WorldWideScience

Sample records for baizhong li shaohua

  1. Weixue Li

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Weixue Li. Articles written in Bulletin of Materials Science. Volume 29 Issue 3 June 2006 pp 313-316 Composites. Anisotropic properties of aligned SWNT modified poly (methyl methacrylate) nanocomposites · Weixue Li Qing Wang Jianfeng Dai · More Details Abstract Fulltext ...

  2. Zhen Li

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Zhen Li. Articles written in Bulletin of Materials Science. Volume 31 Issue 6 November 2008 pp 825-829 Thin Films and Nanomatter. Preparation of PbSe nanoparticles by electron beam irradiation method · Zhen Li Chao Wu Yanyan Liu Tiebing Liu Zheng Jiao Minghong Wu.

  3. Li Cao

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Li Cao. Articles written in Journal of Chemical Sciences. Volume 123 Issue 5 September 2011 pp 687-696. Solvothermal synthesis and theoretical study of a polypyridium trimesylate adduct · Yulan Zhu Feng Ma Kuirong Ma Li Cao Lianhua Zhao · More Details Abstract Fulltext ...

  4. Hyperenhanced Li - Li Chemonuclear Fusion

    International Nuclear Information System (INIS)

    Ikegami, Hidetsugu

    2006-01-01

    A new fusion scheme, the Li - Li chemonuclear fusion is presented, where nuclear fusion reactions are linked to atomic fusion reactions. Lithium ions are implanted on a surface of metallic Li liquid at an energy of nuclear stopping (several keV/amu). The ions collide slowly with liquid Li atoms without electronic excitation and lead to the Li - Li chemonuclear fusion through the formation of united atoms or quasi-C atoms at their turning points. Inside the quasi-atoms twin nuclei are confined within respective sub-pm scale spheres of zero-point oscillation and form themselves into ultradense intermediate nuclear complexes. Their density is million times as large as the solar interior density and close to densities of white dwarfs or white-dwarf progenitors of supernovae. This confinement of nuclear complexes is enormously prolonged towards the pycno-nuclear reactions induced by the zero-point oscillation under the presence of thermodynamic force specified by the Gibbs energy change in the quasi-atom formation in the liquid. Resulted rate enhancement of nuclear fusion by a factor of 10 48 has been anticipated. The enhancement is also argued in connection with the Bose-Einstein condensation

  5. Li Yajiang

    Indian Academy of Sciences (India)

    Volume 29 Issue 2 April 2006 pp 155-158 Alloys. Microstructural characterization in diffusion bonded TiC–Al2O3/Cr18–Ni8 joint with Ti interlayer · Wang Juan Li ... 30 Issue 4 August 2007 pp 415-419 Alloys and Steels. Interfacial microstructure and strength of diffusion brazed joint between Al2O3–TiC and 9Cr1MoV steel.

  6. Ai-Qin Li

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Biosciences. Ai-Qin Li. Articles written in Journal of Biosciences. Volume 34 Issue 2 June 2009 pp 227-238 Articles. Cloning and sequence analysis of putative type II fatty acid synthase genes from Arachis hypogaea L. Meng-Jun Li Ai-Qin Li Han Xia Chuan-Zhi Zhao Chang-Sheng Li Shu-Bo Wan ...

  7. Presence of Li Clusters in Molten LiCl-Li

    Science.gov (United States)

    Merwin, Augustus; Phillips, William C.; Williamson, Mark A.; Willit, James L.; Motsegood, Perry N.; Chidambaram, Dev

    2016-05-01

    Molten mixtures of lithium chloride and metallic lithium are of significant interest in various metal oxide reduction processes. These solutions have been reported to exhibit seemingly anomalous physical characteristics that lack a comprehensive explanation. In the current work, the physical chemistry of molten solutions of lithium chloride and metallic lithium, with and without lithium oxide, was investigated using in situ Raman spectroscopy. The Raman spectra obtained from these solutions were in agreement with the previously reported spectrum of the lithium cluster, Li8. This observation is indicative of a nanofluid type colloidal suspension of Li8 in a molten salt matrix. It is suggested that the formation and suspension of lithium clusters in lithium chloride is the cause of various phenomena exhibited by these solutions that were previously unexplainable.

  8. BARCELONA & Li-Fi

    OpenAIRE

    Verdú Leal, Adrián

    2016-01-01

    Project focused on the study of the possibility of introducing the Li-Fi technology in the city of Barcelona as a pioneering example of Smart City. Proyecto enfocado al estudio de la posibilidad de implantar la tecnología Li-Fi en la ciudad de Barcelona como ejemplo pionero de Smart City. Projecte enfocat a l'estudi de la possibilidad d'implantació la tecnologia Li-Fi a la ciudad de Barcelona com exemple innovador de Smart City.

  9. Li/Li2 supersonic nozzle beam

    International Nuclear Information System (INIS)

    Wu, C.Y.R.; Crooks, J.B.; Yang, S.C.; Way, K.R.; Stwalley, W.C.

    1977-01-01

    The characterization of a lithium supersonic nozzle beam was made using spectroscopic techniques. It is found that at a stagnation pressure of 5.3 kPa (40 torr) and a nozzle throat diameter of 0.4 mm the ground state vibrational population of Li 2 can be described by a Boltzmann distribution with T/sub v/ = 195 +- 30 0 K. The rotational temperature is found to be T/sub r/ = 70 +- 20 0 K by band shape analysis. Measurements by quadrupole mass spectrometer indicates that approximately 10 mole per cent Li 2 dimers are formed at an oven body temperature of 1370 0 K n the supersonic nozzle expansion. This measured mole fraction is in good agreement with the existing dimerization theory

  10. Structure of 10,11Li and the reaction Li11(p,dLi10

    Directory of Open Access Journals (Sweden)

    H.T. Fortune

    2016-09-01

    Full Text Available I examine the properties of 11Li and the low-lying resonances in 10Li, as they relate to neutron removal from 11Li. Comparison with results from a recent 11Li(p,d reaction strongly suggests that that experiment observed only the 2+ resonance, and not the 1+.

  11. Contribution to the study of 6Li + 6Li et 6Li + 9Be reactions

    International Nuclear Information System (INIS)

    Daronian nee Djecknavorian, Denise

    1965-01-01

    This research thesis reports measurements of coincidence between γ rays and particles charged in 6 Li + 6 Li and 6 Li + 9 Be reactions. These measurements have been repeated with some technical improvements which are described: discrimination between protons and alphas of 7 Li* + 4 He + p, simultaneous recording of fortuitous coincidences, assessment of the proportion of charged particles at a final state beyond the detection threshold. 'alpha-alpha' coincidences of the 6 Li + 6 Li → 3α reaction have also been recorded in conditions which better suited the rough study of the middle of the Dalitz diagram than the precise study of the burst into two energetic alphas. Some information have been obtained from 'alpha-p' coincidences of 7 Li* + 4 He + p and 7 Li* + 4 He + p. For these measurements, a multi-parametric installation has been developed for the recording of angular correlations at several simultaneous angles [fr

  12. Mass of 11Li from the 1H(11Li,9Li)3H reaction

    International Nuclear Information System (INIS)

    Roger, T.; Savajols, H.; Mittig, W.; Caamano, M.; Roussel-Chomaz, P.; Tanihata, I.; Alcorta, M.; Bandyopadhyay, D.; Bieri, R.; Buchmann, L.; Davids, B.; Galinski, N.; Howell, D.; Mills, W.; Mythili, S.; Openshaw, R.; Padilla-Rodal, E.; Ruprecht, G.; Sheffer, G.; Shotter, A. C.

    2009-01-01

    The mass of 11 Li has been determined from Q-value measurements of the 1 H( 11 Li, 9 Li) 3 H reaction. The experiment was performed at TRIUMF laboratory with the GANIL active target MAYA. Energy-energy and angle-angle kinematics reconstruction give a Q value of 8.119(22) MeV for the reaction. The derived 11 Li two-neutron separation energy is S 2n =363(22) keV

  13. Electronic Properties of LiFePO4 and Li doped LiFePO4

    International Nuclear Information System (INIS)

    Zhuang, G.V.; Allen, J.L.; Ross, P.N.; Guo, J.-H.; Jow, T.R.

    2005-01-01

    The potential use of different iron phosphates as cathode materials in lithium-ion batteries has recently been investigated.1 One of the promising candidates is LiFePO4. This compound has several advantages in comparison to the state-of-the-art cathode material in commercial rechargeable lithium batteries. Firstly, it has a high theoretical capacity (170 mAh/g). Secondly, it occurs as mineral triphylite in nature and is inexpensive, thermally stable, non-toxic and non-hygroscopic. However, its low electronic conductivity (∼10-9 S/cm) results in low power capability. There has been intense worldwide research activity to find methods to increase the electronic conductivity of LiFePO4, including supervalent ion doping,2 introducing non-carbonaceous network conduction3 and carbon coating, and the optimization of the carbon coating on LiFePO4 particle surfaces.4 Recently, the Li doped LiFePO4 (Li1+xFe1-xPO4) synthesized at ARL has yield electronic conductivity increase up to 106.5 We studied electronic structure of LiFePO4 and Li doped LiFePO4 by synchrotron based soft X-ray emission (XES) and X-ray absorption (XAS) spectroscopies. XAS probes the unoccupied partial density of states, while XES the occupied partial density of states. By combining XAS and XES measurements, we obtained information on band gap and orbital character of both LiFePO4 and Li doped LiFePO4. The occupied and unoccupied oxygen partial density of states (DOS) of LiFePO4 and 5 percent Li doped LiFePO4 are presented in Fig. 1. Our experimental results clearly indicate that LiFePO4 has wideband gap (∼ 4 eV). This value is much larger than what is predicted by DFT calculation. For 5 percent Li doped LiFePO4, a new doping state was created closer to the Fermi level, imparting p-type conductivity, consistent with thermopower measurement. Such observation substantiates the suggestion that high electronic conductivity in Li1.05Fe0.95 PO4 is due to available number of charge carriers in the material

  14. Charge transfer in Li2+ + He2+ and Li2+ + Li3+ collisions

    International Nuclear Information System (INIS)

    Braeuning, H; Trassl, R; Theiss, A; Diehl, A; Salzborn, E; Keim, M; Achenbach, A; Luedde, H J; Kirchner, T

    2005-01-01

    True one-electron collision systems provide an ideal testing ground for theory. Absolute cross sections for charge transfer in the collision systems Li 2+ + He 2+ and Li 2+ + Li 3+ have been measured for centre-of-mass energies between 52 and 148 keV and 6 and 63 keV, respectively. The data are compared with calculations using the two-centre basis generator method. A fair agreement between the experimental data and the calculations is found

  15. LiGAPS-Beef 2018

    NARCIS (Netherlands)

    Linden, van der A.; Ven, van de G.W.J.; Oosting, S.J.; Ittersum, van M.K.; Boer, de I.J.M.

    2018-01-01

    LiGAPS-Beef is a mechanistic model to assess potential and feed-limited beef production in different beef production systems across the world. The model is one of the first using concepts of production ecology to simulate livestock production. LiGAPS-Beef consists of a thermoregulation sub-model, a

  16. LiGAPS-Beef 2017

    NARCIS (Netherlands)

    Linden, van der A.; Ven, van de G.W.J.; Oosting, S.J.; Ittersum, van M.K.; Boer, de I.J.M.

    2017-01-01

    LiGAPS-Beef is a mechanistic model to assess potential and feed-limited beef production in different beef production systems across the world. The model is one of the first using concepts of production ecology to simulate livestock production. LiGAPS-Beef consists of a thermoregulation sub-model, a

  17. Electric dipolarizability of 7Li

    Indian Academy of Sciences (India)

    serving this in the scattering of 7Li from a 208Pb target at energies about 30 MeV. Keywords. Polarizability; cluster models. ... coincides with the centre of mass, the dipole polarizability is zero. The polarizability may arise if 6Li is .... variational calculations using a Serber force which fits two-nucleon data upto about 40 MeV.

  18. Electric dipolarizability of 7Li

    Indian Academy of Sciences (India)

    Abstract. We calculate the electric dipolarizability of 7Li nucleus within the cluster model and estimate a value of about 0.0188 fm3. We also discuss the possibility of observing this in the scattering of 7Li from a 208Pb target at energies about 30 MeV.

  19. Electric dipolarizability of 7Li

    Indian Academy of Sciences (India)

    cluster models, we calculate electric polarizabilities employing the Green function approach and obtain a value of 0.0188 fm3. Calculations based on sum rules give. 0.05 fm3 for the cluster contribution and 0.082 fm3 for the single-particle contri- bution to the dipolarizability of 7Li [7]. Measurements of dipolarizability of 7Li.

  20. Core TuLiP

    NARCIS (Netherlands)

    Czenko, M.R.; Etalle, Sandro

    2007-01-01

    We propose CoreTuLiP - the core of a trust management language based on Logic Programming. CoreTuLiP is based on a subset of moded logic programming, but enjoys the features of TM languages such as RT; in particular clauses are issued by different authorities and stored in a distributed manner. We

  1. Enhanced Li-Ion Battery

    Directory of Open Access Journals (Sweden)

    Natasha Ross

    2015-01-01

    Full Text Available Au with Pd nanoparticles were synthesized and coated onto the spinel LiMn2O4 via a coprecipitation calcination method with the objective to improve the microstructure, conductivity, and electrochemical activities of pristine LiMn2O4. The novel LiPdAuxMn2-xO4 composite cathode had high phase purity, well crystallized particles, and more regular morphological structures with narrow size distributions. At enlarged cycling potential ranges the LiPdAuxMn2-xO4 sample delivered 90 mAh g−1 discharge capacity compared to LiMn2O4 (45 mAh g−1. It was concluded that even a small amount of the Pd and Au enhanced both the lithium diffusivity and electrochemical conductivity of the host sample due to the beneficial properties of their synergy.

  2. Enhanced electrochemical performance of LiMnPO4 by Li+-conductive Li3VO4 surface coatings

    International Nuclear Information System (INIS)

    Dong, Youzhong; Zhao, Yanming; Duan, He; Liang, Zhiyong

    2014-01-01

    By a simple wet ball-milling method, Li 3 VO 4 -coated LiMnPO 4 samples were prepared successfully for the first time. The thin Li 3 VO 4 coating layer with a three-dimensional Li + -ion transport path and high mobility of Li + -ion strongly adhered to the LiMnPO 4 material reduces Mn dissolution and increases the Li + flux through the surface of the LiMnPO 4 itself by preventing formation of phases on the surface that would normally block Li + as well as Li + -ion permeation into the surface of the LiMnPO 4 electrode and therefore improve the rate capability as well as the cycling stability of LiMnPO 4 materials. The electrochemical testing shows that the 5% Li 3 VO 4 -coated LiMnPO 4 sample shows a clear voltage plateau in the charge curves and a much higher reversible capacity at different discharge rates compared with the pristine LiMnPO 4 . EIS results also show that the surface charge transfer resistance and Warburg impedance of the Li 3 VO 4 -coated LiMnPO 4 samples significantly decreased. The surface charge transfer resistance and Warburg impedance for the pristine LiMnPO 4 are 955.1 Ω and 400.3 Ω, respectively. While, for the 5% Li 3 VO 4 -coated LiMnPO 4 , the value are only 400.2 Ω and 283.6 Ω, respectively. The surface charge transfer resistance decreases more than half. All of the improved performance will be favorable for application of the LiMnPO 4 in high-power lithium ion batteries

  3. Electron-impact Ionization Of Li2 And Li+2

    Energy Technology Data Exchange (ETDEWEB)

    Colgan, James P [Los Alamos National Laboratory

    2008-01-01

    Electron-impact ionization cross sections for Li{sub 2} and Li{sup +}{sub 2} are calculated using a configuration-average distorted-wave method. Bound orbitals for the molecule and its ions are calculated using a single configuration self-consistent field method based on a linear combination of Slater-type orbitals. The bound orbitals are transformed onto a two-dimensional lattice ({tau}, {theta}), which is variable in the radial coordinate and constant in the angular coordinate, from which Hartree with local exchange potentials are constructed. The single particle Schrodinger equation is then solved for continuum distorted-waves with S-matrix boundary conditions. Total ionization cross sections for Li{sub 2} at an equilibrium internuclear separation of R = 5.0 and for Li{sup +}{sub 2} at an equilibrium internuclear separation of R = 5.9 are presented.

  4. Creep of Li2O

    International Nuclear Information System (INIS)

    Hollenberg, G.W.; Liu, Y.Y.; Arthur, B.

    1984-11-01

    The tritium breeding material with the highest lithium atom density, Li 2 O has been observed to incur significant swelling (>4%) under fast reactor irradiation. Such swelling, if unrestrained leads to either unacceptable, induced-strains in adjacent structural material or undesirable design compromises. Fortunately, however, Li 2 O deforms at low temperatures so that swelling strains may be internally accommodated. Laboratory dilational creep experiments were conducted on unirradiated Li 2 O between 500 and 700 0 C in order to provide data for structural analysis of in-reactor experiments and blanket design studies. A densification model agreed with most of the available data

  5. Fabrication of Li-intercalated bilayer graphene

    Directory of Open Access Journals (Sweden)

    K. Sugawara

    2011-06-01

    Full Text Available We have succeeded in fabricating Li-intercalated bilayer graphene on silicon carbide. The low-energy electron diffraction from Li-deposited bilayer graphene shows a sharp 3×3R30° pattern in contrast to Li-deposited monolayer graphene. This indicates that Li atoms are intercalated between two adjacent graphene layers and take the same well-ordered superstructure as in bulk C6Li. The angle-resolved photoemission spectroscopy has revealed that Li atoms are fully ionized and the π bands of graphene are systematically folded by the superstructure of intercalated Li atoms, producing a snowflake-like Fermi surface centered at the Γ point. The present result suggests a high potential of Li-intercalated bilayer graphene for application to a nano-scale Li-ion battery.

  6. Li-ion batteries: Phase transition

    International Nuclear Information System (INIS)

    Hou Peiyu; Zhang Yantao; Zhang Lianqi; Chu Geng; Gao Jian

    2016-01-01

    Progress in the research on phase transitions during Li + extraction/insertion processes in typical battery materials is summarized as examples to illustrate the significance of understanding phase transition phenomena in Li-ion batteries. Physical phenomena such as phase transitions (and resultant phase diagrams) are often observed in Li-ion battery research and already play an important role in promoting Li-ion battery technology. For example, the phase transitions during Li + insertion/extraction are highly relevant to the thermodynamics and kinetics of Li-ion batteries, and even physical characteristics such as specific energy, power density, volume variation, and safety-related properties. (topical review)

  7. Fragmentation properties of 6Li

    International Nuclear Information System (INIS)

    Lovas, R.G.; Kruppa, A.T.; Beck, R.; Dickmann, F.

    1987-01-01

    The α+d and t+τ cluster structure of 6 Li is described in a microscopic α+d cluster model through quantities that enter into the description of cluster fragmentation processes. The states of the separate clusters α, d, t and τ are described as superpositions of Os Slater determinants belonging to different potential size parameters. To describe both the 6 Li and fragment state realistically, nucleon-nucleon forces optimized for the used model state spaces were constructed. The fragmentation properties predicted by them slightly differ from those calculated with some forces of common use provided the latter are modified so as to reproduce the α, d and 6 Li energies. (author) 61 refs.; 9 figs

  8. Creep of Li2O

    International Nuclear Information System (INIS)

    Hollenberg, G.W.; Arthur, B.; Lui, Y.Y.

    1985-01-01

    The objective of this effort was to obtain data on the performance of lithium ceramic materials during fast neutron irradiation in support of solid breeder blanket designs. Li 2 O has been observed to swell (greater than or equal to 4%) under fast reactor irradiation. Fortunately, Li 2 O deforms at low temperatures so that swelling strains may be internally accommodated. Laboratory creep experiments were conducted between 500 to 700 0 C in order to provide data for structural analysis of in-reactor experiments and blanket design studies. A densification model agreed with most of the available data

  9. Ternary nitrides for hydrogen storage: Li-B-N, Li-Al-N and Li-Ga-N systems

    International Nuclear Information System (INIS)

    Langmi, Henrietta W.; McGrady, G. Sean

    2008-01-01

    This paper reports an investigation of hydrogen storage performance of ternary nitrides based on lithium and the Group 13 elements boron, aluminum and gallium. These were prepared by ball milling Li 3 N together with the appropriate Group 13 nitride-BN, AlN or GaN. Powder X-ray diffraction of the products revealed that the ternary nitrides obtained are not the known Li 3 BN 2 , Li 3 AlN 2 and Li 3 GaN 2 phases. At 260 deg. C and 30 bar hydrogen pressure, the Li-Al-N ternary system initially absorbed 3.7 wt.% hydrogen, although this is not fully reversible. We observed, for the first time, hydrogen uptake by a pristine ternary nitride of Li and Al synthesized from the binary nitrides of the metals. While the Li-Ga-N ternary system also stored a significant amount of hydrogen, the storage capacity for the Li-B-N system was near zero. The hydrogenation reaction is believed to be similar to that of Li 3 N, and the enthalpies of hydrogen absorption for Li-Al-N and Li-Ga-N provide evidence that AlN and GaN, as well as the ball milling process, play a significant role in altering the thermodynamics of Li 3 N

  10. LiDAR for data efficiency.

    Science.gov (United States)

    2011-09-30

    This report documents the AHMCT research project: LiDAR for Data Efficiency for the Washington State Department of Transportation (WSDOT). The research objective was to evaluate mobile LiDAR technology to enhance safety, determine efficiency ga...

  11. Modulation Techniques for Li-Fi

    OpenAIRE

    Islim, Mohamed; Haas, Harald

    2016-01-01

    Abstract:Modulation techniques for light fidelity (Li-Fi) are reviewed in this paper. Li-Fi is the fully networked solution for multiple users that combines communication and illumination simultaneously. Light emitting diodes (LEDs) are used in Li-Fi as visible light transmitters, therefore, only intensity modulated direct detected modulation techniques can be achieved. Single carrier modulation techniques are straightforward to be used in Li-Fi, however, computationally complex equalization ...

  12. 7Li--7Be experiment

    International Nuclear Information System (INIS)

    Rowley, J.K.

    1978-01-01

    An experiment to detect solar neutrinos by use of lithium is considered. The reaction employed is 7 Li(ν,e - ) 7 Be. The parameters of a possible experimental arrangement are described; chemical separation, backgrounds, and counting are discussed at some length. Despite the problems such an experiment still seems feasible. 5 figures, 6 tables

  13. Thermal Stability of LiPF6 Salt and Li-ion Battery Electrolytes Containing LiPF6

    OpenAIRE

    Yang, Hui; Zhuang, Guorong V.; Ross Jr., Philip N.

    2006-01-01

    The thermal stability of the neat LiPF6 salt and of 1 molal solutions of LiPF6 in prototypical Li-ion battery solvents was studied with thermogravimetric analysis (TGA) and on-line FTIR. Pure LiPF6 salt is thermally stable up to 380 oK in a dry inert atmosphere, and its decomposition path is a simple dissociation producing LiF as solid and PF5 as gaseous products. In the presence of water (300 ppm) in the carrier gas, its decomposition onset temperature is lowered as a result of direct t...

  14. The Electrochemistry of Li-LiCl-Li2O Molten Salt Systems and the Role of Moisture

    Science.gov (United States)

    Gese, Natalie J.

    Uranium can be recovered from uranium-oxide (UO2) spent fuel through the combination of oxide reduction and electrorefining processes. During oxide reduction, the spent fuel is introduced to molten LiCl-Li 2O salt at 650°C, and the UO2 is reduced to uranium metal via two routes: (1) electrochemically, and (2) chemically by lithium metal (Li°) that is produced electrochemically. However, the hygroscopic nature of both LiCl and Li2O leads to the formation of LiOH, contributing hydroxyl anions (OH-), the reduction of which interferes with the Li° generation required for the chemical reduction of UO 2. In order for the oxide reduction process to be an effective method for the treatment of uranium-oxide fuel, the role of moisture in the LiCl-Li 2O system must be understood. The behavior of moisture in the LiCl-Li 2O molten-salt system was studied using cyclic voltammetry, chronopotentiometry, and chronoamperometry while reduction to hydrogen was confirmed with gas chromatography.

  15. Nuclear moments of /sup 9/Li

    Energy Technology Data Exchange (ETDEWEB)

    Correll, F.D.; Madansky, L.; Hardekopf, R.A.; Sunier, J.W.

    1983-08-01

    The ground-state magnetic dipole and electric quadrupole moments of the ..beta.. emitter /sup 9/Li (J/sup ..pi../ = (3/2)/sup -/, T/sub 1/2/ = 0.176 s) have been measured for the first time. Polarized /sup 9/Li nuclei were produced in the /sup 7/Li(t,p) reaction, using 5--6 MeV polarized tritons. The recoiling /sup 9/Li nuclei were stopped either in Au foils or in LiNbO/sub 3/ single crystals, and their polarization was detected by measuring the ..beta..-decay asymmetry. Nuclear magnetic resonance techniques were used to depolarize the nuclei, and the resonant frequencies were deduced from changes in the asymmetry. The /sup 9/Li dipole moment was deduced from the measured Larmor frequency in Au; the result, including corrections for diamagnetic shielding and the Knight shift, is Vertical Bar..mu..Vertical Bar = 3.4391(6) ..mu../sub N/. The ratio of the /sup 9/Li quadrupole moment to that of /sup 7/Li was derived from their respective quadrupole couplings in LiNbO/sub 3/; the value is Vertical BarQ( /sup 9/Li)/Q( /sup 7/Li)Vertical Bar = 0. 88 +- 0.18. Both results are in agreement with shell model predictions.

  16. Li-Fi (Light - Fidelity)

    OpenAIRE

    Svensson, Martin

    2016-01-01

    Dagligen blir vi ombedda att stänga av elektroniska apparater som kan sända och mottaga radiosignaler, speciellt i flygplan och sjukhusmiljöer där radiovågor kan störa viktig utrustning. Detta kan snart vara ett minne blott. En ny trådlös överförings teknik, Li-Fi, baserar sig på ljusvågor som till skillnad från radiovågor (Wi-Fi) inte stör känsliga instrument. Även om Li-Fi ännu är i sin linda kan man ana att det finns stor utvecklingspotential. I denna rapport sammanställs befintlig litterä...

  17. LiHo(PO34

    Directory of Open Access Journals (Sweden)

    Mokhtar Férid

    2009-02-01

    Full Text Available Lithium holmium(III polyphosphate(V, LiHo(PO34, belongs to the type I of polyphosphates with general formula ALn(PO34, where A is a monovalent cation and Ln is a trivalent rare earth cation. In the crystal structure, the polyphosphate chains spread along the b-axis direction, with a repeat period of four tetrahedra and 21 internal symmetry. The Li and Ho atoms are both located on twofold rotation axes and are surrounded by four and eight O atoms, leading to a distorted tetrahedral and dodecahedral coordination, respectively. The HoO8 polyhedra are isolated from each other, the closest Ho...Ho distance being 5.570 (1 Å.

  18. Üliõpilase meelespea

    Index Scriptorium Estoniae

    2001-01-01

    16. aprill. TPÜ valitsuse otsus nr. 3 kõlab nii : alustada TPÜ lõpetanutele UNESCO, Euroopa Nõukogu ja Euroopa Komisjoni ühise töögrupi poolt välja töötatud ingliskeelse ülikooli diplomi lisa Diplome Supplement (DS) väljastamist üliõpilase soovil ; kinnitada Diploma Supplementì väljastamise kord ja vormistamise maksumus 500 krooni : [täistekst

  19. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Dynamic monitoring of landscape patterns and ecological processes using HJ-1 and SPOT satellite data over Hulunbeier grassland, China · Feng Zhang Ying Li Sihan Liu Shaohua Zhao Yanting Wu · More Details Abstract Fulltext PDF. Landscape patterns and ecological processes have been in long-term research focus in ...

  20. Thermal stability of LiPF 6 salt and Li-ion battery electrolytes containing LiPF 6

    Science.gov (United States)

    Yang, Hui; Zhuang, Guorong V.; Ross, Philip N.

    The thermal stability of the neat lithium hexafluorophosphate (LiPF 6) salt and of 1 molal (m) solutions of LiPF 6 in prototypical Li-ion battery solvents was studied with thermogravimetric analysis (TGA) and on-line Fourier transform infrared (FTIR). Pure LiPF 6 salt is thermally stable up to 107 °C in a dry inert atmosphere, and its decomposition path is a simple dissociation producing lithium fluoride (LiF) as solid and PF 5 as gaseous products. In the presence of water (300 ppm) in the carrier gas, its decomposition onset temperature is lowered as a result of direct thermal reaction between LiPF 6 and water vapor to form phosphorous oxyfluoride (POF 3) and hydrofluoric acid (HF). No new products were observed in 1 m solutions of LiPF 6 in ethylene carbonate (EC), dimethyl carbonate (DMC) and ethyl methyl carbonate (EMC) by on-line TGA-FTIR analysis. The storage of the same solutions in sealed containers at 85 °C for 300-420 h did not produce any significant quantity of new products as well. In particular, no alkylflurophosphates were found in the solutions after storage at elevated temperature. In the absence of either an impurity like alcohol or cathode active material that may (or may not) act as a catalyst, there is no evidence of thermally induced reaction between LiPF 6 and the prototypical Li-ion battery solvents EC, PC, DMC or EMC.

  1. 2015 Puget Sound LiDAR Consortium (PSLC) LiDAR: WA DNR Lands (P2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In June 2014, WSI, a Quantum Spatial Inc. (QSI) company, was contracted by the Puget Sound LiDAR Consortium (PSLC) to collect Light Detection and Ranging (LiDAR)...

  2. 2013 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Nooksack

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In July 2012, WSI (Watershed Sciences, Inc.) was contracted by the Puget Sound LiDARConsortium (PSLC) to collect Light Detection and Ranging (LiDAR) data on a...

  3. 2014 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Willapa Valley (Delivery 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In January, 2014 WSI, a Quantum Spatial (QSI) company, was contracted by the Puget Sound LiDAR Consortium (PSLC) to collect Light Detection and Ranging (LiDAR) data...

  4. 2013 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Saddle Mountain

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In October 2013, WSI, a Quantum Spatial Company (QSI), was contracted by the Puget Sound LiDAR Consortium (PSLC) to collect Light Detection and Ranging (LiDAR) data...

  5. 2015 Puget Sound LiDAR Consortium (PSLC) LiDAR: WA DNR Lands (P1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In June 2014, WSI, a Quantum Spatial Inc. (QSI) company, was contracted by the Puget Sound LiDAR Consortium (PSLC) to collect Light Detection and Ranging (LiDAR)...

  6. 2011 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Quinault River Basin

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Watershed Sciences, Inc. (WSI) collected Light Detection and Ranging (LiDAR) data on the Quinault River Basin survey area for the Puget Sound LiDAR Consortium and...

  7. 2009 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Lewis County, Washington

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Watershed Sciences, Inc. (WSI) collected Light Detection and Ranging (LiDAR) data for the Lewis County survey area for the Puget Sound LiDAR Consortium. This data...

  8. Development of Advanced Li Rich xLi2MO3 (1-x)LiMO2 Composite Cathode for High Capacity Li Ion Batteries

    Science.gov (United States)

    2016-12-22

    Fig3.SEM image and particle size distribution of 0.5Li2MnO3-0.5LiNi1/3Mn1/3Co1/3O2 powder 0.5Li2MnO3-0.5LiNi1/3Mn1/3Co1/3O2 may...stoichiometry of the prepared powders . Table 1. Chemical composition results from inductively coupled plasma emission spectrometry (ICP) analysis of...particles surface, indicating a phase transformation from layered to spinel-like structure. The electron diffraction analysis and HRTEM images showing

  9. Li ion conductivities in boro-tellurite glasses

    Indian Academy of Sciences (India)

    Lithium ion conductivity has been investigated in a boro-tellurite glass system, LiCl.LiBO 2 ⋅ TeO2.In the absence of LiCl, the conductivity increases with increasing non-bridging oxygen (NBO) concentration. LiCl addition has little influence on total conductivity although the observed barriers are low. Formation of LiCl ...

  10. Spectroscopic analysis of LiHoF4 and LiErF4

    DEFF Research Database (Denmark)

    Christensen, H.P.

    1979-01-01

    The polarized absorption spectra for Ho3+ and Er3+ in LiHoF4 and LiErF4, respectively, have been recorded in the spectral interval 4000-26 000 cm-1 at 2 K. Parts of the spectra were examined at higher temperatures. The experimental levels for Ho3+ and Er3+ in LiRF4 were close to those found in Li...

  11. Investigation of the $^{8}$Li($^{2}$H,p)$^{9}$Li Reaction at REX-ISOLDE

    CERN Multimedia

    2002-01-01

    We propose to investigate the $^{8}$Li($^{2}$H,p )$^{9}$Li reaction at REX-ISOLDE. The main aim is to test a recently found discrepancy in extracted spectroscopic factors for this reaction. As a byproduct we will obtain improved data relevant for predictions of the $^{8}$Li(n,$\\gamma$)$^{9}$Li rate in inhomogeneous nucleosynthesis. For the full experiment including beam tuning and background measurements we ask for 13 shifts.

  12. Reaction mechanism study of 7Li(7Li,6He) reaction at above ...

    Indian Academy of Sciences (India)

    production in 7Li(7Li,6He) reaction in detail, measurements have been performed at two energies, Elab = 20 and 25 MeV in the present work. 2. Experimental details. The experiment was performed using the 7Li beam at energies Elab = 20 and 25. MeV, from the 14UD BARC-TIFR Pelletron accelerator, Mumbai. The target.

  13. Infrastructure Investment Protection with LiDAR

    Science.gov (United States)

    2012-10-15

    The primary goal of this research effort was to explore the wide variety of uses of LiDAR technology and to evaluate their : applicability to NCDOT practices. NCDOT can use this information about LiDAR in determining how and when the : technology can...

  14. Üliõpilasteatrid peavad Itaalias kongressi

    Index Scriptorium Estoniae

    2006-01-01

    Itaalia väikelinnas Urbinos lõpeb 27. juulil sealse ülikooli teatri Teatro Aenigma ja Rahvusvahelise Üliõpilasteatrite Assotsiatsiooni koostöös kuues tudengiteatrite maailmakongress. Eestist osaleb ja peab ettekande lavastaja ja Tartu Üliõpilasteatri kunstiline juht Kalev Kudu

  15. Genetics Home Reference: Li-Fraumeni syndrome

    Science.gov (United States)

    ... syndrome . More than half of all families with Li-Fraumeni syndrome have inherited mutations in the TP53 gene. TP53 is a tumor suppressor gene, which ... the genes associated with Li-Fraumeni syndrome CHEK2 TP53 Related ... syndrome is inherited in an autosomal dominant pattern , which means one ...

  16. Nuclear charge radius of 11Li

    International Nuclear Information System (INIS)

    Sanchez, Rodolfo; Noertershaeuser, Wilfried; Dax, Andreas; Ewald, Guido; Goette, Stefan; Kirchner, Reinhard; Kluge, H.-Juergen; Kuehl, Thomas; Wojtaszek, Agnieszka; Bushaw, Bruce A.; Drake, Gordon W. F.; Yan Zongchao; Zimmermann, Claus; Albers, Daniel; Behr, John; Bricault, Pierre; Dilling, Jens; Dombsky, Marik; Lassen, Jens; Phil Levy, C. D.

    2006-01-01

    We have determined the nuclear charge radius of 11 Li by high-precision laser spectroscopy. The experiment was performed at the TRIUMF-ISAC facility where the 7 Li- 11 Li isotope shift (IS) was measured in the 2s → 3s electronic transition using Doppler-free two-photon spectroscopy with a relative accuracy better than 10 -5 . The accuracy for the IS of the other lithium isotopes was also improved. IS's are mainly caused by differences in nuclear mass, but changes in proton distribution also give small contributions. Comparing experimentally measured IS with advanced atomic calculation of purely mass-based shifts, including QED and relativistic effects, allows derivation of the nuclear charge radii. The radii are found to decrease monotonically from 6 Li to 9 Li, and then increase with 11 Li about 11% larger than 9 Li. These results are a benchmark for the open question as to whether nuclear core excitation by halo neutrons is necessary to explain the large nuclear matter radius of 11 Li; thus, the results are compared with a number of nuclear structure models.

  17. Microstructure Analysis of Synthesized LiBOB

    Directory of Open Access Journals (Sweden)

    Etty Marti Wigayati

    2015-11-01

    Full Text Available Lithium bis (oxalate borate or LiBOB is an active material used as the electrolyte for lithium battery application. LiBOB (LiB(C2O42 powder was prepared from LiOH, H2C2O4 and H3BO3. The employed method was solid state reaction. LiBOB powder produced from the reaction was then observed using SEM and TEM. Surface area was analyzed using Quantachrome Nova 4200e. From the analysis analyzed using XRD to identify the resulting phases, crystal structure, and crystallite size. The functional groups were analyzed using FT-IR. The particle morphology was result, it was seen that the resulted phases were C4LiBO8 and LiB(C2O42.H2O, the crystal structure was orthorhombic with space group Pbca and Pnma. From the particle morphology observation it was shown that micro pores were created irregularly. When the observation was deepened, nanopores with elongated round shape were seen within the micropores. The pore size was approximately 50–100 nm. The surface area, total pore volume, and average pore diameter of LiBOB powder was 88.556 m2/g, 0.4252 cm3/g, and 19.2 nm respectively.

  18. Understanding LiOH chemistry in a ruthenium-catalyzed Li-O{sub 2} battery

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tao; Liu, Zigeng; Kim, Gunwoo; Grey, Clare P. [Department of Chemistry, University of Cambridge (United Kingdom); Frith, James T.; Garcia-Araez, Nuria [Department of Chemistry, University of Southampton (United Kingdom)

    2017-12-11

    Non-aqueous Li-O{sub 2} batteries are promising for next-generation energy storage. New battery chemistries based on LiOH, rather than Li{sub 2}O{sub 2}, have been recently reported in systems with added water, one using a soluble additive LiI and the other using solid Ru catalysts. Here, the focus is on the mechanism of Ru-catalyzed LiOH chemistry. Using nuclear magnetic resonance, operando electrochemical pressure measurements, and mass spectrometry, it is shown that on discharging LiOH forms via a 4 e{sup -} oxygen reduction reaction, the H in LiOH coming solely from added H{sub 2}O and the O from both O{sub 2} and H{sub 2}O. On charging, quantitative LiOH oxidation occurs at 3.1 V, with O being trapped in a form of dimethyl sulfone in the electrolyte. Compared to Li{sub 2}O{sub 2}, LiOH formation over Ru incurs few side reactions, a critical advantage for developing a long-lived battery. An optimized metal-catalyst-electrolyte couple needs to be sought that aids LiOH oxidation and is stable towards attack by hydroxyl radicals. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Electrochemistry of LiCl-Li2O-H2O Molten Salt Systems

    Energy Technology Data Exchange (ETDEWEB)

    Natalie J. Gese; Batric Pesic

    2013-03-01

    Uranium can be recovered from uranium oxide (UO2) spent fuel through the combination of the oxide reduction and electrorefining processes. During oxide reduction, the spent fuel is introduced to molten LiCl-Li2O salt at 650 degrees C and the UO2 is reduced to uranium metal via two routes: (1) electrochemically, and (2) chemically by lithium metal (Li0) that is produced electrochemically. However, the hygroscopic nature of both LiCl and Li2O leads to the formation of LiOH, contributing hydroxyl anions (OH-), the reduction of which interferes with the Li0 generation required for the chemical reduction of UO2. In order for the oxide reduction process to be an effective method for the treatment of uranium oxide fuel, the role of moisture in the LiCl-Li2O system must be understood. The behavior of moisture in the LiCl-Li2O molten salt system was studied using cyclic voltammetry, chronopotentiometry and chronoamperometry, while reduction to hydrogen was confirmed with gas chromatography.

  20. Theoretical and Experimental Study of LiBH4-LiCl Solid Solution

    Directory of Open Access Journals (Sweden)

    Torben R. Jensen

    2012-03-01

    Full Text Available Anion substitution is at present one of the pathways to destabilize metal borohydrides for solid state hydrogen storage. In this work, a solid solution of LiBH4 and LiCl is studied by density functional theory (DFT calculations, thermodynamic modeling, X-ray diffraction, and infrared spectroscopy. It is shown that Cl substitution has minor effects on thermodynamic stability of either the orthorhombic or the hexagonal phase of LiBH4. The transformation into the orthorhombic phase in LiBH4 shortly after annealing with LiCl is for the first time followed by infrared measurements. Our findings are in a good agreement with an experimental study of the LiBH4-LiCl solid solution structure and dynamics. This demonstrates the validity of the adopted combined theoretical (DFT calculations and experimental (vibrational spectroscopy approach, to investigate the solid solution formation of complex hydrides.

  1. Dynamic changes in charge-transfer resistance at Li metal/Li7La3Zr2O12 interfaces during electrochemical Li dissolution/deposition cycles

    Science.gov (United States)

    Koshikawa, Hiroyuki; Matsuda, Shoichi; Kamiya, Kazuhide; Miyayama, Masaru; Kubo, Yoshimi; Uosaki, Kohei; Hashimoto, Kazuhito; Nakanishi, Shuji

    2018-02-01

    Dynamic changes in the charge-transfer resistance at a Li/Li7La3Zr2O12 (LLZ) interface during lithium (Li) dissolution/deposition cycles are investigated with an alternative current (AC) impedance technique in a three-electrode system. The resistance respectively increases and decreases during electrodissolution and electrodeposition of Li. The resistance does not return to the initial value after one cycle of Li dissolution and deposition, which indicates that the change in resistance during dissolution is larger than that during deposition. Furthermore, the resistance is almost constant when Li deposition proceeds without prior Li dissolution. The respective increase and decrease in the interfacial resistance during Li dissolution and deposition is most likely due to the formation and disappearance of voids at the Li/LLZ interface, and the voids formation during Li dissolution is suggested to be a critical factor that influences the interfacial resistance.

  2. Synthesis, Structure, and Li-Ion Conductivity of LiLa(BH4)3X, X = Cl, Br, I

    DEFF Research Database (Denmark)

    GharibDoust, Seyed Hosein Payandeh; Brighi, Matteo; Sadikin, Yolanda

    2017-01-01

    In this work, a new type of addition reaction between La(BH4)3 and LiX, X = Cl, Br, I, is used to synthesize LiLa(BH4)3Cl and two new compounds LiLa(BH4)3X, X = Br, I. This method increases the amounts of LiLa(BH4)3X and the sample purity. The highest Li-ion conductivity is observed for LiLa(BH4...

  3. External proton and Li beams

    International Nuclear Information System (INIS)

    Schuff, Juan A.; Burlon, Alejandro A.; Debray, Mario E.; Kesque, Jose M.; Kreiner, Andres J.; Stoliar, Pablo A.; Naab, Fabian; Ozafran, Mabel J.; Vazquez, Monica E.; Perez de la Hoz, A.; Somacal, Hector; Valda, Alejandro; Canevas, S.; Ruffolo, M.; Tasat, D.R.; Muhlmann, M. C.

    2000-01-01

    In the frame of a feasibility study to introduce proton therapy in Argentina in a collaborative agreement between the Physics and Radiobiology Departments of the National Atomic Energy Commission or Argentina and the Centre de Protontherapie de Orsay, France, external proton and Li beams were produced at the TANDAR accelerator in Buenos Aires. The specific aim of this work was to start radiobiology studies on cell cultures and small laboratory animals. In particular we seek to determine here the relative biological effectiveness, RBE, for proton and Li beams as a function of energy for different tumor and normal cell lines. The 24 MeV proton beam was diffused using a 25 μm gold foil and extracted through a Kapton window to obtain a homogeneous field (constant to 95%) of about 7 cm in diameter. Measurements were carried out with quasi-monoenergetic beams (of 20.2 ± 0.07 MeV, 2.9 ± 0.10 MeV y 1.5 ± 0.1 MeV for protons and 21.4 ± 0.4 MeV for Lithium). Proton fluence and Bragg peaks were measured. The dose delivered in each case was monitored on-line with a calibrated transmission ionization chamber. Three cell lines PDV, PDVC 57 and V 79 (as a reference) were irradiated with γ-rays, proton and lithium beams with linear energy transfer (LET) from 2 to 100 keV/μm. RBE values in the range of 1.2-5.9 were obtained. In addition preliminary studies on chromosomal aberrations and viability of alveolar macrophages were carried out. (author)

  4. Li-O2 and Li-S batteries with high energy storage.

    Science.gov (United States)

    Bruce, Peter G; Freunberger, Stefan A; Hardwick, Laurence J; Tarascon, Jean-Marie

    2011-12-15

    Li-ion batteries have transformed portable electronics and will play a key role in the electrification of transport. However, the highest energy storage possible for Li-ion batteries is insufficient for the long-term needs of society, for example, extended-range electric vehicles. To go beyond the horizon of Li-ion batteries is a formidable challenge; there are few options. Here we consider two: Li-air (O(2)) and Li-S. The energy that can be stored in Li-air (based on aqueous or non-aqueous electrolytes) and Li-S cells is compared with Li-ion; the operation of the cells is discussed, as are the significant hurdles that will have to be overcome if such batteries are to succeed. Fundamental scientific advances in understanding the reactions occurring in the cells as well as new materials are key to overcoming these obstacles. The potential benefits of Li-air and Li-S justify the continued research effort that will be needed.

  5. Li plating as unwanted side reaction in commercial Li-ion cells - A review

    Science.gov (United States)

    Waldmann, Thomas; Hogg, Björn-Ingo; Wohlfahrt-Mehrens, Margret

    2018-04-01

    Deposition of Lithium metal on anodes contributes significantly to ageing of Li-ion cells. Lithium deposition is connected not only to a drastic limitation of life-time, but also to fast-charging capability and safety issues. Lithium deposition in commercial Li-ion cells is not limited to operation conditions at low temperatures. In recent publications various types of commercial cells were investigated using complimentary analysis methods. Five cell types studied in literature (18650, 26650, pouch) serve as a basis for comparison when and why Li deposition happens in commercial Li-ion cells. In the present paper, we reviewed literature on (i) causes, (ii) hints and evidences for Li deposition, (iii) macroscopic morphology of Li deposition/plating, (iv) ageing mechanisms and shapes of capacity fade curves involving Li deposition, and (v) influences of Li deposition on safety. Although often discussed, safety issues regarding Li deposition are not only limited to dendrite growth and internal short circuits, but also to exothermic reactions in the presence of Lithium metal. Furthermore, we tried to connect knowledge from different length scales including the macroscopic level (Li-ion cells, operating conditions, gradients in cells, electrochemical tests, safety tests), the microscopic level (electrodes, particles, microstructure), and the atomic level (atoms, ions, molecules, energy barriers).

  6. Mechanistic insights of Li+ diffusion within doped LiFePO4 from Muon Spectroscopy.

    Science.gov (United States)

    Johnson, Ian D; Ashton, Thomas E; Blagovidova, Ekaterina; Smales, Glen J; Lübke, Mechthild; Baker, Peter J; Corr, Serena A; Darr, Jawwad A

    2018-03-07

    The Li + ion diffusion characteristics of V- and Nb-doped LiFePO 4 were examined with respect to undoped LiFePO 4 using muon spectroscopy (µSR) as a local probe. As little difference in diffusion coefficient between the pure and doped samples was observed, offering D Li values in the range 1.8-2.3 × 10 -10  cm 2 s -1 , this implied the improvement in electrochemical performance observed within doped LiFePO 4 was not a result of increased local Li + diffusion. This unexpected observation was made possible with the µSR technique, which can measure Li + self-diffusion within LiFePO 4 , and therefore negated the effect of the LiFePO 4 two-phase delithiation mechanism, which has previously prevented accurate Li + diffusion comparison between the doped and undoped materials. Therefore, the authors suggest that µSR is an excellent technique for analysing materials on a local scale to elucidate the effects of dopants on solid-state diffusion behaviour.

  7. Attainable gravimetric and volumetric energy density of Li-S and li ion battery cells with solid separator-protected Li metal anodes.

    Science.gov (United States)

    McCloskey, Bryan D

    2015-11-19

    As a result of sulfur's high electrochemical capacity (1675 mA h/gs), lithium-sulfur batteries have received significant attention as a potential high-specific-energy alternative to current state-of-the-art rechargeable Li ion batteries. For Li-S batteries to compete with commercially available Li ion batteries, high-capacity anodes, such as those that use Li metal, will need to be enabled to fully exploit sulfur's high capacity. The development of Li metal anodes has focused on eliminating Coulombically inefficient and dendritic Li cycling, and to this end, an interesting direction of research is to protect Li metal by employing mechanically stiff solid-state Li(+) conductors, such as garnet phase Li7La3Zr2O12 (LLZO), NASICON-type Li1+xAlxTi2-x(PO4)3 (LATP), and Li2S-P2S5 glasses (LPS), as electrode separators. Basic calculations are used to quantify useful targets for solid Li metal protective separator thickness and cost to enable Li metal batteries in general and Li-S batteries specifically. Furthermore, maximum electrolyte-to-sulfur ratios that allow Li-S batteries to compete with Li ion batteries are calculated. The results presented here suggest that controlling the complex polysulfide speciation chemistry in Li-S cells with realistic, minimal electrolyte loading presents a meaningful opportunity to develop Li-S batteries that are competitive on a specific energy basis with current state-of-the-art Li ion batteries.

  8. Corrosion of nickel in molten LiCl-Li 2O at 750 °C

    Science.gov (United States)

    Liu, R. Y.; Wang, X.; Zhang, J. S.; Wang, X. M.

    2004-05-01

    Corrosion of the reduction vessel induced by molten LiCl-Li 2O is an important problem in the lithium reduction technique for the spent nuclear fuel management. This study investigates the corrosion of nickel in molten LiCl-10 wt% Li 2O at 750 °C by immersion experiments, with the aim of unraveling the corrosion behavior. Nickel corrodes very fast in the melt, forming a layer of NiO, which is converted to Li 2Ni 8O 10 and then to LiNiO 2. The weight loss curve shows a linear rate law, which is owing to the harmful reaction between oxides and melt at the melt/scale boundary with the formation of the porous corrosion scale. The corrosion mechanism of nickel is also discussed.

  9. Synthesis and electrochemical properties of LiMn2O4 and LiCoO2-coated LiMn2O4 cathode materials

    International Nuclear Information System (INIS)

    Wang Hongen; Qian Dong; Lu Zhouguang; Li Yongkun

    2012-01-01

    Highlights: ► Spinel LiMn 2 O 4 with different morphologies have been synthesized. ► LiCoO 2 -coated LiMn 2 O 4 was prepared by a sol–gel route. ► LiMn 2 O 4 and LiCoO 2 -coated LiMn 2 O 4 microspheres display much better electrochemical cycling properties than those of LiMn 2 O 4 octahedrons. - Abstract: The synthesis of spinel LiMn 2 O 4 material by a spherical MnO 2 precursor route is reported in this paper. Hydrothermal and solid-state reactions were adopted to investigate the effects of synthetic methods on the morphologies and electrochemical characteristics of the LiMn 2 O 4 products, respectively. LiCoO 2 -coated LiMn 2 O 4 microspheres were also prepared by a sol–gel route based on the as-prepared LiMn 2 O 4 microspheres. The products were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectrum (EDX), and inductively-coupled plasma emission spectrograph (ICP-ES). The results show that LiMn 2 O 4 octahedrons can be obtained under hydrothermal conditions while LiMn 2 O 4 microspheres can be prepared by the solid-state reaction. Electrochemical characterization reveals that the resulting LiMn 2 O 4 microspheres and LiCoO 2 -coated LiMn 2 O 4 microspheres display much better cycling properties than those of LiMn 2 O 4 octahedrons.

  10. Simplified three-body model for 11Li and 9Li-neutron momentum correlations

    International Nuclear Information System (INIS)

    Zhukov, M.V.; Fedorov, D.V.; Danilin, B.V.; Vaagen, J.S.

    1991-01-01

    The structure of 11 Li is investigated in the approximate three-body approach COSMA. Correlated momentum distributions for 9 Li-n as well as spatial densities are calculated. The results show that while momentum distributions for individual fragments are unable to discriminate between trial wave functions corresponding to quite different configuration mixtures, correlation experiments could provide the essential information to pin down the 11 Li (neuton halo) structure. (orig.)

  11. Li-ion Battery Aging Datasets

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set has been collected from a custom built battery prognostics testbed at the NASA Ames Prognostics Center of Excellence (PCoE). Li-ion batteries were run...

  12. Specification For ST-5 Li Ion Battery

    Science.gov (United States)

    Castell, Karen D.; Day, John H. (Technical Monitor)

    2000-01-01

    This Specification defines the general requirements for rechargeable Space Flight batteries intended for use in the ST-5 program. The battery chemistry chosen for this mission is lithium ion (Li-Ion).

  13. Mars Li-CO2 Batteries

    Data.gov (United States)

    National Aeronautics and Space Administration — Recently, Lithium (Li)-air batteries have attracted significant attention for energy storage in electric vehicles/aircraft because this system utilizes O2 in the air...

  14. Iowa LiDAR Mapping Project

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — This is collection level metadata for LAS and ASCII data files from the statewide Iowa Lidar Project. The Iowa Light Detection and Ranging (LiDAR) Project collects...

  15. USGS Atchafalaya 2 LiDAR

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Light Detection and Ranging (LiDAR) dataset is a survey of the Atchafalaya Basin project area. The entire survey area for Atchafalaya encompasses approximately...

  16. EKA tootedisaini üliõpilane...

    Index Scriptorium Estoniae

    2005-01-01

    Eesti Kunstiakadeemia tootedisaini osakonna IV kursuse üliõpilane Riho Tiivel võitis Itaalias toimunud disainikonkursi "ReAL 13 - Eating Anywhere" peapreemia oma alumiiniumist lusikaga "Spoon Container"

  17. Uniform second Li ion intercalation in solid state ϵ-LiVOPO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Wangoh, Linda W.; Quackenbush, Nicholas F. [Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, New York 13902 (United States); Sallis, Shawn [Materials Science and Engineering, Binghamton University, Binghamton, New York 13902 (United States); Wiaderek, Kamila M.; Ma, Lu; Wu, Tianpin; Chapman, Karena W. [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Lin, Yuh-Chieh; Ong, Shyue Ping [Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive 0448, La Jolla, California 92093 (United States); Wen, Bohua; Chernova, Natasha A.; Whittingham, M. Stanley [NECCES, Binghamton University, Binghamton, New York 13902 (United States); Guo, Jinghua [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Lee, Tien-Lin; Schlueter, Christoph [Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Piper, Louis F. J., E-mail: lpiper@binghamton.edu [Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, New York 13902 (United States); Materials Science and Engineering, Binghamton University, Binghamton, New York 13902 (United States)

    2016-08-01

    Full, reversible intercalation of two Li{sup +} has not yet been achieved in promising VOPO{sub 4} electrodes. A pronounced Li{sup +} gradient has been reported in the low voltage window (i.e., second lithium reaction) that is thought to originate from disrupted kinetics in the high voltage regime (i.e., first lithium reaction). Here, we employ a combination of hard and soft x–ray photoelectron and absorption spectroscopy techniques to depth profile solid state synthesized LiVOPO{sub 4} cycled within the low voltage window only. Analysis of the vanadium environment revealed no evidence of a Li{sup +} gradient, which combined with almost full theoretical capacity confirms that disrupted kinetics in the high voltage window are responsible for hindering full two lithium insertion. Furthermore, we argue that the uniform Li{sup +} intercalation is a prerequisite for the formation of intermediate phases Li{sub 1.50}VOPO{sub 4} and Li{sub 1.75}VOPO{sub 4}. The evolution from LiVOPO{sub 4} to Li{sub 2}VOPO{sub 4} via the intermediate phases is confirmed by direct comparison between O K–edge absorption spectroscopy and density functional theory.

  18. [100]-Oriented LiFePO4 Nanoflakes toward High Rate Li-Ion Battery Cathode.

    Science.gov (United States)

    Li, Zhaojin; Peng, Zhenzhen; Zhang, Hui; Hu, Tao; Hu, Minmin; Zhu, Kongjun; Wang, Xiaohui

    2016-01-13

    [100] is believed to be a tough diffusion direction for Li(+) in LiFePO4, leading to the belief that the rate performance of [100]-oriented LiFePO4 is poor. Here we report the fabrication of 12 nm-thick [100]-oriented LiFePO4 nanoflakes by a simple one-pot solvothermal method. The nanoflakes exhibit unexpectedly excellent electrochemical performance, in stark contrast to what was previously believed. Such an exceptional result is attributed to a decreased thermodynamic transformation barrier height (Δμb) associated with increased active population.

  19. Uniform second Li ion intercalation in solid state ϵ-LiVOPO4

    International Nuclear Information System (INIS)

    Wangoh, Linda W.; Quackenbush, Nicholas F.; Sallis, Shawn; Wiaderek, Kamila M.; Ma, Lu; Wu, Tianpin; Chapman, Karena W.; Lin, Yuh-Chieh; Ong, Shyue Ping; Wen, Bohua; Chernova, Natasha A.; Whittingham, M. Stanley; Guo, Jinghua; Lee, Tien-Lin; Schlueter, Christoph; Piper, Louis F. J.

    2016-01-01

    Full, reversible intercalation of two Li + has not yet been achieved in promising VOPO 4 electrodes. A pronounced Li + gradient has been reported in the low voltage window (i.e., second lithium reaction) that is thought to originate from disrupted kinetics in the high voltage regime (i.e., first lithium reaction). Here, we employ a combination of hard and soft x–ray photoelectron and absorption spectroscopy techniques to depth profile solid state synthesized LiVOPO 4 cycled within the low voltage window only. Analysis of the vanadium environment revealed no evidence of a Li + gradient, which combined with almost full theoretical capacity confirms that disrupted kinetics in the high voltage window are responsible for hindering full two lithium insertion. Furthermore, we argue that the uniform Li + intercalation is a prerequisite for the formation of intermediate phases Li 1.50 VOPO 4 and Li 1.75 VOPO 4 . The evolution from LiVOPO 4 to Li 2 VOPO 4 via the intermediate phases is confirmed by direct comparison between O K–edge absorption spectroscopy and density functional theory.

  20. Test symetryczności Li

    OpenAIRE

    Baszczyńska, Aleksandra

    2012-01-01

    Symmetry test proposed by Li in 1997, is a test that uses kernel method. In the statistical inference using kernel methods, we need to determine the kernel function and the smoothing parameter. The author analyzes the influence of choice of the kernel function and smoothing parameter for a procedure of verification the hypothesis of random variable distribution symmetry. Li symmetry test is also used in the analysis of Human Development Index.

  1. LiFi - Let There Be Light

    OpenAIRE

    Chauhan, Mihir; Kulai, Aditya

    2015-01-01

    The paper proclaims a summary of Li-Fi technology. It is an efficient data communication mechanism involving visible light as a medium of transmission. This monograph introduces the concept of Li-Fi and its working model. Furthermore, it discusses its benefits, shortcomings and examines ways to mitigate the drawbacks. Additionally, it analyzes its present applications and explores its future scope in the competitive wireless network market.

  2. Negative Electrodes for Li-Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, Kim; Zaghib, Karim

    2001-10-01

    Graphitized carbons have played a key role in the successful commercialization of Li-ion batteries. The physicochemical properties of carbon cover a wide range; therefore identifying the optimum active electrode material can be time consuming. The significant physical properties of negative electrodes for Li-ion batteries are summarized, and the relationship of these properties to their electrochemical performance in nonaqueous electrolytes, are discussed in this paper.

  3. Simplified PCR protocols for INNO-LiPA HBV Genotyping and INNO-LiPA HBV PreCore assays

    NARCIS (Netherlands)

    Qutub, Mohammed O.; Germer, Jeffrey J.; Rebers, Sjoerd P. H.; Mandrekar, Jayawant N.; Beld, Marcel G. H. M.; Yao, Joseph D. C.

    2006-01-01

    INNO-LiPA HBV Genotyping (LiPA HBV GT) and INNO-LiPA HBV PreCore (LiPA HBV PC) are commercially available assays for hepatitis B virus (HBV) characterization. These assays are labor-intensive and may be prone to exogenous DNA contamination due to their use of nested PCR amplification procedures and

  4. Global optical model potentials for symmetrical lithium systems: 6Li+6Li, 7Li+7Li at Elab = 5-40 MeV

    International Nuclear Information System (INIS)

    Potthast, K.W.; Brand, H.; Freiesleben, H.; Rosenthal, P.; Kamys, B.; Paetz genannt Schiek, H.; Sydow, L.

    1997-01-01

    Angular distributions of 6 Li+ 6 Li elastic scattering were measured for E lab =5-40 MeV. An optical model analysis of these data together with older data of 7 Li+ 7 Li elastic scattering taken at E lab = 8-17 MeV was performed with the aim to search for a ''global'' OM potential which describes elastic scattering in both Li-Li systems in a broad energy range. Both surface and volume absorbing potentials can be found which fulfill this requirement if a linear energy dependence is assumed of the depths of the real as well as the imaginary potential. These depths, if fitted to individual angular distributions, are found to vary in a correlated manner with the beam energy. This is taken as indication of strong coupling between elastic, inelastic, and reaction channels. This is corroborated by the existence of resonances in reaction channels at these energies where the potential depths are most pronouncedly changing. (orig.)

  5. Unravelling Li-Ion Transport from Picoseconds to Seconds: Bulk versus Interfaces in an Argyrodite Li6PS5Cl-Li2S All-Solid-State Li-Ion Battery.

    Science.gov (United States)

    Yu, Chuang; Ganapathy, Swapna; de Klerk, Niek J J; Roslon, Irek; van Eck, Ernst R H; Kentgens, Arno P M; Wagemaker, Marnix

    2016-09-07

    One of the main challenges of all-solid-state Li-ion batteries is the restricted power density due to the poor Li-ion transport between the electrodes via the electrolyte. However, to establish what diffusional process is the bottleneck for Li-ion transport requires the ability to distinguish the various processes. The present work investigates the Li-ion diffusion in argyrodite Li6PS5Cl, a promising electrolyte based on its high Li-ion conductivity, using a combination of (7)Li NMR experiments and DFT based molecular dynamics simulations. This allows us to distinguish the local Li-ion mobility from the long-range Li-ion motional process, quantifying both and giving a coherent and consistent picture of the bulk diffusion in Li6PS5Cl. NMR exchange experiments are used to unambiguously characterize Li-ion transport over the solid electrolyte-electrode interface for the electrolyte-electrode combination Li6PS5Cl-Li2S, giving unprecedented and direct quantitative insight into the impact of the interface on Li-ion charge transport in all-solid-state batteries. The limited Li-ion transport over the Li6PS5Cl-Li2S interface, orders of magnitude smaller compared with that in the bulk Li6PS5Cl, appears to be the bottleneck for the performance of the Li6PS5Cl-Li2S battery, quantifying one of the major challenges toward improved performance of all-solid-state batteries.

  6. Lithium diffusion in spinel Li4Ti5O12 and LiTi2O4 films detected with 8Liβ -NMR

    Science.gov (United States)

    Sugiyama, Jun; Umegaki, Izumi; Uyama, Takeshi; McFadden, Ryan M. L.; Shiraki, Susumu; Hitosugi, Taro; Salman, Zaher; Saadaoui, Hassan; Morris, Gerald D.; MacFarlane, W. Andrew; Kiefl, Robert F.

    2017-09-01

    Diffusion of Li+ in (111) oriented thin films of the spinels Li4Ti5O12 and LiTi2O4 has been studied with 8Liβ -detected NMR in the temperature range between 5 and 310 K. In Li4Ti5O12 , the spin-lattice relaxation rate (1 /T1 ) versus temperature shows a clear maximum around 100 K (=Tmax ) which we attribute to magnetic freezing of dilute Ti3 + local magnetic moments, consistent with the results of magnetization and muon spin relaxation (μ+SR ) measurements. The decrease in 1 /T1 with temperature above Tmax indicates that Li+ starts to diffuse with a thermal activation energy (Ea) of 0.11(1) eV. In LiTi2O4 , on the contrary, as temperature increases from 200 K, 1 /T1 increases monotonically up to 310 K. This suggests that Li also starts to diffuse above 200 K with Ea=0.16 (2 ) eV in LiTi2O4 . Comparison with conventional Li-NMR on Li4Ti5O12 implies that both β -NMR and μ+SR sense short-range Li motion, i.e., a jump diffusion of Li+ to the nearest neighboring sites.

  7. Studies on the thermal decomposition kinetics of LiPF 6 and LiBC 4 ...

    Indian Academy of Sciences (India)

    Author Affiliations. Li Shi-You1 2 Ma Pei-Hua1 Cui Xiao-Ling1 Ren Qi-Du1 2 Li Fa-Qiang1. Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810 008, China; Graduate School of the Chinese Academy of Sciences, Beijing 100 039, China ...

  8. Reaction mechanism study of 7Li(7Li,6He) reaction at above ...

    Indian Academy of Sciences (India)

    The elastic scattering and the 6He angular distributions were measured in. 7Li + 7Li reaction at two energies, Elab = 20 and 25 MeV. FRDWBA calculations have been performed to explain the measured 6He data. The calculations were very sensitive to the choice of the optical model potentials in entrance and exit channels ...

  9. Configuring PSx tetrahedral clusters in Li-excess Li7P3S11 solid electrolyte

    Directory of Open Access Journals (Sweden)

    Wo Dum Jung

    2018-04-01

    Full Text Available We demonstrate that the Li-ion conductivity can be improved by adding a certain amount of Li (x = 0.25–0.5 as a charge carrier to the composition of glass-ceramic Li7+xP3S11. Structural analysis clarified that the structural changes caused by the ratio of ortho-thiophosphate tetrahedra PS43− and pyro-thiophosphate ditetrahedra P2S74− affect the Li-ion conductivity. The ratio of PS43− and P2S74− varies depending on x and the highest Li-ion conductivity (2.5 × 10−3 S cm−1 at x = 0.25. All-solid-state LiNi0.8Co0.15Al0.05O2/Li7.25P3S11/In-metal cell exhibits the discharge capacity of 106.2 mAh g−1. This ion conduction enhancement from excess Li is expected to contribute to the future design of sulfide-type electrolytes.

  10. Investigation of the $^{9}$Li + $^{2}$H $\\to ^{8}$Li + t reaction at REX-ISOLDE

    CERN Document Server

    Jeppesen, H B; Nilsson, T; Ames, F

    2006-01-01

    The one-neutron transfer reaction has been investigated in an inverse kinematics experiment by bombarding a deuterated polypropylene target with a 2.36 MeV/u $^{9}$Li beam from the post-accelerator REX-ISOLDE at CERN. Excitation energies in $^{8}$Li as well as angular distributions of the tritons were obtained and spectroscopic factors deduced.

  11. Coulomb excitation of {sup 8}Li

    Energy Technology Data Exchange (ETDEWEB)

    Assuncao, Marlete; Britos, Tatiane Nassar [Universidade Federal de Sao Paulo (UNIFESP), SP (Brazil). Dept. de Ciencias Exatas e da Terra; Descouvemont, Pierre [Universite Libre de Bruxelles (ULB), Brussels (Belgium). Physique Nucleaire Theorique et Physique Mathematique; Lepine-Szily, Alinka; Lichtenthaler Filho, Rubens; Barioni, Adriana; Silva, Diego Medeiros da; Pereira, Dirceu; Mendes Junior, Djalma Rosa; Pires, Kelly Cristina Cezaretto; Gasques, Leandro Romero; Morais, Maria Carmen; Added, Nemitala; Neto Faria, Pedro; Rec, Rafael [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica. Dept. de Fisica Nuclear

    2012-07-01

    Full text: This work shows the Coulomb Excitation of {sup 8}Li on targets that have effectively behavior of Rutherford in angles and energies of interest for determining the value of the B(E2) electromagnetic transition. Theoretical aspects involved in this type of measure, known as COULEX [1], and some results in the literature [2-3] will be presented. Some problems with the targets and measurement system while performing an experiment on Coulomb Excitation of {sup 8}Li will be discussed: the energy resolution, background, possible contributions of the primary beam and also the excited states of the target near the region of elastic and inelastic peaks. They will be illustrated by measurements of the Coulomb Excitation of {sup 8}Li on targets of {sup 197}Au and {sup 208}Pb using the system RIBRAS(Brazilian Radioactive Ion Beam). In this case, the {sup 8}Li beam(T{sub 1/2} = 838 ms)is produced by {sup 9}Be({sup 7}Li;{sup 8} Li){sup 8}Be reaction from RIBRAS system which is installed at Instituto de Fisica of the Universidade de Sao Paulo. The primary {sup 7L}i beam is provided by Pelletron Accelerator. [1] K. Alder and A. Winther, Electromagnetic Excitation, North-Holland, New York, 1975; [2] P. Descouvemont and D. Baye, Phys. Letts. B 292, 235-238, 1992; [3] J. A. Brown, F. D. Becchetti, J. W. Jaenecke, K, Ashktorab, and D. A. Roberts, J. J. Kolata, R. J. Smith, and K. Lamkin, R. E. Warner, Phys. Rev. Letts., 66, 19, 1991; [4] R. J. Smith, J. J Kolata, K. Lamkin and A. Morsard, F. D. Becchetti, J. A. Brown, W. Z. Liu, J. W. Jaenecke, and D. A. Roberts, R. E. Warner, Phys. Rev. C, 43, 5, 1991. (author)

  12. The 9Be(8Li,9Be)8Li elastic-transfer reaction

    International Nuclear Information System (INIS)

    Camargo, O.; Guimaraes, V.; Lichtenthaeler, R.; Scarduelli, V.; Kolata, J. J.; Bertulani, C. A.; Amro, H.; Becchetti, F. D.; Jiang Hao; Aguilera, E. F.; Lizcano, D.; Martinez-Quiroz, E.; Garcia, H.

    2008-01-01

    Angular distributions for the 9 Be( 8 Li, 9 Be) 8 Li elastic-transfer reaction have been measured with a 27-MeV 8 Li radioactive nuclear beam. Spectroscopic factors for the 9 Be| 8 Li+p> bound system were obtained from the comparison between the experimental differential cross sections and finite-range distorted-wave Born approximation calculations made with the code FRESCO. The spectroscopic factors so obtained are compared with shell-model calculations and other experimental values. Using the present value for the spectroscopic factors, cross sections and reaction rates for the 8 Li(p,γ) 9 Be direct proton-capture reaction of astrophysical interest were calculated in the framework of the potential model

  13. Anodic Aluminum Dissolution of LiTFSA Containing Electrolytes for Li-Ion-Batteries

    International Nuclear Information System (INIS)

    Hofmann, Andreas; Merklein, Lisa; Schulz, Michael; Hanemann, Thomas

    2014-01-01

    In this study, novel electrolyte solvents and the conducting salt lithium bis(trifluoromethanesulfonyl)azanide (LiTFSA) are compared with respect to aluminum anodic dissolution, often called in an ambiguous manner aluminum corrosion. Namely, mixtures of propylene carbonate, sulfolane, the ionic liquid N,N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium bis(trifluoromethanesulfonyl)azanide (DMMA-TFSA) and various concentrations of LiTFSA are prepared and investigated in Al|Li cell configuration. It is verified that the choice of the concentration of LiTFSA and the composition of the solvent mixture affects the tendency of Al dissolution significantly. Principally, the best results (least dissolution/corrosion) are obtained in case of high LiTFSA concentrations and by adding the ionic liquid DMMA-TFSA to the organic solvents

  14. Modeling Li-ion conductivity in LiLa(PO{sub 3}){sub 4} powder

    Energy Technology Data Exchange (ETDEWEB)

    Mounir, Ferhi, E-mail: ferhi.mounir@gmail.com [Laboratoire de Physicochimie des Materiaux Mineraux et leurs Applications, Centre National des Recherches en Sciences des Materiaux, BP No. 73, 8027 Soliman (Tunisia); Karima, Horchani-Naifer [Laboratoire de Physicochimie des Materiaux Mineraux et leurs Applications, Centre National des Recherches en Sciences des Materiaux, BP No. 73, 8027 Soliman (Tunisia); Khaled, Ben Saad [Laboratoire de Photovoltaieque, Centre des Recherches et des Technologies de l' Energie, Technopole Borj Cedria, BP No. 95, 2050 Hammam Lif (Tunisia); Mokhtar, Ferid [Laboratoire de Physicochimie des Materiaux Mineraux et leurs Applications, Centre National des Recherches en Sciences des Materiaux, BP No. 73, 8027 Soliman (Tunisia)

    2012-07-01

    Polycrystalline powder and single-crystal of LiLa(PO{sub 3}){sub 4} are synthesized by solid state reaction and flux technique, respectively. A morphological description of the obtained product was made based on scanning electron microscopy micrographs. The obtained powder was characterized by X-ray powder diffraction, FTIR and Raman spectroscopies. Ionic conductivity of the LiLa(PO{sub 3}){sub 4} powder was measured and evaluated over a temperature range from 553 to 913 K. Single crystals of LiLa(PO{sub 3}){sub 4} are characterized by single-crystal X-ray diffraction. The LiLa(PO{sub 3}){sub 4} structure was found to be isotypic with LiNd(PO{sub 3}){sub 4}. It crystallizes in the monoclinic system with space group C2/c and cell parameters: a=16.635(6) A, b=7.130(3) A, c=9.913(3) A, {beta}=126.37(4) Degree-Sign , V=946.72(6) A{sup 3} and Z=4. The LiLa(PO{sub 3}){sub 4} structure was described as an alternation between spiraling chains (PO{sub 3}){sub n} and (La{sup 3+}, Li{sup +}) cations along the b direction. The small Li{sup +} ions, coordinated to four oxygen atoms, were located in the large connected cavities created between the LaO{sub 8} polyhedra and the polyphosphate chains. The jumping of Li{sup +} through tunnels of the crystalline network was investigated using complex impedance spectroscopy. The close value of the activation energies calculated through the analysis of conductivity data and loss spectra indicate that the transport in the investigated system is through hopping mechanism. The correlation between ionic conductivity of LiLa(PO{sub 3}){sub 4} and its crystallographic structure was investigated and the most probably transport pathway model was determined.

  15. Li-FSI Impurity Impact Study: Final CRADA Report

    Energy Technology Data Exchange (ETDEWEB)

    Pupek, Krzysztof [Argonne National Lab. (ANL), Argonne, IL (United States); Dzwiniel, Trevor [Argonne National Lab. (ANL), Argonne, IL (United States); Krumdick, Gregory [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-01-01

    There is growing interest in lithium bis(fluorosulfonyl)imide (LiFSI ) as an alternative to LiPF6 and as an additive to electrolytes used in lithium-ion cells. LiFSI has attracted attention because it is reported to have higher ionic conductivity, better high temperature stability, and enhanced stability toward hydrolysis, Also, LiFSI additive to electrolytes can bring benefits of improved storage properties and reduced gas evolution in the cells. Different levels of different electrochemically active impurities could affect the performance of LiFSI as an electrolyte salt for Li-ion batteries, generating inconsistent and conflicting interpretations of the experimental data.

  16. Viscosity of Ga-Li liquid alloys

    Science.gov (United States)

    Vidyaev, Dmitriy; Boretsky, Evgeny; Verkhorubov, Dmitriy

    2018-03-01

    The measurement of dynamic viscosity of Ga-Li liquid alloys has been performed using low-frequency vibrational viscometer at five temperatures in the range 313-353 K and four gallium-based dilute alloy compositions containing 0-1.15 at.% Li. It was found that the viscosity of the considered alloys increases with decreasing temperature and increasing lithium concentration in the above ranges. It was shown that dependence of the viscosity of Ga-Li alloys in the investigated temperature range has been described by Arrhenius equation. For this equation the activation energy of viscous flow and pre-exponential factor were calculated. This study helped to determine the conditions of the alkali metals separating process in gallam-exchange systems.

  17. Observational evidence for a broken Li Spite plateau and mass-dependent Li depletion

    Science.gov (United States)

    Meléndez, J.; Casagrande, L.; Ramírez, I.; Asplund, M.; Schuster, W. J.

    2010-06-01

    We present NLTE Li abundances for 88 stars in the metallicity range -3.5 FIES+NOT spectra, and complemented with reliable equivalent widths from the literature. The less-depleted stars with [Fe/H] -2.5 fall into two well-defined plateaus of ALi = 2.18 (σ = 0.04) and ALi = 2.27 (σ = 0.05), respectively. We show that the two plateaus are flat, unlike previous claims for a steep monotonic decrease in Li abundances with decreasing metallicities. At all metallicities we uncover a fine-structure in the Li abundances of Spite plateau stars, which we trace to Li depletion that depends on both metallicity and mass. Models including atomic diffusion and turbulent mixing seem to reproduce the observed Li depletion assuming a primordial Li abundance ALi = 2.64, which agrees well with current predictions (ALi = 2.72) from standard Big Bang nucleosynthesis. Adopting the Kurucz overshooting model atmospheres increases the Li abundance by +0.08 dex to ALi = 2.72, which perfectly agrees with BBN+WMAP. Based in part on observations obtained at the W. M. Keck Observatory, the Nordic Optical Telescope on La Palma, and on data from the HIRES/Keck archive and the European Southern Observatory ESO/ST-ECF Science Archive Facility.Table 1 is only available in electronic form at http://www.aanda.org

  18. Preparation and Characterisation of LiFePO4/CNT Material for Li-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Rushanah Mohamed

    2011-01-01

    Full Text Available Li-ion battery cathode materials were synthesised via a mechanical activation and thermal treatment process and systematically studied. LiFePO4/CNT composite cathode materials were successfully prepared from LiFePO4 material. The synthesis technique involved growth of carbon nanotubes onto the LiFePO4 using a novel spray pyrolysis-modified CVD technique. The technique yielded LiFePO4/CNT composite cathode material displaying good electrochemical activity. The composite cathode exhibited excellent electrochemical performances with 163 mAh/g discharge capacity with 94% cycle efficiency at a 0.1 C discharge rate in the first cycle, with a capacity fade of approximately 10% after 30 cycles. The results indicate that carbon nanotube addition can enable LiFePO4 to display a higher discharge capacity at a fast rate with high efficiency. The research is of potential interest for the application of carbon nanotubes as a new conducting additive in cathode preparation and for the development of high-power Li-ion batteries for hybrid electric vehicles.

  19. Achromatic Cooling Channel with Li Lenses

    Energy Technology Data Exchange (ETDEWEB)

    Balbekov, V. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2002-04-29

    A linear cooling channel with Li lenses, solenoids, and 201 MHz RF cavities is considered. A special lattice design is used to minimize chromatic aberrations by suppression of several betatron resonances. Transverse emittance of muon beam decreases from 2 mm to 0.5 mm at the channel of about 110 m length. Longitudinal heating is modest, therefore transmission of the channel is rather high: 96% without decay and 90% with decay. Minimal beam emittance achievable by similar channel estimated as about 0.25 mm at surface field of Li lenses 10 T.

  20. Si(Li) X-ray detector

    International Nuclear Information System (INIS)

    Yuan Xianglin; Li Zhiyong; Hong Xiuse

    1990-08-01

    The fabrication technology of the 10∼80 mm 2 Si(Li) X-ray detectors are described and some problems concerning technology and measurement are discussed. The specifications of the detectors are shown as well. The Si(Li) X-ray detector is a kind of low energy X-ray detectors. Owing to very high energy resolution, fine linearity and high detection efficiency in the range of low energy X-rays, it is widely used in the fields of nuclear physics, medicine, geology and environmental protection, etc,. It is also a kernel component for the scanning electron microscope and X-ray fluorescence analysis systems

  1. NASA Goddards LiDAR, Hyperspectral and Thermal (G-LiHT) Airborne Imager

    Science.gov (United States)

    Cook, Bruce D.; Corp, Lawrence A.; Nelson, Ross F.; Middleton, Elizabeth M.; Morton, Douglas C.; McCorkel, Joel T.; Masek, Jeffrey G.; Ranson, Kenneth J.; Ly, Vuong; Montesano, Paul M.

    2013-01-01

    The combination of LiDAR and optical remotely sensed data provides unique information about ecosystem structure and function. Here, we describe the development, validation and application of a new airborne system that integrates commercial off the shelf LiDAR hyperspectral and thermal components in a compact, lightweight and portable system. Goddard's LiDAR, Hyperspectral and Thermal (G-LiHT) airborne imager is a unique system that permits simultaneous measurements of vegetation structure, foliar spectra and surface temperatures at very high spatial resolution (approximately 1 m) on a wide range of airborne platforms. The complementary nature of LiDAR, optical and thermal data provide an analytical framework for the development of new algorithms to map plant species composition, plant functional types, biodiversity, biomass and carbon stocks, and plant growth. In addition, G-LiHT data enhance our ability to validate data from existing satellite missions and support NASA Earth Science research. G-LiHT's data processing and distribution system is designed to give scientists open access to both low- and high-level data products (http://gliht.gsfc.nasa.gov), which will stimulate the community development of synergistic data fusion algorithms. G-LiHT has been used to collect more than 6,500 km2 of data for NASA-sponsored studies across a broad range of ecoregions in the USA and Mexico. In this paper, we document G-LiHT design considerations, physical specifications, instrument performance and calibration and acquisition parameters. In addition, we describe the data processing system and higher-level data products that are freely distributed under NASA's Data and Information policy.

  2. NASA Goddard’s LiDAR, Hyperspectral and Thermal (G-LiHT Airborne Imager

    Directory of Open Access Journals (Sweden)

    Vuong Ly

    2013-08-01

    Full Text Available The combination of LiDAR and optical remotely sensed data provides unique information about ecosystem structure and function. Here, we describe the development, validation and application of a new airborne system that integrates commercial off the shelf LiDAR hyperspectral and thermal components in a compact, lightweight and portable system. Goddard’s LiDAR, Hyperspectral and Thermal (G-LiHT airborne imager is a unique system that permits simultaneous measurements of vegetation structure, foliar spectra and surface temperatures at very high spatial resolution (~1 m on a wide range of airborne platforms. The complementary nature of LiDAR, optical and thermal data provide an analytical framework for the development of new algorithms to map plant species composition, plant functional types, biodiversity, biomass and carbon stocks, and plant growth. In addition, G-LiHT data enhance our ability to validate data from existing satellite missions and support NASA Earth Science research. G-LiHT’s data processing and distribution system is designed to give scientists open access to both low- and high-level data products (http://gliht.gsfc.nasa.gov, which will stimulate the community development of synergistic data fusion algorithms. G-LiHT has been used to collect more than 6,500 km2 of data for NASA-sponsored studies across a broad range of ecoregions in the USA and Mexico. In this paper, we document G-LiHT design considerations, physical specifications, instrument performance and calibration and acquisition parameters. In addition, we describe the data processing system and higher-level data products that are freely distributed under NASA’s Data and Information policy.

  3. Asymptotic and near-target direct breakup of 6Li and 7Li

    Science.gov (United States)

    Kalkal, Sunil; Simpson, E. C.; Luong, D. H.; Cook, K. J.; Dasgupta, M.; Hinde, D. J.; Carter, I. P.; Jeung, D. Y.; Mohanto, G.; Palshetkar, C. S.; Prasad, E.; Rafferty, D. C.; Simenel, C.; Vo-Phuoc, K.; Williams, E.; Gasques, L. R.; Gomes, P. R. S.; Linares, R.

    2016-04-01

    Background: Li,76 and 9Be are weakly bound against breakup into their cluster constituents. Breakup location is important for determining the role of breakup in above-barrier complete fusion suppression. Recent works have pointed out that experimental observables can be used to separate near-target and asymptotic breakup. Purpose: Our purpose is to distinguish near-target and asymptotic direct breakup of Li,76 in reactions with nuclei in different mass regions. Method: Charged particle coincidence measurements are carried out with pulsed Li,76 beams on 58Ni and 64Zn targets at sub-barrier energies and compared with previous measurements using 208Pb and 209Bi targets. A detector array providing a large angular coverage is used, along with time-of-flight information to give definitive particle identification of the direct breakup fragments. Results: In interactions of 6Li with 58Ni and 64Zn, direct breakup occurs only asymptotically far away from the target. However, in interactions with 208Pb and 209Bi, near-target breakup occurs in addition to asymptotic breakup. Direct breakup of 7Li into α -t is not observed in interactions with 58Ni and 64Zn. However, near-target dominated direct breakup was observed in measurements with 208Pb and 209Bi. A modified version of the Monte Carlo classical trajectory model code platypus, which explicitly takes into account lifetimes associated with unbound states, is used to simulate sub-barrier breakup reactions. Conclusions: Near-target breakup in interactions with Li,76 is an important mechanism only for the heavy targets 208Pb and 209Bi. There is insignificant near-target direct breakup of 6Li and no direct breakup of 7Li in reactions with 58Ni and 64Zn. Therefore, direct breakup is unlikely to suppress the above-barrier fusion cross section in reactions of Li,76 with 58Ni and 64Zn nuclei.

  4. Polarization potentials for the 208Pb(7Li,6Li)209Pb transfer

    Science.gov (United States)

    Keeley, N.; Rusek, K.

    1997-12-01

    Recent optical model analyses of near-barrier 7Li+208Pb elastic scattering data found a peak in the energy dependence of WOM, the strength of the imaginary part of the optical model potential at the strong absorption radius. It was speculated that this might be due to the polarization potentials produced by couplings to the 208Pb(7Li,6Li)209Pb transfer channels. In this Brief Report we show explicitly that such couplings do indeed produce polarization potentials with the same energy dependence as that observed for the empirical optical potentials.

  5. Magnetic anisotropy in Li-phosphates and origin of magnetoelectricity in LiNiPO4

    OpenAIRE

    Yamauchi, Kunihiko; Picozzi, Silvia

    2010-01-01

    Li-based phosphates are paradigmatic materials for magnetoelectricity. By means of first-principles calculations, we elucidate the microscopic origin of spin anisotropy and of magnetoelectric effects in LiNiPO4. The comparison with LiCoPO4 reveals that Co-d7 and Ni-d8 electronic clouds show distinct orbital shapes, which in turn result in an opposite trend of the local spin anisotropy with respect to the surrounding O6 cages. Due to magnetic anisotropy, the Ni-based phosphate shows a peculiar...

  6. Charge carrier density in Li-intercalated graphene

    KAUST Repository

    Kaloni, Thaneshwor P.

    2012-05-01

    The electronic structures of bulk C 6Li, Li-intercalated free-standing bilayer graphene, and Li-intercalated bilayer and trilayer graphene on SiC(0 0 0 1) are studied using density functional theory. Our estimate of Young\\'s modulus suggests that Li-intercalation increases the intrinsic stiffness. For decreasing Li-C interaction, the Dirac point shifts to the Fermi level and the associated band splitting vanishes. For Li-intercalated bilayer graphene on SiC(0 0 0 1) the splitting at the Dirac point is tiny. It is also very small at the two Dirac points of Li-intercalated trilayer graphene on SiC(0 0 0 1). For all the systems under study, a large enhancement of the charge carrier density is achieved by Li intercalation. © 2012 Elsevier B.V. All rights reserved.

  7. LiDAR data for the Delta Area of California

    Data.gov (United States)

    California Natural Resource Agency — LiDAR data for the Delta Area of California from the California Department of Water Resources. Bare earth grids from LiDAR.This data is in ESRI Grid format with 2...

  8. LiDAR data for the Delta Area of California

    Data.gov (United States)

    California Department of Resources — LiDAR data for the Delta Area of California from the California Department of Water Resources. Bare earth grids from LiDAR.This data is in ESRI Grid format with 2...

  9. A New Li Anode Technology for Improved Performance, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Lithium (Li) metal-based rechargeable batteries have many advantages over Li-ion systems including significantly higher energy density, lower cost, and the option of...

  10. Tallinnasse kogunesid üliõpilasliidrid üle Euroopa

    Index Scriptorium Estoniae

    2011-01-01

    Euroopa Üliõpilasliit korraldas Tallinnas 2.-5. mail konverentsi „Financing of higher education - financing the students future”, kus osalesid 120 üliõpilasesindajat 40-st riigist üle Euroopa

  11. A Low-Li Geochemical Province in the NE Atlantic

    DEFF Research Database (Denmark)

    Bailey, J. C.; Gwozdz, R.

    1978-01-01

    Lithium was analysed in 392 basalts and related igneous rocks from the North Atlantic Tertiary-Recent province using activation analysis and Čerenkov counting. Monotonous Li values of 5.5±2 ppm in NE Atlantic basalts define a low-Li geochemical province which has persisted for 60 million years......, over 20° of latitude and regardless of basalt type and chemistry. This low-Li province and the increasing Li contents of ocean-ridge tholeiites into the S Atlantic are believed to monitor Li heterogeneity in the underlying mantle. Li, like Na, increases gently during the differentiation of several...... basalt series. No whole-rock coherence is observed between Li and Mg, K, Rb or Ca. Mantle phlogopite is considered to play an insignificant rôle in controlling the Li levels of NE Atlantic basalts....

  12. New Li Battery Chemistry for Improved Performance, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Current state-of-the-art Lithium (Li) or Li-ion systems are unable to meet the performance goals of space-rated rechargeable batteries for many NASA's future robotic...

  13. Li2 NH-LiBH4 : a Complex Hydride with Near Ambient Hydrogen Adsorption and Fast Lithium Ion Conduction.

    Science.gov (United States)

    Wang, Han; Cao, Hujun; Zhang, Weijin; Chen, Jian; Wu, Hui; Pistidda, Claudio; Ju, Xiaohua; Zhou, Wei; Wu, Guotao; Etter, Martin; Klassen, Thomas; Dornheim, Martin; Chen, Ping

    2018-01-26

    Complex hydrides have played important roles in energy storage area. Here a complex hydride made of Li 2 NH and LiBH 4 was synthesized, which has a structure tentatively indexed using an orthorhombic cell with a space group of Pna2 1 and lattice parameters of a=10.121, b=6.997, and c=11.457 Å. The Li 2 NH-LiBH 4 sample (in a molar ratio of 1:1) shows excellent hydrogenation kinetics, starting to absorb H 2 at 310 K, which is more than 100 K lower than that of pristine Li 2 NH. Furthermore, the Li + ion conductivity of the Li 2 NH-LiBH 4 sample is about 1.0×10 -5  S cm -1 at room temperature, and is higher than that of either Li 2 NH or LiBH 4 at 373 K. Those unique properties of the Li 2 NH-LiBH 4 complex render it a promising candidate for hydrogen storage and Li ion conduction. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. A novel dual-salts of LiTFSI and LiODFB in LiFePO4-based batteries for suppressing aluminum corrosion and improving cycling stability

    Science.gov (United States)

    Li, Faqiang; Gong, Yan; Jia, Guofeng; Wang, Qinglei; Peng, Zhengjun; Fan, Wei; Bai, Bing

    2015-11-01

    The strong corrosion behavior at the Al current collector restricts the application range of lithium bis (trifluoromethanesulfonylimide) (LiTFSI), despite its high stability against water and thermal. SEM, LSV and Tafel curves proved that adding LiODFB into LiTFSI-based electrolytes could suppress aluminum corrosion caused by LiTFSI-based electrolytes. The cycling stability and rate capability of LiFePO4-based batteries using LiTFSI0.6-LiODFB0.4-based electrolytes is excellent as compared to LiFePO4-based batteries using LiPF6-based electrolytes.

  15. Volume production of Li- in a multicusp ion source

    International Nuclear Information System (INIS)

    Walther, S.R.; Leung, K.N.; Kunkel, W.B.

    1987-07-01

    A neutral 100kev Li beam has been used as a diagnostic tool for determining current, plasma density, and magnetic pitch angle on the Texas EXperimental Tokamak. Scale up of this diagnostic for the Tokomak Fusion Test Reactor would require use of a Li - beam because of the inefficiency of neutralizing Li + at the high energies required. This paper discusses effects to generate Li - beams from a plasma discharge. 8 refs

  16. 6Li foil thermal neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    Ianakiev, Kiril D [Los Alamos National Laboratory; Swinhoe, Martyn T [Los Alamos National Laboratory; Favalli, Andrea [Los Alamos National Laboratory; Chung, Kiwhan [Los Alamos National Laboratory; Macarthur, Duncan W [Los Alamos National Laboratory

    2010-01-01

    In this paper we report on the design of a multilayer thermal neutron detector based on {sup 6}Li reactive foil and thin film plastic scintillators. The {sup 6}Li foils have about twice the intrinsic efficiency of {sup 10}B films and about four times higher light output due to a unique combination of high energy of reaction particles, low self absorption, and low ionization density of tritons. The design configuration provides for double sided readout of the lithium foil resulting in a doubling of the efficiency relative to a classical reactive film detector and generating a pulse height distribution with a valley between neutron and gamma signals similar to {sup 3}He tubes. The tens of microns thickness of plastic scintillator limits the energy deposited by gamma rays, which provides the necessary neutron/gamma discrimination. We used MCNPX to model a multilayer Li foil detector design and compared it with the standard HLNCC-II (18 {sup 3}He tubes operated at 4 atm). The preliminary results of the {sup 6}Li configuration show higher efficiency and one third of the die-away time. These properties, combined with the very short dead time of the plastic scintillator, offer the potential of a very high performance detector.

  17. Irene Väli / Ruth Alas

    Index Scriptorium Estoniae

    Alas, Ruth, 1960-2018

    2007-01-01

    AS Haapsalu Kuurort juhataja Irene Väli juhtimispõhimõtted, muudatuste elluviimise taktika, karjäär, väärtushinnangud, organisatsiooni arenguvõimalused, puhkus ja perekond. Eluloolised andmed, haridus, töökogemus. Kommenteerib kuurordi ilukeskuse juhataja Merle Murik

  18. Orienteerumiskaart vs. LiDAR / Marek Karm

    Index Scriptorium Estoniae

    Karm, Marek

    2012-01-01

    Bakalaureusetööst, mille eesmärk oli võrrelda orienteerumiskaardi reljeefi LiDAR-i andmete põhjal saadava reljeefimudeliga ning leida vastus küsimusele, kas o-kaart võib olla kasulik kooste- või kontrollmaterjal mistahes reljeefimudelile

  19. Composite Li metal anode with vertical graphene host for high performance Li-S batteries

    Science.gov (United States)

    Zhang, Y. J.; Liu, S. F.; Wang, X. L.; Zhong, Y.; Xia, X. H.; Wu, J. B.; Tu, J. P.

    2018-01-01

    Efficient and stable operation of a lithium metal anode has become the enabling factor for next-generation high energy density storage system. Here, vertical graphene (VG) arrays are used as the scaffold structure for high performance Li metal batteries. The melt infusion method is employed to encapsulate Li inside the VG scaffold structure, and the lithiophilic Si layer is coated onto the array surface by magnetron sputtering to assist this melt-infusion process. The porous scaffold structure can control the volume expansion and inhibit the formation of dendritic lithium significantly, leading to the excellent electrochemical performance of the Li composite anode. In addition, the Li-S full batteries with the composite anode display enhanced cycling reversibility.

  20. 2000 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Kitsap Peninsula, Washington

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TerraPoint surveyed and created this data for the Puget Sound LiDAR Consortium under contract. The area surveyed is approximately 1,146 square miles and covers part...

  1. Probing the failure mechanism of nanoscale LiFePO4 for Li-ion batteries

    International Nuclear Information System (INIS)

    Gu, Meng; Yan, Pengfei; Wang, Chongmin; Shi, Wei; Zheng, Jianming; Zhang, Ji-guang

    2015-01-01

    LiFePO 4 is a high power rate cathode material for lithium ion battery and shows remarkable capacity retention, featuring a 91% capacity retention after 3300 cycles. In this work, we use high-resolution transmission electron microscopy and electron energy loss spectroscopy to study the gradual capacity fading mechanism of LiFePO 4 materials. We found that upon prolonged electrochemical cycling of the battery, the LiFePO 4 cathode shows surface amorphization and loss of oxygen species, which directly contribute to the gradual capacity fading of the battery. The finding can guide the design and improvement of LiFePO 4 cathode for high-energy and high-power rechargeable battery for electric transportation

  2. 2005 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Lewis County

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Terrapoint collected Light Detection and Ranging (LiDAR) data for the Lewis County project of 2005. The project site covered approximately 223 square miles, divided...

  3. 2005 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Olympic Peninsula

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Terrapoint collected Light Detection and Ranging (LiDAR) data for the Olympic Peninsula project of 2005, totaling approximately 114.59 sq mi: 24.5 for Clallam...

  4. 2005 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: North Puget Sound Lowlands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Terrapoint collected Light Detection and Ranging (LiDAR) data contributing to the Puget Sound Lowlands project of 2005. Arlington, City of Snohomish, Snohomish...

  5. 2012 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Upper Naches River, Washington

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Watershed Sciences, Inc. (WSI) collected Light Detection and Ranging (LiDAR) data of the Upper Naches River Valley and Nile Slide area of interest on September 30th,...

  6. 2003 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Snohomish County, Washington

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TerraPoint surveyed and created this data for the Puget Sound LiDAR Consortium under contract. The area surveyed is approximately 167 square miles and covers a...

  7. 2009 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Snohomish River Estuary

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Watershed Sciences, Inc. (WS) co-acquired Light Detection and Ranging (LiDAR) data and Truecolor Orthophotographs of the Snohomish River Estuary, WA on July 20 &...

  8. 2009 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Douglas Co.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Watershed Sciences, Inc. (WS) collected Light Detection and Ranging (LiDAR) data of the Douglas County PUD area of interest (AOI) east of Wenatchee, WA on May 2nd -...

  9. Protons scattering on Li isotopes at intermediate energies

    International Nuclear Information System (INIS)

    Zhusupov, M.A.; Imambekov, O.; Sanfirova, A.V.; Ibraeva, E.T.

    2003-01-01

    The protons scattering differential cross section on the 6,7,8 Li nuclei are calculated within the framework the Glauber-Sitenko multiple scattering theory at intermediate energies (from 100 to 1000 MeV). In the calculations the multi-cluster wave functions (αt for 7 Li, αnp for 6 Li, and αtn for 8 Li) considering within potential cluster model have been used. Differential cross sections for 6 Li, 7 Li, 8 Li and 9 Li nuclei are similar: absolute cross sections are almost the same, diffraction minimum for large A shifting to the field of the least scattering angles that reflecting increase of the material radius. For the 11 Li the differential cross section absolute value is smaller about in two time than for the rest isotopes. At present it is reliably established, that the 11 Li nucleus has an exotic structure - the nine-nucleon core ( 9 Li) around which the two-neutron halo is rotating. The principal characteristics of the Li nuclei are presented in tabular form

  10. LiDAR utility for natural resource managers

    Science.gov (United States)

    Andrew Thomas Hudak; Jeffrey Scott Evans; Alistair Mattthew Stuart. Smith

    2009-01-01

    Applications of LiDAR remote sensing are exploding, while moving from the research to the operational realm. Increasingly, natural resource managers are recognizing the tremendous utility of LiDAR-derived information to make improved decisions. This review provides a cross-section of studies, many recent, that demonstrate the relevance of LiDAR across a suite of...

  11. 2014 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Cedar River Watershed (Delivery 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In September 2013, WSI, a Quantum Spatial company (QSI), was contracted by the Puget Sound LiDAR Consortium (PSLC) to collect Light Detection and Ranging (LiDAR)...

  12. 2012 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Quinault River Watershed, Washington (Delivery 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Watershed Sciences, Inc. (WSI) collected Light Detection and Ranging (LiDAR) data on the Quinault watershed survey area for the Puget Sound LiDAR Consortium. This...

  13. 2014 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Cedar River Watershed (Delivery 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In September 2013, WSI, a Quantum Spatial company (QSI), was contracted by the Puget Sound LiDAR Consortium (PSLC) to collect Light Detection and Ranging (LiDAR)...

  14. Direct Rehydrogenation of LiBH4 from H-Deficient Li2B12H12−x

    Directory of Open Access Journals (Sweden)

    Yigang Yan

    2018-03-01

    Full Text Available Li2B12H12 is commonly considered as a boron sink hindering the reversible hydrogen sorption of LiBH4. Recently, in the dehydrogenation process of LiBH4 an amorphous H-deficient Li2B12H12−x phase was observed. In the present study, we investigate the rehydrogenation properties of Li2B12H12−x to form LiBH4. With addition of nanostructured cobalt boride in a 1:1 mass ratio, the rehydrogenation properties of Li2B12H12−x are improved, where LiBH4 forms under milder conditions (e.g., 400 °C, 100 bar H2 with a yield of 68%. The active catalytic species in the reversible sorption reaction is suggested to be nonmetallic CoxB (x = 1 based on 11B MAS NMR experiments and its role has been discussed.

  15. Complex Diffusion Mechanisms for Li in Feldspar: Re-thinking Li-in-Plag Geospeedometry

    Science.gov (United States)

    Holycross, M.; Watson, E. B.

    2017-12-01

    In recent years, the lithium isotope system has been applied to model processes in a wide variety of terrestrial environments. In igneous settings, Li diffusion gradients have been frequently used to time heating episodes. Lithium partitioning behavior during decompression or cooling events drives Li transfer between phases, but the extent of Li exchange may be limited by its diffusion rate in geologic materials. Lithium is an exceptionally fast diffuser in silicate media, making it uniquely suited to record short-lived volcanic phenomena. The Li-in-plagioclase geospeedometer is often used to time explosive eruptions by applying laboratory-calibrated Li diffusion coefficients to model concentration profiles in magmatic feldspar samples. To quantify Li transport in natural scenarios, experimental measurements are needed that account for changing temperature and oxygen fugacity as well as different feldspar compositions and crystallographic orientation. Ambient pressure experiments were run at RPI to diffuse Li from a powdered spodumene source into polished sanidine, albite, oligoclase or anorthite crystals over the temperature range 500-950 ºC. The resulting 7Li concentration gradients developed in the mineral specimens were evaluated using laser ablation ICP-MS. The new data show that Li diffusion in all feldspar compositions simultaneously operates by both a "fast" and "slow" diffusion mechanism. Fast path diffusivities are similar to those found by Giletti and Shanahan [1997] for Li diffusion in plagioclase and are typically 10 to 20 times greater than slow path diffusivities. Lithium concentration gradients in the feldspar experiments plot in the shape of two superimposed error function curves with the slow diffusion regime in the near-surface of the crystal. Lithium diffusion is most sluggish in sanidine and is significantly faster in the plagioclase feldspars. It is still unclear what diffusion mechanism operates in nature, but the new measurements may impact

  16. Electrochemical formation of Mg-Li-Ca alloys by codeposition of Mg, Li and Ca from LiCl-KCl-MgCl2-CaCl2 melts.

    Science.gov (United States)

    Yan, Yong De; Zhang, Mi Lin; Xue, Yun; Han, Wei; Cao, Dian Xue; Jing, Xiao Yan; He, Li Yi; Yuan, Yi

    2009-08-07

    This work presents electrochemical formation of Mg-Li-Ca alloys via codeposition of Mg, Li and Ca on a molybdenum electrode in KCl-LiCl-MgCl(2)-CaCl(2) melts at 943 K. Cyclic voltammograms (CVs) showed that the underpotential deposition (UPD) of calcium on pre-deposited magnesium leads to the formation of a liquid Mg-Ca alloy, and the succeeding underpotential deposition of lithium on pre-deposited Mg-Ca alloy leads to the formation of a liquid Mg-Li-Ca solution. Chronopotentiometric measurements indicated that the codepositon of Mg, Li and Ca occurs at current densities more negative than -0.31 A cm(-2) in LiCl-KCl-MgCl(2) (5 wt%) melts containing 1 wt% CaCl(2). Chronoamperograms demonstrated that the onset potential for the codeposition of Mg, Li and Ca is -2.200 V, and the codeposition of Mg, Li and Ca is formed when the applied potentials are more negative than -2.200 V. X-Ray diffraction (XRD) indicated that Mg-Li-Ca alloys with different phases were formed via galvanostatic electrolysis. The microstructures of typical alpha and beta phases of Mg-Li-Ca alloys were characterized by optical microscope (OM) and scanning electron microscopy (SEM). The analysis of energy dispersive spectrometry (EDS) showed that the element Ca mainly distributes along grain boundary in Mg-Li-Ca alloys. The results of inductively coupled plasma analysis determined that the chemical compositions of Mg-Li-Ca alloys correspond with the phase structures of XRD patterns, and the lithium and calcium contents of Mg-Li-Ca alloys depend on the concentrations of MgCl(2) and CaCl(2).

  17. Electrochemical Investigations of the Interface at Li/Li+ Ion Conducting Channel

    Science.gov (United States)

    2006-10-04

    microscope (SEM) of model JEOL JSM-840A. Results and discussions Cyclic voltammetry of oxidation of Li2Pc to LiPc.- Figure 1 shows voltammograms...3 2. Electrodeposition of adherent films of lithium phthalocyanine on 16 platinum and stainless steel substrates by oxidation ... electrocatalysis , as photosensitizers and as photoconductors. The interesting properties of these compounds are due to the conjugated electronic structure of the

  18. Synthesis Of Fe Doped LiMn2O4 Cathode Materials For Li Battery By Solid State Reaction

    Directory of Open Access Journals (Sweden)

    Horata N.

    2015-06-01

    Full Text Available LiFe0.1Mn1.9O4 is expected as a cathode material for the rechargeable lithium-ion batteries. LiMn2O4 has been received attention because this has advantages such as low cost and low toxicity compared with other cathode materials of LiCoO2 and LiNiO2. However, LiMn2O4 has some problems such as small capacity and no long life. LiMn2O4 is phase transformation at around human life temperature. One of the methods to overcome this problem is to stabilize the spinel structure by substituting Mn site ion in LiMn2O4 with transition metals (Al, Mg, Ti, Ni, Fe, etc.. LiFe0.1Mn1.9O4 spinel was synthesized from Li2CO3, Fe2O3 and MnO2 powder. The purpose of this study is to report the optimal condition of Fe doped LiFe0.1Mn1.9O4. Li2CO3, Fe2O3, and MnO2 mixture powder was heated up to 1173 K by TG-DTA. Li2CO3 was thermal decomposed, and CO2 gas evolved, and formed Li2O at about 800 K. LiFe0.1Mn1.9O4 was synthesized from a consecutive reaction Li2O, Fe2O3 and MnO2 at 723 ~ 1023 K. Active energy is calculated to 178 kJmol−1 at 723 ~ 1023 K. The X-ray powder diffraction pattern of the LiFe0.1Mn1.9O4 heated mixture powder at 1023 K for 32 h in air flow was observed.

  19. Epitaxial thin film growth of LiH using a liquid-Li atomic template

    Energy Technology Data Exchange (ETDEWEB)

    Oguchi, Hiroyuki, E-mail: oguchi@nanosys.mech.tohoku.ac.jp [Department of Nanomechanics, Tohoku University, Sendai 980-8579 (Japan); Micro System Integration Center (muSIC), Tohoku University, Sendai 980-0845 (Japan); Ikeshoji, Tamio; Orimo, Shin-ichi [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Advanced Institute for Materials Research (AIMR), Tohoku University, Sendai 980-8577 (Japan); Ohsawa, Takeo; Shiraki, Susumu; Hitosugi, Taro [Advanced Institute for Materials Research (AIMR), Tohoku University, Sendai 980-8577 (Japan); Kuwano, Hiroki [Department of Nanomechanics, Tohoku University, Sendai 980-8579 (Japan)

    2014-11-24

    We report on the synthesis of lithium hydride (LiH) epitaxial thin films through the hydrogenation of a Li melt, forming abrupt LiH/MgO interface. Experimental and first-principles molecular dynamics studies reveal a comprehensive microscopic picture of the crystallization processes, which sheds light on the fundamental atomistic growth processes that have remained unknown in the vapor-liquid-solid method. We found that the periodic structure that formed, because of the liquid-Li atoms at the film/MgO-substrate interface, serves as an atomic template for the epitaxial growth of LiH crystals. In contrast, films grown on the Al{sub 2}O{sub 3} substrates indicated polycrystalline films with a LiAlO{sub 2} secondary phase. These results and the proposed growth process provide insights into the preparation of other alkaline metal hydride thin films on oxides. Further, our investigations open the way to explore fundamental physics and chemistry of metal hydrides including possible phenomena that emerge at the heterointerfaces of metal hydrides.

  20. Correlation of anisotropy and directional conduction in β-Li3PS4 fast Li+ conductor

    International Nuclear Information System (INIS)

    Chen, Yan; Cai, Lu; An, Ke; Liu, Zengcai; Liang, Chengdu; Cruz, Clarina R. dela

    2015-01-01

    This letter reports the correlation of anisotropy and directional conduction in the fast Li + conductor β-Li 3 PS 4 , one of the low-symmetry crystalline electrolyte candidates. The material has both high conductivity and good stability that serves well for the large-scale energy storage applications of all-solid-state lithium ion batteries. The anisotropic physical properties, demonstrated here by the thermal expansion coefficients, are crucial for compatibility in the solid-state system and battery performance. Neutron and X-ray powder diffraction measurements were done to determine the crystal structure and thermal stability. The crystallographic b-axis was revealed as a fast expansion direction, while negligible thermal expansion was observed along the a-axis around the battery operating temperatures. The anisotropic behavior has its structural origin from the Li + conduction channels with incomplete Li occupancy and a flexible connection of LiS 4 and PS 4 tetrahedra within the framework. This indicates a strong correlation in the direction of the ionic transport in the low-symmetry Li + conductor

  1. Li-rich layer-structured cathode materials for high energy Li-ion batteries

    Science.gov (United States)

    Li, Liu; Lee, Kim Seng; Lu, Li

    2014-08-01

    Li-rich layer-structured xLi2MnO3 ṡ (1 - x)LiMO2 (M = Mn, Ni, Co, etc.) materials have attracted much attention due to their extraordinarily high reversible capacity as the cathode material in Li-ion batteries. To better understand the nature of this type of materials, this paper reviews history of development of the Li-rich cathode materials, and provides in-depth study on complicated crystal structures and reaction mechanisms during electrochemical charge/discharge cycling. Despite the fabulous capability at low rate, several drawbacks still gap this type of high-capacity cathode materials from practical applications, for instance the large irreversible capacity loss at first cycle, poor rate capability, severe voltage decay and capacity fade during electrochemical charge/discharge cycling. This review will also address mechanisms for these inferior properties and propose various possible solutions to solve above issues for future utilization of these cathode materials in commercial Li-ion batteries.

  2. Epitaxial thin film growth of LiH using a liquid-Li atomic template

    International Nuclear Information System (INIS)

    Oguchi, Hiroyuki; Ikeshoji, Tamio; Orimo, Shin-ichi; Ohsawa, Takeo; Shiraki, Susumu; Hitosugi, Taro; Kuwano, Hiroki

    2014-01-01

    We report on the synthesis of lithium hydride (LiH) epitaxial thin films through the hydrogenation of a Li melt, forming abrupt LiH/MgO interface. Experimental and first-principles molecular dynamics studies reveal a comprehensive microscopic picture of the crystallization processes, which sheds light on the fundamental atomistic growth processes that have remained unknown in the vapor-liquid-solid method. We found that the periodic structure that formed, because of the liquid-Li atoms at the film/MgO-substrate interface, serves as an atomic template for the epitaxial growth of LiH crystals. In contrast, films grown on the Al 2 O 3 substrates indicated polycrystalline films with a LiAlO 2 secondary phase. These results and the proposed growth process provide insights into the preparation of other alkaline metal hydride thin films on oxides. Further, our investigations open the way to explore fundamental physics and chemistry of metal hydrides including possible phenomena that emerge at the heterointerfaces of metal hydrides

  3. Capturing and Processing Soil GHG Fluxes Using the LI-COR LI-8100A

    Science.gov (United States)

    Xu, Liukang; McDermitt, Dayle; Hupp, Jason; Johnson, Mark; Madsen, Rod

    2015-04-01

    The LI-COR LI-8100A Automated Soil CO2 Flux System is designed to measure soil CO2 efflux using automated chambers and a non-steady state measurement protocol. While CO2 is an important gas in many contexts, it is not the only gas of interest for many research applications. With some simple plumbing modifications, many third party analyzers capable of measuring other trace gases, e.g. N2O, CH4, or 13CO2 etc., can be interfaced with the LI-8100A System, and LI-COR's data processing software (SoilFluxPro™) can be used to compute fluxes for these additional gases. In this paper we describe considerations for selecting an appropriate third party analyzer to interface with the system, how to integrate data into the system, and the procedure used to compute fluxes of additional gases in SoilFluxPro™. A case study is presented to demonstrate methane flux measurements using an Ultra-Portable Greenhouse Gas Analyzer (Ultra-Portable GGA, model 915-0011), manufactured by Los Gatos Research and integrated into the LI-8100A System. Laboratory and field test results show that the soil CO2 efflux based on the time series of CO2 data measured either with the LI-8100A System or with the Ultra-Portable GGA are essentially the same. This suggests that soil GHG fluxes measured with both systems are reliable.

  4. Role of Li2O2@Li2CO3 Interfaces on Charge Transport in Nonaqueous Li−Air Batteries

    DEFF Research Database (Denmark)

    Mekonnen, Yedilfana Setarge; García Lastra, Juan Maria; Hummelshøj, Jens S.

    2015-01-01

    vacancies accumulate at the peroxide part of the interface during charge, reducing the coherent electron transport by two to three orders of magnitude compared with pristine Li2O2. During discharge, Li2O2@Li2CO3 interfaces may, however, provide an alternative in-plane channel for fast electron polaron...

  5. First principle study of LiXS2 (X = Ga, In) as cathode materials for Li ion batteries

    International Nuclear Information System (INIS)

    Rao Feng-Ya; Ning Fang-Hua; Jiang Li-Wei; Wu Mu-Sheng; Xu Bo; Ouyang Chu-Ying; Zeng Xiang-Ming

    2016-01-01

    From first principle calculations, we demonstrate that LiXS 2 (X = Ga, In) compounds have potential applications as cathode materials for Li ion batteries. It is shown that Li can be extracted from the LiXS 2 lattice with relatively small volume change and the XS 4 tetrahedron structure framework remains stable upon delithiation. The theoretical capacity and average intercalation potential of the LiGaS 2 (LiInS 2 ) cathode are 190.4 (144.2) mAh/g and 3.50 V (3.53 V). The electronic structures of the LiXS 2 are insulating with band gaps of 2.88 eV and 1.99 eV for X = Ga and In, respectively. However, Li vacancies, which are formed through delithiation, change the electronic structure substantially from insulating to metallic structure, indicating that the electrical conductivities of the LiXS 2 compounds should be good during cycling. Li ion migration energy barriers are also calculated, and the results show that Li ion diffusions in the LiXS 2 compounds can be as good as those in the currently widely used electrode materials. (paper)

  6. Dynamical properties and temperature induced molecular disordering of LiBH4 and LiBD4

    NARCIS (Netherlands)

    Buchter, F.; Lodziana, Z.; Mauron, P.; Remhof, A.; Friedrichs, O.; Borgschulte, A.; Zuttel, A.; Sheptyakov, D.; Strassle, T.; Ramirez-Cuesta, A. J.

    2008-01-01

    We report on neutron powder-diffraction experiments, inelastic incoherent neutron-scattering experiments, and density-functional calculations on dynamics, order and disorder properties of LiBH4 and LiBD4. From refinement of LiBD4 structure at 10 and 302 K, we found an almost ideal tetrahedral

  7. Scintillation properties of LiF–SrF2 and LiF–CaF2 eutectic

    International Nuclear Information System (INIS)

    Yanagida, Takayuki; Kawaguchi, Noriaki; Fujimoto, Yutaka; Fukuda, Kentaro; Watanabe, Kenichi; Yamazaki, Atsushi; Uritani, Akira

    2013-01-01

    Dopant free eutectic scintillators 6 LiF–SrF 2 and 6 LiF–CaF 2 were developed by the vertical Bridgeman method for the purpose of thermal neutron detection. The molar ratio of LiF and Ca/SrF 2 was 4:1 on its eutectic composition. The α-ray induced radioluminescence spectra of the scintillators showed intense emission peak at 300 nm due to the emission from the self-trapped exciton in Ca/SrF 2 layers. When the samples were irradiated with 252 Cf neutrons, 6 LiF–SrF 2 and 6 LiF–CaF 2 exhibited the light yields of 4700 and 9400 ph/n, respectively. Scintillation decay times of 6 LiF–SrF 2 and 6 LiF–CaF 2 were accepted for scintillation detectors, 90 and 250 ns, respectively. -- Highlights: • Nondoped LiF–CaF 2 and LiF–SrF 2 eutectic scinitillators are reported for the first time. • Two sample showed self-trapped exciton emission. • LiF–SrF 2 sample exhibited the light yield of 9400 ph/n and this value was comparable to conventional materials doped with rare earth ions. • Scintillation decay times of LiF–CaF 2 and LiF–SrF 2 were 250 and 90 ns, respectively

  8. Effect of Heat Treatment on the Lithium Ion Conduction of the LiBH4–LiI Solid Solution

    DEFF Research Database (Denmark)

    Sveinbjörnsson, Dadi Þorsteinn; Mýrdal, Jón Steinar Garðarsson; Blanchard, Didier

    2013-01-01

    The LiBH4–LiI solid solution is a good Li+ conductor and a promising crystalline electrolyte for all-solid-state lithium based batteries. The focus of the present work is on the effect of heat treatment on the Li+ conduction. Solid solutions with a LiI content of 6.25–50% were synthesized by high...

  9. The Technology of LiFi: A Brief Introduction

    Science.gov (United States)

    Ramadhani, E.; Mahardika, G. P.

    2018-03-01

    Light Fidelity (LiFi) is a Visible Light Communication (VLC) based technology that making a light as a media of communication replacing the cable wire communication. LiFi is evolve to overcome the rate speed in WiFi, while using LiFi the rate speed can reach until 14 Gbps. This paper presents an introduction of the LiFi technology including the architecture, modulation, performance, and the challenges. The result of this paper can be used as a reference and knowledge to develop some of the LiFi technology.

  10. Revision of the Li13Si4 structure

    Science.gov (United States)

    Zeilinger, Michael; Fässler, Thomas F.

    2013-01-01

    Besides Li17Si4, Li16.42Si4, and Li15Si4, another lithium-rich representative in the Li–Si system is the phase Li13Si4 (trideca­lithium tetra­silicide), the structure of which has been determined previously [Frank et al. (1975 ▶). Z. Naturforsch. Teil B, 30, 10–13]. A careful analysis of X-ray diffraction patterns of Li13Si4 revealed discrepancies between experimentally observed and calculated Bragg positions. Therefore, we redetermined the structure of Li13Si4 on the basis of single-crystal X-ray diffraction data. Compared to the previous structure report, decisive differences are (i) the introduction of a split position for one Li site [occupancy ratio 0.838 (7):0.162 (7)], (ii) the anisotropic refinement of atomic displacement parameters for all atoms, and (iii) a high accuracy of atom positions and unit-cell parameters. The asymmetric unit of Li13Si4 contains two Si and seven Li atoms. Except for one Li atom situated on a site with symmetry 2/m, all other atoms are on mirror planes. The structure consists of isolated Si atoms as well as Si–Si dumbbells surrounded by Li atoms. Each Si atom is either 12- or 13-coordinated. The isolated Si atoms are situated in the ab plane at z = 0 and are strictly separated from the Si–Si dumbbells at z = 0.5. PMID:24454148

  11. Revision of the Li13Si4 structure

    Directory of Open Access Journals (Sweden)

    Thomas F. Fässler

    2013-12-01

    Full Text Available Besides Li17Si4, Li16.42Si4, and Li15Si4, another lithium-rich representative in the Li–Si system is the phase Li13Si4 (tridecalithium tetrasilicide, the structure of which has been determined previously [Frank et al. (1975. Z. Naturforsch. Teil B, 30, 10–13]. A careful analysis of X-ray diffraction patterns of Li13Si4 revealed discrepancies between experimentally observed and calculated Bragg positions. Therefore, we redetermined the structure of Li13Si4 on the basis of single-crystal X-ray diffraction data. Compared to the previous structure report, decisive differences are (i the introduction of a split position for one Li site [occupancy ratio 0.838 (7:0.162 (7], (ii the anisotropic refinement of atomic displacement parameters for all atoms, and (iii a high accuracy of atom positions and unit-cell parameters. The asymmetric unit of Li13Si4 contains two Si and seven Li atoms. Except for one Li atom situated on a site with symmetry 2/m, all other atoms are on mirror planes. The structure consists of isolated Si atoms as well as Si–Si dumbbells surrounded by Li atoms. Each Si atom is either 12- or 13-coordinated. The isolated Si atoms are situated in the ab plane at z = 0 and are strictly separated from the Si–Si dumbbells at z = 0.5.

  12. Amorphous Li2 O2 : Chemical Synthesis and Electrochemical Properties.

    Science.gov (United States)

    Zhang, Yelong; Cui, Qinghua; Zhang, Xinmin; McKee, William C; Xu, Ye; Ling, Shigang; Li, Hong; Zhong, Guiming; Yang, Yong; Peng, Zhangquan

    2016-08-26

    When aprotic Li-O2 batteries discharge, the product phase formed in the cathode often contains two different morphologies, that is, crystalline and amorphous Li2 O2 . The morphology of Li2 O2 impacts strongly on the electrochemical performance of Li-O2 cells in terms of energy efficiency and rate capability. Crystalline Li2 O2 is readily available and its properties have been studied in depth for Li-O2 batteries. However, little is known about the amorphous Li2 O2 because of its rarity in high purity. Herein, amorphous Li2 O2 has been synthesized by a rapid reaction of tetramethylammonium superoxide and LiClO4 in solution, and its amorphous nature has been confirmed by a range of techniques. Compared with its crystalline siblings, amorphous Li2 O2 demonstrates enhanced charge-transport properties and increased electro-oxidation kinetics, manifesting itself a desirable discharge phase for high-performance Li-O2 batteries. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Electrochemical behavior of LiV3O8 positive electrode in hybrid Li,Na-ion batteries

    Science.gov (United States)

    Maletti, S.; Sarapulova, A.; Tsirlin, A. A.; Oswald, S.; Fauth, F.; Giebeler, L.; Bramnik, N. N.; Ehrenberg, H.; Mikhailova, D.

    2018-01-01

    Vanadium(V)-containing oxides show superior intercalation properties for alkaline ions, although the performance of the material strongly depends on its surface morphology. In this work, intercalation activity of LiV3O8, prepared by a conventional solid state synthesis, is demonstrated for the first time in non-aqueous Li,Na-ion hybrid batteries with Na as negative electrode, and different Na/Li ratios in the electrolyte. In the pure Na-ion cell, one Na per formula unit of LiV3O8 can be reversibly inserted at room temperature via a two-step process, while further intercalation leads to gradual amorphisation of the material, with a specific capacity of 190 mAhg-1 after 10 cycles in the potential window of 0.8-3.4 V. Hybrid Li,Na-ion batteries feature simultaneous intercalation of Li+ and Na+ cations into LiV3O8, resulting in the formation of a second phase. Depending on the electrolyte composition, this second phase bears structural similarities either to Li0.7Na0.7V3O8 in Na-rich electrolytes, or to Li4V3O8 in Li-rich electrolytes. The chemical diffusion coefficients of Na+ and Li+ in crystalline LiV3O8 are very close, hence explaining the co-intercalation of these cations. As DFT calculations show, once formed, the Li0.7Na0.7V3O8-type structure favors intercalation of Na+, whereas the LiV3O8-type prefers to accommodate Li+ cations.

  14. Novel Methods for Measuring LiDAR

    Science.gov (United States)

    Ayrey, E.; Hayes, D. J.; Fraver, S.; Weiskittel, A.; Cook, B.; Kershaw, J.

    2017-12-01

    The estimation of forest biometrics from airborne LiDAR data has become invaluable for quantifying forest carbon stocks, forest and wildlife ecology research, and sustainable forest management. The area-based approach is arguably the most common method for developing enhanced forest inventories from LiDAR. It involves taking a series of vertical height measurements of the point cloud, then using those measurements with field measured data to develop predictive models. Unfortunately, there is considerable variation in methodology for collecting point cloud data, which can vary in pulse density, seasonality, canopy penetrability, and instrument specifications. Today there exists a wealth of public LiDAR data, however the variation in acquisition parameters makes forest inventory prediction by traditional means unreliable across the different datasets. The goal of this project is to test a series of novel point cloud measurements developed along a conceptual spectrum of human interpretability, and then to use the best measurements to develop regional enhanced forest inventories on Northern New England's and Atlantic Canada's public LiDAR. Similarly to a field-based inventory, individual tree crowns are being segmented, and summary statistics are being used as covariates. Established competition and structural indices are being generated using each tree's relationship to one another, whilst existing allometric equations are being used to estimate diameter and biomass of each tree measured in the LiDAR. Novel metrics measuring light interception, clusteredness, and rugosity are also being measured as predictors. On the other end of the human interpretability spectrum, convolutional neural networks are being employed to directly measure both the canopy height model, and the point clouds by scanning each using two and three dimensional kernals trained to identify features useful for predicting biological attributes such as biomass. Predictive models will be trained and

  15. Searching for “LiCrIIPO4”

    International Nuclear Information System (INIS)

    Mosymow, E.; Glaum, R.; Kremer, R.K.

    2014-01-01

    The two new phosphates LiCr II 4 (PO 4 ) 3 and Li 5 Cr II 2 Cr III (PO 4 ) 4 are discovered as equilibrium phases (ϑ=800 °C) in the quarternary system Li/Cr/P/O. Their crystal structures have been determined from single-crystal X-ray diffraction data (LiCr II 4 (PO 4 ) 3 : violet-blue, Pnma (no. 62), Z=4, a=6.175(1) Å, b=14.316(3) Å, c=10.277(2) Å, 100 parameters, R 1 =0.028, wR 2 =0.08, 2060 unique reflections with F o >4σ(F o ); Li 5 Cr II 2 Cr III (PO 4 ) 4 : greyish-green, P1 ¯ (no. 2), Z=1, a=4.9379(7) Å, b=7.917(2) Å, c=8.426(2) Å, α=109.98(2)°, β=90.71(1)°, γ=104.91(1)°, 131 parameters, R 1 =0.022, wR 2 =0.067, 1594 unique reflections with F o >4σ(F o )). Li 5 Cr II 2 Cr III (PO 4 ) 4 adopts an hitherto unknown structure type. The crystal structure of LiCr II 4 (PO 4 ) 3 is isotypic to that of NaCd II 4 (PO 4 ) 3 and related to that of the mineral silicocarnotite Ca 5 (PO 4 ) 2 (SiO 4 ). Significant disorder between Li + and Cr 2+ is observed for both crystal structures. The oxidation states assigned to chromium in these two phosphates are in agreement with UV/vis/NIR absorption spectra and magnetic susceptibility data recorded for both compounds. Instead of “LiCr II PO 4 ” mixtures of LiCr II 4 (PO 4 ) 3 , Li 5 Cr II 2 Cr III (PO 4 ) 4 , Cr 2 O 3 , and CrP are observed at equilibrium. Instead of “Li 2 Cr II P 2 O 7 ” four-phase mixtures consisting of Li 9 Cr III 3 (P 2 O 7 ) 3 (PO 4 ) 2 , Li 3 Cr III 2 (PO 4 ) 3 , LiCrP 2 O 7 , and CrP were obtained. - Graphical abstract: Investigations on the equilibrium relations in the system Li/Cr/P/O revealed the two hitherto unknown phosphates Li 5 Cr II 2 Cr III (PO 4 ) 4 and LiCr II 4 (PO 4 ) 3 . They form instead of “LiCr II PO 4 ”. The crystal structures, magnetic behavior and optical spectra of these phosphates are reported. - Highlights: • The two new phosphates Li 5 Cr II 2 Cr III (PO 4 ) 4 and LiCr II 4 (PO 4 ) 3 have been characterized. • Optical spectra and paramagnetism of

  16. Neutron irradiation and compatibility testing of Li2O

    International Nuclear Information System (INIS)

    Porter, D.L.; Krsul, J.R.; Laug, M.T.; Walters, L.C.; Tetenbaum, M.

    1983-01-01

    A study was made of the neutron-irradiation behavior of 6 Li-enriched Li 2 O material in EBR-II. In addition, a stress-corrosion study was performed ex-reactor to test compatibility of Li 2 O materials with a variety of stainless steels. Results of the irradiation testing showed that tritium and helium retention in the Li 2 O (approx. 89% dense) lessened with neutron exposure. Helium and tritium retention appear to approach steady-state after approx. 1% 6 Li burnup. The stress-corrosion studies, using 316 stainless steel (Ti-modified) and a 35% Ni alloy, showed that stress does not enhance the corrosion, and that dry Li 2 O is not significantly corrosive, the LiOH content producing the corrosive effects. Corrosion, in general, was not severe as a passivation in sealed capsules seemed to occur after a time, greatly reducing corrosion rates

  17. G-LiHT: Goddard's LiDAR, Hyperspectral and Thermal Airborne Imager

    Science.gov (United States)

    Cook, Bruce; Corp, Lawrence; Nelson, Ross; Morton, Douglas; Ranson, Kenneth J.; Masek, Jeffrey; Middleton, Elizabeth

    2012-01-01

    Scientists at NASA's Goddard Space Flight Center have developed an ultra-portable, low-cost, multi-sensor remote sensing system for studying the form and function of terrestrial ecosystems. G-LiHT integrates two LIDARs, a 905 nanometer single beam profiler and 1550 nm scanner, with a narrowband (1.5 nanometers) VNIR imaging spectrometer and a broadband (8-14 micrometers) thermal imager. The small footprint (approximately 12 centimeters) LIDAR data and approximately 1 meter ground resolution imagery are advantageous for high resolution applications such as the delineation of canopy crowns, characterization of canopy gaps, and the identification of sparse, low-stature vegetation, which is difficult to detect from space-based instruments and large-footprint LiDAR. The hyperspectral and thermal imagery can be used to characterize species composition, variations in biophysical variables (e.g., photosynthetic pigments), surface temperature, and responses to environmental stressors (e.g., heat, moisture loss). Additionally, the combination of LIDAR optical, and thermal data from G-LiHT is being used to assess forest health by sensing differences in foliage density, photosynthetic pigments, and transpiration. Low operating costs (approximately $1 ha) have allowed us to evaluate seasonal differences in LiDAR, passive optical and thermal data, which provides insight into year-round observations from space. Canopy characteristics and tree allometry (e.g., crown height:width, canopy:ground reflectance) derived from G-LiHT data are being used to generate realistic scenes for radiative transfer models, which in turn are being used to improve instrument design and ensure continuity between LiDAR instruments. G-LiHT has been installed and tested in aircraft with fuselage viewports and in a custom wing-mounted pod that allows G-LiHT to be flown on any Cessna 206, a common aircraft in use throughout the world. G-LiHT is currently being used for forest biomass and growth estimation

  18. Synthesis, crystal structure, and TEM analysis of Sr19Li44 and Sr3Li2: a reinvestigation of the Sr-Li phase diagram.

    Science.gov (United States)

    Smetana, Volodymyr; Kienle, Lorenz; Duppel, Viola; Simon, Arndt

    2015-02-02

    Two intermetallic phases in the Sr-Li system have been synthesized and structurally characterized. According to single-crystal X-ray diffraction data, Sr(19)Li(44) and Sr(3)Li(2) crystallize with tetragonal unit cells (Sr(19)Li(44), I-42d, a = 15.9122(7) Å, c = 31.831(2) Å, Z = 4, V = 8059(2) Å(3); Sr(3)Li(2), P42/mnm, a = 9.803(1) Å, c = 8.784(2) Å, Z = 4, V = 844.2(2) Å(3)). The first compound is isostructural with the recently discovered Ba(19)Li(44). Sr in Sr(19)Li(44) can be fully replaced by Ba with no changes to the crystal structure, whereas the substitution of Sr by Ca is only possible within a limited concentration range. Sr(3)Li(2) can be assigned to the Al(2)Zr(3) structure type. The crystal structure determination of Sr(19)Li(44) was complicated by multiple twinning. As an experimental highlight, an electron microscopy investigation of the highly moisture- and electron-beam-sensitive crystals was performed, enabling high-resolution imaging of the defect structure.

  19. Thermal Stability of LiPF6 Salt and Li-ion Battery Electrolytes Containing LiPF6

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hui; Zhuang, Guorong V; Ross, Jr, Philip N

    2006-03-08

    The thermal stability of the neat LiPF6 salt and of 1 molal solutions of LiPF6 in prototypical Li-ion battery solvents was studied with thermogravimetric analysis (TGA) and on-line FTIR. Pure LiPF6 salt is thermally stable up to 380 K in a dry inert atmosphere, and its decomposition path is a simple dissociation producing LiF as solid and PF5 as gaseous products. In the presence of water (300 ppm) in the carrier gas, its decomposition onset temperature is lowered as a result of direct thermal reaction between LiPF6 and water vapor to form POF3 and HF. No new products were observed in 1 molal solutions of LiPF6 in EC, DMC and EMC by on-line TGA-FTIR analysis. The storage of the same solutions in sealed containers at 358 K for 300 420 hrs. did not produce any significant quantity of new products as well. In particular, noalkylflurophosphates were found in the solutions after storage at elevated temperature. In the absence of either an impurity like alcohol or cathode active material that may (or may not) act as a catalyst, there is no evidence of thermally induced reaction between LiPF6 and the prototypical Li-ion battery solvents EC, PC, DMC or EMC.

  20. A Li-Garnet composite ceramic electrolyte and its solid-state Li-S battery

    Science.gov (United States)

    Huang, Xiao; Liu, Cai; Lu, Yang; Xiu, Tongping; Jin, Jun; Badding, Michael E.; Wen, Zhaoyin

    2018-04-01

    A high strength Li-Garnet solid electrolyte composite ceramic is successfully prepared via conventional solid state method with Li6.4La3Zr1.4Ta0.6O12 and nano MgO powders. Well sintered ceramic pellets and bars are obtained with 0-9 wt.% MgO. Fracture strength is approximately 135 MPa for composite ceramics with 5-9 wt.% MgO, which is ∼50% higher than that of pure Li6.4La3Zr1.4Ta0.6O12 (90 MPa). Lithium-ion conductivity of the composite is above 5 × 10-4 S cm-1 at room temperature; comparable to the pure Li6.4La3Zr1.4Ta0.6O12 material. SEM cross-sections of the composite ceramic shows a much more uniform microstructure comparing with pure ones, owing to the grain growth inhibition effect of the MgO second phase. A battery cell consisting of Li/composite ceramics/Sulfur-Carbon at 25 °C exhibits a capacity of 685 mAh g-1 at 0.2 C at the 200th cycle, while maintaining a coulombic efficiency of 100%. These results indicate that the composite ceramic Li6.4La3Zr1.4Ta0.6O12-MgO is promising for the production of electrolyte membrane and fabrication of Li-Sulfur batteries.

  1. The LiBH4-LiI Solid Solution as an Electrolyte in an All-Solid-State Battery

    DEFF Research Database (Denmark)

    Sveinbjörnsson, Dadi Þorsteinn; Christiansen, Ane Sælland; Viskinde, Rasmus

    2014-01-01

    The charge and discharge performance of an all-solid-state lithium battery with the LiBH4-LiI solid solution as an electrolyte is reported. Lithium titanate (Li4Ti5O12) was used as the positive electrode and lithium metal as the negative electrode. The performance of the all-solid-state cell.......6% per charge-discharge cycle is observed. The electrochemical stability of the LiBH4-LiI solid solution was investigated using cyclic voltammetry and is found to be limited to 3 V. The impedance of the battery cells was measured using impedance spectroscopy. A strong correlation is found between...

  2. Absorption of water vapour in the falling film of water-(LiBr + LiI + LiNO{sub 3} + LiCl) in a vertical tube at air-cooling thermal conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bourouis, Mahmoud; Valles, Manel; Medrano, Marc; Coronas, Alberto [Centro de Innovacion Tecnologica en Revalorizacion Energetica y Refrigeracion, CREVER, Universitat Rovira i Virgili, Autovia de Salou, s/n, 43006, Tarragona (Spain)

    2005-05-01

    In air-cooled water-LiBr absorption chillers the working conditions in the absorber and condenser are shifted to higher temperatures and concentrations, thereby increasing the risk of crystallisation. To develop this technology, two main problems are to be addressed: the availability of new salt mixtures with wider range of solubility than water-LiBr, and advanced absorber configurations that enable to carry out simultaneously an appropriate absorption process and an effective air-cooling. One way of improving the solubility of LiBr aqueous solutions is to add other salts to create multicomponent salt solutions. The aqueous solution of the quaternary salt system (LiBr + LiI + LiNO{sub 3} + LiCl) presents favourable properties required for air-cooled absorption systems: less corrosive and crystallisation temperature about 35 K lower than that of water-LiBr.This paper presents an experimental study on the absorption of water vapour over a wavy laminar falling film of an aqueous solution of (LiBr + LiI + LiNO{sub 3} + LiCl) on the inner wall of a water-cooled smooth vertical tube. Cooling water temperatures in the range 30-45 C were selected to simulate air-cooling thermal conditions. The results are compared with those obtained in the same experimental set-up with water-LiBr solutions.The control variables for the experimental study were: absorber pressure, solution Reynolds number, solution concentration and cooling water temperature. The parameters considered to assess the absorber performance were: absorber thermal load, mass absorption flux, degree of subcooling of the solution leaving the absorber, and the falling film heat transfer coefficient.The higher solubility of the multicomponent salt solution makes possible the operation of the absorber at higher salt concentration than with the conventional working fluid water-LiBr. The absorption fluxes achieved with water-(LiBr + LiI + LiNO{sub 3} + LiCl) at a concentration of 64.2 wt% are around 60 % higher than

  3. Impedance studies on Li-ion cathodes

    Energy Technology Data Exchange (ETDEWEB)

    NAGASUBRAMANIAN, GANESAN

    2000-04-17

    This paper describes the author's 2- and 3-electrode impedance results of metal oxide cathodes. These results were extracted from impedance data on 18650 Li-ion cells. The impedance results indicate that the ohmic resistance of the cell is very nearly constant with state-of-charge (SOC) and temperature. For example, the ohmic resistance of 18650 Li-ion cells is around 60 m{Omega} for different SOCS (4.1V to 3.0V) and temperatures from 35 C to {minus}20 C. However, the interfacial impedance shows a modest increase with SOC and a huge increase of between 10 and 100 times with decreasing temperature. For example, in the temperature regime (35 C down to {minus}20 C) the overall cell impedance has increased from nearly 200 m{Omega} to 8,000 m{Omega}. Most of the increase in cell impedance comes from the metal oxide cathode/electrolyte interface.

  4. Tailored Oxygen Framework of Li4Ti5O12 Nanorods for High-Power Li Ion Battery.

    Science.gov (United States)

    Song, Kyeongse; Seo, Dong-Hwa; Jo, Mi Ru; Kim, Yong-Il; Kang, Kisuk; Kang, Yong-Mook

    2014-04-17

    Here we designed the kinetically favored Li4Ti5O12 by modifying its crystal structure to improve intrinsic Li diffusivity for high power density. Our first-principles calculations revealed that the substituted Na expanded the oxygen framework of Li4Ti5O12 and facilitated Li ion diffusion in Li4Ti5O12 through 3-D high-rate diffusion pathway secured by Na ions. Accordingly, we synthesized sodium-substituted Li4Ti5O12 nanorods having not only a morphological merit from 1-D nanostructure engineering but also sodium substitution-induced open framework to attain ultrafast Li diffusion. The new material exhibited an outstanding cycling stability and capacity retention even at 200 times higher current density (20 C) compared with the initial condition (0.1 C).

  5. GRETEL, Ge(Li) Gamma Spectra Unfolding

    International Nuclear Information System (INIS)

    1975-01-01

    1 - Nature of physical problem solved: The program performs the quantitative analysis of gamma-ray spectra obtained by Ge(Li) detectors, using special libraries which are prepared for each particular problem. 2 - Method of solution: The computer routines which detect and evaluate peak areas perform the following operations: - local smoothing of the spectrum; - first derivative of the smoothed spectrum, - peak location according to the change of sign of the first derivative; - computation of the net area of each peak found

  6. Li-Yorke chaos in linear dynamics

    Czech Academy of Sciences Publication Activity Database

    Bernardes Jr., N.C.; Bonilla, A.; Müller, Vladimír; Peris, A.

    2015-01-01

    Roč. 35, č. 6 (2015), s. 1723-1745 ISSN 0143-3857 R&D Projects: GA ČR GA201/09/0473; GA AV ČR IAA100190903 Institutional support: RVO:67985840 Keywords : Li-York chaos * Banach space * Fréchet space Subject RIV: BA - General Mathematics Impact factor: 0.983, year: 2015 http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=9884748&fileId=S0143385714000200

  7. Radiative association of LiHe+

    Czech Academy of Sciences Publication Activity Database

    Augustovičová, Lucie; Špirko, Vladimír; Kraemer, W. P.; Soldán, P.

    2012-01-01

    Roč. 531, 2 Apr (2012), s. 59-63 ISSN 0009-2614 R&D Projects: GA ČR GAP208/11/0436 Institutional research plan: CEZ:AV0Z40550506 Keywords : early universe * ab-initio * astrophysical plasmas * molecular processes * long range resonance * HEH+ * LI+ Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.145, year: 2012

  8. Electromagnetically induced transparency in 6Li

    International Nuclear Information System (INIS)

    Fuchs, J; Duffy, G J; Rowlands, W J; Akulshin, A M

    2006-01-01

    We report electromagnetically induced transparency for the D1 and D2 lines in 6 Li in both a vapour cell and an atomic beam. Electromagnetically induced transparency is created using copropagating mutually coherent laser beams with a frequency difference equal to the hyperfine ground state splitting of 228.2 MHz. The effects of various optical polarization configurations and applied magnetic fields are investigated. In addition, we apply an optical Ramsey spectroscopy technique which further reduces the observed resonance width

  9. Endurance testing with Li/Na electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Ong, E.T.; Remick, R.J.; Sishtla, C.I. [Institute of Gas Technology, Des Plaines, IL (United States)

    1996-12-31

    The Institute of Gas Technology (IGT), under subcontract to M-C Power Corporation under DOE funding, has been operating bench-scale fuel cells to investigate the performance and endurance issues of the Li/Na electrolyte because it offers higher ionic conductivity, higher exchange current densities, lower vapor pressures, and lower cathode dissolution rates than the Li/K electrolyte. These cells have continued to show higher performance and lower decay rates than the Li/K cells since the publication of our two previous papers in 1994. In this paper, test results of two long-term 100-cm{sup 2} bench scale cells are discussed. One cell operated continuously at 160 mA/cm{sup 2} for 17,000 hours with reference gases (60H{sub 2}/20CO{sub 2}/20H{sub 2}O fuel at 75% utilization and 30CO{sub 2}/70 air oxidant humidified at room temperature at 50% utilization). The other cell operated at 160 mA/cm{sup 2} for 6900 hours at 3 atm with system gases (64H{sub 2}/16CO{sub 2}/20H{sub 2}O at 75% utilization and an M-C Power system-defined oxidant at 40% utilization). Both cells have shown the highest performance and longest endurance among IGT cells operated to date.

  10. Prussian Blue Mg-Li Hybrid Batteries.

    Science.gov (United States)

    Sun, Xiaoqi; Duffort, Victor; Nazar, Linda F

    2016-08-01

    The major advantage of Mg batteries relies on their promise of employing an Mg metal negative electrode, which offers much higher energy density compared to graphitic carbon. However, the strong coulombic interaction of Mg 2+ ions with anions leads to their sluggish diffusion in the solid state, which along with a high desolvation energy, hinders the development of positive electrode materials. To circumvent this limitation, Mg metal negative electrodes can be used in hybrid systems by coupling an Li + insertion cathode through a dual salt electrolyte. Two "high voltage" Prussian blue analogues (average 2.3 V vs Mg/Mg 2+ ; 3.0 V vs Li/Li + ) are investigated as cathode materials and the influence of structural water is shown. Their electrochemical profiles, presenting two voltage plateaus, are explained based on the two unique Fe bonding environments. Structural water has a beneficial impact on the cell voltage. Capacities of 125 mAh g -1 are obtained at a current density of 10 mA g -1 (≈C/10), while stable performance up to 300 cycles is demonstrated at 200 mA g -1 (≈2C). The hybrid cell design is a step toward building a safe and high density energy storage system.

  11. Composite Solid Electrolyte for Li Battery Applications

    Science.gov (United States)

    Nagasubramanian, G.; Attia, A. I.; Halpert, G.; Peled, E.

    1993-01-01

    The electrochemical, bulk and interfacial properties of the polyethylene oxide (PEO) based composite solid electrolyte (CSE) comprising LiI, PEO, and Al2O3 have been evaluated for Li battery applications. The bulk interfacial and transport properties of the CSEs seem to strongly depend on the alumina particle size. For the CSE films with 0.05 micron alumina while the bulk conductivity is around 10(exp -4) (mho/cm) at 103 C, the Li ion transport number seems to be close to unity at the same temperature. Compared to the PEO electrolyte this polymer composite electrolyte seems to exhibit robust mechanical and interfacial properties. We have studied three different films with three different alumina sizes in the range 0.01-0.3 micron. Effects of Al2O3 particle size on the electrochemical performance of polymer composite electrolyte is discussed. With TiS2 as cathode a 10 mAh small capacity cell was charged and discharged at C/40 and C/20 rates respectively.

  12. Dielectric properties of Li doped Li-Nb-O thin films

    Energy Technology Data Exchange (ETDEWEB)

    Perentzis, G.; Horopanitis, E.E.; Papadimitriou, L. [Aristotle University of Thessaloniki, Department of Physics, 54124 Thessaloniki (Greece); Durman, V.; Saly, V.; Packa, J. [Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 81219 Bratislava (Slovakia)

    2007-03-15

    Lithium niobate LiNbO{sub 3} was prepared as a thin film layered structure deposited on stainless steel substrate using e-gun evaporation. The Li doping was provided for by the formation of Li-Nb-O/Li/LiNb-O sandwich structure and annealing at about 250 C. AC impedance spectroscopy measurements were performed on the samples at temperatures from the interval between 28 and 165 C and in a frequency range of 10{sup -3} to 10{sup 6} Hz. Using the values Z' and Z'' at different frequencies, the dielectric parameters - parts of the complex permittivity {epsilon}' and {epsilon}'' and loss tangent tan {delta} were calculated. The results prove validity of the proposed equivalent circuit containing parallel RC elements connected in series where the first RC element represents the bulk of material and the second RC element belongs to the double layer at the metal interface. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Irradiation cryostat for LiH and LiD polarized solid targets

    International Nuclear Information System (INIS)

    Goertz, S.

    1991-01-01

    Scattering experiments with polarized nucleon targets are an important tool to understand the nuclear spin structure. Pion photoproduction experiments on polarized protrons and neutrons as well as measurements of the neutron and deuteron formfactors will be performed at ELSA. 7 LiH and 6 LiD seem to be attractive target materials for these experiments, because they offer high proton and deuteron polarisation, respectively. Expecially 6 LiD has further very important advantages compared to the common deuteron target materials as d-Butanol and ND 3 . This work describes the mechanism of DNP (Dynamic Nuclear Polarization) in LiH and LiD and gives a view on the nature of the so-called paramagnetic impurities in these materials. In order to maximize the nuclear polarization, the production of these radicals have to take place under well defined temperature conditions. Therefore the first version of an irradiation cryostat was built and tested in regard to its cooling power and temperature adjustment. (orig.)

  14. Generation of Li combustion aerosols for animal inhalation studies.

    Science.gov (United States)

    Allen, M D; Greenspan, B J; Briant, J K; Hoover, M D

    1986-07-01

    A system was developed for generating Li aerosols to determine the potential health hazards of postulated accidents associated with the use of Li as a fusion reactor blanket or coolant. The aerosol was generated by sweeping Ar through a stainless steel chamber filled with Li metal that was heated inductively to temperatures up to 1300 degrees C. Argon carried the Li vapor into a burning chamber where it was mixed with air. The reaction of Li vapor with air formed an intense white flame that produced typical branched-chain condensation aerosol particles. This system generated well-controlled concentrations up to 2500 mg/m3 for periods of 4 h. The mass median aeordynamic diameter of the aerosol was approximately 0.66 micron with a geometric standard deviation of 1.5. Aerosols could be generated that were greater than 96% Li2O and LiOH, LiOH.H2O, or Li2CO3 by controlling the CO2 and H2O concentrations in the supply air. The system is currently being used to investigate the acute toxicity of Li combustion aerosols in laboratory animals.

  15. Dehydriding and rehydriding reactions of LiBH4

    International Nuclear Information System (INIS)

    Orimo, S.; Nakamori, Y.; Kitahara, G.; Miwa, K.; Ohba, N.; Towata, S.; Zuettel, A.

    2005-01-01

    Structural differences in LiBH 4 before and after the melting reaction at approximately 550-bar K were investigated to clarify the experimental method for the confirmation of reversible dehydriding and rehydriding reactions. Since the long-range order of LiBH 4 begins to disappear after the melting reaction was achieved, investigation of the atomistic vibrations of the [BH 4 ]-anion in LiBH 4 was found to be effective for the confirmation of the reversibility. In the present study, LiBH 4 was successively dehydrided (decomposed) into LiH and B under 1-bar MPa of hydrogen at 873-bar K, and then rehydrided (recombined) into LiBH 4 under 35-bar MPa of hydrogen at the same temperature (873-bar K). The temperatures at the beginning and ending of the dehydriding reaction are lowered, by approximately 30-bar K, for LiBH 4 substituted (or mixed) with Mg (atomic ratio of Li:Mg=9:1) as compared to those for LiBH 4 alone. This is similar to the tendency exhibited by LiNH 2

  16. The interstellar lithium abundance and the 7Li/6Li ratio

    International Nuclear Information System (INIS)

    Ferlet, R.; Dennefeld, M.

    1985-01-01

    The λ 6708 doublet of interstellar Li I has been observed at high spectral resolution (3.km s -1 ) and very good signal to noise ratio (∼ 4000) towards δ Sco and ζ Oph. Using a profile fitting method, we derive for the first time outside the solar system a 7 Li/ 6 Li ratio of 38 for a diffuse cloud in front of ζ Oph. Even the lower limit of the error bar is incompatible with the ratio measured in meteorites and is not explained by recent models of galactic evolution. The existence of a local inhomogeneity is suggested. Finally, as for other alkalis, lithium is depleted on to dust grains in the diffuse interstellar medium [fr

  17. Lamb shifts and hyperfine structure in 6Li+ and 7Li+: Theory and experiment

    DEFF Research Database (Denmark)

    Riis, E.; Sinclair, A. G.; Poulsen, Ove

    1994-01-01

    High-precision laser-resonance measurements accurate to +/-0.5 MHz, or better are reported for transitions among the 1s2s S-3(1)-1s2p P-3(J) hyperfine manifolds for each of J = 0, 1, and 2 in both Li-6(+) and Li-7(+). A detailed analysis of hyperfine structure is performed for both the S and P......-order non-QED contributions to the transition frequencies are subtracted from the measurements to obtain the residual QED shifts. The isotope-averaged and spin-averaged effective shift for Li-7(+) is 37 429.40 +/- 0.39 MHz, with an additional uncertainty of +/-1.5 MHs due to finite nuclear size corrections...

  18. Materials for LiGA and LiGA-based microsystems

    International Nuclear Information System (INIS)

    Hormes, J.; Goettert, J.; Lian, K.; Desta, Y.; Jian, L.

    2003-01-01

    The LiGA technique that has been developed for the inexpensive mass fabrication of microdevices consists of three basic processes: X-ray lithography, electroforming and moulding. In each of these steps the properties of the used materials and the process parameters are strongly correlated to each other. Thus, optimizing processes requires detailed knowledge of the materials properties especially as the LiGA technique offers an extremely broad variety of materials (polymers, metals, alloys, ceramics) for the fabrication of three-dimensional microstructures. When it comes to specific applications of LiGA devices, it is often desirable to tailor the properties of materials and surfaces e.g. in respect to mechanical properties, optical properties, thermo- and electrochemical stability and biocompatibility. Again, a detailed knowledge of the properties of the various materials is crucial to optimize these tasks, keeping in mind that these properties on the microscale can differ from those of bulk materials

  19. Photoemission studies of oxygen adsorbed on a LiAl(1-bar 1-bar 0) alloy surface: Role of Li segregation

    International Nuclear Information System (INIS)

    Lee, D.; Lee, H.G.; Hwang, C.; Maeng, J.Y.; Kim, S.; Kim, K.-J.; Kim, B.

    2006-01-01

    We investigated that the effect of the number of segregated Li atoms on the rate of oxidation on a LiAl alloy surface. Oxygen molecules adsorbed on the LiAl alloy react with the surface atoms to form stable oxides. The segregated Li atoms at reconstructed surfaces (c(2x2) and (2x1)) enhance the oxidation rate and form stable LiAlO x and Li 2 O. The degree of enhancement of oxidation by segregated Li atoms varies as a function of O 2 exposure and annealing temperature, where the latter is directly related to the mode of surface reconstruction by Li segregation

  20. Controllable synthesis of porous LiFePO4 for tunable electrochemical Li-insertion performance

    International Nuclear Information System (INIS)

    Tian, Xiaohui; Zhou, Yingke; Wu, Guan; Wang, Pengcheng; Chen, Jian

    2017-01-01

    Highlights: • A templated freeze-drying method is developed to prepare the porous LiFePO 4 . • The pore size and porosity can be controlled by adjusting the conditions. • The effects of the porous properties on the Li-insertion performances are studied. • The optimized composite presents excellent specific capacity and rate capability. - Abstract: A templated freeze-drying method is developed to prepare the porous LiFePO 4 materials with the controlled pore size and porosity, by conveniently adjusting the size and content of the template in the precursor solution. The morphology and structure of the porous LiFePO 4 materials are characterized and the relavant electrochemical lithium-insertion performances are systematically studied. It’s found that the porous characteristics play a critical role in the lithium-ion intercalation processes and significantly affect the power capability of LiFePO 4 . The optimized porous LiFePO 4 material presents remarkable specific capacity (167 mAh g −1 at 0.1 C), rate capability (151 mAh g −1 at 1 C and 110 mAh g −1 at 10 C) and cycling stability (99.3% retention after 300 cycles at 1 C). These findings demonstrate that the electrochemical performance of the electrode material can be purposely tuned and remarkably improved by the rational design and introduction of the suitable pores, which open up new strategies for the synthesis of advanced porous materials for the lithium-ion power battery applications.

  1. Cycling performances of Li/LiCoO2 cell with polymer-coated separator

    International Nuclear Information System (INIS)

    Jeong, Yeon-Bok; Kim, Dong-Won

    2004-01-01

    Gel polymer electrolyte (GPE) was prepared with the porous polymer-coated separator by soaking in an electrolyte solution. The porous polymer coated on both sides of polyethylene separator was gelled in contact with the electrolyte solution and encapsulated a larger amount of electrolyte solution. The gel polymer electrolyte exhibited high ionic conductivity in order of 10 -3 S/cm and was electrochemically stable up to 4.9 versus Li. With the gel polymer electrolyte, lithium metal polymer cell composed of a lithium anode and LiCoO 2 cathode was assembled and its cycling performances were evaluated

  2. LiCl-LiI molten salt electrolyte with bismuth-lead positive electrode for liquid metal battery

    Science.gov (United States)

    Kim, Junsoo; Shin, Donghyeok; Jung, Youngjae; Hwang, Soo Min; Song, Taeseup; Kim, Youngsik; Paik, Ungyu

    2018-02-01

    Liquid metal batteries (LMBs) are attractive energy storage device for large-scale energy storage system (ESS) due to the simple cell configuration and their high rate capability. The high operation temperature caused by high melting temperature of both the molten salt electrolyte and metal electrodes can induce the critical issues related to the maintenance cost and degradation of electrochemical properties resulting from the thermal corrosion of materials. Here, we report a new chemistry of LiCl-LiI electrolyte and Bi-Pb positive electrode to lower the operation temperature of Li-based LMBs and achieve the long-term stability. The cell (Li|LiCl-LiI|Bi-Pb) is operated at 410 °C by employing the LiCl-LiI (LiCl:LiI = 36:64 mol %) electrolyte and Bi-Pb alloy (Bi:Pb = 55.5:44.5 mol %) positive electrode. The cell shows excellent capacity retention (86.5%) and high Coulombic efficiencies over 99.3% at a high current density of 52 mA cm-2 during 1000th cycles.

  3. A Stable, Magnetic, and Metallic Li3O4 Compound as a Discharge Product in a Li-Air Battery.

    Science.gov (United States)

    Yang, Guochun; Wang, Yanchao; Ma, Yanming

    2014-08-07

    The Li-air battery with the specific energy exceeding that of a Li ion battery has been aimed as the next-generation battery. The improvement of the performance of the Li-air battery needs a full resolution of the actual discharge products. Li2O2 has been long recognized as the main discharge product, with which, however, there are obvious failures on the understanding of various experimental observations (e.g., magnetism, oxygen K-edge spectrum, etc.) on discharge products. There is a possibility of the existence of other Li-O compounds unknown thus far. Here, a hitherto unknown Li3O4 compound as a discharge product of the Li-air battery was predicted through first-principles swarm structure searching calculations. The new compound has a unique structure featuring the mixture of superoxide O2(-) and peroxide O2(2-), the first such example in the Li-O system. The existence of superoxide O2(-) creates magnetism and hole-doped metallicity. Findings of Li3O4 gave rise to direct explanations of the unresolved experimental magnetism, triple peaks of oxygen K-edge spectra, and the Raman peak at 1125 cm(-1) of the discharge products. Our work enables an opportunity for the performance of capacity, charge overpotential, and round-trip efficiency of the Li-air battery.

  4. Elastic, dynamical, and electronic properties of LiHg and Li3Hg: First-principles study

    Science.gov (United States)

    Wang, Yan; Hao, Chun-Mei; Huang, Hong-Mei; Li, Yan-Ling

    2018-04-01

    The elastic, dynamical, and electronic properties of cubic LiHg and Li3Hg were investigated based on first-principles methods. The elastic constants and phonon spectral calculations confirmed the mechanical and dynamical stability of the materials at ambient conditions. The obtained elastic moduli of LiHg are slightly larger than those of Li3Hg. Both LiHg and Li3Hg are ductile materials with strong shear anisotropy as metals with mixed ionic, covalent, and metallic interactions. The calculated Debye temperatures are 223.5 K and 230.6 K for LiHg and Li3Hg, respectively. The calculated phonon frequency of the T2 g mode in Li3Hg is 326.8 cm-1. The p states from the Hg and Li atoms dominate the electronic structure near the Fermi level. These findings may inspire further experimental and theoretical study on the potential technical and engineering applications of similar alkali metal-based intermetallic compounds.

  5. Preparation and Doping Mode of Doped LiMn2O4 for Li-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Jian Zeng

    2013-03-01

    Full Text Available Spinel LiMn2O4 is an appealing candidate cathode material for Li-ion rechargeable batteries, but it suffers from severe capacity fading, especially at higher temperature (55 °C during discharging/charging. In recent years, many attempts have been made to synthesize modified LiMn2O4. This paper reviews the recent research on the preparation and doping modes of doped LiMn2O4 for modifying the LiMn2O4. We firstly compared preparation methods for doped spinel LiMn2O4, such as solid state reactions and solution synthetic methods. Then we mainly discuss doping modes reported in recent years, such as bulk doping, surface doping and combined doping. A comparison of different doping modes is also provided. The research shows that the multiple-ion doping and combined doping modes of LiMn2O4 used in Li-ion battery are excellent for improving different aspects of the electrochemical performance which holds great promise in the future. From this paper, we also can see that spinel LiMnO4 as an attractive candidate cathode material for Li-ion batteries.

  6. Üliõpilasteatrid - teistmoodi teater / Kalev Kudu

    Index Scriptorium Estoniae

    Kudu, Kalev, 1961-

    2007-01-01

    Üliõpilasteatrite VI maailmakongressist 21. - 26. juulini Urbinos Itaalias. Autor oma ettekandest teemal "Üliõpilasteater kui mäss. Üliõpilasteatrite eriline missioon globaliseeruvas maailmas". Lühiintervjuu Liege'i ülikooli professori, üliõpilasteatri kunstilise juhi ja Rahvusvahelise Üliõpilasteatrite Liidu (AITU) esimehe Robert Germayga. Etendustest: "Shahrazad - neitsi Bagdadist" (Bologna ülikool, Itaalia"), "Mbomo-mvet" (Yaounde ülikool, Kamerun), "The Believed Dead" (Brescia Katoliiklik Ülikool, Itaalia), "Teenrid" (Teatro Verga, Milano ülikool, Itaalia), "Antigone" (Ateena ülikool, Kreeka), "Tilt!" (Teatro Aenigma, Urbino ülikool, Itaalia), "Paroodia" (Milano ja Urbino ülikoolide üliõpilased), "Erose tiivad" (Saloniki ülikool, Kreeka), "Kolmas laps" (Long Islandi ülikool, USA), "Lee-Oki lugu" (Hoseo ülikool, Lõuna-Korea), "Ülikond" (Vilniuse Tehnikaülikool, Leedu)

  7. CuLi2Sn and Cu2LiSn: Characterization by single crystal XRD and structural discussion towards new anode materials for Li-ion batteries

    International Nuclear Information System (INIS)

    Fürtauer, Siegfried; Effenberger, Herta S.; Flandorfer, Hans

    2014-01-01

    The stannides CuLi 2 Sn (CSD-427095) and Cu 2 LiSn (CSD-427096) were synthesized by induction melting of the pure elements and annealing at 400 °C. The phases were reinvestigated by X-ray powder and single-crystal X-ray diffractometry. Within both crystal structures the ordered CuSn and Cu 2 Sn lattices form channels which host Cu and Li atoms at partly mixed occupied positions exhibiting extensive vacancies. For CuLi 2 Sn, the space group F-43m. was verified (structure type CuHg 2 Ti; a=6.295(2) Å; wR 2 (F²)=0.0355 for 78 unique reflections). The 4(c) and 4(d) positions are occupied by Cu atoms and Cu+Li atoms, respectively. For Cu 2 LiSn, the space group P6 3 /mmc was confirmed (structure type InPt 2 Gd; a=4.3022(15) Å, c=7.618(3) Å; wR 2 (F²)=0.060 for 199 unique reflections). The Cu and Li atoms exhibit extensive disorder; they are distributed over the partly occupied positions 2(a), 2(b) and 4(e). Both phases seem to be interesting in terms of application of Cu–Sn alloys as anode materials for Li-ion batteries. - Highlights: • First single crystal investigation of CuLi 2 Sn and Cu 2 LiSn clarifies contradictions from literature. • Lithium atoms are ordered in channels, which is interesting for application as anode materials for lithium ion batteries. • Structural relationships to binary Cu–Sn-phases are shown. • Close structural relationship between both ternary phases exists

  8. Estimation of thermophysical properties in the system Li-Pb

    International Nuclear Information System (INIS)

    Jauch, U.; Schulz, B.

    1986-01-01

    Based on the phase diagram and the knowledge of thermophysical properties data of alloys and intermetallic compounds in the Li-Pb system, quantitative relationships between several properties and between the properties in solid and liquid state are used: to interpret the results on thermophysical properties in the quasibinary system LiPb-Pb and to estimate unknown properties in the concentration range 100 > Li (at.%) > 50. (orig.)

  9. Study of vaporization of LiI, LiI/C70, LiI/LiF/C70 from the Knudsen cell located into ionization chamber of the mass spectrometer

    Directory of Open Access Journals (Sweden)

    Đustebek Jasmina

    2014-01-01

    Full Text Available The vaporization of LiI, LiI/C70 and LiI/LIF/C70 were studied using a Knudsen cell located into ionization chamber of a magnetic sector mass spectrometer in a temperature range from 350 ˚C to 850 ˚C. Аs the ion species, LinI+ (n = 2, 3, 4, and 6 were identified from a mixture LiI/C70. While the clusters LinI+ and LinF+ (n = 2 - 6 were detected from a mixture LiI/LiF/C70. The intensities of LinI+ were higher than the emission of LinF+ cluster when the ratio of LiI to LiF was 2:1. By contrast, the emission of the LinF+ is favored when the ratio of LiI to LiF was 1:2. These results show that the vaporization of a mixture LiI/LIF/C70 from the Knudsen cell located into ionization chamber of the mass spectrometer represents an efficient and simple way to obtain and investigate clusters of the type LinX, X-F, I. In this work it has also been shown that the trend of the ln (Intensity, arbit. units versus temperature for all LinI+ clusters before and after the melting point of LiI was not same. It suggested that the way of the formation of these clusters can be different due to changes in temperature. [Projekat Ministarstva nauke Republike Srbije, br. 172019

  10. The WiLI benchmark dataset for written language identification

    OpenAIRE

    Thoma, Martin

    2018-01-01

    This paper describes the WiLI-2018 benchmark dataset for monolingual written natural language identification. WiLI-2018 is a publicly available, free of charge dataset of short text extracts from Wikipedia. It contains 1000 paragraphs of 235 languages, totaling in 23500 paragraphs. WiLI is a classification dataset: Given an unknown paragraph written in one dominant language, it has to be decided which language it is.

  11. LiDAR Application for WInd Energy Efficiency : Final report

    NARCIS (Netherlands)

    Boorsma, K; Wagenaar, J.W.; Savenije, F.J.; Boquet, M.; Bierbooms, W.A.A.M.; Giyanani, A.H.; Rutteman, R.

    2016-01-01

    ECN with its partners TU DelŌ, Avent LiDAR Technologies and XEMC Darwind executed the four-year TKI Wind op Zee project LAWINE (LiDAR ApplicaƟon for WInd Energy Efficiency). In this project the applica Ɵon of LiDAR technology has been developed and validated so that it can be used to improve the

  12. Reoxidation of uranium metal immersed in a Li2O-LiCl molten salt after electrolytic reduction of uranium oxide

    Science.gov (United States)

    Choi, Eun-Young; Jeon, Min Ku; Lee, Jeong; Kim, Sung-Wook; Lee, Sang Kwon; Lee, Sung-Jai; Heo, Dong Hyun; Kang, Hyun Woo; Jeon, Sang-Chae; Hur, Jin-Mok

    2017-03-01

    We present our findings that uranium (U) metal prepared by using the electrolytic reduction process for U oxide (UO2) in a Li2O-LiCl salt can be reoxidized into UO2 through the reaction between the U metal and Li2O in LiCl. Two salt types were used for immersion of the U metal: one was the salt used for electrolytic reduction, and the other was applied to the unused LiCl salts with various concentrations of Li2O and Li metal. Our results revealed that the degree of reoxidation increases with the increasing Li2O concentration in LiCl and that the presence of the Li metal in LiCl suppresses the reoxidation of the U metal.

  13. Adiabatic and Nonadiabatic Charge Transport in Li-S Batteries

    DEFF Research Database (Denmark)

    Park, Haesun; Kumar, Nitin; Melander, Marko

    2017-01-01

    The insulating nature of the redox end members in Li-S batteries, -S and Li2S, has the potential to limit the capacity and efficiency of this emerging energy storage system. Nevertheless, the mechanisms responsible for ionic and electronic transport in these materials remain a matter of debate...... studies, we conclude that low equilibrium carrier concentrations are responsible for sluggish charge transport in -S and Li2S. Thus, a potential strategy for improving the performance of Li-S batteries is to increase the concentrations of holes in these redox end members....

  14. Li partitioning in the benthic foraminifera Amphistegina lessonii

    Science.gov (United States)

    Langer, Gerald; Sadekov, Aleksey; Thoms, Silke; Mewes, Antje; Nehrke, Gernot; Greaves, Mervyn; Misra, Sambuddha; Bijma, Jelle; Elderfield, Henry

    2015-12-01

    The shallow water benthic foraminifer Amphistegina lessonii was grown in seawater of variable Li and Ca concentration and shell Li/Ca was determined by means of LA-ICPMS. Shell Li/Ca is positively correlated to seawater Li/Ca only when the Li concentration of seawater is changed. If the seawater Ca concentration is changed, shell Li/Ca remains constant. This indicates that Li does not compete with Ca for incorporation in the shell of A. lessonii. A recently proposed calcification model can be applied to divalent cations (e.g., Mg and Sr), which compete for binding sites of ion transporters and positions in the calcite lattice. By contrast, the transport pathway of monovalent cations such as Li is probably diffusion based (e.g., ion-channels), and monovalent cations do not compete with Ca for a position in the calcite lattice. Here we present a new model for Li partitioning into foraminiferal calcite which predicts our experimental results and should also be applicable to other alkali metals.

  15. PWFA plasma source - interferometric diagnostics for Li vapor density measurements

    International Nuclear Information System (INIS)

    Sivakumaran, V.; Mohandas, K.K.; Singh, Sneha; Ravi Kumar, A.V.

    2015-01-01

    A prototype (40 cm long) plasma source based on Li heat pipe oven has been developed for the Plasma Wakefield Acceleration (PWFA) experiments at IPR (IPR), Gujarat as a part of the ongoing Accelerator Programme. Li vapor in the oven is produced by heating solid Li in helium buffer gas. A uniform column of Li plasma is generated by UV photo ionization (193 nm) of the Li vapor in the heat pipe oven. In these experiments, an accurate measurement of Li vapor density is important as it has got a direct consequence on the plasma electron density. In the present experiment, the vapor density is measured optically by using Hook method (spectrally resolved white light interferometry). The hook like structure formed near the vicinity of the Li 670.8 nm resonance line was recorded with a white light Mach Zehnder interferometer crossed with an imaging spectrograph to estimate the Li vapor density. The vapor density measurements have been carried out as a function of external oven temperature and the He buffer gas pressure. This technique has the advantage of being insensitive to line broadening and line shape, and its high dynamic range even with optically thick absorption line. Here, we present the line integrated Lithium vapor density measurement using Hook method and also compare the same with other optical diagnostic techniques (White light absorption and UV absorption) for Li vapor density measurements. (author)

  16. Stationary Flowing Liquid Lithium (SFLiLi) systems for tokamaks

    Science.gov (United States)

    Zakharov, Leonid; Gentile, Charles; Roquemore, Lane

    2013-10-01

    The present approach to magnetic fusion which relies on high recycling plasma-wall interaction has exhausted itself at the level of TFTR, JET, JT-60 devices with no realistic path to the burning plasma. Instead, magnetic fusion needs a return to its original idea of insulation of the plasma from the wall, which was the dominant approach in the 1970s and upon implementations has a clear path to the DEMO device with PDT ~= 100 MW and Qelectric > 1 . The SFLiLi systems of this talk is the technology tool for implementation of the guiding idea of magnetic fusion. It utilizes the unique properties of flowing LiLi to pump plasma particles and, thus, insulate plasma from the walls. The necessary flow rate, ~= 1 g3/s, is very small, thus, making the use of lithium practical and consistent with safety requirements. The talk describes how chemical activity of LiLi, which is the major technology challenge of using LiLi in tokamaks, is addressed by SFLiLi systems at the level of already performed (HT-7) experiment, and in ongoing implementations for a prototype of SFLiLi for tokamak divertors and the mid-plane limiter for EAST tokamak (to be tested in the next experimental campaign). This work is supported by US DoE contract No. DE-AC02-09-CH11466.

  17. Prediction of superconductivity in Li-intercalated bilayer phosphorene

    Energy Technology Data Exchange (ETDEWEB)

    Huang, G. Q. [Department of Physics, Nanjing Normal University, Nanjing 210023 (China); National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Xing, Z. W., E-mail: zwxing@nju.edu.cn [National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Xing, D. Y. [National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Collaborative Innovation Center of Advanced Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China)

    2015-03-16

    It is shown that bilayer phosphorene can be transformed from a direct-gap semiconductor to a BCS superconductor by intercalating Li atoms. For the Li-intercalated bilayer phosphorene, we find that the electron occupation of Li-derived band is small and superconductivity is intrinsic. With increasing the intercalation of Li atoms, both increased metallicity and strong electron-phonon coupling are favorable for the enhancement of superconductivity. The obtained electron-phonon coupling λ can be larger than 1 and the superconducting temperature T{sub c} can be increased up to 16.5 K, suggesting that phosphorene may be a good candidate for a nanoscale superconductor.

  18. Properties of (Ga,Mn)As codoped with Li

    Science.gov (United States)

    Miyakozawa, Shohei; Chen, Lin; Matsukura, Fumihiro; Ohno, Hideo

    2014-06-01

    We grow Li codoped (Ga,Mn)As layers with nominal Mn composition up to 0.15 by molecular beam epitaxy. The layers before and after annealing are characterized by x-ray diffraction, transport, magnetization, and ferromagnetic resonance measurements. The codoping with Li reduces the lattice constant and electrical resistivity of (Ga,Mn)As after annealing. We find that (Ga,Mn)As:Li takes similar Curie temperature to that of (Ga,Mn)As, but with pronounced magnetic moments and in-plane magnetic anisotropy, indicating that the Li codoping has nontrivial effects on the magnetic properties of (Ga,Mn)As.

  19. Nb-based MXenes for Li-ion battery applications

    KAUST Repository

    Zhu, Jiajie

    2015-11-16

    Li-ion batteries depend critically on the stability and capacity of the electrodes. In this respect the recently synthesized two-dimensional MXenes are promising materials, as they combine an excellent Li-ion capacity with very high charging rates. We employ density functional theory to investigate the impact of Li adsorption on the structural and electronic properties of monolayer Nb2C and Nb2CX2. The Li ions are predicted to migrate easily on the pristine MXene due to a diffusion barrier of only 36 meV, whereas larger diffusion barriers are obtained for the functionalized MXenes.

  20. A Study on the Electrolytic Reduction Mechanism of Uranium Oxide in a LiCl-Li2O Molten Salt

    International Nuclear Information System (INIS)

    Oh, Seung Chul; Hur, Jin Mok; Seo, Chung Seok; Park, Seong Won

    2003-01-01

    This study proposed a new electrolytic reduction technology that is based on the integration of simultaneous uranium oxide metallization and Li 2 O electrowinning. In this electrolytic reduction reaction, electrolytically reduced Li deposits on cathode and simultaneously reacts with uranium oxides to produce uranium metal showing more than 99% conversion. For the verification of process feasibility, the experiments to obtain basic data on the metallization of uranium oxide, investigation of reaction mechanism, the characteristics of closed recycle of Li 2 O and mass transfer were carried out. This evolutionary electrolytic reduction technology would give benefits over the conventional Li-reduction process improving economic viability such as: avoidance of handling of chemically active Li-LiCl molten salt increase of metallization yield, and simplification of process.

  1. A study on the electrolytic reduction of uranium oxide in a LiCl-Li2O molten salt

    International Nuclear Information System (INIS)

    Su, J. S.; Hu, J. M.; Hong, S. S.; Jang, D. S.; Park, S. W.

    2003-01-01

    New electrolytic reduction technology was proposed that is based on the integration of metallization of uranium oxide and Li 2 O electrowinning. In this electrolytic reduction reaction, electrolytically reduced Li deposits on cathode and simultaneously reacts with uranium oxides to produce uranium metal showing more than 99% conversion. For the verification of process feasibility, the experiments to obtain basic data on the metallization of uranium oxide, investigation of reaction mechanism, the characteristics of closed recycle of Li 2 O and mass transfer were carried out. This evolutionary electrolytic reduction technology would give benefits over the conventional Li-reduction process improving economic viability such as: avoidance of handling of chemically active Li-LiCl molten salt, increase of metallization yield, and simplification of process

  2. Neutron environment in d + Li facilities

    International Nuclear Information System (INIS)

    Mann, F.M.; Schmittroth, F.; Carter, L.L.

    1980-01-01

    A microscopic d + Li neutron yield model has been developed based upon classical models and experimental data. Using equations suggested by the Serber and evaporation models, a generalized least squares adjustment procedure generated angular yields for E/sub d/ to 40 MeV using the available experimental data. The HEDL-UCD experiment at E/sub d/ = 35 was used to adjust parameters describing the neutron spectra. The model is used to predict yields, spectra, and damage responses in the FMIT Test Cell

  3. Li-Ion Battery for ISS

    Science.gov (United States)

    Dalton, Penni; Cohen, Fred

    2004-01-01

    The ISS currently uses Ni-H2 batteries in the main power system. Although Ni-H2 is a robust and reliable system, recent advances in battery technology have paved the way for future replacement batteries to be constructed using Li-ion technology. This technology will provide lower launch weight as well as increase ISS electric power system (EPS) efficiency. The result of incorporating this technology in future re-support hardware will be greater power availability and reduced program cost. the presentations of incorporating the new technology.

  4. Li-ion EMU Battery Testing

    Science.gov (United States)

    Rehm, Raymond; Bragg, Bobby; Strangways, Brad

    2001-01-01

    A 45Ah Lithium ion (Li-Ion) battery comprised of 5 Yardney prismatic cells was evaluated to replace the silver-zinc cells in the Extra-vehicular Mobility Unit (EMU). Tests determined that the five cell battery can meet the mission objective of 500 duty cycles and maintain a minimum voltage of 16.0 V without an individual cell voltage dropping below 3.0V. Forty real time cycles were conducted to develop BOL trend data. Decision to switch to accelerated cycling for the remaining 460 cycles was made since Real Time cycling requires 1 day/cycle. Conclusions indicate that battery replacement would indeed be prudent.

  5. 2004 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Portland, Oregon

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The all returns ASCII files contain the X,Y,Z values of all the LiDAR returns collected during the survey mission. In addition each return also has a time stamp,...

  6. Reaction mechanism study of 7Li (7Li, 6He) reaction at above ...

    Indian Academy of Sciences (India)

    Li reaction at two energies, lab = 20 and 25 MeV. FRDWBA calculations have been performed to explain the measured 6He data. The calculations were very sensitive to the choice of the optical model potentials in entrance and exit channels ...

  7. Li Insertion Into Li-Ti-O Spinels: Voltammetric and Electrochemical Impedance Spectroscopy Study

    Czech Academy of Sciences Publication Activity Database

    Krtil, Petr; Fattakhova, Dina

    2001-01-01

    Roč. 148, č. 9 (2001), s. A1045-A1050 ISSN 0013-4651 R&D Projects: GA ČR GA203/99/0879 Institutional research plan: CEZ:AV0Z4040901 Keywords : Li insertion * impedance spectroscopy * Frumkin insertion isotherm Subject RIV: CG - Electrochemistry Impact factor: 2.033, year: 2001

  8. Mechanochemical transformations in Li(Na)AlH4-Li(Na)NH2 systems

    International Nuclear Information System (INIS)

    Dolotko, Oleksandr; Zhang Haiqiao; Ugurlu, Ozan; Wiench, Jerzy W.; Pruski, Marek; Scott Chumbley, L.; Pecharsky, Vitalij

    2007-01-01

    Mechanochemical transformations of tetrahydroaluminates and amides of lithium and sodium have been investigated using gas volumetric analysis, X-ray powder diffraction, solid-state nuclear magnetic resonance (NMR) and transmission electron microscopy. In a transformation of LiAlH 4 and LiNH 2 taken in an 1:1 molar ratio, the amount of released hydrogen (6.6 wt.% after 30 min ball milling) was higher than in any known one pot mechanochemical process involving a hydrogen-containing solid. A total of 4.3 wt.% of hydrogen is released by the NaAlH 4 -NaNH 2 system after 60 min ball milling; and 5.2 wt.% H 2 is released when LiAlH 4 and NaNH 2 or NaAlH 4 and LiNH 2 are ball milled for 90 min and 120 min, respectively. All transformations proceed at room temperature. The mechanism of the overall transformation MAlH 4 (s) + MNH 2 (s) → 2MH(s) + AlN(s) + 2H 2 (g) was identified based on detailed spectroscopic analysis of the intermediate (M 3 AlH 6 ) and final products of the ball milling process

  9. Impedance Simulation of a Li-Ion Battery with Porous Electrodes and Spherical Li+ Intercalation Particles

    NARCIS (Netherlands)

    Huang, R.W.J.M.; Chung, F.; Kelder, E.M.

    2006-01-01

    We present a semimathematical model for the simulation of the impedance spectra of a rechargeable lithium batteries consisting of porous electrodes with spherical Li+ intercalation particles. The particles are considered to have two distinct homogeneous phases as a result of the intercalation and

  10. Thermal conductivity and tritium retention in Li2O and Li2ZrO3

    International Nuclear Information System (INIS)

    Billone, M.C.

    1997-01-01

    Lithium oxide (Li 2 O) and lithium zirconate (Li 2 ZrO 3 ) are promising ceramic breeder materials for fusion reactor blankets. The thermal and tritium transport databases for these materials are reviewed. Algorithms are presented for predicting both the temperature distribution and the retained tritium profile across sintered-product and pebble-bed regions. Sample design calculations are also performed to demonstrate the relative advantages of each breeder ceramic. For Li 2 O, the thermal conductivity of sintered-product material has been measured over a wide range of temperatures and densities. Data are also available for the effective thermal conductivity of a pebble bed (in atmospheric helium) with 55% packing fraction for the 5-mm-diameter/75%-dense pebbles. Similar results are available for sintered-product and pebble-bed (60% packing fraction for 1.2-mm-diameter/80%-dense pebbles in atmospheric He) Li 2 ZrO 3 . Hall and Martin model predictions are in reasonable agreement with both sets of pebble bed data. Thus, the databases and calculational algorithms are well established for performing thermal analyses. 15 refs., 5 figs

  11. Solid-state synthesis and characterization of LiCoO2 and LiNiyCo1 ...

    Indian Academy of Sciences (India)

    Unknown

    750ºC with a melting point of 723ºC (Lide 1993–1994). The exothermic peak that we have observed may thus be attributed to a possible reaction between the ... tion reaction, in the reaction zone is believed to trigger the melting of an eutectic of composition Li2CO3–Li2O–. LiOH around 410ºC (Reisman 1958; Smirnov et al.

  12. Scintillation properties of LiF–SrF{sub 2} and LiF–CaF{sub 2} eutectic

    Energy Technology Data Exchange (ETDEWEB)

    Yanagida, Takayuki, E-mail: yanagida@lsse.kyutech.ac.jp [Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu 808-0196 (Japan); Kawaguchi, Noriaki [Tokuyama Corporation, 1-1 Mikage-cho, Shunan-shi, Yamaguchi 745-8648 (Japan); Fujimoto, Yutaka [Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu 808-0196 (Japan); Fukuda, Kentaro [Tokuyama Corporation, 1-1 Mikage-cho, Shunan-shi, Yamaguchi 745-8648 (Japan); Watanabe, Kenichi; Yamazaki, Atsushi; Uritani, Akira [Quantum Science and Energy Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2013-12-15

    Dopant free eutectic scintillators {sup 6}LiF–SrF{sub 2} and {sup 6}LiF–CaF{sub 2} were developed by the vertical Bridgeman method for the purpose of thermal neutron detection. The molar ratio of LiF and Ca/SrF{sub 2} was 4:1 on its eutectic composition. The α-ray induced radioluminescence spectra of the scintillators showed intense emission peak at 300 nm due to the emission from the self-trapped exciton in Ca/SrF{sub 2} layers. When the samples were irradiated with {sup 252}Cf neutrons, {sup 6}LiF–SrF{sub 2} and {sup 6}LiF–CaF{sub 2} exhibited the light yields of 4700 and 9400 ph/n, respectively. Scintillation decay times of {sup 6}LiF–SrF{sub 2} and {sup 6}LiF–CaF{sub 2} were accepted for scintillation detectors, 90 and 250 ns, respectively. -- Highlights: • Nondoped LiF–CaF{sub 2} and LiF–SrF{sub 2} eutectic scinitillators are reported for the first time. • Two sample showed self-trapped exciton emission. • LiF–SrF{sub 2} sample exhibited the light yield of 9400 ph/n and this value was comparable to conventional materials doped with rare earth ions. • Scintillation decay times of LiF–CaF{sub 2} and LiF–SrF{sub 2} were 250 and 90 ns, respectively.

  13. Chemical obtaining of LiMO2 and LiM2O4 (M=Co, Mn) oxides, for cathodic applications in Li-ion batteries

    Science.gov (United States)

    Y Neira-Guio, A.; Gómez Cuaspud, J. A.; López, E. Vera; Pineda Triana, Y.

    2017-12-01

    This paper describes the synthesis and characterization of two spinel and olivine-type multicomponent oxides based on LiMO2 and LiM2O4 systems (M=Co and Mn), which represent the current state of the art in the development of cathodes for Li-ion batteries. A simple combustion synthesis process was employed to obtain the nanometric oxides in powder form (crystal sizes around 5-8nm), with a number of improved surface characteristics. The characterization by X-Ray Diffraction (XRD), Scanning and Transmission Electron Microscopy (SEM, TEM) and X-Ray Fluorescence (XRF), allowed to evaluate the morphology and the stoichiometric compositions of solids, obtaining a concordant pure crystalline phase of LiCoO2 and LiMn2O4 oxides identified in a rhombohedral and cubic phase with punctual group R-3m (1 6 6) and Fm-3m (2 2 5) respectively. The electrical characterization of materials developed by impedance spectroscopy solid state, allowed to determine a p-type semiconducting behaviour with conductivity values of 6.2×10-3 and 2.7×10-7 S for LiCoO2 and LiMn2O4 systems, consistent with the state of the art for such materials.

  14. Preparation and characterization of the Li(17)Pb(83) eutectic alloy and the LiPb intermetallic compound

    International Nuclear Information System (INIS)

    Jauch, U.; Karcher, V.; Schulz, B.

    1986-01-01

    Li(17)Pb(83) and LiPb were prepared from the pure elements in amounts of several hundred grams. The resolidified samples were characterized by melting points (eutectic temperature), chemical analysis and metallography. Using differential thermal analysis the heats of fusion were determined and the behaviour of the intermetallic phase LiPb in vacuum and high purified He was studied. The results from these investigations were applied to characterize Li(17)Pb(83) prepared in high amounts for technical application as a potential liquid breeder material. (orig.)

  15. Energy dependence of the 6Li + 16O elastic scattering versus that of 7Li + 16O

    International Nuclear Information System (INIS)

    Rudchik, A.T.; Zelinskyi, R.M.; Chercas, K.A.; Rudchik, A.A.; Pirnak, V.M.; Ponkratenko, O.A.; Kemper, K.W.; Plujko, V.A.

    2013-01-01

    Existing data for the 6 Li + 16 O elastic scattering at E c.m. =3.27 -36.8MeV were analyzed within the optical model and coupled-reaction-channels method. The 6 Li + 16 O elastic and inelastic scattering as well as the reorientation of 6 Li and the simplest transfer reactions were included in the coupled-channels scheme. The 6 Li + 16 O potential parameters at different energies as well as their energy dependence were deduced by the use of the dispersion relation between the real and imaginary parts of the potential. The contributions of the 6 Li reorientation and transfer reactions to the 6 Li + 16 O elastic scattering channel were estimated at the different energies. It is found that the potential scattering dominates the interaction at smaller angles for all energies, with the transfers contributing significantly at larger angles at the highest energies studied. The real part of the 6 Li + 16 O deduced potential is in reasonable agreement with that of a corresponding folding potential. The isotopic difference between the 6 Li + 16 O and 7 Li + 16 O optical potentials is larger for the imaginary potentials. (orig.)

  16. Raman spectrum of the solid electrolytes LiI·H2O and LiI·D2O

    DEFF Research Database (Denmark)

    Poulsen, Finn Willy

    1986-01-01

    The Raman spectra of cubic LiI·H2O and LiI·D2O have been revised. The spectra reveal only internal and librational modes of H2O (D2O). The isotopic ratios νH/νD, are in the range 1.33-1.78......The Raman spectra of cubic LiI·H2O and LiI·D2O have been revised. The spectra reveal only internal and librational modes of H2O (D2O). The isotopic ratios νH/νD, are in the range 1.33-1.78...

  17. Reversible superconductor-insulator transition in LiTi2O4 induced by Li-ion electrochemical reaction.

    Science.gov (United States)

    Yoshimatsu, K; Niwa, M; Mashiko, H; Oshima, T; Ohtomo, A

    2015-11-06

    Transition metal oxides display various electronic and magnetic phases such as high-temperature superconductivity. Controlling such exotic properties by applying an external field is one of the biggest continuous challenges in condensed matter physics. Here, we demonstrate clear superconductor-insulator transition of LiTi2O4 films induced by Li-ion electrochemical reaction. A compact electrochemical cell of pseudo-Li-ion battery structure is formed with a superconducting LiTi2O4 film as an anode. Li content in the film is controlled by applying a constant redox voltage. An insulating state is achieved by Li-ion intercalation to the superconducting film by applying reduction potential. In contrast, the superconducting state is reproduced by applying oxidation potential to the Li-ion intercalated film. Moreover, superconducting transition temperature is also recovered after a number of cycles of Li-ion electrochemical reactions. This complete reversible transition originates in difference in potentials required for deintercalation of initially contained and electrochemically intercalated Li(+) ions.

  18. Fast neutron measurements with 7Li and 6Li enriched CLYC scintillators

    International Nuclear Information System (INIS)

    Giaz, A.; Blasi, N.; Boiano, C.; Brambilla, S.; Camera, F.; Cattadori, C.; Ceruti, S.; Gramegna, F.; Marchi, T.; Mattei, I.; Mentana, A.; Million, B.; Pellegri, L.; Rebai, M.; Riboldi, S.; Salamida, F.; Tardocchi, M.

    2016-01-01

    The recently developed Cs 2 LiYCl 6 :Ce (CLYC) crystals are interesting scintillation detectors not only for their gamma energy resolution (<5% at 662 keV) but also for their capability to identify and measure the energy of both gamma rays and fast/thermal neutrons. The thermal neutrons were detected by the 6 Li(n,α)t reaction while for the fast neutrons the 35 Cl(n,p) 35 S and 35 Cl(n,α) 32 P neutron-capture reactions were exploited. The energy of the outgoing proton or α particle scales linearly with the incident neutron energy. The kinetic energy of the fast neutrons can be measured using both the Time Of Flight (TOF) technique and using the CLYC energy signal. In this work, the response to monochromatic fast neutrons (1.9–3.8 MeV) of two CLYC 1″×1″ crystals was measured using both the TOF and the energy signal. The observables were combined to identify fast neutrons, to subtract the thermal neutron background and to identify different fast neutron-capture reactions on 35 Cl, in other words to understand if the detected particle is an α or a proton. We performed a dedicated measurement at the CN accelerator facility of the INFN Legnaro National Laboratories (Italy), where the fast neutrons were produced by impinging a proton beam (4.5, 5.0 and 5.5 MeV) on a 7 LiF target. We tested a CLYC detector 6 Li-enriched at about 95%, which is ideal for thermal neutron measurements, in parallel with another CLYC detector 7 Li-enriched at more than 99%, which is suitable for fast neutron measurements.

  19. A Li+-conductive microporous carbon–sulfur composite for Li-S batteries

    International Nuclear Information System (INIS)

    Zhang, Wenhua; Qiao, Dan; Pan, Jiaxin; Cao, Yuliang; Yang, Hanxi; Ai, Xinping

    2013-01-01

    Highlights: ► A carbon–sulfur composite was prepared by vaporizing sulfur into the nanopores of Li + -conductive carbon microspheres. ► The redox reaction of S 8 molecules embedded in the nanopores of carbon microspheres proceeds through a solid–solid mechanism at the S/C interfaces. ► The carbon–sulfur composite exhibits a stable cycling performance and a superior high coulombic efficiency of 100%. - Abstract: In this paper, we propose a new strategy to develop high performance sulfur electrode by impregnating sulfur into the micropores of a Li + -insertable carbon matrix with the simultaneous use of a carbonate electrolyte, which does not dissolve polysulfides, to restrain the solution of the reaction intermediates of sulfur. To proof this concept, we prepared a Li + -insertable microporous carbon–sulfur composite by vaporizing sulfur into the micropores of the nanofiber-wired carbon microspheres. The experimental results demonstrate that, in the carbonate electrolyte of 1 M LiPF 6 /PC-EC-DEC, such S/C composite electrode exhibits not only stable cycling performance with a reversible capacity of 720 mAh g −1 after 100 cycles, but also superior high coulombic efficiency of ∼100% upon extended cycling (except the first three cycles). The structural and electrochemical analysis indicates that the improved electrochemical behaviors of the S/C composite arise from a new reaction mechanism, in which Li + ions and electrons transport through the carbon matrix into the interior of the cathode and then react with the embedded sulfur in the S/C solid–solid interfaces, avoiding the solution of the intermediates into the bulk electrolyte. More significantly, the structural design and working mechanism of such a sulfur cathode could be extended to a variety of poorly conductive and easily soluble redox-active materials for battery applications.

  20. Selected test results from the LiFeBatt iron phosphate Li-ion battery.

    Energy Technology Data Exchange (ETDEWEB)

    Ingersoll, David T.; Hund, Thomas D.

    2008-09-01

    In this paper the performance of the LiFeBatt Li-ion cell was measured using a number of tests including capacity measurements, capacity as a function of temperature, ohmic resistance, spectral impedance, high power partial state of charge (PSOC) pulsed cycling, pulse power measurements, and an over-charge/voltage abuse test. The goal of this work was to evaluate the performance of the iron phosphate Li-ion battery technology for utility applications requiring frequent charges and discharges, such as voltage support, frequency regulation, and wind farm energy smoothing. Test results have indicated that the LiFeBatt battery technology can function up to a 10C{sub 1} discharge rate with minimal energy loss compared to the 1 h discharge rate (1C). The utility PSOC cycle test at up to the 4C{sub 1} pulse rate completed 8,394 PSOC pulsed cycles with a gradual loss in capacity of 10 to 15% depending on how the capacity loss is calculated. The majority of the capacity loss occurred during the initial 2,000 cycles, so it is projected that the LiFeBatt should PSOC cycle well beyond 8,394 cycles with less than 20% capacity loss. The DC ohmic resistance and AC spectral impedance measurements also indicate that there were only very small changes after cycling. Finally, at a 1C charge rate, the over charge/voltage abuse test resulted in the cell venting electrolyte at 110 C after 30 minutes and then open-circuiting at 120 C with no sparks, fire, or voltage across the cell.

  1. LINE EMISSION AND ANISOTROPY EFFECTS IN C6+ ELECTRON-CAPTURE FROM LI(2S), LI-ASTERISK(2P) AND H-ASTERISK(N=2)

    NARCIS (Netherlands)

    OLSON, RE; HOEKSTRA, R

    Line emission cross sections for visible transitions after electron capture collisions of C6+ With Li(2s), Li-*(2p), and H-*(n = 2) are calculated for energies up to 50 keV/u; the values agree with available Li(2s) data. Anisotropy parameters are also given for aligned Li-*(2p). The results were

  2. Nanoshell Encapsulated Li-ion Battery Anodes for Long Cycle Life, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A new high capacity rechargeable Li battery anode based on Li metal alloys protected by carbon nanoshells will be developed. A reversible Li-ion capacity exceeding...

  3. Lattice sites of ion-implanted Li in diamond

    NARCIS (Netherlands)

    Restle, M.; Bharuth-Ram, K.; Quintel, H.; Ronning, C. R.; Hofsäss, H. C.; Jahn, S. G.; Wahl, U.

    1995-01-01

    Published in: Appl. Phys. Lett. 66 (1995) 2733-2735 citations recorded in [Science Citation Index] Abstract: Radioactive Li ions were implanted into natural IIa diamonds at temperatures between 100 K and 900 K. Emission channelling patterns of a-particles emitted in the nuclear decay of 8Li (t1/2 =

  4. The Watanabe model for 6Li-nucleus optical potential

    International Nuclear Information System (INIS)

    Abul-Magd, A.Y.; Rabie, A.; El-Gazzar, M.A.

    1980-09-01

    Optical potentials for the scattering of 6 Li projectiles are calculated using the Watanabe model and an α+d cluster model wave function for 6 Li. Reasonable fits to the elastic differential cross-section and vector polarization are obtained. (author)

  5. Li juhatuse esimehena astus ametisse Eimar Veldre

    Index Scriptorium Estoniae

    2007-01-01

    1. aprillist astus ametisse Eesti Üliõpilaskondade Liidu uus juhatus. Juhatuse esimeheks on Eimar Veldre Tallinna Ülikoolist, juhatuse aseesimeesteks Annika Kruuse, Catlyn Kirna ja Maris Mälzer. Eimar Veldre on viimased kaks aastat olnud Tallinna Ülikooli üliõpilaskonna juhatuses

  6. Üliõpilasteater sõidab Belgiasse

    Index Scriptorium Estoniae

    2008-01-01

    Tartu Üliõpilasteater on Eugene Ionesco "Ninasarvikuga" (lavastaja Kalev Kudu) Belgias festivalil. Festivali korraldab Liege'i Kuninglik Ülikool ja sellest saab alguse Tartu Üliõplasteatri ja Liege'i Kuningliku Ülikooli teatri kolmeaastane koostööprojekt, mida rahastavad peamiselt mõlema riigi kultuuriministeeriumid

  7. 2006 OSIP OGRIP: Upland Counties LiDAR Survey

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 2006 OSIP digital LiDAR data was collected during the months of March and May (leaf-off conditions). The LiDAR covers the entire land area of the northern tier...

  8. Assessing LiDAR elevation data for KDOT applications.

    Science.gov (United States)

    2013-02-01

    LiDAR-based elevation surveys are a cost-effective means for mapping topography over large areas. LiDAR : surveys use an airplane-mounted or ground-based laser radar unit to scan terrain. Post-processing techniques are : applied to remove vegetation ...

  9. NUCLEON POLARIZATION IN 3-BODY MODELS OF POLARIZED LI-6

    NARCIS (Netherlands)

    SCHELLINGERHOUT, NW; KOK, LP; COON, SA; ADAM, RM

    1993-01-01

    Just as He-3 --> can be approximately characterized as a polarized neutron target, polarized Li-6D has been advocated as a good isoscalar nuclear target for the extraction of the polarized gluon content of the nucleon. The original argument rests upon a presumed ''alpha + deuteron'' picture of Li-6,

  10. Nanostructured Materials for Li-Ion Batteries and Beyond

    Directory of Open Access Journals (Sweden)

    Xifei Li

    2016-04-01

    Full Text Available This Special Issue “Nanostructured Materials for Li-Ion Batteries and Beyond” of Nanomaterials is focused on advancements in the synthesis, optimization, and characterization of nanostructured materials, with an emphasis on the application of nanomaterials for building high performance Li-ion batteries (LIBs and future systems.[...

  11. Analysis of inflow parameters using LiDARs

    NARCIS (Netherlands)

    Giyanani, A.H.; Bierbooms, W.A.A.M.; Van Bussel, G.J.W.

    2014-01-01

    Remote sensing of the atmospheric variables with the use of LiDAR is a relatively new technique for wind resource assessment and oncoming wind prediction in wind energy. The validation of LiDAR measurements and comparisons with other sensing elements thus, is of high importance for further

  12. Core TuLiP - Logic Programming for Trust Management

    NARCIS (Netherlands)

    Czenko, M.R.; Etalle, Sandro; Dahl, V.; Niemelä, I.

    2007-01-01

    We propose CoreTuLiP - the core of a trust management language based on Logic Programming. CoreTuLiP is based on a subset of moded logic programming, but enjoys the features of TM languages such as RT; in particular clauses are issued by different authorities and stored in a distributed manner. We

  13. Unique Reduced Graphene Oxide as Efficient Anode Material in Li ...

    Indian Academy of Sciences (India)

    19

    Unique Reduced Graphene Oxide as Efficient Anode Material in Li Ion Battery. Sampath Kumar Puttapati1 ... Keywords: carbon materials; graphene oxide; energy storage; Li ion battery. *. Corresponding author. Tel: +91 40 2313 4453; .... Chowdari B V R 2014 J. Solid State Electrochem. 18 941. [4] Pei S -F and Cheng H -M ...

  14. Enhanced Electrochemical Properties of Li3 VO4 with Controlled Oxygen Vacancies as Li-Ion Battery Anode.

    Science.gov (United States)

    Wang, Kan; Zhang, Changkun; Fu, Haoyu; Liu, Chaofeng; Li, Zhuoyu; Ma, Wenda; Lu, Xianmao; Cao, Guozhong

    2017-04-19

    Li 3 VO 4 , as a promising intercalation-type anode material for lithium-ion batteries, features a desired discharge potential (ca. 0.5-1.0 V vs. Li/Li + ) and a good theoretical storage capacity (590 mAh g -1 with three Li + inserted). However, the poor electrical conductivity of Li 3 VO 4 hinders its practical application. In the present work, various amounts of oxygen vacancies were introduced in Li 3 VO 4 through annealing in hydrogen to improve its conductivity. To elucidate the influence of oxygen vacancies on the electrochemical performances of Li 3 VO 4 , the surface energy of the resulting material was measured with an inverse gas chromatography method. It was found that Li 3 VO 4 annealed in pure hydrogen at 400 °C for 15 min exhibited a much higher surface energy (60.7 mJ m -2 ) than pristine Li 3 VO 4 (50.6 mJ m -2 ). The increased surface energy would lower the activation energy of phase transformation during the charge-discharge process, leading to improved electrochemical properties. As a result, the oxygen-deficient Li 3 VO 4 achieved a significantly improved specific capacity of 495 mAh g -1 at 0.1 Ag -1 (381 mAh g -1 for pristine Li 3 VO 4 ) and retains 165 mAh g -1 when the current density increases to 8 Ag -1 . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. LiCHy: The CAF’s LiDAR, CCD and Hyperspectral Integrated Airborne Observation System

    Directory of Open Access Journals (Sweden)

    Yong Pang

    2016-05-01

    Full Text Available We describe the design, implementation and performance of a novel airborne system, which integrates commercial waveform LiDAR, CCD (Charge-Coupled Device camera and hyperspectral sensors into a common platform system. CAF’s (The Chinese Academy of Forestry LiCHy (LiDAR, CCD and Hyperspectral Airborne Observation System is a unique system that permits simultaneous measurements of vegetation vertical structure, horizontal pattern, and foliar spectra from different view angles at very high spatial resolution (~1 m on a wide range of airborne platforms. The horizontal geo-location accuracy of LiDAR and CCD is about 0.5 m, with LiDAR vertical resolution and accuracy 0.15 m and 0.3 m, respectively. The geo-location accuracy of hyperspectral image is within 2 pixels for nadir view observations and 5–7 pixels for large off-nadir observations of 55° with multi-angle modular when comparing to LiDAR product. The complementary nature of LiCHy’s sensors makes it an effective and comprehensive system for forest inventory, change detection, biodiversity monitoring, carbon accounting and ecosystem service evaluation. The LiCHy system has acquired more than 8000 km2 of data over typical forests across China. These data are being used to investigate potential LiDAR and optical remote sensing applications in forest management, forest carbon accounting, biodiversity evaluation, and to aid in the development of similar satellite configurations. This paper describes the integration of the LiCHy system, the instrument performance and data processing workflow. We also demonstrate LiCHy’s data characteristics, current coverage, and potential vegetation applications.

  16. 8Li(α,n)11B at Big Bang Temperatures: Neutron Counting With a Low Intensity 8Li Radioactive Beam

    Science.gov (United States)

    Cherubini, S.; Figuera, P.; Musumarra, A.; Agodi, C.; Alba, R.; Calabretta, L.; Cosentino, L.; Del Zoppo, A.; Di Pietro, A.; Lamia, L.; Pappalardo, L.; Pellegriti, M. G.; Pizzone, R. G.; Rinollo, A.; Rolfs, C.; Romano, S.; Spitaleri, C.; Strieder, F.; Tudisco, S.; Tumino, A.

    2004-02-01

    The cross section of 8Li(α,n)11B is very important for the study of primordial nucleosinthesys models. In this paper we report on the production of a 8Li beam via the 7Li(d,p)8Li reaction at the Laboratori Nazionali del Sud. Also, a novel experimental technique for measuring the reaction 8Li(α,n)11B at energies of astrophysical interest has been implemented and tested.

  17. 8Li(α,n)11B at Big Bang Temperatures: Neutron Counting With a Low Intensity 8Li Radioactive Beam

    International Nuclear Information System (INIS)

    Cherubini, S.; Rolfs, C.; Strieder, F.; Figuera, P.; Agodi, C.; Alba, R.; Calabretta, L.; Cosentino, L.; Del Zoppo, A.; Di Pietro, A.; Lamia, L.; Pappalardo, L.; Pizzone, R.G.; Musumarra, A.; Pellegriti, M.G.; Rinollo, A.; Romano, S.; Spitaleri, C.; Tudisco, S.; Tumino, A.

    2004-01-01

    The cross section of 8Li(α,n)11B is very important for the study of primordial nucleosinthesys models. In this paper we report on the production of a 8Li beam via the 7Li(d,p)8Li reaction at the Laboratori Nazionali del Sud. Also, a novel experimental technique for measuring the reaction 8Li(α,n)11B at energies of astrophysical interest has been implemented and tested

  18. Properties of the LiCl-KCl-Li2O system as operating medium for pyro-chemical reprocessing of spent nuclear fuel

    Science.gov (United States)

    Mullabaev, Albert; Tkacheva, Olga; Shishkin, Vladimir; Kovrov, Vadim; Zaikov, Yuriy; Sukhanov, Leonid; Mochalov, Yuriy

    2018-03-01

    Crystallization temperatures (liquidus and solidus) in the LiCl-Li2O and (LiCl-KCl)-Li2O systems with the KCl content of 10 and 20 mol.% were obtained with independent methods of thermal analysis using cooling curves, isothermal saturation, and differential scanning calorimetry. The linear sweep voltammetry was applied to control the time of the equilibrium establishment in the molten system after the Li2O addition, which depended on the composition of the base melt and the concentration of Li2O. The fragments of the binary LiCl-Li2O and quazi-binary [LiCl-KCl(10 mol.%)]-Li2O and [LiCl-KCl(20 mol.%)]-Li2O phase diagrams in the Li2O concentration range from 0 to 12 mol.% were obtained. The KCl presence in the LiCl-KCl-Li2O molten mixture in the amount of 10 and 20 mol.% reduces the liquidus temperature by 30 and 80°, respectively, but the region of the homogeneous molten state of the system is considerably narrowed, which complicates its practical application. The Li2O solubility in the molten LiCl, LiCl-KCl(10 mol.%) and LiCl-KCl(20 mol.%) decreases with increasing the KCl content and is equal to 11.5, 7.7 and 3.9 mol.% at 650°С, respectively. The LiCl-KCl melt with 10 mol.% KCl can be recommended for practical use as a medium for the SNF pyro-chemical reprocessing at temperature below 700 °C.

  19. Structural characterization of slightly boron-deficient LiB, LiB0.9 and LiB0.8, under pressure.

    Science.gov (United States)

    Suarez-Alcubilla, Ainhoa; Gurtubay, Idoia G; Bergara, Aitor

    2014-11-26

    Results of computational investigations of two slightly boron-deficient lithium borides, LiB(0.9) and LiB(0.8), under pressure are reported. Structure predictions based on particle swarm optimization reveal that at low pressure both compositions adopt chain structures, as stoichiometric 1 : 1 LiB. With increasing pressure both undergo phase transitions to layered arrangements. The evolution of the structural parameters of these stoichiometries as a function of pressure and the results obtained from the enthalpies indicate that boron-deficient structures are more favoured than 1 : 1 LiB, even at zero pressure. Moreover, as pressure is increased a larger deficiency in B seems to be favoured.

  20. Characterization of the thermoluminescent detectors LiF:Mg,Cu,P. Environmental dosimetry applications

    International Nuclear Information System (INIS)

    Ciocci Brazzano, Ligia; Gregori, Beatriz N.; Papadopulos, Susana B.; Carelli, Jorge L.

    2005-01-01

    Studies on thermal-luminescent properties of the LiF:Mg detectors, Cu, P enrichment with Li-7 (99.93% of Li-7 and 0.07% of Li-6): optimization of the heating profile, loss of information, detection limit and doses and energy responses are presented in this work. Their performance is compared with LiF:Mg detectors, Mg, Ti enriched with Li-7 (99.93% of Li-7 and 0.07% Li-6), which are at present used for environmental dosimetry at the Physics Dosimetry Laboratory of the Nuclear Regulatory Authority [es

  1. Examination of the effects of LiOH, LiCl, and LiNO3 on alkali-silica reaction

    International Nuclear Information System (INIS)

    Collins, C.L.; Ideker, J.H.; Willis, G.S.; Kurtis, K.E.

    2004-01-01

    Lithium additives have been shown to reduce expansion associated with alkali-silica reaction (ASR), but the mechanism(s) by which they act have not been understood. The aim of this research is to assess the effectiveness of three lithium additives--LiOH, LiCl, and LiNO 3 --at various dosages, with a broader goal of improving the understanding of the means by which lithium acts. The effect of lithium additives on ASR was assessed using mortar bar expansion testing and quantitative elemental analysis to measure changes in concentrations of solution phase species (Si, Na, Ca, and Li) in filtrates obtained at different times from slurries of silica gel and alkali solution. Results from mortar bar tests indicate that each of the lithium additives tested was effective in reducing expansion below an acceptable limit of 0.05% at 56 days. However, different lithium additive threshold dosages ([Li 2 O]/[Na 2 O e ]) were required to accomplish this reduction in expansion; these were found to be approximately 0.6 for LiOH, 0.8 for LiNO 3 , and 0.9 for LiCl. Quantitative elemental analysis indicated that sodium and lithium were both bound in reaction products formed within the silica gel slurry. It is also believed that lithium may have been preferentially bound over sodium in at least one of the reaction products because a greater percent decrease in dissolved lithium than dissolved sodium was observed within the first 24 h. It appears that lithium additives either decreased silica dissolution, or promoted precipitation of silica-rich products (some of which may be nonexpansive), because the dissolved silica concentration decreased with increasing dosage of lithium nitrate or lithium chloride additive

  2. Relaxation-Induced Memory Effect of LiFePO4Electrodes in Li-Ion Batteries.

    Science.gov (United States)

    Jia, Jianfeng; Tan, Chuhao; Liu, Mengchuang; Li, De; Chen, Yong

    2017-07-26

    In Li-ion batteries, memory effect has been found in several commercial two-phase materials as a voltage bump and a step in the (dis)charging plateau, which delays the two-phase transition and influences the estimation of the state of charge. Although memory effect has been first discovered in olivine LiFePO 4 , the origination and dependence are still not clear and are critical for regulating the memory effect of LiFePO 4 . Herein, LiFePO 4 has been synthesized by a home-built spray drying instrument, of which the memory effect has been investigated in Li-ion batteries. For as-synthesized LiFePO 4 , the memory effect is significantly dependent on the relaxation time after phase transition. Besides, the voltage bump of memory effect is actually a delayed voltage overshooting that is overlaid at the edge of stepped (dis)charging plateau. Furthermore, we studied the kinetics of LiFePO 4 electrode with electrochemical impedance spectroscopy (EIS), which shows that the memory effect is related to the electrochemical kinetics. Thereby, the underlying mechanism has been revealed in memory effect, which would guide us to optimize two-phase electrode materials and improve Li-ion battery management systems.

  3. Synthesis and characterization of PVA blended LiClO4 as electrolyte material for battery Li-ion

    Science.gov (United States)

    Gunawan, I.; Deswita; Sugeng, B.; Sudaryanto

    2017-07-01

    It have been synthesized the materials for Li ion battery electrolytes, namely PVA with the addition of LiClO4 salt were varied 0, 5, 10, 15 and 20% by weight respectively. The objective of this study is to control the ionic conductivity in traditional polymer electrolytes, to improve ionic conductivity with the addition of lithium perchlorat (LiClO4). These electrolyte materials prepared by PVA powder was dissolved into distilled water and added LiClO4 salt were varied. After drying the solution, PVA sheet blended LiClO4 salt as electrolyte material for Li ion battery obtained. PVA blended LiClO4 salt crystallite form was confirmed using X-Ray Difraction (XRD) equipment. Observation of the morphology done by using Scanning Electron Microscope (SEM). While the electrical conductivity of the material is measured using LCR meter. The results of XRD pattern of LiClO4 shows intense peaks at angles 2θ = 23.2, 32.99, and 36.58°, which represent the crystalline nature of the salt. Particles morphology of the sample revealed by scanning electron microscopy are irregular in shape and agglomerated, with mean size 200-300 nm. It can be concluded that polycrystalline particles are composed of large number of crystallites. The study of conductivity by using LCR meter shows that all the graphs represent the DC and AC conductivity phenomena.

  4. Direct view on the phase evolution in individual LiFePO4 nanoparticles during Li-ion battery cycling

    NARCIS (Netherlands)

    Zhang, X.; Van Hulzen, M.; Singh, D.P.; Brownrigg, A.W.; Wright, J.P.; Van Dijk, N.H.; Wagemaker, M.

    2015-01-01

    Phase transitions in Li-ion electrode materials during (dis)charge are decisive for battery performance, limiting high-rate capabilities and playing a crucial role in the cycle life of Li-ion batteries. However, the difficulty to probe the phase nucleation and growth in individual grains is

  5. Are lithium niobate (LiNbO{sub 3}) and lithium tantalate (LiTaO{sub 3}) ferroelectrics bioactive?

    Energy Technology Data Exchange (ETDEWEB)

    Vilarinho, Paula Maria, E-mail: paula.vilarinho@ua.pt; Barroca, Nathalie; Zlotnik, Sebastian; Félix, Pedro; Fernandes, Maria Helena

    2014-06-01

    The use of functional materials, such as ferroelectrics, as platforms for tissue growth in situ or ex situ, is new and holds great promise. But the usage of materials in any bioapplication requires information on biocompatibility and desirably on bioactive behavior when bone tissue engineering is envisaged. Both requirements are currently unknown for many ferroelectrics. Herein the bioactivity of LiNbO{sub 3} and LiTaO{sub 3} is reported. The formation of apatite-like structures on the surface of LiNbO{sub 3} and LiTaO{sub 3} powders after immersion in simulated body fluid (SBF) for different soaking periods indicates their bioactive potential. The mechanism of apatite formation is suggested. In addition, the significant release of lithium ions from the ferroelectric powders in the very first minutes of soaking in SBF is examined and ways to overcome this likely hurdle addressed. - Highlights: • LiNbO{sub 3} and LiTaO{sub 3} are bioactive ferroelectrics. • Cauliflower apatite type structures indicative of in-vitro bioactivity of LiNbO{sub 3} and LiTaO{sub 3.} • Negative surface charges anchor Ca{sup 2+} to which PO{sub 4}{sup 3−} attracts forming apatite structure nuclei. • Use of ferroelectrics as platforms for tissue growth in situ or ex situ is new and holds great promise.

  6. LiFi: transforming fibre into wireless

    Science.gov (United States)

    Yin, Liang; Islim, Mohamed Sufyan; Haas, Harald

    2017-01-01

    Light-fidelity (LiFi) uses energy-efficient light-emitting diodes (LEDs) for high-speed wireless communication, and it has a great potential to be integrated with fibre communication for future gigabit networks. However, by making fibre communication wireless, multiuser interference arises. Traditional methods use orthogonal multiple access (OMA) for interference avoidance. In this paper, multiuser interference is exploited with the use of non-orthogonal multiple access (NOMA) relying on successive interference cancellation (SIC). The residual interference due to imperfect SIC in practical scenarios is characterized with a proportional model. Results show that NOMA offers 5 -10 dB gain on the equivalent signal-to-interference-plus-noise ratio (SINR) over OMA. The bit error rate (BER) performance of direct current optical orthogonal frequency division multiplexing (DCO-OFDM) is shown to be significantly improved when SIC is used.

  7. Practical Methods in Li-ion Batteries

    DEFF Research Database (Denmark)

    Barreras, Jorge Varela

    This thesis presents, as a collection of papers, practical methods in Li-ion batteries for simplified modeling (Manuscript I and II), battery electric vehicle design (III), battery management system testing (IV and V) and balancing system control (VI and VII). • Manuscript I tackles methodologies...... to parameterize battery models based solely on manufacturer’s datasheets • Manuscript II presents a parameterization method for battery models based on the notion of direct current resistance • Manuscript III proposes a battery electric vehicle design that combines fixed and swappable packs • Manuscript IV...... develops a battery system model for battery management system testing on a hardware-in-the-loop simulator • Manuscript V extends the previous work, introducing theoretical principles and presenting a practical method to develop ad hoc software and strategies for testing • Manuscript VI presents...

  8. Ranges of {sup 7}Li produced in {sup 10}B(n,a){sup 7}*Li reaction

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Y. [Daido Inst. of Technol., Nagoya (Japan). Dept. of Chem.; Yonezawa, C. [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Dept. of Chemistry and Fuel Research; Matsue, H. [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Dept. of Chemistry and Fuel Research; Magara, M. [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Dept. of Chemistry and Fuel Research; Sawahata, H. [Tokyo Univ., Tokai, Ibaraki (Japan). Research Center for Nuclear Science and Technology; Ito, Y. [Tokyo Univ., Tokai, Ibaraki (Japan). Research Center for Nuclear Science and Technology

    1996-06-01

    The ranges of {sup 7}Li and {sup 7*}Li produced via the {sup 10}B(n,{alpha}){sup 7*}Li reaction in elementary boron and water were determined by analysis of the Doppler broadened line-shapes of the 478 keV prompt {gamma}-ray from the shortlived {sup 7*}Li ({tau}=1.05.10{sup -13} s). The spectral line-shapes of the prompt {gamma} rays were measured with a low background using neutron beams guided outside the reactor at JRR-3M. The range of 3.9 {mu}m estimated for {sup 7}Li in water is compared with that (4.8 {mu}m) used in boron neutron-capture therapy as an appropriate value. (orig.)

  9. Lição de Anatomia

    Directory of Open Access Journals (Sweden)

    João Luiz Leocadio da Nova

    2000-02-01

    Full Text Available Na formação médica, diagnosticamos a falência do modelo pedagógico/assistencial que se revela, dentre outros sintomas, na ideologia de frieza e distanciamento que perpassa a prática médica. Este modelo de relação médico-paciente reproduziria a relação estudante-cadáver. Visando modificar tal ideologia, desenvolvemos, na UFRJ, em atividade interdisciplinar com a Anatomia, grupos de reflexão com os alunos do primeiro período da Faculdade de Medicina. A partir dos resultados, de dois anos dessa pesquisa, denominada "O cadáver e a formação médica", realizamos, com o apoio da Fundação José Bonifácio, um vídeo didático, "Lição de Anatomia", por meio de equipe multidisciplinar, incluindo professores e alunos do Instituto de Artes e Comunicação Social da UFF, da Faculdade de Medicina da UFRJ e do Núcleo de Tecnologia Educacional para a Saúde da UFRJ (NUTES. Pretendemos que a utilização desse recurso audiovisual constitua mais uma ferramenta para a melhoria do ensino e da prática médica, introduzindo a discussão de questões éticas. A pesquisa e a realização do vídeo nos mostraram a possibilidade de se repensar e inovar o ensino universitário, o que foi, para todos nós, uma lição de convívio democrático.

  10. 7Li-7Li elastic and inelastic scattering at Elab=8-17 MeV

    International Nuclear Information System (INIS)

    Bachmann, A.M.; Brand, H.; Freiesleben, H.; Leifels, Y.; Potthast, K.W.; Rosenthal, P.; Kamys, B.

    1993-01-01

    Elastic and inelastic scattering in the system 7 Li+ 7 Li was investigated experimentally in the energy range of E lab =8-17 MeV applying the method of kinematic coincidence. Sizeable cross sections were observed in the whole energy range for inelastic excitation of a single 7 Li nucleus to its first excited state at E * =0.47761 MeV as well as for mutual excitation of both nuclei. Systematic optical model and both one-step and two-step DWBA calculations were performed with the aim of describing in a consistent manner all three channels studied. This was achieved with optical model potentials fitted simultaneously to all elastic scattering data. They were then used to generate form factors for both single and mutual inelastic scattering as well as distorted waves for DWBA description of inelastic scattering considering the same deformation length for all form factors. Potential parameters derived show, despite these constraints, a continuous ambiguity in case of volume absorption while those with surface absorption can be grouped in six distinct families each of them featuring continuous ambiguities. The impact of real and imaginary form factors on single inelastic excitation is reversed for potentials with volume and surface absorption, while mutual excitation is dominated by imaginary form factors. (orig.)

  11. Extraction of Li and Co from Li-ion Batteries by Chemical Methods

    Science.gov (United States)

    Guzolu, Jafar Sharrivar; Gharabaghi, Mahdi; Mobin, Mohammad; Alilo, Hojat

    2017-04-01

    In this work a process involving ultrasonic washing and leaching and precipitation was used to recover Li and Co from spent Li-ion batteries. Ultrasonic washing was used to reduce energy consumption and pollution whereas hydrochloric acid was used as leaching reagent. 98 % of Li and nearly 99 % of Co were obtained under optimum condition of 5 M hydrochloric acid solution, temperature of 95 °C, reaction time of 70 min, and solid-liquid ratio of 10 g/L. In this process at first nickel, copper, iron, aluminum, cobalt, and manganese were precipitated from leaching solution using sodium hydroxide at pH f 12.5 and reaction time of 1 h and temperature was 55 °C and all metal recoveries were more than 99 %. In the precipitation experiments, lithium loss was only 18.34 %. In the next stage, white lithium carbonate was precipitated by addition of saturated sodium carbonate solution to the left filtrate from first precipitation step. The purity of the recovered powder of lithium was 95 %.

  12. High Performance Li4Ti5O12/Si Composite Anodes for Li-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Chunhui Chen

    2015-08-01

    Full Text Available Improving the energy capacity of spinel Li4Ti5O12 (LTO is very important to utilize it as a high-performance Li-ion battery (LIB electrode. In this work, LTO/Si composites with different weight ratios were prepared and tested as anodes. The anodic and cathodic peaks from both LTO and silicon were apparent in the composites, indicating that each component was active upon Li+ insertion and extraction. The composites with higher Si contents (LTO:Si = 35:35 exhibited superior specific capacity (1004 mAh·g−1 at lower current densities (0.22 A·g−1 but the capacity deteriorated at higher current densities. On the other hand, the electrodes with moderate Si contents (LTO:Si = 50:20 were able to deliver stable capacity (100 mAh·g−1 with good cycling performance, even at a very high current density of 7 A·g−1. The improvement in specific capacity and rate performance was a direct result of the synergy between LTO and Si; the former can alleviate the stresses from volumetric changes in Si upon cycling, while Si can add to the capacity of the composite. Therefore, it has been demonstrated that the addition of Si and concentration optimization is an easy yet an effective way to produce high performance LTO-based electrodes for lithium-ion batteries.

  13. Object Classification Using Airborne Multispectral LiDAR Data

    Directory of Open Access Journals (Sweden)

    PAN Suoyan

    2018-02-01

    Full Text Available Airborne multispectral LiDAR system,which obtains surface geometry and spectral data of objects,simultaneously,has become a fast effective,large-scale spatial data acquisition method.Multispectral LiDAR data are characteristics of completeness and consistency of spectrum and spatial geometric information.Support vector machine (SVM,a machine learning method,is capable of classifying objects based on small samples.Therefore,by means of SVM,this paper performs land cover classification using multispectral LiDAR data. First,all independent point cloud with different wavelengths are merged into a single point cloud,where each pixel contains the three-wavelength spectral information.Next,the merged point cloud is converted into range and intensity images.Finally,land-cover classification is performed by means of SVM.All experiments were conducted on the Optech Titan multispectral LiDAR data,containing three individual point cloud collected by 532 nm,1024 nm,and 1550 nm laser beams.Experimental results demonstrate that ①compared to traditional single-wavelength LiDAR data,multispectral LiDAR data provide a promising solution to land use and land cover applications;②SVM is a feasible method for land cover classification of multispectral LiDAR data.

  14. Developing New Electrolytes for Advanced Li-ion Batteries

    Science.gov (United States)

    McOwen, Dennis Wayne

    The use of renewable energy sources is on the rise, as new energy generating technologies continue to become more efficient and economical. Furthermore, the advantages of an energy infrastructure which relies more on sustainable and renewable energy sources are becoming increasingly apparent. The most readily available of these renewable energy sources, wind and solar energy in particular, are naturally intermittent. Thus, to enable the continued expansion and widespread adoption of renewable energy generating technology, a cost-effective energy storage system is essential. Additionally, the market for electric/hybrid electric vehicles, which both require efficient energy storage, continues to grow as more consumers seek to reduce their consumption of gasoline. These vehicles, however, remain quite expensive, due primarily to costs associated with storing the electrical energy. High-voltage and thermally stable Li-ion battery technology is a promising solution for both grid-level and electric vehicle energy storage. Current limitations in materials, however, limit the energy density and safe operating temperature window of the battery. Specifically, the state-of-the-art electrolyte used in Li-ion batteries is not compatible with recently developed high-voltage positive electrodes, which are one of the most effectual ways of increasing the energy density. The electrolyte is also thermally unstable above 50 °C, and prone to thermal runaway reaction if exposed to prolonged heating. The lithium salt used in such electrolytes, LiPF6, is a primary contributor to both of these issues. Unfortunately, an improved lithium salt which meets the myriad property requirements for Li-ion battery electrolytes has eluded researchers for decades. In this study, a renewed effort to find such a lithium salt was begun, using a recently developed methodology to rapidly screen for desirable properties. Four new lithium salts and one relatively new but uncharacterized lithium salt were

  15. Anti-Perovskite Li-Battery Cathode Materials.

    Science.gov (United States)

    Lai, Kwing To; Antonyshyn, Iryna; Prots, Yurii; Valldor, Martin

    2017-07-19

    Through single-step solid-state reactions, a series of novel bichalcogenides with the general composition (Li 2 Fe)ChO (Ch = S, Se, Te) are successfully synthesized. (Li 2 Fe)ChO (Ch = S, Se) possess cubic anti-perovskite crystal structures, where Fe and Li are completely disordered on a common crystallographic site (3c). According to Goldschmidt calculations, Li + and Fe 2+ are too small for their common atomic position and exhibit large thermal displacements in the crystal structure models, implying high cation mobility. Both compounds (Li 2 Fe)ChO (Ch = S, Se) were tested as cathode materials against graphite anodes (single cells); They perform outstandingly at very high charge rates (270 mA g -1 , 80 cycles) and, at a charge rate of 30 mA g -1 , exhibit charge capacities of about 120 mA h g -1 . Compared to highly optimized Li 1-x CoO 2 cathode materials, these novel anti-perovskites are easily produced at cost reductions by up to 95% and, yet, possess a relative specific charge capacity of 75%. Moreover, these iron-based anti-perovskites are comparatively friendly to the environment and (Li 2 Fe)ChO (Ch = S, Se) melt congruently; the latter is advantageous for manufacturing pure materials in large amounts.

  16. NMR spin-lattice relaxation study of 7Li and 93Nb nuclei in Ti- or Fe-doped LiNbO3:Mg single crystals

    Directory of Open Access Journals (Sweden)

    Tae Ho Yeom

    2016-04-01

    Full Text Available In this study, to understand the effects of paramagnetic impurities, we investigated the temperature dependent of the spin-lattice relaxation times of pure LiNbO3, LiNbO3:Mg, LiNbO3:Mg/Ti, LiNbO3:Mg/Fe, and LiNbO3:Mg/Fe (thermally treated at 500°C single crystals. The results for the LiNbO3:Mg single crystals doped with Fe3+ or Ti3+ are discussed with respect to the site distribution and atomic mobility of Li and Nb. In addition, the effects of a thermal treatment on LiNbO3:Mg/Fe single crystals were examined based on the T1 analysis of 7Li and 93Nb. It was found that the presence of impurities in the crystals induced systematic changes of activation energies concerning atomic mobility.

  17. Isotope effects on product polarization and reaction mechanism in the Li + HF(v = 0, j = 0) → LiF + H reaction

    Science.gov (United States)

    Yue, Xian-Fang; Wang, Mei-Shan

    2012-09-01

    Isotope effects on product polarization and reaction mechanism in the title reaction and its isotopic variants are investigated by employing the quasiclassical trajectory method. At a collision energy of 363 meV, the calculated differential cross sections display a strongly forward scattering in the Li + HF(v = 0, j = 0) → LiF + H reaction, but both the forward and sideways scatterings in the Li + DF(v = 0, j = 0) → LiF + D and Li + TF(v = 0, j = 0) → LiF + T reactions. Analysis of trajectories propagation along the time reveals that the Li + HF and Li + DF reactions proceed predominantly by the direct reaction mechanism. This is consistent with the experimental results of Becker et al. however, the Li + TF reaction undergoes both the direct and indirect reaction mechanisms. The product polarization shows a monotonically decreasing behavior with increasing the mass of the hydrogen isotopes.

  18. Electrochemical Characteristics and Li+ Ion Intercalation Kinetics of Dual-phase Li4Ti5O12/Li2TiO3 Composite in Voltage Range of 0−3 V

    KAUST Repository

    Bhatti, Humaira S

    2016-04-20

    Li4Ti5O12, Li2TiO3 and dual-phase Li4Ti5O12/Li2TiO3 composite were prepared by sol-gel method with average particle size of 1 µm, 0.3 µm and 0.4 µm, respectively. Though Li2TiO3 is electrochemically inactive, the rate capability of Li4Ti5O12/Li2TiO3 is comparable to Li4Ti5O12 at different current rates. Li4Ti5O12/Li2TiO3 also shows good rate performance of 90 mA h g-1 at high rate of 10 C in voltage range of 1−3 V, attributable to increased interfaces in the composite. While Li4Ti5O12 delivers capacity retention of 88.6 % at 0.2 C over 50 cycles, Li4Ti5O12/Li2TiO3 exhibits no capacity fading at 0.2 C (40 cycles) and capacity retention of 98.45 % at 0.5 C (50 cycles). This highly stable cycling performance is attributed to the contribution of Li2TiO3 in preventing undesirable reaction of Li4Ti5O12 with the electrolyte during cycling. CV curves of Li4Ti5O12/Li2TiO3 in 0−3 V range exhibit two anodic peaks at 1.51 V and 0.7−0.0 V, indicating two modes of lithium intercalation into the lattice sites of active material. Owing to enhanced intercalation/de-intercalation kinetics in 0−3 V, composite electrode delivers superior rate performance of 203 mAh/g at 2.85 C and 140 mAh/g at 5.7 C with good reversible capacity retention over 100 cycles.

  19. SnO2 Model Electrode Cycled in Li-Ion Battery Reveals the Formation of Li2SnO3 and Li8SnO6 Phases through Conversion Reactions.

    Science.gov (United States)

    Ferraresi, Giulio; Villevieille, Claire; Czekaj, Izabela; Horisberger, Michael; Novák, Petr; El Kazzi, Mario

    2018-03-14

    SnO 2 is an attractive negative electrode for Li-ion battery owing to its high specific charge compared to commercial graphite. However, the various intermediate conversion and alloy reactions taking place during lithiation/delithiation, as well as the electrolyte stability, have not been fully elucidated, and many ambiguities remain. An amorphous SnO 2 thin film was investigated for use as a model electrode by a combination of postmortem X-ray photoelectron spectroscopy supported by density functional theory calculations and scanning electron microscopy to shed light on these different processes. The early stages of lithiation reveal the presence of multiple overlapping reactions leading to the formation of Li 2 SnO 3 and Sn 0 phases between 2 and 0.8 V vs Li + /Li. Between 0.45 V and 5 mV vs Li + /Li Li 8 SnO 6 , Li 2 O and Li x Sn phases are formed. Electrolyte reduction occurs simultaneously in two steps, at 1.4 and 1 V vs Li + /Li, corresponding to the decomposition of the LiPF 6 salt and ethylene carbonate/dimethyl carbonate solvents, respectively. Most of the reactions during delithiation are reversible up to 1.5 V vs Li + /Li, with the reappearance of Sn 0 accompanied by the decomposition of Li 2 O. Above 1.5 V vs Li + /Li, Sn 0 is partially reoxidized to SnO x . This process tends to limit the conversion reactions in favor of the alloy reaction, as also confirmed by the long-term cycling samples.

  20. TENSOR MODELING BASED FOR AIRBORNE LiDAR DATA CLASSIFICATION

    Directory of Open Access Journals (Sweden)

    N. Li

    2016-06-01

    Full Text Available Feature selection and description is a key factor in classification of Earth observation data. In this paper a classification method based on tensor decomposition is proposed. First, multiple features are extracted from raw LiDAR point cloud, and raster LiDAR images are derived by accumulating features or the “raw” data attributes. Then, the feature rasters of LiDAR data are stored as a tensor, and tensor decomposition is used to select component features. This tensor representation could keep the initial spatial structure and insure the consideration of the neighborhood. Based on a small number of component features a k nearest neighborhood classification is applied.

  1. Molten salt cooling/17Li-83Pb breeding blanket concept

    International Nuclear Information System (INIS)

    Sze, D.K.; Cheng, E.T.

    1985-02-01

    A description of a fusion breeding blanket concept using draw salt coolant and static 17 Li- 83 Pb is presented. 17 Li- 83 Pb has high breeding capability and low tritium solubility. Draw salt operates at low pressure and is inert to water. Corrosion, MHD, and tritium containment problems associated with the MARS design are alleviated because of the use of a static LiPb blanket. Blanket tritium recovery is by permeation toward the plasma. A direct contact steam generator is proposed to eliminate some generic problems associated with a tube shell steam generator

  2. Effect of nano-silica filler in polymer electrolyte on Li dendrite formation in Li/poly(ethylene oxide)-Li(CF{sub 3}SO{sub 2}){sub 2}N/Li

    Energy Technology Data Exchange (ETDEWEB)

    Liu, S. [School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, Shanghai 200040 (China); Department of Chemistry, Faculty of Engineering, Mie University, Tsu 514-8507 (Japan); Imanishi, N.; Zhang, T.; Hirano, A.; Takeda, Y.; Yamamoto, O. [Department of Chemistry, Faculty of Engineering, Mie University, Tsu 514-8507 (Japan); Yang, J. [School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, Shanghai 200040 (China)

    2010-10-01

    Lithium dendrite growth in Li/poly(ethylene oxide) (PEO)-Li(CF{sub 3}SO{sub 2}){sub 2}N (LiTFSI)-nano-SiO{sub 2}/Li was examined using direct in situ observation under galvanostatic conditions at 60 C. Both the onset time of dendrite formation and the short-circuit time of the cells were extended by the addition of nano-SiO{sub 2} filler into the polymer electrolyte, of which an acid-modified nano-SiO{sub 2} filler was the most effective. The onset time was dependent on the current density in the range from 0.1 to 1.0 mA cm{sup -2}. Li dendrite growth in Li/PEO{sub 18}LiTFSI/Li at 60 C for current densities of 0.1 and 0.5 mA cm{sup -2} started at 125 and 15 h, respectively. PEO{sub 18} LiTFSI with addition of 10 wt% acid-modified 50 nm SiO{sub 2} showed extended dendrite formation onset times of 250 h at 0.1 mA cm{sup -2} and 32 h at 0.5 mA cm{sup -2}. The suppression of dendrite formation at the Li/PEO{sub 18} LiTFSI interface could be explained by enhancement of the conductivity and suppression of the interface resistance between lithium and the polymer electrolyte by addition of the nano-SiO{sub 2} filler. The electrical conductivity of 4.1 x 10{sup -4} S cm{sup -1} and interface resistance of 405 {omega} cm{sup 2} for PEO{sub 18} LiTFSI at 60 C were respectively increased to 7.2 x 10{sup -4} S cm{sup -1} and decreased to 77 {omega} cm{sup 2} by the addition of 10 wt% acid-modified nano-SiO{sub 2}. (author)

  3. Nanodefect formation in LiF crystals under gamma irradiation

    International Nuclear Information System (INIS)

    Mussaeva, M.A.; Ibragimova, Eh.M.; Kalanov, M.U.; Muminov, M.I.

    2006-01-01

    One studied the spectra of absorption and of photoluminescence, microhardness and performed X-ray structure analysis of gamma-irradiated LiF crystals in a shutdown reactor and in 60 Co source when gamma-radiation dose rate was equal to 7.65 Gy/s. In addition to formation of point and combined radiation defects one detected the presence of the gamma-irradiation induced 28 nm size nanoparticles of LiOH phase in Li sublattice. Formation of defects is shown to occur more efficiently in a shutdown reactor in contrast to 60 Co source [ru

  4. Study of the first excited state in 5Li

    International Nuclear Information System (INIS)

    Gagne, R.M.; Fou, C.M.; Ward, S.

    1975-01-01

    The reaction 6 Li( 3 He,α) 5 Li(α)p was studied with a 1.8MeV incident 3 He beam. Coincidence spectra (α-α) were measured at theta 1 =25 deg, 35 deg, 40 deg and theta 2 =-150 deg. The purpose was to locate the first excited state of 5 Li. The analysis yields E(x)=3.2+0.2MeV and GAMMA=1.5+-0.5MeV

  5. Expectation values of the e+Li system

    International Nuclear Information System (INIS)

    Mitroy, J.

    2004-01-01

    Close to converged energies and expectation values for e + Li are computed using a ground state wave function consisting of 1200 explicitly correlated Gaussians. The best estimate of the e + Li energy was -7.532 895 5 hartree which has a binding energy of 0.002 482 hartree against dissociation into Ps+Li + . The 2γ annihilation rate for the spin singlet state was 6.996x10 9 s -1 . The annihilation rate for the triplet state, taking into account core annihilation and the 3γ decay, was 9.36x10 6 s -1

  6. Processes during the cycling of LiAlMe electrodes

    International Nuclear Information System (INIS)

    Ol'shanskaya, L.N.; Popova, S.S.

    2000-01-01

    Structural transformations that occur during cycling of LiAlMe (Me = Zn, Cd, Pb, Co, Cr, Mn) electrodes under potentiodynamic and galvanostatic conditions in the working range of potentials (from - 1.5 up to - 4.0 V) are studied. It is shown that interaction of a transition metal ion into LiAl-electrode composition gives rise to increase in cycling efficiency and improvement of the electrode mechanical properties. It stems from the fact that lithium intercalation occurs not only into aluminium matrix but into modifying metal, as well involving formation of Li x Me compounds [ru

  7. The effect of Li2CO3 substitution on synthesis of LiBOB compounds as salt of electrolyte battery lithium ion

    Science.gov (United States)

    Lestariningsih, Titik; Wigayati, Etty Marty; Sabrina, Qolby; Prihandoko, Bambang; Priyono, Slamet

    2018-04-01

    Development of the synthesis of LiB(C2O4)2 compounds continues to evolve along with the need for electrolyte salts to support the research of the manufacture of lithium ion batteries. A study had been conducted on the effect of Li2CO3 substitution on the synthesis of LiB(C2O4)2 or LiBOB compounds. LiBOB was a major candidate to replace LiPF6 as a highly toxic lithium battery electrolyte and harmful to human health. Synthesis of Lithium bis(oxalato) borate used powder metallurgy method. The raw materials used are H2C2O4.2H2O, Li2CO3 or LiOH and H2BO3 from Merck Germany products. The materials are mixed with 2: 1: 1 mol ratio until homogeneous. The synthesis of LiBOB refers to previous research, where the heating process was done gradually. The first stage heating is carried out at 120°C for 4 hours, then the next stage heating is carried out at 240°C for 7 hours. The sample variation in this study was to distinguish the lithium source from Li2CO3 and LiOH. Characterization was done by XRD to know the phase formed, FTIR to confirm that functional group of LiB(C2O4)2 compound, SEM to know the morphological structure, and TG/DTA to know the thermal properties. The results of the analysis shows that LiBOB synthesis using Lithium source from Li2CO3 has succeeded to form LiBOB compound with more LiBOB phase composition is 59.1% and 40.9% LiBOB hydrate phase, SEM morphology shows powder consist of elongated round particle porous and similar to LiBOB commercial and show higher thermal stability.

  8. W-Doped Li7La3Zr2O12 Ceramic Electrolytes for Solid State Li-ion Batteries

    International Nuclear Information System (INIS)

    Li, Yiqiu; Wang, Zheng; Cao, Yang; Du, Fuming; Chen, Cheng; Cui, Zhonghui; Guo, Xiangxin

    2015-01-01

    Highlights: • W Substitution for Zr stabilizes the cubic phase of LLZO grains. • W dopant improves the density of LLZO ceramics. • The LLZWO ceramics are chemically and electrochemically stable against Li. • The Li/LLZWO/Electrolyte-soaked separator/NMC batteries show good rechargeable performance. - Abstract: W-doped Li 7 La 3 Zr 2 O 12 electrolytes with composition of Li 7-2x La 3 Zr 2-x W x O 12 (LLZWO, x = 0-0.55) were prepared by conventional solid state reaction. The incorporation of W proves beneficial to stabilization of cubic phase and densification of the ceramic, resulting in relative density of 96% and ionic conductivity of 6.6 × 10 −4 S cm −1 at 25 °C. Further analysis indicates that the LLZWO is not only chemically but also electrochemically (at least up to 4.5 V) stable against Li metal anodes. The batteries consisting of Li/LLZWO/Electrolyte-soaked separator/LiNi 0.33 Mn 0.33 Co 0.33 O 2 at 25 °C exhibit the capacity of 142 mAh g −1 at a constant current of 15 mA g −1 at the first discharge, which could run for 20 cycles with capacity retention of 94%. These results indicate that the W-doped LLZO ceramics are promising electrolytes for solid state lithium ion batteries.

  9. Novel Li₂MnO₃ nanowire anode with internal Li-enrichment for use in a Li-ion battery.

    Science.gov (United States)

    Wang, Dandan; Zhao, Yunlong; Xu, Xu; Hercule, Kalele Mulonda; Yan, Mengyu; An, Qinyou; Tian, Xiaocong; Xu, Jiaming; Qu, Longbing; Mai, Liqiang

    2014-07-21

    Anode materials which undergo a conversion reaction can achieve larger specific capacities than conventional carbon-based materials. They can even achieve higher energy densities when used at low voltages. However, the large amounts of Li₂O generated in the interior of these structures when Li ions are inserted can cause volume expansion and mechanical fracturing from the inside out. This leads to a poor cycling performance and limits their commercial application. To overcome this limitation, we introduced Li ions into the interior of the cells of manganese oxide materials and successfully synthesized a novel Li-rich anode material (Li₂MnO₃). The reversible capacity reached 1279 mA h g(-1) after 500 cycles, much higher than that of pure MnO₂ or other commercial anodes. This optimization of the internal Li-enrichment and its application in Li₂MnO₃ nanowires used as low voltage anodes in Li-ion batteries have rarely been reported. Further investigations by X-ray diffraction and photoelectron spectroscopy suggested that the strategy of optimizing the internal Li-enrichment of this novel Li₂MnO₃ anode is a promising development for Li-ion batteries.

  10. Li + secondary ion energy distributions probed by fast N 2+ and N q+ bombardment of LiF

    Science.gov (United States)

    Pereira, J. A. M.; da Silveira, E. F.

    1998-12-01

    The time-of-flight method was employed to measure the energy distributions of secondary ions emitted from LiF thin film targets. A van de Graaff generator was used to accelerate N2+ and Nq+ particles to energies in the range of 75 keV to 7.5 MeV in order to bombard the sample. The Li+ secondary ion emission presents contributions due to nuclear and electronic sputtering which could be studied independently. The nuclear sputtering contribution, for projectile energies above 0.50 MeV/atom, does not play a significant role and the corresponding differential yield is well described through the linear collision cascade theory. It is observed that the Li+ electronic sputtering yield is strongly correlated with the number of atomic constituents in the projectile while its energy distribution is not. Furthermore, the Li+ kinetic energy of emission is not sensitive to variations on the velocity and on the charge state of the primary ion, leading to a general conclusion that the Li+ energy distribution due to the electronic sputtering does not depend strongly on the electronic stopping power of the primary ion. The Li+ maximum axial emission energy produced by the electronic sputtering process is observed to be Ez ∼ 10 eV. A model based on hot hole diffusion and multiple hole localization on the surface was developed in order to calculate the Li+ energy distribution, providing good agreement with experimental values.

  11. EPR studies of Li deintercalation from LiCoMnO{sub 4} spinel-type electrode active material

    Energy Technology Data Exchange (ETDEWEB)

    Zhecheva, Ekaterina; Stoyanova, Radostina [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria); Alcantara, Ricardo; Lavela, Pedro; Tirado, Jose L. [Laboratorio de Quimica Inorganica, Universidad de Cordoba, Edificio C-3, Primera Planta, Campus de Rabanales, 14071 Cordoba (Spain)

    2006-09-22

    The electrochemical extraction/insertion of Li from/into LiCoMnO{sub 4} in the potential range of 3.7-5.25V is studied by electron paramagnetic resonance (EPR) of Mn{sup 4+}. Structural characterization of initial LiCoMnO{sub 4} has been performed by neutron diffraction. The EPR spectra are consistent with a single-phase mechanism of electrochemical extraction/insertion of Li from/into LiCoMnO{sub 4}. During Li extraction, the intensity of the main EPR signal due to Mn{sup 4+} ions in Mn{sup 4+}/Co{sup 3+} environment decreases drastically concomitantly with the appearance of resonance absorption from magnetically correlated Mn{sup 4+}-Co{sup 4+} spins. From EPR, the complex [Co{sup n+}-Mn{sup 3+}-Mn{sup 4+}] clusters indicative of the oxygen non-stoichiometry of LiCoMnO{sub 4} also take part in the electrochemical reaction, especially up to 4.7V. During the Li reinsertion, the EPR signal from Mn{sup 4+} ions in Mn{sup 4+}/Co{sup 3+} environment is recovered, but its intensity remains lower (30%) as compared to that of the initial composition, which is consistent with an unrecovered composition of LiCoMnO{sub 4} electrode after first charge/discharge. Contrary to the narrow main signal, there is a reverse reduction of the paramagnetic ions present in the clusters, but their oxidation state as compared to the initial composition is not recovered. (author)

  12. Electrical conductivity of Li6BeO4-Li5AlO4 solid solutions

    International Nuclear Information System (INIS)

    Andreev, O.L.; Zelyutin, G.V.; Martem'yanova, Z.S.; Batalov, N.N.

    2001-01-01

    Solid electrolytes on the Li 6 BeO 4 base with addition of Li 5 AlO 4 are studied for the purpose of increasing the conductivity. The type and parameters of the lithium monoberyllate lattice are clarified. It has a pseudocubic structure. The electric conductivity of the system samples are measured in the whole range of compositions. It is shown, that the maximum conductivity is observed by 70 mol.% Li 5 AlO 4 . By 550 deg C it constitutes 2.2x10 -3 Cm/cm. The electron constituent of the conductivity does not exceed 0.1% [ru

  13. Cross-relaxation of 8Li + in copper

    Science.gov (United States)

    Mansour, A. I.; Morris, G. D.; Salman, Z.; Chow, K. H.; Dunlop, T.; Jung, J.; Fan, I.; MacFarlane, W. A.; Kiefl, R. F.; Parolin, T. J.; Saadaoui, H.; Wang, D.; Hossain, M. D.; Song, Q.; Smadella, M.; Mosendz, O.; Kardasz, B.; Heinrich, B.; Levy, C. D. P.; Pearson, M. R.

    2009-04-01

    The “cross-relaxation” method (also called “level-crossing resonance” or “avoided level-crossing”) is a powerful technique that can be used to provide detailed structural and site information on impurities in materials. In this paper, we report on the development of the cross-relaxation technique for Li+8 at the β-detected nuclear magnetic resonance ( β-NMR) facility located in TRIUMF in Vancouver. The measurements were carried out on a Cu single crystal where the relaxation rate of the Li8 polarization was monitored as a function of the applied longitudinal magnetic field. The occurrence of cross-relaxation, at a particular magnetic field, between the Li8 and the surrounding nuclei is evident as a resonant enhancement of the relaxation rate at the level crossing field. We discuss inferences about the site and structure of Li+8 in Cu from this data.

  14. Li-Ion, Ultra-capacitor Based Hybrid Energy Module

    National Research Council Canada - National Science Library

    Daboussi, Zaher; Paryani, Anil; Khalil, Gus; Catherino, Henry; Gargies, Sonya

    2007-01-01

    .... To determine the optimum utilization of ultra-capacitors in applications where high power density and high energy density are required, an optimized Li-Ion/Ultra-capacitor Hybrid Energy Module (HEM...

  15. First-principles study of Li decorated coronene graphene

    Science.gov (United States)

    Zhang, Yafei; Cheng, Xinlu

    2017-11-01

    We use the first-principles calculation based on density functional theory (DFT) to investigate the hydrogen storage of Li decorated coronene graphene. Our result indicates that single Li atom can adsorb three H2 molecules and the adsorption energy per H2 is -0.224 eV. When four Li atoms doped, the largest hydrogen gravimetric density is 6.82 wt.% and this is higher than the 2017 target by the US department of energy (DOE). Meanwhile, the adsorption energy per H2 is -0.220 eV, which is suitable for H2 molecules to store. Therefore, Li decorated coronene graphene will be a candidate for hydrogen storage materials in the future.

  16. Elevation - LiDAR Survey Minnehaha Creek, MN Watershed

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — LiDAR Bare-Earth Grid - Minnehaha Creek Watershed District. The Minnehaha Creek watershed is located primarily in Hennepin County, Minnesota. The watershed covers...

  17. Applicability of pure LiF in dosimetry

    International Nuclear Information System (INIS)

    Ribeiro, D.R S.; Souza, D.N.; Maia, A.F.; Baldochi, S.L.; Caldas, L.V.E.

    2008-01-01

    The objective of this work was to investigate the thermoluminescent properties of pure LiF in order to estimate the applicability of this material to dosimetry. Irradiations were conducted using photons (gamma and 6 MV X-rays) and megavoltage electron beams (8, 10, 14 MeV). The LiF sample pellets were produced using crystals grown by the Czochralski method. The results obtained in this study can suggest the applicability of pure LiF pellets for dosimetric purposes, provided fading is correctly accounted for. The TL response of the pellets was very intense and with dosimetric peaks in temperatures high enough to overcome most of the fading problems. Although the impurities are very important to TL phenomena, these results showed that a significant portion of the TL response of LiF based materials are due to the radiation induced defects

  18. Li Metal Protection for High Energy Space Batteries, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NOHMs propose to develop, demonstrate, and deliver high energy, lightweight, safe lithium sulfur (Li-S) batteries for use in space applications. During the Phase II...

  19. Li-Ion, Ultra-capacitor Based Hybrid Energy Module

    National Research Council Canada - National Science Library

    Daboussi, Zaher; Paryani, Anil; Khalil, Gus; Catherino, Henry; Gargies, Sonya

    2007-01-01

    .... Combining their superb specific power of 2-5kW/kg, high efficiency and very long cycle life with the high energy density of Li-Ion batteries, practical solutions to a variety of applications can be foreseen...

  20. Electrolytes and Interphasial Chemistry in Li Ion Devices

    Directory of Open Access Journals (Sweden)

    Kang Xu

    2010-01-01

    Full Text Available Since its appearance in 1991, the Li ion battery has been the major power source driving the rapid digitalization of our daily life; however, much of the processes and mechanisms underpinning this newest battery chemistry remains poorly understood. As in any electrochemical device, the major challenge comes from the electrolyte/electrode interfaces, where the discontinuity in charge distribution and extreme disequality in electric forces induce diversified processes that eventually determine the kinetics of Li+ intercalation chemistry. This article will summarize the most recent efforts on the fundamental understanding of the interphases in Li ion devices. Emphasis will be placed on the formation chemistry of the so-called “SEI” on graphitic anode, the effect of solvation sheath structure of Li+ on the intercalation energy barrier, and the feasibility of tailoring a desired interphase. Biologically inspired approaches to an ideal interphase will also be briefly discussed.

  1. Crystal structure of Li3Ga(BO32

    Directory of Open Access Journals (Sweden)

    Robert W. Smith

    2017-03-01

    Full Text Available The crystal structure of trilithium gallium bis(orthoborate, Li3Ga(BO32, is isotypic with Li3Al(BO32 in a triclinic cell in space-group type P-1. The three Li and the unique Ga atom are coordinated by four O atoms each in tetrahedra, and the two B atoms are coordinated by three O atoms in orthoborate triangles. Chains with composition [Ga2(BO34]6− extend along the a axis. The Li atoms interleave these chains in tetrahedral interstices. A comparison is made between the structure model of the title compound and that of a previously reported model for a compound with the same composition [Abdullaev & Mamedov (1972. Zh. Strukt. Khim. 13, 943–946.

  2. Phototransference in LiF (TLD-100) at low temperatures

    International Nuclear Information System (INIS)

    Rosa, L.A.R. da; Caldas, L.V.E.

    1990-01-01

    Phototransference experiments were performed with UV light of 250, 310 and 380 nm in LiF (TLD-100) at liquid nitrogen temperature with the aim of observing thermoluminescence emission peaks. (A.C.A.S.) [pt

  3. Ainult kaks küsimust / Kaarel Väli

    Index Scriptorium Estoniae

    Väli, Kaarel

    2011-01-01

    Tallinnas toimunud 5. rahvusvahelise laste ja noorte moeteatrite festivali „Max Moda 2011" žürii liige Kaarel Väli põhjustest, miks osutus parimaks Moskva moeteater, Eesti võistlejate esinemisest

  4. Static and dynamic moments of the 7Li nucleus

    International Nuclear Information System (INIS)

    Barker, F.C.; Kondo, Y.; Spear, R.H.

    1989-09-01

    The data of Weller et al. (1985) on the tensor analysing powers for elastic and inelastic Coulomb scattering of aligned 7 Li ions have been reanalyzed in order to obtain information on the values of the four 7 Li moments Q, B(E2)↑, τ 11 and τ 12 . It is shown that a single set of values, chosen primarily to be consistent with the value of Q measured by molecular techniques and the values of B(E2)↑ and τ 12 . required to fit unpolarized 7 Li data, and also with the theoretical constraint τ 11 ≅-[τ 12 ], gives a good fit to the aligned 7 Li data. 19 refs., 6 figs

  5. 2009 PSLC-USGS Topographic LiDAR: Wenatchee

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Watershed Sciences, Inc. (WS) collected Light Detection and Ranging (LiDAR) data of the Wenatchee USGS area of interest (AOI) east of Wenatchee, WA on May 1nd - May...

  6. Connecticut Statewide LiDAR 2016 - Blocks 1-7

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This metadata record describes the Classified Point Cloud (LAS) for the 2016 Connecticut LiDAR project covering approximately 5240 square miles in seven blocks. The...

  7. [Cephalometry of Li people through 3-dimensional CT].

    Science.gov (United States)

    You, Wen-Jian; Huang, Lü-Ping; Li, Jian-Jun; Wu, Nian; Zhan, Wang; Liu, Yun

    2008-09-01

    To investigate the skull characteristics of the Li people in Hainan through 3-D CT. CT scan and 3-D reconstruction are very helpful for the cephalometry including the distance and angle measurement. The image can also be enlarged to make the measurement more precisely. 80 Li volunteers underwent the cephalometry through 3-D CT. The data were analyzed and compared with those an people. The results showed difference between the genders of Li people. Compared with Han people, Li people has their own facial characteristics, such as wider face and wider orbital distance. Cephalometry through 3-D CT can show the skull characteristics precisely. The data in this study has great significance in craniomaxillofacial surgery and ethnology.

  8. LiDAR (Terrain), THURSTON COUNTY, WASHINGTON, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Fugro EarthData Company furnished the collection, processing, and development of LiDAR for 825 square miles in Washington (805 square miles of Thurston County and 20...

  9. Lithium intercalation into layered LiMnO2

    DEFF Research Database (Denmark)

    Vitins, G.; West, Keld

    1997-01-01

    Recently Armstrong and Bruce(1) reported a layered modification of lithium manganese oxide, LiMnO2, isostructural with LiCoO2. LiMnO2 obtained by ion exchange from alpha-NaMnO2 synthesized in air is characterized by x-ray diffraction and by electrochemical insertion and extraction of lithium...... relatively easily relax to the Mn distribution characteristic of spinels whereas the anisotropic distribution characteristic of layered structures is not reformed when excess lithium is extracted....... in a series of voltage ranges between 1.5 and 4.5 V relative to a lithium electrode. During cycling voltage plateaus at 3.0 and 4.0 V vs. Li develop, indicating that the material is converted from its original layered structure to a spinel structure. This finding is confirmed by x-ray diffraction. Contrary...

  10. Hollow Nanostructured Anode Materials for Li-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Liu Jun

    2010-01-01

    Full Text Available Abstract Hollow nanostructured anode materials lie at the heart of research relating to Li-ion batteries, which require high capacity, high rate capability, and high safety. The higher capacity and higher rate capability for hollow nanostructured anode materials than that for the bulk counterparts can be attributed to their higher surface area, shorter path length for Li+ transport, and more freedom for volume change, which can reduce the overpotential and allow better reaction kinetics at the electrode surface. In this article, we review recent research activities on hollow nanostructured anode materials for Li-ion batteries, including carbon materials, metals, metal oxides, and their hybrid materials. The major goal of this review is to highlight some recent progresses in using these hollow nanomaterials as anode materials to develop Li-ion batteries with high capacity, high rate capability, and excellent cycling stability.

  11. Li-driven electrochemical properties of WO3 nanorods

    International Nuclear Information System (INIS)

    Wang Qiang; Wen Zhenhai; Jeong, Yeonseok; Choi, Jiyoung; Lee, Kwangyeol; Li, Jinghong

    2006-01-01

    The Li-driven electrochemical properties of monoclinic WO 3 nanorods, which are prepared by a solution-based colloidal approach, have been studied, and the relationship between the properties and the nanostructures of the material has been established. The electrochemical reactions towards lithium involved in WO 3 nanorods were investigated by means of a galvanostatic method and an impedance technique, and superior characteristics associated with one-dimensional nanostructures were observed. WO 3 nanorods with a high aspect ratio were found to yield an intercalation capacity up to 1.12 Li per formula unit, much higher than the value of 0.78 Li per formula unit for bulk WO 3 . This can be explained on the basis of the unique rod-like structure that effectively enhanced structure stability. The evolution of Li-driven reaction kinetics further illustrated benefits of WO 3 nanorods owing to the increased edge and corner effects

  12. The Trojan Horse Method Applied to the Astrophysically Relevant Proton Capture Reactions on Li Isotopes

    Science.gov (United States)

    Tumino, A.; Spitaleri, C.; Musumarra, A.; Pellegriti, M. G.; Pizzone, R. G.; Rinollo, A.; Romano, S.; Pappalardo, L.; Bonomo, C.; Del Zoppo, A.; Di Pietro, A.; Figuera, P.; La Cognata, M.; Lamia, L.; Cherubini, S.; Rolfs, C.; Typel, S.

    2005-12-01

    The 7Li(p,α)4He 6Li(d,α)4He and 6Li(p,α)3He reactions was performed and studied in the framework of the Trojan Horse Method applied to the d(7Li,αα)n, 6Li(6Li,αα)4He and d(6Li,α3He)n three-body reactions respectively. Their bare astrophysical S-factors were extracted and from the comparison with the behavior of the screened direct data, an independent estimate of the screening potential was obtained.

  13. First principles calculation on the adsorption of water on lithium-montmorillonite (Li-MMT)

    International Nuclear Information System (INIS)

    Wungu, Triati Dewi Kencana; Agusta, Mohammad Kemal; Saputro, Adhitya Gandaryus; Kasai, Hideaki; Dipojono, Hermawan Kresno

    2012-01-01

    The interaction of water molecules and lithium-montmorillonite (Li-MMT) is theoretically investigated using density functional theory (DFT) based first principles calculation. The mechanism of water adsorption at two different water concentrations on Li-MMT as well as their structural and electronic properties are investigated. It is found that the adsorption stability in Li-MMT is higher in higher water concentration. It is also found that an adsorbed water molecule on Li-MMT causes the Li to protrude from the MMT surface, so it is expected that Li may be mobile on H 2 O/Li-MMT.

  14. First principles calculation on the adsorption of water on lithium-montmorillonite (Li-MMT).

    Science.gov (United States)

    Wungu, Triati Dewi Kencana; Agusta, Mohammad Kemal; Saputro, Adhitya Gandaryus; Dipojono, Hermawan Kresno; Kasai, Hideaki

    2012-11-28

    The interaction of water molecules and lithium-montmorillonite (Li-MMT) is theoretically investigated using density functional theory (DFT) based first principles calculation. The mechanism of water adsorption at two different water concentrations on Li-MMT as well as their structural and electronic properties are investigated. It is found that the adsorption stability in Li-MMT is higher in higher water concentration. It is also found that an adsorbed water molecule on Li-MMT causes the Li to protrude from the MMT surface, so it is expected that Li may be mobile on H(2)O/Li-MMT.

  15. An iodide-based Li7P2S8I superionic conductor.

    Science.gov (United States)

    Rangasamy, Ezhiylmurugan; Liu, Zengcai; Gobet, Mallory; Pilar, Kartik; Sahu, Gayatri; Zhou, Wei; Wu, Hui; Greenbaum, Steve; Liang, Chengdu

    2015-02-04

    In an example of stability from instability, a Li(7)P(2)S(8)I solid-state Li-ion conductor derived from β-Li(3)PS(4) and LiI demonstrates electrochemical stability up to 10 V vs Li/Li(+). The oxidation instability of I is subverted via its incorporation into the coordinated structure. The inclusion of I also creates stability with the metallic Li anode while simultaneously enhancing the interfacial kinetics and ionic conductivity. Low-temperature membrane processability enables facile fabrication of dense membranes, making this conductor suitable for industrial adoption.

  16. Enhanced high temperature performance of LiMn2O4 coated with ...

    Indian Academy of Sciences (India)

    for LiMn2O4. However, the capacity retention of Li3BO3 coated LiMn2O4 is at least 5·6 and 7·6% higher than. LiMn2O4 when cycled at room temperature and 55 ◦C, respectively. Li3BO3 coated LiMn2O4 shows much better cycling behaviours than LiMn2O4. Keywords. Lithium ion battery; lithium manganese oxide; coating; ...

  17. Production of LiF films for dosimetric thermoluminescence application

    International Nuclear Information System (INIS)

    Mauricio, Claudia Lucia de Pinho

    2000-12-01

    This work studies the LiF monolayer and multilayer polycrystalline film's dosimetric properties. The films were produced by electron beam evaporation technique in aluminium and stainless steel substrates maintained at several temperatures. As dosimetric variable, the intensity of the thermoluminescent (TL) glow curve of the films was used. effects of the substrate type and temperature; of the addition of layers of Mg F 2 NaF and Cu F 2 to the LiF films; and of thermal treatments in the TL response of the produced films were studied. The microstructural characterization of the films was accomplished through measures of scanning electronic microscopy and grazing incidence X-rays diffraction analysis. The dosimetric characterization was made of gamma radiation exposure in a 60 Co source, with kerma from 0,1 to 500 Gy. Studies of reproducibility, homogeneity, stability and other environmental effects were also made. LiF and Cu F 2 : LiF; Mg F 2 films were the only ones that presented mechanical stability and reproducibility of the TL emission. There is a strong indication of some correlation between the residual tension fields inside the films and the intensity of its TL emission peaks. LiF monolayer films present supralinear behaviour from 0,2 to 100 Gy. These films present a main TL glow peak around 150 deg C, whose half-time is about 30 days. Its volumetric sensitivity can reach about 60 times that of LiF powder and about 0,25 that of TLD100 (LiF:Mg, Ti commercial dosimeter from Harshaw Chemical Co.) The homogeneity and reproducibility inside a same film batch is better than 12% for 95% confidence level. Cu F 2 : LiF: Mg F 2 films present linear behaviour from 3 to 500 Gy and its main TL glow peak around 200 deg C did not present any fading for a a period of 30 days, in laboratory conditions. This glow peak is characteristic of the Mg doping of LiF, which confirms the diffusion of Mg ions from the Mg F 2 layer to the LiF layer. The TL volumetric sensitivity of these

  18. Highly stable bilayer of LiPON and B2O3 added Li1.5Al0.5Ge1.5(PO4) solid electrolytes for non-aqueous rechargeable Li-O2 batteries

    International Nuclear Information System (INIS)

    Jadhav, Harsharaj S.; Kalubarme, Ramchandra S.; Jadhav, Arvind H.; Seo, Jeong Gil

    2016-01-01

    Highlights: • LiPON thin film deposited by RF-sputtering technique. • The effect of deposition temperature on ionic conductivity was investigated. • The LiPON/B-LAGP composite was successfully employed in Li-O 2 battery. • LiPON interlayer enhances stability of B-LAGP in contact with Li-metal. - Abstract: Lithium ion conducting membranes are barely studied, although they are essentially indispensable for building Li-air batteries composed of aqueous and non-aqueous electrolytes for long-term operation. Lithium phosphorous oxynitride (LiPON) thin films were deposited by RF-sputtering technique on B 2 O 3 -added lithium aluminum germanium phosphate (B-LAGP). Compact thin amorphous LiPON layer could act as a protective interlayer for B-LAGP by separating it from Li metal electrode and mitigate the reaction between them. Large electrochemical stability window (0–5 V) of LiPON/B-LAGP solid electrolyte shows promising feasibility for applications in all lithium based batteries. The aprotic Li-O 2 cell with protected lithium electrode configuration employing LiPON/B-LAGP solid electrolyte has exhibited reasonable cycling stability with long-life of 52 cycles at a limited capacity of 1000 mA h g −1 .

  19. Inorganic electrolyte rechargeable Li/SO2 system

    Science.gov (United States)

    Dey, A. N.; Kuo, H. C.; Foster, D.; Schlaikjer, C.; Kallianidis, M.

    An account is given of the chemistry and performance characteristics of prototype inorganic electrolyte Li/SO2-system rechargeable cells. The electrolyte consists of LiAlCl4-6SO2; excellent energy density, rate capability, low temperature performance, storability, and overcharging capability have been obtained, although cell life cycle is thus far limited by the degradation of the microporous polypropylene separator employed. In addition, system safety must be improved to prevent cell thermal runaway upon shorting or external heating.

  20. {sup 8}Li + p reaction and the primordial nucleosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Mendes Junior, D.R.; Lepine-Szily, A.; Lichtenthaeler, Rubens; Guimaraes, Valdir; Faria, P.N. de; Barioni, Adriana; Camargo Junior, Orli; Pires, K.C.C.; Morcelle, Viviane; Morais, Maria Carmen; Candori, R. Pampa; Scarduelli, Valdir; Leistenschneider, Erick [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica. Dept. de Fisica Nuclear; Assuncao, Marlete [Universidade Federal de Sao Paulo (UNIFESP), SP (Brazil); Descouvemont, P. [Universite Libre de Bruxelles, Brussels (Belgium). Physique Theorique et Mathematique

    2011-07-01

    Full text: We present a direct measurement of the {sup 8}Li(p,{alpha}){sup 5}He cross section, using a radioactive {sup 8}Li beam impinging on target of CH{sub 2}. This target has a thickness of 6.8 mg/cm{sup 2}, that is thick enough to stop the {sup 8}Li beam in it. The {sup 8}Li beam was produced at the primary target by the reaction {sup 9}Be({sup 7}Li,{sup 8}Li){sup 8}Be and was focalized by the first superconductor solenoid of RIBRAS on a secondary CH{sub 2} target. The reaction products were measured with four silicon barrier detectors, mounted as {Delta}E-E telescopes, where the {Delta}E detectors were 20{mu}m thick and the E detectors were 1000 {mu}m thick. The measurements were performed between Ecm=0.2 and 2.5 MeV at several laboratory angles. They show a broad peak around 1.7 MeV where the cross-section is almost isotropic. At low energies the data show a clear evidence for an increase of the S-factor. This suggests the importance of subthreshold states in {sup 9}Be. An R-matrix analysis of the experimental data has been performed in order to derive spectroscopic information (such as energies, neutron and alpha widths) of some resonances and to extrapolate the data down to zero energy. This R-matrix fit is then used to determine the {sup 8}Li(p,{alpha}){sup 5}He reaction rate, which is compared to the {sup 8}Li({alpha},n){sup 11}B reaction rate. (author)

  1. Can Balloons Produce Li-Fi? A Disaster Management Perspective

    OpenAIRE

    Surampudi, Atchutananda; Chapalgaonkar, Sankalp Shirish; Arumugam, Paventhan

    2017-01-01

    Natural calamities and disasters disrupt the conventional communication setups and the wireless bandwidth becomes constrained. A safe and cost-effective solution for communication and data access in such scenarios is long needed. Light-Fidelity (Li-Fi) which promises wireless access to data at high speeds using visible light can be a good option. Visible light being safe to use for wireless access in such affected environments also provides illumination. Importantly, when a Li-Fi unit is atta...

  2. 11Li structural information from inclusive break-up measurements

    Directory of Open Access Journals (Sweden)

    Fernández-García J. P.

    2015-01-01

    Full Text Available Structure information of 11Li halo nucleus has been obtained from the inclusive break-up measurements of the 11Li+208Pb reactions at energies around the Coulomb barrier (Elab = 24.3 and 29.8 MeV. The effective break-up energy and the slope of B(E1 distribution close to the threshold have been extracted from the experimental data.

  3. Shipborne LiDAR system for coastal change monitoring

    Science.gov (United States)

    Kim, chang hwan; Park, chang hong; Kim, hyun wook; hyuck Kim, won; Lee, myoung hoon; Park, hyeon yeong

    2016-04-01

    Coastal areas, used as human utilization areas like leisure space, medical care, ports and power plants, etc., are regions that are continuously changing and interconnected with oceans and land and the sea level has risen by about 8cm (1.9mm / yr) due to global warming from 1964 year to 2006 year in Korea. Coastal erosion due to sea-level rise has caused the problem of marine ecosystems and loss of tourism resources, etc. Regular monitoring of coastal erosion is essential at key locations with such volatility. But the survey method of land mobile LiDAR (light detection and ranging) system has much time consuming and many restrictions. For effective monitoring beach erosion, KIOST (Korea Institute of Ocean Science & Technology) has constructed a shipborne mobile LiDAR system. The shipborne mobile LiDAR system comprised a land mobile LiDAR (RIEGL LMS-420i), an INS (inertial navigation system, MAGUS Inertial+), a RTKGPS (LEICA GS15 GS25), and a fixed platform. The shipborne mobile LiDAR system is much more effective than a land mobile LiDAR system in the measuring of fore shore areas without shadow zone. Because the vessel with the shipborne mobile LiDAR system is continuously moved along the shoreline, it is possible to efficiently survey a large area in a relatively short time. Effective monitoring of the changes using the constructed shipborne mobile LiDAR system for seriously eroded coastal areas will be able to contribute to coastal erosion management and response.

  4. Studies of valence-bond based quantum mechanical potential-energy surfaces. I. H2 + D2 exchange reaction. II. LiH + H → Li + H2 and LiH + D → LiD + H reactions

    International Nuclear Information System (INIS)

    Freihaut, B.H.

    1975-01-01

    The first phase of this investigation involved the construction of a perfect pairing valence-bond (VB) quantum mechanical potential-energy surfaces for the (H 2 D 2 ) system to compare its results for various geometries to the other prior formulations of such. A plausible four-body pathway for the H 2 --D 2 exchange reaction as shown by a semiempirical Huckel method was explored by the current valence-bond procedure. The second phase of the present investigation involves the formation of a VB based potential-energy surface for the LiH + H → Li + H 2 and LiH + D → LiD + H reaction systems for geometries compatible for a three-center reaction mechanism. No energy acceptable four-body reaction pathway was found for the H 2 --D 2 exchange system. Good agreement was demonstrated with previous ''ab initio'' configuration interaction (CI) studies for the various geometries tested. The square configuration for the H 4 system yielded the lowest barrier height of all the four-body geometries tested although it was still considerably higher than the experimental activation energy for the (H 2 ,D 2 ) system. The barrier height energy for the linear LiH--H configuration agreed well with the one previous work on this system. The barrier height for the LiH--H system increases as the Li--H--H bond angle decreases from 180 0 to 90 0 as well as the Li--H distance at the saddle point. The VB method used herein showed markedly good comparison with recent full CI calculations on the lithium-hydrogen system especially in view of the very limited basis set used in the VB procedure

  5. Hollow Nanostructured Anode Materials for Li-Ion Batteries

    OpenAIRE

    Liu Jun; Xue Dongfeng

    2010-01-01

    Abstract Hollow nanostructured anode materials lie at the heart of research relating to Li-ion batteries, which require high capacity, high rate capability, and high safety. The higher capacity and higher rate capability for hollow nanostructured anode materials than that for the bulk counterparts can be attributed to their higher surface area, shorter path length for Li+ transport, and more freedom for volume change, which can reduce the overpotential and allow better reaction kinetics at th...

  6. Extraction of Rooftops from LiDAR and Multispectral Imagery

    OpenAIRE

    Kim, Angela M.; Kruse, Fred A.; Olsen, Richard C.; Clasen, Chris C.

    2012-01-01

    Imaging and Applied Optics Technical Digest, 2012 A rooftop extraction scheme based on statistical analysis of the LiDAR point cloud is presented. Spectral data are incorporated to reduce false alarms due to vegetation and to provide spectral discrimination of rooftop materials. This research was partially supported by the Science and Technology Directorate, USA Department of Homeland Security (DHS). The LiDAR data were provided by the Association of Monterey Bay Area Governments (AM...

  7. Nonempirical calculations of the LiBO molecule

    International Nuclear Information System (INIS)

    Nemukhin, A.V.; Stepanov, N.F.

    1987-01-01

    Problems of nonempirical calculations of molecule energies, related to the use of limited basis AO set and configurations were considered taking the LiBO molecule as an example. The version of optimizing parameters of basis functions of the base of the concept of ''atoms in molecules'' was suggested. It is shown that correct description of the potential surface of LiBO molecule is impossible without consideration of electron correlation; main contributions to correlation corrections were distinguished

  8. Nuclear Magnetic Resonance Imaging of Li-ion Battery

    Directory of Open Access Journals (Sweden)

    D. Ohno

    2010-12-01

    Full Text Available Nuclear magnetic resonance (NMR imaging has high sensitivity to proton (1H and lithium (7Li. It is a useful measurement for electrolyte in Li-ion battery. 1H NMR images of lithium ion battery which is composed of LiMn2O4 / LiClO4 + propylene carbonate (PC / Li-metal have been studied. 1H NMR images of electrolyte near cathode material (LiMn2O4 showed anomalous intensity distribution, which was quite inhomogeneous. From NMR images as a function of repetition time (TR, it was concluded that the anomalous intensity distribution was not due to change of relaxation time but an indirect (spatial para-magnetization effect from cathode material. The paramagnetization induced by high magnetic field distorts linearity of magnetic gradient field, leading to apparent intensity variance. This functional image is an easy diagnostic measurement for magnetization of cathode material, which allows the possibility to check uniformity of cathode material and change of magnetization under electrochemical process.

  9. Te/C nanocomposites for Li-Te Secondary Batteries

    Science.gov (United States)

    Seo, Jeong-Uk; Seong, Gun-Kyu; Park, Cheol-Min

    2015-01-01

    New battery systems having high energy density are actively being researched in order to satisfy the rapidly developing market for longer-lasting mobile electronics and hybrid electric vehicles. Here, we report a new Li-Te secondary battery system with a redox potential of ~1.7 V (vs. Li+/Li) adapted on a Li metal anode and an advanced Te/C nanocomposite cathode. Using a simple concept of transforming TeO2 into nanocrystalline Te by mechanical reduction, we designed an advanced, mechanically reduced Te/C nanocomposite electrode material with high energy density (initial discharge/charge: 1088/740 mA h cm-3), excellent cyclability (ca. 705 mA h cm-3 over 100 cycles), and fast rate capability (ca. 550 mA h cm-3 at 5C rate). The mechanically reduced Te/C nanocomposite electrodes were found to be suitable for use as either the cathode in Li-Te secondary batteries or a high-potential anode in rechargeable Li-ion batteries. We firmly believe that the mechanically reduced Te/C nanocomposite constitutes a breakthrough for the realization and mass production of excellent energy storage systems.

  10. 2012 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Chehalis River Watershed Area, Washington

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Watershed Sciences, Inc. (WSI) collected Light Detection and Ranging (LiDAR) data for the Chehalis River Watershed study area on January 28th, February 2nd-7th,...

  11. 2002 Puget Sound LiDAR Consortium (PSLC) Unclassified Topographic LiDAR: Puget Sound Lowlands Washington

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TerraPoint surveyed and created this data for the Puget Sound LiDAR Consortium under contract. The area surveyed is approximately 730 square miles and covers the...

  12. Characterization of all-solid-state Li/LiPONB/TiOS microbatteries produced at the pilot scale

    Science.gov (United States)

    Fleutot, B.; Pecquenard, B.; Le Cras, F.; Delis, B.; Martinez, H.; Dupont, L.; Guy-Bouyssou, D.

    All-solid-state Li/LiPONB/TiOS microbatteries were manufactured at the pilot scale on silicon substrate. In a first attempt, the characterization of the active materials constituting the microbattery was achieved in order to determine their accurate composition, structure and morphology. Finally, a thorough electrochemical characterization was carried out on all-solid-state cells. Excellent performances were noted in terms of cycle life (with more than 1000 cycles), efficiency and self-discharge (less than 5% per year). In addition, the positive electrode highlighted a high volumetric capacity close to 90 μAh cm -2 μm -1 when cycled at 100 μA cm -2 between 1 V and 3 V vs. Li +/Li.

  13. 2006 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Eastern Washington and River Corridors

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Watershed Sciences, Inc. (WS) collected Light Detection and Ranging (LiDAR) data in eastern Washington, eastern Oregon, and southern Canada in October and November,...

  14. Muusikaüliõpilaste refleksiooni toetamine pilliõppes / Tuulike Kivestu, Äli Leijen, Kadri Steinbach

    Index Scriptorium Estoniae

    Kivestu, Tuulike

    2014-01-01

    Uurimusest, mille eesmärgiks oli selgitada välja, millised on üliõpilaste kogemused refleksioonimudeli rakendamisel ja nende hinnangud refleksiooniülesannete kasulikkusele pillimängu oskuste arendamisel

  15. Surface Modification of LiMn2O4 for Lithium Batteries by Nanostructured LiFePO4 Phosphate

    Directory of Open Access Journals (Sweden)

    B. Sadeghi

    2012-01-01

    Full Text Available LiMn2O4 spinel cathode materials have been successfully synthesized by solid-state reaction. Surface of these particles was modified by nanostructured LiFePO4 via sol gel dip coating method. Synthesized products were characterized by thermally analyzed thermogravimetric and differential thermal analysis (TG/DTA, X-ray diffraction (XRD, scanning electron microscopy (SEM, transmission electron microscopy (TEM, and energy dispersive X-ray spectroscopy (EDX. The results of electrochemical tests showed that the charge/discharge capacities improved and charge retention of battery enhanced. This improved electrochemical performance is caused by LiFePO4 phosphate layer on surfaces of LiMn2O4 cathode particles.

  16. First-principles study of ternary Li-Al-Te compounds under high pressure

    Science.gov (United States)

    Wang, Youchun; Tian, Fubo; Li, Da; Duan, Defang; Xie, Hui; Liu, Bingbing; Zhou, Qiang; Cui, Tian

    2018-02-01

    The ternary Li-Al-Te compounds were investigated by the first-principle evolutionary calculation based on density function theory. Apart from the known structure, I-42d LiAlTe2 and P3m1 LiAlTe2, several new structures were discovered, P-3m1 LiAlTe2, Pnma LiAlTe2, C2/c Li9AlTe2, Immm Li9AlTe2 and P4/mmm Li6AlTe. We determined that the I-42d LiAlTe2 firstly changed to P-3m1 phase at 6 GPa, and then into the Pnma structure at 65 GPa, Pnma phase was stable up at least to 120 GPa. I-42d LiAlTe2 was a pseudo-direct band gap semiconductor, but P-3m1 LiAlT2 was an indirect band gap semiconductor. This may be caused by the pressure effect. Subsequently, it was metallized under pressure. Pnma LiAlTe2 was also metallic at the pressure we studied. C2/c Li9AlTe2 was stable above 4 GPa, then turned into Immm phase at 60 GPa. C2/c Li9AlTe2 was an indirect band gap semiconductor. The results show that P4/mmm Li6AlTe was stable and metallized in the pressure range of 0.7-120 GPa. The calculations of DOS and PDOS indicate that the arrangement of electrons near Fermi energy can be affected by the increase of Li. The calculated ELF results and Bader charge analysis indicate that there was no covalent bond between Al and Te atoms for high-pressure Pnma LiAlTe2, Li9AlTe2 and Li6AlTe. For Li9AlTe2 and Li6AlTe, different from LiAlTe2, Al atoms not connect with Te atoms, but link with Li atoms. The results were further proved by Mulliken population analysis. And the weak covalent bonds between Li and Al atoms stem from the hybridization of Li s and Al p presented in PDOS diagrams. We further deduced that the pressure effect and the increase of Li content may result in the disappearance of Al-Te bonds for Li-Al-Te compound under extreme pressure.

  17. A study of integrated cathode assembly for electrolytic reduction of uranium oxide in LiCl-Li2O molten salt

    International Nuclear Information System (INIS)

    Park, Sung Bin; Seo, Jung Seok; Kang, Dae Seung; Kwon, Sun Kil; Park, Seong Won

    2004-01-01

    Interest of electrolytic reduction of uranium oxide is increasing in treatment of spent metal fuels. Argonne National Laboratory (ANL) has reported the experimental results of electrochemical reduction of uranium oxide fuel in bench-scale apparatus with cyclic voltammetry, and has designed high-capacity reduction (HCR) cells and conducted three kg-scale UO 2 reduction runs. From the cyclic voltammograms, the mechanism of electrolytic reduction of metal oxides is analyzed. The uranium oxide in LiCl-Li 2 O is converted to uranium metal according to the two mechanism; direct and indirect electrolytic reduction. In this study, cyclic voltammograms for LiCl-3wt% Li 2 O system and U 3 O 8 -LiCl-3wt% Li 2 O system using the 325-mesh stainless steel screen in cathode assembly have been obtained. Direct electrolytic reduction of uranium oxide in LiCl-3wt% Li 2 O molten salt has been conducted

  18. Influence of Li/Nb ratios on defect structure and photorefractive properties of Zn: In: Fe: LiNbO 3 crystals

    Science.gov (United States)

    Dai, Li; Su, Yan-Qing; Wu, Shi-Ping; Guo, Jing-Jie; Xu, Chao; Xu, Yu-Heng

    2011-04-01

    A series of Zn: In: Fe: LiNbO3 crystals are grown by the Czochralski technique with various ratios of Li/Nb = 0.94, 1.05, 1.20 and 1.38 in the melt. The Zn, In, Fe, Nb and Li concentrations in the crystals are analyzed by inductively coupled plasma (ICP) spectrometry. The results indicate that with increasing the [Li]/[Nb] ratio in melt, [Li]/[Nb] ratio increases and goes up continuously in the crystal, the segregation coefficients of both Zn and In ions decrease. The absorption spectra measurement and two-wave coupling experiment are employed to study the effect of [Li]/[Nb] ratio on photorefractive properties of Zn: In: Fe: LiNbO3 crystals. It is found that the [Li]/[Nb] ratio increases, the write time is shortened and the photorefractive sensitivity is improved.

  19. 2012-2013 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Hoh River Watershed, Washington (Deliveries 1 and 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Watershed Sciences, Inc. (WSI) collected Light Detection and Ranging (LiDAR) data on the Hoh River watershed survey area for the Puget Sound LiDAR Consortium and the...

  20. Õpetaja professionaalse rolli internaliseerimise hindamine õpetajakoolituse esmaõppe üliõpilaste hulgas / Äli Leijen, Katrin Kullasepp, Aivar Ots

    Index Scriptorium Estoniae

    Leijen, Äli, 1979-

    2013-01-01

    Aineõpetaja magistriõppe üliõpilaste seas läbi viidud uurimusest, milles vaadeldakse, kuidas üliõpilased koordineerivad personaalset ja professionaalset mina-positsiooni erialaste ambivalentsete olukordade kontekstis

  1. The cosmic 6Li and 7Li problems and BBN with long-lived charged massive particles

    International Nuclear Information System (INIS)

    Karsten, Jedamzik

    2007-01-01

    Charged massive particles (CHAMPs), when present during the Big Bang nucleosynthesis (BBN) era, may significantly alter the synthesis of light elements when compared to a standard BBN scenario. This is due to the formation of bound states with nuclei. This paper presents a detailed numerical and analytical analysis of such CHAMP BBN. All reactions important for predicting light-element yields are calculated within the Born approximation. Three prior neglected effects are treated in detail: (a) photo destruction of bound states due to electromagnetic cascades induced by the CHAMP decay, (b) late-time efficient destruction/production of H 2 , Li 6 , and Li 7 due to reactions on charge Z = 1 nuclei bound to CHAMPs, and (c) CHAMP exchange between nuclei. Each of these effects may induce orders-of-magnitude changes in the final abundance yields. The study focusses on the impact of CHAMPs on a possible simultaneous solution of the Li 6 and Li 7 problems. It is shown that a prior suggested simultaneous solution of the Li 6 and Li 7 problems for a relic decaying at τ x ∼ 1000 s is only very weakly dependent on the relic being neutral or charged, unless its hadronic branching ratio is B h -4 very small. By use of a Monte-Carlo analysis it is shown that within CHAMP BBN the existence of further parameter space for a simultaneous solution of the Li 6 and Li 7 problem for long decay times τ x ≥ 10 6 s seems possible but fairly unlikely. (author)

  2. Measuring the ratio of aqueous diffusion coefficients between 6Li +Cl - and 7Li +Cr - by osmometry

    Science.gov (United States)

    Fritz, Steven J.

    1992-10-01

    Osmotic equilibrium is a singular occurrence in the evolution of an osmotic cell because at this event the net solution flux is zero such that -J w · V¯w = J s · V¯s. At this juncture, the diffusion coefficient of the solute through the membrane (ω) equals the solute flux ( Js) divided by the osmotic pressure (ΔΠ). Because the solute permeability coefficient (ω) is related to the Fickian diffusion coefficient ( D) through the gas constant, temperature, and the membrane's thickness and tortuosity, the ratio of ω values for individual isotopic species equals the ratio of D values for the same isotopic components. A 0.9450 molal LiCl solution was placed within sealed dialysis tubing and osmoted against a kilogram of deionized water at 22°C. Osmotic equilibrium occurred at 164 ± 10 min. The ratio of ω6Li +Cl -/ω7Li +Cl - was measured to be 1.011 ± 0.003 - a value close to the square root of the mass ratio between 7LiCl and 6LiCl (= 1.012) as calculated by Graham's Law. The measured diffusion coefficient ratio was used to predict the degree of hyperfiltration-induced fractionation of Li isotopes as a function of membrane ideality. When a membrane's σ exceeds 0.95 (as is likely for low-porosity shales) the 6Li /7Li ratio on the high-pressure side of the membrane can theoretically vary by more than 0.0017.

  3. Toward garnet electrolyte–based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface

    Science.gov (United States)

    Fu, Kun (Kelvin); Gong, Yunhui; Liu, Boyang; Zhu, Yizhou; Xu, Shaomao; Yao, Yonggang; Luo, Wei; Wang, Chengwei; Lacey, Steven D.; Dai, Jiaqi; Chen, Yanan; Mo, Yifei; Wachsman, Eric; Hu, Liangbing

    2017-01-01

    Solid-state batteries are a promising option toward high energy and power densities due to the use of lithium (Li) metal as an anode. Among all solid electrolyte materials ranging from sulfides to oxides and oxynitrides, cubic garnet–type Li7La3Zr2O12 (LLZO) ceramic electrolytes are superior candidates because of their high ionic conductivity (10−3 to 10−4 S/cm) and good stability against Li metal. However, garnet solid electrolytes generally have poor contact with Li metal, which causes high resistance and uneven current distribution at the interface. To address this challenge, we demonstrate a strategy to engineer the garnet solid electrolyte and the Li metal interface by forming an intermediary Li-metal alloy, which changes the wettability of the garnet surface (lithiophobic to lithiophilic) and reduces the interface resistance by more than an order of magnitude: 950 ohm·cm2 for the pristine garnet/Li and 75 ohm·cm2 for the surface-engineered garnet/Li. Li7La2.75Ca0.25Zr1.75Nb0.25O12 (LLCZN) was selected as the solid-state electrolyte (SSE) in this work because of its low sintering temperature, stabilized cubic garnet phase, and high ionic conductivity. This low area-specific resistance enables a solid-state garnet SSE/Li metal configuration and promotes the development of a hybrid electrolyte system. The hybrid system uses the improved solid-state garnet SSE Li metal anode and a thin liquid electrolyte cathode interfacial layer. This work provides new ways to address the garnet SSE wetting issue against Li and get more stable cell performances based on the hybrid electrolyte system for Li-ion, Li-sulfur, and Li-oxygen batteries toward the next generation of Li metal batteries. PMID:28435874

  4. In-situ imaging of Li intercalation in graphite particles in an Li-ion battery.

    Science.gov (United States)

    Takata, Keiji

    2017-06-01

    This paper presents the imaging of the expansion and contraction of graphite particles at the anode of a lithium-ion battery. The intercalation and deintercalation of Li ions in the graphite particles induced by charging and discharging lead to expansion and contraction of the layered materials. These changes in volume were imaged through current collectors using scanning probe microscopy, which permitted in-situ observation of the Li ion shift with high resolutions. We were able to evaluate the properties of each individual graphite particle. Here, we present variations in the images obtained by two methods of charging/discharging. In one method, the applied fields are changed, forcing the ions to move back into the graphite particles. Images showing detailed structures were obtained, allowing us to investigate the fine structures of the graphite particles. In the other method, the amount of ions is periodically injected into the graphite, which did not reveal the detailed structure but clearly distinguished inactive from active particles. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  5. Electrochemical Li Topotactic Reaction in Layered SnP3 for Superior Li-Ion Batteries

    Science.gov (United States)

    Park, Jae-Wan; Park, Cheol-Min

    2016-10-01

    The development of new anode materials having high electrochemical performances and interesting reaction mechanisms is highly required to satisfy the need for long-lasting mobile electronic devices and electric vehicles. Here, we report a layer crystalline structured SnP3 and its unique electrochemical behaviors with Li. The SnP3 was simply synthesized through modification of Sn crystallography by combination with P and its potential as an anode material for LIBs was investigated. During Li insertion reaction, the SnP3 anode showed an interesting two-step electrochemical reaction mechanism comprised of a topotactic transition (0.7-2.0 V) and a conversion (0.0-2.0 V) reaction. When the SnP3-based composite electrode was tested within the topotactic reaction region (0.7-2.0 V) between SnP3 and LixSnP3 (x ≤ 4), it showed excellent electrochemical properties, such as a high volumetric capacity (1st discharge/charge capacity was 840/663 mA h cm-3) with a high initial coulombic efficiency, stable cycle behavior (636 mA h cm-3 over 100 cycles), and fast rate capability (550 mA h cm-3 at 3C). This layered SnP3 anode will be applicable to a new anode material for rechargeable LIBs.

  6. Facile Solution Route to Synthesize Nanostructure Li4Ti5O12 for High Rate Li-Ion Battery

    Directory of Open Access Journals (Sweden)

    M. V. Tran

    2016-01-01

    Full Text Available High rate Li-ion batteries have been given great attention during the last decade as a power source for hybrid electric vehicles (HEVs, EVs, etc. due to the highest energy and power density. These lithium batteries required a new design of material structure as well as innovative electrode materials. Among the promising candidates, spinel Li4Ti5O12 has been proposed as a high rate anode to replace graphite anode because of high capacity and a negligible structure change during intercalation of lithium. In this work, we synthesized a spinel Li4Ti5O12 in nanosize by a solution route using LiOH and Ti(OBu4 as precursor. An evaluation of structure and morphology by XRD and SEM exhibited pure spinel phase Li4Ti5O12 and homogenous nanoparticles around 100 nm. In the charge-discharge test, nanospinel Li4Ti5O12 presents excellent discharge capacity 160 mAh/g at rate C/10, as well as good specific capacities of 120, 110, and 100 mAh/g at high rates C, 5C and 10C, respectively.

  7. Characterization of Li4Ti5O12 and LiMn2O4 spinel materials treated with aqueous acidic solutions

    NARCIS (Netherlands)

    Simon, D.R.

    2007-01-01

    In this thesis an investigation of two spinel materials, Li4Ti5O12 and LiMn2O4 used for Li-ion battery applications is performed interms of formation and reactivity towards acidic solutions. Subsequent characterizations such as structural, magnetic, chemical, and electrochemical characterizations

  8. Pebble fabrication of super advanced tritium breeders using a solid solution of Li2+xTiO3+y with Li2ZrO3

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Hoshino

    2016-12-01

    Full Text Available Lithium titanate with excess lithium (Li2+xTiO3+y is one of the most promising candidates among advanced tritium breeders for demonstration power plant reactors because of its good tritium release characteristics. However, the tritium breeding ratio (TBR of Li2+xTiO3+y is smaller than that of e.g., Li2O or Li8TiO6 because of its lower Li density. Therefore, new Li-containing ceramic composites with both high stability and high Li density have been developed. Thus, this study focused on the development of a solid solution with a new characteristic. The solid-solution pebbles of Li2+xTiO3+y with Li2ZrO3 (Li2+x(Ti,ZrO3+y, designated as LTZO, were fabricated by an emulsion method. The X-ray diffraction patterns of sintered LTZO pebbles are approximately the same as those of Li2+xTiO3+y pebbles, and no peaks attributable to Li2ZrO3 are observed. These results demonstrate that LTZO pebbles are not a two-phase material but rather a solid solution. Furthermore, LTZO pebbles were easily sintered under air. Thus, the LTZO solid solution is a candidate breeder material for super advanced (SA tritium breeders.

  9. High performance anode for advanced Li batteries

    Energy Technology Data Exchange (ETDEWEB)

    Lake, Carla [Applied Sciences, Inc., Cedarville, OH (United States)

    2015-11-02

    The overall objective of this Phase I SBIR effort was to advance the manufacturing technology for ASI’s Si-CNF high-performance anode by creating a framework for large volume production and utilization of low-cost Si-coated carbon nanofibers (Si-CNF) for the battery industry. This project explores the use of nano-structured silicon which is deposited on a nano-scale carbon filament to achieve the benefits of high cycle life and high charge capacity without the consequent fading of, or failure in the capacity resulting from stress-induced fracturing of the Si particles and de-coupling from the electrode. ASI’s patented coating process distinguishes itself from others, in that it is highly reproducible, readily scalable and results in a Si-CNF composite structure containing 25-30% silicon, with a compositionally graded interface at the Si-CNF interface that significantly improve cycling stability and enhances adhesion of silicon to the carbon fiber support. In Phase I, the team demonstrated the production of the Si-CNF anode material can successfully be transitioned from a static bench-scale reactor into a fluidized bed reactor. In addition, ASI made significant progress in the development of low cost, quick testing methods which can be performed on silicon coated CNFs as a means of quality control. To date, weight change, density, and cycling performance were the key metrics used to validate the high performance anode material. Under this effort, ASI made strides to establish a quality control protocol for the large volume production of Si-CNFs and has identified several key technical thrusts for future work. Using the results of this Phase I effort as a foundation, ASI has defined a path forward to commercialize and deliver high volume and low-cost production of SI-CNF material for anodes in Li-ion batteries.

  10. LiDAR Vegetation Investigation and Signature Analysis System (LVISA)

    Science.gov (United States)

    Höfle, Bernhard; Koenig, Kristina; Griesbaum, Luisa; Kiefer, Andreas; Hämmerle, Martin; Eitel, Jan; Koma, Zsófia

    2015-04-01

    Our physical environment undergoes constant changes in space and time with strongly varying triggers, frequencies, and magnitudes. Monitoring these environmental changes is crucial to improve our scientific understanding of complex human-environmental interactions and helps us to respond to environmental change by adaptation or mitigation. The three-dimensional (3D) description of the Earth surface features and the detailed monitoring of surface processes using 3D spatial data have gained increasing attention within the last decades, such as in climate change research (e.g., glacier retreat), carbon sequestration (e.g., forest biomass monitoring), precision agriculture and natural hazard management. In all those areas, 3D data have helped to improve our process understanding by allowing quantifying the structural properties of earth surface features and their changes over time. This advancement has been fostered by technological developments and increased availability of 3D sensing systems. In particular, LiDAR (light detection and ranging) technology, also referred to as laser scanning, has made significant progress and has evolved into an operational tool in environmental research and geosciences. The main result of LiDAR measurements is a highly spatially resolved 3D point cloud. Each point within the LiDAR point cloud has a XYZ coordinate associated with it and often additional information such as the strength of the returned backscatter. The point cloud provided by LiDAR contains rich geospatial, structural, and potentially biochemical information about the surveyed objects. To deal with the inherently unorganized datasets and the large data volume (frequently millions of XYZ coordinates) of LiDAR datasets, a multitude of algorithms for automatic 3D object detection (e.g., of single trees) and physical surface description (e.g., biomass) have been developed. However, so far the exchange of datasets and approaches (i.e., extraction algorithms) among LiDAR users

  11. Visual-LiDAR Odometry Aided by Reduced IMU

    Directory of Open Access Journals (Sweden)

    Yashar Balazadegan Sarvrood

    2016-01-01

    Full Text Available This paper proposes a method for combining stereo visual odometry, Light Detection And Ranging (LiDAR odometry and reduced Inertial Measurement Unit (IMU including two horizontal accelerometers and one vertical gyro. The proposed method starts with stereo visual odometry to estimate six Degree of Freedom (DoF ego motion to register the point clouds from previous epoch to the current epoch. Then, Generalized Iterative Closest Point (GICP algorithm refines the motion estimation. Afterwards, forward velocity and Azimuth obtained by visual-LiDAR odometer are integrated with reduced IMU outputs in an Extended Kalman Filter (EKF to provide final navigation solution. In this paper, datasets from KITTI (Karlsruhe Institute of Technology and Toyota technological Institute were used to compare stereo visual odometry, integrated stereo visual odometry and reduced IMU, stereo visual-LiDAR odometry and integrated stereo visual-LiDAR odometry and reduced IMU. Integrated stereo visual-LiDAR odometry and reduced IMU outperforms other methods in urban areas with buildings around. Moreover, this method outperforms simulated Reduced Inertial Sensor System (RISS, which uses simulated wheel odometer and reduced IMU. KITTI datasets do not include wheel odometry data. Integrated RTK (Real Time Kinematic GPS (Global Positioning System and IMU was replaced by wheel odometer to simulate the response of RISS method. Visual Odometry (VO-LiDAR is not only more accurate than wheel odometer, but it also provides azimuth aiding to vertical gyro resulting in a more reliable and accurate system. To develop low-cost systems, it would be a good option to use two cameras plus reduced IMU. The cost of such a system will be reduced than using full tactical MEMS (Micro-Electro-Mechanical Sensor based IMUs because two cameras are cheaper than full tactical MEMS based IMUs. The results indicate that integrated stereo visual-LiDAR odometry and reduced IMU can achieve accuracy at the

  12. UAS TOPOGRAPHIC MAPPING WITH VELODYNE LiDAR SENSOR

    Directory of Open Access Journals (Sweden)

    G. Jozkow

    2016-06-01

    Full Text Available Unmanned Aerial System (UAS technology is nowadays willingly used in small area topographic mapping due to low costs and good quality of derived products. Since cameras typically used with UAS have some limitations, e.g. cannot penetrate the vegetation, LiDAR sensors are increasingly getting attention in UAS mapping. Sensor developments reached the point when their costs and size suit the UAS platform, though, LiDAR UAS is still an emerging technology. One issue related to using LiDAR sensors on UAS is the limited performance of the navigation sensors used on UAS platforms. Therefore, various hardware and software solutions are investigated to increase the quality of UAS LiDAR point clouds. This work analyses several aspects of the UAS LiDAR point cloud generation performance based on UAS flights conducted with the Velodyne laser scanner and cameras. The attention was primarily paid to the trajectory reconstruction performance that is essential for accurate point cloud georeferencing. Since the navigation sensors, especially Inertial Measurement Units (IMUs, may not be of sufficient performance, the estimated camera poses could allow to increase the robustness of the estimated trajectory, and subsequently, the accuracy of the point cloud. The accuracy of the final UAS LiDAR point cloud was evaluated on the basis of the generated DSM, including comparison with point clouds obtained from dense image matching. The results showed the need for more investigation on MEMS IMU sensors used for UAS trajectory reconstruction. The accuracy of the UAS LiDAR point cloud, though lower than for point cloud obtained from images, may be still sufficient for certain mapping applications where the optical imagery is not useful.

  13. Synthesis of LiBOB Fine Powder to Increase Solubility

    Directory of Open Access Journals (Sweden)

    Etty Marti Wigayati

    2017-04-01

    Full Text Available Lithium bis (oxalate borate or LiBOB compound has captured interest of researchers, because it is potentially viable to be used as electrolyte salt in lithium-ion battery system. This compound is easy to synthesize and considered to be more environmentally friendly compared to conventional electrolyte salt because LiBOB does not contain halogen element. This research focused on the synthesis of LiBOB fine powder, which main purpose is improving LiBOB salt solubility in liquid electrolyte solution. This will aid the ion transfer between electrodes which in turn will increase the electrolyte performance. Solid state reaction was employed in this experiment. Synthesis of LiBOB compound was performed by reacting oxalic acid dihydrate, lithium hydroxide monohydrate, and boric acid. The resulting powder was then processed into fine powder using ball milling technique with varying milling time (0, 6, 10, and 13 hour. Microstructure of the sample was then analyzed to obtain information regarding phase formation, functional groups, grain surface morphology, surface area, pore volume, solubility, and ionic conductivity. The analysis shown that LiBOB and LiBOB hydrate phase was formed during the reaction, there was no changed in existing phase during milling process, crystallinity index was shifted to lower value but there was no difference in functional groups. Highest value in surface area was found to be 83.11 m2/g, with pore volume of 1.21311e+02 A at 10 hours milling. Smaller powder size resulted in higher solubility, unfortunately the ionic conductivity was found to be decreased.

  14. RELATION BETWEEN NMR PROPERTIES AND ELECTRICAL-RESISTIVITY IN LI-GE, LI-SN AND LI-PB LIQUID ALLOYS

    NARCIS (Netherlands)

    XU, R; VANDERLUGT, W

    1994-01-01

    Recent measurements of the electrical resistivity of liquid Li-Ge alloys enable us to check relations between NMR properties and resistivity in non-metallic alloys derived by Warren in 1971. It is shown that the predicted linear relationships hold, but that the proportionality between the square

  15. Selected Properties of Cs2LiYCl6}, Cs2LiLaCl6, and Cs2LiLaBr6 Scintillators

    Science.gov (United States)

    Glodo, Jarek; van Loef, Edgar; Hawrami, Rastgo; Higgins, William M.; Churilov, Alexei; Shirwadkar, Urmila; Shah, Kanai S.

    2011-02-01

    Homeland security applications often require detection of both neutron and gamma radiation. A combination of two detectors registering neutrons and gammas separately is typically used. Recently, a number of scintillators from the elpasolite crystal family were proposed, that provide detection of both types of radiation. The most promising are Cs2LiYCl6, Cs2LiLaCl6, and Cs2LiLaBr6. All are doped with Ce3+. They are capable of providing very high energy resolution. The best values achieved for each material are 3.9%, 3.4%, and 2.9% at 662 keV (FWHM), respectively. Since 6Li has an acceptable cross-section for thermal neutron capture, these materials also detect thermal neutrons. In the energy spectra, the full energy thermal neutron peak typically appears above 3 MeV gamma equivalent energy. Thus very effective pulse height discrimination can be implemented with these materials. The CLLC and CLYC emissions consist of two main components: Core-to-Valence Luminescence (CVL; 220 nm to 320 nm) and Ce emission (350 to 500 nm). The former is of particular interest since it appears only under gamma excitation. It is also very fast and decays with less than 2 ns time constant. The CVL provides a significant difference to temporal responses under gamma and neutron excitation thus it may be used for effective pulse shape discrimination.

  16. LiFAP-based PVdF-HFP microporous membranes by phase-inversion technique with Li/LiFePO{sub 4} cell

    Energy Technology Data Exchange (ETDEWEB)

    Aravindan, V.; Vickraman, P. [Gandhigram Rural University, Department of Physics, Gandhigram (India); Sivashanmugam, A.; Thirunakaran, R.; Gopukumar, S. [Central Electrochemical Research Institute, Electrochemical Energy Systems Division, Karaikudi (India)

    2009-12-15

    Polyvinylidenefluoride-hexafluoropropylene-based (PVdF-HFP-based) gel and composite microporous membranes (GPMs and CPMs) were prepared by phase-inversion technique in the presence 10 wt% of AlO(OH){sub n} nanoparticles. The prepared membranes were gelled with 0.5-M LiPF{sub 3}(CF{sub 2}CF{sub 3}){sub 3} (lithium fluoroalkylphosphate, LiFAP) in EC:DEC (1:1 v/v) and subjected to various characterizations; the AC impedance study shows that CPMs exhibit higher conductivity than GPMs. Mechanical stability measurements on these systems reveal that CPMs exhibit Young's modulus higher than that of bare and GPMs and addition of nanoparticles drastically improves the elongation break was also noted. Transition of the host from {alpha} to {beta} phase after the loading of nanosized filler was confirmed by XRD and Raman studies. Physico-chemical properties, like liquid uptake, porosity, surface area, and activation energy, of the membranes were calculated and results are summarized. Cycling performance of Li/CPM/LiFePO{sub 4} coin cell was fabricated and evaluated at C/10 rate and delivered a discharge capacity of 157 and 148 mAh g {sup -1} respectively for first and tenth cycles. (orig.)

  17. Thermodynamic study on Li-poor chemical vapor transport equilibration in MgO-doped LiNbO{sub 3} crystal

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, De-Long, E-mail: dlzhang@tju.edu.cn [Department of Opto-electronics and Information Engineering, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072 (China); Key Laboratory of Optoelectronic Information Technology, Tianjin University, Ministry of Education, Tianjin 300072 (China); Chen, Bei; Hua, Ping-Rang; Yu, Dao-Yin [Department of Opto-electronics and Information Engineering, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072 (China); Key Laboratory of Optoelectronic Information Technology, Tianjin University, Ministry of Education, Tianjin 300072 (China); Yue-Bun Pun, Edwin [Department of Electronic Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong (China)

    2013-05-15

    A thermodynamic study on Li-poor vapor transport equilibration (VTE) in MgO-doped LiNbO{sub 3} crystal was carried out. A thorough thermodynamic VTE model is established that considers all of possible factors including the depth relative to crystal surface, VTE temperature and time. To solve the model, the composition on crystal surface was studied as a function of VTE temperature and time. To achieve that, a number of Li-deficient MgO(5 mol% in melt):LiNbO{sub 3} crystals were produced by the VTE under different temperatures from 1010 to 1130 °C for different durations up to 395 h, the crystalline phase contained was determined by X-ray powder diffraction and their surface compositions were determined from the measured birefringence. The results show that the Li-deficient crystal keeps the LiNbO{sub 3} phase. The surface Li{sub 2}O-content has an Arrhenius relationship to the VTE temperature and a square-root dependence on the VTE duration. Based upon the VTE temperature and time dependences of surface Li{sub 2}O-content, the solution to the thermodynamic VTE is obtained and verified experimentally. The solution is crucial to design and produce a Li-deficient MgO:LiNbO{sub 3} crystal with desired Li{sub 2}O-content profile. By using the solution, one can predict the Li{sub 2}O-content depth profile after a certain VTE time for a given VTE temperature. - Highlights: ► Li-poor VTE temperature and time dependence of surface Li{sub 2}O content. ► A unified expression for VTE-induced surface Li{sub 2}O-content reduction. ► A thorough VTE thermodynamic model. ► An ierfc solution to VTE model is obtained and verified experimentally.

  18. Long term stability of Li-S batteries using high concentration lithium nitrate electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Brian DG; Carino, Emily V.; Connell, Justin G.; Han, Kee Sung; Cao, Ruiguo; Chen, Junzheng; Zheng, Jianming; Li, Qiuyan; Mueller, Karl T.; Henderson, Wesley A.; Zhang, Jiguang

    2017-10-01

    Lithium-sulfur (Li-S) battery is a very promising candidate for the next generation of energy storage systems required for electrical vehicles and grid energy storage applications due to its very high theoretical specific energy (2500 W h kg-1). However, the low coulombic efficiency (CE) during repeated Li plating/stripping of these processes have limited practical application of rechargeable Li-S batteries. In this work, a new electrolyte system based on high concentration of LiNO3 in diglyme solvent is developed which enables high CE of Li metal plating/stripping and high stability of Li anode in the sulfur containing electrolyte. Tailoring of electrolyte properties for the Li negative electrode has proven to be a successful strategy for improving the capacity retention and cycle life of Li-S batteries. This electrolyte provides a CE for Li plating/stripping of greater than 99% for over 200 cycles. In contrast, Li metal cycles for only less than 35 cycles at high CE in the standard 1 M LiTFSI + 2wt% LiNO3 in DOL:DME electrolyte under the same conditions. The stable Li metal anode enabled by the new electrolyte may accelerate the applications of high energy density Li-S batteries in both electrical vehicles and large-scale grid energy storage markets.

  19. Long term stability of Li-S batteries using high concentration lithium nitrate electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Brian D.; Carino, Emily V.; Connell, Justin G.; Han, Kee Sung; Cao, Ruiguo; Chen, Junzheng; Zheng, Jianming; Li, Qiuyan; Mueller, Karl T.; Henderson, Wesley A.; Zhang, Ji-Guang

    2017-10-01

    The lithium-sulfur (Li-S) battery is a very promising candidate for the next generation of energy storage systems required for electrical vehicles and grid energy storage applications due to its very high theoretical specific energy (2500 W h kg(-1)). However, low Coulombic efficiency (CE) during repeated Li metal plating/stripping has severely limited the practical application of rechargeable Li-S batteries. In this work, a new electrolyte system based on a high concentration of LiNO3 in diglyme (G2) solvent is developed which enables an exceptionally high CE for Li metal plating/stripping and thus high stability of the Li anode in the sulfur-containing electrolyte. The tailoring of electrolyte properties for the Li anode has proven to be a highly successful strategy for improving the capacity retention and cycle life of Li-S batteries. This electrolyte provides a CE of greater than 99% for over 200 cycles of Li plating/stripping. In contrast, the Li anode cycles for less than 35 cycles (with a high CE) in the state-of-the-art 1 M LiTFSI + 0.3 M LiNO3 in 1,3-dioxolane: 1,2-dimethoxyethane (DOL:DME) electrolyte under the same conditions. The stable Li anode enabled by the new electrolyte may accelerate the applications of high energy density Li-S batteries in both electrical vehicles and large-scale grid energy storage markets.

  20. Electrochemical reduction of UO2 in LiCl-Li2O molten salt using porous and nonporous anode shrouds

    Science.gov (United States)

    Choi, Eun-Young; Won, Chan Yeon; Cha, Ju-Sun; Park, Wooshin; Im, Hun Suk; Hong, Sun-Seok; Hur, Jin-Mok

    2014-01-01

    Electrochemical reductions of uranium oxide in a molten LiCl-Li2O electrolyte were carried out using porous and nonporous anode shrouds. The study focused on the effect of the type of anode shroud on the current density by running experiments with six anode shrouds. Dense ceramics, MgO, and MgO (3 wt%) stabilized ZrO2 (ZrO2-MgO) were used as nonporous shrouds. STS 20, 100, and 300 meshes and ZrO2-MgO coated STS 40 mesh were used as porous shrouds. The current densities (0.34-0.40 A cm-2) of the electrolysis runs using the nonporous anode shrouds were much lower than those (0.76-0.79 A cm-2) of the runs using the porous shrouds. The ZrO2-MgO shroud (600-700 MPa at 25 °C) showed better bending strength than that of MgO (170 MPa at 25 °C). The high current densities achieved in the electrolysis runs using the porous anode shrouds were attributed to the transport of O2- ions through the pores in meshes of the shroud wall. ZrO2-MgO coating on STS mesh was chemically unstable in a molten LiCl-Li2O electrolyte containing Li metal. The electrochemical reduction runs using STS 20, 100, and 300 meshes showed similar current densities in spite of their different opening sizes. The STS mesh shrouds which were immersed in a LiCl-Li2O electrolyte were stable without any damage or corrosion.

  1. Bare astrophysical S(E)-factor for the 6Li(d, α)4He and 7Li(p, α)4He reactions at astrophysical energies

    International Nuclear Information System (INIS)

    Pizzone, R.G.; Spitaleri, C.; Lattuada, M.; Musumarra, A.; Pellegriti, M.G.; Romano, S.; Tumino, A.; Cherubini, S.; Figuera, P.; Miljanic, D.; Rolfs, C.; Typel, S.; Wolter, H.H.; Castellani, V.; Degl'Innocenti, S.; Imperio, A.

    2003-01-01

    The Trojan Horse Method has been applied to study the 7 Li(p, α) 4 He and 6 (Li(d, α) 4 He reactions through the 7 Li(d, αα)n and 6 Li( 6 Li, αα) 4 He three body processes, respectively. The electron screening potential deduced from these experiments is much larger than the adiabatic approximation prediction for both cases; the systematic discrepancy between data and theoretical predictions is thus confirmed. Astrophysical implications of these measurements are also discussed

  2. A Study on Factors Affecting Airborne LiDAR Penetration

    Directory of Open Access Journals (Sweden)

    Wei-Chen Hsu

    2015-01-01

    Full Text Available This study uses data from different periods, areas and parameters of airborne LiDAR (light detection and ranging surveys to understand the factors that influence airborne LiDAR penetration rate. A discussion is presented on the relationships between these factors and LiDAR penetration rate. The results show that the flight height above ground level (AGL does not have any relationship with the penetration rate. There are some factors that should have larger influence. For example, the laser is affected by a wet ground surface by reducing the number of return echoes. The field of view (FOV has a slightly negative correlation with the penetration rate, which indicates that the laser incidence angle close to zero should achieve the best penetration. The vegetation cover rate also shows a negative correlation with the penetration rate, thus bare ground and reduced vegetation in the aftermath of a typhoon also cause high penetration rate. More return echoes could be extracted from the full-waveform system, thereby effectively improving the penetration rate. This study shows that full-waveform LiDAR is an effective method for increasing the number of surface reflected echoes. This study suggests avoiding LiDAR survey employment directly following precipitation to prevent laser echo reduction.

  3. High Performance Cathodes for Li-Air Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Yangchuan

    2013-08-22

    The overall objective of this project was to develop and fabricate a multifunctional cathode with high activities in acidic electrolytes for the oxygen reduction and evolution reactions for Li-air batteries. It should enable the development of Li-air batteries that operate on hybrid electrolytes, with acidic catholytes in particular. The use of hybrid electrolytes eliminates the problems of lithium reaction with water and of lithium oxide deposition in the cathode with sole organic electrolytes. The use of acid electrolytes can eliminate carbonate formation inside the cathode, making air breathing Li-air batteries viable. The tasks of the project were focused on developing hierarchical cathode structures and bifunctional catalysts. Development and testing of a prototype hybrid Li-air battery were also conducted. We succeeded in developing a hierarchical cathode structure and an effective bifunctional catalyst. We accomplished integrating the cathode with existing anode technologies and made a pouch prototype Li-air battery using sulfuric acid as catholyte. The battery cathodes contain a nanoscale multilayer structure made with carbon nanotubes and nanofibers. The structure was demonstrated to improve battery performance substantially. The bifunctional catalyst developed contains a conductive oxide support with ultra-low loading of platinum and iridium oxides. The work performed in this project has been documented in seven peer reviewed journal publications, five conference presentations, and filing of two U.S. patents. Technical details have been documented in the quarterly reports to DOE during the course of the project.

  4. Fast neutron detection with 6Li-loaded liquid scintillator

    Science.gov (United States)

    Fisher, B. M.; Abdurashitov, J. N.; Coakley, K. J.; Gavrin, V. N.; Gilliam, D. M.; Nico, J. S.; Shikhin, A. A.; Thompson, A. K.; Vecchia, D. F.; Yants, V. E.

    2011-08-01

    We report on the development of a fast neutron detector using a liquid scintillator doped with enriched 6Li. The lithium was introduced in the form of an aqueous LiCl micro-emulsion with a di-isopropylnaphthalene-based liquid scintillator. A 6Li concentration of 0.15% by weight was obtained. A 125 mL glass cell was filled with the scintillator and irradiated with fission-source neutrons. Fast neutrons may produce recoil protons in the scintillator, and those neutrons that thermalize within the detector volume can be captured on the 6Li. The energy of the neutron may be determined by the light output from recoiling protons, and the capture of the delayed thermal neutron reduces background events. In this paper, we discuss the development of this 6Li-loaded liquid scintillator, demonstrate the operation of it in a detector, and compare its efficiency and capture lifetime with Monte Carlo simulations. Data from a boron-loaded plastic scintillator were acquired for comparison. We also present a pulse-shape discrimination method for differentiating between electronic and nuclear recoil events based on the Matusita distance between a normalized observed waveform and nuclear and electronic recoil template waveforms. The details of the measurements are discussed along with specifics of the data analysis and its comparison with the Monte Carlo simulation.

  5. Li Yujie and the Rebranding of the White Lotus Movement

    Directory of Open Access Journals (Sweden)

    David Ownby

    2017-09-01

    Full Text Available Li Yujie (1900–1994 was a walking contradiction: a student leader of the Shanghai May Fourth movement and a Guomindang member and technocrat in the Nanjing government, but also a cadre in Xiao Changming’s redemptive society—the Heavenly Virtues Teachings—and eventually the founder of two redemptive societies in his own right (the Heaven and Man Teachings and the Heavenly Emperor Teachings. Through a biographical study of Li Yujie, this article examines the complex appeal of redemptive societies to parts of the educated elite during China’s Republican period. The author focuses particularly on the period between 1937 and 1945, when Li retired to the sacred mountain of Huashan. There, with the help of Huang Zhenxia, a self-taught intellectual also employed by the Guomindang, Li sought to modernize the “White Lotus” teachings that he had received from his master by incorporating scientific insights received via spirit writing. Li believed that he was creating a new religion more adapted to the twentieth century. Both the texts produced on Huashan and the military and political elite that were attracted to these texts allow us to raise new questions about secularism and religion, traditional beliefs and science in the context of Republican-period China, thereby suggesting that the conflict between the modernizing state and traditional religious culture was not always as stark as we have believed it to be.

  6. Automated Probabilistic LiDAR Swath Registration

    Science.gov (United States)

    Jalobeanu, A.; Gonçalves, G. R.

    2014-12-01

    We recently developed a new point cloud registration algorithm. Compared to Iterated Closest Point (ICP) techniques, it is robust to noise and outliers, and easier to use, as it is less sensitive to initial conditions. It minimizes the entropy of the joint point cloud (including intensity attributes to help register areas with poor relief), uses a voxel space and B-Spline interpolation to accelerate computation. A natural application of registration is swath alignment in airborne light detection and ranging (LiDAR). Indeed, due to uncertainty in the inertial navigation system (INS), attitude angles are subject to time-dependent errors. Such errors can be understood as a sum of three terms: 1) a global term, or boresight error, which can be addressed using several existing techniques; 2) a low-frequency term, which is modeled as a constant attitude error for regions several hundred meters along-track; 3) a high-frequency term, responsible for corduroy artifacts (not addressed here). We propose to use the new registration algorithm to correct the low-frequency attitude variations. Relative geometric errors are significantly reduced, as pairs of swaths are registered onto each other local corrections. Absolute geometric errors are reduced during a second step, by applying all the corrections together to the entire dataset. We used a test area of 200 km2 in Portugal, with a density of 3-4 pts/m2. The point clouds were derived from waveform data, and include predictive range uncertainties estimated within a Bayesian framework. The data collection was supported by FCT and FEDER as part of the AutoProbaDTM research project (2009-2012). Modeling and reducing geometric error helps build consistent uncertainty maps. After correction, residual errors are taken into account in the final 3D error budget. For gridded elevation models a vertical uncertainty map is computed. Finally, it is possible to use the inter-swath registration parameters to estimate the distribution of

  7. Enhanced cycling stability of microsized LiCoO2 cathode by Li4Ti5O12 coating for lithium ion battery

    International Nuclear Information System (INIS)

    Yi, Ting-Feng; Shu, J.; Yue, Cai-Bo; Zhu, Xiao-Dong; Zhou, An-Na; Zhu, Yan-Rong; Zhu, Rong-Sun

    2010-01-01

    The effect of Li 4 Ti 5 O 12 (LTO) coating amount on the electrochemical cycling behavior of the LiCoO 2 cathode was investigated at the high upper voltage limit of 4.5 V. Li 4 Ti 5 O 12 (≤5 wt.%) is not incorporated into the host structure and leads to formation of uniform coating. The cycling performance of LiCoO 2 cathode is related with the amount of Li 4 Ti 5 O 12 coating. The initial capacity of the LTO-coated LiCoO 2 decreased with increasing Li 4 Ti 5 O 12 coating amount but showed enhanced cycling properties, compared to those of pristine material. The 3 wt.% LTO-coated LiCoO 2 has the best electrochemical performance, showing capacity retention of 97.3% between 2.5 V and 4.3 V and 85.1% between 2.5 V and 4.5 V after 40 cycles. The coulomb efficiency shows that the surface coating of Li 4 Ti 5 O 12 is beneficial to the reversible intercalation/de-intercalation of Li + . LTO-coated LiCoO 2 provides good prospects for practical application of lithium secondary batteries free from safety issues.

  8. Outstanding Li-storage performance of LiFePO4@MWCNTs cathode material with 3D network structure for lithium-ion batteries

    Science.gov (United States)

    Sun, Xiaodong; Zhang, Le

    2018-05-01

    In this work, the MWCNTs-decorated LiFePO4 microspheres (LiFePO4@MWCNTs) with a 3D network structure have been synthesized by a facile and efficient spray-drying approach followed by solid-state reaction in a reduction atmosphere. In the as-prepared composite, the MWCNTs around LiFePO4 nanoparticles can provide 3D conductive networks which greatly facilitate the transport of Li+-ion and electron during the electrochemical reaction. Compared to the pure LiFePO4 material, the LiFePO4@MWCNTs composite as cathode for lithium-ion batteries exhibits significantly improved Li-storage performance in terms of rate capability and cyclic stability. Therefore, we can speculate that the spray-drying approach is a promising route to prepare the high-performance electrode materials with 3D network structure for electrochemical energy storage.

  9. Adsorption of single Li and the formation of small Li clusters on graphene for the anode of lithium-ion batteries.

    Science.gov (United States)

    Fan, Xiaofeng; Zheng, W T; Kuo, Jer-Lai; Singh, David J

    2013-08-28

    We analyzed the adsorption of Li on graphene in the context of anodes for lithium-ion batteries (LIBs) using first-principles methods including van der Waals interactions. We found that although Li can reside on the surface of defect-free graphene under favorable conditions, the binding is much weaker than to graphite and the concentration on a graphene surface is not higher than in graphite. At low concentration, Li ions spread out on graphene because of Coulomb repulsion. With increased Li content, we found that small Li clusters can be formed on graphene. Although this result suggests that graphene nanosheets can conceivably have a higher ultimate Li capacity than graphite, it should be noted that such nanoclusters can potentially nucleate Li dendrites, leading to failure. The implications for nanostructured carbon anodes in batteries are discussed.

  10. Synthesis and characterization of europium doped LiF phosphor

    International Nuclear Information System (INIS)

    Villalobos, M. L.; Vallejo, M. A.; Sosa A, M.; Diaz T, L. A.

    2015-10-01

    LiF with different dopants has been one of the most investigated materials to use as thermoluminescent dosimeter. In this paper, we present the preparation method, the characterization and the thermoluminescent response of Eu doped LiF irradiated with X-rays. Pure and Eu doped LiF samples with different dopant concentration (0, 0.25, 0.5, 0.75 and 1 % mol) were synthesized using the precipitation method. The samples were structurally characterized by X-ray diffraction (XRD), the diffraction patterns showed a main cubic crystalline structure and a secondary hexagonal structure. The photoluminescence spectrum exhibited four well defined peaks characteristic of the Eu 3+ ion. Thermoluminescent (Tl) glow curves of x-ray irradiated samples showed a well-defined single peak around 200 degrees C, except for the pure and 0.25% Eu doped samples. (Author)

  11. Screening Li-Ion Batteries for Internal Shorts

    Science.gov (United States)

    Darcy, Eric

    2006-01-01

    The extremely high cost of aerospace battery failures due to internal shorts makes it essential that their occurrence be very rare, if not eliminated altogether. With Li-ion cells/batteries, the potentially catastrophic safety hazard that some internal shorts present adds additional incentive for prevention. Prevention can be achieved by design, manufacturing measures, and testing. Specifically for NASA s spacesuit application, a Li-ion polymer pouch cell battery design is in its final stages of production. One of the 20 flight batteries fabricated and tested developed a cell internal short, which did not present a safety hazard, but has required revisiting the entire manufacturing and testing process. Herein are the details of the failure investigation that followed to get to root cause of the internal short and the corrective actions that will be taken. The resulting lessons learned are applicable to most Li-ion battery applications.

  12. Fracture Strength of AlLiB14

    Science.gov (United States)

    Wan, L. F.; Beckman, S. P.

    2012-10-01

    The orthorhombic boride crystal family XYB14, where X and Y are metal atoms, plays a critical role in a unique class of superhard compounds, yet there have been no studies aimed at understanding the origin of the mechanical strength of this compound. We present here the results from a comprehensive investigation into the fracture strength of the archetypal AlLiB14 crystal. First principles, ab initio, methods are used to determine the ideal brittle cleavage strength for several high-symmetry orientations. The elastic tensor and the orientation-dependent Young’s modulus are calculated. From these results the lower bound fracture strength of AlLiB14 is predicted to be between 29 and 31 GPa, which is near the measured hardness reported in the literature. These results indicate that the intrinsic strength of AlLiB14 is limited by the interatomic B-B bonds that span between the B layers.

  13. LiDAR error estimation with WAsP engineering

    DEFF Research Database (Denmark)

    Bingöl, Ferhat; Mann, Jakob; Foussekis, D.

    2008-01-01

    The LiDAR measurements, vertical wind profile in any height between 10 to 150m, are based on assumption that the measured wind is a product of a homogenous wind. In reality there are many factors affecting the wind on each measurement point which the terrain plays the main role. To model LiDAR me...... data is compared with the model results. The model results are acceptable and very close for one site while the more complex one is returning higher errors at higher positions and in some wind directions.......DAR measurements and predict possible error in different wind directions for a certain terrain we have analyzed two experiment data sets from Greece. In both sites LiDAR and met. mast data have been collected and the same conditions are simulated with Riso/DTU software, WAsP Engineering 2.0. Finally measurement...

  14. Impact of incorporation of chromium on electrochemical properties of LiFePO4/C for Li-ion batteries

    Directory of Open Access Journals (Sweden)

    Naik Amol

    2015-12-01

    Full Text Available LiFe0.95Cr0.05PO4/C was successfully synthesized by one-step solid-state reaction using a single mode microwave reactor. The effect of incorporation of chromium on LiFePO4 lattice parameters was systematically investigated by X-ray diffraction. Surface analysis was done by scanning electron microscopy and transmission electron microscopy. The ratio of amorphous to graphitic carbon was determined from Raman spectroscopic data. The influence of chromium incorporation on electrochemical properties was studied by recording charge/discharge cycles combined with electrochemical impedance spectroscopy (EIS and cyclic voltammetry. It was found that Cr incorporation significantly enhanced the electrochemical performance of LiFePO4 at all current densities up to 10 C. LiFe0.95Cr0.05PO4/C prepared exhibited the best performance with an initial specific discharge capacity of 157.7, 144.8, 138.3, 131.0, 124.1 and 111.1 mAh·g−1 at 0.1 C, 0.5 C, 1.0 C, 2.0 C, 5 C and 10 C, respectively. The doped sample displayed excellent capacity retention, which was substantially superior than that of pristine LiFePO4/C at a higher current rate.

  15. The temperature dependence of sup 7 Li nuclear magnetic resonance in a LiRbSO sub 4 single crystal

    CERN Document Server

    Lim, A R; Choh, S H

    1997-01-01

    The temperature dependence of the sup 7 Li nuclear magnetic resonance in a LiRbSO sub 4 single crystal grown by the slow-evaporation method has been investigated by employing a Bruker FT NMR spectrometer. The three-line structure due to the quadrupole interaction was measured in three mutually perpendicular crystal planes. From the experimental data, the quadrupole coupling constant, e sup 2 qQ/h = 20.4+-0.2 kHz, and asymmetry parameter, eta=0, are determined at room temperature. The principal axes of the EFG tensor are parallel to the crystallographic a-, b-, and c-axes. The largest principal axis Z is parallel to the crystallographic c-axis. In the temperature range 140-400 K, the nuclear quadrupole coupling constant of Li in LiRbSO sub 4 decreases as the temperature increases. The temperature dependence of the quadrupole parameters is satisfactorily explained with a single torsional frequency of the Li-O ion by means of the simple Bayer theory. (author)

  16. Nanostructural evolution and behavior of H and Li in ion-implanted γ-LiAlO 2

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Weilin; Zhang, Jiandong; Edwards, Danny J.; Overman, Nicole R.; Zhu, Zihua; Price, Lloyd; Gigax, Jonathan; Castanon, Elizabeth; Shao, Lin; Senor, David J.

    2017-10-01

    In-situ He+ ion irradiation is performed under a helium ion microscope to study nanostructural evolution in polycrystalline gamma-LiAlO2 pellets. Various locations within a grain, across grain boundaries and at a cavity are selected. The results exhibit He bubble formation, grain-boundary cracking, nanoparticle agglomeration, increasing surface brightness with dose, and material loss from the surface. Similar brightening effects at grain boundaries are also observed under a scanning electron microscope. Li diffusion and loss from polycrystalline gamma-LiAlO2 is faster than its monocrystalline counterpart during H2+ ion implantation at elevated temperatures. There is also more significant H diffusion and release from polycrystalline pellets during thermal annealing of 300 K implanted samples. Grain boundaries and cavities could provide a faster pathway for H and Li diffusion. H release is slightly faster from the 573 K implanted monocrystalline gamma-LiAlO2 during annealing at 773 K. Metal hydrides could be formed preferentially along the grain boundaries to immobilize hydrogen.

  17. Perspectives on Li and transition metal fluoride phosphates as cathode materials for a new generation of Li-ion batteries

    Directory of Open Access Journals (Sweden)

    Evgeny V. Antipov

    2015-01-01

    Full Text Available To satisfy the needs of rapidly growing applications, Li-ion batteries require further significant improvements of their key properties: specific energy and power, cyclability, safety and costs. The first generation of cathode materials for Li-ion batteries based on mixed oxides with either spinel or rock-salt derivatives has already been widely commercialized, but the potential to improve the performance of these materials further is almost exhausted. Li and transition metal inorganic compounds containing different polyanions are now considered as the most promising cathode materials for the next generation of Li-ion batteries. Further advances in cathode materials are considered to lie in combining different anions [such as (XO4n− and F−] in the anion sublattice, which is expected to enhance the specific energy and power of these materials. This review focuses on recent advances related to the new class of cathode materials for Li-ion batteries containing phosphate and fluoride anions. Special attention is given to their crystal structures and the relationships between structure and properties, which are important for their possible practical applications.

  18. Synthesis and electrochemistry of cubic rocksalt Li-Ni-Ti-O compounds in the phase diagram of LiNiO{sub 2}-LiTiO{sub 2}-Li[Li{sub 1/3}Ti{sub 2/3}]O{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lianqi; Noguchi, Hideyuki; Li, Decheng; Muta, Takahisa; Wang, Xiaoqing; Yoshio, Masaki [Department of Applied Chemistry, Saga University, Saga 840-8052 (Japan); Taniguchi, Izumi [Department of Chemical Engineering, Tokyo Institute of Technology, 12-1, Ookayama-2, Meguro-ku, Tokyo 152-8552 (Japan)

    2008-10-15

    On the basis of extreme similarity between the triangle phase diagrams of LiNiO{sub 2}-LiTiO{sub 2}-Li[Li{sub 1/3}Ti{sub 2/3}]O{sub 2} and LiNiO{sub 2}-LiMnO{sub 2}-Li[Li{sub 1/3}Mn{sub 2/3}]O{sub 2}, new Li-Ni-Ti-O series with a nominal composition of Li{sub 1+z/3}Ni{sub 1/2-z/2}Ti{sub 1/2+z/6}O{sub 2} (0 {<=} z {<=} 0.5) was designed and attempted to prepare via a spray-drying method. XRD identified that new Li-Ni-Ti-O compounds had cubic rocksalt structure, in which Li, Ni and Ti were evenly distributed on the octahedral sites in cubic closely packed lattice of oxygen ions. They can be considered as the solid solution between cubic LiNi{sub 1/2}Ti{sub 1/2}O{sub 2} and Li[Li{sub 1/3}Ti{sub 2/3}]O{sub 2} (high temperature form). Charge-discharge tests showed that Li-Ni-Ti-O compounds with appropriate compositions could display a considerable capacity (more than 80 mAh g{sup -1} for 0.2 {<=} z {<=} 0.27) at room temperature in the voltage range of 4.5-2.5 V and good electrochemical properties within respect to capacity (more than 150 mAh g{sup -1} for 0 {<=} z {<=} 0.27), cycleability and rate capability at an elevated temperature of 50 C. These suggest that the disordered cubic structure in some cases may function as a good host structure for intercalation/deintercalation of Li{sup +}. A preliminary electrochemical comparison between Li{sub 1+z/3}Ni{sub 1/2-z/2}Ti{sub 1/2+z/6}O{sub 2} (0 {<=} z {<=} 0.5) and Li{sub 6/5}Ni{sub 2/5}Ti{sub 2/5}O{sub 2} indicated that charge-discharge mechanism based on Ni redox at the voltage of >3.0 V behaved somewhat differently, that is, Ni could be reduced to +2 in Li{sub 1+z/3}Ni{sub 1/2-z/2}Ti{sub 1/2+z/6}O{sub 2} while +3 in Li{sub 6/5}Ni{sub 2/5}Ti{sub 2/5}O{sub 2}. Reduction of Ti{sup 4+} at a plateau of around 2.3 V could be clearly detected in Li{sub 1+z/3}Ni{sub 1/2-z/2}Ti{sub 1/2+z/6}O{sub 2} with 0.27 {<=} z {<=} 0.5 at 50 C after a deep charge associated with charge compensation from oxygen ion during initial cycle

  19. Comparative Issues of Cathode Materials for Li-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Christian M. Julien

    2014-03-01

    Full Text Available After an introduction to lithium insertion compounds and the principles of Li-ion cells, we present a comparative study of the physical and electrochemical properties of positive electrodes used in lithium-ion batteries (LIBs. Electrode materials include three different classes of lattices according to the dimensionality of the Li+ ion motion in them: olivine, layered transition-metal oxides and spinel frameworks. Their advantages and disadvantages are compared with emphasis on synthesis difficulties, electrochemical stability, faradaic performance and security issues.

  20. Compatibility of stainless steel with Pb-17 AT. % Li

    International Nuclear Information System (INIS)

    Tortorelli, P.F.; DeVan, J.H.

    1982-01-01

    The corrosion of type 316 stainless steel and Sandvik HT9 by static Pb-17 at. % Li between 300 and 500 0 C was studied. The resulting weight losses were significantly greater than those of these steels in lithium. The corrosive attack was very uniform, and the room-temperature tensile properties of the steels were unaffected by the exposure. The application of molten Pb-17 at. % Li as a tritium-breeding fluid in conjunction with ferrous alloys in a fusion reactor may be limited to 400 0 C or below

  1. Majanduse nõrgim lüli / Kristiina Ojuland

    Index Scriptorium Estoniae

    Ojuland, Kristiina, 1966-

    2008-01-01

    Töölepingu seaduse eelnõust. Ilmunud ka Meie Maa 27. mai 2008, lk. 2 ; Koit 27. mai 2008, lk. 6, pealkiri kujul: nõrgim lüli - iganenud olukord tööturul ; Vooremaa 27. mai 2008, lk. 2, pealkiri kujul: majanduse nõrgim lüli on iganenud olukord tööjõuturul ; Sõnumitooja 28. mai 2008, lk. 2 ; Pärnu Postimees 29. mai 2008, lk. 15 ; Harju Ekspress 30. mai 2008, lk. 6 ; Kuulutaja 30. mai 2008, lk. 4, pealkiri kujul: muudatused aitavad paremini kohanduda ; Põhjarannik 31. mai 2008, lk. 2

  2. Processing of Vietnamese lithium ores to produce LiCl

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, Thi Thu Hien

    2015-11-16

    A potential lithium deposit has been discovered in the La Vi mining district, located in Quang Ngai Province, Central Vietnam. The Li-rich rocks (average contents: 1.3±0.9 wt.% Li{sub 2}O) are highly fractionated, peraluminous granites, which are further characterized by high contents of Al{sub 2}O{sub 3}, Na{sub 2}O, K{sub 2}O, F, and P{sub 2}O{sub 5}, but very low concentrations of all other main components (MgO, CaO, Fe{sub 2}O{sub 3}tot, TiO{sub 2}). The granites exhibit a light pink color and contain mainly albite, quartz, muscovite, lithian muscovite, and lepidolite, with minor amounts of amblygonite-montebrasite, herderite, fluorapatite, topaz, and cassiterite, and accessory beryl and goyazite. Lepidolite from La Vi deposit was extracted to produce lithium chloride by using iron II sulphide (FeS)-CaO roasting and water leaching. The HSC program was applied for the simulation of the behavior of lepidolite and the additives during roasting, confirming the important role of SO{sub 2}/SO{sub 3} gas for extracting lithium from lepidolite. At optimum conditions roasting at 750 C using FeS/Li and Ca/F molar ratios of 5:1 and 1:1, respectively, followed by leaching at 50 C using water/calcine mass ratios of >5:1 could yield a maximum of ∝85% Li recovery (at <1 g/L Li concentration). Addition of CaO led to a decrease in the liberation of HF gas and insoluble LiF formation. NaOH and BaCl{sub 2} were used for removing the metal and sulphate impurities from the leach liquor by precipitation at ambient temperature. The efficiency of lithium extraction reached ∝100 % with washing of the precipitates after filtering. Alkali salts were separated from the LiCl solution via solar evaporation and isopropanol leaching. 96.3 wt.% LiCl could be produced using an isopropanol/salt mass ratio of 5:1 at ambient temperature in 3 h.

  3. Charge Radius Measurement of the Halo Nucleus $^{11}$Li

    CERN Multimedia

    Kluge, H-J; Kuehl, T; Simon, H; Wang, Haiming; Zimmermann, C; Onishi, T; Tanihata, I; Wakasugi, M

    2002-01-01

    %IS385 %title\\\\ \\\\The root-mean-square charge radius of $^{11}$Li will be determined by measuring the isotope shift of a suitable atomic transition in a laser spectroscopic experiment. Comparing the charge radii of the lithium isotopes obtained by this nuclear-model-independent method with the relevant mass radii obtained before will help to answer the question whether the proton distribution in halo nuclei at the neutron drip-line is decoupled to the first order from their neutron distribution. The necessary experimental sensitivity requires the maximum possible rate of $^{11}$Li nuclei in a beam of low emittance which can only be provided by ISOLDE.

  4. Li depletion in solar analogues with exoplanets Extending the sample

    OpenAIRE

    Mena, E. Delgado; Israelian, G.; Hernandez, J. I. Gonazlez; Sousa, S. G.; Mortier, A.; Santos, N. C.; Adibekyan, V. Zh.; Fernandes, J.; Rebolo, R.; Udry, S.; Mayor, M.

    2014-01-01

    We want to study the effects of the formation of planets and planetary systems on the atmospheric Li abundance of planet host stars. In this work we present new determinations of lithium abundances for 326 Main Sequence stars with and without planets in the T$_\\mathrm{eff}$ range 5600-5900 K. 277 stars come from the HARPS sample, the remaining targets have been observed with a variety of high resolution spectrographs. We confirm significant differences in the Li distribution of solar twins (T...

  5. The Li-Fraumeni syndrome: an inherited susceptibility to cancer.

    Science.gov (United States)

    Evans, S C; Lozano, G

    1997-09-01

    The Li-Fraumeni syndrome is a rare autosomal-dominant disease whose hallmark is a predisposition to a wide range of cancers among members of a family. Many of these families have a germline mutation within the tumor suppressor gene TP53, which encodes the p53 protein. The inheritance of a mutant TP53 allele results in a 25-fold increase in the chance of developing cancer by 50 years of age, compared with the general population. TP53 mutations are also very common in the development of somatic tumors. This article reviews the biological and biochemical role of p53 in the susceptibility to cancer in Li-Fraumeni syndrome.

  6. Processing of Vietnamese lithium ores to produce LiCl

    International Nuclear Information System (INIS)

    Dinh, Thi Thu Hien

    2015-01-01

    A potential lithium deposit has been discovered in the La Vi mining district, located in Quang Ngai Province, Central Vietnam. The Li-rich rocks (average contents: 1.3±0.9 wt.% Li 2 O) are highly fractionated, peraluminous granites, which are further characterized by high contents of Al 2 O 3 , Na 2 O, K 2 O, F, and P 2 O 5 , but very low concentrations of all other main components (MgO, CaO, Fe 2 O 3 tot, TiO 2 ). The granites exhibit a light pink color and contain mainly albite, quartz, muscovite, lithian muscovite, and lepidolite, with minor amounts of amblygonite-montebrasite, herderite, fluorapatite, topaz, and cassiterite, and accessory beryl and goyazite. Lepidolite from La Vi deposit was extracted to produce lithium chloride by using iron II sulphide (FeS)-CaO roasting and water leaching. The HSC program was applied for the simulation of the behavior of lepidolite and the additives during roasting, confirming the important role of SO 2 /SO 3 gas for extracting lithium from lepidolite. At optimum conditions roasting at 750 C using FeS/Li and Ca/F molar ratios of 5:1 and 1:1, respectively, followed by leaching at 50 C using water/calcine mass ratios of >5:1 could yield a maximum of ∝85% Li recovery (at <1 g/L Li concentration). Addition of CaO led to a decrease in the liberation of HF gas and insoluble LiF formation. NaOH and BaCl 2 were used for removing the metal and sulphate impurities from the leach liquor by precipitation at ambient temperature. The efficiency of lithium extraction reached ∝100 % with washing of the precipitates after filtering. Alkali salts were separated from the LiCl solution via solar evaporation and isopropanol leaching. 96.3 wt.% LiCl could be produced using an isopropanol/salt mass ratio of 5:1 at ambient temperature in 3 h.

  7. Investigations of the Safety of Li/SOCl2 Batteries.

    Science.gov (United States)

    1980-02-01

    Eagle - Picher Industries, Inc. (1) S. Broadway Electronics Division Tarrytown, NY 10591 Attn: Mr. Robert L. Higgins Attn: J. Dalfonso P.O. Box 47...INVESTIGATIONS OF THE SAFETY OF LI/SOCL2 BATTERIES . CU) _ SS FEB 80 K M ABRAHAM, R M MANK, 6 L HOLLECK DAABO?-78-C-0564 UNCLASSIFIED C-536 DELETTR-78...Research and Development Technical Report DELET-TR-78-054-F 0 INVESTIGATIONS OF THE SAFETY OF Li/SOC12 BATTERIES 0 Kuzhikalail M. Abraham Richard M

  8. Menedżer Map Myśli

    OpenAIRE

    Hudziak, Dariusz

    2014-01-01

    Praca stanowi opis procesu projektowania i budowy systemu wspomagajacego tworzenie map myśli. Projekt programu wprowadza funkcje stanowiące wkład w rozwój programów tego typu. Wyróżnia go wsparcie opisu gałęzi map myśli z wykorzystaniem słownika wyrazów bliskoznacznych oraz mozliwość edycji w środowisku rozproszonym. Podczas projektowania systemu wykorzystano modelowanie w języku UML. Stworzony menedżer jest przydatnym kompaktowym narzędziem do nielinearnej notacji i klasyfikacji informacji o...

  9. Tuning Li-Ion Diffusion in α-LiMn1-xFexPO4Nanocrystals by Antisite Defects and Embedded β-Phase for Advanced Li-Ion Batteries.

    Science.gov (United States)

    Hu, Jiangtao; Xiao, Yinguo; Tang, Hanting; Wang, Hongbin; Wang, Ziqi; Liu, Chaokun; Zeng, Hua; Huang, Qingzhen; Ren, Yang; Wang, Chongmin; Zhang, Wei; Pan, Feng

    2017-08-09

    Olivine-structured LiMn 1-x Fe x PO 4 has become a promising candidate for cathode materials owing to its higher working voltage of 4.1 V and thus larger energy density than that of LiFePO 4 , which has been used for electric vehicles batteries with the advantage of high safety but disadvantage of low energy density due to its lower working voltage of 3.4 V. One drawback of LiMn 1-x Fe x PO 4 electrode is its relatively low electronic and Li-ionic conductivity with Li-ion one-dimensional diffusion. Herein, olivine-structured α-LiMn 0.5 Fe 0.5 PO 4 nanocrystals were synthesized with optimized Li-ion diffusion channels in LiMn 1-x Fe x PO 4 nanocrystals by inducing high concentrations of Fe 2+ -Li + antisite defects, which showed impressive capacity improvements of approaching 162, 127, 73, and 55 mAh g -1 at 0.1, 10, 50, and 100 C, respectively, and a long-term cycling stability of maintaining about 74% capacity after 1000 cycles at 10 C. By using high-resolution transmission electron microscopy imaging and joint refinement of hard X-ray and neutron powder diffraction patterns, we revealed that the extraordinary high-rate performance could be achieved by suppressing the formation of electrochemically inactive phase (β-LiMn 1-x Fe x PO 4 , which is first reported in this work) embedded in α-LiMn 0.5 Fe 0.5 PO 4 . Because of the coherent orientation relationship between β- and α-phases, the β-phase embedded would impede the Li + diffusion along the [100] and/or [001] directions that was activated by the high density of Fe 2+ -Li + antisite (4.24%) in α-phase. Thus, by optimizing concentrations of Fe 2+ -Li + antisite defects and suppressing β-phase-embedded olivine structure, Li-ion diffusion properties in LiMn 1-x Fe x PO 4 nanocrystals can be tuned by generating new Li + tunneling. These findings may provide insights into the design and generation of other advanced electrode materials with improved rate performance.

  10. Ideal design of textured LiCoO2 sintered electrode for Li-ion secondary battery

    Directory of Open Access Journals (Sweden)

    Hideto Yamada

    2013-10-01

    Full Text Available To improve the energy density and practical realization of the all-solid-state Li-ion secondary battery, the principal requirement is a high electric conductivity in the densely sintered positive electrode. To accomplish this task, we focused on the anisotropic Li-ion and electron conductivities of the LiCoO2. As a result of our work, the ideal design of the texturing, perpendicular alignment of the c-plane and horizontal but random orientation of the c-axis on the electrode, was proposed. The battery performance of the ideal textured cell fabricated using a rotating strong magnetic field has a significantly higher performance than a randomly oriented cell.

  11. Elastic and inelastic scattering of 18O ions by 6Li at 114 MeV and isotopic differences of 6, 7Li + 18O and 6Li + 16, 18O nuclei interactions

    Directory of Open Access Journals (Sweden)

    A. T. Rudchik

    2012-12-01

    Full Text Available Angular distributions of the 6Li + 18O elastic and inelastic scattering as well as the 6Li(18O, Х reactions with production of 16,17,19O + 8,7,5Li, 14,15,16,17N + 10,9,8,7Be and 12,13,14C + 12,11,10B nuclei were measured at Elab(18O = = 114 MeV. The data were analyzed within the optical model and coupled-reaction-channels method. The 6Li + 18O optical potential parameters as well as deformation parameters of these nuclei were deduced and the scatter-ing mechanisms were studied. The isotopic differences between the 6, 7Li + 18O and 6Li + 16, 18O scattering as well as their potential parameters were investigated.

  12. A study for an electrolytic reduction of tantalum oxide in a LiCl-Li2O molten salt

    International Nuclear Information System (INIS)

    Park, Sung Bin; Park, Byung Heung; Seo, Chung Seok; Kang, Dae Seung; Kwon, Seon Gil; Park, Seong Won

    2005-01-01

    Korea Atomic Energy Research Institute (KAERI) has developed the Advanced Spent Fuel Conditioning Process (ACP) to be an innovative technology for handling the PWR spent fuel. As part of ACP, the electrolytic reduction process (ER process) is the electrochemical reduction process of uranium oxide to uranium metal in a molten salt. The ER process has advantages in a technical stability, an economic potential and a good proliferation resistance. KAERI has reported on the good experimental results of an electrochemical reduction of the uranium oxide in a 20 kg HM/batch lab-scale. The ER process can be applicable to the reduction of other metal oxides. Metal tantalum powder has attracted attention for a variety of applications. A tantalum capacitor made from superfine and pliable tantalum powders is very small in size and it has a higher-capacitance part, therefore it is useful for microelectronic devices. By the ER process the metal tantalum can be obtained from tantalum pentoxide. In this work, a 40 g Ta 2 O 5 /batch electrochemical reactor was used for the synthesis of the metal tantalum. From the results of the cyclic voltammograms for the Ta 2 O 5 -LiCl-Li 2 O system, the mechanism of the tantalum reduction in a molten LiCl-Li 2 O salt system was investigated. Tantalum pentoxide is chemically reduced to tantalum metal by the lithium metal which is electrochemically deposited into an integrated cathode assembly in the LiCl-Li 2 O molten salt. The experiments for the tantalum reduction were performed with a chronopotentiometry in the reactor cell, the reduced products were analyzed from an analysis of the X-ray diffraction (XRD), scanning electron microscope and energy dispersive X-ray (SEM-EDX). From the results, the electrolytic reduction process is applicable to the synthesis of metal tantalum

  13. Data products of NASA Goddard's LiDAR, hyperspectral, and thermal airborne imager (G-LiHT)

    Science.gov (United States)

    Corp, Lawrence A.; Cook, Bruce D.; McCorkel, Joel; Middleton, Elizabeth M.

    2015-06-01

    Scientists in the Biospheric Sciences Laboratory at NASA's Goddard Space Flight Center have undertaken a unique instrument fusion effort for an airborne package that integrates commercial off the shelf LiDAR, Hyperspectral, and Thermal components. G-LiHT is a compact, lightweight and portable system that can be used on a wide range of airborne platforms to support a number of NASA Earth Science research projects and space-based missions. G-LiHT permits simultaneous and complementary measurements of surface reflectance, vegetation structure, and temperature, which provide an analytical framework for the development of new algorithms for mapping plant species composition, plant functional types, biodiversity, biomass, carbon stocks, and plant growth. G-LiHT and its supporting database are designed to give scientists open access to the data that are needed to understand the relationship between ecosystem form and function and to stimulate the advancement of synergistic algorithms. This system will enhance our ability to design new missions and produce data products related to biodiversity and climate change. G-LiHT has been operational since 2011 and has been used to collect data for a number of NASA and USFS sponsored studies, including NASA's Carbon Monitoring System (CMS) and the American ICESat/GLAS Assessment of Carbon (AMIGA-Carb). These acquisitions target a broad diversity of forest communities and ecoregions across the United States and Mexico. Here, we will discuss the components of G-LiHT, their calibration and performance characteristics, operational implementation, and data processing workflows. We will also provide examples of higher level data products that are currently available.

  14. Density functional theory studies of the structural, electronic, and phonon properties of Li2O and Li2CO3 : Application to CO2 capture reaction

    Science.gov (United States)

    Duan, Yuhua; Sorescu, Dan C.

    2009-01-01

    The structural, electronic, and phonon properties of Li2O and Li2CO3 solids are investigated using density functional theory (DFT) and their thermodynamic properties for CO2 absorption and desorption reactions are analyzed. The calculated bulk properties for both the ambient- and the high-pressure phases of Li2O and Li2CO3 are in good agreement with available experimental measurements. The calculated band gap of the high-pressure phase of Li2O (8.37 eV, indirect) is about 3 eV larger than the one corresponding to the ambient Li2O phase (5.39 eV, direct), whereas the calculated band gap for the high-pressure phase of Li2CO3 (3.55 eV, indirect) is about 1.6 eV smaller than that for the ambient phase of Li2CO3 (5.10 eV, direct). The oxygen atoms in the ambient phase of the Li2CO3 crystal are not equivalent as reflected by two different sets of C-O bond lengths (1.28 and 1.31Å ) and they form two different groups. When Li2CO3 dissociates, one group of O forms Li2O , while the other group of O forms CO2 . The calculated phonon dispersion and density of states for the ambient phases of Li2O and Li2CO3 are in good agreement with experimental measurements and other available theoretical results. Li2O(s)+CO2(g)↔Li2CO3(s) is the key reaction of lithium salt sorbents (such as lithium silicates and lithium zircornates) for CO2 capture. The energy change and the chemical potential of this reaction have been calculated by combining DFT with lattice dynamics. Our results indicate that although pure Li2O can absorb CO2 efficiently, it is not a good solid sorbent for CO2 capture because the reverse reaction, corresponding to Li2CO3 releasing CO2 , can only occur at very low CO2 pressure and/or at very high temperature when Li2CO3 is in liquid phase.

  15. α-emission channeling studies of the interaction of Li with defects in Si and diamond

    CERN Multimedia

    2002-01-01

    In most semiconductors Li is a fast diffusing impurity and acts as a shallow interstitial donor, i.e. Li atoms normally appear as positively charged ions located on non-substitutional lattice sites. However, due to the positive charge Li may interact with other, preferentially negatively charged, defects present in the material. The major three groups of defects where interaction with Li was observed are p-type dopants, vacancy defects and defects containing trace impurities like oxygen. Although the influence of Li on electrical or optical properties of Si was investigated extensively in the past, the microscopical structure of Li-defect complexes and the relation between structure and electronic properties is still unresolved in many cases. In diamond, Li is the only impurity to date which was found to be an interstitial donor after ion implantation. Up to now there are no systematic investigations of the behavior of Li in diamond.\\\\ ...

  16. 2011 U.S. Geological Survey (USGS) Topographic LiDAR: Louisiana Region 1

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TASK NAME: Louisiana Region 1 LiDAR ARRA Task Order LiDAR Data Acquisition and Processing Production Task- Vermillion, Iberia, St. Mary, Terrebonne, and Lafourche...

  17. Modeling-Based Processing of Al-Li Alloys for Delamination Resistance Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Al-Li alloys are of interest for use in aerospace structures due to the desirable combination of high strength and low density. However, high strength Al-Li alloys...

  18. A superconcentrated ether electrolyte for fast-charging Li-ion batteries.

    Science.gov (United States)

    Yamada, Yuki; Yaegashi, Makoto; Abe, Takeshi; Yamada, Atsuo

    2013-12-11

    We have found ultrafast Li(+) intercalation into graphite in a superconcentrated ether electrolyte, even exceeding that in a currently used commercial electrolyte. This discovery is an important breakthrough toward fast-charging Li-ion batteries far beyond present technologies.

  19. 2011 U.S. Geological Survey (USGS) Topographic LiDAR: Louisiana Region 2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TASK NAME: Louisiana Region 2 LiDAR ARRA Task Order LiDAR Data Acquisition and Processing Production Task- Orleans, Plaquemines, St. Bernard, St. Tammany Parishes,...

  20. Holey Nanocarbon Architectures for High-Performance Li-Air Batteries

    Data.gov (United States)

    National Aeronautics and Space Administration — Li-air batteries (LABs) have a theoretical energy density of 3500 - 5000 Wh/kg, nearly 10 times that of conventional Li-ion batteries (LIBs). A huge advantage is...

  1. Üliõpilasteater käis maailma parimatega lava jagamas / Lennart Peep

    Index Scriptorium Estoniae

    Peep, Lennart

    2008-01-01

    Belgias toimunud 25. rahvusvahelisest üliõpilasteatrite festivalist, kus osales Tartu Üliõpilasteater Eugene Ionesco "Ninasarvikuga" (lavastaja Kalev Kudu). Festivali korraldas Liege'i Kuninglik Ülikool

  2. 2007 US Army Corps of Engineers (USACE), Jacksonville District US Virgin Islands LiDAR

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This Light Detection and Ranging (LiDAR) bare-earth classified LAS dataset is a topographic survey conducted for the USACE USVI LiDAR Project. These data were...

  3. Solid-state synthesis of LiBD(4) observed by in situ neutron diffraction.

    Science.gov (United States)

    Remhof, A; Friedrichs, O; Buchter, F; Mauron, Ph; Züttel, A; Wallacher, D

    2008-10-14

    The synthesis of Li[(11)BD(4)] from LiB and D(2) (p = 180 bar) is investigated by in situ neutron diffraction. The onset of the Li[(11)BD(4)] formation is observed far below the temperatures reported so far for the reaction from the pure elements, indicative of a lower activation barrier. We attribute the improved formation behavior to the breaking of the rigid boron lattice and intermixing of the elements on an atomic level when forming the binary compound LiB. The reaction starts with the decomposition of the initial LiB compound and the formation of LiD. At 623 K LiBD(4) starts to form. However, under the given experimental conditions (maximal temperature = 773 K) a complete reaction was not achieved; there is still residual LiD present.

  4. 2004 Federal Emergency Management Agency (FEMA) Bare Earth Topographic LiDAR: Connecticut River

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — LiDAR data is remotely sensed high-resolution elevation data collected by an airborne collection platform. The LiDAR files were converted from .PTS format to LAS...

  5. Study for electrochemical behavior of uranium oxide in a molten LiCl-Li2O system

    International Nuclear Information System (INIS)

    Park, Sung Bin; Park, Byung Heung; Seo, Chung Seok; Jung, Ki Jung; Park, Seong Won

    2005-01-01

    Interest in the electrolytic reduction of uranium oxide is increasing in the treatment of spent fuel oxides. With complicated and expensive procedures many reactive metals can be prepared in a pure metal form, the electrochemical reduction of a metal oxide has been recently proposed in metallurgy. The electrochemical reduction process is simple and rapid when compared to the conventional processes. The process can reduce the production costs and be applicable to a wide range of metal oxides. Chen et al. proposed the direct electrochemical reduction of titanium dioxide to titanium in a molten calcium chloride. Argonne National Laboratory (ANL) has reported the experimental results of an electrochemical reduction of the uranium oxide fuel in a bench-scale apparatus with a cyclic voltammetry, and has designed high-capacity reduction (HCR) cells and conducted three kg-scale UO 2 reduction runs. Gourishankar et al. classified the mechanisms of the electrolytic reduction of the metal oxides in a LiCl-Li 2 O molten salt system into two types; the simultaneous reduction and the direct electrochemical reduction. The uranium oxide in LiCl-Li 2 O molten salt was converted to uranium metal according to two mechanisms. Korea Atomic Energy Research Institute (KAERI) has developed the Advanced Spent Fuel Conditioning Process (ACP) to be an innovative technology in handling the PWR spent fuel. As part of ACP, the electrolytic reduction process (ER process) is the electrochemical reduction process of uranium oxide to uranium metal in molten salt. The ER process has advantages in a technical stability, an economic potential and a good proliferation resistance. KAERI has reported on the good experimental results of an electrochemical reduction of the uranium oxide in a 20 kg HM/batch lab-scale. In this work, cyclic voltammograms for a LiCl-3 wt% Li 2 O system and an U 3 O 8 -LiCl-3 wt% Li 2 O system with the integrated cathode assembly have been obtained. From the cyclic

  6. Development of multi-moderator neutron spectrometer using a pair of 6Li and 7Li glass scintillators

    International Nuclear Information System (INIS)

    Taniguchi, Shingo; Takada, Masashi; Nakamura, Takashi

    2001-01-01

    A multi-moderator spectrometer using a pair of 6 Li and 7 Li glass scintillators has been developed. This new type of neutron spectrometer can measure the neutron spectrum in a mixed field of neutrons, charged particles and gamma-rays. The particle identification capability was investigated in neutron-gamma-ray and neutron-proton mixed fields and the neutron response functions of the spectrometer were obtained by calculations and experiments up to 200 MeV. This spectrometer has been applied to measure neutron spectrum in a neutron-proton mixed field, produced by bombarding a Be target by 70 MeV protons from the cyclotron

  7. Improved Dehydrogenation Properties of 2LiNH2-MgH2 by Doping with Li3AlH6

    Directory of Open Access Journals (Sweden)

    Shujun Qiu

    2017-01-01

    Full Text Available Doping with additives in a Li-Mg-N-H system has been regarded as one of the most effective methods of improving hydrogen storage properties. In this paper, we prepared Li3AlH6 and evaluated its effect on the dehydrogenation properties of 2LiNH2-MgH2. Our studies show that doping with Li3AlH6 could effectively lower the dehydrogenation temperatures and increase the hydrogen content of 2LiNH2-MgH2. For example, 2LiNH2-MgH2-0.1Li3AlH6 can desorb 6.43 wt % of hydrogen upon heating to 300 °C, with the onset dehydrogenation temperature at 78 °C. Isothermal dehydrogenation testing indicated that 2LiNH2-MgH2-0.1Li3AlH6 had superior dehydrogenation kinetics at low temperature. Moreover, the release of byproduct NH3 was successfully suppressed. Measurement of the thermal diffusivity suggests that the enhanced dehydrogenation properties may be ascribed to the fact that doping with Li3AlH6 could improve the heat transfer for solid–solid reaction.

  8. Selection and Performance-Degradation Modeling of LiMO2/Li4Ti5O12 and LiFePO4/C Battery Cells as Suitable Energy Storage Systems for Grid Integration With Wind Power Plants

    DEFF Research Database (Denmark)

    Swierczynski, Maciej Jozef; Stroe, Daniel Ioan; Stan, Ana-Irina

    2014-01-01

    Advances in the development of energy storage technologies are making them attractive for grid integration together with wind power plants. Thus, the new system, the virtual power plant, is able to emulate the characteristics of today’s conventional power plants. However, at present, energy storage......-degradation models were developed for the two most suitable Li–ion chemistries for the primary frequency regulation service: LiMO2 /Li4Ti5O12 and LiFePO4/C....

  9. An electrochemical study of the systems Li1+-xV2O4 and Li1-xVO2 (0≤x≤1)

    International Nuclear Information System (INIS)

    De Picciotto, L.A.; Thackeray, M.M.; Pistoia, G.

    1988-01-01

    Electrochemical properties of the systems Li 1±x V 2 O 4 (0≤x≤1), Li 1-x VO 2 (0≤x 2 O 4 is reversible, which confirms that lithium may be cycled, topotactically, in and out of the Li 1+x V 2 O 4 spinel structure. Delithiation of the LiV 2 O 4 spinel is irreversible; during this process the vanadium ions migrate through the oxide layers. This results in a defect rocksalt phase, which can, in turn, be relithiated by a different mechanism. Lithium extraction for the layered compound LiVO 2 yields a structure similar to the delithiated LiV 2 O 4 product. The spinel-derived compounds Li 1 +-x/V 2 O 4 (0 -3 Ω -1 cm -1 at x=0 and 10 -6 Ω -1 cm -1 at x=1. Lithium diffusion rates in Li 1±x V 2 O 4 samples increase with lithiation from D=4x10 -10 cm 2 /s in LiV 2 O 4 to D=6x10 -8 cm 2 /s in Li 2 V 2 O 4 . Intermediate values of D are obtained in the delithiated compound Li 0.28 V 2 O 4 and in the layered oxide LiVO 2 ; significantly lower values of D, viz. 1x10 -11 cm 2 /s and 4x10 -11 cm 2 /s , are found in the spinels LiMn 2 O 4 and Fe 3 O 4 respectively. 28 refs.; 5 figs.; 1 table

  10. Comparison of Anodic Dischargability of Li-B Alloy with Pure Li in LiC10 sub 4 - Propylene Carbonate.

    Science.gov (United States)

    1981-04-01

    Sylvan Road 55 Chapel Street Waltham, MA 02154 Newton, MA 02158 Honeywell, Inc. Eagle - Picher Industries, Inc. Attn: Library 1 Attn: D. R. Cottingham...Center Department 104 Rock Road P.O. Box 47 Horsham, PA 19044 Joplin, MO 64801 Hughes Aircraft Company Eagle - Picher Industries, Inc. Attn: Library 1 Attn...reverse ad* if necessary and identify by block number) Lithium batteries Li-B anodes Electrodes 20. ABSTRACT (Continue on reveree side It neceesary, end

  11. In situ powder neutron diffraction study of non-stoichiometric phase formation during the hydrogenation of Li3N.

    Science.gov (United States)

    Bull, Daniel J; Sorbie, Natalie; Baldissin, Gael; Moser, David; Telling, Mark T F; Smith, Ronald I; Gregory, Duncan H; Ross, D Keith

    2011-01-01

    The hydrogenation of Li3N at low chemical potential has been studied in situ by time-of-flight powder neutron diffraction and the formation of a non-stoichiometric Li4-2xNH phase and Li4NH observed. The results are interpreted in terms of a model for the reaction pathway involving the production of Li4NH and Li2NH, which subsequently react together to form Li4-2xNH. Possible mechanisms for the production of Li4NH from the hydrogenation of Li3N are discussed.

  12. Measurement of the energy dependent beta asymmetry in the decay of 8Li

    International Nuclear Information System (INIS)

    Bigelow, R.A.; Quin, P.A.; Freedman, S.J.; Napolitano, J.

    1985-01-01

    Progress is reported on a new measurement of the beta decay asymmetry in 8 Li. Polarized 8 Li is produced via the reaction 7 Li(d,p) 8 Li using vector polarized deuterons from a crossed beam polarized source. Plastic scintillation electron counters are used to measure asymmetry, tensor polarization correlation and to monitor beam current. Results are graphed and systematic error sources are discussed. 4 refs

  13. Boron Diffused Thermoluminescent Surface Layer in LiF TLDs for Skin Dose Assessments

    DEFF Research Database (Denmark)

    Christensen, Poul; Majborn, Benny

    1980-01-01

    A new high-temperature glow peak produced in a thin surface layer of LiF TLDs by diffusion of boron into the LiF material has been studied for skin dose assessments in personnel dosimetry.......A new high-temperature glow peak produced in a thin surface layer of LiF TLDs by diffusion of boron into the LiF material has been studied for skin dose assessments in personnel dosimetry....

  14. Study on environmental test technology of LiDAR used for vehicle

    Science.gov (United States)

    Wang, Yi; Yang, Jianfeng; Ou, Yong

    2018-03-01

    With the development of intelligent driving, the LiDAR used for vehicle plays an important role in it, in some extent LiDAR is the key factor of intelligent driving. And environmental adaptability is one critical factor of quality, it relates success or failure of LiDAR. This article discusses about the environment and its effects on LiDAR used for vehicle, it includes analysis of any possible environment that vehicle experiences, and environmental test design.

  15. Synthesis, characterization and electrochemical studies of LiNi0⋅ 8 ...

    Indian Academy of Sciences (India)

    Synthesis, characterization and electrochemical studies of LiNi0.8M0.2O2 cathode material for rechargeable lithium batteries ... Abstract. LiNiO2 and substituted nickel oxides, LiNi0.8M0.2O2 and LiCo0.8M0.2O2 (M = Mg2+, Ca2+, Ba2+), have been synthesized using simple solid state technique and used as cathode active ...

  16. Study of Moessbauer effect on LiFe5-x Alx O8, LiFe 5-x Gax O8 and LiGa5-x Fex O8 systems

    International Nuclear Information System (INIS)

    Barthem, V.M.T.S.

    1982-01-01

    The measures obtained by Moessbauer spectroscopy from LiFe 5-x Ga x O 8 and LiFe 5-x Al x O 8 systems are presented. A comparative study of the influences of dopant diamagnetic ions on magnetic structures of lithium ferrite was performed. The LiGa 5-x Fe x O 8 systems were analysed based on the existing data from LiAl 5-x Fe x O 8 systems, otaining informations about the iron ion behaviour in both matrices. (M.C.K.) [pt

  17. Fractional order of kinetics in LiF-TLD 100

    International Nuclear Information System (INIS)

    Moharil, S.V.

    1984-01-01

    In a recent letter, it has been argued that the non-first-order kinetics for LiF-TLD 100 obtained by Kathuria and Sunta (J. Phys. D: Appl. Phys. 12, 1573) is an artefact of their experimental set-up. In this letter it is shown that this is not the case. (author)

  18. Vehklemistraditsioon Tartu üliõpilasorganisatsioonides, kiivri konserveerimine / Livika Lahesalu

    Index Scriptorium Estoniae

    Lahesalu, Livika

    2010-01-01

    Keskendutakse 19. sajandist pärit baltisaksa üliõpilaskorporatsiooni paukimiskiivri konserveerimise probleemidele ning töömeetodite väljatöötamisele. Esitatakse ülevaade ka kiivri ajaloost, paukimise ehk vehklemise varustusest ning vehklemistraditsioonidest Tartus

  19. Li-Ion Batteries for Forensic Neutron Dosimetry

    Science.gov (United States)

    2016-03-01

    Li-Ion Batteries for Forensic Neutron Dosimetry Distribution Statement A. Approved for public release, distribution is unlimited. March...ion batteries are the common technology for powering portable electronics. The nuclear reactions within the batteries are sensitive to neutrons . By...characterizing this dependence, neutron dose and fluence information can be determined. The dose information can be used on an individual basis to

  20. Nitrogen concentration estimation with hyperspectral LiDAR

    Directory of Open Access Journals (Sweden)

    O. Nevalainen

    2013-10-01

    Full Text Available Agricultural lands have strong impact on global carbon dynamics and nitrogen availability. Monitoring changes in agricultural lands require more efficient and accurate methods. The first prototype of a full waveform hyperspectral Light Detection and Ranging (LiDAR instrument has been developed at the Finnish Geodetic Institute (FGI. The instrument efficiently combines the benefits of passive and active remote sensing sensors. It is able to produce 3D point clouds with spectral information included for every point which offers great potential in the field of remote sensing of environment. This study investigates the performance of the hyperspectral LiDAR instrument in nitrogen estimation. The investigation was conducted by finding vegetation indices sensitive to nitrogen concentration using hyperspectral LiDAR data and validating their performance in nitrogen estimation. The nitrogen estimation was performed by calculating 28 published vegetation indices to ten oat samples grown in different fertilization conditions. Reference data was acquired by laboratory nitrogen concentration analysis. The performance of the indices in nitrogen estimation was determined by linear regression and leave-one-out cross-validation. The results indicate that the hyperspectral LiDAR instrument holds a good capability to estimate plant biochemical parameters such as nitrogen concentration. The instrument holds much potential in various environmental applications and provides a significant improvement to the remote sensing of environment.

  1. Magnetic phase diagram of magnetoelectric LiMnPO4

    DEFF Research Database (Denmark)

    Toft-Petersen, Rasmus; Andersen, Niels Hessel; Li, Haifeng

    2012-01-01

    The nature of the spin-flop (SF) transition in the magnetoelectric quasi-2D Heisenberg system LiMnPO4 is studied in fields applied along the a axis. A refinement of the magnetic structure using neutron diffraction data in the SF phase reveals that the spins reorient from being parallel...

  2. Spectroscopic analysis of LiTmF4

    DEFF Research Database (Denmark)

    Christensen, H.P.

    1979-01-01

    The absorption spectra of Tm3+ in LiTmF4 have been measured at 2, 10, 30, and 50 K in the spectral interval 4000-25 000 cm-1. The energy levels of the ground-state configuration were calculated by diagonalizing the Hamiltonian of the electron-electron interaction, the spin-orbit coupling, and the...

  3. Thermophysical properties of the Li(17)Pb(83) eutectic alloy

    International Nuclear Information System (INIS)

    Jauch, U.; Haase, G.; Schulz, B.

    1986-01-01

    Methods of measurements and results for the following properties of Li(17)Pb(83) are presented: density, specific heat, latent heat of fusion, surface energy, thermal conductivity and diffusivity, electrical conductivity and viscosity. The range of the temperature for extrapolation of the physical properties is discussed. (orig.)

  4. LiF:F2 color center laser development

    International Nuclear Information System (INIS)

    Udo, P.T.

    1986-01-01

    A pulsed color center laser based on the F 2 centers in LiF that operates at room temperature, was developed. This laser was pumped by a dye laser pumped by a N 2 laser. The color center formation using three irradiation sources was studied. The F 2 color center stability was studied as a function of temperature and under light irradiation 1000 watts xenon lamp. The active media was obtained with LiF slabs pure or with Mg and irradiated with X-rays, γ or high energy electrons. A second configuration was tried utilizing LiF rods pumped by flash lamps. LiF:F 2 color center lasers allowed a time limited operation after what a F 2 photodissociation process extinguishes the laser action. The F 2 laser emission is centered at 690 nm with 40 nm of FWHM. The peak power presented was 0,5 μJ within the nanosecond range duration. A maximum of 650 pulses out of the same active region after what the crystal had to be repositioned to re-initiate laser operation was obtained. (author) [pt

  5. 7Li breakup polarization potential at near barrier energies

    International Nuclear Information System (INIS)

    Lubian, J. . E-mail lubian@if.uff.br; Correa, T.; Paes, B.; Figueira, J.M.; Abriola, D.; Fernandez Niello, J.O.; Arazi, A.; Capurro, O.A.; de Barbara, E.; Marti, G.V.; Martinez Heinmann, D.; Negri, A.E.; Pacheco, A.J.; Padron, I.; Gomes, P.R.S.

    2007-01-01

    Inelastic and one neutron transfer cross sections at energies around the Coulomb barrier were used to derive dynamic polarization potential (DPP) for the 7 Li + 27 Al system. The DPP due to breakup, obtained in a simple way, indicates that its real part is repulsive at near barrier energies

  6. Li breakup polarization potential at near barrier energies

    International Nuclear Information System (INIS)

    Lubian, F. J.; Correa, T.; Gomes, P.R.S.; Paes, B; Figueira, J. M.; Abriola, D.; Fernandez, J. O.; Capurro, O. A.; Marti, G.V.; Martinez, D.; Heimann; Negri, A.; Pacheco, A. J.; Padron, I.

    2007-01-01

    Inelastic and one neutron transfer cross sections at energies around the Coulomb barrier were used to derive dynamic polarization potential (DPP) for the 7 Li + 27 Al system. The DPP due to breakup, obtained in a simple way, indicates that its real part is repulsive at nearbarrier energies. (Author)

  7. COTS Li-Ion Cells in High Voltage Batteries

    Science.gov (United States)

    Davies, Francis; Darcy, Eric; Jeevarajan, Judy; Cowles, Phil

    2003-01-01

    Testing at NASA JSC and COMDEV shows that Commercial Off the Shelf (COTS) Li Ion cells can not be used in high voltage batteries safely without considering the voltage stresses that may be put on the protective devices in them during failure modes.

  8. Atomic layer deposition for nanostructured Li-ion batteries

    NARCIS (Netherlands)

    Knoops, H. C. M.; Donders, M. E.; M. C. M. van de Sanden,; Notten, P. H. L.; Kessels, W. M. M.

    2012-01-01

    Nanostructuring is targeted as a solution to achieve the improvements required for implementing Li-ion batteries in a wide range of applications. These applications range in size from electrical vehicles down to microsystems. Atomic layer deposition (ALD) could be an enabling technology for

  9. SAFT Li-ion Technology for High Rate Applications

    National Research Council Canada - National Science Library

    Nechev, Kamen; Deveney, Bridget; Guseynov, Teymur; Erbacher, John; Vukson, Stephen

    2006-01-01

    SAFT will present an update of its state-of-the art Very High Power (VHP) Lithium-ion (Li-ion) technology. The VHP cells are currently being qualified for use in military aircraft applications as well as in future military hybrid vehicles...

  10. Fusion around the barrier for Li ·12 C

    Indian Academy of Sciences (India)

    Abstract. Fusion cross-sections for the Li +½¾. C reaction have been measured at energies above the Coulomb barrier by the direct detection of evaporation residues. The heavy evaporation residues with energies below 3 MeV could not be separated out from thea-particles in the spectrum and hence their contribution was ...

  11. Fusion around the barrier for 7 Li+ 12 C

    Indian Academy of Sciences (India)

    Fusion cross-sections for the 7Li + 12C reaction have been measured at energies above the Coulomb barrier by the direct detection of evaporation residues. The heavy evaporation residues with energies below 3 MeV could not be separated out from the -particles in the spectrum and hence their contribution was ...

  12. Photoluminescence studies of Li-doped Si nanocrystals

    Czech Academy of Sciences Publication Activity Database

    Klimešová, Eva; Vacík, Jiří; Holý, V.; Pelant, Ivan

    2013-01-01

    Roč. 3, č. 14 (2013), s. 1-7 ISSN 1847-9804 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:68378271 ; RVO:61389005 Keywords : Si nanocrystals * photoluminescence * doping * Li-ion batteries Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.949, year: 2013

  13. Enhancement in electrical conductivity of Li 2 O

    Indian Academy of Sciences (India)

    The study of electrical conductivity of 30Li2O : (70 – ) B2O3 : V2O5 glass samples has been carried out. The results have been explained by dividing the temperature range into two regions. In region I, conductivity shows Arrhenius behaviour for all the samples. The conductivity increases with addition of V2O5.

  14. Construction of Ge(Li)-NaI(Tl) pair spectrometer

    International Nuclear Information System (INIS)

    Hassan, A.M.; El-Kady, A.A.; Eissa, E.A.; Rofail, N.B.; Abu-Zeid, H.M.; Hamouda, I.

    1978-01-01

    The details of the construction and tests of the Ge (li)-NaI (Tl) pair spectrometer has been presented. The spectrometer was set up at one of the horizontal channels of the ET-RR-1 research reactor using a true coaxial Ge (li) detector of sensitive volume 30 cm 3 surrounded by an 8''L. x8''0annulus NaI (Tl) crystal. The coincidence technique is carried out between the central Ge (Li) detector and the surrounding NaI (Tl) detector to detect the annihilation quanta. The operating conditions and the preliminary experimental results were obtained using the gamma-ray spectra of 24 Na and ThC'' as radioactive sources. The high energy part of the gamma-ray spectrum following the thermal neutron capture in 35 Cl is taken, as check for the validity of the spectrometer. By the method used at energies above 2 Mev, the Compton background of Ge (Li) detector system is reduced, and the gamma ray energy gives only one peak in the pulse height distribution curve. The spectrometer gives slightly superior resolution compared to the single spectrometer and is capable of determining the energies of capture gamma rays (with well defined spectral peaks) to an accuracy of 1 kev. The spectrometer is very useful for resolving closely spaced lines and for observation of weak lines near the high energy and of gamma-ray spectrum and many weak intensity gamma-ray can be studied

  15. Safe, High Specific Energy & Power Li-ion Cells

    Data.gov (United States)

    National Aeronautics and Space Administration — Today’s best, safe commercial Li-ion cell designs achieve ~180 Wh/kg, ~500 Wh/L, and 400 W/kg. When accounting for the lightest (1.35) parasitic mass and smallest...

  16. Modeling low-height vegetation with airborne LiDAR

    Science.gov (United States)

    Low-height vegetation, common in semiarid regions, is difficult to characterize with LiDAR (Light Detection and Ranging) due to similarities, in time and space, of the point returns of vegetation and ground. Other complications may occur due to the low-height vegetation structural characteristics a...

  17. Familial gastric cancer and Li-Fraumeni syndrome.

    Science.gov (United States)

    Corso, G; Pedrazzani, C; Marrelli, D; Pinto, E; Roviello, F

    2010-05-01

    Gastric cancer occurs in some familial diseases with inherited cancer predisposition. Genetic factors have been correlated with the hereditary diffuse gastric cancer and other familial gastric cancer conditions as hereditary non-polyposis colorectal cancer and Li-Fraumeni syndrome. The present study was aimed at searching for germ line mutations of TP53 gene in familial gastric cancer with cluster for Li-Fraumeni syndrome or Li-Fraumeni-like syndrome. Twenty-three pedigrees with characteristics for Li-Fraumeni-like syndrome were identified. DNA of the proband was sequenced using polymerase chain reaction/single-strand conformation polymorphism. Among these 23 cases, no germ line mutation of TP53 was identified, while two single-nucleotide polymorphisms were identified in four patients. In our area, in which a high rate of familial aggregation was demonstrated, the lack of germ line mutation of TP53 together with the infrequency of mutation of E-cadherin gene seem to limit the role of genetic predisposition in the development of gastric cancer.

  18. Performance of MHD coatings in flowing Li at 700 deg

    International Nuclear Information System (INIS)

    Pint, B.; Pawel, S.J.; Howell, M.; Moser, J.L.; Garner, G.W.; Santella, M.L.; Tortorelli, P.F.; Di Stefano, J.R.

    2007-01-01

    Full text of publication follows: A thermal convection loop was constructed from V-4Cr-4Ti tubing and operated in vacuum at a maximum Li temperature of 700 deg. C for ∼1000 h.. Due to slow Li flow (∼1 cm/s) in the loop, the temperature gradient was ∼340 deg. C. Specimens in the hot and cold legs of the loop included V-4Cr-4Ti spacers, tensile specimens (SS-3 type) and coupons coated by physical vapor deposition with yttria and over coated with unalloyed vanadium. Based on prior work, the multi-layer electrically-insulating coatings were developed to reduce the magneto hydrodynamic (MHD) force expected in the first wall of a lithium cooled blanket in a magnetic confinement fusion reactor. Characterization of the specimens after exposure will include: (1) mass change and chemistry change as a function of location in the temperature gradient, (2) the effect of Li exposure on the tensile properties of V-4Cr-4Ti and (3) characterization of the properties and microstructure of the coatings after exposure. Of particular interest will be the coating resistivity after exposure and any degradation of the thin (∼10 μm) vanadium overlayer. Chemistry of the Li before and after the experiment will be compared in order to assess any mass transfer effects. (authors)

  19. LiClO4-EC triblock copolymer electrolytes

    Indian Academy of Sciences (India)

    Hema M, Christopher Selvin P, Junichi Kawamura, Baskaran. R and Sanjeeviraja C 2011 Mater. Chem. Phys. 126 404. 10. Gang Wu, Hui-Ying Yang, Hong-Zheng Chen, Fang Yuan, Li-. Gong Yang, Mang Wang and Ren-Jun Fu 2007 Mater. Chem. Phys. 104 284. 11. Armstrong R D 1974 J. Electroanalyt. Chem. 52 413. 12.

  20. Preliminary analyses of Li jet flows for the IFMIF target

    International Nuclear Information System (INIS)

    Ida, Mizuho; Kato, Yoshio; Nakamura, Hideo; Maekawa, Hiroshi

    1997-03-01

    The characteristics of liquid lithium (Li) plane jet flowing along a concave wall were studied using a multi-dimensional numerical code, FLOW-3D, as part of the two-year conceptual design activity (CDA) of the International Fusion Materials Irradiation Facility (IFMIF) that started in February 1995. The IFMIF will provide high flux, high energy (∼14MeV) neutron irradiation field by deuteron-Li reaction in the Li jet target for testing and development of low-activation and damage-resistant fusion materials. The Li jet target flow at high-velocity (≤ 20m/s) in vacuum, and should adequately remove the intense deuteron beam power (≤ 10MW). The two-dimensional analyses on the thermal and hydraulic responses of the target flow, under the conditions proposed in the IFMIF-CDA, indicated enough temperature margins to avoid significant vaporization and voiding respectively at the jet free surface and the peak temperature location in the jet by keeping the flow stability. (author)

  1. Li ion conductivities in boro-tellurite glasses

    Indian Academy of Sciences (India)

    Unknown

    ion transport may be driven by bridging oxygen ↔ non-bridging oxygen (BO ↔ NBO) switching, which is ... transport. 2. Experimental. Boro-tellurite glasses discussed in this paper were pre- pared by melt-quenching technique as described else- where (Rao and Harish Bhat ..... One, due to Li+ ions held in NBO environment.

  2. Quantifying Ladder Fuels: A New Approach Using LiDAR

    Science.gov (United States)

    Heather Kramer; Brandon Collins; Maggi Kelly; Scott Stephens

    2014-01-01

    We investigated the relationship between LiDAR and ladder fuels in the northern Sierra Nevada, California USA. Ladder fuels are often targeted in hazardous fuel reduction treatments due to their role in propagating fire from the forest floor to tree crowns. Despite their importance, ladder fuels are difficult to quantify. One common approach is to calculate canopy base...

  3. Li-Ion Cell Lot Testing and Flight Screening Results

    Science.gov (United States)

    2011-02-01

    This document reports the lot characterization and sample testing required for certification of a new lot of Moli-Energy Li-lon ICR-18650H 2200-mAh...cells that constitute this new lot are also presented. All testing began upon receipt of the new cell lot in March 2(K)9 and was performed with the

  4. 2011 USGS Topographic LiDAR: Suwannee River Expansion

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — USGS Task Order No. G10PD00236 USGS Contract No. G10PC00093 The Light Detection and Ranging (LiDAR) dataset is a survey of the Suwannee River Expansion in...

  5. Trust Management in P2P systems using Standard TuLiP

    NARCIS (Netherlands)

    Czenko, M.R.; Doumen, J.M.; Etalle, Sandro

    2008-01-01

    In this paper we introduce Standard TuLiP - a new logic based Trust Management system. In Standard TuLiP, security decisions are based on security credentials, which can be issued by different entities and stored at different locations. Standard TuLiP directly supports the distributed credential

  6. Two new species and new record of Batricavus Yin & Li (Coleoptera, Staphylinidae, Pselaphinae) from China.

    Science.gov (United States)

    Yin, Zi-Wei; Li, Li-Zhen

    2012-01-01

    Two new species, Batricavus abdominalis Yin & Li, sp. n. and Batricavus hainanensis Yin & Li, sp. n. are described from Hainan, South China, with male habitus and major diagnostic features illustrated. Batricavus tibialis Yin & Li is newly recorded from Zhejiang, East China. Keys to both sexes of the genus are included.

  7. Relationship between LiDAR-derived forest canopy height and Landsat images

    Science.gov (United States)

    Cristina Pascual; Antonio Garcia-Abril; Warren B. Cohen; Susana. Martin-Fernandez

    2010-01-01

    The mean and standard deviation (SD) of light detection and ranging (LiDAR)-derived canopy height are related to forest structure. However, LiDAR data typically cover a limited area and have a high economic cost compared with satellite optical imagery. Optical images may be required to extrapolate LiDAR height measurements across a broad landscape. Different spectral...

  8. Honeycomb-like porous 3D nickel electrodeposition for stable Li and Na metal anodes

    NARCIS (Netherlands)

    Xu, Y.; Menon, A.S.; Harks, P.P.R.M.L.; Hermes, D.C.; Haverkate, L.A.; Unnikrishnan, S.; Mulder, F.M.

    2018-01-01

    Li and Na metals have the highest theoretical anode capacity for Li/Na batteries, but the operational safety hazards stemming from uncontrolled growth of Li/Na dendrites and unstable electrode-electrolyte interfaces hinder their real-world applications. Recently, the emergence of 3D conductive

  9. Operando X-ray diffraction analysis for a glyme-based Li-O2 battery

    International Nuclear Information System (INIS)

    Yogi, C.; Takao, N.; Kubobuchi, K.; Matsumoto, M.; Mogi, M.; Imai, H.; Watanabe, T.

    2016-01-01

    We investigated the effect of the carbon species in the air (oxygen) electrode, electrolyte concentration, and humidity in the supplied O 2 gas on the Li-O 2 reactions by using the operando XRD analysis. Regarding carbon species, we found that the over-potentials in the galvanostatic discharge-charge process were suppressed when using the KB carbon in the air electrode. The results of operando XRD measurements revealed that the Li 2 O 2 formed on the KB had the smaller crystalline or more amorphous like structures, which could be one reason for faster reaction kinetics of Li 2 O 2 dissolution. The discharge-charge curves of the cells with different concentration of LiTFSI/(G4) n electrolyte showed the slight difference but less differences in the Li 2 O 2 formation and dissolution behaviors. In addition to the nature of Li 2 O 2 products, reaction of Li-salts would also have ineligible effects. We also found that the higher humidity in oxygen produced more the LiOH and promoted the Li 2 O 2 dissolution, which indicate that the LiOH formation could affect the Li 2 O 2 morphologies or surface chemistries. Our present results demonstrated that the operando XRD measurement are useful for analyzing the reaction mechanism of Li-O 2 battery.

  10. Direct formation of LiAlH4 by a mechanochemical reaction

    International Nuclear Information System (INIS)

    Kojima, Yoshitsugu; Kawai, Yasuaki; Haga, Tetsuya; Matsumoto, Mitsuru; Koiwai, Akihiko

    2007-01-01

    A small amount of lithium tetrahydridoaluminate (LiAlH 4 ) was directly synthesized by ball-milling of lithium hydride LiH and aluminum Al in a H 2 atmosphere (1 MPa) at room temperature. Concomitant formation of lithium hexahydridoaluminate Li 3 AlH 6 was confirmed

  11. Effect of oxygen vacancies on the Li-storage of anatase TiO2 (001 ...

    Indian Academy of Sciences (India)

    40

    adsorption energy of 5.91 eV for Li atoms indicates oxygen vacancies have a positive effect on the Li storage of ... Keywords: anatase TiO2; oxygen vacancies; adsorbed energy; Li storage; DFT. 1. Introduction. As a fascinating ... The application of TiO2-based materials is mainly dependent on their crystalline structure ...

  12. Adsorption and diffusion of lithium on layered silicon for Li-ion storage.

    Science.gov (United States)

    Tritsaris, Georgios A; Kaxiras, Efthimios; Meng, Sheng; Wang, Enge

    2013-05-08

    The energy density of Li-ion batteries depends critically on the specific charge capacity of the constituent electrodes. Silicene, the silicon analogue to graphene, being of atomic thickness could serve as high-capacity host of Li in Li-ion secondary batteries. In this work, we employ first-principles calculations to investigate the interaction of Li with Si in model electrodes of free-standing single-layer and double-layer silicene. More specifically, we identify strong binding sites for Li, calculate the energy barriers accompanying Li diffusion, and present our findings in the context of previous theoretical work related to Li-ion storage in other structural forms of silicon: the bulk and nanowires. The binding energy of Li is ~2.2 eV per Li atom and shows small variation with respect to Li content and silicene thickness (one or two layers) while the barriers for Li diffusion are relatively low, typically less than 0.6 eV. We use our theoretical findings to assess the suitability of two-dimensional silicon in the form of silicene layers for Li-ion storage.

  13. Demystifying LiDAR technologies for temperate rainforest in the Pacific Northwest

    Science.gov (United States)

    Rhonda Mazza; Demetrios Gatziolis

    2013-01-01

    Light detection and ranging (LiDAR), also known as airborne laser scanning, is a rapidly emerging technology for remote sensing. Used to help map, monitor, and assess natural resources, LiDAR data were first embraced by forestry professionals in Scandinavia as a tool for conducting forest inventories in the mid to late 1990s. Thus early LiDAR theory and applications...

  14. Three-dimensional canopy fuel loading predicted using upward and downward sensing LiDAR systems

    Science.gov (United States)

    Nicholas S. Skowronski; Kenneth L. Clark; Matthew Duveneck; John. Hom

    2011-01-01

    We calibrated upward sensing profiling and downward sensing scanning LiDAR systems to estimates of canopy fuel loading developed from field plots and allometric equations, and then used the LiDAR datasets to predict canopy bulk density (CBD) and crown fuel weight (CFW) in wildfire prone stands in the New Jersey Pinelands. LiDAR-derived height profiles were also...

  15. A theoretical study of the carbenoids LiCH 2 X (X= Cl, Br, I ...

    Indian Academy of Sciences (India)

    The trend of the lithium carbenoids reaction barrier with ketene is LiCH2Cl < LiCH2Br < LiCH2I. The results show that the reactions could be highly chemical reactivity with low barriers and could be favoured in experiment. The reactions could proceed easily at lower temperature. The computational results are briefly ...

  16. C. C. Li (1912–2003): his science and his spirit

    Indian Academy of Sciences (India)

    Unknown

    Sewall Wright was particularly thankful to C.C. for including a clear description and illustrations of Wright's method of path coefficients in this book. In later years, Li himself made many contributions to path analysis and wrote a text-book, Path Analysis, A Primer [Li 1975]. C. C. Li's contributions to population genetics have ...

  17. A multiscale curvature algorithm for classifying discrete return LiDAR in forested environments

    Science.gov (United States)

    Jeffrey S. Evans; Andrew T. Hudak

    2007-01-01

    One prerequisite to the use of light detection and ranging (LiDAR) across disciplines is differentiating ground from nonground returns. The objective was to automatically and objectively classify points within unclassified LiDAR point clouds, with few model parameters and minimal postprocessing. Presented is an automated method for classifying LiDAR returns as ground...

  18. Cracking in Si-based anodes for Li-ion batteries

    NARCIS (Netherlands)

    Aifantis, KE; Dempsey, JP; Hackney, SA

    2005-01-01

    In attempts to increase the anode capacity of rechargeable Li-ion batteries, composite materials with micro- and nano-scale domains of Li active material surrounded by Li inactive material are being investigated. Materials such as Si, Al and Sn that provide capacities between 900 and 4000 mAh g(-1)

  19. Analysis of Li-related defects in ZnO thin films influenced by ...

    Indian Academy of Sciences (India)

    et al 2008) and electrical measurements (Look and Claflin. 2004; Mohamed et al 2005). Here, we report the effects of annealing ambient on Li-related defects in ZnO films. For- mation mechanism of Li-related defects in ZnO was stud- ied by calculating formation energies of Li-related defects structure. 2. Experimental.

  20. Trust Management in P2P Systems Using Standard TuLiP

    NARCIS (Netherlands)

    Czenko, M.R.; Doumen, J.M.; Etalle, Sandro

    2008-01-01

    In this paper we introduce Standard TuLiP - a new logic based Trust Management system. In Standard TuLiP, security decisions are based on security credentials, which can be issued by different entities and stored at different locations. Standard TuLiP directly supports the distributed credential

  1. Li abundances in F stars: planets, rotation, and Galactic evolution

    Science.gov (United States)

    Delgado Mena, E.; Bertrán de Lis, S.; Adibekyan, V. Zh.; Sousa, S. G.; Figueira, P.; Mortier, A.; González Hernández, J. I.; Tsantaki, M.; Israelian, G.; Santos, N. C.

    2015-04-01

    Aims: We aim, on the one hand, to study the possible differences of Li abundances between planet hosts and stars without detected planets at effective temperatures hotter than the Sun, and on the other hand, to explore the Li dip and the evolution of Li at high metallicities. Methods: We present lithium abundances for 353 main sequence stars with and without planets in the Teff range 5900-7200 K. We observed 265 stars of our sample with HARPS spectrograph during different planets search programs. We observed the remaining targets with a variety of high-resolution spectrographs. The abundances are derived by a standard local thermodynamic equilibrium analysis using spectral synthesis with the code MOOG and a grid of Kurucz ATLAS9 atmospheres. Results: We find that hot jupiter host stars within the Teff range 5900-6300 K show lower Li abundances, by 0.14 dex, than stars without detected planets. This offset has a significance at the level 7σ, pointing to a stronger effect of planet formation on Li abundances when the planets are more massive and migrate close to the star. However, we also find that the average vsini of (a fraction of) stars with hot jupiters is higher on average than for single stars in the same Teff region, suggesting that rotational-induced mixing (and not the presence of planets) might be the cause for a greater depletion of Li. We confirm that the mass-metallicity dependence of the Li dip is extended towards [Fe/H] ~ 0.4 dex (beginning at [Fe/H] ~-0.4 dex for our stars) and that probably reflects the mass-metallicity correlation of stars of the same Teff on the main sequence. We find that for the youngest stars (FIES and SARG spectrographs at the 2.5 m NOT and the 3.6 m TNG, respectively, both at La Palma (Canary Islands, Spain).Tables 3-6 are available in electronic form at http://www.aanda.org

  2. Composite Cathodes for Dual-Rate Li-Ion Batteries

    Science.gov (United States)

    Whitacre, Jay; West, William; Bugga, Ratnakumar

    2008-01-01

    Composite-material cathodes that enable Li-ion electrochemical cells and batteries to function at both high energy densities and high discharge rates are undergoing development. Until now, using commercially available cathode materials, it has been possible to construct cells that have either capability for high-rate discharge or capability to store energy at average or high density, but not both capabilities. However, both capabilities are needed in robotic, standby-power, and other applications that involve duty cycles that include long-duration, low-power portions and short-duration, high-power portions. The electrochemically active ingredients of the present developmental composite cathode materials are: carbon-coated LiFePO4, which has a specific charge capacity of about 160 mA h/g and has been used as a high-discharge-rate cathode material and Li[Li(0.17)Mn(0.58)Ni(0.25)]O2, which has a specific charge capacity of about 240 mA h/g and has been used as a high-energy-density cathode material. In preparation for fabricating the composite material cathode described, these electrochemically active ingredients are incorporated into two sub-composites: a mixture comprising 10 weight percent of poly(vinylidine fluoride); 10 weight percent of carbon and 80 weight percent of carbon coated LiFePO4; and, a mixture comprising 10 weight percent of PVDF, and 80 weight percent of Li[Li(0.17)Mn(0.58)Ni(0.25)]O2. In the fabrication process, these mixtures are spray-deposited onto an aluminum current collector. Electrochemical tests performed thus far have shown that better charge/discharge performance is obtained when either 1) each mixture is sprayed on a separate area of the current collector or (2) the mixtures are deposited sequentially (in contradistinction to simultaneously) on the same current-collector area so that the resulting composite cathode material consists of two different sub-composite layers.

  3. Physical properties optimization of polycrystalline LiFeAs

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Shiv J., E-mail: s.j.singh@ifw-dresden.de [Leibniz-Institute for Solid State and Material Research, IFW-Dresden, 01171 Dresden Germany (Germany); Research Center for Environmentally Friendly Materials Engineering, Muroran Institute of Technology, 27-1 Mizumoto-cho, Muroran, Hokkaido, 050-8585 (Japan); Gräfe, Uwe; Beck, Robert; Wolter, Anja U.B.; Grafe, Hans-Joachim [Leibniz-Institute for Solid State and Material Research, IFW-Dresden, 01171 Dresden Germany (Germany); Hess, Christian [Leibniz-Institute for Solid State and Material Research, IFW-Dresden, 01171 Dresden Germany (Germany); Center for Transport and Devices of Emergent Materials, Technische Universität Dresden, 01069 Dresden (Germany); Wurmehl, Sabine [Leibniz-Institute for Solid State and Material Research, IFW-Dresden, 01171 Dresden Germany (Germany); Institut für Festkörperphysik, Technische Universität Dresden, 01069 Dresden (Germany); Büchner, Bernd [Leibniz-Institute for Solid State and Material Research, IFW-Dresden, 01171 Dresden Germany (Germany); Center for Transport and Devices of Emergent Materials, Technische Universität Dresden, 01069 Dresden (Germany); Institut für Festkörperphysik, Technische Universität Dresden, 01069 Dresden (Germany)

    2016-10-15

    Highlights: • Synthesis of polycrystalline LiFeAs in a very broad heating temp. range (200–900 °C). • These samples are characterized by various physical and magnetic measurements. • Interestingly, the LiFeAs phase starts to form at 200 °C with T{sub c} of 19.2 K. • 600 °C synthesis temperature yields optimal high quality polycrystalline LiFeAs. • The properties of the best sample are consistent with that of LiFeAs single crystal. - Abstract: We present a study of parameter optimization for synthesizing truly stoichiometric polycrystalline LiFeAs. Stoichiometric LiFeAs has been prepared in a very broad range of synthesis temperature (200–900 °C) under otherwise exactly the same conditions, and has been characterized by structural, magnetic, transport, nuclear quadrupole resonance (NQR), and specific heat measurements. Our study showed that the LiFeAs phase is formed at 200 °C with a large amount of impurity phases. The amount of these impurity phases reduces with increasing synthesis temperature and the clean LiFeAs phase is obtained at a synthesis temperature of 600 °C. Magnetic susceptibility and resistivity measurements confirmed that the superconducting properties such as the critical temperature T{sub c}, and the upper critical field H{sub c2} do not depend on the synthesis temperature (≤ 700 °C), remaining at almost the same value of ∼19 K and ∼40 T, respectively. However, the width ΔT{sub c} of the transition and the NQR line width decrease with increasing the synthesis temperature and reached to minimum value for the synthesis temperature of 600 °C. Our careful analysis suggests that the best sample obtained at 600 °C is optimal concerning the low resistivity, high residual resistivity ratio (RRR), low ΔT{sub c}, high T{sub c} and H{sub c2}, and a small NQR line width with values which are comparable to that reported for LiFeAs single crystals. Specific heat measurements confirmed the bulk superconducting nature of the samples

  4. Aligned Li+Tunnels in Core-Shell Li(NixMnyCoz)O2@LiFePO4Enhances Its High Voltage Cycling Stability as Li-ion Battery Cathode.

    Science.gov (United States)

    Wu, Zhongzhen; Ji, Shunping; Liu, Tongchao; Duan, Yandong; Xiao, Shu; Lin, Yuan; Xu, Kang; Pan, Feng

    2016-10-12

    Layered transition-metal oxides (Li[Ni x Mn y Co z ]O 2 , NMC, or NMCxyz) due to their poor stability when cycled at a high operating voltage (>4.5 V) have limited their practical applications in industry. Earlier researches have identified Mn(II)-dissolution and some parasitic reactions between NMC surface and electrolyte, especially when NMC is charged to a high potential, as primarily factors responsible for the fading. In our previous work, we have achieved a capacity of NMC active material close to theoretical value and optimized its cycling performance by a depolarized carbon nanotubes (CNTs) network and an unique "pre-lithiation process" that generates an in situ organic coating (∼40 nm) to prevent Mn(II) dissolution and minimize the parasitic reactions. Unfortunately, this organic coating is not durable enough during a long-term cycling when the cathode operates at a high potential (>4.5 V). This work attempts to improve the surface protection of the NMC532 particles by applying an active inorganic coating consisting of nanosized- and crystal-orientated LiFePO 4 (LFP) (about 50 nm, exposed (010) face) to generate a core-shell nanostructure of Li(Ni x Mn y Co z )O 2 @LiFePO 4 . Transmission electron microscopy (TEM) and etching X-ray photoelectron spectroscopy have confirmed an intimate contact coating (about 50 nm) between the original structure of NMC and LFP single-particle with atomic interdiffusion at the core-shell interface, and an array of interconnected aligned Li + tunnels are observed at the interface by cross-sectional high-resolution TEM, which were formed by ball-milling and then strictly controlling the temperature below 100 °C. Batteries based on this modified NMC cathode material show a high reversible capacity when cycled between 3.0 and 4.6 V during a long-term cycling.

  5. Uncommon potential hysteresis in the Li/Li2xVO(H2-xPO4)2 (0 ≤ x ≤ 2) system

    International Nuclear Information System (INIS)

    Dubarry, M.; Gaubicher, J.; Guyomard, D.; Wallez, G.; Quarton, M.; Baehtz, C.

    2008-01-01

    Physical and electrochemical investigations of vanadium phosphates, Li 2x VO(H 2-x PO 4 ) 2 (0 + /Li + ionic exchange from VO(H 2 PO 4 ) 2 to Li 2 VO(HPO 4 ) 2 leads to grain decrepitation. Further ionic exchange toward formation of Li 4 VO(PO 4 ) 2 lowers the symmetry. As inferred from potentiodynamic cycling correlated to ex situ and in situ X-ray diffraction (XRD), the system Li/Li 4 VO(PO 4 ) 2 shows several phase transformations that are associated with thermodynamical potential hysteresis that span from roughly 15 mV to more than 1.8 V. Small hysteresis are associated with topotactic reactions and with V V /V IV and V III /V II redox couples. Large potential hysteresis values (>1 V) were observed when oxidation of V III to V IV is involved

  6. Performance of LiAlloy/Ag(2)CrO(4) Couples in Molten CsBr-LiBr-KBr Eutectic

    International Nuclear Information System (INIS)

    GUIDOTTI, RONALD A.; REINHARDT, FREDERICK W.

    1999-01-01

    The performance of Li-alloy/CsBr-LiBr-KBr/Ag(sub 2)CrO(sub 4) systems was studied over a temperature range of 250 C to 300 C, for possible use as a power source for geothermal borehole applications. Single cells were discharged at current densities of 15.8 and 32.6 mA/cm(sup 2) using Li-Si and Li-Al anodes. When tested in 5-cell batteries, the Li-Si/CsBr-LiBr-KBr/Ag(sub 2)CrO(sub 4) system exhibited thermal runaway. Thermal analytical tests showed that the Ag(sub 2)CrO(sub 4) cathode reacted exothermically with the electrolyte on activation. Consequently, this system would not be practical for the envisioned geothermal borehole applications

  7. A study on the electrolytic reduction of U3O8 to uranium metal in LiCl-Li2O molten salt

    International Nuclear Information System (INIS)

    Seo, J. S.; Heo, J. M.; Hong, S. S.; Kang, D. S.; Park, S. W.

    2002-01-01

    New electrolytic reduction technology was proposed that is based on the intregration of metallization of U 3 O 8 and Li 2 O electrowinning. In this electrolytic reduction reaction, electrolytically reduced Li deposits on cathode and simultaneously reacts with uranium oxide to produce uranium metal showing more than 99% conversion. For the verification of process feasibility, the experiments to obtain basic data on the metallization of uranium oxide, materials for cathode and anode electrode, the characteristics of closed recycle of Li 2 O and mass transfer were carried out. This evolutionary electrolytic reduction technology would give benefits over the conventional Li-reduction process improving economic viability such as: avoidance of handling of chemically active Li-LiCl molten salt, increase of metallization yield, and simplification of process

  8. Li fast ion conductive La0.56Li0.33TiO3 inlaid LiFePO4/C microspheres with enhanced high-rate performance as cathode materials

    International Nuclear Information System (INIS)

    Shu, Hongbo; Chen, Manfang; Wen, Fang; Fu, Yanqing; Liang, Qianqian; Yang, Xiukang; Shen, Yongqiang; Liu, Li; Wang, Xianyou

    2015-01-01

    Highlights: • Various content of La 0.56 Li 0.33 TiO 3 inlaid LiFePO 4 /C are firstly prepared by an ammonia assisted hydrothermal route. • The inlaid La 0.56 Li 0.33 TiO 3 can enhance the transfer kinetics of both Li + and electrons. • Among all of samples, 2 wt.% La 0.56 Li 0.33 TiO 3 inlaid LiFePO 4 /C shows the best rate capability and cycling stability. • La 0.56 Li 0.33 TiO 3 inlaid LiFePO 4 /C is an effective way to improve the performance of LiFePO 4 power battery. - Abstract: Monodisperse spherical La 0.56 Li 0.33 TiO 3 inlaid LiFePO 4 /C composites with various La 0.56 Li 0.33 TiO 3 content (from 0 wt.% to 3 wt.%) are firstly prepared by an ammonia assisted hydrothermal route. The compositions, morphology and structure of samples are characterized by means of inductively coupled plasma (ICP), X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), energy dispersive spectrometer (EDS), respectively. The results reveal that nano La 0.56 Li 0.33 TiO 3 particles inlay on the surface of spherical LiFePO 4 , which is coated by a continuous and uniform carbon layer with the thickness of 1∼2 nm. The charge/discharge tests and electrochemical impedance spectroscopy (EIS) measurements indicate that the kinetics of La 0.56 Li 0.33 TiO 3 inlaid LiFePO 4 /C is better than that of LiFePO 4 /C. With the change of La 0.56 Li 0.33 TiO 3 content, 2 wt.% La 0.56 Li 0.33 TiO 3 inlaid LiFePO 4 /C composites reveal a excellent high-rate capability and cycling stability. The initial discharge capacity of the sample is 126.3 and 108.9 mAh/g, and the capacity retention achieves as high as 98.3% and 88.8% till 100 cycles at 5 C and 200 cycles at 10 C, respectively. Furthermore, it still exhibits a high discharge capacity of 62.3 mAh/g even at high rate of 30 C. The improved electrochemical performance of La 0.56 Li 0.33 TiO 3 inlaid LiFePO 4 /C composites can be attributed to reduce the charge transfer resistance and enhance

  9. Investigation of the isospin-forbidden reaction 6Li(6Li,d2)10B0+,1

    International Nuclear Information System (INIS)

    Wiebach, S.; Bachmann, A.; Brand, H.; Eule, R.P.; Freiesleben, H.; Heyber, B.; Leifels, Y.; Potthast, K.W.; Rosenthal, P.; Kamys, B.

    1993-01-01

    Angular distributions of the isospin-forbidden reaction 6 Li( 6 Li, d 2 ) 10 B 0+1 were measured at six beam energies in the range from 3 to 8 MeV. The contribution of two-step transfer mechamism to the reaction under consideration was found to be negligible. Hauser-Feshbach model cross sections, obtained with parameters derived from a previous analysis of isospin-allowed reactions in the 6 Li+ 6 Li system are consistent with the data, provided a 2% reduction factor reflecting isospin mixing of compound nucleus levels. From this factor an iso-spin-breaking matrix element of left angle H c 2 right angle 1/2 ∼13 keV was deduced. The presence of one broad or several resonances with (J P , T)=(1 - , 1) or (2 - , 1) concentrated at an excitation energy of about 30.3 MeV in 12 C seems to be responsible for the observed shape of angular distributions and their energy dependence. (orig.)

  10. Correlating capacity and Li content in layered material for Li-ion battery using XRD and particle size distribution measurements

    Science.gov (United States)

    Al-Tabbakh, A. A. A.; Al-Zubaidi, A. B.; Kamarulzaman, N.

    2016-03-01

    A lithiated transition-metal oxide material was successfully synthesized by a combustion method for Li-ion battery. The material was characterized using thermogravimetric and particle size analyzers, scanning electron microscope and X-ray diffractometer. The calcined powders of the material exhibited a finite size distribution and a single phase of pure layered structure of space group Roverline{3} m . An innovative method was developed to calculate the material electrochemical capacity based on considerations of the crystal structure and contributions of Li ions from specified unit cells at the surfaces and in the interiors of the material particles. Results suggested that most of the Li ions contributing to the electrochemical current originated from the surface region of the material particles. It was possible to estimate the thickness of the most delithiated region near the particle surfaces at any delithiation depth accurately. Furthermore, results suggested that the core region of the particles remained electrochemically inaccessible in the conventional applied voltages. This result was justified by direct quantitative comparison of specific capacity values calculated from the particle size distribution with those measured experimentally. The present analysis is believed to be of some value for estimation of the failure mechanism in cathode compounds, thus assisting the development of Li-ion batteries.

  11. Studies on the thermal decomposition kinetics of LiPF6 and LiBC4O8

    Indian Academy of Sciences (India)

    WINTEC

    Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810 008, China b. Graduate School of the Chinese Academy of ... and has a high level of electrochemical stability. However, hazardous reactions of LiPF6 are widely .... where S could be obtained from figure 2 using the method given by reference 12.

  12. Probing the Degradation Mechanism of Li2MnO3 Cathode for Li-Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Pengfei; Xiao, Liang; Zheng, Jianming; Zhou, Yungang; He, Yang; Zu, Xiaotao; Mao, Scott X.; Xiao, Jie; Gao, Fei; Zhang, Jiguang; Wang, Chong M.

    2015-02-10

    Capacity and voltage fading of Li2MnO3 is a major challenge for the application of this category of material, which is believed to be associated with the structural and chemical evolution of the materials. This paper reports the detailed structural and chemical evolutions of Li2MnO3 cathode captured by using aberration corrected scanning/transmission electron microscope (S/TEM) after certain numbers of charge-discharge cycling of the batteries. It is found that structural degradation occurs from the very first cycle and is spatially initiated from the surface of the particle and propagates towards the inner bulk as cyclic number increase, featuring the formation of the surface phase transformation layer and gradual thickening of this layer. The structure degradation is found to follow a sequential phase transformation: monoclinic C2/m → tetragonal I41 → cubic spinel, which is consistently supported by the decreasing lattice formation energy based on DFT calculations. For the first time, high spatial resolution quantitative chemical analysis reveals that 20% oxygen in the surface phase transformation layer is removed and such newly developed surface layer is a Li-depleted layer with reduced Mn cations. This work demonstrates a direct correlation between structural degradation and cell’s electrochemical degradation, which enhances our understanding of Li-Mn-rich (LMR) cathode materials.

  13. 3D inverse-opal structured Li4Ti5O12 Anode for fast Li-Ion storage capabilities

    Science.gov (United States)

    Kim, Dahye; Quang, Nguyen Duc; Hien, Truong Thi; Chinh, Nguyen Duc; Kim, Chunjoong; Kim, Dojin

    2017-11-01

    Since the demand for high power Li-ion batteries (LIBs) is increasing, spinel-structured lithium titanate, Li4Ti5O12 (LTO), as the anode material has attracted great attention because of its excellent cycle retention, good thermal stability, high rate capability, and so on. However, LTO shows relatively low conductivity due to empty 3 d orbital of Ti4+ state. Nanoscale architectures can shorten electron conduction path, thus such low electronic conductivity can be overcome while Li+ can be easily accessed due to large surface area. Herein, three dimensional bicontinuous LTO electrodes were prepared via close-packed self-assembly with polystyrene (PS) spheres followed by removal of them, which leads to no blockage of Li+ ion transportation pathways as well as fast electron conduction. 3D bicontinuous LTO electrodes showed high-rate lithium storage capability (103 mAh/g at 20 C), which is promising as the power sources that require rapid electrochemical response.[Figure not available: see fulltext.

  14. LiCaFeF6: A zero-strain cathode material for use in Li-ion batteries

    Science.gov (United States)

    de Biasi, Lea; Lieser, Georg; Dräger, Christoph; Indris, Sylvio; Rana, Jatinkumar; Schumacher, Gerhard; Mönig, Reiner; Ehrenberg, Helmut; Binder, Joachim R.; Geßwein, Holger

    2017-09-01

    A new zero-strain LiCaFeF6 cathode material for reversible insertion and extraction of lithium ions is presented. LiCaFeF6 is synthesized by a solid-state reaction and processed to a conductive electrode composite via high-energy ball-milling. In the first cycle, a discharge capacity of 112 mAh g-1 is achieved in the voltage range from 2.0 V to 4.5 V. The electrochemically active redox couple is Fe3+/Fe2+ as confirmed by Mössbauer spectroscopy and X-ray absorption spectroscopy. The compound has a trigonal colquiriite-type crystal structure (space group P 3 bar 1 c). By means of in situ and ex situ XRD as well as X-ray absorption fine structure spectroscopy a reversible response to Li uptake/release is found. For an uptake of 0.8 mol Li per formula unit only minimal changes occur in the lattice parameters causing a total change in unit cell volume of less than 0.5%. The spatial distribution of cations in the crystal structure as well as the linkage between their corresponding fluorine octahedra is responsible for this very small structural response. With its zero-strain behaviour this material is expected to exhibit only negligible mechanical degradation. It may be used as a cathode material in future lithium-ion batteries with strongly improved safety and cycle life.

  15. Vibrational Energies of LiH2+ and LiD2+in the A1sigma+ Electronic State

    Czech Academy of Sciences Publication Activity Database

    Kraemer, W. P.; Špirko, Vladimír

    2011-01-01

    Roč. 115, č. 41 (2011), s. 11313-11320 ISSN 1089-5639 Institutional research plan: CEZ:AV0Z40550506 Keywords : LiH2+ molecular ion * density of states * nearest-neighbor level spacing distribution Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.946, year: 2011

  16. Solid-state synthesis and characterization of LiCoO 2 and LiNi Co ...

    Indian Academy of Sciences (India)

    Nickel-containing compositions gave higher discharge capacities and smaller hystereses in their charge–discharge profiles which make them more attractive than ... The lower loss in capacity per cycle for cells with unsubstituted LiCoO2 , as determined from cycling studies up to 25 cycles, makes it more suitable than the ...

  17. KINETIC TRANSFORMATION OF SPINEL TYPE LiMnLiMn2O4 INTO TUNNEL TYPE MnO2

    Directory of Open Access Journals (Sweden)

    Daud K Walanda

    2010-06-01

    Full Text Available Lithiated phase LiMn2O4 is a potential cathode material for high-energy batteries because it can be used in conjunction with suitable carbon anode materials to produce so-called lithium ion cells. The kinetic transformation of LiMn2O4 into manganese dioxide (MnO2 in sulphuric acid has been studied. It is assumed that the conversion of LiMn2O4 into R-MnO2 is a first order autocatalytic reaction. The transformation actually proceeds through the spinel l-MnO2 as an intermediate species which is then converted into gamma phase of manganese dioxide. In this reaction LiMn2O4 whose structure spinel type, which is packing between tetrahedral coordination and octahedral coordination, is converted to form octahedral tunnel structure of manganese dioxide, which is probably regarded as a reconstructive octahedral-coordination transformation. Therefore, it is a desire to investigate the transformation of manganese oxides in solid state chemistry by analysing XRD powder patterns. Due to the reactions involving solids, concentrations of reactant and product are approached with the expression of peak areas.   Keywords: high-energy battery, lithium ion cells, kinetic transformation

  18. XPS study of Li/Nb ratio in LiNbO{sub 3} crystals. Effect of polarity and mechanical processing on LiNbO{sub 3} surface chemical composition

    Energy Technology Data Exchange (ETDEWEB)

    Skryleva, E.A., E-mail: easkryleva@gmail.com; Kubasov, I.V., E-mail: kubasov.ilya@gmail.com; Kiryukhantsev-Korneev, Ph.V., E-mail: kiruhancev-korneev@yandex.ru; Senatulin, B.R., E-mail: borisrs@yandex.ru; Zhukov, R.N., E-mail: rom_zhuk@mail.ru; Zakutailov, K.V., E-mail: zakkonst@gmail.com; Malinkovich, M.D., E-mail: malinkovich@yandex.ru; Parkhomenko, Yu.N., E-mail: parkh@rambler.ru

    2016-12-15

    Highlights: • XPS Li/Nb ratio measurement uncertainty in LNbO3 specimens was obtained. • The effect of polarization on surface chemistry was observed only on cleaves. • Li/Nb ratio on positive cleave surface is higher than on negative one. • The positive cleave surface adsorbs fluorine more efficiently than negative one. • Mechanical processing of crystals reduces surface Li/Nb. - Abstract: Different sections of congruent lithium niobate (CLN) crystals have been studied using X-ray photoelectron spectroscopy (XPS). We have developed a method for measuring the lithium-to-niobium atomic ratio Li/Nb from the ratio of the Li1s and Nb4s spectral integral intensities with an overall error of within 8 %. Polarity and mechanical processing affect the Li/Nb ratio on CLN crystal surfaces. The Li/Nb ratio is within the tolerance (0.946 ± 0.074) on the negative cleave surface Z, and there is excess lithium (Li/Nb = 1.25 ± 0.10) on the positive surface. The positive surfaces of the 128° Y cut plates after long exposure to air exhibit LiOH formation indications (obvious lithium excess, higher Li1s spectral binding energy and a wide additional peak in the O1s spectrum produced by nonstructural oxygen). XPS and glow discharge optical electron spectroscopy showed that mechanical processing of differently oriented crystals (X, Z and 128° Y) and different polarities dramatically reduces the Li/Nb ratio. In situ fluorine adsorption experiments revealed the following regularities: fluorine adsorption only occurred on crystal cleaves and was not observed for mechanically processed specimens. Positive cleave surfaces have substantially higher fluorine adsorption capacity compared to negative ones.

  19. Synthesis, crystal structure and electrochemical properties of LiFePO4F cathode material for Li-ion batteries

    International Nuclear Information System (INIS)

    Chen, D.; Shao, G.-Q.; Li, B.; Zhao, G.-G.; Li, J.; Liu, J.-H.; Gao, Z.-S.; Zhang, H.-F.

    2014-01-01

    Highlights: • Tavorite-structured LiFePO 4 F with high purity is successfully synthesized by a two-step solid-state route. • Rietveld refinement shows that open pathways for 3D ion transport exist in LiFePO 4 F and its discharged state (Li 2 FePO 4 F). • The voltage plateaus on 2.71 / 2.86 V, in galvanostatic discharge-charge cycling, indicate a low electrode polarization of 0.15 V. • This work attained the largest initial discharge capacity at the highest rate (1 C) reported to date. • This work attained almost the same capacity retention at a tenfold higher rate (1 C) than that (0.1 C) within the maximum cycles of 100 reported to date. - Abstract: Tavorite-structured lithium-metal-fluorophosphates for Li + transition have been recognized as a good alternative to olivine-type cathodes for lithium-ion batteries. They show an exceptional ionic conductivity, excellent thermal stability and capacity retention. In this work, LiFePO 4 F with high purity is successfully synthesized by a two-step solid-state route. Rietveld refinement shows that open pathways for 3D ion transport exist in LiFePO 4 F and its discharged state (Li 2 FePO 4 F). Cyclic voltammetry data exhibit a clear indication of the Fe 3+/2+ redox couple that involves a two-phase transition. Galvanostatic discharge-charge cycling was examined at the rates 0.1 - 5 C up to 1000 cycles. The voltage plateaus on 2.71 / 2.86 V indicate a low electrode polarization of 0.15 V. This work attained the largest initial discharge capacity at the highest rate (1 C) reported to date, and almost the same capacity retention at a tenfold higher rate (1 C) than that (0.1 C) within the maximum cycles of 100 reported to date

  20. Synthesis and electrochemical properties of LiNi0.4Mn1.5Cr0.1O4 and Li4Ti5O12

    CSIR Research Space (South Africa)

    Liu, GQ

    2011-08-01

    Full Text Available Spinel compound LiNi0.4Mn1.5Cr0.1O4 (LNMCO) and Li4Ti5O12 (LTO) were synthesized by the sol-gel method and the solid-state method, respectively. The particle sizes of the products LiNi0.4Mn1.5Cr0.1O4 and Li4Ti5O12 were 0.5 to 2 um and 0.5 to 0.8 um...

  1. Chemical vs. electrochemical extraction of lithium from the Li-excess Li(1.10)Mn(1.90)O4 spinel followed by NMR and DRX techniques.

    Science.gov (United States)

    Martinez, S; Sobrados, I; Tonti, D; Amarilla, J M; Sanz, J

    2014-02-21

    Lithium extraction from the Li-excess Li1.10Mn1.90O4 spinel has been performed by chemical and electrochemical methods in aqueous and in organic media, respectively. De-lithiated samples have been investigated by XRD, SEM, TG, (7)Li and (1)H MAS-NMR techniques. The comparative study has allowed demonstrating that the intermediate de-intercalated samples prepared during the chemical extraction by acid titration are similar to those prepared by the electrochemical way in a non-aqueous electrolyte. LiMn2O4 based spinel with a tailored de-lithiation degree can be prepared as a single phase by controlling the pH used in chemical extraction. (7)Li MAS-NMR spectroscopy has been used to follow the influence of the manganese oxidation state on tetra and octahedral Li-signals detected in Li-extracted samples. The oxidation of Mn(III) ions goes parallel to the partial dissolution of the spinel, following Hunter's mechanism. Based on this mechanism, a generalized chemical reaction has been proposed to explain the formation of intermediate Li(+) de-intercalated samples during acid treatment in aqueous media. By the (1)H MAS NMR study, no evidence of Li-H topotactic exchange in the bulk of the acid treated material was found.

  2. Kinetic analysis of the thermal stability of lithium silicates (Li4SiO4 and Li2SiO3)

    International Nuclear Information System (INIS)

    Cruz, Daniel; Bulbulian, Silvia; Lima, Enrique; Pfeiffer, Heriberto

    2006-01-01

    The kinetics describing the thermal decomposition of Li 4 SiO 4 and Li 2 SiO 3 have been analysed. While Li 4 SiO 4 decomposed on Li 2 SiO 3 by lithium sublimation, Li 2 SiO 3 was highly stable at the temperatures studied. Li 4 SiO 4 began to decompose between 900 and 1000 deg. C. However, at 1100 deg. C or higher temperatures, Li 4 SiO 4 melted, and the kinetic data of its decomposition varied. The activation energy of both processes was estimated according to the Arrhenius kinetic theory. The energy values obtained were -408 and -250 kJ mol -1 for the solid and liquid phases, respectively. At the same time, the Li 4 SiO 4 decomposition process was described mathematically as a function of a diffusion-controlled reaction into a spherical system. The activation energy for this process was estimated to be -331 kJ mol -1 . On the other hand, Li 2 SiO 3 was not decomposed at high temperatures, but it presented a very high preferential orientation after the heat treatments

  3. LiMnPO4 nanoplate grown via solid-state reaction in molten hydrocarbon for Li-ion battery cathode.

    Science.gov (United States)

    Choi, Daiwon; Wang, Donghai; Bae, In-Tae; Xiao, Jie; Nie, Zimin; Wang, Wei; Viswanathan, Vilayanur V; Lee, Yun Jung; Zhang, Ji-Guang; Graff, Gordon L; Yang, Zhenguo; Liu, Jun

    2010-08-11

    Electrochemically active LiMnPO(4) nanoplates have been synthesized via a novel, single-step, solid-state reaction in molten hydrocarbon. The olivine-structured LiMnPO(4) nanoplates with a thickness of approximately 50 nm appear porous and were formed as nanocrystals were assembled and grew into nanorods along the [010] direction in the (100) plane. After carbon coating, the prepared LiMnPO(4) cathode demonstrated a flat potential at 4.1 V versus Li with a specific capacity reaching as high as 168 mAh/g under a galvanostatic charging/discharging mode, along with an excellent cyclability.

  4. Capacity Enhancement of the Quenched Li-Ni-Mn-Co Oxide High-voltage Li-ion Battery Positive Electrode

    International Nuclear Information System (INIS)

    Jena, Anirudha; Lee, Cho-Hsueh; Pang, Wei Kong; Peterson, Vanessa K.; Sharma, Neeraj; Wang, Chun-Chieh; Song, Yen-Fang; Lin, Chun-Che; Chang, Ho; Liu, Ru-Shi

    2017-01-01

    Highlights: • Co-precipitation method has been used to obtain Li 1.207 Ni 0.127 Mn 0.54 Co 0.127 O 2 . • Slow cooled and air quenched samples are obtained and characterized. • Unique spheres are obtained quenching than fragments in slow cooling. • Quenched sample show higher specific capacity due to easier Li-ion passage in bulk. - Abstract: Li-rich metal oxides, regarded as a high-voltage composite cathode, is currently one of the hottest positive electrode material for lithium-ion batteries, due to its high-capacity and high-energy performance. The crystallography, phase composition and morphology can be altered by synthesis parameters, which can influence drastically the capacity and cycling performance. In this work, we demonstrate Li 1.207 Ni 0.127 Mn 0.54 Co 0.127 O 2 , obtained by a co-precipitation method, exhibits super-high specific capacity up to 298 mAh g −1 and excellent capacity retention of ∼100% up to 50 cycles. Using neutron powder diffraction and transmission X-ray microscopy, we have found that the cooling-treatments applied after sintering during synthesis are crucially important in controlling the phase composition and morphology of the cathodes, thereby influencing the electrochemical performance. Unique spherical microstructure, larger lattice, and higher content of Li-rich monoclinic component can be achieved in the rapid quenching process, whereas severe particle cracking along with the smaller lattice and lower monoclinic component content is obtained when natural cooling of the furnace is applied. Combined with electrochemical impedance spectra, a plausible mechanism is described for the poorer specific capacity and cycling stability of the composite cathodes.

  5. Li:Mg,Cu,P versus LiF:Mg,Ti: A comparison of Some dosimetric properties

    International Nuclear Information System (INIS)

    Ben-Shachar, B.; Weinstein, M.; German, U.

    1999-01-01

    The most widely used technique in radiation dosimetry is thermoluminescence (TL), which makes use of materials, commonly divided into two groups: (a) tissue equivalent phosphors, winch generally exhibit low sensitivity to ionizing radiation, e.g. Li:Mg, Ti , Li 2 B 4 O 7 with Cu or Mn as impurities or Be 2 0 3 with different impurities. (b) phosphors with high sensitivity but poor equivalence to organic tissue, e.g. CaF 2 With Mn, Dy or Tm as impurities or CaSO 4 with Mn or Tm as impurities. For a TL dosimeter used in personnel or environmental dosimetry, both tissue-equivalence and high sensitivity are required. Lithium fluoride doped with magnesium and titanium, known commercially as TLD-100 (Harshaw), is still the most commonly used radiation dosimeter. It has become popular because of several properties, such as tissue equivalence, relative low fading, adequate sensitivity for personnel dosimetry and the possibility to manufacture the material with acceptable reproducibility. The LiF:Cu, Mg, P phosphor has several important advantages compared to Li:Mg, Ti. The extended range of linearity, lack of supra linearity and the more nearly ideal tissue equivalence response to low energy photons gives a significant advantage in clinical dosimetry. The higher sensitivity, improved signal to noise ratio, and shorter monitoring periods lead to greatly improved performance in environmental dosimetry. The ultra low relative TL response to neutrons is another important advantage in mixed field neutron/gamma dosimetry. The Li:Mg, Cu, P does suffer from several of the disadvantages associated with TLD-100, especially its complex glow curve, and its greater sensitivity than TLD-100 to heating procedures. A comparison of some main properties of the two phosphors is presented in this work

  6. Kinetic analysis of the thermal decomposition of Li4Ti5O12 pellets

    Directory of Open Access Journals (Sweden)

    Hugo A. Mosqueda

    2011-12-01

    Full Text Available A single dynamic kinetic analysis, describing the surface decomposition of Li4Ti5O12 pellets, has been performed. Samples were analyzed by X-ray diffraction and scanning electron microscopy. The analyses were performed between 1000 and 1100°C and different times, perceiving the Li4Ti5O12 decomposition to Li2Ti3O7, with a loss of lithium. As expected, more rapid decomposition behaviour was found at higher temperatures. Finally, the activation energy for this decomposition of Li4Ti5O12 to Li2Ti3O7 was estimated to be equal to 383 kJ/mol.

  7. The In Situ Polymerization and Characterization of PA6/LiCl Composites

    Directory of Open Access Journals (Sweden)

    Dandan Sun

    2013-01-01

    Full Text Available PA6/LiCl composites were synthesized by in situ anionic polymerization based on the interaction between the inorganic salts and PA6. Sodium hydroxide as initiator and N-acetylcaprolactam as activator were used in the preparation of PA6/LiCl composites with variety of LiCl content. X-ray diffraction (XRD and differential scanning calorimeter (DSC testing results showed that both of degree of crystallinity and melting temperature of the composites were decreased under the influence of LiCl. And the γ crystal phase proportion increased with increasing the LiCl content to appropriate amount.

  8. DFT Study On Effects of CO2 Contamination in Non-Aqueous Li-Air Batteries

    DEFF Research Database (Denmark)

    Mekonnen, Yedilfana Setarge; Mýrdal, Jón Steinar Garðarsson; Vegge, Tejs

    2013-01-01

    Density Functional Theory (DFT) studies on the effects of carbon dioxide (CO2) contamination at the cathode of rechargeable non-aqueous Li-O2 batteries, where the insulating material Lithium peroxide (Li2O2) is the main discharge product. The Li2O2 growth mechanism and overpotentials...... and result in an increased battery capacity. However, CO2 contamination on the Li2O2 surface confirms an asymmetric increase in the overpotentials; particularly the charging overvoltage exhibits sustantial increase, which would reduce the efficiency of the Li-air battery....

  9. 6,7Li + 28Si total reaction cross sections at near barrier energies

    International Nuclear Information System (INIS)

    Pakou, A.; Musumarra, A.; Pierroutsakou, D.; Alamanos, N.; Assimakopoulos, P.A.; Divis, N.; Doukelis, G.; Gillibert, A.; Harissopulos, S.; Kalyva, G.; Kokkoris, M.; Lagoyannis, A.; Mertzimekis, T.J.; Nicolis, N.G.; Papachristodoulou, C.; Perdikakis, G.; Roubos, D.; Rusek, K.; Spyrou, S.; Zarkadas, Ch.

    2007-01-01

    Total reaction cross section measurements for the 6,7 Li + 28 Si systems have been performed at near-barrier energies. The results indicate that, with respect to the potential anomaly at barrier, 6 Li and 7 Li on light targets exhibit similar energy dependence on the imaginary potential. Comparisons are made with 6,7 Li cross sections on light and heavy targets, extracted via previous elastic scattering measurements and also with CDCC calculations. Energy dependent parametrisations are also obtained for total reaction cross sections of 6,7 Li on Si, as well as on any target, at near barrier energies

  10. High voltage and high specific capacity dual intercalating electrode Li-ion batteries

    Science.gov (United States)

    West, William C. (Inventor); Blanco, Mario (Inventor)

    2010-01-01

    The present invention provides high capacity and high voltage Li-ion batteries that have a carbonaceous cathode and a nonaqueous electrolyte solution comprising LiF salt and an anion receptor that binds the fluoride ion. The batteries can comprise dual intercalating electrode Li ion batteries. Methods of the present invention use a cathode and electrode pair, wherein each of the electrodes reversibly intercalate ions provided by a LiF salt to make a high voltage and high specific capacity dual intercalating electrode Li-ion battery. The present methods and systems provide high-capacity batteries particularly useful in powering devices where minimizing battery mass is important.

  11. Elastic scattering and transfer in the 8Li+208Pb system near the Coulomb barrier

    International Nuclear Information System (INIS)

    Kolata, J.J.; Goldberg, V.Z.; Lamm, L.O.; Marino, M.G.; O'Keeffe, C.J.; Rogachev, G.; Aguilera, E.F.; Garcia-Martinez, H.; Martinez-Quiroz, E.; Rosales, P.; Becchetti, F.D.; O'Donnell, T.W.; Roberts, D.A.; Brown, J.A.; DeYoung, P.A.; Hinnefeld, J.D.; Shaheen, S.A.

    2002-01-01

    The interaction of 8 Li with 208 Pb has been studied over a range of energies near the nominal Coulomb barrier. An excitation function for the total reaction cross section is obtained from elastic-scattering angular distributions and compared with existing data for 6,7 Li scattering. The result of this comparison indicates that the interaction barrier for 8 Li+ 208 Pb is reduced by approximately 4 MeV relative to that of 7 Li. The yields of 7 Li and 4 He from breakup and/or transfer processes are determined, and compared with similar data for other light, weakly bound projectiles

  12. A theoretical study of the carbenoids LiCH2X (X = Cl, Br, I ...

    Indian Academy of Sciences (India)

    Administrator

    Table 1. Calculated bond lengths and bond elongation in the TSn (n = 1–6) as compared to the bond lengths of the starting materials (LiCH2X, where X = Cl, Br, I), respectively. C. 1. –Li. C. 1. –Li. C. 1. –X. C. 1. –X. Li-X. Li-X. X. TSn r(nm) elong. (%) r (nm) elong. (%) r (nm) elong. (%). Cl. TS1. 0⋅1993. 2⋅63. 0⋅2499. 19⋅57.

  13. Moessbauer study of proton-exchanged LiNbO3:Fe

    International Nuclear Information System (INIS)

    Engelmann, H.; Andler, G.; Dezsi, I.

    1990-01-01

    Topotactic proton exchange (Li against H) can be achieved by treating LiBnO 3 with appropriate acids. In order to investigate the effect of proton exchange on Fe-impurities we studied LiNbO 3 :Fe powder material treated in sulphuric acid and LiNbO 3 :Fe single crystals treated in benzoic acid by Moessbauer spectroscopy. During the topotactic ion exchange only the Li-ions are exchanged for protons, whereas the Fe-impurities are retained in the material. (orig.)

  14. In-situ synchrotron PXRD study of spinel LiMn2O4 nanocrystal formation

    DEFF Research Database (Denmark)

    Birgisson, Steinar; Jensen, Kirsten Marie Ørnsbjerg; Christiansen, Troels Lindahl

    Many solvothermal reactions have a great potential for environmentally friendly and easily scalable way for producing nanocrystalline materials on an industrial scale. Here we study hydrothermal formation of spinel LiMn2O4 which is a well-known cathode material for Li-ion batteries. The LiMn2O4...... nanoparticles are formed by reducing KMnO4 in an aqueous solution containing Li-ions. The reducing agent is an alcohol (here ethanol) and the reaction takes place under high pressure and temperature. The LiMn2O4 nanocrystals are unstable towards further reduction to Mn3O4 nanocrystals. Possible reaction route...

  15. Postoje li još svetišta kulture i znanosti?

    OpenAIRE

    Božić, Jadranka

    2013-01-01

    Rad nastoji odgovoriti na sljedeća pitanja: Mogu li i trebaju li znanost i umjetnost obrazovati čovještvo u čovjeku? Gubi li znanost značaj u osmišljavanju naših života? Time dovodimo u pitanje i pravi smisao i ideju univerziteta. Idu li nove reforme univerziteta u Europi s početka 21. stoljeća u pravcu produbljene sholarizacije, tj. postaje li obrazovanje sve manje cjelovito, jednostrano? Što se danas događa s autonomijom univerziteta, ali i znanosti? U kojoj mjeri današnji univerzitet dopri...

  16. The Li-ion rechargeable battery: a perspective.

    Science.gov (United States)

    Goodenough, John B; Park, Kyu-Sung

    2013-01-30

    Each cell of a battery stores electrical energy as chemical energy in two electrodes, a reductant (anode) and an oxidant (cathode), separated by an electrolyte that transfers the ionic component of the chemical reaction inside the cell and forces the electronic component outside the battery. The output on discharge is an external electronic current I at a voltage V for a time Δt. The chemical reaction of a rechargeable battery must be reversible on the application of a charging I and V. Critical parameters of a rechargeable battery are safety, density of energy that can be stored at a specific power input and retrieved at a specific power output, cycle and shelf life, storage efficiency, and cost of fabrication. Conventional ambient-temperature rechargeable batteries have solid electrodes and a liquid electrolyte. The positive electrode (cathode) consists of a host framework into which the mobile (working) cation is inserted reversibly over a finite solid-solution range. The solid-solution range, which is reduced at higher current by the rate of transfer of the working ion across electrode/electrolyte interfaces and within a host, limits the amount of charge per electrode formula unit that can be transferred over the time Δt = Δt(I). Moreover, the difference between energies of the LUMO and the HOMO of the electrolyte, i.e., electrolyte window, determines the maximum voltage for a long shelf and cycle life. The maximum stable voltage with an aqueous electrolyte is 1.5 V; the Li-ion rechargeable battery uses an organic electrolyte with a larger window, which increase the density of stored energy for a given Δt. Anode or cathode electrochemical potentials outside the electrolyte window can increase V, but they require formation of a passivating surface layer that must be permeable to Li(+) and capable of adapting rapidly to the changing electrode surface area as the electrode changes volume during cycling. A passivating surface layer adds to the impedance of the

  17. A self-cleaning Li-S battery enabled by a bifunctional redox mediator

    Science.gov (United States)

    Ren, Y. X.; Zhao, T. S.; Liu, M.; Zeng, Y. K.; Jiang, H. R.

    2017-09-01

    The polysulfide shuttle effect and lithium dendrite growth in lithium-sulfur (Li-S) batteries can repeatedly breach the anodic solid electrolyte interphase (SEI) over cycling. As a result, irreversible short-chain sulfide side products (Li2Sx, x = 1, 2) keep depositing on the Li anode, leading to the active material loss, increasing the Li+ transport resistance, and thereby reducing the cycle life. In this work, indium iodide (InI3) is investigated as a bifunctional electrolyte additive for Li-S batteries to protect the Li anode and decompose the side products spontaneously. On the one hand, Indium (In) is electrodeposited onto the Li anode prior to Li plating during the initial charging process, forming a chemically and mechanically stable SEI to prevent the Li anode from reacting with soluble polysulfide species to form Li2Sx (x = 1, 2) side products. On the other hand, by adequately overcharging the battery, the triiodide/iodide redox mediator is capable of chemically transforming side products deposited on the Li anode and separator into soluble polysulfides, which can be recycled by the cathode. It is shown that the battery with the InI3 additive exhibits a prolonged cycle life, and is capable of retrieving its capacity by a facile overcharging process.

  18. Orthorhombic Lithium Titanium Phosphate as an Anode Material for Li-ion Rechargeable Battery

    International Nuclear Information System (INIS)

    Kee, Yongho; Dimov, Nikolay; Minami, Keita; Okada, Shigeto

    2015-01-01

    Highlights: • Li-rich orthorhombic lithium titanium phosphate (OLTP) has been synthesized via a sol-gel route. • OLTP adopts a different space group from the previously reported rhombohedral lithium titanium phosphate (RLTP) and shows solid-solution charge/discharge curves. • OLTP shows higher Li + diffusivity and electrical conductivity, which makes it an attractive alternative for RLTP. - Abstract: Rhombohedral lithium titanium phosphate, LiTi 2 (PO 4 ) 3 , has been considered a suitable anode material for aqueous lithium-ion batteries. However, the electrochemical behaviors of pure lithium-rich polymorphs have not been described yet even Li-rich phase may show better electrochemical properties than conventional LiTi 2 (PO 4 ) 3 at the expense of somewhat lowered capacity. We have synthesized orthorhombic Li 1.5 Ti 2 (PO 4 ) 3 (OLTP) and rhombohedral LiTi 2 (PO 4 ) 3 (RLTP) via sol-gel reactions and studied their fundamental electrochemical properties using galvanostatic charge/discharge and cyclic voltammetry (CV). Their feasibility as anode materials in LiFePO 4 //Li x Ti 2 (PO 4 ) 3 configurations using aqueous electrolytes were also considered. The faster kinetics of the orthorhombic lithium titanium phosphate in this study were attributed to higher Li + diffusivity and electrical conductivity, making this material an attractive alternative for conventional rhombohedral LiTi 2 (PO 4 ) 3

  19. Electrochemical Properties of EVOH-SO3Li/PET Lithium Ion Battery Separator via Electrospinning

    Directory of Open Access Journals (Sweden)

    GONG Gui-fen

    2018-03-01

    Full Text Available EVOH-SO3 Li/PET Li-ion battery composite membranes were prepared by means of alternated electrostatic spinning, then the morphology of the membranes was observed by scanning electron microscope, and the electrochemical properties of the membranes were tested by using an electrochemistry work station. The results show that the average diameter of EVOH-SO3 Li/PET fibre is 387nm, both two kinds of fibres exhibit uniform net-like structure. Compared with pure EVOH-SO3 Li fibre, adhesion phenomenon of modified EVOH-SO3 Li/PET fibre is not obvious anymore, and the surface of EVOH-SO3 Li/PET fibre becomes more smooth with enlarged pores between adjacent fibres; the electrochemical window of EVOH-SO3 Li/PET separator is 5.3V, bulk resistance of EVOH-SO3 Li/PET is decreased to 212.31Ω, and the ion conductivity of EVOH-SO3 Li/PET separator is 2.347×10-3 S/cm, the properties of EVOH-SO3 Li/PET membranes are improved compared with EVOH-SO3 Li.

  20. Correlating the interface resistance and surface adhesion of the Li metal-solid electrolyte interface

    Science.gov (United States)

    Wang, Michael; Sakamoto, Jeff

    2018-02-01

    Solid electrolytes could enable stable cycling of metallic Li anodes, which can offer drastic increases to the capacity of Li-ion batteries. However, little is known about the mechanics of the Li-solid electrolyte interface. This study combines electrochemical and mechanical characterization to correlate interface kinetics with adhesive strength. Cubic garnet with the Li6·25Al0·25La3Zr2O12 (LLZO) formulation was selected as a model solid electrolyte based on its high conductivity and stability against Li metal. Symmetric Li-LLZO cells were tested using electrochemical impedance spectroscopy to determine the interfacial resistance, Rint, and the adhesive strength of the Li-LLZO interface, σadh, was measured using a unique tensile test in an inert atmosphere. It was determined that the Rint is directly correlated to the adhesive strength of Li on LLZO. At the highest Rint in this study, 330 k·cm2 the σadh was 1.1 kPa and at the lowest Rint in this study, 7 ·cm2, σadh was 8 MPa. Furthermore, by optimizing the surface chemistry the wettability of LLZO was enhanced resulting in σadh exceeding the ultimate tensile strength of Li metal. The relationship demonstrated provides a deeper understanding of the mechanical properties of the Li-electrolyte interface, which will play an important role in the design of batteries employing metallic Li anodes.

  1. Analysis of Charge Transfer for in Situ Li Intercalated Carbon Nanotubes

    KAUST Repository

    Rana, Kuldeep

    2012-05-24

    Vertically aligned carbon nanotube (VA-CNT) arrays have been synthesized with lithium (Li) intercalation through an alcohol-catalyzed chemical vapor deposition technique by using a Li-containing catalyst. Scanning electron microscopy images display that synthesized carbon nanotubes (CNTs) are dense and vertically aligned. The effect of the Li-containing catalyst on VA-CNTs has been studied by using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and electron energy loss spectroscopy (EELS). XPS results show the change in binding energy of Li 1s and C 1s peaks, which indicates that Li is inserted in VA-CNTs during growth. Analysis of Raman spectra reveals that the G-band profile of CNTs synthesized with the Li-containing catalyst is shifted, suggesting an electronic interaction between Li and neighboring C atoms of the CNTs. The EELS spectra of the C K edge and Li K edge from CNTs also confirmed that Li is inserted into CNTs during synthesis. We have performed ab inito calculations based on density functional theory for a further understanding of the structural and electronic properties of Li intercalated CNTs, especially addressing the controversial charge-transfer state between Li and C. © 2012 American Chemical Society.

  2. 2005 Mississippi Merged LiDAR Data (2005 LiDAR data merged with 2005 Post-Katrina LiDAR data to create a bare-earth product for flood plain mapping in coastal Mississippi).

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Pre- and post-hurricane Katrina LiDAR datasets of Hancock, Harrison, and Jackson Counties, MS, were merged into a seamless coverage by URS. The pre-Katrina LiDAR...

  3. Magnetic properties of lithium rare-earth fluorides: Ferromagnetism in LiErF4 and LiHoF4 and crystal-field parameters at the rare-earth and Li sites

    DEFF Research Database (Denmark)

    Hansen, P. E.; Johansson, Torben; Nevald, Rolf

    1975-01-01

    was observed, but extrapolation indicates that below 0.5 K it will be ferromagnetic with the magnetic moments in the crytalline ab plane. From the susceptibilities the crystal-field parameters Bnm with (n, m)=(2, 0), (4, 0), (4, 4), (6, 0), (6, 4) have been extracted giving for Er3+ in LiErF4: 430., -985......Single crystals of LiErF4 and LiHoF4 have been grown and their magnetic properties measured from 1.3 K to 300 K. LiHoF4 turned out to be a nearly ideal Ising ferromagnet with TC=1.30±0.05 K and a saturation magnetization along the crystalline c axis of (6.98±0.02)μB. In LiErF4 no ordering......., 1185., -5., 740.+i135. (cm-1) and for Ho3+ in LiHoF4: 470., -825., 1050., -10., 760.+i150 (cm-1). The exchange constants were found to be small compared to the dipole interactions. Furthermore the 7Li NMR spectra have been obtained in these materials as well as in LiTbF4 thereby determining the second...

  4. Li depletion in solar analogues with exoplanets. Extending the sample

    Science.gov (United States)

    Delgado Mena, E.; Israelian, G.; González Hernández, J. I.; Sousa, S. G.; Mortier, A.; Santos, N. C.; Adibekyan, V. Zh.; Fernandes, J.; Rebolo, R.; Udry, S.; Mayor, M.

    2014-02-01

    Aims: We want to study the effects of the formation of planets and planetary systems on the atmospheric Li abundance of planet host stars. Methods: In this work we present new determinations of lithium abundances for 326 main sequence stars with and without planets in the Teff range 5600-5900 K. The 277 stars come from the HARPS sample, the remaining targets were observed with a variety of high-resolution spectrographs. Results: We confirm significant differences in the Li distribution of solar twins (Teff = T⊙ ± 80 K, log g = log g⊙ ± 0.2 and [Fe/H] = [Fe/H]⊙ ± 0.2): the full sample of planet host stars (22) shows Li average values lower than "single" stars with no detected planets (60). If we focus on subsamples with narrower ranges in metallicity and age, we observe indications of a similar result though it is not so clear for some of the subsamples. Furthermore, we compare the observed spectra of several couples of stars with very similar parameters that show differences in Li abundances up to 1.6 dex. Therefore we show that neither age, mass, nor metallicity of a parent star is the only cause for enhanced Li depletion in solar analogues. Conclusions: We conclude that another variable must account for that difference and suggest that this could be the presence of planets that causes additional rotationally induced mixing in the external layers of planet host stars. Moreover, we find indications that the amount of depletion of Li in planet-host solar-type stars is higher when the planets are more massive than Jupiter. Based on observations collected at the La Silla Observatory, ESO (Chile), with the HARPS spectrograph at the 3.6 m ESO telescope, with CORALIE spectrograph at the 1.2 m Euler Swiss telescope and with the FEROS spectrograph at the 1.52 m ESO telescope; at the Paranal Observatory, ESO (Chile), using the UVES spectrograph at the VLT/UT2 Kueyen telescope, and with the FIES, SARG, and UES spectrographs at the 2.5 m NOT, the 3.6 m TNG and the 4

  5. Continuous monitoring of the composition of liquid Pb-17Li eutectic using electrical resistivity methods

    International Nuclear Information System (INIS)

    Hubberstey, P.; Sample, T.; Barker, M.G.

    1991-01-01

    The composition of liquid Pb-17Li alloys has been continously determined, using an electrical resistivity monitor, during their interaction with nitrogen, oxygen, hydrogen and water vapour. The operation of the monitor depends on the fact that the resistivity of liquid Pb-Li alloys is dependent on their composition. Accurate resistivity-composition isotherms have been derived from resistivity-temperature data for 15 Pb-Li alloys (0 Li -8 Ω m (mol% Li) -1 at 725 K) is such that a change of 0.05 mol% Li in the alloy composition can be measured. The addition of oxygen and water vapour resulted in a decrease in the resistivity of the liquid alloy. Neither nitrogen nor hydrogen had any effect. The observed changes were shown to be consistent with Li 2 O formation. (orig.)

  6. Early {sup 8}Li{sup +}{beta}-NMR investigations in GaAs and Ge

    Energy Technology Data Exchange (ETDEWEB)

    Chow, K.H. [Department of Physics, University of Alberta, Edmonton, AB, T6G 2J1 (Canada)]. E-mail: kimchow@phys.ualberta.ca; Salman, Z. [TRIUMF, 4004 Wesbrook Mall, Vancouver, V6T 2A3 (Canada); MacFarlane, W.A. [Department of Chemistry, University of British Columbia, Vancouver, V6T 1Z1 (Canada); Campbell, Brendan [Department of Physics, University of Alberta, Edmonton, AB, T6G 2J1 (Canada); Keeler, T.A. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Kiefl, R.F. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Kreitzman, S.R. [TRIUMF, 4004 Wesbrook Mall, Vancouver, V6T 2A3 (Canada); Levy, C.D.P. [TRIUMF, 4004 Wesbrook Mall, Vancouver, V6T 2A3 (Canada); Morris, G.D. [TRIUMF, 4004 Wesbrook Mall, Vancouver, V6T 2A3 (Canada); Parolin, T.J. [Department of Chemistry, University of British Columbia, Vancouver, V6T 1Z1 (Canada); Daviel, S. [TRIUMF, 4004 Wesbrook Mall, Vancouver, V6T 2A3 (Canada); Yamani, Z. [National Research Council, Steacie Institute for Molecular Sciences, Neutron Program for Materials Research, Chalk River Laboratories, Chalk River, ON, K0J 1J0 (Canada)

    2006-03-31

    In this paper, we describe initial studies of the structure and dynamics associated with Li+8 in bulk crystalline GaAs and Ge. At low temperatures in GaAs, the amplitude of the Li+8 resonance signal at {approx}3T indicates that a large fraction (at least 70%) of the Li end up in locations with cubic symmetry (i.e. the tetrahedral interstitial and substitutional sites). The linewidth of the {beta}-NMR Li+8 resonance increases dramatically above 150K, reaches a maximum at about 290K, and decreases again. This suggests that the Li starts to change its location, probably from an interstitial to a substitutional site, at {approx}150K. Experiments in Ge are also described. In this sample, a narrow resonance is seen at low temperatures that is likely due to Li located at an interstitial site. Near room temperature, it appears that Li is converting to another site.

  7. THE 2H(alpha, gamma6LI REACTION AT LUNA AND BIG BANG NUCLEOSYNTHETIS

    Directory of Open Access Journals (Sweden)

    Carlo Gustavino

    2013-12-01

    Full Text Available The 2H(α, γ6Li reaction is the leading process for the production of 6Li in standard Big Bang Nucleosynthesis. Recent observations of lithium abundance in metal-poor halo stars suggest that there might be a 6Li plateau, similar to the well-known Spite plateau of 7Li. This calls for a re-investigation of the standard production channel for 6Li. As the 2H(α, γ6Li cross section drops steeply at low energy, it has never before been studied directly at Big Bang energies. For the first time the reaction has been studied directly at Big Bang energies at the LUNA accelerator. The preliminary data and their implications for Big Bang nucleosynthesis and the purported 6Li problem will be shown.

  8. Selective blue emission from an HPBO-Li{sup +} complex in alkaline media

    Energy Technology Data Exchange (ETDEWEB)

    Obare, S.O.; Murphy, C.J. [South Carolina Univ., Dept. of Chemistry and Biochemistry, Graduate Science Research Center, Columbia, SC (United States)

    2001-12-01

    Li{sup +} sensors are currently in demand for monitoring Li{sup +} transport in Li{sup +} batteries. Fluorescent receptors specific for metal ions are desirable since they allow both direct and real-time detection. Here we show that 2-(2-Hydroxyphenyl)benzoxazole(HPBO) exhibits enhanced fluorescence and specificity for Li{sup +} compared to Na{sup +} and K{sup +}, in an alkaline medium. The selectivity was observed in several organic solvents in the presence of bases such as pyridine, triethylamine and trimethyl-amine. HPBO-Li{sup +} complex formation results in an intense blue emission readily observed by the naked eye under UV light. Spectroscopic titrations suggest that the structure of the complex is one in which two HPBO anionic ligands coordinate to one Li{sup +}, with a second Li{sup +} as a counter-ion. (authors)

  9. Lithium salt of biphenyl tetracarboxylate as an anode material for Li/Na-ion batteries

    Science.gov (United States)

    Medabalmi, Veerababu; Wang, Guanxiong; Ramani, Vijay K.; Ramanujam, Kothandaraman

    2017-10-01

    Electrochemical lithiation/delithiation and sodiation/desodiation studies are carried out on lithium [1,1‧-biphenyl]-3,3‧,4,4‧-tetracarboxylate (Li4-BPTC). Although four Li+ can be inserted, only two Li+ was reversible yielding a capacity of 110, 122 and 107 mAh g-1 (after 50 cycles) at a current density of 40, 80 and 160 mA g-1 respectively. As sodium analog of Li4-BPTC is unstable in the ambient conditions, Li4-BPTC was tested in sodium half-cell and a reversible capacity of 107 mAh g-1 was obtained even after 200 cycles at 160 mA g-1 rate. The exchange of Li+ by Na+ in Li4-BPTC electrode during the electrochemical sodiation/desodiation was confirmed by ICP-OES and XPS studies.

  10. High-throughput computational design of cathode coatings for Li-ion batteries

    Science.gov (United States)

    Aykol, Muratahan; Kim, Soo; Hegde, Vinay I.; Snydacker, David; Lu, Zhi; Hao, Shiqiang; Kirklin, Scott; Morgan, Dane; Wolverton, C.

    2016-12-01

    Cathode degradation is a key factor that limits the lifetime of Li-ion batteries. To identify functional coatings that can suppress this degradation, we present a high-throughput density functional theory based framework which consists of reaction models that describe thermodynamic and electrochemical stabilities, and acid-scavenging capabilities of materials. Screening more than 130,000 oxygen-bearing materials, we suggest physical and hydrofluoric-acid barrier coatings such as WO3, LiAl5O8 and ZrP2O7 and hydrofluoric-acid scavengers such as Sc2O3, Li2CaGeO4, LiBO2, Li3NbO4, Mg3(BO3)2 and Li2MgSiO4. Using a design strategy to find the thermodynamically optimal coatings for a cathode, we further present optimal hydrofluoric-acid scavengers such as Li2SrSiO4, Li2CaSiO4 and CaIn2O4 for the layered LiCoO2, and Li2GeO3, Li4NiTeO6 and Li2MnO3 for the spinel LiMn2O4 cathodes. These coating materials have the potential to prolong the cycle-life of Li-ion batteries and surpass the performance of common coatings based on conventional materials such as Al2O3, ZnO, MgO or ZrO2.

  11. New perspectives on the Li isotopic composition of the upper continental crust and its weathering signature

    Science.gov (United States)

    Sauzéat, Lucie; Rudnick, Roberta L.; Chauvel, Catherine; Garçon, Marion; Tang, Ming

    2015-10-01

    Lithium isotopes are increasingly used to trace both present-day and past weathering processes at the surface of the Earth, and could potentially be used to evaluate the average degree of past weathering recorded by the upper continental crust (UCC). Yet the previous estimate of average δ7Li of the UCC has a rather large uncertainty, hindering the use of Li isotopes for this purpose. New δ7Li for desert and periglacial loess deposits (windblown dust) from several parts of the world (Europe, Argentina, China and Tajikistan) demonstrate that the former are more homogeneous than the latter, and may therefore serve as excellent proxies of the average composition of large tracts of the UCC. The Li isotopic compositions and concentrations of desert loess samples are controlled by eolian sorting that can be quantified by a binary mixing between a weathered, fine-grained end-member, dominated by phyllosilicates and having low δ7Li, and an unweathered, coarse-grained end-member, that is a mixture of quartz and plagioclase having higher δ7Li. We use correlations between insoluble elements (REE, Nd/Hf and Fe2O3/SiO2), Li concentrations (henceforth referred as [Li]), and δ7Li to estimate a new, more precise, average Li isotopic composition and concentration for the UCC: [ Li ] = 30.5 ± 3.6 (2 σ) ppm, and δ7Li = + 0.6 ± 0.6 (2 σ). The δ7Li for desert loess deposits is anti-correlated with the chemical index of alteration (CIA). Using this relationship, along with our average δ7Li, we infer that (1) the present-day CIA of the average UCC is 61-2+4 (2 σ), higher than the common reference value of 53, and (2) the average proportion of chemically weathered components is as high as 37-10+17 (2 σ)% at the surface of the Earth.

  12. Enhanced hydrogen storage on Li-doped defective graphene with B substitution: A DFT study

    International Nuclear Information System (INIS)

    Zhou, Yanan; Chu, Wei; Jing, Fangli; Zheng, Jian; Sun, Wenjing; Xue, Ying

    2017-01-01

    Highlights: • Li atoms were found to be well dispersed on defective structures without clustering. • First H 2 with five different initial configurations on Li/MV, Li/DV, Li/BMV, Li/BDV were explored in order. • Each system could bind up to three H 2 molecules with hydrogen average adsorption energies close to the range of 0.2–0.4 eV. • H 2 molecules bind with systems through weak electrostatic interaction between Li cation and induced H 2 dipole. • H 2 adsorption and desorption on the studied systems can process under ambient conditions. - Abstract: The characteristics of hydrogen adsorption on Li-doped defective graphene systems were investigated using density functional theory (DFT) calculations. Four types of defective structures were selected. Li atoms were well dispersed on the defective graphene without clustering, evidenced by the binding energy value between Li and defective graphene than that of Li-Li x . Additionally, as the amount of adsorbed H 2 molecules increase, the H 2 molecules show tilting configuration toward the Li adatom. This is beneficial for more hydrogen adsorption under the electrostatic interaction. On these four stable structures, there were up to three polarized H 2 molecules adsorbed on per Li adatom, with the average hydrogen adsorption energy in the range of approximately 0.2–0.4 eV. These results provide new focus on the nature of Li-doped defective graphene with sometimes B substitution medium, which could be considered as a promising candidate for hydrogen storage.

  13. Enhanced hydrogen storage on Li-doped defective graphene with B substitution: A DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yanan [School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan (China); Chu, Wei, E-mail: chuwei1965@scu.edu.cn [School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan (China); Jing, Fangli [School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan (China); Zheng, Jian [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang, 621010 (China); Sun, Wenjing [China-America Cancer Research Institute, Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Guangdong Medical University, Dongguan, Guangdong 523808 (China); Xue, Ying [Key Laboratory Green Chemistry & Technology of Ministry of Education (MOE), College of Chemistry, Sichuan University, Chengdu 610064, Sichuan (China)

    2017-07-15

    Highlights: • Li atoms were found to be well dispersed on defective structures without clustering. • First H{sub 2} with five different initial configurations on Li/MV, Li/DV, Li/BMV, Li/BDV were explored in order. • Each system could bind up to three H{sub 2} molecules with hydrogen average adsorption energies close to the range of 0.2–0.4 eV. • H{sub 2} molecules bind with systems through weak electrostatic interaction between Li cation and induced H{sub 2} dipole. • H{sub 2} adsorption and desorption on the studied systems can process under ambient conditions. - Abstract: The characteristics of hydrogen adsorption on Li-doped defective graphene systems were investigated using density functional theory (DFT) calculations. Four types of defective structures were selected. Li atoms were well dispersed on the defective graphene without clustering, evidenced by the binding energy value between Li and defective graphene than that of Li-Li{sub x}. Additionally, as the amount of adsorbed H{sub 2} molecules increase, the H{sub 2} molecules show tilting configuration toward the Li adatom. This is beneficial for more hydrogen adsorption under the electrostatic interaction. On these four stable structures, there were up to three polarized H{sub 2} molecules adsorbed on per Li adatom, with the average hydrogen adsorption energy in the range of approximately 0.2–0.4 eV. These results provide new focus on the nature of Li-doped defective graphene with sometimes B substitution medium, which could be considered as a promising candidate for hydrogen storage.

  14. Fabrication and characterization of lithium orthosilicate pebbles using LiOH as a new raw material

    International Nuclear Information System (INIS)

    Knitter, R.; Reimann, J.; Risthaus, P.; Boccaccini, L.V.; Piazza, G.

    2004-01-01

    For the European Helium Cooled Pebble Bed (HCPB) blanket slightly overstoichiometric lithium orthosilicate pebbles (Li 4 SiO 4 +SiO 2 ) have been chosen as one optional breeder material. This material is developed in collaboration between Research Centre Karlsruhe (FZK) and the Schott Glas, Mainz. The lithium orthosilicate (OSi) pebbles are fabricated by the melting and spraying method in a semi-industrial scale facility. In the past, the not enriched pebbles were produced from a mixture of Li 4 SiO 4 and SiO 2 powders, but due to the fact that enriched Li 4 SiO 4 is not available on the market, highly enriched carbonate powder was used that finally resulted in nonsatisfying pebble characteristics. Enriched LiOH powder is commercially available, therefore, a new production route was pursued based on the following, simplified reaction: 4 LiOH + SiO 2 → Li 4 SiO 4 + 2 H 2 O. The melting process of LiOH and SiO 2 is less difficult to control than the melting of Li 2 CO 3 in spite of the decomposition of water. The pebbles produced from LiOH and SiO 2 are similar to those produced from Li 4 SiO 4 and SiO 2 . They exhibit a distinctly dendritic structure and show only a small amount of pores and cracks. In addition to the main constituent Li 4 SiO 4 , the high temperature phase Li 6 Si 2 O 7 was detected due to the quenching process and the excess of SiO 2 . This minor constituent, however, decomposes to Li 4 SiO 4 and Li 2 SiO 3 during annealing. In compressive crush load tests of single pebbles a crush load of about 9.5 N was measured for pebbles after drying at 300degC. The chemical analysis revealed a further advantage of the use of LiOH in the melting process. As LiOH is available in high-purity quality, the pebbles contain impurities to a lower degree than pebbles produced from Li 4 SiO 4 or Li 2 CO 3 . In order to obtain characteristic pebble bed data, first Uniaxial Compression Tests (UCTs) were performed at temperatures between ambient and at 850deg

  15. Microwave dielectric properties of Li{sub 2}TiO{sub 3} ceramics doped with LiF for LTCC applications

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Yi-Zhou; Yang, Hui [Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Chen, Guo-Hua [School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004 (China); Zhang, Qi-Long, E-mail: mse237@zju.edu.cn [Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China)

    2013-03-05

    Highlights: ► LiF can effectively reduce the sintering temperature of Li{sub 2}TiO{sub 3} ceramics to 950 °C. ► LiF was uniformly distributed in the matrix, and continuous solid solution formed. ► Li{sub 2}TiO{sub 3} ceramics with 2.5 wt.% LiF sintered at 950 °C possessed very high Q × f value. ► The low-temperature sintering ceramics are compatible with Ag electrodes. -- Abstract: Sintering characteristics and microwave dielectric properties of LiF (≤4.0 wt.%) doped Li{sub 2}TiO{sub 3} ceramics were studied in this paper. The phase presence, surface morphology and according energy dispersive spectrometer (EDS) analysis were determined by X-ray diffractometer (XRD) and scanning electron microscope (SEM) techniques, respectively. The addition of LiF as sintering aid can effectively reduce the sintering temperature of Li{sub 2}TiO{sub 3} ceramics, and well-densified microwave ceramics with uniform grains could be obtained under 950 °C. Continuous solid solution formed for all doped samples in which LiF was uniformly distributed in the matrix. In addition, it is found that 1.0–3.0 wt.% amount of LiF can significantly improve microwave dielectric properties of Li{sub 2}TiO{sub 3} ceramics. The temperature coefficient of resonant frequency (τ{sub f}) decreased with increasing the amount of LiF addition. Typically, optimum dielectric microwave of ε{sub r} = 24.01, Q × f = 75,500 GHz, and τ{sub f} = 36.2 ppm/°C was achieved for 2.5 wt.% LiF doped samples sintered at 950 °C for 3 h. The chemical compatibilities of 2.5 wt.% LiF doped ceramics with silver were also investigated. The low-temperature sintering ceramics are compatible with Ag electrodes, and therefore, suitable for low-temperature co-fired ceramics (LTCC) application.

  16. Self-assembly of tetrareduced corannulene with mixed Li-Rb clusters: dynamic transformations, unique structures and record7Li NMR shifts.

    Science.gov (United States)

    Filatov, Alexander S; Spisak, Sarah N; Zabula, Alexander V; McNeely, James; Rogachev, Andrey Yu; Petrukhina, Marina A

    2015-03-01

    Self-assembly processes of the highly reduced bowl-shaped corannulene generated by the chemical reduction with a binary combination of alkali metals, namely Li-Rb, have been investigated by variable-temperature 1 H and 7 Li NMR spectroscopy. The formation of several unique mixed metal sandwich products based on tetrareduced corannulene, C 20 H 10 4- ( 1 4- ), has been revealed followed by investigation of their dynamic transformations in solutions. Analysis of NMR data allowed to propose the mechanism of stepwise alkali metal substitution as well as to identify experimental conditions for the isolation of intermediate and final supramolecular products. As a result, two new triple-decker aggregates with a mixed Li-Rb core, [{Rb(THF) 2 } 2 ]//[Li 3 Rb 2 (C 20 H 10 ) 2 {Li + (THF)}] ( 2 ) and [{Rb(diglyme)} 2 ]//[Li 3 Rb 3 (C 20 H 10 ) 2 (diglyme) 2 ]·0.5THF ( 3 ·0.5THF), have been crystallized and structurally characterized. The Li 3 Rb 2 -product has an open coordination site at the sandwich periphery and thus is considered transient on the way to the Li 3 Rb 3 -sandwich having the maximized intercalated alkali metal content. Next, the formation of the LiRb 5 self-assembly with 1 4- has been identified by 7 Li NMR as the final step in a series of dynamic transformations in this system. This product was also isolated and crystallographically characterized to confirm the LiRb 5 core. Notably, all sandwiches have their central cavities, located in between the hub-sites of two C 20 H 10 4- decks, occupied by an internal Li + ion which exhibits the record high negative shift (ranging from -21 to -25 ppm) in 7 Li NMR spectra. The isolation of three novel aggregates having different Li-Rb core compositions allowed us to look into the origin of the unusual 7 Li NMR shifts at the molecular level. The discussion of formation mechanisms, dynamic transformations as well as unique electronic structures of these remarkable mixed alkali metal organometallic self-assemblies is

  17. Mechanical and Thermal Dehydrogenation of Lithium Alanate (LiAlH4 and Lithium Amide (LiNH2 Hydride Composites

    Directory of Open Access Journals (Sweden)

    Leszek Zbroniec

    2012-04-01

    Full Text Available Hydrogen storage properties of the (nLiAlH4 + LiNH2 hydride composite where n = 1, 3, 11.5 and 30, synthesized by high energy ball milling have been investigated. The composite with the molar ratio n = 1 releases large quantities of H2 (up to ~5 wt.% during ball milling up to 100–150 min. The quantity of released H2 rapidly decreases for the molar ratio n = 3 and is not observed for n = 11.5 and 30. The XRD studies indicate that the H2 release is a result of a solid state decomposition of LiAlH4 into (1/3Li3AlH6 + (2/3Al + H2 and subsequently decomposition of (1/3Li3AlH6 into LiH + (1/3Al + 0.5H2. Apparently, LiAlH4 is profoundly destabilized during ball milling by the presence of a large quantity of LiNH2 (37.7 wt.% in the n = 1 composite. The rate of dehydrogenation at 100–170 °C (at 1 bar H2 is adversely affected by insufficient microstructural refinement, as observed for the n = 1 composite, which was milled for only 2 min to avoid H2 discharge during milling. XRD studies show that isothermal dehydrogenation of (nLiAlH4 + LiNH2 occurs by the same LiAlH4 decomposition reactions as those found during ball milling. The ball milled n = 1 composite stored under Ar at 80 °C slowly discharges large quantities of H2 approaching 3.5 wt.% after 8 days of storage.

  18. Modified structural characteristics and enhanced electrochemical properties of oxygen-deficient Li2MnO3-δ obtained from pristine Li2MnO3

    Science.gov (United States)

    Tan, Xiao; Liu, Rui; Xie, Congxin; Shen, Qiang

    2018-01-01

    Lithium-rich manganese(IV) oxide Li2MnO3 has hardly any activity as the cathode active substance of lithium-ion batteries (LIBs) but its reversible capacity can be greatly improved by introducing oxygen deficiencies. After the solid-state heat treatment of nanocrystalline Li2MnO3 by sodium borohydride (NaBH4), the resulting Li2MnO3-δ crystallites comparatively acquire distinguishable appearances in color and shape and slight differences in surface composition and lattice structure. As a LIB cathode within the potential range of 2.5-4.7 V, at 20 mA g-1 pristine Li2MnO3 gives the specific discharge capacities of 3.3, 5.0 and 7.4 mAh·g-1 in the 1st, 10th and 100th cycles, while the derivative Li2MnO3-δ delivers the relatively high values of 64.8, 103.8 and 140.2 mAh·g-1 in the 1st, 10th and 120th cycles, respectively. Aside from the similar phenomenon of gradual electrochemical activation, substituting Li2MnO3-δ for Li2MnO3 means the great enhancements of charge-transfer ability and electrochemical performances. Especially, the cationic-anionic redox mechanisms of Li2MnO3 and Li2MnO3-δ are similar to each other, suggesting a possible solution to prepare high-performance xLi2MnO3-δ·(1-x)LiMO2 solid solutions for application purposes.

  19. Nuclear spin relaxation/resonance of 8Li in Al

    Science.gov (United States)

    Wang, D.; Salman, Z.; Chow, K. H.; Fan, I.; Hossain, M. D.; Keeler, T. A.; Kiefl, R. F.; Levy, C. D. P.; Mansour, A. I.; Morris, G. D.; Pearson, M. R.; Parolin, T. J.; Saadaoui, H.; Smadella, M.; Song, Q.; MacFarlane, W. A.

    2009-04-01

    A low energy beam of spin polarized 8Li has been used to study the behaviour of isolated 8Li implanted into a 150 nm thick film of Al on an MgO substrate. The spin relaxation rate 1/T1 and β-NMR lineshape were measured as a function of temperature in a large magnetic field of 4.1 T. The resonances from different sites are unresolved due to the large nuclear dipolar interaction with the host 27Al magnetic dipole moments. Nevertheless the temperature variation of the site averaged 1/T1 and Knight shift show evidence for a transition between the octahedral O and substitutional S sites at about 150 K, as observed in other fcc metals.

  20. Population of Nuclei Via 7Li-Induced Binary Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Rodney M.; Phair, Larry W.; Descovich, M.; Cromaz, Mario; Deleplanque, M.A.; Fall on, Paul; Lee, I-Yang; Macchiavelli, A.O.; McMahan, Margaret A.; Moretto, Luciano G.; Rodriguez-Vieitez, E.; Sinha,Shrabani; Stephens, Frank S.; Ward, David; Wiedeking, Mathis

    2005-08-08

    The authors have investigated the population of nuclei formed in binary reactions involving {sup 7}Li beams on targets of {sup 160}Gd and {sup 184}W. The {sup 7}Li + {sup 184}W data were taken in the first experiment using the LIBERACE Ge-array in combination with the STARS Si {Delta}E-E telescope system at the 88-Inch Cyclotron of the Lawrence Berkeley National Laboratory. By using the Wilczynski binary transfer model, in combination with a standard evaporation model, they are able to reproduce the experimental results. This is a useful method for predicting the population of neutron-rich heavy nuclei formed in binary reactions involving beams of weakly bound nuclei formed in binary reactions involving beams of weakly bound nuclei and will be of use in future spectroscopic studies.