WorldWideScience

Sample records for bainitic steel propagation

  1. Electron Backscattering Diffraction Analysis of Secondary Crack Propagation in Low-Alloy Bainitic Steel

    Czech Academy of Sciences Publication Activity Database

    Nohava, Jiří; Haušild, P.; Bompard, P.

    Vol. A. Praha : CVUT, 2002, s. 592-593. [Workshop 2002. Praha (CZ), 11.02.2002-13.02.2002] Institutional research plan: CEZ:AV0Z2043910 Keywords : electron backscattering difraction, bainitic steel , crack propagation Subject RIV: JK - Corrosion ; Surface Treatment of Materials

  2. Dynamic propagation and cleavage crack arrest in bainitic steel

    International Nuclear Information System (INIS)

    In complement of the studies of harmfulness of defects, generally realized in term of initiation, the concept of crack arrest could be used as complementary analyses to the studies of safety. The stop occurs when the stress intensity factor becomes lower than crack arrest toughness (KIa) calculated in elasto-statics (KI ≤ KIa). The aim of this thesis is to understand and predict the stop of a crack propagating at high speed in a 18MND5 steel used in the pressure water reactor (PWR). The test chosen to study crack arrest is the disc thermal shock test. The observations under the scanning electron microscope of the fracture surface showed that the crack arrest always occurs in cleavage mode and that the critical microstructural entity with respect to the propagation and crack arrest corresponds to at least the size of the prior austenitic grain. The numerical analyses in elasto-statics confirm the conservatism of the codified curve of the RCC-M with respect to the values of KIa. The dynamic numerical analyses show that the deceleration of the crack measured at the end of the propagation is related to the global dynamic of the structure (vibrations). The transferability to components of crack arrest toughness obtained from tests analysed in static is thus not assured. The disc thermal shock tests were also modelled by considering a criterion of propagation and arrest of the type 'RKR' characterized by a critical stress sc which depends on the temperature. The results obtained account well for the crack jump measured in experiments as well as the shape of the crack arrest front. (author)

  3. Dual phase bainitic linepipe steels

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, D.; Yakubtsov, I.; Zhang, R. [Queen' s Univ., Kingston, ON (Canada). Dept. of Mechanical and Materials Engineering; Poruks, P. [Atomic Energy of Canada Ltd., Chalk River, ON (Canada); Turi, T. [Stelco Lake Erie, Nanticoke, ON (Canada); Emadi, D.; Essadiqi, E. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Materials Technology Lab

    2005-07-01

    Over the past 50 years, the strength of commercial linepipe steel has increased at a steady rate of about 70 MPa per decade due to advances in steelmaking, plate processing and microstructural design. API X100 grade steel, which has a yield strength of 690 MPa, is currently available, and X120 steels are under development. The microstructure of linepipe steels has evolved from predominantly polygonal ferrite to fine bainite. For the X120 steels, lower bainite-, tempered lath martensite- and dual phase microstructures are being examined. This study obtained the microstructures of ultrafine bainite with dispersed particles of the carbon-rich martensite-austenite (M-A) phase. The objective was to obtain a matrix of mostly intragranularly-nucleated bainitic ferrite containing a high volume fraction of dispersed M-A particles. The mechanical properties of bainitic linepipe steels were also examined. Basic studies of phase transformations and mechanical properties in these steels established significant relationships between processing schedule and the evolution of microstructure, and between final microstructure and mechanical properties. The optimal combination of strength and toughness properties was obtained with a microstructure consisting of a matrix of intragranularly-nucleated bainite and small dispersed particles of martensite. This microstructure was described as being a dual phase acicular ferrite (AF) with M-A. The window of steel composition and processing parameters which give the dual phase AF-M-A microstructure was determined in an experimental study on 15 mm thick plate. The minimum strength and toughness properties for Grade 621 (X90) linepipe steel can be achieved by either a lean steel composition with extreme processing parameters, or by a higher alloy composition with a more industrially realistic processing schedule. This study also proposed how this approach can be extended to obtain high strength linepipe grades. 15 refs., 9 tabs., 10 figs.

  4. Influence of bainite morphology on impact toughness of continuously cooled cementite free bainitic steels

    OpenAIRE

    García Caballero, Francisca; Roelofs, H; Hasler, St; Capdevila, Carlos; Chao, Jesús; Cornide, Juan

    2012-01-01

    The influence of bainite morphology on the impact toughness behaviour of continuously cooled cementite-free low carbon bainitic steels has been examined. In these steels, bainitic microstructures formed mainly by lath-like upper bainite, consisting of thin and long parallel ferrite laths, were shown to exhibit higher impact toughness values than those with a granular bainite, consisting of equiaxed ferrite structure and discrete island of marteniste/austenite (M/A) constituent....

  5. Advanced Ultra high Strength Bainitic Steels

    OpenAIRE

    García Caballero, Francisca; García Mateo, Carlos; Capdevila, Carlos; García de Andrés, Carlos

    2007-01-01

    The addition of about 2 wt.% of silicon to steel enables the production of a distinctive microstructure consisting of a mixture of bainitic ferrite, carbon-enriched retained austenite, and some martensite. With careful design, impressive combinations of strength and toughness have been reported for high-silicon bainitic steels. More recently, it has been demonstrated experimentally that models based on phase transformation theory can be applied successfully to the design of carbide-free baini...

  6. Structure-property relationships in bainitic steels

    Science.gov (United States)

    Edmonds, D. V.; Cochrane, R. C.

    1990-06-01

    Bainitic microstructures can be produced in a variety of steels either as a result of a deliberate attempt to achieve a particular combination of strength and toughness or in response to welding during fabrication. In addition, such microstructures can offer advantages in terms of their resistance to creep or fatigue deformation or susceptibility to hydrogen embrittlement. The relationships among chemical composition, processing, microstructure, and the mechanical properties will be reviewed. Particular emphasis will be placed on recent advances in alloy design. These developments rely on an improved understanding of the mechanisms of bainitic transformation, and the relevance of recent research in this area to the design of new alloy systems will be discussed. Bainitic structures which arise during welding can have a significant and sometimes detrimental effect on the fracture toughness of the welded joint. The fracture toughness of bainitic microstructures in so-called “local brittle zones” in the heat-affected zone and in weld metals and the importance of controlling the bainitic morphology will be considered and the transformation mechanisms discussed. In summary, the aim of this review will be to indicate the prospects for improved microstructural control of structure-property relationships in steels containing a significant proportion of bainite.

  7. Crystallography of carbide-free bainite in a hard bainitic steel

    International Nuclear Information System (INIS)

    The convergent beam Kikuchi line diffraction technique has been used to accurately determine the orientation relationships between bainitic ferrite and retained austenite in a hard bainitic steel. A reproducible orientation relationship has been uniquely observed for both the upper and lower bainite. It is(111)A0.70±0.45ofrom(101)B,[1-bar 01]A2.5+/-1.5ofrom[1-bar 11]B However, the habit plane of upper bainite is different from that of lower bainite. The former has habit plane that is either within 5 deg. of (221)A or of (259)A. The latter only corresponds with a habit plane that is within 5 deg. of (259)A. The determined orientation relationship is completely consistent with reported results determined using the same technique with an accuracy of +/-0.5 deg. in lath martensite in an Fe-20wt.% Ni-6wt.% Mn alloy and in a low carbon low alloy steel. It also agrees well with the orientation relationship between granular bainite and austenite in an Fe-19wt.% Ni-3.5wt.% Mn-0.15wt.% C steel. Hence it is believed that, at least from a crystallographic point view, the bainite transformation has the characteristics of martensitic transformation

  8. Creation of Air-Cooled Mn Series Bainitic Steels

    Institute of Scientific and Technical Information of China (English)

    FANG Hong-sheng; FENG Chun; ZHENG Yan-kang; YANG Zhi-gang; BAI Bing-zhe

    2008-01-01

    The development and mechanical performances of new type air-cooled Mn series bainitie steels including granular bainitie steels,FGBA/BG duplex steels,CFB/M duplex steels,medium carbon bainite/martensite steels,cast hainitic steels invented by the authors are summarized.The novel series of bainitie steels are alloyed with Mn,and several series bainitic duplex microstructures can be easily obtained under the condition of air cooling through unique composition design.The invented idea,the principle of alloying design,the strengthening mechanism,and the evolution of the microstructure of new type air-cooled Mn series bainitic steels are presented.Furthermore,the applications in different fields of these Mn series air-cooled bainitic steels with different strength level are also introdueed.It is suggested that the significance of the development of the air-cooled Mn series bainitic steel can be summarized as follows:reducing costs of both raw materials and production;good combination of strength and toughness;self-hardening with high bainitic hardenability by air cooling from hot working without additional quenching-tempering treatment or quenching procedure;large savings in energy resources;and reduced environmental pollution.

  9. Characterization of Bainitic Microstrucutres in Low Carbon Hsla Steels

    Science.gov (United States)

    Kang, Ju Seok; Park, Chan Gyung

    The austenite phase of low carbon steels can be transformed to various bainitic microstructures such as granular bainite, acicular ferrite and bainitic ferrite during continuous cooling process. In the present study site-specific transmission electron microscope (TEM) specimens were prepared by using focused ion beam (FIB) to identify the bainitic microstructure in low carbon high strength low alloy (HSLA) steels clearly. Granular bainite was composed of fine subgrains and 2nd phase constituents like M/A or pearlite located at grain and/or subgrain boundaries. Acicular ferrite was identified as an aggregate of randomly orientated needle-shaped grains. The high angle relations among acicular ferrite grains were thought to be caused by intra-granular nucleation, which could be occur under the high cooling rate condition. Bainitic ferrite revealed uniform and parallel lath structure within the packet. In some case, however, the parallel lathes showed high angle relations due to packet overlapping during grow of bainitic ferrite, resulting in high toughness properties in bainitic ferrite based steels.

  10. XRD and TEM study of bainitic ferrite plate thickness in nanostructured, carbide free bainitic steels

    International Nuclear Information System (INIS)

    It is well documented that much of the strength and hardness of nanostructured, carbide free bainitic steels come from the very small thickness of bainitic ferrite plates. In the current work, the Williamson–Hall method has been used to determine the bainitic ferrite plate thickness. The fitting of X-ray peaks to various functions showed good coefficient of determination values for Gaussian function compared to the Cauchy and Pseudo-Voigt functions. The thickness of bainitic ferrite plates was measured by distinguishing the contribution of very small plates on peak broadening from the lattice microstrain and instrumental effects. The results showed that by decreasing the transformation temperature the bainitic ferrite plate thickness decreases. The determined thicknesses were compared with that of measured from transmission electron microscope micrographs. There is a good qualitative and quantitative agreement between the thicknesses measured using both methods. - Highlights: • A Williamson–Hall technique is proposed for bainitic ferrite thickness measurement. • The technique relies on full width at half maximum of XRD peaks. • The measured sizes were compared with that of determined from TEM micrographs. • There is a good qualitative and quantitative agreement between both methods. • Austenite strength and nucleation driving force lead to microstructural refinement

  11. XRD and TEM study of bainitic ferrite plate thickness in nanostructured, carbide free bainitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Yoozbashi, M.N., E-mail: n_yoozbashi@sut.ac.ir [University of Applied Science and Technology, Tabriz (Iran, Islamic Republic of); Yazdani, S., E-mail: yazdani@sut.ac.ir [Faculty of Materials Engineering, Sahand University of Technology, Tabriz (Iran, Islamic Republic of)

    2015-06-15

    It is well documented that much of the strength and hardness of nanostructured, carbide free bainitic steels come from the very small thickness of bainitic ferrite plates. In the current work, the Williamson–Hall method has been used to determine the bainitic ferrite plate thickness. The fitting of X-ray peaks to various functions showed good coefficient of determination values for Gaussian function compared to the Cauchy and Pseudo-Voigt functions. The thickness of bainitic ferrite plates was measured by distinguishing the contribution of very small plates on peak broadening from the lattice microstrain and instrumental effects. The results showed that by decreasing the transformation temperature the bainitic ferrite plate thickness decreases. The determined thicknesses were compared with that of measured from transmission electron microscope micrographs. There is a good qualitative and quantitative agreement between the thicknesses measured using both methods. - Highlights: • A Williamson–Hall technique is proposed for bainitic ferrite thickness measurement. • The technique relies on full width at half maximum of XRD peaks. • The measured sizes were compared with that of determined from TEM micrographs. • There is a good qualitative and quantitative agreement between both methods. • Austenite strength and nucleation driving force lead to microstructural refinement.

  12. On the role of microstructure in governing the fatigue behaviour of nanostructured bainitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Rementeria, Rosalia, E-mail: rosalia.rementeria@cenim.csic.es [Department of Physical Metallurgy, Spanish National Center for Metallurgical Research (CENIM-CSIC), Avda. Gregorio del Amo 8, E-28040 Madrid (Spain); Morales-Rivas, Lucia, E-mail: lucia.morales@cenim.csic.es [Department of Physical Metallurgy, Spanish National Center for Metallurgical Research (CENIM-CSIC), Avda. Gregorio del Amo 8, E-28040 Madrid (Spain); Kuntz, Matthias, E-mail: matthias.kuntz2@de.bosch.com [Robert Bosch GmbH, Materials and Processing Department, Renningen, 70465 Stuttgart (Germany); Garcia-Mateo, Carlos, E-mail: cgm@cenim.csic.es [Department of Physical Metallurgy, Spanish National Center for Metallurgical Research (CENIM-CSIC), Avda. Gregorio del Amo 8, E-28040 Madrid (Spain); Kerscher, Eberhard, E-mail: kerscher@mv.uni-kl.de [University of Kaiserslautern, Materials Testing, Gottlieb-Damiler-Straße, 67663 Kaiserslautern (Germany); Sourmail, Thomas, E-mail: thomas.sourmail@ascometal.com [Ascometal-CREAS (Research Centre) Metallurgy, BP 70045, Hagondange Cedex 57301 (France); Caballero, Francisca G., E-mail: fgc@cenim.csic.es [Department of Physical Metallurgy, Spanish National Center for Metallurgical Research (CENIM-CSIC), Avda. Gregorio del Amo 8, E-28040 Madrid (Spain)

    2015-04-10

    Nanostructured bainite is not a novel laboratory-scale steel anymore and the interest on the commercial production of these microstructures by steelmakers and end-users is now conceivable. These microstructures are achieved through the isothermal transformation of high-carbon high-silicon steels at low temperature, leading to nanoscale plates of ferrite with thickness of 20–40 nm and retained austenite. Nanostructured bainitic steels present the highest strength/toughness combinations ever recorded in bainitic steels (2.2 GPa/40 MPa m{sup 1/2}) and the potential for engineering components is alluring. However, fatigue properties, responsible of the durability of a component, remain to be examined. In order to understand the role of the microstructure during the fatigue crack propagation, the crack path in three nanoscale bainitic structures has been analysed on the basis of the relationships between grain misorientations and grain boundaries by Electron Backscatter Diffraction. Active slip systems in bainitic ferrite and crack deflection at grain boundaries have been identified, while retained austenite is cast doubt on its role.

  13. On the role of microstructure in governing the fatigue behaviour of nanostructured bainitic steels

    International Nuclear Information System (INIS)

    Nanostructured bainite is not a novel laboratory-scale steel anymore and the interest on the commercial production of these microstructures by steelmakers and end-users is now conceivable. These microstructures are achieved through the isothermal transformation of high-carbon high-silicon steels at low temperature, leading to nanoscale plates of ferrite with thickness of 20–40 nm and retained austenite. Nanostructured bainitic steels present the highest strength/toughness combinations ever recorded in bainitic steels (2.2 GPa/40 MPa m1/2) and the potential for engineering components is alluring. However, fatigue properties, responsible of the durability of a component, remain to be examined. In order to understand the role of the microstructure during the fatigue crack propagation, the crack path in three nanoscale bainitic structures has been analysed on the basis of the relationships between grain misorientations and grain boundaries by Electron Backscatter Diffraction. Active slip systems in bainitic ferrite and crack deflection at grain boundaries have been identified, while retained austenite is cast doubt on its role

  14. The microstructure of continuously cooled tough bainitic steel

    OpenAIRE

    García Caballero, Francisca; Capdevila, Carlos; Chao, Jesús; Cornide, J.; García Mateo, Carlos; Roelofs, H; Hasler, St; Mastrogiacomo, G.

    2010-01-01

    The influence of bainite morphology on the impact toughness behaviour of a continuously cooled cementite free low carbon C-Mn-B type of steel has been examined. Different bainite morphologies were obtained by cooling from the austenite regime to ambient temperature with different cooling rates. The resulting microstructures have been quantitatively analysed using light optical microscopy (LOM), scanning electron microscopy (SEM) and electron back scatter diffraction (EBSD) techniques. The rel...

  15. Retained austenite thermal stability in a nanostructured bainitic steel

    International Nuclear Information System (INIS)

    The unique microstructure of nanostructured bainite consists of very slender bainitic ferrite plates and high carbon retained austenite films. As a consequence, the reported properties are opening a wide range of different commercial uses. However, bainitic transformation follows the T0 criteria, i.e. the incomplete reaction phenomena, which means that the microstructure is not thermodynamically stable because the bainitic transformation stops well before austenite reaches an equilibrium carbon level. This article aims to study the different microstructural changes taking place when nanostructured bainite is destabilized by austempering for times well in excess of that strictly necessary to end the transformation. Results indicate that while bainitic ferrite seems unaware of the extended heat treatment, retained austenite exhibits a more receptive behavior to it. - Highlights: • Nanostructured bainitic steel is not thermodynamically stable. • Extensive austempering in these microstructures has not been reported before. • Precipitation of cementite particles is unavoidable at longer austempering times. • TEM, FEG-SEM and XRD analysis were used for microstructural characterization

  16. Ultra-high–strength Bainitic Steels

    OpenAIRE

    García Mateo, Carlos; García Caballero, Francisca

    2005-01-01

    Novel bainitic microstructures, consisting of slender ferrite plates (tens of nm) in a matrix of retained austenite, have reported maximum yield strength of 1.4 GPa, ultimate tensile strength of 2.2 GPa, 30% ductility and respectable levels of fracture toughness (∼51 MPa m0.5). The unusual combination of properties is attributed to the fine bainitic plates and the presence of retained austenite in the microstructure.

  17. Bainitic chromium-tungsten steels with 3 pct chromium

    International Nuclear Information System (INIS)

    Previous work on 3Cr-1.5MoV (nominally Fe-3Cr-2.5Mo-0.25V-0.1C), 2.25Cr-2W (Fe-2.25Cr-2W-0.1C), and 2.25Cr-2WV (Fe-2.25Cr-2W-0.25V-0.1C) steels indicated that the impact toughness of these steels depended on the microstructure of the bainite formed during continuous cooling from the austenization temperature. Microstructures formed during continuous cooling can differ from classical upper and lower bainite formed during isothermal transformation. Two types of nonclassical microstructures were observed depending on the cooling rate: carbide-free acicular bainite at rapid cooling rates and granular bainite at slower cooling rates. The Charpy impact toughness of the acicular ferrite was considerably better than for the granular bainite. It was postulated that alloying to improve the hardenability of the steel would promote the formation of acicular bainite, just as increasing the cooling rate does. To test this, chromium and tungsten were added to the 2.25Cr-2W and 2.25Cr-2WV steel compositions to increase their hardenability. Charpy testing indicated that the new 3Cr-W and 3Cr-WV steels had improved impact toughness, as demonstrated by lower ductile-brittle transition temperatures and higher upper-shelf energies. This improvement occurred with less tempering than was necessary to achieve similar toughness for the 2.25Cr steels and for high-chromium (9 to 12 pct Cr) Cr-W and Cr-Mo steels

  18. Microstructure Characterisation of Bainitic HSLA Steel for Pressure Vessels

    OpenAIRE

    Lopez, Vanessa Valle

    2014-01-01

    The microstructure and mechanical properties in the midsection of a high thickness HSLA bainitic steel, was investigated in this master thesis. A homogeneous microstructure and good mechanical properties can be difficult to achieve in high thickness steels, due to slow cooling rates in the midsection. The different cooling rates at the surface and in the midsection of the steel can cause a difference in microstructure and mechanical properties through the thicknes...

  19. Carbon distribution in bainitic steel subjected to deformation

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Yu. F., E-mail: yufi55@mail.ru [Institute of High Current Electronics SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation); Nikitina, E. N., E-mail: Nikitina-EN@mail.ru; Gromov, V. E., E-mail: gromov@physics.sibsiu.ru [Siberian State Industrial University, Novokuznetsk, 654007 (Russian Federation)

    2015-10-27

    Analysis of the formation and evolution of carbide phase in medium carbon steel with a bainitic structure during compressive deformation was performed by means of transmission electron diffraction microscopy. Qualitative transformations in carbide phase medium size particles, their density and volume concentration depended on the degree of deformation.

  20. Carbon distribution in bainitic steel subjected to deformation

    International Nuclear Information System (INIS)

    Analysis of the formation and evolution of carbide phase in medium carbon steel with a bainitic structure during compressive deformation was performed by means of transmission electron diffraction microscopy. Qualitative transformations in carbide phase medium size particles, their density and volume concentration depended on the degree of deformation

  1. Development and processing of low carbon bainitic steels

    OpenAIRE

    Suikkanen, P. (Pasi)

    2009-01-01

    Abstract The aim of this work was to study systematically the effects of composition and processing on austenite grain growth and static recrystallization (SRX) kinetics, austenite decomposition under controlled cooling as well as microstructures, mechanical properties and weldability of hot rolled low carbon bainitic (LCB) steels. The results showed that the coarsening of austenite grain structure is influenced by the chemical composition. Steels with Nb-Ti alloying exhibited fine and uni...

  2. Enhanced thermal stability in nanostructured bainitic steel

    International Nuclear Information System (INIS)

    We report an attempt at increasing the thermal stability of nanocrystalline bainite to tempering heat treatments by enhancing the silicon concentration of the alloy. Validation experiments have been conducted using synchrotron X-irradiation during tempering heat treatment. It is found that the change in alloying successfully stabilizes the austenite at elevated temperatures by retarding cementite formation to temperatures as high as 500 °C. Other changes reflected in the lattice parameters of the major phases have revealed further information about the mechanisms involved

  3. Effect of microstructure on the impact toughness of a bainitic steel bloom for large plastic molds

    Science.gov (United States)

    Zhang, Zheng; Wu, Xiao-chun; Zhou, Quan; Duan, Li-li

    2015-08-01

    The correlation between the impact toughness and microstructural characteristics of a large bainitic steel bloom has been investigated. The study focuses on microcrack nucleation and propagation in the basic cleavage plane. To analyze the phase transformation during the wind-cooling process, the temperature field of the bloom was acquired by computer simulation, and a continuous cooling transformation experiment was conducted. The results show that compared with the surface of the bloom, the toughness of the bloom's core is decreased by the increase in proeutectoid ferrite and the coarsening of tempered martensite-austenite constituents. The proeutectoid ferrite decreases the toughness via its effects on carbide precipitation, the formation of martensite-austenite constituents, and the bainite transformation. The relatively large tempered martensite-austenite constituents are conducive to microcrack nucleation and propagation.

  4. Fatigue crack growth behaviors in hot-rolled low carbon steels: A comparison between ferrite–pearlite and ferrite–bainite microstructures

    International Nuclear Information System (INIS)

    The roles of microstructure types in fatigue crack growth behaviors in ferrite–pearlite steel and ferrite–bainite steel were investigated. The ferrite–bainite dual-phase microstructure was obtained by intermediate heat treatment, conducted on ferrite–pearlite hot-rolled low carbon steel. This paper presents the results from investigation using constant stress-controlled fatigue tests with in-situ scanning electron microscopy (SEM), fatigue crack growth (FCG) rate tests, and fatigue fractography analysis. Microscopy images arrested by in-situ SEM showed that the fatigue crack propagation in F–P steel could become unstable more ealier compared with that in F–B steel. The fatigue cracks in ferrite–pearlite were more tortuous and could propagate more freely than that in ferrite–bainite microstructures. However, frequent crack branching were observed in ferrite–bainite steel and it indicated that the second hard bainite phase effectively retarded the crack propagation. The variation of FCG rate (da/dN) with stress intensity factor range (ΔK) for F–P and F–B steels was discussed within the Paris region. It was shown that FCG rate of F–P steel was higher than that of F–B steel. Moreover, the fatigue fracture surface analysis proved that grain boundaries could also play a role in the resistance of crack propagation.

  5. Microstructure and transformation kinetics in bainitic steels

    OpenAIRE

    Luzginova, N.V.

    2008-01-01

    With the aim of reaching a better understanding of the microstructure evolution and the overall phase transformation kinetics in hyper-eutectoid steels a commercial SAE 52100 bearing steel and 7 model alloys with different concentrations of chromium, cobalt and aluminum have been studied in this work, both experimentally and theoretically. The effect of alloying elements, Cr, Co and Al, on different processes occurring during heat treatment of hyper-eutectoid steels (cementite spheroidization...

  6. Mechanism of Bainite Nucleation in Steel, Iron and Copper Alloys

    Institute of Scientific and Technical Information of China (English)

    Mokuang KANG; Ming ZHU; Mingxing ZHANG

    2005-01-01

    During the incubation period of isothermal treatment(or aging) within the bainitic transformation temperature range in a salt bath (or quenching in water) immediately after solution treatment, not only are the defects formed at high temperatures maintained, but new defects can also be generated in alloys, iron alloys and steels. Due to the segregation of the solute atoms near defects through diffusion, this leads to non-uniform distributions of solute atoms in the parent phase with distinct regions of both solute enrichment and solute depletion. It is proposed that when the Ms temperature at the solute depleted regions is equal to or higher than the isothermal (or aged) temperature,nucleation of bainite occurs within these solute depleted regions in the manner of martensitic shear. Therefore it is considered that, at least in steel, iron and copper alloy systems, bainite is formed through a shear mechanism within solute depleted regions, which is controlled and formed by the solute atoms diffusion in the parent phase.

  7. Bainite Morphology in Two Experimental Mo-Cr and Mo-Cr-V-Ti Steels

    Directory of Open Access Journals (Sweden)

    Ławrynowicz Z.

    2014-10-01

    Full Text Available The paper presents an investigation of the bainite morphology in two experimental Mo-Cr and Mo-Cr-V-Ti steels using TEM, high speed dilatometry backed by thermodynamic analysis. The microstructure was investigated using metallography and TEM method. After austenitisation at 1200oC followed by bainitic reaction in upper and lower temperatures of isothetmal transformation the bainite was in the form of classical sheaves. The amont, distribution and morphology of retained austenite and bainitic ferrite depend on prior austenitisation and isothermal transformation temperatures within the bainitic range.

  8. Influence of Holding Time After Deformation on Bainite Transformation in Niobium Microalloyed Steel

    Institute of Scientific and Technical Information of China (English)

    YI Hai-long; DU Lin-xiu; WANG Guo-dong; LIU Xiang-hua

    2007-01-01

    Using Gleeble-1500 system, the influence of holding time on bainite transformation in deformed niobium microalloyed steel during continuous cooling was analyzed, and the carbides in upper bainite were also systematically researched. The results show that the occurrence of the static recrystallization decreases the amount of bainite with an increase in the holding time and the emergence of retained austenite (RA) with the longer holding time. Two types of carbides were observed in upper bainite with regard to their precipitation sites. They either existed between the bainite ferrite laths or co-existed with RA. The formation mechanism of two kinds of carbides was analyzed by combining TEM micrographs with the model.

  9. Fatigue strength of TRIP-aided bainitic sheet steels; TRIP gata beinaito gohan no hiro kyodo tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, K.; Kobayashi, M.; Inoue, K.; Sun, X. [Shinshu Univ., Nagano (Japan). Faculty of Education] Soshiroda, T. [Kobe Steel Ltd. (Japan)

    1998-08-01

    Fatigue strength and crack initiation-propagation behavior of TRIP-aided bainitic sheet steels which are associated with the transformation-induced plasticity (TRIP) of retained austenite were investigated for the automotive applications. The steels composing of bainitic ferrite lath matrix and the retained austenite films completed the highest fatigue limit of several high-strength dual-phase type and bainitic type of steels. The threshold value of the stress intensity factor range ({Delta}K{sub th}) was lower than those of the other dual-phase type of steels, although the crack propagation rate at a high stress intensity factor range agreed well with those of the other steels. It was concluded that the retained austenite films suppressed a micro-crack initiation and propagation in the matrix and a long crack propagation due to (stress relaxation) and (block effect) resulting from the strain-induced transformation, because the mean interfilm space of retained austenite is smaller than a plastic zone of crack tip. 18 refs., 9 figs., 2 tabs.

  10. Low temperature bainite in steel with 0.26 wt% C

    International Nuclear Information System (INIS)

    Research highlights: → Low temperature bainite is produced in 0.26 wt% C steel. → Alloy and process design enable decreasing the carbon content of the alloy. → Generations of bainite are formed at temperatures lower than MS of the bulk alloy. → Bainite plate thicknesses record values between 90 nm and 164 nm. → Y.S. up to 1570 MPa and U.S. up to 2200 MPa are recorded in compression. - Abstract: Low temperature bainite has been produced in steel with 0.26 wt% C. In this steel the bainite transformation was suppressed, firstly, by adding substitutional solute of about 2 wt% Ni and, secondly, by modifying the conventional single-step bainite transformation. This modification made use of the suppression of martensite start of the undecomposed austenite due to carbon partitioning between that austenite and the formed bainitic ferrite. Consequently, it has been experimentally proved that generations of bainite were formed at temperatures lower than the martensite start of the bulk alloy. Dilatometric measurements were used to design and monitor the bainitic transformation process. The structure was characterized using light optical microscopy, scanning electron microscopy and X-ray diffractometry. In order to investigate the effect of the microstructure parameters on the material's mechanical properties, compression tests have been conducted at room temperature. The results were compared to those obtained by bainitic transformation in single-step process.

  11. Effect of secondary cracks on hydrogen embrittlement of bainitic steels

    International Nuclear Information System (INIS)

    Highlights: ► HE was reduced and secondary cracks were increased with Al addition. ► HE was increased and secondary cracks were reduced after H-charged. ► Due to hydrogen, the dislocation emission and motion were enhanced. - Abstract: Hydrogen embrittlement and secondary cracks of bainitic steels were studied by means of the slow strain rate test (SSRT), in situ tension in transmission electron microscopy (TEM) analysis and scanning electron microscopy (SEM). The results showed that the microstructure of the bainitic steels became finer, the phase interfaces as irreversible hydrogen traps significantly were increased, the nano-scale carbides were precipitated from retained austenite, and hydrogen embrittlement was decreased greatly with Al addition. Lots of secondary cracks were formed with Al addition. The stress concentration was relaxed and the hydrogen embrittlement was reduced significantly because of the presence of secondary cracks. Due to hydrogen, the dislocation emission and motion were enhanced and the formation of secondary cracks was reduced.

  12. Ultra low carbon bainitic (ULCB) steels after quenching and tempering

    International Nuclear Information System (INIS)

    The mechanical and Charpy V impact strength properties of new advanced ultra low carbon bainitic (ULBC) steels after water quenching and tempering (WQT) have been investigated. Their chemical compositions are given. The nine continuous cooling transformation diagrams (CCT) of the new ULCB steel grades have been established. The CCT diagrams for ULCBNi steels containing 9% Ni - grade 10N9 and 5% Ni - grade HN5MVNb are given. The comparison between CCT diagrams of 3.5%Ni + 1.5%Cu containing steels grade HSLA 100 and HN3MCu is shown. The effect of the increase in carbon and titanium contents in the chemical composition of ULCBMn steels 04G3Ti, 06G3Ti and 09G3Ti on the kinetics of phase transformations during continuous cooling is presented by the shifting CCT diagrams. The Charpy V impact strength and brittle fracture occurence curves are shown. The effect of tempering temperature on tensile properties of WQT HN3MCu steel is shown and Charpy V impact strength curves after different tempering conditions are shown. The optimum tempering temperatures region of HN3MCu steel for high Charpy V impact toughness at law temperatures - 80oC(193 K) and -120oC(153 K) is estimated. The effect of tempering temperature on mechanical properties of HN5MVNb steel is given. The low temperature impact Charpy V toughness of HN5MVNb steel is shown. The optimum range of tempering temperature during 1 hour for high toughness of WQT HN5MVNb steel is given. HN3MCu and HN5MVNb steels after WQT have high yield strength YS≥690 MPa and high Charpy V impact toughness KV≥80 J at -100oC (173K) and KCV≥50 J/cm2 at - 120oC (153K) so they may be used for cryogenic applications

  13. A new effect of retained austenite on ductility enhancement in high strength bainitic steel

    International Nuclear Information System (INIS)

    Highlights: ► A new DARA effect in the bainitic steel is proposed. ► The conditions of DARA effect are proposed. ► The mechanism of retained austenite on ductility enhancement is clarified. - Abstract: A designed high strength bainitic steel with considerable amount of retained austenite is presented in order to study the effect of retained austenite on the ductility enhancement in bainitic steels. Transformation induced plasticity (TRIP) effect is verified by both X-ray diffraction (XRD) measurement of retained austenite fraction in various deformation stages and transmission electron microscopy observation of the deformed twin-type martensite. Results from XRD line profile analysis reveal that the average dislocation density in bainite during the deformation is lower than that before deformation, and such a phenomenon can be explained by a new effect, dislocations absorption by retained austenite (DARA) effect, based on our previous investigation of martensitic steels. DARA effect availably enhances the compatibility of deformation ability of bainite with retained austenite. In view of microstructure similarity of bainitic steels with martensitic steels, the conditions of DARA effect are proposed. The effects of retained austenite on the ductility enhancement in bainitic steels are clarified.

  14. On the role of microstructure in governing the fatigue behaviour of nanostructured bainitic steels

    OpenAIRE

    Rementeria, R.; Morales-Rivas, L.; Kuntz, M.; García Mateo, Carlos; Kerscher, E.; Sourmail, T.; García Caballero, Francisca

    2015-01-01

    © 2015 Elsevier B.V. Nanostructured bainite is not a novel laboratory-scale steel anymore and the interest on the commercial production of these microstructures by steelmakers and end-users is now conceivable. These microstructures are achieved through the isothermal transformation of high-carbon high-silicon steels at low temperature, leading to nanoscale plates of ferrite with thickness of 20-40nm and retained austenite. Nanostructured bainitic steels present the highest strength/toughness ...

  15. An assessment of the contributing factors to the nanoscale structural refinement of advanced bainitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Cornide, J., E-mail: jca@cenim.csic.es [Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC), Avda Gregorio del Amo 8, Madrid E-28040 (Spain); Garcia-Mateo, C., E-mail: cgm@cenim.csic.es [Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC), Avda Gregorio del Amo 8, Madrid E-28040 (Spain); Capdevila, C., E-mail: ccm@cenim.csic.es [Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC), Avda Gregorio del Amo 8, Madrid E-28040 (Spain); Caballero, F.G., E-mail: fgc@cenim.csic.es [Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC), Avda Gregorio del Amo 8, Madrid E-28040 (Spain)

    2013-11-15

    A new generation of steels has been designed, which on transformation at low temperature (200–350 °C), leads to a nano-scale microstructure, known as NANOBAIN. The microstructure consists of slender crystals of ferrite, whose controlling scale compares well with that of carbon nanotubes (20–40 nm). These advanced steels present the highest strength/toughness combinations ever recorded in bainitic steels. Their properties are mainly a consequence of the formation of nanoscale bainitic ferrite plates at very low temperatures. Transmission electron microscopy observations have shown that plastic relaxation in the austenite adjacent to the bainite plates may control the final size of the bainitic ferrite plates. The dislocation debris generated in this process resists the advance of the bainitic ferrite–austenite interface, the resistance being greatest for strong austenite. The yield strength of the austenite must then feature in any assessment of plate size. In this scenario, the plates are expected to become thicker at high temperatures because the yield strength of the austenite will then be lower. The goal of this study is to evaluate the influence of yield strength of austenite to the nanoscale structural refinement of advanced bainitic steels. In this sense, in situ measurements of austenite strength before bainite formation using a deformation dilatometer Bähr 805D have been performed in a medium carbon high silicon steel transforming at intermediate temperatures (325–400 °C) to a submicron structure of bainite and in a high carbon high silicon steel transforming at low temperatures (200–350 °C) to nanostructured bainite. The role of the transformation driving force on the bainite plate thickness will be also discussed.

  16. TEM Study of the Orientation Relationship Between Cementite and Ferrite in a Bainitic Low Carbon High Strength Low Alloy Steel

    OpenAIRE

    Illescas Fernandez, Silvia; Brown, A P; He, K.; Fernández, Javier; Guilemany Casadamon, Josep Maria

    2005-01-01

    Two different bainitic structures are observed in a steel depending on the sample heat treatment. The different types of bainitic structures exhibit different orientation relationships between cementite and the ferrite matrix. Upper bainite presents a Pitsch orientation relationship and lower bainite presents a Bagaryatski orientation relationship. Different heat treatments of low carbon HSLA steel samples have been studied using TEM in order to find the orientation relationshi...

  17. Estimation of bainite transformation temperatures in steels by the empirical formulas; Hagane no bainite hentai ondo no jikkenshiki ni yoru suitei

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Y. [Sumitomo Metal Industries, Ltd., Osaka (Japan); Kunitake, T.

    1998-01-25

    Relational formulas were proposed for bainite transformation temperatures and chemical compositions in steels. Thirty-one isothermal transformation charts were selected, whose forms are such that transformation regions in both of pearlite stage and bainite stage are separated, and bainite transformation starting temperature reaches a constant value on the longer duration side in isothermal retention. Multiplex analysis was performed on the charts. Then, an experimental formula was presented to derive the bainite transformation temperature from chemical compositions of the steels. An assessed value very close to the measured value was derived. Another experimental formula was presented to estimate the bainite transformation temperature from the chemical compositions of the steels during continuous cooling, which is more practicable than isothermal transformation in heat treatment of the steels. Two kinds of parameters, B {sub 1} and B {sub 2} were introduced into the formula. The parameter B {sub 1} is a bainite transformation starting temperature in the case when cooling is performed at a critical cooling rate in which the pearlite transformation can appear, and B {sub 2} is a bainite transformation starting temperature when cooling is performed at such a critical cooling rate that a structure containing bainite is transformed completely to a pearlite transformed structure. A formula more versatile than conventional formulas was obtained. 9 refs., 5 figs., 8 tabs.

  18. Effect of B and B + Nb on the bainitic transformation in low carbon steels

    International Nuclear Information System (INIS)

    Research highlights: → B retards slightly the bainite transformation kinetics. → Combined addition of B + Nb delayed dramatically bainite transformation kinetics. → B refines the microstructure and promotes lath morphology of bainite. → Larger packets of laths and longer laths are observed in the B + Nb steel. → More free boron/finer borocarbide precipitates on γ grain boundaries in B + Nb steel. - Abstract: Development of new, advanced high and ultra-high strength bainitic steels requires the selection of the optimum balance of bainite promoting elements allowing the production of the desired bainitic microstructure over a wide range of cooling rates. The addition of boron or a combined addition of boron and niobium is well known to retard strongly the polygonal ferrite formation but very little knowledge has been acquired on the bainitic transformation. Therefore, the purpose of this study is to investigate the influence of boron and boron plus niobium on the bainite transformation kinetics, microstructural evolution and mechanical properties in a low carbon steel (Fe-0.05C-1.49Mn-0.30Si). Isothermal and continuous cooling transformation diagrams were determined and followed by a detailed quantitative characterisation of the bainite microstructure and morphology using complementary advanced metallographic techniques (FEG-SEM-EBSD, SIMS and TEM). The relationship between microstructure and hardness has been evaluated. Finally, results of SIMS and TEM analyses coupled with microstructural investigations enable to propose a mechanism to explain the effect of the synergy between boron and niobium on the bainitic transformation and the resultant microstructure.

  19. Carbide-Free Bainitic Weld Metal: A New Concept in Welding of Armor Steels

    Science.gov (United States)

    Krishna Murthy, N.; Janaki Ram, G. D.; Murty, B. S.; Reddy, G. M.; Rao, T. J. P.

    2014-12-01

    Carbide-free bainite, a fine mixture of bainitic ferrite and austenite, is a relatively recent development in steel microstructures. Apart from being very strong and tough, the microstructure is hydrogen-tolerant. These characteristics make it well-suited for weld metals. In the current work, an armor-grade quenched and tempered steel was welded such that the fusion zone developed a carbide-free bainitic microstructure. These welds showed very high joint efficiency and ballistic performance compared to those produced, as per the current industrial practice, using austenitic stainless steel fillers. Importantly, these welds showed no vulnerability to cold cracking, as verified using oblique Y-groove tests. The concept of carbide-free bainitic weld metal thus promises many useful new developments in welding of high-strength steels.

  20. Effect of Rare Earth Elements on Isothermal Transformation Kinetics in Si-Mn-Mo Bainite Steels

    Science.gov (United States)

    Liang, Yilong; Yi, Yanliang; Long, Shaolei; Tan, Qibing

    2014-12-01

    Isothermal heat treatments to Si-Mn-Mo steel specimens were performed, and time-temperature-transformation curves (C-curves) were plotted by DIL805A/D differential dilatometer. The effect of rare earth (RE) elements on bainite transformation kinetics was systematically studied by adopting the empirical electron theory of solids and molecules, Johnson-Mehl-Avrami equation calculation, dilatometry, and metallography. Experimental results show that the addition of RE in Si-Mn-Mo bainite steels leads to the C-curves moving to bottom right and prolongs incubation period of bainite transformation. Moreover, RE addition increases the values of phase structure factors ( n A, F {C/D}) and activation energy of bainite transformation, inhibits the formation of granular bainite, and refines microstructures of bainitic ferrite and substructures. During the bainite transformation process, bainite transformation is delayed due to the drag effect, which is induced by the segregation of RE at the ferrite interphase and the retardation of Fe-C-RE (segregation units) on carbon diffusion.

  1. Bainite Formation in Medium-Carbon Low-Silicon Spring Steels Accounting for Chemical Segregation

    Science.gov (United States)

    Goulas, C.; Mecozzi, M. G.; Sietsma, J.

    2016-06-01

    In this paper, the effect of chemical inhomogeneity on the isothermal bainite formation is investigated in medium-carbon low-silicon spring steel by dilatometry and microscopy. The analysis of the microstructure at different times during transformation shows that chemical segregation of substitutional alloying elements resulting from casting strongly affects the bainite formation by retarding the transformation kinetics and limiting the maximum achievable bainite fraction. During holding at temperatures close to and above the martensite start temperature, a homogeneous lower bainitic microstructure can be eventually obtained, whereas at higher temperatures, incomplete bainitic reaction is evident. It was also found that at the early stages of the transformation, differences in the bainite formation kinetics, due to local inhomogeneities in Cr and Mn concentration, result in retardation of the growth of bainite in the high Mn and Cr concentration regions. The calculated difference in driving force for nucleation between the enriched and the depleted areas is not by itself sufficient to explain the microstructures obtained and thus significant influence of growth on bainite formation is observed. Particularly, it was calculated and experimentally observed that Cr partitions in the carbides in the high Mn, Cr regions during the isothermal treatment, limiting the transformation kinetics.

  2. Bainitic transformation during the two-step quenching and partitioning process in a medium carbon steel containing silicon

    International Nuclear Information System (INIS)

    Research highlights: In this paper, SEM and TEM were used to characterize microstructure of Q and P steels with different partitioning time at 300 deg. C. The interesting phenomena were discovered and discussed: 1.Lower bainite (bainitic ferrite plus ε-carbide) rather than carbide-free bainite was observed during partitioning process. 2.The mechanical properties of Q and P steels can be tailored and adjusted through balance volume fraction of retained austenite and lower bainite during partitioning process. 3.The final amount of austenite was influenced by the transformation kinetics of lower bainite during partitioning process. According to the analysis, it can be concluded that associated with carbon partitioning from martensite to austenite, lower bainite transformation inevitably occurred. More importantly, lower bainite transformation seriously affected the mechanical properties of Q and P steels and final amount of austenite. - Abstract: A study of 40SiMnNiCr steel subjected to a two-step quenching and partitioning process (Q and P) is presented. The result suggests that strength variation of Q and P steels during the two-step Q and P process was a cumulative effect of increase of retained austenite fraction, decrease of carbon supersaturation of virgin martensite, and particularly much of lower bainite formation. A trade-off between high strength and good ductility of two-step Q and P steels can be tailored and adjusted by controlling lower bainite fraction. The final amount of austenite was influenced by the transformation kinetics of lower bainite during the partitioning process.

  3. Modeling of mechanical behaviour of HSLA low carbon bainitic steel thermomechanically processed

    Science.gov (United States)

    Santos, D. B.; Rodrigues, P. C. M.; Cota, A. B.

    2003-10-01

    A comparative study of the microstructure characterization and mechanical properties was done in a HSLA low carbon (0.08%) bainitic steel containing boron, developed by industry as a bainitic steel grade APIX80. The steel was submitted to two different thermomechanical processes. In the first one, controlled rolling followed by accelerated cooling was applied in laboratory mill. In the second processing, specimens of the same steel were submitted to hot torsion testing. The influence of cooling conditions like start cooling temperature, cooling rates and finish cooling temperature on the microstructure and mechanical properties were investigated. The final microstructure obtained was a complex mixture of polygonal ferrite, perlite, bainite and martensite/retained austenite constituent. The use of multiple regression analysis allowed the establishment of quantitative relationships between the accelerated cooling variables and mechanical properties of the steel available from Vickers microhardness and tensile tests.

  4. Effect of microstructure on the fracture toughness of ferrite-martensite-bainite steels

    International Nuclear Information System (INIS)

    The effect of microstructure on the fracture toughness of ferrite-martensite -bainite steels was investigated with Fe-0.11C-1.64Mn-0.78Si composition. One inch compact tension specimens (1T-CTSs) were machined from hot rolled plates. The microstructure of ferrite-martensite-bainite was introduced to the specimens by the heat treatment of intercritical annealing at 800deg C and isothermal holding at 350deg C. Holding at 350deg C increased volume fraction of bainite, while decreased that of martensite, and refined martensite particles. Single specimen unloading compliance method was used in fracture test to obtain J-resistance (J-R) curve and to determine the fracture toughness(JIC). Introduction of bainite to the ferrite-martensite steel improved the fracture toughness due to the deformation of bainite which relaxed the stress concentration on the interface of ferrite and martensite. Observation of fracto-graphs through the scanning electron microscope(SEM) identified the fracture mechanism of ferrite-martensite-bainite steels as dimple nucleation and crack growth by decohesion of ferrite matrix and second phase particles and by microvoid coales cence. (Author)

  5. Wear of nano-structured carbide-free bainitic steels under dry rolling-sliding conditions

    OpenAIRE

    Leiro, A; Vuorinen, E; Sundin, K.G; Prakash, B; García Caballero, Francisca; García Mateo, Carlos; Elvira, R.

    2013-01-01

    Specially designed steels with carbon contents from 0.6 to 1.0 wt% were isothermally transformed at very low temperatures, between 220 and 270 °C, in order to obtain a nano-structured bainitic microstructure. It is shown that the wear resistance in dry rolling–sliding of these nano-structured steels is significantly superior to that of bainitic steels transformed at higher temperatures with similar hardness values. In addition to the highly refined microstructure, the transformation under str...

  6. The crystallography of carbide-free bainites in thermo-mechanically processed low Si transformation-induced plasticity steels

    International Nuclear Information System (INIS)

    Highlights: • First EBSD study comparing ferrite in granular bainite and bainitic laths in two TRIP steels. • Both TRIP steels (base and with Nb–Ti additions) subjected to the same TMP schedule. • Crystallography of the ferrite in the 2 bainites studied using the K–S orientation relationship. • Variants in GB associated with self-accommodation. • BF variant selection linked to RA plastic accommodation and limited volume. - Abstract: Carbide-free bainites are important microstructural constituents in bainitic, nanobainitic and transformation-induced plasticity (TRIP) steels. A comparison of the crystallography of ferrite in granular bainite and bainitic ferrite lath morphologies, both of which were simultaneously present in a base and a Nb–Ti containing TRIP steel, has been carried out using electron back-scattering diffraction. Ferrite in granular bainite was characterised by the realisation of nearly all 24 variants of the Kurdjumov–Sachs orientation relationship; which in turn was associated with the self-accommodation of the transformation strain. On the other hand, bainitic ferrite comprised a mostly parallel lath structure between thick interlayers of retained austenite and exhibited variant selection such that one or more crystallographic packets are not realised and sometimes only 1–2 variants formed in a crystallographic packet. The variant selection in bainitic ferrite laths was associated with: (i) the plastic accommodation of transformation strain by retained austenite and, (ii) the limited available volume for its formation

  7. The crystallography of carbide-free bainites in thermo-mechanically processed low Si transformation-induced plasticity steels

    Energy Technology Data Exchange (ETDEWEB)

    Pereloma, Elena V. [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, New South Wales 2522 (Australia); Electron Microscopy Centre, University of Wollongong, New South Wales 2500 (Australia); Al-Harbi, Fayez [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, New South Wales 2522 (Australia); Gazder, Azdiar A., E-mail: azdiar@uow.edu.au [Electron Microscopy Centre, University of Wollongong, New South Wales 2500 (Australia)

    2014-12-05

    Highlights: • First EBSD study comparing ferrite in granular bainite and bainitic laths in two TRIP steels. • Both TRIP steels (base and with Nb–Ti additions) subjected to the same TMP schedule. • Crystallography of the ferrite in the 2 bainites studied using the K–S orientation relationship. • Variants in GB associated with self-accommodation. • BF variant selection linked to RA plastic accommodation and limited volume. - Abstract: Carbide-free bainites are important microstructural constituents in bainitic, nanobainitic and transformation-induced plasticity (TRIP) steels. A comparison of the crystallography of ferrite in granular bainite and bainitic ferrite lath morphologies, both of which were simultaneously present in a base and a Nb–Ti containing TRIP steel, has been carried out using electron back-scattering diffraction. Ferrite in granular bainite was characterised by the realisation of nearly all 24 variants of the Kurdjumov–Sachs orientation relationship; which in turn was associated with the self-accommodation of the transformation strain. On the other hand, bainitic ferrite comprised a mostly parallel lath structure between thick interlayers of retained austenite and exhibited variant selection such that one or more crystallographic packets are not realised and sometimes only 1–2 variants formed in a crystallographic packet. The variant selection in bainitic ferrite laths was associated with: (i) the plastic accommodation of transformation strain by retained austenite and, (ii) the limited available volume for its formation.

  8. Microscopic deformation and strain hardening analysis of ferrite–bainite dual-phase steels using micro-grid method

    International Nuclear Information System (INIS)

    The local strain measurement method using nanometer-scaled micro grids printed on the surface of a specimen by an electron lithography technique (the micro-grid method) has been established. Microscopic deformation behavior of the ferrite–bainite steels with different bainite volume fraction, 16% and 40% of bainite, was evaluated. Strain localization in the ferrite phase adjacent to the ferrite/bainite boundary was clearly observed and visualized. Highly strained regions expanded toward the inner region of the ferrite phase and connected each other with an increase of macroscopic strain. The existence of hard bainite phase plays an important role for inducing strain localization in the ferrite phase by plastic constraint in the boundary parallel to the tensile direction. In order to obtain further understanding of microscopic deformation behavior, finite element analysis using the representative volume element, which is expressed by the axisymmetric unit cell containing a hard phase surrounded by a soft phase matrix, was conducted. It was found that the macroscopic stress–strain behavior of ferrite–bainite steels was well simulated by the unit cell models. Strain concentration in the ferrite phase was highly enhanced for the ferrite-40% bainite steel, and this imposed higher internal stress in the bainite phase, resulting in higher strain hardening rate in the early stage of the deformation. However, smaller ferrite volume fraction of ferrite-40% bainite steel induced bainite plastic deformation in order to fulfill the macroscopic strain of the steel. Accordingly, strain hardening capacity of the ferrite-40% bainite steel was reduced to a significant degree, resulting in a smaller uniform elongation than the ferrite-16% bainite steel

  9. Mechanical properties of low-alloy-steels with bainitic microstructures and varying carbon content

    Science.gov (United States)

    Weber, A.; Klarner, J.; Vogl, T.; Schöngrundner, R.; Sam, G.; Buchmayr, B.

    2016-03-01

    Materials used in the oilfield industry are subjected to special conditions. These requirements for seamless steel tubes are between the priorities of strength, toughness and sour gas resistance. Steels with bainitic microstructure provide a great opportunity for those harsh environmental conditions. With different morphologies of bainite, like carbide free, upper or lower bainite, the interaction of high tensile strength and elongation is assumed to be better than with tempered martensite. To form carbide free bainite two ways of processing are proposed, isothermal holding with accurate time control or controlled continuous cooling. Both require knowledge of time-temperature transformation behaviour, which can be reached through a detailed alloying concept, focused on the influence of silicon to supress the carbide nucleation and chromium to stabilize the austenite fraction. The present work is based on three alloys with varying silicon and chromium contents. The carbide free microstructure is obtained by a continuous cooling path. Additionally different heat treatments were done to compare the inherent performance of the bainitic morphologies. The bainitic structures were characterized metallographically for their microstructure and the primary phase by means of transmission electron microscopy. The mechanical properties of carbide-free structures were analysed with quasi-static tensile tests and Charpy impact tests. Moreover, investigations about hydrogen embrittlement were done with focus on the effect of retained austenite. The results were ranked and compared qualitatively.

  10. Nanomechanical characterization of nanostructured bainitic steel: Peak Force Microscopy and Nanoindentation with AFM.

    Science.gov (United States)

    Morales-Rivas, Lucia; González-Orive, Alejandro; Garcia-Mateo, Carlos; Hernández-Creus, Alberto; Caballero, Francisca G; Vázquez, Luis

    2015-01-01

    The full understanding of the deformation mechanisms in nanostructured bainite requires the local characterization of its mechanical properties, which are expected to change from one phase, bainitic ferrite, to another, austenite. This study becomes a challenging process due to the bainitic nanostructured nature and high Young's modulus. In this work, we have carried out such study by means of the combination of AFM-based techniques, such as nanoindentation and Peak Force Quantitative Nanomechanical Mapping (PF-QNM) measurements. We have addressed critically the limits and advantages of these techniques and been able to measure some elastoplastic parameters of both phases. Specifically, we have analyzed by PF-QNM two nanostructured bainitic steels, with a finer and a coarser structure, and found that both phases have a similar Young's modulus. PMID:26602631

  11. Self-accommodation in the bainitic microstructure of ultra-high-strength steel

    International Nuclear Information System (INIS)

    In this study, the bainitic microstructure of a furnace-cooled electro-slag-refined 5% Cr steel was studied by the electron backscattered diffraction (EBSD) technique. The pole figures suggest a strong orientation relationship close to the Nishiyama-Wassermann type, i.e. there are 12 variants of the bainite sheaf that emerge from the three Bain correspondences. The microstructure consists of the bainite variants arranged in four sheaf colonies or morphological groups. Each sheaf colony, in turn, is made of one crystallographic group composed of 3 variants of bainite - one from each of the three Bain correspondences. Computations based on the phenomenological theory of martensitic crystallography (PTMC) show that the observed morphology is a product of stress-coupled autocatalytic nucleation. The Austenite 3-variant tension-coupled sheaf group predicted by the computations is the one that is experimentally observed

  12. Nanomechanical characterization of nanostructured bainitic steel: Peak Force Microscopy and Nanoindentation with AFM

    Science.gov (United States)

    Morales-Rivas, Lucia; González-Orive, Alejandro; Garcia-Mateo, Carlos; Hernández-Creus, Alberto; Caballero, Francisca G.; Vázquez, Luis

    2015-11-01

    The full understanding of the deformation mechanisms in nanostructured bainite requires the local characterization of its mechanical properties, which are expected to change from one phase, bainitic ferrite, to another, austenite. This study becomes a challenging process due to the bainitic nanostructured nature and high Young’s modulus. In this work, we have carried out such study by means of the combination of AFM-based techniques, such as nanoindentation and Peak Force Quantitative Nanomechanical Mapping (PF-QNM) measurements. We have addressed critically the limits and advantages of these techniques and been able to measure some elastoplastic parameters of both phases. Specifically, we have analyzed by PF-QNM two nanostructured bainitic steels, with a finer and a coarser structure, and found that both phases have a similar Young’s modulus.

  13. Weldability of 1 000 MPa Grade Ultra-low Carbon Bainitic Steel

    Institute of Scientific and Technical Information of China (English)

    Qing-mei JIANG; Xiao-qiang ZHANG; Li-qing CHEN

    2016-01-01

    Maximum hardness test in weld heat-affected zone (HAZ),oblique Y-groove cracking test and mechanical property test of welding joint of 1 000 MPa grade ultra-low carbon bainitic steel were carried out,so as to research the weldability of the steel.The results show that the steel has lower cold cracking sensitivity,and preheating tem-perature of 100 ℃ can help completely eliminate cold cracks,generating good process weldability.The increase of preheating temperature can reduce the hardening degree of heat-affected zone.The strength of welding joint decreases and hardness reduces when heat inputs increase,and excellent mechanical properties can be obtained when low weld-ing heat inputs are used.Fine lath bainites of different orientations combined with a few granular bainites that effec-tively split the original coarse austenite grains are the foundation of good properties.

  14. Structure-Property-Fracture Mechanism Correlation in Heat-Affected Zone of X100 Ferrite-Bainite Pipeline Steel

    Science.gov (United States)

    Li, Xueda; Ma, Xiaoping; Subramanian, S. V.; Misra, R. D. K.; Shang, Chengjia

    2015-03-01

    Structural performance of a weld joint primarily depends on the microstructural characteristics of heat-affected zone (HAZ). In this regard, the HAZ in X100 ferrite-bainite pipeline steel was studied by separating the HAZ into intercritically reheated coarse-grained (ICCG) HAZ containing and non-containing regions. These two regions were individually evaluated for Charpy impact toughness and characterized by electron back-scattered diffraction (EBSD). Low toughness of ~50 J was obtained when the notch of impact specimen encountered ICCGHAZ and high toughness of ~180 J when the notch did not contain ICCGHAZ. Fracture surface was ~60 pct brittle in the absence of ICCGHAZ, and 95 pct brittle (excluding shear lip) in the presence of ICCGHAZ in the impact tested samples. The underlying reason is the microstructure of ICCGHAZ consisted of granular bainite and upper bainite with necklace-type martensite-austenite (M-A) constituent along grain boundaries. The presence of necklace-type M-A constituent notably increases the susceptibility of cleavage microcrack nucleation. ICCGHAZ was found to be both the initiation site of the whole fracture and cleavage facet initiation site during brittle fracture propagation stage. Furthermore, the study of secondary microcracks beneath CGHAZ and ICCGHAZ through EBSD suggested that the fracture mechanism changes from nucleation-controlled in CGHAZ to propagation-controlled in ICCGHAZ because of the presence of necklace-type M-A constituent in ICCGHAZ. Both fracture mechanisms contribute to the poor toughness of the sample contained ICCGHAZ.

  15. Improved toughness in a bainitic 38MnV7 steel

    OpenAIRE

    Rancel, Lucía; Hernández, Ana; Gómez, Manuel; Calvo, Jessica; Medina, Sebastián F.; Cabrera, José M.

    2013-01-01

    High toughness can be obtained in médium carbón microalloyed bainitic stee (38MnV7) after a careful control of the chemistry and heat treatment. A specific chemical composition of 38MnV7 steel has been developed , providing impact energies after Charpy-V tests at room temperatura as high as 40J (the steel in bainitic state). Present work is oriented to an optimization of the above chemical composition by control of the Transformation Time Temperature (TTT) curves as well as the Precipitation ...

  16. Nano-sized precipitation and properties of a low carbon niobium micro-alloyed bainitic steel

    International Nuclear Information System (INIS)

    The present work focuses on microstructure evolution and precipitation strengthening during tempering at region of 550–680 °C to elucidate the structure–property relationship in the steel. The effect of tempering on the development of a 700 MPa grade high strength hot rolled cost-effective bainitic steel was studied for infrastructure applications. Granular bainite with dispersed martenisit–austenite (M–A) constituents in the bainitic ferrite matrix was obtained after hot rolling and air cooling to room temperature. The decomposition of M–A constituents to cementite carbides and the precipitation of nano-sized NbC carbides in bainitic matrix on tempering were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Nano-sized precipitates of NbC precipitated during tempering were in average diameter of ~4.1–6.1 nm. There were ~86–173 MPa increases in yield strength after tempering at region of 550–680 °C. It is noticeable that those nano-sized NbC precipitates provide an effective way to significantly increase the strength of the low carbon bainitic steel. High yield strength of 716 MPa with high ductility (uniform elongation of 9.3% and total elongation of 22.4%), low yield to tensile ratio of 0.9 and good low temperature toughness of 47 J (half thickness) at –40 °C was obtained after tempering at 680 °C for 30 min

  17. Nano-sized precipitation and properties of a low carbon niobium micro-alloyed bainitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Z.J. [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Department of Materials Science and Engineering, McMaster University, Hamilton L8S 4L8 (Canada); Ma, X.P. [Department of Materials Science and Engineering, McMaster University, Hamilton L8S 4L8 (Canada); Shang, C.J., E-mail: cjshang@ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Wang, X.M. [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Subramanian, S.V. [Department of Materials Science and Engineering, McMaster University, Hamilton L8S 4L8 (Canada)

    2015-08-12

    The present work focuses on microstructure evolution and precipitation strengthening during tempering at region of 550–680 °C to elucidate the structure–property relationship in the steel. The effect of tempering on the development of a 700 MPa grade high strength hot rolled cost-effective bainitic steel was studied for infrastructure applications. Granular bainite with dispersed martenisit–austenite (M–A) constituents in the bainitic ferrite matrix was obtained after hot rolling and air cooling to room temperature. The decomposition of M–A constituents to cementite carbides and the precipitation of nano-sized NbC carbides in bainitic matrix on tempering were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Nano-sized precipitates of NbC precipitated during tempering were in average diameter of ~4.1–6.1 nm. There were ~86–173 MPa increases in yield strength after tempering at region of 550–680 °C. It is noticeable that those nano-sized NbC precipitates provide an effective way to significantly increase the strength of the low carbon bainitic steel. High yield strength of 716 MPa with high ductility (uniform elongation of 9.3% and total elongation of 22.4%), low yield to tensile ratio of 0.9 and good low temperature toughness of 47 J (half thickness) at –40 °C was obtained after tempering at 680 °C for 30 min.

  18. Rationalisation of Austenite Transformation to Upper or Lower Bainite in Steels

    Directory of Open Access Journals (Sweden)

    Ławrynowicz Z.

    2014-06-01

    Full Text Available The paper presents an analytical evaluation of transition temperature from upper to lower bainite in Fe-C-Cr steel. The calculations was based on the model constructed by Matas and Hehemann which involves a comparison between the times needed to precipitate cementite within the bainitic ferrite plates (tθ, with the time required to decarburise supersaturated ferrite plates (td. The transition between upper and lower bainite is found to occur over a narrow range of temperatures (350-410°C and depends on the thickness of bainitic ferrite laths and the volume fraction of precipitated cementite. On comparing the td and tθ times it was found that the transition temperature from upper to lower bainite reaction (LS of about 350oC could be predicted if the thickness of bainitic ferrite laths is set as wo = 0.1 μm and volume fraction of cementite is set as ξ = 0.01

  19. Ratcheting led surface failure of medium carbon bainitic steel under mild operation conditions

    Institute of Scientific and Technical Information of China (English)

    Peng Dou; Youguo Li; Kaiming Liang; Bingzhe Bai

    2005-01-01

    The behavior of rolling contact fatigue (RCF) of medium carbon bainitic back-up roll steel was investigated under its actual work conditions. A kind of asperity-scale surface originated cracks, which is lying parallel or at an acute angle to the surfaces, initiated after unidirectional plastic flow of the material in thin surface layer had occurred. Theoretical analysis indicates that they nucleate due to plastic ratcheting induced by asperity contact stresses, and consequently are named as ratcheting cracks. After nucleating and initially propagating, they arrest at some depth and resume propagating till about 70%-80% of the RCF failure life by initially turning parallel to contact surfaces. Their behavior of initiation and propagation is confined to a thin layer prior to the formation of surface distress. According to the critical principle of the preventive grinding strategy, removing the asperity influenced surface layer at about 70%-80% of the RCF failure life can effectively prevent the ratcheting cracks from developing into surface distress, which can lead to the formation of macro-RCF failure soon.

  20. TEM study of bainitic low-carbon HSLA steel: the orientation relationships of cementite; TEM-Untersuchung eines kohlenstoffarmen bainitischen HSLA-Stahls: die Orientierungsbeziehungen von Zementit

    Energy Technology Data Exchange (ETDEWEB)

    Illescas, S.; Fernandez, J.; Guilemany, J.M. [Barcelona Univ. (Spain). Dept. de Ciencia dels Materials i Enginyeria Metallurgica; Asensio, J. [Oviedo Univ. (Spain). Dept. de Ciencia de los Materiales e Ingenieria Metalurgica

    2007-07-15

    Two different bainitic structures can be present in steel depending on the heat treatment to which the samples are subjected. The two different types of bainitic structures exhibit a different orientation relationship between the cementite and the ferrite matrix. The Pitsch orientation relationship is observed in upper bainite while the Bagaryatski orientation relationship is observed in lower bainite. Different heat treatment samples of low-carbon high strength low alloy (HSLA) steel were studied using TEM observations in order to ascertain the orientation relationship between ferrite and carbide in the different bainitic structures and to determine whether this relationship may indicate the type of bainitic structure. (orig.)

  1. Design of Novel Bainitic Steels: Moving from UltraFine to Nanoscale Structures

    Science.gov (United States)

    Caballero, F. G.; Garcia-Mateo, C.; Miller, M. K.

    2014-05-01

    The concepts of phase transformation theory can be exploited to design nanostructured steels that transform to bainite at temperatures as low as 150°C. The microstructure obtained is so refined that it is possible to achieve strength in excess of 2.5 GPa in a material that has considerable toughness (40 MPam1/2). Such a combination of properties has never been achieved before with bainite. A description of the characteristics and significance of this remarkable microstructure in the context of the mechanism of transformation is provided.

  2. Design of novel bainitic steels | Diseno de nuevos aceros bainiticos

    OpenAIRE

    García Caballero, Francisca; Bhadeshia, H. K. D. H.; Mawella, K.J.A; Jones, D G; P Brown

    2002-01-01

    Mixed microstructures consisting of fine plates of upper bainitic ferrite separated by thin films of stable retained austenite have seen many applications in recent years because of their impressive combination of strength and toughness. There may also be some martensite present in the microstructure, but its formation can be controlled increasing the stability of the retained austenite. On the other hand, carbides are avoided by the judicious use of silicon as an alloying element. The aim of...

  3. Investigation on tempering of granular bainite in an offshore platform steel

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yanlei; Jia, Tao; Zhang, Xiangjun [The State Key Laboratory of Rolling and Automation, Northeastern University, P.O. Box 105, No. 11, Lane 3, Wenhua Road, HePing District, Shenyang 110819 (China); Liu, Zhenyu, E-mail: zyliu@mail.neu.edu.cn [The State Key Laboratory of Rolling and Automation, Northeastern University, P.O. Box 105, No. 11, Lane 3, Wenhua Road, HePing District, Shenyang 110819 (China); Misra, R.D.K. [Department of Metallurgical and Materials Engineering, University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968-0521 (United States)

    2015-02-25

    Granular bainite, where M-A constituents dispersed in bainitic ferrite matrix usually presents at the half thickness region in thermo-mechanically processed heavy gauge offshore platform steel. In the present work, the decomposition of M-A constituents during tempering at 600 °C was firstly revealed by transmission electron microscopy (TEM) analysis, which primarily involves the precipitation of cementite, recovery and recrystallization of highly dislocated ferrite matrix. Then, the effect of tempering on mechanical properties was investigated by tempering at different temperature for 60 min. Results indicated that, at tempering temperature of 500–600 °C, large quantity of micro-alloying carbides precipitated and partially compensated the loss of strength mainly due to the decomposition of M-A constituents. Compared with the as-rolled state, the decomposition of M-A constituents and softening of bainitic ferrite matrix after tempering have resulted in higher density of microvoids and substantial plastic deformation before impact failure.

  4. In situ observations of austenite grain growth in Fe-C-Mn-Si super bainitic steel

    Institute of Scientific and Technical Information of China (English)

    Feng Liu; Guang Xu; Yu-long Zhang; Hai-jiang Hu; Lin-xin Zhou; Zheng-liang Xue

    2013-01-01

    In situ observations of austenite grain growth in Fe-C-Mn-Si super bainitic steel were conducted on a high-temperature laser scanning confocal microscope during continuous heating and subsequent isothermal holding at 850, 1000, and 1100◦C for 30 min. A grain growth model was proposed based on experimental results. It is indicated that the austenite grain size increases with austenitizing temperature and holding time. When the austenitizing temperature is above 1100◦C, the austenite grains grow rapidly, and abnormal austenite grains occur. In addition, the eff ect of heating rate on austenite grain growth was investigated, and the relation between austenite grains and bainite morphology after bainitic transformations was also discussed.

  5. MECHANICAL PROPERTIES IN AN INTERCRITICALLY HEAT-TREATED BAINITE-TRANSFORMED 2%Si STEEL

    Institute of Scientific and Technical Information of China (English)

    Z.Li; D.Wu

    2004-01-01

    A significant amount of austenite can be retained by rapid cooling following intercritical annealing and holding at the bainite transformation range in steel with comparatively low carbon and silicon contents. Retained austenite is blocky and very fine and moderately stabilized due to C enrichment. The elongation and the strength-ductility balance of the steel can be enhanced considerably due to strain-induced martensite transformation and transformation-induced plasticity (TRIP) of retained austenite.

  6. Mechanical properties and hot-rolled microstructures of a low carbon bainitic steel with Cu-P alloying

    Energy Technology Data Exchange (ETDEWEB)

    Cui, W.F., E-mail: wenfangcui@yahoo.com.cn [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110004 (China); Zhang, S.X. [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110004 (China); Technology Center of Laiwu Iron and Steel (Group) Co. Ltd., Laiwu 271104 (China); Jiang, Y. [School of Chemical Engineering, University of Queensland, Brisbane 4072 (Australia); Dong, J. [Technology Center of Laiwu Iron and Steel (Group) Co. Ltd., Laiwu 271104 (China); Liu, C.M. [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110004 (China)

    2011-08-15

    Highlights: {yields} Mechanical properties and microstructures of low carbon bainite steel are examined. {yields} Cu-P alloying promotes strengthening and uniform plastic deformation. {yields} Cu-P alloying delays recovery process during rolling interval. {yields} Lowering rolling temperature is favorable to increasing toughness. - Abstract: A low carbon bainitic steel with Cu-P alloying was developed. The new steel aims to meet the demand of high strength, high toughness and resistance to chloride ion corrosion for the components used in the environment of sea water and oceanic atmosphere. Mechanical properties of the steel were tested and strengthening and toughening mechanisms were analyzed by comparing hot-rolled microstructures of the low carbon bainitic steels with and without Cu-P alloying. The results show that Cu-P alloying provided strong solution strengthening with weak effect on ductility. The toughness loss caused by Cu-P alloying could be balanced by increasing the amount of martensite/remained austenite (M/A island) at lower finishing temperature. The static recovery process during rolling interval was delayed by the interaction of phosphorous, copper atoms with dislocations, which was favorable to the formation of bainitic plates. Super-fine Nb(C, N) particles precipitated on dislocations had coherency with bainite ferrite at 830 deg. C finishing temperature. Raising finishing temperature to 880 deg. C, Nb(C, N) particles were prone to coarsening and losing coherency. It was also found that no accurate lattice match relationship among retained austenite, martensite and bainite in granular bainitic microstructure.

  7. Mechanical properties and hot-rolled microstructures of a low carbon bainitic steel with Cu-P alloying

    International Nuclear Information System (INIS)

    Highlights: → Mechanical properties and microstructures of low carbon bainite steel are examined. → Cu-P alloying promotes strengthening and uniform plastic deformation. → Cu-P alloying delays recovery process during rolling interval. → Lowering rolling temperature is favorable to increasing toughness. - Abstract: A low carbon bainitic steel with Cu-P alloying was developed. The new steel aims to meet the demand of high strength, high toughness and resistance to chloride ion corrosion for the components used in the environment of sea water and oceanic atmosphere. Mechanical properties of the steel were tested and strengthening and toughening mechanisms were analyzed by comparing hot-rolled microstructures of the low carbon bainitic steels with and without Cu-P alloying. The results show that Cu-P alloying provided strong solution strengthening with weak effect on ductility. The toughness loss caused by Cu-P alloying could be balanced by increasing the amount of martensite/remained austenite (M/A island) at lower finishing temperature. The static recovery process during rolling interval was delayed by the interaction of phosphorous, copper atoms with dislocations, which was favorable to the formation of bainitic plates. Super-fine Nb(C, N) particles precipitated on dislocations had coherency with bainite ferrite at 830 deg. C finishing temperature. Raising finishing temperature to 880 deg. C, Nb(C, N) particles were prone to coarsening and losing coherency. It was also found that no accurate lattice match relationship among retained austenite, martensite and bainite in granular bainitic microstructure.

  8. Heat treatment and mechanical stability behaviour of medium-carbon TRIP-aided bainitic steel

    Directory of Open Access Journals (Sweden)

    A. Grajcar

    2008-09-01

    Full Text Available bainitic transformation on the mechanical stability of retained austenite for medium-carbon TRIP-aided steel.Design/methodology/approach: The examinations were carried out on medium-carbon steel containing 0.55%C and 1.35%Si. The conditions of heat treatment consisted of isothermal quenching of the specimens to a temperature range of 250 to 550°C, where they were held for 600 and 1800 s. Tensile deformation of steel to the given strain equal 0.25, 0.5 and 0.75 of total elongation of samples was conducted in order to determine the kinetics of retained austenite transformation into martensite. The retained fraction of the γ phase was determined by the use of the quantitative X-ray phase analysis.Findings: Increasing the carbon concentration to 0.55% in TRIP-type steels makes possible to obtain very high strength properties without a deterioration of the ductility. The retained austenite of the 19% volume fraction can be obtained after the isothermal quenching of the steel to a temperature of 250°C. In these conditions, the matrix of the steel is the ferritic bainite. The size of regular grains of retained austenite is equal up to 3μm, while the rest of γ phase is present in a form of thin films between individual laths of bainite. Diversification of retained austenite form has a reflection in its mechanical stability, connected with two-stage kinetics of martensitic transformation of γ phase.Research limitations/implications: To determine with more detail the stability of retained austenite the knowledge of lattice parameter changes with an isothermal holding temperature is needed.Practical implications: The proposed heat treatment can be useful for manufacturing reinforced structural elements characterized by high strength and ductile properties in the automobile industry.Originality/value: The developed conditions of the heat treatment concern the medium-carbon TRIP-type bainitic steel, offering higher product of UTS UEl compared with

  9. Continuous Cooling Bainite Transformation Characteristics of a Low Carbon Microalloyed Steel under the Simulated Welding Thermal Cycle Process

    Institute of Scientific and Technical Information of China (English)

    Xiangwei Kong; Chunlin Qiu

    2013-01-01

    Continuous cooling transformation of a low carbon microalloyed steel was investigated after it was subjected to the simulation welding thermal cycle process and the interrupted cooling test.Microstructure observation was performed by optical microscopy and transmission electron microscopy.On the basis of the dilatometric data and microstructure observation,the continuous cooling transformation (CCT) diagram was determined,which showed that the main microstructure changes from a mixture of lath martensite and bainitic ferrite to full granular bainite with the increase in the cooling time t8/5 from 10 to 600 s,accompanied with a decrease in the microhardness.The interrupted cooling test confirmed that the bainitic ferrite can form attached to grain boundaries at the beginning of transformation even if the final microstructure contains a mixture of granular bainite and bainitic ferrite.

  10. Effect of zirconium addition on the austenite grain coarsening behavior and mechanical properties of 900 Mpa low carbon bainite steel

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The ultra-free bainitic microstructure of a 900 MPa low carbon bainitic Cu-Ni-Mo-B steel was obtained by a newly developed relaxation precipitation control (RPC) phase transformation processing.In a pan-cake like prior-anstenite grain,the microstructure consisted of lath bainite,a little of abnormal granular bainite,and acicular ferrite.The effect of zirconium carbonitrides on the austenite grain coarsening behavior was studied by transmission electron microscopy (TEM).The results show that,the lath is narrower with increasing cooling rate.The ratio of all kinds of bainitic microstructure is proper with the intermediate cooling rate;and Zr-containing precipitates distribute uniformly,which restrains austenite grain growing in heat-affected welding zone.

  11. Characterization of coarse bainite transformation in low carbon steel during simulated welding thermal cycles

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Liangyun, E-mail: lanly@me.neu.edu.cn [School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819 (China); State Key Laboratory of Rolling Technology and Automation, Northeastern University, Shenyang 110819 (China); Kong, Xiangwei [School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819 (China); Qiu, Chunlin [State Key Laboratory of Rolling Technology and Automation, Northeastern University, Shenyang 110819 (China)

    2015-07-15

    Coarse austenite to bainite transformation in low carbon steel under simulated welding thermal cycles was morphologically and crystallographically characterized by means of optical microscope, transmission electron microscope and electron backscattered diffraction technology. The results showed that the main microstructure changes from a mixture of lath martensite and bainitic ferrite to granular bainite with the increase in cooling time. The width of bainitic laths also increases gradually with the cooling time. For a welding thermal cycle with relatively short cooling time (e.g. t{sub 8/5} is 30 s), the main mode of variant grouping at the scale of individual prior austenite grains changes from Bain grouping to close-packed plane grouping with the progress of phase transformation, which results in inhomogeneous distribution of high angle boundaries. As the cooling time is increased, the Bain grouping of variants becomes predominant mode, which enlarges the effective grain size of product phase. - Highlights: • Main microstructure changes and the width of lath structure increases with cooling time. • Variant grouping changes from Bain zone to close-packed plane grouping with the transformation. • The change of variant grouping results in uneven distribution of high angle grain boundary. • Bain grouping is main mode for large heat input, which lowers the density of high angle boundary.

  12. Characterization of coarse bainite transformation in low carbon steel during simulated welding thermal cycles

    International Nuclear Information System (INIS)

    Coarse austenite to bainite transformation in low carbon steel under simulated welding thermal cycles was morphologically and crystallographically characterized by means of optical microscope, transmission electron microscope and electron backscattered diffraction technology. The results showed that the main microstructure changes from a mixture of lath martensite and bainitic ferrite to granular bainite with the increase in cooling time. The width of bainitic laths also increases gradually with the cooling time. For a welding thermal cycle with relatively short cooling time (e.g. t8/5 is 30 s), the main mode of variant grouping at the scale of individual prior austenite grains changes from Bain grouping to close-packed plane grouping with the progress of phase transformation, which results in inhomogeneous distribution of high angle boundaries. As the cooling time is increased, the Bain grouping of variants becomes predominant mode, which enlarges the effective grain size of product phase. - Highlights: • Main microstructure changes and the width of lath structure increases with cooling time. • Variant grouping changes from Bain zone to close-packed plane grouping with the transformation. • The change of variant grouping results in uneven distribution of high angle grain boundary. • Bain grouping is main mode for large heat input, which lowers the density of high angle boundary

  13. Stress–strain behavior of ferrite and bainite with nano-precipitation in low carbon steels

    International Nuclear Information System (INIS)

    We systematically investigate stress–strain behavior of ferrite and bainite with nano-sized vanadium carbides in low carbon steels; the ferrite samples were obtained through austenite/ferrite transformation accompanied with interphase precipitation and the bainite samples were via austenite/bainite transformation with subsequent aging. The stress–strain curves of both samples share several common features, i.e. high yield stress, relatively low work hardening and sufficient tensile elongation. Strengthening contributions from solute atoms, grain boundaries, dislocations and precipitates are calculated based on the structural parameters, and the calculation result is compared with the experimentally-obtained yield stress. The contributions from solute atoms and grain boundaries are simply additive, whereas those from dislocations and precipitates should be treated by taking the square root of the sum of the squares of two values. Nano-sized carbides may act as sites for dislocation multiplication in the early stage of deformation, while they may enhance dislocation annihilation in the later stage of deformation. Such enhanced dynamic recovery might be the reason for a relatively large elongation in both ferrite and bainite samples

  14. Design of carbide-free low-temperature ultra high strength bainitic steels

    OpenAIRE

    García Mateo, Carlos; García Caballero, Francisca

    2007-01-01

    There are severe limitations to attaining submicrostructured steels by means of continuous cooling, the achievement of fine grain sizes is limited by the need to dissipate enthalpy during rapid transformation, so that the actual grain size obtained is more than an order of magnitude greater than can be obtained theoretically. Bainitic microstructures obtained by isothermal heat treatment at low temperatures, can overcome the recalescence limitations and at the same time provide a very fine mi...

  15. Effects of LCF Loadings on the HCF Life of Notched Specimens in Ferritic-Bainitic Steel

    OpenAIRE

    Bidouard, Hadrien; PALIN-LUC, Thierry; Saintier, Nicolas; Dumas, Christian; EL DSOKI, Chalid; KAUFMANN, Heinz; SONSINO, Cetin Morris

    2009-01-01

    Fatigue tests were performed on ferritic bainitic steel notched specimens (Kt = 2.5) under load controlled constant amplitude loading. These tests show that under constant amplitude tension compression loading, periodical overloads application have a detrimental effect on the fatigue crack initiation strength for fully reversed load ratio (R σ = — 1), while they have no influence under pulsating loading (R σ = 0). A finite element analysis shows that in the fully reversed tension (R σ = — ...

  16. Al and Si Influences on Hydrogen Embrittlement of Carbide-Free Bainitic Steel

    OpenAIRE

    Yanguo Li; Cheng Chen; Fucheng Zhang

    2013-01-01

    A first-principle method based on the density functional theory was applied to investigate the Al and Si influences on the hydrogen embrittlement of carbide-free bainitic steel. The hydrogen preference site, binding energy, diffusion behaviour, and electronic structure were calculated. The results showed that hydrogen preferred to be at the tetrahedral site. The binding energy of the cell with Si was the highest and it was decreased to be the worst by adding hydrogen. The diffusion barrier of...

  17. Study on laser welded heat-affected zone in new ultralow carbon bainitic steel

    Institute of Scientific and Technical Information of China (English)

    Lin Zhao; Wuzhu Chen; Xudong Zhang; Jiguo Shan

    2007-01-01

    800 MPa grade ultralow carbon bainitic (NULCB) steel is the recently developed new generation steel, which was produced by thermo mechanical controlled processing & relaxation-precipitation controlling transformation (TMCP&RPC) technique. The microstructure and the mechanical properties of the heat-affected zone (HAZ) in NULCB steel under laser welding conditions were investigated by using a Gleeble-1500 thermal simulator. The experimental results indicate that the simplex microstructure in the HAZ is granular bainite that consists of bainite-ferrite (BF) lath and M-A constituent when the cooling time from 800 to 500°C (t8/5) is 0.3-30 s, and the M-A constituent consists of twinned martensite and residual austenite. As t8/5 increases, the hardness and tensile strength of HAZ decreases, but they are higher than that of the base metal, indicating the absence of softened zone after laser welding. The impact toughness of HAZ increases at first and then decreases when tw increases. The impact energy of HAZ is much higher than that of the base metal when t8/5 is between 3 and 15 s. It indicates that excellent low temperature toughness can be obtained under appropriate laser welding conditions.

  18. Microstructural evolution of bainitic steel severely deformed by equal channel angular pressing.

    Science.gov (United States)

    Nili-Ahmadabadi, M; Haji Akbari, F; Rad, F; Karimi, Z; Iranpour, M; Poorganji, B; Furuhara, T

    2010-09-01

    High Si bainitic steel has been received much of interest because of combined ultra high strength, good ductility along with high wear resistance. In this study a high Si bainitic steel (Fe-0.22C-2.0Si-3.0Mn) was used with a proper microstructure which could endure severe plastic deformation. In order to study the effect of severe plastic deformation on the microstructure and properties of bainitic steel, Equal Channel Angular Pressing was performed in two passes at room temperature. Optical, SEM and TEM microscopies were used to examine the microstructure of specimens before and after Equal Channel Angular Pressing processing. X-ray diffraction was used to measure retained austenite after austempering and Equal Channel Angular Pressing processing. It can be seen that retained austenite picks had removed after Equal Channel Angular Pressing which could attributed to the transformation of austenite to martensite during severe plastic deformation. Enhancement of hardness values by number of Equal Channel Angular Pressing confirms this idea. PMID:21133137

  19. Precipitation strengthening and mechanical properties of ultra low carbon bainitic steel with Cu addition

    International Nuclear Information System (INIS)

    Effect of ageing parameters on tensile properties and impact energy of ultra low carbon bainitic steel (ULCB) was established. The investigated HN3MCu1.5 steel belongs to a new group of structural steels, which are going to be applied for constructions working at low temperatures.. The chemical composition of the steel is given. The microstructure of the steel after ageing at temperature 640oC during to 100 hours was observed by optical and electron microscopy. Special attention was paid to study primary austenite grain size, which determines the average diameter of bainite-martensite packet size and thus the impact transition temperature according to empirical equations. Then the quantitative determination of the average diameter of precipitates and the interparticle spacing was studied to calculate the precipitation strengthening effect on yield strength. The empirical equation, which relates effect of ageing time to the yield strength was determined. It was established that the optimum mechanical properties of HN3MCu1.5 steel aged at 649oC are achieved for ageing time in the range of 1 - 10 hours. For the above ageing parameters the investigated steels had: YS = 700-661 MPa, TS = 814-741 MPa and impact energy KCV = 150-170 J determined on Charpy V specimens at temperature -80oC. (author)

  20. The CCT diagrams of ultra low carbon bainitic steels and their impact toughness properties

    International Nuclear Information System (INIS)

    The CCT diagrams of ULCBNi steels, HN3MV, HN3MVCu having 5.1% Ni and 3.5% Ni and Cu bearing steels; HN3M1.5Cu, HSLA 100 have been determined. The reduced carbon concentration in steel, in order to prevent the formation of cementite, allowed for using nickel, manganese, chromium and molybdenum to enhance hardenability and refinement of the bainitic microstructures by lowering BS temperature. Copper and microadditions of vanadium and niobium are successfully used for precipitation strengthening of steel both in thermomechanically or heat treated conditions. Very good fracture toughness at low temperatures and high yield strength properties of HN3MVCu and HN3MV steels allowed for fulfillment of the requirements for steel plates for pressure vessels and cryogenic applications. (author)

  1. Analysis of microstructural variation and mechanical behaviors in submerged arc welded joint of high strength low carbon bainitic steel

    International Nuclear Information System (INIS)

    Microstructural variation in high strength low carbon bainitic steel weldment was investigated in detail by means of optical microscope, transmission electron microscope and scanning electron microscope equipped with electron backscattered diffraction. The results showed that the welded joint has various microstructures such as acicular ferrite, coarse granular ferrite and fine polygonal ferrite. The martensite–austenite (MA) constituent has a variable structure in each sub-zone, which includes fully martensite and fully retained austenite. Meanwhile, the fine grained heat affected zone has higher content of retained austenite than the welded metal (WM) and coarse grained heat affected zone (CGHAZ). The orientation relationship between retained austenite and product phases in the WM and CGHAZ is close to Kurdjumov–Sachs relationship. However, the polygonal ferrite in the fine grained HAZ has no specific orientation relationship with the neighboring retained austenite. The toughness of the coarse grained region is much lower than that of the WM because the coarse bainite contains many large MA constituents to assist the nucleation of microcracks and coarse cleavage facet lowers the ability to inhibit the crack propagation.

  2. Analysis of microstructural variation and mechanical behaviors in submerged arc welded joint of high strength low carbon bainitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Liangyun, E-mail: lly.liangyun@gmail.com [State Key Laboratory of Rolling Technology and Automation, Northeastern University, Shenyang 110819 (China); Qiu, Chunlin; Zhao, Dewen; Gao, Xiuhua; Du, Linxiu [State Key Laboratory of Rolling Technology and Automation, Northeastern University, Shenyang 110819 (China)

    2012-12-15

    Microstructural variation in high strength low carbon bainitic steel weldment was investigated in detail by means of optical microscope, transmission electron microscope and scanning electron microscope equipped with electron backscattered diffraction. The results showed that the welded joint has various microstructures such as acicular ferrite, coarse granular ferrite and fine polygonal ferrite. The martensite-austenite (MA) constituent has a variable structure in each sub-zone, which includes fully martensite and fully retained austenite. Meanwhile, the fine grained heat affected zone has higher content of retained austenite than the welded metal (WM) and coarse grained heat affected zone (CGHAZ). The orientation relationship between retained austenite and product phases in the WM and CGHAZ is close to Kurdjumov-Sachs relationship. However, the polygonal ferrite in the fine grained HAZ has no specific orientation relationship with the neighboring retained austenite. The toughness of the coarse grained region is much lower than that of the WM because the coarse bainite contains many large MA constituents to assist the nucleation of microcracks and coarse cleavage facet lowers the ability to inhibit the crack propagation.

  3. Variant selection during the γ-to-αb phase transformation in hot-rolled bainitic TRIP-aided steels

    International Nuclear Information System (INIS)

    The variant selection phenomenon during the austenite to bainite phase transformation in hot-rolled TRIP-aided steels was quantitatively characterized at the level of individual austenite grains. The reconstruction of the electron backscatter diffraction maps provided evidence that bainite grows by packets of laths sharing a common {1 1 1}γ plane in the austenite. The affect of hot deformation is to reduce the number of packets that form. It is suggested that slip activity is important in understanding this effect.

  4. Superplasticity of low carbon HSLA steel during bainite transformation. Teitanso teigokinko no beinaito hentai ni okeru chososei kyodo

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, H.; Yamamoto, S.; Miyaji, H.; Furubayashi, E. (National Research Inst. for Metals, Tsukuba, Ibaraki (Japan))

    1993-12-01

    Recently, the development of high strength low alloy steel (HSLA steel) of untempered type is advanced by using the comparatively high strength and excellent tenacity of the bainite or martensite of carbon remained being transformed. In the present researches, the superplasticity during the bainite transformation due to the continuous cooling and changes of the structure as well as the mechanical properties due to the superplastic deformation are examined with the samples of Mn-Cr-Mo system HSLA steel. The results obtained therefrom are shown as follows. The temperatre range of B[sub S] and bainite transformation is moving to the higher temperature side along with the increasing of the applied stress when it is over 60 MPa. The bainitic structure is composed of the mixture lath-like bainitic ferrite and granular bainitic ferrite in the use of having no applied stress, while the percentage of the latter increases simultaneously with the increasing of the applied stress. Transformation superplastic strain is increasing together with the increasing of the applied stress, and its increasing is over the linear function when the applied stress is above about 50 MPa. 22 refs., 9 figs., 2 tabs.

  5. Properties of bainitic T/P24 steel welded joints

    International Nuclear Information System (INIS)

    Examination results of T/P24 steel tube and pipe welded joints are presented, which find their application in conventional power installations for water-walls, headers and superheater tubes. Welded test joints without post-weld heat treatment (PWHT) and after stress relieving have been subjected to examinations and tests. The examination results proof, that PWHT is not necessary for thin-walled tubes made of T24 steel. In the case of thick elements, as the tested P24 steel pipes (φ 406 x 32 mm), PWHT is mandatory, but their application not always ensures the required impact strength 41 J. The decisive influence on the impact strength of welded joints, made in P24 steel pipes, has the bead deposition technique. (author)

  6. A Study of the Influence of Thermomechanical Controlled Processing on the Microstructure of Bainite in High Strength Plate Steel

    Science.gov (United States)

    Liang, Xiaojun; DeArdo, Anthony J.

    2014-10-01

    Steels with compositions that are hot rolled and cooled to exhibit high strength and good toughness often require a bainitic microstructure. This is especially true for plate steels for linepipe applications where strengths in excess of 690 MPa (100 ksi) are needed in thicknesses between approximately 6 and 30 mm. To ensure adequate strength and toughness, the steels should have adequate hardenability (C. E. >0.50 and Pcm >0.20), and are thermomechanically controlled processed, i.e., controlled rolled, followed by interrupted direct quenching to below the Bs temperature of the pancaked austenite. Bainite formed in this way can be defined as a polyphase mixture comprised a matrix phase of bainitic ferrite plus a higher carbon second phase or micro-constituent which can be martensite, retained austenite, or cementite, depending on circumstances. This second feature is predominately martensite in IDQ steels. Unlike pearlite, where the ferrite and cementite form cooperatively at the same moving interface, the bainitic ferrite and MA form in sequence with falling temperature below the Bs temperature or with increasing isothermal holding time. Several studies have found that the mechanical properties may vary strongly for different types of bainite, i.e., different forms of bainitic ferrite and/or MA. Thermomechanical controlled processing (TMCP) has been shown to be an important way to control the microstructure and mechanical properties in low carbon, high strength steel. This is especially true in the case of bainite formation, where the complexity of the austenite-bainite transformation makes its control through disciplined processing especially important. In this study, a low carbon, high manganese steel containing niobium was investigated to better understand the effects of austenite conditioning and cooling rates on the bainitic phase transformation, i.e., the formation of bainitic ferrite plus MA. Specimens were compared after transformation from recrystallized

  7. Powder metallurgical nanostructured medium carbon bainitic steel: Kinetics, structure, and in situ thermal stability studies

    Energy Technology Data Exchange (ETDEWEB)

    Lonardelli, I., E-mail: il244@cam.ac.uk [University of Cambridge, Materials Science and Metallurgy, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); University of Trento, Materials Engineering and Industrial Technologies, via Mesiano 77, 38123 Trento (Italy); Bortolotti, M. [Fondazione Bruno Kessler, via Sommarive 18, 38123 Trento (Italy); Beek, W. van [Swiss-Norwegian Beamlines, ESRF, BP 220, 38043 Grenoble Cedex (France); Girardini, L.; Zadra, M. [K4-Sint, via Dante 300, 38057 Pergine Valsugana (Italy); Bhadeshia, H.K.D.H. [University of Cambridge, Materials Science and Metallurgy, Pembroke Street, Cambridge CB2 3QZ (United Kingdom)

    2012-10-15

    It has been possible to produce incredibly fine plates of bainitic ferrite separated by a percolating network of retained austenite in a medium carbon steel produced by mechanical alloying followed by spark plasma sintering and isothermal heat treatment. This is because the sintering process limits the growth of the austenite grains to such an extent that the martensite-start temperature is suppressed in spite of the medium carbon concentration. Furthermore, the fine austenite grain size accelerates the bainite transformation, which can therefore be suppressed to low temperatures to obtain a nanostructure. Microscopy and in situ synchrotron X-ray diffraction were used to investigate the morphology and the thermal stability of the retained austenite during continuous heating. These latter experiments revealed a gradient of carbon concentration in the retained austenite and a reduced thermal stability in high carbon film-austenite. It was also possible to correlate the evolution of defect density and carbon depletion in both retained austenite and bainitic ferrite during tempering.

  8. Powder metallurgical nanostructured medium carbon bainitic steel: Kinetics, structure, and in situ thermal stability studies

    International Nuclear Information System (INIS)

    It has been possible to produce incredibly fine plates of bainitic ferrite separated by a percolating network of retained austenite in a medium carbon steel produced by mechanical alloying followed by spark plasma sintering and isothermal heat treatment. This is because the sintering process limits the growth of the austenite grains to such an extent that the martensite-start temperature is suppressed in spite of the medium carbon concentration. Furthermore, the fine austenite grain size accelerates the bainite transformation, which can therefore be suppressed to low temperatures to obtain a nanostructure. Microscopy and in situ synchrotron X-ray diffraction were used to investigate the morphology and the thermal stability of the retained austenite during continuous heating. These latter experiments revealed a gradient of carbon concentration in the retained austenite and a reduced thermal stability in high carbon film-austenite. It was also possible to correlate the evolution of defect density and carbon depletion in both retained austenite and bainitic ferrite during tempering.

  9. Molybdenum-containing ultra low-carbon bainitic steels for heavy plate applications

    International Nuclear Information System (INIS)

    A new family of molybdenum-containing ultra low-carbon bainitic (ULCB) structural steels has been investigated. These new steels were developed to replace conventional quenched plus tempered (Q+T) high yield strength steels. The results to date have indicated that a proper choice of alloy design and thermomechanical processing can lead to a very attractive family of steels with good mechanical properties in the as-hot rolled condition in sections up to 25.4 mm (1 in.) thick. Studies in progress have indicated that these steels can be used in heavy plate sections up to 100 mm (4 in.) with different molybdenum and nickel combinations than those reported in this paper. Another major advantage of the ULCB steels is that the weldability of these steels and their resistance to underbead cracking should both be considerably improved because of the very low carbon content in these molybdenum-containing ULCB steels. Preliminary weldability studies currently in progress indicate that these new steels have good weldability without the need for pre- and post-heating as that required for Q+T steels

  10. Al and Si Influences on Hydrogen Embrittlement of Carbide-Free Bainitic Steel

    Directory of Open Access Journals (Sweden)

    Yanguo Li

    2013-01-01

    Full Text Available A first-principle method based on the density functional theory was applied to investigate the Al and Si influences on the hydrogen embrittlement of carbide-free bainitic steel. The hydrogen preference site, binding energy, diffusion behaviour, and electronic structure were calculated. The results showed that hydrogen preferred to be at the tetrahedral site. The binding energy of the cell with Si was the highest and it was decreased to be the worst by adding hydrogen. The diffusion barrier of hydrogen in the cell containing Al was the highest, so it was difficult for hydrogen to diffuse. Thus, hydrogen embrittlement can be reduced by Al rather than Si.

  11. In-situ tensile test of high strength nanocrystalline bainitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, Mike, E-mail: mike.haddad@uni-ulm.de [Institute of Micro and Nanomaterials, University of Ulm, Ulm (Germany); Ivanisenko, Yulia; Courtois-Manara, Eglantine [Institute of Nanotechnology, Karlsruhe Institute of Technology, Karlsruhe (Germany); Fecht, Hans-Jörg [Institute of Micro and Nanomaterials, University of Ulm, Ulm (Germany)

    2015-01-03

    Because of its great importance in modern engineering and technology applications, steel continues to be highly relevant in the modern research field of nanocrystalline materials. Innovative processing methods and procedures are required for the production of such materials, which possess superior properties compared to their conventional counter parts. In this research, the original microstructure of a commercial C45 steel (Fe, 0.42–0.5 wt% C, 0.5–0.8 wt% Mn) was modified from ferritic–pearlitic to bainitic. Warm high pressure torsion for 5 rotations at 6 GPa and 350 °C was used to process the bainitic sample leading to an ultrafine/nano-scale grain size. A unique nano-crystalline microstructure consisting of equiaxed and elongated ferrite grains with a mean size smaller than 150 nm appeared in images taken by Transmission Electron Microscopy. Results of in-situ tensile testing in a scanning electron microscope showed very high tensile strength, on the order of 2100 MPa with a total elongation of 4.5% in comparison with 800 MPa and around 16% in the original state. Fracture occurred abruptly, without any sign of necking, and was typically caused by the stress concentration at a surface flaw. Also, stress concentrations near all surface defects were observed on the sample, visualized by the formation of shear bands. The fracture surface was covered with dimples, indicating ductile fracture. These properties are fully comparable with high strength, high alloyed steels.

  12. Effect of tempering upon the tensile properties of a nanostructured bainitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, H.S. [University of Technology, Baghdad (Iraq); Peet, M.J., E-mail: mjp54@cam.ac.uk [Department of Materials Science and Metallurgy, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Avettand-Fènoël, M-N. [Unité Matériaux Et Transformations (UMET) UMR CNRS 8207, Université, Lille 1, 59655 Villeneuve D' ASCQ (France); Bhadeshia, H.K.D.H. [Department of Materials Science and Metallurgy, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom)

    2014-10-06

    The tensile properties of a nanostructured carbide-free bainitic steel formed at 200–250 °C are compared against those after tempering sufficiently to remove the retained austenite. Although significant ductility is observed following tempering, a comparison of tempered and untempered samples shows that it is in fact reduced when a comparison is made at identical strength. The shape of the stress–strain curves shows clear evidence that the capacity for work hardening is reduced with the loss of austenite. The nanostructure of the steel transformed at 250 °C is examined by transmission electron microscopy, to compare the as-transformed to the tempered structure. In this case after tempering at 500 °C the energy absorbed during the tensile test is lower, due to the lower strength. Reduction of strength is caused by the slight coarsening of the bainite plates, and lower dislocation density after tempering. Considering the formation of carbide particles in high strength steel, impressive ductility is exhibited even in the tempered condition.

  13. Bainite transformation of low carbon Mn-Si TRIP-assisted multiphase steels: influence of silicon content on cementite precipitation and austenite retention

    International Nuclear Information System (INIS)

    Studies dealing with TRIP-assisted multiphase steels have emphasized the crucial role of the bainite transformation of silicon-rich intercritical austenite in the achievement of a good combination of strength and ductility. The present work deals with the bainite transformation in two steels differing in their silicon content. It is shown that both carbon enrichment of residual austenite and cementite precipitation influences the kinetics of the bainite transformation. A minimum silicon content is found to be necessary in order to prevent cementite precipitation from austenite during the formation of bainitic ferrite in such a way as to allow stabilisation of austenite by carbon enrichment. (orig.)

  14. Effect of Tempering Temperature on the Microstructure and Hardness of a Super-bainitic Steel Containing Co and Al

    OpenAIRE

    Hu, Feng; Wu, Kaiming; Hou, Tingping; Shirzadi, Amir Abbas

    2014-01-01

    The effect of tempering temperature, within the range of 400 to 700°C, on the microstructure and hardness of two super-bainitic steels, one as the control parent sample and the other with added Co & Al was investigated. Post-tempering examinations of the super-bainitic samples showed that low temperature tempering cycles (400–500°C) resulted in carbides formation, and some increases in the hardness possibly due to precipitation strengthening in the Co & Al contained steel. Once the tempering ...

  15. Effects of Cooling Conditions on Microstructure, Tensile Properties, and Charpy Impact Toughness of Low-Carbon High-Strength Bainitic Steels

    Science.gov (United States)

    Sung, Hyo Kyung; Shin, Sang Yong; Hwang, Byoungchul; Lee, Chang Gil; Lee, Sunghak

    2013-01-01

    In this study, four low-carbon high-strength bainitic steel specimens were fabricated by varying finish cooling temperatures and cooling rates, and their tensile and Charpy impact properties were investigated. All the bainitic steel specimens consisted of acicular ferrite, granular bainite, bainitic ferrite, and martensite-austenite constituents. The specimens fabricated with higher finish cooling temperature had a lower volume fraction of martensite-austenite constituent than the specimens fabricated with lower finish cooling temperature. The fast-cooled specimens had twice the volume fraction of bainitic ferrite and consequently higher yield and tensile strengths than the slow-cooled specimens. The energy transition temperature tended to increase with increasing effective grain size or with increasing volume fraction of granular bainite. The fast-cooled specimen fabricated with high finish cooling temperature and fast cooling rate showed the lowest energy transition temperature among the four specimens because of the lowest content of coarse granular bainite. These findings indicated that Charpy impact properties as well as strength could be improved by suppressing the formation of granular bainite, despite the presence of some hard microstructural constituents such as bainitic ferrite and martensite-austenite.

  16. Mechanical properties of nanostructured, low temperature bainitic steel designed using a thermodynamic model

    International Nuclear Information System (INIS)

    Nanostructured, low temperature bainitic steels with remarkable combination of ultimate tensile strength of about 2.5 GPa and high uniform elongation have been developed in the recent decade. To reduce the production cost of these steels, two chemical compositions were designed by using a thermodynamic model which was developed in Cambridge University by Bhadeshia. To attain optimum mechanical properties, the designed steels were transformed isothermally at the temperature range of 200-300 deg. C for different times. The optimum times for each temperature were estimated by evaluation of hardness and XRD results. The measurements of tensile properties and the fracture surface examination by scanning electron microscopy indicated that by modification of chemical composition the cost production of steel not only reduces, but also the mechanical properties particularly total elongation enhances slightly. The results of this study suggest that by using a thermodynamic model and without try and error it is possible to design a new steel with remarkable combination of mechanical properties.

  17. Microstructure and mechanical properties of a low carbon carbide-free bainitic steel co-alloyed with Al and Si

    International Nuclear Information System (INIS)

    Highlight: ► A low carbon carbide-free bainitic steel was produced. ► Co-alloying with Al and Si suppresses the precipitation of cementite. ► Fine carbide-free bainite laths and thin film-like retained austenite obtained. ► Excellent combination of strength, ductility and toughness enabled. -- Abstract: A low carbon, low alloy steel has been investigated for producing low carbon carbide-free bainitic microstructure by co-addition of alloying elements of aluminum and silicon. The influence of heat treatment process on microstructure, impact toughness as well as tensile properties was investigated by light optical microscopy, transmission electron microscopy, X-ray diffraction and mechanical property tests. The results demonstrate that the co-addition of aluminum and silicon in the investigated steel plays an effective role in suppressing the precipitation of cementite. A desired microstructure consisting of mainly fine-scale carbide-free bainitic ferrite and thin film-like retained austenite located between the ferrite laths was obtained and accordingly an excellent combination of toughness, ductility and strength was achieved by optimized heat treatments, i.e. by isothermal treatment at 320 °C for ∼84 min or more. The microstructure-mechanical property relationships are discussed.

  18. EBSD as a tool to identify and quantify bainite and ferrite in low-alloyed Al-TRIP steels.

    Science.gov (United States)

    Zaefferer, S; Romano, P; Friedel, F

    2008-06-01

    Bainite is thought to play an important role for the chemical and mechanical stabilization of metastable austenite in low-alloyed TRIP steels. Therefore, in order to understand and improve the material properties, it is important to locate and quantify the bainitic phase. To this aim, electron backscatter diffraction-based orientation microscopy has been employed. The main difficulty herewith is to distinguish bainitic ferrite from ferrite because both have bcc crystal structure. The most important difference between them is the occurrence of transformation induced geometrically necessary dislocations in the bainitic phase. To determine the areas with larger geometrically necessary dislocation density, the following orientation microscopy maps were explored: pattern quality maps, grain reference orientation deviation maps and kernel average misorientation maps. We show that only the latter allow a reliable separation of the bainitic and ferritic phase. The kernel average misorientation threshold value that separates both constituents is determined by an algorithm that searches for the smoothness of the boundaries between them. PMID:18503676

  19. Properties and application of new bainitic and martensitic creep resistance steels

    International Nuclear Information System (INIS)

    Supercritical operating parameters of lower emission power units, require novel creep resisting steels to be applied for boiler and pipe systems. Among them are T23 bainitic steels for water walls of boiler combustion chamber and martensitic VM12 steels for superheater coils were tested. RAFAKO S.A. has been co-operating with the Silesian Technical University in Katowice, the Institute of Welding and the Institute for Ferrous Metallurgy in Gliwice for several years now, initiating research and development programmes, implementing the new creep-resistant steels and actively participating in European programmes COST522 and COST536. This paper contains selected information and test results before implementation of the new creep-resistant steels, including: evaluation of working parameters, temperature conditions of main boiler components, which influence reliability and safety, selection of steels for furnace chamber components (approx. 2.5 % Cr) and steam superheater components (9-12 % Cr) destination, evaluation of the requested level of welded joints technological and strength properties, measurements and non-destructive examinations, evaluation of welded joints and HAZ structure by means of LM, TEM and SEM methods in the welding technology implementation process, evaluation of corrosion mechanisms and creep-resistance results - loss of service life - for selected evaporator and steam superheater components, as crucial elements in evaluation of reliability and safety of boiler equipment. Such an examination program includes assessment of steel structure stability during operation period in actual operational conditions. It was clearly shown that operation period have little impact on changes occurring in microstructure and other properties of examined steel grades. (author)

  20. Interaction of Hydrogen and Retained Austenite in Bainite/Martensite Dual-Phase High Strength Steel

    Institute of Scientific and Technical Information of China (English)

    GU Jia-lin; CHANG Kai-di; FANG Hong-sheng; YANG Zhi-gang; BAI Bing-zhe

    2004-01-01

    The hydrogen trapping phenomena in two bainite/martensite dual-phase high strength steels (U20Si and U20DSi) were investigated by electrochemical permeation technique. The hydrogen diffusivity was calculated from data of permeation delay time, and the diffusion coefficient in U20Si is far less than that in U20DSi. Moreover, the hydrogen diffusivity decreases as the volume percent of retained austenite increases. The experiment results show that there are different hydrogen trappings and different volume percents of retained austenite in U20Si and U20DSi. The retained austenite is precipitated as films. The trap binding energy for the retained austenite and hydrogen is calculated to be 40.4 kJ·mol-1.

  1. Carbide evolution in temper embrittled NiCrMoV bainitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Wittig, J.E. [Vanderbilt Univ., Dept. of Electrical Engineering, Nashville, TN (United States); Sinclair, R. [Stanford Univ., Dept. of Materials Science, Palo Alto, CA (United States)

    2004-01-01

    Phosphorus segregation to prior austenite grain boundaries in low alloy steel from exposure to temperatures of 300 to 600 C results in a susceptibility for intergranular fracture referred to as ''temper embrittlement''. It has been observed that alloying steel with Mo greatly reduces the phosphorus segregation kinetics. Therefore changes in the ferrite matrix composition from carbide precipitation and evolution involving Mo can influence the segregation phenomenon and fracture properties. This study uses analytical electron microscopy of extraction replicas to characterize the changes in carbide chemistry of a NiCrMoV bainitic steel with 0.25 wt% C that accompany the phosphorus segregation during aging at 480 C for up to 3400 hr. The steel was doped with 0.02 wt% P and tempered at 650 C to two different hardness levels, i.e., two different initial carbide distributions. The amount of grain boundary phosphorus segregation produced by aging at 480 C correlates with the level of molybdenum that remains in solution in the ferritic matrix whereas changes in vanadium and chromium appear to have less influence on the temper embrittlement. (orig.)

  2. Effects of B and Cu Addition and Cooling Rate on Microstructure and Mechanical Properties in Low-Carbon, High-Strength Bainitic Steels

    Science.gov (United States)

    Sung, Hyo Kyung; Shin, Sang Yong; Hwang, Byoungchul; Lee, Chang Gil; Lee, Sunghak

    2012-10-01

    The effects of B and Cu addition and cooling rate on microstructure and mechanical properties of low-carbon, high-strength bainitic steels were investigated in this study. The steel specimens were composed mostly of bainitic ferrite, together with small amounts of acicular ferrite, granular bainite, and martensite. The yield and tensile strengths of all the specimens were higher than 1000 MPa and 1150 MPa, respectively, whereas the upper shelf energy was higher than 160 J and energy transition temperature was lower than 208 K (-65 °C) in most specimens. The slow-cooled specimens tended to have the lower strengths, higher elongation, and lower energy transition temperature than the fast-cooled specimens. The Charpy notch toughness was improved with increasing volume fraction of acicular ferrite because acicular ferrites favorably worked for Charpy notch toughness even when other low-toughness microstructures such as bainitic ferrite and martensite were mixed together. To develop high-strength bainitic steels with an excellent combination of strength and toughness, the formation of bainitic microstructures mixed with acicular ferrite was needed, and the formation of granular bainite was prevented.

  3. Preperation of carbide-free bainitic steels for EBSD investigations; Praeparation von karbidfreien bainitischen Staehlen fuer EBSD-Untersuchungen

    Energy Technology Data Exchange (ETDEWEB)

    Hofer, Christina; Clemens, Helmut; Primig, Sophie [Montanuniv. Leoben (Austria). Dept. Metallkunde und Werkstoffpruefung

    2015-10-01

    Carbide-free bainitic steels are composed of bainitic ferrite laths, which are separated by films and larger islands of austenite, which is stabilized by carbon enrichment. Due to their multi-phase microstructure, the preparation of such steels for a characterization by means of electron backscatter diffraction (EBSD) represents a challenge. Attention must particularly be paid to prevent the transformation of the retained austenite to martensite during the preparation. This study compares the sample preparation by vibratory polishing using different suspensions to the electrolytic preparation. During vibratory polishing, it must be ensured that very little force is applied in order to prevent the metastable austenite from transforming. No influence of the different suspensions could be found. Electropolishing with a voltage of 40 V for 10 s at 23 C is well suited for microstructural investigations. However, the surface relief is too pronounced for EBSD analyses. OP-U polishing for 15 min subsequent to electropolishing accomplishes the best results.

  4. Short-term creep behavior of an X 37 Cr Mo V 5-1 hot-work tool steel with almost bainitic and fully martensitic microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Wurmbauer, H. [Department Physical Metallurgy and Material Testing, Montanuniversitaet Leoben (Austria); Materials Center Leoben Forschung GmbH, Leoben (Austria); Leitner, H. [Department Physical Metallurgy and Material Testing, Montanuniversitaet Leoben (Austria); Christian Doppler Laboratory of Early Stages of Precipitation, Montanuniversitaet Leoben (Austria); Panzenboeck, M.; Clemens, H. [Department Physical Metallurgy and Material Testing, Montanuniversitaet Leoben (Austria); Scheu, C. [Department of Chemistry and Biochemistry, Ludwig-Maximilians-University Munich (Germany)

    2010-07-15

    In this study two different heat treatments were conducted on an X 37 Cr Mo V 5-1 hot-work tool steel, resulting either in a tempered fully martensitic matrix or a matrix almost consisting of tempered bainite. Short-term creep tests were performed at a high stress level of 800 MPa and at temperatures in the range from 450 C to 500 C. Creep specimens consisting of a tempered fully martensitic microstructure exhibited a three times longer creep-to-rupture time, than those consisting of a tempered almost bainitic microstructure. Microstructural investigations of creep specimens were performed by transmission electron microscopy. Results of these investigations revealed that due to a lower cooling rate, which is necessary to form bainite, the tempered bainitic microstructure consists of large former bainitic plates, whereas tempered martensite shows fine former martensitic laths. Tempered bainite also exhibits a higher number density of large M{sub 3}C, M{sub 7}C{sub 3} and MC carbides than tempered martensite. Small M{sub 2}C carbides appear in both microstructures in the same quantity, however, nanometer-sized MC carbides could only be found in tempered martensite. Thus poor short-term creep behavior of the tempered almost bainitic microstructure can be explained by the lesser amount of strengthening relevant precipitates, a smaller size-effect due to distance of bainitic interfaces as well as lower solid solution hardening. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  5. Structural characterization of “carbide-free” bainite in a Fe–0.2C–1.5Si–2.5Mn steel

    Energy Technology Data Exchange (ETDEWEB)

    Hofer, Christina, E-mail: christina.hofer@unileoben.ac.at [Department of Physical Metallurgy and Materials Testing, Montanuniversitaet Leoben, Franz-Josef-Straße 18, 8700 Leoben (Austria); Leitner, Harald [Böhler Edelstahl GmbH & Co KG, Mariazeller Straße 25, 8605 Kapfenberg (Austria); Winkelhofer, Florian [voestalpine Stahl Linz GmbH, voestalpine-Straße 3, 4020 Linz (Austria); Clemens, Helmut; Primig, Sophie [Department of Physical Metallurgy and Materials Testing, Montanuniversitaet Leoben, Franz-Josef-Straße 18, 8700 Leoben (Austria)

    2015-04-15

    Low-alloyed, low C containing carbide-free bainitic steels are attractive candidates for applications in the automotive industry due to their well-balanced combination of high strength and ductility achieved in an economic way. In this work, their complex microstructure consisting of a mixture of bainitic ferrite, austenite with different morphologies and stabilities, martensite, M/A constituent and a few carbides has been investigated with metallographic and high-resolution techniques. After specific isothermal heat treatments in a dilatometer, a combination of LePera and Nital etching was applied to distinguish between bainite and martensite. Site-specific atom probe tips were prepared by means of scanning electron microscopy, electron backscatter diffraction and focused ion beam, revealing that “carbide-free” bainite consists of C depleted bainitic ferrite, C enriched retained austenite and occasional ε-carbides. Furthermore, it was found that the M/A constituent is highly dislocated and mainly martensitic. Its C content is increased compared to the nominal composition, but below the values obtained for retained austenite, explaining the lower transformation resistance. - Highlights: • Detailed top-down characterization of low C “carbide-free” bainitic steel • APT of all constituents in “carbide-free” bainite • Identification of ε-carbide based on its C content determined by APT • M/A constituent is mainly martensitic with austenitic areas at the boundaries • Lower C content of M/A constituent explains its lower stability.

  6. Modelling of the plasticity and brittle failure of the irradiated bainitic steels

    International Nuclear Information System (INIS)

    Low alloy steels are used in various equipments of nuclear reactors. Subjected to neutron irradiation produced during the operation of reactors, these materials exhibit significant changes in their microstructure, especially with the formation of radiation defects as interstitial loops, void clusters and precipitates. These defects in interactions with dislocations lead to a hardening and embrittlement which are directly related to the received dose and neutron flux. The plastic behaviour of non-irradiated low alloy bainitic steels has been the object of several modelling based on observations from experiments and atomistic simulations. Some of them result from thesis supported by EDF and CEA, which describe different strategies for the micro-mechanical modelling of brittle failure. Improvements in this work come from the integration of new physical characteristics and the attention paid to the representativeness of the microstructure: whereas realistic microstructures in terms of morphology and crystal orientations have been adopted, a dislocation density based constitutive model in the large deformation framework is used to describe crystal plasticity. This choice is justified by the need to take into account, in the constitutive modelling, the interactions between dislocations and irradiation defects under severe loading conditions. The plasticity laws have been implemented in the finite elements code ZeBuLoN in order to perform computations of polycrystalline aggregates. Such aggregates are representative volume elements. They thus provide the database required for the application of brittle failure models to structures. This multi-scale character confers to the modelling the status of 'micro-mechanical local approach of failure'. (author)

  7. Atomic scale observations of bainite transformation in a high carbon high silicon steel

    OpenAIRE

    García Caballero, Francisca; Miller, M. K.; Babu, S. S.; García Mateo, Carlos

    2007-01-01

    A fine-scale bainitic microstructure with high strength and high toughness has been achieved by transforming austenite at 200 ºC. X-ray diffraction analysis showed the carbon concentration of these bainitic ferrite plates to be higher than expected from paraequilibrium. Atom probe tomography revealed that a substantial quantity of carbon was trapped at dislocations in the vicinity of the ferrite/austenite interface. These results suggest that the carbon trapping at dislocations...

  8. Room Temperature Microstructure and Property Evaluation of a Heat Treated Fully Bainitic 20CrMoVTiB410 Steel

    Science.gov (United States)

    Srivatsa, Kulkarni; Srinivas, Perla; Balachandran, G.; Balasubramanian, V.

    2016-08-01

    The room temperature mechanical behavior of the fully bainitic steel grade 20CrMoVTiB410 was studied in the as-quenched and tempered conditions. The hardenability response of the steel during heat treatment was assessed. In the as-quenched condition itself, the steel exhibited a good combination of strength, ductility and toughness. Tempering the quenched steel till to 550°C, showed uniform mechanical properties. Tempering at 650°C showed secondary hardening behaviour, where the highest strength and least impact toughness was observed. Tempering at 700°C showed a sharp decrease in strength but with significant enhancement of toughness. The properties obtained were correlated with the microstructure and phase analysis was established using optical, scanning electron microscope, transmission electron microscope and x-ray diffraction techniques.

  9. Effect of isothermal bainitic transformation temperature on retained austenite fraction in C-Mn-Si-Al-Nb-Ti TRIP-type steel

    OpenAIRE

    A. Grajcar; H. Krztoń

    2009-01-01

    Purpose: The aim of the paper is to determine the influence of isothermal bainitic transformation temperature on a fraction of retained austenite for a new-developed C-Mn-Si-Al-Nb-Ti TRIP-type steel.Design/methodology/approach: The thermo-mechanical processing was realized in a multi-stage compression test by the use of the Gleeble 3800 thermomechanical simulator. The steel was subjected to six variants of processing with an isothermal bainitic transformation temperature in a range from 250 t...

  10. A FIM-atom probe investigation of the bainite transformation in CrMo steel

    International Nuclear Information System (INIS)

    To obtain a better understanding of the role played by Cr and Mo in the bainite transformation a Field-Ion Microscope - Atom Probe was constructed in order to study the distribution of the alloying elements near various types of boundaries on atomic scale. The distribution of alloying elements measured with this instrument is not so smooth on atomic scale as suggested by microprobe analysis. In a coherent twin boundary, formed during the bainite transformation, a depletion of the substitutionals Cr and Mo and an enhancement of the C content is observed, which is in accordance with the atomic model of a B.C.C. twin. In the twin plane the interstitial sites are even larger than the F.C.C. octahedral sites and this plane can act as an effective sink for the carbon atoms from bainitic ferrite. The depletion of Cr and Mo from the twin plane is due to interface coherency. (Auth.)

  11. Evolution of microstructure in 100Cr6 steel after cooling from a thixoforming temperature to bainitic transformation ranges

    International Nuclear Information System (INIS)

    A new concept for the isothermal heat treatment of thixo-elements, consisting of controlled cooling from a semi-solid metal processing (SSM) range, was proposed. 100Cr6 steel (0.97% C, 1.4% Cr, 0.4% Si, 0.4% Mn bal. Fe) after forging was used as the starting material. The DSC analysis was used to determine the liquid phase fraction vs temperature in the solidus–liquidus range. The temperatures and kinetics of bainite transformation after cooling the steel in the semi-solid state were calculated based on the Chester and Bhadeshia models. The steel was heated up to 1425 °C in order to obtain about 25% of the liquid fraction. Then it was cooled in oil at three different temperatures: 135 °C, 235 °C and 335 °C, at which the samples were held for 5 h. The microstructure of the samples annealed at 135 °C consisted of globular grains (the average size of 323 µm), where coarse needles of martensite were observed. They were surrounded by an eutectic mixture of chemical composition different from that of the globular grains. The electron diffraction pattern (SAEDP) showed reflections from α′-Fe and from Fe3C carbides. The X-ray diffraction confirmed the presence of martensite, austenite and carbides to the amount of 74.5%, 22% and 3.5% respectively. The average hardness of samples was 735HV10, while the compression strength attained 3810 MPa at the plastic strain of 8.6%. The samples cooled down to 235 °C also showed globular grains surrounded by the eutectic mixture. The TEM studies allowed researchers to identify lower bainite with a plate thickness of about 500 nm (SAEDP from that area showed reflections from α-Fe and Fe3C carbides). X-ray diffraction confirmed the presence of 90% ferrite, 6% austenite and 4% carbide. The average hardness of samples annealed at 235 °C decreased to 627HV10, while the compression strength decreased to 3100 MPa. The plastic strain increased to 32%. The microstructure of the samples after cooling and treatment at 335

  12. Evolution of microstructure in 100Cr6 steel after cooling from a thixoforming temperature to bainitic transformation ranges

    Energy Technology Data Exchange (ETDEWEB)

    Rogal, Łukasz, E-mail: l.rogal@imim.pl [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Street, 30-059 Krakow (Poland); Korpala, Grzegorz [Institut für Metallformung, TU Bergakademie Freiberg, 4 Bernhard-von-Cotta-Straße, 09596 Freiberg (Germany); Dutkiewicz, Jan [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Street, 30-059 Krakow (Poland)

    2015-01-29

    A new concept for the isothermal heat treatment of thixo-elements, consisting of controlled cooling from a semi-solid metal processing (SSM) range, was proposed. 100Cr6 steel (0.97% C, 1.4% Cr, 0.4% Si, 0.4% Mn bal. Fe) after forging was used as the starting material. The DSC analysis was used to determine the liquid phase fraction vs temperature in the solidus–liquidus range. The temperatures and kinetics of bainite transformation after cooling the steel in the semi-solid state were calculated based on the Chester and Bhadeshia models. The steel was heated up to 1425 °C in order to obtain about 25% of the liquid fraction. Then it was cooled in oil at three different temperatures: 135 °C, 235 °C and 335 °C, at which the samples were held for 5 h. The microstructure of the samples annealed at 135 °C consisted of globular grains (the average size of 323 µm), where coarse needles of martensite were observed. They were surrounded by an eutectic mixture of chemical composition different from that of the globular grains. The electron diffraction pattern (SAEDP) showed reflections from α′-Fe and from Fe{sub 3}C carbides. The X-ray diffraction confirmed the presence of martensite, austenite and carbides to the amount of 74.5%, 22% and 3.5% respectively. The average hardness of samples was 735HV{sub 10}, while the compression strength attained 3810 MPa at the plastic strain of 8.6%. The samples cooled down to 235 °C also showed globular grains surrounded by the eutectic mixture. The TEM studies allowed researchers to identify lower bainite with a plate thickness of about 500 nm (SAEDP from that area showed reflections from α-Fe and Fe{sub 3}C carbides). X-ray diffraction confirmed the presence of 90% ferrite, 6% austenite and 4% carbide. The average hardness of samples annealed at 235 °C decreased to 627HV{sub 10}, while the compression strength decreased to 3100 MPa. The plastic strain increased to 32%. The microstructure of the samples after cooling and

  13. Ultrahigh strength and low yield ratio of niobium-microalloyed 900 MPa pipeline steel with nano/ultrafine bainitic lath

    International Nuclear Information System (INIS)

    An ultra-low carbon niobium-microalloyed steel with yield strength of ∼900 MPa has been processed on a pilot-plant scale. The microstructure of the steel is primarily characterized by lower bainite and acicular ferrite, with small fraction of lath-martensite and martensite-austenite (MA) constituents. Bainite is present as fine domains. A combination of niobium and titanium precipitates was observed at the grain boundaries and in the interior of the grains and includes irregular (∼40-150 nm of (Nb, Ti)(C, N)) and fine cuboidal/spherical particles of NbC (∼30-50 nm). It was observed that accelerated cooling inhibited the precipitation of Nb and Ti carbides. The Charpy impact toughness at -20 deg. C was 200 J and tensile elongation was 15% with the yield ratio of less than 0.84. The good matching of high strength and low yield ratio was realized by two-stage thermo-mechanical rolling combined with fast cooling.

  14. Effects of Cu and B addition on microstructure and mechanical properties of high-strength bainitic steels

    International Nuclear Information System (INIS)

    Effects of Cu and B addition on microstructure and mechanical properties of high-strength bainitic steels were investigated in this study. Six kinds of steels were fabricated by controlling the amount of Cu and B addition, and their microstructures and tensile and Charpy impact properties were investigated. Their effective grain sizes were also characterized by the electron back-scatter diffraction analysis. The tensile test results indicated that the B- or Cu-containing steels had the higher yield and tensile strengths than the B- or Cu-free steels because their volume fractions of acicular ferrite and martensite were quite high. The B- or Cu-free steels had the higher upper shelf energy than the B- or Cu-containing steels because of their lower volume fraction of martensite. In the steel containing 10 ppm B without Cu, the best combination of high strengths, high upper shelf energy, and low energy transition temperature could be obtained by the decrease in effective grain size due to the presence of acicular ferrite having fine effective grain size.

  15. Corrosion behavior of each phase in low carbon microalloyed ferrite–bainite dual-phase steel: Experiments and modeling

    International Nuclear Information System (INIS)

    Highlights: •Establishing a model for describing the corrosion behavior of multiphase steel. •Quantitatively assessing the corrosion rate of each phase in multiphase steel. •Establishing a function to predict the surface roughness of corrosion morphology. •Defining an index to assess galvanic corrosion at phase-scale in multiphase steel. •The phase distribution affects the service safety of multiphase steel. -- Abstract: In situ observation of the initial corrosion behavior of a low carbon microalloyed ferrite–bainite dual-phase steel showed that the corrosion originated from the inside of ferrite and ferrite boundary. In addition, a model for describing the corrosion behavior of each phase in multiphase steel was established. Based on this model, a method to quantitatively assess the corrosion rate of each phase was presented by white light interference, and the relationship between the surface roughness and corrosion morphology was also established. Meanwhile, the galvanic corrosion at phase-scale and the influence of phase distribution on service safety of multiphase steel were discussed

  16. Effect of boron addition on the microstructures and mechanical properties of thermomechanically processed and tempered low carbon bainitic steels

    Institute of Scientific and Technical Information of China (English)

    Liangyun LAN; Chunlin QIU; Ping ZHOU; Dewen ZHAO; Canming LI; Xiuhua GAO; Linxiu DU

    2011-01-01

    Thermomechanical process and tempering heat treatment were employed to produce the experimental steel plates.The effect of boron addition on the microstructure and mechanical properties of low carbon bainitic steels was studied in this paper.Microstructure observation and crystallographic features were conducted by using optical microscopy,SEM,TEM and electron back scattering diffraction (EBSD) analysis.The results showed that under the same rolling processes and heat treatment conditions,a substantial increase in strength is obtained by addition of boron into steel,but accompanied by an obvious drop in toughness.New martensite phase forms along the grain boundaries on tempering at 650 ℃ mainly due to boron segregation,which can further deteriorate impact toughness of the boron bearing steel.The EBSD analysis showed that high angle grain boundary,is not responsible for the deteriorated toughness of the boron bearing steel because it has relatively higher percentage of high angle grain boundary than the boron free steel.The low toughness of the boron bearing steel is mainly attributed to the coarse boride precipitated particles according to the results of fractograph observation.

  17. Direct measurement of carbon enrichment in the incomplete bainite transformation in Mo added low carbon steels

    International Nuclear Information System (INIS)

    The overall kinetics and carbon enrichment in austenite during the incomplete isothermal bainite transformation in Fe–0.1C–1.5Mn–(0, 0.03, 0.3, 0.5, 1)Mo (mass%) alloys were investigated with quantitative metallography and Electron Probe Microanalysis in the transformation temperature range of 773–873 K. The incomplete transformation appears at 823–873 K when Mo addition exceeds 0.3 mass%; at 773 K substantial carbide precipitation accompanies bainite transformation and no transformation stasis is observed. Transformed fractions in the stasis stage are hardly affected by prior austenite grain size. Carbon concentrations in austenite in the stasis stage are lower than T0 line and decrease with the increase of Mo addition and temperature. T0′ limit, solute drag and WBs limit theories are used to examine the experimentally measured carbon concentration limits in austenite, and their respective flaws are pointed out

  18. Experimental study and local approach of cleavage crack arrest in a bainitic steel

    International Nuclear Information System (INIS)

    EDF wants to complete the assessment of reactor pressure vessels, usually based on crack initiation concept, by crack arrest concept. The work aims at improving the knowledge of cleavage crack arrest in a reactor pressure vessel steel. For that purpose, isothermal crack arrest experiments were performed for temperatures ranging from - 150 C up to - 50 C on compact tensile specimens and on pre-cracked rings submitted to compressive loading. Fractographic observations revealed that the whole crack propagation and arrest occurs by cleavage even if ductile tearing occurs before initiation of the unstable crack propagation. A local cleavage crack arrest criterion is applied in finite element computations carried out in elasto-visco-plasticity and in full dynamics: the crack propagates since the largest principal stress reaches a critical stress. The application of this criterion on the experiments leads to a good prediction of the crack speed and of the crack length and shows that the critical stress increases with the temperature in relation with dissipation features observed on the fracture surfaces. Dependence to the geometry is observed; it can be due to the assumption used for the 2D computations. The study of the structural dynamic shows that the crack arrest phenomenon is very linked to the global dynamics of the structure: crack arrest and crack closure occur approximately at the same time. (author)

  19. Very Strong Bainite

    OpenAIRE

    García Caballero, Francisca

    2004-01-01

    Steel with an ultimate tensile strength of 2500 MPa, a hardness at 600-670 HV and toughness in excess of 30-40 MPa m1/2 is the result of exciting new developments with bainite. The simple process route involved avoids rapid cooling so that residual stresses can in principle be avoided even in large pieces. The microstructure is generated at temperatures which are so low that the diffusion of iron is inconceivable during the course of the transformation to bainite. As a result, slender plates ...

  20. Effect of isothermal bainitic transformation temperature on retained austenite fraction in C-Mn-Si-Al-Nb-Ti TRIP-type steel

    Directory of Open Access Journals (Sweden)

    A. Grajcar

    2009-08-01

    Full Text Available Purpose: The aim of the paper is to determine the influence of isothermal bainitic transformation temperature on a fraction of retained austenite for a new-developed C-Mn-Si-Al-Nb-Ti TRIP-type steel.Design/methodology/approach: The thermo-mechanical processing was realized in a multi-stage compression test by the use of the Gleeble 3800 thermomechanical simulator. The steel was subjected to six variants of processing with an isothermal bainitic transformation temperature in a range from 250 to 500°C. Identification of phase composition was achieved using microstructure observations and X-ray diffraction. To determine the fraction of retained austenite the Rietveld method was applied.Findings: The maximum fraction of retained austenite equal up to 16% can be obtained for the temperatures of isothermal bainitic transformation from 400 to 450°C, while the maximum carbon content in the γ phase equal 1.5 wt.% is present at the temperature of 350°C. Below 350°C due to high Ms temperature, the largest grains of retained austenite located in the ferritic matrix transform to marteniste. In a temperature range from 350 to 450°C, the Msγ temperature has a negative value, stabilizing the retained austenite.Research limitations/implications: To determine in detail the influence of isothermal bainitic transformation conditions on a fraction of retained austenite, the knowledge of the effect of isothermal holding time is also important.Practical implications: The obtained microstructures and especially retained austenite fraction dependent on an isothermal bainitic transformation temperature can be useful in optimization of thermo-mechanical processing conditions of C-Mn-Si-Al TRIP-type steels.Originality/value: Combined colour etching and X-ray diffraction methods were applied for microstructure identification of modern group of TRIP steels predicted to use in the automotive industry.

  1. Microstructural effects on the yield strength and its temperature dependence in a bainitic precipitation hardened Cr-Mo-V steel

    International Nuclear Information System (INIS)

    The plastic deformation behaviour of a precipitation hardened bainitic Cr-Mo-V steel is analyzed at ambient and low temperatures. The temperature dependent component of the yield strength is composed of the Peierls-Nabarro force and also partly of the strengthening contribution of the lath- and cell boundaries or the solid solution hardening. The temperature dependence below 230 K is in accordance with the models presented by Yanoshevich and Ryvkina as well as Dorn and Rajnak. The temperature independent component can be calculated merely from the dislocation density, which is stabilized by the vanadium-rich carbides. The linear additivity cannot be used for the superposition of the strengthening effects of various strengthening parameters, By using the phenomenological approach starting from the dislocation movement mechanisms upon yielding the laws for the superposition are discussed. (author)

  2. Temperature dependant polycrystal model application to bainitic steel behavior under tri-axial loading in the ductile-brittle transition

    International Nuclear Information System (INIS)

    A polycrystal finite element (FE) model describing the temperature evolution of low carbon steel is proposed in order to forecast the local mechanical fields as a function of temperature, for bainitic microstructure submitted to tri-axial loading. The model is designed for finite strains, large lattice rotations and temperatures ranging into the brittle-ductile transition domain. The dislocation densities are the internal variables. At low temperature in Body Centred Cubic (BCC) materials, plasticity is governed by double kink nucleation of screw dislocations, whereas at high temperature, plasticity depends on interactions between mobile dislocations and the forest dislocations. In this paper, the constitutive law and the evolution of the dislocation densities are written as a function of temperature and describe low and high temperature mechanisms. The studied aggregates are built from Electron Back Scattering Diffraction (EBSD) images of real bainitic steel. The aggregate is submitted to a tri-axial loading in order to describe the material at a crack tip. Mechanical parameters are deduced from mechanical tests. The local strain and stress fields, computed for different applied loadings, present local variations which depend on temperature and on tri-axial ratio. The distribution curves of the maximal principal stresses show that heterogeneities respectively increase with temperature and decrease with tri-axial ratio. A direct application of this model provides the evaluation of the rupture probability within the aggregate, which is treated as the elementary volume in the weak link theory. A comparison with the Beremin criterion calibrated on experimental data, shows that the computed fracture probability dispersion induced by the stress heterogeneities is of the same order than the measured dispersion. Temperature and stress tri-axiality ratio effects are also investigated. It is shown that these two parameters have a strong effect on fracture owing to their

  3. Vertical Short Crack Initiation in Medium Carbon Bainitic Steel Under Mild Tractive Rolling Contact

    Institute of Scientific and Technical Information of China (English)

    DOU Peng; SUO Shuang-fu; BAI Bing-zhe; YANG Zhi-gang; LI You-guo

    2008-01-01

    To improve the current grinding procedure of the back-up roll of CVC hot rolling mills so that the back-up roll service life can be extended, the crack initiation and propagation behavior of medium carbon bainitie back-up roll steel was investigated, a kind of asperity-scale, surface originated vertical short cracks occurred at 5 × 102 -1 × 104 cycles. Theoretical analysis indicated that the maximum tensile stress occurring at the back edge of the contact of as-perities keeps at above 1 347. 97 MPa, and ratcheting and cyclic plastic deformation take place at such sites within 1 × 104 cycles. The early initiation of the vertical short cracks is caused by the asperity contact. According to the crack initi-ation mechanism, short crack behavior and preventive grinding strategy, steel consumption can be reduced considera-bly by decreasing the surface roughness and removing the asperity influenced surface thin layer at about 70%-80% of the surface distress life.

  4. Ultra-high cycle fatigue behavior of high strength steel with carbide-free bainite/martensite complex microstructure

    Institute of Scientific and Technical Information of China (English)

    Xue-xia Xu; Yang Yu; Wen-long Cui; Bing-zhe Bai; Jia-lin Gu

    2009-01-01

    The ultra-high cycle fatigue behavior of a novel high strength steel with carbide-free bainite/martensite (CFB/M) complex microstructure was studied. The ultra-high cycle fatigue properties were measured by ultrasonic fatigue testing equipment at a fre-quency of 20 kHz. It is found that there is no horizontal part in the S-N curve and fatigue fracture occurs when the life of specimens exceeds 107 cycles. In addition, the origination of fatigue cracks tends to transfer from the surface to interior of specimens as the fa-tigue cycle exceeds 107 , and the fatigue crack originations of many specimens are not induced by inclusions, but by some kind of "soft structure". It is shown that the studied high strength steel performs good ultra-high cycle fatigue properties. The ultra-high fa-tigue mechanism was discussed and it is suggested that specific CFB/M complex microstrueture of the studied steel contributes to itssuperior properties.

  5. Effect of heat treatment and cleanness of ultra low carbon bainitic (ULCB) steel on its impact toughness

    International Nuclear Information System (INIS)

    The small variations in sulphur and carbon concentrations can have a major influence on the impact transition temperature (ITT) of ultra low carbon HSLA-100 steel which has been quenched in water and tempered (WQ and T). Since the average carbon concentration is very low thus sensitivity of ITT to heat treatment parameters depends also on the yield strength increase due to precipitation effect of εCu phase. The regression analysis has been used to establish equations taking into account those parameters. The properties of a mixed microstructure formed from partially austenitic regions have been also considered. The fine austenitic grains transform into more desirable fine bainitic ferrite phases with lower hardness values and higher toughness. On the other hand, if cooling rate is sufficiently large, then the carbon enriched austenite transforms partially into hard martensite and some of remaining untransformed austenite being retained to ambient temperature. Because hard martensite islands are located in much softer surroundings consisting of tempered ferrite, they do not cause a general reduction in impact toughness tests. Due to further grain refinement of microstructure the measured toughness on Charpy V specimens can be very high at low temperatures. The very detrimental effect of sulphur in ULCB steel has been confirmed by presented results. (author)

  6. Effect of bainitic transformation temperature on the mechanical behavior of cold-rolled TRIP steels studied with in-situ high-energy X-ray diffraction

    International Nuclear Information System (INIS)

    The effect of bainitic transformation temperature (400 and 450 °C) after intercritical annealing on the mechanical behavior of a low alloyed C–Mn–Al–Si cold-rolled TRIP steel was investigated using the in-situ high-energy X-ray diffraction technique. It was found that the mechanical behaviors of TRIP steels were dominated by the micromechanical behaviors of constituent phases, such as yield strength of each phase and stress partitioning among different phases, as well as the transformation kinetics of retained austenite during plastic deformation. The microstructures obtained at different bainitic transformation temperatures were similar, but exhibited obviously different mechanical behaviors. The retained austenite in the sample treated at 450 °C with lower carbon content and yield strength was less stable and transformed into martensite at a relatively faster speed during deformation leading to a higher ultimate tensile strength but a smaller uniform elongation. In addition, stress partitioning among constituent phases was also obtained for the investigated steels in such a way that the ferrite matrix undertook smaller stresses and the bainitic ferrite, martensite and retained austenite bore larger ones during plastic deformation. The retained austenite in the sample treated at 400 °C with higher carbon content displayed significantly higher strength and relatively stronger work-hardening capabilities during deformation in comparison to those of the sample treated at 450 °C

  7. Structure Character of M-A Constituent in CGHAZ of New Ultra-Low Carbon Bainitic Steel under Laser Welding Conditions

    Institute of Scientific and Technical Information of China (English)

    Lin ZHAO; Wuzhu CHEN; Xudong ZHANG; Jiguo SHAN

    2006-01-01

    800 MPa grade new ultra-low carbon bainitic (NULCB) steel is the recently developed new generation steel.The microstructure in the coarse-grained heat-affected zone (CGHAZ) of NULCB steel under laser welding conditions was investigated by thermal simulation. The influence of the cooling time from 800℃ to 500℃,t8/5 (0.3~30 s), on the microstructure of the CGHAZ was discussed. The experimental results indicate that the microstructure of the CGHAZ is only the granular bainite which consists of bainitic ferrite (BF) lath and M-A constituent while t8/5 is 0.3~30 s. The M-A constituent consists of twinned martensite and residual austenite, and the change of the volume fraction of the residual austenite in the M-A constituent is very small when t8/5 is between 0.3 and 30 s. The morphology of the M-A constituent obviously changes with the variation of t8/5. As t8/5 increases, the average width, gross and shape parameter of the M-A constituent increase, while the line density of the M-A constituent decreases.

  8. Effect of Si on Wear Resistance of Bainitic Cast Steel under High Stress Impact%硅对贝氏体铸钢高应力冲击磨损性能的影响

    Institute of Scientific and Technical Information of China (English)

    黄进峰; 方鸿生; 徐平光; 郑燕康

    2001-01-01

    The high stress-wear resistance and mechanism for bainitic cast steels with different Si content (0.7 %~2.4 %) have been studied systematically.The experiments have shown that the wear loss of high Si bainitic cast steels is only about 1/2 times as that of low Si baini tic cast steels, showing better wear resistance of the former under high stress impact.The reason is that the impact wear mechanism is different for low and hi gh Si bainitic cast steels.Low Si bainitic cast steel has poor wear resistance under high stress impact because of its low toughness, coarse dendrite and micro -segregation, etc.So the damage cracks are easily formed in the wear surface b efore formation of white layer, and propagate inside the deformation zone and ma trix, exhibiting mechanism of deformation zone and matrix delamination.The imp act toughness of high Si bainitic cast steels are improved apparently for the re ason that the brittle cementite is replaced by ductile retained austentite film, resulting in the brittle delamination of white layer.%研究了不同硅含量(0.7 %~2.4 %,质量分数,下 同)贝氏体铸钢的抗高应力磨损性能和失效机制。结果表明:高硅贝氏体铸钢的耐磨性能较 低硅钢显著提高,其磨损失重约是低硅贝氏体铸钢的1/2。这是因为硅使贝氏体铸钢在高应 力冲击磨损下表现出不同的失效机制。低硅(0.7 %)贝氏体铸钢由于韧性低、组织结构粗大 及树枝晶的微区成分偏析,故材料抵抗冲击的能力很低,常在表面还未形成强烈变形层(白 层)甚至变形层时,就在变形层和材料基体内产生裂纹并扩展,故低硅贝氏体铸钢的失效方 式为变形层和基体剥落机制。而硅含量为1.6 %~2.4 %的高硅贝氏体铸钢,因脆性的渗碳体 被韧性的残余奥氏体所代替,钢的韧性显著提高,失效方式表现为白层的剥落机制。

  9. The influence of martensite, bainite and ferrite on the as-quenched constitutive response of simultaneously quenched and deformed boron steel – Experiments and model

    International Nuclear Information System (INIS)

    Highlights: • Gleeble tests were conducted to quench and simultaneously deform boron steel. • Different as-quenched vol. fractions of martensite, bainite and ferrite were observed. • Low to int. strain rate tensile tests were conducted on the as-quenched materials. • The presence of ferrite improved the uniform elongation, hardening rate and toughness. • A rate sensitive const. model was developed for varying vol fract. mart/bain/ferrite. - Abstract: This paper examines the relationship between as-formed microstructure and mechanical properties of a hot stamped boron steel used in automotive structural applications. Boron steel sheet metal blanks were austenized and quenched at cooling rates of 30 °C/s, 15 °C/s and 10 °C/s within a Gleeble thermal–mechanical simulator. For each cooling rate condition, the blanks were simultaneously deformed at temperatures of 600 °C and 800 °C. A strain of approximately 0.20 was imposed in the middle of the blanks, from which miniature tensile specimens were extracted. Depending on the cooling rate and deformation temperature imposed on the specimens, some of the as-quenched microstructures consisted of predominantly martensite and bainite, while others consisted of martensite, bainite and ferrite. Optical and SEM metallographraphic techniques were used to quantify the area fractions of the phases present and quasi-static (0.003 s−1) uniaxial tests were conducted on the miniature tensile specimens. The results revealed that an area fraction of ferrite greater than 6% led to an increased uniform elongation and an increase in n-value without affecting the strength of the material for equivalent hardness levels. This finding resulted in improved energy absorption due to the presence of ferrite and showed that a material with a predominantly bainitic microstructure containing 16% ferrite (with 257 HV) resulted in a 28% increase in energy absorption when compared to a material condition that was fully bainitic with a

  10. Bainite orientation in plastically deformed austenite

    OpenAIRE

    Klobčar, Damjan; Shirzadi, A. A.; Abreu, H.; Pocock, L.; Withers, P.J.; Bhadeshia, Harshad Kumar Dharamshi Hansraj

    2015-01-01

    Experiments have been conducted to see whether specific crystallographic variants of bainite form in polycrystalline steel when transformation occurs from plastically deformed austenite which is otherwise free from externally applied stress. It is demonstrated by studying both overall and microtexture that there is no perceptible variant selection as bainite forms. Indeed, the texture is found to weaken on transformation.

  11. Strong tough low-carbon bainite structural steels exposed to heat treatment and mechanical working

    International Nuclear Information System (INIS)

    A review of results of studying the mechanical properties and structure of extremely strong construction low-pearlite and pearlite-free steels subjected to thermomechanical processing (TMP) is presented. The development of TMP of low-pearlite and pearlite-free steels has led to creation of steel of the following composition: 0.06% of C; 1.8% of Mn; 0.3% of Mo; 0.05-0.09% of Nb. Depending on the kind of TMP the most important parameters of which are the temperature of the termination of rolling and the total deformation below 900 deg C, transformation in these steels occurs partially or completely in the intermediate domain. The increased density of dislocations of beinite structure affects substantially the increase in the yield limit. High degrees of squeezing at temperatures below 870 deg C promote formation of ferrite nuclei. The laboratory rolling demonstrates that by selecting the conditions of TMP one can control the mechanical properties of a steel. The sheets of 13 mm thick allow to obtain the guaranteed values of the yield limit of 70 kgf/mm2 the transition temperature T50 = -25 deg C, whereas after rolling under different conditions the low-temperature limit of cold shortness is - 125 deg C, and the yield limit - 45 kgf/mm2. As followed from the estimate of numerous industrial experiments, with sheets 20 mm thick in hot-rolled state one can obtain the yield limit no less than 50 kgf/mm2. On rolling mills that make possible to produce large deformation at low temperature these values can be increased. For instance, with sheets 30 mm thick one can obtain the yield limit of 56 kgf/mm2 and the transition temperature of - 60 deg C. The dependence of the yield limit on the holding time in steel tempering is given. The steel possesses a considerable reserve of the increase of strength due to dispersion hardening, which after tempering at 600-625 deg C constitutes 8-12 kgf/mm2. Because of low carbon content, this steel is characterized by good weldability

  12. Fracture Toughness and Strength in a New Class of Bainitic Chromium-Tungsten Steels

    Energy Technology Data Exchange (ETDEWEB)

    Mao, S. X.; Sikka, V. K.

    2006-06-01

    This project dealt with developing an understanding of the toughening and stengthening mechanisms for a new class of Fe-3Cr-W(V) steels developed at Oak Ridge National Laboratory (ORNL) in collaboration with Nooter Corporation and other industrial partners. The new steele had 50% higher tensile strength up to 650 degrees Celsius than currently used steels and the potential for not requiring any postweld heat treatment (PWHT) and for reducing equipment weight by 25%. This project was closely related to the Nooter project described in the report Development of a New Class of Fe-3Cr-W(V) Ferritic steels for Industrial Process Applications (ORNL/TM-2005/82). The project was carried out jointly by the University of Pittsburgh and ORNL. The University of Pittsburgh carried out fracture toughness measurements and microstructural analysis on base metal and welded plates prepared at ORNL. The project focused on three areas. The first dealt with detailed microstructural analysis of base compositions of 3Cr-3WV and 3Cr-3WBV(Ta) in both normalized (N) and normalized and tempered (NT) conditions. The second aspect of the prject dealt with determining tensile properties and fracture toughness values of K{subIC} at room temperature for both 3Cr-3Wv and 3Cr-3WV(Ta) compositions. The third focus of the project was to measure the fracture toughness values of the base metal and the heat-affectged zone (HAZ) of a plate of Fe-3Cr-W(Mo)V steel plate welded by the gas tungsten are (GTA) process. The HAZ toughness was measured in both the as-welded and the PWHT condition.

  13. Direct Observations of Austenite, Bainite and Martensite Formation During Arc Welding of 1045 Steel using Time Resolved X-Ray Diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Elmer, J; Palmer, T; Babu, S; Zhang, W; DebRoy, T

    2004-02-17

    In-situ Time Resolved X-Ray Diffraction (TRXRD) experiments were performed during stationary gas tungsten arc (GTA) welding of AISI 1045 C-Mn steel. These synchrotron-based experiments tracked, in real time, phase transformations in the heat-affected zone of the weld under rapid heating and cooling conditions. The diffraction patterns were recorded at 100 ms intervals, and were later analyzed using diffraction peak profile analysis to determine the relative fraction of ferrite ({alpha}) and austenite ({gamma}) phases in each diffraction pattern. Lattice parameters and diffraction peak widths were also measured throughout the heating and cooling cycle of the weld, providing additional information about the phases that were formed. The experimental results were coupled with a thermofluid weld model to calculate the weld temperatures, allowing time-temperature transformation kinetics of the {alpha} {yields} {gamma} phase transformation to be evaluated. During heating, complete austenitization was observed in the heat affected zone of the weld and the kinetics of the {alpha} {yields} {gamma} phase transformation were modeled using a Johnson-Mehl-Avrami (JMA) approach. The results from the 1045 steel weld were compared to those of a 1005 low carbon steel from a previous study. Differences in austenitization rates of the two steels were attributed to differences in the base metal microstructures, particularly the relative amounts of pearlite and the extent of the allotriomorphic ferrite phase. During weld cooling, the austenite transformed to a mixture of bainite and martensite. In situ diffraction was able to distinguish between these two non-equilibrium phases based on differences in their lattice parameters and their transformation rates, resulting in the first real time x-ray diffraction observations of bainite and martensite formation made during welding.

  14. Bimodal Size-distribution of Bainite Plates

    OpenAIRE

    Hase, K.; García Mateo, Carlos; Bhadeshia, H. K. D. H.

    2006-01-01

    There are two well-known phenomena associated with the bainite reaction, which have been exploited in the present work to enhance the mechanical behaviour of steel. Firstly, the bainite plate size decreases as the transformation temperature is reduced. Secondly, it is bad to have large regions of untransformed austenite in the microstructure; this is because they can transform, under the influence of external stress, into corresponding large regions of untempered, brittle martensite. By ad...

  15. Effects of bainitic transformation temperature on microstructure and tensile properties of 0.6C-Si-Mn steel; 0.6C-Si-Mn ko no bisai soshiki to hippari tokusei ni oyobosu benaito hentai ondo no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Tomita, Y. [University of Osaka Prefecture, Osaka (Japan). Faculty of Engineering

    1995-06-15

    To acquire excellent mechanical properties of Si-Mn steel by using an austempering treatment to have the steel undergo a bainitic transformation, it is important to identify the effect of its transformation temperature. This paper describes a transformation of 0.6% C-Si-Mn steel at temperatures ranging from 593 K to 673 K, and discussions on the effect of the transformation temperature on the microstructure and tensile properties. The following results were obtained: bainitic ferrite containing very little carbon is produced in layers at any transformation temperature, but a trend was shown that the bainitic ferrite is produced with its width grown larger and denser as the transformation temperature rises; the {gamma}R amount increases remarkably with increasing transformation temperature, and at the same time massive {gamma}R begins to remain in addition to thin film {gamma}R that exists between individual bainitic ferrites; and the result of this experiment revealed that when the transformation temperature is sufficiently high, the fracture elongation increases notably because of the transformation induced plasticity (TRIP) effect of the {gamma}R that occurs effectively during the transformation. 12 refs., 7 figs., 4 tabs.

  16. Effect of lower bainite/martensite/retained austenite triplex microstructure on the mechanical properties of a low-carbon steel with quenching and partitioning process

    Science.gov (United States)

    Li, Wan-song; Gao, Hong-ye; Li, Zhong-yi; Nakashima, Hideharu; Hata, Satoshi; Tian, Wen-huai

    2016-03-01

    We present a study concerning Fe-0.176C-1.31Si-1.58Mn-0.26Al-0.3Cr (wt%) steel subjected to a quenching and partitioning (Q&P) process. The results of scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and tensile tests demonstrate that the microstructures primarily consist of lath martensite, retained austenite, lower bainite (LB), and a small amount of tempered martensite; moreover, few twin austenite grains were observed. In the microstructure, three types of retained austenite with different sizes and morphologies were observed: blocky retained austenite (~300 nm in width), film-like retained austenite (80-120 nm in width), and ultra- fine film-like retained austenite (30-40 nm in width). Because of the effect of the retained austenite/martensite/LB triplex microstructure, the specimens prepared using different quenching temperatures exhibit high ultimate tensile strength and yield strength. Furthermore, the strength effect of LB can partially counteract the decreasing strength effect of martensite. The formation of LB substantially reduces the amount of retained austenite. Analyses of the retained austenite and the amount of blocky retained austenite indicated that the carbon content is critical to the total elongation of Q&P steel.

  17. The quantitative microstructural characterization of multipass TIG ultra low carbon bainitic steel weldments and correlation with mechanical properties

    OpenAIRE

    Butler, Daniel E.

    1993-01-01

    Approved for public release; distribution is unlimited. The U.S. Navy has maintained a continuous research, development and certification program in ULCB steels as a possible replacement for the HY and HSLA steels currently being used in ship construction. The overall aim of this program is to develop a high strength steel with improved weldability. Improved weldability could eliminate the requirement of preheating, (a necessary and costly step required to prevent weld metal cracking in HY...

  18. Bainite transformation as a displacive decomposition of austenite. Sendan gata hentai to shite toraeta bainite hentai

    Energy Technology Data Exchange (ETDEWEB)

    Omori, Y. (Sumitomo Metal Industries, Ltd., Osaka (Japan))

    1990-07-20

    In the typical textures of hypo-eutictoid steel (hyper-eutictoid steel), there are pro-eutictoid ferrite and pearlite which are generated by the diffusion mechanism and martensite ({alpha}') which is generated by non-diffusion transformation. However, when austenite ({gamma}) is decomposed in the temperature range between about 900K and the Ms point at which martensite transformation starts, bainite is generated. Concerning the bainite generation mechanism, the views are separated into the standpoint of considering that transformation of substitutional atoms progresses in a manner of non-diffusion (the displacive transformation group) and the standpoint that such transformation is basically diffusion transformation only with shorter diffusion distance (the diffusion transformation group). In this article, the concept that the above transformation is displacive transformation is explained. In other words, after stating in detail on bainite transformation behavior, crystals of bainite transformation, and so forth, it discusses on what is bainite. Finally in this article, it is pointed out that the bainite texture has the nature that it cannot be decided simply either the diffusion transformation texture or the non-diffusion transformation texture. 95 refs., 11 figs.

  19. Crystallographic Reconstruction Study of the Effects of Finish Rolling Temperature on the Variant Selection During Bainite Transformation in C-Mn High-Strength Steels

    Science.gov (United States)

    Bernier, Nicolas; Bracke, Lieven; Malet, Loïc; Godet, Stéphane

    2014-12-01

    The effect of finish rolling temperature on the austenite-( γ) to-bainite ( α) phase transformation is quantitatively investigated in high-strength C-Mn steels using an alternative crystallographic γ reconstruction procedure, which can be directly applied to experimental electron backscatter diffraction mappings. In particular, the current study aims to clarify the respective contributions of the γ conditioning during the hot rolling and the variant selection during the phase transformation to the inherited texture. The results confirm that the sample finish rolled at the lowest temperature [1102 K (829 °C)] exhibits the sharpest transformation texture. It is shown that this sharp texture is exclusively due to a strong variant selection from parent brass {110}, S {213} and Goss {110} grains, whereas the variant selection from the copper {112} grains is insensitive to the finish rolling temperature. In addition, a statistical variant selection analysis proves that the habit planes of the selected variants do not systematically correspond to the predicted active γ slip planes using the Taylor model. In contrast, a correlation between the Bain group to which the selected variants belong and the finish rolling temperature is clearly revealed, regardless of the parent orientation. These results are discussed in terms of polygranular accommodation mechanisms, especially in view of the observed development in the hot-rolled samples of high-angle grain boundaries with misorientation axes between γ and γ.

  20. In-situ SEM observation on fracture behavior of austempered silicon alloyed steel

    Institute of Scientific and Technical Information of China (English)

    Chen Xiang; Vuorinen Esa; Grahn Jonny

    2009-01-01

    Crack initiation,propagation and microfracture processes of austempered high silicon cast steel have been investigated by using an in-situ tensile stage installed inside a scanning electron microscope chamber. It is revealed that micro cracks always nucleate at the yielding near imperfections and the boundary of matrix-inclusions due to the stress concentration. There are four types of crack propagations in the matrix:crack propagates along the boundary of two clusters of bainitic ferrite;crack propagates along the boundary of ferrite-austenite in bainitic ferrite laths;crack propagates into bainitic ferrite laths;crack nucleates and propagates in the high carbon brittle plate shape martensite which is transformed from some blocky retained austenite due to plastic deformation.Based on the observation and analysis of microfracture processes,a schematic diagram of the crack nucleation and propagation process of high silicon cast steel is proposed.

  1. 贝氏体耐候钢模拟工业大气腐蚀交流阻抗谱分析*%Bainite Weathering Steel Industrial Atmospheric Corrosion Simulation of AC Impedance Spectroscopy Analysis

    Institute of Scientific and Technical Information of China (English)

    邵长静

    2015-01-01

    主要阐述了实验目的、实验方法和实验结果等具体内容,提出了提高贝氏体耐候钢耐蚀性作用的方法和具体实验判定过程。%This paper mainly described the experiment purpose, experiment method and experiment results of the specific content, put forward methods to improve bainite weathering steel corrosion resistance effect and the specific experimental process of judgment.

  2. Propagation of fissures by fatigue in metastable austenitic steels

    International Nuclear Information System (INIS)

    Many works discuss martensitic transformation in austenitic stainless steels, and especially transformations induced by temperature or monotonic charges. Some studies have focused on the propagation of fissures by fatigue in metastable austenitic test pieces, which display reduced propagation speed of fissures when martensite is induced at the end of the fissure. However, controversy still persists with regard to the role of different parameters in the fatigue behavior of these steels. This work presents preliminary analysis results of fissure propagation by fatigue using test pieces obtained from 1 mm thick sheets of austenitic steel EN 1.4318 (AISI 301LN) with 17% Cr, 7% Ni, low C and alloyed with N. The tests were performed at R charge relations (relation between minimum and maximum charge) of 0.1, 0.3, 0.5 and 0.7. The results were analyzed applying the concepts of the two driving forces concept (cw)

  3. Limiting temperatures for rapid pit propagation in stainless steels

    International Nuclear Information System (INIS)

    A decreasing temperature approach was used to determine critical temperatures for propagation of pitting and crevice corrosion in stainless steels in chloride solutions. Localized attack was made to start and propagate under anodic polarization at an elevated temperature. The temperature was then lowered slowly while retaining the constant potential and monitoring the current. A steep decrease in the current indicated a critical temperature for the propagation of rapid corrosion attack. The test arrangement allowed for a simultaneous development of both crevice type and pit type attack. A series of stainless steels were investigated, including several wrought and cast austenitic grades and some cast duplex stainless steels. The results indicate that a critical temperature may be determined for the rapid growth of pitting type attack. This temperature depends on the composition of the steel and possibly on the pit geometry. For crevice corrosion, however, such a sharp temperature limit could not be determined from the results. For the cast duplex stainless steels the critical temperature of pitting is less pronounced than for the purely austenitic grades

  4. On the relations between cyclic contraction ratio flowstress and deformation mechanisms in bainitic CrMoV steels

    International Nuclear Information System (INIS)

    The cyclic diametral strain and stress response of macroscopically untextured (nominally isotropic) bainitc Cr-Mo-V steels has been studied. The total axial strain amplitudes were controlled and chosen so that a range of ratios of plastic and elastic elongations were used extending from 0.04 to 5. The trend of the cyclic diametral strain was sometimes found to drastically deviate from the commonly used Poisson's ratio when the ratio of plastic and elastic elongation was around 3 for the uncycled material. The unusual initial increase in cyclic contraction ratio for these conditions was attributed to strain concentration and the decrease to strain decentration. A condition for these unpredictable macroscopic effects seems to be that the effective strengthening structure should be sufficiently unstable during the cyclic strain applied. At room temperature fatigue slip bands of high local density and number are created in these conditions. At elevated temperature applied strains larger than ∼ 0.3% give rise to an increasing mechanically activated dynamic recovery which operates despite a dense carbide dispersion. The amount of recovery and simultaneous dislocation annihilation increase and act to lower the flow strength with rising strain. Their extent depend on the strain rate. An apparent maximum in dynamic recovery was observed as a minimum in cyclic yield strength at the same strain for which the pronounced unpredictable diametral strain was observed. Similar diametral strain effects in monotonic tension tests on different materials reported in the published literature indicate that the effects are most probably related to the particular dominant mode of slip at strain levels for which the ratio of plastic and elastic strain (ep/eE) is around three. Slip is then dominantly planar. Careful shape control of the specimen gauge section is necessary for reproducible diametral strain because of the unstable nature of the material in the actual conditions of the cyclic

  5. Fatigue crack propagation in carburized X-2M steel

    Science.gov (United States)

    Averbach, B. L.; Lou, Bingzhe; Pearson, P. K.; Fairchild, R. E.; Bamberger, E. N.

    1985-07-01

    The growth rates of fatigue cracks propagating through the case and into the core have been studied for carburized X-2M steel (0.14 C, 4.91 Cr, 1.31 Mo, 1.34 W, 0.42 V). Fatigue cracks were propagated at constant stress intensities, ΔK, and also at a constant cyclic peak load, and the crack growth rates were observed to pass through a minimum value as the crack traversed the carburized case. The reduction in the crack propagation rates is ascribed to the compressive stresses which were developed in the case, and a pinched clothespin model is used to make an approximate calculation of the effects of internal stress on the crack propagation rates. We define an effective stress intensity, Ke = Ka + Ki, where Ka is the applied stress intensity, Ki = σid{i/1/2}, σi is the internal stress, and di is a characteristic distance associated with the depth of the internal stress field. In our work, a value of di = 11 mm (0.43 inch) fits the data quite well. A good combination of resistance to fatigue crack propagation in the case and fracture toughness in the core can be achieved in carburized X-2M steel, suggesting that this material will be useful in heavy duty gears and in aircraft gas turbine mainshaft bearings operating under high hoop stresses.

  6. Formation of bainite in ferrous and nonferrous alloys through sympathetic nucleation and ledgewise growth mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Fang, H.S.; Wang, J.J.; Yang, Z.G.; Li, C.M.; Zheng, Y.K.; Li, C.X. [Tsinghua Univ., Beijing (China). Dept. of Materials Science and Engineering

    1996-06-01

    The subunits constituting a bainitic sheaf in an Fe-C-Cr-Si alloy were discovered by scanning tunneling microscopy (STM) to consist of sub-subunits, and sub-subunits were also composed of sub-sub-subunits. Detailed investigation shows that a bainitic relief is composed of many smaller reliefs, which correspond to a different structure of bainite, i.e., subunits, sub-subunits, and sub-sub-subunits. It is determined by STM that the surface relief arising from the formation of bainite in an Fe-C-Cr alloy is tent shaped rather than an invariant plane strain (IPS) types of surface relief. Careful observation shows that the relief obtained from a sub-sub-subunit is also tent shaped. It is discovered by STM that an {alpha}{sub 1} plate, i.e., bainite formed in Cu-Zn-Al alloys, is composed of subunits. This is also demonstrated by transmission electron microscopy (TEM). The preceding results indicate that bainitic plates in Cu-Zn-Al alloys and bainitic subunits in steels are not the smallest structural units. Based on the preceding results on the ultrafine structure and the nature of surface relief accompanying bainite, it is proposed that the bainitic structure forms through a sympathetic nucleation and ledgewise growth (SNLG) mechanism. This article shows that the SNLG mechanism can be successfully applied to interpret the complicated structure of bainite.

  7. Microstructural characterization of Charpy-impact-tested nanostructured bainite

    International Nuclear Information System (INIS)

    In this work, a possible cause of the extraordinary low impact toughness of nanostructured bainite has been investigated. The microstructure of nanostructured bainite consisted chiefly of carbide-free bainitic ferrite with retained austenite films. X-ray diffractometry (XRD) measurement indicated that no retained austenite existed in the fractured surface of the Charpy-impact-tested specimens. Fractographs showed that cracks propagated mainly along bainitic ferrite platelet boundaries. The change in microstructure after impact loading was verified by transmission electron microscopy (TEM) observations, confirming that retained austenite was completely transformed to strain-induced martensite during the Charpy impact test. However, the zone affected by strained-induced martensite was found to be extremely shallow, only to a depth of several micrometers from the fracture surface. It is appropriately concluded that upon impact, as the crack forms and propagates, strain-induced martensitic transformation immediately occurs ahead of the advancing crack tip. The successive martensitic transformation profoundly facilitates the crack propagation, resulting in the extremely low impact toughness of nanostructured bainite. Retained austenite, in contrast to its well-known beneficial role, has a deteriorating effect on toughness during the course of Charpy impact. - Highlights: • The microstructure of nanostructured bainite consisted of nano-sized bainitic ferrite subunits with retained austenite films. • Special sample preparations for SEM, XRD and TEM were made, and the strain-affected structures have been explored. • Retained austenite films were found to transform into martensite after impact loading, as evidenced by XRD and TEM results. • The zone of strain-induced martensite was found to extend to only several micrometers from the fracture surface. • The poor Charpy impact toughness is associated with the fracture of martensite at a high strain rate during

  8. Microstructural characterization of Charpy-impact-tested nanostructured bainite

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Y.T.; Chang, H.T.; Huang, B.M. [Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan, ROC (China); Huang, C.Y. [Iron and Steel R& D Department, China Steel Corporation, Kaohsiung, Taiwan, ROC (China); Yang, J.R., E-mail: jryang@ntu.edu.tw [Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan, ROC (China)

    2015-09-15

    In this work, a possible cause of the extraordinary low impact toughness of nanostructured bainite has been investigated. The microstructure of nanostructured bainite consisted chiefly of carbide-free bainitic ferrite with retained austenite films. X-ray diffractometry (XRD) measurement indicated that no retained austenite existed in the fractured surface of the Charpy-impact-tested specimens. Fractographs showed that cracks propagated mainly along bainitic ferrite platelet boundaries. The change in microstructure after impact loading was verified by transmission electron microscopy (TEM) observations, confirming that retained austenite was completely transformed to strain-induced martensite during the Charpy impact test. However, the zone affected by strained-induced martensite was found to be extremely shallow, only to a depth of several micrometers from the fracture surface. It is appropriately concluded that upon impact, as the crack forms and propagates, strain-induced martensitic transformation immediately occurs ahead of the advancing crack tip. The successive martensitic transformation profoundly facilitates the crack propagation, resulting in the extremely low impact toughness of nanostructured bainite. Retained austenite, in contrast to its well-known beneficial role, has a deteriorating effect on toughness during the course of Charpy impact. - Highlights: • The microstructure of nanostructured bainite consisted of nano-sized bainitic ferrite subunits with retained austenite films. • Special sample preparations for SEM, XRD and TEM were made, and the strain-affected structures have been explored. • Retained austenite films were found to transform into martensite after impact loading, as evidenced by XRD and TEM results. • The zone of strain-induced martensite was found to extend to only several micrometers from the fracture surface. • The poor Charpy impact toughness is associated with the fracture of martensite at a high strain rate during

  9. New experimental evidence of the diffusionless transformation nature of bainite

    Energy Technology Data Exchange (ETDEWEB)

    Caballero, F.G., E-mail: fgc@cenim.csic.es [Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC), Avda Gregorio del Amo, 8, Madrid, E-28040 (Spain); Miller, M.K. [Oak Ridge National Laboratory (ORNL), Materials Science and Technology Division, Oak Ridge, TN 37831-6136 (United States); Garcia-Mateo, C.; Cornide, J. [Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC), Avda Gregorio del Amo, 8, Madrid, E-28040 (Spain)

    2013-11-15

    Highlights: ► A new generation of steels has been designed, which on transformation at low temperature (200–350 °C), lead to a nano-scale microstructure, known as NanoBain. The microstructure consists of slender crystals of ferrite, whose controlling scale compares well with that of carbon nanotubes (20–40 nm). ► NanoBain present the highest strength/toughness combinations ever recorded in bainitic steels (∼2.5 GPa/40 MPa m{sup 1/2}). This structure can be produced without any severe heat treatment, without deformation, simply by phase changes occurring slowly at low temperatures. ► The characterization of NanoBain at the atomic scale has led to revealed extremely important detail on the atomic mechanisms of phase transformations which have been controversial for the last seventy years. ► The results reported in this work have proven beyond doubt that the bainite phase change is essentially displacive in nature. -- Abstract: Since the discovery of bainite, research over many decades has revealed a substantial amount of information about the mechanism of the bainite transformation in steels. Elements of the theory are now routinely being used in many parts of the world in the design of novel alloys and in the interpretation of a variety of experimental data. However, current experimental and theoretical understanding is limiting technological progress. The purpose of this atom probe tomography study was to track atom distributions during the bainite reaction in a nanocrystalline steel. The results are providing new experimental evidence on subjects critically relevant to the understanding of the atomic mechanisms controlling bainitic ferrite formation, such as the incomplete transformation phenomenon, the carbon supersaturation of ferrite, and the plastic accommodation of the surrounding austenite.

  10. New experimental evidence of the diffusionless transformation nature of bainite

    International Nuclear Information System (INIS)

    Highlights: ► A new generation of steels has been designed, which on transformation at low temperature (200–350 °C), lead to a nano-scale microstructure, known as NanoBain. The microstructure consists of slender crystals of ferrite, whose controlling scale compares well with that of carbon nanotubes (20–40 nm). ► NanoBain present the highest strength/toughness combinations ever recorded in bainitic steels (∼2.5 GPa/40 MPa m1/2). This structure can be produced without any severe heat treatment, without deformation, simply by phase changes occurring slowly at low temperatures. ► The characterization of NanoBain at the atomic scale has led to revealed extremely important detail on the atomic mechanisms of phase transformations which have been controversial for the last seventy years. ► The results reported in this work have proven beyond doubt that the bainite phase change is essentially displacive in nature. -- Abstract: Since the discovery of bainite, research over many decades has revealed a substantial amount of information about the mechanism of the bainite transformation in steels. Elements of the theory are now routinely being used in many parts of the world in the design of novel alloys and in the interpretation of a variety of experimental data. However, current experimental and theoretical understanding is limiting technological progress. The purpose of this atom probe tomography study was to track atom distributions during the bainite reaction in a nanocrystalline steel. The results are providing new experimental evidence on subjects critically relevant to the understanding of the atomic mechanisms controlling bainitic ferrite formation, such as the incomplete transformation phenomenon, the carbon supersaturation of ferrite, and the plastic accommodation of the surrounding austenite

  11. Description of small fatigue crack propagation in ODS steel

    Czech Academy of Sciences Publication Activity Database

    Hutař, Pavel; Kuběna, Ivo; Šmíd, Miroslav; Ševčík, Martin; Kruml, Tomáš; Náhlík, Luboš

    Zurich: Trans Tech Publications, 2014 - (Clark, G.; Wang, C.), s. 911-916. (Advanced Materials Research. 891-892). ISBN 978-3-03835-008-8. ISSN 1022-6680. [Fatigue 2014 - International Fatigue Congress /11./. Melbourne (AU), 02.03.2014-07.03.2014] R&D Projects: GA MŠk(CZ) EE2.3.30.0063; GA MŠk(CZ) ED1.1.00/02.0068; GA ČR(CZ) GP13-28685P Institutional support: RVO:68081723 Keywords : oxide dispersion strengthened steel * short fatigue crack propagation * J-integral * EUROFER 97 Subject RIV: JL - Materials Fatigue, Friction Mechanics

  12. Combinatorial optimization of carbide-free bainitic nanostructures

    International Nuclear Information System (INIS)

    Thermodynamic calculations in combination with a neural network model are employed to predict the conditions under which nanostructured carbide-free bainite can be formed. The method recovers well the conditions under which the alloys reported in the literature display such features. Aluminium and silicon are shown to be equally effective in suppressing cementite. Manganese reduction appears to be the most effective means to accelerate bainite formation at low temperatures. A new low-manganese high-chromium steel grade capable of transforming into a nanostructured carbide-free structure is proposed, in which thermokinetic calculation and experiment show that low-temperature bainite forms faster and displays greater hardness than the alloys previously reported in the literature

  13. Fatigue crack propagation in carburized high alloy bearing steels

    Science.gov (United States)

    Averbach, B. L.; Lou, Bingzhe; Pearson, P. K.; Fairchild, R. E.; Bamberger, E. N.

    1985-07-01

    Fatigue cracks were propagated through carburized cases in M-50NiL (0.1 C,4 Mo, 4 Cr, 1.3 V, 3.5 Ni) and CBS-1000M (0.1 C, 4.5 Mo, 1 Cr, 0.5 V, 3 Ni) steels at constant stress intensity ranges, ΔK, and at a constant cyclic peak load. Residual compressive stresses of the order of 140 MPa (20 Ksi) were developed in the M-50NiL cases, and in tests carried out at constant ΔK values it was observed that the fatigue crack propagation rates, da/dN, slowed significantly. In some tests, at constant peak loads, cracks were stopped in regions with high compressive stresses. The residual stresses in the cases in CBS-1000M steel were predominantly tensile, probably because of the presence of high retained austenite contents, and da/dN was accelerated in these cases. The effects of residual stress on the fatigue crack propagation rates are interpreted in terms of a pinched clothespin model in which the residual stresses introduce an internal stress intensity, Ki where Ki, = σid{i/1/2} (σi = internal stress, di = characteristic distance associated with the internal stress distribution). The effective stress intensity becomes Ke = Ka + Ki where Ka is the applied stress intensity. Values of Ki were calculated as a function of distance from the surface using experimental measurements of σi and a value of di = 11 mm (0.43 inch). The resultant values of Ke were taken to be equivalent to effective ΔK values, and da/dN was determined at each point from experimental measurements of fatigue crack propagation obtained separately for the case and core materials. A reasonably good fit was obtained with data for crack growth at a constant ΔK and at a constant cyclic peak load. The carburized case depths were approximately 4 mm, and the possible effects associated with the propagation of short cracks were considered. The major effects were observed at crack lengths of about 2 mm, but the contributions of short crack phenomena were considered to be small in these experiments, since the

  14. Charpy notch toughness and hardness of reheated martensite and lower bainite

    Directory of Open Access Journals (Sweden)

    F. Vodopivec

    2010-07-01

    Full Text Available A high strength low alloyed (HSLA V-Nb steel was heat treated to martensite and lower bainite with different grain size, reheated for 3 seconds at 750 °C and air cooled. Charpy notch tests were performed from -100 °C to 60 °C and the hardness assessed at room temperature. For as delivered steel and lower bainite, the upper shelf toughness was above 200 J and the transition temperature low, while, for martensite the upper shelf toughness threshold was aproximateky at 0 °C. After reheating, notch toughness was decreased moderatly for martensite and strongly for lower bainite. Independently on grain size, lower bainite was more propensive than martensite to embritlement after short reheating in the (α + β range. For martensite, the change of notch toughness was not related to change of hardness, as by lower hardness lower, also toughness was lower.

  15. Study of crack propagation velocity in steel tanks of PWR type reactor

    International Nuclear Information System (INIS)

    Description and results of a serie of tests carried out on crack propagation velocity of steels in PWR environment (pressurized high temperature water), in order to examine the effects of metallurgical parameters such as chemical composition of steel, especially sulfur and carbon content, and steel type (laminate or forged steels), effects of mechanical parameters such as loading ratio, cycle form, frequency and application mode of loads and of chemical parameters (anodal dissolution or fatigue with hydrogen)

  16. Calculation of crack propagation in stainless steels in hot water

    International Nuclear Information System (INIS)

    Stress corrosion cracking (SCC) is a significant age-related degradation mechanism for loaded structural materials such as stainless steel used in the core and in coolant circuits of light water reactors. SCC is a synergetic interaction between a stressed material and its environment. The micro scale of the phenomena, the complex nature of the crack's electrochemistry and the large deformation at the crack tip, make mathematical modelling the most suitable approach to investigate, understand and predict SCC. The crack propagation rate depends, inter alia, on the dissolved oxygen and sulphur content, the temperature, the stress intensity, the crack length, the fluid flow, degree of sensitization and the yield strength of the material. Irradiated Type 304 stainless steel (SS304) is susceptible to SCC in the cooling water of nuclear reactors. The relatively pure, high-temperature water of a boiling water reactor (BWR) can be contaminated by sulphur due to resin intrusion and this can accelerate cracking. Therefore crack growth tests of SS304 in dilute sulphuric acid (H2SO4) solutions are often used to simulate SCC of SS304 in BWRs components. SCK-CEN developed a physico-electrochemical simulation tool based on the Finite Element (FE) method. It calculates the crack's environment based on the mass-transport of species, chemical reactions in environment, electrochemical reactions at the metal surface and the mechano-corrosive interaction at the crack tip. Mathematical modelling of the chemistry and electrochemistry in a crack provides a suitable framework for (1) the prediction of the influence of a range of variables, (2) the isolation of the factors controlling crack chemistry and electrochemistry and (3) linking to models of crack-growth kinetics. This activity is a part of a European Community sponsored integrated project PERFECT

  17. EFFECTS OF TEST TEMPERATURE AND STRAIN RATE ON THE MECHANICAL PROPERTIES IN AN INTERCRITICALLY HEAT-TREATED BAINITE-TRANSFORMED STEEL

    Institute of Scientific and Technical Information of China (English)

    Z. Li; D. Wu

    2004-01-01

    Larger amount of austenite could be retained in an intercritically heat-treated bainitetransformed steel. The elongation and the strength-ductility balance of the steel could be enhanced considerably due to strain-induced martensite transformation and transformationinduced plasticity (TRIP) of retained austenite. The effects of test temperature and strain rate on the mechanical properties and strain induced transformation behavior of retained austenite in the steel were investigated. Total elongation and strength-ductility balance of the specimen reached maximum when it strained at a strain rate of 2.8×10-4s-1 and at 350℃. The relation between test temperature and tensile properties showed the same tendency at three kinds of strain rates. Flow stress increased considerably with decreasing the strain rate.

  18. Effect of segregations on mechanical properties and crack propagation in spring steel

    Directory of Open Access Journals (Sweden)

    B. Žužek

    2015-10-01

    Full Text Available Considerable efforts have been made over the last decades to improve performance of spring steels, which would increase the service time of springs and also allow vehicles weight reduction. There are different possibilities of improving properties of spring steels, from modifying the chemical composition of steels to optimizing the deformation process and changing the heat treatment parameters. Another way of improving steel properties is through refining the microstructure and reducing amount of inclusions. Therefore, the focus of the current investigation was to determine the effect of more uniform and cleaner microstructure obtained through electro-slag remelting (ESR of steel on the mechanical and dynamic properties of spring steel, with special focus on the resistance to fatigue crack propagation. Effect of the microstructure refinement was evaluated in terms of tensile strength, elongation, fracture and impact toughness, and fatigue resistance under bending and tensile loading. After the mechanical tests the fracture surfaces of samples were analyzed using scanning electron microscope (SEM and the influence of microstructure properties on the crack propagation and crack propagation resistance was studied. Investigation was performed on hot rolled, soft annealed and vacuum heat treated 51CrV4 spring steel produced by conventional continuous casting and compared with steel additional refined through ESR. Results shows that elimination of segregations and microstructure refinement using additional ESR process gives some improvement in terms of better repeatability and reduced scattering, but on the other hand it has negative effect on crack propagation resistance and fatigue properties of the spring steel.

  19. MICROSTRUCTURAL CHARACTERS AND TOUGHNESS OF DIFFERENT SUB-REGIONS IN THE WELDING HEAT AFFECTED ZONE OF LOW CARBON BAINITIC STEEL%低碳贝氏体钢焊接热影响区中不同亚区的组织特征与韧性

    Institute of Scientific and Technical Information of China (English)

    兰亮云; 邱春林; 赵德文; 李灿明; 高秀华; 杜林秀

    2011-01-01

    根据焊接热影响区中不同亚区的热循环特征对低碳贝氏体钢进行了焊接热模拟实验.采用示波器载荷冲击试验机检测焊接热模拟试样的冲击韧性,结合OM,SEM,TEM以及EBSD技术对模拟显微组织的观察,分析了不同亚区的显微组织特征与冲击韧性之间的关系.结果表明,当冷却时间ts/5=30 s时,各亚区的裂纹形核功相差并不太大,其值在40-70 J之间.细晶区(FGHAZ)具有良好的止裂能力,裂纹扩展功高达122 J;而部分相变区(ICHAZ)和粗晶区(CGHAZ)的裂纹扩展功较小,分别为51.8和17 J.随t8/5的延长,各亚区的裂纹形核功和扩展功均下降,其中CGHAZ的裂纹形核功和FGHAZ的裂纹扩展功的下降最为显著.不同冷却速率下,M-A组元尺寸和形态的变化是影响裂纹形核功的重要因素.对于裂纹扩展功来说,高冷却速率下,具有高密度大角晶界的FGHAZ具有良好的抗裂纹迅速扩展的能力,但当冷却速率降低,由于原始奥氏体晶粒长大而使裂纹扩展功下降.ICHAZ有效晶粒尺寸不均匀,并随冷却速率的降低,晶粒尺寸明显增大,裂纹扩展功下降.而在CGHAZ中原始奥氏体晶粒显著粗化,大角晶界密度的下降导致裂纹扩展功降低;随冷却速率的降低,原始奥氏体晶粒内的取向变得更为单一,裂纹扩展功进一步降低.%It is generally recognized that welding heat affected zone (WHAZ) is the poorest toughness region in the welded joint of low carbon bainitic steels. The thermomechanical simulator was employed to simulate the welding thermal cycle processes of different sub-regions in WHAZ of low carbon bainitic steel in this work. The toughness of simulated specimens were tested on the instrumented drop weight impact tester with oscilloscope, and miscrostructure features were observed by means of OM, SEM, TEM and EBSD. The results showed that when cooling time (t8/5) was 30 s, the crack initiation energy of various sub-regions was

  20. QUALITY CONTROL ON THE AUSTENITIC-BAINITIC DUCTILE IRON GEAR

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    By reasonable casting, spheroidizing , inoculating and heat treating processes to control cupola metallurgy and the lipuid iron chemical compositions, a new kind of austenitic-bainitic ductile iron which can substitute for 20CrMnTi carburizing steel is studied. The gears made by the cast iron are high in quality,low in weight and the production cost is greatly reduced. The mechanical properties of the gear, including wear resistance, fatigue resistance, durability and others, can be greatly improved.

  1. Effects of Concrete on Propagation Characteristics of Guided Wave in Steel Bar Embedded in Concrete

    OpenAIRE

    Zhupeng Zheng; Ying Lei

    2014-01-01

    Techniques based on ultrasonic guided waves (UGWs) play important roles in the structural health monitoring (SHM) of large-scale civil infrastructures. In this paper, dispersion equations of longitudinal wave propagation in reinforced concrete member are investigated for the purpose of monitoring steels embedded in concrete. For a steel bar embedded in concrete, not the velocity but the attenuation dispersion curves will be affected by the concrete. The effects of steel-to-concrete shear modu...

  2. Crack initiation and propagation in welded joints of turbine and boiler steels during low cycle fatigue

    International Nuclear Information System (INIS)

    Low cycle fatigue (LCF) tests have been performed at 300 and 565 degrees C on welded joints and on microstructures to be found in or near welded joints in a low alloy ferritic steel 0.5 Cr, 0.5 Mo, 0.25 V. The difference in lifetimes between the 300 degrees C and 565 degrees C tests was small comparing the same microstructures and strain ranges, although the stress amplitude was greater at 300 degrees C. Under constant stress conditions the fatigue life depended on the fatigue life of the parent metal but under constant strain conditions the lifetime was governed by that of the bainitic structures. Strain controlled LCF tests have been performed at 750 degrees C on welded joints in the austenitic steel AISI 316 and on different parent and weld metals used in these joints. In continuously cycled samples all cracks were transgranular and initiated at the surface; hold-time samples displayed internally initiated intergranular cracking in the weld metal. Under constant strain conditions the 316 parent and weld metals exhibited similar lifetimes. When considering a constant stress situation the strength of the microsturctures decreased in the following order: Sanicro weld metal, cold deformed parent metal, undeformed parent metal and weld metal (K.A.E.)

  3. Effect of Aging Temperature on the Mechanical Properties of Cold Hardening Microalloyed Bainitic Steel%时效温度对贝氏体型冷作强化非调质钢力学性能的影响

    Institute of Scientific and Technical Information of China (English)

    杨金峰; 惠卫军; 于同仁; 孙维; 龙晋明

    2011-01-01

    研究了时效温度对一种低碳Mn-B-Ti系贝氏体型冷作强化非调质钢力学性能的影响。结果表明:试验料的强度随时效温度的升高先是增加,并在250℃时存在一个峰值,随后强度又随时效温度的升高而降低,当温度升高到400℃以上时强度明显降低;试验料的塑性和屈强比则随时效温度的升高逐渐增加,其中后者增加的幅度更显著。与未充氢试样相比,试验料拉拔并充氢后的延迟断裂性能显著降低。随着时效温度的升高,充氢试样中的氢含量降低,缺口抗拉强度RBN和延迟断裂强度比R缓慢增加,当时效温度大于200℃时,RBN和R则明显增加。因此,在满足保载永久伸长变形量及强度和塑性要求的前提下,应选择合适的时效温度,以保证材料的延迟断裂性能。%The effect of aging temperature on the mechanical properties of low carbon Mn-B-Ti type cold hardening mieroalloyed bainitic steel was investigated. Experimental results show that strength increases at first and reaches a peak at about 250 ℃, and then decreases with the increase of aging temperature. The decrease of strength is more significant when aging temperature is higher than 400℃. Both ductility and strength ratio increase with increasing aging temperature, while the latter is more significant. The charging of hydrogen significantly impairs the delayed fracture property of the steel subject to 30% cold drawing. Hydrogen content decreases with increasing aging tern perature and thus both notch tensile strength and delayed fracture strength ratio increase. The increase of notch ten- sile strength and delayed fracture strength ratio is more noticeable when aging temperature is higher than 200℃. Therefore, with the precondition of required low permanent deformation, strength and ductility, aging temperature should be chosen carefully to maintain a relatively high application property of delayed fracture resistance.

  4. High cycle fatigue crack propagation resistance and fracture toughness in ship steels (Short Communication

    Directory of Open Access Journals (Sweden)

    R.S. Tripathi

    2001-04-01

    Full Text Available In this paper, two grades of steel, viz., plain carbon steel and low alloy steel used in naval ships have been selected for studies on high cycle fatigue, crack propagation, stress intensity and crack opening displacement (COD. Specimen for high cycle fatigue was prepared as per IS: 1608. High cycle fatigue was carried out up to 50,000 cycles at 1000 kgfto 2000 kgfloads. Up to 2000 kgfloads, both the materials were observed within elastic zones. A number of paran1eters, including stress, strain and strain range, which indicate elastic behaviour of steels, have been considered. Low alloy steel specimen was prepared as per ASTM standard: E-399 and subjected to 5,00,000 cycles. Crack propagation, COD, stress intensity, load-cycle variations, load-COD relation, and other related paran1eters have been studied using a modem universal testing machine with state-of-the-art technology

  5. Influence of metallurgical phase transformation on crack propagation of 15-5PH stainless steel and 16MND5 low carbon steel

    International Nuclear Information System (INIS)

    This study focuses on the effects of phase transformations on crack propagation. We want to understand the changes of fracture toughness during welding. In this work, fracture toughness is expressed by J-integral. There are many experimental methods to obtain the critical toughness JIC but they are impractical for our investigation during phase transformation. That is the reason why we have proposed a method coupling mechanical tests, digital image correlation and finite element simulation. The fracture tests are implemented on pre-cracked single edge notched plate sample which is easy for machining and heat conduct during phase transformation. The tests are conducted at different temperatures until rupture. Digital image correlation gives us the displacement information on every sample. Each test is then simulated by finite element where the fracture toughness is evaluated by the method G-Theta at the crack propagation starting moment found by potential drop method and digital image correlation technical. Two materials have been studied, 15Cr-5Ni martensitic precipitation hardening stainless steel and 16MND5 ferritic low carbon steel. For these two materials, different test temperatures were chosen before, during and after phase transformation for testing and failure characterization of the mechanical behavior. Investigation result shows that metallurgical phase transformation has an influence on fracture toughness and further crack propagation. For 15-5PH, the result of J1C shows that the as received 15-5PH has higher fracture toughness than the one at 200 C. The toughness is also higher than the original material after one cycle heat treatment probably due to some residual austenite. Meanwhile, pure austenite 15-5PH at 200 C has higher fracture toughness than pure martensitic 15-5PH at 200 C. For 16MND5, the result also proves that the phase transformation affects fracture toughness. The as received material has bigger J1C than the situation where it was heated

  6. Ultrasonic wave propagation considerations for centrifugally cast stainless steel pipe inspection

    International Nuclear Information System (INIS)

    This paper reports on an investigation of the ultrasonic wave propagation in centrifugally cast stainless steel (CCSS). CCSS can have an anisotropic grain structure which affects the ultrasonic wave propagation. Such parameters as wave velocity, attenuation, beam deviation, and beam scattering are also affected. An understanding of the grain structure influences on the wave propagation is necessary before compensation can be made to improve examination effectiveness. During the investigations, the grain effects on wave propagation were investigated, and an ultrasonic technique for grain structure identification was developed

  7. Effect of deformation on mechanical properties of cold hardening microalloyed bainitic steel%变形量对贝氏体型冷作强化非调质钢力学性能的影响

    Institute of Scientific and Technical Information of China (English)

    杨金峰; 惠卫军; 龙晋明; 于同仁; 孙维

    2011-01-01

    研究了变形量对一种低碳Mn-B-Ti系贝氏体型冷作强化非调质钢力学性能的影响。结果表明,随着变形量的增加,实验材料的强度逐渐增加而塑性逐渐降低,其中屈服强度较抗拉强度增加的幅度大。应变硬化指数n随γ增大为先增加后降低,即约在γ=30%时,n出现一峰值。冷拔变形后1/3冷镦变形时的压缩应力随γ增加基本不变,临界压缩变形量则随γ增大而不断降低。随着γ的增加,实验钢未充氢样的慢拉伸缺口抗拉强度逐渐增加,而充氢后试样的缺口抗拉强度σBN和延迟断裂强度比R则显著降低。实验钢拉拔后再经400℃时效处理能够使其延迟断裂%Effect of deformation on mechanical properties of a low carbon Mn-B-Ti cold hardening microalloyed bainitic steel was studied.Experimental results show that with the increase of cold drawing reduction γ,strength increases and ductility decreases,and the increase of yield strength is more significant than that of tensile strength.The work hardening exponent n increases with increasing γ to the maximum value at γ=30% and then decreases.The compression stress of 1/3 cold heading after cold drawing keeps almost constant with the increase of γ,while the critical compression ratio after cold-drawing decreases with the increase of γ.The notch tensile strength increases with the increase of γ for the specimen without hydrogen charging,while both notch tensile strength and delayed fracture strength ratio significantly decrease with the increase of γ after hydrogen charging.It is found that the delayed fracture resistance could be significantly improved after annealing at 400 ℃.Therefore,with the precondition of required strength,γ should be chosen carefully to maintain a relatively high performance such as cold heading capability and delayed fracture resistance.

  8. Phase transformations of under-cooled austenite of new bainitic materials for scissors crossovers

    Directory of Open Access Journals (Sweden)

    J. Pacyna

    2008-07-01

    Full Text Available The paper contains CCT diagrams presenting a transformation kinetics of under-cooled austenite from two new bainitic cast steels which the scissors crossovers for heavy-duty railway tracks (min. 230kN/axle at the speed up to 200 km/h are made of. The cooling ranges of UIC60 type railway tracks plot on the CCT diagrams indicate that there is a 100% bainitic structure in the scissors crossovers made of these cast steels as well, but mainly it would be a favourable for cracking resistance lower bainite. The achievable hardness of scissors crossovers made of new materials make it possible to use high–temperature tempering resulting in obtaining of good crack resistance. However one should provide a good quality of castings made.

  9. Effect of medium on the resistance of CSN 41 6445 steel to crack propagation

    International Nuclear Information System (INIS)

    The following facts were found for the CSN 41 6445 steel during the study of its resistance to stress corrosion in water at 295 degC. The kinetics of fatigue crack propagation in secondary circuit water (pH 9, oxygen content 1/2 then is in very good agreement with the value obtained under the same conditions for the A533 steel. (P.A.). 7 figs., 2 tabs., 6 refs

  10. PROPAGATION CHARACTERISTICS OF HIGH ORDER LONGITUDINAL MODES IN STEEL STRANDS AND THEIR APPLICATIONS

    Institute of Scientific and Technical Information of China (English)

    Zenghua Liu; Su Liu; Bin Wu; Yinong Zhang; Cunfu He

    2008-01-01

    Propagation characteristics of high order longitudinal modes of ultrasonic guided waves in seven-wire steel strands are investigated theoretically and experimentally. According to these analysis results, proper longitudinal modes are selected for defect detection in steel strands.Dispersion curves for helical and central wires in a 17.80 mm nominal diameter seven-wire steel strand are numerically obtained firstly, and propagation characteristics of high-order longitudinal modes, such as wave structures, attenuation and dispersion, are analyzed. In experiments, the signals of ultrasonic guided wave at different high frequencies are excited and received at one end of a steel strand by using the same single piezoelectric transducer. The identification of longitudinal modes in the received signals is achieved based on short time Fourier transform. Furthermore,appropriate L(0, 5) mode at 2.54 MHz is chosen for detecting an artificial defect in a helical wire of the steel strand. Results show that high order longitudinal modes in a high frequency range with low dispersion and attenuation whose energy propagates mainly in the center of the wires can be used for defect detection in long range steel strands.

  11. Numerical modeling of the thermomechanical behavior of steels with allowance for the propagation of Luders bands

    Science.gov (United States)

    Balokhonov, R. R.; Romanova, V. A.

    2007-09-01

    A thermomechanical model based on physical representations of the motion of dislocation continuum and a model for the initiation and propagation of plastic shear are proposed to describe slow flows of the type of Luders bands. Two-dimensional calculations of Luders band propagation are performed for HSLA-65 steel samples under compression at various strain rates and temperatures. The calculation results are in good agreement with experimental data.

  12. Investigation of Microstructure and Corrosion Propagation Behaviour of Nitrided Martensitic Stainless Steel Plates

    Directory of Open Access Journals (Sweden)

    Abidin Kamal Ariff Zainal

    2014-07-01

    Full Text Available Martensitic stainless steels are commonly used for fabricating components. For many applications, an increase in surface hardness and wear resistance can be beneficial to improve performance and extend service life. However, the improvement in hardness of martensitic steels is usually accompanied by a reduction in corrosion strength. The objective of this study is to investigate the effects of nitriding on AISI 420 martensitic stainless steel, in terms of microstructure and corrosion propagation behavior. The results indicate that the microstructure and phase composition as well as corrosion resistance were influenced by nitriding temperatures.

  13. Thermal fatigue crack propagation behaviour of F82H ferritic steel

    Energy Technology Data Exchange (ETDEWEB)

    Kudo, Yusuke E-mail: kudou@fusion.naka.jaeri.go.jp; Kikuchi, Kouichi; Saito, Masakatsu

    2002-12-01

    This paper presents an issue obtained from thermal fatigue research, which attempts to examine the fusion reactor first wall by fracture mechanics. The research is organised with two different approaches: 1. Studies of the thermal fatigue crack propagation behaviour on notched 5-mm thick plate specimens of ferritic steel F82H (9Cr-1W), compared with 9Cr-1Mo ferritic steel and type 316 stainless steel; 2. Numerical simulations of the stress field caused by thermal loads including fracture mechanics. It is concluded that the stress intensity factor {delta}K{sub I} is substantial for crack growth while cyclic thermal loading.

  14. Fatigue Crack Propagation in Steel A131 Under Ice Loading of Crushing, Bending and Buckling

    Institute of Scientific and Technical Information of China (English)

    DUAN Menglan(段梦兰); SONG Lisong(宋立崧); FAN Xiaodong(樊晓东); James C.M.LId; FANG Huacan(方华灿)

    2001-01-01

    Three types of ice loading, which are most commonly present when ice acts on structures,are chosen and simulated for use of fatigue crack propagation tests on offshore structural steel Al31. The three types of ice categorized in accordance with the failure modes when acting on structures called crushing ice, bending ice, and buckling ice,respectively. This paper presents an experimental investigation on the fatigue crack propagation behavior of widely used high strength steel A 131 for offshore jackets in the loading environment of ice crushing, bending, and buckling. The test results of fatigue crack propagation in steel A 13 l under these simulated ice loading at temperature 292K are presented and analyzed in detail in this paper. The amplitude root mean square stress intensity factor is optimized to be the fundamental parameter of fatigue crack propagation for all types of ice loading histories. The results are also compared with constant amplitude fatigue crack propagation conclusions as in wave load mode, and a joint investigation on the results from ice forces, ice-induced vibrations, and ice-induced fatigue crack propagation is conducted, Conclusions are drawn for reference in structural design and material selection for offshore structures in ice environments.

  15. Analysis of elastic wave propagation through anisotropic stainless steel using elastodynamic FEM and ultrasonic beam model

    International Nuclear Information System (INIS)

    The wave propagation problem in anisotropic media is modeled by the Gauss-Hermite beam and tile finite element method and their results are compared. Gauss-Hermite mettled is computationally fast and simple, and explicitly incorporates beam spreading. In the 2-D model problem chosen, the ultrasonic beam leaves a transducer, propagates through a layer of ferritic steel and through a planar interface into a region of columnar cast stainless steel with two directions. After propagation to a reference plane, comparison .if made of the time-domain waveforms predicted by tile two models. The predictions of the two models are found to be in good agreement near the center of the beam, with deviations developing as one moves away from tile central ray. These are interpreted to be a consequence of the Fresnel approximation, made in the Gauss-Hermite model.

  16. Fatigue crack propagation in welded joint of austenitic steel for nuclear power engineering

    International Nuclear Information System (INIS)

    The crack propagation characteristics were obtained for Cr-Ni type austenitic steel 08Kh18N10T under variable stress in the individual zones of a welded joint on a pipe. Measurements of the threshold deviation of the stress intensity factor, ΔKp, showed that the root zone of the pipe welded joint was the weakest point as concerns crack propagation. The threshold values obtained for the filler metal on the pipe outer surface were considerably greater than those for the root zone of the welded joint and slightly greater than those for the base material and for the transition between the joint and the base material. The measured propagation response showed that the rate of fatigue crack propagation was for the base material higher by up to one order for low ΔK than for the filler joint and the root zone of the joint. (J.B.). 5 figs., 3 tabs., 6 refs

  17. In situ observations of transgranular crack propagation in high-manganese steel

    International Nuclear Information System (INIS)

    Crack propagation in high-Mn steel was investigated using in situ transmission electron microscopy. Preferential slips developed in the early stages of deformation on {1 1 1}, followed by the formation of a crack, which propagated along the pre-developed slip traces. A sharp corner was observed at the crack tip along two adjoining {1 1 1} planes. Surface ripples developed when the tip of the crack crossed pre-existing twins on the crack path, which was frequently observed in the surface during the final stage of fracture

  18. Ultrasonic Analysis of Cracking Propagation Morphology in the Fusion Zone of High Strength Steel

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Cracking morphology in the fusion zone of HQ130 high strength steel was researched by "the y-slit test" and "three-point bend test", ultrasonic test and microscope. HQ130 and Q J63 high strength steel was welded by Ar+CO2 gasshielded arc welding under the condition without preheating. Experimental results indicated that welding cracks wereproduced in the partially melted zone of the weld root of HQ130 steel side and propagated parallel to the fusionzone. The cracks were developed alternatively between the weld and the partially melted zone, and are not strictlyruptured at W/F (weld metal/fusion zone) boundary surface. Controlling weld heat input (E) about 16 k J/cm couldmake the cracking rate lowest and satisfy the performance requirement of welded joint zone.

  19. Mechanisms of short crack propagation in austenitic–ferritic duplex steel

    Energy Technology Data Exchange (ETDEWEB)

    Scharnweber, Michael, E-mail: michael.scharnweber@mailbox.tu-dresden.de; Tirschler, Wolfgang; Oertel, Carl-Georg; Skrotzki, Werner

    2014-02-10

    For applications requiring both high strength and high corrosion resistance, austenitic–ferritic duplex steels are often the material of choice. In this study, cyclic deformation experiments were performed on the austenitic–ferritic duplex stainless steel 1.4462. By measuring the crack opening and crack sliding displacement in situ in a scanning electron microscope, the characteristics of the different crack propagation mechanisms in the two phases are determined. In the ferritic phase, two different appearances of short cracks can be observed, one exhibiting a very smooth and the other one a rather rough surface crack path. Electron backscatter diffraction measurements on the crack-containing grains in addition with high resolution imaging of the topography of the crack flanks reveal that contrary to common assumptions in the literature, short cracks in ferrite do not propagate via single slip. Instead, two different slip systems with an identical slip direction, but different slip planes, are activated. In this context, the specific appearance of different crack paths can be explained with the orientation of the respective grains. Furthermore, a model for discontinuous crack propagation especially of rough cracks in ferrite is developed. Finally, a correlation between the crack propagation rate and the plastic deformation of the crack tip is revealed and the possibility of determining the barrier effect of grain and phase boundaries via the measurement of the plastic deformation of the crack tip is investigated.

  20. Low-chromium reduced-activation chromium-tungsten steels

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, R.L.; Alexander, D.J.; Maziasz, P.J. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    Bainitic microstructures formed during continuous cooling can differ from classical upper and lower bainite formed during isothermal transformation. Two types of non-classical bainite were observed depending on the cooling rate: carbide-free acicular bainite at rapid cooling rates and granular bainite at slower cooling rates. The Charpy impact toughness of the acicular ferrite was found to be considerably better than for the granular bainite. It was postulated that alloying to improve the hardenability of the steel would promote the formation of acicular bainite, just as increasing the cooling rate does. To test this, chromium and tungsten were added to the 2 1/4Cr-2W and 2 1/4Cr-2WV steel compositions to increase their hardenability, and the microstructures and mechanical properties were examined.

  1. Cleavage crack propagation and arrest in a nuclear pressure vessel steel

    International Nuclear Information System (INIS)

    The integrity assessment of Reactor Pressure Vessels, mainly based on crack initiation, can be completed by studying crack propagation and arrest. Whereas engineering approaches do not take into account dynamic effects, these effects are important in unstable cleavage crack propagation, arrest and possible propagation re-initiation events. This study deals with physical mechanisms of cleavage crack propagation and numerical computations related to brittle fracture in the framework of local approach to fracture. Experiments were carried out on thin CT 25 specimens made of 16MND5 PWR vessel steel at five temperatures (-150 degrees C, -125 degrees C, -100 degrees C, -75 degrees C, -50 degrees C). Two kinds of crack path, straight or branching path, were observed. Branching cracks appear for the highest critical loadings at initiation, that increase the elastic stored energy and the effect of plasticity. The elastic-viscoplastic behavior of the ferritic steel was studied up to a strain rate of 104 s-1 and taken into account in the numerical simulations. The extended Finite Element Method (X-FEM) was used in CAST3M FE software to model crack propagation. Numerical computations combine a local non linear dynamic approach with a RKR type fracture stress criterion. The different physical micro-mechanisms, involved in cleavage fracture, were examined by the means of SEM fracture surface analyses at different temperatures and strain rates for the two kinds of crack path. The links of the critical fracture stress with both temperature and strain rate for straight crack path as well as analyses of branching crack phenomena were considered by the means of Scanning Electron Microscopy (SEM) fracture surface analyses, 3D quantitative optical microscopy and FE computations in order to aim at a robust physical justification of the propagation model which has already been developed at CEA in the frame of the B. Prabel PhD. (authors)

  2. SPEED DEPENDENCE OF ACOUSTIC VIBRATION PROPAGATION FROM THE FERRITIC GRAIN SIZE IN LOW-CARBON STEEL

    Directory of Open Access Journals (Sweden)

    I. A. Vakulenko

    2015-08-01

    Full Text Available Purpose. It is determining the nature of the ferrite grain size influence of low-carbon alloy steel on the speed propagation of acoustic vibrations. Methodology. The material for the research served a steel sheet of thickness 1.4 mm. Steel type H18T1 had a content of chemical elements within grade composition: 0, 12 % C, 17, 5 % Cr, 1 % Mn, 1, 1 % Ni, 0, 85 % Si, 0, 9 % Ti. The specified steel belongs to the semiferritic class of the accepted classification. The structural state of the metal for the study was obtained by cold plastic deformation by rolling at a reduction in the size range of 20-30 % and subsequent recrystallization annealing at 740 – 750 ° C. Different degrees of cold plastic deformation was obtained by pre-selection of the initial strip thickness so that after a desired amount of rolling reduction receives the same final thickness. The microstructure was observed under a light microscope, the ferrite grain size was determined using a quantitative metallographic technique. The using of X-ray structural analysis techniques allowed determining the level of second-order distortion of the crystal latitude of the ferrite. The speed propagation of acoustic vibrations was measured using a special device such as an ISP-12 with a working frequency of pulses 1.024 kHz. As the characteristic of strength used the hardness was evaluated by the Brinell’s method. Findings. With increasing of ferrite grain size the hardness of the steel is reduced. In the case of constant structural state of metal, reducing the size of the ferrite grains is accompanied by a natural increasing of the phase distortion. The dependence of the speed propagation of acoustic vibrations up and down the rolling direction of the ferrite grain size remained unchanged and reports directly proportional correlation. Originality. On the basis of studies to determine the direct impact of the proportional nature of the ferrite grain size on the rate of propagation of sound

  3. Numerical generation and study of synthetic bainitic microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Osipov, N.; Gourgues-Lorenzon, A.F.; Cailletaud, G. [Centre des Materiaux Mines Paris, Paristech CNRS UMR 7633, 91 - Evry (France); Diard, O. [Electricite de France, Div. R and D, Centre des Renardieres, 77 - Moret sur Loing (France); Marini, B. [CEA Saclay (SRMA), 91 - Gif-sur-Yvette (France)

    2006-07-01

    Models classically used to describe the probability of brittle fracture in nuclear power plants are written on the macroscopic scale. Its is not easy to surely capture the physical phenomena in such a type of approach, so that the application of the models far from their identification domain (temperature history, loading path) may become questionable. To improve the quality of the prediction of resistance and life time, microstructural information, describing the heterogeneous character of the material and its deformation mechanisms has to be taken into consideration. This paper is devoted to 16MND5 bainitic steel. Bainitic packets grow in former austenitic grains, and are not randomly oriented. Knowing the macroscopic stress is thus not sufficient to describe the stress-strain state in ferrite. An accurate model must take into account the actual microstructure, in order to provide realistic local stress and strain fields, to be used as inputs of a new class of cleavage models based on the local behavior. The paper shows the approach used to generate a synthetic microstructure and demonstrates that the resulting morphologies present a quantitative agreement with the experimental images. (authors)

  4. Numerical generation and study of synthetic bainitic microstructures

    International Nuclear Information System (INIS)

    Models classically used to describe the probability of brittle fracture in nuclear power plants are written on the macroscopic scale. Its is not easy to surely capture the physical phenomena in such a type of approach, so that the application of the models far from their identification domain (temperature history, loading path) may become questionable. To improve the quality of the prediction of resistance and life time, microstructural information, describing the heterogeneous character of the material and its deformation mechanisms has to be taken into consideration. This paper is devoted to 16MND5 bainitic steel. Bainitic packets grow in former austenitic grains, and are not randomly oriented. Knowing the macroscopic stress is thus not sufficient to describe the stress-strain state in ferrite. An accurate model must take into account the actual microstructure, in order to provide realistic local stress and strain fields, to be used as inputs of a new class of cleavage models based on the local behavior. The paper shows the approach used to generate a synthetic microstructure and demonstrates that the resulting morphologies present a quantitative agreement with the experimental images. (authors)

  5. Modelling probabilistic fatigue crack propagation rates for a mild structural steel

    Directory of Open Access Journals (Sweden)

    J.A.F.O. Correia

    2015-01-01

    Full Text Available A class of fatigue crack growth models based on elastic–plastic stress–strain histories at the crack tip region and local strain-life damage models have been proposed in literature. The fatigue crack growth is regarded as a process of continuous crack initializations over successive elementary material blocks, which may be governed by smooth strain-life damage data. Some approaches account for the residual stresses developing at the crack tip in the actual crack driving force assessment, allowing mean stresses and loading sequential effects to be modelled. An extension of the fatigue crack propagation model originally proposed by Noroozi et al. (2005 to derive probabilistic fatigue crack propagation data is proposed, in particular concerning the derivation of probabilistic da/dN-ΔK-R fields. The elastic-plastic stresses at the vicinity of the crack tip, computed using simplified formulae, are compared with the stresses computed using an elasticplastic finite element analyses for specimens considered in the experimental program proposed to derive the fatigue crack propagation data. Using probabilistic strain-life data available for the S355 structural mild steel, probabilistic crack propagation fields are generated, for several stress ratios, and compared with experimental fatigue crack propagation data. A satisfactory agreement between the predicted probabilistic fields and experimental data is observed.

  6. High-energy (Mach 130) air-shock propagation in steel and grout pipes

    Energy Technology Data Exchange (ETDEWEB)

    Glenn, H.D.; Kratz, H.R.; Keough, D.D.; Swift, R.P.

    1979-02-28

    Voitenko compressors have been used to generate approx. 45-mm/..mu..s air shocks in a steel and a grout outlet pipe. Fiber-optic ports were used to measure diaphragm burst times and time-of-arrival data for shock-front luminosity along the 20-mm-ID exit pipes. Pressure profiles were obtained at higher enthalpy shock propagation than ever before and at many locations along the tubes. The grout experiment is the first laboratory attempt to study air shock propagation in a pipe with this type of compressible wall material. The primary purpose of these two experiments was to examine the effect of wall material on high-energy shock propagation. In the interval between 0.10 and 2.50 m from the diaphragm, the velocity and peak pressure of the shock front attenuated from approx. 45 to approx. 5 mm/..mu..s and from approx. 3.5 to approx. 0.02 GPa, respectively. Over this distance, the shock propagation was nearly identical in both experiments. The rapid attenuation of the shock front velocity and pressure is attributed to ablation and entrainment of wall material. An interesting feature, confirmed by multiple measurement techniques, was a rapid oscillation in the pressure profiles. The results indicate that, for the materials considered, shock propagation is independent of wall composition over the 2.5-m length of the outlet pipes.

  7. Fatigue crack propagation behavior and acoustic emission characteristics of the heat affected zone of super duplex stainless steel

    International Nuclear Information System (INIS)

    Because duplex stainless steel shows the good strength and corrosion resistance properties, the necessity of duplex stainless steel, which has long life in severe environments, has been increased with industrial development. The fatigue crack propagation behavior of Heat Affected Zone(HAZ) has been investigated in super duplex stainless steel. The fatigue crack propagation rate of HAZ of super duplex stainless steel was faster than that of base metal of super duplex stainless steel. We also analysed acoustic emission signals during the fatigue test with time-frequency analysis method. According to the results of time-frequency analysis, the frequency ranges of 200-400 kHz were obtained by striation and the frequency range of 500 kHz was obtained due to dimple and separate of inclusion

  8. The Effect of Interfacial Element Partitioning on Ferrite and Bainite Formation

    Science.gov (United States)

    Chen, Hao; van der Zwaag, Sybrand

    2016-05-01

    The formation of bainitic ferrite and that of grain boundary ferrite in low alloy steels have been two of the most important and interesting research topics in the field of solid state ferrous phase transformation for several decades, and various aspects of these two transformations have been discussed extensively in the literature. Recently, a so-called Gibbs energy balance (GEB) model was proposed by the authors to evaluate alloying element effects on the growth of bainitic ferrite and grain boundary ferrite. The model predicts a growth mode transition from paraequilibrium, negligible partitioning to partitioning during the isothermal formation of bainitic ferrite and grain boundary ferrite. Transformation stasis and bay phenomenon are well explained by the GEB model and both of them are found to be due to alloying element diffusion at the interface. This overview gives a summary of the authors' recent progress in the understanding of the growth of bainitic ferrite and grain boundary ferrite, with particular focus on the growth mode transition, the transformation stasis phenomenon and the bay phenomenon.

  9. Crack propagation in X38CrMoV5 (AISI H11) tool steel

    OpenAIRE

    Shah, Masood; Mabru, Catherine; Boher, Christine; Le Roux, Sabine; Rezaï-Aria, Farhad

    2009-01-01

    A method is proposed for the evaluation of surface fatigue damage of hot forming tools that undergo severe thermo mechanical loading. Fatigue crack propagation in a hot work tool steel X38CrMoV5-47HRC is investigated using single-edge cracked tension specimens (SET). The effect of thickness (ranging from 2,5mm to 0.10mm) and R values is investigated. Numerical simulation is performed by ABAQUS® Standard to evaluate J integral and stress intensity factor KI. The Paris curves are established. S...

  10. Crack initiation and propagation in thermal shock fatigue of stainless steel

    International Nuclear Information System (INIS)

    Fatigue crack growth tests were performed on austenitic stainless steel subjected to repeated thermal shocks using a specially designed test system for thermal shock fatigue, in which liquid air is sprayed onto the center of a disk-shaped specimen heated to about 200 deg C. The fatigue crack growth was found to occur while producing the striation on the fracture surface each time a thermal shock is applied. The crack growth characteristics in thermal shock fatigue can be well explained by the results of analysis of the thermal stress intensity factor (SIF). The crack propagation rate da/dN achieves its maximum at the same crack length as in the curve giving the relationship between SIF and the crack length. The results of the observation have also been described on the initiation and propagation of small fatigue cracks at the notch root. (author)

  11. Effect of defect length on rolling contact fatigue crack propagation in high strength steel

    Directory of Open Access Journals (Sweden)

    T. Makino

    2015-10-01

    Full Text Available The objective of the present paper is to clarify the effect of defect length in depth direction on rolling contact fatigue (RCF crack propagation in high strength steel. RCF test and synchrotron radiation micro computed tomography (SR micro CT imaging were conducted. In the case of the defect with the 15 m diameter, flaking life decreased with increasing defect length. In a comparison of the CT image and the SEM view, the shapes of defects and the locations of the horizontal cracks were almost the same respectively. The mechanism of RCF crack propagation was discussed by finite element (FE analysis. Defects led to higher tensile residual stress than that without defects in the region where the defect exists. The shear stress range at 0.1 mm in depth on the middle line of the defect and the range of mode II stress intensity factor at the bottom of a vertical crack increased with increasing defect length.

  12. Temperature dependence of the velocity of longitudinal ultrasonic wave propagation in steels

    International Nuclear Information System (INIS)

    Results of measurement of the velocity of longitudinal ultrasonic wave propagation in low-alloy steels as well as in armco-iron and in invar alloy at 700-1000 deg C are given. Temperature dependences are shown to be nonlinear, the largest drop of the curve takes place in the region of the Curie temperature. Decrease of the velocity of longitudinal ultrasonic waves reaches 8% within the temperature range of investigation. Effect of the magnetic phase transition on the temperature dependence of the velocity of ultrasound propagation (drop of the curve is maximum in the Curie point region) is also established. Investigation results are used to correct data on ultrasonic contactless control of wall thickness of hot-rolled tubes at high temperatures

  13. High temperature initiation and propagation of cracks in 12%Cr-steel turbine disks

    Directory of Open Access Journals (Sweden)

    S. Foletti

    2013-10-01

    Full Text Available This work aims to study the crack propagation in 12%Cr steel for turbine disks. Creep Crack Growth (CCG tests on CT specimens have been performed to define the proper fracture mechanics which describes the initiation of the crack propagation and the crack growth behaviour for the material at high temperature. Results have been used to study the occurrence of crack initiation on a turbine disk at the extreme working temperature and stress level experienced during service, and validate the use of C* integral in correlating creep growth rate on the disk component, in case C* is numerically calculated through FEM analysis or calculated by the use of reference stress concept.

  14. Hydrogen-Assisted Crack Propagation in Austenitic Stainless Steel Fusion Welds

    Science.gov (United States)

    Somerday, B. P.; Dadfarnia, M.; Balch, D. K.; Nibur, K. A.; Cadden, C. H.; Sofronis, P.

    2009-10-01

    The objective of this study was to characterize hydrogen-assisted crack propagation in gas-tungsten arc (GTA) welds of the nitrogen-strengthened, austenitic stainless steel 21Cr-6Ni-9Mn (21-6-9), using fracture mechanics methods. The fracture initiation toughness and crack growth resistance curves were measured using fracture mechanics specimens that were thermally precharged with 230 wppm (1.3 at. pct) hydrogen. The fracture initiation toughness and slope of the crack growth resistance curve for the hydrogen-precharged weld were reduced by as much as 60 and 90 pct, respectively, relative to the noncharged weld. A physical model for hydrogen-assisted crack propagation in the welds was formulated from microscopy evidence and finite-element modeling. Hydrogen-assisted crack propagation proceeded by a sequence of microcrack formation at the weld ferrite, intense shear deformation in the ligaments separating microcracks, and then fracture of the ligaments. One salient role of hydrogen in the crack propagation process was promoting microcrack formation at austenite/ferrite interfaces and within the ferrite. In addition, hydrogen may have facilitated intense shear deformation in the ligaments separating microcracks. The intense shear deformation could be related to the development of a nonuniform distribution of hydrogen trapped at dislocations between microcracks, which in turn created a gradient in the local flow stress.

  15. Fatigue crack propagation at high temperature (5500C) in stainless steel type 316 L

    International Nuclear Information System (INIS)

    The effect of different parameters such as temperature, stress ratio R, frequency f, have been investigated for fatigue crack propagation in stainless steel type 316 L. At high frequency (20 Hz), increasing temperature from room temperature to 5500C, produced an increase in crack propagation rate. Fractographic analysis of failed specimens indicated no change in failure mode which was transgranular with fatigue striations indicating a ductile failure process. Transmission electron microscopy analysis showed a change in the plastic deformation mode which was consisted, at room temperature, of twinning and martensitic transformation, characteristic of a low SFE material, and at high temperature, of a disoriented cellular structure characteristic of a high SFE material. At high temperature, raising stress ratio from 0.1 to 0.5, increased crack propagation rate with no change in the failure mode which was transgranular. At high temperature, decreased frequency from 1200 cpm to 4 cpm increased crack propagation rate. Combined effect of temperature and low frequency led to corrosion, and intergranular failure

  16. Acceleration of Low-temperature Bainite

    OpenAIRE

    García Mateo, Carlos; García Caballero, Francisca; Bhadeshia, H. K. D. H.

    2003-01-01

    Recent work has shown that bainitic ferrite plates produced by transformation at low temperatures can be as thin as 20 nm with a hardness in excess of 650 HV. However, it may take several days in order to achieve the required degree of transformation at low temperatures. In this work we report methods for accelerating the rate of reaction without compromising strength.

  17. Propagation and arrest of cleavage cracks in a nuclear pressure vessel steel

    International Nuclear Information System (INIS)

    The safety of nuclear structures is crucial while the service time of nuclear power stations is planned to be extended up to 60 years. Initiation stage of cracks is still considered as a key issue, but more and more component integrity analyses investigate the crack arrest possibility. This study deals with physical mechanisms of cleavage crack propagation and numerical computations related to brittle fracture. Experiments using standard measuring techniques and a high-speed framing camera system, as well as Scanning Electron Microscope fracture surface analyses were carried out on thin CT specimens made of 16MND5 PWR vessel steel. The elastic-viscoplastic behavior of the ferritic steel has been studied and taken into account in numerical simulations. The extended Finite Element Method (X-FEM) is used in CAST3M finite element analysis software to model crack propagation. Numerical computations combine a local non-linear dynamic approach and a fracture criterion based on critical cleavage stress, whereas current standards in the nuclear field use a global static approach to fracture to depict crack initiation and arrest. The links of the criterion with temperature and strain rate are considered thanks to experiments, SEM fractographies and 2D computations in order to get a robust physical model which can be effective for model-based predictions of industrial structures. (authors)

  18. Small fatigue crack propagation in Y2O3 strengthened steels

    International Nuclear Information System (INIS)

    This paper is focused on two type of Y2O3 strengthened steels (Fe–14Cr ODS and ODS-EUROFER). Small fatigue crack propagation was experimentally measured using special small cylindrical specimens (diameter 2 and 2.6 mm) with shallow notch grinded in the gauge length. In the middle of this notch, a pre-crack of length of 50 μm was fabricated using a focused ion beam technique. Fatigue crack growth rate was measured for different applied total strain amplitudes and described using plastic part of the J-integral. Obtained results were compared with published data of EUROFER 97. The effect of the oxide dispersion on small fatigue crack propagation was found rather insignificant. Ferritic Fe–14Cr ODS steel shows more brittle behaviour, i.e. for the same cyclic plasticity, characterised by the plastic part of the J-integral, the small cracks grow faster. A new methodology for residual lifetime prediction of structures containing physically small cracks, based on plastic part of the J-integral, is presented

  19. Fatigue crack initiation and propagation in stainless steels subjected to thermal cycling conditions

    International Nuclear Information System (INIS)

    The thermal fatigue crack initiation and propagation promoted by thermal quenches of AISI 316 and 304 stainless steels have been studied to correlate with their known behaviour in isothermal strain cycling fatigue at elevated temperatures. Axially unconstrained specimens of rectangular section were held at bulk temperatures of 250-5000C and symmetrically water-quenched on the narrow faces to give equivalent surface strain ranges from 2.8 x 10-3 to 5.4 x 10-3. Crack initiation in smooth samples showed an apparent threshold at a surface strain range of 2.8 x 10-3 equivalent to a thermal amplitude of 1500C, no cracking being produced in 500000 cycles. The crack growth in prenotched samples was evaluated by direct observation and by subsequent fractography and showed two modes of growth. The crack growth was strain-controlled during the early stages of propagation where the crack tip was within the surface zone under conditions of fully plastic cyclic yield. At greater depths the propagation rates in the remaining elastically cycled material were found to correlate with calculated stress intensity values. In the chosen symmetrically quenched axially unconstrained configuration the crack growth rates decreased towards the centre of the specimen, indicating a crack arrest condition as expected from analysis. The results indicated a good correlation with the fracture behaviour observed from isothermal strain cycling fatigue behaviour in an air environment. (author)

  20. Corrosion Fatigue Crack Propagation Study on a High Toughness and High Strength 3Ni-Cr-Mo Steel

    International Nuclear Information System (INIS)

    Corrosion fatigue crack propagation study was performed on a high toughness and high strength 3Ni-Cr-Mo steel(or DS-100 steel) which has been developed for the deep sea structural materials. Since multipass welding in generally applied for DS-100 steel, corrosion properties on weldment are the key factors to determine design limit. In this study, the crack propagation behavior was investigated in terms of welding process, heat input rate, and electrode potential. Corrosion fatigue crack propagation rates of DS-100 steel base and weld metals were faster when tested at-1100mV than at any other potentials. These results clearly demonstrate that DS-100 steel is sensitive to the hydrogen embrittlement. Compressive residual stress (CRS) developed during multipass welding played an improtant role to determine the fatigue crack propagation rate(FCPR) in the stress intensity range of low to medium. The greater the CRS, the slower the FCPR. In the range of high stress intensity factor, however, the effect of metallographic parameters on FCPR became dominant over the effect of both CRS and hydrogen

  1. Crack propagation mechanism and life prediction for very-high-cycle fatigue of a structural steel in different environmental medias

    OpenAIRE

    Guian Qian; Chengen Zhou; Youshi Hong

    2013-01-01

    The influence of environmental medias on crack propagation of a structural steel at high and very-high-cycle fatigue (VHCF) regimes is investigated based on the fatigue tests performed in air, water and 3.5% NaCl aqueous solution. Crack propagation mechanisms due to different crack driving forces are investigated in terms of fracture mechanics. A model is proposed to study the relationship between fatigue life, applied stress and material property in different environmental medias, which refl...

  2. A multiscale perspective on the kinetics of solid state transformations with application to bainite formation

    Directory of Open Access Journals (Sweden)

    Claas Hüter

    2015-09-01

    Full Text Available We give an excerpt of recent developments in the experimentally benchmarked modeling of bainite formation in the press hardening process. As the press hardening process poses a heavily multi-parameter dependent modeling challenge, we focus on three main branches which complement each other. We emphasise the combination of basic sharp interface and phase field models with pragmatically adapted multi phase field models and experimentally parametrized implementations of the Johnson-Mehl-Avrami model. In the basic thermodynamic modeling part, we review fundamental aspects of displacive and diffusional-displacive transformations to predict dominant transformation morphologies. These results provide a link to multi-phase-field implementations which allow to simulate isothermal bainitic transformations, supported by available material data from thermodynamic databases. Excellent agreement with experiments, e.g. scanning electron microscopy for the transformed bainite in the high-carbon steel 100Cr6 shows the value of these model implementations. The further connection to Johnson-Mehl-Avrami models offers to extend the understanding to transformation plasticity for the press hardening steel 22MnB5.

  3. Improved superclean NiCrMoV rotor steel

    Energy Technology Data Exchange (ETDEWEB)

    Bodnar, R.L.; Hansen, S.S.; Michael, J.R.; Steigerwalt, R.E. (Bethlehem Steel Corp., PA (USA). Homer Research Lab.)

    1990-07-01

    Due to its excellent creep rupture properties and relative economy, silicon-deoxidized, tempered bainitic 1%CrMoV steel is currently used extensively for high-temperature steam turbine rotor forgings operating at temperatures up to 565{degree}C. However, there is considerable impetus to improve the toughness of this steel while maintaining its current level of creep rupture strength and vice versa. The toughness of 1%CrMoV steel is improved by lowering the bainite start (B{sub s}) temperature in a superclean' base composition which is essentially free of Mn, Si, P, S, Sb, As and Sn. The B{sub s} temperature can be lowered through the addition of alloying elements (i.e. C, Ni, Cr and Mo). Through suitable alloy additions, the 50% FATT of this grade was lowered from approximately 100{degree}C to below room temperature. This improved toughness provides the opportunity to eliminate the special precautionary procedures currently used in the startup and shutdown of steam turbines. In general, the creep rupture strengths of these new superclean' steels equal or exceed that of the standard 1%CrMoV steel. In addition, the superclean' steels have not been found to be susceptible to temper embrittlement, and have similar room temperature fatigue crack propagation characteristics and elevated tensile properties to the standard 1%CrMoV steel. The most promising steels in terms of a balance between creep rupture and toughness properties contain 2.5% Ni and 0.03%/0.04% Nb (for austenite grain refinement and enhanced tempering resistance), i.e. 2.5NiCrMoVNb steel. These new steels may also find application in combination high-temperature -- low-temperature rotors and gas turbine rotors. 106 refs., 34 figs., 10 tabs.

  4. Analysis of ultrasound propagation in a steel pipe using ultrasonic pulse doppler method

    International Nuclear Information System (INIS)

    Thermal powers of nuclear reactors are calculated by the enthalpy difference between reactor feed water and main steam. Improvement of the measurement accuracy in the flow rate measurements of reactor feed water enables us to uprate reactor thermal power, called MUR (Measurement Uncertainly Recapture) uprate. The ultrasonic pulse Doppler system is expected to be a suitable method featuring the capability of measuring the flow profile directly in a pipe. For the optimum measurements, ultrasonic path from ultrasonic transducer into the fluid through steel pipe wall should be carefully predicted in high temperature water. This paper presents analytical results of ultrasound propagation using FEM simulation code and experimental results of pipe flow rate at high temperature thermal conditions. (author)

  5. Analysis of ultrasound propagation in a steel pipe using ultrasonic pulse doppler method

    International Nuclear Information System (INIS)

    Thermal powers of nuclear reactors are calculated by the enthalpy difference between reactor feed water and main steam. Improvement of the measurement accuracy in the flow rate measurements of reactor feed water enables us to uprate reactor thermal power, called MUR (Measurement Uncertainly Recapture) uprate. The ultrasonic pulse Doppler system is expected to be a suitable method featuring the capability o measuring the flow profile directly in a pipe. For the optimum measurements, ultrasound path from ultrasonic transducer into the fluid through steel pipe wall should be carefully predicted in high temperature water. This paper presents analytical results of ultrasound propagation using FEM simulation code and experimental results of pipe flow rate at high temperature thermal conditions. (author)

  6. Effect of frequency and environment on fatigue-crack propagation of SA533B-1 steel

    International Nuclear Information System (INIS)

    The effects of a decrease in the frequency of cyclic loading on the fatigue-crack propagation characteristics of SA533B-1 steel in various environments were investigated. Frequency levels of 10 Hz,1.0 Hz and 0.1 Hz were employed in laboratory air, distilled water and a 3.5% NaCl solution. As the loading frequency was decreased, statistically significant increases in the fatigue-crack growth rates for the distilled water and salt water environments, as compared to those measured in laboratory air, were observed. These increases in growth rates were limited to certain ranges of stress intensity range values depending upon the frequency level being tested. A hydrogen embrittlement mechanism is proposed to explain the increase in growth rates based upon a fractographic analysis. (author)

  7. Reaction propagation between fireworks shells and compositions confined in steel pipes

    Energy Technology Data Exchange (ETDEWEB)

    Contestabile, E.; Von Rosen, B.

    2006-03-15

    Experimental results of ignition tests of linear arrays of fireworks articles and bulk stars were presented. Their propensity to mass-explode was explored. Reaction rates within a pile of fireworks were determined. Tests were performed with pyrotechnic composition and fireworks shells confined in steel pipes. Roman candles and similar star shells were loaded in 1 m long steel pipes capped at one or both ends. The configuration was designed to restrain shells and prevent them from moving during their initiation and communication process. Four series of tests were performed. In the first and second series, 76 mm shells were rolled in a single layer of single-sided corrugated cardboard. A continuous velocity of detonation probe (VoD) was placed in a corrugation. In the third series of tests, roman candles were inserted in pipes, and stars were housed in plastic shells. In the fourth series of tests, red stars were removed from the fireworks and placed inside a cylindrical tube. A VoD probe was inserted between layers of kraft paper and the assembly was placed into a steel pipe. Initiation stimulus was either from an explosive booster or a quantity of black powder. Effects observed in the tests involved a combination of different mechanisms. With the use of a booster, the first few shells were overdriven and responded when shock-initiated. A comparison of the number of fragments and fragment shapes demonstrated 3 different modes of response. Star shells and roman candles produced a few, large fragments. Larger roman candles and report shells produced significantly more longitudinal fragments. Results suggested that the mechanism of propagation of a reaction inside the pipe was dependent on the packing configuration within the pipe. Further work is need to determine the effects of confinement and packing density. 11 refs., 2 tabs., 15 figs.

  8. Crack propagation in stainless steel AISI 304L in Hydrogen Chemistry conditions (HWC)

    International Nuclear Information System (INIS)

    Velocities of crack growth in samples type CT pre cracking of stainless steel AISI 304l solder and sensitized thermally its were obtained by the Rising Displacement method or of growing displacement. It was used a recirculation circuit that simulates the operation conditions of a BWR type reactor (temperature of 280 C and a pressure of 8 MPa) with the chemistry modified by the addition of hydrogen with and without the addition of impurities of a powerful oxidizer like the Cu+ ion. In each essay stayed a displacement velocity was constant of 1x10-9 m/s, making a continuous pursuit of the advance of the crack by the electric potential drop technique. Contrary to the idea of mitigation of the crack propagation velocity by effect of the addition of the hydrogen in the system, the values of the growth velocities obtained by this methodology went similar to the opposing ones under normal operation conditions. To the finish of the rehearsal one carries out the fractographic analysis of the propagation surfaces, which showed cracks growth in trans and intergranular way, evidencing the complexity of the regulator mechanisms of the IGSCC like in mitigation conditions as the alternative Hydrogen Chemistry. (Author)

  9. Propagation of crevices in stainless steel AISI304L in conditions of hydrogen chemistry (HWC)

    International Nuclear Information System (INIS)

    Crevice growth velocities in samples of AISI 304L stainless steel thermally welded and sensitized were obtained by the Rising displacement method or of growing displacement. It was used a recirculation circuit in where the operation conditions of a BWR type reactor were simulated (temperature of 288 C and a pressure of 8 MPa) with the chemistry modified by the addition of hydrogen with and without the addition of impurities of a powerful oxidizer like the Cu++ ion. CT pre cracked specimens were used and each rehearsal stayed to one constant displacement velocity of 1 x 10-9 m/s (3.6 μm/hr), making a continuous pursuit of the advance of the crack by the electric potential drop technique. To the end of the rehearsal it was carried out the fractographic analysis of the propagation surfaces. The values of the growth velocities obtained by this methodology went similar to the opposing ones under normal conditions of operation; while the fractographic analysis show the cracks propagation in trans and intergranular ways, evidencing the complexity of the regulator mechanisms of the one IGSCC even under controlled ambient conditions or with mitigation methodologies like the alternative hydrogen chemistry. (Author)

  10. Influence of gaseous environments on rates of near-threshold fatigue crack propagation in nicrmov steel

    Science.gov (United States)

    Liaw, Peter K.; Hudak, S. J.; Donald, J. Keith

    1982-09-01

    The influence of hydrogen environment (448 kPa) on near-threshold fatigue crack propagation rates was examined in a 779 MPa yield strength NiCrMoV steel at 93 °C. An automatically decreasing and increasing stress intensity technique was employed to generate crack growth rates at three load ratios (R = 0.1, 0.5, and 0.8). Results show that the crack propagation rates in hydrogen are slower than those in air for levels of stress intensity range, ΔK, below about 12 MPa√m. The crack closure concept does not explain the slower crack growth rates in hydrogen than in air. Near-threshold growth rates appear to be controlled by the levels of residual moisture in the environments. In argon and air, the fracture morphology is transgranular, while in H2 the amount of intergranularity varies with ΔK and achieves a maximum when the cyclic plastic zone is approximately equal to the prior austenite grain size.

  11. Effect of Rare Earth Element on Formation and Propagation of Thermal Fatigue Crack in Low-Chromium Semi-Steel

    Institute of Scientific and Technical Information of China (English)

    XU Tao; LI Feng; CHEN Hua; YU Cui-yan

    2005-01-01

    The formation and growth of thermal fatigue crack in low-chromium semi-steel were investigated by means of optical microscope and scanning electron microscope, and the function of RE in low-chromium semi-steel was analyzed. The results show that the thermal fatigue cracks are mainly generated at eutectic carbides, and the cracks not only grow and spread but also join each other. RE can improve the eutectic carbide′s morphology, inhibit the generation and propagation of thermal fatigue cracks, and therefore promote the activation energy for the crack′s propagation, which is especially more noticeable in case of the RE modification in combination with heat treatment. The mathematical model of the crack propagation is put forward.

  12. An Experimental Approach to Fluctuation of Stress Intensity Factor Distribution and Fatigue Crack Propagation in HSLA Steel

    Directory of Open Access Journals (Sweden)

    Om Prakash Tenduwe

    2015-05-01

    Full Text Available The fluctuation of stress intensity factor distribution and fatigue crack propagation in HSLA steel were investigated, for this purpose fatigue crack growth test were carried out on five mutually similar configured standard 1CT specimens with reduced thickness using constant amplitude loading cycles under mode-I, with 0.3 stress ratio and maximum load held 11.8 kN. The fluctuation of stress intensity factor distribution were studied experimentally as a function of crack length, elapsed fatigue life cycle and compliance, along with the behavior of fatigue crack propagation in HSLA steel. The fracture morphology was observed by field emission scanning microscopy. ∆K in starting not increased significantly as increasing crack length, number of cycle and compliance, but after reaching the region-II, it is increasing very significantly and slow fatigue crack propagation behavior were observed by the material.

  13. Corrosion of Steel in Concrete – Potential Monitoring and Electrochemical Impedance Spectroscopy during Corrosion Initiation and Propagation

    DEFF Research Database (Denmark)

    Küter, Andre; Mason, Thomas O.; Geiker, Mette Rica;

    2005-01-01

    investigation on the effect of the steel quality and the steel surface properties on initiation and propagation of chloride-induced reinforcement corrosion. Besides untreated (as received) carbon rebars and stainless rebars, selected surface treatments and galvanization were investigated. The surface treatments...... included grit blasting, electrochemical and hydrochloric acid cleaning (HCl) as well as weathering. The results indicate that the investigated treatments of the carbon steel surface have no major effect on the initiation period, which was approximately 20 days under the actual conditions. The galvanized...... rebar appears to be protected throughout the experimental period to date (200 days), whereas active corrosion of the stainless steel appeared to be initiated after 100 days exposure....

  14. Criterion of cleavage crack propagation and arrest in a nuclear PWR vessel steel

    International Nuclear Information System (INIS)

    The purpose of this PhD thesis is to understand physical mechanisms of cleavage crack propagation and arrest in the 16MND5 PWR vessel steel and to propose a robust predicting model based on a brittle fracture experimental campaign of finely instrumented laboratory specimens associated with numerical computations. First, experiments were carried out on thin CT25 specimens at five temperatures (-150 C, -125 C, -100 C, -7 C, -50 C). Two kinds of crack path, straight or branching path, have been observed. To characterize crack propagation and to measure crack speed, a high-speed framing camera system was used, combined with the development of an experimental protocol which allowed to observe CT surface without icing inside the thermal chamber and on the specimen. The framing camera (520 000 fps) has allowed to have a very accurate estimation of crack speed on the complete ligament of CT (∼ 25 mm). Besides, to analyse experiments and to study the impact of viscosity on the mechanical response around the crack tip, the elastic-viscoplastic behavior of the ferritic steel has been studied up to a strain rate of 104 s-1 for the tested temperatures.The extended Finite Element Method (X-FEM) was used in CAST3M FE software to model crack propagation. Numerical computations combine a local non linear dynamic approach with a RKR type fracture stress criterion to a characteristic distance. The work carried out has confirmed the form of the criterion proposed by Prabel at -125 C, and has identified the dependencies of the criterion on temperature and strain rate. From numerical analyzes in 2D and 3D, a multi-temperature fracture stress criterion, increasing function of the strain rate, was proposed. Predictive modeling were used to confirm the identified criterion on two specimen geometries (CT and compressive ring) in mode I at different temperatures. SEM observations and 3D analyzes made with optical microscope showed that the fracture mechanism was the cleavage associated

  15. Vanadium Effect on a Medium Carbon Forging Steel

    Directory of Open Access Journals (Sweden)

    Carlos Garcia-Mateo

    2016-05-01

    Full Text Available In the present work the influence of vanadium on the hardenability and the bainitic transformation of a medium carbon steel is analyzed. While V in solid solution enhances the former, it hardly affects bainitic transformation. The results also reveal an unexpected result, an increase of the prior austenite grain size as the V content increases.

  16. New experimental evidence on the incomplete transformation phenomenon in steel

    OpenAIRE

    García Caballero, Francisca; García Mateo, Carlos; Santofimia, M. J.; Miller, M K; García de Andrés, Carlos

    2009-01-01

    The aim of this work is to analyse the carbon distribution in austenite during isothermal bainite formation and the incomplete reaction phenomenon by means of X-ray diffraction analysis and atom-probe tomography in high silicon, manganese alloyed steels. Results will provide new evidence on the temporary cessation of bainitic ferrite formation at abnormally low transformation temperatures.

  17. Thermal fatigue resistance of the salt quenched AISI H11 hot work tool steel

    International Nuclear Information System (INIS)

    In the present work the thermal fatigue resistance of a typical hot work tool steel was studied. The material was subjected to salt quenching, by cooling the specimens in two different ways (520oC and then to room temperature, 220oC and then room temperature). The first cooling cycle produces a coarser microstructure than the second one, and induces the formation of upper bainite. While the thermal fatigue crack density is the same in the two materials, a clear difference in their propagation was found. The coarser microstructure and the presence of upper tend to reduce the thermal fatigue resistance. (author)

  18. An Experimental Approach to Fluctuation of Stress Intensity Factor Distribution and Fatigue Crack Propagation in HSLA Steel

    OpenAIRE

    Om Prakash Tenduwe; Pyare Lal Khunte

    2015-01-01

    The fluctuation of stress intensity factor distribution and fatigue crack propagation in HSLA steel were investigated, for this purpose fatigue crack growth test were carried out on five mutually similar configured standard 1CT specimens with reduced thickness using constant amplitude loading cycles under mode-I, with 0.3 stress ratio and maximum load held 11.8 kN. The fluctuation of stress intensity factor distribution were studied experimentally as a function of crack length, el...

  19. Comparison of Impact Properties for Carbon and Low Alloy Steels

    Institute of Scientific and Technical Information of China (English)

    O.H. Ibrahim

    2011-01-01

    The impact properties of hot rolled carbon steel (used for the manufacture of reinforcement steel bars) and the quenched & tempered (Q&T) low alloy steel (used in the pressure vessel industry) were determined. The microstructure of the hot rolled carbon steel contained ferrite/pearlite phases, while that of the quenched and tempered low alloy steel contained bainite structure. Impact properties were determined for both steels by instrumented impact testing at temperatures between -150 and 200℃. The impact properties comprised total impact energy, ductile to brittle transition temperature, crack initiation and propagation energy, brittleness transition temperature and cleavage fracture stress. The Q&T low alloy steel displayed much higher resistance to ductile fracture at high test temperatures, while its resistance to brittle fracture at low test temperatures was a little higher than that of the hot rolled carbon steel. The results were discussed in relation to the difference in the chemical composition and microstructure for the two steels.

  20. The crack propagating behavior of composite coatings prepared by PEO on aluminized steel during in situ tensile processing

    International Nuclear Information System (INIS)

    Research highlights: → Composite coatings on the aluminized steel were prepared by the plasma electrolytic oxidation (PEO) technique, which comprised of Fe-Al layer, Al layer and Al2O3 layer. → The evaluation method of the crack critical opening displacement δc was introduced to describe quantitatively the resistance of Al layer to the propagation behavior of cracks and evaluate the fracture behavior of composite coatings. → The crack propagating model was established. - Abstract: This paper investigates the in situ tensile cracks propagating behavior of composite coatings on the aluminized steel generated using the plasma electrolytic oxidation (PEO) technique. Cross-sectional micrographs and elemental compositions were investigated by scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS). The composite coatings were shown to consist of Fe-Al, Al and Al2O3 layers. The cracks propagating behavior was observed in real-time in situ SEM tensile test. In tensile process, the cracks were temporarily stopped when cracks propagated from Fe-Al layer to Al layer. The critical crack opening displacement δc was introduced to quantitatively describe the resistance of the Al layer. There was a functional relation among the thickness ratio tAl/tAl2O3, the δc of composite coatings and tensile cracks' spacing. The δc increased with the increasing of the thickness ratio (tAl/tAl2O3). The high δc value means high fracture resistance. Therefore, a control of the thickness ratio tAl/tAl2O3 was concerned as a key to improve the toughness and strength of the aluminized steel.

  1. Structure and Properties of Thermomechanically-processedHSLA Steels for Naval Applications

    OpenAIRE

    Ghosh, A; Kundu, S.; Chatterjee, S

    2007-01-01

    Four high-strength low-alloy (HSLA) steels with varying chemical compositions were forgedin two different temperature ranges followed by cooling in various media. Microstructures andmechanical properties of the steels were evaluated. The microstructures obtained in water–quenchedlow-carbon HSLA steels were lath martensite packet within the pancaked grains. On air or sandcooling predominantly bainitic ferrite or granular bainite structure forms. The strength propertiesof these steels decreased...

  2. Influence of grain boundaries and crack length on the propagation of microstructurally short cracks in austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Scharnweber, Michael; Oertel, Carl-Georg; Tirschler, Wolfgang; Skrotzki, Werner [Institut fuer Strukturphysik, TU Dresden, 01062 Dresden (Germany); Mikulich, Vladimir [Fraunhofer-Institut fuer Werkzeugmaschinen und Umformtechnik, 09126 Chemnitz (Germany)

    2011-07-01

    Austenitic stainless steel (X2 CrNiMo 18 14 3) was cyclically deformed at RT in air under plastic strain control with amplitudes of 5 x 10{sup -4} and 2 x 10{sup -3}. Every 30.000 and 3.000 cycles, respectively, the samples were investigated in the scanning electron microscope in order to determine the propagation rate of the existing microstructurally short cracks as well as the corresponding distance between the crack tip and the opposing grain boundary. The results will be discussed with regard to the barrier effect of grain boundaries to crack propagation as well as the correlation between crack length and propagation rate at different strain amplitudes.

  3. Influence of two different heat treatment procedures on mechanical and fracture properties of 65 Si 7 steel

    International Nuclear Information System (INIS)

    This paper deals with the results of investigations of two different heat treatment procedures and their influence on some mechanical properties as well as on the magnitude of some fracture mechanics parameters for a particular type of steel. The experimental investigations were performed on the specimens made of 65Si7 steel. The processes occurring by tempering of two different microstructures of the steel, i. e. martensite and lower bainite were investigated. An advantage of austempering over hardening and tempering is in obtaining the bainite microstructure. Steel of bainite microstructure has a greater toughness, ductility, contraction, fatigue strength and a better fracture toughness than a tempered martensite of the same type of steel. A bainite microstructure also gives a better resistance to thermal fatigue in comparison with martensite microstructure. The above mentioned improved values of mechanical properties refer to the untempered state of bainite. (author)

  4. Fatigue crack initiation and propagation in steels exposed to inert and corrosive environments. Final report, May 1, 1977--December 31, 1977

    International Nuclear Information System (INIS)

    The fatigue crack initiation life of AISI 1018 steel was investigated using compact tension specimens having sharp notch root radii. The data were analyzed using two methods for predicting initiation in strain cycling experiments. Also, another approach in which initiation is related to the stress intensity factor was developed. The next phase, that of propagation, was studied using AISI 1018 steel and a new high strength steel HY-180. The crack propagation data obtained for both steels tested in air can be described accurately by the power law first suggested by Paris, da/dN = C(ΔK)/sup n/, where a is the crack length, N the number of cycles, and C and n are material constants. However, the exponent n was found to be two times larger for AISI 1018 steel than HY-180 steel

  5. Fracture Profile and Crack Propagation of Ultra-High Strength Hot-Stamped Boron Steel During Mechanical Trimming Process

    Science.gov (United States)

    Han, Xianhong; Yang, Kun; Chen, Sisi; Chen, Jun

    2015-10-01

    Mechanical trimming process for ultra-high strength boron steel after hot stamping was carried out in this study. Shear and tensile tests were designed to analyze the influences of stress state on the fracture mode; trimmed fracture surface and profile were observed and compared to other commonly used steels such as DP980 and Q235 etc.; the crack propagation during trimming process was studied through step-by-step tests. The observation and analysis reveal that the fracture mode of hot-stamped boron steel is highly related to the stress state, it belongs to cleavage fracture on low stress triaxiality but dimple fracture on high stress triaxiality. Such phenomenon is reflected in the trimming process, during which the stress state changes from shear-dominated state to tensile-dominated state. In addition, the burnish zone of trimmed boron steel is much smaller than other high strength steels, and the profile of cutting surface shows an `S'-like shape which is destructive to the trimming tool. Moreover, during the trimming process, most martensite laths near the cutting edge are stretched and rotated markedly to the direction of the shear band, and the main crack expands along those grain boundaries, which may penetrate through a few martensite laths and form small crack branches.

  6. Cleavage dynamic propagation analysis in a nuclear reactor pressure vessel steel using a high-speed camera

    International Nuclear Information System (INIS)

    Initiation stage of cracks is considered as a key issue, but more and more component integrity analyses investigate the crack propagation and arrest possibility. This study deals with physical mechanisms of cleavage crack propagation and numerical computations related to brittle fracture. Dynamic effects, involved in unstable cleavage crack propagation, have to be taken into account to properly depict brittle crack propagation, arrest and possible propagation re-initiation events. Experiments were carried out on thin CT specimens made of 16MND5 PWR vessel steel at five temperatures (-150 degrees C, -125 degrees C, -100 degrees C, -75 degrees C, -50 degrees C). In addition to standard crack gages, an innovative experimental technique has been used to determine crack propagation. By the means of developments on the experimental protocol (improvements of isolation and airtightness of the thermal chamber, optimization of the experimental protocol to eliminate ice in the thermal chamber and in order to have a good acquisition quality), use of a high speed framing camera was made possible to measure crack propagation on a CT mirror polished surface. This optical device, combined with this optimized experimental process, has allowed the study of straight and branching crack paths with high accuracy. The framing camera (520 000 fps up to 1 100 000 fps) has allowed to have a very accurate estimation of crack speed even up to 1000 m.s-1 and also to detect some phases of crack branching during propagation and phases of arrest-re-initiation. Numerical computations, based on X-FEM and combining a local non linear dynamic approach with a RKR type fracture stress criterion, have been performed to depict experimental crack behavior. This paper describes this innovative experimentation and the interpretation by FE calculations and SEM observations associated with quantitative 3D optical microscopy. (authors)

  7. In situ TEM study of the effect of M/A films at grain boundaries on crack propagation in an ultra-fine acicular ferrite pipeline steel

    International Nuclear Information System (INIS)

    Microstructural refinement of structural materials generally improves their tensile properties but deteriorates their fatigue properties. However, pipeline steels with ultra-fine acicular ferrite (UFAF) possess not only high strength and toughness, but also a low fatigue-crack-growth rate (FCGR) and long fatigue-propagation life. In this paper, the micro-fracture mechanisms of an UFAF pipeline steel are investigated by in situ tensile testing in a transmission electron microscope. The results indicate that a grain-boundary-film structure composed of martensite/austenite could significantly influence the crack propagating behavior in the UFAF steel, consequently lowering the FCGR by enhancing roughness-induced crack closure during cyclic loading

  8. Bainite obtaining in cast iron with carbides castings

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2010-01-01

    Full Text Available In these paper the possibility of upper and lower bainite obtaining in cast iron with carbides castings are presented. Conditions, when in cast iron with carbides castings during continuous free air cooling austenite transformation to upper bainite or its mixture with lower bainte proceeds, have been given. A mechanism of this transformation has been given, Si, Ni, Mn and Mo distribution in the eutectic cell has been tested and hardness of tested castings has been determined.

  9. The effect of aqueous environments upon the initiation and propagation of fatigue cracks in low-alloy steels

    International Nuclear Information System (INIS)

    The effect of elevated temperature aqueous environments upon the initiation and propagation of fatigue cracks in low-alloy steels is discussed in terms of the several parameters which influence such behavior. These parameters include water chemistry, impurities within the steels themselves, as well as factors such as the water flow rate, loading waveform and loading rates. Some of these parameters have similar effects upon both crack initiation and propagation, while others exhibit different effects in the two stages of cracking. In the case of environmentally-assisted crack (EAC) growth, the most important impurities within the steel are metallurgical sulfide inclusions which dissolve upon contact with the water. A ''critical'' concentration of sulfide ions at the crack tip can then induce environmentally-assisted cracking which proceeds at significantly increased crack growth rates over those observed in air. The occurrence, or non-occurrence, of EAC is governed by the mass-transport of sulfide ions to and from the crack-tip region, and the mass-transport is discussed in terms of diffusion, ion migration, and convection induced within the crack enclave. Examples are given of convective mass-transport within the crack enclave resulting from external free stream flow. The initiation of fatigue cracks in elevated temperature aqueous environments, as measured by the S-N fatigue lifetimes, is also strongly influenced by the parameters identified above. The influence of sulfide inclusions does not appear to be as strong on the crack initiation process as it is on crack propagation. The oxygen content of the environment appears to be the dominant factor, although loading frequency (strain rate) and temperature are also important factors

  10. Crack propagation mechanism and life prediction for very-high-cycle fatigue of a structural steel in different environmental medias

    Directory of Open Access Journals (Sweden)

    Guian Qian

    2013-07-01

    Full Text Available The influence of environmental medias on crack propagation of a structural steel at high and very-high-cycle fatigue (VHCF regimes is investigated based on the fatigue tests performed in air, water and 3.5% NaCl aqueous solution. Crack propagation mechanisms due to different crack driving forces are investigated in terms of fracture mechanics. A model is proposed to study the relationship between fatigue life, applied stress and material property in different environmental medias, which reflects the variation of fatigue life with the applied stress, grain size, inclusion size and material yield stress in high cycle and VHCF regimes. The model prediction is in good agreement with experimental observations.

  11. Heat treatments in a conventional steel to reproduce the microstructure of a nuclear grade steel

    International Nuclear Information System (INIS)

    The ferritic steels used in the manufacture of pressurized vessels of Boiling Water Reactors (BWR) suffer degradation in their mechanical properties due to damage caused by the neutron fluxes of high energy bigger to a Mega electron volt (E> 1 MeV) generated in the reactor core. The materials with which the pressurized vessels of nuclear reactors cooled by light water are built correspond to low alloy ferritic steels. The effect of neutron irradiation on these steels is manifested as an increase in hardness, mechanical strength, with the consequent decrease in ductility, fracture toughness and an increase in temperature of ductile-brittle transition. The life of a BWR is 40 years, its design must be considered sufficient margin of safety because pressure forces experienced during operation, maintenance and testing of postulated accident conditions. It is necessary that under these conditions the vessel to behave ductile and likely to propagate a fracture is minimized. The vessels of light water nuclear reactors have a bainite microstructure. Specifically, the reactor vessels of the nuclear power plant of Laguna Verde (Veracruz, Mexico) are made of a steel Astm A-533, Grade B Class 1. At present they are carrying out some welding tests for the construction of a model of a BWR, however, to use nuclear grade steel such as Astm A-533 to carry out some of the welding tests, is very expensive; perform these in a conventional material provides basic information. Although the microstructure present in the conventional material does not correspond exactly to the degree of nuclear material, it can take of reference. Therefore, it is proposed to conduct a pilot study to establish the thermal treatment that reproduces the microstructure of nuclear grade steel, in conventional steel. The resulting properties of the conventional steel samples will be compared to a JRQ steel, that is a steel Astm A-533, Grade B Class 1, provided by IAEA. (Author)

  12. Ultrasound propagation in steel piping at electric power plant using clamp-on ultrasonic pulse doppler velocity-profile flowmeter

    International Nuclear Information System (INIS)

    Venturi nozzles are widely used to measure the flow rates of reactor feedwater. This flow rate of nuclear reactor feedwater is an important factor in the operation of nuclear power reactors. Some other types of flowmeters have been proposed to improve measurement accuracy. The ultrasonic pulse Doppler velocity-profile flowmeter is expected to be a candidate method because it can measure the flow profiles across the pipe cross sections. For the accurate estimation of the flow velocity, the incidence angle of ultrasonic entering the fluid should be carefully estimated by the theoretical approach. However, the evaluation of the ultrasound propagation is not straightforward for the several reasons such as temperature gradient in the wedge or mode conversion at the interface between the wedge and pipe. In recent years, the simulation code for ultrasound propagation has come into use in the nuclear field for nondestructive testing. This article analyzes and discusses ultrasound propagation in steel piping and water, using the 3D-FEM simulation code and the Kirchhoff method, as it relates to the flow profile measurements in power plants with the ultrasonic pulse Doppler velocity-profile flowmeter. (author)

  13. Modeling of ultrasonic propagation in heavy-walled centrifugally cast austenitic stainless steel based on EBSD analysis.

    Science.gov (United States)

    Chen, Yao; Luo, Zhongbing; Zhou, Quan; Zou, Longjiang; Lin, Li

    2015-05-01

    The ultrasonic inspection of heavy-walled centrifugally cast austenitic stainless steel (CCASS) is challenging due to the complex metallurgical structure. Numerical modeling could provide quantitative information on ultrasonic propagation and plays an important role in developing advanced and reliable ultrasonic inspection techniques. But the fundamental obstacle is the accurate description of the complex metallurgical structure. To overcome this difficulty, a crystal orientation map of a CCASS specimen in the 96 mm × 12 mm radial-axial cross section was acquired based on the electron backscattered diffraction (EBSD) technique and it was used to describe the coarse-grained structure and grain orientation. A model of ultrasonic propagation for CCASS was built according to the EBSD map. The ultrasonic responses of the CCASS sample were also tested. Some experimental phenomena such as structural noise and signal distortion were reproduced. The simulated results showed a good consistence with the experiments. The modeling method is expected to be effective for the precise interpretation of ultrasonic propagation in the polycrystalline structures of CCASS. PMID:25670411

  14. Effects of laser peening treatment on high cycle fatigue and crack propagation behaviors in austenitic stainless steel

    International Nuclear Information System (INIS)

    Laser peening without protective coating (LPwC) treatment is one of surface enhancement techniques using an impact wave of high pressure plasma induced by laser pulse irradiation. High compressive residual stress was induced by the LPwC treatment on the surface of low-carbon type austenitic stainless steel SUS316L. The affected depth reached about 1mm from the surface. High cycle fatigue tests with four-points rotating bending loading were carried out to confirm the effects of the LPwC treatment on fatigue strength and surface fatigue crack propagation behaviors. The fatigue strength was remarkably improved by the LPwC treatment over the whole regime of fatigue life up to 108 cycles. Specimens with a pre-crack from a small artificial hole due to fatigue loading were used for the quantitative study on the effect of the LPwC treatment. The fracture mechanics investigation on the pre-cracked specimens showed that the LPwC treatment restrained the further propagation of the pre-crack if the stress intensity factor range ΔK on the crack tip was less than 7.6 MPa√m. Surface cracks preferentially propagated into the depth direction as predicted through ΔK analysis on the crack by taking account of the compressive residual stresses due to the LPwC treatment. (author)

  15. Enhanced quench propagation in 2G-HTS coils co-wound with stainless steel or anodised aluminium tapes

    Science.gov (United States)

    Núñez-Chico, A. B.; Martínez, E.; Angurel, L. A.; Navarro, R.

    2016-08-01

    Early quench detection and thermal stability of superconducting coils are of great relevance for practical applications. Magnets made with second generation high temperature superconducting (2G-HTS) tapes present low quench propagation velocities and therefore slow voltage development and high local temperature rises, which may cause irreversible damage. Since quench propagation depends on the anisotropy of the thermal conductivity, this may be used to achieve an improvement of the thermal stability and robustness of 2G-HTS coils. On pancake type coils, the thermal conductivity along the tapes (coil’s azimuthal direction) is mostly fixed by the 2G-HTS tape characteristics, so that the reduction of anisotropy relies on the improvement of the radial thermal conductivity, which depends on the used materials between superconducting tapes, as well as on the winding and impregnation processes. In this contribution, we have explored two possibilities for such anisotropy reduction: by using anodised aluminium or stainless steel tapes co-wound with the 2G-HTS tapes. For all the analysed coils, critical current distribution, minimum quench energy values and both tangential and radial quench propagation velocities at different temperatures and currents are reported and compared with the results of similar coils co-wound with polyimide (Kapton®) tapes.

  16. A study of fatigue crack propagation in quenched and tempered and controlled rolled HSLA steels.

    OpenAIRE

    Callister, D. R.

    1987-01-01

    A range of HSLA steels reflecting the two major processing routes, quench and tempering and controlled rolling, have been tested in fatigue to assess their potential wider application in the offshore Industry. The six steels chosen have a wide range of yield strenghts (470 to 690Nmm-2), fracture toughness (31 to 260J at -40°C) and carbon equivalent values (0.19 to 0.33). Fatigue testing has in general been carried out at low frequency (0.5Hz) and high load ratio (0.6) ...

  17. Effect of yield strength on stress corrosion crack propagation under PWR and BWR environments of hardened stainless steels

    International Nuclear Information System (INIS)

    stress corrosion cracking of austenitic stainless steels (SS) and to quantify the effect on the crack propagation rate, an experimental research program was performed using cold and warm worked 304, 316L and 347 SS. Stress corrosion crack growth rate tests, under BWR and PWR environments have been carried out. The results obtained have permitted to determine the yield strength effect in the crack propagation of austenitic stainless steels in PWR and BWR conditions. In addition, similarities on cold work and radiation hardening in enhancing the yield strength and the stress corrosion cracking propagation at high temperature water have been evaluated. (authors)

  18. Application of digital radiography in evaluation of crack propagation rate in cast steel specimens

    OpenAIRE

    Sikora, R.; B. Piekarski; K. Świadek; R. Chylińska

    2009-01-01

    A technology that utilizes penetrating X-rays is one of the oldest non-destructive testing methods. Digital radiography combines modern digital image processing algorithms with traditional X-ray testing method. The following paper describes the present use of digital radiograms in flaw detection, and the use of identification and classification algorithms in detection of cracks that occur under the effect of thermal fatigue process in creep-resistant steel castings operating as structural ele...

  19. On low temperature bainite transformation characteristics using in-situ neutron diffraction and atom probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Rakha, Khushboo, E-mail: krakha@deakin.edu.au [Institute for Frontier Materials, Deakin University, Geelong, VIC 3216 (Australia); Beladi, Hossein; Timokhina, Ilana [Institute for Frontier Materials, Deakin University, Geelong, VIC 3216 (Australia); Xiong, Xiangyuan [Department of Materials Engineering, Monash University, Victoria 3800 (Australia); Kabra, Saurabh; Liss, Klaus-Dieter [Australian Nuclear Science and Technology Organisation, The Bragg Institute, New Illawarra Road, Lucas Heights, NSW 2234 (Australia); Hodgson, Peter [Institute for Frontier Materials, Deakin University, Geelong, VIC 3216 (Australia)

    2014-01-01

    In-situ neutron diffraction was employed to monitor the evolution of nano-bainitic ferrite during low temperature isothermal heat treatment of austenite. The first 10 peaks (austenite, γ and ferrite, α) were monitored during austenization, homogenisation, rapid cooling and isothermal holding at 573 K. Changes in the α-110 and γ-111 peaks were analysed to determine the volume fraction changes and hence the kinetics of the phase transformation. Asymmetry and broadening in the α-200 and γ-200 peaks were quantified to lattice parameter changes due to carbon redistribution as well as the effects of size and dislocation density. Atom Probe Tomography was then used to confirm that, despite the presence of 1.5 mass% Si, carbide formation was evident. This carbide formation is the cause of poor ductility, which is lower than expected in such steels.

  20. Influence of nitrogen alloying and of previous aging on the low-cycle fatigue crack initiation and propagation at room temperature in austenitic stainless steels type 316L

    International Nuclear Information System (INIS)

    The crack growth rates during room temperature low-cycle fatigue of two austenitic stainless steels are evaluated through striation space measurements on the fracture surfaces of axisymmetric smooth specimens. The effect of nitrogen interstitials and of previous aging on the initiation and crack propagation phase durations is discussed

  1. Effect of constraint on fatigue crack propagation near threshold in medium carbon steel

    Czech Academy of Sciences Publication Activity Database

    Hutař, Pavel; Seitl, Stanislav; Knésl, Zdeněk

    Indie : IWCMM14, 2004 - (Mukaherjee, A.; Schmauder, S.; Das, G.). s. 128 [International Workshop on Computational Mechanics of Materials /14./. 23.09.2004-25.09.2004, GOA ] R&D Projects: GA AV ČR KSK1010104; GA ČR GA202/01/0668 Keywords : Fatigue crack propagation rate, constraint * two parameter fracture mechanics * finite elements Subject RIV: JL - Materials Fatigue, Friction Mechanics

  2. Effect of constraint on fatigue crack propagation near threshold in medium carbon steel

    Czech Academy of Sciences Publication Activity Database

    Hutař, Pavel; Seitl, Stanislav; Knésl, Zdeněk

    2006-01-01

    Roč. 37, 1-2 (2006), s. 51-57. ISSN 0927-0256 R&D Projects: GA ČR GA101/03/0331; GA ČR GP101/04/P001 Institutional research plan: CEZ:AV0Z20410507 Keywords : Fatigue crack propagation rate * Constraint * Two-parameter fracture mechanics Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.104, year: 2006

  3. Modelling with the X-FEM the dynamic propagation and arrest of a cleavage crack in PWR ferritic steel

    International Nuclear Information System (INIS)

    This PhD thesis is a study of dynamic cleavage crack propagation and arrest in a PWR steel. It is first recalled that a good understanding of phenomena involved in dynamic fracture mechanics implies good experimental data as well as an efficient numerical tool. The extended Finite Element Method is implanted in the French software Cast3M. It enables to simulate crack growth without any re-meshing. Two techniques are proposed: the level set functions update on an auxiliary grid, and the non-conforming partitioning integration to avoid fields projection in plasticity case. Experimental fracture tests are performed on three configurations: CT specimen, ring under compression in both mode I and mixed mode. Crack speed is measured. Fractography assign cleavage as responsible of fracture. A propagation model based on the principal stress evaluated at the crack tip is identified. Critical cleavage stress is found to depend on rate of phenomena. This model permits to predict accurately by numerical simulation, the crack behavior which is observed experimentally. (author)

  4. Small fatigue crack propagation in Y2O3 strengthened steels

    Czech Academy of Sciences Publication Activity Database

    Hutař, Pavel; Kuběna, Ivo; Ševčík, Martin; Šmíd, Miroslav; Kruml, Tomáš; Náhlík, Luboš

    2014-01-01

    Roč. 452, 1-3 (2014), s. 370-377. ISSN 0022-3115 R&D Projects: GA MŠk(CZ) EE2.3.30.0063; GA MŠk(CZ) ED1.1.00/02.0068; GA ČR(CZ) GP13-28685P Institutional support: RVO:68081723 Keywords : oxide dispersion strengthened steel * small fatigue crack * J-integral * fatigue life prediction Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.865, year: 2014

  5. Study of the mechanical properties of low carbon content HSLA steels

    OpenAIRE

    Illescas, S.; Fernández, J.; Asensio, J.; Sánchez-Soto, M.; Guilemany, J. M.

    2009-01-01

    Two high strength low alloy steels (HSLA) with the same bulk composition and slight microalloying content differences were studied. The main purpose of the study was to determine the effect of different heat treatments and the influence of vanadium (V) on the microstructure and mechanical properties of the bainite present in each steel. For that purpose, standard tests were conducted to determine the hardness, toughness, tensile and yield stress of the different bainite-acicular ferrite struc...

  6. Microstructure and mechanical properties of HSLA-100 steel

    OpenAIRE

    Mattes, Victor R.

    1990-01-01

    Approved for public release; distribution is unlimited. Light microscopy, scanning electron microscopy, and transmission electron microscopy were employed to examine the microstructural basis for the mechanical properties of as-quenched and tempered HSLA-100 steel. Examination of the alloy revealed granular bainite with martensite and retained austenite in the as-quenched state which upon aging at temperatures below the lower transformation temperature, 677 C, formed tempered bainite with ...

  7. Role of Grain Boundaries and Microstructure on the Environment Assisted Cracking of Pipeline Steels

    Science.gov (United States)

    Arafin, Muhammad

    2011-12-01

    been developed that can reproduce the experimentally determined grain boundary character distribution (GBCD) from the simple texture and overall GBCD descriptions. This model has been coupled with the intergranular crack propagation model that can take into account the crystallographic orientations of the grains and the resulting grain boundary character, individual grain boundary fracture strength, and projected local stress onto the grain boundary plane based on applied stress magnitude and in-situ crack propagation length. The predicted threshold fracture stress has been compared with the experimental fracture stress data of various textured and random Mo polycrystals obtained from the literature, and good agreement was observed. Besides, hydrogen induced cracking (HIC) behaviour of two relatively new high strength pipeline steels, API X80 and API X100, in high pH carbonate-bicarbonate environment has been studied using slow strain rate test (SSRT) technique. While both the steels are found to be highly susceptible to HIC at cathodic potentials, the bainitic lath type microstructure (API X100) is more susceptible to HIC compared to the ferritic/granular bainitic steel (API X80) at high cathodic potential. This can be primarily attributed to the bainitic lath boundary separation phenomenon in the API X100 steel. This study also shows that applying cathodic protection can lead to significant hydrogen embrittlement in these steels.

  8. A correlative approach to segmenting phases and ferrite morphologies in transformation-induced plasticity steel using electron back-scattering diffraction and energy dispersive X-ray spectroscopy.

    Science.gov (United States)

    Gazder, Azdiar A; Al-Harbi, Fayez; Spanke, Hendrik Th; Mitchell, David R G; Pereloma, Elena V

    2014-12-01

    Using a combination of electron back-scattering diffraction and energy dispersive X-ray spectroscopy data, a segmentation procedure was developed to comprehensively distinguish austenite, martensite, polygonal ferrite, ferrite in granular bainite and bainitic ferrite laths in a thermo-mechanically processed low-Si, high-Al transformation-induced plasticity steel. The efficacy of the ferrite morphologies segmentation procedure was verified by transmission electron microscopy. The variation in carbon content between the ferrite in granular bainite and bainitic ferrite laths was explained on the basis of carbon partitioning during their growth. PMID:25126753

  9. Microstructure evolution of Fe-based nanostructured bainite coating by laser cladding

    International Nuclear Information System (INIS)

    Highlights: • The laser cladding and isothermal holding are used to fabricate nanobainite coating. • Fine prior austenite is obtained to accelerate the bainite transformation. • Low transformation temperature results in fine bainite ferrite and film austenite. • Retained austenite volume fraction in bainite coating is determined by XRD. • Evolution of carbon content in austenite and ferrite is analyzed. - Abstract: A Fe-based coating with nano-scale bainitic microstructure was fabricated using laser cladding and subsequent isothermal heat treatment. The microstructure of the coating was observed and analyzed using optical microscope (OM), field-emission scanning electron microscope (FE-SEM), transmission electron microscope (TEM) and X-ray diffraction (XRD). The results showed that nanostructured bainitic ferrite and carbon-enriched retained austenite distributed uniformly in the coating. Blocky retained austenite was confined to the prior austenite grain boundaries resulting from the elements segregation. The bainitic microstructure obtained at 250 °C had a finer scale compared with that obtained at 300 °C. The volume fraction of austenite increased with increasing transformation temperature for the fully transformed bainitic coating. The bainitic transformation was accelerated as a result of the fine prior austenite generated during the laser cladding. The evolution of the carbon contents in bainitic ferrite and retained austenite revealed the diffusionless mechanism of the bainitic transformation

  10. Characteristics of elastic wave propagation in SPV 490 steel including welding part

    International Nuclear Information System (INIS)

    Most of pressure vessels have various type of welding part, which is one of the major causes of the failure. In order to assure the reliability of pressure vessel, nondestructive testing is usually conducted on periodically. Especially, when the acoustic emission is applied to vessel integrity testing, the characteristics of elastic wave propagation in vessel plates is very important. In this study, several kinds of experimental conditions such as source type (pulser, pencil lead break), source position (surface, side), and specimen thickness (11, 13, 20 mm) were considered in experiment. The differences in attenuation of elastic wave were not existed between welding and sound part. AE sources from side direction rather than from surface were much affect the attenuation in vessel plates.

  11. The effect of residual stress on creep crack propagation in type 316 stainless steel weld metal

    International Nuclear Information System (INIS)

    Residual stresses are found to cause creep cracks to propagate at 538 deg C in laboratory specimens made from type 316 weld metal. These stresses were simulated by fixed displacement tests. Cracking occurred in the interior of specimens where triaxial stresses were developed at the crack tip, and was more extensive in thick specimens. A 25-fold increase in elastic follow-up led to a proportionate increase in the amount of crack growth. A method for generalising the results is proposed, whereby the main features which control cracking are all incorporated in a cracking severity index. Crack extension rate under relaxing load was as little as one tenth of that achieved if the minimum load had been held steady from the outset; this is attributed to a change in the balance between strain hardening and recovery rates. (author)

  12. An experimental assessment of hysteresis in near-threshold fatigue crack propagation regime of a low alloy ferritic steel under closure-free testing conditions

    International Nuclear Information System (INIS)

    Near-threshold fatigue crack propagation behavior of a high strength steel was investigated in laboratory air under closure-free testing conditions at R = 0.7 (= Reff), and at two different K-gradients. Depending on the criterion assumed, the threshold value differed; the criterion of non-propagation gave a lower threshold value than that assumed by the propagation criterion. Nevertheless, the subsequent propagation following a load increase was discontinuous in both the cases, and da/dN vs ΔK curves obtained on the same specimen during the K-decreasing and the K-increasing test were not necessarily identical in the threshold regime. This behavior, hysteresis, is analyzed mainly from the experimental viewpoint, and it is shown that hysteresis is not an artifact. (orig.) With 13 figs., 3 appendices

  13. Local texture of microstructural inhomogeneities in rolled microalloyed steel

    Science.gov (United States)

    Zolotorevsky, N.; Panpurin, S.; Kazakov, A.; Pakhomova, O.; Petrov, S.

    2015-04-01

    Specific inhomogeneities consisting of coarse-grained bainite are observed in the microstructure of low carbon microalloyed steels after hot rolling. Earlier a special etching method has been developed allowing to reveal that these inhomogeneities markedly affect a fracture toughness of steels. In the present work their crystal geometry was studied using EBSD technique, and orientations of former austenite grains were reconstructed. The austenite, from which the coarse-grained bainite regions have been produced, is shown to have orientations concentrated predominantly within the brass component of austenite rolling texture. The inhomogeneities of steel microstructure are promoted by orientation dependency of the deformation substructure of heavily deformed austenite grains.

  14. Super High Strength Steel for automotive applications

    OpenAIRE

    CONFENTE, Mario; SCHNEIDER, Emmanuel; BOMONT, Olivier; LESCALIER, Christophe; BOMONT-ARZUR, Anne

    2008-01-01

    Intensive weight savings and out-sizing programs are developed in automotive industry and lead to increase the mechanical properties of the material of the automotive parts. ArcelorMittal has developed specific steel grades known as Super High Strength Steels which are designed for both high ductility and toughness and fatigue resistance. This paper investigates machinability for a drilling operation using an experimental methodology. One of the materials is a new low bainitic steel grade. Ex...

  15. Internal Crack Propagation in a Continuously Cast Austenitic Stainless Steel Analyzed by Actual Residual Stress Tensor Distributions

    Science.gov (United States)

    Saito, Youichi; Tanaka, Shun-Ichiro

    2016-04-01

    Initiation, propagation, and termination of internal cracks in a continuously cast austenitic stainless steel has been investigated with emphasis on stress loading of the solidified shell during casting. Cracks were formed at the center of the slab, parallel to the width of the cast, and were observed near the narrow faces. Optimized two-dimensional X-ray diffraction method was employed to measure residual stress tensor distributions around the cracks in the as-cast slab with coarse and strongly preferentially oriented grains. The tensor distributions had a sharp peak, as high as 430 MPa, at the crack end neighboring the columnar grains. On the other hand, lower values were measured at the crack end neighboring the equiaxed grains, where the local temperatures were higher during solidification. The true residual stress distributions were determined by evaluating the longitudinal elastic constant for each measured position, resulting in more accurate stress values than before. Electron probe micro-analysis at the terminal crack position showed that Ni, Ti, and Si were concentrated at the boundaries of the equiaxed grains, where the tensile strength was estimated to be lower than at the primary grains. A model of the crack formation and engineering recommendations to reduce crack formation are proposed.

  16. Measurements of the helium propagation at 4.4 K in a 480 m long stainless steel pipe

    International Nuclear Information System (INIS)

    The relativistic heavy ion collider (RHIC), with two concentric rings 3.8 km in circumference, uses superconducting magnets to focus the high energy beams. Each sextant of RHIC will have continuous cryostats up to 480 m in length housing the magnets and the cold beam pipes. For an acceptable lifetime of the stored beam, the pressure in the cold beam pipe will be -11 Torr. The characteristics of He pressure front propagation due to He leaks will be of importance for beam lifetimes and for vacuum monitoring due to the high vapor pressure of He at 4.4 K, even with small surface coverage. The travels of the He pressure fronts along a 480 m long, 6.9 cm I.D. stainless steel beam pipe cooled to 4.4 K have recently been measured during the RHIC first sextant test. The experiment was carried out over a 12-day period by bleeding in a calibrated He leak of 3x10-5Torrl/s (20 degree C) while measuring the He pressures along this 480 m cold tube at approximately 30 m intervals. The measured speed of the pressure fronts and the pressure profiles are summarized and compared with the calculated ones. copyright 1998 American Vacuum Society

  17. Optimization of heat treatment technique of high-vanadium high-speed steel based on back-propagation neural networks

    International Nuclear Information System (INIS)

    This paper is dedicated to the application of artificial neural networks in optimizing heat treatment technique of high-vanadium high-speed steel (HVHSS), including predictions of retained austenite content (A), hardness (H) and wear resistance (ε) according to quenching and tempering temperatures (T1, T2). Multilayer back-propagation (BP) networks are created and trained using comprehensive datasets tested by the authors. And very good performances of the neural networks are achieved. The prediction results show residual austenite content decreases with decreasing quenching temperature or increasing tempering temperature. The maximum value of relative wear resistance occurs at quenching of 1000-1050 deg. C and tempering of 530-560 deg. C, corresponding to the peak value of hardness and retained austenite content of about 20-40 vol%. The prediction values have sufficiently mined the basic domain knowledge of heat treatment process of HVHSS. A convenient and powerful method of optimizing heat treatment technique has been provided by the authors

  18. Effect of isothermal holding temperature on retained austenite fraction in medium- carbon Nb/Ti-microalloyed TRIP steel

    OpenAIRE

    H. Krztoń; A. Grajcar

    2011-01-01

    Purpose: The aim of the paper is to determine the effect of the isothermal holding temperature in a bainitic transformation range on a fraction of retained austenite for a new-developed medium-carbon TRIP steel containing Nb and Ti microadditions. Design/methodology/approach: The thermo-mechanical processing was carried out by a multi-stage compression test using the Gleeble thermomechanical simulator. The steel was subjected to 5 variants of processing with an isothermal bainitic transformat...

  19. Morphological features of retained austenite in thermo-mechanically processed C-Mn-Si-Al-Nb-Ti multiphase steel

    OpenAIRE

    A. Grajcar

    2010-01-01

    Purpose: The aim of the paper is to determine the influence of isothermal bainitic transformation temperature on morphological features and a fraction of retained austenite in a new-developed thermo-mechanically processed C-Mn-Si-Al-Nb-Ti multiphase steel.Design/methodology/approach: The thermo-mechanical processing was realized in a multi-stage compression test by the use of the Gleeble thermomechanical simulator. The steel was isothermally held for 600 s in a bainitic transformation tempera...

  20. Phase transformation and mechanical behavior of thermomechanically controlled processed high strength ordnance steel

    International Nuclear Information System (INIS)

    A new low carbon titanium and niobium microalloyed steel has been thermomechanically processed in a pilot plant unit. Phase transformation phenomenon of the above steel during continuous cooling has been assessed. Evolution of microstructure and mechanical properties has also been studied at different finish rolling temperatures. A mixture of intragranular ferrite with granular bainite and bainitic ferrite along with inter-lath and intra-lath precipitation of (Ti, Nb)CN particles are the characteristic microstructural feature of air cooled steel. However, mixture of lower bainite and lath martensitic structure along with similar type (Ti, Nb)CN precipitate is observed in water quenched steel. High yield strength (896–948 MPa) with high tensile strength (974–1013 MPa) has been achieved with moderate ductility (16–17%) for the selected range of finish rolling temperature for air cooled steel. However, the water quenched steel yields higher yield strength (1240–1260 MPa) as well as higher tensile strength (1270–1285 MPa) but with lower ductility (13–14%) for the selected range of finish rolling temperature. Fairly good impact toughness values in the range of 50–89 J are obtained for the air cooled steel which are marginally higher than those of water quenched steel (42–81 J). - Highlights: ► New high strength steel has been processed in a pilot plant scale. ► Primarily granular bainite and bainitic ferrite are obtained in air cooled steel. ► Mixture of lower bainite and lath martensite is obtained in water quenched steel. ► (Ti, Nb)CN precipitate is obtained for both air cooled and water quenched steels. ► Highest strength with reasonable ductility has been achieved after water quenching

  1. Phase transformation and mechanical behavior of thermomechanically controlled processed high strength ordnance steel

    Energy Technology Data Exchange (ETDEWEB)

    Bandyopadhyay, P.S. [Ordnance Development Centre, Metal and Steel Factory, Ishapore 743 144 (India); Ghosh, S.K., E-mail: skghosh@metal.becs.ac.in [Department of Metallurgy and Materials Engineering, Bengal Engineering and Science University, Shibpur, Howrah 711 103 (India); Kundu, S.; Chatterjee, S. [Department of Metallurgy and Materials Engineering, Bengal Engineering and Science University, Shibpur, Howrah 711 103 (India)

    2013-02-15

    A new low carbon titanium and niobium microalloyed steel has been thermomechanically processed in a pilot plant unit. Phase transformation phenomenon of the above steel during continuous cooling has been assessed. Evolution of microstructure and mechanical properties has also been studied at different finish rolling temperatures. A mixture of intragranular ferrite with granular bainite and bainitic ferrite along with inter-lath and intra-lath precipitation of (Ti, Nb)CN particles are the characteristic microstructural feature of air cooled steel. However, mixture of lower bainite and lath martensitic structure along with similar type (Ti, Nb)CN precipitate is observed in water quenched steel. High yield strength (896–948 MPa) with high tensile strength (974–1013 MPa) has been achieved with moderate ductility (16–17%) for the selected range of finish rolling temperature for air cooled steel. However, the water quenched steel yields higher yield strength (1240–1260 MPa) as well as higher tensile strength (1270–1285 MPa) but with lower ductility (13–14%) for the selected range of finish rolling temperature. Fairly good impact toughness values in the range of 50–89 J are obtained for the air cooled steel which are marginally higher than those of water quenched steel (42–81 J). - Highlights: ► New high strength steel has been processed in a pilot plant scale. ► Primarily granular bainite and bainitic ferrite are obtained in air cooled steel. ► Mixture of lower bainite and lath martensite is obtained in water quenched steel. ► (Ti, Nb)CN precipitate is obtained for both air cooled and water quenched steels. ► Highest strength with reasonable ductility has been achieved after water quenching.

  2. Steel

    International Nuclear Information System (INIS)

    Composition of age hardening steel, % : Fe - (12.0-12.4) Cr - (2-2.7) Ni (0.5-0.6) Ti - (1.0-1.2) Mn - (0.03 - 0.04) C having high values of magnetoelastic internal friction and mechanical properties as well as an ability to operate under the conditions of alternating loadings are proposed. Damping properties of the steel permit to improve labour conditions. Data for the above steel on internal friction, impact strength and tensile properties are given

  3. Effect of phosphorous and boron addition on microstructural evolution and Charpy impact properties of high-phosphorous-containing plain carbon steels

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seokmin [Center for Advanced Aerospace Materials, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Shin, Sang Yong [Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf D-40237 (Germany); Lee, Junghoon [Center for Advanced Aerospace Materials, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Lee, Chang-Hoon [Next Generation Products Research Group, Technical Research Laboratories, POSCO, Pohang 790-785 (Korea, Republic of); Lee, Sunghak, E-mail: shlee@postech.ac.kr [Center for Advanced Aerospace Materials, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of)

    2013-03-01

    Four plain carbon steels were fabricated by controlling the addition of P and B, and then isothermal heat-treatments were conducted at 550 °C and 650 °C for 3 h on these steels to make ferrite–pearlite-based or ferrite–bainite-based microstructures, respectively. B was added for controlling the reduction in toughness due to grain boundary segregation of P because B was readily distributed on grain boundaries. In the 550 °C-treated steels, bainite grains were refined by the B addition, whereas the 650 °C-treated steels did not show the grain refinement due to the B addition. According to the critical time analysis for non-equilibrium grain boundary segregation of P and B, the present isothermal treatment time of 3 h was too short for the grain boundary segregation of P, and thus the fracture occurred mostly in a cleavage mode, instead of an intergranular mode. Since this 3 h-treatment time was too long for the grain boundary segregation of B, the grain boundary segregation of B was reduced, and the precipitation of cementites was promoted. In the 550 °C-treated steels, the area fraction of intergranular fracture increased with increasing volume fraction of grain boundary cementites, as they played an important role in initiating the intergranular fracture, although the area fraction of intergranular fracture was lower than 5%. In the 650 °C-treated steels having coarse grains, however, grain boundary cementites did not work for intergranular fracture because the crack readily propagated in a cleavage mode.

  4. Bainitic nodular cast iron with carbides obtaining with use of Inmold method

    Directory of Open Access Journals (Sweden)

    G. Gumienny

    2009-07-01

    Full Text Available In these paper bainitic nodular cast iron with carbides as-cast obtaining has been presented. This cast iron has been obtained with use of Inmold method. It was shown, that there is the possibility of bainite and carbides obtaining in cast iron with Mo and Ni for studied chemical composition.

  5. Thermal Stability of Nanocrystalline Structure In X37CrMoV5-l Steel

    OpenAIRE

    Skołek E.; Marciniak S.; Świątnicki W.A.

    2015-01-01

    The aim of the study was to investigate the thermal stability of the nanostructure produced in X37CrMoV5-1 tool steel by austempering heat treatment consisted of austenitization and isothermal quenching at the range of the bainitic transformation. The nanostructure was composed of bainitic ferrite plates of nanometric thickness separated by thin layers of retained austenite. It was revealed, that the annealing at the temperature higher than temperature of austempering led to formation of ceme...

  6. Use of electrochemical potential noise to detect initiation and propagation of stress corrosion cracks in a 17-4 PH steel

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Rodriguez, J.G. [UAEM, Cuernavaca (Mexico); Salinas-Bravo, V.M.; Garcia-Ochoa, E. [Inst. de Investigaciones Electricas, Temixco (Mexico). Dept. de Fisicoquimica Aplicada; Diaz-Sanchez, A. [Inst. Nacional de Investigaciones Nucleares, Toluca (Mexico). Dept. de Materiales

    1997-09-01

    Corrosion potential transients were associated with nucleation and propagation of stress corrosion cracks in a 17-4 precipitation-hardenable (PH) martensitic stainless steel (SS) during slow strain rate tests (SSRT) at 90 C in deaerated sodium chloride (NaCl) solutions, Test solutions included 20 wt% NaCl at pH 3 and 7, similar to normal and faulted steam turbine environments, respectively. Time series were analyzed using the fast Fourier transform method. At the beginning of straining, the consistent noise behavior was perturbed with small potential transients, probably associated with rupture of the surface oxide layer. After yielding, these transients increased in intensity. At maximum load, the transients were still higher in intensity and frequency. These potential transients were related to crack nucleation and propagation. When the steel did not fail by stress corrosion cracking (SCC), such transients were found only at the beginning of the test. The power spectra showed some differences in all cases in roll-off slope and voltage magnitude, but these were not reliable tools to monitor the initiation and propagation of stress corrosion cracks.

  7. Microstructure and crack resistance of low carbon Cr-Ni and Cr-Ni-W steel after austempering

    Science.gov (United States)

    Avdjieva, Tatyana; Tsutsumanova, Gichka; Russev, Stoyan; Staevski, Konstantin

    2013-09-01

    The microstructure of the low carbon Cr-Ni steel after slow cooling from austenization temperature represents a mix of granulated bainite with islands from carbon-rich martensite and carbon-poor austenite. After quick cooling throwing in salt bath from austenization temperature the microstructure is lath bainite. However, in the same treatment conditions, the microstructure of the low carbon Cr-Ni-W steel is different — clusters consist from lath ferrite and retained austenite, disposed in the frame of parent's austenite grains. The cooling velocity has no effect upon the structure making. The impact toughness of the steel with tungsten content is bigger than the steel without tungsten.

  8. Enhanced ductility and toughness in an ultrahigh-strength Mn–Si–Cr–C steel: The great potential of ultrafine filmy retained austenite

    International Nuclear Information System (INIS)

    Three heat-treatment routes incorporating bainite formation, namely bainite-based quenching plus tempering, bainite austempering and bainite-based quenching plus partitioning (BQ and P), were applied to a medium-carbon Mn–Si–Cr alloyed steel. An optimum combination of strength, ductility and toughness was achieved after the BQ and P treatment (ultimate tensile strength: 1688 MPa; total elongation: 25.2%; U-notch impact toughness at −40 °C: 48 J cm−2). The enhanced mechanical properties were attributed to an increased amount of refined filmy retained austenite (22 vol.%, nanometer width range: <100 nm and submicron width range: 100–500 nm). The formation process of the bainitic microstructure as well as martensite and retained austenite was revealed by conducting dilatometry, X-ray diffraction, scanning electron microscopy, electron backscatter diffraction and transmission electron microscopy (TEM). The effect of the retained austenite on mechanical properties was discussed in terms of its size and morphology

  9. Study of the mechanical properties of low carbon content HSLA steels

    Energy Technology Data Exchange (ETDEWEB)

    Illescas, S.; Fernandez, J.; Asensio, J.; Sanchez-Soto, M.; Guilemany, J. M.

    2009-07-01

    Two high strength low alloys steels (HSLA) with the same bulk composition and slight microalloying content differences were studied. The main purpose of the study was to determine the effect of different heat treatments an the influence of vanadium (V) on the microstructure and mechanical properties of the bainite present in each steel. For that purpose, standard tests were conducted to determine the hardness, toughness, tensile and yield stress of the different bainite-acicular ferrite structures found in both steels. The results show how the V content promoted the formation of acicular ferrite, resulting in a decrease in hardness and tensile strength while improving toughness. (Author) 30 refs.

  10. Microstructural characteristics with various cooling paths and the mechanism of embrittlement and toughening in low-carbon high performance bridge steel

    International Nuclear Information System (INIS)

    Based on ultra fast cooling (UFC), the microstructural characteristics and mechanical properties with various cooling paths and the mechanism of enbrittlement and toughening for different microstructural characteristics in low-carbon high performance bridge steel were investigated in details using optical microscope (OM), scanning electron microscope (SEM), electron back-scattered diffraction (EBSD), electron probe micro-analyzer (EPMA) and transmission electron microscope (TEM). The results show that using UFC can effectively refine the size of M/A constituent, promote the formation of lath bainite with high misorientation between laths, suppress the re-partition of carbon, and enhance the relative frequency of high-angle grain boundaries during bainite transformation. However, at the higher UFC cooling finish temperature of 560 °C, the bainite transformation mainly takes place during air cooling. The larger block-form M/A constituent is almost twin martensite with zone axis of B=[113] and twin plan of (pqr)=(21−1) due to sufficient re-partition of carbon and carbon concentration of approx. 0.22 wt% not making residual austenite so stable that they become twin martensite below the martensite transformation start temperature (Ms). The balance of high strength with yield strength of 876 MPa and better toughness with ductile–brittle transition temperature (DBTT) of lower than −60 °C was realized using the cooling path of UFC→400 °C→air cooling. In addition, based on observation and analysis of cracks initiation and cracks propagation, the mechanism of embrittlement and toughening for the cooling paths of UFC→560 °C→air cooling and UFC→400 °C→air cooling, respectively, was discussed in details. For the cooling path of UFC→560 °C→air cooling, the microcracks can easily nucleate at larger block-form brittle twin martensite or twin martensite–matrix interface and easily propagate through twin martensite or along twin

  11. The lack of penetration effect on fatigue crack propagation resistance of atmospheric corrosion resistant steel welded joints

    International Nuclear Information System (INIS)

    The welding process introduces defects on the welded joints, as lack of fusion and penetration, porosity, between others. These defects can compromise the structures or components, relative to the crack propagation. This engagement can be studied by fatigue crack propagation tests. The efficiency of the structure, when submitted to a cyclic loading can be evaluated by these tests. The aim of this work is to study the behavior of welded joints containing defects as lack of penetration at the root or between welding passes relative to crack propagation resistance properties, and to compare these properties with the properties of the welded joints without defects. This study was accomplished from fatigue crack propagation test results, in specimens containing lack of penetration between welding passes. With the obtained results, the Paris equation coefficients and exponents that relate the crack propagation rate with the stress intensity cyclic factor for welded joints with and without defects were obtained. (author)

  12. Prediction of the mechanical behaviour of TRIP steel

    OpenAIRE

    Perdahcioglu, E.S.; Geijselaers, H.J.M.; Tekkaya, A. E.; Hirt, G.

    2011-01-01

    TRIP steel typically contains four different phases, ferrite, bainite, austenite and martensite. During deformation the metastable retained austenite tends to transform to stable martensite. The accompanying transformation strain has a beneficial effect on the ductility of the steel during forming. By changing the alloy composition, the rolling procedure and the thermal processing of the steel, a wide range of different morphologies and microstructures can be obtained. Interesting parameters ...

  13. Mechanism of MnS-mediated pit initiation and propagation in carbon steel in an anaerobic sulfidogenic media

    International Nuclear Information System (INIS)

    Highlights: •In carbon steel, pits are initiated in the immediate surroundings of MnS inclusions. •Unlike stainless steel, MnS inclusions do not dissolve during pit initiation. •The presence of biofilms accelerates pit growth and development. -- Abstract: In a saline anaerobic sulfidogenic environment, pitting on 1018 carbon steel was initiated within a 20–30 nm zone at the MnS inclusion boundary. Nanoscale analysis was performed using scanning electron microscopy and a scanning Auger nanoprobe. The pitting was more pronounced in the presence of a biofilm of sulfate-reducing bacteria than in abiotic sulfide medium. It is proposed that initiation of an anodic reaction leading to dissolution of Fe matrix and subsequent pitting of steel in MnS inclusion boundary regions is due to disorder and strain exerted on the Fe matrix by MnS contamination of the interface from metallurgical processes

  14. A study on low temperature transformation ferrite in ultra low carbon IF steels (I) - effects of manganese and annealing conditions

    International Nuclear Information System (INIS)

    An investigation was made to determine the effects of Mn content and annealing conditions on the formation of the low temperature transformation products in ultra low carbon interstitial free steels. With increasing the Mn content, yield and tensile strengths increased, but yield ratio decreased. The Mn was found to be effective to decrease the yield point elongation, causing continuous yielding in 3% Mn steel. Low temperature transformation ferrites such as quasi-polygonal ferrite, granular bainitic ferrite, and bainitic ferrite more easily formed with higher Mn content, higher annealing temperature, longer annealing time, and faster cooling rate. Polygonal ferrite grain was readily identified in the light microscope and was characterized by the polyhedral and equiaxed shape while quasi-polygonal ferrite showed the irregular changeful grain boundaries. It was found that both granular bainitic and bainitic ferrites revealed some etching evidence of substructures in the light microscope

  15. Low temperature bainitic ferrite: Evidence of carbon super-saturation and tetragonality

    International Nuclear Information System (INIS)

    Experimental evidence indicates that bainitic ferrite formed by transformation at low temperatures (200–350 °C) contains quantities of carbon in solid solution far beyond those expected from para-equilibrium. A change in the conventional symmetry of the bainitic ferrite lattice from cubic to tetragonal explains the abnormal solid solubility detected. This carbon supersaturation was measured by atom probe tomography, and the tetragonality of the bainitic ferrite, was characterized by means of X-ray diffraction analysis and high resolution transmission electron microscopy

  16. Effects of Oxides on Tensile and Charpy Impact Properties and Fracture Toughness in Heat Affected Zones of Oxide-Containing API X80 Linepipe Steels

    Science.gov (United States)

    Sung, Hyo Kyung; Sohn, Seok Su; Shin, Sang Yong; Oh, Kyung Shik; Lee, Sunghak

    2014-06-01

    This study is concerned with effects of complex oxides on acicular ferrite (AF) formation, tensile and Charpy impact properties, and fracture toughness in heat affected zones (HAZs) of oxide-containing API X80 linepipe steels. Three steels were fabricated by adding Mg and O2 to form oxides, and various HAZ microstructures were obtained by conducting HAZ simulation tests under different heat inputs. The no. of oxides increased with increasing amount of Mg and O2, while the volume fraction of AF present in the steel HAZs increased with increasing the no. of oxides. The strengths of the HAZ specimens were generally higher than those of the base metals because of the formation of hard microstructures of bainitic ferrite and granular bainite. When the total Charpy absorbed energy was divided into the fracture initiation and propagation energies, the fracture initiation energy was maintained constant at about 75 J at room temperature, irrespective of volume fraction of AF. The fracture propagation energy rapidly increased from 75 to 150 J and saturated when the volume fraction of AF exceeded 30 pct. At 253 K (-20 °C), the total absorbed energy increased with increasing volume fraction of AF, as the cleavage fracture was changed to the ductile fracture when the volume fraction of AF exceeded 45 pct. Thus, 45 vol pct of AF at least was needed to improve the Charpy impact energy, which could be achieved by forming a no. of oxides. The fracture toughness increased with increasing the no. of oxides because of the increased volume fraction of AF formed around oxides. The fracture toughness did not show a visible correlation with the Charpy absorbed energy at room temperature, because toughness properties obtained from these two toughness testing methods had different significations in view of fracture mechanics.

  17. A correlative approach to segmenting phases and ferrite morphologies in transformation-induced plasticity steel using electron back-scattering diffraction and energy dispersive X-ray spectroscopy

    International Nuclear Information System (INIS)

    Using a combination of electron back-scattering diffraction and energy dispersive X-ray spectroscopy data, a segmentation procedure was developed to comprehensively distinguish austenite, martensite, polygonal ferrite, ferrite in granular bainite and bainitic ferrite laths in a thermo-mechanically processed low-Si, high-Al transformation-induced plasticity steel. The efficacy of the ferrite morphologies segmentation procedure was verified by transmission electron microscopy. The variation in carbon content between the ferrite in granular bainite and bainitic ferrite laths was explained on the basis of carbon partitioning during their growth. - Highlights: • Multi-condition segmentation of austenite, martensite, polygonal ferrite and ferrite in bainite. • Ferrites in granular bainite and bainitic ferrite segmented by variation in relative carbon counts. • Carbon partitioning during growth explains variation in carbon content of ferrites in bainites. • Developed EBSD image processing tools can be applied to the microstructures of a variety of alloys. • EBSD-based segmentation procedure verified by correlative TEM results

  18. A correlative approach to segmenting phases and ferrite morphologies in transformation-induced plasticity steel using electron back-scattering diffraction and energy dispersive X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gazder, Azdiar A., E-mail: azdiar@uow.edu.au [Electron Microscopy Centre, University of Wollongong, New South Wales 2500 (Australia); Al-Harbi, Fayez; Spanke, Hendrik Th. [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, New South Wales 2522 (Australia); Mitchell, David R.G. [Electron Microscopy Centre, University of Wollongong, New South Wales 2500 (Australia); Pereloma, Elena V. [Electron Microscopy Centre, University of Wollongong, New South Wales 2500 (Australia); School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, New South Wales 2522 (Australia)

    2014-12-15

    Using a combination of electron back-scattering diffraction and energy dispersive X-ray spectroscopy data, a segmentation procedure was developed to comprehensively distinguish austenite, martensite, polygonal ferrite, ferrite in granular bainite and bainitic ferrite laths in a thermo-mechanically processed low-Si, high-Al transformation-induced plasticity steel. The efficacy of the ferrite morphologies segmentation procedure was verified by transmission electron microscopy. The variation in carbon content between the ferrite in granular bainite and bainitic ferrite laths was explained on the basis of carbon partitioning during their growth. - Highlights: • Multi-condition segmentation of austenite, martensite, polygonal ferrite and ferrite in bainite. • Ferrites in granular bainite and bainitic ferrite segmented by variation in relative carbon counts. • Carbon partitioning during growth explains variation in carbon content of ferrites in bainites. • Developed EBSD image processing tools can be applied to the microstructures of a variety of alloys. • EBSD-based segmentation procedure verified by correlative TEM results.

  19. Plasticity and fracture modeling of quench-hardenable boron steel with tailored properties

    NARCIS (Netherlands)

    Eller, T.K.; Greve, L.; Andres, M.T.; Medricky, M.; Hatscher, A.; Meinders, V.T.; Boogaard, van den A.H.

    2014-01-01

    In this article, a constitutive model for quench-hardenable boron steel is presented. Three sets of boron steel blanks are heat treated such that their as-treated microstructures are close to fully martensitic, bainitic and ferritic/pearlitic, respectively. Hardness measurements show that the result

  20. Effects of deformation and boron on microstructure and continuous cooling transformation in low carbon HSLA steels

    Energy Technology Data Exchange (ETDEWEB)

    Jun, H.J. [Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Kang, J.S. [Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Seo, D.H. [Technical Research Laboratories, POSCO, Pohang 545-090 (Korea, Republic of); Kang, K.B. [Technical Research Laboratories, POSCO, Pohang 545-090 (Korea, Republic of); Park, C.G. [Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of)]. E-mail: cgpark@postech.ac.kr

    2006-04-25

    The continuous-cooling-transformation (CCT) diagram and continuous cooled microstructure were investigated for low carbon (0.05 wt.% C) high strength low alloy steels with/without boron. Microstructures observed in continuous cooled specimens were composed of pearlite, quasi-polygonal ferrite, granular bainite, acicular ferrite, bainitic ferrite, lower bainite, and martensite depending on cooling rate and transformation temperature. A rapid cooling rate depressed the formation of pearlite and quasi-polygonal ferrite, which resulted in higher hardness. However, hot deformation slightly increased transformation start temperature, and promoted the formation of pearlite and quasi-polygonal ferrite. Hot deformation also strongly promoted the acicular ferrite formation which did not form under non-deformation conditions. Small boron addition effectively reduced the formation of pearlite and quasi-polygonal ferrite and broadened the cooling rate region for bainitic ferrite and martensite.

  1. Effect of oxidation behavior on the corrosion fatigue crack initiation and propagation of 316LN austenitic stainless steel in high temperature water

    International Nuclear Information System (INIS)

    The effect of oxidation behavior on the corrosion fatigue crack initiation and propagation of 316LN austenitic stainless steel (SS) in 320 °C water and air environments was investigated by corrosion fatigue cracking test system, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and nanoindentation. The experimental results indicated that the cracks were found to be initiated at first 20% of fatigue life of the specimens tested in 320 °C water, while only a few cracks were found until fracture when tested in 320 °C air. The crack propagation rates of the specimens tested in 320 °C water were obviously faster than those tested in 320 °C air especially at lower strain amplitude of ±0.5%. This can be attributed to the oxidation behavior of the 316LN SS specimens tested in 320 °C water was more serious than those tested in 320 °C air. The compositions were more complex of the oxide films formed in 320 °C water than those tested in 320 °C air, which lead to crack initiation easier in the former. Moreover, the 320 °C water made the mechanical properties of the oxide films worse, resulting in a faster fatigue crack propagation rate at crack tip

  2. Hydrogen-assisted crack propagation in 304L/308L and 21Cr–6Ni–9Mn/308L austenitic stainless steel fusion welds

    International Nuclear Information System (INIS)

    Highlights: ► Measured crack growth resistance of welds with 140 wppm H from gas charging. ► H reduced fracture initiation toughness by over 67% and altered fracture mode. ► With H, microcracks initiate at weld ferrite. Without H, fracture is uniformly ductile. ► With H, localized deformation in austenite creates stress concentrations at ferrite. ► In austenite/ferrite microstructures, JIC decreases with increasing vol.% ferrite. - Abstract: Elastic–plastic fracture mechanics methods were used to characterize hydrogen-assisted crack propagation in two austenitic stainless steel gas tungsten arc (GTA) welds. Thermally precharged hydrogen (140 wppm) degraded fracture initiation toughness and crack growth toughness and altered fracture mechanisms. Fracture initiation toughness in hydrogen-precharged welds represented a reduction of >67% from the estimated toughness of non-charged welds. In hydrogen-precharged welds, microcracks initiated at ferrite, and dendritic microstructure promoted crack propagation along ferrite. Deformation twinning in austenite interacts with ferrite, facilitating microcrack formation. While hydrogen altered fracture mechanisms similarly for both welds, the amount of ferrite governed the severity of hydrogen-assisted crack propagation.

  3. Effect of oxidation behavior on the corrosion fatigue crack initiation and propagation of 316LN austenitic stainless steel in high temperature water

    Energy Technology Data Exchange (ETDEWEB)

    Wu, H.C. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Yang, B., E-mail: byang@ustb.edu.cn [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Collaborative Innovation Center of Universal Iron & Steel Technology, Beijing 100083 (China); Wang, S.L.; Zhang, M.X. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China)

    2015-05-01

    The effect of oxidation behavior on the corrosion fatigue crack initiation and propagation of 316LN austenitic stainless steel (SS) in 320 °C water and air environments was investigated by corrosion fatigue cracking test system, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and nanoindentation. The experimental results indicated that the cracks were found to be initiated at first 20% of fatigue life of the specimens tested in 320 °C water, while only a few cracks were found until fracture when tested in 320 °C air. The crack propagation rates of the specimens tested in 320 °C water were obviously faster than those tested in 320 °C air especially at lower strain amplitude of ±0.5%. This can be attributed to the oxidation behavior of the 316LN SS specimens tested in 320 °C water was more serious than those tested in 320 °C air. The compositions were more complex of the oxide films formed in 320 °C water than those tested in 320 °C air, which lead to crack initiation easier in the former. Moreover, the 320 °C water made the mechanical properties of the oxide films worse, resulting in a faster fatigue crack propagation rate at crack tip.

  4. Microstructure and properties of steel weld metals

    International Nuclear Information System (INIS)

    The major impetus for developments in welding consumables for high-strength low-alloy (HSLA) stells have been provided by the need for improved toughness and ductility to produce weld metal deposits with mechanical properties essentially equivalent to the base plate. From the large volume of literature dealing with HSLA steel filler metals, it appears that the bulk of weld metal research over the past decade has been concentrated on the achievement of a maximum toughness and ductility for a given strength level by control of the weld metal microstructure. Based on the following review, there seems to be general agreement that microstructures primarily consisting of acicular ferrite provide optimum weld metal mechanical properties, both from a strength and toughness point of view, by virtue of its small grain size (typically 1-3 μm) and high angle grain boundaries. The formation of large proportions of upper bainite, Widmanstaetten ferrite, or grain boundary ferrite, on the other hand, are considered detrimental to toughness, since these structures provide preferential crack propagation paths, especially when continuous films of carbides are present between the ferrite laths or plates. Attempts to control the weld metal acicular ferrite content have led to the introduction of welding consumables containing complex deoxidizers (Si, Mn, Al, Ti) and balanced additions of various alloying elements (Nb, V, Ni, Cr, Mo, B). (orig.)

  5. Ageing phenomena in ULCB-NiCu steels

    International Nuclear Information System (INIS)

    Effect od ageing time and temperature on microstructure development, precipitation of εCu, advancement of recrystallization process and their influence on yield strength and fracture toughness properties KIC as well as high Charpy V impact energy CVN = 84 J at 120oC of ultra low carbon bainitic copper bearing steels have ben discussed. (author)

  6. Experimental study on corrosion behavior of carbon steel in buffer material-I. Behavior of corrosion propagation based on the results of immersion tests for 10 years

    International Nuclear Information System (INIS)

    The deep underground environment where overpacks will be emplaced is expected to be anaerobic environment. It is necessary to understand the corrosion behavior of carbon steel in such environment for the assessment of corrosion lifetime of carbon steel overpacks. In this study, immersion tests of carbon steel were carried out in buffer material for 10 years duration in nitrogen atmosphere in which oxygen gas concentration was controlled to less than 1 ppm. Synthetic sea water and aqueous solution containing bicarbonate ion and chloride ion were selected as the test solution. The effects of temperature, bentonite purity and atmosphere on the corrosion behavior were investigated. The amount of corrosion of carbon steel was estimated from the weight loss of the test coupon, and its change with time was investigated. The experimental results were summarised as follows; The corrosion rates were decreased with time in every test case, and as the corrosion rate at early stage of immersion was larger, the corrosion propagation was more suppressed after a long term. The influence of purity of bentonite and the atmosphere of gas phase on the behavior of corrosion propagation was small. The amount of corrosion in high carbonate concentration was smaller than those of other test conditions throughout the test periods. The change of corrosion depth, Y with time, X was approximated by power law equation, Y=AXB. The parameter A and B in synthetic sea water system was expressed as a function of dry density of buffer material, ρ(g/cm3), sand mixing ratio, r(0 ≤ r ≤ 1) and temperature, T(K). The corrosion rates calculated from the gradient of the change of the average corrosion depth between 1 to 10 years were in the range of 0.055 - 1.4 μm/y. It was confirmed that the corrosion rate of 10 μm/y used in the past lifetime assessment of overpack was sufficiently conservative in comparison with laboratory test data for 10 years and natural analogue data. (author)

  7. Crack Propagation Property of 316 Stainless Steel%316不锈钢的裂纹扩展性能

    Institute of Scientific and Technical Information of China (English)

    阮於珍; 陈金陵

    2000-01-01

    The thermal fatigue test was performed on 316 SS to understand the crack propagation behavior underthe cycling temperature environment. The crack propagation rate got from the test is low, so the loop with crackcould be re-used in regular monitering condition.%从实用出发对316不锈钢管材进行了热循环下的裂纹扩展试验。试验表明该材料在交变热应力下的裂纹扩展速率缓慢,带裂纹的管道在监督下可以继续运行。

  8. Crack propagation during fatigue in cast duplex stainless steels: influence of the microstructure, of the aging and of the test temperature

    International Nuclear Information System (INIS)

    Duplex stainless steels are used as cast components in nuclear power plants. At the service temperature of about 320 C, the ferrite phase is thermally aged and embrittled. This induces a significant decrease in fracture properties of these materials. The aim of this work consists in studying Fatigue Crack Growth Rates (FCGR) and Fatigue Crack Growth Mechanisms (FCGM) as a function of thermal ageing and test temperature (20 C/320 C). Two cast duplex stainless steels (30% ferrite) are tested. In order to better understand the influence of the crystallographic orientation of the phases on the FCGM, the solidification structure of the material is studied by Electron Back-Scatter Diffraction (EBSD) and by Unidirectional Solidification Quenching. Fatigue crack growth tests are also performed in equiaxed and basaltic structures. Microstructure, fatigue crack growth mechanical properties and mechanisms are thus studied in relation to each other. In the studied range of delta K, the crack propagates without any preferential path by successive ruptures of phase laths. The macroscopic crack propagation plane, as determined by EBSD, depends on the crystallographic orientation of the ferrite grain. So, according to the solidification structure, secondary cracks can appear, which in turn influences the FCGR. Fatigue crack closure, which has to be determined to estimate the intrinsic FCGR, decreases with increasing ageing. This can be explained by a decrease in the kinematic cyclic hardening. The Paris exponent as determined from intrinsic FCGR increases with ageing. Intrinsic FCGR can then be separated in two ranges: one with lower FCGR in aged materials than in un-aged and one with the reversed tendency. (author)

  9. Effect of Thermomechanical Processing on Microstructures of TRIP Steel

    Institute of Scientific and Technical Information of China (English)

    TANG Zheng-you; DING Hua; DU Lin-xiu; DING Hao; ZHANG Xin

    2007-01-01

    In order to control retained austenite, the effect of hot deformation in the intercritical region on the microstructure of hot-rolled transformation-induced plasticity (TRIP) steel was studied on a Gleeble 1500 hot simulator. Compressive strains varying in amounts from 0 to 60% were imposed in the intercritical region, and effects on the formation of polygonal ferrite, carbide-free bainite and retained austenite were determined. With increasing the hot deformation amount and the ferrite content and decreasing the carbide-free bainite content, the volume fraction of retained austenite decreases. Increased dislocation density, grain refinement of ferrite and carbon enrichment are the main factors which control retained austenite stability.

  10. Microstructural study on retained austenite in advanced highstrength multiphase 3Mn-1.5Al and 5Mn-1.5Al steels

    Directory of Open Access Journals (Sweden)

    A. Grajcar

    2012-10-01

    Full Text Available Purpose: The aim of the paper is to describe crystallographic and morphological features of retained austenite in thermomechanically processed bainite-martensite multiphase steels containing 3 and 5% Mn.Design/methodology/approach: Two groups of steels were designed and investigated: 3Mn-1.5Al and 5Mn-1.5Al were reference steels, whereas next two steels were microalloyed with niobium. The steels were thermomechanically processed using the Gleeble simulator. The isothermal holding temperature to enrich austenite in carbon was between 350 and 450°C. Metallographic investigations were carried out using light (LM and scanning electron microscopy (SEM. The retained austenite amount and its carbon concentration was evaluated by X-ray analysis.Findings: Manganese addition results in the high hardenability of steels leading to bainitic-martensitic microstructures. A high-Al concept and isothermal holding of steel in a bainitic transformation range allow to obtain a high fraction of retained austenite as a result of an incomplete bainitic transformation phenomenon. New complex bainitic morphologies like degenerate upper and lower bainite were identified using SEM. The microstructure and retained austenite characteristics were correlated with the carbon content in γ phase.Research limitations/implications: Further investigations (TEM, EBSD to describe in detail the identified structural constituents and the effect of Nb microalloying on microstructure and mechanical properties are needed.Practical implications: The knowledge of the influence of the isothermal holding temperature on the microstructure and hardness of thermomechanically processed steels are of primary importance for hot rolling of these multiphase high-strength steels.Originality/value: A problem of the stabilization of retained austenite in advanced high-strength multiphase Nb-free and Nb-microalloyed steels with increased Mn content is discussed.

  11. Thermal fatigue of a 304L austenitic stainless steel: simulation of the initiation and of the propagation of the short cracks in isothermal and aniso-thermal fatigue

    International Nuclear Information System (INIS)

    The elbow pipes of thermal plants cooling systems are submitted to thermal variations of short range and of variable frequency. These variations bound to temperature changes of the fluids present a risk of cracks and leakages. In order to solve this problem, EDF has started the 'CRECO RNE 808' plan: 'thermal fatigue of 304L austenitic stainless steels' to study experimentally on a volume part, the initiation and the beginning of the propagation of cracks in thermal fatigue on austenitic stainless steels. The aim of this study is more particularly to compare the behaviour and the damage of the material in mechanic-thermal fatigue (cycling in temperature and cycling in deformation) and in isothermal fatigue (the utmost conditions have been determined by EDF for the metal: Tmax = 165 degrees C and Tmin = 90 degrees C; the frequency of the thermal variations can reach a Hertz). A lot of experimental results are given. A model of lifetime is introduced and validated. (O.M.)

  12. FACTORS INFLUENCING THE WEAR BEHAVIOR OF PM STEELS

    Institute of Scientific and Technical Information of China (English)

    J.A. Wang; H. Danninger

    2001-01-01

    A review was made on the research progress of wear behavior of PM steels in recentyears. Wear is not an intrinsic property of PM steels, which is strongly influencedby the wear test conditions. However, many other factors that determine the me-chanical properties of PM steels also affect the wear behavior. Porosity has differenteffects on the wear of PM steels depending on the application conditions. Under drysliding condition, higher porosity results in lower wear resistance. The influence ofmicrostructures on wear resistance was in the order: carbide, martensite, bainite andlamellar pearlite. The wear resistance increases with hardness, but this relationshipchanges with the porosity and microstructures of PM steels.``

  13. The effect of microstructural changes on the caustic stress corrosion cracking resistance of a NiCrMoV rotor steel

    Science.gov (United States)

    Bandyopadhyay, N.; Briant, C. L.; Hall, E. L.

    1985-07-01

    This paper presents a study of the effects of microstructural changes on the caustic stress corrosion cracking resistance of a NiCrMoV rotor steel. All tests were run in 9 M NaOH at 98 °C and at an electrochemical potential of -400 mVHg/Hgo. Different microstructures were obtained by tempering martensitic samples for different times at 600 °C or by using a slow controlled cool from the austenite to produce a bainitic structure. The results show that heat treatments which produced large, chromiumrich carbides are beneficial. These carbides are preferentially corroded and cause pits to form at the crack tip. We propose that these pits cause crack tip blunting and slow crack propagation. It is further shown that, although changes in microstructure can produce improvements in the susceptibility to stress corrosion cracking, these changes cannot compensate for the detrimental effects of phosphorus segregation to grain boundaries.

  14. Tensile and impact behaviour of a microalloyed medium carbon steel: Effect of the cooling condition and corresponding microstructure

    International Nuclear Information System (INIS)

    Highlights: ► Effect of different cooling rate after hot rolling in medium C microalloyed steels. ► Effect of microstructure on the impact toughness, at room and sub-zero temperatures. ► Brittle behavior induced by the fracture of large (Ti, V)(C, N) inclusions. ► Acicular ferrite deflects propagation cracks increasing impact toughness. -- Abstract: The effect of cooling rate after hot rolling on the final microstructure and mechanical properties of a microalloyed medium C steel was investigated. The microstructure was characterized by optical microscopy; the mechanical behavior was studied by hardness, tensile and instrumented Charpy V-notch impact tests carried out at room and sub-zero temperatures. The results of microstructural analysis indicate that a low cooling rate of 0.7 °C/s led to a mixed microstructure consisting of perlite, pro-eutectoid ferrite and bainite, while an increase of the cooling rate to 7.5 °C/s favored the formation of martensite and acicular ferrite. This latter microstructure, in turn, induced an increase in the tensile strength of the steel, with a reduction of its elongation to failure, and superior impact toughness. Analyses of the fracture surfaces with scanning electron microscopy confirmed the influence of the two microstructures on the failure mechanisms of the steel.

  15. Microstructure and mechanical properties of low carbon silicon manganese steel sheets containing retained austenite

    International Nuclear Information System (INIS)

    The effect of bainite transformation temperature and of plastic deformation on the microstructure and mechanical properties of a 0.2%C, 1.5%Si, 1.5%Mn triple-phase steel as well as on the stability and morphology of retained austenite is reported. Carefully designed control-rolling, control-cooling and isothermal bainite transformation allowed to obtain a multiphase steel containing retained austenite susceptible to transformation-induced plasticity (TRIP effect). Mechanical properties are discussed in terms of the obtained dependence of instantaneous strain hardening exponent on true strain. (author)

  16. Composition dependence of the rate of bainitic transformation in Cu-Zn-Al alloys; Cu-Zn-Al gokin ni okeru bainite hentai sokudo no gokin sosei izonsei

    Energy Technology Data Exchange (ETDEWEB)

    Tabuchi, M.; Marukawa, K. [Hokkaido University, Sapporo (Japan). Faculty of Engineering

    1998-04-20

    The bainitic transformation is known to have an intermediate nature between the martensitic transformation and the diffusional transformation, while its transformation mechanism has not yet been clarified precisely. If this transformation involves lattice shearing like the martensitic transformation, it should take place more easily in those alloys which have a higher tendency to transform martensitically. On this expectation, the composition dependence of bainitic transformation kinetics has been studied in Cu-Zn-Al alloys. Especially, the relation between the martensitic transformation temperature (Ms) and the bainitic transformation rate was examined. The transformation process was traced by measuring the electrical resistivity of specimens during aging. It was found that the transformation rate is higher in those alloys having a higher Ms temperature. The activation energy for the process, obtained from its temperature dependence, is independent of the alloy composition and roughly equal to that for solute diffusion in the parent alloy. This indicates that the transformation is controlled by diffusion of solute atoms. The composition dependence of the bainitic transformation rate is discussed in terms of a diffusion controlled growth theory. 15 refs., 7 figs., 3 tabs.

  17. A Novel Ni-Containing Powder Metallurgy Steel with Ultrahigh Impact, Fatigue, and Tensile Properties

    Science.gov (United States)

    Wu, Ming-Wei; Shu, Guo-Jiun; Chang, Shih-Ying; Lin, Bing-Hao

    2014-08-01

    The impact toughness of powder metallurgy (PM) steel is typically inferior, and it is further impaired when the microstructure is strengthened. To formulate a versatile PM steel with superior impact, fatigue, and tensile properties, the influences of various microstructures, including ferrite, pearlite, bainite, and Ni-rich areas, were identified. The correlations between impact toughness with other mechanical properties were also studied. The results demonstrated that ferrite provides more resistance to impact loading than Ni-rich martensite, followed by bainite and pearlite. However, Ni-rich martensite presents the highest transverse rupture strength (TRS), fatigue strength, tensile strength, and hardness, followed by bainite, pearlite, and ferrite. With 74 pct Ni-rich martensite and 14 pct bainite, Fe-3Cr-0.5Mo-4Ni-0.5C steel achieves the optimal combination of impact energy (39 J), TRS (2170 MPa), bending fatigue strength at 2 × 106 cycles (770 MPa), tensile strength (1323 MPa), and apparent hardness (38 HRC). The impact energy of Fe-3Cr-0.5Mo-4Ni-0.5C steel is twice as high as those of the ordinary high-strength PM steels. These findings demonstrate that a high-strength PM steel with high-toughness can be produced by optimized alloy design and microstructure.

  18. Controlled Rolling and Controlled Cooling Technology of Ultra-High Strength Steel with 700 Mpa Grade

    Institute of Scientific and Technical Information of China (English)

    QI Shi-ze; ZHANG Pi-jun; DU Lin-xiu; LIU Xiang-hua; WANG Guo-dong

    2004-01-01

    With Gleeble-1500 system, the influences of rolling temperature, finishing temperature and cooling rate on the mechanical properties of two ultra-high strength steels were analyzed. The microstructure of the hot rolled specimens was observed by optical microscope, TEM and SEM. The TRIP of HSLA steels was studied. The results show that the yield stress of 700 Mpa can be reached for two steels. The controlled rolling and controlled cooling technology has different effects on two steels, but it is rational to adopt finishing temperature 800 ℃ for both of them. The microstructure of the steels is mainly bainite, and the influence factors of mechanical properties are the size of bainite, and the size, distribution, composition and morphology of secondary phases. The deformation of high molybdenum steels at a high temperature with a high cooling rate would promote TRIP.

  19. MICROALLOYED STEELS FOR THE AUTOMOTIVE INDUSTRY

    Directory of Open Access Journals (Sweden)

    Debanshu Bhattacharya

    2014-12-01

    Full Text Available Two major drivers for the use of newer steels in the automotive industry are fuel efficiency and increased safety performance. Fuel efficiency is mainly a function of weight of steel parts, which in turn, is controlled by gauge and design. Safety is determined by the energy absorbing capacity of the steel used to make the part. All of these factors are incentives for the U.S. automakers to use both Highly Formable and Advanced High Strength Steels (AHSS to replace the conventional steels used to manufacture automotive parts in the past. AHSS is a general term used to describe various families of steels. The most common AHSS is the dual-phase steel that consists of a ferrite-martensite microstructure. These steels are characterized by high strength, good ductility, low tensile to yield strength ratio and high bake hardenability. Another class of AHSS is the complex-phase or multi-phase steel which has a complex microstructure consisting of various phase constituents and a high yield to tensile strength ratio. Transformation Induced Plasticity (TRIP steels is another class of AHSS steels finding interest among the U.S. automakers. These steels consist of a ferrite-bainite microstructure with significant amount of retained austenite phase and show the highest combination of strength and elongation, so far, among the AHSS in use. High level of energy absorbing capacity combined with a sustained level of high n value up to the limit of uniform elongation as well as high bake hardenability make these steels particularly attractive for safety critical parts and parts needing complex forming. A relatively new class of AHSS is the Quenching and Partitioning (Q&P steels. These steels seem to offer higher ductility than the dual-phase steels of similar strengths or similar ductility as the TRIP steels at higher strengths. Finally, martensitic steels with very high strengths are also in use for certain parts. The most recent initiative in the area of AHSS

  20. Metal magnetic memory technique used to predict the fatigue crack propagation behavior of 0.45%C steel

    Science.gov (United States)

    Chongchong, Li; Lihong, Dong; Haidou, Wang; Guolu, Li; Binshi, Xu

    2016-05-01

    Monitoring fatigue crack propagation behavior of ferromagnetic components is very important. In this paper, the tension-tension fatigue tests of center cracked tension (CCT) specimens were carried out; the variation regularity of both tangential and normal components of magnetic signals during fatigue process were investigated. The results showed that the initial abnormal signals which appeared at the notch were reversed after cyclic loading. The abnormal magnetic signals became more significant with the increase of fatigue cycles and reversed again after failure. The characteristic parameters, i.e., the peak value of tangential component, Btp, and maximum gradient value of normal component, Km, showed similar variation trends during the fatigue process, which can be divided into three different stages. An approximate linear relationship was found between the characteristic parameters and fatigue crack length 2a. The feasibility of predicting the fatigue crack propagation using the abnormal magnetic signals was discussed. What's more, the variation and distribution of the magnetic signals were also analyzed based on the theory of magnetic charge.

  1. Microstructure evolution in TRIP-aided seamless steel tube during T-shape hydroforming process

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jiyuan [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110004, Liaoning Provence (China); Zhang, Zicheng, E-mail: zhangzicheng2004@126.com [School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110004, Liaoning Provence (China); Manabe, Ken-ichi [Department of Mechanical Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo 192-0397 (Japan); Li, Yanmei [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110004, Liaoning Provence (China); Misra, R.D.K. [Center for Structural and Functional Materials, University of Louisiana at Lafayette, 44130 Lafayette, LA 70504-4130 (United States)

    2014-08-15

    Transformation-induced plasticity aided seamless steel tube comprising of ferrite, bainite, and metastable austenite was processed through forging, piercing, cold-drawing, and two-stage heat treatment. T-shape hydroforming is a classic forming method for experimental research and practical production. The current work studied austenite-to-martensite transformation and microcrack initiation and propagation of the tube during T-shape hydroforming using electron backscattering diffraction, scanning electron microscopy, and transmission electron microscopy. The strain distribution in the bcc-phase and fcc-phase was studied by evaluating changes in the average local misorientation. Compared to the compressive stress, metastable austenite with similar strain surrounding or inside the grains transformed easier under tensile loading conditions. The inclusions were responsible for microcrack initiation. The propagation of the cracks is hindered by martensite/austenite constituent due to transformation induced plasticity effect. The volume fraction of untransformed retained austenite decreased with increase in strain implying transformation-induced plasticity effect. - Highlights: • Hydroformed tubes processed via TRIP concept • EBSD provided estimate of micro local strain. • Retained austenite hinders propagation of microcracks.

  2. Microstructure evolution in TRIP-aided seamless steel tube during T-shape hydroforming process

    International Nuclear Information System (INIS)

    Transformation-induced plasticity aided seamless steel tube comprising of ferrite, bainite, and metastable austenite was processed through forging, piercing, cold-drawing, and two-stage heat treatment. T-shape hydroforming is a classic forming method for experimental research and practical production. The current work studied austenite-to-martensite transformation and microcrack initiation and propagation of the tube during T-shape hydroforming using electron backscattering diffraction, scanning electron microscopy, and transmission electron microscopy. The strain distribution in the bcc-phase and fcc-phase was studied by evaluating changes in the average local misorientation. Compared to the compressive stress, metastable austenite with similar strain surrounding or inside the grains transformed easier under tensile loading conditions. The inclusions were responsible for microcrack initiation. The propagation of the cracks is hindered by martensite/austenite constituent due to transformation induced plasticity effect. The volume fraction of untransformed retained austenite decreased with increase in strain implying transformation-induced plasticity effect. - Highlights: • Hydroformed tubes processed via TRIP concept • EBSD provided estimate of micro local strain. • Retained austenite hinders propagation of microcracks

  3. The electronic microscope analysis used to study the martensite morphology in high strength low alloy steels

    OpenAIRE

    Isac, M.

    1993-01-01

    The class of HSLA steels have a great development due to the spread of quenched and tempered steels. The present paper has in view the research by means of electronic microscope analysis of structural characteristics of a HSLA steel after quenching and tempering. The martensite-bainite structure is investigated by means of secondary electrons images, transmitted electrons images or by diffraction of electrons on selected areas. Martensite has an aspect in slats, it is made up of packets with ...

  4. Phase transformation theory: A powerful tool for the design of advanced steels

    Science.gov (United States)

    Caballero, F. G.; Miller, M. K.; Garcia-Mateo, C.; Capdevila, C.; Garcia de Andrés, C.

    2008-12-01

    An innovative design procedure based on phase transformation theory alone has been successfully applied to design steels with a microstructure consisting of a mixture of bainitic ferrite, retained austenite, and some martensite. An increase in the amount of bainitic ferrite is needed in order to avoid the presence of large regions of untransformed austenite, which under stress decompose to brittle martensite. The design procedure addresses this diffi culty by adjusting the T'o curve to greater carbon concentrations with the use of substitutional solutes such as manganese and chromium. The concepts of bainite transformation theory can be exploited even further to design steels with strength in excess of 2.5 GPa and considerable toughness.

  5. Analytical Investigation of Prior Austenite Grain Size Dependence of Low Temperature Toughness in Steel Weld Metal

    Institute of Scientific and Technical Information of China (English)

    X.F. Zhang; P. Hall; H. Terasak; M. Sato; Y. Komizo

    2012-01-01

    Prior austenite grain size dependence of the low temperature impact toughness has been addressed in the bainitic weld metals by in situ observations.Usually,decreasing the grain size is the only approach by which both the strength and the toughness of a steel are increased.However,low carbon bainitic steel with small grain size shows a weakening of the low temperature impact toughness in this study.By direct tracking of the morphological evolution during phase transformation,it is found that large austenite grain size dominates the nucleation of intragranular acicular ferrite,whereas small austenite grain size leads to grain boundary nucleation of bainite.This kinetics information will contribute to meet the increasing low temperature toughness requirement of weld metals for the storage tanks and offshore structures.

  6. The Varying Effects of Uniaxial Compressive Stress on the Bainitic Transformation under Different Austenitization Temperatures

    Directory of Open Access Journals (Sweden)

    Mingxing Zhou

    2016-05-01

    Full Text Available In this study, thermal simulation experiments under different austenitization temperatures and different stress states were conducted. High-temperature laser scanning confocal microscopy (LSCM, thermal dilatometry, and scanning electron microscope (SEM were used to quantitatively investigate the effects of the uniaxial compressive stress on bainitic transformation at 330 °C following different austenitization temperatures. The transformation plasticity was also analyzed. It was found that the promotion degree of stress on bainitic transformation increases with the austenitization temperature due to larger prior austenite grain size as well as stronger promoting effect of mechanical driving force on selected variant growth at higher austenitization temperatures. The grain size and the yield strength of prior austenite are other important factors which influence the promotion degree of stress on bainitic transformation, besides the mechanical driving force provided by the stress. Moreover, the transformation plasticity increases with the austenitization temperature.

  7. Investigation of the bainitic reaction in a CuAlNiMnFe shape memory alloy

    Directory of Open Access Journals (Sweden)

    Benke M.

    2013-01-01

    Full Text Available Despite their favorable properties, brittle nature of the CuAlNi shape memory alloys limits their suitability. To increase their ductility, Mn and Fe were added to the base CuAlNi alloy. To reveal the applicability of the developed CuAlNiMn and CuAlNiMnFe alloys as functional materials, the effect of ageing on the thermoelastic martensitic transformation was investigated. During the first heating of the aged samples the thermoelastic γ’ → β transformation occurred, which was followed by a bainitic transformation. This transformation inhibited the further thermoelastic martensitic transformations. The present paper covers heat flux DSC, SEM, and TEM investigations of the bainitic transformation. A feasible mechanism of the bainitic transformation in these alloys is suggested based on the results of the examinations.

  8. Austenite grain growth and microstructure control in simulated heat affected zones of microalloyed HSLA steel

    International Nuclear Information System (INIS)

    The roles of microalloying niobium, titanium and vanadium for controlling austenite grain growth, microstructure evolution and hardness were investigated at different simulated heat affected zones (HAZ) for high strength low alloy (HSLA) S690QL steel. High resolution FEG-SEM has been used to characterize fine bainitic ferrite, martensite and nanosized second phases at simulated coarse and fine grain HAZs. It was found that for Ti bearing steel (Ti/N ratio is 2) austenite grain had the slowest growth rate due to the presence of most stable TiN. The fine cuboidal particles promoted intragranular acicular ferrite (IGF) formation. Nb bearing steel exhibited relatively weaker grain growth retardation compared with titanium bearing steels and a mixed microstructure of bainite and martensite was present for all simulated HAZs. IGF existed at coarse grain HAZ of Ti+V bearing steel but it was totally replaced by bainite at fine grain HAZs. Hardness result was closely related to the morphology of bainitic ferrite, intragranular ferrite and second phases within ferrite. The microstructure and hardness results of different simulated HAZs were in good agreement with welded experimental results

  9. Austenite grain growth and microstructure control in simulated heat affected zones of microalloyed HSLA steel

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lei [Department of Machine Tools and Factory Management, Technical University of Berlin, Pascalstraße 8 – 9, 10587, Berlin (Germany); Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205, Berlin (Germany); Kannengiesser, Thomas [Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205, Berlin (Germany); Institute of Materials and Joining Technology, Otto von Guericke University Magdeburg, Universitetsplatz 2, 39106, Magdeburg (Germany)

    2014-09-08

    The roles of microalloying niobium, titanium and vanadium for controlling austenite grain growth, microstructure evolution and hardness were investigated at different simulated heat affected zones (HAZ) for high strength low alloy (HSLA) S690QL steel. High resolution FEG-SEM has been used to characterize fine bainitic ferrite, martensite and nanosized second phases at simulated coarse and fine grain HAZs. It was found that for Ti bearing steel (Ti/N ratio is 2) austenite grain had the slowest growth rate due to the presence of most stable TiN. The fine cuboidal particles promoted intragranular acicular ferrite (IGF) formation. Nb bearing steel exhibited relatively weaker grain growth retardation compared with titanium bearing steels and a mixed microstructure of bainite and martensite was present for all simulated HAZs. IGF existed at coarse grain HAZ of Ti+V bearing steel but it was totally replaced by bainite at fine grain HAZs. Hardness result was closely related to the morphology of bainitic ferrite, intragranular ferrite and second phases within ferrite. The microstructure and hardness results of different simulated HAZs were in good agreement with welded experimental results.

  10. A study on controlled cooling process for making bainitic ductile iron

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    In the present research, TTT curve of bainitic ductile iron under the condition of controlled cooling was generated. The cooling rate of grinding ball and its temperature distribution were also measured at the same time. It can be concluded that the bainitic zone of TTT curve is separated from the pearlitic zone. As compared to the water-quenching condition, more even cooling rate and temperature distribution can be achieved in the controlled cooling process. The controlled cooling can keep away from pearlitic zone in the high temperature cooling stage and produce similar results to the process of traditional isothermal cooling with a low cooling rate in the low temperature cooling stage.

  11. Effect of low temperature on hydrogen-assisted crack propagation in 304L/308L austenitic stainless steel fusion welds

    International Nuclear Information System (INIS)

    Highlights: •Measured crack growth resistance of welds at 223 K with 140 wppm H (gas charged). •H reduced fracture initiation toughness by >59% and altered fracture mode. •223 K altered fracture mode but had no effect on JIC of precharged welds. •At 293 K, microcracks initiate at δ-ferrite, and ferrite governed crack path. •At 223 K, microvoids form at γ deformation band intersections near phase boundaries. -- Abstract: Effects of low temperature on hydrogen-assisted cracking in 304L/308L austenitic stainless steel welds were investigated using elastic–plastic fracture mechanics methods. Thermally precharged hydrogen (140 wppm) decreased fracture toughness and altered fracture mechanisms at 293 and 223 K relative to hydrogen-free welds. At 293 K, hydrogen increased planar deformation in austenite, and microcracking of δ-ferrite governed crack paths. At 223 K, low temperature enabled hydrogen to exacerbate localized deformation, and microvoid formation, at austenite deformation band intersections near phase boundaries, dominated damage initiation; microcracking of ferrite did not contribute to crack growth

  12. Development and formability analysis of TRIP seamless steel tube

    Institute of Scientific and Technical Information of China (English)

    Zhang Zicheng; Zhu Fuxian

    2014-01-01

    In this paper, the production technology of transformation induced plasticity (TRIP) steel was first introduced into the steel tube manufacture field to produce the steel tubes with high strength and plasticity. The TRIP seamless steel tubes with the microstructure of ferrite, bainite, retained austenite and a little martensite were successfully fabricated using a cold-drawn steel tube with two-stage heat treatment technique and continu- ous heat treatment process, respectively. The ring tensile test and cold bend test were carried out to study the formability of the newly developed TRIP seamless steel tube. The results showed that the TRIP seamless steel tubes have a good cold formability, and they are available to be used in the tube hydroforming process. In ad- dition, the equipment of continuous heat treatment developed in the current study can be used to produce TRIP steel tube, and it may serve as an important reference for the industrial production of TRIP steel tube.

  13. Creep and microstructural processes in a low-alloy 2.25%Cr1.6%W steel (ASTM Grade 23)

    Czech Academy of Sciences Publication Activity Database

    Kuchařová, Květa; Sklenička, Václav; Kvapilová, Marie; Svoboda, Milan

    2015-01-01

    Roč. 109, NOV (2015), s. 1-8. ISSN 1044-5803 R&D Projects: GA TA ČR TA02010260; GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : Bainitic steel * Low- alloy steel * Creep strength * Microstructural changes * Carbide precipitation Subject RIV: JG - Metallurgy Impact factor: 1.845, year: 2014

  14. Flank wears Simulation by using back propagation neural network when cutting hardened H-13 steel in CNC End Milling

    International Nuclear Information System (INIS)

    High speed milling has many advantages such as higher removal rate and high productivity. However, higher cutting speed increase the flank wear rate and thus reducing the cutting tool life. Therefore estimating and predicting the flank wear length in early stages reduces the risk of unaccepted tooling cost. This research presents a neural network model for predicting and simulating the flank wear in the CNC end milling process. A set of sparse experimental data for finish end milling on AISI H13 at hardness of 48 HRC have been conducted to measure the flank wear length. Then the measured data have been used to train the developed neural network model. Artificial neural network (ANN) was applied to predict the flank wear length. The neural network contains twenty hidden layer with feed forward back propagation hierarchical. The neural network has been designed with MATLAB Neural Network Toolbox. The results show a high correlation between the predicted and the observed flank wear which indicates the validity of the models

  15. The Crack Initiation and Propagation in threshold regime and S-N curves of High Strength Spring Steels

    Science.gov (United States)

    Gubeljak, N.; Predan, J.; Senčič, B.; Chapetti, M. D.

    2016-03-01

    An integrated fracture mechanics approach is proposed to account for the estimation of the fatigue resistance of component. Applications, estimations and results showed very good agreements with experimental results. The model is simple to apply, accounts for the main geometrical, mechanical and material parameters that define the fatigue resistance, and allows accurate predictions. It offers a change in design philosophy: It could be used for design, while simultaneously dealing with crack propagation thresholds. Furthermore, it allows quantification of the material defect sensitivity. In the case of the set of fatigue tests carried out by rotational bending of specimens without residual stresses, the estimated results showed good agreement and that an initial crack length of 0.5 mm can conservatively explain experimental data. In the case of fatigue tests carried out on the springs at their final condition with bending at R = 0.1 our data shows the influence of compressive residual stresses on fatigue strength. Results also showed that the procedures allow us to analyze the different combinations of initial crack length and residual stress levels, and how much the fatigue resistance can change by changing that configuration. For this set of tests, the fatigue resistance estimated for an initial crack length equal to 0.35 mm, can explain all testing data observed for the springs.

  16. Fracture mechanical modeling of brittle crack propagation and arrest of steel. 3. Application to duplex-type test; Kozai no zeisei kiretsu denpa teisi no rikigaku model. 3. Konseigata shiken eno tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Aihara, S.; Tsuchida, Y. [Nippon Steel Corp., Tokyo (Japan); Machida, S.; Yoshinari, H. [The University of Tokyo, Tokyo (Japan). Faculty of Engineering

    1996-12-31

    A proposal was made previously on a model of brittle crack propagation and arrest that considers the effect of crack opening suppression by using unbroken ligaments generated on steel plate surface and the effect that cracks precede in the central part of the plate thickness, based on a local limit stress theory for brittleness fracture. This paper discusses applicability of this model to a mixed type test, and elucidates causes for difference in the arrest tenacity of both types in a double tensile test of the standard size. The brittle crack propagation and arrest model based on the local limit stress theory was found applicable to a simulation of the mixed type test. Experimental crack propagation speed history and behavior of the arrest were reproduced nearly completely by using this model. When load stress is increased, the arrests in the mixed type test may be classified into arrests of both inside the steel plate and near the surface, cracks in the former position or arrest in the latter position, and rush of cracks into both positions. Furthermore, at higher stresses, the propagation speed drops once after cracks rushed into the test plate, but turns to a rise, leading to propagation and piercing. 8 refs., 15 figs., 3 tabs.

  17. Continuous Cooling Transformations in Nuclear Pressure Vessel Steels

    Science.gov (United States)

    Pous-Romero, Hector; Bhadeshia, Harry K. D. H.

    2014-10-01

    A class of low-alloy steels often referred to as SA508 represent key materials for the manufacture of nuclear reactor pressure vessels. The alloys have good properties, but the scatter in properties is of prime interest in safe design. Such scatter can arise from microstructural variations but most studies conclude that large components made from such steels are, following heat treatment, fully bainitic. In the present work, we demonstrate with the help of a variety of experimental techniques that the microstructures of three SA508 Gr.3 alloys are far from homogeneous when considered in the context of the cooling rates encountered in practice. In particular, allotriomorphic ferrite that is expected to lead to a deterioration in toughness, is found in the microstructure for realistic combinations of austenite grain size and the cooling rate combination. Parameters are established to identify the domains in which SA508 Gr.3 steels transform only into the fine bainitic microstructures.

  18. Microstructure-properties correlation in fiber laser welding of dual-phase and HSLA steels

    Energy Technology Data Exchange (ETDEWEB)

    Saha, D.C., E-mail: dcsaha@uwaterloo.ca [Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1 (Canada); Westerbaan, D.; Nayak, S.S. [Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1 (Canada); Biro, E. [ArcelorMittal Global Research, 1390 Burlington Street East, Hamilton, ON, Canada L8N 3J5 (Canada); Gerlich, A.P.; Zhou, Y. [Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1 (Canada)

    2014-06-01

    Similar and dissimilar welds of dual-phase (DP) and high strength low alloy (HSLA) steels were made by fiber laser welding (FLW). The welds were characterized with respect to microstructure, micro- and nano-hardness, and tensile properties. The fusion zone (FZ) in the DP welds consisted of fully martensitic structure; whereas HSLA and dissimilar weld FZ microstructure were mixture of martensite and bainite. Analytical transmission electron microscopy (TEM) confirmed bainite structures containing bainitic ferrite laths with intralath and interlath cementite. Precipitation of single variant carbides inside the bainitic ferrite laths were confirmed by measuring the interplanar spacing. The cooling rate in the FZ, estimated using Rosenthal equation, and continuous-cooling-transformation diagrams corroborated the microstructure formed. Nanoindentation was used to verify the hardness of these individual microconstituents, since a much lower nano-hardness for bainite (4.11 GPa) was observed compared to martensite (6.57 GPa) phase. Tensile failure occurred in the tempered area of the heat affected zone (HAZ) in the DP steel welded, which was confirmed by typical cup-like dimple fracture; likewise failure in the HSLA base metal, which occurred in dissimilar and HSLA welds, indicated distinctive dimple and shear dimple ductile morphology.

  19. Microstructure-properties correlation in fiber laser welding of dual-phase and HSLA steels

    International Nuclear Information System (INIS)

    Similar and dissimilar welds of dual-phase (DP) and high strength low alloy (HSLA) steels were made by fiber laser welding (FLW). The welds were characterized with respect to microstructure, micro- and nano-hardness, and tensile properties. The fusion zone (FZ) in the DP welds consisted of fully martensitic structure; whereas HSLA and dissimilar weld FZ microstructure were mixture of martensite and bainite. Analytical transmission electron microscopy (TEM) confirmed bainite structures containing bainitic ferrite laths with intralath and interlath cementite. Precipitation of single variant carbides inside the bainitic ferrite laths were confirmed by measuring the interplanar spacing. The cooling rate in the FZ, estimated using Rosenthal equation, and continuous-cooling-transformation diagrams corroborated the microstructure formed. Nanoindentation was used to verify the hardness of these individual microconstituents, since a much lower nano-hardness for bainite (4.11 GPa) was observed compared to martensite (6.57 GPa) phase. Tensile failure occurred in the tempered area of the heat affected zone (HAZ) in the DP steel welded, which was confirmed by typical cup-like dimple fracture; likewise failure in the HSLA base metal, which occurred in dissimilar and HSLA welds, indicated distinctive dimple and shear dimple ductile morphology

  20. The initiation and propagation of chloride-induced transgranular stress-corrosion cracking (TGSCC) of 304L austenitic stainless steel under atmospheric conditions

    International Nuclear Information System (INIS)

    Highlights: • Cracking consistent with corrosion enhanced plasticity model of Magnin. • Cracking stress threshold is 10 MPa, substantially lower than current guidance. • Humidity threshold for cracking is 30%. • Measured length of cracks very dependent on polishing practice. • Cracking could occur at 290–300 K, based on measured activation energy. - Abstract: Bending tests were used to investigate the stress-corrosion cracking of 304L stainless steel in a corrosive atmosphere containing magnesium chloride. Initially smooth specimens showed multiple closely spaced cracks after exposures of up to 500 h. These showed threshold stresses of 10 MPa and a threshold humidity of 30%. Cracking rates increased with stress but were a maximum at plastic strains of 2%. Examination of cracks using focussed ion beam milling and electron diffraction indicated a multi-stage mechanism of propagation via preferential oxidation of slip planes. The apparent activation energy was 34 kJ mol−1 in the temperature range 333–363 K

  1. Effect of Initial Microstructure on Impact Toughness of 1200 MPa-Class High Strength Steel with Ultrafine Elongated Grain Structure

    Science.gov (United States)

    Jafari, Meysam; Garrison, Warren M.; Tsuzaki, Kaneaki

    2014-02-01

    A medium-carbon low-alloy steel was prepared with initial structures of either martensite or bainite. For both initial structures, warm caliber-rolling was conducted at 773 K (500 °C) to obtain ultrafine elongated grain (UFEG) structures with strong //rolling direction (RD) fiber deformation textures. The UFEG structures consisted of spheroidal cementite particles distributed uniformly in a ferrite matrix of a transverse grain size of about 331 and 311 nm in samples with initial martensite and bainite structures, respectively. For both initial structures, the UFEG materials had similar tensile properties, upper shelf energy (145 J), and ductile-to-brittle transition temperatures 98 K (500 °C). Obtaining the martensitic structure requires more rapid cooling than is needed to obtain the bainitic structure and this more rapid cooling promote cracking. As the UFEG structures obtained from initial martensitic and bainitic structures have almost identical properties, but obtaining the bainitic structure does not require a rapid cooling which promotes cracking suggests the use of a bainitic structure in obtaining UFEG structures should be examined further.

  2. Thermal distortion analysis method for TMCP steel structures using shell element

    Science.gov (United States)

    Ha, Yunsok; Rajesh, S. R.

    2009-12-01

    As ships become larger, thicker and higher tensile steel plate are used in shipyard. Though special chemical compositions are required for high-tensile steels, recently they are made by the TMCP (Thermo-Mechanical control process) methodology. The increased Yield / Tensile strength ofTMCP steels compared to the normalized steel of same composition are- induced by suppressing the formation of Ferrite and Pearlite in favor of strong and tough Bainite -while being transformed from Austenite. But this Bainite phase could be vanished by another additional thermal cycle like welding and heating. As thermal deformations are deeply related by yield stress of material, the study for prediction of plate deformation by heating should reflect the principle of TMCP steels. The present study is related to the development of an algorithm which could calculate inherent strain. In this algorithm, not only the mechanical principles of thermal deformations, but also the initial portion of Bainite is considered when calculating inherent strain. Distortion analysis results by these values showed good agreements with experimental results for normalized steels and TMCP steels during welding and heating. This algorithm has also been used to create an inherent strain database of steels in Class rule.

  3. Atomic configuration in bainite of a Cu45Zn40Au15 alloy examined by ALCHEMI

    International Nuclear Information System (INIS)

    The atomic configuration in the bainite of a Cu45Zn40Au15 alloy with a L21 type ordered structure in parent phase has been studied by means of ALCHEMI. Thin bainite plates which are supposed to be at early stages of formation possess the 18R type structure like the martensite of the same alloy system formed at subzero temperature. As far as electron diffraction is concerned, it appears that they inherit the ordered configuration of atoms in the parent phase completely. However, when closely examined by ALCHEMI, the atomic configuration is found to differ slightly from that in the parent phase. A part of Cu and Zn atoms in the bainite interchange their sites with each other, which are in the first nearest neighbor relation in the parent phase. This type of disordering is different from that recently observed in the martensite formed at subzero temperature and subsequently aged sufficiently at room temperature. These facts suggest that the bainite is not the martensite subjected to aging at temperature after its formation. (orig.)

  4. Luders bands in RPV Steel

    OpenAIRE

    Johnson, D H

    2013-01-01

    The R6 procedure is used for the prevention and prediction of crack behaviour and other defects in the reactor pressure vessel(RPV). The RPV material is an upper-bainitic, low alloy steel structure, which deforms inhomogeneously when yielding. The current codes that are used to design and calculate the fracture, within an RPV, assume that the material yields continuously as the size of the L¨uders strain is less than 2%. However, the work of Wenman et al[1] has shown that the inclusion of a L...

  5. Microstructures and Mechanical Properties of Si-Al-Mn TRIP Steel with Niobium

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Microstructure consisting of ferrite, bainite and retained austenite can be obtained through intercritical annealing and isothermal treatment in bainite transformation region for low silicon TRIP (transformation induced plasticity) steel containing niobium. Effects of strain rate, Nb content and soaking temperature in bainite region on microstructure and mechanical properties of test steels were investigated. It is shown that as strain rate ranges from 10-2 to 10-4 s-1, the volume fraction of transformed martensite from retained austenite,as well as tensile strength, elongation rate and strength-ductility product, increases. When Nb is added, the volume fraction of retained austenite decreases, but tensile strength and yield strength increase. While Nb content reaches 0.014%, the steel exhibits high elongation and combination of strength and ductility. Higher retained austenite volume fraction and good mechanical properties are obtained in the test steels when the soaking temperature in bainite region is 400℃. The maximum values of tensile strength, total elongation rate and strength-ductility product can reach 739 MPa, 38% and 28082 MPa%, respectively.

  6. The study of retained austenite morphology in low-carbon silico manganese steels

    International Nuclear Information System (INIS)

    The experimental results of a retained austenite morphology in low-carbon steels of a chemical composition of 0.2% C, 1.5% Mn, and 1.5% Si are presented. The microstructure of retained austenite after martensitic transformation in samples quenched from austenite region, dual phase region and suggested isothermal bainitic transformation were analysed. (author)

  7. 基于BOTDA的钢桥面铺装裂缝疲劳扩展研究%A study on crack fatigue propagation of steel deck pavement based on BOTDA

    Institute of Scientific and Technical Information of China (English)

    钱振东; 韩光义; 黄卫; 尹祖超

    2009-01-01

    The fatigue propagation of cracking in epoxy asphalt concrete surfacing of steel decks was studied by using BOTDA sensing technology. Based on indoor three-point bending tests of composite beams composed of pavement and steel plate with cuts, the propagation process of cracking was monitored. The number of times of fatigue load action and the optical fiber strain values in each layer at various levels, including initial pavement cracking and cracking propagation till failure, were obtained. The formulas of crack fatigue propagation model with optical fiber strain e as the variable and the fatigue propagation patterns of cracking in pavement were presented. The results may serve as the base for the fatigue resistant and cracking resistant design of steel decks with epoxy asphalt concrete surfacing.%采用分布式光纤传感技术BOTDA研究钢桥面环氧沥青混凝土铺装层裂缝的疲劳扩展规律.通过由铺装层和钢板组成的带切口复合梁的室内三点弯曲疲劳试验,采用BOTDA监测铺装层裂缝疲劳扩展过程,得到铺装层启裂、裂缝扩展直至破坏的各级疲劳荷载作用次数以及埋设于各层的光纤应变值,给出以光纤应变ε为变量的铺装层裂缝扩展模型公式和铺装层裂缝的疲劳扩展规律,本研究成果为钢桥面环氧沥青混凝土铺装层的抗裂设计和抗疲劳设计提供理论基础.

  8. Plastic deformation and fracture behaviour of 21/4 Cr-1 Mo pressure-vessel steel

    International Nuclear Information System (INIS)

    During the heat treatment of steel plates and forgings of large thicknesses, microstructures with various volume fractions of ferrite appear. Plastic properties and fracture behaviour of these mixed microstructures are a function of ferrite content. The influence of ferrite content in the range from 0% to 54% in the bainitic-ferritic microstructure on mechanical properties and fracture behaviour of 21/4 Cr-1 Mo steel was examined. The yield stress was found to decrease linearly with the volume fraction of ferrite. The tensile strength was independent of ferrite content up to 25%, after which the tensile strength decreased. Using the Charpy test it has been found that the critical ferrite content-25%-exists in a mixed microstructure, at which the propagation and initiation transition temperatures attain the highest values. The fracture toughness tests gave the same results. Increasing the volume fraction of ferrite, the cleavage fracture toughness/temperature curves were shifted to higher temperatures. Simultaneously, the ductile-brittle fracture toughness transition temperature was raised reaching the highest value for the critical ferrite content. The fracture behaviour could be tentatively explained through the influence of ferrite volume fraction on both the cleavage fracture stress and the stress level at the crack tip. (author)

  9. Evaluation of Heat-affected Zone Hydrogen-induced Cracking in High-strength Steels

    Science.gov (United States)

    Yue, Xin

    Shipbuilding is heavily reliant on welding as a primary fabrication technique. Any high performance naval steel must also possess good weldability. It is therefore of great practical importance to conduct weldability testing of naval steels. Among various weldability issues of high-strength steels, hydrogen-induced cracking (HIC) in the heat-affected zone (HAZ) following welding is one of the biggest concerns. As a result, in the present work, research was conducted to study the HAZ HIC susceptibility of several naval steels. Since the coarse-grained heat-affected zone (CGHAZ) is generally known to be the most susceptible to HIC in the HAZ region, the continuous cooling transformation (CCT) behavior of the CGHAZ of naval steels HSLA-65, HSLA-100, and HY-100 was investigated. The CGHAZ microstructure over a range of cooling rates was characterized, and corresponding CCT diagrams were constructed. It was found that depending on the cooling rate, martensite, bainite, ferrite and pearlite can form in the CGHAZ of HSLA-65. For HSLA-100 and HY-100, only martensite and bainite formed over the range of cooling rates that were simulated. The constructed CCT diagrams can be used as a reference to select welding parameters to avoid the formation of high-hardness martensite in the CGHAZ, in order to ensure resistance to hydrogen-induced cracking. Implant testing was conducted on the naval steels to evaluate their susceptibility to HAZ HIC. Stress vs. time to failure curves were plotted, and the lower critical stress (LCS), normalized critical stress ratio (NCSR) and embrittlement index (EI) for each steel were determined, which were used to quantitatively compare HIC susceptibility. The CGHAZ microstructure of the naval steels was characterized, and the HIC fracture behavior was studied. Intergranular (IG), quasi-cleavage (QC) and microvoid coalescence (MVC) fracture modes were found to occur in sequence during the crack initiation and propagation process. This was

  10. Effects of cooling method after intercritical heat treatment on microstructural characteristics and mechanical properties of as-cast high-strength low-alloy steel

    International Nuclear Information System (INIS)

    Highlights: • The effect of cooling method after intercritical heat treatment on microstructure evolution was investigated. • Fracture mechanism of tensile and impact after different intercritical heat treatment has been analyzed. • The crack initiation and propagation after different intercritical heat treatment was compared in details. - Abstract: The effect of cooling method after intercritical heat treatment on the microstructures and mechanical properties of as-cast steel produced by electroslag casting was investigated. The microstructure characteristics were analyzed by optical microscope (OM), scanning electron microscope (SEM), transmission electron microscopy (TEM) and electron back scatter diffraction (EBSD). The mechanical performance was evaluated by tensile testing at ambient temperature and Charp V-notch impact tests at various temperatures (−40 °C, −20 °C, 20 °C). The tensile and impact fracture micromechanisms were discussed in details. The results of microstructure investigation indicated that water cooling after intercritical heat treatment led to a mixed microstructure of ferrite and tempered martensite, while a composite microstructure of ferrite and tempered bainite was obtained after air cooling. The carbides of Cr, Mo and Nb in matrix after water quenching were finer than the ones after air cooling. Compared with water cooling, a good balance of strength and toughness was obtained after air cooling. The crack propagation path in the steel after water cooling can propagate along the long axis direction of ferrite bands, directly across the intersecting banded ferrite and martensite as well as along the interfaces between ferrite and martensite. However, the crack propagation path in the steel after air cooling depends on the shape, size and distribution of M/A islands

  11. Microstructural and mechanical characterization of 0.2mass% Carbon content steel

    Science.gov (United States)

    Tollabimazraehno, Sajjad; Commenda, Christian; Hesser, Guenter; Pichler, Andreas; Hingerl, Kurt

    2012-02-01

    The The microstructures of low carbon content steel are comprised of bainite, martensite, tempered martensite and retained autenite. These structures are obtained by different heat treatments. The effect of heat treatment on microstructure and mechanical properties were investigated using X-ray diffraction, focused ion beam - scanning electron microscope (FIB-SEM), electron backscatter diffraction (EBSD), and nanoindentation. The experimental misorientation distribution revealed most grain boundaries had misorientation range between 50^o and 60^o. The lattice relation between bainite and parent austenite is Kurdjomov-Sachs ( || ). FIB-SEM images and nanoindentation were revealed the grain size can influence the hardness.

  12. Crack growth in an austenitic stainless steel at high temperature; Propagation de fissure a haute temperature dans un acier inoxydable austenitique

    Energy Technology Data Exchange (ETDEWEB)

    Polvora, J.P

    1998-12-31

    This study deals with crack propagation at 650 deg C on an austenitic stainless steel referenced by Z2 CND 17-12 (316L(NN)). It is based on an experimental work concerning two different cracked specimens: CT specimens tested at 650 deg C in fatigue, creep and creep-fatigue with load controlled conditions (27 tests), tube specimens containing an internal circumferential crack tested in four points bending with displacement controlled conditions (10 tests). Using the fracture mechanics tools (K, J and C* parameters), the purpose here is to construct a methodology of calculation in order to predict the evolution of a crack with time for each loading condition using a fracture mechanics global approach. For both specimen types, crack growth is monitored by using a specific potential drop technique. In continuous fatigue, a material Paris law at 650 deg C is used to correlate crack growth rate with the stress intensity factor range corrected with a factor U(R) in order to take into account the effects of crack closure and loading ratio R. In pure creep on CT specimens, crack growth rate is correlated to the evolution of the C* parameter (evaluated experimentally) which can be estimated numerically with FEM calculations and analytically by using a simplified method based on a reference stress approach. A modeling of creep fatigue growth rate is obtained from a simple summation of the fatigue contribution and the creep contribution to the total crack growth. Good results are obtained when C* parameter is evaluated from the simplified expression C*{sub s}. Concerning the tube specimens tested in 4 point bending conditions, a simulation based on the actual A 16 French guide procedure proposed at CEA. (authors) 104 refs.

  13. EFFECT OF AUSTEMPERING ON TRANSFORMATION INDUCED PLASTICITY OF HOT ROLLED MULTIPHASE STEELS

    Institute of Scientific and Technical Information of China (English)

    Z.Li; D. Wu

    2007-01-01

    Effect of austempering on the transformation induced plasticity (TRIP) of hot rolled multiphase steel was investigated. Polygonal ferrite, granular bainite, and a large amount of stabilized retained austenite could be obtained in the hot rolled multiphase steel. Strain induced martensite transformation (SIMT) of retained austenite and TRIP effectively occur under straining owing to austempering after hot rolling, and mechanical properties of the present steel remain at a relatively high constant value for austempering at 400℃. The mechanical properties of the steel exhibited a good combination of tensile strength (791MPa) and total elongation (36%) because the stability of retained austenite is optimal when the steel is held for 20min.

  14. Moessbauer study of the annealing effect on low-alloyed steels

    International Nuclear Information System (INIS)

    Structural analyses of Fe-Cr and Fe-Cr-Ni low-alloyed steels before and after annealing at 600 deg. C using Moessbauer spectrometry, X-ray diffraction and scanning electron microscopy are reported. At the received state, the two steels present a fine bainitic microstructure with equal hardness. From Moessbauer analysis, two iron sites are identified as substitutional by Cr, Mo, Ni atoms and as insertional by carbon in bainitic ferrite. Both sites are locally deformed by residual stresses. The presence of small quantities of retained austenite and ε carbide has been observed. Annealing for one hour at 600 deg. C causes a decrease in hardness for both steels with a decrease of retained austenite. After longer time of annealing, precipitation of (Fe,Ni)23C6 occurs in the Fe-Cr-Ni steel and increases hardness

  15. Influence of Subsurface Structure on the Linear Reciprocating Sliding Wear Behavior of Steels with Different Microstructures

    Science.gov (United States)

    Sharma, S.; Sangal, S.; Mondal, K.

    2014-12-01

    The present work investigates the influence of subsurface microstructure on the linear reciprocating sliding wear behavior of a number of steels with ferrite-pearlitic, pearlitic, bainitic, and martensitic microstructures under dry unlubricated condition. The change in the underlying microstructure with depth from worn-out surface of steel sample intimately relates to the associated hardness variation and wear volume. The present paper is not about comparison of wear resistance of steels with different structures; rather it is on mutual influence of wear and substructure for individual microstructure. Inherent toughness of the matrix and ability of microstructural components to get deformed under the reciprocating action of the ball decide the wear resistance of the steels. Bainite has good amount of stability to plastic deformation. Ferrite shows severe banding due to wear action. Work hardening renders pearlite to be wear resistant. Temperature rise and associated tempering of martensite are observed during wear.

  16. Fracture mechanisms in dual phase steels based on the acicular ferrite + martensite/austenite microstructure

    Science.gov (United States)

    Poruks, Peter

    The fracture mechanisms of low carbon microalloyed plate steels based on the acicular ferrite + marten site/austenite microstructure (AF + M/A) are investigated. The final microstructure consists of a dispersed phase of submicron equi-axed martensite particles with a bainitic ferrite matrix. A series of plates with M/A volume fractions of 0.076--0.179 are studied. Brittle fracture is investigated by Instrumented Charpy impact testing of samples at -196°C and subsequent metallography. The M/A particles are identified as the crack nucleation sites and the cleavage fracture stress calculated to be 2400 MPa in a complete AF microstrucuture. This value is significantly larger than in steels that contain significant proportions of conventional bainite. Standard Charpy and Instrumented Charpy impact testing is conducted through a temperature range from -80 to + 22°C to study ductile fracture behaviour. The total absorbed energy is separated into energies of crack nucleation and of crack propagation. It is found that the energy of crack nucleation is weakly dependent on the volume fraction of M/A and completely independent of temperature over the range studied. The crack propagation energy varies significantly with both variables, decreasing with increased volume fraction of M/A and with decreasing temperature. The peak load in the instrumented Charpy data is used to calculate the dynamic fracture toughness, KId, which is found to be 105--120 MPa-m1/2. The void nucleation and void growth stages of ductile fracture are studied by metallographic examination of tensile bars. The sites of void nucleation are identified as inclusions and M/A particles. Voids nucleate at the M/A particles by decohesion of the particle-matrix interface. A constant void nucleation strain of epsilon = 0.90 +/- 0.05 is measured for all of the samples independent of the volume fraction of M/A. A stress-based criterion is used to predict void nucleation and the interface strength is determined to be

  17. A Rationalization of Sympathetic Nucleation-Ledgewise Growth Theory of Bainite Transformation in Fe-C Alloys

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Based on the classic diffusion controlled nucleation and growth theory, the sympathetic nucleationledgewise growth mechanism of bainite was studied theoretically for Iow carbon Fe-C alloys. The rationality of the occurrence of sympathetic nucleation on the terraces of ledges competing with lateral ledge growth and other sites nucleation was demonstrated by the present work quantitatively. The calculations indicated that Iow reaction temperatures and high carbon concentrations may favor the sympathetic nucleation, thus accounting for the formation of multilayer structures of bainite.

  18. Mössbauer studies on an AISI 1137 type steel

    Indian Academy of Sciences (India)

    E Güler; H Akta

    2006-06-01

    An AISI 1137 type medium carbon steel was studied by means of scanning electron microscopy and Mössbauer spectroscopy. This steel in as received state at room temperature was ferritic. Different heat treatments on related steel exhibited different microstructures such as pearlite and bainite. Also magnetism of these product phases was determined as 32.7 T and 32.6 T relatively where ferromagnetism of ferritic phase in as received state was 33.05 T. Mössbauer parameters such as isomer shifts and % volumes were also determined before and after transformations.

  19. High temperature cracking of steels: effect of geometry on creep crack growth laws; Fissuration des aciers a haute temperature: effet de la geometrie sur la transferabilite des lois de propagation

    Energy Technology Data Exchange (ETDEWEB)

    Kabiri, M.R

    2003-12-01

    This study was performed at Centre des Materiaux de l'Ecole des Mines de Paris. It deals with identification and transferability of high temperature creep cracking laws of steels. A global approach, based on C{sup *} and J non-linear fracture mechanics parameters has been used to characterize creep crack initiation and propagation. The studied materials are: the ferritic steels 1Cr-1Mo-1/4V (hot and cold parts working at 540 and 250 C) used in the thermal power stations and the austenitic stainless steel 316 L(N) used in the nuclear power stations. During this thesis a data base was setting up, it regroups several tests of fatigue, creep, creep-fatigue, and relaxation. Its particularity is to contain several creep tests (27 tests), achieved at various temperatures (550 to 650 C) and using three different geometries. The relevance of the C{sup *} parameter to describe the creep crack propagation was analysed by a means of systematic study of elasto-viscoplastic stress singularities under several conditions (different stress triaxiality). It has been shown that, besides the C{sup *} parameter, a second non singular term, denoted here as Q{sup *}, is necessary to describe the local variables in the vicinity of the crack tip. Values of this constraint parameter are always negative. Consequently, application of typical creep crack growth laws linking the creep crack growth rate to the C{sup *} parameter (da/dt - C{sup *}), will be conservative for industrial applications. Furthermore, we showed that for ferritic steels, crack incubation period is important, therefore a correlation of Ti - C{sup *} type has been kept to predict crack initiation time Ti. For the austenitic stainless steel, the relevant stage is the one of the crack propagation, so that a master curve (da/dt - C{sup *}), using a new data analysis method, was established. Finally, the propagation of cracks has been simulated numerically using the node release technique, allowing to validate analytical

  20. Low-Temperature Toughening Mechanism in Thermomechanically Processed High-Strength Low-Alloy Steels

    Science.gov (United States)

    Hwang, Byoungchul; Lee, Chang Gil; Kim, Sung-Joon

    2011-03-01

    High-strength low-alloy (HSLA) steels were fabricated by varying thermomechanical processing conditions such as rolling and cooling conditions in the intercritical region, and the low-temperature toughening mechanism was investigated in terms of microstructure and the associated grain boundary characteristics. The steels acceleratedly cooled to relatively higher temperature had lower tensile strength than those acceleratedly cooled to room temperature due to the increased volume fraction of granular bainite or polygonal ferrite (PF) irrespective of rolling in the intercritical region, while the yield strength was dependent on intercritical rolling, and start and finish cooling temperatures, which affected the formation of PF and low-temperature transformation phases. The steel rolled in the intercritical region and cooled to 673 K (400 °C) provided the best combination of high yield strength and excellent low-temperature toughness because of the presence of fine PF and appropriate mixture of various low-temperature transformation phases such as granular bainite, degenerate upper bainite (DUB), lower bainite (LB), and lath martensite (LM). Despite the high yield strength, the improvement of low-temperature toughness could be explained by the reduction of overall effective grain size based on the electron backscattered diffraction (EBSD) analysis data, leading to the decrease in ductile-to-brittle transition temperature (DBTT).

  1. ATOM PROBE MICROANALYSIS OF WELD METAL IN A SUBMERGED ARC WELDED CHROMIUM-MOLYBDENUM STEEL

    OpenAIRE

    Josefsson, B.; Kvist, A.; Andrén, H.

    1987-01-01

    A submerged arc welded 2.25Cr - 1Mo steel has been investigated using electron microscopy and atom probe field ion microscopy. The bainitic microstructure of the as-welded steel consisted of ferrite and martensite. During heat treatment at 690°C the martensite transformed to ferrite and cementite and needle-shaped (Cr,Mo)2C carbides precipitated. Together with a substantial decrease in dislocation density, this resulted in an improvement of the toughness.

  2. Niobium-containing quenching and partitioning processed ultrahigh strength martensite–austenite dual phase steels

    International Nuclear Information System (INIS)

    Given the strong recent interest in quenching and partitioning processed steels, we present here a study concerning niobium bearing steel with medium carbon content. The quenching and partitioning process leads to an extremely high product of tensile strength and percentage elongation approaching 38 GPa%. The contribution is a cumulative effect of martensite with tempered randomly-oriented laths, small fraction of lower bainite, and a high fraction of retained austenite

  3. Creep-fatigue propagation of semi-elliptical crack at 650 deg. C in 316L(N) stainless steel plates with or without welded joints; Propagation de fissures semi-elliptiques en fatigue-fluage a 650 deg. C dans des plaques d'acier 316L(N) avec ou sans joints soudes

    Energy Technology Data Exchange (ETDEWEB)

    Curtit, F

    2000-07-01

    This study realised in LISN Laboratory of CEA Saclay, deals with the creep fatigue propagation of semi elliptical crack at the temperature of 650 deg C in 316L(N) stainless steel plates with or without welded joints. A vast majority of the studies on creep fatigue propagation models are based on specimen (CT) especially designed for crack propagation study. The PLAQFLU program performed in LISN laboratory deals with the application and adaptation of these models to complex crack shape, which are more representative of the cracks observed in industrial components. In this scope, we use propagation tests realised at the temperature of 650 deg C with wide plates containing semi elliptical defects. For some of them, the initial defect is machined in the middle of a welded joint, which constitute a privileged site for the crack initiation. The approach used in this study is based on global parameters of fracture mechanics. At first, tests on CT specimen are used in order to determine the propagation laws correlating the crack growth rate to the global parameters K or C{sup *}. These laws are then supposed to be intrinsic to our materials and are used to analysed the semi elliptical crack propagation. The analysis of the comportment of the crack during the hold time demonstrates the possibility to establish a correlation between the crack propagation both in the deepest and the surface point and the local value of C{sup *}. These correlations are coherent in the different points of the crack front for the different applied hold times, and they present a reasonably good agreement with the creep propagation law identified on CT specimen. The simulation of test performed on based metal specimen with a model of summation of both creep and pure fatigue crack growth gives acceptable results when the calculus of the simplified expression of C{sup *}{sub s} considers a continuous evolution of creep deformations rate during the all test. (author)

  4. Mixed structures in continuously cooled low-carbon automotive steels

    OpenAIRE

    Khalid, F.; Edmonds, D.

    1993-01-01

    Mixed microstructures have been studied in low- carbon microalloyed steels suitable for automotive applications, after continuous cooling from the hot-rolled condition. Microstructural features such as polygonal ferrite, bainitic and acicular ferrite and microphase constituent are identified using transmission electron microscopy. The influence of these mixed structures on the tensile strength, impact toughness and fracture behaviour is examined. It is found that improvements in impact toughn...

  5. Understanding toughness and ductility in novel steels with mixed microstructures

    OpenAIRE

    Fielding, Lucy Chandra Devi

    2014-01-01

    The purpose of the work presented in this thesis was to explore and understand the mechanisms governing toughness, ductility and ballistic performance in a class of nanostructured carbide-free bainite-austenite steels, sometimes known as ?superbainite?. The mechanical properties of these alloys have been extensively reported, but their interpretation is not clear. The thesis begins with an introduction to both the relevant nanostructures and some of the difficulties involved in explaining obs...

  6. Dislocation structures in 16MND5 pressure vessel steel strained in uniaxial tension at -196 °C

    Czech Academy of Sciences Publication Activity Database

    Obrtlík, Karel; Robertson, Christian; Marini, Bernard

    96 2005, č. 8 (2005), s. 909-912. ISSN 0044-3093 R&D Projects: GA AV ČR(CZ) 1QS200410502 Keywords : Bainitic steel * Dislocation structure * Tension test Subject RIV: JG - Metallurgy Impact factor: 0.842, year: 2005

  7. Effect of microalloying elements and hot deformation on microstructure of direct-quenched steel plates

    International Nuclear Information System (INIS)

    The effects of microalloys (Nb, V, Ti and Nb-Ti) and hot deformation on microstructure were investigated in direct-quenched HSLA steels. Nb and Ti were shown to improve both strength and toughness of the steels, while V showed little effectiveness in improving the strength of the steels. Quantitative analysis showed that dissolved NB and Ti in austenite increased the hardenability of austenite, so that they refined the ferrite grain size and increased the fraction of bainite in the steels. On the other hand, dissolved V was much less effective in increasing;the hardenability of austenite. It was found that an addition of 0.03%Nb decreases the strength of Ti bearing steels reheated to a low temperature. Combined additions of microalloying elements decreases the solubility of carbonitrides and reduces the amount of dissolved microalloying elements in austenite during reheating through the formation of complex precipitates. Controlled rolling below 950 C had a considerable effect on improving the toughness of Nb bearing direct-quenched steels. Deformation of more than 50% in the un-recrystallized austenite region significantly refined the bainite microstructure, while deformation of less than 30% was less effective. It was shown that the increase in toughness due to the heavy deformation of un-recrystallized austenite resulted from the decrease in the length of lathlike ferrite and the decrease in the packet size of bainite

  8. The effect of coiling temperature on the microstructure and mechanical properties of a niobium–titanium microalloyed steel processed via thin slab casting

    Energy Technology Data Exchange (ETDEWEB)

    Challa, V.S.A.; Zhou, W.H. [Laboratory for Excellence in Advanced Steel Research, Center for Structural and Functional Materials, Institute for Material Research and Innovation, University of Louisiana at Lafayette, P.O. Box 44130, Lafayette, LA 70503 (United States); Misra, R.D.K., E-mail: dmisra@louisiana.edu [Laboratory for Excellence in Advanced Steel Research, Center for Structural and Functional Materials, Institute for Material Research and Innovation, University of Louisiana at Lafayette, P.O. Box 44130, Lafayette, LA 70503 (United States); O' Malley, R. [Nucor Decatur Sheet Mill, 4301 Iverson Blvd., Trinity, AL 35673 (United States); Jansto, S.G. [CBMM North America, 1000 Old Pond Road, Bridgeville, PA 15017 (United States)

    2014-02-10

    We describe here the influence of coiling temperature on the microstructure and mechanical properties, especially toughness, in a low carbon niobium microalloyed steel processed via thin slab casting. The objective is to elucidate the impact of coiling temperature on the nature and distribution of microstructural constituents (including different phases, precipitates, and dislocations) that contribute to variation in the strength–toughness relationship of these steels. In general, the microstructure primarily consisted of fine lath-type bainite and polygonal ferrite, and NbC, TiC and (Nb, Ti)C precipitates of size ∼2–10 nm in the matrix and at dislocations. However, the dominance of bainite and distribution of precipitates was a function of coiling temperature. The lower coiling temperature provided superior strength–toughness combination and is attributed to predominantly bainitic microstructure and uniform precipitation of NbC, TiC, and (Nb, Ti)C during the coiling process, consistent with continuous cooling transformation diagrams.

  9. Influence of cooling rate on the structure and mechanical properties of G17CrMoV5 – 10 cast steel

    Directory of Open Access Journals (Sweden)

    G. Golański

    2009-07-01

    Full Text Available The paper presents results of research on the influence of cooling rate on the structure and properties of G17CrMoV5 – 10 (L17HMF cast steel. The material for research was a section taken out from an outer cylinder of a steam turbine body after about 250 000 hours of operation at the temperature of 535°C and pressure 9 MPa. The investigated cast steel was subjected to heat treatment which consisted in cooling at the rates corresponding to the processes, such as: bainitic hardening, normalizing and full annealing. Tempering after the process of cooling from austenitizing temperature was carried out at the temperatures of: 700, 720 and 740°C. Performed research has proved that structures obtained after bainitic hardening and normalizing are characterized by a large strength margin which allows to apply high temperatures of tempering. It has been shown that the cast steel of bainitic structure, with similar mechanical properties as the cast steel of bainitic – ferritic structure, is characterized by almost twice as high impact energy. Full annealing and tempering of the examined cast steel ensures only the required impact strength, with mechanical properties comparable to those after service.

  10. Mechanical Properties and Retained Austenite Transformation Mechanism of TRIP-Aided Polygonal Ferrite Matrix Seamless Steel Tube

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ming-ya; ZHU Fu-xian; ZHENG Dong-sheng

    2011-01-01

    Through the comparison of microstructure for polygonal ferrite (PF) matrix transformation induced plasticity (TRIP) seamless steel tube at different positions before and after tensile rupture, the transformation behavior of retained austenite (RA) was studied. The results showed that there were no yield points in tensile process and the splendid elongation and tensile strength were contributed by the uniform ferrite/bainite grains and the transformation of RA. The stability of RA was to some extent in inverse proportion with the ability of transformation induced plas ticity. The coarse retained austenite located in ferrite and ferrite/bainite laths were all transformed into martensite during the tensile process.

  11. 回火对微合金管线钢疲劳裂纹扩展行为的影响%Effects of tempering treatment on fatigue crack propagation behavior of microalloyed pipeline steels

    Institute of Scientific and Technical Information of China (English)

    李红英; 宾杰; 林武; 魏冬冬; 李阳华; 曹俊

    2011-01-01

    采用MTS858电液伺服万能试验机、扫描电镜及透射电镜研究回火对一种高强度微合金管线钢疲劳裂纹扩展行为的影响.研究结果表明:回火可提高微合金管线钢疲劳裂纹扩展的门槛值,降低疲劳裂纹扩展速率,但对裂纹扩展稳态区的扩展速率影响不大;回火使碳氮化物沉淀析出、晶间马氏体/奥氏体(M/A)组元由岛状转变为点状及细条状,形成马氏体薄膜结构,阻碍变形和裂纹在材料中扩展,增加裂纹的偏折程度;在控轧控冷终冷温度进行2~4 h回火热处理,可以提高微合金管线钢强韧性和抗疲劳裂纹扩展能力.%The effects of different tempering treatments on fatigue crack propagation behavior of a high strength microalloyed pipeline steel were investigated by MTS858 material testing system, scanning electron microscopy and transmission electron microscopy. The results show that tempering treatments can improve the fatigue crack propagation threshold and reduce the fatigue crack growth rate of microalloyed pipeline steels, but with little effects on the intermediate region of stable crack propagation. Tempering treatment can promote the precipitation of microalloyed carbonitrides and transform the martensite/austenite (M/A) components at the grain boundary from islands to spots and strips, and the M/A components can be further changed to thin-film martensite as tempering time increases, and all these structures can inhibit the propagation and increase the deflection of fatigue crack. The strength, toughness and fatigue crack propagation resistance of microalloyed pipeline steels can be promoted by 2-4 h tempering at the final cooling temperature of thertno-mechanical control process.

  12. HEAT TREATING OF SINTERED Fe—1.5Mo—0.7C STEELS AND THEIR SLIDING WEAR BEHAVIOR

    Institute of Scientific and Technical Information of China (English)

    J.A.Wang; Y.He; 等

    2003-01-01

    The influence of heat treating on mechanical properties as well as on the sliding wear gehavior of sintered Fe-1.5Mo-0.7C steels was experimentally studied.The microstruc-tures of sintered steels change from upper bainite to martensite,tempered martensite,pearlite and lower bainite depending on the heat treating conditions.Heat treating increases the hardness of sintered steels but high tempering temperature,i.e.700℃,causes the hardness to be even lower than that of the as-sintered ones.The impact energy of sintered steels increases with increasing tempering temperature and arrives the highest at 700℃,while the steels tempered at 200℃ have the highest transverse rupture strength.Austempering results in fair good overall properties,such as hard-ness,impact energy,and transverse rupture strenght.When the sintered steels were austempered,oil-quenched or tempered belw 400℃ after quenched,the wear coef-ficient becomes considerably lower.Fair high hardness,such as HV30>380,and structures of martensite,tempered martensite or lower bainite are beneficial to low-ering the wear coefficient.Under the wear test conditions given,delanination and oxidational wear are the main wear regimes for sintered Fe-1.5Mo-0.7C steels.Fe3O4 in the wear debris is beneficial to lowering wear coefficient.

  13. HEAT TREATING OF SINTERED Fe-1.5Mo-0.7C STEELS AND THEIR SLIDING WEAR BEHAVIOR

    Institute of Scientific and Technical Information of China (English)

    J.A. Wang; Y. He; H. Danninger

    2003-01-01

    The influence of heat treating on mechanical properties as well as on the sliding wearbehavior of sintered Fe-1.SMo-0.7C steels was experimentally studied. The microstruc-tures of sintered steels change from upper bainite to martensite, tempered martensite,pearlite and lower bainite depending on the heat treating conditions. Heat treatingincreases the hardness of sintered steels but high tempering temperature, i.e. 700℃,causes the hardness to be even lower than that of the as-sintered ones. The impactenergy of sintered steels increases with increasing tempering temperature and arrivesthe highest at 700℃, while the steels tempered at 200℃ have the highest transverserupture strength. Austempering results in fair good overall properties, such as hard-ness, impact energy, and transverse rupture strength. When the sintered steels wereaustempered, oil-quenched or tempered below 400℃ after quenched, the wear coef-ficient becomes considerably lower. Fair high hardness, such as HV30 > 380, andstructures of martensite, tempered martensite or lower bainite are beneficial to low-ering the wear coefficient. Under the wear test conditions given, delamination andoxidational wear are the main wear regimes for sintered Fe-1.5Mo-0.7C steels. Fe3O4in the wear debris is beneficial to lowering wear coefficient.

  14. Effect of Aluminum and Silicon on Transformation Induced Plasticity of the TRIP Steel

    Institute of Scientific and Technical Information of China (English)

    Lin LI; B.C. De Cooman; P. Wollants; Yanlin HE; Xiaodong ZHOU

    2004-01-01

    With the sublattice model, equilibrium compositions of ferrite (α) and austenite (γ) phases, as well as the volume percent of austenite (γ) at 780℃ in different TRIP steels were calculated. Concentration profiles of carbon, Mn, Al and Si in the steels were also estimated under the lattice fixed frame of reference so as to understand the complex mechanical behavior of TRIP steels after different isothermal bainitic transformation treatments. The effect of Si and Mn on transformation induced plasticity (TRIP) was discussed according to thermodynamic and kinetic analyses. It is recognized that Al also induces phase transformation in the steels but its TRIP effect is not as strong as that of Si.

  15. Thermal Stability of Nanocrystalline Structure In X37CrMoV5-l Steel

    Directory of Open Access Journals (Sweden)

    Skołek E.

    2015-04-01

    Full Text Available The aim of the study was to investigate the thermal stability of the nanostructure produced in X37CrMoV5-1 tool steel by austempering heat treatment consisted of austenitization and isothermal quenching at the range of the bainitic transformation. The nanostructure was composed of bainitic ferrite plates of nanometric thickness separated by thin layers of retained austenite. It was revealed, that the annealing at the temperature higher than temperature of austempering led to formation of cementite precipitations. At the initial stage of annealing cementite precipitations occurred in the interfaces between ferritic bainite and austenite. With increasing temperature of annealing, the volume fraction and size of cementite precipitations also increased. Simultaneously fine spherical Fe7C3 carbides appeared. At the highest annealing temperature the large, spherical Fe7C3 carbides as well as cementite precipitates inside the ferrite grains were observed. Moreover the volume fraction of bainitic ferrite and of freshly formed martensite increased in steel as a result of retained austenite transformation during cooling down to room temperature.

  16. Metallurgical products of microalloy constructional steels

    Directory of Open Access Journals (Sweden)

    W. Ozgowicz

    2011-01-01

    Full Text Available Purpose: The aim of the paper is a monographic presentation, based on investigations connected with the elaboration of new kinds of microalloy steels and a technique of heat and thermo-mechanical treatment in the production of a selected group of metallurgical products.Design/methodology/approach: The influence of the chemical composition and metallurgical purity on the homogenisation of austenite was analysed, as well as thermally activated processes and phase transformations in the course of deformation and controlled cooling conditions, concerning micradditives Nb, V, Ti, B and metallurgical products.Findings: The chemical composition of the obtained constructional steels with microadditives was quoted, as well as the technological conditions of forging and rolled products required for industrial purposes.Research limitations/implications: The results of investigations concerning the structure and mechanical properties have been presented, as well as the resistance to fracture, mainly of thick plates and hand-forged and drop-forged products and also elements of sheet structures for the automotive industry, made of AHSS steels.Practical implications: The results of the author’s own investigations concerning microalloy steels indicate the actual possibility of their application in practice in many steelworks, particularly in plants producing semi products and final metallurgical products, among others in hot rolling plants and forging shops, first of all in machine building and automotive industry.Originality/value: The application of modern metallurgical technologies and metalforming has been suggested for selected metallurgical products of microalloy steels of the type HSLA with a ferrite-bainite, bainite or tempered martensite structure and also of HSS steels and UHSS steel with a wide range of mechanical properties and technological formability, which is essential in the case of products of the automotive industry.

  17. 气相爆轰波在衬多孔钢板管道中的衰减和恢复%The Attenuation and Reignition of a Gaseous Detonation Propagating Through a Perforated Steel Plate Section

    Institute of Scientific and Technical Information of China (English)

    郭长铭

    2001-01-01

    The paper presents an experimental investigation that attempts to understand the propagation of gaseous detonation waves in a tube section lined with a perforated steel plate. A stable cellular detonation was generated first in a tube with smooth inner walls, which propagated through a specially designed section lined with a perforated steel plate.Piezoelectric transducers mounted on the top of the section measured the pressure history and velocity of detonation for stoichiometric 2H2 + O2 premixed gas mixture. Results show that the detonation wave is attenuated first by the perforated plate then the pressure rises again. Our experimental results would support this argument: The rough surface of “absorbing materials”, the perforated plate, wire mesh or steel wool etc., can attenuate detonation wave by means of “absorbing” transverse waves. But, on the other hand, it also can cause immediate spontaneous transition to detonation, I.e., spontaneous DDT (Deflagration to Detonation Transition). The mechanism that provides the immediate spontaneous transition to detonation for rough surface of “absorbing materials” is explored in the paper as well.%对气相爆轰波在衬有多孔钢板管道中的传播进行了实验研究.结果表明,多孔钢板对气相爆轰波的传播有衰减作用:同时它所产生的紊流作用又能使已衰减的爆轰波在一定程度上得到恢复.

  18. 亚温调质对F550级船板钢低温韧性的影响%Effect of quenching temperature and tempering on low-temperature toughness of a F550 ship plate steel

    Institute of Scientific and Technical Information of China (English)

    李晓林; 余伟; 朱爱玲; 武会宾; 万德成; 张杰

    2012-01-01

    Microstructure and mechanical properties of F550 ship plate steel after guenching at 820 ℃ ,850 ℃ ,910 ℃ and tempering at 600 ℃ were investigared. The effects of quenching temperature on low temperature toughness of F550 ship plate steel were examined. The morphology, size and distribution of martensite-austenite (M/A) constituents and the volume fraction of M/A islands and polygonal ferritc obtained after different heat treatment processes were observed by optical microscope, scanning electron microscopy (SEM) , transmission electron microscopy (TEM) and quantitative metallographie methods. The results show that after intereritical quenching at 850 ℃ and tempering at 600℃ , the low temperature toughness at -80 ℃ of the steel is the best, which is about 220 J. After complete quenching at 910 0C and tempering at 600 ℃ , the main mierostrueture of the steel is bainite, and the amount of M/A islands with the size above 2 ~m increases and the M/A islands are distributed at grain boundaries or between bainitic ferrite lathes with the form of elongated block and dots, which lead to the decrease of toughness. After sub-critical heat treatment, the microstructure consists of polygonal ferrite (QF) and granular bainite, and polygonal ferrite is fine and distributed uniformly. The amount of M/A islands is smaller compared with that of complete quenching and tempering, and the M/A islands with dot-shape disperse uniformly between bainitic ferrite lathes acting as effective barriers to crack propagation.%研究F550级船板钢在820、850和910℃淬火,600℃回火条件下的热处理工艺对其低温韧性的影响。通过光学显微镜、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等实验方法,分析了组织中多边形铁素体以及M/A岛体积分数、M/A岛的形貌、尺寸及分布情况。结果表明:选择在亚温区850℃淬火后600℃回火试验钢的-80℃低温韧性最佳,达到220J

  19. Laser beam welding of new ultra-high strength and supra-ductile steels

    Science.gov (United States)

    Dahmen, Martin

    2015-03-01

    Ultra-high strength and supra-ductile are entering fields of new applications. Those materials are excellent candidates for modern light-weight construction and functional integration. As ultra-high strength steels the stainless martensitic grade 1.4034 and the bainitic steel UNS 53835 are investigated. For the supra-ductile steels stand two high austenitic steels with 18 and 28 % manganese. As there are no processing windows an approach from the metallurgical base on is required. Adjusting the weld microstructure the Q+P and the QT steels require weld heat treatment. The HSD steel is weldable without. Due to their applications the ultra-high strength steels are welded in as-rolled and strengthened condition. Also the reaction of the weld on hot stamping is reflected for the martensitic grades. The supra-ductile steels are welded as solution annealed and work hardened by 50%. The results show the general suitability for laser beam welding.

  20. Effects of complex oxides on HAZ toughness of three API X80 linepipe steels

    International Nuclear Information System (INIS)

    This study is concerned with effects of complex oxides on Charpy impact toughness of Heat Affected Zone (HAZ) of API X80 linepipe steels. Three kinds of steels were fabricated by varying alloying elements such as Ti, Al, and Mg and hot-rolling conditions to form complex oxides, and their microstructures and Charpy impact properties were investigated. The number of complex oxides present in the steel containing excess Ti, Al, and Mg was twice larger than that in the conventional steels, while their size ranged from 1 to 3 μm in the three steels. After the HAZ simulation test, the steel containing a number of oxides contained about 20 vol.% of acicular ferrite in the simulated HAZ, together with bainitic ferrite and martensite, whereas the HAZ microstructure of the conventional steels consisted of bainitic ferrite and martensite with a small amount of acicular ferrite. This formation of acicular ferrite in the oxide-containing steel was associated with the nucleation of acicular ferrite at complex oxides, thereby leading to the great (five times or more) improvement of Charpy impact toughness over the conventional steels

  1. Theory and Modeling of Phase Transformations under Stress in Steel

    Institute of Scientific and Technical Information of China (English)

    T.Y. Hsu (XU Zu-yao)

    2004-01-01

    Thermodynamic prediction of the increment of the formation temperature of proeutectoid ferrite by applied stress is nearly consistent with the experimental data. Kinetics models for ferrite, pearlite and bainite transformations can be shown as modified Johnson-Mehl-Avrami equation in which parameter b(σ) varies with the level of applied stress.The effects of tensile and compressive stresses on enhancement of the ferrite/pearlite and bainite transformations are discussed. The necessity and approach of modification of additivity hypothesis are introduced and the results from modified equation in which some parameters are obtained by regression of two experimental results or taken from TTT and CCT diagrams of a certain steel are superior than that from Scheil's equation. Thermodynamic calculation of Ms and nucleation kinetics equations of martensitic transformation under stress are suggested. Modeling of phase transformations under stress in ferrous alloys is briefly described.

  2. Hot-working in the γ+α region of TRIP-aided microalloyed steel

    Directory of Open Access Journals (Sweden)

    A. Grajcar

    2007-12-01

    Full Text Available Purpose: The aim of the paper is to investigate the influence of hot-working in the γ+α range and isothermal holding temperature in a bainitic range on a stability of retained austenite in a TRIP-aided microalloyed steel.Design/methodology/approach: The thermomechanical processing in the γ+α range to obtain multiphase structures with the retained austenite in a microalloyed steel was realized. It consisted of plastic deformation of specimens at 750°C or 780°C, oil cooling and isothermal holding in a bainitic region. Degree of deformation was 28 or 50%. To reveal the multiphase structure optical and transmission electron microscopy were used. X-ray diffraction method was employed to determine a volume fraction of retained austenite.Findings: It was found that hot-working in the two-phase region influences essentially a multiphase structure of investigated steel. The ferrite fraction is comparable for heat-treated and thermo-mechanically processed specimens but the ferrite grain size is twice smaller in a case of plastically-deformed specimens. The optimum isothermal holding temperature in a bainitic range is 300°C, independent on austenitizing temperature. The specimens forged in the γ+α range and isothermally held at this temperature made it possible to obtain about 10% of retained austenite.Research limitations/implications: Investigations concerning the influence of isothermal holding time in a bainitic range on the stability of retained austenite should be carried out.Practical implications: The established conditions of the thermomechanical processing can be useful in a development of the hot-rolling technology for TRIP-aided microalloyed steels.Originality/value: The realized thermomechanical processing enabled to obtain about 10% fraction of retained austenite in a steel containing 0.5% Si.

  3. Study on microstructure and hardness uniformity of non-quenched prehardened steel for large section plastic mould

    International Nuclear Information System (INIS)

    Microstructures throughout a 460 mm x 800 mm cross-section of non-quenched prehardened (NQP) steel for plastic mould were characterized by optical microscopy, scanning electronic microscopy and transmission electronic microscopy. Strength and hardness of the NQP steel block was also tested. It is found that mechanical properties at core are close to that at surface and hardness distributes between 37 and 40 HRC through the whole section. Grains at core are coarser and deformation bands are observed at surface, while microstructures both at core and at surface are composed of bainitic ferrite laths with high dislocation density and interlath cementite and/or residual austensite. Considering continuous cooling transformation of the NQP steel, the small variation in hardness throughout the section is caused by the main microstructure bainite which possesses high hardenability. Moreover, the differences of the lath widths and dislocation density in baintic ferrite lath make hardness at surface a little higher than that at core

  4. The Effect of Stepped Austempering on Phase Composition and Mechanical Properties of Nanostructured X37CrMoV5-1 Steel

    Directory of Open Access Journals (Sweden)

    Marciniak S.

    2015-04-01

    Full Text Available This paper presents the results of studies of X37CrMoV5-1 steel subjected to quenching processes with a one-step and a two-step isothermal annealing. The TEM observation revealed that steel after one-step treatment led is composed of carbide-free bainite with nanometric thickness of ferrite plates and of high volume fraction of retained austenite in form of thin layers or large blocks. In order to improve the strength parameters an attempt was made to reduce the austenite content by use of quenching with the two-step isothermal annealing. The temperature and time of each step were designed on the basis of dilatometric measurements. It was shown, that the two-step heat treatment led to increase of the bainitic ferrite content and resulted in improvement of steel's strength with no loss of steel ductility.

  5. Contribution to analysis of fatigue crack propagation at room temperature in low carbon austenitic steels type 18-10(304L) and Mo 17-12(316L). Relation between macroscopic and microscopic phenomena

    International Nuclear Information System (INIS)

    Low cycle fatigue phenomenon on the structural components of reactors is one of the most important problem. In this paper were carried out some fatigue tests on stainless steels type Z2CN18-10 (AISI 304L) and Z2CND17-12 (AISI 316L) at room temperature in air and in a corrosive medium (NaCl solution at different pH values). Length of cracks and crack propagation under stresses were determined. Z2CND17-12 has a better behavior than Z2CN18-10 because of a better structural stability both in air and in a corrosive environment. Structure was examined by transmission electron microscopy and microhardness was measured in the perturbed zones

  6. Experimental Study of Microstructure Evolution during Tempering of Quenched Steel and Its Application

    Institute of Scientific and Technical Information of China (English)

    SHI Wei; YAO Ke-fu; CHEN Nan; WANG Hong-peng

    2004-01-01

    Microstructure evolution during tempering of quenched steel was studied via dilatometric experiments.Temperature ranges of transformation were determined by a relative dilation curve. The thermal expansion coefficient of quenched steel was defined as a function of temperature. The transformation expansion is determined by subtracting thermal expansion from a measured diameter dilation curve. A kinetic equation based on tempering parameter was proposed to predict the microstructure evolution fraction of martensite and bainite of Ni3.5CrMoV and C45 steel. The kinetic equation was used in an in-house FEM code. The internal stress evolution of a quenched generator rotor was investigated.

  7. Experimental Study of Microstructure Evolution during Tempering of Quenched Steel and Its Application

    Institute of Scientific and Technical Information of China (English)

    SHIWei; YAOKe-fu; CHENNan; WANGHong-peng

    2004-01-01

    Microstructure evolution during tempering of quenched steel was studied via dilatometric experiments.Temperature ranges of transformation were determined by a relative dilation curve. The thermal expansion coefficient of quenched steel was defined as a function of temperature. The transformation expansion is determined by subtracting thermal expansion from a measured diameter dilation curve. A kinetic equation based on tempering parameter was proposed to predict the microstructure evolution fraction of martensite and bainite of Ni3.SCrMoV and C45 steel. The kinetic equation was used in an in-house FEM code. The internal stress evolution of a quenched generator rotor was investigated.

  8. Mechanical properties and microstructure of TRIP steels produced using TSCR process

    Institute of Scientific and Technical Information of China (English)

    Yinghui Zhang; Yanli Ma; Yonglin Kang; Hao Yu

    2006-01-01

    C-Si-Mn TRIP steels were produced using the thin slab casting and rolling (TSCR) process under simulation in laboratory. The results of tensile tests show that the yield strength, tensile strength, and the total elongation of the experimental TRIP steels are 430 MPa, 610 MPa, and 28.4%, respectively. Optical microscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were employed to identify the microstructures of the TRIP steels. The final microstructures consist of ferrite, bainite, and retained austenite. The results of quantitative color metallography show that the fraction of the retained austenite is about 5.8%.

  9. Development of an optimized methodology for tensile testing of carbon steels in hydrogen environment

    OpenAIRE

    Cuadros Fernández, Pau; Baró, M.D.

    2009-01-01

    The study was performed at OCAS, the Steel Research Centre of ArcelorMittal for the Industry market. The major aim of this research was to obtain an optimized tensile testing methodology with in-situ H-charging to reveal the hydrogen embrittlement in various high strength steels. The second aim of this study has been the mechanical characterization of the hydrogen effect on hight strength carbon steels with varying microstructure, i.e. ferrite-martensite and ferrite-bainite grades. The optima...

  10. Prediction of mechanical properties of hot rolled steel by ultrasonic method

    International Nuclear Information System (INIS)

    The ultrasonic attenuation and the velocity in hot rolled steel have been evaluated by ultrasonic contact measurement. The measured attenuation is calibrated by diffraction correction integral suggested by Lommel. The attenuation is also calculated by the model suggested by Mason. The agreement between the experimentally determined attenuation and the calculated one was good. As the results, the mechanical properties of the ferrite plus pearlite steels could be assessed by the ultrasonic attenuation. The mechanical properties of the martensite plus bainite steels could be assessed by the ultrasonic velocity.

  11. A Special TMCP Used to Develop a 800MPa Grade HSLA Steel

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The effect of relaxation after finished rolling on structure s and properties of four microalloyed steel with different content of Nb and Ti was investigated. By alloy designing and control rolling+rel axation-precipitation-control phase transformation (RPC) process, a ne w 800MPa grade HSLA plate steel could be obtained, the microstructure is composite ultra-fine lath bainite/martensite. The tempering process and mechanical properties of this kind of HSLA steel were investigate d. The yield strength can achieve 800MPa, and the ductility and impact toughness is satisfied.

  12. Effects of Carbon on the CG HAZ Toughness and Transformation of X80 Pipeline Steel

    Institute of Scientific and Technical Information of China (English)

    Xiaohuai XUE; Luhai WU; Bainian QIAN; Jingli LI; Songnian LOU

    2003-01-01

    X80 pipeline steel produced by TMCP has high strength and high toughness with ultrafine grain microstructure. The microstructure coarsens and the toughness worsens at the coarse grained (CG) HAZ apparently after weld simulation. The experimental results indicated that the bainitic ferrite and the second phases formed at cooling are differently as the variation of carbon in base metal. In low carbon steels, the bainitic ferrite laths are long and narrow, the second phases are complex including residual austenite, martensite, the M-A constituent and the Fe3C carbide. The formation of Fe3C carbide is the main reason of the poor toughness in CG HAZ. The ultralow carbon in base metal, however, can improve the CG HAZ toughness through restraining the formation of carbides, decreasing the M-A constituent, increasing the residual austenite content, which are beneficial to the CG HAZ toughness.

  13. Effect of silicon and prior deformation of austenite on isothermal transformation in low carbon steels

    Institute of Scientific and Technical Information of China (English)

    Minghui CAI; Hun DING; Jiansu ZHANG; Long LI

    2009-01-01

    Isothermal transformation (TTT) behavior of the low carbon steels with two Si con-tents (0.50 wt pct and 1.35 wt pct) was investigated with and without the prior deformation. The results show that Si and the prior deformation of the austenite have significant effects on the transformation of the ferrite and bainite. The addition of Si refines the ferrite grains, accelerates the polygonal ferrite transformation and the formation of M/A constituents, leading to the improvement of the strength. The ferrite grains formed under the prior deformation of the austenite become more ho-mogeneous and refined. However, the influence of deformation on the tensile strength of both steels is dependent on the isothermal temperatures. Thermodynamic calcu-lation indicates that Si and prior deformation reduce the incubation time of both ferrite and bainite transformation, but the effect is weakened by the decrease of the isothermal temperatures.

  14. Intergranular brittle fracture of a low alloy steel induced by grain boundary segregation of impurities: influence of the microstructure

    International Nuclear Information System (INIS)

    The study contributes to improve the comprehension of intergranular embrittlement induced by the phosphorus segregation along prior austenitic grain boundaries of low alloy steels used in pressurized power reactor vessel. A part of this study was performed using a A533 steel which contains chemical fluctuations (ghost lines) with two intensities. Axi-symmetrically notched specimens were tested and intergranular brittle de-cohesions were observed in the ghost lines. The fracture initiation sites observed on fracture surfaces were identified as MnS inclusions. A bimodal statistic obtained in a probabilistic model of the fracture is explained by the double population of ghost lines' intensities. A metallurgical study was performed on the same class of steel by studying the influence of the microstructure on the susceptibility to temper embrittlement. Brittle fracture properties of such microstructures obtained by dilatometric experiments were tested on sub-sized specimens to measure the V-notched fracture toughness. Fraction areas of brittle fracture modes were determined on surface fractures. A transition of the fracture mode with the microstructure is observed. It is shown that tempered microstructures of martensite and lower bainite are more susceptible to intergranular embrittlement than tempered upper bainitic microstructure. The intergranular fracture is the most brittle mode. The analysis of crystalline mis-orientations shows a grain boundary structure appreciably more coherent for tempered microstructures of martensite and lower bainite. The higher density of random grain boundaries is susceptible to drag the phosphorus in the upper bainitic matrix and to make the quantity of free phosphorus decreasing. Microstructure observations show a difference in the size and the spatial distribution of carbides, essentially cementite, between tempered martensite and upper bainite. It can explain the bigger susceptibility of this last microstructure to cleavage mode

  15. Microstructure and Mechanical Properties of 50SiMnNiNb Steel by a Novel Quenching-Partitioning-Austempering Heat Treatment

    Institute of Scientific and Technical Information of China (English)

    LI Hongyan; JIN Xuejun

    2009-01-01

    For the purpose of reducing weight of steel parts, save raw materials and keep or even improve safety standards, the development of advanced high strength steels is increasingly demanded in the automotive industry and engineering applications. We have proposed a novel heat treatment (quenching-partitioning-austempering treatment, Q-P-A) to obtain steel parts with high strength and good ductility. The Q-P-A process is intended to produce microstructure consisted of carbon-depleted martensite, carbon-enriched retained austenite and nanostructured bainite. Quenching(Q) treatment fabricates mixed microstructure of carbon-supersaturated martensite and certain amounts of untransformed austenite. Partitioning(P) thermal treatment accomplishes fully diffusing of carbon from the supersaturated martensite phase to the untransformed austenite phase and enriching the amount of carbon in untransformed austenite. Further low-temperature austempering(A) process induces incredible thin bainite from the carbon-enriched untransformed austenite. A study of the microstructure and mechanical properties of 50SiMnNiNb steel subjected to the novel Q-P-A treatment is presented. Microstructure is assessed by optical microscope(OM), field emission scanning electron microscope(FESEM) and transmission electron microscope(TEM), and the corresponding mechanical properties are measured. The experimental results indicate that attractive mechanical properties of steels during the Q-P-A process are attributed to the complex multi-phase structure. Slender plates of bainite with 20-40 nm thick are generated in the medium carbon steel. Meanwhile, with increasing of the volume fraction of nanostructured bainite, yield strength of steel parts is increased with little degradation of ultimate tensile strength. In this paper, a novel quenching-partitioning-austempering heat treatment is proposed, and the attractive mechanical properties of steels are obtained during the Q-P-A process.

  16. Segregation of alloying elements in thermomechanically rolled medium-Mn multiphase steels

    Directory of Open Access Journals (Sweden)

    A. Grajcar

    2012-12-01

    Full Text Available Purpose: The aim of the paper is to assess the tendency of alloying elements to macro- and microsegregation during hot-forging and successive thermomechanical rolling of medium-Mn Al-bearing steel sheets.Design/methodology/approach: The macro- and microsegregation of alloying elements was assessed by EDS and WDS measurements across the thickness of the roughly-forged flats and thermomechanically processed 3.3 mm sheets. The microstructure was revealed using combined methods of optical microscopy (OM and scanning electron microscopy (SEM. Morphological features of microstructural constituents were discussed with focusing on retained austenite. Findings: It was found that the final multiphase microstructure is mainly dependent on the Mn content and the effect of Nb microaddition is relatively low. The 3Mn steels possess very fine bainite-based microstructures whereas the steels containing 5% Mn are characterized by lath bainitic-martensitic microstructures. All the steels contain retained austenite as fine granules or layers located between bainitic ferrite laths. Some fraction of martensite-austenite (M-A islands was also identified. The tendency of Mn and Al to macrosegregation was found after the initial hot-forging. It disappears after successive rough and thermomechanical rolling whereas thin martensite and martensite-austenite microbands as a result of Mn microsegregation locally occur.Research limitations/implications: Further investigations are required to quantify the local changes of chemical composition especially in formed microbands and X-ray quantitative phase analysis should be applied to assess a fraction of retained austenite.Practical implications: The knowledge of the macro- and microsegregation of alloying elements in advanced medium-Mn steels containing retained austenite can be useful in designing the thermomechanical rolling procedures of multiphase steel sheets.Originality/value: A problem of macro- and microsegregation of

  17. Expectation Propagation

    OpenAIRE

    Raymond, Jack; Manoel, Andre; Opper, Manfred

    2014-01-01

    Variational inference is a powerful concept that underlies many iterative approximation algorithms; expectation propagation, mean-field methods and belief propagations were all central themes at the school that can be perceived from this unifying framework. The lectures of Manfred Opper introduce the archetypal example of Expectation Propagation, before establishing the connection with the other approximation methods. Corrections by expansion about the expectation propagation are then explain...

  18. Nanoscale precipitation in hot rolled sheet steel

    Science.gov (United States)

    Sun, Jun

    Some newer hot rolled high strength low alloy (HSLA) steels with a single phase ferrite matrix have obtained substantial strengthening from nanoscale precipitation. These HSLA are reported to have a good combination of strength, ductility and hole-expansion ability. In the current work, Gleeble ® 3500 torsion testing was employed to simulate the hot rolling process with varying run-out table cooling rates and coiling temperatures on five microalloyed steels with additions of Ti, Nb, Mo, Cr and V, to investigate the effects of microalloy additions and processing conditions on microstructures as well as mechanical properties. Subsized tensile specimens obtained from as-twisted torsion samples were used to evaluate mechanical properties. The precipitation states of the five steels with different processing conditions were characterized using extraction replica TEM. Comparison of microstructures and mechanical properties was discussed. Characterization of the microstructure via light optical microscopy showed the matrix microstructure was mainly influenced by coiling temperature, which indicates that the transformation from austenite to ferrite occurred during the coiling period. A higher Ti content was shown to reduce the second constituent fractions. Investigation of carbon extraction replica specimens via TEM revealed the presence of nanoscale precipitation. Extensive nanoscale precipitation was observed in most of the specimens having a polygonal ferrite matrix, while in the granular bainite/ferrite microstructure at lower temperatures, fewer microalloy carbides were present. The specimens with polygonal ferrite had similar or higher yield strength than the specimens with granular bainite microstructure, which suggests the effectiveness of precipitation strengthening from extensive nanoscale precipitates. In the Nb-Mo steel, more significant strengthening due to grain refinement was evident. Yield strength values were less than reported for JFE's "NANOHITEN

  19. Microstructural characterization and formation mechanism of abnormal segregation band of hot rolled ferrite/pearlite steel

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Rui [School of Materials Science and Engineering, Shandong University, Jinan 250061 (China); Engineering Research Center of Large Size Alloy Structural Steel Bars of Shandong Province, Jinan 250061 (China); School of Materials Science and Engineering, Shandong University of Technology, Zibo 255049 (China); Li, Shengli, E-mail: lishengli@sdu.edu.cn [School of Materials Science and Engineering, Shandong University, Jinan 250061 (China); Engineering Research Center of Large Size Alloy Structural Steel Bars of Shandong Province, Jinan 250061 (China); Zhu, Xinde [School of Materials Science and Engineering, Shandong University, Jinan 250061 (China); Ao, Qing [School of Materials Science and Engineering, Shandong University, Jinan 250061 (China); Engineering Research Center of Large Size Alloy Structural Steel Bars of Shandong Province, Jinan 250061 (China)

    2015-10-15

    In order to further reveal the microstructural characterization and formation mechanism of abnormal segregation band of hot rolled ferrite/pearlite steel, the microstructure of this type steel was intensively studied with Scanning Auger Microprobe (SAM), etc. The results show that severe C–Mn segregation exists in the abnormal segregation band region at the center of hot rolled ferrite/pearlite steel, which results from the Mn segregation during solidification process of the continuous casting slab. The C–Mn segregation causes relative displacement of pearlite transformation curve and bainite transformation curve of C curve in the corresponding region, leading to bay-like shaped C curve. The bay-like shaped C curve creates conditions for the transformation from supercooling austenite to bainite at relatively lower cooling rate in this region. The Fe–Mn–C Atomic Segregation Zone (FASZ) caused by C–Mn segregation can powerfully retard the atomic motion, and increase the lattice reconstruction resistance of austenite transformation. These two factors provide thermodynamic and kinetic conditions for the bainite transformation, and result in the emergence of granular bainitic abnormal segregation band at the center of steel plate, which leads to lower plasticity and toughness of this region, and induces the layered fracture. - Highlights: • Scanning Auger Microprobe (SAM) is applied in the fracture analysis. • The abnormal segregation band region appears obvious C–Mn segregation. • The C–Mn segregation leads to bay-like shaped C curve. • The C–Mn segregation leads to Fe–Mn–C Atomic Segregation Zone.

  20. Effect of Silicon Content on Thermodynamics of Austenite Decomposition in C-Si-Mn TRIP Steels

    Institute of Scientific and Technical Information of China (English)

    ZHU Li-juan; WU Di; ZHAO Xian-ming

    2006-01-01

    Some numerical models such as central atoms model (CAM) and superelement model were used to simulate the thermodynamics of austenite decomposition in the Fe-C-Mn-Si TRIP (transformation induced plasticity) steels. Thermodynamic calculations were carried out under a para-equilibrium (PE) condition. The results show that certain silicon content can accelerate the polygonal ferritic transformation and increase the volume fraction and stability of retained austenite by retarding the precipitation of carbides during the bainitic transformation.

  1. Microstructural characterization and formation mechanism of abnormal segregation band of hot rolled ferrite/pearlite steel

    International Nuclear Information System (INIS)

    In order to further reveal the microstructural characterization and formation mechanism of abnormal segregation band of hot rolled ferrite/pearlite steel, the microstructure of this type steel was intensively studied with Scanning Auger Microprobe (SAM), etc. The results show that severe C–Mn segregation exists in the abnormal segregation band region at the center of hot rolled ferrite/pearlite steel, which results from the Mn segregation during solidification process of the continuous casting slab. The C–Mn segregation causes relative displacement of pearlite transformation curve and bainite transformation curve of C curve in the corresponding region, leading to bay-like shaped C curve. The bay-like shaped C curve creates conditions for the transformation from supercooling austenite to bainite at relatively lower cooling rate in this region. The Fe–Mn–C Atomic Segregation Zone (FASZ) caused by C–Mn segregation can powerfully retard the atomic motion, and increase the lattice reconstruction resistance of austenite transformation. These two factors provide thermodynamic and kinetic conditions for the bainite transformation, and result in the emergence of granular bainitic abnormal segregation band at the center of steel plate, which leads to lower plasticity and toughness of this region, and induces the layered fracture. - Highlights: • Scanning Auger Microprobe (SAM) is applied in the fracture analysis. • The abnormal segregation band region appears obvious C–Mn segregation. • The C–Mn segregation leads to bay-like shaped C curve. • The C–Mn segregation leads to Fe–Mn–C Atomic Segregation Zone

  2. Creep Behaviour and Microstructure of 2.25%C r1.6%W Steel

    Czech Academy of Sciences Publication Activity Database

    Kuchařová, Květa; Sklenička, Václav; Svoboda, Milan; Douda, J.; Čmakal, J.

    Lancaster, PA: DEStech Publications, Inc, 2009 - (Shibli, I.; Holdsworth, S.), s. 624-632 ISBN 978-1-60595-005-1. [International Creep Conference /2./. Zurich (CH), 21.04.2009-23.04.2009] R&D Projects: GA MPO 2A-1TP1/057; GA MPO FT-TA2/038 Institutional research plan: CEZ:AV0Z20410507 Keywords : bainitic steel * creep strenght * microstructure changes Subject RIV: JG - Metallurgy

  3. Hydrogen-Induced Cold Cracking in High-Frequency Induction Welded Steel Tubes

    Science.gov (United States)

    Banerjee, Kumkum

    2016-04-01

    Detailed investigation was carried out on 0.4C steel tubes used for the telescopic front fork of two-wheelers to establish the root cause for the occurrence of transverse cracks at the weld heat-affected zone of the tubes. Fractographic and microstructural observations provide evidences of delayed hydrogen-induced cracking. The beneficial microstructure for avoiding the transverse cracks was found to be the bainitic-martensitic, while martensitic structure was noted to be deleterious.

  4. Crack propagation in stainless steel AISI 304L in Hydrogen Chemistry conditions (HWC); Propagacion de Grietas en Acero Inoxidable AISI 304L en Condiciones de Quimica de Hidrogeno (HWC)

    Energy Technology Data Exchange (ETDEWEB)

    Diaz S, A.; Fuentes C, P.; Merino C, F. [ININ, Carretera Mexico -Toluca s/n, La Marquesa, Ocoyoacac, Mexico (Mexico); Castano M, V. [Instituto de Fisica Aplicada, UNAM, Km 15.5 Carretera Queretaro-San Luis Potosi, Juriquilla, Queretaro (Mexico)]. e-mail: ads@nuclear.inin.mx

    2006-07-01

    Velocities of crack growth in samples type CT pre cracking of stainless steel AISI 304l solder and sensitized thermally its were obtained by the Rising Displacement method or of growing displacement. It was used a recirculation circuit that simulates the operation conditions of a BWR type reactor (temperature of 280 C and a pressure of 8 MPa) with the chemistry modified by the addition of hydrogen with and without the addition of impurities of a powerful oxidizer like the Cu{sup +} ion. In each essay stayed a displacement velocity was constant of 1x10{sup -9} m/s, making a continuous pursuit of the advance of the crack by the electric potential drop technique. Contrary to the idea of mitigation of the crack propagation velocity by effect of the addition of the hydrogen in the system, the values of the growth velocities obtained by this methodology went similar to the opposing ones under normal operation conditions. To the finish of the rehearsal one carries out the fractographic analysis of the propagation surfaces, which showed cracks growth in trans and intergranular way, evidencing the complexity of the regulator mechanisms of the IGSCC like in mitigation conditions as the alternative Hydrogen Chemistry. (Author)

  5. Propagation of crevices in stainless steel AISI304L in conditions of hydrogen chemistry (HWC); Propagacion de grietas en acero inoxidable AISI304L en condiciones de quimica de hidrogeno (HWC)

    Energy Technology Data Exchange (ETDEWEB)

    Diaz S, A.; Fuentes C, P.; Merino C, F. [ININ, 52750 Ocoyoacac, Estado de Mexico (Mexico); Castano M, V. [IFA-UNAM, Juriquilla, Queretaro (Mexico)]. e-mail: ads@nuclear.inin.mx

    2006-07-01

    Crevice growth velocities in samples of AISI 304L stainless steel thermally welded and sensitized were obtained by the Rising displacement method or of growing displacement. It was used a recirculation circuit in where the operation conditions of a BWR type reactor were simulated (temperature of 288 C and a pressure of 8 MPa) with the chemistry modified by the addition of hydrogen with and without the addition of impurities of a powerful oxidizer like the Cu{sup ++} ion. CT pre cracked specimens were used and each rehearsal stayed to one constant displacement velocity of 1 x 10{sup -9} m/s (3.6 {mu}m/hr), making a continuous pursuit of the advance of the crack by the electric potential drop technique. To the end of the rehearsal it was carried out the fractographic analysis of the propagation surfaces. The values of the growth velocities obtained by this methodology went similar to the opposing ones under normal conditions of operation; while the fractographic analysis show the cracks propagation in trans and intergranular ways, evidencing the complexity of the regulator mechanisms of the one IGSCC even under controlled ambient conditions or with mitigation methodologies like the alternative hydrogen chemistry. (Author)

  6. Effects of Nb on microstructure and continuous cooling transformation of coarse grain heat-affected zone in 610 MPa class high-strength low-alloy structural steels

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.Q. [Department of Materials Science and Engineering, Shanghai Jiaotong University, Shanghai 200030 (China)], E-mail: yingqiaozhang@yahoo.com.cn; Zhang, H.Q. [Department of Materials Science and Engineering, Shanghai Jiaotong University, Shanghai 200030 (China); Research Institute for Advanced Structural Steel, R and D Center, Baoshan Iron and Steel Limited Company, Shanghai 201900 (China); Liu, W.M. [Department of Materials Science and Engineering, Shanghai Jiaotong University, Shanghai 200030 (China); Hou, H. [Research Institute for Advanced Structural Steel, R and D Center, Baoshan Iron and Steel Limited Company, Shanghai 201900 (China)

    2009-01-15

    Continuous cooling transformation diagrams of the coarse grain heat-affected zone and microstructure after continuous cooling were investigated for 610 MPa class high-strength low-alloy (HSLA) structural steels with and without niobium. For the steel without Nb, grain boundary ferrite, degenerate pearlite and acicular ferrite are produced at slower cooling rates. Bainite phase is formed at faster cooling rates. However, for the steel with Nb, granular bainite is dominant at a large range of cooling rates. At cooling rates <32 K/s, transformation start temperature is decreased by 20 K approximately in the steel with Nb compared with that without Nb. Ferrite nucleation at prior austenite grain boundaries is suppressed and the cooling rate region for granular bainite transformation is broadened. At cooling rates >32 K/s, Nb addition has no obvious influence on transformation start temperature, but it influences microstructure transformation significantly. Martensite is observed in steel with Nb at faster cooling rates, but not produced in steel without Nb.

  7. Results from Project on Enhancement of Aging Management and Maintenance in Nuclear Power Plants - Irradiation Embrittlement of RPV Steels -

    International Nuclear Information System (INIS)

    As one of the NISA Project on Enhancement of Aging Management and Maintenance in Nuclear Power Plants, we have performed research on the irradiation embrittlement of reactor pressure vessel (RPV) steels, especially focusing on irradiation embrittlement on heat affected zone (HAZ) and on applications of ion beams to deduce fundamental insights irradiation-induced embrittlement. The results obtained from the project are summarized as follows. In order to obtain the technical basis to judge the necessity of surveillance specimens from HAZ, the neutron irradiation program was performed at JRR-3, JAEA. The samples were carefully designed based on the insights from finite element analysis, metallography, 3D atom probe and positron annihilation methods, and were fabricated so as to simulate both heat treatment history and microstructure for typical HAZ from as-fabricated RPV steels which also have variation of impurity levels. The fracture toughness of the unirradiated HAZ specimens was equivalent to or better than that of base metals. Irradiation embrittlement and hardening were roughly identical to those of base metals, while some of the fine-grained HAZ microstructure was susceptible to it. The probabilistic fracture mechanics analysis was applied to the structural integrity assessment taking into account the heterogeneous microstructure as well as susceptibility for irradiation embrittlement of each HAZ microstructure under the variation of welding parameter and PTS condition. It was shown that crack propagation at the fine-grained HAZ, but the discontinuous distribution of the microstructure retards the further propagation. For the precise correlation of irradiation embrittlement of RPV steels for the long term operations, accumulations of high-dose data are required. Ion beam irradiation is one of the solutions for the regime and for mechanism-based descriptions. Another interest of ours was to describe irradiation hardening and embrittlement in terms of

  8. A study on the continuous low cycle fatigue properties of 1%Cr-Mo-V steel and 12%Cr-Mo-V steel used in turbine rotors

    International Nuclear Information System (INIS)

    Continuous low cycle fatigue properties of 1%Cr-Mo-V steel and 12%Cr-Mo-V steel used in turbine rotors were investigated at 298, 773 and 873K in air atmosphere. The microstructure of 1%Cr-Mo-V steel and 12%Cr-Mo-V steel consisted of tempered upper bainite and tempered martensite, respectively. The experimental results show that the effect of the directionality of rotor on the fatigue life was rarely observed. The fatigue life of 1%Cr-Mo-V steel is significantly reduced at high temperature with decreasing plastic strain range, and the reason is considered to be the earlier crack initiation by oxidation damage. However, the effect of temperature on the fatigue life 12%Cr-Mo-V steel is known to be not existing throughout all the plastic strain range. This is suggested to be concerned with the increasing plastic ductility in tensile test with increasing test temperatures. (Author)

  9. Crack propagation during fatigue in cast duplex stainless steels: influence of the microstructure, of the aging and of the test temperature; Propagation de fissure par fatigue dans les aciers austeno-ferritiques moules: influence de la microstructure, du vieillissement et de la temperature d'essai

    Energy Technology Data Exchange (ETDEWEB)

    Calonne, V

    2001-07-15

    Duplex stainless steels are used as cast components in nuclear power plants. At the service temperature of about 320 C, the ferrite phase is thermally aged and embrittled. This induces a significant decrease in fracture properties of these materials. The aim of this work consists in studying Fatigue Crack Growth Rates (FCGR) and Fatigue Crack Growth Mechanisms (FCGM) as a function of thermal ageing and test temperature (20 C/320 C). Two cast duplex stainless steels (30% ferrite) are tested. In order to better understand the influence of the crystallographic orientation of the phases on the FCGM, the solidification structure of the material is studied by Electron Back-Scatter Diffraction (EBSD) and by Unidirectional Solidification Quenching. Fatigue crack growth tests are also performed in equiaxed and basaltic structures. Microstructure, fatigue crack growth mechanical properties and mechanisms are thus studied in relation to each other. In the studied range of delta K, the crack propagates without any preferential path by successive ruptures of phase laths. The macroscopic crack propagation plane, as determined by EBSD, depends on the crystallographic orientation of the ferrite grain. So, according to the solidification structure, secondary cracks can appear, which in turn influences the FCGR. Fatigue crack closure, which has to be determined to estimate the intrinsic FCGR, decreases with increasing ageing. This can be explained by a decrease in the kinematic cyclic hardening. The Paris exponent as determined from intrinsic FCGR increases with ageing. Intrinsic FCGR can then be separated in two ranges: one with lower FCGR in aged materials than in un-aged and one with the reversed tendency. (author)

  10. Mechanical and Microstructural Characterization of an Aluminum Bearing Trip Steel

    Science.gov (United States)

    Monsalve, Alberto; Guzmán, Alexis; De Barbieri, Flavio; Artigas, Alfredo; Carvajal, Linton; Bustos, Oscar; Garza-Montes-de Oca, Nelson F.; Colás, Rafael

    2016-03-01

    The mechanical properties and microstructural characteristics of a steel able to sustain the TRIP-effect were studied. The material was prepared by taking in mind the partial substitution of silicon by aluminum following a processing route that included hot forging, hot and cold rolling, intercritical annealing, and a final bainitic isothermal treatment. The mechanical properties that were obtained resulted to be above those of commercial a 780 TRIP steel. The TRIP phenomenon was confirmed by the change in retained austenite before and after deforming the steel; X-ray diffraction was used to evaluate the volume content of retained austenite. Formability of the steel under study can be rationalized in terms of the texture developed in the material.

  11. Mechanical and Microstructural Characterization of an Aluminum Bearing Trip Steel

    Science.gov (United States)

    Monsalve, Alberto; Guzmán, Alexis; De Barbieri, Flavio; Artigas, Alfredo; Carvajal, Linton; Bustos, Oscar; Garza-Montes-de Oca, Nelson F.; Colás, Rafael

    2016-06-01

    The mechanical properties and microstructural characteristics of a steel able to sustain the TRIP-effect were studied. The material was prepared by taking in mind the partial substitution of silicon by aluminum following a processing route that included hot forging, hot and cold rolling, intercritical annealing, and a final bainitic isothermal treatment. The mechanical properties that were obtained resulted to be above those of commercial a 780 TRIP steel. The TRIP phenomenon was confirmed by the change in retained austenite before and after deforming the steel; X-ray diffraction was used to evaluate the volume content of retained austenite. Formability of the steel under study can be rationalized in terms of the texture developed in the material.

  12. Thin slab processing of acicular ferrite steels with high toughness

    Energy Technology Data Exchange (ETDEWEB)

    Reip, Carl-Peter; Hennig, Wolfgang; Hagmann, Rolf [SMS Demag Aktiengesellschaft, Duesseldorf (Germany); Sabrudin, Bin Mohamad Suren; Susanta, Ghosh; Weng Lan Lee [Megasteel Sdn Bhd, Banting (Malaysia)

    2005-07-01

    Near-net-shape casting processes today represent an important option in steelmaking. High productivity and low production cost as well as the variety of steel grades that can be produced plus an excellent product quality are key factors for the acceptance of such processes in markets all over the world. Today's research focuses on the production of pipe steel with special requirements in terms of toughness at low temperatures. The subject article describes the production of hot strip made from acicular ferritic / bainitic steel grades using the CSP thin-slab technology. In addition, the resulting strength and toughness levels as a function of the alloying concepts are discussed. Optimal control of the CSP process allows the production of higher-strength hot-rolled steel grades with a fine-grain acicular-ferritic/bainitic microstructure. Hot strip produced in this way is characterized by a high toughness at low temperatures. In a drop weight tear test, transition temperatures of up to -50 deg C can be achieved with a shear-fracture share of 85%. (author)

  13. Effect of heat treatment and irradiation temperature on impact behavior of irradiated reduced-activation ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, R.L.; Alexander, D.J. [Oak Ridge National Lab., TN (United States)

    1998-03-01

    Charpy tests were conducted on eight normalized-and-tempered reduced-activation ferritic steels irradiated in two different normalized conditions. Irradiation was conducted in the Fast Flux Test Facility at 393 C to {approx}14 dpa on steels with 2.25, 5, 9, and 12% Cr (0.1% C) with varying amounts of W, V, and Ta. The different normalization treatments involved changing the cooling rate after austenitization. The faster cooling rate produced 100% bainite in the 2.25 Cr steels, compared to duplex structures of bainite and polygonal ferrite for the slower cooling rate. For both cooling rates, martensite formed in the 5 and 9% Cr steels, and martensite with {approx}25% {delta}-ferrite formed in the 12% Cr steel. Irradiation caused an increase in the ductile-brittle transition temperature (DBTT) and a decrease in the upper-shelf energy. The difference in microstructure in the low-chromium steels due to the different heat treatments had little effect on properties. For the high-chromium martensitic steels, only the 5 Cr steel was affected by heat treatment. When the results at 393 C were compared with previous results at 365 C, all but a 5 Cr and a 9 Cr steel showed the expected decrease in the shift in DBTT with increasing temperature.

  14. Effect of Al and N on the toughness of heavy section steel plates

    International Nuclear Information System (INIS)

    The effect of Al and N on the notch toughness and tensile strength of heavy section pressure vessel steel plates is investigated. Notch toughness of steel A533B (Mn-Mo-Ni), which has mixed microstructure of ferrite and bainite, is drastically changed by the ratio of sol.N/sol.Al. With metallurgical observations, it is revealed that AlN morphology is influenced by the ratio of sol.N/sol.Al through the level of solute Al(CAl). At the heat treatment of heavy section steel plate, AlN shows OSTWALD ripening and its speed depends upon CAl. When Al is added (Al ≥ 0.010%) in steel and sol.N/sol.Al ≤ 0.5, CAl remains low. This prevents AlN ripening, and brings fine austenite grain size and high toughness. On the other hand, when sol.N/sol.Al Al becomes high and this gives poor toughness through coarse AlN precipitates and coarse austenite grain. Therefore, controll of sol.N/sol.Al over 0.5 is favorable to keep high toughness in A533B steel. In steel A387-22 (Cr-Mo) which has full bainitic microstructure, too fine austenite grain brings about poor hardenability, and polygonal ferrite, which brings about both poor strength and tughness, appears in microstructure. Then sol.N/sol.Al < 0.5 is better to give high hardenability in steel A387-22. (author)

  15. Structure and Properties of Thermomechanically-processedHSLA Steels for Naval Applications

    Directory of Open Access Journals (Sweden)

    A. Ghosh

    2007-07-01

    Full Text Available Four high-strength low-alloy (HSLA steels with varying chemical compositions were forgedin two different temperature ranges followed by cooling in various media. Microstructures andmechanical properties of the steels were evaluated. The microstructures obtained in water–quenchedlow-carbon HSLA steels were lath martensite packet within the pancaked grains. On air or sandcooling predominantly bainitic ferrite or granular bainite structure forms. The strength propertiesof these steels decreased with decrease in cooling rate and is accompanied by an increase inelongation and impact toughness values. The ductile-to-brittle transition temperature of HSLA-100grade steel was found to be – 40 oC. The impact fracture surface of air cooled HSLA-100 steel showedductile failure with formation of dimples at 20 oC and at – 20 oC. The fracture mode changed to brittlefailure with formation of cleavage and river pattern at – 40 oC and at – 60 oC. The microstructuresof the ultra-low carbon HSLA steel show lath ferrite or granular ferrite in water-quenched condition.With slower cooling rate, the volume fraction of lath ferrite decreased with an increase in formationof polygonal ferrite. The maximum strength value obtained in air-cooled condition is achieved dueto precipitation of fine microalloying carbides and carbonitrides. Slower cooling rate increases thevolume fraction of polygonal ferrite which increases the toughness value.

  16. Metal magnetic memory signals from surface of low-carbon steel and low-carbon alloyed steel

    Institute of Scientific and Technical Information of China (English)

    DONG Li-hong; XU Bin-shi; DONG Shi-yun; YE Ming-hui; CHEN Qun-zhi; WANG Dan; YIN Da-wei

    2007-01-01

    In order to investigate the regularity of metal magnetic signals of ferromagnetic materials under the effect of applied load, the static tensile test of Q235 steel and 18CrNiWA steel plate specimens were conducted and metal magnetic memory signals of specimens were measured during the test process.The influencing factors of metal magnetic memory signals and the relationship between axial appliedload and signals were analyzed. The fracture and microstructure of the specimens were observed.The results show that the magnetic signals corresponding to the measured points change linearly approximately with increasing axial load.The microstructure of Q235 steel is ferrite and perlite, whereas that of l8CrNiWA steel is bainite and low-carbon martensite.The fracture of these two kinds of specimens is ductile rupture;carbon content of specimen materials and dislocation glide give much contribution to the characterisffcs of magnetic curves.

  17. Neutron irradiation effects on the microstructural dependence of mechanical properties of SA 508 Cl. 3 RPV steels

    International Nuclear Information System (INIS)

    Differences in the neutron-induced mechanical property change for four kinds of reactor pressure vessel (RPV) steels of different manufacturing process were investigated based on the differences in the unirradiated microstructure. Microvickers hardness, indentation, and miniature tensile specimen tests were conducted for mechanical property measurement and optical microscope (OM) and transmission electron microscope(TEM) were performed for microstructural characterization. Specimens were irradiated to a neutron fluence of 2.7 x 1019n/cm2 (E≥ 1 MeV) at 288 deg C. Investigation on the unirradiated microstructures showed largely the same microstructure in that tempered acicular bainite and ferrite with bainitic phase are prevailing. Noticiable differences were observed in the grain size and distribution of cementite, and bainitic lath microstructures. No noticiable changes were observed in the optical and thin film TEM microstructures after irradiation. Apparent differences, however, were observed in the results of mechanical testing after irradiation. Results of tensile testing and hardness measurement show that the present steel refined by vacuum carbon deoxidation(VCD) method exhibits exceptionally high radiation hardening behavior among the four kinds of steel of similar chemical composition examined in the present study. This observation implies that the current irradiation embrittlement prediction method based only on the major alloying elements and fluence could yield nonconservative prediction for this steel. The present results strongly suggest that a new material-specific embrittlement prediction method that considers the differences in the unirradiated microstructural state should be developed and applied

  18. Friction stir processing on carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Tarasov, Sergei Yu., E-mail: tsy@ispms.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055, Russia and National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Melnikov, Alexander G., E-mail: melnikov-ag@tpu.ru [National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Rubtsov, Valery E., E-mail: rvy@ispms.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation)

    2014-11-14

    Friction stir processing of medium carbon steel samples has been carried out using a milling machine and tools made of cemented tungsten carbide. Samples have been machined from 40 and 40X steels. The tools have been made in the shape of 5×5×1.5 mm and 3×3×1.5 mm tetrahedrons. The microstructure of stirred zone has been obtained using the smaller tool and consists of fine recrystallized 2-3 μm grains, whereas the larger tool has produced the 'onion-like' structures comprising hard quenched 'white' 500-600 MPa layers with 300-350 MPa interlayers of bainite needles. The mean values of wear intensity obtained after measuring the wear scar width were 0.02 mm/m and 0.001 mm/m for non-processed and processed samples, respectively.

  19. Friction stir processing on carbon steel

    International Nuclear Information System (INIS)

    Friction stir processing of medium carbon steel samples has been carried out using a milling machine and tools made of cemented tungsten carbide. Samples have been machined from 40 and 40X steels. The tools have been made in the shape of 5×5×1.5 mm and 3×3×1.5 mm tetrahedrons. The microstructure of stirred zone has been obtained using the smaller tool and consists of fine recrystallized 2-3 μm grains, whereas the larger tool has produced the 'onion-like' structures comprising hard quenched 'white' 500-600 MPa layers with 300-350 MPa interlayers of bainite needles. The mean values of wear intensity obtained after measuring the wear scar width were 0.02 mm/m and 0.001 mm/m for non-processed and processed samples, respectively

  20. Development of a heat treatment method to form a duplex microstructure of lower bainite and martensite in AISI 4140 stee

    OpenAIRE

    Claesson, Erik

    2014-01-01

    Research on bainite and martensite structures has indicated that lower bainite needles have a refining effect on the lath martensitic structure. Lower bainte needles partitions prior austenite grains and will consequently have a refining effect on the subsequent formed lath martensite. Smaller austenite grains will result in smaller lath martensitic packets and blocks and will result in enhanced mechanical properties.   In order to create a variation of lower bainte structure in a matrix of m...

  1. Influence of Martensite Volume Fraction on Impact Properties of Triple Phase (TP) Steels

    Science.gov (United States)

    Zare, Ahmad; Ekrami, A.

    2013-03-01

    Ferrite-bainite-martensite triple phase (TP) microstructures with different volume fractions of martensite were obtained by changing heat treatment time during austempering at 300 °C. Room temperature impact properties of TP steels with different martensite volume fractions ( V M) were determined by means of Charpy impact testing. The effects of test temperature on impact properties were also investigated for two selected microstructures containing 0 (the DP steel) and 8.5 vol.% martensite. Test results showed reduction in toughness with increasing V M in TP steels. Fracture toughness values for the DP and TP steels with 8.5 vol.% martensite were obtained from correlation between fracture toughness and the Charpy impact energy. Fractography of Charpy specimens confirmed decrease in TP steels' toughness with increasing V M by considering and comparing radial marks and crack initiation regions at the fracture surfaces of the studied steels.

  2. A comparative study of multiple regression analysis and back propagation neural network approaches on plain carbon steel in submerged-arc welding

    Indian Academy of Sciences (India)

    ABHIJIT SARKAR; PRASENJIT DEY; R N RAI; SUBHAS CHANDRA SAHA

    2016-05-01

    Weld bead plays an important role in determining the quality of welding particularly in high heat input processes. This research paper presents the development of multiple regression analysis (MRA) and artificial neural network (ANN) models to predict weld bead geometry and HAZ width in submerged arcwelding process. Design of experiments is based on Taguchi’s L16 orthogonal array by varying wire feed rate,transverse speed and stick out to develop a multiple regression model, which has been checked for adequacy andsignificance. Also, ANN model was accomplished with the back propagation approach in MATLAB program to predict bead geometry and HAZ width. Finally, the results of two prediction models were compared and analyzed. It is found that the error related to the prediction of bead geometry and HAZ width is smaller in ANN than MRA.

  3. Morphological and chemical analysis of bainite in Cu-17Al-11Mn (at.%) alloys by using orthogonal FIB-SEM and double-EDS STEM.

    Science.gov (United States)

    Motomura, Shunichi; Hara, Toru; Omori, Toshihiro; Kainuma, Ryosuke; Nishida, Minoru

    2016-06-01

    In this study, new microscopy techniques were developed for understanding the mechanism for the bainitic transformation in a Cu-17Al-11Mn (at%) alloy. An orthogonally arranged focused ion beam and a scanning electron microscope were employed to observe three-dimensional (3D) morphology of the bainite phase, in addition to compositional analysis by using a scanning transmission electron microscope equipped with a double-detector energy-dispersive X-ray spectrometer system. The 3D morphology of these samples was observed at different aging times and aging temperatures; the results obtained indicated that with increasing aging time and/or aging temperature, the bainite phase at the initial stage of formation exhibits a plate-like shape, which changes to a lenticular form. A habit plane was uniquely determined as ∼{9 3 2} by the combination of 3D image reconstruction and an electron back-scattered diffraction technique. The compositional analysis revealed the spatial distribution of the compositional variation between the bainite and matrix phases in the initial stages of the transformation. In the bainite phase, the Cu concentration was higher, while the concentrations of Al and Mn were lower than those in the surrounding matrix, indicative of the diffusion of the constituent elements with the growth of the bainite phase. PMID:26884617

  4. Irradiation induced tensile property change of SA 508 Cl.3 reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Irradiation induced tensile property change of four kinds of reactor pressure vessel steels manufactured by different steel refining process was compared based on the differences in the unirradiated and irradiated microstructure. Microvickers hardness, indentation, and miniature tensile specimen tests were conducted for mechanical property measurement and optical microscope (OM) and transmission electron microscope (TEM) were used for microstructural characterization. Specimens were 2 irradiated to a neutron fluence of 2.7x1019n/cm2 (E ≥ 1 MeV) at 288 deg. C. Investigation on the unirradiated microstructures showed largely a same microstructure in that tempered acicular bainite and ferrite with bainitic phase prevailing in the unirradiated condition. Band-shaped segregations were also clearly observed except a kind of materials. A large difference in the unirradiated microstructure appeared in the grain size and carbide microstructure. Of carbide microstructures, noticeable differences were observed in the size and distribution of cementite, and bainitic lath microstructures. No noticeable changes were observed in the optical and thin film TEM microstructures after irradiation. Complicated microstructural. state of heat treated bainitic low alloy microstructure prevents easy quantification of microstructural changes due to irradiation. Apparent differences, however, were observed in the results of mechanical testing. Results of tensile testing and hardness measurement show that a steel refined by vacuum carbon deoxidation(VCD) method exhibits the highest radiation hardening behavior. Some of mechanical testing results on irradiated materials were possible to understand based on the initial microstructure, but further investigations using a wide array of sophisticated tools (for example, SANS, APFIM) are required to understand and characterize irradiation induced defects that are responsible for irradiation hardening behavior but are not revealed by conventional

  5. Irradiation induced tensile property change of SA 508 Cl. 3 reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Irradiation induced tensile property change of four kinds of reactor pressure vessel steels manufactured by different steel refining process was compared based on the differences in the miniature tensile specimen tests were conducted for mechanical property measurement and optical microscope (OM) and transmission electron microscope (TEM) were used for microstructural characterization. Specimens were irradiated to a neutron fluence of 2.7 x 1019 n/cm2 (E ≥ 1 MeV) at 288 deg C. Investigation on the unirradiated microstructures showed largely a same microstructure in that tempered acicular bainite and ferrite with bainitic phase prevailing in the unirradiated condition. Ban-shaped segregations were also clearly observed except a kind of materials. A large difference in the unirradiated microstructure appeared in the grain size and carbide microstructure. Of carbide microstructures, noticeable differences were observed in the size and distribution of cementite, and bainitic lath microstructures. No noticeable changes were observed in the optical and thin film TEM microstructures after irradiation. Complicated microstructural state of heat treated bainitic low alloy microstructure prevents easy quantification of microstructural changes due to irradiation. Apparent differences, however, were observed in the results of mechanical testing. Results of tensile testing and hardness measurement show that a steel refined by vacuum carbon deoxidation (VCD) method exhibits the highest radiation hardening behavior. Some of mechanical testing results on irradiated materials were possible to understand based on the initial microstructure, but further investigations using a wide array of sophisticated tools (for example, SANS, APFIM) are required to understand and characterize irradiation induced defects that are responsible for irradiation hardening behavior but are not revealed by conventional TEM. (author)

  6. Nanostructured/ultrafine multiphase steel with enhanced ductility obtained by mechanical alloying and spark plasma sintering of powders

    International Nuclear Information System (INIS)

    A nanostructured/ultrafine steel with a complex microstructure comprising bainitic ferrite, austenite and martensite was obtained by mechanical alloying and spark plasma sintering of powders. Transmission electron microscopy and X-ray diffraction analysis were employed to investigate the microstructural morphologies and the nature of bainitic ferrite and retained austenite formed during sintering process. The presence of a complex microstructure with elongated ferritic lamellae separated by thin layers of retained austenite was revealed. Some ferritic equiaxed grains are also present. The steel displays a large uniform plastic deformation, thanks to its work hardenability provided by the microstructural characteristics: the bimodal distribution of ferrite, the multiphase microstructure and the TRIP phenomenon provided by austenite.

  7. An ultra low carbon Cu bearing steel: influence of thermomechanical processing and aging heat treatment on structure and properties

    International Nuclear Information System (INIS)

    An ultra low carbon Cu bearing steel, micro alloyed with Nb was thermo-mechanically processed. Variation in microstructures and associated mechanical properties at different finish rolling temperatures was studied. Microstructures in hot rolled steels showed a mixture of acicular ferrite and bainitic ferrite with inter-lath or intra-lath precipitation of microalloying NbC/Nb(CN) precipitates. Second phase particles were observed, mostly at lath boundaries and were identified as retained austenite, twinned martensite islands or martensite austenite constituents. Variation in strength at different finish rolling temperatures was due to variation in volume fraction of bainitic ferrite and dislocation substructure in the matrix. Precipitation behaviour of Cu was studied by differential scanning calorimetry and transmission electron microscopy. At peak age hardening condition, coherent bcc Cu particles were formed and activation energy for this reaction was evaluated. At higher aging temperature, growth of fcc ε-Cu particles and recovery of structure occurred which decreased the strength value

  8. Microstructural developments in Fe-Cr-W low activation ferritic steels under dual beam charged particle irradiation

    International Nuclear Information System (INIS)

    Chromium-molybdenum ferritic steels have a better resistance to void swelling than austenitic steels and were considered for use as first wall structural materials in future fusion reactors. One of the major alloying elements, Mo, is deleterious for the reduction of radioactivity; reduced activation steels are under development, where Mo is replaced by W. In this work, four kinds of reduced activation steels were dual or single ion irradiated to 125 dpa. In the duel ion irradiated steels with a 7-12% Cr content, the dimensional stability of the martensite phase was superior to the other phases. The cavity microstructures of bainitic steels with 2.25% Cr content were affected by the He/dpa ratio (and by the He injection rate) even when they had a high damage level (up to 125 dpa.) Hitherto, the low activation steels developed by replacing Mo by W suggest excellent stability of microstructures and thus a high resistance to swelling. (orig.)

  9. Ferrite morphology and residual phases in continuously cooled low carbon steels

    International Nuclear Information System (INIS)

    Although much research has been conducted on the isothermal transformation products of medium to high carbon hardenable steels, relatively little has been reported for transformation of low carbon structural steels under continuous cooling conditions. The trend towards reduced carbon levels (less than about 0.1 wt% C) has been driven by demands for formability and weldability, challenging steel designers to maintain strength by microalloying and/or thermomechanical controlled processing. Although control of the ferritic products formed in low carbon steels after hot rolling, normalising and welding is essential in order to ensure adequate strength and toughness, understanding of the microstructures formed on continuous cooling is still limited. In addition, transformation mechanisms remain controversial because of polarisation of researchers into groups championing diffusional and displacive theories for the transformation of austenite over a wide range of cooling rates. The present review compares and draws together the main ferrite classification schemes, and discusses some critical issues on kinetics and mechanisms, in an attempt to rationalise the effects of cooling rate, prior austenite structure and composition on the resulting ferrite structure and its mechanical properties. It is concluded that with increasing cooling rate the ferritic product becomes finer, more plate-like, more dislocated, more carbon supersaturated, more likely to be formed by a displacive mechanism, harder and stronger. Other conclusions are that: (i) 'bainitic ferrite', which is a pervasive form of ferrite in continuously cooled low carbon steels, is different from the conventional upper and lower bainites observed in higher carbon steels, insofar as the co-product 'phase' is typically martensite-austenite islands rather than cementite; and (ii) low carbon bainite rather than martensite is the dominant product at typical fast cooling rates (<500K/s) associated with commercial

  10. Processing of a new high strength high toughness steel with duplex microstructure (Ferrite + Austenite)

    International Nuclear Information System (INIS)

    Highlights: ► This new steel has exceptional combination of high strength and fracture toughness. ► Austempering treatment resulted in a very fine scale bainitic ferrite microstructure. ► As the austempering temperature increases yield strength and toughness decreases. ► Maximum fracture toughness of 105 MPa √m is obtained after austempering at 371 °C. ► A relationship between fracture toughness and the parameter σy(XγCγ)1/2 was observed. - Abstract: In this investigation a new third generation advanced high strength steel (AHSS) has been developed. This steel was synthesized by austempering of a low carbon and low alloy steel with high silicon content. The influence of austempering temperature on the microstructure and the mechanical properties including the fracture toughness of this steel was also examined. Compact tension and cylindrical tensile specimens were prepared from a low carbon low alloy steel and were initially austenitized at 927 °C for 2 h and then austempered in the temperature range between 371 °C and 399 °C to produce different microstructures. The microstructures were characterized by X-ray diffraction, scanning electron microscopy and optical metallography. Test results show that the austempering heat treatment has resulted in a microstructure consisting of very fine scale bainitic ferrite and austenite. A combination of very high tensile strength of 1388 MPa and fracture toughness of 105 MPa √m was obtained after austempering at 371 °C

  11. On choice of tempered steels

    International Nuclear Information System (INIS)

    For the purpose of developing a graphical method for choosing structural steels, a change in the propagation work of a crack and in the critical temperature of brittleness of 40, 40Kh, 40KhN, and 40KhNM steels, was examined depending on the hardness after hardening and tempering. A diagram enabling to choose the grade of steel for making an article of known dimensions according to the preset values of its mechanical properties has been plotted. The developed selection scheme takes into account the hardenability of steels and the influence of the hardness after thermal treatment on the cold-shortness of steel

  12. Size Effects in Residual Stress Formation during Quenching of Cylinders Made of Hot-Work Tool Steel

    Directory of Open Access Journals (Sweden)

    Manuel Schemmel

    2015-01-01

    Full Text Available The present work investigates the residual stress formation and the evolution of phase fractions during the quenching process of cylindrical specimens of different sizes. The cylinders are made of hot-work tool steel grade X36CrMoV5-1. A phase transformation kinetic model in combination with a thermomechanical model is used to describe the quenching process. Two phase transformations are considered for developing a modelling scheme: the austenite-to-martensite transformation and the austenite-to-bainite transformation. The focus lies on the complex austenite-to-bainite transformation which can be observed at low cooling rates. For an appropriate description of the phase transformation behaviour nucleation and growth of bainite are taken into account. The thermomechanical model contains thermophysical data and flow curves for each phase. Transformation induced plasticity (TRIP is modelled by considering phase dependent Greenwood-Johnson parameters for martensite and bainite, respectively. The influence of component size on residual stress formation is investigated by the finite element package Abaqus. Finally, for one cylinder size the simulation results are validated by X-ray stress measurements.

  13. A micro-mechanical analysis and an experimental characterisation of the behavior and the damaging processes of a 16MND5 pressure vessel steel at low temperature

    International Nuclear Information System (INIS)

    As part of an important experimental and numerical research program launched by Electricite De France on the 16MND5 pressure vessel steel, sequenced and in-situ tensile tests are realized at low temperatures [-196 C;-60 C]. They enable to associate the observation of specimens, the complete cartography of which has been made with a scanning electron microscope (damaging processes, initiation and propagation of microcracks), with the stress states determined by X-ray diffraction, in order to establish relevant criteria. All these measurements enable to supply a two-scale polycrystalline modeling of behavior and damage (Mori-Tanaka/self-consistent) which is developed concurrently with the experimental characterization. This model proves to be a very efficient one, since it correctly reproduces the influence of temperature experimentally defined: the stress state in ferrite remains less important than in bainite (the difference never exceeds 150 MPa), whereas it is much higher in cementite. The heterogeneity of strains and stresses for each crystallographic orientation is well rendered; so is cleavage fracture normal to the {100} planes in ferrite (planes identified by electron back scattered diffraction during an in-situ tensile test at -150 C), which occurs sooner when temperature decreases, for a constant stress of about 700 MPa in this phase. (author)

  14. Friction stir processing on high carbon steel U12

    Energy Technology Data Exchange (ETDEWEB)

    Tarasov, S. Yu., E-mail: tsy@ispms.ru; Rubtsov, V. E., E-mail: rvy@ispms.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Melnikov, A. G., E-mail: melnikov-ag@tpu.ru [National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation)

    2015-10-27

    Friction stir processing (FSP) of high carbon steel (U12) samples has been carried out using a milling machine and tools made of cemented tungsten carbide. The FSP tool has been made in the shape of 5×5×1.5 mm. The microstructural characterization of obtained stir zone and heat affected zone has been carried out. Microhardness at the level of 700 MPa has been obtained in the stir zone with microstructure consisting of large grains and cementitte network. This high-level of microhardness is explained by bainitic reaction developing from decarburization of austenitic grains during cementite network formation.

  15. Friction stir processing on high carbon steel U12

    International Nuclear Information System (INIS)

    Friction stir processing (FSP) of high carbon steel (U12) samples has been carried out using a milling machine and tools made of cemented tungsten carbide. The FSP tool has been made in the shape of 5×5×1.5 mm. The microstructural characterization of obtained stir zone and heat affected zone has been carried out. Microhardness at the level of 700 MPa has been obtained in the stir zone with microstructure consisting of large grains and cementitte network. This high-level of microhardness is explained by bainitic reaction developing from decarburization of austenitic grains during cementite network formation

  16. Development and formability analysis of TRIP seamless steel tube

    Institute of Scientific and Technical Information of China (English)

    Zhang Zicheng; Zhu Fuxian

    2014-01-01

    In this paper,the production technology of transformation induced plasticity (TRIP) steel was first introduced into the steel tube manufacture field to produce the steel tubes with high strength and plasticity. The TRIP seamless steel tubes with the microstructure of ferrite,bainite,retained austenite and a little martensite were successfully fabricated using a cold-drawn steel tube with two-stage heat treatment technique and continu-ous heat treatment process,respectively. The ring tensile test and cold bend test were carried out to study the formability of the newly developed TRIP seamless steel tube. The results showed that the TRIP seamless steel tubes have a good cold formability,and they are available to be used in the tube hydroforming process. In ad-dition,the equipment of continuous heat treatment developed in the current study can be used to produce TRIP steel tube,and it may serve as an important reference for the industrial production of TRIP steel tube.

  17. Structural investigations of local non-homogeneities in thermally treated nitrided layers in carbon steels

    International Nuclear Information System (INIS)

    In order to improve steel performance in some applications the nitrided layers in steel may be subjected to additional heat treatment. One of the forms of such treatment is the incorporate quench hardening from the diphase α-γ area on the Fe-C diagram. This treatment results in secondary diffusion of nitrogen into the base metal, decompose of the surface nitride layer and an increase in the thickness of the hardened layer. An incomplete α-γ transition creates zones of varied bainite-martensite structures with varying nitrogen concentration and hardness. (author)

  18. FATIGUE BEHAVIOR OF HOT-ROLLED STEEL INTENDED FOR COLD FORMING

    Directory of Open Access Journals (Sweden)

    Gejza Rosenberg

    2011-07-01

    Full Text Available In the work, there are presented measured tension and fatigue properties of eight low-carbon steels moulded in form of 20 kg ingots that were processed by controlled regime of rolling /cooling and then exposed to simulated effect of two coiling temperatures. The experimental results presented in the work show, that steels with ferrite-martensite or ferrite-bainitic microstructure have in comparison to ferrite-pearlitic or ferrite-carbidic microstructure better strength-plastic properties, but worse resistance to cyclic loading.

  19. Strengthening mechanisms in a pipeline microalloyed steel with a complex microstructure

    International Nuclear Information System (INIS)

    The microstructure of a commercial pipeline microalloyed steel has been characterized by optical and electron microscopy considering the particularity of the thermomechanical processing without accelerated cooling. The microstructure was a mixture of polygonal ferrite (PF) and granular bainite (GB). The well-known structure–property relationship for PF microalloyed steels is used in structures where high misorientation boundaries in the acicular ferrite are significant. In order to quantify the contributions of the precipitation strengthening as well as the dislocation hardening, representative carbonitride particles and dislocation densities were determined in sample areas by transmission electron microscopy

  20. Strengthening mechanisms in a pipeline microalloyed steel with a complex microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Morales, E.V., E-mail: evalen@uclv.edu.cu [Department of Physics, Central University of Las Villas, CP 54830 Santa Clara, VC (Cuba); Materials Engineering Department/DEMa, Pontifical Catholic University of Rio de Janeiro/PUC-Rio, Rua Marques de S. Vicente 225, Gávea, Rio de Janeiro, RJ CEP 222541-900 (Brazil); Silva, R.A.; Bott, I.S.; Paciornik, S. [Materials Engineering Department/DEMa, Pontifical Catholic University of Rio de Janeiro/PUC-Rio, Rua Marques de S. Vicente 225, Gávea, Rio de Janeiro, RJ CEP 222541-900 (Brazil)

    2013-11-15

    The microstructure of a commercial pipeline microalloyed steel has been characterized by optical and electron microscopy considering the particularity of the thermomechanical processing without accelerated cooling. The microstructure was a mixture of polygonal ferrite (PF) and granular bainite (GB). The well-known structure–property relationship for PF microalloyed steels is used in structures where high misorientation boundaries in the acicular ferrite are significant. In order to quantify the contributions of the precipitation strengthening as well as the dislocation hardening, representative carbonitride particles and dislocation densities were determined in sample areas by transmission electron microscopy.

  1. Transformation Behavior and Microstructure in a 40Cr2Ni2MoV Cast Steel

    Institute of Scientific and Technical Information of China (English)

    Cheng Liu; Zhenbo Zhao; Sanjiwan. D. Bhole1; Derek O. Northwood

    2004-01-01

    The transformation behavior of a 40Cr2Ni2MoV cast steel manufactured by electroslag remelting (ESR) has been investigated. Compared to a forged steel, the incubation periods for both the pearlite and bainite transformations are shorter, but the transformation times are longer. The austenite is easier to transform into martensite. Optical microscopy and TEM indicated that there were variations in microstructure during the super-cooled austenite transformation. This is attributed to an inhomogeneous austenite, resulting from the segregation of elements during the ESR solidification.

  2. The Effect of Nb on the Continuous Cooling Transformation Curves of Ultra-Thin Strip CASTRIP© Steels

    Directory of Open Access Journals (Sweden)

    Kristin R. Carpenter

    2015-10-01

    Full Text Available The effect of Nb on the hardenability of ultra-thin cast strip (UCS steels produced via the unique regime of rapid solidification, large austenite grain size, and inclusion engineering of the CASTRIP© process was investigated. Continuous cooling transformation (CCT diagrams were constructed for 0, 0.014, 0.024, 0.04, 0.06 and 0.08 wt% Nb containing UCS steels. Phase nomenclature for the identification of lower transformation product in low carbon steels was reviewed. Even a small addition of 0.014 wt% Nb showed a potent effect on hardenability, shifting the ferrite C-curve to the right and expanding the bainitic ferrite and acicular ferrite phase fields. Higher Nb additions increased hardenability further, suppressed the formation of ferrite to even lower cooling rates, progressively lowered the transformation start and finish temperatures and promoted the transformation of bainite instead of acicular ferrite. The latter was due to Nb suppressing the formation of allotriomorphic ferrite and allowing bainite to nucleate at prior austenite grain boundaries, a lower energy site than that for the intragranular nucleation of acicular ferrite at inclusions. Strength and hardness increased with increasing Nb additions, largely due to microstructural strengthening and solid solution hardening, but not from precipitation hardening.

  3. Effects of Ultra Fast Cooling on Microstructure and Mechanical Properties of Pipeline Steels

    Science.gov (United States)

    Tian, Yong; Li, Qun; Wang, Zhao-dong; Wang, Guo-dong

    2015-09-01

    X70 (steel A) and X80 (steel B) pipeline steels were fabricated by ultra fast cooling (UFC). UFC processing improves not only ultimate tensile strength (UTS), yield strength (YS), yield ratio (YS/UTS), and total elongation of both steels, but also their Charpy absorbed energy ( A K) as well. The microstructures of both steels were all composed of quasi polygonal, acicular ferrite (AF), and granular bainite. MA islands (the mixtures of brittle martensite and residual austenite) are more finely dispersed in steel B, and the amount of AF in steel B is much more than that in steel A. The strength of steel B is higher than that of steel A. This is mainly attributed to the effect of the ferrite grain refinement which is resulted from UFC processing. The finely dispersed MA islands not only provide dispersion strengthening, but also reduce loss of impact properties to pipeline steels. UFC produces low-temperature transformation microstructures containing larger amounts of AFs. The presence of AF is a crucial factor in achieving desired mechanical properties for both steels. It is suggested that the toughness of the experimental steel increases with increasing the amount of AF.

  4. Pearlitic and martensitic transformations under tensile stress in steels

    International Nuclear Information System (INIS)

    This research thesis deals with the study of stress interactions on phase transformations: many studies showed that alloy transformation kinetics is affected (accelerated or slowed down) by a stress or a strain, and that the material displays a much higher plasticity during phase transformation under mechanical loading (the so-called transformation plasticity). Based on a bibliographical study, the author first reports the effect of plastic strains and stresses on the three types of phase transformation met in steels: ferritic or pearlitic, bainitic, and martensitic. She reports the study of kinetic parameters of transformation and transformation plasticity by either obtaining these parameters directly, or by means of directly proportional measurement which is not influenced by the applied stress or strain. The pearlitic transformation is more particularly studied on eutectoid steel. The martensitic transformation is studied on two synthetic Fe-Ni-C alloys, and on 60 NCD steel

  5. Fracture toughness prediction of steel type 10MnNi2Mo

    International Nuclear Information System (INIS)

    A model is presented of the prediction of fracture toughness of the 10MnNi2Mo steel used for pressure components of the primary circuit of nuclear power plants with a mixed bainitic-ferritic structure. Next to the initiation of fission microcracks in carbides the initiation was also considered of microcracks in the ferrite using the Cottrel model of dislocation coalescence. The model led to very good agreement between predicted and experimental values of the stress intensity factor for the values of the parameter of shape of the plastic zone near the face of the crack and the parameter of the participation of carbide particles excluded in the bainite, and the participation of ferrite grains. (author)

  6. Effect of welding parameters on the mechanical properties of GMA-welded HY-80 steels

    International Nuclear Information System (INIS)

    In this publication, investigations of HY-80 steels joined by gas metal arc welding by using different welding parameters are described. Different samples obtained from the welded joints were subjected to mechanical testing by means of tensile, hardness and impact toughness tests. The tensile test results showed that the strength of weld metal and heat affected zone were higher than of base metal. Similar Charpy impact toughness test results were obtained for weld metal and heat affected zone. Weld metal hardness was almost similar to the base metal hardness, nevertheless, the heat affected zone indicated higher values. The base metal has ferritic-perlitic structure with fine grains. Martensite needles and bainite are seen in the heat affected zone. Weld metal has martensite needles, partial bainite and residual austenite.

  7. High performance low cost steels with ultrafine grained and multi-phased microstructure

    Institute of Scientific and Technical Information of China (English)

    LIU XiangHua; LAN HuiFang; DU LinXiu; LIU WeiJie

    2009-01-01

    I;trafome gltrafine grained ferrite was obtained through tempering cold rolled martensite with an average grain size of 200--400 nm in a low carbon and a microalloyed steel.Thermal and mechanical stability of the two steels was studied.Due to the pinning effect of microalloyed precipitates on the movement of dislocations and grain boundaries,the recrystallization and grain growth rate were retarded,and the thermal stability of ultrafine grained microstructure was improved.The ultrafine grained ferritic steel was strengthened,but its strain hardening rate was reduced.It seems that the tiny carbide precipitates have no significant effect on work hardening rate.The ultrafine grained ferrite+martensite dual phase microstructure was obtained in the microalloyed steel through intercritically annealing cold rolled martensite.The resulting multiphase microstructure has a tensile strength higher than 1.0 GPa with a yield ratio lower than 0.7.Another type of multiphase microstructure with nanoscaled lath bainite+ retained austenite was obtained through an isothermal heat treatment in low temperature bainite transformation region in high carbon steel.The tensile strength was as high as 1.64 GPa with a yield ratio of 0.84.

  8. High performance low cost steels with ultrafine grained and multi-phased microstructure

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Ultrafine grained ferrite was obtained through tempering cold rolled martensite with an average grain size of 200―400 nm in a low carbon and a microalloyed steel. Thermal and mechanical stability of the two steels was studied. Due to the pinning effect of microalloyed precipitates on the movement of dislocations and grain boundaries, the recrystallization and grain growth rate were retarded, and the thermal stability of ultrafine grained microstructure was improved. The ultrafine grained ferritic steel was strengthened, but its strain hardening rate was reduced. It seems that the tiny carbide precipitates have no significant effect on work hardening rate. The ultrafine grained ferrite+martensite dual phase microstructure was obtained in the microalloyed steel through intercritically annealing cold rolled martensite. The resulting multiphase microstructure has a tensile strength higher than 1.0 GPa with a yield ratio lower than 0.7. Another type of multiphase microstructure with nanoscaled lath bainite+ retained austenite was obtained through an isothermal heat treatment in low temperature bainite transformation region in high carbon steel. The tensile strength was as high as 1.64 GPa with a yield ratio of 0.84.

  9. Microstructure–hardness relationship in the fusion zone of TRIP steel welds

    International Nuclear Information System (INIS)

    Highlights: ► Fusion zone of TRIP steels in resistance spot welding was analyzed. ► Transmission electron microscopy (TEM) was used for characterizing microstructure. ► Fusion zone microstructure was found to depend on the chemistry. ► Hardness values were in accordance with the microstructural constituents in the fusion zone. - Abstract: Fusion zone of three TRIP steels, categorized as AT: C–Mn–Al, AST: C–Mn–Al–Si and ST: C–Mn–Si, in resistance spot welding was characterized with respect to microstructure, phase analysis, and hardness. The fusion zone microstructure was found to depend on chemistry: (i) AT steel contained ferrite phase surrounded by bainite and martensite regions, (ii) AST steel showed a bainite structures along with martensite laths and interlath retained austenite, whereas (iii) ST steel constituted single phase martensite laths with interlath austenite. X-ray diffraction study indicated that retained austenite fraction in the fusion zone increases with increase in Si content in it. The AST fusion zone hardness lies between those of the AT and ST steels; the ST fusion zone hardness was higher than that of AT steel because of the single phase martensite microstructure. Comparison of fusion zone microstructure and hardness to earlier study on laser welding of the TRIP steels with similar chemistries revealed that higher cooling rate in resistance spot welding led to higher fusion zone hardness compared to laser welding; which was attributed either to decrease in softer ferrite phase (AT steel) in the microstructure or refinement of martensite laths (ST steel).

  10. Influence of original microstructure on the transformation behavior and mechanical properties of ultra-high-strength TRIP-aided steel

    Science.gov (United States)

    Yin, Hong-xiang; Zhao, Ai-min; Zhao, Zheng-zhi; Li, Xiao; Li, Shuang-jiao; Hu, Han-jiang; Xia, Wei-guang

    2015-03-01

    The transformation behavior and tensile properties of an ultra-high-strength transformation-induced plasticity (TRIP) steel (0.2C-2.0Si-1.8Mn) were investigated by different heat treatments for automobile applications. The results show that F-TRIP steel, a traditional TRIP steel containing as-cold-rolled ferrite and pearlite as the original microstructure, consists of equiaxed grains of intercritical ferrite surrounded by discrete particles of M/RA and B. In contrast, M-TRIP steel, a modified TRIP-aided steel with martensite as the original microstructure, containing full martensite as the original microstructure is comprised of lath-shaped grains of ferrite separated by lath-shaped martensite/retained austenite and bainite. Most of the austenite in F-TRIP steel is granular, while the austenite in M-TRIP steel is lath-shaped. The volume fraction of the retained austenite as well as its carbon content is lower in F-TRIP steel than in M-TRIP steel, and austenite grains in M-TRIP steel are much finer than those in F-TRIP steel. Therefore, M-TRIP steel was concluded to have a higher austenite stability, resulting in a lower transformation rate and consequently contributing to a higher elongation compared to F-TRIP steel. Work hardening behavior is also discussed for both types of steel.

  11. Effect of Cooling Method on Microstructure and Mechanical Properties of Hot-Rolled C-Si-Mn TRIP Steel%Effect of Cooling Method on Microstructure and Mechanical Properties of Hot-Rolled C-Si-Mn TRIP Steel

    Institute of Scientific and Technical Information of China (English)

    LIU Ji-yuan; ZHANG Zi-cheng; ZHU Fu-xian; LI Yan-mei; Manabe Ken-ichi

    2012-01-01

    The controlled cooling technology following hot rolling process is a vital factor that affects the final micro- structure and mechanical properties of the hot-rolled transformation induced plasticity (TRIP) steels. In the present study, low alloy C-Si-Mn TRIP steel was successfully fabricated by hot rolling process with a 4450 hot roiling mill. To maximize the volume fraction and stability of retained austenite of the steel, two different cooling methods (aircooling and ultra-fast cooling "AC-UFC" and ultrmfast cooling, air cooling and ultra-fast cooling "UFC-AC-UFC") were conducted. The effects of the cooling method on the microstructure of hot-rolled TRIP steel were investigated via optical microscope, transmission electron microscope and conversion electron Mossbauer spectroscope. The mechanical properties of the steel were also evaluated by conventional tensile test. The results indicated that ferrite and bainite in the microstructure were refined with the cooling method of UFC-AC-UFC. The morphology of retained austenite was also changed from small islands distributing in bainite district (obtained with AC-UFC) to granular shape locating at the triple junction of the ferrite grain boundaries (obtained with UFC-AC-UFC). As a result, the TRIP steel with a content of retained austenite of 11. 52%, total elongation of 32% and product of tensile strength and total elongation of 27 552 MPa·% was obtained.

  12. CORROSION RESISTANCE OF PEARLITIC AND BAINITIC CAST IRON IN A SYNTHETIC SOLUTION OF CONDENSED GAS FROM COMBUSTION

    Directory of Open Access Journals (Sweden)

    Sandra Matos Cordeiro Costa

    2015-03-01

    Full Text Available The corrosion of engine components of the combustion chamber is usually related to the formation of acids such as sulfuric and nitric. These acids are generated by the condensation of combustion gases that usually occur in vehicle exhaust systems. However, with the development of new technologies to reduce emissions, condensation is also being promoted in vehicle combustion chambers. This fact is associated with high exhaust gas recirculation rates, known as EGR (English term for Exhaust Gas Recirculation. Consequently, corrosion problems in the engine components are increasing, especially in cylinder liners alloy manufactured using cast iron. In this study, the corrosion resistance of two cast iron alloys, one with a pearlitic microstructure and the other with a bainite microstructure in a solution simulating the composition of the condensate obtained from the combustion gases. It was found that the microstructure of the cast iron is an important factor affecting the corrosion behavior. The results showed that none of the two materials investigated is resistant to corrosion in the test medium, and the small difference observed between the behavior of the two cast iron was related to its microstructure, which are dependent on their chemical compositions. The cast iron with a pearlitic microstructure showed less formation of corrosion products than the bainitic cast iron. This result is related to the presence of steadite phase, highly stable and resistant to corrosion in pearlitic microstructure. This phase (steadite anchors the corrosion products formed on the surface and act as a partial barrier slowing the progress of the corrosion process, that was more pronounced in the bainitic cast iron.

  13. Ductile-to-brittle transition in a low alloy steel

    International Nuclear Information System (INIS)

    The mechanical properties of pressure vessel steel (and above all its resistance to brittle fracture) are a decisive factor in the complex safety assessment of nuclear power plants. The monitoring of neutron induced embrittlement is provided using Charpy impact tests on standard V-notch specimens due to their small size. Material's ductile-to-brittle transition temperature (DBTT) can be easily characterised using this test. However, Charpy impact energy cannot be immediately used for safety assessment, since fracture toughness is required. Some empirical formulas have been developed, but no direct relationship was still found. When the specimens are tested in the ductile-to-brittle transition region, cleavage crack initiation is preceded by ductile crack growth giving a large scatter to the values of fracture toughness and/or Charpy impact energy. Even if the cleavage initiation and propagation in steels containing isolated spheroidic carbides are qualitatively well understood, no one from existing models can explain the sharp upturn in ductile-to-brittle transition region. In the present work, French tempered bainitic steel 16MND5 (considered as equivalent to the American standard A508 Cl.3) is studied: The large fractographic analysis of CT and Charpy specimens broken in the DBTT range is undertaken to account for the evolution of cleavage fracture mechanisms. In addition to classical scanning electron microscopy, transmission electron microscopy and EBSD technique are used in order to study the propagation of cleavage crack. The classical fracture mechanics using KIc or Jc concepts can hardly describe the unstable brittle fracture in the DBTT range. Hence, the local approach, which aims to predict the fracture of any structural component using local criteria, providing that the mechanical fields in the structure are known, is used. The probability of cleavage fracture in the DBTT range is predicted using the Beremin model based on weakest link theory, e.g. 2

  14. Effects of Retained Austenite Volume Fraction, Morphology, and Carbon Content on Strength and Ductility of Nanostructured TRIP-assisted Steels

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Yongfeng; Qiu, LN; Sun, Xin; Zuo, Liang; Liaw, Peter K.; Raabe, Dierk

    2015-06-01

    With a suite of multi-modal and multi-scale characterization techniques, the present study unambiguously proves that a substantially-improved combination of ultrahigh strength and good ductility can be achieved by tailoring the volume fraction, morphology, and carbon content of the retained austenite (RA) in a transformation-induced-plasticity (TRIP) steel with the nominal chemical composition of 0.19C-0.30Si-1.76Mn-1.52Al (weight percent, wt.%). After intercritical annealing and bainitic holding, a combination ultimate tensile strength (UTS) of 1,100 MPa and true strain of 50% has been obtained, as a result of the ultrafine RA lamellae, which are alternately arranged in the bainitic ferrite around junction regions of ferrite grains. For reference, specimens with a blocky RA, prepared without the bainitic holding, yield a low ductility (35%) and a low UTS (800 MPa). The volume fraction, morphology, and carbon content of RA have been characterized using various techniques, including magnetic probing, scanning electron microscopy (SEM), electron-backscatter-diffraction (EBSD), and transmission electron microscopy (TEM). Interrupted tensile tests, mapped using EBSD in conjunction with the kernel average misorientation (KAM) analysis, reveal that the lamellar RA is the governingmicrostructure component responsible for the higher mechanical stability, compared to the blocky one. By coupling these various techniques, we quantitatively demonstrate that in addition to the RA volume fraction, its morphology and carbon content are equally important in optimizing the strength and ductility of TRIP-assisted steels.

  15. Effects of retained austenite volume fraction, morphology, and carbon content on strength and ductility of nanostructured TRIP-assisted steels

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Y.F., E-mail: shenyf@smm.neu.edu.cn [Key Laboratory for Anisotropy and Texture of Materials (MOE), Northeastern University, 3 Wenhua Road, Shenyang 110004 (China); Qiu, L.N. [Key Laboratory for Anisotropy and Texture of Materials (MOE), Northeastern University, 3 Wenhua Road, Shenyang 110004 (China); Sun, X. [Pacific Northwest National Laboratory, PO Box 999, Richland, WA 99352 (United States); Zuo, L. [Key Laboratory for Anisotropy and Texture of Materials (MOE), Northeastern University, 3 Wenhua Road, Shenyang 110004 (China); Liaw, P.K. [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States); Raabe, D. [Max-Planck-Institut fuer Eisenforschung, Max-Planck-Str. 1, 8, 40237 Düsseldorf (Germany)

    2015-06-11

    With a suite of multi-modal and multi-scale characterization techniques, the present study unambiguously proves that a substantially-improved combination of ultrahigh strength and good ductility can be achieved by tailoring the volume fraction, morphology, and carbon content of the retained austenite (RA) in a transformation-induced-plasticity (TRIP) steel with the nominal chemical composition of 0.19C–0.30Si–1.76Mn–1.52Al (weight percent, wt%). After intercritical annealing and bainitic holding, a combination of ultimate tensile strength (UTS) of 1100 MPa and true strain of 50% has been obtained, as a result of the ultrafine RA lamellae, which are alternately arranged in the bainitic ferrite around junction regions of ferrite grains. For reference, specimens with a blocky RA, prepared without the bainitic holding, yield a low ductility (35%) and a low UTS (800 MPa). The volume fraction, morphology, and carbon content of RA have been characterized using various techniques, including the magnetic probing, scanning electron microscopy (SEM), electron-backscatter-diffraction (EBSD), and transmission electron microscopy (TEM). Interrupted tensile tests, mapped using EBSD in conjunction with the kernel average misorientation (KAM) analysis, reveal that the lamellar RA is the governing microstructure component responsible for the higher mechanical stability, compared to the blocky one. By coupling these various techniques, we quantitatively demonstrate that in addition to the RA volume fraction, its morphology and carbon content are equally important in optimizing the strength and ductility of TRIP-assisted steels.

  16. Effects of retained austenite volume fraction, morphology, and carbon content on strength and ductility of nanostructured TRIP-assisted steels

    International Nuclear Information System (INIS)

    With a suite of multi-modal and multi-scale characterization techniques, the present study unambiguously proves that a substantially-improved combination of ultrahigh strength and good ductility can be achieved by tailoring the volume fraction, morphology, and carbon content of the retained austenite (RA) in a transformation-induced-plasticity (TRIP) steel with the nominal chemical composition of 0.19C–0.30Si–1.76Mn–1.52Al (weight percent, wt%). After intercritical annealing and bainitic holding, a combination of ultimate tensile strength (UTS) of 1100 MPa and true strain of 50% has been obtained, as a result of the ultrafine RA lamellae, which are alternately arranged in the bainitic ferrite around junction regions of ferrite grains. For reference, specimens with a blocky RA, prepared without the bainitic holding, yield a low ductility (35%) and a low UTS (800 MPa). The volume fraction, morphology, and carbon content of RA have been characterized using various techniques, including the magnetic probing, scanning electron microscopy (SEM), electron-backscatter-diffraction (EBSD), and transmission electron microscopy (TEM). Interrupted tensile tests, mapped using EBSD in conjunction with the kernel average misorientation (KAM) analysis, reveal that the lamellar RA is the governing microstructure component responsible for the higher mechanical stability, compared to the blocky one. By coupling these various techniques, we quantitatively demonstrate that in addition to the RA volume fraction, its morphology and carbon content are equally important in optimizing the strength and ductility of TRIP-assisted steels

  17. Atomic scale effects of alloying, partitioning, solute drag and austempering on the mechanical properties of high-carbon bainitic–austenitic TRIP steels

    International Nuclear Information System (INIS)

    Understanding alloying and thermal processing at an atomic scale is essential for the optimal design of high-carbon (0.71 wt.%) bainitic–austenitic transformation-induced plasticity (TRIP) steels. We investigate the influence of the austempering temperature, chemical composition (especially the Si:Al ratio) and partitioning on the nanostructure and mechanical behavior of these steels by atom probe tomography. The effects of the austempering temperature and of Si and Al on the compositional gradients across the phase boundaries between retained austenite and bainitic ferrite are studied. We observe that controlling these parameters (i.e. Si, Al content and austempering temperature) can be used to tune the stability of the retained austenite and hence the mechanical behavior of these steels. We also study the atomic scale redistribution of Mn and Si at the bainitic ferrite/austenite interface. The observations suggest that either para-equilibrium or local equilibrium-negligible partitioning conditions prevail depending on the Si:Al ratio during bainite transformation.

  18. Effect of microstructure on the impact toughness of high strength steels

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, I.

    2014-07-01

    One of the major challenges in the development of new steel grades is to get increasingly high strength combined with a low ductile brittle transition temperature and a high upper shelf energy. This requires the appropriate microstructural design. Toughness in steels is controlled by different microstructural constituents. Some of them, like inclusions, are intrinsic while others happening at different microstructural scales relate to processing conditions. A series of empirical equations express the transition temperature as a sum of contributions from substitutional solutes, free nitrogen, carbides, pearlite, grain size and eventually precipitation strengthening. Aimed at developing a methodology that could be applied to high strength steels, microstructures with a selected degree of complexity were produced at laboratory in a Nb-microalloyed steel. As a result a model has been developed that consistently predicts the Charpy curves for ferrite-pearlite, bainitic and quenched and tempered microstructures using as input data microstructural parameters. This model becomes a good tool for microstructural design. (Author)

  19. Effect of microstructure on the impact toughness of high strength steels

    International Nuclear Information System (INIS)

    One of the major challenges in the development of new steel grades is to get increasingly high strength combined with a low ductile brittle transition temperature and a high upper shelf energy. This requires the appropriate microstructural design. Toughness in steels is controlled by different microstructural constituents. Some of them, like inclusions, are intrinsic while others happening at different microstructural scales relate to processing conditions. A series of empirical equations express the transition temperature as a sum of contributions from substitutional solutes, free nitrogen, carbides, pearlite, grain size and eventually precipitation strengthening. Aimed at developing a methodology that could be applied to high strength steels, microstructures with a selected degree of complexity were produced at laboratory in a Nb-microalloyed steel. As a result a model has been developed that consistently predicts the Charpy curves for ferrite-pearlite, bainitic and quenched and tempered microstructures using as input data microstructural parameters. This model becomes a good tool for microstructural design. (Author)

  20. Dynamic CCT Diagram of Automobile Beam Steel With High Strength Produced by FTSR Technology

    Institute of Scientific and Technical Information of China (English)

    WANG Xin; KANG Yong-lin; YU Hao; CHEN Li-bin; KONG Qing-fu

    2008-01-01

    The dynamic continuous cooling transformation (CCT) diagram and phase transformation rules of 510 MPa automobile beam steel, which is produced by a continuous casting of thin slab of FTSR technology in Tangshan Iron and Steel Co. Ltd. , are researched by thermal simulation experiment. The mierostructure characteristics of the beam steel under different test conditions are studied by means of optical microscope and scanning electron microscope. The test results show that the critical temperatures of phase transformation Ar3 and Ar1 will all decrease with the increase of the cooling rate. When the cooling rate is lower than 20℃·s-1, the ferrite and pearlite phase transformations are the main parts; when the cooling rate is higher than 20℃· s-1, the bainite phase appears. Moreover, the microstructurea of 510 MPa automobile beam steel produced by FTSR technology are also studied, and the results are basically in accordance with the CCT diagram gained from the test.

  1. Assessment of martensitic steels as structural materials in magnetic fusion devices

    International Nuclear Information System (INIS)

    This manuscript documents the results of preliminary experiments and analyses to assess the feasibility of incorporating ferromagnetic martensitic steels in fusion reactor designs and to evaluate the possible advantages of this class of material with respect to first wall/blanket lifetime. The general class of alloys under consideration are ferritic steels containing from about 9 to 13 percent Cr with some small additions of various strengthening elements such as Mo. These steels are conventionally used in the normalized and tempered condition for high temperature applications and can compete favorably with austenitic alloys up to about 6000C. Although the heat treatment can result in either a tempered martensite or bainite structure, depending on the alloy and thermal treatment parameters, this general class of materials will be referred to as martensitic stainless steels for simplicity

  2. Effect of microstructure on the sulphide stress cracking susceptibility of a high strength pipeline steel

    International Nuclear Information System (INIS)

    The sulphide stress cracking (SSC) susceptibility of a newly developed high strength microalloyed steel with three different microstructures has been evaluated using the slow strain rate testing (SSRT) technique. Studies were complemented with potentiodynamic polarization curves and hydrogen permeation measurements. Material included a C-Mn steel having Ni, Cu, and Mo as main microalloying elements with three microstructures: martensitic, ferritic and ferritic + bainitic. Testing temperatures included 25, 50, 70 and 90 deg. C. Detailed SEM observations of the microstructure and fracture surfaces were done to identify possible degradation mechanisms. The results showed that in all cases, the corrosion rate, number of hydrogen atoms at the surface and the percentage reduction in area increased with temperature. The steel with a martensitic microstructure had the highest SSC susceptibility at all temperatures, whereas the ferritic steels were susceptible only at 25 deg. C, and the most likely mechanism is hydrogen embrittlement assisted by anodic dissolution

  3. Hardening of ion-irradiated A533B steels investigated with nanoindentation technique

    International Nuclear Information System (INIS)

    Neutron irradiation embrittlement of reactor pressure vessel (RPV) steels is one of the critical issues on aging management for long term operation of nuclear power plants. Mechanistic understanding of embrittlement is a key to accurate prediction of embrittlement, especially after long term operation where the mechanical test data are sparse. Since matrix hardening is the source of the embrittlement, we focus on matrix hardening of A533B bainitic pressure vessel steel. Bainitic matrix is composed of lath structure made by ferrite and carbides, therefore it is important to understand how this structure affects hardening behavior, and to understand irradiation response of each phase. As the typical dimension of lath structure of A533B is about one micron, nanoindentation technique is suitable for the estimation of hardening of each phase. MV ion accelerators were used for controlled irradiation because MeV ion irradiation can produce defects to the depth greater than the depth where plastic deformation induced by indentation reaches. The nanoindentation results for irradiated steels up to 1 dpa indicate (1) indentation onto carbide colony results in greater hardness than ferrite in unirradiated steels (2) both phases are hardened by ion irradiation, and the irradiation hardening of carbide colony is more significant than ferrite phase. (author)

  4. Microstructures and Toughness of Weld Metal of Ultrafine Grained Ferritic Steel by Laser Welding

    Institute of Scientific and Technical Information of China (English)

    Xudong ZHANG; Wuzhu CHEN; Cheng WANG; Lin ZHAO; Yun PENG; Zhiling TIAN

    2004-01-01

    3 mm thick 400 MPa grade ultrafine grained ferritic steel plates were bead-on-plate welded by CO2 laser with heat input of 120~480 J/mm. The microstructures of the weld metal mainly consist of bainite, which form is lower bainite plates or polygonal ferrite containing quantities of dispersed cementite particles, mixed with a few of low carbon martensite laths or ferrite, depending on the heat input. The hardness and the tensile strength of the weld metal are higher than those of the base metal, and monotonously increase as the heat input decreases. No softened zone exists inheat affected zone (HAZ). Compared with the base metal, although the grains of laser weld are much larger, the toughness of the weld metal is higher within a large range of heat input. Furthermore, as the heat input increases, the toughness of the weld metal rises to a maximum value, at which point the percentage of lower bainite is the highest, and then drops.

  5. Process Integrated Heat Treatment of a Microalloyed Medium Carbon Steel: Microstructure and Mechanical Properties

    Science.gov (United States)

    Herbst, Sebastian; Schledorn, Mareike; Maier, Hans Jürgen; Milenin, Andrij; Nürnberger, Florian

    2016-04-01

    Air-water spray cooling was employed during a heat treatment to enhance the mechanical properties of microalloyed medium carbon steel test cylinders (38MnVS6, 88 mm diameter). Using appropriate cooling times and intensities, the test cylinders' surfaces could be quenched and subsequently self-tempered by the residual heat of the core. Simultaneously, it was possible to keep the core regions of the cylinders in the bainitic regime and carry out a quasi-isothermal holding. The resulting microstructures consisted of tempered martensite (near-surface) and bainite with pearlite and ferrite (core). Compared to the standard heat treatment (controlled air cooling), the tensile properties (proof stress and ultimate tensile strength) could be improved for both near-surface and core regions with the adapted spray cooling. A hardness profile with 450 HV10 surface hardness and a hardening depth of more than 11 mm could be realized. In addition, an increase of the impact toughness for the core was achieved, resulting in approximately 25 J charpy impact energy. This is a substantial improvement compared to standard heat treatment procedure and values reported in the literature and can be attributed to the reduced pearlite volume fraction and the increased amount of fine bainite.

  6. Microstructure Evolution during Friction Stir Spot Welding of TRIP steel

    DEFF Research Database (Denmark)

    Lomholt, Trine Colding

    Transformation Induced Plasticity (TRIP) steels have been developed for automotive applications due to the excellent high strength and formability. The microstructure of TRIP steels is a complex mixture of various microstructural constituents; ferrite, bainite, martensite and retained austenite...... deteriorating the uniform elongation. The unique deformation properties can be exploited in automotive applications for crash resistant parts due to the high energy absorption, thus improving passenger safety. Furthermore, the high strength and good formability permits the application of thinner sheet material...... Stir Spot Welding (FSSW) is investigated. The aim of the study is to assess whether high quality welds can be produced and, in particular, to obtain an understanding of the microstructural changes during welding. The microstructure of the welded samples was investigated by means of reflected light...

  7. Austempering of hot rolled transformation-induced plasticity steels

    Institute of Scientific and Technical Information of China (English)

    Zhuang Li; Di Wu

    2008-01-01

    Thermomechanical controlled processing (TMCP) was conducted by using a laboratory hot rolling mill. Austempering inAustempering in the salt bath after hot rolling Was investigated. The effect of isothermal holding time on mechanical properties was studied throughing of the microstructure and mechanical properties of the specimens. The mechanism of transformation-induced plasticity (TRIP) was discussed. The results show that the microstructure of these steels consists of polygonal ferrite, granular bainite, and ad TRIP occur in the hot rolled Si-Mn TRIP steels. Excellent mechanical properties were obtained for various durations at 400℃. Prolonged holdingprecipitation, which destabilized the austenite. The mechanical properties were optimal when the specimen was held for 25 min, and the tensile strength, total elongation, and strength ductility balance reached the maximum values of 776 MPa, 33%,respevtively.

  8. Heat affected zone microstructures and their influence on toughness in two microalloyed HSLA steels

    International Nuclear Information System (INIS)

    Microstructures and Charpy impact properties have been examined in two microalloyed steels following heat treatments to simulate weld heat affected zone (HAZ) structures over a range of heat input conditions, characterised by the cooling time from 800 to 500 °C (Δt8/5). The base materials were low carbon structural steel plates microalloyed with vanadium and nitrogen (V–N) and niobium (Nb), respectively. The toughnesses of the HAZs displayed remarkably different behaviours as shown by their impact transition temperatures. For the V–N steel, the toughness improved with increasingly rapid cooling (low heat input conditions) whereas the Nb steel showed an opposite trend. Some of this behaviour could be explained by the presence of coarse ferrite grains in the slowly cooled V–N steel. However, other conditions where all the structures were bainitic and rather similar in optical micrographs gave widely different toughness values. The recently developed method of five dimensional boundary analysis based on electron backscattering diffraction has been applied to these cases for the first time. This showed that the lath boundaries in the bainite were predominantly on {1 1 0} planes of the ferrite and that the average spacing of these boundaries varied depending on steel composition and cooling rate. Since {1 1 0} is also the slip plane in ferrite, it is considered that close spacing between the lath boundaries inhibits general plasticity at stress concentrations and favours initiation of fracture. The differences between the two steels are believed to be due to their transformation behaviours on cooling where precipitation of vanadium nitride in austenite accelerates ferrite formation and raises the temperature of the phase transformation in V–N steels.

  9. Effect of Mn on hardenability of 25CrMo axle steel by an improved end-quench test

    Directory of Open Access Journals (Sweden)

    Zhang Yutuo

    2012-11-01

    Full Text Available With the sixth large-scale railway speed-up, the quality of the axles is essential to the safety of the locomotive. According to the high-speed axle technical standard for the control of alloy elements in axle steel, optimization experiments of 25CrMo steel composition were performed by vacuum inductive melting. In order to study the hardenability of high-speed rail axles, an improved end-quench test was put forward. The advantage is that it enables the heat to transfer along the axial direction, thus avoiding edge effects. The hardenability of 25CrMo axle steels with Mn content of 0.60wt.% and 0.80wt.% was investigated mainly by means of optical microscopy and hardness tests. The experimental results indicate that the Mn has a pronounced effect on the hardenability of the steel. With an increase in Mn content from 0.60wt.% and 0.80wt.%, the hardenability of 25CrMo axle steel increases and the hard microstructure is maintained at an increasing distance from the quenched end. From the surface of the water quenched end to the center of the sample, the microstructure is martensite, martensite with bainite, and bainite.

  10. The properties and weldability of low activation ferritic steels

    International Nuclear Information System (INIS)

    A series of ferritic steels patterned on the chromium-molybdenum alloys, 2 1/4Cr--1Mo, 9Cr--1MoVNb and 12Cr--1MoVW, were tested for weldability. These steels are being developed as candidates for the first wall and blanket structures of fusion reactors. Use of these materials will minimize the long term radioactive hazards associated with disposal after service. In these low activation alloys, elements which become activated during irradiation with long half lives (Mo and Nb) are replaced. The major changes include the replacement of molybdenum with tungsten, the addition of vanadium in 2 1/4% Cr steels, and the replacement of niobium in the 9% Cr steel with tantalum. These replacement elements radically modify both the mechanical properties and weldability of the alloys. In this study, the effect of the alloy modifications on the microstructure and the mechanical properties of the welds are presented. Bainitic steels (2 1/4 Cr%) usually exhibit good weldability, while the martensitic steels (5, 9 and 12 Cr%) are suspectable to embrittlement in the heat affected zone (HAZ). The objective of this study was to characterize the welded microstructure and mechanical properties of these low activation alloys. Autogeneous bead-on-plate welds were produced using the gas tungsten arc welding (GTAW) process. Microstructure, microhardness, weld bend and tensile test results are reported for the base metal, heat affected zone and fusion zone of the weld. 46 refs., 36 figs., 14 tabs

  11. Decomposition of austenite formed at the temperature range of A3-A1 in a 0.2C-1.5Mn-1.5Si steel during isothermal annealing at 350-420o C

    International Nuclear Information System (INIS)

    The present study has been undertaken in order to examine the kinetics of the isothermal transformation of the austenitic region at the temperature range 350-420oC in low carbon silicon manganese steel after annealing in two phase region (A1-A3). Carefully designed control - cooling and isothermal bainite transformation allows to obtain a multiphase steel containing retained austenite (8-12%) susceptible to transformation - induced plasticity (TRIP effect). Mechanical properties and the microstructural studies of steel after various stages of isothermal transformation were performed. (author)

  12. Beam propagation

    International Nuclear Information System (INIS)

    The main part of this thesis consists of 15 published papers, in which the numerical Beam Propagating Method (BPM) is investigated, verified and used in a number of applications. In the introduction a derivation of the nonlinear Schroedinger equation is presented to connect the beginning of the soliton papers with Maxwell's equations including a nonlinear polarization. This thesis focuses on the wide use of the BPM for numerical simulations of propagating light and particle beams through different types of structures such as waveguides, fibers, tapers, Y-junctions, laser arrays and crystalline solids. We verify the BPM in the above listed problems against other numerical methods for example the Finite-element Method, perturbation methods and Runge-Kutta integration. Further, the BPM is shown to be a simple and effective way to numerically set up the Green's function in matrix form for periodic structures. The Green's function matrix can then be diagonalized with matrix methods yielding the eigensolutions of the structure. The BPM inherent transverse periodicity can be untied, if desired, by for example including an absorptive refractive index at the computational window edges. The interaction of two first-order soliton pulses is strongly dependent on the phase relationship between the individual solitons. When optical phase shift keying is used in coherent one-carrier wavelength communication, the fiber attenuation will suppress or delay the nonlinear instability. (orig.)

  13. Rift propagation

    Science.gov (United States)

    Parmentier, E. M.; Schubert, G.

    1989-01-01

    A model for rift propagation which treats the rift as a crack in an elastic plate which is filled from beneath by upwelling viscous asthenosphere as it lengthens and opens. Growth of the crack is driven by either remotely applied forces or the pressure of buoyant asthenosphere in the crack and is resisted by viscous stresses associated with filling the crack. The model predicts a time for a rift to form which depends primarily on the driving stress and asthenosphere viscosity. For a driving stress on the order of 10 MPa, as expected from the topography of rifted swells, the development of rifts over times of a few Myr requires an asthenosphere viscosity of 10 to the 16th Pa s (10 to the 17th poise). This viscosity, which is several orders of magnitude less than values determined by postglacial rebound and at least one order of magnitude less than that inferred for spreading center propagation, may reflect a high temperature or large amount of partial melting in the mantle beneath a rifted swell.

  14. Intergranular brittle fracture of a low alloy steel induced by grain boundary segregation of impurities: influence of the microstructure; Rupture intergranulaire fragile d'un acier faiblement allie induite par la segregation d'impuretes aux joints de grains: influence de la microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Raoul, St

    1999-07-01

    The study contributes to improve the comprehension of intergranular embrittlement induced by the phosphorus segregation along prior austenitic grain boundaries of low alloy steels used in pressurized power reactor vessel. A part of this study was performed using a A533 steel which contains chemical fluctuations (ghost lines) with two intensities. Axi-symmetrically notched specimens were tested and intergranular brittle de-cohesions were observed in the ghost lines. The fracture initiation sites observed on fracture surfaces were identified as MnS inclusions. A bimodal statistic obtained in a probabilistic model of the fracture is explained by the double population of ghost lines' intensities. A metallurgical study was performed on the same class of steel by studying the influence of the microstructure on the susceptibility to temper embrittlement. Brittle fracture properties of such microstructures obtained by dilatometric experiments were tested on sub-sized specimens to measure the V-notched fracture toughness. Fraction areas of brittle fracture modes were determined on surface fractures. A transition of the fracture mode with the microstructure is observed. It is shown that tempered microstructures of martensite and lower bainite are more susceptible to intergranular embrittlement than tempered upper bainitic microstructure. The intergranular fracture is the most brittle mode. The analysis of crystalline mis-orientations shows a grain boundary structure appreciably more coherent for tempered microstructures of martensite and lower bainite. The higher density of randomgrain boundaries is susceptible to drag the phosphorus in the upper bainitic matrix and to make the quantity of free phosphorus decreasing. Microstructure observations show a difference in the size and the spatial distribution of carbides, essentially cementite, between tempered martensite and upper bainite. It can explain the bigger susceptibility of this last microstructure to cleavage mode

  15. Effect of liquid metal embrittlement on low cycle fatigue properties and fatigue crack propagation behavior of a modified 9Cr–1Mo ferritic–martensitic steel in an oxygen-controlled lead–bismuth eutectic environment at 350 °C

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Xing, E-mail: gongxingzfl@hotmail.com [SCK-CEN (Belgian Nuclear Research Centre), Boeretang 200, B-2400 Mol (Belgium); KU Leuven, Department of Metallurgy and Materials Engineering, Kasteelpark Arenberg 44, Box 2450, B-3001 Heverlee (Belgium); Marmy, Pierre, E-mail: pierre.marmy@sckcen.be [SCK-CEN (Belgian Nuclear Research Centre), Boeretang 200, B-2400 Mol (Belgium); Qin, Ling, E-mail: Ling.Qin@mtm.kuleuven.be [KU Leuven, Department of Metallurgy and Materials Engineering, Kasteelpark Arenberg 44, Box 2450, B-3001 Heverlee (Belgium); Verlinden, Bert, E-mail: Bert.Verlinden@mtm.kuleuven.be [KU Leuven, Department of Metallurgy and Materials Engineering, Kasteelpark Arenberg 44, Box 2450, B-3001 Heverlee (Belgium); Wevers, Martine, E-mail: Martine.Wevers@mtm.kuleuven.be [KU Leuven, Department of Metallurgy and Materials Engineering, Kasteelpark Arenberg 44, Box 2450, B-3001 Heverlee (Belgium); Seefeldt, Marc, E-mail: Marc.Seefeldt@mtm.kuleuven.be [KU Leuven, Department of Metallurgy and Materials Engineering, Kasteelpark Arenberg 44, Box 2450, B-3001 Heverlee (Belgium)

    2014-11-17

    The low cycle fatigue properties of a modified 9Cr–1Mo ferritic–martensitic steel (T91) have been tested in stagnant liquid lead–bismuth eutectic (LBE) with oxygen concentrations ranging from 1.16×10{sup −6} to 6.0×10{sup −10} wt% at 350 °C. The effect of liquid metal embrittlement (LME) on fatigue endurance, fatigue crack propagation modes and secondary cracking has been studied. The results showed that the fatigue lives of T91 steel in a low oxygen concentration LBE were drastically reduced compared to those in vacuum due to the presence of LME. The microstructural observations on the fatigue crack propagation modes revealed that fatigue cracks in LBE mainly propagate across prior-austenite grain boundaries and then cut through martensitic lath boundaries, simultaneously leaving a few plastic flow traces and characteristic brittle features. Intergranular and interlath cracking occurred occasionally and their occurrence depended on the orientation of the boundaries relative to the stress axis. The complexity of the LME-induced fracture features can be attributed to a mixture of the multiple failure modes. No obvious plastic shear strain localization was present around the crack tips when LME occurred. However, using a high resolution electron backscatter diffraction (EBSD) technique, highly localized plastic shear strain was observed in the vicinity of the crack tips in vacuum, manifested by the presence of very fine subgrains along the crack walls. A qualitative mechanism was proposed to account for the LME phenomenon in the T91/LBE system. In addition, the secondary cracking at fatigue striations was different in the presence of LBE compared to vacuum. This phenomenon was elucidated by taking into account the influence of the LME on the fatigue crack propagation rate.

  16. Effect of liquid metal embrittlement on low cycle fatigue properties and fatigue crack propagation behavior of a modified 9Cr–1Mo ferritic–martensitic steel in an oxygen-controlled lead–bismuth eutectic environment at 350 °C

    International Nuclear Information System (INIS)

    The low cycle fatigue properties of a modified 9Cr–1Mo ferritic–martensitic steel (T91) have been tested in stagnant liquid lead–bismuth eutectic (LBE) with oxygen concentrations ranging from 1.16×10−6 to 6.0×10−10 wt% at 350 °C. The effect of liquid metal embrittlement (LME) on fatigue endurance, fatigue crack propagation modes and secondary cracking has been studied. The results showed that the fatigue lives of T91 steel in a low oxygen concentration LBE were drastically reduced compared to those in vacuum due to the presence of LME. The microstructural observations on the fatigue crack propagation modes revealed that fatigue cracks in LBE mainly propagate across prior-austenite grain boundaries and then cut through martensitic lath boundaries, simultaneously leaving a few plastic flow traces and characteristic brittle features. Intergranular and interlath cracking occurred occasionally and their occurrence depended on the orientation of the boundaries relative to the stress axis. The complexity of the LME-induced fracture features can be attributed to a mixture of the multiple failure modes. No obvious plastic shear strain localization was present around the crack tips when LME occurred. However, using a high resolution electron backscatter diffraction (EBSD) technique, highly localized plastic shear strain was observed in the vicinity of the crack tips in vacuum, manifested by the presence of very fine subgrains along the crack walls. A qualitative mechanism was proposed to account for the LME phenomenon in the T91/LBE system. In addition, the secondary cracking at fatigue striations was different in the presence of LBE compared to vacuum. This phenomenon was elucidated by taking into account the influence of the LME on the fatigue crack propagation rate

  17. INFLUENCE OF BAINITE STRUCTURE ON MECHANICAL CHARACTERISTICS OF HIGH-CARBON WIRE

    Directory of Open Access Journals (Sweden)

    A. Ju. Borisenko

    2009-01-01

    Full Text Available Influence of structure of beynit is explored on mechanical properties after thermal treatment of wire from the steel 80. The structural state of beynit, providing the high complex of mechanical properties of high-carbon wire, is definite.

  18. A micro-mechanical analysis and an experimental characterisation of the behavior and the damaging processes of a 16MND5 pressure vessel steel at low temperature; Etude micromecanique et caracterisation experimentale du comportement et de l'endommagement de l'acier de cuve 16MND5 a basses temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Pesci, R

    2004-06-15

    As part of an important experimental and numerical research program launched by Electricite De France on the 16MND5 pressure vessel steel, sequenced and in-situ tensile tests are realized at low temperatures [-196 C;-60 C]. They enable to associate the observation of specimens, the complete cartography of which has been made with a scanning electron microscope (damaging processes, initiation and propagation of microcracks), with the stress states determined by X-ray diffraction, in order to establish relevant criteria. All these measurements enable to supply a two-scale polycrystalline modeling of behavior and damage (Mori-Tanaka/self-consistent) which is developed concurrently with the experimental characterization. This model proves to be a very efficient one, since it correctly reproduces the influence of temperature experimentally defined: the stress state in ferrite remains less important than in bainite (the difference never exceeds 150 MPa), whereas it is much higher in cementite. The heterogeneity of strains and stresses for each crystallographic orientation is well rendered; so is cleavage fracture normal to the {l_brace}100{r_brace} planes in ferrite (planes identified by electron back scattered diffraction during an in-situ tensile test at -150 C), which occurs sooner when temperature decreases, for a constant stress of about 700 MPa in this phase. (author)

  19. Stress relief embrittlement in Mn-Ni-Mo pressure vessel steels

    International Nuclear Information System (INIS)

    A detailed study has been made of the effects of certain residual elements on the susceptibility of bainitic microstructures in SA533B/SA508 (Mn-Ni-Mo) steels to stress relief embrittlement. The individual effects of these elements have been identified and it has been shown that P, As, Sn and Sb are particularly effective in promoting embrittlement by the formation of voids on grain boundaries during stress relaxation, which reduce the subsequent ductility. It has been shown that the susceptibility to SRE can be reduced in practice by the control of residual elements and by grain refinement. (author)

  20. Modeling of Austenite Decomposition in Low Si-Mn TRIP Steel During Cooling

    Institute of Scientific and Technical Information of China (English)

    ZHU Li-juan; WU Di; ZHAO Xian-ming

    2008-01-01

    Transformation behavior in low carbon Si-Mn TRIP steel was investigated by means of microstructural observation and computer modelling. A transformation model in which transformation is controlled by carbon diffusion was suggested,which well described the volume fractional change of ferrite,pearlite,and bainite during continuous cooling.The influence of Si content and austenite grain size was thoroughly investigated.The calculated results indicated that Si retards pearlite transformation,accelerates polygonal ferrite transformation,refines the austenite grain,and increases the ferrite transformation rate.

  1. Effect of Austenite Deformation on Continuous Cooling Transformation Microstructures for 22CrSH Gear Steel

    Institute of Scientific and Technical Information of China (English)

    WANG Bing-xin; JIANG Ying-tian; XU Xu-dong; LIU Xiang-hua; WANG Guo-dong

    2007-01-01

    The effect of compressive deformation of austenite on continuous cooling transformation microstructures for 22CrSH gear steel has been investigated using a Gleeble 1500 thermal simulator. The experimental results show that the deformation of austenite promotes the formation of proeutectoid ferrite and pearlite, and leads to the increase of critical cooling rate of proeutectoid ferrite plus pearlite microstructure. The grain boundary allotriomorphic ferrite occupies the austenite grain surfaces when the prior deformation takes place or the cooling rate is decreased, which causes a transition from bainite to acicular ferrite. The deformation enhances the stability of transformation from austenite to acicular ferrite, which results in an increase of M/A constituent.

  2. Abnormal relationship between rust particles size and rust layer compactness of weathering steels

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In order to reveal evolution of the rust layer during atmospheric corrosion,commercial weathering steel(WS) 09CuPCrNi and a recently developed bainite WS were subjected to a salt fog test.The protection and compactness of the rust layer were evaluated by electrochemical analysis,absorption-desorption test,etc.The experimental results indicate that more compact rust layer could be derived from the rust particles with larger size.The well-established notion that the rust particle growth can induce the decreme...

  3. Effect of cooling rate on the microstructure and mechanical properties of Nb-microalloyed steels

    International Nuclear Information System (INIS)

    We describe here the effect of cooling rate on the microstructure and mechanical properties of Nb-microalloyed steels that were processed as structural beams at three different cooling rates. Nb-microalloyed steels exhibited increase in yield strength with increase in cooling rate during processing. However, the increase in the yield strength was not accompanied by loss in toughness. The microstructure at conventional cooling rate, primarily consisted of polygonal ferrite-pearlite microconstituents, while at intermediate cooling rate besides polygonal ferrite and pearlite contained significant fraction of degenerated pearlite and lath-type ferrite. At higher cooling rate, predominantly, lath-type (acicular) or bainitic ferrite was obtained. The precipitation characteristics were similar at the three cooling rates investigated with precipitation occurring at grain boundaries, on dislocations, and in the ferrite matrix. The fine scale (∼8-12 nm) precipitates in the ferrite matrix were MC type of niobium carbides. The microstructural studies suggest that the increase in toughness of Nb-microalloyed steels with increase in cooling rate is related to the change in the microstructure from predominantly ferrite-pearlite to predominantly bainitic ferrite

  4. Effect of cooling rate on the microstructure and mechanical properties of Nb-microalloyed steels

    Energy Technology Data Exchange (ETDEWEB)

    Shanmugam, S. [Center for Structural and Functional Materials, University of Louisiana at Lafayette, Lafayette, LA 70504-4130 (United States); Ramisetti, N.K. [Department of Chemical Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504-4130 (United States); Misra, R.D.K. [Center for Structural and Functional Materials, University of Louisiana at Lafayette, Lafayette, LA 70504-4130 (United States); Department of Chemical Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504-4130 (United States)], E-mail: dmisra@louisiana.edu; Mannering, T. [Nucor-Yamato Steel, P.O. Box 1228, 5929 East State Highway 18, Blytheville, AR 72316 (United States); Panda, D. [Nucor-Yamato Steel, P.O. Box 1228, 5929 East State Highway 18, Blytheville, AR 72316 (United States); Jansto, S. [Reference Metals, 1000 Old Pond Road, Bridgeville, PA 15017 (United States)

    2007-07-15

    We describe here the effect of cooling rate on the microstructure and mechanical properties of Nb-microalloyed steels that were processed as structural beams at three different cooling rates. Nb-microalloyed steels exhibited increase in yield strength with increase in cooling rate during processing. However, the increase in the yield strength was not accompanied by loss in toughness. The microstructure at conventional cooling rate, primarily consisted of polygonal ferrite-pearlite microconstituents, while at intermediate cooling rate besides polygonal ferrite and pearlite contained significant fraction of degenerated pearlite and lath-type ferrite. At higher cooling rate, predominantly, lath-type (acicular) or bainitic ferrite was obtained. The precipitation characteristics were similar at the three cooling rates investigated with precipitation occurring at grain boundaries, on dislocations, and in the ferrite matrix. The fine scale ({approx}8-12 nm) precipitates in the ferrite matrix were MC type of niobium carbides. The microstructural studies suggest that the increase in toughness of Nb-microalloyed steels with increase in cooling rate is related to the change in the microstructure from predominantly ferrite-pearlite to predominantly bainitic ferrite.

  5. Study of the mechanical properties of low carbon content HSLA steels

    Directory of Open Access Journals (Sweden)

    Illescas, S.

    2009-12-01

    Full Text Available Two high strength low alloy steels (HSLA with the same bulk composition and slight microalloying content differences were studied. The main purpose of the study was to determine the effect of different heat treatments and the influence of vanadium (V on the microstructure and mechanical properties of the bainite present in each steel. For that purpose, standard tests were conducted to determine the hardness, toughness, tensile and yield stress of the different bainite-acicular ferrite structures found in both steels. The results show how the V content promoted the formation of acicular ferrite, resulting in a decrease in hardness and tensile strength while improving toughness.

    Se han estudiado dos aceros HSLA (high strength low alloy que presentan composiciones similares, a excepción del contenido en elementos microaleantes. El propósito del estudio es determinar el efecto del tratamiento térmico y la influencia del contenido en vanadio (V sobre la microestructura y las propiedades mecánicas de la bainita en cada uno de los aceros. Para ello, se han realizado ensayos de dureza, de impacto y de tracción para cada una de las estructuras bainíticas-ferrita acicular obtenidas por medio de los diferentes tratamientos térmicos realizados. Los resultados muestran como el contenido en V promueve la formación de ferrita acicular, presentando valores bajos de dureza y resistencia mecánica pero mejorando la tenacidad.

  6. As-rolled multi-phase microalloyed steel bars with improved properties: Valjane večfazne mikrolegirane jeklene palice z izboljšanimi lastnostmi:

    OpenAIRE

    Drobnjak, Djordje; Koprivica, A.

    1997-01-01

    A series of experimental steels, based on a 0.3 C, 1.5 Mn, 0.1 V composition, with and without 0.01% Ti addition, was made by laboratory and full scale casting, and fabricated into 22 mmdia bars by full-scale hot-rolling. Multi phase Polygonal Ferrite-Pearlite-Non Polygonal Ferrite (PF-P-NPF) structures with varying amount of NPF are obtained in as-rolled bars. Acicular Ferrite (AF) and classical Bainite Sheaves (BS) are found to be dominant NPF morphologies in steels with a low (40%) fractio...

  7. Evolution of weld metal microstructure in shielded metal arc welding of X70 HSLA steel with cellulosic electrodes: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Ghomashchi, Reza, E-mail: reza.ghomashchi@adelaide.edu.au; Costin, Walter; Kurji, Rahim

    2015-09-15

    The microstructure of weld joint in X70 line pipe steel resulted from shielded metal arc welding with E6010 cellulosic electrodes is characterized using optical and electron microscopy. A range of ferritic morphologies have been identified ranging from polygonal inter- and intra-prior austenite grains allotriomorphic, idiomorphic ferrites to Widmanstätten, acicular and bainitic ferrites. Electron Backscatter Diffraction (EBSD) analysis using Image Quality (IQ) and Inverse Pole Figure (IPF) maps through superimposition of IQ and IPF maps and measurement of percentages of high and low angle grain boundaries was identified to assist in differentiation of acicular ferrite from Widmanstätten and bainitic ferrite morphologies. In addition two types of pearlitic structures were identified. There was no martensite detected in this weld structure. The morphology, size and chemistry of non-metallic inclusions are also discussed briefly. - Highlights: • Application of EBSD reveals orientation relationships in a range of phases for shielded metal arc welding of HSLA steel. • Nucleation sites of various ferrite morphologies identified • Formation of upper and lower bainite and their morphologies.

  8. Evolution of weld metal microstructure in shielded metal arc welding of X70 HSLA steel with cellulosic electrodes: A case study

    International Nuclear Information System (INIS)

    The microstructure of weld joint in X70 line pipe steel resulted from shielded metal arc welding with E6010 cellulosic electrodes is characterized using optical and electron microscopy. A range of ferritic morphologies have been identified ranging from polygonal inter- and intra-prior austenite grains allotriomorphic, idiomorphic ferrites to Widmanstätten, acicular and bainitic ferrites. Electron Backscatter Diffraction (EBSD) analysis using Image Quality (IQ) and Inverse Pole Figure (IPF) maps through superimposition of IQ and IPF maps and measurement of percentages of high and low angle grain boundaries was identified to assist in differentiation of acicular ferrite from Widmanstätten and bainitic ferrite morphologies. In addition two types of pearlitic structures were identified. There was no martensite detected in this weld structure. The morphology, size and chemistry of non-metallic inclusions are also discussed briefly. - Highlights: • Application of EBSD reveals orientation relationships in a range of phases for shielded metal arc welding of HSLA steel. • Nucleation sites of various ferrite morphologies identified • Formation of upper and lower bainite and their morphologies

  9. Numerical model to predict microstructure of the heat treated of steel elements

    Directory of Open Access Journals (Sweden)

    T. Domański

    2011-04-01

    Full Text Available In work the presented numerical models of tool steel hardening processes take into account thermal phenomena and phase transformations. Numerical algorithm of thermal phenomena was based on the Finite Elements Methods of the heat transfer equations. In the model of phase transformations, in simulations heating process continuous heating (CHT was applied, whereas in cooling process continuous cooling (CCT of the steel at issue. The phase fraction transformed (austenite during heating and fractions during cooling of ferrite, pearlite or bainite are determined by Johnson-Mehl-Avrami formulas. The nescent fraction of martensite is determined by Koistinen and Marburger formula or modified Koistinen and Marburger formula. In the simulations of hardening was subject the fang lathe of cone (axisymmetrical object made of tool steel.

  10. Influence of reheating and cooling conditions on structure and mechanical properties of C-Mn-Si steel

    Directory of Open Access Journals (Sweden)

    T. Kvačkaj

    2008-07-01

    Full Text Available The paper deals with structure and properties development of AHSS (advance high-strength steel and UHSS (ultra high-strength steel steel grades for various groups of automotive parts. C-Mn-Si type steel properties are evaluated based on the results of laboratory controlled rolling and cooling. The important influence on mechanical and plastic properties, amount of residual austenite (RA and final structural type has, except for cooling rate, also starting temperature of intensive cooling (TIC which follows after hot plastic deformations. If TIC is from interval of 620-760°C the final structure predominantly consists of ferrite with RA. Mostly acicular ferrite with RA, as well as bainite with RA was obtained when TIC was kept in the range of 760-850°C.

  11. Laser-Based Instrument Measures Propagation Of Cracks

    Science.gov (United States)

    Lee, Rupert U.; Cox, Robert B.; Youngquist, Robert C.; Sentz, John T.; Rose, Kenneth A.

    1995-01-01

    Report describes use of commerical laser displacement meter to measure propagation of cracks in stainless-steel specimens in stress tests in corrosive (salt-spray) environment. Measurements directed toward determining time from beginning of each test until onset of propagation of crack.

  12. Microstructure of high strength niobium-containing pipeline steel

    Energy Technology Data Exchange (ETDEWEB)

    Shanmugam, S. [Center for Structural and Functional Materials, Department of Chemical Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504-4130 (United States); Misra, R.D.K. [Center for Structural and Functional Materials, Department of Chemical Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504-4130 (United States)]. E-mail: dmisra@louisiana.edu; Hartmann, J. [Mittal Steel, Indiana Harbor Works, 3001 Dickey Road, East Chicago, IN 46312 (United States); Jansto, S.G. [Reference Metals, 1000 Old Pond Road, Bridgeville, PA 15017 (United States)

    2006-12-15

    The paper describes the microstructural constituents in a industrially processed Nb-microalloyed pipeline steel having yield strength of {approx}620 MPa. The microstructure of base, heat affected zone (HAZ), and weld metal of the fabricated steel pipe was examined by optical and transmission electron microscopy. The microstructure of thermomechanically processed pipeline steel primarily consisted of non-equiaxed ferrite of mixed morphologies with small fraction of degenerated pearlite. The microstructure contained high dislocation density, sub-boundaries and dislocation substructures. The HAZ was characterized by a combination of fine and coarse grained polygonal ferrite structure with high density of dislocations and fine cementite particles. In the weld metal, the constituents of complex ferrite were low temperature transformation products formed during continuous cooling such as quasi-polygonal or massive ferrite, acicular ferrite, bainitic ferrite and dispersion of coarse and fine cementite particles in the ferrite matrix. The precipitates in the investigated pipeline steel were of duplex type containing either Nb and Ti or Ti and Mo, even though the steel contained low concentration of titanium. Precipitates of different morphology and size range were observed and include rectangular ({approx}100-130 nm), cuboidal/spherical ({approx}20-100 nm), fine ({approx}10-20 nm) and very fine (<10 nm). They were MC type of carbides.

  13. Microstructure of high strength niobium-containing pipeline steel

    International Nuclear Information System (INIS)

    The paper describes the microstructural constituents in a industrially processed Nb-microalloyed pipeline steel having yield strength of ∼620 MPa. The microstructure of base, heat affected zone (HAZ), and weld metal of the fabricated steel pipe was examined by optical and transmission electron microscopy. The microstructure of thermomechanically processed pipeline steel primarily consisted of non-equiaxed ferrite of mixed morphologies with small fraction of degenerated pearlite. The microstructure contained high dislocation density, sub-boundaries and dislocation substructures. The HAZ was characterized by a combination of fine and coarse grained polygonal ferrite structure with high density of dislocations and fine cementite particles. In the weld metal, the constituents of complex ferrite were low temperature transformation products formed during continuous cooling such as quasi-polygonal or massive ferrite, acicular ferrite, bainitic ferrite and dispersion of coarse and fine cementite particles in the ferrite matrix. The precipitates in the investigated pipeline steel were of duplex type containing either Nb and Ti or Ti and Mo, even though the steel contained low concentration of titanium. Precipitates of different morphology and size range were observed and include rectangular (∼100-130 nm), cuboidal/spherical (∼20-100 nm), fine (∼10-20 nm) and very fine (<10 nm). They were MC type of carbides

  14. Effect of rare earths on impact toughness of a low-carbon steel

    International Nuclear Information System (INIS)

    Highlights: → RE as alloying element in steels instead of used to deoxidize and desulfurize. → An appropriate RE content can improve significantly the impact toughness of the low carbon steel. → Excessive RE content induces a volume of martensite precipitates at grain boundaries. → The bainite transformation is benefit from RE additions. → The ferrite reconstructive transformation might be changed by RE enrichment at grain boundaries. -- Abstract: Studies of an industrial low-carbon steel (B450NbRE) suggest that the impact toughness is unexpectedly low under its practical service, probably resulting from the unstable recovery of rare earths (RE) in steelmaking. The purpose of this work is to investigate the effect of RE on the impact toughness in low-carbon steel. The B450NbRE steels with content of 0.0012-0.0180 wt.% RE were produced by vacuum induction furnace. The impact toughness and microstructure were investigated after hot rolled. The Gleeble-1500 thermal simulator was used to validate the effect of RE on the microstructure. The results indicate that the microstructure of hot-rolled steels is characterized by polygonal ferrite, quasi-polygonal ferrite, bainite and pearlite. The impact toughness increases with RE contents reaching the peak with content of 0.0047 wt.% RE, such a change exhibits the same rule as the case of the ferrite amount. However, this improvement in impact toughness is not only due to an increase in ferrite amount, but also the fine grained structure and the cleaner grain boundaries. And content of 0.0180 wt.% RE is excessive. Such an addition of the RE resulted in the martensite precipitates at the grain boundaries, which are extremely detrimental to impact toughness.

  15. Limit of the local approach application of the brittle fracture on hydrogen charged steels

    International Nuclear Information System (INIS)

    The local approach of the brittle fracture by cleavage developed by BEREMIN relies the macroscopic mechanical properties to local criteria. It allows to predict the probability of failure of the structure by performing detailed calculation of the stress and deformation fields in the different element volumes within this structure. It also takes into account the distribution of the defects initiating the fracture in a specific zone. The local approach allows then the determination of a statistical criterion to be applied on cleavage fracture. The cumulative distribution function PR, over a small volume V0 ahead of a crack tip or defect can be expressed as: PR 1 - exp[-σw/σu)m] where σw WEIBULL stress and σu mean cleavage stress defined as the stress / volume leading to PR = 0.63 and m is an empirically determined parameter presenting the degree of scatter in measured strength values. The paper deals with the application of this approach on three steels in absence and in presence of hydrogen: railway steel FM80, with pearlitic structure, 35CD4 steel employed in tool's joints in a tempered martensitic state and a bainitic A508.3 used in nuclear power plants. The goal of this work is to show that in the case hydrogenated steel, the local approach is improved if the defects promoted by high stress triaxiality and local critical hydrogen concentration do not exceed the element volume V0 in which the material is considered to be statistically homogeneous. The results show that in the two first steel the local approach is improved even in presence of hydrogen. In the hydrogenated bainitic steel (A508.3), the application of this method is not possible due to development in the material of fish eyes which the size is very large with respect to V0. (author). 7 refs., 4 figs., 1 tab

  16. Corrosion of Welded X100 Pipeline Steel in a Near-Neutral pH Solution

    Science.gov (United States)

    Zhang, C.; Cheng, Y. F.

    2010-08-01

    In this work, electrochemical corrosion behavior of a welded X100 pipeline steel was studied in a near-neutral pH solution by electrochemical scanning vibrating electrode technique combined with metallographic and scanning electron microscopy/energy dispersive x-ray analysis. Results demonstrated that a softening phenomenon occurs around the weld, and there is the high micro-hardness in base steel adjacent to weld. In particular, there is the highest micro-hardness in base steel containing acicular ferrite and bainite. Therefore, welding and the associated post-treatment on X100 steel alter dramatically the microstructure and mechanical property around weld, resulting in an enhanced micro-hardness in base steel. There are high and low local dissolution current densities at base steel and the welded zones, respectively. The difference between the maximum and minimum dissolution current densities decreases with time, and the distribution of dissolution current density tends to be uniform. Hydrogen-charging changes the local dissolution activity of the welded steel. Different from the hydrogen-free steel, there is the highest dissolution current density at heat-affected zone. It is reasonable to assume that the charged hydrogen would accumulate at heat-affected zone, and the synergism of hydrogen and local stress results in a high anodic dissolution rate.

  17. Elevated-Temperature Ferritic and Martensitic Steels and Their Application to Future Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, RL

    2005-01-31

    In the 1970s, high-chromium (9-12% Cr) ferritic/martensitic steels became candidates for elevated-temperature applications in the core of fast reactors. Steels developed for conventional power plants, such as Sandvik HT9, a nominally Fe-12Cr-1Mo-0.5W-0.5Ni-0.25V-0.2C steel (composition in wt %), were considered in the United States, Europe, and Japan. Now, a new generation of fission reactors is in the planning stage, and ferritic, bainitic, and martensitic steels are again candidates for in-core and out-of-core applications. Since the 1970s, advances have been made in developing steels with 2-12% Cr for conventional power plants that are significant improvements over steels originally considered. This paper will review the development of the new steels to illustrate the advantages they offer for the new reactor concepts. Elevated-temperature mechanical properties will be emphasized. Effects of alloying additions on long-time thermal exposure with and without stress (creep) will be examined. Information on neutron radiation effects will be discussed as it applies to ferritic and martensitic steels.

  18. Microalloyed V-Nb-Ti and V steels Pt. 2 - precipitation behaviour during processing of structural beams

    Energy Technology Data Exchange (ETDEWEB)

    Tanniru, M.; Shanmugam, S.; Misra, R.D.K.; Panda, D.; Jansto, S.

    2005-02-15

    A comparative evaluation of the precipitation behaviour in V-Nb-Ti and V steels using transmission electron microscopy was undertaken to study the effective cumulative role of the microalloying additions. While the mechanical properties were similar, there were significant differences in the precipitation behaviour of the two steels. The microstructure of the V-Nb-Ti and V steels consisted predominantly of polygonal ferrite and fine pearlite; in addition, the former contained a small amount of bainite. The V-Nb-Ti steel exhibited significantly greater precipitation of carbonitrides compared with the V steel. In the V-Nb-Ti steel the carbonitrides precipitated as compounds (triplex and duplex type) of Ti, Nb, and V, while in the V steel they were V(C,N). They were characterised by cuboid (45-70 nm), spherical/irregular (20-45 nm), and fine/needleshaped (10-20 nm) morphology. The carbonitride precipitates grew as multimicroalloying compounds, depending on the processing conditions, as the number of microalloying elements increased. Coarse carbonitrides tended to precipitate preferentially along the grain boundaries, whereas fine carbides were dispersed in the matrix. The stoichiometric ratio of triplex carbonitrides in the V-Nb-Ti steel was Ti{sub 0.55}Nb{sub 0.35}V{sub 0.10}, while those of duplex type were Ti{sub 0.95}V{sub 0.05}, Nb{sub 0.70}V{sub 0.30}, and Ti{sub 0.73}Nb{sub 0.27}. Three microalloying elements (Ti, Nb, V) formed a coherent M{sub 4}C{sub 3} type of carbide in the V-Nb-Ti steel and exhibited short range order with the ferrite matrix, displayed by the diffraction pattern as a 'chemically sensitive' or 'superlattice' reflection. However, Nb formed the finest carbides (< 2 nm) and exhibited a ring form of selected area diffraction pattern. The carbonitrides that precipitated in the ferrite followed Baker-Nutting orientation relationships, and their partitioning was not observed in the pearlite or bainitic ferrite. The bainite

  19. Corrosion Resistance of The Bearing Steel 67SiMnCr6-6-4 with Nanobainitic Structure

    Directory of Open Access Journals (Sweden)

    Skołek E.

    2015-04-01

    Full Text Available The paper describes a comparative study of the corrosion resistance of bearing steel 67SiMnCr6-6-4 after two kinds of nanostructuring treatments and two kinds of conventional quenching and tempering treatments. The nanostructuring treatment consisted of austempering with an isothermal quenching at 240°C and 300°C. The conventional heat treatment consisted on quenching and tempering at 350°C for 1 h and quenching and tempering at 550°C for 1 h. Time and temperature of tempering was chosen so that the hardness of both samples (nanostructured as well as quenched and tempered was similar. The microstructure of steel after each heat treatment was described with the use of transmission electron microscopy (TEM. It was shown, that the austempering conducted at 240°C produced homogenous nanobainitic structure consisting of carbide-free bainite plates with nanometric thickness separated by the layers of retained austenite. The austempering at 300°C produced a sub-micrometric carbide-free bainite with retained austenite in form of layers and small blocks. The conventional heat treatments led to a tempered martensite microstructure. The corrosion resistance study was carried out in Na2SO4 acidic and neutral environment using potentiodynamic and electrochemical impedance spectroscopy (EIS methods. The corrosion resistance of nanostructured steel samples were compared to the steel samples with tempered martensite. The obtained results indicate, that the corrosion resistance of bearing steel with nanobainitic structure is similar to steel with tempered martensite in both acidic and neutral environment. This means that the high density of intercrystalline boundaries in nanobinite does not deteriorate the corrosion properties of the bearing steel.

  20. Stress relief embrittlement in Mn-Ni-Mo pressure vessel steels (ASME SA533B/SA508)

    International Nuclear Information System (INIS)

    A detailed study has been made of the effects of certain residual elements on the susceptibility of bainitic microstructures in SA533B/SA508 (Mn-Ni-Mo) steels to stress relief embrittlement. The individual effects of these elements have been identified and it has been shown that P, As, Sn and Sb are particularly effective in promoting embrittlement by the formation of voids on grain boundaries during stress relaxation which reduce the subsequent ductility. It has been shown that the susceptibility to SRE can be reduced in practice by the control of residual elements and by grain refinement. (author)

  1. Characterization by transmission electron microscopy of a JRQ steel subjected to different heat treatments

    International Nuclear Information System (INIS)

    In this work a study was conducted on the steel Astm A-533, Grade B, Class 1 of reference JRQ, for the purpose of carrying out a study by transmission electron microscopy on the size and distribution of precipitates in steel samples JRQ previously subjected to heat treatments. This because the reactor vessels of the nuclear power plant of Laguna Verde, are made of a steel Astm A-533 Grade B, Class 1. It is known that the neutron radiation causes damage primarily embrittlement in materials that are exposed to it. However, observable damage through mechanical tests result from microstructural defects and atomic, induced by the neutron radiation. In previous studies hardening by precipitation of a JRQ steel (provided by the IAEA) was induced by heat treatments, finding that the conditions of heat treatment that reproduce the hardness and stress mechanical properties of a steel Astm A-533, Grade B, Class 1 irradiated for 8 years to a fluence of 3.5 x 10 17 neutrons/cm2 and to a temperature of 290 grades C are achieved with annealing treatments at 550 grades C. In the studied samples it was found that the more hardening phase both the heat treatments as the neutron radiation, is the bainite, being the ferrite practically unchanged. Which it gave the tone to believe that the ferrite is the phase that provides at level macro the mechanical properties in stress, since in the irradiated samples such properties remained unchanged with respect to the non-irradiated material, however changes were observed in material ductility, which may be attributable to the change of hardness in the bainite, which opens a possibility for modeling the micromechanical behavior of this material. (Author)

  2. Development of high strength high toughness third generation advanced high strength steels

    Science.gov (United States)

    Martis, Codrick John

    Third generation advanced high strength steels (AHSS's) are emerging as very important engineering materials for structural applications. These steels have high specific strength and thus will contribute significantly to weight reduction in automotive and other structural component. In this investigation two such low carbon low alloy steels (LCLA) with high silicon content (1.6-2wt %) has been developed. These two steel alloys were subjected to single step and two step austempering in the temperature range of 260-399°C to obtain desired microstructures and mechanical properties. Austempering heat treatment was carried out for 2 hours in a molten salt bath. The microstructures were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and optical metallography. Quantitative analysis was carried out by image analysis technique. The effect of austempering temperature on the mechanical properties of these two alloys was examined. The influence of microstructures on the mechanical properties of alloys was also studied. Austempering heat treatment resulted in fine carbide free bainitic ferrite and high carbon austenite microstructure in the samples austempered above Ms temperature, whereas tempered martensite and austenite microstructure was obtained in samples austempered below Ms temperature. Yield strength, tensile strength and fracture toughness were found to increase as the austempering temperature decreases, whereas ductility increases as the austempering temperature increases. Tensile strength in the range of 1276MPa -1658 MPa and the fracture toughness in the range of 80-141MPa√m were obtained in these two steels. Volume fractions of different phases present and their lath sizes are related to the mechanical properties. Austempered samples consisting of mixed microstructure of bainitic ferrite and tempered martensite phases resulted in the exceptional combination of strength and toughness.

  3. Determination of bearing steel heat treatment with the use of the acoustic emission method

    Directory of Open Access Journals (Sweden)

    T. Z. Wozniak

    2010-10-01

    Full Text Available A study on the control of an extremely important stage of the martensitic-bainitic austempering and obtaining the M-B structure in the 100CrMnSi6-4 steel with the use of the acoustic emission (AE has been undertaken. In order to enrich retained austenite with carbon, steels are austempered at appropriately low temperatures. A martensitic transformation, resulting from diffusionless and displacive transformation is associated with significant AE signs. The strain energy produced during growth due to the shape change is reduced by plastic deformation. Predominant source of (AE is the movement of dislocations in order to relieve internal stresses.The heat treatment was performed in a modern, purpose-constructed device which simultaneously records acoustic emission effects. The signals were recorded with the use of an AE analyzer 20–800 kHz, and they were received by means of a broadband piezoelectric transducer with the use of a specialist card with a sampling frequency of 1200 kHz. The results regarding a correlation of austempering temperature and the maximum number of AE events and dilatometric results have been presented. This parameter can be used for precise Ms temperature estimation. Basing on microstructural investigations, it has been found that previously formed martensite with midrib morphology also accelerates the bainitic transformation.

  4. Microstructural influence on the local behaviour of 16MND5 steel

    International Nuclear Information System (INIS)

    16MND5 Steel or A508 Cl3 is used for manufacture by forging of nuclear reactor vessels. This material presents a good compromise in term of tenacity and yield stress, its microstructure is mainly bainitic tempered. Because of the chemical composition local variation and process of development, this material presents microstructural heterogeneities which can locally modify the properties of damage. In particular, some zones present a martensitic microstructure. The goal of this thesis is to bring some explanations on the influence of the microstructure; more particularly, size of the crystallographic entities and their spatial distribution on the local behaviour of 16MND5 steel. Two microstructures were elaborated for this purpose, a tempered bainitic microstructure and a tempered martensitic microstructure. An experimental characterization was carried out on the two microstructures in order to determine morphology, spatial distribution of the crystallographic orientations and tensile behaviour. A deposit of micro grid was carried out on tensile specimens to determine the experimental deformation field on a beforehand EBSD analyzed zone. The determination of the tensile behaviour allowed the identification of a multi crystalline behaviour law by a reverse method using the density of dislocation on each system of slip. This behaviour law was used in simulations with a finite element method to simulate the local mechanical field of the two microstructures and to compare with the obtained experimental deformation fields. It results, a good adequacy between simulations and experiments and the description of the influence of the neighbor grain's orientation on the local behaviour. (author)

  5. Microstructure and Mechanism of Strengthening of Microalloyed Pipeline Steel: Ultra-Fast Cooling (UFC) Versus Laminar Cooling (LC)

    Science.gov (United States)

    Zhao, J.; Wang, X.; Hu, W.; Kang, J.; Yuan, G.; Di, H.; Misra, R. D. K.

    2016-05-01

    A novel thermo-mechanical controlled processing (TMCP) schedule involving ultra-fast cooling (UFC) technique was used to process X70 (420 MPa) microalloyed pipeline steel with high strength-high toughness combination. A relative comparison is made between microstructure and mechanical properties between conventionally processed (CP) and ultra-fast cooled (UFC) pipeline steels, together with differences in strengthening mechanisms with respect to both types of processes. UFC-processed steel exhibited best combination of strength and good toughness compared to the CP process. The microstructure of CP pipeline steel mainly consisted of acicular ferrite (AF), bainitic ferrite (BF), and dispersed secondary martensite/austenite (M/A) constituent and a small fraction of fine quasi-polygonal ferrite. In contrast, the microstructure of UFC-processed pipeline steel was predominantly composed of finer AF, BF, and dispersed M/A constituent. The primary strengthening mechanisms in UFC pipeline steel were grain size strengthening and dislocation strengthening with strength increment of ~277 and ~151 MPa, respectively. However, the strengthening contribution in CP steel was related to grain size strengthening, dislocation strengthening, and precipitation strengthening, and the corresponding strength increments were ~212, ~149 and ~86 MPa, respectively. The decrease in strength induced by reducing Nb and Cr in UFC pipeline steel was compensated by enhancing the contribution of grain size strengthening in the UFC process. In conclusion, cooling schedule of UFC combined with LC is a promising method for processing low-cost pipeline steels.

  6. Microstructure and Mechanism of Strengthening of Microalloyed Pipeline Steel: Ultra-Fast Cooling (UFC) Versus Laminar Cooling (LC)

    Science.gov (United States)

    Zhao, J.; Wang, X.; Hu, W.; Kang, J.; Yuan, G.; Di, H.; Misra, R. D. K.

    2016-06-01

    A novel thermo-mechanical controlled processing (TMCP) schedule involving ultra-fast cooling (UFC) technique was used to process X70 (420 MPa) microalloyed pipeline steel with high strength-high toughness combination. A relative comparison is made between microstructure and mechanical properties between conventionally processed (CP) and ultra-fast cooled (UFC) pipeline steels, together with differences in strengthening mechanisms with respect to both types of processes. UFC-processed steel exhibited best combination of strength and good toughness compared to the CP process. The microstructure of CP pipeline steel mainly consisted of acicular ferrite (AF), bainitic ferrite (BF), and dispersed secondary martensite/austenite (M/A) constituent and a small fraction of fine quasi-polygonal ferrite. In contrast, the microstructure of UFC-processed pipeline steel was predominantly composed of finer AF, BF, and dispersed M/A constituent. The primary strengthening mechanisms in UFC pipeline steel were grain size strengthening and dislocation strengthening with strength increment of ~277 and ~151 MPa, respectively. However, the strengthening contribution in CP steel was related to grain size strengthening, dislocation strengthening, and precipitation strengthening, and the corresponding strength increments were ~212, ~149 and ~86 MPa, respectively. The decrease in strength induced by reducing Nb and Cr in UFC pipeline steel was compensated by enhancing the contribution of grain size strengthening in the UFC process. In conclusion, cooling schedule of UFC combined with LC is a promising method for processing low-cost pipeline steels.

  7. Development of ultrafine ferritic sheaves/plates in SAE 52100 steel for enhancement of strength by controlled thermomechanical processing

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, J. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, W.B. 721 302 (India); Scientific Services and Research and Development, Tata Steel, Jamshedpur 831 001, Jharkhand (India); Manna, I., E-mail: imanna@metal.iitkgp.ernet.in [Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, W.B. 721 302 (India); Central Glass and Ceramic Research Institute (CGCRI), Council of Scientific and Industrial Research (CSIR), 196 Raja S C Mullick Road, Jadavpur, Kolkata 700032 (India)

    2012-06-30

    Highlights: Black-Right-Pointing-Pointer Ultrafine bainite + martensite duplex microstructure developed in SAE 52100 steel. Black-Right-Pointing-Pointer Thermomechanical processing modifies size + morphology of bainitic ferrite. Black-Right-Pointing-Pointer Processing involves hot deformation prior to/during/after austenitizing. Black-Right-Pointing-Pointer Significant improvement in mechanical strength achieved. Black-Right-Pointing-Pointer Similar study on high carbon, low alloy steel not reported in the literature. - Abstract: The present study attempts to tailor the size, morphology and distribution of the ferrite needles/sheaves by thermomechanical processing and develop an ultrafine ferrite + martensite duplex microstructure for enhancement of strength and toughness in SAE 52100 steel. The thermo-mechanical routine included 5% hot deformation before, during or after austenitizing at 950 Degree-Sign C for 15 min followed by austempering at 270 Degree-Sign C for 30 min and subsequent water quenching to room temperature. Optical/electron microscopy along with X-ray diffraction was used to quantitatively monitor the size, morphology and distribution of the phase or phase aggregate. Significant improvement in nanohardness, wear resistance and elastic modulus and was observed in samples subjected to thermomechanical processing, as compared to that following the same austenitizing and austempering routine without hot deformation at any stage. However, improvement in the bulk mechanical property due to the present thermo-mechanical is lower than that obtained in our earlier study comprising cold deformation prior to austenitizing and austempering.

  8. Development of ultrafine ferritic sheaves/plates in SAE 52100 steel for enhancement of strength by controlled thermomechanical processing

    International Nuclear Information System (INIS)

    Highlights: ► Ultrafine bainite + martensite duplex microstructure developed in SAE 52100 steel. ► Thermomechanical processing modifies size + morphology of bainitic ferrite. ► Processing involves hot deformation prior to/during/after austenitizing. ► Significant improvement in mechanical strength achieved. ► Similar study on high carbon, low alloy steel not reported in the literature. - Abstract: The present study attempts to tailor the size, morphology and distribution of the ferrite needles/sheaves by thermomechanical processing and develop an ultrafine ferrite + martensite duplex microstructure for enhancement of strength and toughness in SAE 52100 steel. The thermo-mechanical routine included 5% hot deformation before, during or after austenitizing at 950 °C for 15 min followed by austempering at 270 °C for 30 min and subsequent water quenching to room temperature. Optical/electron microscopy along with X-ray diffraction was used to quantitatively monitor the size, morphology and distribution of the phase or phase aggregate. Significant improvement in nanohardness, wear resistance and elastic modulus and was observed in samples subjected to thermomechanical processing, as compared to that following the same austenitizing and austempering routine without hot deformation at any stage. However, improvement in the bulk mechanical property due to the present thermo-mechanical is lower than that obtained in our earlier study comprising cold deformation prior to austenitizing and austempering.

  9. New low carbon Q and P steels containing film-like intercritical ferrite

    International Nuclear Information System (INIS)

    In this work, the application of the Quenching and Partitioning (Q and P) process to two low-carbon steels has led to the development of a new kind of steel microstructure formed by laths of martensite separated by films of intercritical ferrite and retained austenite. The chemical compositions of the steels have been specially designed for this process, containing 3.5 wt.% Mn to retard the formation of bainite and combinations of Si and Al to avoid cementite precipitation. The microstructural changes occurring during the application of the heat treatments are discussed in terms of the current knowledge of the Q and P process and the experimental observations. A significant amount of retained austenite has been obtained in both steels after application of appropriate heat treatments, especially in the steel alloyed with higher amount of Si, in which the volume fraction of retained austenite reached values up to 0.19. Tensile tests in some selected specimens of both materials have shown outstanding combinations of strength and ductility, indicating that the designed Q and P steels are a promising candidate for the development of a new generation of advanced high strength steels.

  10. Microstructure, mechanical properties and corrosion behavior of laser welded dissimilar joints between ferritic stainless steel and carbon steel

    International Nuclear Information System (INIS)

    Highlights: • Laser welding of ferritic stainless steel to carbon steel joints was made. • The microstructure of this dissimilar joint is lath martensite and ferrite. • Decarburized layer and type II grain boundary was observed in joints. • The hardness distribution of two heat input joints across interface were analyzed. • Ecorr of dissimilar joint is between two base metals and joint has greatest icorr. - Abstract: The joint of dissimilar metals between ferritic stainless steel (FSS) and low carbon steel (CS) are welded by laser beam with two different welding speeds: 12 mm/s and 24 mm/s. Microstructure of dissimilar joint were investigated using optical microscope, X-ray diffraction and scanning electron microscope. The results show that the microstructure of this dissimilar joint is lath martensite and few ferrite, upper bainite and widmanstatten ferrite formed in heat-affected zone (HAZ) of CS. An increase of welding speed leads to narrower HAZ of CS and higher hardness of weld bead close to FSS side. The joints with different welding speed have similar ultimate tensile strength but superior elongation is obtained of high welding speed joint. Electrochemical corrosion test indicates the corrosion potential of dissimilar joint falls in between FSS and CS. And dissimilar joint has greatest corrosion current density which is attributed to the effect of galvanic corrosion

  11. Corrosion fatigue studies on A533-B, C-Mn and Ducol W30 pressure vessel steels at ambient temperature and pressure in aqueous environments

    International Nuclear Information System (INIS)

    Corrosion fatigue crack growth tests have been performed on three pressure vessel steels, A533-B, Ducol W30 and a C-Mn steel, in simulated water reactor environments at ambient temperature and pressure. A533-B and Ducol W30 had a bainitic, and the C-Mn a ferritic-pearlitic, microstructure- above a cyclic stress intensity level of 25 MN.msup(3/2), crack growth rates are in general greater for the ferritic-pearlitic material. Tests have covered a range of stress ratios and frequencies, there being a strong effect of frequency on growth rates, but a small effect of stress ratio. Examination of several specimen orientations has shown there to be no significant effect of growth rates. Mechanisms of corrosion fatigue have been discussed in the light of features observed on specimen fracture surfaces. The ferritic-pearlitic steel has shown a transition in fracture mode from transgranular quasi-cleavage to intergranular cracking on lowering the cyclic stress intensity, the transition occurring when the plastic zone size at the crack tip became less than four times the grain size. The cleavage mode indicates that this material is susceptible to hydrogen embrittlement in these aqueous environments at ambient temperature. The bainitic steels have not in general shown these fracture modes and appear less susceptible to hydrogen embrittlement. The enhancement of growth rates, above those obtained in air, is controlled by a dissolution mechanism. (author)

  12. Evaluation of 2 1/4 Cr-1 Mo steel for liquid lithium containment. II. Effects of post-weld heat treatment and niobium content. Annual report, 1979

    International Nuclear Information System (INIS)

    The lithium corrosion resistance of the regular grade of 2 1/4 Cr-1 Mo steel can be vastly improved with a proper postweld heat treatment, but even greater improvements are needed. Results indicate that if weldments were tempered sufficiently long at 760C to remove all Mo2C from the microstructure, even greater resistance to attack by low nitrogen lithium could be achieved. Corrosion tests should eventually be performed on regular grade 2 1/4 Cr-1 Mo steel weldments which have been given a long-term (> 25 h) post-weld temper at 760C. Lithium corrosion resistance of regular grade 2 1/4 Cr-1 Mo steel may also be improved by employing a quench and temper heat treatment. Quenched microstructures have more homogenous distribution of carbides than isothermally annealed microstructures, and if properly tempered, should provide excellent lithium corrosion resistance. Furthermore, the toughness of such a lower bainite microstructure should be better than that of the ferrite-bainitic microstructure created by an isothermal anneal. Numerous parameters, all potentially deleterious to the lithium corrosion resistance of 2 1/4 Cr-1 Mo steel, remain to be investigated; two such variables are velocity effects and lead content in the lithium

  13. Effect of starting microstructure upon the nucleation sites and distribution of graphite particles during a graphitising anneal of an experimental medium-carbon machining steel

    International Nuclear Information System (INIS)

    The potential for using graphite particles as an internal lubricant during machining is considered. Graphite particles were found to form during graphitisation of experimental medium-carbon steel alloyed with Si and Al. The graphite nucleation sites were strongly influenced by the starting microstructure, whether ferrite–pearlite, bainite or martensite, as revealed by light and electron microscopy. Favourable nucleation sites in the ferrite–pearlite starting microstructure were, not unexpectedly, found to be located within pearlite colonies, no doubt due to the presence of abundant cementite as a source of carbon. In consequence, the final distribution of graphite nodules in ferrite–pearlite microstructures was less uniform than for the bainite microstructure studied. In the case of martensite, this study found a predominance of nucleation at grain boundaries, again leading to less uniform graphite dispersions. - Highlights: • Metallography of formation of graphite particles in experimental carbon steel. • Potential for using graphite in steel as an internal lubricant during machining. • Microstructure features expected to influence improved machinability studied. • Influence of pre-anneal starting microstructure on graphite nucleation sites. • Influence of pre-anneal starting microstructure on graphite distribution. • Potential benefit is new free-cutting steel compositions without e.g. Pb alloying

  14. Effects of the pre-transformation microstructures on the grain refining of medium-carbon 5Cr-Mo-V steels; Chutanso 5Cr-Mo-V ko no gyaku hentai sairyuka ni oyobosu zenhentai soshiki no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Mukauda, Y.; Shibata, T.; Ono, S.; Ishiguro, T. [Nippon Steel Works, Ltd., Tokyo (Japan)

    2000-07-01

    For the purpose of obtaining refined grains over full cross section for improved ductility in heavy-gage products of a medium carbon 5Cr- Mo-V steel, the effects of pre-transformation microstructures on the grain refining during austenitizing were investigated. Samples were prepared to possess either one of three different microstructures , pearlite, bainite and martensite. These samples were heated slowly to the desired austenitizing temperature followed by rapid cooling, and the formation of new austenite grains was examined. Though austenite grains were not refined in cases of martensite and bainite microstructures, these were remarkably refined in case of pearlite. Portions of pearlite were enriched with carbon, where the transformation temperature into austenite was lower, and this is considered to be the reason that finer austenite grains were formed.Above results show that arranging pearlite microstructure before quenching heat treatment is effective for obtaining refined grains over full cross section in heavy-gage products. (author)

  15. Thermal fatigue of a 304L austenitic stainless steel: simulation of the initiation and of the propagation of the short cracks in isothermal and aniso-thermal fatigue; Fatigue thermique d'un acier inoxydable austenitique 304L: simulation de l'amorcage et de la croissance des fissures courtes en fatigue isotherme et anisotherme

    Energy Technology Data Exchange (ETDEWEB)

    Haddar, N

    2003-04-01

    The elbow pipes of thermal plants cooling systems are submitted to thermal variations of short range and of variable frequency. These variations bound to temperature changes of the fluids present a risk of cracks and leakages. In order to solve this problem, EDF has started the 'CRECO RNE 808' plan: 'thermal fatigue of 304L austenitic stainless steels' to study experimentally on a volume part, the initiation and the beginning of the propagation of cracks in thermal fatigue on austenitic stainless steels. The aim of this study is more particularly to compare the behaviour and the damage of the material in mechanic-thermal fatigue (cycling in temperature and cycling in deformation) and in isothermal fatigue (the utmost conditions have been determined by EDF for the metal: Tmax = 165 degrees C and Tmin = 90 degrees C; the frequency of the thermal variations can reach a Hertz). A lot of experimental results are given. A model of lifetime is introduced and validated. (O.M.)

  16. Toughening mechanisms of a high-strength acicular ferrite steel heavy plate

    Science.gov (United States)

    Cao, Zhi-Qiang; Bao, Yan-Ping; Xia, Zheng-Hai; Luo, Deng; Guo, Ai-Min; Wu, Kai-Ming

    2010-10-01

    An ultra-low carbon acicular ferrite steel heavy plate was obtained with an advanced thermo-mechanical control process-relaxed precipitation controlled transformation (TMCP-RPC) at Xiangtan Steel, Valin Group. The heavy plate has a tensile strength of approximately 600 MPa with a lower yield ratio. The impact toughness of the heavy plate achieves 280 J at -40°C. The fine-grained mixed microstructures of the heavy plate mainly consist of acicular ferrite, granular bainite, and polygonal ferrite. The high strength and excellent toughness of the heavy plate are attributed to the formation of acicular ferrite microstructure. The prevention of blocks of martensite/retained austenite (M/A) and the higher cleanness are also responsible for the superior toughness.

  17. Measurement of Dynamic Elastic Constants of RPV Steel Weld due to Localized Microstructural Variation

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Yong Moo; Kim, Joo Hag; Hong, Jun Hwa; Jung, Hyun Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2000-10-15

    The dynamic elastic constants of the simulated weld HAZ (heat-affected zone) of SA 508 Class 3 reactor pressure vessel (RPV) steel were investigated by resonant ultrasound spectroscopy (RUS). The resonance frequencies of rectangular parallelepiped samples woe calculated from the initial estimates of elastic stiffness C{sub 11}, C{sub 12} and C{sub 44} with an assumption of isotropic property, dimension and density. Through the comparison of calculated resonant frequencies with the measured resonant frequencies by RUS, very accurate elastic constants of SA 508 Class 3 steel were determined by iteration and convergence processes. Clear differences of Youngs modulus and shear modulus were shown from samples with different thermal cycles and microstructures. Youngs modulus and shear modulus of samples with fine-grained bainite were higher than those with coarse-grained tempered martensite. This tendency was confirmed from other results such as micro-hardness test

  18. Measurement of Dynamic Elastic Constants of RPV Steel Weld due to Localized Microstructural Variation

    International Nuclear Information System (INIS)

    The dynamic elastic constants of the simulated weld HAZ (heat-affected zone) of SA 508 Class 3 reactor pressure vessel (RPV) steel were investigated by resonant ultrasound spectroscopy (RUS). The resonance frequencies of rectangular parallelepiped samples woe calculated from the initial estimates of elastic stiffness C11, C12 and C44 with an assumption of isotropic property, dimension and density. Through the comparison of calculated resonant frequencies with the measured resonant frequencies by RUS, very accurate elastic constants of SA 508 Class 3 steel were determined by iteration and convergence processes. Clear differences of Youngs modulus and shear modulus were shown from samples with different thermal cycles and microstructures. Youngs modulus and shear modulus of samples with fine-grained bainite were higher than those with coarse-grained tempered martensite. This tendency was confirmed from other results such as micro-hardness test

  19. Numerical modelling of tools steel hardening. A thermal phenomena and phase transformations

    Directory of Open Access Journals (Sweden)

    T. Domański

    2010-01-01

    Full Text Available This paper the model hardening of tool steel takes into considerations of thermal phenomena and phase transformations in the solid state are presented. In the modelling of thermal phenomena the heat equations transfer has been solved by Finite Elements Method. The graph of continuous heating (CHT and continuous cooling (CCT considered steel are used in the model of phase transformations. Phase altered fractions during the continuous heating austenite and continuous cooling pearlite or bainite are marked in the model by formula Johnson-Mehl and Avrami. For rate of heating >100 K/s the modified equation Koistinen and Marburger is used. Modified equation Koistinen and Marburger identify the forming fraction of martensite.

  20. Effects of finishing rolling temperatures and reduction on the mechanical properties of hot rolled multiphase steel

    Institute of Scientific and Technical Information of China (English)

    LI Zhuang; WU Di

    2007-01-01

    Effects of finishing rolling temperatures and reduction on the mechanical properties of hot rolled multiphase steel were investigated. Thermo-mechanical control processing (TMCP) was conducted by using a laboratory hot rolling mill, in which three different kinds of finishing rolling temperatures and reduction and various austempering times were applied. The results showed that polygonal ferrite, granular bainite and larger amount of stabilized retained austenite can be obtained by controlled rolling processes, and that the strain-induced transformation to martensite from the retained austenite can occur gradually when the steel is deformed during tensile test. Mechanical properties increase with decreasing finishing rolling temperature and increasing amount of deformation. The most TRIP (transformation induced plasticity) effect, and ultimate tensile strength (UTS), total elongation (TEL) and the product of ultimate tensile strength and total elongation (UTS× TEL) are obtained at 20 min.