) were prepared for the first time based on the ultrasonic cavitation assisted oxygen implosion method using single Fe2+ as iron source. The series of characterization analysis results showed that the obtained NF/CF-BYs had not only the superparamagnetic properties of nano-Fe3O4, but their surface also had plenty of functional groups (especially carboxyl groups) introduced by strong oxidization. The adsorption properties of NF/CF-BYs for methylene blue (MB) were also evaluated. The results displayed that the uptakes of NF/CF-BYs for MB were higher than that of pristine baker's yeast (P-BYs), and the adsorption process was followed by the pseudo-second-order kinetic model and Langmuir isotherm. The maximum adsorption capacity of NF/CF-BYs for MB was estimated to be 141.75 mg g-1 at pH 6. The regeneration efficiency of the obtained NF/CF-BYs was attained to be more than 90%.

  10. Utilization and Transport of L-Arabinose by Non-Saccharomyces Yeasts

    Energy Technology Data Exchange (ETDEWEB)

    Knoshaug, E. P.; Franden, M. A.; Stambuk, B. U.; Zhang, M.; Singh, A.

    2009-01-01

    L-Arabinose is one of the sugars found in hemicellulose, a major component of plant cell walls. The ability to convert L-arabinose to ethanol would improve the economics of biomass to ethanol fermentations. One of the limitations for L-arabinose fermentation in the current engineered Saccharomyces cerevisiae strains is poor transport of the sugar. To better understand L-arabinose transport and use in yeasts and to identify a source for efficient L-arabinose transporters, 165 non-Saccharomyces yeast strains were studied. These yeast strains were arranged into six groups based on the minimum time required to utilize 20 g/L of L-arabinose. Initial transport rates of L-arabinose were determined for several species and a more comprehensive transport study was done in four selected species. Detailed transport kinetics in Arxula adeninivorans suggested both low and high affinity components while Debaryomyces hansenii var. fabryii, Kluyveromyces marxianus and Pichia guilliermondii possessed a single component, high affinity active transport systems.

  11. A Gondwanan imprint on global diversity and domestication of wine and cider yeast Saccharomyces uvarum

    Science.gov (United States)

    Almeida, Pedro; Gonçalves, Carla; Teixeira, Sara; Libkind, Diego; Bontrager, Martin; Masneuf-Pomarède, Isabelle; Albertin, Warren; Durrens, Pascal; Sherman, David James; Marullo, Philippe; Todd Hittinger, Chris; Gonçalves, Paula; Sampaio, José Paulo

    2014-06-01

    In addition to Saccharomyces cerevisiae, the cryotolerant yeast species S. uvarum is also used for wine and cider fermentation but nothing is known about its natural history. Here we use a population genomics approach to investigate its global phylogeography and domestication fingerprints using a collection of isolates obtained from fermented beverages and from natural environments on five continents. South American isolates contain more genetic diversity than that found in the Northern Hemisphere. Moreover, coalescence analyses suggest that a Patagonian sub-population gave rise to the Holarctic population through a recent bottleneck. Holarctic strains display multiple introgressions from other Saccharomyces species, those from S. eubayanus being prevalent in European strains associated with human-driven fermentations. These introgressions are absent in the large majority of wild strains and gene ontology analyses indicate that several gene categories relevant for wine fermentation are overrepresented. Such findings constitute a first indication of domestication in S. uvarum.

  12. A Gondwanan Imprint on Global Diversity and Domestication of Wine and Cider Yeast Saccharomyces uvarum

    Science.gov (United States)

    Almeida, Pedro; Gonçalves, Carla; Teixeira, Sara; Libkind, Diego; Bontrager, Martin; Masneuf-Pomarède, Isabelle; Albertin, Warren; Durrens, Pascal; Sherman, David; Marullo, Philippe; Hittinger, Chris Todd; Gonçalves, Paula; Sampaio, José Paulo

    2016-01-01

    In addition to Saccharomyces cerevisiae, the cryotolerant yeast species S. uvarum is also used for wine and cider fermentation but nothing is known about its natural history. Here we use a population genomics approach to investigate its global phylogeography and domestication fingerprints using a collection of isolates obtained from fermented beverages and from natural environments on five continents. South American isolates contain more genetic diversity than that found in the Northern Hemisphere. Moreover, coalescence analyses suggest that a Patagonian sub-population gave rise to the Holarctic population through a recent bottleneck. Holarctic strains display multiple introgressions from other Saccharomyces species, those from S. eubayanus being prevalent in European strains associated with human-driven fermentations. These introgressions are absent in the large majority of wild strains and gene ontology analyses indicate that several gene categories relevant for wine fermentation are overrepresented. Such findings constitute a first indication of domestication in S. uvarum. PMID:24887054

  13. Interaction of Lactobacillus vini with the ethanol-producing yeasts Dekkera bruxellensis and Saccharomyces cerevisiae.

    Science.gov (United States)

    Tiukova, Ievgeniia; Eberhard, Thomas; Passoth, Volkmar

    2014-01-01

    Lactobacillus vini was recently described as a contaminant in industrial ethanol fermentations and its co-occurrence with Dekkera bruxellensis was noted. We investigated the growth characteristics of L. vini in cocultivation together with either Saccharomyces cerevisiae or D. bruxellensis. Lower cell numbers of both the yeasts and L. vini as well as a decrease in ethanol and lactate formation in mixed batch cultures compared with pure cultures were noted. L. vini formed cell aggregates (flocs) in all cultivation media with different shapes in Man-Rogosa-Sharpe and yeast extract-peptone-dextrose media. Flocs' size and proportion of cells bound to flocs increased with increasing ethanol concentration. In coculture, formation of lactic acid bacteria-yeast cell aggregates consisting of a bacterial core with an outer layer of yeast cells was observed. L. vini-D. bruxellensis flocs had a bigger surface, due to cells protruding from the pseudomycelium. The involvement of mannose residues in the flocculation between L. vini and yeasts was tested. The presence of mannose induced deflocculation in a concentration-dependent manner. Less mannose was required for the deflocculation of D. bruxellensis as compared with S. cerevisiae.

  14. Evaluation of Yeast (Saccharomyces Cerevisiae in Weight Gain of Crossbred Sheep

    Directory of Open Access Journals (Sweden)

    Oscar Daniel Cifuentes Ruiz

    2013-05-01

    Full Text Available Probiotics has been used to substitute antibiotic treatments used as growth promoters and to improve productive performance. The term probiotic is used to namelive micro-organisms such as microbes and bacteria with beneficial effects to livestock farms when consumed as dietary supplements. This review investigates the evidence for the use of probiotics in sheep’s final body weight gain combined with livestock grazing management system with yeast (Saccharomyces cerevisiae. Twenty one native sheep were chosen randomly for this study, with an average weight of 14.71 kg ± 1.9 under continuous grazing; the meadows are used as sheep pastures where Kikuyo grass grows (Pennisetum clandestinum and water ad libitum. Sheep were classified in three different treatments: T1, control treatment, without adding yeast; T2, added with 5 g/day of yeast; and T3, supplemented with 15 g/day of yeast. Throughout this study was possible to find a beneficial effect on final weight and average daily gain. The results were compared by ANOVA with a significance level of 95%. A significant difference was observed on final body weight of sheep for T3 (p ≤ 0.05. In addition, it was found that daily weight gain was 100 g, 120 g and 220 g for T1, T2 and T3 respectively. This research leads us to conclude that the addition of 15 g of yeast improves daily bodyweight gain and final weight of grazing native sheep.

  15. [Modification changes of the genetic material in Saccharomyces yeasts].

    Science.gov (United States)

    Repnevskaia, M V; Kashkin, P K; Inge-Vechtomov, S G

    1989-03-01

    The problem of mating-type switches in heterothallic yeast cells was investigated. In selective system for cytoduction in alpha x alpha crosses alpha-cytoductants were predominantly obtained. Thus matings in alpha x alpha crosses can proceed through non-heritable changes (modifications) of the mating type alpha----a. The frequency of alpha-cytoductants after UV-irradiation of the recipient cells exceeded the control value 50-90 times. The extra copy of MAT alpha dramatically decreased the frequency of cytoductants in alpha x alpha crosses, either spontaneously or after UV-irradiation. The rad18 recipient defective in postreplication repair had 70-times increased level of mating-type modifications, as compared with isogenic Rad+ strain. An explanation consistent with these data is that mating-type modifications are due to phenotypic expression of primary lesions of MAT alpha locus. Such lesions might be expressed as transient a-mating type. After the mating event, these lesions can be repaired or turned to true mutations within the MAT locus. In fact, approximately half of non-mating cytoductants from alpha x alpha crosses had the phenotype of mat alpha 2 mutants.

  16. Global organization of protein complexome in the yeast Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Lee Sang

    2011-08-01

    Full Text Available Abstract Background Proteins in organisms, rather than act alone, usually form protein complexes to perform cellular functions. We analyze the topological network structure of protein complexes and their component proteins in the budding yeast in terms of the bipartite network and its projections, where the complexes and proteins are its two distinct components. Compared to conventional protein-protein interaction networks, the networks from the protein complexes show more homogeneous structures than those of the binary protein interactions, implying the formation of complexes that cause a relatively more uniform number of interaction partners. In addition, we suggest a new optimization method to determine the abundance and function of protein complexes, based on the information of their global organization. Estimating abundance and biological functions is of great importance for many researches, by providing a quantitative description of cell behaviors, instead of just a "catalogues" of the lists of protein interactions. Results With our new optimization method, we present genome-wide assignments of abundance and biological functions for complexes, as well as previously unknown abundance and functions of proteins, which can provide significant information for further investigations in proteomics. It is strongly supported by a number of biologically relevant examples, such as the relationship between the cytoskeleton proteins and signal transduction and the metabolic enzyme Eno2's involvement in the cell division process. Conclusions We believe that our methods and findings are applicable not only to the specific area of proteomics, but also to much broader areas of systems biology with the concept of optimization principle.

  17. Reconstruction of the carnitine biosynthesis pathway from Neurospora crassa in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Franken, Jaco; Burger, Anita; Swiegers, Jan H; Bauer, Florian F

    2015-08-01

    Industrial synthesis of L-carnitine is currently performed by whole-cell biotransformation of industrial waste products, mostly D-carnitine and cronobetaine, through specific bacterial species. No comparable system has been established using eukaryotic microorganisms, even though there is a significant and growing international demand for either the pure compound or carnitine-enriched consumables. In eukaryotes, including the fungus Neurospora crassa, L-carnitine is biosynthesized through a four-step metabolic conversion of trimethyllysine to L-carnitine. In contrast, the industrial yeast, Saccharomyces cerevisiae lacks the enzymes of the eukaryotic biosynthesis pathway and is unable to synthesize carnitine. This study describes the cloning of all four of the N. crassa carnitine biosynthesis genes and the reconstruction of the entire pathway in S. cerevisiae. The engineered yeast strains were able to catalyze the synthesis of L-carnitine, which was quantified using hydrophilic interaction liquid chromatography electrospray ionization mass spectrometry (HILIC-ESI-MS) analyses, from trimethyllysine. Furthermore, the yeast threonine aldolase Gly1p was shown to effectively catalyze the second step of the pathway, fulfilling the role of a serine hydroxymethyltransferase. The analyses also identified yeast enzymes that interact with the introduced pathway, including Can1p, which was identified as the yeast transporter for trimethyllysine, and the two yeast serine hydroxymethyltransferases, Shm1p and Shm2p. Together, this study opens the possibility of using an engineered, carnitine-producing yeast in various industrial applications while providing insight into possible future strategies aimed at tailoring the production capacity of such strains.

  18. Polyphosphates and Polyphosphatase Activity in the Yeast Saccharomyces cerevisiae during Overexpression of the DDP1 Gene.

    Science.gov (United States)

    Trilisenko, L V; Andreeva, N A; Eldarov, M A; Dumina, M V; Kulakovskaya, T V

    2015-10-01

    The effects of overexpression of yeast diphosphoinositol polyphosphate phosphohydrolase (DDP1) having endopolyphosphatase activity on inorganic polyphosphate metabolism in Saccharomyces cerevisiae were studied. The endopolyphosphatase activity in the transformed strain significantly increased compared to the parent strain. This activity was observed with polyphosphates of different chain length, being suppressed by 2 mM tripolyphosphate or ATP. The content of acid-soluble and acid-insoluble polyphosphates under DDP1 overexpression decreased by 9 and 28%, respectively. The average chain length of salt-soluble and alkali-soluble fractions did not change in the overexpressing strain, and that of acid-soluble polyphosphate increased under phosphate excess. At the initial stage of polyphosphate recovery after phosphorus starvation, the chain length of the acid-soluble fraction in transformed cells was lower compared to the recipient strain. This observation suggests the complex nature of DDP1 involvement in the regulation of polyphosphate content and chain length in yeasts.

  19. Robust experimental methods to study in-vivo pre-steady state kinetics of primary metabolism in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Mashego, M.R.

    2005-01-01

    In this thesis, robust experimental methods and experimental designs for quantitative analysis of the metabolome (concentrations of relevant metabolites in the cell) of Saccharomyces cerevisiae (Bakers yeast) have been presented. In this research, it is essential to obtain a snapshot of intracellula

  20. A comprehensive analysis of translational missense errors in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Kramer, Emily B; Vallabhaneni, Haritha; Mayer, Lauren M; Farabaugh, Philip J

    2010-09-01

    The process of protein synthesis must be sufficiently rapid and sufficiently accurate to support continued cellular growth. Failure in speed or accuracy can have dire consequences, including disease in humans. Most estimates of the accuracy come from studies of bacterial systems, principally Escherichia coli, and have involved incomplete analysis of possible errors. We recently used a highly quantitative system to measure the frequency of all types of misreading errors by a single tRNA in E. coli. That study found a wide variation in error frequencies among codons; a major factor causing that variation is competition between the correct (cognate) and incorrect (near-cognate) aminoacyl-tRNAs for the mutant codon. Here we extend that analysis to measure the frequency of missense errors by two tRNAs in a eukaryote, the yeast Saccharomyces cerevisiae. The data show that in yeast errors vary by codon from a low of 4 x 10(-5) to a high of 6.9 x 10(-4) per codon and that error frequency is in general about threefold lower than in E. coli, which may suggest that yeast has additional mechanisms that reduce missense errors. Error rate again is strongly influenced by tRNA competition. Surprisingly, missense errors involving wobble position mispairing were much less frequent in S. cerevisiae than in E. coli. Furthermore, the error-inducing aminoglycoside antibiotic, paromomycin, which stimulates errors on all error-prone codons in E. coli, has a more codon-specific effect in yeast.

  1. L-histidine inhibits biofilm formation and FLO11-associated phenotypes in Saccharomyces cerevisiae flor yeasts.

    Science.gov (United States)

    Bou Zeidan, Marc; Zara, Giacomo; Viti, Carlo; Decorosi, Francesca; Mannazzu, Ilaria; Budroni, Marilena; Giovannetti, Luciana; Zara, Severino

    2014-01-01

    Flor yeasts of Saccharomyces cerevisiae have an innate diversity of Flo11p which codes for a highly hydrophobic and anionic cell-wall glycoprotein with a fundamental role in biofilm formation. In this study, 380 nitrogen compounds were administered to three S. cerevisiae flor strains handling Flo11p alleles with different expression levels. S. cerevisiae strain S288c was used as the reference strain as it cannot produce Flo11p. The flor strains generally metabolized amino acids and dipeptides as the sole nitrogen source, although with some exceptions regarding L-histidine and histidine containing dipeptides. L-histidine completely inhibited growth and its effect on viability was inversely related to Flo11p expression. Accordingly, L-histidine did not affect the viability of the Δflo11 and S288c strains. Also, L-histidine dramatically decreased air-liquid biofilm formation and adhesion to polystyrene of the flor yeasts with no effect on the transcription level of the Flo11p gene. Moreover, L-histidine modified the chitin and glycans content on the cell-wall of flor yeasts. These findings reveal a novel biological activity of L-histidine in controlling the multicellular behavior of yeasts [corrected].

  2. The Genome Sequence of Saccharomyces eubayanus and the Domestication of Lager-Brewing Yeasts.

    Science.gov (United States)

    Baker, EmilyClare; Wang, Bing; Bellora, Nicolas; Peris, David; Hulfachor, Amanda Beth; Koshalek, Justin A; Adams, Marie; Libkind, Diego; Hittinger, Chris Todd

    2015-11-01

    The dramatic phenotypic changes that occur in organisms during domestication leave indelible imprints on their genomes. Although many domesticated plants and animals have been systematically compared with their wild genetic stocks, the molecular and genomic processes underlying fungal domestication have received less attention. Here, we present a nearly complete genome assembly for the recently described yeast species Saccharomyces eubayanus and compare it to the genomes of multiple domesticated alloploid hybrids of S. eubayanus × S. cerevisiae (S. pastorianus syn. S. carlsbergensis), which are used to brew lager-style beers. We find that the S. eubayanus subgenomes of lager-brewing yeasts have experienced increased rates of evolution since hybridization, and that certain genes involved in metabolism may have been particularly affected. Interestingly, the S. eubayanus subgenome underwent an especially strong shift in selection regimes, consistent with more extensive domestication of the S. cerevisiae parent prior to hybridization. In contrast to recent proposals that lager-brewing yeasts were domesticated following a single hybridization event, the radically different neutral site divergences between the subgenomes of the two major lager yeast lineages strongly favor at least two independent origins for the S. cerevisiae × S. eubayanus hybrids that brew lager beers. Our findings demonstrate how this industrially important hybrid has been domesticated along similar evolutionary trajectories on multiple occasions.

  3. Removal of lead, mercury and nickel using the yeast Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Cherlys Infante J.

    2014-06-01

    Full Text Available Objective. In this study the biomass of the yeast Saccharomyces cerevisiae was used to remove lead, mercury and nickel in the form of ions dissolved in water. Materials and methods. Synthetic solutions were prepared containing the three heavy metals, which were put in contact with viable microorganisms at different conditions of pH, temperature, aeration and agitation. Results. Both individual variables and the interaction effects influenced the biosorption process. Throughout the experimental framework it was observed that the biomass of Saccharomyces cerevisiae removed a higher percentage of lead (86.4% as compared to mercury and nickel (69.7 and 47.8% respectively. When the pH was set at a value of 5 the effect was positive for all three metals. Conclusions. pH was the variable that had a greater influence on the biosorption of lead on the biomass of Saccharomyces cerevisiae. The affinity of the heavy metals for the biomass followed the order Pb>Hg>Ni.

  4. Sequential Fermentation with Selected Immobilized Non-Saccharomyces Yeast for Reduction of Ethanol Content in Wine.

    Science.gov (United States)

    Canonico, Laura; Comitini, Francesca; Oro, Lucia; Ciani, Maurizio

    2016-01-01

    The average ethanol content of wine has increased over the last two decades. This increase was due to consumer preference, and also to climate change that resulted in increased grape maturity at harvest. In the present study, to reduce ethanol content in wine, a microbiological approach was investigated, using immobilized selected strains of non-Saccharomyces yeasts namely Starmerella bombicola, Metschnikowia pulcherrima, Hanseniaspora osmophila, and Hanseniaspora uvarum to start fermentation, followed by inoculation of free Saccharomyces cerevisiae cells. The immobilization procedures, determining high reaction rates, led a feasible sequential inoculation management avoiding possible contamination under actual winemaking. Under these conditions, the immobilized cells metabolized almost 50% of the sugar in 3 days, while S. cerevisiae inoculation completed all of fermentation. The S. bombicola and M. pulcherrima initial fermentations showed the best reductions in the final ethanol content (1.6 and 1.4% v/v, respectively). Resulting wines did not have any negative fermentation products with the exception of H. uvarum sequential fermentation that showed significant amount of ethyl acetate. On the other hand, there were increases in desirable compounds such as glycerol and succinic acid for S. bombicola, geraniol for M. pulcherrima and isoamyl acetate and isoamyl alcohol for H. osmophila sequential fermentations. The overall results indicated that a promising ethanol reduction could be obtained using sequential fermentation of immobilized selected non-Saccharomyces strains. In this way, a suitable timing of second inoculation and an enhancement of analytical profile of wine were obtained.

  5. Sequential fermentation with selected immobilized non-Saccharomyces yeast for reduction of ethanol content in wine

    Directory of Open Access Journals (Sweden)

    Laura eCanonico

    2016-03-01

    Full Text Available The average ethanol content of wine has increased over the last two decades. This increase was due to consumer preference, and also to climate change that resulted in increased grape maturity at harvest. In the present study, to reduce ethanol content in wine, a microbiological approach was investigated using immobilized selected strains of non-Saccharomyces yeasts namely Starmerella bombicola, Metschnikowia pulcherrima, Hanseniaspora osmophila and Hanseniaspora uvarum to start fermentation, followed by inoculation of free Saccharomyces cerevisiae cells. The immobilization procedures, determining high reaction rates, led a feasible sequential inoculation management avoiding possible contamination under actual winemaking. Under these conditions, the immobilized cells metabolized almost 50% of the sugar in 3 days, while S. cerevisiae inoculation completed all of fermentation. The S. bombicola and M. pulcherrima initial fermentations showed the best reductions in the final ethanol content (1.6% and 1.4% v/v, respectively. Resulting wines did not have any negative fermentation products with the exception of H. uvarum sequential fermentation that showed significant amount of ethyl acetate. On the other hand, there were increases in desirable compounds such as glycerol and succinic acid for S. bombicola, geraniol for M. pulcherrima and isoamyl acetate and isoamyl alcohol for H. osmophila sequential fermentations. The overall results indicated that a promising ethanol reduction could be obtained using sequential fermentation of immobilized selected non-Saccharomyces strains. In this way, a suitable timing of second inoculation and an enhancement of analytical profile of wine were obtained.

  6. Interspecies variation reveals a conserved repressor of alpha-specific genes in Saccharomyces yeasts.

    Science.gov (United States)

    Zill, Oliver A; Rine, Jasper

    2008-06-15

    The mating-type determination circuit in Saccharomyces yeast serves as a classic paradigm for the genetic control of cell type in all eukaryotes. Using comparative genetics, we discovered a central and conserved, yet previously undetected, component of this genetic circuit: active repression of alpha-specific genes in a cells. Upon inactivation of the SUM1 gene in Saccharomyces bayanus, a close relative of Saccharomyces cerevisiae, a cells acquired mating characteristics of alpha cells and displayed autocrine activation of their mating response pathway. Sum1 protein bound to the promoters of alpha-specific genes, repressing their transcription. In contrast to the standard model, alpha1 was important but not required for alpha-specific gene activation and mating of alpha cells in the absence of Sum1. Neither Sum1 protein expression, nor its association with target promoters was mating-type-regulated. Thus, the alpha1/Mcm1 coactivators did not overcome repression by occluding Sum1 binding to DNA. Surprisingly, the mating-type regulatory function of Sum1 was conserved in S. cerevisiae. We suggest that a comprehensive understanding of some genetic pathways may be best attained through the expanded phenotypic space provided by study of those pathways in multiple related organisms.

  7. Baker cyst

    Science.gov (United States)

    Popliteal cyst; Bulge-knee ... A Baker cyst is caused by swelling in the knee. The swelling is due to an increase in the fluid that ... squeezes into the back of the knee. Baker cyst commonly occurs with: A tear in the meniscal ...

  8. Study of the plant COPII vesicle coat subunits by functional complementation of yeast Saccharomyces cerevisiae mutants.

    Science.gov (United States)

    De Craene, Johan-Owen; Courte, Fanny; Rinaldi, Bruno; Fitterer, Chantal; Herranz, Mari Carmen; Schmitt-Keichinger, Corinne; Ritzenthaler, Christophe; Friant, Sylvie

    2014-01-01

    The formation and budding of endoplasmic reticulum ER-derived vesicles depends on the COPII coat protein complex that was first identified in yeast Saccharomyces cerevisiae. The ER-associated Sec12 and the Sar1 GTPase initiate the COPII coat formation by recruiting the Sec23-Sec24 heterodimer following the subsequent recruitment of the Sec13-Sec31 heterotetramer. In yeast, there is usually one gene encoding each COPII protein and these proteins are essential for yeast viability, whereas the plant genome encodes multiple isoforms of all COPII subunits. Here, we used a systematic yeast complementation assay to assess the functionality of Arabidopsis thaliana COPII proteins. In this study, the different plant COPII subunits were expressed in their corresponding temperature-sensitive yeast mutant strain to complement their thermosensitivity and secretion phenotypes. Secretion was assessed using two different yeast cargos: the soluble α-factor pheromone and the membranous v-SNARE (vesicle-soluble NSF (N-ethylmaleimide-sensitive factor) attachment protein receptor) Snc1 involved in the fusion of the secretory vesicles with the plasma membrane. This complementation study allowed the identification of functional A. thaliana COPII proteins for the Sec12, Sar1, Sec24 and Sec13 subunits that could represent an active COPII complex in plant cells. Moreover, we found that AtSec12 and AtSec23 were co-immunoprecipitated with AtSar1 in total cell extract of 15 day-old seedlings of A. thaliana. This demonstrates that AtSar1, AtSec12 and AtSec23 can form a protein complex that might represent an active COPII complex in plant cells.

  9. An insight into the complex prion-prion interaction network in the budding yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Du, Zhiqiang; Valtierra, Stephanie; Li, Liming

    2014-01-01

    The budding yeast Saccharomyces cerevisiae is a valuable model system for studying prion-prion interactions as it contains multiple prion proteins. A recent study from our laboratory showed that the existence of Swi1 prion ([SWI(+)]) and overproduction of Swi1 can have strong impacts on the formation of 2 other extensively studied yeast prions, [PSI(+)] and [PIN(+)] ([RNQ(+)]) (Genetics, Vol. 197, 685-700). We showed that a single yeast cell is capable of harboring at least 3 heterologous prion elements and these prions can influence each other's appearance positively and/or negatively. We also showed that during the de novo [PSI(+)] formation process upon Sup35 overproduction, the aggregation patterns of a preexisting inducer ([RNQ(+)] or [SWI(+)]) can undergo significant remodeling from stably transmitted dot-shaped aggregates to aggregates that co-localize with the newly formed Sup35 aggregates that are ring/ribbon/rod- shaped. Such co-localization disappears once the newly formed [PSI(+)] prion stabilizes. Our finding provides strong evidence supporting the "cross-seeding" model for prion-prion interactions and confirms earlier reports that the interactions among different prions and their prion proteins mostly occur at the initiation stages of prionogenesis. Our results also highlight a complex prion interaction network in yeast. We believe that elucidating the mechanism underlying the yeast prion-prion interaction network will not only provide insight into the process of prion de novo generation and propagation in yeast but also shed light on the mechanisms that govern protein misfolding, aggregation, and amyloidogenesis in higher eukaryotes.

  10. Isolation and Screening of Haploid of Baker's Yeast with High Sugar Tolerance%耐高糖面包酵母单倍体的分离筛选

    Institute of Scientific and Technical Information of China (English)

    封冰; 张翠英; 肖冬光

    2014-01-01

    Spore-producing culture of baker's yeast BY-6 with high sugar tolerance was carried out to obtain its haploids. 6 strains of type alpha haploid and 5 strains of type a haploid were separated and identified by matching and PCR authentication. Compared with the parental strain, a-70 strain andα-24 strain were obtained based on their excellent performance in biomass, growth curve, fermentation ability in high-sugar dough, and gas production in the simulation of high-sugar dough. This study laid a good foundation for genetic breeding of baker's yeast with high sugar toler-ance in the future.%以耐高糖面包酵母BY-6为出发菌株进行生孢培养制备单倍体,通过单倍体的分离、配型验证和PCR验证,获得6株α型单倍体,5株a型单倍体。通过比较单倍体菌株的生长和发酵性能,筛选出生长性能较好,在高糖模拟面团中产气量较大,并且在高糖面团中发酵力较高的优良单倍体菌株70a和24α,这为后续通过基因工程改造提高面包酵母的高糖耐性奠定了良好的基础。

  11. Horizontal gene transfer promoted evolution of the ability to propagate under anaerobic conditions in yeasts

    DEFF Research Database (Denmark)

    Gojkovic, Zoran; Knecht, Wolfgang; Warneboldt, J.;

    2004-01-01

    The ability to propagate under anaerobic conditions is an essential and unique trait of brewer's or baker's yeast (Saccharomyces cervisiae). To understand the evolution of facultative anaerobiosis we studied the dependence of de novo pyrimidine biosynthesis, more precisely the fourth enzymic...... a bacterial gene for DHODase, which subsequently allowed cell growth gradually to become independent of oxygen....

  12. Effects of Yeast (Saccharomyces Cerevisiae Feed Supplement on Milk Production and its Composition in Tunisian Holstein Friesian Cows

    Directory of Open Access Journals (Sweden)

    Maamouri O.

    2014-09-01

    Full Text Available A 105-day feed trial was conducted to evaluate the effect of probiotic feed supplement containing Saccharomyces cerevisiae on milk yield and its composition in Holstein Friesian cows. The trial was conducted in the region of Sidi Bouzid in the west of Tunisia. Effects of Saccharomyces cerevisiae have been investigated on eight Holstein Friesian cows randomly divided into two groups of four animals on the basis of age, body weight, average milk yield, and lactation number. The first group was supplemented with 2.5 g/cow/day of probiotic yeast Saccharomyces cerevisiae (2.5 1010 CFU/day and the second group (control was without the yeast. The study showed that supplementation with 2.5 g of yeast Saccharomyces cerevisiae per cow per day or 2.5 1010 CFU/day tended (P < 0.06 to increase milk production by 1.1 kg/cow. By cons, there was a significant increase of fat (P < 0.01; 52.8 and 46.9 g/cow/day and protein (P < 0.05; 41.7 and 38.7 g/cow/day content both for treated and control group, respectively. It is concluded that supplementation of Saccharomyces cerevisiae at 2.5 1010 CFU/day in the diet of dairy cows may have positive influence on milk fat and protei n yield (g/cow/day.

  13. Anhydrobiosis in yeast: cell wall mannoproteins are important for yeast Saccharomyces cerevisiae resistance to dehydration.

    Science.gov (United States)

    Borovikova, Diana; Teparić, Renata; Mrša, Vladimir; Rapoport, Alexander

    2016-08-01

    The state of anhydrobiosis is linked with the reversible delay of metabolism as a result of strong dehydration of cells, and is widely distributed in nature. A number of factors responsible for the maintenance of organisms' viability in these conditions have been revealed. This study was directed to understanding how changes in cell wall structure may influence the resistance of yeasts to dehydration-rehydration. Mutants lacking various cell wall mannoproteins were tested to address this issue. It was revealed that mutants lacking proteins belonging to two structurally and functionally unrelated groups (proteins non-covalently attached to the cell wall, and Pir proteins) possessed significantly lower cell resistance to dehydration-rehydration than the mother wild-type strain. At the same time, the absence of the GPI-anchored cell wall protein Ccw12 unexpectedly resulted in an increase of cell resistance to this treatment; this phenomenon is explained by the compensatory synthesis of chitin. The results clearly indicate that the cell wall structure/composition relates to parameters strongly influencing yeast viability during the processes of dehydration-rehydration, and that damage to cell wall proteins during yeast desiccation can be an important factor leading to cell death. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Improving the performance of the Granulosis virus of Codling moth (Lepidoptera: Tortricideae) by adding the yeast Saccharomyces cerevisiae with sugar

    Science.gov (United States)

    Studies evaluated the effectiveness of adding Saccharomyces cerevisiae with brown cane sugar (sugar) to the codling moth granulosis virus, CpGV, to improve larval control of Cydia pomonella (L.), on apple. Neither the use of the yeast or sugar alone caused larval mortality greater than the water con...

  15. Chromium uptake by Saccharomyces cerevisiae and isolation of glucose tolerance factor from yeast biomass

    Indian Academy of Sciences (India)

    Vlatka Gulan Zetic; Vesna Stehlik-Tomas; Slobodan Grba; Lavoslav Lutilsky; Damir Kozlek

    2001-06-01

    Fermentations with yeast Saccharomyces cerevisiae in semiaerobic and in static conditions with the addition of chromic chloride into the used molasses medium were analysed. It was proved that the addition of optimal amounts of CrCl3 into the basal medium enhanced the kinetics of alcohol fermentations. The addition of 200 mg/l CrCl3 into the medium stimulated both the yeast growth and the ethanol production in all experimental conditions. On the other hand, the results showed that Cr3+ ions were incorporated into yeast cells during fermentation. Under these conditions the accumulation of Cr3+ ions was performed by yeast cells during the exponential growth phase, and with enriched amounts of 30–45 g/gd.m. of cells. Yeast biomass enriched with chromium ions was extracted with 0.1 mol/l NH4OH assuming that the extracts had the glucose tolerance factor (GTF). Then the extracts were passed through a gel-filtration column in order to isolate and purify the GTF. The presence of GTF in the purified fractions was determined by measuring the absorbance at 260 nm. It is evident from the obtained results that the added purified fractions enhanced the rates of CO2 production as well as the glucose utilization during alcoholic fermentation. As expected, the enhancement of both rates depended on the amounts of extracts added to the fermentation substrate. Thus, it is evident that purified extracts contained the GTF compound, and that Cr3+ ions were bonded to the protein molecule.

  16. Functional heterologous protein expression by genetically engineered probiotic yeast Saccharomyces boulardii.

    Directory of Open Access Journals (Sweden)

    Lauren E Hudson

    Full Text Available Recent studies have suggested the potential of probiotic organisms to be adapted for the synthesis and delivery of oral therapeutics. The probiotic yeast Saccharomyces boulardii would be especially well suited for this purpose due to its ability, in contrast to probiotic prokaryotes, to perform eukaryotic post translational modifications. This probiotic yeast thus has the potential to express a broad array of therapeutic proteins. Currently, however, use of wild type (WT S. boulardii relies on antibiotic resistance for the selection of transformed yeast. Here we report the creation of auxotrophic mutant strains of S. boulardii that can be selected without antibiotics and demonstrate that these yeast can express functional recombinant protein even when recovered from gastrointestinal immune tissues in mice. A UV mutagenesis approach was employed to generate three uracil auxotrophic S. boulardii mutants that show a low rate of reversion to wild type growth. These mutants can express recombinant protein and are resistant in vitro to low pH, bile acid salts, and anaerobic conditions. Critically, oral gavage experiments using C57BL/6 mice demonstrate that mutant S. boulardii survive and are taken up into gastrointestinal immune tissues on a similar level as WT S. boulardii. Mutant yeast recovered from gastrointestinal immune tissues furthermore retain expression of functional recombinant protein. These data show that auxotrophic mutant S. boulardii can safely express recombinant protein without antibiotic selection and can deliver recombinant protein to gastrointestinal immune tissues. These auxotrophic mutants of S. boulardii pave the way for future experiments to test the ability of S. boulardii to deliver therapeutics and mediate protection against gastrointestinal disorders.

  17. The rate of metabolism as a factor determining longevity of the Saccharomyces cerevisiae yeast.

    Science.gov (United States)

    Molon, Mateusz; Szajwaj, Monika; Tchorzewski, Marek; Skoczowski, Andrzej; Niewiadomska, Ewa; Zadrag-Tecza, Renata

    2016-02-01

    Despite many controversies, the yeast Saccharomyces cerevisiae continues to be used as a model organism for the study of aging. Numerous theories and hypotheses have been created for several decades, yet basic mechanisms of aging have remained unclear. Therefore, the principal aim of this work is to propose a possible mechanism leading to increased longevity in yeast. In this paper, we suggest for the first time that there is a link between decreased metabolic activity, fertility and longevity expressed as time of life in yeast. Determination of reproductive potential and total lifespan with the use of fob1Δ and sfp1Δ mutants allows us to compare the "longevity" presented as the number of produced daughters with the longevity expressed as the time of life. The results of analyses presented in this paper suggest the need for a change in the definition of longevity of yeast by taking into consideration the time parameter. The mutants that have been described as "long-lived" in the literature, such as the fob1Δ mutant, have an increased reproductive potential but live no longer than their standard counterparts. On the other hand, the sfp1Δ mutant and the wild-type strain produce a similar number of daughter cells, but the former lives much longer. Our results demonstrate a correlation between the decreased efficiency of the translational apparatus and the longevity of the sfp1Δ mutant. We suggest that a possible factor regulating the lifespan is the rate of cell metabolism. To measure the basic metabolism of the yeast cells, we used the isothermal microcalorimetry method. In the case of sfp1Δ, the flow of energy, ATP concentration, polysome profile and translational fitness are significantly lower in comparison with the wild-type strain and the fob1Δ mutant.

  18. Effects of feeding yeast (Saccharomyces cerevisiae), organic selenium and chromium mixed on growth performance and carcass traits of hair lambs

    Institute of Scientific and Technical Information of China (English)

    Pedro A Hernndez-Garca; Alejandro Lara-Bueno; Germn D Mendoza-Martnez; Jos R Brcena-Gama; Fernando X Plata-Prez; Ruifno Lpez-Ordaz; Jos A Martnez-Garca

    2015-01-01

    Yeasts and organic minerals are used in diets to improve health, productive performance and some carcass characteristics of ruminants and non-ruminants. Thirty-two lambs (Pelibuey×Katahdin;BW=(30.55±1.67) kg;n=8) were used in a 56-d feeding experiment to study the effects of different levels of live yeast (Saccharomyces cerevisiae;yeast), selenium (Se) and chromium (Cr) mixed (Se-Cr), and a mixture of yeast-Se-Cr on growth performance and carcass traits. Animals were stratiifed by body weight (BW) and randomly assigned to one of four treatments:1) control group (0.0 g kg–1 yeast);2) yeast (1.50 g kg–1 dry matter intake (DMI) d–1);3) Se-Cr premix (1.5 mg kg–1 DMI d–1 for each mineral);and 4) yeast-Se-Cr mixture. There were no treatment effects on ifnal BW;whereas lambs fed Se-Cr or yeast-Se-Cr had higher (P0.05) among treatment groups. In conclusion, supplementation with yeast, Se-Cr mixed or yeast-Se-Cr did not improve ADG, ifnal BW, back fat content and carcass yield of growing of Pelibuey×Katahdin lambs. Supplementation with Se-Cr and yeast-Se-Cr increased DMI, and approximately 250 g ADG animal–1 d–1 was produced with no negative effects on growth and health of the animals.

  19. Metabolic engineering of Saccharomyces cerevisiae for optimizing 3HP production

    DEFF Research Database (Denmark)

    Jensen, Niels Bjerg; Maury, Jerome; Oberg, Fredrik;

    2012-01-01

    and the market for acrylate products exceeds USD 100 billion. As an alternative to oil and gas derived acrylic acid, 3-hydroxypropionic (3HP) acid produced from renewable sources is highly desired, because 3HP can easily be converted into acrylic acid. We are setting out to produce 3HP in yeast Saccharomyces...... cerevisiae. One main reason for selecting Baker's yeast as host organism is that yeast has a high tolerance towards low pH in comparison to bacteria, e.g. E. coli. Hence, it lowers the consumption of base for neutralization of growth media when compared to bacteria. The preferred engineered pathway towards 3...

  20. The neglected nano-specific toxicity of ZnO nanoparticles in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Zhang, Weicheng; Bao, Shaopan; Fang, Tao

    2016-04-20

    Nanoparticles (NPs) with unique physicochemical properties induce nano-specific (excess) toxicity in organisms compared with their bulk counterparts. Evaluation and consideration of nano-specific toxicity are meaningful for the safe design and environmental risk assessment of NPs. However, ZnO NPs have been reported to lack excess toxicity for diverse organisms. In the present study, the nano-specific toxicity of ZnO NPs was evaluated in the yeast Saccharomyces cerevisiae. Nano-specific toxicity of ZnO NPs was not observed in the wild type yeast. However, the ZnO NPs induced very similar nano-specific toxicities in the three mutants with comparable log Te ((particle)) values (0.64 vs 0.65 vs 0.62), suggesting that the mutants were more sensitive and specific for the NPs' nano-specific toxicity. The toxic effects in the yeast were slightly attributable to dissolved zinc ions from the ZnO (nano or bulk) particles. Oxidative damage and mechanical damage contributed to the toxic effect of the ZnO particles. The mechanism of mechanical damage is proposed to be an inherent characteristic underlying the nano-specific toxicity in the mutants. The log Te ((particle)) was a useful parameter for evaluation of NPs nano-specific toxicity, whereas log Te ((ion)) efficiently determined the NPs toxicity associated with released ions.

  1. Cell-autonomous mechanisms of chronological aging in the yeast Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Anthony Arlia-Ciommo

    2014-05-01

    Full Text Available A body of evidence supports the view that the signaling pathways governing cellular aging – as well as mechanisms of their modulation by longevity-extending genetic, dietary and pharmacological interventions - are conserved across species. The scope of this review is to critically analyze recent advances in our understanding of cell-autonomous mechanisms of chronological aging in the budding yeast Saccharomyces cerevisiae. Based on our analysis, we propose a concept of a biomolecular network underlying the chronology of cellular aging in yeast. The concept posits that such network progresses through a series of lifespan checkpoints. At each of these checkpoints, the intracellular concentrations of some key intermediates and products of certain metabolic pathways - as well as the rates of coordinated flow of such metabolites within an intricate network of intercompartmental communications - are monitored by some checkpoint-specific ′′master regulator′′ proteins. The concept envisions that a synergistic action of these master regulator proteins at certain early-life and late-life checkpoints modulates the rates and efficiencies of progression of such processes as cell metabolism, growth, proliferation, stress resistance, macromolecular homeostasis, survival and death. The concept predicts that, by modulating these vital cellular processes throughout lifespan (i.e., prior to an arrest of cell growth and division, and following such arrest, the checkpoint-specific master regulator proteins orchestrate the development and maintenance of a pro- or anti-aging cellular pattern and, thus, define longevity of chronologically aging yeast.

  2. Specificity of mutations induced by carbon ions in budding yeast Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Matuo, Youichirou [Graduate School of Engineering, Osaka University, Yamada-oka 2-1, Suita, Osaka 565-0871 (Japan); Nishijima, Shigehiro [Graduate School of Engineering, Osaka University, Yamada-oka 2-1, Suita, Osaka 565-0871 (Japan); Hase, Yoshihiro [Radiation-Applied Biology Division, Quantum Beam Science Directorate, Japan Atomic Energy Agency (JAEA), Watanuki-machi 1233, Takasaki, Gunma 370-1292 (Japan); Sakamoto, Ayako [Radiation-Applied Biology Division, Quantum Beam Science Directorate, Japan Atomic Energy Agency (JAEA), Watanuki-machi 1233, Takasaki, Gunma 370-1292 (Japan); Tanaka, Atsushi [Radiation-Applied Biology Division, Quantum Beam Science Directorate, Japan Atomic Energy Agency (JAEA), Watanuki-machi 1233, Takasaki, Gunma 370-1292 (Japan); Shimizu, Kikuo [Radioisotope Research Center, Osaka University, Yamada-oka 2-4, Suita, Osaka 565-0871 (Japan)]. E-mail: shimizu@rirc.osaka-u.ac.jp

    2006-12-01

    To investigate the nature of mutations induced by accelerated ions in eukaryotic cells, the effects of carbon-ion irradiation were compared with those of {gamma}-ray irradiation in the budding yeast Saccharomyces cerevisiae. The mutational effect and specificity of carbon-ion beams were studied in the URA3 gene of the yeast. Our experiments showed that the carbon ions generated more than 10 times the number of mutations induced by {gamma}-rays, and that the types of base changes induced by carbon ions include transversions (68.7%), transitions (13.7%) and deletions/insertions (17.6%). The transversions were mainly G:C {sup {yields}} T:A, and all the transitions were G:C {sup {yields}} A:T. In comparison with the surrounding sequence context of mutational base sites, the C residues in the 5'-AC(A/T)-3' sequence were found to be easily changed. Large deletions and duplications were not observed, whereas ion-induced mutations in Arabidopsis thaliana were mainly short deletions and rearrangements. The remarkable feature of yeast mutations induced by carbon ions was that the mutation sites were localized near the linker regions of nucleosomes, whereas mutations induced by {gamma}-ray irradiation were located uniformly throughout the gene.

  3. Requirements for E1A dependent transcription in the yeast Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Mymryk Joe S

    2009-04-01

    Full Text Available Abstract Background The human adenovirus type 5 early region 1A (E1A gene encodes proteins that are potent regulators of transcription. E1A does not bind DNA directly, but is recruited to target promoters by the interaction with sequence specific DNA binding proteins. In mammalian systems, E1A has been shown to contain two regions that can independently induce transcription when fused to a heterologous DNA binding domain. When expressed in Saccharomyces cerevisiae, each of these regions of E1A also acts as a strong transcriptional activator. This allows yeast to be used as a model system to study mechanisms by which E1A stimulates transcription. Results Using 81 mutant yeast strains, we have evaluated the effect of deleting components of the ADA, COMPASS, CSR, INO80, ISW1, NuA3, NuA4, Mediator, PAF, RSC, SAGA, SAS, SLIK, SWI/SNF and SWR1 transcriptional regulatory complexes on E1A dependent transcription. In addition, we examined the role of histone H2B ubiquitylation by Rad6/Bre1 on transcriptional activation. Conclusion Our analysis indicates that the two activation domains of E1A function via distinct mechanisms, identify new factors regulating E1A dependent transcription and suggest that yeast can serve as a valid model system for at least some aspects of E1A function.

  4. The neglected nano-specific toxicity of ZnO nanoparticles in the yeast Saccharomyces cerevisiae

    Science.gov (United States)

    Zhang, Weicheng; Bao, Shaopan; Fang, Tao

    2016-04-01

    Nanoparticles (NPs) with unique physicochemical properties induce nano-specific (excess) toxicity in organisms compared with their bulk counterparts. Evaluation and consideration of nano-specific toxicity are meaningful for the safe design and environmental risk assessment of NPs. However, ZnO NPs have been reported to lack excess toxicity for diverse organisms. In the present study, the nano-specific toxicity of ZnO NPs was evaluated in the yeast Saccharomyces cerevisiae. Nano-specific toxicity of ZnO NPs was not observed in the wild type yeast. However, the ZnO NPs induced very similar nano-specific toxicities in the three mutants with comparable log Te (particle) values (0.64 vs 0.65 vs 0.62), suggesting that the mutants were more sensitive and specific for the NPs’ nano-specific toxicity. The toxic effects in the yeast were slightly attributable to dissolved zinc ions from the ZnO (nano or bulk) particles. Oxidative damage and mechanical damage contributed to the toxic effect of the ZnO particles. The mechanism of mechanical damage is proposed to be an inherent characteristic underlying the nano-specific toxicity in the mutants. The log Te (particle) was a useful parameter for evaluation of NPs nano-specific toxicity, whereas log Te (ion) efficiently determined the NPs toxicity associated with released ions.

  5. Non-Saccharomyces yeasts protect against epithelial cell barrier disruption induced by Salmonella enterica subsp. enterica serovar Typhimurium

    DEFF Research Database (Denmark)

    Smith, Ida Mosbech; Baker, A; Arneborg, Nils

    2015-01-01

    UNLABELLED: The human gastrointestinal epithelium makes up the largest barrier separating the body from the external environment. Whereas invasive pathogens cause epithelial barrier disruption, probiotic micro-organisms modulate tight junction regulation and improve epithelial barrier function....... In addition, probiotic strains may be able to reduce epithelial barrier disruption caused by pathogenic species. The aim of this study was to explore non-Saccharomyces yeast modulation of epithelial cell barrier function in vitro. Benchmarking against established probiotic strains, we evaluated the ability......). In addition, our data demonstrate significant yeast-mediated modulation of Salmonella-induced epithelial cell barrier disruption and identify K. marxianus and Metschnikowia gruessii as two non-Saccharomyces yeasts capable of protecting human epithelial cells from pathogen invasion. SIGNIFICANCE AND IMPACT...

  6. Asymmetric bioreduction of acetophenones by Baker's yeast and its cell-free extract encapsulated in sol–gel silica materials

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Katsuya, E-mail: katsuya-kato@aist.go.jp [National Institute of Advanced Industrial Science and Technology (AIST), 2266-98 Anagahora, Shimoshidami, Moriyama-ku, Nagoya, 463-8560 (Japan); Nakamura, Hitomi [National Institute of Advanced Industrial Science and Technology (AIST), 2266-98 Anagahora, Shimoshidami, Moriyama-ku, Nagoya, 463-8560 (Japan); Nakanishi, Kazuma [Department of Chemistry for Materials, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie, 514-8570 (Japan)

    2014-02-28

    Baker's yeast (BY) encapsulated in silica materials was synthesized using a yeast cell suspension and its cell-free extract during a sol–gel reaction of tetramethoxysilane with nitric acid as a catalyst. The synthesized samples were fully characterized using various methods, such as scanning electron microscopy, nitrogen adsorption–desorption, Fourier transform infrared spectroscopy, thermogravimetry, and differential thermal analysis. The BY cells were easily encapsulated inside silica-gel networks, and the ratio of the cells in the silica gel was approximately 75 wt%, which indicated that a large volume of BY was trapped with a small amount of silica. The enzyme activity (asymmetric reduction of prochiral ketones) of BY and its cell-free extract encapsulated in silica gel was investigated in detail. The activities and enantioselectivities of free and encapsulated BY were similar to those of acetophenone and its fluorine derivatives, which indicated that the conformation structure of BY enzymes inside silica-gel networks did not change. In addition, the encapsulated BY exhibited considerably better solvent (methanol) stability and recyclability compared to free BY solution. We expect that the development of BY encapsulated in sol–gel silica materials will significantly impact the industrial-scale advancement of high-efficiency and low-cost biocatalysts for the synthesis of valuable chiral alcohols.

  7. DNA microarray analysis suggests that zinc pyrithione causes iron starvation to the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Yasokawa, Daisuke; Murata, Satomi; Iwahashi, Yumiko; Kitagawa, Emiko; Kishi, Katsuyuki; Okumura, Yukihiro; Iwahashi, Hitoshi

    2010-05-01

    Zinc pyrithione has been used in anti-dandruff shampoos and in anti-fouling paint on ships. However, little is known of its mode of action. We characterized the effects of sub-lethal concentrations of zinc pyrithione (Zpt) on Saccharomyces cerevisiae using DNA microarrays. The majority of the strongly upregulated genes are related to iron transport, and many of the strongly downregulated genes are related to the biosynthesis of cytochrome (heme). These data suggest that Zpt induces severe iron starvation. To confirm the DNA microarray data, we supplemented cultures containing Zpt with iron, and the growth of the yeast was restored significantly. From these results, we propose that the principal toxicity of zinc pyrithione arises from iron starvation.

  8. Photocatalytic activity of biogenic silver nanoparticles synthesized using yeast ( Saccharomyces cerevisiae) extract

    Science.gov (United States)

    Roy, Kaushik; Sarkar, C. K.; Ghosh, C. K.

    2015-11-01

    Synthesis of metallic and semiconductor nanoparticles through physical and chemical route is quiet common but biological synthesis procedures are gaining momentum due to their simplicity, cost-effectivity and eco-friendliness. Here, we report green synthesis of silver nanoparticles from aqueous solution of silver salts using yeast ( Saccharomyces cerevisiae) extract. The nanoparticles formation was gradually investigated by UV-Vis spectrometer. X-ray diffraction analysis was done to identify different phases of biosynthesized Ag nanoparticles. Transmission electron microscopy was performed to study the particle size and morphology of silver nanoparticles. Fourier transform infrared spectroscopy of the nanoparticles was performed to study the role of biomolecules capped on the surface of Ag nanoparticles during interaction. Photocatalytic activity of these biosynthesized nanoparticles was studied using an organic dye, methylene blue under solar irradiation and these nanoparticles showed efficacy in degrading the dye within a few hours of exposure.

  9. New aspects of the glucose activation of the H(+)-ATPase in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Souza, M A; Trópia, M J; Brandão, R L

    2001-10-01

    The glucose-induced activation of plasma membrane ATPase from Saccharomyces cerevisiae was first described by Serrano in 1983. Many aspects of this signal transduction pathway are still obscure. In this paper, evidence is presented for the involvement of Snf3p as the glucose sensor related to this activation process. It is shown that, in addition to glucose detection by Snf3p, sugar transport is also necessary for activation of the ATPase. The participation of the G protein, Gpa2p, in transducing the internal signal (phosphorylated sugars) is also demonstrated. Moreover, the involvement of protein kinase C in the regulation of ATPase activity is confirmed. Finally, a model pathway is presented for sensing and transmission of the glucose activation signal of the yeast H(+)-ATPase.

  10. The number and transmission of [PSI] prion seeds (Propagons in the yeast Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Lee J Byrne

    Full Text Available BACKGROUND: Yeast (Saccharomyces cerevisiae prions are efficiently propagated and the on-going generation and transmission of prion seeds (propagons to daughter cells during cell division ensures a high degree of mitotic stability. The reversible inhibition of the molecular chaperone Hsp104p by guanidine hydrochloride (GdnHCl results in cell division-dependent elimination of yeast prions due to a block in propagon generation and the subsequent dilution out of propagons by cell division. PRINCIPAL FINDINGS: Analysing the kinetics of the GdnHCl-induced elimination of the yeast [PSI+] prion has allowed us to develop novel statistical models that aid our understanding of prion propagation in yeast cells. Here we describe the application of a new stochastic model that allows us to estimate more accurately the mean number of propagons in a [PSI+] cell. To achieve this accuracy we also experimentally determine key cell reproduction parameters and show that the presence of the [PSI+] prion has no impact on these key processes. Additionally, we experimentally determine the proportion of propagons transmitted to a daughter cell and show this reflects the relative cell volume of mother and daughter cells at cell division. CONCLUSIONS: While propagon generation is an ATP-driven process, the partition of propagons to daughter cells occurs by passive transfer via the distribution of cytoplasm. Furthermore, our new estimates of n(0, the number of propagons per cell (500-1000, are some five times higher than our previous estimates and this has important implications for our understanding of the inheritance of the [PSI+] and the spontaneous formation of prion-free cells.

  11. Unconventional genomic architecture in the budding yeast saccharomyces cerevisiae masks the nested antisense gene NAG1.

    Science.gov (United States)

    Ma, Jun; Dobry, Craig J; Krysan, Damian J; Kumar, Anuj

    2008-08-01

    The genomic architecture of the budding yeast Saccharomyces cerevisiae is typical of other eukaryotes in that genes are spatially organized into discrete and nonoverlapping units. Inherent in this organizational model is the assumption that protein-coding sequences do not overlap completely. Here, we present evidence to the contrary, defining a previously overlooked yeast gene, NAG1 (for nested antisense gene) nested entirely within the coding sequence of the YGR031W open reading frame in an antisense orientation on the opposite strand. NAG1 encodes a 19-kDa protein, detected by Western blotting of hemagglutinin (HA)-tagged Nag1p with anti-HA antibodies and by beta-galactosidase analysis of a NAG1-lacZ fusion. NAG1 is evolutionarily conserved as a unit with YGR031W in bacteria and fungi. Unlike the YGR031WP protein product, however, which localizes to the mitochondria, Nag1p localizes to the cell periphery, exhibiting properties consistent with those of a plasma membrane protein. Phenotypic analysis of a site-directed mutant (nag1-1) disruptive for NAG1 but silent with respect to YGR031W, defines a role for NAG1 in yeast cell wall biogenesis; microarray profiling of nag1-1 indicates decreased expression of genes contributing to cell wall organization, and the nag1-1 mutant is hypersensitive to the cell wall-perturbing agent calcofluor white. Furthermore, production of Nag1p is dependent upon the presence of the cell wall integrity pathway mitogen-activated protein kinase Slt2p and its downstream transcription factor Rlm1p. Thus, NAG1 is important for two reasons. First, it contributes to yeast cell wall biogenesis. Second, its genomic context is novel, raising the possibility that other nested protein-coding genes may exist in eukaryotic genomes.

  12. Nanoscale effects of caspofungin against two yeast species, Saccharomyces cerevisiae and Candida albicans.

    Science.gov (United States)

    Formosa, C; Schiavone, M; Martin-Yken, H; François, J M; Duval, R E; Dague, E

    2013-08-01

    Saccharomyces cerevisiae and Candida albicans are model yeasts for biotechnology and human health, respectively. We used atomic force microscopy (AFM) to explore the effects of caspofungin, an antifungal drug used in hospitals, on these two species. Our nanoscale investigation revealed similar, but also different, behaviors of the two yeasts in response to treatment with the drug. While administration of caspofungin induced deep cell wall remodeling in both yeast species, as evidenced by a dramatic increase in chitin and decrease in β-glucan content, changes in cell wall composition were more pronounced with C. albicans cells. Notably, the increase of chitin was proportional to the increase in the caspofungin dose. In addition, the Young modulus of the cell was three times lower for C. albicans cells than for S. cerevisiae cells and increased proportionally with the increase of chitin, suggesting differences in the molecular organization of the cell wall between the two yeast species. Also, at a low dose of caspofungin (i.e., 0.5× MIC), the cell surface of C. albicans exhibited a morphology that was reminiscent of cells expressing adhesion proteins. Interestingly, this morphology was lost at high doses of the drug (i.e., 4× MIC). However, the treatment of S. cerevisiae cells with high doses of caspofungin resulted in impairment of cytokinesis. Altogether, the use of AFM for investigating the effects of antifungal drugs is relevant in nanomedicine, as it should help in understanding their mechanisms of action on fungal cells, as well as unraveling unexpected effects on cell division and fungal adhesion.

  13. Modular pathway rewiring of Saccharomyces cerevisiae enables high-level production of L-ornithine

    DEFF Research Database (Denmark)

    Qin, Jiufu; Zhou, Yongjin J.; Krivoruchko, Anastasia;

    2015-01-01

    Baker's yeast Saccharomyces cerevisiae is an attractive cell factory for production of chemicals and biofuels. Many different products have been produced in this cell factory by reconstruction of heterologous biosynthetic pathways; however, endogenous metabolism by itself involves many metabolite...... the potential to use yeast more extensively for low-cost production of many high-value amino-acid-derived chemicals.......Baker's yeast Saccharomyces cerevisiae is an attractive cell factory for production of chemicals and biofuels. Many different products have been produced in this cell factory by reconstruction of heterologous biosynthetic pathways; however, endogenous metabolism by itself involves many metabolites...... of industrial interest, and de-regulation of endogenous pathways to ensure efficient carbon channelling to such metabolites is therefore of high interest. Furthermore, many of these may serve as precursors for the biosynthesis of complex natural products, and hence strains overproducing certain pathway...

  14. A set of haploid strains available for genetic studies of Saccharomyces cerevisiae flor yeasts.

    Science.gov (United States)

    Coi, Anna Lisa; Legras, Jean-Luc; Zara, Giacomo; Dequin, Sylvie; Budroni, Marilena

    2016-09-01

    Flor yeasts of Saccharomyces cerevisiae have been extensively studied for biofilm formation, however the lack of specific haploid model strains has limited the application of genetic approaches such as gene knockout, allelic replacement and Quantitative Trait Locus mapping for the deciphering of the molecular basis of velum formation under biological ageing. The aim of this work was to construct a set of flor isogenic haploid strains easy to manipulate genetically. The analysis of the allelic variations at 12 minisatellite loci of 174 Saccharomyces cerevisiae strains allowed identifying three flor parental strains with different phylogenic positions. These strains were characterized for sporulation efficiency, growth on galactose, adherence to polystyrene, agar invasion, growth on wine and ability to develop a biofilm. Interestingly, the inability to grow on galactose was found associated with a frameshift in GAL4 gene that seems peculiar of flor strains. From these wild flor strains, isogenic haploid strains were constructed by deleting HO gene with a loxP-KanMX-loxP cassette followed by the removal of the kanamycin cassette. Haploid strains obtained were characterized for their phenotypic and genetic properties and compared with the parental strains. Preliminary results showed that the haploid strains represent new tools for genetic studies and breeding programs on biofilm formation.

  15. Use of Saccharomyces cerevisiae yeasts in the chemo selective bioreduction of (1E,4E)-1,5-bis(4-methoxyphenyl)-1,4-pentadien-3-one in biphasic system

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Cesar A.; Silva, Vanessa D.; Nascimento, Maria da G., E-mail: maria.nascimento@ufsc.br [Departamento de Quimica, Universidade Federal de Santa Catarina, Florianopolis-SC (Brazil); Stambuk, Boris U. [Departamento de Bioquimica, Universidade Federal de Santa Catarina, Florianopolis-SC (Brazil)

    2013-07-15

    This work describes the chemoselective bioreduction of (1E,4E)-1,5-bis(4-methoxyphenyl)- 1,4-pentadien-3-one (1) mediated by baker's yeast (BY, Saccharomyces cerevisiae cells) in an aqueous/organic solvent biphasic system. The biotransformation of this compound was chemoselective and formed only the corresponding saturated ketone 1,5-bis(4-methoxyphenyl)- 3-pentanone (2). The influence of various factors which may alter the bioreduction of 1, such as the type and percentage of co-solvents, use of six different S. cerevisiae yeast samples (four commercial and two industrial), variations in the substrate and yeast concentrations, temperature, pH and volume of aqueous and organic phases, was investigated. The best reaction conditions were 66.7 g L{sup -1} of Fleischmann BY, 8.3 Multiplication-Sign 10{sup -3} mol L{sup -1} of substrate, pH 6.5 at 35 deg C in the presence of 2.5% (v/v) of N,N-dimethyl sulfoxide (DMSO) as an additive and a V{sub aq}/V{sub org} ratio of 70/30. Under these conditions, the product 2 was recovered in conversions of 82% in 5 h reaction. (author)

  16. A Comparison of Two Yeast MnSODs: Mitochondrial Saccharomyces cerevisiae versus Cytosolic Candida albicans

    Energy Technology Data Exchange (ETDEWEB)

    Sheng Y.; Cabelli D.; Stich, T.A.; Barnese, K.; Gralla, E.B.; Cascio, D.; Britt, R.D.; Valentine, J.S.

    2011-12-28

    Human MnSOD is significantly more product-inhibited than bacterial MnSODs at high concentrations of superoxide (O{sub 2}{sup -}). This behavior limits the amount of H{sub 2}O{sub 2} produced at high [O{sub 2}{sup -}]; its desirability can be explained by the multiple roles of H{sub 2}O{sub 2} in mammalian cells, particularly its role in signaling. To investigate the mechanism of product inhibition in MnSOD, two yeast MnSODs, one from Saccharomyces cerevisiae mitochondria (ScMnSOD) and the other from Candida albicans cytosol (CaMnSODc), were isolated and characterized. ScMnSOD and CaMnSODc are similar in catalytic kinetics, spectroscopy, and redox chemistry, and they both rest predominantly in the reduced state (unlike most other MnSODs). At high [O{sub 2}{sup -}], the dismutation efficiencies of the yeast MnSODs surpass those of human and bacterial MnSODs, due to very low level of product inhibition. Optical and parallel-mode electron paramagnetic resonance (EPR) spectra suggest the presence of two Mn{sup 3+} species in yeast Mn{sup 3+}SODs, including the well-characterized 5-coordinate Mn{sup 3+} species and a 6-coordinate L-Mn{sup 3+} species with hydroxide as the putative sixth ligand (L). The first and second coordination spheres of ScMnSOD are more similar to bacterial than to human MnSOD. Gln154, an H-bond donor to the Mn-coordinated solvent molecule, is slightly further away from Mn in yeast MnSODs, which may result in their unusual resting state. Mechanistically, the high efficiency of yeast MnSODs could be ascribed to putative translocation of an outer-sphere solvent molecule, which could destabilize the inhibited complex and enhance proton transfer from protein to peroxide. Our studies on yeast MnSODs indicate the unique nature of human MnSOD in that it predominantly undergoes the inhibited pathway at high [O{sub 2}{sup -}].

  17. Signature gene expressions of cell wall integrity pathway concur with tolerance response of industrial yeast Saccharomyces cerevisiae against biomass pretreatment inhibitors

    Science.gov (United States)

    Traditional industrial ethanologenic yeast Saccharomyces cerevisiae has a robust performance under various environmental conditions and can be served as a candidate for the next-generation biocatalyst development for advanced biofuels production using lignocellulose mateials. Overcoming toxic compou...

  18. Interactions between Drosophila and its natural yeast symbionts—Is Saccharomyces cerevisiae a good model for studying the fly-yeast relationship?

    Directory of Open Access Journals (Sweden)

    Don Hoang

    2015-08-01

    Full Text Available Yeasts play an important role in the biology of the fruit fly, Drosophila melanogaster. In addition to being a valuable source of nutrition, yeasts affect D. melanogaster behavior and interact with the host immune system. Most experiments investigating the role of yeasts in D. melanogaster biology use the baker’s yeast, Saccharomyces cerevisiae. However, S. cerevisiae is rarely found with natural populations of D. melanogaster or other Drosophila species. Moreover, the strain of S. cerevisiae used most often in D. melanogaster experiments is a commercially and industrially important strain that, to the best of our knowledge, was not isolated from flies. Since disrupting natural host–microbe interactions can have profound effects on host biology, the results from D. melanogaster–S. cerevisiae laboratory experiments may not be fully representative of host–microbe interactions in nature. In this study, we explore the D. melanogaster-yeast relationship using five different strains of yeast that were isolated from wild Drosophila populations. Ingested live yeasts have variable persistence in the D. melanogaster gastrointestinal tract. For example, Hanseniaspora occidentalis persists relative to S. cerevisiae, while Brettanomyces naardenensis is removed. Despite these differences in persistence relative to S. cerevisiae, we find that all yeasts decrease in total abundance over time. Reactive oxygen species (ROS are an important component of the D. melanogaster anti-microbial response and can inhibit S. cerevisiae growth in the intestine. To determine if sensitivity to ROS explains the differences in yeast persistence, we measured yeast growth in the presence and absence of hydrogen peroxide. We find that B. naardenesis is completely inhibited by hydrogen peroxide, while H. occidentalis is not, which is consistent with yeast sensitivity to ROS affecting persistence within the D. melanogaster gastrointestinal tract. We also compared the feeding

  19. Effect of source-separated urine storage on estrogenic activity detected using bioluminescent yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Jaatinen, Sanna; Kivistö, Anniina; Palmroth, Marja R T; Karp, Matti

    2016-09-01

    The objective was to demonstrate that a microbial whole cell biosensor, bioluminescent yeast, Saccharomyces cerevisiae (BMAEREluc/ERα) can be applied to detect overall estrogenic activity from fresh and stored human urine. The use of source-separated urine in agriculture removes a human originated estrogen source from wastewater influents, subsequently enabling nutrient recycling. Estrogenic activity in urine should be diminished prior to urine usage in agriculture in order to prevent its migration to soil. A storage period of 6 months is required for hygienic reasons; therefore, estrogenic activity monitoring is of interest. The method measured cumulative female hormone-like activity. Calibration curves were prepared for estrone, 17β-estradiol, 17α- ethinylestradiol and estriol. Estrogen concentrations of 0.29-29,640 μg L(-1) were detectable while limit of detection corresponded to 0.28-35 μg L(-1) of estrogens. The yeast sensor responded well to fresh and stored urine and gave high signals corresponding to 0.38-3,804 μg L(-1) of estrogens in different urine samples. Estrogenic activity decreased during storage, but was still higher than in fresh urine implying insufficient storage length. The biosensor was suitable for monitoring hormonal activity in urine and can be used in screening anthropogenic estrogen-like compounds interacting with the receptor.

  20. Non-repair pathways for minimizing protein isoaspartyl damage in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Patananan, Alexander N; Capri, Joseph; Whitelegge, Julian P; Clarke, Steven G

    2014-06-13

    The spontaneous degradation of asparaginyl and aspartyl residues to isoaspartyl residues is a common type of protein damage in aging organisms. Although the protein-l-isoaspartyl (d-aspartyl) O-methyltransferase (EC 2.1.1.77) can initiate the repair of l-isoaspartyl residues to l-aspartyl residues in most organisms, no gene homolog or enzymatic activity is present in the budding yeast Saccharomyces cerevisiae. Therefore, we used biochemical approaches to elucidate how proteins containing isoaspartyl residues are metabolized in this organism. Surprisingly, the level of isoaspartyl residues in yeast proteins (50-300 pmol of isoaspartyl residues/mg of protein extract) is comparable with organisms with protein-l-isoaspartyl (d-aspartyl) O-methyltransferase, suggesting a novel regulatory pathway. Interfering with common protein quality control mechanisms by mutating and inhibiting the proteasomal and autophagic pathways in vivo did not increase isoaspartyl residue levels compared with wild type or uninhibited cells. However, the inhibition of metalloproteases in in vitro aging experiments by EDTA resulted in an ∼3-fold increase in the level of isoaspartyl-containing peptides. Characterization by mass spectrometry of these peptides identified several proteins involved in metabolism as targets of isoaspartyl damage. Further analysis of these peptides revealed that many have an N-terminal isoaspartyl site and originate from proteins with short half-lives. These results suggest that one or more metalloproteases participate in limiting isoaspartyl formation by robust proteolysis.

  1. Two distinct pathways for trehalose assimilation in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Jules, Matthieu; Guillou, Vincent; François, Jean; Parrou, Jean-Luc

    2004-05-01

    The yeast Saccharomyces cerevisiae can synthesize trehalose and also use this disaccharide as a carbon source for growth. However, the molecular mechanism by which extracellular trehalose can be transported to the vacuole and degraded by the acid trehalase Ath1p is not clear. By using an adaptation of the assay of invertase on whole cells with NaF, we showed that more than 90% of the activity of Ath1p is extracellular, splitting of the disaccharide into glucose. We also found that Agt1p-mediated trehalose transport and the hydrolysis of the disaccharide by the cytosolic neutral trehalase Nth1p are coupled and represent a second, independent pathway, although there are several constraints on this alternative route. First, the AGT1/MAL11 gene is controlled by the MAL system, and Agt1p was active in neither non-maltose-fermenting nor maltose-inducible strains. Second, Agt1p rapidly lost activity during growth on trehalose, by a mechanism similar to the sugar-induced inactivation of the maltose permease. Finally, both pathways are highly pH sensitive and effective growth on trehalose occurred only when the medium was buffered at around pH 5.0. The catabolism of trehalose was purely oxidative, and since levels of Ath1p limit the glucose flux in the cells, batch cultures on trehalose may provide a useful alternative to glucose-limited chemostat cultures for investigation of metabolic responses in yeast.

  2. Glucose-based microbial production of the hormone melatonin in yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Germann, Susanne M; Baallal Jacobsen, Simo A; Schneider, Konstantin; Harrison, Scott J; Jensen, Niels B; Chen, Xiao; Stahlhut, Steen G; Borodina, Irina; Luo, Hao; Zhu, Jiangfeng; Maury, Jérôme; Forster, Jochen

    2016-05-01

    Melatonin is a natural mammalian hormone that plays an important role in regulating the circadian cycle in humans. It is a clinically effective drug exhibiting positive effects as a sleep aid and a powerful antioxidant used as a dietary supplement. Commercial melatonin production is predominantly performed by complex chemical synthesis. In this study, we demonstrate microbial production of melatonin and related compounds, such as serotonin and N-acetylserotonin. We generated Saccharomyces cerevisiae strains that comprise heterologous genes encoding one or more variants of an L-tryptophan hydroxylase, a 5-hydroxy-L-tryptophan decarboxylase, a serotonin acetyltransferase, an acetylserotonin O-methyltransferase, and means for providing the cofactor tetrahydrobiopterin via heterologous biosynthesis and recycling pathways. We thereby achieved de novo melatonin biosynthesis from glucose. We furthermore accomplished increased product titers by altering expression levels of selected pathway enzymes and boosting co-factor supply. The final yeast strain produced melatonin at a titer of 14.50 ± 0.57 mg L(-1) in a 76h fermentation using simulated fed-batch medium with glucose as sole carbon source. Our study lays the basis for further developing a yeast cell factory for biological production of melatonin.

  3. Change in activity of serine palmitoyltransferase affects sensitivity to syringomycin E in yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Toume, Moeko; Tani, Motohiro

    2014-09-01

    Syringomycin E is a cyclic lipodepsipeptide produced by strains of the plant bacterium Pseudomonas syringae pv. syringae. Genetic studies involving the yeast Saccharomyces cerevisiae have revealed that complex sphingolipids play important roles in the action of syringomycin E. Here, we found a novel mutation that confers resistance to syringomycin E on yeast; that is, a deletion mutant of ORM1 and ORM2, which encode negative regulators of serine palmitoyltransferase catalyzing the initial step of sphingolipid biosynthesis, exhibited resistance to syringomycin E. On the contrary, overexpression of Orm2 resulted in high sensitivity to the toxin. Moreover, overexpression of Lcb1 and Lcb2, catalytic subunits of serine palmitoyltransferase, causes resistance to the toxin, whereas partial repression of expression of Lcb1 had the opposite effect. Partial reduction of complex sphingolipids by repression of expression of Aur1, an inositol phosphorylceramide synthase, also resulted in high sensitivity to the toxin. These results suggested that an increase in sphingolipid biosynthesis caused by a change in the activity of serine palmitoyltransferase causes resistance to syringomycin E.

  4. Identification and characterization of major lipid particle proteins of the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Athenstaedt, K; Zweytick, D; Jandrositz, A; Kohlwein, S D; Daum, G

    1999-10-01

    Lipid particles of the yeast Saccharomyces cerevisiae were isolated at high purity, and their proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Major lipid particle proteins were identified by mass spectrometric analysis, and the corresponding open reading frames (ORFs) were deduced. In silicio analysis revealed that all lipid particle proteins contain several hydrophobic domains but none or only few (hypothetical) transmembrane spanning regions. All lipid particle proteins identified by function so far, such as Erg1p, Erg6p, and Erg7p (ergosterol biosynthesis) and Faa1p, Faa4p, and Fat1p (fatty acid metabolism), are involved in lipid metabolism. Based on sequence homology, another group of three lipid particle proteins may be involved in lipid degradation. To examine whether lipid particle proteins of unknown function are also involved in lipid synthesis, mutants with deletions of the respective ORFs were constructed and subjected to systematic lipid analysis. Deletion of YDL193w resulted in a lethal phenotype which could not be suppressed by supplementation with ergosterol or fatty acids. Other deletion mutants were viable under standard conditions. Strains with YBR177c, YMR313c, and YKL140w deleted exhibited phospholipid and/or neutral lipid patterns that were different from the wild-type strain and thus may be further candidate ORFs involved in yeast lipid metabolism.

  5. Raspberry wine fermentation with suspended and immobilized yeast cells of two strains of Saccharomyces cerevisiae.

    Science.gov (United States)

    Djordjević, Radovan; Gibson, Brian; Sandell, Mari; de Billerbeck, Gustavo M; Bugarski, Branko; Leskošek-Čukalović, Ida; Vunduk, Jovana; Nikićević, Ninoslav; Nedović, Viktor

    2015-01-01

    The objectives of this study were to assess the differences in fermentative behaviour of two different strains of Saccharomyces cerevisiae (EC1118 and RC212) and to determine the differences in composition and sensory properties of raspberry wines fermented with immobilized and suspended yeast cells of both strains at 15 °C. Analyses of aroma compounds, glycerol, acetic acid and ethanol, as well as the kinetics of fermentation and a sensory evaluation of the wines, were performed. All fermentations with immobilized yeast cells had a shorter lag phase and faster utilization of sugars and ethanol production than those fermented with suspended cells. Slower fermentation kinetics were observed in all the samples that were fermented with strain RC212 (suspended and immobilized) than in samples fermented with strain EC1118. Significantly higher amounts of acetic acid were detected in all samples fermented with strain RC212 than in those fermented with strain EC1118 (0.282 and 0.602 g/l, respectively). Slightly higher amounts of glycerol were observed in samples fermented with strain EC1118 than in those fermented with strain RC212.

  6. The yeast Saccharomyces cerevisiae: an overview of methods to study autophagy progression

    Science.gov (United States)

    Delorme-Axford, Elizabeth; Guimaraes, Rodrigo Soares; Reggiori, Fulvio; Klionsky, Daniel J.

    2014-01-01

    Macroautophagy (hereafter autophagy) is a highly evolutionarily conserved process essential for sustaining cellular integrity, homeostasis, and survival. Most eukaryotic cells constitutively undergo autophagy at a low basal level. However, various stimuli, including starvation, organelle deterioration, stress, and pathogen infection, potently upregulate autophagy. The hallmark morphological feature of autophagy is the formation of the double-membrane vesicle known as the autophagosome. In yeast, flux through the pathway culminates in autophagosome-vacuole fusion, and the subsequent degradation of the resulting autophagic bodies and cargo by vacuolar hydrolases, followed by efflux of the breakdown products. Importantly, aberrant autophagy is associated with diverse human pathologies. Thus, there is a need for ongoing work in this area to further understand the cellular factors regulating this process. The field of autophagy research has grown exponentially in recent years, and although numerous model organisms are being used to investigate autophagy, the baker’s yeast Saccharomyces cerevisiae remains highly relevant, as there are significant and unique benefits to working with this organism. In this review, we will focus on the current methods available to evaluate and monitor autophagy in S. cerevisiae, which in several cases have also been subsequently exploited in higher eukaryotes. PMID:25526918

  7. Physicochemical characterization of pomegranate wines fermented with three different Saccharomyces cerevisiae yeast strains.

    Science.gov (United States)

    Berenguer, María; Vegara, Salud; Barrajón, Enrique; Saura, Domingo; Valero, Manuel; Martí, Nuria

    2016-01-01

    Three commercial Saccharomyces cerevisiae yeast strains: Viniferm Revelación, Viniferm SV and Viniferm PDM were evaluated for the production of pomegranate wine from a juice coupage of the two well-known varieties Mollar and Wonderfull. Further malolactic fermentation was carried out spontaneously. The same fermentation patterns were observed for pH, titratable acidity, density, sugar consumption, and ethanol and glycerol production. Glucose was exhausted while fructose residues remained at the end of alcoholic fermentation. A high ethanol concentration (10.91 ± 0.27% v/v) in combination with 1.49 g/L glycerol was achieved. Citric acid concentration increased rapidly a 31.7%, malic acid disappeared as result of malolactic fermentation and the lactic acid levels reached values between 0.40 and 0.96 g/L. The analysis of CIEa parameter and total anthocyanin content highlights a lower degradation of monomeric anthocyanins during winemaking with Viniferm PDM yeast. The resulting wine retains a 34.5% of total anthocyanin content of pomegranate juice blend.

  8. Recombinant Expression and Phenotypic Screening of a Bioactive Cyclotide Against α-Synuclein-Induced Cytotoxicity in Baker's Yeast.

    Science.gov (United States)

    Jagadish, Krishnappa; Gould, Andrew; Borra, Radhika; Majumder, Subhabrata; Mushtaq, Zahid; Shekhtman, Alexander; Camarero, Julio A

    2015-07-13

    We report for the first time the recombinant expression of fully folded bioactive cyclotides inside live yeast cells by using intracellular protein trans-splicing in combination with a highly efficient split-intein. This approach was successfully used to produce the naturally occurring cyclotide MCoTI-I and the engineered bioactive cyclotide MCoCP4. Cyclotide MCoCP4 was shown to reduce the toxicity of human α-synuclein in live yeast cells. Cyclotide MCoCP4 was selected by phenotypic screening from cells transformed with a mixture of plasmids encoding MCoCP4 and inactive cyclotide MCoTI-I in a ratio of 1:5×10(4). This demonstrates the potential for using yeast to perform phenotypic screening of genetically encoded cyclotide-based libraries in eukaryotic cells.

  9. Observing reducing effect of N-acetylcysteine in the metabolism of yeast

    Directory of Open Access Journals (Sweden)

    Sebastián Chapela

    2016-06-01

    Full Text Available The research focuses on the design of experimental teaching using readily available materials and simple methods to implement. It arises as an example for learning, using baker's yeast Saccharomyces cerevisiae, because it has many of the metabolic pathways existing in mammalian cells. In this paper it was developed an essay that allow students to observe macroscopically the capacity of N- Acetyl cysteine (NAC to stimulate the reducing power of yeast using indicator Methylene Blue (MB color change.

  10. Characteristics of Saccharomyces cerevisiae yeasts exhibiting rough colonies and pseudohyphal morphology with respect to alcoholic fermentation.

    Science.gov (United States)

    Reis, Vanda Renata; Bassi, Ana Paula Guarnieri; da Silva, Jessica Carolina Gomes; Ceccato-Antonini, Sandra Regina

    2013-12-01

    Among the native yeasts found in alcoholic fermentation, rough colonies associated with pseudohyphal morphology belonging to the species Saccharomyces cerevisiae are very common and undesirable during the process. The aim of this work was to perform morphological and physiological characterisations of S. cerevisiae strains that exhibited rough and smooth colonies in an attempt to identify alternatives that could contribute to the management of rough colony yeasts in alcoholic fermentation. Characterisation tests for invasiveness in Agar medium, killer activity, flocculation and fermentative capacity were performed on 22 strains (11 rough and 11 smooth colonies). The effects of acid treatment at different pH values on the growth of two strains ("52"--rough and "PE-02"--smooth) as well as batch fermentation tests with cell recycling and acid treatment of the cells were also evaluated. Invasiveness in YPD Agar medium occurred at low frequency; ten of eleven rough yeasts exhibited flocculation; none of the strains showed killer activity; and the rough strains presented lower and slower fermentative capacities compared to the smooth strains in a 48-h cycle in a batch system with sugar cane juice. The growth of the rough strain was severely affected by the acid treatment at pH values of 1.0 and 1.5; however, the growth of the smooth strain was not affected. The fermentative efficiency in mixed fermentation (smooth and rough strains in the same cell mass proportion) did not differ from the efficiency obtained with the smooth strain alone, most likely because the acid treatment was conducted at pH 1.5 in a batch cell-recycle test. A fermentative efficiency as low as 60% was observed with the rough colony alone.

  11. Characteristics of Saccharomyces cerevisiae yeasts exhibiting rough colonies and pseudohyphal morphology with respect to alcoholic fermentation

    Directory of Open Access Journals (Sweden)

    Vanda Renata Reis

    2013-12-01

    Full Text Available Among the native yeasts found in alcoholic fermentation, rough colonies associated with pseudohyphal morphology belonging to the species Saccharomyces cerevisiae are very common and undesirable during the process. The aim of this work was to perform morphological and physiological characterisations of S. cerevisiae strains that exhibited rough and smooth colonies in an attempt to identify alternatives that could contribute to the management of rough colony yeasts in alcoholic fermentation. Characterisation tests for invasiveness in Agar medium, killer activity, flocculation and fermentative capacity were performed on 22 strains (11 rough and 11 smooth colonies. The effects of acid treatment at different pH values on the growth of two strains ("52" -rough and "PE-02" smooth as well as batch fermentation tests with cell recycling and acid treatment of the cells were also evaluated. Invasiveness in YPD Agar medium occurred at low frequency; ten of eleven rough yeasts exhibited flocculation; none of the strains showed killer activity; and the rough strains presented lower and slower fermentative capacities compared to the smooth strains in a 48-h cycle in a batch system with sugar cane juice. The growth of the rough strain was severely affected by the acid treatment at pH values of 1.0 and 1.5; however, the growth of the smooth strain was not affected. The fermentative efficiency in mixed fermentation (smooth and rough strains in the same cell mass proportion did not differ from the efficiency obtained with the smooth strain alone, most likely because the acid treatment was conducted at pH 1.5 in a batch cell-recycle test. A fermentative efficiency as low as 60% was observed with the rough colony alone.

  12. Regulatory link between steryl ester formation and hydrolysis in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Ploier, Birgit; Korber, Martina; Schmidt, Claudia; Koch, Barbara; Leitner, Erich; Daum, Günther

    2015-07-01

    Steryl esters and triacylglycerols are the major storage lipids of the yeast Saccharomyces cerevisiae. Steryl esters are formed in the endoplasmic reticulum by the two acyl-CoA:sterol acyltransferases Are1p and Are2p, whereas steryl ester hydrolysis is catalyzed by the three steryl ester hydrolases Yeh1p, Yeh2p and Tgl1p. To shed light on the regulatory link between steryl ester formation and hydrolysis in the maintenance of cellular sterol and free fatty acid levels we employed yeast mutants which lacked the enzymes catalyzing the degradation of steryl esters. These studies revealed feedback regulation of steryl ester formation by steryl ester hydrolysis although in a Δtgl1Δyeh1Δyeh2 triple mutant the gene expression levels of ARE1 and ARE2 as well as protein levels and stability of Are1p and Are2p were not altered. Nevertheless, the capacity of the triple mutant to synthesize steryl esters was significantly reduced as shown by in vitro and in vivo labeling of lipids with [(14)C]oleic acid and [(14)C]acetate. Enzymatic analysis revealed that inhibition of steryl ester formation occurred at the enzyme level. As the amounts and the formation of sterols and fatty acids were also decreased in the triple mutant we concluded that defects in steryl ester hydrolysis also caused feedback inhibition on the formation of sterols and fatty acids which serve as precursors for steryl ester formation. In summary, this study demonstrates a regulatory link within the steryl ester metabolic network which contributes to non-polar lipid homeostasis in yeast cells.

  13. Analysis of gene expression profiles of Lactobacillus paracasei induced by direct contact with Saccharomyces cerevisiae through recognition of yeast mannan

    Science.gov (United States)

    YAMASAKI-YASHIKI, Shino; SAWADA, Hiroshi; KINO-OKA, Masahiro; KATAKURA, Yoshio

    2016-01-01

    Co-culture of lactic acid bacteria (LAB) and yeast induces specific responses that are not observed in pure culture. Gene expression profiles of Lactobacillus paracasei ATCC 334 co-cultured with Saccharomyces cerevisiae IFO 0216 were analyzed by DNA microarray, and the responses induced by direct contact with the yeast cells were investigated. Coating the LAB cells with recombinant DnaK, which acts as an adhesive protein between LAB and yeast cells, enhanced the ratio of adhesion of the LAB cells to the yeast cells. The signals induced by direct contact were clarified by removal of the LAB cells unbound to the yeast cells. The genes induced by direct contact with heat-inactivated yeast cells were very similar to both those induced by the intact yeast cells and those induced by a soluble mannan. The top 20 genes upregulated by direct contact with the heat-inactivated yeast cells mainly encoded proteins related to exopolysaccharide synthesis, modification of surface proteins, and transport systems. In the case of the most upregulated gene, LSEI_0669, encoding a protein that has a region homologous to polyprenyl glycosylphosphotransferase, the expression level was upregulated 7.6-, 11.0-, and 8.8-fold by the heat-inactivated yeast cells, the intact yeast cells, and the soluble mannan, respectively, whereas it was only upregulated 1.8-fold when the non-adherent LAB cells were not removed before RNA extraction. Our results indicated that the LAB responded to direct contact with the yeast cells through recognition of mannan on the surface of the yeast.

  14. Chemoselective biohydrogenation of chalcone (2{Epsilon})-3-(1,3-benzodioxole-5-yl)-1-phenyl-2-propen-1-one mediated by baker yeasts immobilized in polymeric supports; Bioidrogenacao quimioseletiva da chalcona (2{Epsilon})-3-(1,3-benzodioxol-5-il)-1-fenil-2-propen-1-ona mediada por fermentos de pao imobilizado em suportes polimericos

    Energy Technology Data Exchange (ETDEWEB)

    Mundstock, Flavia L.S.; Silva, Vanessa D.; Nascimento, Maria da G., E-mail: mundstock@qmc.ufsc.b [Universidade Federal de Santa Catarina (DQ/UFSC), Florianopolis, SC (Brazil). Dept. de Quimica

    2009-07-01

    In this study, the yeast Saccharomyces cerevisiae, baker's yeast (BY) was immobilized in poly(ethylene oxide) (PEO), poly(vinyl alcohol) (PVA), sodium caseinate (SC), gelatin (G) films and in agar (A) and gelatin (G) gels, and used as a biocatalyst in the biohydrogenation reaction of (2{Epsilon})-3-(1,3-benzodioxyl-5-yl)-1-phenyl-2-propen-1-one (1). The transformation of (1) into the corresponding dehydro chalcone (2) through biohydrogenation reactions was carried out in n-hexane at 25 or 35 deg C, for 4-48 h reaction. The product conversion, under different experimental conditions, was evaluated by hydrogen nuclear magnetic resonance, {sup 1}H NMR.The highest conversion degrees were achieved using BY immobilized in agar gel, (29-47%), depending also on the temperature. Using BY immobilized in PEO, PVA, SC and G films, the conversion into (2) was lower (0-21%). The results show the feasibility of the use of BY immobilized in polymeric materials to reduce a,b-unsaturated carbonyl compounds. (author)

  15. The mammalian AMP-activated protein kinase complex mediates glucose regulation of gene expression in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Ye, Tian; Bendrioua, Loubna; Carmena, David; García-Salcedo, Raúl; Dahl, Peter; Carling, David; Hohmann, Stefan

    2014-06-01

    The AMP-activated protein kinase (AMPK) controls energy homeostasis in eukaryotic cells. Here we expressed hetero-trimeric mammalian AMPK complexes in a Saccharomyces cerevisiae mutant lacking all five genes encoding yeast AMPK/SNF1 components. Certain mammalian complexes complemented the growth defect of the yeast mutant on non-fermentable carbon sources. Phosphorylation of the AMPK α1-subunit was glucose-regulated, albeit not by the Glc7-Reg1/2 phosphatase, which performs this function on yeast AMPK/SNF1. AMPK could take over SNF1 function in glucose derepression. While indirectly acting anti-diabetic drugs had no effect on AMPK in yeast, compound 991 stimulated α1-subunit phosphorylation. Our results demonstrate a remarkable functional conservation of AMPK and that glucose regulation of AMPK may not be mediated by regulatory features of a specific phosphatase.

  16. COMPARATIVE ASSESSMENT OF THE LABORATORY SELECTED AND ACTIVE DRIED SACCHAROMYCES CEREVISIAE YEAST CULTURE IN BIOTECHNOLOGY OF THE BRANDY PRODUCTION

    Directory of Open Access Journals (Sweden)

    Bayraktar V.N.

    2015-04-01

    C and low temperature (+6°C, growth at low pH 2.6–3.0 (acid resistance, growth in the presence of 5, 10, and 15% ethanol (ethanol resistance, and growth in the presence of high concentration potassium bisulfite (bisulfite resistance. Hydrosulfide synthesis (H2S gassing production was studied in addition. Parameters of cellular metabolism in yeast suspension, such as concentration of nitrogen, protein, triglicerides, enzymatic activity and total sugar (which include glucose, fructose, and galactose were determined. Macro- and micro-element concentrations in fermented grape must, which contained pure yeast culture was determined and included: potassium, sodium, calcium, phosphorus, magnesium, iron, chlorides. In addition to identifying parameters of macro- and micro- element concentration in grape must during and following fermentation based on a principle of photometric analysis, carried out using a biochemical analyser Respons-920 (DiaSys Diagnostic Systems GmbH, Germany. Laboratory selected Saccharomyces cerevisiae wine yeast showed high enzymatic activity with short lag phase. Since of fermentation started on third day concentration of Triglicerides, Protein (total, Potassium and Sodium increased and then level of Protein (total on the 5th day of fermentation twice decreased. Trigliceride concentration on the 5th day of fermentation continued to increase. Concentration of Iron on the 5th day of fermentation increase in geometrical progression, concentration increase in 4-5 times. Contrary Chloride concentration on the 5th day of fermentation decreased in 3-4 times. Enzymatic activity on 3rd day of fermentation maximal for Lactate Dehydrogenase, Alanine aminotransferase, Aspartate aminotransferase, Phosphatase. Since of 5th day of fermentation Enzymatic activity for Lactate Dehydrogenase, Alanine aminotransferase, Aspartate aminotransferase 3-4 times. Especially level of Phosphatase activity very decreased in 6-7 times. Comparative assessment between our Laboratory

  17. Fsy1, the sole hexose-proton transporter characterized in Saccharomyces yeasts, exhibits a variable fructose:H(+) stoichiometry.

    Science.gov (United States)

    Anjos, Jorge; Rodrigues de Sousa, Helena; Roca, Christophe; Cássio, Fernanda; Luttik, Marijke; Pronk, Jack T; Salema-Oom, Madalena; Gonçalves, Paula

    2013-02-01

    In the model yeast Saccharomyces cerevisiae, hexose uptake is mediated exclusively by a family of facilitators (Hxt, hexose transporters). Some other Saccharomyces species (e.g. Saccharomyces bayanus and Saccharomyces pastorianus) possess, in addition, a specific fructose transporter (Fsy1, fructose symporter) that has been previously described to function as a proton symporter. In the present work, we compared growth of a yeast strain in which FSY1 occurs naturally in anaerobic, fructose- and glucose-limited chemostat cultures. Especially at low specific growth rates, fructose-proton symport was shown to have a strong impact on the biomass yield on sugar. We subsequently employed energized hybrid plasma membrane vesicles to confirm previous observations concerning the mode of operation and specificity of Fsy1 mediated transport. Surprisingly, these experiments suggested that the carrier exhibits an unusual fructose:H(+) stoichiometry of 1:2. This energetically expensive mode of operation was also found consistently in vivo, in shake flask and in chemostat cultures, and both when Fsy1 is the sole transporter and when the Hxt carriers are present. However, it is observed only when Fsy1 is operating at higher glycolytic fluxes, a situation that is normally prevented by downregulation of the gene. Taken together, our results suggest the possibility that fructose symport with more than one proton may constitute an energetically unfavorable mode of operation of the Fsy1 transporter that, in growing cultures, is prevented by transcriptional regulation.

  18. Redundant Systems of Phosphatidic Acid Biosynthesis via Acylation of Glycerol-3-Phosphate or Dihydroxyacetone Phosphate in the Yeast Saccharomyces cerevisiae

    OpenAIRE

    Athenstaedt, Karin; Weys, Sabine; Paltauf, Fritz; Daum, Günther

    1999-01-01

    In the yeast Saccharomyces cerevisiae lipid particles harbor two acyltransferases, Gat1p and Slc1p, which catalyze subsequent steps of acylation required for the formation of phosphatidic acid. Both enzymes are also components of the endoplasmic reticulum, but this compartment contains additional acyltransferase(s) involved in the biosynthesis of phosphatidic acid (K. Athenstaedt and G. Daum, J. Bacteriol. 179:7611–7616, 1997). Using the gat1 mutant strain TTA1, we show here that Gat1p presen...

  19. Increased availability of NADH in metabolically engineered baker's yeast improves transaminase-oxidoreductase coupled asymmetric whole-cell bioconversion

    DEFF Research Database (Denmark)

    Knudsen, Jenny Dahl; Hägglöf, Cecilia; Weber, Nora

    2016-01-01

    yeast for transamination-reduction coupled asymmetric one-pot conversion was investigated. RESULTS: A series of active whole-cell biocatalysts were constructed by over-expressing the (S)-selective ω-transaminase (VAMT) from Capsicum chinense together with the NADH-dependent (S)-selective alcohol...... dehydrogenase (SADH) originating from Rhodococcus erythropolis in strains with or without deletion of glycerol-3-phosphate dehydrogenases 1 and 2 (GPD1 and GPD2). The yeast strains were evaluated as catalysts for simultaneous: (a) kinetic resolution of the racemic mixture to (R)-1-phenylethylamine, and (b......) reduction of the produced acetophenone to (S)-1-phenylethanol. For the gpd1Δgpd2Δ strain, cell metabolism was effectively used for the supply of both amine acceptors and the co-factor pyridoxal-5'-phosphate (PLP) for the ω-transaminase, as well as for regenerating NADH for the reduction. In contrast...

  20. Ethanol-induced leakage in Saccharomyces cerevisiae: kinetics and relationship to yeast ethanol tolerance and alcohol fermentation productivity

    Energy Technology Data Exchange (ETDEWEB)

    Salgueiro, S.P.; Sa-Correia, I.; Novais, J.M.

    1988-04-01

    Ethanol stimulated the leakage of amino acids and 260-nm-light-absorbing compounds from cells of Saccharomyces cerevisiae. The efflux followed first-order kinetics over an initial period. In the presence of lethal concentrations of ethanol, the efflux rates at 30 and 36/sup 0/C were an exponential function of ethanol concentration. At 36/sup 0/C, as compared with the corresponding values at 30/sup 0/C, the efflux rates were higher and the minimal concentration of ethanol was lower. The exponential constants for the enhancement of the rate of leakage had similar values at 30 or 36/sup 0/C and were of the same order of magnitude as the corresponding exponential constants for ethanol-induced death. Under isothermic conditions (30/sup 0/C) and up to 22% (vol/vol) ethanol, the resistance to ethanol-induced leakage of 260-nm-light-absorbing compounds was found to be closely related with the ethanol tolerance of three strains of yeasts, Kluyveromyces marxianus, Saccharomyces cerevisiae, and Saccharomyces bayanus. The resistance to ethanol-induced leakage indicates the possible adoption of the present method for the rapid screening of ethanol-tolerant strains. The addition to a fermentation medium of the intracellular material obtained by ethanol permeabilization of yeast cells led to improvements in alcohol fermentation by S. cerevisiae and S. bayanus. The action of the intracellular material, by improving yeast ethanol tolerance, and the advantages of partially recycling the fermented medium after distillation were discussed.

  1. Yeast systems for the commercial production of heterologous proteins.

    Science.gov (United States)

    Buckholz, R G; Gleeson, M A

    1991-11-01

    Yeasts are attractive hosts for the production of heterologous proteins. Unlike prokaryotic systems, their eukaryotic subcellular organization enables them to carry out many of the post-translational folding, processing and modification events required to produce "authentic" and bioactive mammalian proteins. In addition, they retain the advantages of a unicellular microorganism, with respect to rapid growth and ease of genetic manipulation. The vast majority of yeast expression work has focused on the well-characterized baker's yeast Saccharomyces cerevisiae. However, with the development of DNA transformation technologies, a growing number of non-Saccharomyces yeasts are becoming available as hosts for recombinant polypeptide production. These include Hansenula polymorpha, Kluyveromyces lactis, Pichia pastoris, Schizosaccharomyces pombe, Schwanniomyces occidentalis and Yarrowia lipolytica. The performance of these alternative yeast expression systems is reviewed here relative to S. cerevisiae, and the advantages and limitations of these systems are discussed.

  2. Dynamics of the Heat Stress Response of Ceramides with Different Fatty-Acyl Chain Lengths in Baker's Yeast.

    Directory of Open Access Journals (Sweden)

    Po-Wei Chen

    2015-08-01

    Full Text Available The article demonstrates that computational modeling has the capacity to convert metabolic snapshots, taken sequentially over time, into a description of cellular, dynamic strategies. The specific application is a detailed analysis of a set of actions with which Saccharomyces cerevisiae responds to heat stress. Using time dependent metabolic concentration data, we use a combination of mathematical modeling, reverse engineering, and optimization to infer dynamic changes in enzyme activities within the sphingolipid pathway. The details of the sphingolipid responses to heat stress are important, because they guide some of the longer-term alterations in gene expression, with which the cells adapt to the increased temperature. The analysis indicates that all enzyme activities in the system are affected and that the shapes of the time trends in activities depend on the fatty-acyl CoA chain lengths of the different ceramide species in the system.

  3. Optimising enzyme production by bakers yeast in continuous culture: physiological knowledge useful for process design and control

    Energy Technology Data Exchange (ETDEWEB)

    Gregory, M.E. [Centre for Process Systems Engineering, Imperial Coll. of Science, Technology and Medicine, London (United Kingdom); Bulmer, M. [Advanced Centre for Biochemical Engineering, University Coll., London (United Kingdom); Bogle, I.D.L. [Advanced Centre for Biochemical Engineering, University Coll., London (United Kingdom); Titchener-Hooker, N. [Advanced Centre for Biochemical Engineering, University Coll., London (United Kingdom)

    1996-10-01

    Saccharomyces cerevisiae was grown in aerobic continuous culture on a defined minimal medium, with glucose (40 g.l{sup -1}) as the growth-limiting carbon source, to acquire knowledge useful in process design and for model-based control. Steady-state concentrations of biomass, glucose, ethanol and activities of model products alcohol dehydrogenase, hexokinase, malate dehydrogenase, glucose-6-phosphate dehydrogenase and iso-citrate dehydrogenase were determined at dilution rates (D) between 0.06 h{sup -1} and 0.323 h{sup -1} (close to {mu}{sub max}). Enzyme activities showed productivity trends related to the transition from oxidative to oxido-reductive growth. Conclusions are drawn from the data with regard to designing a new process for production of intracellular enzymes. Issues of process stability as well as productivity are discussed. (orig.). With 5 figs.

  4. Genome Sequences of Industrially Relevant Saccharomyces cerevisiae Strain M3707, Isolated from a Sample of Distillers Yeast and Four Haploid Derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Steven D.; Klingeman, Dawn M.; Johnson, Courtney M.; Clum, Alicia; Aerts, Andrea; Salamov, Asaf; Sharma, Aditi; Zane, Matthew; Barry, Kerrie; Grigoriev, Igor V.; Davison, Brian H.; Lynd, Lee R.; Gilna, Paul; Hau, Heidi; Hogsett, David A.; Froehlich, Allan C.

    2013-04-19

    Saccharomyces cerevisiae strain M3707 was isolated from a sample of commercial distillers yeast, and its genome sequence together with the genome sequences for the four derived haploid strains M3836, M3837, M3838, and M3839 has been determined. Yeasts have potential for consolidated bioprocessing (CBP) for biofuel production, and access to these genome sequences will facilitate their development.

  5. Alteration of complex sphingolipid composition and its physiological significance in yeast Saccharomyces cerevisiae lacking vacuolar ATPase.

    Science.gov (United States)

    Tani, Motohiro; Toume, Moeko

    2015-12-01

    In the yeast Saccharomyces cerevisiae, complex sphingolipids have three types of polar head group and five types of ceramide; however, the physiological significance of the structural diversity is not fully understood. Here, we report that deletion of vacuolar H+-ATPase (V-ATPase) in yeast causes dramatic alteration of the complex sphingolipid composition, which includes decreases in hydroxylation at the C-4 position of long-chain bases and the C-2 position of fatty acids in the ceramide moiety, decreases in inositol phosphorylceramide (IPC) levels, and increases in mannosylinositol phosphorylceramide (MIPC) and mannosyldiinositol phosphorylceramide [M(IP)2C] levels. V-ATPase-deleted cells exhibited slow growth at pH 7.2, whereas the increase in MIPC levels was significantly enhanced when V-ATPase-deleted cells were incubated at pH 7.2. The protein expression levels of MIPC and M(IP)2C synthases were significantly increased in V-ATPase-deleted cells incubated at pH 7.2. Loss of MIPC synthesis or an increase in the hydroxylation level of the ceramide moiety of sphingolipids on overexpression of Scs7 and Sur2 sphingolipid hydroxylases enhanced the growth defect of V-ATPase-deleted cells at pH 7.2. On the contrary, the growth rate of V-ATPase-deleted cells was moderately increased on the deletion of SCS7 and SUR2. In addition, supersensitivities to Ca2+, Zn2+ and H2O2, which are typical phenotypes of V-ATPase-deleted cells, were enhanced by the loss of MIPC synthesis. These results indicate the possibility that alteration of the complex sphingolipid composition is an adaptation mechanism for a defect of V-ATPase.

  6. Cytoplasmic methionyl-tRNA synthetase from Bakers' yeast. A monomer with a post-translationally modified N terminus.

    Science.gov (United States)

    Fasiolo, F; Gibson, B W; Walter, P; Chatton, B; Biemann, K; Boulanger, Y

    1985-12-15

    Methionyl-tRNA synthetase has been purified from a yeast strain carrying the MES1 structural gene on a high copy number plasmid (pFL1). The purified enzyme is a monomer of Mr = 85,000 in contrast to its counterpart from Escherichia coli which is a dimer made up of identical subunits (Mr = 76,000; Dardel, F., Fayat, G., and Blanquet, S. (1984) J. Bacteriol. 160, 1115-1122). The yeast enzyme was not amenable to Edman's degradation indicating a blocked NH2 terminus. Its primary structure as derived from the DNA sequence (Walter, P., Gangloff, J., Bonnet, J., Boulanger, Y., Ebel, J.P., and Fasiolo, F. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 2437-2441) has been confirmed using the fast atom bombardment-mass spectrometric method. This method was applied to tryptic digests of the carboxymethylated enzyme and the corresponding data provided extensive coverage of the translated DNA sequence, thus confirming its correctness. The ambiguity concerning which of the three NH2-terminally located methionine codons is the initiation codon was easily resolved from peptides identified in this region. It was possible to show that the first methionine had been removed and that the new NH2 terminus, serine, had been acetylated. A comparison between the yeast and E. coli sequences shows that the former has an N-terminal extension of about 200 residues as compared to the latter. It also lacks the C-terminal domain which is responsible for the dimerization of the E. coli methionyl-tRNA synthetase.

  7. Measurement of the gassing power of bakers' yeast: correlation between the dough volume and the incubation time

    Directory of Open Access Journals (Sweden)

    Walter Borzani

    2004-06-01

    Full Text Available An empirical equation is proposed to correlate the dough volume and the incubation time during cylinder tests using thin flour dough carried out to evaluate the gassing power of compressed yeast. The above equation permitted to correlate the gassing power of the yeast and the proof time, as well as to calculate the specific rate of the dough volume variation at any time. It provided more information regarding the fermentation power of the yeast than the sole value of its gas-producing power. A physical interpretation of the proposed equation is presented.Propõe-se uma equação empírica que correlaciona o volume da pasta com o tempo de incubação na medida, pelo método do cilindro graduado e pasta de baixa concentração, da capacidade do fermento prensado de aumentar o volume da pasta (usualmente denominada "poder de levantamento" ou "poder de fermentação" do fermento. A equação proposta permite não apenas correlacionar o valor daquela capacidade com o tempo de incubação, mas também calcular a velocidade específica de aumento do volume da pasta em cada instante, fornecendo assim muito mais informações sobre o desempenho do fermento. Apresenta-se, também, uma possível explicação da fórmula empírica proposta.

  8. YeastMine--an integrated data warehouse for Saccharomyces cerevisiae data as a multipurpose tool-kit.

    Science.gov (United States)

    Balakrishnan, Rama; Park, Julie; Karra, Kalpana; Hitz, Benjamin C; Binkley, Gail; Hong, Eurie L; Sullivan, Julie; Micklem, Gos; Cherry, J Michael

    2012-01-01

    The Saccharomyces Genome Database (SGD; http://www.yeastgenome.org/) provides high-quality curated genomic, genetic, and molecular information on the genes and their products of the budding yeast Saccharomyces cerevisiae. To accommodate the increasingly complex, diverse needs of researchers for searching and comparing data, SGD has implemented InterMine (http://www.InterMine.org), an open source data warehouse system with a sophisticated querying interface, to create YeastMine (http://yeastmine.yeastgenome.org). YeastMine is a multifaceted search and retrieval environment that provides access to diverse data types. Searches can be initiated with a list of genes, a list of Gene Ontology terms, or lists of many other data types. The results from queries can be combined for further analysis and saved or downloaded in customizable file formats. Queries themselves can be customized by modifying predefined templates or by creating a new template to access a combination of specific data types. YeastMine offers multiple scenarios in which it can be used such as a powerful search interface, a discovery tool, a curation aid and also a complex database presentation format. DATABASE URL: http://yeastmine.yeastgenome.org.

  9. Ribosomal protein methyltransferases in the yeast Saccharomyces cerevisiae: Roles in ribosome biogenesis and translation.

    Science.gov (United States)

    Al-Hadid, Qais; White, Jonelle; Clarke, Steven

    2016-02-12

    A significant percentage of the methyltransferasome in Saccharomyces cerevisiae and higher eukaryotes is devoted to methylation of the translational machinery. Methylation of the RNA components of the translational machinery has been studied extensively and is important for structure stability, ribosome biogenesis, and translational fidelity. However, the functional effects of ribosomal protein methylation by their cognate methyltransferases are still largely unknown. Previous work has shown that the ribosomal protein Rpl3 methyltransferase, histidine protein methyltransferase 1 (Hpm1), is important for ribosome biogenesis and translation elongation fidelity. In this study, yeast strains deficient in each of the ten ribosomal protein methyltransferases in S. cerevisiae were examined for potential defects in ribosome biogenesis and translation. Like Hpm1-deficient cells, loss of four of the nine other ribosomal protein methyltransferases resulted in defects in ribosomal subunit synthesis. All of the mutant strains exhibited resistance to the ribosome inhibitors anisomycin and/or cycloheximide in plate assays, but not in liquid culture. Translational fidelity assays measuring stop codon readthrough, amino acid misincorporation, and programmed -1 ribosomal frameshifting, revealed that eight of the ten enzymes are important for translation elongation fidelity and the remaining two are necessary for translation termination efficiency. Altogether, these results demonstrate that ribosomal protein methyltransferases in S. cerevisiae play important roles in ribosome biogenesis and translation.

  10. Involvement of Sac1 phosphoinositide phosphatase in the metabolism of phosphatidylserine in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Tani, Motohiro; Kuge, Osamu

    2014-04-01

    Sac1 is a phosphoinositide phosphatase that preferentially dephosphorylates phosphatidylinositol 4-phosphate. Mutation of SAC1 causes not only the accumulation of phosphoinositides but also reduction of the phosphatidylserine (PS) level in the yeast Saccharomyces cerevisiae. In this study, we characterized the mechanism underlying the PS reduction in SAC1-deleted cells. Incorporation of (32) P into PS was significantly delayed in sac1∆ cells. Such a delay was also observed in SAC1- and PS decarboxylase gene-deleted cells, suggesting that the reduction in the PS level is caused by a reduction in the rate of biosynthesis of PS. A reduction in the PS level was also observed with repression of STT4 encoding phosphatidylinositol 4-kinase or deletion of VPS34 encoding phophatidylinositol 3-kinase. However, the combination of mutations of SAC1 and STT4 or VPS34 did not restore the reduced PS level, suggesting that both the synthesis and degradation of phosphoinositides are important for maintenance of the PS level. Finally, we observed an abnormal PS distribution in sac1∆ cells when a specific probe for PS was expressed. Collectively, these results suggested that Sac1 is involved in the maintenance of a normal rate of biosynthesis and distribution of PS.

  11. [HSM6 gene is identical to PSY4 gene in Saccharomyces cerevisiae yeasts].

    Science.gov (United States)

    Fedorov, D V; Koval'tsova, S V; Evstukhina, T A; Peshekhonov, V T; Chernenkov, A Iu; Korolev, V G

    2013-03-01

    Previously, we isolated mutant yeasts Saccharomyces cerevisiae with an increased rate of spontaneous mutagenesis. Here, we studied the properties of HSM6 gene, the hsm6-1 mutation of which increased the frequency of UV-induced mutagenesis and decreased the level of UV-induced mitotic crossover at the centromere gene region, ADE2. HSM6 gene was mapped on the left arm of chromosome 11 in the region where the PSY4 gene is located. The epistatic analysis has shown that the hsm6-1 mutation represents an allele of PSY4 gene. Sequencing of hsm6-1 mutant allele has revealed a frameshift mutation, which caused the substitution of Lys218Glu and the generation of a stop codon in the next position. The interactions of hsm6-1 and rad52 mutations were epistatic. Our data show that the PSY4 gene plays a key role in the regulation of cell withdrawal from checkpoint induced by DNA disturbances.

  12. Cross-stress resistance in Saccharomyces cerevisiae yeast--new insight into an old phenomenon.

    Science.gov (United States)

    Święciło, Agata

    2016-03-01

    Acquired stress resistance is the result of mild stress causing the acquisition of resistance to severe stress of the same or a different type. The mechanism of "same-stress" resistance (resistance to a second, strong stress after mild primary stress of the same type) probably depends on the activation of defense and repair mechanisms specific for a particular type of stress, while cross-stress resistance (i.e., resistance to a second, strong stress after a different type of mild primary stress) is the effect of activation of both a specific and general stress response program, which in Saccharomyces cerevisiae yeast is known as the environmental stress response (ESR). Advancements in research techniques have made it possible to study the mechanism of cross-stress resistance at various levels of cellular organization: stress signal transduction pathways, regulation of gene expression, and transcription or translation processes. As a result of this type of research, views on the cross-stress protection mechanism have been reconsidered. It was originally thought that cross-stress resistance, irrespective of the nature of the two stresses, was determined by universal mechanisms, i.e., the same mechanisms within the general stress response. They are now believed to be more specific and strictly dependent on the features of the first stress.

  13. Construction of novel Saccharomyces cerevisiae strains for bioethanol active dry yeast (ADY production.

    Directory of Open Access Journals (Sweden)

    Daoqiong Zheng

    Full Text Available The application of active dry yeast (ADY in bioethanol production simplifies operation processes and reduces the risk of bacterial contamination. In the present study, we constructed a novel ADY strain with improved stress tolerance and ethanol fermentation performances under stressful conditions. The industrial Saccharomyces cerevisiae strain ZTW1 showed excellent properties and thus subjected to a modified whole-genome shuffling (WGS process to improve its ethanol titer, proliferation capability, and multiple stress tolerance for ADY production. The best-performing mutant, Z3-86, was obtained after three rounds of WGS, producing 4.4% more ethanol and retaining 2.15-fold higher viability than ZTW1 after drying. Proteomics and physiological analyses indicated that the altered expression patterns of genes involved in protein metabolism, plasma membrane composition, trehalose metabolism, and oxidative responses contribute to the trait improvement of Z3-86. This work not only successfully developed a novel S. cerevisiae mutant for application in commercial bioethanol production, but also enriched the current understanding of how WGS improves the complex traits of microbes.

  14. Biosynthesis and function of GPI proteins in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Pittet, Martine; Conzelmann, Andreas

    2007-03-01

    Like most other eukaryotes, Saccharomyces cerevisiae harbors a GPI anchoring machinery and uses it to attach proteins to membranes. While a few GPI proteins reside permanently at the plasma membrane, a majority of them gets further processed and is integrated into the cell wall by a covalent attachment to cell wall glucans. The GPI biosynthetic pathway is necessary for growth and survival of yeast cells. The GPI lipids are synthesized in the ER and added onto proteins by a pathway comprising 12 steps, carried out by 23 gene products, 19 of which are essential. Some of the estimated 60 GPI proteins predicted from the genome sequence serve enzymatic functions required for the biosynthesis and the continuous shape adaptations of the cell wall, others seem to be structural elements of the cell wall and yet others mediate cell adhesion. Because of its genetic tractability S. cerevisiae is an attractive model organism not only for studying GPI biosynthesis in general, but equally for investigating the intracellular transport of GPI proteins and the peculiar role of GPI anchoring in the elaboration of fungal cell walls.

  15. Killer toxin of Saccharomyces cerevisiae Y500-4L active against Fleischmann and Itaiquara commercial brands of yeast

    Directory of Open Access Journals (Sweden)

    Soares Giselle A.M.

    1999-01-01

    Full Text Available The strain Saccharomyces cerevisiae Y500-4L, previously selected from the must of alcohol producing plants and showing high fermentative and killer capacities, was characterized according to the interactions between the yeasts and examined for curing and detection of dsRNA plasmids, which code for the killer character. The killer yeast S. cerevisiae Y500-4L showed considerable killer activity against the Fleischmann and Itaiquara commercial brands of yeast and also against the standard killer yeasts K2 (S. diastaticus NCYC 713, K4 (Candida glabrata NCYC 388 and K11 (Torulopsis glabrata ATCC 15126. However S. cerevisiae Y500-4L showed sensitivity to the killer toxin produced by the standard killer yeasts K8 (Hansenula anomala NCYC 435, K9 (Hansenula mrakii NCYC 500, K10 (Kluyveromyces drosophilarum NCYC 575 and K11 (Torulopsis glabrata ATCC 15126. No M-dsRNA plasmid was detected in the S. cerevisiae Y500-4L strain and these results suggest that the genetic basis for toxin production is encoded by chromosomal DNA. The strain S. cerevisiae Y500-4L was more resistant to the loss of the phenotype killer with cycloheximide and incubation at elevated temperatures (40oC than the standard killer yeast S. cerevisiae K1.

  16. [Expression of the Drosophila melanogaster limk1 gene 3'-UTRs mRNA in Yeast Saccharomyces cerevisiae].

    Science.gov (United States)

    Rumyantsev, A M; Zakharov, G A; Zhuravlev, A V; Padkina, M V; Savvateeva-Popova, E V; Sambuk, E V

    2014-06-01

    The stability of mRNA and its translation efficacy in higher eukaryotes are influenced by the interaction of 3'-untranscribed regions (3'-UTRs) with microRNAs and RNA-binding proteins. Since Saccharomyces cerevisiae lack microRNAs, it is possible to evaluate the contribution of only 3'-UTRs' and RNA-binding proteins' interaction in post-transcriptional regulation. For this, the post-transcriptional regulation of Drosophila limk1 gene encoding for the key enzyme of actin remodeling was studied in yeast. Analysis of limkl mRNA 3'-UTRs revealed the potential sites of yeast transcriptional termination. Computer remodeling demonstrated the possibility of secondary structure formation in limkl mRNA 3'-UTRs. For an evaluation of the functional activity of Drosophila 3'-UTRs in yeast, the reporter gene PHO5 encoding for yeast acid phosphatase (AP) fused to different variants of Drosophila limk1 mRNA 3'-UTRs (513, 1075, 1554 bp) was used. Assessments of AP activity and RT-PCR demonstrated that Drosophila limkl gene 3'-UTRs were functionally active and recognized in yeast. Therefore, yeast might be used as an appropriate model system for studies of 3'-UTR's role in post-transcriptional regulation.

  17. The effects of live yeast Saccharomyces cerevisiae on postweaning diarrhea, immune response, and growth performance in weaned piglets.

    Science.gov (United States)

    Trckova, M; Faldyna, M; Alexa, P; Sramkova Zajacova, Z; Gopfert, E; Kumprechtova, D; Auclair, E; D'Inca, R

    2014-02-01

    The effects of live yeast Saccharomyces cerevisiae (strain CNCM I-4407, 10(10) cfu/g; Actisaf; Lesaffre Feed Additives, Marcq-en-Baroeul, France) on the severity of diarrhea, immune response, and growth performance in weaned piglets orally challenged with enterotoxigenic Escherichia coli (ETEC) strain O149:K88 were investigated. Live yeast was fed to sows and their piglets in the late gestation, suckling, and postweaning periods. Sows were fed a basal diet without (Control; n = 2) or with (Supplemented; n = 2) 1 g/kg of live yeast from d 94 of gestation and during lactation until weaning of the piglets (d 28). Suckling piglets of the supplemented sows were orally treated with 1 g of live yeast in porridge carrier 3 times a week until weaning. Weaned piglets were fed a basal starter diet without (Control; n = 19) or with (Supplemented; n = 15) 5 g of live yeast/kg feed for 2 wk. Significantly lower daily diarrhea scores (P diarrhea (P diarrhea in yeast-fed weaned piglets positively affected their growth capacity in the postweaning period (P diarrhea caused by ETEC.

  18. MAGNETIC FIELD EFFECT ON YEAST SACCHAROMYCES CEREVIISIIAE ACTIVITY AT GRAPE MUST FERMENTATION

    OpenAIRE

    Bayraktar, V.

    2013-01-01

    Treatment of yeast cultures using magnetic fields enables us to gain a better understanding of the magnetic fields’ action on enzyme activity and the fluctuation of macroand micro-element concentrations within yeast cultures. For this purpose, the two following groups of yeast were studied: laboratory yeast cultures isolated from regional grape must and commercial yeast cultures that are commonly used in the wine industry. Both yeast groups were biochemically tested with and without magnetic ...

  19. Utilização da levedura desidratada (Saccharomyces cerevisiae para leitões na fase inicial Dried yeast (Saccharomyces cerevisiae utilization for piglets in the initial phase

    Directory of Open Access Journals (Sweden)

    Lúcio Francelino Araújo

    2006-10-01

    Full Text Available Foi conduzido um experimento com o objetivo de avaliar o efeito da adição de diferentes níveis de levedura (Saccharomyces cerevisiae desidratada na ração sobre o desempenho e a morfologia intestinal de leitões na fase inicial. Foram utilizados 280 leitões (fêmeas e machos castrados de uma linha genética comercial de suínos, desmamados com 21 dias de idade e distribuídos em 20 baias, de acordo com o delineamento em blocos ao acaso, com 5 repetições e 4 tratamentos experimentais (0, 5, 10 e 15% de adição de levedura. Aos 45 dias de idade, três leitões de cada tratamento foram abatidos e colhidas amostras do duodeno e do jejuno para estudo da morfologia intestinal. Os níveis crescentes de levedura desidratada nas rações não afetaram (P>0,05 o ganho de peso, o consumo de ração e a conversão alimentar dos leitões. Com relação à morfologia do duodeno e do jejuno, também não houve efeito (P>0,05 dos níveis de levedura estudados sobre a altura das vilosidades, das profundidades das criptas e da relação vilosidade/cripta. Os resultados permitiram concluir que a levedura desidratada pode ser adicionada em até 15% nas rações de suínos na fase inicial.An experiment was conducted to evaluate the effect of different levels of dried yeast (Saccharomyces cerevisiae in diets about performance and intestinal morphology of piglets at initial phase. They used 280 piglets (females and castrated males from genetic lines, weaned with 21 days of age, allocated in 20 pens in randomized design blocks, with 5 replications and 4 treatments (0, 5, 10 and 15% dried yeast addition. Samples of duodenum and jejunum of 3 piglets slaughtered at 45 days of age were collected from each treatment to study intestinal morphology. The increasing levels of dried yeast in rations did not affect significantly the weight gain, feed intake and feed conversion. In relation of duodenum and jejunum there was no significative effect (P>0.05 of dried yeast

  20. Microtubule dynamics from mating through the first zygotic division in the budding yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Maddox, P; Chin, E; Mallavarapu, A; Yeh, E; Salmon, E D; Bloom, K

    1999-03-08

    We have used time-lapse digital imaging microscopy to examine cytoplasmic astral microtubules (Mts) and spindle dynamics during the mating pathway in budding yeast Saccharomyces cerevisiae. Mating begins when two cells of opposite mating type come into proximity. The cells arrest in the G1 phase of the cell cycle and grow a projection towards one another forming a shmoo projection. Imaging of microtubule dynamics with green fluorescent protein (GFP) fusions to dynein or tubulin revealed that the nucleus and spindle pole body (SPB) became oriented and tethered to the shmoo tip by a Mt-dependent search and capture mechanism. Dynamically unstable astral Mts were captured at the shmoo tip forming a bundle of three or four astral Mts. This bundle changed length as the tethered nucleus and SPB oscillated toward and away from the shmoo tip at growth and shortening velocities typical of free plus end astral Mts (approximately 0.5 micrometer/min). Fluorescent fiduciary marks in Mt bundles showed that Mt growth and shortening occurred primarily at the shmoo tip, not the SPB. This indicates that Mt plus end assembly/disassembly was coupled to pushing and pulling of the nucleus. Upon cell fusion, a fluorescent bar of Mts was formed between the two shmoo tip bundles, which slowly shortened (0.23 +/- 0.07 micrometer/min) as the two nuclei and their SPBs came together and fused (karyogamy). Bud emergence occurred adjacent to the fused SPB approximately 30 min after SPB fusion. During the first mitosis, the SPBs separated as the spindle elongated at a constant velocity (0.75 micrometer/min) into the zygotic bud. There was no indication of a temporal delay at the 2-micrometer stage of spindle morphogenesis or a lag in Mt nucleation by replicated SPBs as occurs in vegetative mitosis implying a lack of normal checkpoints. Thus, the shmoo tip appears to be a new model system for studying Mt plus end dynamic attachments and much like higher eukaryotes, the first mitosis after haploid

  1. [Certain properties of "biosynthetic" L-threonine dehydratase from subcellular structures of brewers' yeast Saccharomyces carlsbergensis].

    Science.gov (United States)

    Kovaleva, S V; Korozhko, A I; Beliaeva, N F; Kagan, Z S

    1981-01-01

    The paper is concerned with kinetic properties of the "biosynthetic" L-threonine dehydratase (EC 4.2.1.16) solubilized from subcellular structures of brewers' yeast Saccharomyces carlsbergensis in the absence and presence of the allosteric inhibitor, L-isoleucine, at three pH-values (pH 6.5, 7.8 and 9.5). The curve of the initial reaction rate versus initial substrate concentration in the absence of L-isoleucine at pH 6.5 was of hyperbolic character (Km = 5.5.10(-2) M), and at pH 7.8 and 9.5 the kinetic curve had a weakly sigmoidal pattern with a sharp going into the saturation plateaux; the values of [S] 0.5 are 1.10(-2) and 8.7.10(-3) M, respectively. An addition of L-isoleucine to the reaction mixture led to the appearance (at pH 6.5) or to an increase (at pH 7.8 and 9.5) of the sigmoidality of these kinetic curves and to a decrease in values of the maximum reaction rate V. The enzyme sensibility to the inhibitory effect of L-isoleucine decreased with an increase in pH values. Low L-isoleucine concentrations at low substrate concentrations activated the enzyme. The pH optimum for L-threonine dehydratase under study was 9.5-10.0. The enzyme molecular weight is about 300 000.

  2. Spectrophotometric evaluation of selenium binding by Saccharomyces cerevisiae ATCC MYA-2200 and Candida utilis ATCC 9950 yeast.

    Science.gov (United States)

    Kieliszek, Marek; Błażejak, Stanisław; Płaczek, Maciej

    2016-05-01

    In this study, the ability of selenium binding the biomas of Saccharomyces cerevisiae ATCC MYA-2200 and Candida utilis ATCC 9950 was investigated. Sodium selenite(IV) salts were added to the experimental media at concentrations of 10, 20, 40, and 60 mg Se(4+) L(-1). In the tested concentration range, one concentration reported a significant reduction in the biomass yield of both yeast strains. Intense growth was observed for C. utilis yeast, which reached the highest biomass yield of 15 gd.w.L(-1) after 24h cultivation in the presence of 10mg Se(4+) L(-1). Based on the use of spectrophotometric method for the determination of selenium content by using Variamine Blue as a chromogenic agent, efficient accumulation of this element in the biomass of the investigated yeast was observed. The highest amount of selenium, that is, 5.64 mg Se(4+)gd.w.(-1), was bound from the environment by S. cerevisiae ATCC MYA-2200 cultured in the presence of 60 mg Se(4+) L(-1) medium 72h Slightly less amount, 5.47 mg Se(4+) gd.w.(-1), was absorbed by C. utilis ATCC 9950 during similar cultural conditions. Based on the results of the biomass yield and the use of selenium from the medium, it can be observed that yeasts of the genus Candida are more efficient in binding this element, and this property finds practical application in the production of selenium-enriched yeast.

  3. Saccharomyces cerivisiae as a model system for kidney disease: what can yeast tell us about renal function?

    Science.gov (United States)

    Kolb, Alexander R; Buck, Teresa M; Brodsky, Jeffrey L

    2011-07-01

    Ion channels, solute transporters, aquaporins, and factors required for signal transduction are vital for kidney function. Because mutations in these proteins or in associated regulatory factors can lead to disease, an investigation into their biogenesis, activities, and interplay with other proteins is essential. To this end, the yeast, Saccharomyces cerevisiae, represents a powerful experimental system. Proteins expressed in yeast include the following: 1) ion channels, including the epithelial sodium channel, members of the inward rectifying potassium channel family, and cystic fibrosis transmembrane conductance regulator; 2) plasma membrane transporters, such as the Na(+)-K(+)-ATPase, the Na(+)-phosphate cotransporter, and the Na(+)-H(+) ATPase; 3) aquaporins 1-4; and 4) proteins such as serum/glucocorticoid-induced kinase 1, phosphoinositide-dependent kinase 1, Rh glycoprotein kidney, and trehalase. The variety of proteins expressed and studied emphasizes the versatility of yeast, and, because of the many available tools in this organism, results can be obtained rapidly and economically. In most cases, data gathered using yeast have been substantiated in higher cell types. These attributes validate yeast as a model system to explore renal physiology and suggest that research initiated using this system may lead to novel therapeutics.

  4. Effects of hydrolysed Saccharomyces cerevisiae yeast and yeast cell wall components on live performance, intestinal histo-morphology and humoral immune response of broilers.

    Science.gov (United States)

    Muthusamy, N; Haldar, S; Ghosh, T K; Bedford, M R

    2011-12-01

    1. The effects of enzymatically hydrolysed whole Saccharomyces cerevisiae yeast (HY) and the pellets of yeast cell wall (YCW) on production traits, the microbiology and histo-morphology of the small intestine, and humoral immune responses against Newcastle disease virus (NDV), of Ross 308 broilers were investigated. 2. The control group received a maize-soyabean meal based basal diet for 42 days. In the treated groups the basal diet was supplemented with 1 g/kg of HY and YCW. There were 8 replicate pens per group (n = 12 birds/pen). 3. HY and YCW supplementation improved live weight (P = 0·006) and FCR (P = 0·003) at 42-d as compared with the control group. 4. In the small intestine, Salmonella spp and Escherichia coli numbers were higher (P = 0·01) in the mucosa and lower (P = 0·01) in the digesta of the HY and the YCW fed groups at 25 d of age. Lactobacillus in the duodenal and jejunal digesta was higher (P yeast cell wall may be a better dietary tool than the hydrolysed whole yeast cell as a performance enhancer for broilers.

  5. Contribution by Saccharomyces cerevisiae yeast to fermentative flavour compounds in wines from cv. Albariño.

    Science.gov (United States)

    Vilanova, Mar; Sieiro, Carmen

    2006-11-01

    A comparative study was made of the fermentation products of Spanish Albariño wines produced with spontaneous yeast flora and an indigenous selected Saccharomyces cerevisiae strain (Alb16). The content of fermentative volatile compounds was determined by gas-chromatography-FID. Fifteen compounds (5 alcohols, 7 esters and 3 acetates) were identified in the two Albariño wines studied. Higher alcohols, ethyl esters (except ethyl hexanoate and ethyl octanoate) and acetates were in greater concentration in the spontaneous fermentation wine than in that with selected Alb16 strain. Principal components analysis showed good separation between the different wines.

  6. Saccharomyces boulardii

    Science.gov (United States)

    ... bowel syndrome. Some people use Saccharomyces boulardii for lactose intolerance, urinary tract infections (UTIs), vaginal yeast infections, high ... cholesterol. Lyme disease. Hives. Fever blisters. Canker sores. Lactose intolerance. Other conditions. More evidence is needed to rate ...

  7. Alterações na atividade e no perfil eletroforético da peroxidase em folhas de milho (Zea mays e sorgo (Sorghum bicolor tratadas com levedura (Saccharomyces cerevisiae Change in activity and electrophoretic pattern of peroxidase in maize (Zea mays and sorghum (Sorghum bicolor leaves after treatment with yeast (Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    M.C. RONCATTO

    1998-01-01

    Full Text Available O trabalho foi desenvolvido com o objetivo de se verificar a influência de Saccharomyces cerevisiae na forma de produto comercial, fermento biológico fresco para panificação, na atividade e no padrão eletroforético da peroxidase em folhas de milho e sorgo. As preparações de Saccharomyces utilizadas foram representadas por suspensões de células e seus respectivos filtrados, autoclavados ou não. A análise dos extratos obtidos dessas gramíneas mostrou que suspensões de células e os filtrados dessas suspensões, tratadas termicamente ou não, foram efetivos em ocasionar alterações na atividade e padrão eletroforético da peroxidase em milho e sorgo. Além de se mostrarem termoestáveis, os extratos obtidos de células intactas ou homogeneizadas de S. cerevisiae apresentaram baixa atividade de peroxidase, indicando que as alterações na atividade e perfil eletroforético da enzima nas plantas eram decorrentes do próprio tecido vegetal. Finalmente, os resultados sugerem que as alterações ocorridas com a peroxidase nas gramíneas estudadas, em resposta ao tratamento com S. cerevisiae, refletem o "reconhecimento" das células ou metabólitos da levedura por parte das plantas, acarretando uma alteração no metabolismo normal das mesmas.The aim of this work was to test the effect of Saccharomyces cerevisiae, in a commercial baker's yeast form, on the activity and changes in the electrophoretic pattern of peroxidase in maize and sorghum leaves. The yeast treatment included spray of cell suspensions and their filtrates, autoclaved or not, which were able to cause changes in the peroxidase activity and electrophoretic pattern in maize and sorghum. Besides being thermostable, the extracts from intact or homogenized S. cerevisiae cells exhibited low peroxidase activity, indicating that the changes in the enzyme, activity and pattern, were due only to the plant tissue. Finally, the results suggest that the changes in peroxidase in maize

  8. TORC1 activity is partially reduced under nitrogen starvation conditions in sake yeast Kyokai no. 7, Saccharomyces cerevisiae.

    Science.gov (United States)

    Nakazawa, Nobushige; Sato, Aya; Hosaka, Masahiro

    2016-03-01

    Industrial yeasts are generally unable to sporulate but treatment with the immunosuppressive drug rapamycin restores this ability in a sake yeast strain Kyokai no. 7 (K7), Saccharomyces cerevisiae. This finding suggests that TORC1 is active under sporulation conditions. Here, using a reporter gene assay, Northern and Western blots, we tried to gain insight into how TORC1 function under nitrogen starvation conditions in K7 cells. Similarly to a laboratory strain, RPS26A transcription was repressed and Npr1 was dephosphorylated in K7 cells, indicative of the expected loss of TORC1 function under nitrogen starvation. The expression of nitrogen catabolite repression-sensitive genes, however, was not induced, the level of Cln3 remained constant, and autophagy was more slowly induced than in a laboratory strain, all suggestive of active TORC1. We conclude that TORC1 activity is partially reduced under nitrogen starvation conditions in K7 cells.

  9. Mesurements of intracellular ATP provide new insight into the regulation of glycolysis in the yeast Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Ytting, Cecilie Karkov; Fuglsang, Anja Thoe; Hiltunen, J. Kalervo

    2012-01-01

    Glycolysis in the yeast Saccharomyces cerevisiae exhibits temporal oscillation under anaerobic or semianaerobic conditions. Previous evidence indicated that at least two membrane-bound ATPases, the mitochondrial F0F1 ATPase and the plasma membrane P-type ATPase (Pma1p), were important in regulating...... of the temporal behaviour of intracellular ATP in a yeast strain with oscillating glycolysis showed that, in addition to oscillation in intracellular ATP, there is an overall slow decrease in intracellular ATP because the ATP consumption rate exceeds the ATP production in glycolysis. Measurements of the temporal...... activity is under strict control. In the absence of glucose ATPase activity is switched off, and the intracellular ATP concentration is high. When glucose is added to the cells the ATP concentration starts to decrease, because ATP consumption exceeds ATP production by glycolysis. Finally, when glucose...

  10. Vacuolar carboxypeptidase Y of Saccharomyces cerevisiae is glycosylated, sorted and matured in the fission yeast Schizosaccharomyces pombe.

    Science.gov (United States)

    Simeon, A; Egner, R; Gascon, S; Suarez-Rendueles, P

    1995-03-01

    Vacuolar carboxypeptidase Y of Saccharomyces cerevisiae (CPYsc) has been expressed in a Schizosaccharomyces pombe strain devoid of the endogenous equivalent peptidase, employing a 2 mu derived plasmid. Immunoblot analysis revealed that CPYsc produced in the fission yeast has a higher molecular mass than mature CPYsc produced by the budding yeast. CPYsc is glycosylated when expressed in S. pombe and uses four N-linked glycosylation sites as shown by endoglycosidase H digestion. Carbohydrate removal leads to a protein moiety which is indistinguishable in size from deglycosylated CPYsc produced by S. cerevisiae. CPYsc isolated from S. pombe soluble extracts is enzymatically active and thus is presumed to undergo correct proteolytic maturation. Subcellular fractionation experiments showed a cofractionation of CPYsc with the S. pombe endoproteinases PrA and PrB, suggesting that the protein is correctly sorted to the vacuole and that these peptidases might be responsible for zymogen activation.

  11. Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations with Saccharomyces cerevisiae on alcoholic fermentation behaviour and wine aroma of cherry wines.

    Science.gov (United States)

    Sun, Shu Yang; Gong, Han Sheng; Jiang, Xiao Man; Zhao, Yu Ping

    2014-12-01

    This study examined the effect of mixed fermentation of non-Saccharomyces (Torulaspora delbrueckii ZYMAFLORE Alpha(TD n. Sacch) and Metschnikowia pulcherrima JS22) and Saccharomyces cerevisiae yeasts (D254 and EC1118) on the production of cherry wines, in comparison with commonly used mono-culture. Results obtained during AF demonstrated that negligible inhibitory effect was observed in S. cerevisiae/Alpha pair, whereas a strong antagonistic effect was detected between MJS22 and S. cerevisiae strain, resulting in an early death of MJS22. For volatile components determined, S. cerevisiae/MJS22 couple was found to significantly boost the production of most detected compounds, more particularly in higher alcohols, esters, acids and terpenes; while the characteristic of S. cerevisiae/Alpha pair is an increase in fruity esters, higher alcohols and decrease in acid production. Sensory evaluation revealed that S. cerevisiae/MJS22 pair reinforced sweet, green and fatty notes to the cherry wines, and S. cerevisiae/Alpha trial enhanced the fruity odour and reduced green note.

  12. The evaluation of nanoparticles ZnO and TiO2 effects on Saccharomyces cerevisiae CNMN-Y-20 yeast strain

    Directory of Open Access Journals (Sweden)

    Usatîi Agafia

    2016-06-01

    Full Text Available This paper investigates the action of nanoparticles ZnO (10 nm and TiO2 (30 nm on growth of Saccharomyces cerevisiae CNMN-Y-20 yeast. Nanoparticles in concentration of 0,5; 1,0 and 5,0 mg/L in YPD medium did not modify significantly cell proliferation, biomass production, the carbohydrate content and the content of β-glucans at Saccharomyces cerevisiae CNMN-Y-20. Nanoparticles ZnO and TiO2 contributed to the decrease in protein content, which demonstrated the appearance of the alterations of yeast cell membranes.

  13. Forces in yeast flocculation.

    Science.gov (United States)

    El-Kirat-Chatel, Sofiane; Beaussart, Audrey; Vincent, Stéphane P; Abellán Flos, Marta; Hols, Pascal; Lipke, Peter N; Dufrêne, Yves F

    2015-02-07

    In the baker's yeast Saccharomyces cerevisiae, cell-cell adhesion ("flocculation") is conferred by a family of lectin-like proteins known as the flocculin (Flo) proteins. Knowledge of the adhesive and mechanical properties of flocculins is important for understanding the mechanisms of yeast adhesion, and may help controlling yeast behaviour in biotechnology. We use single-molecule and single-cell atomic force microscopy (AFM) to explore the nanoscale forces engaged in yeast flocculation, focusing on the role of Flo1 as a prototype of flocculins. Using AFM tips labelled with mannose, we detect single flocculins on Flo1-expressing cells, showing they are widely exposed on the cell surface. When subjected to force, individual Flo1 proteins display two distinct force responses, i.e. weak lectin binding forces and strong unfolding forces reflecting the force-induced extension of hydrophobic tandem repeats. We demonstrate that cell-cell adhesion bonds also involve multiple weak lectin interactions together with strong unfolding forces, both associated with Flo1 molecules. Single-molecule and single-cell data correlate with microscale cell adhesion behaviour, suggesting strongly that Flo1 mechanics is critical for yeast flocculation. These results favour a model in which not only weak lectin-sugar interactions are involved in yeast flocculation but also strong hydrophobic interactions resulting from protein unfolding.

  14. Production of tranilast [N-(3',4'-dimethoxycinnamoyl)-anthranilic acid] and its analogs in yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Eudes, Aymerick; Baidoo, Edward E K; Yang, Fan; Burd, Helcio; Hadi, Masood Z; Collins, F William; Keasling, Jay D; Loqué, Dominique

    2011-02-01

    Biological synthesis of therapeutic drugs beneficial for human health using microbes offers an alternative production strategy to the methods that are commonly employed such as direct extraction from source organisms or chemical synthesis. In this study, we evaluated the potential for yeast (Saccharomyces cerevisiae) to be used as a catalyst for the synthesis of tranilast and various tranilast analogs (cinnamoyl anthranilates). Several studies have demonstrated that these phenolic amides have antioxidant properties and potential therapeutic benefits including antiinflammatory, antiproliferative, and antigenotoxic effects. The few cinnamoyl anthranilates naturally produced in plants such as oats and carnations result from the coupling of various hydroxycinnamoyl-CoAs to anthranilic acid. In order to achieve the microbial production of tranilast and several of its analogs, we engineered a yeast strain to co-express a 4-coumarate/CoA ligase (4CL, EC 6.2.1.12) from Arabidopsis thaliana and a hydroxycinnamoyl/benzoyl-CoA/anthranilate N-hydroxycinnamoyl/benzoyltransferase (HCBT, EC 2.3.1.144) from Dianthus caryophyllus. This modified yeast strain allowed us to produce tranilast and 26 different cinnamoyl anthranilate molecules within a few hours after exogenous supply of various combinations of cinnamic acids and anthranilate derivatives. Our data demonstrate the feasibility of rapidly producing a wide range of defined cinnamoyl anthranilates in yeast and underline a potential for the biological designed synthesis of naturally and non-naturally occurring molecules.

  15. Yeast (Saccharomyces cerevisiae) Polarizes Both M-CSF- and GM-CSF-Differentiated Macrophages Toward an M1-Like Phenotype.

    Science.gov (United States)

    Seif, Michelle; Philippi, Anja; Breinig, Frank; Kiemer, Alexandra K; Hoppstädter, Jessica

    2016-10-01

    Macrophages are a heterogeneous and plastic cell population with two main phenotypes: pro-inflammatory classically activated macrophages (M1) and anti-inflammatory alternatively activated macrophages (M2). Saccharomyces cerevisiae is a promising vehicle for the delivery of vaccines. It is well established that S. cerevisiae is taken up by professional phagocytic cells. However, the response of human macrophages to S. cerevisiae is ill-defined. In this study, we characterized the interaction between S. cerevisiae and M1- or M2-like macrophages. M1-like macrophages had a higher yeast uptake capacity than M2-like macrophages, but both cell types internalized opsonized yeast to the same extent. The M1 surface markers HLAII and CD86 were upregulated after yeast uptake in M1- and M2-like macrophages. Moreover, mRNA expression levels of pro-inflammatory cytokines, such as TNF-α, IL-12, and IL-6, increased, whereas the expression of anti-inflammatory mediators did not change. These results demonstrate that S. cerevisiae can target both M1 and M2 macrophages, paralleled by skewing toward an M1 phenotype. Thus, the use of yeast-based delivery systems might be a promising approach for the treatment of pathologic conditions that would benefit from the presence of M1-polarized macrophages, such as cancer.

  16. 游离高表达Mal62基因对面包酵母耐冷冻性的影响%Effects of High-expressed Ma162 Gene on Freezing Tolerance of Baker's Yeast

    Institute of Scientific and Technical Information of China (English)

    孙溪; 张翠英; 董建; 吴鸣月; 王光路; 肖冬光

    2012-01-01

    通过测定胞内海藻糖积累量、冷冻前后相对发酵力以及存活率的变化,对比游离高表达麦芽糖酶基因(Md62)的突变株BYCPM与亲本BY14的海藻糖合成能力,研究Ma/62基因游离高表达与酵母耐冷冻性之间的关系。结果表明.Ma/62基因游离高表达与酵母耐冷冻性有一定的相关性,突变株耐冷冻性改善,其在烘焙产业中具有潜在商业价值。%AThe relations between high-expressed Ma162 gene and freezing tolerance of baker's yeast were investigated through measuring the accumulating quantity of intracellular trehalose, observing the change of cell fermenting power and cell viability before and after freezing, and com- paring trehalose synthesis of parent strain BY14 and mutant strain BYCPM. The results showed that there was certain relativity between high-expressed ma/62 gene and freezing tolerance of baker' s yeast (freezing tolerance got improved for mutant strain). Accordingly, the improved freezing tolerance of BYCPM may make it useful in commercial baking industry.

  17. Modification of Salmonella Typhimurium motility by the probiotic yeast strain Saccharomyces boulardii.

    Directory of Open Access Journals (Sweden)

    Rodolphe Pontier-Bres

    Full Text Available BACKGROUND: Motility is an important component of Salmonella enterica serovar Typhimurium (ST pathogenesis allowing the bacteria to move into appropriate niches, across the mucus layer and invade the intestinal epithelium. In vitro, flagellum-associated motility is closely related to the invasive properties of ST. The probiotic yeast Saccharomyces boulardii BIOCODEX (S.b-B is widely prescribed for the prophylaxis and treatment of diarrheal diseases caused by bacteria or antibiotics. In case of Salmonella infection, S.b-B has been shown to decrease ST invasion of T84 colon cell line. The present study was designed to investigate the impact of S.b-B on ST motility. METHODOLOGY/PRINCIPAL FINDINGS: Experiments were performed on human colonic T84 cells infected by the Salmonella strain 1344 alone or in the presence of S.b-B. The motility of Salmonella was recorded by time-lapse video microscopy. Next, a manual tracking was performed to analyze bacteria dynamics (MTrackJ plugin, NIH image J software. This revealed that the speed of bacterial movement was modified in the presence of S.b-B. The median curvilinear velocity (CLV of Salmonella incubated alone with T84 decreased from 43.3 µm/sec to 31.2 µm/sec in the presence of S.b-B. Measurement of track linearity (TL showed similar trends: S.b-B decreased by 15% the number of bacteria with linear tract (LT and increased by 22% the number of bacteria with rotator tract (RT. Correlation between ST motility and invasion was further established by studying a non-motile flagella-deficient ST strain. Indeed this strain that moved with a CLV of 0.5 µm/sec, presented a majority of RT and a significant decrease in invasion properties. Importantly, we show that S.b-B modified the motility of the pathogenic strain SL1344 and significantly decreased invasion of T84 cells by this strain. CONCLUSIONS: This study reveals that S.b-B modifies Salmonella's motility and trajectory which may account for the modification

  18. MIP1, a new yeast gene homologous to the rat mitochondrial intermediate peptidase gene, is required for oxidative metabolism in Saccharomyces cerevisiae.

    OpenAIRE

    Isaya, G; Miklos, D; Rollins, R A

    1994-01-01

    Cleavage of amino-terminal octapeptides, F/L/IXXS/T/GXXXX, by mitochondrial intermediate peptidase (MIP) is typical of many mitochondrial precursor proteins imported to the matrix and the inner membrane. We previously described the molecular characterization of rat liver MIP (RMIP) and indicated a putative homolog in the sequence predicted from gene YCL57w of yeast chromosome III. A new yeast gene, MIP1, has now been isolated by screening a Saccharomyces cerevisiae genomic library with an RMI...

  19. KMnO4修饰面包酵母菌对Cd2+的吸附研究%Cd2+ adsorption by KMnO4 modified baker's yeast

    Institute of Scientific and Technical Information of China (English)

    姜友军; 张云松; 王仁国; 尹元江; 曾武; 肖朝萍

    2011-01-01

    研究了用KMnO4修饰面包酵母菌对溶液中Cd2+的吸附作用,探讨了不同KMnO4浓度、pH、吸附时间、Cd2+初始浓度、修饰酵母菌用量等5个因素对KMnO4修饰面包酵母菌吸附Cd2+的影响.结果表明,随着修饰剂KMnO4浓度的增大,修饰面包酵母菌的吸附能力增强,KMnO4浓度达到20 mmol·L-1时,吸附能力是相同条件下原菌的2倍.在pH为5.0~7.0范围内,吸附效果最好;反应30 min后,吸附可达到平衡;Cd2+初始浓度为100 mg·L-1时,吸附基本达到饱和;KMnO4修饰面包酵母菌的最佳用量为6 g·L-1左右.KMnO4修饰面包酵母菌吸附Cd2+的过程适宜用准二级速率方程来描述,而Langmuir方程对其吸附等温线的描述效果最好.SEM、FTIR、XPS等分析结果表明,面包酵母菌主要通过表面的羟基、羧基、氨基、磷酰基等基团进行吸附.KMnO4修饰可使面包酵母菌表面变得较为粗糙,表面结构发生变化,提高菌表面吸附镉活性位点的数量.同时,KMnO4氧化面包酵母菌时在表面被还原成纳米MnO2和Mn2+,其对Cd2+吸附也起到了协同作用.%The adsorption of aqueous Cd2+ by baker's yeast modified by KMnO4 was explored. Several factors, including the concentration of KMnO4 used to modify the baker's yeast, pH, adsorption time, the initial concentration of Cd2 + , and the dosage of KMnO4 modified yeast, were investigated to evaluate the adsorption effect. The results showed that the adsorption capacity of modified baker's yeast was improved with the increasing KMnO4 concentration and the optimal amount of KMnO4 modified baker's yeast was about 6 g·L-1. When the concentration of KMnO4 was 20 mmol·L-1 , the adsorption capacity was double that of untreated yeast under the same conditions. In the range of pH 5.0 ~ 7. 0, the adsorption was the best; adsorption equilibrium was reached at 30 min. When the initial concentration of Cd2+ was 100 mg·L-1 , KMnO4 modified baker's yeast

  20. The Budding YeastSaccharomyces cerevisiae” as a Drug Discovery Tool to Identify Plant-Derived Natural Products with Anti-Proliferative Properties

    Science.gov (United States)

    Qaddouri, Bouchra; Guaadaoui, Abdelkarim; Bellirou, Ahmed; Hamal, Abdellah; Melhaoui, Ahmed; Brown, Grant W.; Bellaoui, Mohammed

    2011-01-01

    The budding yeast Saccharomyces cerevisiae is a valuable system to study cell-cycle regulation, which is defective in cancer cells. Due to the highly conserved nature of the cell-cycle machinery between yeast and humans, yeast studies are directly relevant to anticancer-drug discovery. The budding yeast is also an excellent model system for identifying and studying antifungal compounds because of the functional conservation of fungal genes. Moreover, yeast studies have also contributed greatly to our understanding of the biological targets and modes of action of bioactive compounds. Understanding the mechanism of action of clinically relevant compounds is essential for the design of improved second-generation molecules. Here we describe our methodology for screening a library of plant-derived natural products in yeast in order to identify and characterize new compounds with anti-proliferative properties. PMID:19596744

  1. The Budding YeastSaccharomyces cerevisiae” as a Drug Discovery Tool to Identify Plant-Derived Natural Products with Anti-Proliferative Properties

    Directory of Open Access Journals (Sweden)

    Bouchra Qaddouri

    2011-01-01

    Full Text Available The budding yeast Saccharomyces cerevisiae is a valuable system to study cell-cycle regulation, which is defective in cancer cells. Due to the highly conserved nature of the cell-cycle machinery between yeast and humans, yeast studies are directly relevant to anticancer-drug discovery. The budding yeast is also an excellent model system for identifying and studying antifungal compounds because of the functional conservation of fungal genes. Moreover, yeast studies have also contributed greatly to our understanding of the biological targets and modes of action of bioactive compounds. Understanding the mechanism of action of clinically relevant compounds is essential for the design of improved second-generation molecules. Here we describe our methodology for screening a library of plant-derived natural products in yeast in order to identify and characterize new compounds with anti-proliferative properties.

  2. Complex Ancestries of Lager-Brewing Hybrids Were Shaped by Standing Variation in the Wild Yeast Saccharomyces eubayanus.

    Science.gov (United States)

    Peris, David; Langdon, Quinn K; Moriarty, Ryan V; Sylvester, Kayla; Bontrager, Martin; Charron, Guillaume; Leducq, Jean-Baptiste; Landry, Christian R; Libkind, Diego; Hittinger, Chris Todd

    2016-07-01

    Lager-style beers constitute the vast majority of the beer market, and yet, the genetic origin of the yeast strains that brew them has been shrouded in mystery and controversy. Unlike ale-style beers, which are generally brewed with Saccharomyces cerevisiae, lagers are brewed at colder temperatures with allopolyploid hybrids of Saccharomyces eubayanus x S. cerevisiae. Since the discovery of S. eubayanus in 2011, additional strains have been isolated from South America, North America, Australasia, and Asia, but only interspecies hybrids have been isolated in Europe. Here, using genome sequence data, we examine the relationships of these wild S. eubayanus strains to each other and to domesticated lager strains. Our results support the existence of a relatively low-diversity (π = 0.00197) lineage of S. eubayanus whose distribution stretches across the Holarctic ecozone and includes wild isolates from Tibet, new wild isolates from North America, and the S. eubayanus parents of lager yeasts. This Holarctic lineage is closely related to a population with higher diversity (π = 0.00275) that has been found primarily in South America but includes some widely distributed isolates. A second diverse South American population (π = 0.00354) and two early-diverging Asian subspecies are more distantly related. We further show that no single wild strain from the Holarctic lineage is the sole closest relative of lager yeasts. Instead, different parts of the genome portray different phylogenetic signals and ancestry, likely due to outcrossing and incomplete lineage sorting. Indeed, standing genetic variation within this wild Holarctic lineage of S. eubayanus is responsible for genetic variation still segregating among modern lager-brewing hybrids. We conclude that the relationships among wild strains of S. eubayanus and their domesticated hybrids reflect complex biogeographical and genetic processes.

  3. Genome and transcriptome analyses reveal that MAPK- and phosphatidylinositol-signaling pathways mediate tolerance to 5-hydroxymethyl-2-furaldehyde for industrial yeast Saccharomyces cerevisiae

    Science.gov (United States)

    The industrial ethanologenic yeast Saccharomyces cerevisiae is a promising biocatalyst for next-generation advanced biofuels applications including lignocellulose-to-ethanol conversion. Here we present the first insight into the genomic background of NRRL Y-12632, a type strain from a worldwide coll...

  4. A reference model systesm of industrial yeasts Saccharomyces cerevisiae is needed for development of the next-generation biocatalyst toward advanced biofuels production

    Science.gov (United States)

    Diploid industrial yeast Saccharomyces cerevisiae has demonstrated distinct characteristics that differ from haploid laboratory model strains. However, as a workhorse for a broad range of fermentation-based industrial applications, it was poorly characterized at the genome level. Observations on the...

  5. Iron enriched Saccharomyces cerevisiae maintains its fermenting power and bakery properties

    Directory of Open Access Journals (Sweden)

    Fernanda Gaensly

    2011-12-01

    Full Text Available Iron is an essential micronutrient in the metabolism of almost all living organisms; however, its deficiency is well documented especially in pregnant women and in children. Iron salts as a dietary supplement have low bioavailability and can cause gastrointestinal discomforts. Iron enriched yeasts can provide a supplementation of this micronutrient to the diet because this mineral has a better bioavailability when bonded to yeast cell macromolecules. These yeasts can be used as feed supplement for human and animals and also as baker's yeast. Baker's yeast Saccharomyces cerevisiae was cultivated in a reactor employing yeast media supplemented with 497 mg ferrous sulfate.L-1, and the resultant biomass incorporated 8 mg Fe.g-1 dry matter. This biomass maintained its fermenting power regarding both water displace measurement through carbonic dioxide production and bakery characteristics. The bread produced using the yeast obtained by cultivation in yeast media supplemented with iron presented six times more iron than the bread produced using the yeast obtained by cultivation without iron supplementation.

  6. Studying Coxiella burnetii Type IV Substrates in the Yeast Saccharomyces cerevisiae: Focus on Subcellular Localization and Protein Aggregation.

    Science.gov (United States)

    Rodríguez-Escudero, María; Cid, Víctor J; Molina, María; Schulze-Luehrmann, Jan; Lührmann, Anja; Rodríguez-Escudero, Isabel

    2016-01-01

    Coxiella burnetii is a Gram-negative obligate parasitic bacterium that causes the disease Q-fever in humans. To establish its intracellular niche, it utilizes the Icm/Dot type IVB secretion system (T4BSS) to inject protein effectors into the host cell cytoplasm. The host targets of most cognate and candidate T4BSS-translocated effectors remain obscure. We used the yeast Saccharomyces cerevisiae as a model to express and study six C. burnetii effectors, namely AnkA, AnkB, AnkF, CBU0077, CaeA and CaeB, in search for clues about their role in C. burnetii virulence. When ectopically expressed in HeLa cells, these effectors displayed distinct subcellular localizations. Accordingly, GFP fusions of these proteins produced in yeast also decorated distinct compartments, and most of them altered cell growth. CaeA was ubiquitinated both in yeast and mammalian cells and, in S. cerevisiae, accumulated at juxtanuclear quality-control compartments (JUNQs) and insoluble protein deposits (IPODs), characteristic of aggregative or misfolded proteins. AnkA, which was not ubiquitinated, accumulated exclusively at the IPOD. CaeA, but not AnkA or the other effectors, caused oxidative damage in yeast. We discuss that CaeA and AnkA behavior in yeast may rather reflect misfolding than recognition of conserved targets in the heterologous system. In contrast, CBU0077 accumulated at vacuolar membranes and abnormal ER extensions, suggesting that it interferes with vesicular traffic, whereas AnkB associated with the yeast nucleolus. Both effectors shared common localization features in HeLa and yeast cells. Our results support the idea that C. burnetii T4BSS effectors manipulate multiple host cell targets, which can be conserved in higher and lower eukaryotic cells. However, the behavior of CaeA and AnkA prompt us to conclude that heterologous protein aggregation and proteostatic stress can be a limitation to be considered when using the yeast model to assess the function of bacterial effectors.

  7. Studying Coxiella burnetii Type IV Substrates in the Yeast Saccharomyces cerevisiae: Focus on Subcellular Localization and Protein Aggregation.

    Directory of Open Access Journals (Sweden)

    María Rodríguez-Escudero

    Full Text Available Coxiella burnetii is a Gram-negative obligate parasitic bacterium that causes the disease Q-fever in humans. To establish its intracellular niche, it utilizes the Icm/Dot type IVB secretion system (T4BSS to inject protein effectors into the host cell cytoplasm. The host targets of most cognate and candidate T4BSS-translocated effectors remain obscure. We used the yeast Saccharomyces cerevisiae as a model to express and study six C. burnetii effectors, namely AnkA, AnkB, AnkF, CBU0077, CaeA and CaeB, in search for clues about their role in C. burnetii virulence. When ectopically expressed in HeLa cells, these effectors displayed distinct subcellular localizations. Accordingly, GFP fusions of these proteins produced in yeast also decorated distinct compartments, and most of them altered cell growth. CaeA was ubiquitinated both in yeast and mammalian cells and, in S. cerevisiae, accumulated at juxtanuclear quality-control compartments (JUNQs and insoluble protein deposits (IPODs, characteristic of aggregative or misfolded proteins. AnkA, which was not ubiquitinated, accumulated exclusively at the IPOD. CaeA, but not AnkA or the other effectors, caused oxidative damage in yeast. We discuss that CaeA and AnkA behavior in yeast may rather reflect misfolding than recognition of conserved targets in the heterologous system. In contrast, CBU0077 accumulated at vacuolar membranes and abnormal ER extensions, suggesting that it interferes with vesicular traffic, whereas AnkB associated with the yeast nucleolus. Both effectors shared common localization features in HeLa and yeast cells. Our results support the idea that C. burnetii T4BSS effectors manipulate multiple host cell targets, which can be conserved in higher and lower eukaryotic cells. However, the behavior of CaeA and AnkA prompt us to conclude that heterologous protein aggregation and proteostatic stress can be a limitation to be considered when using the yeast model to assess the function of

  8. Chromosome VIII disomy influences the nonsense suppression efficiency and transition metal tolerance of the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Zadorsky, S P; Sopova, Y V; Andreichuk, D Y; Startsev, V A; Medvedeva, V P; Inge-Vechtomov, S G

    2015-06-01

    The SUP35 gene of the yeast Saccharomyces cerevisiae encodes the translation termination factor eRF3. Mutations in this gene lead to the suppression of nonsense mutations and a number of other pleiotropic phenotypes, one of which is impaired chromosome segregation during cell division. Similar effects result from replacing the S. cerevisiae SUP35 gene with its orthologues. A number of genetic and epigenetic changes that occur in the sup35 background result in partial compensation for this suppressor effect. In this study we showed that in S. cerevisiae strains in which the SUP35 orthologue from the yeast Pichia methanolica replaces the S. cerevisiae SUP35 gene, chromosome VIII disomy results in decreased efficiency of nonsense suppression. This antisuppressor effect is not associated with decreased stop codon read-through. We identified SBP1, a gene that localizes to chromosome VIII, as a dosage-dependent antisuppressor that strongly contributes to the overall antisuppressor effect of chromosome VIII disomy. Disomy of chromosome VIII also leads to a change in the yeast strains' tolerance of a number of transition metal salts.

  9. Bio-Technological Characterization of the Saccharomyces bayanus Yeast Strains in Order to Preserve the Local Specificity

    Directory of Open Access Journals (Sweden)

    Enikő Gaspar

    2011-05-01

    Full Text Available The wine yeasts have multiple and important applications in the industry, aiming to obtain pure cultures and the selection of those strains which, according to the lab investigations, present superior bio-technological properties. In this study we monitored three types of Saccharomyces bayanus yeast strains, isolated from indigenous grapes varieties, Apold Iordana, Italian Blaj Riesling and Royal Feteasca from Jidvei area, which are present in the collection of the Biotechnologies and Microbiology Research Center of SAIAPM University. The yeast strains were subject to alcoholic fermentation in malt must at different temperatures, in the presence of alcohol, sugar and SO2 in various concentrations. The obtained results led to selecting of those strains which had best results regarding the alcoholic tolerance, osmo-tolerance, fermentation speed under stress conditions and resistance to SO2. These results can have practical applications in using the indigenous strains, isolated from grapes which are from inside the country, so that we preserve the local specificity, and reduce imports regarding this area.

  10. Looking beyond Saccharomyces: the potential of non-conventional yeast species for desirable traits in bioethanol fermentation.

    Science.gov (United States)

    Radecka, Dorota; Mukherjee, Vaskar; Mateo, Raquel Quintilla; Stojiljkovic, Marija; Foulquié-Moreno, María R; Thevelein, Johan M

    2015-09-01

    Saccharomyces cerevisiae has been used for millennia in the production of food and beverages and is by far the most studied yeast species. Currently, it is also the most used microorganism in the production of first-generation bioethanol from sugar or starch crops. Second-generation bioethanol, on the other hand, is produced from lignocellulosic feedstocks that are pretreated and hydrolyzed to obtain monomeric sugars, mainly D-glucose, D-xylose and L-arabinose. Recently, S. cerevisiae recombinant strains capable of fermenting pentose sugars have been generated. However, the pretreatment of the biomass results in hydrolysates with high osmolarity and high concentrations of inhibitors. These compounds negatively influence the fermentation process. Therefore, robust strains with high stress tolerance are required. Up to now, more than 2000 yeast species have been described and some of these could provide a solution to these limitations because of their high tolerance to the most predominant stress conditions present in a second-generation bioethanol reactor. In this review, we will summarize what is known about the non-conventional yeast species showing unusual tolerance to these stresses, namely Zygosaccharomyces rouxii (osmotolerance), Kluyveromyces marxianus and Ogataea (Hansenula) polymorpha (thermotolerance), Dekkera bruxellensis (ethanol tolerance), Pichia kudriavzevii (furan derivatives tolerance) and Z. bailii (acetic acid tolerance).

  11. Imaging single mRNAs to study dynamics of mRNA export in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Bensidoun, Pierre; Raymond, Pascal; Oeffinger, Marlene; Zenklusen, Daniel

    2016-04-01

    Regulation of mRNA and protein expression occurs at many levels, initiated at transcription and followed by mRNA processing, export, localization, translation and mRNA degradation. The ability to study mRNAs in living cells has become a critical tool to study and analyze how the various steps of the gene expression pathway are carried out. Here we describe a detailed protocol for real time fluorescent RNA imaging using the PP7 bacteriophage coat protein, which allows mRNA detection with high spatial and temporal resolution in the yeast Saccharomyces cerevisiae, and can be applied to study various stages of mRNA metabolism. We describe the different parameters required for quantitative single molecule imaging in yeast, including strategies for genomic integration, expression of a PP7 coat protein GFP fusion protein, microscope setup and analysis strategies. We illustrate the method's use by analyzing the behavior of nuclear mRNA in yeast and the role of the nuclear basket in mRNA export.

  12. Designed construction of recombinant DNA at the ura3Δ0 locus in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Fukunaga, Tomoaki; Cha-Aim, Kamonchai; Hirakawa, Yuki; Sakai, Ryota; Kitagawa, Takao; Nakamura, Mikiko; Nonklang, Sanom; Hoshida, Hisashi; Akada, Rinji

    2013-06-01

    Recombinant DNAs are traditionally constructed using Escherichia coli plasmids. In the yeast Saccharomyces cerevisiae, chromosomal gene targeting is a common technique, implying that the yeast homologous recombination system could be applied for recombinant DNA construction. In an attempt to use a S. cerevisiae chromosome for recombinant DNA construction, we selected the single ura3Δ0 locus as a gene targeting site. By selecting this single locus, repeated recombination using the surrounding URA3 sequences can be performed. The recombination system described here has several advantages over the conventional plasmid system, as it provides a method to confirm the selection of correct recombinants because transformation of the same locus replaces the pre-existing selection marker, resulting in the loss of the marker in successful recombinations. In addition, the constructed strains can serve as both PCR templates and hosts for preparing subsequent recombinant strains. Using this method, several yeast strains that contained selection markers, promoters, terminators and target genes at the ura3Δ0 locus were successfully generated. The system described here can potentially be applied for the construction of any recombinant DNA without the requirement for manipulations in E. coli. Interestingly, we unexpectedly found that several G/C-rich sequences used for fusion PCR lowered gene expression when located adjacent to the start codon.

  13. Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis

    DEFF Research Database (Denmark)

    Nissen, Torben Lauesgaard; Hamann, Claus Wendelboe; Kielland-Brandt, M. C.;

    2000-01-01

    Glycerol is formed as a by-product in production of ethanol and baker's yeast during fermentation of Saccharomyces cerevisiae under anaerobic and aerobic growth conditions, respectively. One physiological role of glycerol formation by yeast is to reoxidize NADH, formed in synthesis of biomass....... The modest effect of the GPD1 deletion under anaerobic conditions on the maximum specific growth rate and product yields clearly showed that Gdh2p is the important factor in glycerol formation during anaerobic growth. Strain TN6 (gpd1-Delta 1 gpd2-Delta 1) was unable to grow under anaerobic conditions due...

  14. Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals

    DEFF Research Database (Denmark)

    Borodina, Irina; Nielsen, Jens

    2014-01-01

    the development of yeast cell factories. We also present an overview of metabolic engineering strategies for developing yeast strains for production of polymer monomers: lactic, succinic, and cis,cis-muconic acids. S. cerevisiae has already firmly established itself as a cell factory in industrial biotechnology...

  15. Efficient simultaneous saccharification and fermentation of agricultural residues by Saccharomyces cerevisiae and Candida shehatae. The D-xylose fermenting yeast.

    Science.gov (United States)

    Palnitkar, S S; Lachke, A H

    1990-11-01

    Simultaneous Saccharification and Fermentation (SSF) experiments were carried out on agricultural residues using culture filtrate of Sclerotium rolfsii, which produces high levels of cellulases and hemicellulases for the saccharification of rice straw and bagasse, and Candida shehatae--the D-xylose fermenting yeast, and Saccharomyces cerevisiae, both separately and in coculture, for fermenting the released sugars. The coculture system showed efficient utilization of hydrolyzed sugars with 30-38% and 10-13% increase in ethanol production as compared to C. shehatae and S. cerevisiae, respectively, when cultivated separately. SSF simulation studies were carried out using standard sugar mixtures of glucose, xylose, and cellobiose. Both organisms could not use cellobiose, whereas glucose was used preferentially. C. shehatae was capable of utilizing xylose in the presence of glucose.

  16. Crystallization and preliminary X-ray analysis of beta-alanine synthase from the yeast Saccharomyces kluyveri

    DEFF Research Database (Denmark)

    Dobritzsch, D.; Gojkovic, Zoran; Andersen, Birgit

    2003-01-01

    In eukaryotes and some bacteria, the third step of reductive pyrimidine catabolism is catalyzed by beta-alanine synthase (EC 3.5.1.6). Crystals of the recombinant enzyme from the yeast Saccharomyces kluyveri were obtained using sodium citrate as a precipitant. The crystals belong to space group P2......(1) (unit-cell parameters a=117.2, b=77.1, c=225.5 Angstrom, beta=95.0degrees) and contain four homodimers per asymmetric unit. Data were collected to 2.7 Angstrom resolution. Introduction of heavy atoms into the crystal lattice induced a different set of unit-cell parameters (a=61.0, b=77.9, c=110.......1 Angstrom, beta=97.2degrees) in the same space group P2(1), with only one homodimer per asymmetric unit....

  17. Heterologous Expression of Membrane and Soluble Proteins Derepresses GCN4 mRNA Translation in the Yeast Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Steffensen, L.; Pedersen, P. A.

    2006-01-01

    of the membrane-bound 1ß1 Na,K-ATPase from pig kidney, the rat pituitary adenylate cyclase seven-transmembrane-domain receptor, or a 401-residue soluble part of the Na,K-ATPase 1 subunit derepressed GCN4 mRNA translation up to 70-fold. GCN4 translation was very sensitive to the presence of heterologous protein......This paper describes the first physiological response at the translational level towards heterologous protein production in Saccharomyces cerevisiae. In yeast, the phosphorylation of eukaryotic initiation factor 2 (eIF-2 ) by Gcn2p protein kinase mediates derepression of GCN4 mRNA translation. Gcn4......, as a density of 1 of heterologous membrane protein derepressed translation maximally. Translational derepression of GCN4 was not triggered by misfolding in the endoplasmic reticulum, as expression of the wild type or temperature-sensitive folding mutants of the Na,K-ATPase increased GCN4 translation...

  18. The study on the candidate probiotic properties of encapsulated yeast, Saccharomyces cerevisiae JCM 7255, in Nile Tilapia (Oreochromis niloticus).

    Science.gov (United States)

    Pinpimai, Komkiew; Rodkhum, Channarong; Chansue, Nantarika; Katagiri, Takayuki; Maita, Masashi; Pirarat, Nopadon

    2015-10-01

    Saccharomyces cerevisiae JCM 7255 was tested as a probiotic candidate in tilapia after encapsulating and freeze drying. Viability and morphology during storage and during transit through simulated gut and bile conditions were determined. Growth performance, anti-streptococcal activity and gut mucosal immune parameters were also tested. The viability of encapsulated yeasts was significantly high in simulated gastric and bile conditions and remained high after storage at room temperature for 14 days. The morphology of free S. cerevisiae revealed rough, bumpy, ruptured surface during incubation in gut and bile conditions. Agar spot anti-streptococcal activity showed inhibition of 20 out of 30 strains of Streptococcus agalactiae. Supplementation improved the intestinal structure and growth performance in tilapias. Intraepithelial lymphocytes in the proximal intestine were significantly observed. Lower cumulative mortality after the oral streptococcal challenge was also seen. The results suggest that encapsulated S. cerevisiae JCM 2755 could be a potential probiotic strain in tilapia culture.

  19. Yeast β-1,6-glucan is a primary target for the Saccharomyces cerevisiae K2 toxin.

    Science.gov (United States)

    Lukša, Juliana; Podoliankaitė, Monika; Vepštaitė, Iglė; Strazdaitė-Žielienė, Živilė; Urbonavičius, Jaunius; Servienė, Elena

    2015-04-01

    Certain Saccharomyces cerevisiae strains secrete different killer proteins of double-stranded-RNA origin. These proteins confer a growth advantage to their host by increasing its survival. K2 toxin affects the target cell by binding to the cell surface, disrupting the plasma membrane integrity, and inducing ion leakage. In this study, we determined that K2 toxin saturates the yeast cell surface receptors in 10 min. The apparent amount of K2 toxin, bound to a single cell of wild type yeast under saturating conditions, was estimated to be 435 to 460 molecules. It was found that an increased level of β-1,6-glucan directly correlates with the number of toxin molecules bound, thereby impacting the morphology and determining the fate of the yeast cell. We observed that the binding of K2 toxin to the yeast surface receptors proceeds in a similar manner as in case of the related K1 killer protein. It was demonstrated that the externally supplied pustulan, a poly-β-1,6-glucan, but not the glucans bearing other linkage types (such as laminarin, chitin, and pullulan) efficiently inhibits the K2 toxin killing activity. In addition, the analysis of toxin binding to the intact cells and spheroplasts confirmed that majority of K2 protein molecules attach to the β-1,6-glucan, rather than the plasma membrane-localized receptors. Taken together, our results reveal that β-1,6-glucan is a primary target of K2 toxin and is important for the execution of its killing property.

  20. Entropy of Baker's Transformation

    Institute of Scientific and Technical Information of China (English)

    栾长福

    2003-01-01

    Four theorems about four different kinds of entropies for Baker's transformation are presented. The Kolmogorov entropy of Baker's transformation is sensitive to the initial flips by the time. The topological entropy of Baker's transformation is found to be log k. The conditions for the state of Baker's transformation to be forbidden are also derived. The relations among the Shanonn, Kolmogorov, topological and Boltzmann entropies are discussed in details.

  1. Produksi Bioetanol dari Bahan Baku Singkong, Jagung dan Iles-iles :Pengaruh Suhu Fermentasi dan Berat Yeast Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    K. Kusmiyati

    2014-12-01

    Full Text Available Kebutuhan bahan bakar di masa sekarang semakin bertambah besar sehingga berdampak pada menipisnya sumber bahan bakar dan meningkatnya polusi udara di lingkungan. Penggunaan bahan bakar alternatif dari sumber non fosil merupakan pilihan terbaik sebagai pengganti bahan bakar fosil. Bioetanol merupakan salah satu energi alternatif yang tepat digunakan baik di masa sekarang ataupun di masa yang akan datang. Bahan baku etanol yang digunakan pada penelitian ini adalah singkong, dan iles-iles.Variabel penelitian yang diamati temperatur fermentasi (30°C; 40°C;­­ 50°C dan komposisi Saccharomyces cerevisiae (2,5 g; 5 g; 10 g; 15 g Proses pembuatan bioetanol terdiri dari hidrolisis enzim yaitun likuifikasi menggunakan a-amylase1,6% v/w (t = 1 jam; T = 95-100°C; pH 6 dan sakarifikasi menggunakan b-amylase 3,2% v/w (t = 4 jam; T = 60°C; pH 5 serta proses fermentasi menggunakan Saccharomyces cerevisiae ( t = 120 jam; pH 4,5; yeast 5 g. Kadar etanol tertinggi dihasilkan pada temperatur fermentasi 30°C untuk semua bahan baku dengan kadar etanol masing-masing 83,43 g/L untuk singkong,80,77 g/L untuk jagung,dan 79,94 g/L untuk iles-iles. Normal 0 false false false EN-US X-NONE X-NONE

  2. A synthetic hybrid promoter for xylose-regulated control of gene expression in Saccharomyces yeasts

    Science.gov (United States)

    Metabolism of non-glucose carbon sources is often highly regulated at the transcriptional and post-translational levels. This level of regulation is lacking in Saccharomyces cerevisiae strains engineered to metabolize xylose. To better control transcription in S. cerevisiae, the xylose-dependent, DN...

  3. Display of wasp venom allergens on the cell surface of Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Borodina, Irina; Jensen, B. M.; Søndergaard, Ib;

    2010-01-01

    Background: Yeast surface display is a technique, where the proteins of interest are expressed as fusions with yeast surface proteins and thus remain attached to the yeast cell wall after expression. Our purpose was to study whether allergens expressed on the cell surface of baker's yeast...... Saccharomyces cerevisiae preserve their native allergenic properties and whether the yeast native surface glycoproteins interfere with IgE binding. We chose to use the major allergens from the common wasp Vespula vulgaris venom: phospholipase A1, hyaluronidase and antigen 5 as the model. Results: The proteins...... were expressed on the surface as fusions with a-agglutinin complex protein AGA2. The expression was confirmed by fluorescent cytometry (FACS) after staining the cells with antibody against a C-tag attached to the C-terminal end of the allergens. Phospholipase A1 and hyaluronidase retained...

  4. New hybrids between Saccharomyces sensu stricto yeast species found among wine and cider production strains

    DEFF Research Database (Denmark)

    Masneuf, I; Hansen, J.; Groth, C;

    1998-01-01

    Two yeast isolates, a wine-making yeast first identified as a Mel(+) strain (ex. S. uvarum) and a cider-making yeast, were characterized for their nuclear and mitochondrial genomes, Electrophoretic karyotyping analyses, restriction fragment length polymorphism maps of PCR-amplified MET2 gene...... as different sequences of the OLI1 gene. The sequence of the OLI1 gene from the wine hybrid strain appeared to be the same as that of the S. cerevisiae gene, whereas the OLI1 gene of the cider hybrid strain its equally divergent from both putative parents, S. bayanus and S, cerevisiae, Some fermentative...

  5. Correlation between the trehalose content and the stress resistance of the baker yeasts%面包酵母海藻糖含量与酵母耐性之间的关系

    Institute of Scientific and Technical Information of China (English)

    陈丽君; 肖冬光; 郭学武; 张翠英; 盖伟东

    2011-01-01

    The freeze-tolerance,the stress resistance and the trehalose content of different baker yeasts in the different periods was discussed.It was found that there was a correlation between the trehalose content and the stress resistance,and there was a better stress resistance with the higher trehalose content.%以存活率为指标,探讨了不同时期不同面包酵母的耐盐性能、耐酒精性能、耐高温性能以及耐冷冻性能,并且测定了不同时期菌体胞内海藻糖含量,研究结果表明胞内海藻糖含量与酵母的耐受性之间存在一定的相关性,海藻糖含量越高,酵母的耐性越好。

  6. Evaluation of growth and survival rate of Artemia parthenogenetica feed with micro algae (Isochrysis galbana and Chlorella vulgaris and bakery yeast (Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Mehdi Dehghan

    2011-10-01

    Full Text Available This study was done to evaluate growth and survival rate of Maharloo lake artemia (ArtemiaParthenogenetica (Bowen & Sterling, 1978 which feed with two species of microalgae (IsochrysisGalbana and Chlorella vulgaris and bakery yeast (Saccharomyces cerevisiae with different nutritiousingredients for 15 days. We evaluated them in 3rd, 7th, 11th and 15thdays of cultivation period for 4 times. This experiment was done in completely randomized design with 4 treatments (3 treatments and 1 control and each treatment has 3 replicates. Artemia parthenogenetica nauplii were feed with three different types of food that includes Isochrysis galbana microalgae (T1, Chlorella vulgaris (T2 and Saccharomyces cerevisiae yeast (T4. Control had feed with blend of these three matters. After 15 days the highest survival rate was observed in control (84.00 and the lowest one was related to the T4 (59.58 which feed with Saccharomyces cerevisiae yeast (p<0.05. The highest growth rate was observed in T4, T3, followed by T1 and T2 respectively. Achievement results showed significantdifferences between control and other treatments (p<0.05. This study proved that treatments whichfeed with blend of two micro algae's species and bakery yeast have higher survival ability than theother treatments.

  7. Process for assembly and transformation into Saccharomyces cerevisiae of a synthetic yeast artificial chromosome containing a multigene cassette to express enzymes that enhance xylose utilization designed for an automated pla

    Science.gov (United States)

    A yeast artificial chromosome (YAC) containing a multigene cassette for expression of enzymes that enhance xylose utilization (xylose isomerase [XI] and xylulokinase [XKS]) was constructed and transformed into Saccharomyces cerevisiae to demonstrate feasibility as a stable protein expression system ...

  8. Partial purification of histone H3 proteolytic activity from the budding yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Azad, Gajendra Kumar; Tomar, Raghuvir Singh

    2016-06-01

    The proteolytic clipping of histone tails has recently emerged as a novel form of irreversible post-translational modification (PTM) of histones. Histone clipping has been implicated as a regulatory process leading to the permanent removal of PTMs from histone proteins. However, there is scarcity of literature that describes the identification and characterization of histone-specific proteases. Here, we employed various biochemical methods to report histone H3-specific proteolytic activity from budding yeast. Our results demonstrate that H3 proteolytic activity was associated with sepharose bead matrices and activity was not affected by a variety of stress conditions. We have also identified the existence of an unknown protein that acts as a physiological inhibitor of the H3-clipping activity of yeast H3 protease. Moreover, through protease inhibition assays, we have also characterized yeast H3 protease as a serine protease. Interestingly, unlike glutamate dehydrogenase (GDH), yeast H3 proteolytic activity was not inhibited by Stefin B. Together, our findings suggest the existence of a novel H3 protease in yeast that is different from other reported histone H3 proteases. The presence of histone H3 proteolytic activity, along with the physiological inhibitor in yeast, suggests an interesting molecular mechanism that regulates the activity of histone proteases. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Assessing the mechanisms responsible for differences between nitrogen requirements of saccharomyces cerevisiae wine yeasts in alcoholic fermentation.

    Science.gov (United States)

    Brice, Claire; Sanchez, Isabelle; Tesnière, Catherine; Blondin, Bruno

    2014-02-01

    Nitrogen is an essential nutrient for Saccharomyces cerevisiae wine yeasts during alcoholic fermentation, and its abundance determines the fermentation rate and duration. The capacity to ferment under conditions of nitrogen deficiency differs between yeasts. A characterization of the nitrogen requirements of a set of 23 strains revealed large differences in their fermentative performances under nitrogen deficiency, and these differences reflect the nitrogen requirements of the strains. We selected and compared two groups of strains, one with low nitrogen requirements (LNRs) and the other with high nitrogen requirements (HNRs). A comparison of various physiological traits indicated that the differences are not related to the ability to store nitrogen or the protein content. No differences in protein synthesis activity were detected between strains with different nitrogen requirements. Transcriptomic analysis revealed expression patterns specific to each of the two groups of strains, with an overexpression of stress genes in HNR strains and a stronger expression of biosynthetic genes in LNR strains. Our data suggest that differences in glycolytic flux may originate from variations in nitrogen sensing and signaling under conditions of starvation.

  10. [Control levels of Sin3 histone deacetylase for spontaneous and UV-induced mutagenesis in yeasts Saccharomyces cerevisiae].

    Science.gov (United States)

    Lebovka, I Iu; Kozhina, T N; Fedorova, I V; Peshekhonov, V T; Evstiukhina, T A; Chernenkov, A Iu; Korolev, V G

    2014-01-01

    SIN3 gene product operates as a repressor for a huge amount of genes in Saccharomyces cerevisiae. Sin3 protein with a mass of about 175 kDa is a member of the RPD3 protein complex with an assessed mass of greater than 2 million Da. It was previously shownthat RPD3 gene mutations influence recombination and repair processes in S. cerevisiae yeasts. We studied the impacts of the sin3 mutation on UV-light sensitivity and UV-induced mutagenesis in budding yeast cells. The deletion ofthe SIN3 gene causes weak UV-sensitivity of mutant budding cells as compared to the wild-type strain. These results show that the sin3 mutation decreases both spontaneous and UV-induced levels of levels. This fact is hypothetically related to themalfunction of ribonucleotide reductase activity regulation, which leads to a decrease in the dNTP pool and the inaccurate error-prone damage bypass postreplication repair pathway, which in turn provokes a reduction in the incidence of mutations.

  11. Relationships between chromatin remodeling and DNA damage repair induced by 8-methoxypsoralen and UVA in yeast Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Lavínia Almeida Cruz

    2012-01-01

    Full Text Available Eukaryotic cells have developed mechanisms to prevent genomic instability, such as DNA damage detection and repair, control of cell cycle progression and cell death induction. The bifunctional compound furocumarin 8-methoxy-psoralen (8-MOP is widely used in the treatment of various inflammatory skin diseases. In this review, we summarize recent data about the role of chromatin remodeling in the repair of DNA damage induced by treatment with 8-methoxypsoralen plus UVA (8-MOP+UVA, focusing on repair proteins in budding yeast Saccharomyces cerevisiae, an established model system for studying DNA repair pathways. The interstrand crosslinks (ICL formed by the 8-MOP+UVA treatment are detrimental lesions that can block transcription and replication, leading to cell death if not repaired. Current data show the involvement of different pathways in ICL processing, such as nucleotide excision repair (NER, base excision repair (BER, translesion repair (TLS and double-strand break repair. 8-MOP+UVA treatment in yeast enhances the expression of genes involved in the DNA damage response, double strand break repair by homologous replication, as well as genes related to cell cycle regulation. Moreover, alterations in the expression of subtelomeric genes and genes related to chromatin remodeling are consistent with structural modifications of chromatin relevant to DNA repair. Taken together, these findings indicate a specific profile in 8-MOP+UVA responses related to chromatin remodeling and DNA repair.

  12. Indigenous Saccharomyces cerevisiae yeasts as a source of biodiversity for the selection of starters for specific fermentations

    Directory of Open Access Journals (Sweden)

    Capece Angela

    2014-01-01

    Full Text Available The long-time studies on wine yeasts have determined a wide diffusion of inoculated fermentations by commercial starters, mainly of Saccharomyces. Although the use of starter cultures has improved the reproducibility of wine quality, the main drawback to this practice is the lack of the typical traits of wines produced by spontaneous fermentation. These findings have stimulated wine-researchers and wine-makers towards the selection of autochthonous strains as starter cultures. The objective of this study was to investigate the biodiversity of 167 S. cerevisiae yeasts, isolated from spontaneous fermentation of grapes. The genetic variability of isolates was evaluated by PCR amplification of inter-δ region with primer pair δ2/δ12. The same isolates were investigated for characteristics of oenological interest, such as resistance to sulphur dioxide, ethanol and copper and hydrogen sulphide production. On the basis of technological and molecular results, 20 strains were chosen and tested into inoculated fermentations at laboratory scale. The experimental wines were analyzed for the content of some by-products correlated to wine aroma, such as higher alcohols, acetaldehyde, ethyl acetate and acetic acid. One selected strain was used as starter culture to perform fermentation at cellar level. The selection program followed during this research project represents an optimal combination between two different trends in modern winemaking: the use of S. cerevisiae as starter cultures and the starter culture selection for specific fermentations.

  13. Molecular characterization of the heteromeric coenzyme A-synthesizing protein complex (CoA-SPC) in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Olzhausen, Judith; Moritz, Tom; Neetz, Tim; Schüller, Hans-Joachim

    2013-09-01

    Coenzyme A (CoA) as an essential cofactor for acyl and acetyl transfer reactions is synthesized in five enzymatic steps from pantothenate, cysteine, and ATP. In the yeast Saccharomyces cerevisiae, products of five essential genes CAB1-CAB5 (coenzyme A biosynthesis) are required to catalyze CoA biosynthesis. In addition, nonessential genes SIS2 and VHS3 similar to CAB3 are also involved. Using epitope-tagged variants of Cab3 and Cab5, we show that both proteins cofractionate upon chromatographic separation, forming a complex of about 330 kDa. We thus systematically investigated interactions among Cab proteins. Our results show that Cab2, Cab3, Cab4, and Cab5 indeed bind to each other, with Cab3 as the sole protein, which can interact with itself and other Cab proteins. Cab3 also binds to Sis2 and Vhs3 that were previously characterized as subunits of phosphopantothenoylcysteine decarboxylase. Pantothenate kinase encoded by CAB1 as the rate-limiting enzyme of CoA biosynthesis did not interact with other Cab proteins. Mapping studies revealed that the nonconserved N-terminus of Cab3 is required for dimerization and for binding of Cab2 and Cab5. Our interaction studies confirm early reports on the existence of a CoA-synthesizing protein complex (CoA-SPC) in yeast and provide precise data on protein domains involved in complex formation.

  14. Efeito da temperatura de estocagem de leveduras de panificação sobre a atividade da glicerol-3-fosfato desidrogenase The effect of storage temperature on the glycerol-3-phosphate dehydrogenase activity of baker's yeasts

    Directory of Open Access Journals (Sweden)

    Claudia Regina Cançado Sgorlon Tininis

    2002-03-01

    Full Text Available Níveis intracelulares de G-3-PDH (sn-glicerol-3-fosfato:NAD+ 2oxidoredutase, EC 1.1.1.8 de levedura de panificação foram acompanhados durante a estocagem sob três diferentes temperaturas. Semelhantes valores de biomassa final e de atividade específica da enzima foram obtidos após crescimento por 48 horas de duas linhagens de leveduras de panificação. O melhor meio (meio indutor para obtenção de G-3-PDH foi: extrato de levedura (1%,p/v, peptona (2%,p/v, glicerol (3%,v/v e etanol (1%,v/v. O choque osmótico com adição de NaCl 0,6 M provocou aumento da atividade de G-3-PDH de 1,2 vezes para leveduras crescidas em meio indutor por 48 horas e transferidas para o meio salino, por 2 horas. A estocagem (até 10 dias da linhagem de levedura GD0, sob temperatura ambiente (27 ºC estimulou a síntese da G-3-PDH de células propagadas no meio indutor, lavadas e liofilizadas. Estocagens em geladeira (temperatura de 4 - 5 ºC ou em ''freezer'' (temperatura de -18 ºC mantiveram a atividade da G-3-PDH por até 8 meses.Intracellular levels of glycerol-3-phosphate dehydrogenase (G-3-PDH in baker's yeasts were monitored during storage at 3 different temperatures. Similar values for final biomass and specific activity of the enzyme were found, in each of two strains of baker's yeast, after 48 hours growth. The best medium tested, for the induction of G-3-PDH, contained: yeast extract (1% w/v, peptone (2% w/v, glycerol (3% w/vand ethanol (1% w/v. Osmotic shock, provoked by suspending cells, after 48 hours growth in inducing medium, in 0.6 M NaCl solution for 2 hours, caused the activity to increase by a factor of 1.2. Cells of the GDO yeast strain, grown in inducing conditions, washed and lyophilized, exhibited a 35% rise in G-3-PDH activity during storage (10 days at ambient temperature (about 27 ºC. Both refrigeration (4-5 ºC and freezer storage (-18 ºC maintained the G-3-PDH activity for up to 8 months.

  15. Differing effects of 2 active dried yeast (Saccharomyces cerevisiae) strains on ruminal acidosis and methane production in nonlactating dairy cows.

    Science.gov (United States)

    Chung, Y-H; Walker, N D; McGinn, S M; Beauchemin, K A

    2011-05-01

    Fifteen ruminally cannulated, nonlactating Holstein cows were used to measure the effects of 2 strains of Saccharomyces cerevisiae, fed as active dried yeasts, on ruminal pH and fermentation and enteric methane (CH(4)) emissions. Nonlactating cows were blocked by total duration (h) that their ruminal pH was below 5.8 during a 6-d pre-experimental period. Within each block, cows were randomly assigned to control (no yeast), yeast strain 1 (Levucell SC), or yeast strain 2 (a novel strain selected for enhanced in vitro fiber degradation), with both strains (Lallemand Animal Nutrition, Montréal, QC, Canada) providing 1 × 10(10) cfu/head per day. Cows were fed once daily a total mixed ration consisting of a 50:50 forage to concentrate ratio (dry matter basis). The yeast strains were dosed via the rumen cannula daily at the time of feeding. During the 35-d experiment, ruminal pH was measured continuously for 7 d (d 22 to 28) by using an indwelling system, and CH(4) gas was measured for 4 d (d 32 to 35) using the sulfur hexafluoride tracer gas technique (with halters and yokes). Rumen contents were sampled on 2 d (d 22 and 26) at 0, 3, and 6h after feeding. Dry matter intake, body weight, and apparent total-tract digestibility of nutrients were not affected by yeast feeding. Strain 2 decreased the average daily minimum (5.35 vs. 5.65 or 5.66), mean (5.98 vs. 6.24 or 6.34), and maximum ruminal pH (6.71 vs. 6.86 or 6.86), and prolonged the time that ruminal pH was below 5.8 (7.5 vs. 3.3 or 1.0 h/d) compared with the control or strain 1, respectively. The molar percentage of acetate was lower and that of propionate was greater in the ruminal fluid of cows receiving strain 2 compared with cows receiving no yeast or strain 1. Enteric CH(4) production adjusted for intake of dry matter or gross energy, however, did not differ between either yeast strain compared with the control but it tended to be reduced by 10% when strain 2 was compared with strain 1. The study shows that

  16. EFFECT OF NITROGEN SOURCES ON THE PRODUCTION OF INVERTASE BY YEAST SACCHAROMYCES CEREVISIAE 3090

    OpenAIRE

    Suresh P. Kamble; Jyotsna C. Borate

    2012-01-01

    Invertase from Saccharomyces cerevisiae is high cost enzyme and primarily used in the confectionary industry. For large scale production of the enzyme, feasible synthetic medium with appropriate supplemented nutrients are required. The effect of carbon source on invertase production is well known, but little is known about the effect of different nitrogen source. The aim of the present study is to see the effect of different nitrogen sources on the production of invertase in submerged ferment...

  17. Heterologous expression and purification of wheat storage proteins in the yeast Saccharomyces cerevisiae

    OpenAIRE

    2007-01-01

    Im Rahmen des Teilprojektes “Expression und Produktion von Weizenspeicherproteinen in der Hefe Saccharomyces cerevisiae“ des BMBF-Leitprojektes „Entwicklung von Weizen-, Roggen- und Gerstenproteinen ohne Zöliakietoxizität und deren Verwendung zur Herstellung von Lebensmitteln“ (Förderkennzeichen 0312246C) sollten die Ausbeute der heterolog in S. cerevisiae exprimierten Weizenproteine gesteigert werden, um sie für Zöliakietoxizitätsteste einzusetzen. Durch Optimierungsstrategien des Substrates...

  18. Acetic acid inhibits nutrient uptake in Saccharomyces cerevisiae: auxotrophy confounds the use of yeast deletion libraries for strain improvement.

    Science.gov (United States)

    Ding, Jun; Bierma, Jan; Smith, Mark R; Poliner, Eric; Wolfe, Carole; Hadduck, Alex N; Zara, Severino; Jirikovic, Mallori; van Zee, Kari; Penner, Michael H; Patton-Vogt, Jana; Bakalinsky, Alan T

    2013-08-01

    Acetic acid inhibition of yeast fermentation has a negative impact in several industrial processes. As an initial step in the construction of a Saccharomyces cerevisiae strain with increased tolerance for acetic acid, mutations conferring resistance were identified by screening a library of deletion mutants in a multiply auxotrophic genetic background. Of the 23 identified mutations, 11 were then introduced into a prototrophic laboratory strain for further evaluation. Because none of the 11 mutations was found to increase resistance in the prototrophic strain, potential interference by the auxotrophic mutations themselves was investigated. Mutants carrying single auxotrophic mutations were constructed and found to be more sensitive to growth inhibition by acetic acid than an otherwise isogenic prototrophic strain. At a concentration of 80 mM acetic acid at pH 4.8, the initial uptake of uracil, leucine, lysine, histidine, tryptophan, phosphate, and glucose was lower in the prototrophic strain than in a non-acetic acid-treated control. These findings are consistent with two mechanisms by which nutrient uptake may be inhibited. Intracellular adenosine triphosphate (ATP) levels were severely decreased upon acetic acid treatment, which likely slowed ATP-dependent proton symport, the major form of transport in yeast for nutrients other than glucose. In addition, the expression of genes encoding some nutrient transporters was repressed by acetic acid, including HXT1 and HXT3 that encode glucose transporters that operate by facilitated diffusion. These results illustrate how commonly used genetic markers in yeast deletion libraries complicate the effort to isolate strains with increased acetic acid resistance.

  19. Improving the Performance of the Granulosis Virus of Codling Moth (Lepidoptera: Tortricidae) by Adding the Yeast Saccharomyces cerevisiae with Sugar.

    Science.gov (United States)

    Knight, Alan L; Basoalto, Esteban; Witzgall, Peter

    2015-04-01

    Studies were conducted with the codling moth granulosis virus (CpGV) to evaluate whether adding the yeast Saccharomyces cerevisiae Meyen ex E. C. Hansen with brown cane sugar could improve larval control of Cydia pomonella (L.). Larval mortalities in dipped-apple bioassays with S. cerevisiae or sugar alone were not significantly different from the water control. The addition of S. cerevisiae but not sugar with CpGV significantly increased larval mortality compared with CpGV alone. The combination of S. cerevisiae and sugar with CpGV significantly increased larval mortality compared with CpGV plus either additive alone. The addition of S. cerevisiae improved the efficacy of CpGV similarly to the use of the yeast Metschnikowia pulcherrima (isolated from field-collected larvae). The proportion of uninjured fruit in field trials was significantly increased with the addition of S. cerevisiae and sugar to CpGV compared with CpGV alone only in year 1, and from the controls in both years. In comparison, larval mortality was significantly increased in both years with the addition of S. cerevisiae and sugar with CpGV compared with CpGV alone or from the controls. The numbers of overwintering larvae on trees was significantly reduced from the control following a seasonal program of CpGV plus S. cerevisiae and sugar. The addition of a microencapsulated formulation of pear ester did not improve the performance of CpGV or CpGV plus S. cerevisiae and sugar. These data suggest that yeasts can enhance the effectiveness of the biological control agent CpGV, in managing and maintaining codling moth at low densities.

  20. Yeast population dynamics reveal a potential 'collaboration' between Metschnikowia pulcherrima and Saccharomyces uvarum for the production of reduced alcohol wines during Shiraz fermentation.

    Science.gov (United States)

    Contreras, A; Curtin, C; Varela, C

    2015-02-01

    The wine sector is actively seeking strategies and technologies that facilitate the production of wines with lower alcohol content. One of the simplest approaches to achieve this aim would be the use of wine yeast strains which are less efficient at transforming grape sugars into ethanol; however, commercial wine yeasts have very similar ethanol yields. We recently demonstrated that Metschnikowia pulcherrima AWRI1149 was able to produce wine with reduced alcohol concentration when used in sequential inoculation with a wine strain of Saccharomyces cerevisiae. Here, different inoculation regimes were explored to study the effect of yeast population dynamics and potential yeast interactions on the metabolism of M. pulcherrima AWRI1149 during fermentation of non-sterile Shiraz must. Of all inoculation regimes tested, only ferments inoculated with M. pulcherrima AWRI1149 showed reduced ethanol concentration. Population dynamics revealed the presence of several indigenous yeast species and one of these, Saccharomyces uvarum (AWRI 2846), was able to produce wine with reduced ethanol concentration in sterile conditions. Both strains however, were inhibited when a combination of three non-Saccharomyces strains, Hanseniaspora uvarum AWRI863, Pichia kluyveri AWRI1896 and Torulaspora delbrueckii AWRI2845 were inoculated into must, indicating that the microbial community composition might impact on the growth of M. pulcherrima AWRI1149 and S. uvarum AWRI 2846. Our results indicate that mixed cultures of M. pulcherrima AWRI1149 and S. uvarum AWRI2846 enable an additional reduction of wine ethanol concentration compared to the same must fermented with either strain alone. This work thus provides a foundation to develop inoculation regimes for the successful application of non-cerevisiae yeast to the production of wines with reduced alcohol.

  1. Aroma Profile of Montepulciano d'Abruzzo Wine Fermented by Single and Co-culture Starters of Autochthonous Saccharomyces and Non-saccharomyces Yeasts

    Science.gov (United States)

    Tofalo, Rosanna; Patrignani, Francesca; Lanciotti, Rosalba; Perpetuini, Giorgia; Schirone, Maria; Di Gianvito, Paola; Pizzoni, Daniel; Arfelli, Giuseppe; Suzzi, Giovanna

    2016-01-01

    Montepulciano d'Abruzzo is a native grape variety of Vitis vinifera L., grown in central Italy and used for production of high quality red wines. Limited studies have been carried out to improve its enological characteristics through the use of indigenous strains of Saccharomyces cerevisiae. The main objective of the present work was to test two indigenous strains of S. cerevisiae (SRS1, RT73), a strain of Starmerella bacillaris (STS12), one of Hanseniaspora uvarum (STS45) and a co-culture of S. cerevisiae (SRS1) and S. bacillaris (STS12), in an experimental cellar to evaluate their role in the sensory characteristic of Montepulciano d'Abruzzo wine. A S. cerevisiae commercial strain was used. Fermentations were conducted under routine Montepulciano d'Abruzzo wine production, in which the main variables were the yeast strains used for fermentation. Basic winemaking parameters, some key chemical analysis and aroma compounds were considered. S. cerevisiae strain dynamics during fermentation were determined by molecular methods. The musts inoculated with the co-culture were characterized by a faster fermentation start and a higher content of glycerol after 3 days of fermentation, as well as the musts added with strains S. bacillaris (STS12) and H. uvarum (STS45). At the end of fermentation the parameters studied were quite similar in all the wines. Total biogenic amines (BA) content of all the wines was low. Ethanolamine was the predominant BA, with a concentration ranging from 21 to 24 mg/l. Wines were characterized by esters and alcohols. In particular, 2-phenylethanol, 3-methylbut-1-yl methanoate, and ethyl ethanoate were the major aroma volatile compounds in all wines. Statistical analysis highlighted the different role played by aroma compounds in the differentiation of wines, even if it was impossible to select a single class of compounds as the most important for a specific yeast. The present study represents a further step toward the use of tailored

  2. Cryoprotective Role of Combined Emulsifiers with Soybean Lecithin and Sucrose Ester on Baker's Yeast%复配大豆磷脂和蔗糖酯对面包酵母冷冻保护作用

    Institute of Scientific and Technical Information of China (English)

    徐云峰; 杨哪; 金征宇; 谢正军; 徐学明

    2011-01-01

    The cryoprotective role of emulsifiers combined with two molar soybean lecithin and one molar sucrose ester on baker's yeast was examined in this study.The results showed that the survival ratio of yeast cultivated for 48 hours after frozen at - 30 ℃ for 5 days in a culture medium with 4 g/dL combined emulsifers increased by 60% compared with that of the control group, and the adaptive phase shorten by 10 hours.The dough made from yeast dealed with emulsifiers after frozen at -30 ℃ for 60 days had a relatively stronger ability to leaven within a short time.The phenomenon of yeast congregated with enulsifiers, which was imaged by scanning electron microscope (SEM), indicated that there might be some interaction effects between the two substances.%以质量比为2:1的大豆磷脂和蔗糖酯复配处理面包酵母,研究了其对酵母抗冻性的影响.结果表明,与未添加乳化剂组相比,酵母在-30℃含复配乳化剂质量分数为4 g/dL的YPD 培养液中冷冻贮藏5 d,解冻并于30℃平板培养48 h,存活率提高了60%,酵母生长适应期缩短了10 h左右.将乳化剂处理酵母应用于冷冻面团体系,面团经-30℃冷冻贮藏60 d后醒发时间缩短,醒发体积增大.扫描电镜观察表明酵母与乳化剂呈聚集状,存在一定的交互作用.

  3. Improved production of fatty acids by Saccharomyces cerevisiae through screening a cDNA library from the oleaginous yeast Yarrowia lipolytica

    DEFF Research Database (Denmark)

    Shi, Shuobo; Ji, Haichuan; Siewers, Verena;

    2016-01-01

    for screening a cDNA library from the oleaginous yeast Yarrowia lipolytica for identification of genes/enzymes that were able to enhance free FA accumulation in Saccharomyces cerevisiae. Several novel enzymes resulting in increasing FA accumulation were discovered. These targets include a GPI anchor protein...... method for high-throughput evaluation of the content of free FAs, but also give new insight into how enzymes from Y. lipolytica may increase the production of fatty acids in S. cerevisiae....

  4. Human peroxiredoxin PrxI is an ortholog of yeast Tsa1, capable of suppressing genome instability and protecting against cell death in Saccharomyces cerevisiae

    OpenAIRE

    2008-01-01

    The peroxiredoxins (Prxs) are conserved antioxidant proteins that utilize cysteine as the primary site of oxidation during the reduction of peroxides. Many organisms have more than one isoform of Prx. Deletion of TSA1, one of five Prxs in yeast Saccharomyces cerevisiae, results in accumulation of a broad spectrum of mutations including gross chromosomal rearrangements. Deletion of TSA1 is synthetically lethal with mutations in RAD6 and several key genes involved in DNA double-strand break rep...

  5. Study of glycerol and respiro-fermentative metabolism diversity among Saccharomyces yeasts

    OpenAIRE

    Motta Oliveira, Bruno

    2016-01-01

    Introducción Las levaduras son responsables de numerosos procesos biotecnológicos tales como la producción de bebidas y alimentos fermentados. Las levaduras de interés biotecnológico son organismos muy especializados que han evolucionado bajo restrictivas condiciones ambientales en distintos ambientes manipulados por el hombre. Durante el proceso de adaptación a estos ambientes manipulados por el hombre, distintas cepas y especies del género Saccharomyces se han visto sometidas a procesos ...

  6. Two distinct DNA ligase activities in mitotic extracts of the yeast Saccharomyces cerevisiae.

    OpenAIRE

    Ramos, W; Tappe, N; Talamantez, J; Friedberg, E C; Tomkinson, A E

    1997-01-01

    Four biochemically distinct DNA ligases have been identified in mammalian cells. One of these enzymes, DNA ligase I, is functionally homologous to the DNA ligase encoded by the Saccharomyces cerevisiae CDC9 gene. Cdc9 DNA ligase has been assumed to be the only species of DNA ligase in this organism. In the present study we have identified a second DNA ligase activity in mitotic extracts of S. cerevisiae with chromatographic properties different from Cdc9 DNA ligase, which is the major DNA joi...

  7. A Simple Laboratory Exercise for Ethanol Production by Immobilized Bakery Yeasts ("Saccharomyces Cerevisiae")

    Science.gov (United States)

    Vullo, Diana L.; Wachsman, Monica B.

    2005-01-01

    This laboratory experiment was designed for Chemistry, Food Technology, Biology, and Chemical Engineering undergraduate students. This laboratory experience shows the advantages of immobilized bakery yeasts in ethanol production by alcoholic fermentation. The students were able to compare the ethanol production yields by free or calcium alginate…

  8. Dynamic Metabolic Footprinting Reveals the Key Components of Metabolic Network in Yeast Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Chumnanpuen, Pramote; Hansen, Michael Adsetts Edberg; Smedsgaard, Jørn;

    2014-01-01

    relies on analysis at a single time point. Using direct infusion-mass spectrometry (DI-MS), we could observe the dynamic metabolic footprinting in yeast S. cerevisiae BY4709 (wild type) cultured on 3 different C-sources (glucose, glycerol, and ethanol) and sampled along 10 time points with 5 biological...

  9. Analysis of protein localization and secretory pathway function using the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Vallen, Elizabeth

    2002-01-01

    The isolation and characterization of mutants has been crucial in understanding a number of processes in the field of cell biology. In this exercise, students examine the effects of mutations in the secretory pathway on protein localization. Yeast strains deficient for synthesis of histidinol dehydrogenase are transformed with a plasmid encoding a chimeric protein. The chimera contains a signal sequence fused to histidinol dehydrogenase. A strain with a defect in the translocation of secretory proteins into the endoplasmic reticulum (ER) accumulates sufficient histidinol dehydrogenase in the cytoplasm to grow on media lacking histidine. In contrast, yeast proficient for secretion, or yeast with secretion defects later in the pathway, are unable to grow on media lacking histidine. Student analysis of the experimental yeast transformants and appropriate controls allows investigation into the effects of conditional defects in the secretory pathway on both cell viability and protein localization. The exercise is usually performed in a manner that allows students to execute a number of techniques common in molecular biology laboratories, including plasmid minipreps, restriction digestions, and Southern blots. Student understanding and enjoyment of the exercise was assessed by laboratory reports, oral and written examinations, and questionnaires. After completion of these experiments, students can describe the utility of protein fusions, the roles of mutant analysis in cell biology, and the steps taken by proteins transiting the secretory pathway.

  10. Functional genomics of commercial baker's yeasts that have different abilities for sugar utilization and high-sucrose tolerance under different sugar conditions.

    Science.gov (United States)

    Tanaka-Tsuno, Fumiko; Mizukami-Murata, Satomi; Murata, Yoshinori; Nakamura, Toshihide; Ando, Akira; Takagi, Hiroshi; Shima, Jun

    2007-10-01

    In the modern baking industry, high-sucrose-tolerant (HS) and maltose-utilizing (LS) yeast were developed using breeding techniques and are now used commercially. Sugar utilization and high-sucrose tolerance differ significantly between HS and LS yeasts. We analysed the gene expression profiles of HS and LS yeasts under different sucrose conditions in order to determine their basic physiology. Two-way hierarchical clustering was performed to obtain the overall patterns of gene expression. The clustering clearly showed that the gene expression patterns of LS yeast differed from those of HS yeast. Quality threshold clustering was used to identify the gene clusters containing upregulated genes (cluster 1) and downregulated genes (cluster 2) under high-sucrose conditions. Clusters 1 and 2 contained numerous genes involved in carbon and nitrogen metabolism, respectively. The expression level of the genes involved in the metabolism of glycerol and trehalose, which are known to be osmoprotectants, in LS yeast was higher than that in HS yeast under sucrose concentrations of 5-40%. No clear correlation was found between the expression level of the genes involved in the biosynthesis of the osmoprotectants and the intracellular contents of the osmoprotectants. The present gene expression data were compared with data previously reported in a comprehensive analysis of a gene deletion strain collection. Welch's t-test for this comparison showed that the relative growth rates of the deletion strains whose deletion occurred in genes belonging to cluster 1 were significantly higher than the average growth rates of all deletion strains.

  11. Influence of calcium ion on ethanol tolerance of Saccharomyces bayanus and alcoholic fermentation by yeasts

    Energy Technology Data Exchange (ETDEWEB)

    Nabais, R.C.; Sa-Correia, I.; Viegas, C.A.; Novais, J.M. (Instituto Superior Tecnico, Lisbon (Portugal))

    1988-10-01

    The addition of Ca{sup 2+} (as CaCl{sub 2}) in optimal concentrations (0.75 to 2.0 mM) to a fermentation medium with a trace contaminating concentration of Ca{sup 2+} (0.025 mM) led to the rapid production of higher concentrations of ethanol by Saccharomyces cerevisiae, Saccharomyces bayanus, and Kluyveromyces marxianus. The positive effect of calcium supplementation (0.75 mM) on alcoholic fermentation by S. bayanus was explained by the increase in its ethanol tolerance. For lethal concentrations of ethanol, the specific death rates were minimal for cells that were grown and incubated with ethanol in medium with an optimal concentration of Ca{sup 2+}, maximal for cells grown and incubated with ethanol in unsupplemented medium, and intermediate for cells grown in unsupplemented medium and incubated with ethanol in calcium-supplemented medium. The effect of Ca{sup 2+} on the acidification curve of energized cells in the presence of ethanol was found to be closely associated with its protective effect on growth, fermentation, and viability.

  12. Scheffersomyces stipitis: a comparative systems biology study with the Crabtree positive yeast Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Papini, Marta; Nookaew, Intawat; Uhlén, Mathias

    2012-01-01

    between the two yeasts, uncovering the metabolism of S. stipitis during aerobic growth on glucose under batch and chemostat cultivations. Results: Starting from the analysis of physiological data, we confirmed through C-13-based flux analysis the fully respiratory metabolism of S. stipitis when growing...... and glucoenogenic pathways. Conclusions: The work presented addresses the impact of high-throughput methods in describing and comparing the physiology of Crabtree positive and Crabtree negative yeasts. Based on physiological data and flux analysis we identified the presence of one metabolic condition for S...... both under glucose limited or glucose excess conditions. The patterns observed showed similarity to the fully respiratory metabolism observed for S. cerevisiae under chemostat cultivations however, intracellular metabolome analysis uncovered the presence of several differences in metabolite patterns...

  13. Whole-cell imaging of the budding yeast Saccharomyces cerevisiae by high-voltage scanning transmission electron tomography

    Energy Technology Data Exchange (ETDEWEB)

    Murata, Kazuyoshi, E-mail: kazum@nips.ac.jp [National Institute for Physiological Sciences, Okazaki, Aichi 444-8585 (Japan); Esaki, Masatoshi; Ogura, Teru [Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811 (Japan); Arai, Shigeo; Yamamoto, Yuta; Tanaka, Nobuo [Ecotopia Science Institute, Nagoya University, Nagoya, Aichi 464-8603 (Japan)

    2014-11-15

    Electron tomography using a high-voltage electron microscope (HVEM) provides three-dimensional information about cellular components in sections thicker than 1 μm, although in bright-field mode image degradation caused by multiple inelastic scattering of transmitted electrons limit the attainable resolution. Scanning transmission electron microscopy (STEM) is believed to give enhanced contrast and resolution compared to conventional transmission electron microscopy (CTEM). Samples up to 1 μm in thickness have been analyzed with an intermediate-voltage electron microscope because inelastic scattering is not a critical limitation, and probe broadening can be minimized. Here, we employed STEM at 1 MeV high-voltage to extend the useful specimen thickness for electron tomography, which we demonstrate by a seamless tomographic reconstruction of a whole, budding Saccharomyces cerevisiae yeast cell, which is ∼3 μm in thickness. High-voltage STEM tomography, especially in the bright-field mode, demonstrated sufficiently enhanced contrast and intensity, compared to CTEM tomography, to permit segmentation of major organelles in the whole cell. STEM imaging also reduced specimen shrinkage during tilt-series acquisition. The fidelity of structural preservation was limited by cytoplasmic extraction, and the spatial resolution was limited by the relatively large convergence angle of the scanning probe. However, the new technique has potential to solve longstanding problems of image blurring in biological specimens beyond 1 μm in thickness, and may facilitate new research in cellular structural biology. - Highlights: • High voltage TEM and STEM tomography were compared to visualize whole yeast cells. • 1-MeV STEM-BF tomography had significant improvements in image contrast and SNR. • 1-MeV STEM tomography showed less specimen shrinkage than the TEM tomography. • KMnO{sub 4} post-treatment permitted segmenting the major cellular components.

  14. Adjustable under-expression of yeast mating pathway proteins in Saccharomyces cerevisiae using a programmed ribosomal frameshift.

    Science.gov (United States)

    Choi, Min-Yeon; Park, Sang-Hyun

    2016-06-01

    Experimental research in molecular biology frequently relies on the promotion or suppression of gene expression, an important tool in the study of its functions. Although yeast is among the most studied model systems with the ease of maintenance and manipulation, current experimental methods are mostly limited to gene deletion, suppression or overexpression of genes. Therefore, the ability to reduce protein expressions and then observing the effects would promote a better understanding of the exact functions and their interactions. Reducing protein expression is mainly limited by the difficulties associated with controlling the reduction level, and in some cases, the initial endogenous abundance is too low. For the under-expression to be useful as an experimental tool, repeatability and stability of reduced expression is important. We found that cis-elements in programmed -1 ribosomal frameshifting (-1RFS) of beet western yellow virus (BWYV) could be utilized to reduced protein expression in Saccharomyces cerevisiae. The two main advantages of using -1RFS are adjustable reduction rates and ease of use. To demonstrate the utility of this under-expression system, examples of reduced protein abundance were shown using yeast mating pathway components. The abundance of MAP kinase Fus3 was reduced to approximately 28-75 % of the wild-type value. Other MAP kinase mating pathway components, including Ste5, Ste11, and Ste7, were also under-expressed to verify that the -1RFS system works with different proteins. Furthermore, reduced Fus3 abundance altered the overall signal transduction outcome of the mating pathway, demonstrating the potential for further studies of signal transduction adjustment via under-expression.

  15. Performance of Clarias gariepinus Fed Dried Brewer's Yeast (Saccharomyces cerevisiae) Slurry in Replacement for Soybean Meal

    Science.gov (United States)

    Solomon, Shola Gabriel; Itodo, Gabriel Enemona

    2017-01-01

    Following disparity of earlier results, this study tested the performance of African catfish Clarias gariepinus fed dried brewer's yeast slurry meal (DBYM) based diets. Fingerlings of C. gariepinus with pooled mean initial weight of 1.58 ± 0.01 g were stocked in hapas (1 m × 1 m × 1 m) immersed in an earthen pond at a density of 15 fish per cage. Five diets with increasing substitution of soybean meal with 25%, 50%, 75%, and 100% of dried brewer's yeast and a control without dried brewer's yeast (0% substitution) were evaluated for 8 weeks. Palatability of diets reduced with increasing levels of DBYM. Growth and utilization parameters such as weight gain, feed conversion ratio, protein efficiency ratio, and specific growth rate differed significantly (p < 0.05) among treated groups. Specific growth rate decreased with increasing substitution while the best feed conversion ratio was obtained in the diet devoid of DBYM. Protein efficiency and utilization decreased with increasing levels of DBYM. Body composition was also affected by inclusion of DBYM with significant differences (p < 0.05) being observed across the diets. The trend in body composition follows the utilization of the diets. We conclude that the optimal range of inclusion and substitution of soybean meal with DBYM in C. gariepinus feed is between 1% and 14% of dry matter. PMID:28239492

  16. Phytoceramide and sphingoid bases derived from brewer's yeast Saccharomyces pastorianus activate peroxisome proliferator-activated receptors

    Directory of Open Access Journals (Sweden)

    Mitsutake Susumu

    2011-08-01

    Full Text Available Abstract Background Peroxisome proliferator-activated receptors (PPARs are ligand-activated transcription factors that regulate lipid and glucose metabolism. PPARα is highly expressed in the liver and controls genes involved in lipid catabolism. We previously reported that synthetic sphingolipid analogs, part of which contains shorter-length fatty acid chains than natural sphingolipids, stimulated the transcriptional activities of PPARs. Sphingosine and dihydrosphingosine (DHS are abundant sphingoid bases, and ceramide and dihydroceramide are major ceramide species in mammals. In contrast, phytosphingosine (PHS and DHS are the main sphingoid bases in fungi. PHS and phytoceramide exist in particular tissues such as the epidermis in mammals, and involvement of ceramide species in PPARβ activation in cultured keratinocytes has been reported. The purpose of the present study is to investigate whether natural sphingolipids with C18 fatty acid and yeast-derived sphingoid bases activate PPARs as PPAR agonists. Method Lipids of brewer's yeast contain PHS- and DHS-based sphingolipids. To obtain the sphingoid bases, lipids were extracted from brewer's yeast and acid-hydrolyzed. The sphingoid base fraction was purified and quantified. To assess the effects of sphingolipids on PPAR activation, luciferase reporter assay was carried out. NIH/3T3 and human hepatoma (HepG2 cells were transfected with expression vectors for PPARs and retinoid × receptors, and PPAR responsive element reporter vector. When indicated, the PPAR/Gal4 chimera system was performed to enhance the credibility of experiments. Sphingolipids were added to the cells and the dual luciferase reporter assay was performed to determine the transcriptional activity of PPARs. Results We observed that phytoceramide increased the transcriptional activities of PPARs significantly, whereas ceramide and dihydroceramide did not change PPAR activities. Phytoceramide also increased transactivation of

  17. The gene ICS3 from the yeast Saccharomyces cerevisiae is involved in copper homeostasis dependent on extracellular pH.

    Science.gov (United States)

    Alesso, C A; Discola, K F; Monteiro, G

    2015-09-01

    In the yeast Saccharomyces cerevisiae, many genes are involved in the uptake, transport, storage and detoxification of copper. Large scale studies have noted that deletion of the gene ICS3 increases sensitivity to copper, Sortin 2 and acid exposure. Here, we report a study on the Δics3 strain, in which ICS3 is related to copper homeostasis, affecting the intracellular accumulation of this metal. This strain is sensitive to hydrogen peroxide and copper exposure, but not to other tested transition metals. At pH 6.0, the Δics3 strain accumulates a larger amount of intracellular copper than the wild-type strain, explaining the sensitivity to oxidants in this condition. Unexpectedly, sensitivity to copper exposure only occurs in acidic conditions. This can be explained by the fact that the exposure of Δics3 cells to high copper concentrations at pH 4.0 results in over-accumulation of copper and iron. Moreover, the expression of ICS3 increases in acidic pH, and this is correlated with CCC2 gene expression, since both genes are regulated by Rim101 from the pH regulon. CCC2 is also upregulated in Δics3 in acidic pH. Together, these data indicate that ICS3 is involved in copper homeostasis and is dependent on extracellular pH.

  18. Surface functionalization of chitosan-coated magnetic nanoparticles for covalent immobilization of yeast alcohol dehydrogenase from Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Li Guiyin [Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078 (China); Biomedical Engineering Research Centre of Guilin University of Electronic Technology, Guilin, Guangxi 541014 (China); Zhou Zhide [Biomedical Engineering Research Centre of Guilin University of Electronic Technology, Guilin, Guangxi 541014 (China); Li Yuanjian, E-mail: yuan_jianli@yahoo.co [Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078 (China); Huang Kelong, E-mail: klhuang@mail.csu.edu.c [College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083 (China); Zhong Ming [College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083 (China)

    2010-12-15

    A novel and efficient immobilization of yeast alcohol dehydrogenase (YADH, EC1.1.1.1) from Saccharomyces cerevisiae has been developed by using the surface functionalization of chitosan-coated magnetic nanoparticles (Fe{sub 3}O{sub 4}/KCTS) as support. The magnetic Fe{sub 3}O{sub 4}/KCTS nanoparticles were prepared by binding chitosan alpha-ketoglutaric acid (KCTS) onto the surface of magnetic Fe{sub 3}O{sub 4} nanoparticles. Later, covalent immobilization of YADH was attempted onto the Fe{sub 3}O{sub 4}/KCTS nanoparticles. The effect of various preparation conditions on the immobilized YADH process such as immobilization time, enzyme concentration and pH was investigated. The influence of pH and temperature on the activity of the free and immobilized YADH using phenylglyoxylic acid as substrate has also been studied. The optimum reaction temperature and pH value for the enzymatic conversion catalyzed by the immobilized YADH were 30 {sup o}C and 7.4, respectively. Compared to the free enzyme, the immobilized YADH retained 65% of its original activity and exhibited significant thermal stability and good durability.

  19. Surface functionalization of chitosan-coated magnetic nanoparticles for covalent immobilization of yeast alcohol dehydrogenase from Saccharomyces cerevisiae

    Science.gov (United States)

    Li, Gui-yin; Zhou, Zhi-de; Li, Yuan-jian; Huang, Ke-long; Zhong, Ming

    2010-12-01

    A novel and efficient immobilization of yeast alcohol dehydrogenase (YADH, EC1.1.1.1) from Saccharomyces cerevisiae has been developed by using the surface functionalization of chitosan-coated magnetic nanoparticles (Fe 3O 4/KCTS) as support. The magnetic Fe 3O 4/KCTS nanoparticles were prepared by binding chitosan alpha-ketoglutaric acid (KCTS) onto the surface of magnetic Fe 3O 4 nanoparticles. Later, covalent immobilization of YADH was attempted onto the Fe 3O 4/KCTS nanoparticles. The effect of various preparation conditions on the immobilized YADH process such as immobilization time, enzyme concentration and pH was investigated. The influence of pH and temperature on the activity of the free and immobilized YADH using phenylglyoxylic acid as substrate has also been studied. The optimum reaction temperature and pH value for the enzymatic conversion catalyzed by the immobilized YADH were 30 °C and 7.4, respectively. Compared to the free enzyme, the immobilized YADH retained 65% of its original activity and exhibited significant thermal stability and good durability.

  20. Important role of catalase in the cellular response of the budding yeast Saccharomyces cerevisiae exposed to ionizing radiation.

    Science.gov (United States)

    Nishimoto, Takuto; Furuta, Masakazu; Kataoka, Michihiko; Kishida, Masao

    2015-03-01

    Ionizing radiation indirectly causes oxidative stress in cells via reactive oxygen species (ROS), such as hydroxyl radicals (OH(-)) generated by the radiolysis of water. We investigated how the catalase function was affected by ionizing radiation and analyzed the phenotype of mutants with a disrupted catalase gene in Saccharomyces cerevisiae exposed to radiation. The wild-type yeast strain and isogenic mutants with disrupted catalase genes were exposed to various doses of (60)Co gamma-rays. There was no difference between the wild-type strain and the cta1 disruption mutant following exposure to gamma-ray irradiation. In contrast, there was a significant decrease in the ctt1 disruption mutant, suggesting that this strain exhibited decreased survival on gamma-ray exposure compared with other strains. In all three strains, stationary phase cells were more tolerant to the exposure of gamma-rays than exponential phase cells, whereas the catalase activity in the wild-type strain and cta1 disruption mutant was higher in the stationary phase than in the exponential phase. These data suggest a correlation between catalase activity and survival following gamma-ray exposure. However, this correlation was not clear in the ctt1 disruption mutant, suggesting that other factors are involved in the tolerance to ROS induced by irradiation.

  1. Astragalin from Cassia alata induces DNA adducts in vitro and repairable DNA damage in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Saito, Samuel; Silva, Givaldo; Santos, Regineide Xavier; Gosmann, Grace; Pungartnik, Cristina; Brendel, Martin

    2012-01-01

    Reverse phase-solid phase extraction from Cassia alata leaves (CaRP) was used to obtain a refined extract. Higher than wild-type sensitivity to CaRP was exhibited by 16 haploid Saccharomyces cerevisiae mutants with defects in DNA repair and membrane transport. CaRP had a strong DPPH free radical scavenging activity with an IC(50) value of 2.27 μg mL(-1) and showed no pro-oxidant activity in yeast. CaRP compounds were separated by HPLC and the three major components were shown to bind to DNA in vitro. The major HPLC peak was identified as kampferol-3-O-β-d-glucoside (astragalin), which showed high affinity to DNA as seen by HPLC-UV measurement after using centrifugal ultrafiltration of astragalin-DNA mixtures. Astragalin-DNA interaction was further studied by spectroscopic methods and its interaction with DNA was evaluated using solid-state FTIR. These and computational (in silico) docking studies revealed that astragalin-DNA binding occurs through interaction with G-C base pairs, possibly by intercalation stabilized by H-bond formation.

  2. YeastFab: the design and construction of standard biological parts for metabolic engineering in Saccharomyces cerevisiae.

    Science.gov (United States)

    Guo, Yakun; Dong, Junkai; Zhou, Tong; Auxillos, Jamie; Li, Tianyi; Zhang, Weimin; Wang, Lihui; Shen, Yue; Luo, Yisha; Zheng, Yijing; Lin, Jiwei; Chen, Guo-Qiang; Wu, Qingyu; Cai, Yizhi; Dai, Junbiao

    2015-07-27

    It is a routine task in metabolic engineering to introduce multicomponent pathways into a heterologous host for production of metabolites. However, this process sometimes may take weeks to months due to the lack of standardized genetic tools. Here, we present a method for the design and construction of biological parts based on the native genes and regulatory elements in Saccharomyces cerevisiae. We have developed highly efficient protocols (termed YeastFab Assembly) to synthesize these genetic elements as standardized biological parts, which can be used to assemble transcriptional units in a single-tube reaction. In addition, standardized characterization assays are developed using reporter constructs to calibrate the function of promoters. Furthermore, the assembled transcription units can be either assayed individually or applied to construct multi-gene metabolic pathways, which targets a genomic locus or a receiving plasmid effectively, through a simple in vitro reaction. Finally, using β-carotene biosynthesis pathway as an example, we demonstrate that our method allows us not only to construct and test a metabolic pathway in several days, but also to optimize the production through combinatorial assembly of a pathway using hundreds of regulatory biological parts.

  3. Overexpression of ADH1 and HXT1 genes in the yeast Saccharomyces cerevisiae improves the fermentative efficiency during tequila elaboration.

    Science.gov (United States)

    Gutiérrez-Lomelí, Melesio; Torres-Guzmán, Juan Carlos; González-Hernández, Gloria Angélica; Cira-Chávez, Luis Alberto; Pelayo-Ortiz, Carlos; Ramírez-Córdova, Jose de Jesús

    2008-05-01

    This work assessed the effect of the overexpression of ADH1 and HXT1 genes in the Saccharomyces cerevisiae AR5 strain during fermentation of Agave tequilana Weber blue variety must. Both genes were cloned individually and simultaneously into a yeast centromere plasmid. Two transformant strains overexpressing ADH1 and HXT1 individually and one strain overexpressing both genes were randomly selected and named A1, A3 and A5 respectively. Overexpression effect on growth and ethanol production of the A1, A3 and A5 strains was evaluated in fermentative conditions in A. tequilana Weber blue variety must and YPD medium. During growth in YPD and Agave media, all the recombinant strains showed lower cell mass formation than the wild type AR5 strain. Adh enzymatic activity in the recombinant strains A1 and A5 cultivated in A. tequilana and YPD medium was higher than in the wild type. The overexpression of both genes individually and simultaneously had no significant effect on ethanol formation; however, the fermentative efficiency of the A5 strain increased from 80.33% to 84.57% and 89.40% to 94.29% in YPD and Agave medium respectively.

  4. Proteins involved in wine aroma compounds metabolism by a Saccharomyces cerevisiae flor-velum yeast strain grown in two conditions.

    Science.gov (United States)

    Moreno-García, Jaime; García-Martínez, Teresa; Millán, M Carmen; Mauricio, Juan Carlos; Moreno, Juan

    2015-10-01

    A proteomic and exometabolomic study was conducted on Saccharomyces cerevisiae flor yeast strain growing under biofilm formation condition (BFC) with ethanol and glycerol as carbon sources and results were compared with those obtained under no biofilm formation condition (NBFC) containing glucose as carbon source. By using modern techniques, OFFGEL fractionator and LTQ-Orbitrap for proteome and SBSE-TD-GC-MS for metabolite analysis, we quantified 84 proteins including 33 directly involved in the metabolism of glycerol, ethanol and 17 aroma compounds. Contents in acetaldehyde, acetic acid, decanoic acid, 1,1-diethoxyethane, benzaldehyde and 2-phenethyl acetate, changed above their odor thresholds under BFC, and those of decanoic acid, ethyl octanoate, ethyl decanoate and isoamyl acetate under NBFC. Of the twenty proteins involved in the metabolism of ethanol, acetaldehyde, acetoin, 2,3-butanediol, 1,1-diethoxyethane, benzaldehyde, organic acids and ethyl esters, only Adh2p, Ald4p, Cys4p, Fas3p, Met2p and Plb1p were detected under BFC and as many Acs2p, Ald3p, Cem1p, Ilv2p, Ilv6p and Pox1p, only under NBFC. Of the eight proteins involved in glycerol metabolism, Gut2p was detected only under BFC while Pgs1p and Rhr2p were under NBFC. Finally, of the five proteins involved in the metabolism of higher alcohols, Thi3p was present under BFC, and Aro8p and Bat2p were under NBFC.

  5. 40 CFR 180.1246 - Yeast Extract Hydrolysate from Saccharomyces cerevisiae: exemption from the requirement of a...

    Science.gov (United States)

    2010-07-01

    ... Saccharomyces cerevisiae: exemption from the requirement of a tolerance. 180.1246 Section 180.1246 Protection of... Saccharomyces cerevisiae: exemption from the requirement of a tolerance. This regulation establishes an... Hydrolysate from Saccharomyces cerevisiae on all food commodities when applied/used for the management...

  6. Yeast redoxyendonuclease, a DNA repair enzyme similar to Escherichia coli endonuclease III

    Energy Technology Data Exchange (ETDEWEB)

    Gossett, J.; Lee, K.; Cunningham, R.P.; Doetsch, P.W.

    1988-04-05

    A DNA repair endonuclease (redoxyendonuclease) was isolated from bakers' yeast (Saccharomyces cerevisiae). The enzyme has been purified by a series of column chromatography steps and cleaves OsO/sub 4/-damaged, double-stranded DNA at sites of thymine glycol and heavily UV-irradiated DNA at sites of cytosine, thymine, and guanine photoproducts. The base specificity and mechanism of phosphodiester bond cleavage for the yeast redoxyendonuclease appear to be identical with those of Escherichia coli endonuclease III when thymine glycol containing, end-labeled DNA fragments of defined sequence are employed as substrates. Yeast redoxyendonuclease has an apparent molecular size of 38,000-42,000 daltons and is active in the absence of divalent metal cations. The identification of such an enzyme in yeast may be of value in the elucidation of the biochemical basis for radiation sensitivity in certain yeast mutants.

  7. Acrolein-Induced Oxidative Stress and Cell Death Exhibiting Features of Apoptosis in the Yeast Saccharomyces cerevisiae Deficient in SOD1.

    Science.gov (United States)

    Kwolek-Mirek, Magdalena; Zadrąg-Tęcza, Renata; Bednarska, Sabina; Bartosz, Grzegorz

    2015-04-01

    The yeast Saccharomyces cerevisiae is a useful eukaryotic model to study the toxicity of acrolein, an important environmental toxin and endogenous product of lipid peroxidation. The study was aimed at elucidation of the cytotoxic effect of acrolein on the yeast deficient in SOD1, Cu, Zn-superoxide dismutase which is hypersensitive to aldehydes. Acrolein generated within the cell from its precursor allyl alcohol caused growth arrest and cell death of the yeast cells. The growth inhibition involved an increase in production of reactive oxygen species and high level of protein carbonylation. DNA condensation and fragmentation, exposition of phosphatidylserine at the cell surface as well as decreased dynamic of actin microfilaments and mitochondria disintegration point to the induction of apoptotic-type cell death besides necrotic cell death.

  8. The expression of glycerol facilitators from various yeast species improves growth on glycerol of Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Klein, Mathias; Islam, Zia ul; Knudsen, Peter Boldsen;

    2016-01-01

    of predicted glycerol facilitators (Fps1 homologues) from superior glycerol-utilizing yeast species such as Pachysolen tannophilus, Komagataella pastoris, Yarrowia lipolytica and Cyberlindnera jadinii significantly improves the growth performance on glycerol of the previously selected glycerol-consuming S....... cerevisiae wild-type strain (CBS 6412-13A). The maximum specific growth rate increased from 0.13 up to 0.18 h−1 and a biomass yield coefficient of 0.56 gDW/gglycerol was observed. These results pave the way for exploiting the assets of glycerol in the production of fuels, chemicals and pharmaceuticals based...

  9. Effect of diet supplementation with live yeast Saccharomyces cerevisiae on growth performance, caecal ecosystem and health of growing rabbits

    Directory of Open Access Journals (Sweden)

    T. Belhassen

    2016-09-01

    Full Text Available The aim of this study was to determine the effect of the live yeast Saccharomyces cerevisiae on the growth performance, caecal ecosystem and overall health of growing rabbits. A control diet was formulated (crude protein: 15.9%; neutral detergent fibre: 31.6% and another diet obtained by supplementing the control diet with 1 g of Saccharomyces cerevisiae (6.5×109 colony-forming units per kg of diet. Ninety 35-d old rabbits were allotted into 3 groups: TT (rabbits offered the supplemented diet from 17 d of age onwards, CT (rabbits offered supplemented diet from 35 d and CC (rabbits fed non-supplemented diet. Body weight (BW and feed intake were measured weekly and mortality was controlled daily. At 35, 42 and 77 d of age, 6 rabbits from each group were slaughtered and digestive physiological traits, serum clinical chemistry parameters, fermentation traits, and the composition of caecal microbiota examined. At 42 and 56 d of age, 10 rabbits from each group were injected intraperitoneally with 100 μg/animal of ovalbumin and blood samples were collected for examination of plasma immunological parameters. Throughout the experiment (5-11 wk, weight gain and feed intake (37.8 and 112.6 g/d, on av. were not affected by yeast, except for weight gain in the first week after weaning, which was the highest in TT animals among the 3 groups (48.1 vs. 43.9 and 44.2 g/d for TT, CC and CT, respectively; P=0.012. This may be due to the increased trend in feed intake (P=0.072 in the TT group (96.4 g/d compared to the others. Mortality (5/90 was low and did not differ among the 3 groups. Treatments had no effect on slaughter traits at the 3 sampling dates (35, 42 and 77 d. Only the weight of the empty caecum (% BW was higher (P=0.02 in CC (2.2% and CT (2.3% than in TT group (1.8% at 77 d of age. Treatments did not overtly affect the caecal microbiota, although the number of total anaerobic bacteria and Bacteroides were lower (108 and 107/g caecal digesta

  10. Effects of different forms of yeast Saccharomyces cerevisiae on growth performance, intestinal development, and systemic immunity in early-weaned piglets.

    Science.gov (United States)

    Jiang, Zongyong; Wei, Shaoyong; Wang, Zhilin; Zhu, Cui; Hu, Shenglan; Zheng, Chuntian; Chen, Zhuang; Hu, Youjun; Wang, Li; Ma, Xianyong; Yang, Xuefen

    2015-01-01

    The present study was conducted to determine effects of different forms of yeast (Saccharomyces cerevisiae, strain Y200007) on the growth performance, intestinal development, and systemic immunity in early-weaned piglets. A total of 96 piglets (14-d old, initial average body weight of 4.5 kg) were assigned to 4 dietary treatments: (1) basal diet without yeast (Control); (2) basal diet supplemented with 3.00 g/kg live yeast (LY); (3) basal diet supplemented with 2.66 g/kg heat-killed whole yeast (HKY); and (4) basal diet supplemented with 3.00 g/kg superfine yeast powders (SFY). Diets and water were provided ad libitum to the piglets during 3-week experiment. Growth performance of piglets was measured weekly. Samples of blood and small intestine were collected at days 7 and 21 of experiment. Dietary supplementation with LY and SFY improved G:F of piglets at days 1-21 of the experiment (P yeast-supplemented diets (P intestinal development, and systemic immunity in early-weaned piglets, with better improvement in feed conversion by dietary supplementation with LY, while dietary supplementation with SFY was more effective in increasing systemic immune functions in early-weaned piglets.

  11. Effect of live yeast (Saccharomyces cerevisiae administration on apparent digestibility of horses

    Directory of Open Access Journals (Sweden)

    Giovanni Savoini

    2010-01-01

    Full Text Available Six mares were divided into two groups of three subjects each in a crossover design on the basis of body weight and age: Control(Cfedabasaldiet,Treatment(Tfedabasaldietand2 Control (C fed a basal diet, Treatment (T fed a basal diet and 2 2 g/head/d of live yeast ((S. cerevisiae 4.6x1010 CFU/day.Theexperimentaldesignwasdividedintotwo .Theexperimentaldesignwasdividedintotwo . The experimental design was divided into two periods named period 1 and period 2 respectively of 35d each, and consisting of 3 different phases. Dur- ing each period all animals were subject to an adaptation phase of 14d (phase1; during phase 2 (18d and phase 3 live yeast was administered (T or not (C. Phase 3 consisted in a three days individual fecal collection period all the groups, in order to determine dry matter, organic matter, crude protein, crude fat, NDF and ADF apparent digestion rates using acid insoluble ash (AIA as internal marker (Bergero et al., 2005. Results obtained evidenced as the administration of S. cerevisiae to mature horses resulted in increased digestibility of dry matter, organic matter, NDF, and ADF.

  12. Pulsed electromagnetic field at 9.71 GHz increase free radical production in yeast (Saccharomyces cerevisiae).

    Science.gov (United States)

    Crouzier, D; Perrin, A; Torres, G; Dabouis, V; Debouzy, J-C

    2009-05-01

    Potential human health hazards have been reported after exposure to electromagnetic fields at low power density. Increased oxidative stress has been suggested as a potential mechanism involved in long-term effect of such exposure. In the present work, yeast cultures were exposed for 20 min to a 9.71 GHz pulsed electromagnetic field at specific absorption rates (SAR) from 0.5 W/kg to 16 W/kg. Oxidative perturbations were investigated using ESR spin trapping experiments and their impacts on membrane fluidity were assessed using spin label five nitroxide stearate. The experiments using the water-soluble spin trap alpha-(4-pyridyl-1-oxide)-N-t-butylnitrone and the lipid-soluble N-tert-butyl-alpha-phenylnitrone showed an increase of spin adduct production both in low power density exposure (SAR4 W/kg). The membrane fluidity diminutions after exposure in all the conditions were consistent with lipid peroxidation. The overall results suggest an increase of the free radical production in the intra cellular compartment; however no effect on the yeast vitality was found.

  13. Growth on Alpha-Ketoglutarate Increases Oxidative Stress Resistance in the Yeast Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Maria Bayliak

    2017-01-01

    Full Text Available Alpha-ketoglutarate (AKG is an important intermediate in cell metabolism, linking anabolic and catabolic processes. The effect of exogenous AKG on stress resistance in S. cerevisiae cells was studied. The growth on AKG increased resistance of yeast cells to stresses, but the effects depended on AKG concentration and type of stressor. Wild-type yeast cells grown on AKG were more resistant to hydrogen peroxide, menadione, and transition metal ions (Fe2+ and Cu2+ but not to ethanol and heat stress as compared with control ones. Deficiency in SODs or catalases abolished stress-protective effects of AKG. AKG-supplemented growth led to higher values of total metabolic activity, level of low-molecular mass thiols, and activities of catalase and glutathione reductase in wild-type cells compared with the control. The results suggest that exogenous AKG may enhance cell metabolism leading to induction of mild oxidative stress. It turn, it results in activation of antioxidant system that increases resistance of S. cerevisiae cells to H2O2 and other stresses. The presence of genes encoding SODs or catalases is required for the expression of protective effects of AKG.

  14. Computational approaches for the genetic and phenotypic characterization of a Saccharomyces cerevisiae wine yeast collection.

    Science.gov (United States)

    Franco-Duarte, R; Umek, L; Zupan, B; Schuller, D

    2009-12-01

    Within this study, we have used a set of computational techniques to relate the genotypes and phenotypes of natural populations of Saccharomyces cerevisiae, using allelic information from 11 microsatellite loci and results from 24 phenotypic tests. A group of 103 strains was obtained from a larger S. cerevisiae winemaking strain collection by clustering with self-organizing maps. These strains were further characterized regarding their allelic combinations for 11 microsatellites and analysed in phenotypic screens that included taxonomic criteria (carbon and nitrogen assimilation tests, growth at different temperatures) and tests with biotechnological relevance (ethanol resistance, H(2)S or aromatic precursors formation). Phenotypic variability was rather high and each strain showed a unique phenotypic profile. The results, expressed as optical density (A(640)) after 22 h of growth, were in agreement with taxonomic data, although with some exceptions, since few strains were capable of consuming arabinose and ribose to a small extent. Based on microsatellite allelic information, naïve Bayesian classifier correctly assigned (AUC = 0.81, p 0.75). Subgroups were found for strains with low ethanol resistance, growth at 30 degrees C and growth in media containing galactose, raffinose or urea. The results demonstrate that computational approaches can be used to establish genotype-phenotype relations and to make predictions about a strain's biotechnological potential.

  15. The yeast Saccharomyces cerevisiae DNA polymerase IV: possible involvement in double strand break DNA repair.

    Science.gov (United States)

    Leem, S H; Ropp, P A; Sugino, A

    1994-08-11

    We identified and purified a new DNA polymerase (DNA polymerase IV), which is similar to mammalian DNA polymerase beta, from Saccharomyces cerevisiae and suggested that it is encoded by YCR14C (POLX) on chromosome III. Here, we provided a direct evidence that the purified DNA polymerase IV is indeed encoded by POLX. Strains harboring a pol4 deletion mutation exhibit neither mitotic growth defect nor a meiosis defect, suggesting that DNA polymerase IV participates in nonessential functions in DNA metabolism. The deletion strains did not exhibit UV-sensitivity. However, they did show weak sensitivity to MMS-treatment and exhibited a hyper-recombination phenotype when intragenic recombination was measured during meiosis. Furthermore, MAT alpha pol4 delta segregants had a higher frequency of illegitimate mating with a MAT alpha tester strain than that of wild-type cells. These results suggest that DNA polymerase IV participates in a double-strand break repair pathway. A 3.2kb of the POL4 transcript was weakly expressed in mitotically growing cells. During meiosis, a 2.2 kb POL4 transcript was greatly induced, while the 3.2 kb transcript stayed at constant levels. This induction was delayed in a swi4 delta strain during meiosis, while no effect was observed in a swi6 delta strain.

  16. Self-organization of magnetite nanoparticles in providing Saccharomyces cerevisiae Yeasts with magnetic properties

    Science.gov (United States)

    Gorobets, S. V.; Yu, Gorobets O.; Demianenko, I. V.; Nikolaenko, R. N.

    2013-07-01

    The compared analyze of four methods of the magnetic nanoparticles clusters parameters estimation were developed and performed, such as, method, which takes into account two magneto-force scans of surface for calculation, geometry distance measurement between two centers of clusters in chains using the functions of NOVA-program, which is the standard computer equipment for scanning probe microscopy SOLVER PRO-M and the model, which takes into account the table meaning of magnetite magnetization and atomic-force microscopy. The magnetically-controllable biosorbent based on the culture of Saccharomyces cerevisiae was used as a model object for adequacy analyze of these models. As the result of the work we get the information about the depth of clusters penetration inside biomembrane, the typical sizes of clusters and the dispersion of magnetic clusters sizes. This analyze shows that all four methods can be used for single magnetic clusters, but for clusters, which lay in chains with small distance between their centers, the mode, which takes into account the table meaning of magnetite magnetization, cannot be used, because this model does not take into account the nearest neighbors contribution of interaction of magnetic fields dipole with magnetic probe.

  17. Genome-wide mapping of the cohesin complex in the yeast Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Earl F Glynn

    2004-09-01

    Full Text Available In eukaryotic cells, cohesin holds sister chromatids together until they separate into daughter cells during mitosis. We have used chromatin immunoprecipitation coupled with microarray analysis (ChIP chip to produce a genome-wide description of cohesin binding to meiotic and mitotic chromosomes of Saccharomyces cerevisiae. A computer program, PeakFinder, enables flexible, automated identification and annotation of cohesin binding peaks in ChIP chip data. Cohesin sites are highly conserved in meiosis and mitosis, suggesting that chromosomes share a common underlying structure during different developmental programs. These sites occur with a semiperiodic spacing of 11 kb that correlates with AT content. The number of sites correlates with chromosome size; however, binding to neighboring sites does not appear to be cooperative. We observed a very strong correlation between cohesin sites and regions between convergent transcription units. The apparent incompatibility between transcription and cohesin binding exists in both meiosis and mitosis. Further experiments reveal that transcript elongation into a cohesin-binding site removes cohesin. A negative correlation between cohesin sites and meiotic recombination sites suggests meiotic exchange is sensitive to the chromosome structure provided by cohesin. The genome-wide view of mitotic and meiotic cohesin binding provides an important framework for the exploration of cohesins and cohesion in other genomes.

  18. Transcription coupled nucleotide excision repair in the yeast Saccharomyces cerevisiae: The ambiguous role of Rad26.

    Science.gov (United States)

    Li, Shisheng

    2015-12-01

    Transcription coupled nucleotide excision repair (TC-NER) is believed to be triggered by an RNA polymerase stalled at a lesion in the transcribed strand of actively transcribed genes. Rad26, a DNA-dependent ATPase in the family of SWI2/SNF2 chromatin remodeling proteins, plays an important role in TC-NER in Saccharomyces cerevisiae. However, Rad26 is not solely responsible for TC-NER and Rpb9, a nonessential subunit of RNA polymerase II (RNAP II), is largely responsible for Rad26-independent TC-NER. The Rad26-dependent and Rpb9-dependent TC-NER have different efficiencies in genes with different transcription levels and in different regions of a gene. Rad26 becomes entirely or partially dispensable for TC-NER in the absence of Rpb4, another nonessential subunit of RNAP II, or a number of transcription elongation factors (Spt4, Spt5 and the RNAP II associated factor complex). Rad26 may not be a true transcription-repair coupling factor that recruits the repair machinery to the damaged sites where RNAP II stalls. Rather, Rad26 may facilitate TC-NER indirectly, by antagonizing the action of TC-NER repressors that normally promote transcription elongation. The underlying mechanism of how Rad26 functions in TC-NER remains to be elucidated.

  19. Characterization of oligosaccharides from an antigenic mannan of Saccharomyces cerevisiae.

    Science.gov (United States)

    Young, M; Davies, M J; Bailey, D; Gradwell, M J; Smestad-Paulsen, B; Wold, J K; Barnes, R M; Hounsell, E F

    1998-08-01

    Mannans of the yeast Saccharomyces cerevisiae have been implicated as containing the allergens to which bakers and brewers are sensitive and also the antigen recognized by patients with Crohn's disease. A fraction of S. cerevisiae mannan, Sc500, having high affinity for antibodies in Crohn's patients has been characterized by NMR spectroscopy followed by fragmentation using alkaline elimination, partial acid hydrolysis and acetolysis. The released oligosaccharides were separated by gel filtration on a Biogel P4 column and analyzed by fluorescence labeling, HPLC and methylation analysis. The relationship between structure and antigen activity was measured by competitive ELISA. The antigenic activity of the original high molecular weight mannan could be ascribed to terminal Manalpha1-->3Manalpha1-->2 sequences which are rarely found in human glycoproteins but were over-represented in Sc500 compared to other yeast mannans.

  20. Application of synthetic biology for production of chemicals in yeast Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Borodina, Irina; Li, Mingji

    2015-01-01

    Synthetic biology and metabolic engineering enable generation of novel cell factories that efficiently convert renewable feedstocks into biofuels, bulk, and fine chemicals, thus creating the basis for biosustainable economy independent on fossil resources. While over a hundred proof...... computational tools for the prediction of biochemical pathways, molecular biology methods for assembly of DNA parts into pathways, and for introducing the pathways into the host, and finally approaches for optimizing performance of the introduced pathways.......-of-concept chemicals have been made in yeast, only a very small fraction of those has reached commercial-scale production so far. The limiting factor is the high research cost associated with the development of a robust cell factory that can produce the desired chemical at high titer, rate, and yield. Synthetic...

  1. Radiation-induced mating-type switching in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Luggen-Hölscher, J; Kiefer, J

    1988-09-01

    Haploid yeast cells possess two different mating types which are controlled genetically by the MAT locus. Information of the opposite mating type is stored on the same chromosome but not expressed. Radiation may initiate a gene conversion event leading to 'mating-type switching'. This was studied by using X-rays and 254 nm ultraviolet light. X-ray-induced mating type switching shows an oxygen enhancement ratio of 2.9 which is higher than that for survival (1.8) and equals that for double-strand break induction. Mating-type switching by UV is not photoreactivable and depends on a functioning excision repair system. The results are compatible with the interpretation that mating type switching is initiated by a double-strand break in the MAT coding region.

  2. [Hybridization of cells of the same mating type in Saccharomyces yeasts].

    Science.gov (United States)

    Inge-Vechtomov, S G; Repnevskaia, M V; Karpova, T S

    1986-11-01

    The problem of mating-type switches in heterothallic yeast cells was investigated. 93% of non-mating hybrids were obtained in a X a crosses. The hybrids obtained in alpha X alpha crosses expressed alpha-mating type predominantly. Hybrids with no major rearrangements or loss of chromosome III were detected among these hybrids. In the selective system for cytoduction in a X a crosses the significant part of all cytoductants were alpha-maters, i.e. those originated through a----alpha switches. In alpha X alpha crosses alpha cytoductants were predominantly obtained either spontaneously or after UV-irradiation, though the frequency of cytoductants after UV-irradiation exceeded the control value several times. So, we developed the method for selection of mating-type "switchers" (a in equilibrium alpha), avoiding the diploid stage, and demonstrated the possibility of hybridization among the alpha-cells without hereditary changes at the MAT locus.

  3. CHL12, a gene essential for the fidelity of chromosome transmission in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Kouprina, N; Kroll, E; Kirillov, A; Bannikov, V; Zakharyev, V; Larionov, V

    1994-12-01

    We have analyzed the CHL12 gene, earlier identified in a screen for yeast mutants with increased rates of mitotic loss of chromosome III and circular centromeric plasmids. A genomic clone of CHL12 was isolated and used to map its physical position on the right arm of chromosome XIII near the ADH3 locus. Nucleotide sequence analysis of CHL12 revealed a 2.2-kb open reading frame with a 84-kD predicted protein sequence. Analysis of the sequence upstream of the CHL12 open reading frame revealed the presence of two imperfect copies of MluI motif, ACGCGT, a sequence associated with many DNA metabolism genes in yeast. Analysis of the amino acid sequence revealed that the protein contains a NTP-binding domain and shares a low degree of homology with subunits of replication factor C (RF-C). A strain containing a null allele of CHL12 was viable under standard growth conditions, and as well as original mutants exhibited an increase in the level of spontaneous mitotic recombination, slow growth and cold-sensitive phenotypes. Most of cells carrying the null chl12 mutation arrested as large budded cells with the nucleus in the neck at nonpermissive temperature that typical for cell division cycle (cdc) mutants that arrest in the cell cycle at a point either immediately preceding M phase or during S phase. Cell cycle arrest of the chl12 mutant requires the RAD9 gene. We conclude that the CHL12 gene product has critical role in DNA metabolism.

  4. Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Jakociunas, Tadas; Bonde, Ida; Herrgard, Markus

    2015-01-01

    CRISPR/Cas9 is a simple and efficient tool for targeted and marker-free genome engineering. Here, we report the development and successful application of a multiplex CRISPR/Cas9 system for genome engineering of up to 5 different genomic loci in one transformation step in baker's yeast Saccharomyces...... cerevisiae. To assess the specificity of the tool we employed genome re-sequencing to screen for off-target sites in all single knock-out strains targeted by different gRNAs. This extensive analysis identified no more genome variants in CRISPR/Cas9 engineered strains compared to wild-type reference strains...

  5. Biological methylation of inorganic mercury by Saccharomyces cerevisiae - a possible environmental process

    Energy Technology Data Exchange (ETDEWEB)

    Reisinger, K.; Stoeppler, M.; Nuernberg, H.W.

    1983-11-01

    The biological methylation of inorganic mercury by S-adenosylmethione (SAM) was investigated by incubation experiments with Saccharomyces cerevisae (''bakers' yeast''). The methyl donor (methionine) and the acceptor (Hg/sup 2 +/ as HgCl/sub 2/) were also applied in their labelled form (double labelling). Methylmercury as a result of a possibly biological methyl group transfer could not be detected. As reaction product only small amounts (0.01per mille yield) of elemental mercury (Hg/sup 0/) were found, while the overwhelming amount of HgCl/sub 2/ had not reacted.

  6. Weak-acid preservatives: pH and proton movements in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Stratford, Malcolm; Nebe-von-Caron, Gerhard; Steels, Hazel; Novodvorska, Michaela; Ueckert, Joerg; Archer, David B

    2013-02-15

    Weak-acid preservatives commonly used to prevent fungal spoilage of low pH foods include sorbic and acetic acids. The "classical weak-acid theory" proposes that weak acids inhibit spoilage organisms by diffusion of undissociated acids through the membrane, dissociation within the cell to protons and anions, and consequent acidification of the cytoplasm. Results from 25 strains of Saccharomyces cerevisiae confirmed inhibition by acetic acid at a molar concentration 42 times higher than sorbic acid, in contradiction of the weak-acid theory where all acids of equal pK(a) should inhibit at equimolar concentrations. Flow cytometry showed that the intracellular pH fell to pH 4.7 at the growth-inhibitory concentration of acetic acid, whereas at the inhibitory concentration of sorbic acid, the pH only fell to pH 6.3. The plasma membrane H⁺-ATPase proton pump (Pma1p) was strongly inhibited by sorbic acid at the growth-inhibitory concentration, but was stimulated by acetic acid. The H⁺-ATPase was also inhibited by lower sorbic acid concentrations, but later showed recovery and elevated activity if the sorbic acid was removed. Levels of PMA1 transcripts increased briefly following sorbic acid addition, but soon returned to normal levels. It was concluded that acetic acid inhibition of S. cerevisiae was due to intracellular acidification, in accord with the "classical weak-acid theory". Sorbic acid, however, appeared to be a membrane-active antimicrobial compound, with the plasma membrane H⁺-ATPase proton pump being a primary target of inhibition. Understanding the mechanism of action of sorbic acid will hopefully lead to improved methods of food preservation.

  7. 5´-UTR introns enhance protein expression in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Hoshida, Hisashi; Kondo, Masaki; Kobayashi, Takafumi; Yarimizu, Tohru; Akada, Rinji

    2017-01-01

    Saccharomyces cerevisiae is one of the most suitable microorganisms for recombinant protein production. To enhance protein production, various expression systems have been intensively studied. However, the effect of introns on protein expression has not been examined deeply in S. cerevisiae. In this study, we analyzed the effect of some introns on protein expression. RPS25A, RPS26A, and RPS26B contain single introns within the 5´-untranslated regions (5´-UTRs), and RPS24A has an intron just downstream of the initiation codon. Expression activity of the promoter regions containing introns (intron promoters) were analyzed by luciferase reporter assays. These intron promoters showed higher expression than the TDH3 promoter (TDH3p), which is one of the strongest promoters in S. cerevisiae. Deletion of the introns from these promoters decreased luciferase expression, indicating that introns have a role in enhancing protein expression. To develop artificial strong intron promoters, several chimeric promoters were constructed using the TDH3p and the RPS25A intron promoter. A construct containing the entire TDH3p followed by the RPS25A intron showed about 50-fold higher expression than the TDH3p alone. Inducible expressions driven by the GAL10 promoter and the CUP1 promoter were also enhanced by the RPS25A intron. However, enhancement of mRNA accumulation by the TDH3p and the GAL10 promoter with the RPS25A intron was lower than the effect on luciferase activity, suggesting that the intron affects post-transcriptionally. The chimeric promoter, TDH3p-RPS25A-intron, enhanced expressions of some, but not all proteins examined, indicating that 5'-UTR introns increase production of a certain type of recombinant proteins in S. cerevisiae.

  8. Drug resistance is conferred on the model yeast Saccharomyces cerevisiae by expression of full-length melanoma-associated human ATP-binding cassette transporter ABCB5.

    Science.gov (United States)

    Keniya, Mikhail V; Holmes, Ann R; Niimi, Masakazu; Lamping, Erwin; Gillet, Jean-Pierre; Gottesman, Michael M; Cannon, Richard D

    2014-10-01

    ABCB5, an ATP-binding cassette (ABC) transporter, is highly expressed in melanoma cells, and may contribute to the extreme resistance of melanomas to chemotherapy by efflux of anti-cancer drugs. Our goal was to determine whether we could functionally express human ABCB5 in the model yeast Saccharomyces cerevisiae, in order to demonstrate an efflux function for ABCB5 in the absence of background pump activity from other human transporters. Heterologous expression would also facilitate drug discovery for this important target. DNAs encoding ABCB5 sequences were cloned into the chromosomal PDR5 locus of a S. cerevisiae strain in which seven endogenous ABC transporters have been deleted. Protein expression in the yeast cells was monitored by immunodetection using both a specific anti-ABCB5 antibody and a cross-reactive anti-ABCB1 antibody. ABCB5 function in recombinant yeast cells was measured by determining whether the cells possessed increased resistance to known pump substrates, compared to the host yeast strain, in assays of yeast growth. Three ABCB5 constructs were made in yeast. One was derived from the ABCB5-β mRNA, which is highly expressed in human tissues but is a truncation of a canonical full-size ABC transporter. Two constructs contained full-length ABCB5 sequences: either a native sequence from cDNA or a synthetic sequence codon-harmonized for S. cerevisiae. Expression of all three constructs in yeast was confirmed by immunodetection. Expression of the codon-harmonized full-length ABCB5 DNA conferred increased resistance, relative to the host yeast strain, to the putative substrates rhodamine 123, daunorubicin, tetramethylrhodamine, FK506, or clorgyline. We conclude that full-length ABCB5 can be functionally expressed in S. cerevisiae and confers drug resistance.

  9. Production of intracellular enzymes by enzymatic treatment of yeast

    Energy Technology Data Exchange (ETDEWEB)

    Zomer, E.; Er-El, Z.; Rokem, J.S.

    1987-01-01

    Enzymatic extraction of intracellular enzymes from various yeasts by glucanase was investigated. Favourable conditions for lysis and release of intracellular enzymes were established. The effects of yeast concentration, growth phase of yeast, storage temperature and pretreatment of yeast were studied. The yeasts investigated can be divided into two groups. The first, Kluyveromyces lactis, Saccharomyces cerevisiae, Saccharomyces oviformis, Torulopsis glabrata, Hansenula polymorpha and local bakers' yeast, lysed relatively easily (70-80% of the cells), especially when cells from the logarithmic growth phase were treated. The second, Candida utilis and Candida vini, were more susceptible to lysis (40-50%) when cells were taken from the stationary phase. Release of two enzymes, glycerol kinase from Candida utilis grown on glycerol and formate dehydrogenase from Torulopsis glabrata grown on methanol was examined. The highest specific activities were obtained by incubating the cells with glucanase for 1.5 hours at 37 degrees C. Inactivation of the released enzyme was relatively low. After 12 hours of enzymatic treatment at 28 degrees C glycerol kinase maintained about 50%, and formate dehydrogenase over 80%, of the original activities. (Refs. 12).

  10. Effect of the variation of the level of lactose conversion in an immobilized lactase reactor upon operating costs for the production of Baker's yeast from hydrolyzed permeate obtained from the ultrafiltration of cottage cheese whey

    Energy Technology Data Exchange (ETDEWEB)

    Scott, T.C.; Hill, C.G. Jr.; Amundson, C.H.

    1987-01-01

    Operating costs for the production of Baker's yeast from hydrolyzed permeate from the ultrafiltration of cottage cheese whey were calculated as a function of the level of lactose conversion in the immobilized lactase reactor. These costs were calculated for the case of 90% conversion of lactose in the reactor and compared to those which result when running the reactor at lower conversions with recycle of unreacted lactose. Total operating costs were estimated by combining individual operating costs for the immobilized enzyme reactor, costs associated with processing a lactose recycle stream, and energy costs associated with cooling the reactor feed stream and sterilizing the hydrolysate stream. It was determined that operating costs are minimized at about 9.9 cents per pound of lactose when the reactor is run at approximately 72% conversion. This represents a savings of 2.4 cents per pound of lactose over the case of a once-through 90% conversion of lactose in the reactor. 8 refs., 4 figs., 9 tabs.

  11. FT-IR spectroscopy: A powerful tool for studying the inter- and intraspecific biodiversity of cultivable non-Saccharomyces yeasts isolated from grape must.

    Science.gov (United States)

    Grangeteau, Cédric; Gerhards, Daniel; Terrat, Sebastien; Dequiedt, Samuel; Alexandre, Hervé; Guilloux-Benatier, Michèle; von Wallbrunn, Christian; Rousseaux, Sandrine

    2016-02-01

    The efficiency of the FT-IR technique for studying the inter- and intra biodiversity of cultivable non-Saccharomyces yeasts (NS) present in different must samples was examined. In first, the capacity of the technique FT-IR to study the global diversity of a given sample was compared to the pyrosequencing method, used as a reference technique. Seven different genera (Aureobasidium, Candida, Cryptococcus, Hanseniaspora, Issatchenkia, Metschnikowia and Pichia) were identified by FT-IR and also by pyrosequencing. Thirty-eight other genera were identified by pyrosequencing, but together they represented less than 6% of the average total population of 6 musts. Among the species identified, some of them present organoleptic potentials in winemaking, particularly Starmerella bacillaris (synonym Candidazemplinina). So in a second time, we evaluated the capacity of the FT-IR technique to discriminate the isolates of this species because few techniques were able to study intraspecific NS yeast biodiversity. The results obtained were validated by using a classic method as ITS sequencing. Biodiversity at strain level was high: 19 different strains were identified from 58 isolates. So, FT-IR spectroscopy seems to be an accurate and reliable method for identifying major genera present in the musts. The two biggest advantages of the FT-IR are the capacity to characterize intraspecific biodiversity of non-Saccharomyces yeasts and the possibility to discriminate a lot of strains.

  12. Novel starters for old processes: use of Saccharomyces cerevisiae strains isolated from artisanal sourdough for craft beer production at a brewery scale.

    Science.gov (United States)

    Marongiu, Antonella; Zara, Giacomo; Legras, Jean-Luc; Del Caro, Alessandra; Mascia, Ilaria; Fadda, Costantino; Budroni, Marilena

    2015-01-01

    The deliberate inoculation of yeast strains isolated from food matrices such as wine or bread, could allow the transfer of novel properties to beer. In this work, the feasibility of the use of baker's yeast strains as starters for craft beer production has been evaluated at laboratory and brewery scale. Nine out of 12 Saccharomyces cerevisiae strains isolated from artisanal sourdoughs metabolized 2 % maltose, glucose and trehalose and showed growth rates and cell populations higher than those of the brewer's strain Safbrew-S33. Analysis of allelic variation at 12 microsatellite loci clustered seven baker's strains and Safbrew-S33 in the main group of bread isolates. Chemical analyses of beers produced at a brewery scale showed significant differences among the beers produced with the baker's strain S38 or Safbrew-S33, while no significant differences were observed when S38 or the brewer's strain Safbrew-F2 was used for re-fermentation. The sensory profile of beers obtained with S38 or the brewer's yeasts did not show significant differences, thus suggesting that baker's strains of S. cerevisiae could represent a reservoir of biodiversity for the selection of starter strains for craft beer production.

  13. Potent L-lactic acid assimilation of the fermentative and heterothallic haploid yeast Saccharomyces cerevisiae NAM34-4C.

    Science.gov (United States)

    Tomitaka, Masataka; Taguchi, Hisataka; Matsuoka, Masayoshi; Morimura, Shigeru; Kida, Kenji; Akamatsu, Takashi

    2014-01-01

    We screened an industrial thermotolerant Saccharomyces cerevisiae strain, KF7, as a potent lactic-acid-assimilating yeast. Heterothallic haploid strains KF7-5C and KF7-4B were obtained from the tetrads of the homothallic yeast strain KF7. The inefficient sporulation and poor spore viability of the haploid strains were improved by two strategies. The first strategy was as follows: (i) the KF7-5C was crossed with the laboratory strain SH6710; (ii) the progenies were backcrossed with KF7-5C three times; and (iii) the progenies were inbred three times to maintain a genetic background close to that of KF7. The NAM12 diploid between the cross of the resultant two strains, NAM11-9C and NAM11-13A, showed efficient sporulation and exhibited excellent growth in YPD medium (pH 3.5) at 35°C with 1.4-h generation time, indicating thermotolerance and acid tolerance. The second strategy was successive intrastrain crosses. The resultant two strains, KFG4-6B and KFG4-4B, showed excellent mating capacity. A spontaneous mutant of KFG4-6B, KFG4-6BD, showed a high growth rate with a generation time of 1.1 h in YPD medium (pH 3.0) at 35°C. The KFG4-6BD strain produced ascospores, which were crossed with NAM11-2C and its progeny to produce tetrads. These tetrads were crossed with KFG4-4B to produce NAM26-14A and NAM26-15A. The latter strain had a generation time of 1.6 h at 35°C in pH 2.5, thus exhibiting further thermotolerance and acid tolerance. A progeny from a cross of NAM26-14A and NAM26-15A yielded the strain NAM34-4C, which showed potent lactic acid assimilation and high transformation efficiency, better than those of a standard laboratory strain.

  14. Novel E3 ubiquitin ligases that regulate histone protein levels in the budding yeast Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Rakesh Kumar Singh

    Full Text Available Core histone proteins are essential for packaging the genomic DNA into chromatin in all eukaryotes. Since multiple genes encode these histone proteins, there is potential for generating more histones than what is required for chromatin assembly. The positively charged histones have a very high affinity for negatively charged molecules such as DNA, and any excess of histone proteins results in deleterious effects on genomic stability and cell viability. Hence, histone levels are known to be tightly regulated via transcriptional, posttranscriptional and posttranslational mechanisms. We have previously elucidated the posttranslational regulation of histone protein levels by the ubiquitin-proteasome pathway involving the E2 ubiquitin conjugating enzymes Ubc4/5 and the HECT (Homologous to E6-AP C-Terminus domain containing E3 ligase Tom1 in the budding yeast. Here we report the identification of four additional E3 ligases containing the RING (Really Interesting New Gene finger domains that are involved in the ubiquitylation and subsequent degradation of excess histones in yeast. These E3 ligases are Pep5, Snt2 as well as two previously uncharacterized Open Reading Frames (ORFs YKR017C and YDR266C that we have named Hel1 and Hel2 (for Histone E3 Ligases respectively. Mutants lacking these E3 ligases are sensitive to histone overexpression as they fail to degrade excess histones and accumulate high levels of endogenous histones on histone chaperones. Co-immunoprecipitation assays showed that these E3 ligases interact with the major E2 enzyme Ubc4 that is involved in the degradation related ubiquitylation of histones. Using mutagenesis we further demonstrate that the RING domains of Hel1, Hel2 and Snt2 are required for histone regulation. Lastly, mutants corresponding to Hel1, Hel2 and Pep5 are sensitive to replication inhibitors. Overall, our results highlight the importance of posttranslational histone regulatory mechanisms that employ multiple E3

  15. CTF4 (CHL15) mutants exhibit defective DNA metabolism in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Kouprina, N; Kroll, E; Bannikov, V; Bliskovsky, V; Gizatullin, R; Kirillov, A; Shestopalov, B; Zakharyev, V; Hieter, P; Spencer, F

    1992-12-01

    We have analyzed the CTF4 (CHL15) gene, earlier identified in two screens for yeast mutants with increased rates of mitotic loss of chromosome III and artificial circular and linear chromosomes. Analysis of the segregation properties of circular minichromosomes and chromosome fragments indicated that sister chromatid loss (1:0 segregation) is the predominant mode of chromosome destabilization in ctf4 mutants, though nondisjunction events (2:0 segregation) also occur at an increased rate. Both inter- and intrachromosomal mitotic recombination levels are elevated in ctf4 mutants, whereas spontaneous mutation to canavanine resistance was not elevated. A genomic clone of CTF4 was isolated and used to map its physical and genetic positions on chromosome XVI. Nucleotide sequence analysis of CTF4 revealed a 2.8-kb open reading frame with a 105-kDa predicted protein sequence. The CTF4 DNA sequence is identical to that of POB1, characterized as a gene encoding a protein that associates in vitro with DNA polymerase alpha. At the N-terminal region of the protein sequence, zinc finger motifs which define potential DNA-binding domains were found. The C-terminal region of the predicted protein displayed similarity to sequences of regulatory proteins known as the helix-loop-helix proteins. Data on the effects of a frameshift mutation suggest that the helix-loop-helix domain is essential for CTF4 function. Analysis of sequences upstream of the CTF4 open reading frame revealed the presence of a hexamer element, ACGCGT, a sequence associated with many DNA metabolism genes in budding yeasts. Disruption of the coding sequence of CTF4 did not result in inviability, indicating that the CTF4 gene is nonessential for mitotic cell division. However, ctf4 mutants exhibit an accumulation of large budded cells with the nucleus in the neck. ctf4 rad52 double mutants grew very slowly and produced extremely high levels (50%) of inviable cell division products compared with either single mutant

  16. Comparative genomic analysis of Saccharomyces cerevisiae yeasts isolated from fermentations of traditional beverages unveils different adaptive strategies.

    Science.gov (United States)

    Ibáñez, Clara; Pérez-Torrado, Roberto; Chiva, Rosana; Guillamón, José Manuel; Barrio, Eladio; Querol, Amparo

    2014-02-03

    Saccharomyces cerevisiae strains are the main responsible of most traditional alcohol fermentation processes performed around the world. The characteristics of the diverse traditional fermentations are very different according to their sugar composition, temperature, pH or nitrogen sources. During the adaptation of yeasts to these new environments provided by human activity, their different compositions likely imposed selective pressures that shaped the S. cerevisiae genome. In the present work we performed a comparative genomic hybridization analysis to explore the genome constitution of six S. cerevisiae strains isolated from different traditional fermentations (masato, mescal, cachaça, sake, wine, and sherry wine) and one natural strain. Our results indicate that gene copy numbers (GCN) are very variable among strains, and most of them were observed in subtelomeric and intrachromosomal gene families involved in metabolic functions related to cellular homeostasis, cell-to-cell interactions, and transport of solutes such as ions, sugars and metals. In many cases, these genes are not essential but they can play an important role in the adaptation to new environmental conditions. However, the most interesting result is the association observed between GCN changes in genes involved in the nitrogen metabolism and the availability of nitrogen sources in the different traditional fermentation processes. This is clearly illustrated by the differences in copy numbers not only in gene PUT1, the main player in the assimilation of proline as a nitrogen source, but also in CAR2, involved in arginine catabolism. Strains isolated from fermentations where proline is more abundant contain a higher number of PUT1 copies and are more efficient in assimilating this amino acid as a nitrogen source. A strain isolated from sugarcane juice fermentations, in which arginine is a rare amino acid, contains less copies of CAR2 and showed low efficiency in arginine assimilation. These

  17. VID22 is required for transcriptional activation of the PSD2 gene in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Miyata, Non; Miyoshi, Takuya; Yamaguchi, Takanori; Nakazono, Toshimitsu; Tani, Motohiro; Kuge, Osamu

    2015-12-15

    Phosphatidylethanolamine (PE) in the yeast Saccharomyces cerevisiae is synthesized through decarboxylation of phosphatidylserine (PS), catalysed by PS decarboxylase 1 (Psd1p) and 2 (Psd2p) and the cytidine 5'-diphosphate (CDP)-ethanolamine (CDP-Etn) pathway. PSD1 null (psd1Δ) and PSD2 null (psd2Δ) mutants are viable in a synthetic minimal medium, but a psd1Δ psd2Δ double mutant exhibits Etn auxotrophy, which is incorporated into PE through the CDP-Etn pathway. We have previously shown that psd1Δ is synthetic lethal with deletion of VID22 (vid22Δ) [Kuroda et al. (2011) Mol. Microbiol. 80: , 248-265]. In the present study, we found that vid22Δ mutant exhibits Etn auxotrophy under PSD1-depressed conditions. Deletion of VID22 in wild-type and PSD1-depressed cells caused partial defects in PE formation through decarboxylation of PS. The enzyme activity of PS decarboxylase in an extract of vid22Δ cells was ∼70% of that in wild-type cells and similar to that in psd2Δ cells and the PS decarboxylase activity remaining in the PSD1-depressed cells became almost negligible with deletion of VID22. Thus, the vid22Δ mutation was suggested to cause a defect in the Psd2p activity. Furthermore, vid22Δ cells were shown to be defective in expression of the PSD2 gene tagged with 6×HA, the defect being ameliorated by replacement of the native promoter of the PSD2 gene with a CYC1 promoter. In addition, an α-galactosidase reporter assay revealed that the activity of the promoter of the PSD2 gene in vid22Δ cells was ∼5% of that in wild-type cells. These results showed that VID22 is required for transcriptional activation of the PSD2 gene.

  18. The physiological characteristics of the yeast Dekkera bruxellensis in fully fermentative conditions with cell recycling and in mixed cultures with Saccharomyces cerevisiae.

    Science.gov (United States)

    Pereira, Luciana Filgueira; Bassi, Ana Paula Guarnieri; Avansini, Simoni Helena; Neto, Adauto Gomes Barbosa; Brasileiro, Bereneuza Tavares Ramos Valente; Ceccato-Antonini, Sandra Regina; de Morais, Marcos Antonio

    2012-03-01

    The yeast Dekkera bruxellensis plays an important role in industrial fermentation processes, either as a contaminant or as a fermenting yeast. In this study, an analysis has been conducted of the fermentation characteristics of several industrial D. bruxellensis strains collected from distilleries from the Southeast and Northeast of Brazil, compared with Saccharomyces cerevisiae. It was found that all the strains of D. bruxellensis showed a lower fermentative capacity as a result of inefficient sugar assimilation, especially sucrose, under anaerobiosis, which is called the Custer effect. In addition, most of the sugar consumed by D. bruxellensis seemed to be used for biomass production, as was observed by the increase of its cell population during the fermentation recycles. In mixed populations, the surplus of D. bruxellensis over S. cerevisiae population could not be attributed to organic acid production by the first yeast, as previously suggested. Moreover, both yeast species showed similar sensitivity to lactic and acetic acids and were equally resistant to ethanol, when added exogenously to the fermentation medium. Thus, the effects that lead to the employment of D. bruxellensis in an industrial process and its effects on the production of ethanol are multivariate. The difficulty of using this yeast for ethanol production is that it requires the elimination of the Custer effect to allow an increase in the assimilation of sugar under anaerobic conditions.

  19. Phenotypic expression of primary lesions of genetic material in Saccharomyces yeasts.

    Science.gov (United States)

    Inge-Vechtomov, S G; Repnevskaya, M V

    1989-01-01

    "Illegitimate" mating of yeasts (alpha x alpha), either spontaneous or induced by uv light or ethyl methanesulfanate, in a selective system for "cytoduction" revealed that about 95% of cytoductants expressed their original (alpha) mating type. Inducing the mating by treating the recipient of cytoplasm with uv light reached two orders of magnitude. An additional copy of MAT alpha in the alpha recipient almost completely eliminated the effect, which means that nonheritable mating type changes observed are formally recessive and are localized within MAT alpha complex. About 1% of cytoductants obtained were nonmating types and some of them were identified as mat alpha l mutants. Radl8 mutant as a recipient showed a considerably elevated spontaneous frequency of illegitimate hybridization and cytoduction. The cytoductants also preserved the original mating type. These facts suggest that nonheritable changes of mating type are due to repairable primary (premutational) lesions in MAT alpha genetic material. The significance of these results for understanding the mechanism of nonheritable variability is discussed.

  20. a/alpha-control of DNA repair in the yeast Saccharomyces cerevisiae: genetic and physiological aspects.

    Science.gov (United States)

    Heude, M; Fabre, F

    1993-03-01

    It has long been known that diploid strains of yeast are more resistant to gamma-rays than haploid cells, and that this is in part due to heterozygosity at the mating type (MAT) locus. It is shown here that the genetic control exerted by the MAT genes on DNA repair involves the a1 and alpha 2 genes, in a RME1-independent way. In rad18 diploids, affected in the error-prone repair, the a/alpha effects are of a very large amplitude, after both UV and gamma-rays, and also depends on a1 and alpha 2. The coexpression of a and alpha in rad18 haploids suppresses the sensitivity of a subpopulation corresponding to the G2 phase cells. Related to this, the coexpression of a and alpha in RAD+ haploids depresses UV-induced mutagenesis in G2 cells. For srs2 null diploids, also affected in the error-prone repair pathway, we show that their G1 UV sensitivity, likely due to lethal recombination events, is partly suppressed by MAT homozygosity. Taken together, these results led to the proposal that a1-alpha 2 promotes a channeling of some DNA structures from the mutagenic into the recombinational repair process.

  1. Ethanol production from kitchen waste using the flocculating yeast Saccharomyces cerevisiae strain KF-7

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yue-Qin; Liu, Kai; An, Ming-Zhe; Morimura, Shigeru; Kida, Kenji [Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan); Koike, Yoji [Tokyo Gas Co., Ltd., 1-7-7 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa 230-0045 (Japan); Wu, Xiao-Lei [Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871 (China)

    2008-11-15

    A process for producing ethanol from kitchen waste was developed in this study. The process consists of freshness preservation of the waste, saccharification of the sugars in the waste, continuous ethanol fermentation of the saccharified liquid, and anaerobic treatment of the saccharification residue and the stillage. Spraying lactic acid bacteria (LCB) on the kitchen waste kept the waste fresh for over 1 week. High glucose recovery (85.5%) from LCB-sprayed waste was achieved after saccharification using Nagase N-40 glucoamylase. The resulting saccharified liquid was used directly for ethanol fermentation, without the addition of any nutrients. High ethanol productivity (24.0 g l{sup -1} h{sup -1}) was obtained when the flocculating yeast strain KF-7 was used in a continuous ethanol fermentation process at a dilution rate of 0.8 h{sup -1}. The saccharification residue was mixed with stillage and treated in a thermophilic anaerobic continuous stirred tank reactor (CSTR); a VTS loading rate of 6 g l{sup -1} d{sup -1} with 72% VTS digestion efficiency was achieved. Using this process, 30.9 g ethanol, and 65.2 l biogas with 50% methane, was produced from 1 kg of kitchen waste containing 118.0 g total sugar. Thus, energy in kitchen waste can be converted to ethanol and methane, which can then be used as fuels, while simultaneously treating kitchen waste. (author)

  2. A Thermodynamic Model of Monovalent Cation Homeostasis in the Yeast Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Susanne Gerber

    2016-01-01

    Full Text Available Cationic and heavy metal toxicity is involved in a substantial number of diseases in mammals and crop plants. Therefore, the understanding of tightly regulated transporter activities, as well as conceiving the interplay of regulatory mechanisms, is of substantial interest. A generalized thermodynamic description is developed for the complex interplay of the plasma membrane ion transporters, membrane potential and the consumption of energy for maintaining and restoring specific intracellular cation concentrations. This concept is applied to the homeostasis of cation concentrations in the yeast cells of S. cerevisiae. The thermodynamic approach allows to model passive ion fluxes driven by the electrochemical potential differences, but also primary or secondary active transport processes driven by the inter- play of different ions (symport, antiport or by ATP consumption (ATPases. The model-confronted with experimental data-reproduces the experimentally observed potassium and proton fluxes induced by the external stimuli KCl and glucose. The estimated phenomenological constants combine kinetic parameters and transport coefficients. These are in good agreement with the biological understanding of the transporters thus providing a better understanding of the control exerted by the coupled fluxes. The model predicts the flux of additional ion species, like e.g. chloride, as a potential candidate for counterbalancing positive charges. Furthermore, the effect of a second KCl stimulus is simulated, predicting a reduced cellular response for cells that were first exposed to a high KCl stimulus compared to cells pretreated with a mild KCl stimulus. By describing the generalized forces that are responsible for a given flow, the model provides information and suggestions for new experiments. Furthermore, it can be extended to other systems such as e.g. Candida albicans, or selected plant cells.

  3. A Thermodynamic Model of Monovalent Cation Homeostasis in the Yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Gerber, Susanne; Fröhlich, Martina; Lichtenberg-Fraté, Hella; Shabala, Sergey; Shabala, Lana; Klipp, Edda

    2016-01-01

    Cationic and heavy metal toxicity is involved in a substantial number of diseases in mammals and crop plants. Therefore, the understanding of tightly regulated transporter activities, as well as conceiving the interplay of regulatory mechanisms, is of substantial interest. A generalized thermodynamic description is developed for the complex interplay of the plasma membrane ion transporters, membrane potential and the consumption of energy for maintaining and restoring specific intracellular cation concentrations. This concept is applied to the homeostasis of cation concentrations in the yeast cells of S. cerevisiae. The thermodynamic approach allows to model passive ion fluxes driven by the electrochemical potential differences, but also primary or secondary active transport processes driven by the inter- play of different ions (symport, antiport) or by ATP consumption (ATPases). The model-confronted with experimental data-reproduces the experimentally observed potassium and proton fluxes induced by the external stimuli KCl and glucose. The estimated phenomenological constants combine kinetic parameters and transport coefficients. These are in good agreement with the biological understanding of the transporters thus providing a better understanding of the control exerted by the coupled fluxes. The model predicts the flux of additional ion species, like e.g. chloride, as a potential candidate for counterbalancing positive charges. Furthermore, the effect of a second KCl stimulus is simulated, predicting a reduced cellular response for cells that were first exposed to a high KCl stimulus compared to cells pretreated with a mild KCl stimulus. By describing the generalized forces that are responsible for a given flow, the model provides information and suggestions for new experiments. Furthermore, it can be extended to other systems such as e.g. Candida albicans, or selected plant cells.

  4. Low concentrations of the non-ionic detergent Nonidet P-40 interfere with sterol biogenesis and viability of the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Hronská, Lucia; Mrózová, Zuzana; Valachovic, Martin; Hapala, Ivan

    2004-09-01

    Mild non-ionic detergents are used for solubilization of hydrophobic substrates in yeast growth media at concentrations 0.1-1%. Our data show that low concentrations of Nonidet P-40 may significantly affect lipid biogenesis in the yeast Saccharomyces cerevisiae. The uptake and esterification of external [4-14C]-cholesterol is strongly reduced in hem1 mutants treated with low concentrations of Nonidet P-40. Significant inhibitory effect of NP-40 on sterol uptake and esterification was evident both in non-growing and growing cells supplemented with external cholesterol. Increased levels of sterol precursors (squalene, lanosterol) in hem1 cells grown in complex medium with cholesterol indicated general interference of NP-40 with sterol biosynthesis. NP-40 in the growth medium affected also cell viability estimated as the colony forming ability. More attention should be therefore paid to possible effects of mild detergents at low concentrations generally considered to be harmless, especially in cells with disturbed lipid biogenesis.

  5. The resistance of the yeast Saccharomyces cerevisiae to the biocide polyhexamethylene biguanide: involvement of cell wall integrity pathway and emerging role for YAP1

    Directory of Open Access Journals (Sweden)

    de Morais Marcos A

    2011-08-01

    Full Text Available Abstract Background Polyhexamethylene biguanide (PHMB is an antiseptic polymer that is mainly used for cleaning hospitals and pools and combating Acantamoeba infection. Its fungicide activity was recently shown by its lethal effect on yeasts that contaminate the industrial ethanol process, and on the PE-2 strain of Saccharomyces cerevisiae, one of the main fermenting yeasts in Brazil. This pointed to the need to know the molecular mechanism that lay behind the cell resistance to this compound. In this study, we examined the factors involved in PHMB-cell interaction and the mechanisms that respond to the damage caused by this interaction. To achieve this, two research strategies were employed: the expression of some genes by RT-qPCR and the analysis of mutant strains. Results Cell Wall integrity (CWI genes were induced in the PHMB-resistant Saccharomyces cerevisiae strain JP-1, although they are poorly expressed in the PHMB-sensitive Saccharomyces cerevisiae PE2 strain. This suggested that PHMB damages the glucan structure on the yeast cell wall. It was also confirmed by the observed sensitivity of the yeast deletion strains, Δslg1, Δrom2, Δmkk2, Δslt2, Δknr4, Δswi4 and Δswi4, which showed that the protein kinase C (PKC regulatory mechanism is involved in the response and resistance to PHMB. The sensitivity of the Δhog1 mutant was also observed. Furthermore, the cytotoxicity assay and gene expression analysis showed that the part played by YAP1 and CTT1 genes in cell resistance to PHMB is unrelated to oxidative stress response. Thus, we suggested that Yap1p can play a role in cell wall maintenance by controlling the expression of the CWI genes. Conclusion The PHMB treatment of the yeast cells activates the PKC1/Slt2 (CWI pathway. In addition, it is suggested that HOG1 and YAP1 can play a role in the regulation of CWI genes.

  6. Partial methylation at Am100 in 18S rRNA of baker's yeast reveals ribosome heterogeneity on the level of eukaryotic rRNA modification.

    Science.gov (United States)

    Buchhaupt, Markus; Sharma, Sunny; Kellner, Stefanie; Oswald, Stefanie; Paetzold, Melanie; Peifer, Christian; Watzinger, Peter; Schrader, Jens; Helm, Mark; Entian, Karl-Dieter

    2014-01-01

    Ribosome heterogeneity is of increasing biological significance and several examples have been described for multicellular and single cells organisms. In here we show for the first time a variation in ribose methylation within the 18S rRNA of Saccharomyces cerevisiae. Using RNA-cleaving DNAzymes, we could specifically demonstrate that a significant amount of S. cerevisiae ribosomes are not methylated at 2'-O-ribose of A100 residue in the 18S rRNA. Furthermore, using LC-UV-MS/MS of a respective 18S rRNA fragment, we could not only corroborate the partial methylation at A100, but could also quantify the methylated versus non-methylated A100 residue. Here, we exhibit that only 68% of A100 in the 18S rRNA of S.cerevisiae are methylated at 2'-O ribose sugar. Polysomes also contain a similar heterogeneity for methylated Am100, which shows that 40S ribosome subunits with and without Am100 participate in translation. Introduction of a multicopy plasmid containing the corresponding methylation guide snoRNA gene SNR51 led to an increased A100 methylation, suggesting the cellular snR51 level to limit the extent of this modification. Partial rRNA modification demonstrates a new level of ribosome heterogeneity in eukaryotic cells that might have substantial impact on regulation and fine-tuning of the translation process.

  7. Partial methylation at Am100 in 18S rRNA of baker's yeast reveals ribosome heterogeneity on the level of eukaryotic rRNA modification.

    Directory of Open Access Journals (Sweden)

    Markus Buchhaupt

    Full Text Available Ribosome heterogeneity is of increasing biological significance and several examples have been described for multicellular and single cells organisms. In here we show for the first time a variation in ribose methylation within the 18S rRNA of Saccharomyces cerevisiae. Using RNA-cleaving DNAzymes, we could specifically demonstrate that a significant amount of S. cerevisiae ribosomes are not methylated at 2'-O-ribose of A100 residue in the 18S rRNA. Furthermore, using LC-UV-MS/MS of a respective 18S rRNA fragment, we could not only corroborate the partial methylation at A100, but could also quantify the methylated versus non-methylated A100 residue. Here, we exhibit that only 68% of A100 in the 18S rRNA of S.cerevisiae are methylated at 2'-O ribose sugar. Polysomes also contain a similar heterogeneity for methylated Am100, which shows that 40S ribosome subunits with and without Am100 participate in translation. Introduction of a multicopy plasmid containing the corresponding methylation guide snoRNA gene SNR51 led to an increased A100 methylation, suggesting the cellular snR51 level to limit the extent of this modification. Partial rRNA modification demonstrates a new level of ribosome heterogeneity in eukaryotic cells that might have substantial impact on regulation and fine-tuning of the translation process.

  8. Breeding of Excellent Baker's Yeast Strain with Good Flocculation%絮凝性强的优良面包酵母菌株的选育

    Institute of Scientific and Technical Information of China (English)

    刘春秀; 何秀萍; 蒋思欣; 曲娜; 张博润

    2003-01-01

    通过初筛、单倍体分离、DES诱变、絮凝基因的克隆表达及杂交等育种技术成功构建了高生物量、耐高糖、强絮凝的优良面包酵母菌株(Saccharomyces cerevisiae) ZLTH-58(MATa/α,leu,FLO1).菌株ZLTH-58具有双亲的优良性状,遗传性状稳定.对其生物量、耐高糖能力、絮凝特性进行了检测,结果表明,菌株ZLTH-58的生物量是原始亲株BL56的1.21倍;耐高糖能力优于原始亲株BL61;絮凝性能明显优于原始亲株BL56和BL61.对其培养条件进行了优化,在优化的培养条件下,生物量可以达到83.06g/L,为初始培养条件下的1.35倍.

  9. Atypical yeasts identified as Saccharomyces cerevisiae by MALDI-TOF MS and gene sequencing are the main responsible of fermentation of chicha, a traditional beverage from Peru.

    Science.gov (United States)

    Vallejo, Juan Andrés; Miranda, Patricia; Flores-Félix, José David; Sánchez-Juanes, Fernando; Ageitos, José M; González-Buitrago, José Manuel; Velázquez, Encarna; Villa, Tomás G

    2013-12-01

    Chicha is a drink prepared in several Andean countries from Inca's times by maize fermentation. Currently this fermentation is carried out in familiar artesanal "chicherías" that make one of the most known types of chicha, the "chicha de jora". In this study we isolate and identify the yeasts mainly responsible of the fermentation process in this type of chicha in 10 traditional "chicherías" in Cusco region in Peru. We applied by first time MALDI-TOF MS analysis for the identification of yeast of non-clinic origin and the results showed that all of yeast strains isolated belong to the species Saccharomyces cerevisiae. These results agree with those obtained after the analysis of the D1/D2 and 5.8S-ITS regions. However the chicha strains have a phenotypic profile that differed in more than 40% as compared to that of current S. cerevisiae strains. To the best of our knowledge this is the first report concerning the yeasts involved in chicha fermentation.

  10. Signaling of chloroquine-induced stress in the yeast Saccharomyces cerevisiae requires the Hog1 and Slt2 mitogen-activated protein kinase pathways.

    Science.gov (United States)

    Baranwal, Shivani; Azad, Gajendra Kumar; Singh, Vikash; Tomar, Raghuvir S

    2014-09-01

    Chloroquine (CQ) has been under clinical use for several decades, and yet little is known about CQ sensing and signaling mechanisms or about their impact on various biological pathways. We employed the budding yeast Saccharomyces cerevisiae as a model organism to study the pathways targeted by CQ. Our screening with yeast mutants revealed that it targets histone proteins and histone deacetylases (HDACs). Here, we also describe the novel role of mitogen-activated protein kinases Hog1 and Slt2, which aid in survival in the presence of CQ. Cells deficient in Hog1 or Slt2 are found to be CQ hypersensitive, and both proteins were phosphorylated in response to CQ exposure. CQ-activated Hog1p is translocated to the nucleus and facilitates the expression of GPD1 (glycerol-3-phosphate dehydrogenase), which is required for the synthesis of glycerol (one of the major osmolytes). Moreover, cells treated with CQ exhibited an increase in intracellular reactive oxygen species (ROS) levels and the effects were rescued by addition of reduced glutathione to the medium. The deletion of SOD1, the superoxide dismutase in yeast, resulted in hypersensitivity to CQ. We have also observed P38 as well as P42/44 phosphorylation in HEK293T human cells upon exposure to CQ, indicating that the kinds of responses generated in yeast and human cells are similar. In summary, our findings define the multiple biological pathways targeted by CQ that might be useful for understanding the toxicity modulated by this pharmacologically important molecule.

  11. Chronic episodic diarrhoea associated with apparent intestinal colonisation by the yeasts Saccharomyces cerevisiae and Candida famata in a German shepherd dog : case report

    Directory of Open Access Journals (Sweden)

    R.J. Milner

    1997-07-01

    Full Text Available A 3-year-old German shepherd dog was presented with a history of lifelong episodic diarrhoea. An adverse reaction to food was considered the most likely cause of the diarrhoea. The dog had received prolonged antibiotic therapy for most of its life as well as receiving probiotics containing the yeast Saccharomyces cerevisiae (syn. S. boulardi for a year before referral. The probiotic was discontinued 2 months before to referral. Examination and culture of faecal samples identified yeast-like organisms, S. cerevisiae and Candida famata. S. cerevisiae has been isolated from humans in association with predisposing conditions such as prolonged sojourns in hospital, immunosuppression, broad-spectrum antibiotic therapy and prosthetic devices, but is regarded as non-pathogenic in humans and is rarely associated with disease in animals. C. famata has been isolated from animals, humans and the environment, but is regarded as a very rare pathogen. No evidence of immunosuppression was found in the dog. The presence of yeasts in the faecal isolates and the history of prolonged use of antibiotics and probiotics with a concurrent adverse reaction to food, suggest that conditions may have occurred within the bowel that made it possible for the yeasts to colonise parts of it. This has apparently not been reported before.

  12. Yeasts isolated from Algerian infants's feces revealed a burden of Candida albicans species, non-albicans Candida species and Saccharomyces cerevisiae.

    Science.gov (United States)

    Seddik, Hamza Ait; Ceugniez, Alexandre; Bendali, Farida; Cudennec, Benoit; Drider, Djamel

    2016-01-01

    This study aimed at showing the yeast diversity in feces of Algerian infants, aged between 1 and 24 months, hospitalized at Bejaia hospital (northeast side of the country). Thus, 20 colonies with yeast characteristics were isolated and identified using biochemical (ID32C Api system) and molecular (sequencing of ITS1-5.8S-ITS2 region) methods. Almost all colonies isolated (19 strains) were identified as Candida spp., with predominance of Candida albicans species, and one strain was identified as Saccharomyces cerevisiae. Screening of strains with inhibitory activities unveiled the potential of Candida parapsilosis P48L1 and Candida albicans P51L1 to inhibit the growth of Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923. Further studies performed with these two Candida strains revealed their susceptibility to clinically used antifungal compounds and were then characterized for their cytotoxicity and hemolytic properties. On the other hand, Saccharomyces cerevisiae P9L1 isolated as well in this study was shown to be devoid of antagonism but resulted safe and overall usable as probiotic.

  13. Pleiotropic effects of heterozygosity at the mating-type locus of the yeast Saccharomyces cerevisiae on repair, recombination and transformation.

    Science.gov (United States)

    Durand, J; Birdsell, J; Wills, C

    1993-12-01

    Sexual (MAT a/alpha) and asexual (MAT a/a) strains of the yeast Saccharomyces cerevisiae, which are completely isogenic except at the MAT locus, were compared in their response to ultraviolet radiation. The effects of UV on survival, mitotic intragenic recombination, photoreactivation, and transformation efficiency with UV-irradiated plasmid DNA were examined. The sexual strain had enhanced survival and higher rates of mitotic intragenic recombination compared with the asexual strain. Exposure to visible light subsequent to irradiation increased the survival of both sexual and asexual strains, and decreased their rates of mitotic intragenic recombination. Similar results were obtained by Haladus and Zuk (1980) in their examination of sexual strains homozygous for rad6-1, and wild-type sexuals. Our sexual strain was also consistently more proficient at transforming plasmid DNA, whether that DNA had been irradiated or not. When pre-irradiated with 25 J/m2 of UV, MAT a/alpha cells transformed more efficiently than MAT a/a cells. When subsequently exposed to light, the ability of these pre-irradiated cells to transform decreased for both strains with increasing irradiation of the plasmid. A smaller decrease in transformation efficiency occurred when cells of both strains were kept in the dark. When pre-irradiated with 100 J/m2, the MAT a/alpha cells showed a 2-fold increase in their transformation efficiency of both irradiated and unirradiated plasmids by up to 2-fold, a phenomenon not seen in the MAT a/a cells even when pre-irradiated with much higher doses of UV. This increase in transformation efficiency was not, however, seen in the MAT a/alpha cells when they were exposed to visible light after UV irradiation. These results suggest that cells with the MAT a/alpha genotype have a UV-inducible system that increases the efficiency of transformation in the absence of visible light. This increase in transformation is not an induced increase in the repair of plasmid DNA

  14. Yeast fuel cell: Application for desalination

    Science.gov (United States)

    Mardiana, Ummy; Innocent, Christophe; Cretin, Marc; Buchari, Buchari; Gandasasmita, Suryo

    2016-02-01

    Yeasts have been implicated in microbial fuel cells as biocatalysts because they are non-pathogenic organisms, easily handled and robust with a good tolerance in different environmental conditions. Here we investigated baker's yeast Saccharomyces cerevisiae through the oxidation of glucose. Yeast was used in the anolyte, to transfer electrons to the anode in the presence of methylene blue as mediator whereas K3Fe(CN)6 was used as an electron acceptor for the reduction reaction in the catholyte. Power production with biofuel cell was coupled with a desalination process. The maximum current density produced by the cell was 88 mA.m-2. In those conditions, it was found that concentration of salt was removed 64% from initial 0.6 M after 1-month operation. This result proves that yeast fuel cells can be used to remove salt through electrically driven membrane processes and demonstrated that could be applied for energy production and desalination. Further developments are in progress to improve power output to make yeast fuel cells applicable for water treatment.

  15. D-xylulose fermentation to ethanol by Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, L.C.; Gong, C.S.; Chen, L.F.; Tsao, G.T.

    1981-08-01

    Commercial bakers' yeast (Saccharomyces cerevisiae) was used to study the conversion of D-xylulose to ethanol in the presence of D-xylose. The rate of ethanol production increased with an increase in yeast cell density. The optimal temperature for D-xylulose fermentation was 35 degrees Celcius, and the optimal pH range was 4 to 6. The fermentation of D-xylulose by yeast resulted in the production of ethanol as the major product; small amounts of xylitol and glycerol were also produced. The production of xylitol was influenced by pH as well as temperature. High pH values and low temperatures enhanced xylitol production. The rate of D-xylulose fermentation decreased when the production of ethanol yielded concentrations of 4% or more. The slow conversion rate of D-xylulose to ethanol was increased by increasing the yeast cell density. The overall production of ethanol from D-xylulose by yeast cells under optimal conditions was 90% of the theoretical yield. (Refs. 21).

  16. Produção de álcoois superiores por linhagens de Saccharomyces durante a fermentação alcoólica Production of higher alcohols by Saccharomyces strains during alcoholic fermentation

    Directory of Open Access Journals (Sweden)

    L.E. Gutierrez

    1993-12-01

    Full Text Available A produção de álcoois superiores pelas leveduras Saccharomyces cerevisiae M-300-A, Saccharomyces uvarum IZ-1904 e levedura de panificação (Saccharomyces cerevisiae foi estudada em diversas condições de temperatura, concentração de sacarose, pH, fontes de nitrogênio e com inibidor 2-4 dinitrofenol (DNP. Em todas as condições estudadas, a levedura Saccharomyces uvarum IZ-1904 apresentou a menor formação de álcoois superiores enquanto a levedura de panifícação apresentou os teores mais elevados. Com o aumento de temperatura e da concentração de sacarose ocorreu maior formação de álcool isoamílico pelas leveduras estudadas. Em pH 4,5 ocorreu menor produção de álcoois superiores do que em pH 3,0. Na presença do inibidor DNP ocorreu significativa redução (pThe production of higher alcohols by Saccharomyces cerevisiae M-300-A, Saccharomyces uvarum IZ-1904 and baker's yeast (5. cerevisiae was studied under several temperature conditions, sucrose level, pH, nitrogen sources and with 2-4 dinitrophenol (DNP. The yeast IZ-1904 showed lower production of higher alcohols than other yeasts in all conditions studied. With the increase of temperature and higher level of sucrose an increase of isoamyl alcohol production was observed. A lower formation of higher alcohols was observed at pH 4.5 than at pH 3.0. With the addition of DNP occurred a significant reduction in isoamyl alcohol content. The yeasts did not show the sanie production of higher alcohols in relation to urea and ammonium sulfate.

  17. Biosorption Behavior of Strontium Ions and Mechanism Analysis on Baker's Yeast%面包酵母菌对锶离子的吸附行为及其机理研究

    Institute of Scientific and Technical Information of China (English)

    代群威; 董发勤; 张伟; 李琼芳; 周世平

    2012-01-01

    The baker's yeast was utilized as biosorption material to remove Sr2+ from simulant aquous solution. The effect factors on biosorption were analyzed, which included pH values, initial concentration (c0), adsorbent concentration (pm), and temperature (0. Meanwhile, the correlation biosorption thermodynamics was analyzed and the mechanism of biosorption was researched. The results show that the optimum condition for biosorption is as follows: pH = 4. 5, t = 30 °C , c0 = 1. 0 mmol/L, pm = i. 0 g/L. The isotherm adsorption curve of Sr2+ under different temperatures accords well with the Langmuir and Freunlich absorption models, and both R2 are above 0. 988. The biosorption of Sr2+ by yeast can proceed spontaneously under different temperatures. And the higher temperature is in favour of the spontaneous process of Sr2+biosorption at the range of 10-30 °C. The analysis indicates that there is chemisorption in the course of Sr2+ biosorption by yeast. The components of yeast cell, including polysaccharide and amide protein, are involved in the Sr2+ biosorption. And the principal absorption sites are the active sites on the cell wall surface.%采用面包酵母菌为生物吸附剂,进行了模拟含锶废液中Sr2+的批量吸附实验研究.分析了液相pH、Sr2+初始浓度、菌体加入量、温度等因素对吸附效果的影响,进行了吸附热力学相关分析,并通过红外光谱、扫描电镜等探讨了其吸附机理.结果表明:实验室环境下的最佳吸附条件为pH=4.5,t=30℃,c0=1.0 mmol/L,ρm=4.0 g/L.不同温度下对Sr2-的等温吸附结果均很好地符合了Langmuir和Freunlich两个吸附模型,R2均在0.988以上.不同温度条件下酵母菌对Sr2+的吸附反应均能够自发进行,且在一定温度范围(10~30℃)内提高温度有利于酵母菌对Sr2+吸附反应的自发进行.FTIR与SEM分析结果认为,酵母菌吸附Sr2+的过程的确存在化学吸附过程,酵母菌细胞上的多糖、蛋白质酰胺

  18. Main and interaction effects of acetic acid, furfural, and p-hydroxybenzoic acid on growth and ethanol productivity of yeasts

    Energy Technology Data Exchange (ETDEWEB)

    Palmqvist, E.; Grage, H.; Meinander, N.Q.; Hahn-Haegerdal, B. [Univ. of Lund (Sweden)

    1999-04-05

    The influence of the factors acetic acid, furfural, and p-hydroxybenzoic acid on the ethanol yield (Y{sub EtOH}) of Saccharomyces cerevisiae, bakers` yeast, S. cerevisiae ATCC 96581, and Candida shehatae NJ 23 was investigated using a 2{sup 3}-full factorial design with 3 centerpoints. The results indicated that acetic acid inhibited the fermentation by C. shehatae NJ 23 markedly more than by bakers` yeast, whereas no significant difference in tolerance towards the compounds was detected between the S. cerevisiae strains. Furfural and the lignin derived compound p-hydroxybenzoic acid did not affect any of the yeasts at the cell mass concentration used. The results indicated that the linear model was not adequate to describe the experimental data. Based on the results from the 2{sup 3}-full factorial experiment, an extended experiment was designed based on a central composite design to investigate the influence of the factors on the specific growth rate ({mu}), biomass yield (Y{sub x}), volumetric ethanol productivity (Q{sub EtOH}), and Y{sub EtOH}. Bakers` yeast was chosen in the extended experiment due to its better tolerance towards acetic acid, which makes it a more interesting organism for use in industrial fermentations of lignocellulosic hydrolysates.

  19. Characterization of technological features of dry yeast (strain I-7-43) preparation, product of electrofusion between Saccharomyces cerevisiae and Saccharomyces diastaticus, in industrial application.

    Science.gov (United States)

    Kotarska, Katarzyna; Kłosowski, Grzegorz; Czupryński, Bogusław

    2011-06-10

    The aim of the study was to verify the technological usability and stability of biotechnological features of active dry distillery yeast preparation (strain I-7-43 with amylolytic abilities) applied to full-scale production of agricultural distillery. Various reduced doses of glucoamylase preparation (San-Extra L) were used for starch saccharification, from 90% to 70% in relation to the full standard dose of preparation. The dry distillery yeast I-7-43 were assessed positively in respect to fermentation activity and yield of ethanol production. Application of the dry yeast I-7-43 preparation in distillery practice lowers the costs of spirit production by saving the glucoamylase preparation (up to 30%) used in the process of mash saccharification. Concentrations of the volatile fermentation by-products in raw spirits obtained from fermentations with application of I-7-43 strain were on the levels guaranteeing good organoleptic properties of distillates.

  20. iAID: an improved auxin-inducible degron system for the construction of a 'tight' conditional mutant in the budding yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Tanaka, Seiji; Miyazawa-Onami, Mayumi; Iida, Tetsushi; Araki, Hiroyuki

    2015-08-01

    Isolation of a 'tight' conditional mutant of a gene of interest is an effective way of studying the functions of essential genes. Strategies that use ubiquitin-mediated protein degradation to eliminate the product of a gene of interest, such as heat-inducible degron (td) and auxin-inducible degron (AID), are powerful methods for constructing conditional mutants. However, these methods do not work with some genes. Here, we describe an improved AID system (iAID) for isolating tight conditional mutants in the budding yeast Saccharomyces cerevisiae. In this method, transcriptional repression by the 'Tet-OFF' promoter is combined with proteolytic elimination of the target protein by the AID system. To provide examples, we describe the construction of tight mutants of the replication factors Dpb11 and Mcm10, dpb11-iAID, and mcm10-iAID. Because Dpb11 and Mcm10 are required for the initiation of DNA replication, their tight mutants are unable to enter S phase. This is the case for dpb11-iAID and mcm10-iAID cells after the addition of tetracycline and auxin. Both the 'Tet-OFF' promoter and the AID system have been shown to work in model eukaryotes other than budding yeast. Therefore, the iAID system is not only useful in budding yeast, but also can be applied to other model systems to isolate tight conditional mutants.

  1. Overexpression of ACC gene from oleaginous yeast Lipomyces starkeyi enhanced the lipid accumulation in Saccharomyces cerevisiae with increased levels of glycerol 3-phosphate substrates.

    Science.gov (United States)

    Wang, Jiancai; Xu, Ronghua; Wang, Ruling; Haque, Mohammad Enamul; Liu, Aizhong

    2016-06-01

    The conversion of acetyl-CoA to malonyl-CoA by acetyl-CoA carboxylase (ACC) is the rate-limiting step in fatty acid biosynthesis. In this study, a gene coding for ACC was isolated and characterized from an oleaginous yeast, Lipomyces starkeyi. Real-time quantitative PCR (qPCR) analysis of L. starkeyi acetyl-CoA carboxylase gene (LsACC1) showed that the expression levels were upregulated with the fast accumulation of lipids. The LsACC1 was co-overexpressed with the glycerol 3-phosphate dehydrogenase gene (GPD1), which regulates lipids biosynthesis by supplying another substrates glycerol 3-phosphate for storage lipid assembly, in the non-oleaginous yeast Saccharomyces cerevisiae. Further, the S. cerevisiae acetyl-CoA carboxylase (ScACC1) was transferred with GPD1 and its function was analyzed in comparison with LsACC1. The results showed that overexpressed LsACC1 and GPD1 resulted in a 63% increase in S. cerevisiae. This study gives new data in understanding of the molecular mechanisms underlying the regulation of fatty acids and lipid biosynthesis in yeasts.

  2. Identification of auxotrophic mutants of the yeast Kluyveromyces marxianus by non-homologous end joining-mediated integrative transformation with genes from Saccharomyces cerevisiae.

    Science.gov (United States)

    Yarimizu, Tohru; Nonklang, Sanom; Nakamura, Junpei; Tokuda, Shuya; Nakagawa, Takaaki; Lorreungsil, Sasithorn; Sutthikhumpha, Surasit; Pukahuta, Charida; Kitagawa, Takao; Nakamura, Mikiko; Cha-Aim, Kamonchai; Limtong, Savitree; Hoshida, Hisashi; Akada, Rinji

    2013-12-01

    The isolation and application of auxotrophic mutants for gene manipulations, such as genetic transformation, mating selection and tetrad analysis, form the basis of yeast genetics. For the development of these genetic methods in the thermotolerant fermentative yeast Kluyveromyces marxianus, we isolated a series of auxotrophic mutants with defects in amino acid or nucleic acid metabolism. To identify the mutated genes, linear DNA fragments of nutrient biosynthetic pathway genes were amplified from Saccharomyces cerevisiae chromosomal DNA and used to directly transform the K. marxianus auxotrophic mutants by random integration into chromosomes through non-homologous end joining (NHEJ). The appearance of transformant colonies indicated that the specific S. cerevisiae gene complemented the K. marxianus mutant. Using this interspecific complementation approach with linear PCR-amplified DNA, we identified auxotrophic mutations of ADE2, ADE5,7, ADE6, HIS2, HIS3, HIS4, HIS5, HIS6, HIS7, LYS1, LYS2, LYS4, LYS9, LEU1, LEU2, MET2, MET6, MET17, TRP3, TRP4 and TRP5 without the labour-intensive requirement of plasmid construction. Mating, sporulation and tetrad analysis techniques for K. marxianus were also established. With the identified auxotrophic mutant strains and S. cerevisiae genes as selective markers, NHEJ-mediated integrative transformation with PCR-amplified DNA is an attractive system for facilitating genetic analyses in the yeast K. marxianus.

  3. Baker & Taylor's George Coe

    Science.gov (United States)

    Fialkoff, Francine

    2009-01-01

    In his 30 years as a library wholesaler, first as VP and general manager of Brodart Books, Library, and School Automation divisions and since 2000 as president of the Library & Education division of Baker & Taylor (B&T), George Coe has been instrumental in a whole host of innovations. They go way beyond the selection, processing, and delivery of…

  4. Origin of the Yeast Whole-Genome Duplication.

    Directory of Open Access Journals (Sweden)

    Kenneth H Wolfe

    2015-08-01

    Full Text Available Whole-genome duplications (WGDs are rare evolutionary events with profound consequences. They double an organism's genetic content, immediately creating a reproductive barrier between it and its ancestors and providing raw material for the divergence of gene functions between paralogs. Almost all eukaryotic genome sequences bear evidence of ancient WGDs, but the causes of these events and the timing of intermediate steps have been difficult to discern. One of the best-characterized WGDs occurred in the lineage leading to the baker's yeast Saccharomyces cerevisiae. Marcet-Houben and Gabaldón now show that, rather than simply doubling the DNA of a single ancestor, the yeast WGD likely involved mating between two different ancestral species followed by a doubling of the genome to restore fertility.

  5. Purification, crystallization and preliminary X-ray diffraction analysis of a soluble variant of the monoglyceride lipase Yju3p from the yeast Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Rengachari, Srinivasan; Aschauer, Philipp; Sturm, Christian; Oberer, Monika, E-mail: m.oberer@uni-graz.at [University of Graz, Humboldtstrasse 50/3, 8010 Graz (Austria)

    2015-01-28

    A soluble variant of the monoglyceride lipase Yju3p was successfully expressed, purified and crystallized. Diffraction data were collected to 2.4 Å resolution. The protein Yju3p is the orthologue of monoglyceride lipases in the yeast Saccharomyces cerevisiae. A soluble variant of this lipase termed s-Yju3p (38.3 kDa) was generated and purified to homogeneity by affinity and size-exclusion chromatography. s-Yju3p was crystallized in a vapour-diffusion setup at 293 K and a complete data set was collected to 2.4 Å resolution. The crystal form was orthorhombic (space group P2{sub 1}2{sub 1}2{sub 1}), with unit-cell parameters a = 77.2, b = 108.6, c = 167.7 Å. The asymmetric unit contained four molecules with a solvent content of 46.4%.

  6. Production of high concentrations of yeast

    Energy Technology Data Exchange (ETDEWEB)

    1981-11-10

    A microbe is aerobically cultured using O/sub 2/ or a gas rich in O/sub 2/. The grown cells are washed, concentrated and a portion of the cells used as a seed culture. Thus, Saccharomyces cerevisiae (bakers' yeast) was cultured in a jar fermentor by flow down system maintaining the dissolved O/sub 2/ at 2-5 mg/L; volume of the initial medium containing 30% glucose was 350 mL and the initial washed cell concentration was 50 g dry cells/L. After 12 hours of cultivation, the volume of the medium increased to 750 mL and the cell concentration rose to 102 g dry cells/L; the yield was 49% with respect to glucose. The cells were washed and the cultivation was repeated by use of the washed cells; cell concentration reached 105 g dry cells/L.

  7. Non-Genetic Engineering Approaches for Isolating and Generating Novel Yeasts for Industrial Applications

    Science.gov (United States)

    Chambers, P. J.; Bellon, J. R.; Schmidt, S. A.; Varela, C.; Pretorius, I. S.

    Generating novel yeast strains for industrial applications should be quite straightforward; after all, research into the genetics, biochemistry and physiology of Baker's Yeast, Saccharomyces cerevisiae, has paved the way for many advances in the modern biological sciences. We probably know more about this humble eukaryote than any other, and it is the most tractable of organisms for manipulation using modern genetic engineering approaches. In many countries, however, there are restrictions on the use of genetically-modified organisms (GMOs), particularly in foods and beverages, and the level of consumer acceptance of GMOs is, at best, variable. Thus, many researchers working with industrial yeasts use genetic engineering techniques primarily as research tools, and strain development continues to rely on non-GM technologies. This chapter explores the non-GM tools and strategies available to such researchers.

  8. Influence the oxidant action of selenium in radiosensitivity induction and cell death in yeast Saccharomyces cerevisiae; Influencia da acao oxidante do selenio na inducao da radiossensibilidade e morte celular na levedura Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Porto, Barbara Abranches de Araujo

    2012-07-01

    Ionizing radiations are from both natural sources such as from anthropogenic sources. Recently, radiotherapy has emerged as one of the most common therapies against cancer. Co-60 irradiators (cobalt-60 linear accelerators) are used to treat of malignant tumors routinely in hospitals around the world. Exposure to ionizing radiation can induce changes in cellular macromolecules and affect its functions, because they cause radiolysis of the water molecule generating reactive oxygen species, which can cause damage to virtually all organelles and cell components known as oxidative damage that can culminate in oxidative stress. Oxidative stress is a situation in which the balance between oxidants and antioxidants is broken resulting in excessive production of reactive species, it is not accompanied by the increase in antioxidant capacity, making it impossible to neutralize them. Selenium is a micronutrient considered as antioxidant, antiinflammatory, which could prevent cancer. Selenium in biological system exists as seleno proteins. Nowadays, 25 human seleno proteins have been identified, including glutathione peroxidase, an antioxidant enzyme. Yeasts have the ability to incorporate various metals such as iron, cadmium, zinc and selenium, as well as all biological organisms. The yeast Saccharomyces cerevisiae, unlike mammalian cells is devoid of seleno proteins, being considered as a practical model for studies on the toxicity of selenium, without any interference from the metabolism of seleno proteins. Moreover, yeast cells proliferate through the fermentation, the microbial equivalent of aerobic glycolysis in mammals and the process is also used by tumors. Several reports show that the pro-oxidante effects and induced toxic selenium compounds occur at lower doses and in malignant cells compared with benign cells. Therefore selenium giving a great therapeutic potential in cancer treatment .Our objective was to determine whether selenium is capable to sensitize yeasts

  9. Role of anti-competitor toxins in the origin and maintenance of diversity in Saccharomyces yeast microbial populations

    NARCIS (Netherlands)

    Pieczynska, M.D.

    2015-01-01

    Abstract Saccharomyces cells occasionally carry cytoplasmic ds-RNA “killer” viruses coding for low-mass proteins, which upon secretion to the environment can kill related cells that do not carry the viral particles. Such killer viruses are not infectious, and can spread

  10. Reaction Characteristics of Asymmetric Synthesis of (2S,5S)-2,5-Hexanediol Catalyzed with Baker's Yeast Number 6%面包酵母No.6催化不对称合成(2S,5S)-2,5-已二醇反应特性

    Institute of Scientific and Technical Information of China (English)

    肖美添; 叶静; 张亚武; 黄雅燕

    2009-01-01

    Baker's yeast number 6 was selected by screening. It showed good catalytic activity and enantioselec-tivity for asymmetric reduction of 2,5-hexancdione to produce (2S,5S)-2,5-hexanediol. Gas chromatography-mass spectrometry (GC-MS) revealed that the intermediate was (S)-5-hydroxyhexane-2-one. Reduction of 2,5-hexanedione proceeded in a two-step reaction. The hydroxyketone was initially formed, and this intermediate was further re-duced to the diol. Factors influencing the product yield and the enantiomeric excess of the reduction of 2,5-hexandione catalyzed by baker's yeast number 6 were investigated. Higher concentration (≤100 mmol·L-1) of 2,5-hexandione did not influence 5-hydroxyhexane-2-one production, but 2,5-hexanediol production was inhibited by excess accumulation (>30 mmol·L-1) of intermediate. The optimal conditions were glucose as the co-substrate at an initial glucose concentration of 20 g·L-1, 34℃, pH 7.0 and cell concentration 60 g-L"1 (cell dry mass). Under the optimal condition and an initial substrate concentration of 30 mmol·L-1, the yield of 2,5-hexandiol was 78.7% and the enantiomeric excess of (2S,5S)-2,5-hexandiol was 94.4% for 24-h reduction.

  11. Comparative Study on Two Commercial Strains of Saccharomyces cerevisiae for Optimum Ethanol Production on Industrial Scale

    Directory of Open Access Journals (Sweden)

    K. Mukhtar

    2010-01-01

    Full Text Available Two commercial strains of Saccharomyces cerevisiae, Saf-Instant (Baker's yeast and Ethanol red (Mutant were compared for ethanol production during hot summer season, using molasses diluted up to 6-7∘ Brix containing 4%-5% sugars. The yeasts were then propagated in fermentation vessels to study the effects of yeast cell count and varying concentrations of Urea, DAP, inoculum size and Lactrol (Antibiotic. Continuous circulation of mash was maintained for 24 hours and after this fermenter was allowed to stay for a period of 16 hours to give time for maximum conversion of sugars into ethanol. Saccharomyces cerevisiae strain (Saf-instant with cell concentration of 400 millions/mL at molasses sugar level of 13%–15% (pH 4.6±0.2, Temp. 32∘C±1, inoculum size of 25% (v/v, urea concentration, 150 ppm, DAP, 53.4 ppm and Lactrol,150 ppm supported maximum ethanol production (8.8% with YP/S=250 L ethanol per tone molasses (96.5% yield, and had significantly lower concentrations of byproducts. By selecting higher ethanol yielding yeast strain and optimizing the fermentation parameters both yield and economics of the fermentation process can be improved.

  12. Studying Functions of All Yeast Genes Simultaneously

    Science.gov (United States)

    Stolc, Viktor; Eason, Robert G.; Poumand, Nader; Herman, Zelek S.; Davis, Ronald W.; Anthony Kevin; Jejelowo, Olufisayo

    2006-01-01

    A method of studying the functions of all the genes of a given species of microorganism simultaneously has been developed in experiments on Saccharomyces cerevisiae (commonly known as baker's or brewer's yeast). It is already known that many yeast genes perform functions similar to those of corresponding human genes; therefore, by facilitating understanding of yeast genes, the method may ultimately also contribute to the knowledge needed to treat some diseases in humans. Because of the complexity of the method and the highly specialized nature of the underlying knowledge, it is possible to give only a brief and sketchy summary here. The method involves the use of unique synthetic deoxyribonucleic acid (DNA) sequences that are denoted as DNA bar codes because of their utility as molecular labels. The method also involves the disruption of gene functions through deletion of genes. Saccharomyces cerevisiae is a particularly powerful experimental system in that multiple deletion strains easily can be pooled for parallel growth assays. Individual deletion strains recently have been created for 5,918 open reading frames, representing nearly all of the estimated 6,000 genetic loci of Saccharomyces cerevisiae. Tagging of each deletion strain with one or two unique 20-nucleotide sequences enables identification of genes affected by specific growth conditions, without prior knowledge of gene functions. Hybridization of bar-code DNA to oligonucleotide arrays can be used to measure the growth rate of each strain over several cell-division generations. The growth rate thus measured serves as an index of the fitness of the strain.

  13. Irreversible quantum baker map.

    Science.gov (United States)

    Łoziński, Artur; Pakoński, Prot; Zyczkowski, Karol

    2002-12-01

    We propose a generalization of the model of classical baker map on the torus, in which the images of two parts of the phase space do overlap. This transformation is irreversible and cannot be quantized by means of a unitary Floquet operator. A corresponding quantum system is constructed as a completely positive map acting in the space of density matrices. We investigate spectral properties of this superoperator and their link with the increase of the entropy of initially pure states.

  14. Irreversible Quantum Baker Map

    CERN Document Server

    Lozinski, A; Zyczkowski, K; Lozinski, Artur; Pakonski, Prot; Zyczkowski, Karol

    2002-01-01

    We propose a generalization of the model of classical baker map on the torus, in which the images of two parts of the phase space do overlap. This transformation is irreversible and cannot be quantized by means of a unitary Floquet operator. A corresponding quantum system is constructed as a completely positive map acting in the space of density matrices. We investigate spectral properties of this super-operator and their link with the increase of the entropy of initially pure states.

  15. 21 CFR 172.896 - Dried yeasts.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Dried yeasts. 172.896 Section 172.896 Food and... Multipurpose Additives § 172.896 Dried yeasts. Dried yeast (Saccharomyces cerevisiae and Saccharomyces fragilis) and dried torula yeast (Candida utilis) may be safely used in food provided the total folic...

  16. PRB1 is required for clipping of the histone H3 N terminal tail in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Yong Xue

    Full Text Available Cathepsin L, a lysosomal protein in mouse embryonic stem cells has been shown to clip the histone H3 N- terminus, an activity associated with gene activity during mouse cell development. Glutamate dehydrogenase (GDH was also identified as histone H3 specific protease in chicken liver, which has been connected to gene expression during aging. In baker's yeast, Saccharomyces cerevisiae, clipping the histone H3 N-terminus has been associated with gene activation in stationary phase but the protease responsible for the yeast histone H3 endopeptidase activity had not been identified. In searching for a yeast histone H3 endopeptidase, we found that yeast vacuolar protein Prb1 is present in the cellular fraction enriched for the H3 N-terminus endopeptidase activity and this endopeptidase activity is lost in the PRB1 deletion mutant (prb1Δ. In addition, like Cathepsin L and GDH, purified Prb1 from yeast cleaves H3 between Lys23 and Ala24 in the N-terminus in vitro as shown by Edman degradation. In conclusion, our data argue that PRB1 is required for clipping of the histone H3 N-terminal tail in Saccharomyces cerevisiae.

  17. PRB1 is required for clipping of the histone H3 N terminal tail in Saccharomyces cerevisiae.

    Science.gov (United States)

    Xue, Yong; Vashisht, Ajay A; Tan, Yuliang; Su, Trent; Wohlschlegel, James A

    2014-01-01

    Cathepsin L, a lysosomal protein in mouse embryonic stem cells has been shown to clip the histone H3 N- terminus, an activity associated with gene activity during mouse cell development. Glutamate dehydrogenase (GDH) was also identified as histone H3 specific protease in chicken liver, which has been connected to gene expression during aging. In baker's yeast, Saccharomyces cerevisiae, clipping the histone H3 N-terminus has been associated with gene activation in stationary phase but the protease responsible for the yeast histone H3 endopeptidase activity had not been identified. In searching for a yeast histone H3 endopeptidase, we found that yeast vacuolar protein Prb1 is present in the cellular fraction enriched for the H3 N-terminus endopeptidase activity and this endopeptidase activity is lost in the PRB1 deletion mutant (prb1Δ). In addition, like Cathepsin L and GDH, purified Prb1 from yeast cleaves H3 between Lys23 and Ala24 in the N-terminus in vitro as shown by Edman degradation. In conclusion, our data argue that PRB1 is required for clipping of the histone H3 N-terminal tail in Saccharomyces cerevisiae.

  18. Multiway real-time PCR gene expression profiling in yeast Saccharomyces cerevisiae reveals altered transcriptional response of ADH-genes to glucose stimuli

    Directory of Open Access Journals (Sweden)

    Andrade-Garda José

    2008-04-01

    Full Text Available Abstract Background The large sensitivity, high reproducibility and essentially unlimited dynamic range of real-time PCR to measure gene expression in complex samples provides the opportunity for powerful multivariate and multiway studies of biological phenomena. In multiway studies samples are characterized by their expression profiles to monitor changes over time, effect of treatment, drug dosage etc. Here we perform a multiway study of the temporal response of four yeast Saccharomyces cerevisiae strains with different glucose uptake rates upon altered metabolic conditions. Results We measured the expression of 18 genes as function of time after addition of glucose to four strains of yeast grown in ethanol. The data are analyzed by matrix-augmented PCA, which is a generalization of PCA for 3-way data, and the results are confirmed by hierarchical clustering and clustering by Kohonen self-organizing map. Our approach identifies gene groups that respond similarly to the change of nutrient, and genes that behave differently in mutant strains. Of particular interest is our finding that ADH4 and ADH6 show a behavior typical of glucose-induced genes, while ADH3 and ADH5 are repressed after glucose addition. Conclusion Multiway real-time PCR gene expression profiling is a powerful technique which can be utilized to characterize functions of new genes by, for example, comparing their temporal response after perturbation in different genetic variants of the studied subject. The technique also identifies genes that show perturbed expression in specific strains.

  19. Multiway real-time PCR gene expression profiling in yeast Saccharomyces cerevisiae reveals altered transcriptional response of ADH-genes to glucose stimuli

    Science.gov (United States)

    Ståhlberg, Anders; Elbing, Karin; Andrade-Garda, José Manuel; Sjögreen, Björn; Forootan, Amin; Kubista, Mikael

    2008-01-01

    Background The large sensitivity, high reproducibility and essentially unlimited dynamic range of real-time PCR to measure gene expression in complex samples provides the opportunity for powerful multivariate and multiway studies of biological phenomena. In multiway studies samples are characterized by their expression profiles to monitor changes over time, effect of treatment, drug dosage etc. Here we perform a multiway study of the temporal response of four yeast Saccharomyces cerevisiae strains with different glucose uptake rates upon altered metabolic conditions. Results We measured the expression of 18 genes as function of time after addition of glucose to four strains of yeast grown in ethanol. The data are analyzed by matrix-augmented PCA, which is a generalization of PCA for 3-way data, and the results are confirmed by hierarchical clustering and clustering by Kohonen self-organizing map. Our approach identifies gene groups that respond similarly to the change of nutrient, and genes that behave differently in mutant strains. Of particular interest is our finding that ADH4 and ADH6 show a behavior typical of glucose-induced genes, while ADH3 and ADH5 are repressed after glucose addition. Conclusion Multiway real-time PCR gene expression profiling is a powerful technique which can be utilized to characterize functions of new genes by, for example, comparing their temporal response after perturbation in different genetic variants of the studied subject. The technique also identifies genes that show perturbed expression in specific strains. PMID:18412983

  20. Cloning of a yeast gene coding for the glutamate synthase small subunit (GUS2) by complementation of Saccharomyces cerevisiae and Escherichia coli glutamate auxotrophs.

    Science.gov (United States)

    González, A; Membrillo-Hernández, J; Olivera, H; Aranda, C; Macino, G; Ballario, P

    1992-02-01

    A Saccharomyces cerevisiae glutamate auxotroph, lacking NADP-glutamate dehydrogenase (NADP-GDH) and glutamate synthase (GOGAT) activities, was complemented with a yeast genomic library. Clones were obtained which still lacked NADP-GDH but showed GOGAT activity. Northern analysis revealed that the DNA fragment present in the complementing plasmids coded for a 1.5kb mRNA. Since the only GOGAT enzyme so far purified from S. cerevisiae is made up of a small and a large subunit, the size of the mRNA suggested that the cloned DNA fragment could code for the GOGAT small subunit. Plasmids were purified and used to transform Escherichia coli glutamate auxotrophs. Transformants were only recovered when the recipient strain was an E. coli GDH-less mutant lacking the small GOGAT subunit. These data show that we have cloned the structural gene coding for the yeast small subunit (GUS2). Evidence is also presented indicating that the GOGAT enzyme which is synthesized in the E. coli transformants is a hybrid comprising the large E. coli subunit and the small S. cerevisiae subunit.

  1. One-pot green synthesis of carbon dots by using Saccharum officinarum juice for fluorescent imaging of bacteria (Escherichia coli) and yeast (Saccharomyces cerevisiae) cells

    Energy Technology Data Exchange (ETDEWEB)

    Mehta, Vaibhavkumar N. [Applied Chemistry Department, S. V. National Institute of Technology, Surat, 395 007 (India); Jha, Sanjay [Gujarat Agricultural Biotechnology Institute, Navsari Agricultural University, Surat, 395007 (India); Kailasa, Suresh Kumar, E-mail: sureshkumarchem@gmail.com [Applied Chemistry Department, S. V. National Institute of Technology, Surat, 395 007 (India)

    2014-05-01

    We are reporting highly economical plant-based hydrothermal method for one-pot green synthesis of water-dispersible fluorescent carbon dots (CDs) by using Saccharum officinarum juice as precursor. The synthesized CDs were characterized by UV-visible, fluorescence, Fourier transform infrared (FT-IR), dynamic light scattering (DLS), high-resolution transmission electron microscopic (HR-TEM), and laser scanning confocal microscopic techniques. The CDs are well dispersed in water with an average size of ∼ 3 nm and showed bright blue fluorescence under UV-light (λ{sub ex} = 365 nm). These CDs acted as excellent fluorescent probes in cellular imaging of bacteria (Escherichia coli) and yeast (Saccharomyces cerevisiae). - Highlights: • One-pot green synthesis was used for fluorescent CDs. • FT-IR, DLS, and TEM were used for the characterization of CDs. • The CDs are well dispersed in water with an average size of ∼ 3 nm. • The CDs acted as fluorescent probes for imaging of bacteria and yeast cells.

  2. Tailor-made zinc-finger transcription factors activate FLO11 gene expression with phenotypic consequences in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Shieh, Jia-Ching; Cheng, Yu-Che; Su, Mao-Chang; Moore, Michael; Choo, Yen; Klug, Aaron

    2007-08-15

    Cys2His2 zinc fingers are eukaryotic DNA-binding motifs, capable of distinguishing different DNA sequences, and are suitable for engineering artificial transcription factors. In this work, we used the budding yeast Saccharomyces cerevisiae to study the ability of tailor-made zinc finger proteins to activate the expression of the FLO11 gene, with phenotypic consequences. Two three-finger peptides were identified, recognizing sites from the 5' UTR of the FLO11 gene with nanomolar DNA-binding affinity. The three-finger domains and their combined six-finger motif, recognizing an 18-bp site, were fused to the activation domain of VP16 or VP64. These transcription factor constructs retained their DNA-binding ability, with the six-finger ones being the highest in affinity. However, when expressed in haploid yeast cells, only one three-finger recombinant transcription factor was able to activate the expression of FLO11 efficiently. Unlike in the wild-type, cells with such transcriptional activation displayed invasive growth and biofilm formation, without any requirement for glucose depletion. The VP16 and VP64 domains appeared to act equally well in the activation of FLO11 expression, with comparable effects in phenotypic alteration. We conclude that the functional activity of tailor-made transcription factors in cells is not easily predicted by the in vitro DNA-binding activity.

  3. Efeito do enriquecimento de biscoitos tipo água e sal, com extrato de levedura (Saccharomyces sp. Effect of enrichment of water and salt biscuits with yeast (Saccharomyces sp. extract

    Directory of Open Access Journals (Sweden)

    Marjorie Carelli Costa Santucci

    2003-12-01

    Full Text Available Os objetivos desta pesquisa foram a caracterização química de um autolisado (AT de levedura (Saccharomyces sp. , subproduto da fermentação alcoólica e de seus derivados, fração solúvel (Ex e insolúvel (FI. O autolisado integral (AT e o extrato (Ex, depois de desidratados por atomização (spray dryer foram utilizados como enriquecedores do gosto e do aroma de biscoitos salgados do tipo água e sal. A adição ao biscoito de 5% de Ex elevou o escore de aminoácidos essenciais (EAE de 38% para 60% e o índice de utilização líquida da proteína (NPR de 1,0 para 2,0 (100%. Houve ainda uma melhora significativa na aceitabilidade e na preferência dos biscoitos enriquecidos, pelos consumidores.The objective of this investigation was to establish the composition of the yeast (Saccharomyces sp. obtained as a byproduct of the alcoholic fermentation industry, in the form of an autolysate (AT and their derivatives, extract (Ex and insoluble fraction (FI. The total autolysate (AT and the extract (Ex, after dehydration in spray dryer, were utilized as flavour enhancers in salted biscuits. Addition to the biscuits of 5% Ex improved the essential amino acid score (EAE from 38 to 60%, and the net protein utilization index (NPR from 1.0 to 2.0 (100%. There was also a significant improvement in the acceptability and preference of the enriched biscuits by the consumers.

  4. 基于BP神经网络和遗传算法的面包酵母高密度发酵培养基优化%Optimization of baker's yeast high density fermentation medium by optimized BP neural network based on genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    谈亚丽; 李啸; 邹嫚; 张江; 姚娟; 李知洪; 俞学锋

    2013-01-01

    为实现面包酵母的高密度发酵培养,构建一个BP神经网络模型,用于回归面包酵母高密度发酵培养基中显著影响因子与菌体密度之间的非线性关系,并在此基础上结合遗传算法进对此模型进行全局寻优,得到关键因子最佳浓度分别为:葡萄糖52.3 g/L,酵母浸出粉10.4 g/L,(NH4)2SO41.9 g/L.采用此优化配方进行摇瓶培养,所得菌体密度为3.95×108个/mL,比对照提高了61.2%.结果证实了人工神经网络的模拟和预测功能在微生物培养基优化方面有一定应用价值.%In order to fulfill the high density cultivation of baker's yeast, the back-propagation neural network was adopted to construct a nonlinear predictable model which suggested the relationship between the key factors of the culture medium and the biomass of bakers yeast. And then the global optimization on this model with the genetic algorithm was conducted. Finally the optimal dose of these significant factors was obtained; glucose 52.3 g/L, yeast extract powder 10.4 g/L, (NH4)2SO41. 9 g/L. Using this optimal medium, the biomass of the bakers yeast cultivated in shake flasks was as high as 3. 95108/mL, increased by 61. 2% compared with that of the primitive culture medium. It demonstrated that the application of artificial neural network in the optimization of microbiological culture media was feasible and efficient.

  5. Novel Interactome of Saccharomyces cerevisiae Myosin Type II Identified by a Modified Integrated Membrane Yeast Two-Hybrid (iMYTH Screen

    Directory of Open Access Journals (Sweden)

    Ednalise Santiago

    2016-05-01

    Full Text Available Nonmuscle myosin type II (Myo1p is required for cytokinesis in the budding yeast Saccharomyces cerevisiae. Loss of Myo1p activity has been associated with growth abnormalities and enhanced sensitivity to osmotic stress, making it an appealing antifungal therapeutic target. The Myo1p tail-only domain was previously reported to have functional activity equivalent to the full-length Myo1p whereas the head-only domain did not. Since Myo1p tail-only constructs are biologically active, the tail domain must have additional functions beyond its previously described role in myosin dimerization or trimerization. The identification of new Myo1p-interacting proteins may shed light on the other functions of the Myo1p tail domain. To identify novel Myo1p-interacting proteins, and determine if Myo1p can serve as a scaffold to recruit proteins to the bud neck during cytokinesis, we used the integrated split-ubiquitin membrane yeast two-hybrid (iMYTH system. Myo1p was iMYTH-tagged at its C-terminus, and screened against both cDNA and genomic prey libraries to identify interacting proteins. Control experiments showed that the Myo1p-bait construct was appropriately expressed, and that the protein colocalized to the yeast bud neck. Thirty novel Myo1p-interacting proteins were identified by iMYTH. Eight proteins were confirmed by coprecipitation (Ape2, Bzz1, Fba1, Pdi1, Rpl5, Tah11, and Trx2 or mass spectrometry (AP-MS (Abp1. The novel Myo1p-interacting proteins identified come from a range of different processes, including cellular organization and protein synthesis. Actin assembly/disassembly factors such as the SH3 domain protein Bzz1 and the actin-binding protein Abp1 represent likely Myo1p interactions during cytokinesis.

  6. Use of sugarcane molasses "B" as an alternative for ethanol production with wild-type yeast Saccharomyces cerevisiae ITV-01 at high sugar concentrations.

    Science.gov (United States)

    Fernández-López, C L; Torrestiana-Sánchez, B; Salgado-Cervantes, M A; García, P G Mendoza; Aguilar-Uscanga, M G

    2012-05-01

    Molasses "B" is a rich co-product of the sugarcane process. It is obtained from the second step of crystallization and is richer in fermentable sugars (50-65%) than the final molasses, with a lower non-sugar solid content (18-33%); this co-product also contains good vitamin and mineral levels. The use of molasses "B" for ethanol production could be a good option for the sugarcane industry when cane sugar prices diminish in the market. In a complex medium like molasses, osmotolerance is a desirable characteristic for ethanol producing strains. The aim of this work was to evaluate the use of molasses "B" for ethanol production using Saccharomyces cerevisiae ITV-01 (a wild-type yeast isolated from sugarcane molasses) using different initial sugar concentrations (70-291 g L(-1)), two inoculum sizes and the addition of nutrients such as yeast extract, urea, and ammonium sulphate to the culture medium. The results obtained showed that the strain was able to grow at 291 g L(-1) total sugars in molasses "B" medium; the addition of nutrients to the culture medium did not produce a statistically significant difference. This yeast exhibits high osmotolerance in this medium, producing high ethanol yields (0.41 g g(-1)). The best conditions for ethanol production were 220 g L(-1) initial total sugars in molasses "B" medium, pH 5.5, using an inoculum size of 6 × 10(6) cell mL(-1); ethanol production was 85 g L(-1), productivity 3.8 g L(-1 )h(-1) with 90% preserved cell viability.

  7. MIP1, a new yeast gene homologous to the rat mitochondrial intermediate peptidase gene, is required for oxidative metabolism in Saccharomyces cerevisiae.

    Science.gov (United States)

    Isaya, G; Miklos, D; Rollins, R A

    1994-08-01

    Cleavage of amino-terminal octapeptides, F/L/IXXS/T/GXXXX, by mitochondrial intermediate peptidase (MIP) is typical of many mitochondrial precursor proteins imported to the matrix and the inner membrane. We previously described the molecular characterization of rat liver MIP (RMIP) and indicated a putative homolog in the sequence predicted from gene YCL57w of yeast chromosome III. A new yeast gene, MIP1, has now been isolated by screening a Saccharomyces cerevisiae genomic library with an RMIP cDNA probe. MIP1 predicts a protein of 772 amino acids (YMIP), which is 54% similar and 31% identical to RMIP and includes a putative 37-residue mitochondrial leader peptide. RMIP and YMIP contain the sequence LFHEMGHAM HSMLGRT, which includes a zinc-binding motif, HEXXH, while the predicted YCL57w protein contains a comparable sequence with a lower degree of homology. No obvious biochemical phenotype was observed in a chromosomally disrupted ycl57w mutant. In contrast, a mip1 mutant was unable to grow on nonfermentable substrates, while a mip1 ycl57w double disruption did not result in a more severe phenotype. The mip1 mutant exhibited defects of complexes III and IV of the respiratory chain, caused by failure to carry out the second MIP-catalyzed cleavage of the nuclear-encoded precursors for cytochrome oxidase subunit IV (CoxIV) and the iron-sulfur protein (Fe-S) of the bc1 complex to mature proteins. In vivo, intermediate-size CoxIV was accumulated in the mitochondrial matrix, while intermediate-size Fe-S was targeted to the inner membrane. Moreover, mip1 mitochondrial fractions failed to carry out maturation of the human ornithine transcarbamylase intermediate (iOTC), specifically cleaved by RMIP. A CEN plasmid-encoded YMIP protein restored normal MIP activity along with respiratory competence. Thus, YMIP is a functional homolog of RMIP and represents a new component of the yeast mitochondrial import machinery.

  8. Bcl-2 family members inhibit oxidative stress-induced programmed cell death in Saccharomyces cerevisiae.

    Science.gov (United States)

    Chen, Shao-Rong; Dunigan, David D; Dickman, Martin B

    2003-05-15

    Selected antiapoptotic genes were expressed in baker's yeast (Saccharomyces cerevisiae) to evaluate cytoprotective effects during oxidative stress. When exposed to treatments resulting in the generation of reactive oxygen species (ROS), including H(2)O(2), menadione, or heat shock, wild-type yeast died and exhibited apoptotic-like characteristics, consistent with previous studies. Yeast strains were generated expressing nematode ced-9, human bcl-2, or chicken bcl-xl genes. These transformants tolerated a range of oxidative stresses, did not display features associated with apoptosis, and remained viable under conditions that were lethal to wild-type yeast. Yeast strains expressing a mutant antiapoptotic gene (bcl-2 deltaalpha 5-6), known to be nonfunctional in mammalian cells, were unable to tolerate any of the ROS-generating insults. These data are the first report showing CED-9 has cytoprotective effects against oxidative stress, and add CED-9 to the list of Bcl-2 protein family members that modulate ROS-mediated programmed cell death. In addition, these data indicate that Bcl-2 family members protect wild-type yeast from physiological stresses. Taken together, these data support the concept of the broad evolutionary conservation and functional similarity of the apoptotic processes in eukaryotic organisms.

  9. Genomics and the making of yeast biodiversity

    Science.gov (United States)

    Yeasts are unicellular fungi that do not form fruiting bodies. Although the yeast lifestyle has evolved multiple times, most known species belong to the subphylum Saccharomycotina (syn. Hemiascomycota, hereafter yeasts). This diverse group includes the premier eukaryotic model system, Saccharomyces ...

  10. Genetic constitution of industrial yeast.

    Science.gov (United States)

    Benítez, T; Martínez, P; Codón, A C

    1996-09-01

    Saccharomyces cerevisiae industrial yeast strains are highly heterogeneous. These industrial strains, including bakers', wine, brewing and distillers', have been compared with respect to their DNA content, number and size of chromosomes, homologies between their genes and those of laboratory strains, and restriction fragment lengths of their mitDNA. A high variability, and the presence of multigenic families, were observed in some industrial yeast groups. The occurrence or the lack of chromosomal polymorphism, as well as the presence of multiple copies of some genes, could be related to a selective process occurring under specific industrial conditions. This polymorphism is generated by reorganization events, that take place mainly during meiosis and are mediated by repetitive Y' and Ty elements. These elements give rise to ectopic and asymmetric recombination and to gene conversion. The polymorphism displayed by the mitDNA could also result from specific industrial conditions. However, in enological strains the selective process is masked by the mutagenic effect that ethanol exerts on this DNA.

  11. Ca(2+) homeostasis in the budding yeast Saccharomyces cerevisiae: Impact of ER/Golgi Ca(2+) storage.

    Science.gov (United States)

    D'hooge, Petra; Coun, Catherina; Van Eyck, Vincent; Faes, Liesbeth; Ghillebert, Ruben; Mariën, Lore; Winderickx, Joris; Callewaert, Geert

    2015-08-01

    Yeast has proven to be a powerful tool to elucidate the molecular aspects of several biological processes in higher eukaryotes. As in mammalian cells, yeast intracellular Ca(2+) signalling is crucial for a myriad of biological processes. Yeast cells also bear homologs of the major components of the Ca(2+) signalling toolkit in mammalian cells, including channels, co-transporters and pumps. Using yeast single- and multiple-gene deletion strains of various plasma membrane and organellar Ca(2+) transporters, combined with manipulations to estimate intracellular Ca(2+) storage, we evaluated the contribution of individual transport systems to intracellular Ca(2+) homeostasis. Yeast strains lacking Pmr1 and/or Cod1, two ion pumps implicated in ER/Golgi Ca(2+) homeostasis, displayed a fragmented vacuolar phenotype and showed increased vacuolar Ca(2+) uptake and Ca(2+) influx across the plasma membrane. In the pmr1Δ strain, these effects were insensitive to calcineurin activity, independent of Cch1/Mid1 Ca(2+) channels and Pmc1 but required Vcx1. By contrast, in the cod1Δ strain increased vacuolar Ca(2+) uptake was not affected by Vcx1 deletion but was largely dependent on Pmc1 activity. Our analysis further corroborates the distinct roles of Vcx1 and Pmc1 in vacuolar Ca(2+) uptake and point to the existence of not-yet identified Ca(2+) influx pathways.

  12. Importância da parede celular de levedura (Saccharomyces sp. como fonte de fibra na alimentação Importance of yeast (Saccharomyces cerevisiae cell wall as source of dietary fiber

    Directory of Open Access Journals (Sweden)

    Eloísa A. PÁDUA

    2000-08-01

    Full Text Available O principal objetivo desta pesquisa foi estudar a influência da adição de 10% e 20% da fração parede celular de levedura (Saccharomyces sp., a uma dieta hipercolesterolêmica (5% gordura de coco mais 2% colesterol em ratos Wistar. A justificativa para o trabalho está relacionada com a quantidade crescente de levedura gerada como subproduto nas indústrias de álcool e de cerveja e o interesse na utilização de derivados de levedura como ingredientes funcionais em alimentação humana. Utilizou-se como padrão uma dieta de caseína (AIN-93G com 5% de celulose. Foram também utilizadas dietas hipercolesterolêmicas com 10 ou 20% de celulose, para comparação. Foram avaliados os índices: digestibilidade, valor biológico e utilização líquida aparentes da proteína, quociente de eficiência alimentar, velocidade de trânsito do conteúdo intestinal, comprimento do intestino delgado e as concentrações séricas de lipídios totais, triacilgliceróis e colesterol total. A fração parede celular, assim como a celulose provocaram uma diminuição da digestibilidade da proteína e do quociente de eficiência alimentar, mas não se observou influência no valor biológico da proteína e no ganho de peso. A adição de 10% ou 20%, tanto de parede celular como de celulose promoveu aumento da velocidade de trânsito do conteúdo intestinal e aumento no comprimento do intestino delgado. A fração parede celular nas concentrações de 10% (1° ensaio ou 20% (2° ensaio promoveu abaixamento nos níveis de triacilgliceróis séricos, contudo não influiu no abaixamento das concentrações de lipídios totais e de colesterol total.The main objective of this investigation was to study the influence of 10 and 20% addition of yeast (Saccharomyces sp. cell wall into a hypercholesterolemic (5% coconut fat plus 2% cholesterol diet, on Wistar rats. The work is justified by the increasing amount of yeast generated as byproduct of the alcohol and brewer

  13. Concentration-Dependent Effects of Rhodiola Rosea on Long-Term Survival and Stress Resistance of Yeast Saccharomyces Cerevisiae: The Involvement of YAP 1 and MSN2/4 Regulatory Proteins.

    Science.gov (United States)

    Bayliak, Maria M; Burdyliuk, Nadia I; Izers'ka, Lilia I; Lushchak, Volodymyr I

    2014-01-01

    Concentration-dependent effects of aqueous extract from R. rosea root on long-term survival and stress resistance of budding yeast Saccharomyces cerevisiae were studied. At low concentrations, R. rosea aqueous extract extended yeast chronological lifespan, enhanced oxidative stress resistance of stationary-phase cells and resistance to number stressors in exponentially growing cultures. At high concentrations, R. rosea extract sensitized yeast cells to stresses and shortened yeast lifespan. These biphasic concentration-responses describe a common hormetic phenomenon characterized by a low-dose stimulation and a high-dose inhibition. Yeast pretreatment with low doses of R. rosea extract enhanced yeast survival and prevented protein oxidation under H2O2-induced oxidative stress. Positive effect of R. rosea extract on yeast survival under heat shock exposure was not accompanied with changes in antioxidant enzyme activities and levels of oxidized proteins. The deficiency in transcriptional regulators, Msn2/Msn4 and Yap1, abolished the positive effect of low doses of R. rosea extract on yeast viability under stress challenges. Potential involvement of Msn2/Msn4 and Yap1 regulatory proteins in realization of R. rosea beneficial effects is discussed.

  14. Saccharomyces species in the Production of Beer

    Directory of Open Access Journals (Sweden)

    Graham G. Stewart

    2016-12-01

    Full Text Available The characteristic flavour and aroma of any beer is, in large part, determined by the yeast strain employed and the wort composition. In addition, properties such as flocculation, wort fermentation ability (including the uptake of wort sugars, amino acids, and peptides, ethanol and osmotic pressure tolerance together with oxygen requirements have a critical impact on fermentation performance. Yeast management between fermentations is also a critical brewing parameter. Brewer’s yeasts are mostly part of the genus Saccharomyces. Ale yeasts belong to the species Saccharomyces cerevisiae and lager yeasts to the species Saccharomyces pastorianus. The latter is an interspecies hybrid between S. cerevisiae and Saccharomyces eubayanus. Brewer’s yeast strains are facultative anaerobes—they are able to grow in the presence or absence of oxygen and this ability supports their property as an important industrial microorganism. This article covers important aspects of Saccharomyces molecular biology, physiology, and metabolism that is involved in wort fermentation and beer production.

  15. Resistance of yeasts to weak organic acid food preservatives.

    Science.gov (United States)

    Piper, Peter W

    2011-01-01

    Carboxylate weak acids are invaluable for large-scale food and beverage preservation. However, in response to safety concerns, there is now desire to reduce the use of these additives. The resistance to these compounds displayed by spoilage yeasts and fungi is a major reason why these preservatives often have to be used in millimolar levels. This chapter summarizes the mechanisms whereby yeasts are rendered resistant to acetate, propionate, sorbate, and benzoate. In baker's yeast (Saccharomyces cerevisiae), resistance to high acetic acid is acquired partly by loss of the plasma membrane aquaglyceroporin that facilitates the passive diffusional entry of undissociated acid into cells (Fps1), and partly through a transcriptional response mediated by the transcription factor Haa1. Other carboxylate preservatives are too large to enter cells through the Fps1 channel but instead penetrate at appreciable rates by passive diffusion across the plasma membrane. In Saccharomyces and Candida albicans though not, it seems, in the Zygosaccharomyces, resistance to the latter acids involves activation of the War1 transcription factor, which in turn generates strong induction of a specific plasma membrane ATP-binding cassette transporter (Pdr12). The latter actively pumps the preservative anion from the cell. Other contributors to weak acid resistance include enzymes that allow preservative degradation, members of the Tpo family of major facilitator superfamily transporters, and changes to the cell envelope that minimize the diffusional entry of the preservative into the cell.

  16. Display of wasp venom allergens on the cell surface of Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Poulsen Lars K

    2010-09-01

    Full Text Available Abstract Background Yeast surface display is a technique, where the proteins of interest are expressed as fusions with yeast surface proteins and thus remain attached to the yeast cell wall after expression. Our purpose was to study whether allergens expressed on the cell surface of baker's yeast Saccharomyces cerevisiae preserve their native allergenic properties and whether the yeast native surface glycoproteins interfere with IgE binding. We chose to use the major allergens from the common wasp Vespula vulgaris venom: phospholipase A1, hyaluronidase and antigen 5 as the model. Results The proteins were expressed on the surface as fusions with a-agglutinin complex protein AGA2. The expression was confirmed by fluorescent cytometry (FACS after staining the cells with antibody against a C-tag attached to the C-terminal end of the allergens. Phospholipase A1 and hyaluronidase retained their enzymatic activities. Phospholipase A1 severely inhibited the growth of the yeast cells. Antigen 5 - expressing yeast cells bound IgE antibodies from wasp venom allergic patient sera but not from control sera as demonstrated by FACS. Moreover, antigen 5 - expressing yeast cells were capable of mediating allergen-specific histamine release from human basophils. Conclusions All the three major wasp venom allergens were expressed on the yeast surface. A high-level expression, which was observed only for antigen 5, was needed for detection of IgE binding by FACS and for induction of histamine release. The non-modified S. cerevisiae cells did not cause any unspecific reaction in FACS or histamine release assay despite the expression of high-mannose oligosaccharides. In perspective the yeast surface display may be used for allergen discovery from cDNA libraries and possibly for sublingual immunotherapy as the cells can serve as good adjuvant and can be produced in large amounts at a low price.

  17. Polygenic analysis and targeted improvement of the complex trait of high acetic acid tolerance in the yeast Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Meijnen, Jean-Paul; Randazzo, Paola; Foulquié-Moreno, María R; van den Brink, Joost; Vandecruys, Paul; Stojiljkovic, Marija; Dumortier, Françoise; Zalar, Polona; Boekhout, Teun; Gunde-Cimerman, Nina; Kokošar, Janez; Štajdohar, Miha; Curk, Tomaž; Petrovič, Uroš; Thevelein, Johan M

    2016-01-01

    BACKGROUND: Acetic acid is one of the major inhibitors in lignocellulose hydrolysates used for the production of second-generation bioethanol. Although several genes have been identified in laboratory yeast strains that are required for tolerance to acetic acid, the genetic basis of the high acetic

  18. Yeast artificial chromosomes employed for random assembly of biosynthetic pathways and production of diverse compounds in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Mitra Partha P

    2009-08-01

    Full Text Available Abstract Background Natural products are an important source of drugs and other commercially interesting compounds, however their isolation and production is often difficult. Metabolic engineering, mainly in bacteria and yeast, has sought to circumvent some of the associated problems but also this approach is impeded by technical limitations. Here we describe a novel strategy for production of diverse natural products, comprising the expression of an unprecedented large number of biosynthetic genes in a heterologous host. Results As an example, genes from different sources, representing enzymes of a seven step flavonoid pathway, were individually cloned into yeast expression cassettes, which were then randomly combined on Yeast Artificial Chromosomes and used, in a single transformation of yeast, to create a variety of flavonoid producing pathways. Randomly picked clones were analysed, and approximately half of them showed production of the flavanone naringenin, and a third of them produced the flavonol kaempferol in various amounts. This reflected the assembly of 5–7 step multi-species pathways converting the yeast metabolites phenylalanine and/or tyrosine into flavonoids, normally only produced by plants. Other flavonoids were also produced that were either direct intermediates or derivatives thereof. Feeding natural and unnatural, halogenated precursors to these recombinant clones demonstrated the potential to further diversify the type of molecules that can be produced with this technology. Conclusion The technology has many potential uses but is particularly suited for generating high numbers of structurally diverse compounds, some of which may not be amenable to chemical synthesis, thus greatly facilitating access to a huge chemical space in the search for new commercially interesting compounds

  19. Functional conservation between Schizosaccharomyces pombe ste8 and Saccharomyces cerevisiae STE11 protein kinases in yeast signal transduction

    DEFF Research Database (Denmark)

    Styrkársdóttir, U; Egel, R; Nielsen, O

    1992-01-01

    In fission yeast (Schizosaccharomyces pombe), the mat1-Pm gene, which is required for entry into meiosis, is expressed in response to a pheromone signal. Cells carrying a mutation in the ste8 gene are unable to induce transcription of mat1-Pm in response to pheromone, suggesting that the ste8 gene......, ste8 mutant cells will enter meiosis. This demonstrates that the meiotic defect of ste8 mutants is due to the absence of the mat1-Pm gene product....

  20. Performance of Clarias gariepinus Fed Dried Brewer’s Yeast (Saccharomyces cerevisiae Slurry in Replacement for Soybean Meal

    Directory of Open Access Journals (Sweden)

    Shola Gabriel Solomon

    2017-01-01

    Full Text Available Following disparity of earlier results, this study tested the performance of African catfish Clarias gariepinus fed dried brewer’s yeast slurry meal (DBYM based diets. Fingerlings of C. gariepinus with pooled mean initial weight of 1.58±0.01 g were stocked in hapas (1 m × 1 m × 1 m immersed in an earthen pond at a density of 15 fish per cage. Five diets with increasing substitution of soybean meal with 25%, 50%, 75%, and 100% of dried brewer’s yeast and a control without dried brewer’s yeast (0% substitution were evaluated for 8 weeks. Palatability of diets reduced with increasing levels of DBYM. Growth and utilization parameters such as weight gain, feed conversion ratio, protein efficiency ratio, and specific growth rate differed significantly (p<0.05 among treated groups. Specific growth rate decreased with increasing substitution while the best feed conversion ratio was obtained in the diet devoid of DBYM. Protein efficiency and utilization decreased with increasing levels of DBYM. Body composition was also affected by inclusion of DBYM with significant differences (p<0.05 being observed across the diets. The trend in body composition follows the utilization of the diets. We conclude that the optimal range of inclusion and substitution of soybean meal with DBYM in C. gariepinus feed is between 1% and 14% of dry matter.

  1. Engineering cofactor preference of ketone reducing biocatalysts: A mutagenesis study on a γ-diketone reductase from the yeast Saccharomyces cerevisiae serving as an example.

    Science.gov (United States)

    Katzberg, Michael; Skorupa-Parachin, Nàdia; Gorwa-Grauslund, Marie-Françoise; Bertau, Martin

    2010-04-14

    The synthesis of pharmaceuticals and catalysts more and more relies on enantiopure chiral building blocks. These can be produced in an environmentally benign and efficient way via bioreduction of prochiral ketones catalyzed by dehydrogenases. A productive source of these biocatalysts is the yeast Saccharomyces cerevisiae, whose genome also encodes a reductase catalyzing the sequential reduction of the gamma-diketone 2,5-hexanedione furnishing the diol (2S,5S)-hexanediol and the gamma-hydroxyketone (5S)-hydroxy-2-hexanone in high enantio- as well as diastereoselectivity (ee and de >99.5%). This enzyme prefers NADPH as the hydrogen donating cofactor. As NADH is more stable and cheaper than NADPH it would be more effective if NADH could be used in cell-free bioreduction systems. To achieve this, the cofactor binding site of the dehydrogenase was altered by site-directed mutagenesis. The results show that the rational approach based on a homology model of the enzyme allowed us to generate a mutant enzyme having a relaxed cofactor preference and thus is able to use both NADPH and NADH. Results obtained from other mutants are discussed and point towards the limits of rationally designed mutants.

  2. Improved production of fatty acids by Saccharomyces cerevisiae through screening a cDNA library from the oleaginous yeast Yarrowia lipolytica.

    Science.gov (United States)

    Shi, Shuobo; Ji, Haichuan; Siewers, Verena; Nielsen, Jens

    2016-02-01

    Biological production of fatty acid (FA)-derived products has gained increasing attention to replace petroleum-based fuels and chemicals. FA biosynthesis is highly regulated, and usually it is challenging to design rational engineering strategies. In addition, the conventional 'one sample at a time' method for lipid determination is time consuming and laborious, and it is difficult to screen large numbers of samples. Here, a method for detecting free FAs in viable cells using Nile red staining was developed for use in large-scale screening. Following optimization of the method, it was used for screening a cDNA library from the oleaginous yeast Yarrowia lipolytica for identification of genes/enzymes that were able to enhance free FA accumulation in Saccharomyces cerevisiae. Several novel enzymes resulting in increasing FA accumulation were discovered. These targets include a GPI anchor protein, malate dehydrogenase, glyceraldehyde 3-phosphate dehydrogenase, FA hydroxylase, farnesyltransferase, anoctamin, dihydrolipoamide dehydrogenase and phosphatidylethanolamine-binding protein. The best enzyme resulted in a 2.5-fold improvement in production of free FAs. Our findings not only provide a novel method for high-throughput evaluation of the content of free FAs, but also give new insight into how enzymes from Y. lipolytica may increase the production of fatty acids in S. cerevisiae.

  3. [Dot1 and Set2 Histone Methylases Control the Spontaneous and UV-Induced Mutagenesis Levels in the Saccharomyces cerevisiae Yeasts].

    Science.gov (United States)

    Kozhina, T N; Evstiukhina, T A; Peshekhonov, V T; Chernenkov, A Yu; Korolev, V G

    2016-03-01

    In the Saccharomyces cerevisiae yeasts, the DOT1 gene product provides methylation of lysine 79 (K79) of hi- stone H3 and the SET2 gene product provides the methylation of lysine 36 (K36) of the same histone. We determined that the dot1 and set2 mutants suppress the UV-induced mutagenesis to an equally high degree. The dot1 mutation demonstrated statistically higher sensitivity to the low doses of MMC than the wild type strain. The analysis of the interaction between the dot1 and rad52 mutations revealed a considerable level of spontaneous cell death in the double dot1 rad52 mutant. We observed strong suppression of the gamma-in- duced mutagenesis in the set2 mutant. We determined that the dot1 and set2 mutations decrease the sponta- neous mutagenesis rate in both single and d ouble mutants. The epistatic interaction between the dot1 and set2 mutations and almost similar sensitivity of the corresponding mutants to the different types of DNA damage allow one to conclude that both genes are involved in the control of the same DNA repair pathways, the ho- mologous-recombination-based and the postreplicative DNA repair.

  4. Analysis of temperature-mediated changes in the wine yeast Saccharomyces bayanus var uvarum. An oenological study of how the protein content influences wine quality.

    Science.gov (United States)

    Muñoz-Bernal, Eugenia; Deery, Michael J; Rodríguez, María Esther; Cantoral, Jesús M; Howard, Julie; Feret, Renata; Natera, Ramón; Lilley, Kathryn S; Fernández-Acero, Francisco Javier

    2016-02-01

    Saccharomyces bayanus var. uvarum plays an important role in the fermentation of red wine from the D.O. Ribera del Duero. This is due to the special organoleptic taste that this yeast gives the wines and their ability to ferment at low temperature. To determine the molecular factors involved in the fermentation process at low temperature, a differential proteomic approach was performed by using 2D-DIGE, comparing, qualitatively and quantitatively, the profiles obtained at 13 and 25°C. A total of 152 protein spots were identified. We detected proteins upregulated at 13°C that were shown to be related to temperature stress, the production of aromatic compounds involved in the metabolism of amino acids, and the production of fusel alcohols and their derivatives, each of which is directly related to the quality of the wines. To check the temperature effects, an aromatic analysis by GC-MS was performed. The proteomic and "aromatomic" results are discussed in relation to the oenological properties of S. bayanus var. uvarum.

  5. High-frequency transformation of a methylotrophic yeast, Candida boidinii, with autonomously replicating plasmids which are also functional in Saccharomyces cerevisiae.

    Science.gov (United States)

    Sakai, Y; Goh, T K; Tani, Y

    1993-06-01

    We have developed a transformation system which uses autonomous replicating plasmids for a methylotrophic yeast, Candida boidinii. Two autonomous replication sequences, CARS1 and CARS2, were newly cloned from the genome of C. boidinii. Plasmids having both a CARS fragment and the C. boidinii URA3 gene transformed C. boidinii ura3 cells to Ura+ phenotype at frequencies of up to 10(4) CFU/micrograms of DNA. From Southern blot analysis, CARS plasmids seemed to exist in polymeric forms as well as in monomeric forms in C. boidinii cells. The C. boidinii URA3 gene was overexpressed in C. boidinii on these CARS vectors. CARS1 and CARS2 were found to function as an autonomous replicating element in Saccharomyces cerevisiae as well. Different portions of the CARS1 sequence were needed for autonomous replicating activity in C. boidinii and S. cerevisiae. C. boidinii could also be transformed with vectors harboring a CARS fragment and the S. cerevisiae URA3 gene.

  6. EFFECT OF COMBINATION OF YEAST (Saccharomyces cerevisae + Candida utilis AND HERBS SUPPLEMENTATION IN FINISHING DIET ON CARCASS CHARACTERISTICS OF BEEF CATTLE

    Directory of Open Access Journals (Sweden)

    P. Mahyuddin

    2014-10-01

    Full Text Available A 75 days feeding trial was completed to study the effect of inclusion of a combined probioticyeast+herbs in finishing diet on carcass characteristics of beef cattle. Thirty bull of Ongole crossbred,age 2.5-3 years old with average body weight (BW of 320 kg were used in this experiment. They weredivided into 2 groups, each of 15 animals and were allotted to control and treatment. They wereslaughtered at around 450 kg BW. The treated animals were given a supplementation containingcombined yeast (Saccharomyces cerevisae and Candida utilis and herbs. All animals were fed a diet ofammoniated rice straw and commercial concentrate with a ratio of 10: 90. Addition of combinedprobiotics + herbs in the diet increased percentage of carcass, dressing and meat, but there were noeffect on live weight gain (LWG, % bone, meat:bone ratio, % body fat, back fat thickness and eyemuscle area. There was a reduction in the percentage of offal due to a decrease in intestinal weight in thetreated animal.

  7. Co-precipitation of phosphate and iron limits mitochondrial phosphate availability in Saccharomyces cerevisiae lacking the yeast frataxin homologue (YFH1).

    Science.gov (United States)

    Seguin, Alexandra; Santos, Renata; Pain, Debkumar; Dancis, Andrew; Camadro, Jean-Michel; Lesuisse, Emmanuel

    2011-02-25

    Saccharomyces cerevisiae cells lacking the yeast frataxin homologue (Δyfh1) accumulate iron in the mitochondria in the form of nanoparticles of ferric phosphate. The phosphate content of Δyfh1 mitochondria was higher than that of wild-type mitochondria, but the proportion of mitochondrial phosphate that was soluble was much lower in Δyfh1 cells. The rates of phosphate and iron uptake in vitro by isolated mitochondria were higher for Δyfh1 than wild-type mitochondria, and a significant proportion of the phosphate and iron rapidly became insoluble in the mitochondrial matrix, suggesting co-precipitation of these species after oxidation of iron by oxygen. Increasing the amount of phosphate in the medium decreased the amount of iron accumulated by Δyfh1 cells and improved their growth in an iron-dependent manner, and this effect was mostly transcriptional. Overexpressing the major mitochondrial phosphate carrier, MIR1, slightly increased the concentration of soluble mitochondrial phosphate and significantly improved various mitochondrial functions (cytochromes, [Fe-S] clusters, and respiration) in Δyfh1 cells. We conclude that in Δyfh1 cells, soluble phosphate is limiting, due to its co-precipitation with iron.

  8. Engineering Cofactor Preference of Ketone Reducing Biocatalysts: A Mutagenesis Study on a γ-Diketone Reductase from the Yeast Saccharomyces cerevisiae Serving as an Example

    Directory of Open Access Journals (Sweden)

    Michael Katzberg

    2010-04-01

    Full Text Available The synthesis of pharmaceuticals and catalysts more and more relies on enantiopure chiral building blocks. These can be produced in an environmentally benign and efficient way via bioreduction of prochiral ketones catalyzed by dehydrogenases. A productive source of these biocatalysts is the yeast Saccharomyces cerevisiae, whose genome also encodes a reductase catalyzing the sequential reduction of the γ-diketone 2,5-hexanedione furnishing the diol (2S,5S-hexanediol and the γ-hydroxyketone (5S-hydroxy-2-hexanone in high enantio- as well as diastereoselectivity (ee and de >99.5%. This enzyme prefers NADPH as the hydrogen donating cofactor. As NADH is more stable and cheaper than NADPH it would be more effective if NADH could be used in cell-free bioreduction systems. To achieve this, the cofactor binding site of the dehydrogenase was altered by site-directed mutagenesis. The results show that the rational approach based on a homology model of the enzyme allowed us to generate a mutant enzyme having a relaxed cofactor preference and thus is able to use both NADPH and NADH. Results obtained from other mutants are discussed and point towards the limits of rationally designed mutants.

  9. Comparison of cell components in low sugar adaptation and freeze-tolerance baker's yeast with common yeast%低糖适应性耐冻酵母菌与普通酵母菌细胞构成成分的比较

    Institute of Scientific and Technical Information of China (English)

    宋振玉; 李楠; 张姝; 王雷; 居勇

    2009-01-01

    采用气相、液相色谱法和分光光度比色法,对筛选出的低糖适应性耐冻面包酵母BY-03和FY-03与普通高糖面包酵母(PT)细胞构成成分,即胞内海藻糖含量,脂肪酸组成,麦角固醇,磷脂和氨基酸组成进行了分析与比较,进而了解其对酵母耐冻性的影响.结果表明,FY-03海藻糖含量是PT含量的1.40倍,BY-03的海藻糖含量与PT含量基本持平.从3种酵母中皆检出18种氨基酸,其中有助于提高酵母耐冻性的3种带电荷氨基酸即精氨酸,脯氨酸和谷氨酸的含量,BY-03和FY-03均高于PT.从3种酵母中检出了8种饱和与不饱和的脂肪酸,其中BY-03、FY-03的不饱和脂肪酸比例分别为79.82%和78.62%,明显高于PT 64.96%,其中棕榈油酸C16∶ 1和油酸C18∶ 1的含量相差较大.麦角固醇的含量BY-03和FY-03分别为4.99mg/g和4.77mg/g显著高于PT的2.56mg/g,而三者的磷脂含量没有明显差别.%The cell components, including trehalose, fatty acid component, ergosterol, phospholipid and amino acid in the BY-03 and FY-03 were qualitatively and quantitatively determined and compared with the common baker's yeast (PT) by GC, HPLC and UV-spectrophotometer in order to find out the effects of these index on freeze-tolerance of yeast.The results suggest that the content of the trehalose in FY-03 was 1.4 times more than that in PT, while the one in BY-03 was similar to PT.Meanwhile, eighteen kinds of known amino acid were detected from three kinds of yeast.The content of the arginine, proline and glutamate, which were helpful for enhancing the ability of freeze-tolerance, in BY-03 and FY-03 were more than those in PT.Eight kinds of known saturated and unsaturated fatty acid components were detected in three kinds of yeasts. The unsaturated fatty acid in BY-03 and FY-03 were 79.82% and 78.62%, 4.99 mg/g and 4.77 mg/g, but 2.57 mg/g in PT, while the phospholipid contents were similar in all samples.

  10. Effects of Endogenous and/or Exogenous Trehalose on Freezing-tolerance of Baker's Yeast%内源与(或)外源海藻糖对面包酵母耐冷冻性的影响研究

    Institute of Scientific and Technical Information of China (English)

    王碧莹; 孙溪; 肖冬光

    2015-01-01

    通过测定胞内海藻糖降解、冷冻前后细胞存活率以及发酵力的变化,研究内源与(或)外源海藻糖对面包酵母耐冷冻性的影响。结果表明,含有较高内源海藻糖的BY14α+Tps1菌株具有更高的冷冻后细胞生存率与发酵力。外源添加5%海藻糖仅能改善较低胞内基本海藻糖含量(<10%)菌株的耐冷冻性,并且预发酵过程中海藻糖的稳定性较差(尤其前15 min)。因此,使用内源法提高胞内海藻糖含量对提升面包酵母的耐冷冻性更具可行性。%The effects of endogenous and/or exogenous trehalose on freezing-tolerance of baker's yeast were investigated through the measure-ment of cell viability and fermenting power before and after intracellular trehalose hydrolysis and freezing. The experimental results showed that BY14α+Tps1 strain with higher content of endogenous trehalose had higher cell viability and fermenting power after the freezing, and the added exogenous trehalose at the concentration of 5%could only improve the freezing-tolerance of cells with low trehalose content (<10%) but the added exogenous trehalose was apparently unstable in the prefermentation process (especially at the first 15 min after inoculation). Therefore, the method of improving endogenous trehalose in cells were feasible to strengthen freezing tolerance of baker's yeast.

  11. Novel insights into iron metabolism by integrating deletome and transcriptome analysis in an iron deficiency model of the yeast Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Arkin Adam P

    2009-03-01

    Full Text Available Abstract Background Iron-deficiency anemia is the most prevalent form of anemia world-wide. The yeast Saccharomyces cerevisiae has been used as a model of cellular iron deficiency, in part because many of its cellular pathways are conserved. To better understand how cells respond to changes in iron availability, we profiled the yeast genome with a parallel analysis of homozygous deletion mutants to identify essential components and cellular processes required for optimal growth under iron-limited conditions. To complement this analysis, we compared those genes identified as important for fitness to those that were differentially-expressed in the same conditions. The resulting analysis provides a global perspective on the cellular processes involved in iron metabolism. Results Using functional profiling, we identified several genes known to be involved in high affinity iron uptake, in addition to novel genes that may play a role in iron metabolism. Our results provide support for the primary involvement in iron homeostasis of vacuolar and endosomal compartments, as well as vesicular transport to and from these compartments. We also observed an unexpected importance of the peroxisome for growth in iron-limited media. Although these components were essential for growth in low-iron conditions, most of them were not differentially-expressed. Genes with altered expression in iron deficiency were mainly associated with iron uptake and transport mechanisms, with little overlap with those that were functionally required. To better understand this relationship, we used expression-profiling of selected mutants that exhibited slow growth in iron-deficient conditions, and as a result, obtained additional insight into the roles of CTI6, DAP1, MRS4 and YHR045W in iron metabolism. Conclusion Comparison between functional and gene expression data in iron deficiency highlighted the complementary utility of these two approaches to identify important functional

  12. 优良非酿酒酵母的分离与发酵性能研究%Isolation of Quality Non-Saccharomyces Yeasts and Study on Their Fermentation Performance

    Institute of Scientific and Technical Information of China (English)

    王晓昌; 李京宁; 张惠玲; 刘亚; 付丽霞

    2016-01-01

    非酿酒酵母对葡萄酒的风味有重要影响.本实验利用WL培养基对宁夏贺兰山东麓采集的葡萄种植园土样和葡萄果实表面上附着的非酿酒酵母进行了初步的分离鉴定,为酿造出具有宁夏地区独具风格和特色的地域性酒种提供基础性探索依据.本实验鉴定出:戴尔有孢圆酵母、葡萄汁有孢汉生酵母、异常汉生酵母和东方伊萨酵母.并且初步对4种非酿酒酵母进行发酵性能研究.结果表明,戴尔有孢圆酵母在耐SO2、耐酒精度和产酒度实验中均有良好表现.%Non-Saccharomyces yeasts have important influence on grape wine flavor. In the experiments, non-Saccharomyces yeasts were iso-lated from soil samples and grapes in vineyards in Ningxia Helan Mountain by WL culture mediums and then identified, which could provide basic research evidence for Ningxia local wine yeast. Four kinds of non-Saccharomyces yeasts including Torulaspora delbrueckii, Hanseniaspo-ra uvarum, Hansenula anomala and Issatchenkia orientalis were identified and their fermentation performance was explored. The results sug-gested that Torulaspora delbrueckii had good performance in SO2 resistance, alcohol resistance and the production of alcohol.

  13. Electro-stimulation of Saccharomyces cerevisiae wine yeasts by Pulsed Electric Field and its effect on fermentation performance

    CERN Document Server

    Mattar, J; Nonus, M; Lebovka, N I; Zakhem, H El; Vorobiev, E

    2013-01-01

    The batch fermentation process, inoculated by pulsed electric field (PEF) treated wine yeasts (S. cerevisiae Actiflore F33), was studied. PEF treatment was applied to the aqueous yeast suspensions (0.12 % wt.) at the electric field strengths of E=100 and 6000 V/cm using the same pulse protocol (number of pulses of n=1000, pulse duration of ti=100 mks, and pulse repetition time of dt=100 ms). Electro-stimulation was confirmed by the observed growth of electrical conductivity of suspensions. The fermentation was running at 30{\\deg}C for 150 hours in an incubator with synchronic agitation. The obtained results clearly evidence the positive impact of PEF treatment on the batch fermentation process. Electro-stimulation resulted in improvement of such process characteristics as mass losses, consumption of soluble matter content ({\\deg}Brix) and synthesis of proteins. It also resulted in a noticeable acceleration of consumption of sugars at the initial stage of fermentation in the lag phase. At the end of the lag ph...

  14. Succinic acid in levels produced by yeast (Saccharomyces cerevisiae) during fermentation strongly impacts wheat bread dough properties.

    Science.gov (United States)

    Jayaram, Vinay B; Cuyvers, Sven; Verstrepen, Kevin J; Delcour, Jan A; Courtin, Christophe M

    2014-05-15

    Succinic acid (SA) was recently shown to be the major pH determining metabolite produced by yeast during straight-dough fermentation (Jayaram et al., 2013), reaching levels as high as 1.6 mmol/100 g of flour. Here, the impact of such levels of SA (0.8, 1.6 and 2.4 mmol/100 g flour) on yeastless dough properties was investigated. SA decreased the development time and stability of dough significantly. Uniaxial extension tests showed a consistent decrease in dough extensibility upon increasing SA addition. Upon biaxial extension in the presence of 2.4 mmol SA/100 g flour, a dough extensibility decrease of 47-65% and a dough strength increase of 25-40% were seen. While the SA solvent retention capacity of flour increased with increasing SA concentration in the solvent, gluten agglomeration decreased with gluten yield reductions of over 50%. The results suggest that SA leads to swelling and unfolding of gluten proteins, thereby increasing their interaction potential and dough strength, but simultaneously increasing intermolecular electrostatic repulsive forces. These phenomena lead to the reported changes in dough properties. Together, our results establish SA as an important yeast metabolite for dough rheology.

  15. Improvement on the productivity of continuous tequila fermentation by Saccharomyces cerevisiae of Agave tequilana juice with supplementation of yeast extract and aeration.

    Science.gov (United States)

    Hernández-Cortés, Guillermo; Valle-Rodríguez, Juan Octavio; Herrera-López, Enrique J; Díaz-Montaño, Dulce María; González-García, Yolanda; Escalona-Buendía, Héctor B; Córdova, Jesús

    2016-12-01

    Agave (Agave tequilana Weber var. azul) fermentations are traditionally carried out employing batch systems in the process of tequila manufacturing; nevertheless, continuous cultures could be an attractive technological alternative to increase productivity and efficiency of sugar to ethanol conversion. However, agave juice (used as a culture medium) has nutritional deficiencies that limit the implementation of yeast continuous fermentations, resulting in high residual sugars and low fermentative rates. In this work, fermentations of agave juice using Saccharomyces cerevisiae were put into operation to prove the necessity of supplementing yeast extract, in order to alleviate nutritional deficiencies of agave juice. Furthermore, continuous fermentations were performed at two different aeration flow rates, and feeding sterilized and non-sterilized media. The obtained fermented musts were subsequently distilled to obtain tequila and the preference level was compared against two commercial tequilas, according to a sensorial analysis. The supplementation of agave juice with air and yeast extract augmented the fermentative capacity of S. cerevisiae S1 and the ethanol productivities, compared to those continuous fermentations non supplemented. In fact, aeration improved ethanol production from 37 to 40 g L(-1), reducing sugars consumption from 73 to 88 g L(-1) and ethanol productivity from 3.0 to 3.2 g (Lh)(-1), for non-aerated and aerated (at 0.02 vvm) cultures, respectively. Supplementation of yeast extract allowed an increase in specific growth rate and dilution rates (0.12 h(-1), compared to 0.08 h(-1) of non-supplemented cultures), ethanol production (47 g L(-1)), reducing sugars consumption (93 g L(-1)) and ethanol productivity [5.6 g (Lh)(-1)] were reached. Additionally, the effect of feeding sterilized or non-sterilized medium to the continuous cultures was compared, finding no significant differences between both types of cultures. The overall effect

  16. Carbonic anhydrase inhibitors. Inhibition of the beta-class enzyme from the yeast Saccharomyces cerevisiae with anions.

    Science.gov (United States)

    Isik, Semra; Kockar, Feray; Arslan, Oktay; Guler, Ozen Ozensoy; Innocenti, Alessio; Supuran, Claudiu T

    2008-12-15

    The protein encoded by the Nce103 gene of Saccharomyces cerevisiae, a beta-carbonic anhydrase (CA, EC 4.2.1.1) designated as scCA, has been cloned, purified, characterized kinetically, and investigated for its inhibition with a series simple, inorganic anions such as halogenides, pseudohalogenides, bicarbonate, carbonate, nitrate, nitrite, hydrogen sulfide, bisulfite, perchlorate, sulfate, and some of its isosteric species. The enzyme showed high CO(2) hydrase activity, with a k(cat) of 9.4x10(5) s(-1) and k(cat)/K(m) of 9.8x10(7) M(-1) s(-1). scCA was weakly inhibited by metal poisons (cyanide, azide, cyanate, thiocyanate, K(I)s of 16.8-55.6 mM) and strongly inhibited by bromide, iodide, and sulfamide (K(I)s of 8.7-10.8 microM). The other investigated anions showed inhibition constants in the low millimolar range.

  17. Biocavity laser spectroscopy of genetically altered yeast cells and isolated yeast mitochondria

    Science.gov (United States)

    Gourley, Paul L.; Hendricks, Judy K.; McDonald, Anthony E.; Copeland, R. Guild; Naviaux, Robert K.; Yaffe, Michael P.

    2006-02-01

    We report an analysis of 2 yeast cell mutants using biocavity laser spectroscopy. The two yeast strains differed only by the presence or absence of mitochondrial DNA. Strain 104 is a wild-type (ρ +) strain of the baker's yeast, Saccharomyces cerevisiae. Strain 110 was derived from strain 104 by removal of its mitochondrial DNA (mtDNA). Removal of mtDNA causes strain 110 to grow as a "petite" (ρ -), named because it forms small colonies (of fewer cells because it grows more slowly) on agar plates supplemented with a variety of different carbon sources. The absence of mitochondrial DNA results in the complete loss of all the mtDNA-encoded proteins and RNAs, and loss of the pigmented, heme-containing cytochromes a and b. These cells have mitochondria, but the mitochondria lack the normal respiratory chain complexes I, III, IV, and V. Complex II is preserved because its subunits are encoded by genes located in nuclear DNA. The frequency distributions of the peak shifts produced by wild-type and petite cells and mitochondria show striking differences in the symmetry and patterns of the distributions. Wild-type ρ + cells (104) and mitochondria produced nearly symmetric, Gaussian distributions. The ρ - cells (110) and mitochondria showed striking asymmetry and skew that appeared to follow a Poisson distribution.

  18. Taxonomy Icon Data: Budding yeast [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Budding yeast Saccharomyces cerevisiae Saccharomyces_cerevisiae_L.png Saccharomyces_cerevisiae_NL.png Saccha...romyces_cerevisiae_S.png Saccharomyces_cerevisiae_NS.png http://biosciencedbc.jp/ta...xonomy_icon/icon.cgi?i=Saccharomyces+cerevisiae&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Saccharomyces...+cerevisiae&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Saccharomyces...+cerevisiae&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Saccharomyces+cerevisiae&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=216 ...

  19. Effects of yeast, fermentation time, and preservation methods on tarhana.

    Science.gov (United States)

    Gurbuz, Ozan; Gocmen, Duygu; Ozmen, Nese; Dagdelen, Fatih

    2010-01-01

    The physicochemical properties of tarhana soup produced with different dough treatments, fermentation times, and preservation methods were examined. Tarhana doughs were prepared with yogurt (control) or baker's yeast (Saccharomyces cerevisiae) and fermented for 3 days. Samples were taken at 24, 48, and 72 hr. Samples were then preserved via one of four methods: sun dried, dried in the shade, vacumn dried, and frozen. Frozen samples produced lower organic acid levels after 72 hr of fermentation in both control (0.68 g/100 g) and yeast (0.61 g/100 g) applications than samples that were dried (0.94 g/100 g control samples; 0.81 g/100 g samples with yeast). Increasing fermentation time resulted in a significant effect on the formation of organic acid in the tarhana (p .01). However, sensory scores for tarhana prepared from the samples dried in a sheltered area showed a reduction in color desireablilty as the fermentation time increased. The soup prepared from frozen tarhana (72 hr fermentation, with yeast) had the highest scores with respect to color, mouth feel, flavor, and overall acceptability. Vacuum-dried samples' scores in these areas were also high in comparison to the two other drying methods.

  20. Aptitude of Saccharomyces yeasts to ferment unripe grapes harvested during cluster thinning for reducing alcohol content of wine.

    Science.gov (United States)

    Bovo, Barbara; Nadai, Chiara; Vendramini, Chiara; Fernandes Lemos Junior, Wilson Josè; Carlot, Milena; Skelin, Andrea; Giacomini, Alessio; Corich, Viviana

    2016-11-07

    Among the viticultural techniques developed to obtain wine with reduced alcohol content, the use of unripe grapes with low sugar and high malic acid concentration, harvested at cluster thinning, was recently explored. So far, no studies have evaluated the fermentation performances of Saccharomyces in unripe grape musts, in terms of fermentation ability and reducing malic acid contents, to improve the quality of this low-alcohol beverage. In this work, we evaluated 24 S. cerevisiae strains isolated from Italian and Croatian vineyards with different fermentation aptitudes. Moreover, four S. paradoxus were considered, as previous works demonstrated that strains belonging to this species were able to degrade high malic acid amounts in standard musts. The industrial strain S. cerevisiae 71B was added as reference. Sugar and malic acid contents were modified in synthetic musts in order to understand the effect of their concentrations on alcoholic fermentation and malic acid degradation. S. cerevisiae fermentation performances improved when glucose concentration decreased and malic acid level increased. The conditions that simulate unripe grape must, i.e. low glucose and high malic acid content were found to enhance S. cerevisiae ability to degrade malic acid. On the contrary, S. paradoxus strains were able to degrade high amounts of malic acid only in conditions that resemble ripe grape must, i.e. high glucose and low malic acid concentration. In fermentation trials when low glucose concentrations were used, at high malic acid levels S. cerevisiae strains produced higher glycerol than at low malic acid condition. Malic acid degradation ability, tested on the best performing S. cerevisiae strains, was enhanced in fermentation trials when unripe grape must was used.

  1. Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Bojsen, Rasmus K; Andersen, Kaj Scherz; Regenberg, Birgitte

    2012-01-01

    Microbial biofilms can be defined as multi-cellular aggregates adhering to a surface and embedded in an extracellular matrix (ECM). The nonpathogenic yeast, Saccharomyces cerevisiae, follows the common traits of microbial biofilms with cell-cell and cell-surface adhesion. S. cerevisiae is shown...... pathways including the protein kinase A and a mitogen-activated protein kinase pathway. Advanced genetic tools and resources have been developed for S. cerevisiae including a deletion mutant-strain collection in a biofilm-forming strain background and GFP-fusion protein collections. Furthermore, S....... cerevisiae biofilm is well applied for confocal laser scanning microscopy and fluorophore tagging of proteins, DNA and RNA. These techniques can be used to uncover the molecular mechanisms for biofilm development, drug resistance and for the study of molecular interactions, cell response to environmental...

  2. Use of Saccharomyces cerevisiae cells immobilized on orange peel as biocatalyst for alcoholic fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Plessas, S.; Bekatorou, A; Koutinas, A.A.; Soupioni, M. [University of Patras (Greece). Department of Chemistry, Food Biotechnology Group; Banat, I.M.; Marchant, R. [University of Ulster, Coleraine, N. Ireland (United Kingdom). School of Biomedical Sciences

    2007-03-15

    A biocatalyst was prepared by immobilizing a commercial Saccharomyces cerevisiae strain (baker's yeast) on orange peel pieces for use in alcoholic fermentation and for fermented food applications. Cell immobilization was shown by electron microscopy and by the efficiency of the immobilized biocatalyst for alcoholic fermentation of various carbohydrate substrates (glucose, molasses, raisin extracts) and at various temperatures (30-15 {sup o}C). Fermentation times in all cases were low (5-15 h) and ethanol productivities were high (av. 150.6 g/ld) showing good operational stability of the biocatalyst and suitability for commercial applications. Reasonable amounts of volatile by-products were produced at all temperatures studied, revealing potential application of the proposed biocatalyst in fermented food applications, to improve productivities and quality. (author)

  3. FTIR analysis of the metabolomic stress response induced by N-alkyltropinium bromide surfactants in the yeasts Saccharomyces cerevisiae and Candida albicans.

    Science.gov (United States)

    Corte, Laura; Tiecco, Matteo; Roscini, Luca; Germani, Raimondo; Cardinali, Gianluigi

    2014-04-01

    The activity of surfactants against fungal cells has been studied less than against bacteria, although the medical and industrial importance of the former is of paramount importance. In this paper the surfactant biocidal effect was measured in the yeasts Saccharomyces cerevisiae and Candida albicans with a previously described FTIR bioassay which estimates the stress level as function of the FTIR spectra variation of the cells upon exposition to the chemicals. N-tetradecyltropinium bromide was chosen as stressing agent on the basis of previous preliminary study demonstrating its ability to kill prokaryotic and especially eukaryotic cells at concentration around or over the critical micellar concentration (c.m.c.). Here we show that this surfactant is able to inactivate S. cerevisiae cells at 0.4mM and C. albicans cells at 0.6mM after 1h exposition. FTIR analysis revealed that the surfactant induced metabolomics reactions of S. cerevisiae cells in the regions of amides (W2) and fatty acids (W1). In the same way C. albicans cells showed the maximum stress response in amides (W2) and mixed (W3) regions. Variations of the hydrophobic tail of this surfactant produced a reduced level of cell stress with both the 12C and 16C variants; although these two compounds were more effective in inducing cell mortality in S. cerevisiae but not in C. albicans. In conclusion, this paper has shown that, for this surfactant, the n-alkyl chain must vary between 12C and 16C and that the hydrophilic head size is not as critical as the tail length.

  4. Yeast Bax inhibitor, Bxi1p, is an ER-localized protein that links the unfolded protein response and programmed cell death in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    James Cebulski

    Full Text Available Bax inhibitor-1 (BI-1 is an anti-apoptotic gene whose expression is upregulated in a wide range of human cancers. Studies in both mammalian and plant cells suggest that the BI-1 protein resides in the endoplasmic reticulum and is involved in the unfolded protein response (UPR that is triggered by ER stress. It is thought to act via a mechanism involving altered calcium dynamics. In this paper, we provide evidence that the Saccharomyces cerevisiae protein encoded by the open reading frame, YNL305C, is a bona fide homolog for BI-1. First, we confirm that yeast cells from two different strain backgrounds lacking YNL305C, which we have renamed BXI1, are more sensitive to heat-shock induced cell death than wildtype controls even though they have indistinguishable growth rates at 30°C. They are also more susceptible both to ethanol-induced and to glucose-induced programmed cell death. Significantly, we show that Bxi1p-GFP colocalizes with the ER localized protein Sec63p-RFP. We have also discovered that Δbxi1 cells are not only more sensitive to drugs that induce ER stress, but also have a decreased unfolded protein response as measured with a UPRE-lacZ reporter. Finally, we have discovered that deleting BXI1 diminishes the calcium signaling response in response to the accumulation of unfolded proteins in the ER as measured by a calcineurin-dependent CDRE-lacZ reporter. In toto, our data suggests that the Bxi1p, like its metazoan homologs, is an ER-localized protein that links the unfolded protein response and programmed cell death.

  5. Requirements of Slm proteins for proper eisosome organization, endocytic trafficking and recycling in the yeast Saccharomyces cerevisiae

    Indian Academy of Sciences (India)

    Chitra Kamble; Sandhya Jain; Erin Murphy; Kyoungtae Kim

    2011-03-01

    Eisosomes are large immobile assemblies at the cortex of a cell under the membrane compartment of Can1 (MCC) in yeast. Slm1 has recently been identified as an MCC component that acts downstream of Mss4 in a pathway that regulates actin cytoskeleton organization in response to stress. In this study, we showed that inactivation of Slm proteins disrupts proper localization of the primary eisosome marker Pil1, providing evidence that Slm proteins play a role in eisosome organization. Furthermore, we found that slmts mutant cells exhibit actin defects in both the ability to polarize cortical F-actin and the formation of cytoplasmic actin cables even at the permissive temperature (30°C). We further demonstrated that the actin defect accounts for the slow traffic of FM4-64-labelled endosome in the cytoplasm, supporting the notion that intact actin is essential for endosome trafficking. However, our real-time microscopic analysis of Abp1-RFP revealed that the actin defect in slmts cells was not accompanied by a noticeable defect in actin patch internalization during receptor-mediated endocytosis. In addition, we found that slmts cells displayed impaired membrane recycling and that recycling occurred in an actin-independent manner. Our data provide evidence for the requirement of Slm proteins in eisosome organization and endosome trafficking and recycling.

  6. Hypermutability of damaged single-strand DNA formed at double-strand breaks and uncapped telomeres in yeast Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Yong Yang

    2008-11-01

    Full Text Available The major DNA repair pathways operate on damage in double-strand DNA because they use the intact strand as a template after damage removal. Therefore, lesions in transient single-strand stretches of chromosomal DNA are expected to be especially threatening to genome stability. To test this hypothesis, we designed systems in budding yeast that could generate many kilobases of persistent single-strand DNA next to double-strand breaks or uncapped telomeres. The systems allowed controlled restoration to the double-strand state after applying DNA damage. We found that lesions induced by UV-light and methyl methanesulfonate can be tolerated in long single-strand regions and are hypermutagenic. The hypermutability required PCNA monoubiquitination and was largely attributable to translesion synthesis by the error-prone DNA polymerase zeta. In support of multiple lesions in single-strand DNA being a source of hypermutability, analysis of the UV-induced mutants revealed strong strand-specific bias and unexpectedly high frequency of alleles with widely separated multiple mutations scattered over several kilobases. Hypermutability and multiple mutations associated with lesions in transient stretches of long single-strand DNA may be a source of carcinogenesis and provide selective advantage in adaptive evolution.

  7. Oral Intake of Carboxymethyl-Glucan (CM-G from Yeast (Saccharomyces uvarum Reduces Malondialdehyde Levels in Healthy Men

    Directory of Open Access Journals (Sweden)

    Vilma Barbosa da Silva Araújo

    2015-08-01

    Full Text Available Carboxymethyl-glucan (CM-G is a water-soluble derivative of β(1→3(1→6 glucan, a well-known immunostimulant and antioxidant compound. In this experimental, randomized and placebo-controlled study, the effects of oral CM-G intake over a 60-day period on the peripheral blood, cholesterol, glycemic index and malondialdehyde (MDA levels of healthy men was assessed. The CM-G was obtained from spent brewer’s yeast (S. uvarum with DS 0.8 and molecular weight of 2.2 × 105 Da. Following CM-G administration, no changes were observed in red and white blood cell, hematocrit, hemoglobin and platelet counts, or in cholesterol and glycemic indices. After 30 days of CM-G administration, the MDA levels decreased significantly (p ≤ 0.05 in men receiving CM-G. The results showed for the first time that CM-G may act as an adjuvant in preventing oxidative damage in healthy humans.

  8. Avaliação de compostos com atividade antioxidante em células da levedura Saccharomyces cerevisiae Evaluation of compounds with antioxidant activity in Saccharomyces cerevisiae yeast cells

    Directory of Open Access Journals (Sweden)

    Daniele Grazziotin Soares

    2005-03-01

    biological tests, the antioxidant capacity of L- ascorbic acid, vitamin E (alpha-tocoferol and the flavonoids hesperidin, naringin, naringenin, quercetin, rutin and sukuranetin. The study was carried out on eukaryotic cells of the yeast Saccharomyces cerevisiae treated with the above mentioned antioxidants in the presence of the stressing agent apomorphine. The results obtained showed that rutin, hesperidin, sakuranetin, quercetin and naringin were the most effective/potent antioxidant compounds followed by naringenin and a-tocopherol. Vitamin C and a mixture of vitamins C and E did not show antioxidant activity against apomorphine in the performed conditions of this work.

  9. Mechanisms of uv mutagenesis in yeast and E. coli

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, C.; Christensen, R.; Christensen, J.R.; O' Brien, T.

    1983-01-01

    Experiments investigating ultraviolet light mutagenesis in either bakers' yeast, Saccharomyces cerevisiae, or E. coli have led to the following conclusions. First, cyclobutane pyrimidine dimers cause most mutations in both organisms; pyrimidine adducts, such as PyC, can account at best for only a small proportion. 86 percent of forward mutations induced at the E. coli lacI locus can be abolished by photoreactivation under conditions which do not alter the level of recA induction. About 75 percent of the forward mutations induced at the CAN1 locus of yeast could be removed by photoreactivation, a value that lies within the range observed previously for the reversion of CYC1 alleles (60 percent - 97 percent). Second, about 10 percent of the lacI forward mutations are untargeted, a smaller fraction than found previously for cycl-91 reversion in yeast. It is not yet clear whether the two species are really different in this respect, of whether the cycl-91 reversion site is a typical of the yeast genome at large. Third, analysis of reversion frequencies of 20 mutant alleles suggests that about 10 to 25 percent of all replication errors produced by mutagenic mechanisms in uv-irradiated yeast involve additions or deletions of base-pairs, indicating that error-prone repair does not just produce substitutions. Last, the REV1 locus in yeast is concerned with the induction of frameshift mutations at some, but not all, genetic sites, just as found previously for substitution mutations. The function of the REV3 gene is more widely, though not universally, required while the function of the RAD6 gene, like that of the recA locus in E. coli, appears to be necessary for all kinds of uv mutagenesis. E coli genes comparable to REV1 and REV3 have not yet been described; conversely, there does not yet appear to be a yeast equivalent of umuC.

  10. Real-time Monitoring of Non-specific Toxicity Using a Saccharomyces cerevisiae Reporter System

    Directory of Open Access Journals (Sweden)

    Matti Karp

    2008-10-01

    Full Text Available Baker’s yeast, Saccharomyces cerevisiae, is the simplest and most well-known representative of eukaryotic cells and thus a convenient model organism for evaluating toxic effects in human cells and tissues. Yeast cell sensors are easy to maintain with short generation times, which makes the analytical method of assessing antifungal toxicity cheap and less-time consuming. In this work, the toxicity of test compounds was assessed in bioassays based on bioluminescence inhibition and on traditional growth inhibition on agar plates. The model organism in both tests was a modified S. cerevisiae sensor strain that produces light when provided with D-luciferin in an insect luciferase reporter gene activity assay. The bioluminescence assay showed toxic effects for yeast cell sensor of 5,6-benzo-flavone, rapamycin, nystatin and cycloheximide at concentrations of nM to µM. In addition, arsenic compounds, cadmium chloride, copper sulfate and lead acetate were shown to be potent non-specific inhibitors of the reporter organism described here. The results from a yeast agar diffusion assay correlated with the bioluminescence assay results.

  11. The interactions between CdSe quantum dots and yeast Saccharomyces cerevisiae: adhesion of quantum dots to the cell surface and the protection effect of ZnS shell.

    Science.gov (United States)

    Mei, Jie; Yang, Li-Yun; Lai, Lu; Xu, Zi-Qiang; Wang, Can; Zhao, Jie; Jin, Jian-Cheng; Jiang, Feng-Lei; Liu, Yi

    2014-10-01

    The interactions between quantum dots (QDs) and biological systems have attracted increasing attention due to concerns on possible toxicity of the nanoscale materials. The biological effects of CdSe QDs and CdSe/ZnS QDs with nearly identical hydrodynamic size on Saccharomyces cerevisiae were investigated via microcalorimetric, spectroscopic and microscopic methods, demonstrating a toxic order CdSe>CdSe/ZnS QDs. CdSe QDs damaged yeast cell wall and reduced the mitochondrial membrane potential. Noteworthy, adhesion of QDs to the yeast cell surface renders this work a good example of interaction site at cell surface, and the epitaxial coating of ZnS could greatly reduce the toxicity of Cd-containing QDs. These results will contribute to the safety evaluation of quantum dots, and provide valuable information for design of nanomaterials.

  12. Evaluation of yeast strains for production of fuel ethanol from biomass hydrolysates

    Science.gov (United States)

    Robust industrial yeast strains are needed for profitable production of fuel ethanol from mixed biomass waste. USDA, ARS, NCAUR, RPT has been evaluating ethanol-producing yeasts, including Saccharomyces cerevisiae, engineered GMAX Saccharomyces cerevisiae, irradiated Kluyveromyces marxianus, and Pi...

  13. The fermentation of lignocellulose hydrolysates with xylose isomerases and yeasts

    Energy Technology Data Exchange (ETDEWEB)

    Linden, T.

    1992-01-01

    Untreated spent sulphite liquor (SSL) was fermented with Canida tropicalis, Pichia stipitis, Pachysolen tannophilus, Schizosaccharomyces pombe, Saccharomyces cerevisiae and a co-culture of P. Tannophilus and A. cerevisiae, in the presence of xylose isomerases and 4.6 mM azide. The highest yield of ethanol, 0.41 g/g total sugar was obtained with S. cerevisiae, C. tropicalis, and P. tan