WorldWideScience

Sample records for baikal neutrino telescope

  1. The Baikal Neutrino Telescope: Status and plans

    OpenAIRE

    Wischnewski, R; Baikal Collaboration

    2007-01-01

    The high energy neutrino telescope NT200+ is currently in operation in Lake Baikal. We review the status of the Baikal the Baikal Neutrino Telescope, and describe recent progress on key components of the next generation kilometer-cube (km3) Lake Baikal detector, like investigation of new large area phototubes, integrated into the telescope.

  2. The optical detection unit for Baikal-GVD neutrino telescope

    Directory of Open Access Journals (Sweden)

    Avrorin A.D.

    2016-01-01

    Full Text Available The first stage of the GVD-cluster composed of five strings was deployed in April 2014. Each string consists of two sections with 12 optical modules per section. A section is the basic detection unit of the Baikal neutrino telescope. We will describe the section design, review its basic elements – optical modules, FADC readout units, slow control and calibration systems, and present selected results for section in-situ tests in Lake Baikal.

  3. The Lake Baikal Neutrino Telescope NT-200: Status, results, future

    International Nuclear Information System (INIS)

    The Baikal Neutrino Telescope NT-200 has been put into operation on April 6th, 1998. We describe the parameters and structure of NT-200 and present results with various stages of the stepwise increasing detector: from NT-36 to NT-96. Results cover atmospheric muons, neutrino events, search for neutrino events from WIMPS annihilation, search for magnetic monopoles. We also give preliminary results of the combined operation of the underwater array and a Cherenkov EAS array, placed on the ice surface

  4. Track reconstruction and background rejection in the BAIKAL neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Belolaptikov, I.A. [Joint Inst. for Nuclear Research, Dubna (Russian Federation); Djilkibaev, J.A.M. [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Nuclear Research (INR); Klimushin, S.I. [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Nuclear Research (INR); Krabi, J. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). Inst. fuer Hochenergiephysik; Lanin, O.Yu. [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Nuclear Research (INR); Hasselmann, N. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). Inst. fuer Hochenergiephysik; Osipova, E.A. [Moskovskij Gosudarstvennyj Univ., Moscow (Russian Federation); Pavlov, A.A. [Irkutskij Gosudarstvennyj Univ., Irkutsk (Russian Federation); Spiering, C. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). Inst. fuer Hochenergiephysik; Wischnewski, R. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). Inst. fuer Hochenergiephysik; BAIKAL Collaboration

    1994-03-01

    We describe procedures for reconstructing muon tracks in the BAIKAL Neutrino Telescope, including filtering out badly reconstructed events. Special attention is paid to rejecting those downward going muons which fake upward going muons from neutrino interactions. It is shown that a suppression factor of 10{sup 6} - necessary to operate an underwater neutrino telescope at 1100 m depth - can be achieved with an array consisting of 200 photomultipliers. We present first results from NT-36, an array of 36 PMTs deployed in April 1993. We observe satisfactory agreement between Monte Carlo results and experimental data, providing confidence that our simultions of the full detector are indeed realistic. (orig.)

  5. Track reconstruction and background rejection in the BAIKAL neutrino telescope

    International Nuclear Information System (INIS)

    We describe procedures for reconstructing muon tracks in the BAIKAL Neutrino Telescope, including filtering out badly reconstructed events. Special attention is paid to rejecting those downward going muons which fake upward going muons from neutrino interactions. It is shown that a suppression factor of 106 - necessary to operate an underwater neutrino telescope at 1100 m depth - can be achieved with an array consisting of 200 photomultipliers. We present first results from NT-36, an array of 36 PMTs deployed in April 1993. We observe satisfactory agreement between Monte Carlo results and experimental data, providing confidence that our simultions of the full detector are indeed realistic. (orig.)

  6. BAIKAL experiment: Main results obtained with the neutrino telescope NT200.

    OpenAIRE

    Baikal Collaboration

    2006-01-01

    The Baikal Neutrino Telescope NT200 takes data since April 1998. On April 9th, 2005, the 10 Mton scale detector NT200$+$ was put into operation in Lake Baikal. Selected results obtained during 1998-2002 with the neutrino telescope NT200 are presented.

  7. The Baikal underwater neutrino telescope design, performance and first results

    CERN Document Server

    Belolaptikov, I A; Borisovets, B A; Budnev, N M; Bugaev, E V; Chensky, A G; Danilchenko, I A; Djilkibaev, J A M; Dobrynin, V I; Domogatsky, G V; Donskych, L A; Doroshenko, A A; Dudkin, G N; Egorov, V Yu; Fialkovsky, S V; Garus, A A; Gaponenko, A N; Golikov, A V; Gress, O A; Gress, T A; Gushtan, M N; Heller, R; Kabikov, V B; Heukenkamp, H; Karle, A; Klabukov, A M; Klimov, A I; Klimushin, S I; Koshechkin, A P; Krabi, J; Kulepov, V F; Kuzmichov, L A; Lanin, O Yu; Lopin, A L; Lubsandorzhiev, B K; Milenin, M B; Mikolajski, T; Mirgazov, R R; Moroz, A V; Moseiko, N I; Nemchenko, M N; Nikiforov, S A; Ogievetsky, N V; Osipova, E A; Padusenko, A H; Panfilov, A I; Parfenov, Yu V; Pavlov, A A; Petukhov, D P; Pocheikin, K A; Pokhil, P G; Pokolev, P A; Rosanov, M I; Rubzov, V Yu; Rzhetshizki, A V; Sinegovsky, S I; Sokalski, I A; Spiering, C; Streicher, O; Sumanov, A A; Tanko, L; Thon, T; Tarashansky, V A; Trofimenko, I I; Wiebusch, C; Wischnewski, R; Zurbanov, V L

    1997-01-01

    The deep underwater Cherenkov neutrino telescope NT-200 is currently under construction at Lake Baikal. The "subdetectors" NT-36 (1993-95) and NT-72 (1995-96) have been operating successfully over 3 years. Various techniques have been developed to search for magnetic monopoles with these arrays. Here we describe a method used to detect superheavy slowly moving (beta = v/c = 0.00001 - 0.001) monopoles catalyzing baryon decay. We present results obtained from the preliminary analysis of the data taken with NT-36 detector in 1993. Furthermore, possibilities to observe faster (beta = 0.2 - 1) monopoles via other effects are discussed.

  8. 3D acoustic imaging applied to the Baikal neutrino telescope

    International Nuclear Information System (INIS)

    A hydro-acoustic imaging system was tested in a pilot study on distant localization of elements of the Baikal underwater neutrino telescope. For this innovative approach, based on broad band acoustic echo signals and strictly avoiding any active acoustic elements on the telescope, the imaging system was temporarily installed just below the ice surface, while the telescope stayed in its standard position at 1100 m depth. The system comprised an antenna with four acoustic projectors positioned at the corners of a 50 m square; acoustic pulses were 'linear sweep-spread signals'-multiple-modulated wide-band signals (10→22 kHz) of 51.2 s duration. Three large objects (two string buoys and the central electronics module) were localized by the 3D acoustic imaging, with an accuracy of ∼0.2 m (along the beam) and ∼1.0 m (transverse). We discuss signal forms and parameters necessary for improved 3D acoustic imaging of the telescope, and suggest a layout of a possible stationary bottom based 3D imaging setup. The presented technique may be of interest for neutrino telescopes of km3-scale and beyond, as a flexible temporary or as a stationary tool to localize basic telescope elements, while these are completely passive.

  9. 3D acoustic imaging applied to the Baikal neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Kebkal, K.G. [EvoLogics GmbH, Blumenstrasse 49, 10243 Berlin (Germany)], E-mail: kebkal@evologics.de; Bannasch, R.; Kebkal, O.G. [EvoLogics GmbH, Blumenstrasse 49, 10243 Berlin (Germany); Panfilov, A.I. [Institute for Nuclear Research, 60th October Anniversary pr. 7a, Moscow 117312 (Russian Federation); Wischnewski, R. [DESY, Platanenallee 6, 15735 Zeuthen (Germany)

    2009-04-11

    A hydro-acoustic imaging system was tested in a pilot study on distant localization of elements of the Baikal underwater neutrino telescope. For this innovative approach, based on broad band acoustic echo signals and strictly avoiding any active acoustic elements on the telescope, the imaging system was temporarily installed just below the ice surface, while the telescope stayed in its standard position at 1100 m depth. The system comprised an antenna with four acoustic projectors positioned at the corners of a 50 m square; acoustic pulses were 'linear sweep-spread signals'-multiple-modulated wide-band signals (10{yields}22 kHz) of 51.2 s duration. Three large objects (two string buoys and the central electronics module) were localized by the 3D acoustic imaging, with an accuracy of {approx}0.2 m (along the beam) and {approx}1.0 m (transverse). We discuss signal forms and parameters necessary for improved 3D acoustic imaging of the telescope, and suggest a layout of a possible stationary bottom based 3D imaging setup. The presented technique may be of interest for neutrino telescopes of km{sup 3}-scale and beyond, as a flexible temporary or as a stationary tool to localize basic telescope elements, while these are completely passive.

  10. The optical module of the Baikal deep underwater neutrino telescope

    OpenAIRE

    Bagduev, R. I.

    1999-01-01

    A deep underwater Cherenkov telescope has been operating since 1993 in stages of growing size at 1.1 km depth in Lake Baikal. The key component of the telescope is the Optical Module (OM) which houses the highly sensitive phototube QUASAR-370. We describe design and parameters of the QUASAR-370, the layout of the optical module, the front-end electronics and the calibration procedures, and present selected results from the five-year operation underwater. Also, future developments with respect...

  11. Development of a method for energy reconstruction of muons with the Baikal neutrino telescope NT-96

    International Nuclear Information System (INIS)

    1cm This thesis describes the development of a method for energy reconstruction of muons which are detected in underwater telescopes using the amplitudes and hit patterns of the photo multipliers. The method is applied to the data of the Baikal NT-96 muon and neutrino telescope. (orig.)

  12. The optical module of the Baikal Deep underwater neutrino telescope

    CERN Document Server

    Bagduev, R I; Belolaptikov, I A; Bezrukov, L B; Budnev, N M; Borisovets, B A; Domogatsky, G V; Donskych, L A; Doroshenko, A A; Garus, A A; Golikov, A V; Gluchovskoj, B M; Heller, R; Kabikov, V B; Khripunova, M P; Klabukov, A M; Klimushin, S I; Koshechkin, A P; Kuzmichov, L A; Lisovski, G V; Lubsandorzhiev, B K; Mikolajski, T; Osipova, E A; Pokhil, P G; Pokolev, P A; Putilov, P A; Spiering, C; Stepanenko, Z I; Streicher, O; Thon, T; Vorobev, A A; Wischnewski, R

    1999-01-01

    A deep underwater Cherenkov telescope has been operating since 1993 in stages of growing size at 1.1 km depth in Lake Baikal. The key component of the telescope is the Optical Module (OM) which houses the highly sensitive phototube QUASAR-370. We describe design and parameters of the QUASAR-370, the layout of the optical module, the front-end electronics and the calibration procedures, and present selected results from the five-year operation underwater. Also, future developments with respect to a telescope consisting from several thousand OMs are discussed.

  13. Neutrino telescopes

    CERN Document Server

    Carr, J

    2002-01-01

    This review presents the scientific objectives and status of Neutrino Telescope Projects. The science program of these projects covers: neutrino astronomy, dark matter searches and measurements of neutrino oscillations. The two neutrino telescopes in operation: AMANDA and BAIKAL will be described together with the ANTARES neutrino telescope being built in the Mediterranean. (18 refs).

  14. Sensitivity of the Baikal neutrino telescope NT-200 to point sources of very high energy neutrinos

    International Nuclear Information System (INIS)

    The sensitivity of the deep underwater muon and neutrino detector 'NT-200' in lake Baikal to point sources of extraterrestrial neutrinos is calculated. Results are given for different assumptions on the neutrino source spectrum and the reconstruction capabilities of the detector. (orig.)

  15. In situ measurements of optical parameters in Lake Baikal with the help of a Neutrino Telescope

    CERN Document Server

    Balkanov, V A

    1999-01-01

    We present results of an experiment performed in Lake Baikal at a depth of about 1 km. The photomultipliers of an underwater neutrino telescope under construction at this site have been illuminated by a distant laser. The experiment not only provided a useful cross-check of the time calibration of the detector, but also allowed to determine inherent optical parameters of the water in a way complementary to standard methods. In 1997, we have measured an absorption length of 22 m and an asymptotic attenuation length of 18 m. The effective scattering length was measured as 480 m. Using = 0.95 (0.90) for the average scattering angle, this corresponds to a geometrical scattering length of 24 (48) m.

  16. Preliminary results on a search for neutrinos from the center of the earth with the Baikal underwater telescope

    CERN Document Server

    Bezrukov, L B

    1996-01-01

    The deep underwater Cherenkov neutrino telescope NT-200 is currently under construction at lake Baikal. Its first stage NT-36 consisting of 36 optical modules has operated over 2 years since April 1993 till March 1995. Here we present a method to search for nearly vertical upward going muons from neutralino annihilation in the center of the Earth. We present preliminary results obtained from experimental data taken with the NT-36 array in 1994.

  17. A prototype device for acoustic neutrino detection in Lake Baikal

    CERN Document Server

    Budnev, N M

    2007-01-01

    In April 2006, a 4-channel acoustic antenna has been put in long-term operation on Lake Baikal. The detector was installed at a depth of about 100 m on the instrumentation string of Baikal Neutrino Telescope NT200+. This detector may be regarded as a prototype of a subunit for a future underwater acoustic neutrino telescope. We describe the design of acoustic detector and present first results obtained from data analysis.

  18. Acoustic search for high-energy neutrinos in Lake Baikal: status and perspectives

    CERN Document Server

    Aynutdinov, V; Balkanov, V; Belolaptikov, I; Bogorodsky, D; Budnev, N; Danilchenk, I; Domogatsky, G; Doroshenko, A; Dyachok, A; Dzhilkibaev, Zh -A; Fialkovskyk, S; Gaponenko, O; Golubkov, K; Gress, O; Gress, T; Grishin, O; Klabukov, A; Klimov, A; Kochanov, A; Konischev, K; Koshechkin, A; Kulepovk, V; Kuleshov, D; Kuzmichev, L; Lyashuk, V; Middell, E; Mikheyev, S; Milenink, M; Mirgazov, R; Osipova, E; Pan'kov, G; Pan'kov, L; Panfilov, A; Petukhov, D; Pliskovsky, E; Pokhil, P; Poleschuk, V; Popova, E; Prosin, V; Rozanov, M; Rubtzov, V; Sheifler, A; Suvorova, O; Shirokov, A; Shoibonov, B; Spiering, Ch; Tarashansky, B; Wischnewski, R; Yashin, I; Zhukov, V

    2009-01-01

    We report theoretical and experimental results of on-going feasibility studies to detect cosmic neutrinos acoustically in Lake Baikal. In order to examine ambient noise conditions and to develop respective pulse detection techniques a prototype device was created. The device is operating at a depth of 150 m at the site of the Baikal Neutrino Telescope and is capable to detect and classify acoustic signals with different shapes, as well as signals from neutrino-induced showers.

  19. The Lake Baikal telescope NT-36

    International Nuclear Information System (INIS)

    Since April 13th, 1993 the underwater Cherenkov telescope NT-36 consisting of 36 photomultipliers attached to 3 strings, is operated in lake Baikal. We describe this first stationary underwater multistring array and present results from the first months of operation. (orig.)

  20. Status of the Lake Baikal telescope

    International Nuclear Information System (INIS)

    A first large deep underwater detector for muons and neutrinos, NT-200, is currently under construction in Lake Baikal. Part of the detector consisting of 36 optical modules (NT-36) has been operated over nearly 2 years in 1993 and 1994. In March 1995, a 72-PMT version was deployed. We describe the construction and performance of the detector, and review the main results obtained so far. (orig.)

  1. The lake Baikal neutrino experiment: present status and future prospects

    CERN Document Server

    Lubsandorzhiev, B K

    2003-01-01

    We review the present status of the lake Baikal neutrino experiment with some selected physics results on high-energy atmospheric and extraterrestrial neutrino fluxes. Future prospects of the experiment are highlighted as well.

  2. The Baikal Deep Underwater Neutrino Experiment Results, Status, Future

    CERN Document Server

    Spiering, C; Belolaptikov, I A; Bezrukov, L B; Budnev, N M; Chensky, A G; Danilchenko, I A; Djilkibaev, Z A M; Domogatsky, G V; Doroshenko, A A; Fialkovsky, S V; Gaponenko, O N; Garus, A A; Gress, T I; Klabukov, A M; Klimov, A I; Klimushin, S I; Koshechkin, A P; Kulepov, V F; Kuzmichev, L A; Lovtsov, S V; Lubsandorzhiev, B K; Milenin, M B; Mirgazov, R R; Moroz, A V; Moseiko, N I; Nikiforov, S A; Osipova, E A; Panfilov, A I; Parfenov, Yu V; Pavlov, A A; Petukhov, D P; Pokhil, P G; Pokolev, P A; Popova, E G; Rozanov, M I; Rubzov, V Yu; Sokalski, I A; Spiering, C; Streicher, O; Tarashansky, B A; Thon, T; Wischnewski, R; Yashin, I V; Spiering, Ch.

    1998-01-01

    We review the present status of the Baikal Underwater Neutrino Experiment and present results obtained with the various stages of the stepwise increasing detector: NT-36 (1993-95), NT-72 (1995-96) and NT-96 (1996-97). Results cover atmospheric muons, first clear neutrino events, search for neutrinos from WIMP annihilation in the center of the Earth, search for magnetic monopoles, and -- far from astroparticle physics -- limnology.

  3. Workshop: Neutrino telescopes

    International Nuclear Information System (INIS)

    Despite being the most elusive of the known particles, neutrinos provide vital new physics insights. Most neutrino knowledge so far has come from studies using beams from reactors and accelerators, but in recent years important new contributions have resulted from investigation of natural neutrinos from cosmic rays, nearby stars (the sun), or distant sources, such as the 1987 supernova. The supernova observations marked the start of a new era in neutrino astronomy, but neutrino telescopes were anyway assured of an important ongoing role

  4. Survey of the Sun in the Lake Baikal Neutrino Experiment

    CERN Document Server

    Dzhilkibaev, Zh -A

    2009-01-01

    Upward through-going muons in the Lake Baikal Neutrino Experiment arriving from the ecliptic plane have been analyzed using NT200 data samples of the years 1998-2002 (1007 live days). We derive upper limits on muon fluxes from annihilation processes of hypothetical WIMP dark matter particles in the center of the Sun.

  5. The ANTARES Neutrino Telescope

    CERN Document Server

    Perrina, Chiara

    2015-01-01

    At about 40 km off the coast of Toulon (France), anchored at 2475 m deep in the Mediterranean Sea, there is ANTARES: the first undersea neutrino telescope and the only one currently operating. The detector consists of 885 photomultiplier tubes arranged into 12 strings of 450-metres high, with the aim to detect the Cherenkov light induced by the charged superluminal interaction products of neutrinos. Its main scientific target is the search for high-energy (TeV and beyond) neutrinos from cosmic accelerators, as predicted by hadronic interaction models, and the measurement of the cosmic neutrino diffuse flux, focusing in particular on events coming from below the horizon (up-going events) in order to significantly reduce the atmospheric muons background. Thanks to the development of a strategy for the identification of neutrinos coming from above the horizon (down-going events) the field of view of the telescope will be extended.

  6. The neutrino telescope ANTARES

    Directory of Open Access Journals (Sweden)

    Gleixner Andreas

    2014-04-01

    Full Text Available The ANTARES neutrino telescope is currently the largest neutrino detector in the Northern Hemisphere. The detector consists of a three-dimensional array of 885 photomultiplier tubes, distributed along 12 lines, located at a depth of 2500 m in the Mediterranean Sea. The purpose of the experiment is the detection of high-energy cosmic neutrinos. The detection principle is based on the observation of Cherenkov-Light emitted by muons resulting from charged-current interactions of muon neutrinos in the vicinity of the detection volume. The main scientific targets of ANTARES include the search for astrophysical neutrino point sources, the measurement of the diffuse neutrino flux and the indirect search for dark matter.

  7. Measuring Atmospheric Neutrino Oscillations with Neutrino Telescopes

    OpenAIRE

    Albuquerque, Ivone F. M.; Smoot, George F.

    2001-01-01

    Neutrino telescopes with large detection volumes can demonstrate that the current indications of neutrino oscillation are correct or if a better description can be achieved with non-standard alternatives. Observations of contained muons produced by atmospheric neutrinos can better constrain the allowed region for oscillations or determine the relevant parameters of non-standard models. We analyze the possibility of neutrino telescopes measuring atmospheric neutrino oscillations. We suggest ad...

  8. The optical module of Baikal-GVD

    Directory of Open Access Journals (Sweden)

    Avrorin A.D.

    2016-01-01

    Full Text Available The Baikal-GVD neutrino telescope in Lake Baikal is intended for studying astrophysical neutrino fluxes by recording the Cherenkov radiation of the secondary muons and showers generated in neutrino interactions. The first stage of Baikal-GVD will be equipped with about 2300 optical modules. We describe the design of the optical module, the front-end electronics and the laboratory characterization and calibration before deployment.

  9. The ANTARES neutrino telescope

    CERN Document Server

    Zornoza, Juan de Dios

    2012-01-01

    The ANTARES collaboration completed the installation of the first neutrino detector in the sea in 2008. It consists of a three dimensional array of 885 photomultipliers to gather the Cherenkov photons induced by relativistic muons produced in charged-current interactions of high energy neutrinos close to/in the detector. The scientific scope of neutrino telescopes is very broad: the origin of cosmic rays, the origin of the TeV photons observed in many astrophysical sources or the nature of dark matter. The data collected up to now have allowed us to produce a rich output of physics results, including the map of the neutrino sky of the Southern hemisphere, search for correlations with GRBs, flaring sources, gravitational waves, limits on the flux produced by dark matter self-annihilations, etc. In this paper a review of these results is presented.

  10. Measuring atmospheric neutrino oscillations with neutrino telescopes

    International Nuclear Information System (INIS)

    Neutrino telescopes with large detection volumes can demonstrate whether the current indications of neutrino oscillation are correct or if a better description can be achieved with nonstandard alternatives. Observations of contained muons produced by atmospheric neutrinos can better constrain the allowed region for oscillations or determine the relevant parameters of nonstandard models. We analyze the possibility of neutrino telescopes measuring atmospheric neutrino oscillations. We suggest adjustments to improve this potential. An addition of four densely instrumented strings to the AMANDA II detector makes oscillation observations feasible. Such a configuration is competitive with current and proposed experiments

  11. Measuring Atmospheric Neutrino Oscillations with Neutrino Telescopes

    CERN Document Server

    Albuquerque, I F M; Albuquerque, Ivone F.M.; Smoot, George F.

    2001-01-01

    Neutrino telescopes with large detection volumes can demonstrate that the current indications of neutrino oscillation are correct or if a better description can be achieved with non-standard alternatives. Observations of contained muons produced by atmospheric neutrinos can better constrain the allowed region for oscillations or determine the relevant parameters of non-standard models. We analyze the possibility of neutrino telescopes measuring atmospheric neutrino oscillations. We suggest adjustments to improve this potential. An addition of four densely-instrumented strings to the AMANDA II detector makes observations feasible. Such a configuration is competitive with current and proposed experiments.

  12. Measuring atmospheric neutrino oscillations with neutrino telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Albuquerque, Ivone F. M.; Smoot, George F.

    2001-09-01

    Neutrino telescopes with large detection volumes can demonstrate whether the current indications of neutrino oscillation are correct or if a better description can be achieved with nonstandard alternatives. Observations of contained muons produced by atmospheric neutrinos can better constrain the allowed region for oscillations or determine the relevant parameters of nonstandard models. We analyze the possibility of neutrino telescopes measuring atmospheric neutrino oscillations. We suggest adjustments to improve this potential. An addition of four densely instrumented strings to the AMANDA II detector makes oscillation observations feasible. Such a configuration is competitive with current and proposed experiments.

  13. A search for neutrino signal from dark matter annihilation in the center of the Milky Way with Baikal NT200

    CERN Document Server

    Avrorin, A D; Aynutdinov, V M; Bannasch, R; Belolaptikov, I A; Bogorodsky, D Yu; Brudanin, V B; Budnev, N M; Danilchenko, I A; Demidov, S V; Domogatsky, G V; Doroshenko, A A; Dyachok, A N; Dzhilkibaev, Zh -A M; Fialkovsky, S V; Gafarov, A R; Gaponenko, O N; Golubkov, K V; Gress, T I; Honz, Z; Kebkal, K G; Kebkal, O G; Konischev, K V; Korobchenko, A V; Koshechkin, A P; Koshel, F K; Kozhin, A V; Kulepov, V F; Kuleshov, D A; Ljashuk, V I; Milenin, M B; Mirgazov, R A; Osipova, E R; Panfilov, A I; Pan'kov, L V; Pliskovsky, E N; Rozanov, M I; Rjabov, E V; Shaybonov, B A; Sheifler, A A; Shelepov, M D; Shkurihin, A V; Smagina, A A; Suvorova, O V; Tabolenko, V A; Tarashansky, B A; Yakovlev, S A; Zagorodnikov, A V; Zhukov, V A; Zurbanov, V L

    2015-01-01

    We reanalyze dataset collected during 1998-2003 years by the low energy threshold (10 GeV) neutrino telescope NT200 in the lake Baikal in searches for neutrino signal from dark matter annihilations near the center of the Milky Way. Two different approaches are used in the present analysis: counting events in the cones around the direction towards the Galactic Center and the maximum likelihood method. We assume that the dark matter particles annihilate dominantly over one of the annihilation channels $b\\bar{b}$, $W^+W^-$, $\\tau^+\\tau^-$, $\\mu^+\\mu^-$ or $\

  14. Search for neutrino emission from relic dark matter in the Sun with the Baikal NT200 detector

    CERN Document Server

    Avrorin, A D; Aynutdinov, V M; Bannasch, R; Belolaptikov, I A; Bogorodsky, D Yu; Brudanin, V B; Budnev, N M; Danilchenko, I A; Demidov, S V; Domogatsky, G V; Doroshenko, A A; Dyachok, A N; Dzhilkibaev, Zh-A M; Fialkovsky, S V; Gafarov, A R; Gaponenko, O N; Golubkov, K V; Gress, T I; Honz, Z; Kebkal, K G; Kebkal, O G; Konishchev, K V; Konstantinov, E N; Korobchenko, A V; Koshechkin, A P; Koshel, F K; Kozhin, V A; Kulepov, V F; Kuleshov, D A; Ljashuk, V I; Milenin, M B; Mirgazov, R A; Osipova, E A; Panfilov, A I; Panjkov, L V; Perevalov, A A; Pliskovsky, E N; Poleshuk, V A; Rozanov, M I; Rubtsov, V F; Rjabov, E V; Shaybonov, B A; Sheifler, A A; Skurikhin, A V; Smagina, A A; Suvorova, O V; Tarashchansky, B A; Yakovlev, S A; Zagorodnikov, A V; Zhukov, V A; Zurbanov, V L

    2014-01-01

    We have analyzed a data set taken over 2.76 years live time with the Baikal neutrino telescope NT200. The goal of the analysis is to search for neutrinos from dark matter annihilation in the center of the Sun. Apart from the conventional annihilation channels $b\\bar{b}$, $W^+W^-$ and $\\tau^+\\tau^-$ we consider also the annihilation of dark matter particles into monochromatic neutrinos. From the absence of any excess of events from the direction of the Sun over the expected background, we derive 90% upper limits on the fluxes of muons and muon neutrinos from the Sun, as well as on the elastic cross sections of dark matter scattering on protons.

  15. The Gigaton Volume Detector in Lake Baikal

    International Nuclear Information System (INIS)

    The objective of the Baikal Project is the creation of a kilometer-scale high-energy neutrino observatory: the Gigaton Volume Detector (GVD) in Lake Baikal. Basic elements of the GVD - new optical modules, FADC readout units, and underwater communication systems - were investigated and tested in Lake Baikal with prototype strings in 2008-2010. We describe the results of prototype strings operation and review the preliminary design and expected sensitivity of the GVD telescope.

  16. A search for neutrino signal from dark matter annihilation in the center of the Milky Way with Baikal NT200

    Science.gov (United States)

    Avrorin, A. D.; Avrorin, A. V.; Aynutdinov, V. M.; Bannasch, R.; Belolaptikov, I. A.; Bogorodsky, D. Yu.; Brudanin, V. B.; Budnev, N. M.; Danilchenko, I. A.; Demidov, S. V.; Domogatsky, G. V.; Doroshenko, A. A.; Dyachok, A. N.; Dzhilkibaev, Zh.-A. M.; Fialkovsky, S. V.; Gafarov, A. R.; Gaponenko, O. N.; Golubkov, K. V.; Gress, T. I.; Honz, Z.; Kebkal, K. G.; Kebkal, O. G.; Konischev, K. V.; Korobchenko, A. V.; Koshechkin, A. P.; Koshel, F. K.; Kozhin, A. V.; Kulepov, V. F.; Kuleshov, D. A.; Ljashuk, V. I.; Milenin, M. B.; Mirgazov, R. A.; Osipova, E. R.; Panfilov, A. I.; Pan'kov, L. V.; Pliskovsky, E. N.; Rozanov, M. I.; Rjabov, E. V.; Shaybonov, B. A.; Sheifler, A. A.; Shelepov, M. D.; Skurihin, A. V.; Smagina, A. A.; Suvorova, O. V.; Tabolenko, V. A.; Tarashansky, B. A.; Yakovlev, S. A.; Zagorodnikov, A. V.; Zhukov, V. A.; Zurbanov, V. L.

    2016-08-01

    We reanalyze the dataset collected during the years 1998-2003 by the deep underwater neutrino telescope NT200 in the lake Baikal with the low energy threshold (10 GeV) in searches for neutrino signal from dark matter annihilations near the center of the Milky Way. Two different approaches are used in the present analysis: counting events in the cones around the direction towards the Galactic Center and the maximum likelihood method. We assume that the dark matter particles annihilate dominantly over one of the annihilation channels bbbar , W+W- , τ+τ- , μ+μ- or ννbar . No significant excess of events towards the Galactic Center over expected neutrino background of atmospheric origin is found and we derive 90% CL upper limits on the annihilation cross section of dark matter.

  17. Future High Energy Neutrino Telescopes

    CERN Document Server

    Spiering, C

    2000-01-01

    This talk summarizes the main physics goals and basic methods of telescopes for high energy neutrinos. It reviews the present status of deep underwater telescopes and sketches the ICECUBE project as an example for a cube kilometer detector. It is suggested to develop techniques for radio and acoustic detection hand in hand with big optical arrays. These large arrays should be complemented by medium-size detectors in the Megaton range.

  18. ANTARES: An Undersea Neutrino telescope

    CERN Multimedia

    2002-01-01

    The ANTARES (Astronomy with a Neutrino Telescope and ${Abyss}$ environmental RESearch) deep-sea neutrino telescope is designed to search for neutrinos of astrophysical origin. Neutrinos are unique probes of the high energy universe; being neutral they are not deflected by magnetic fields and interacting weakly they can readily escape from the densest regions of the universe. Potential sources of neutrino are galactic (e.g supernova remnants, micro-quasars) and extra-galactic (e.g active galactic nuclei, gamma-ray bursters). Annihilation of dark matter particles in the Sun or Galactic Centre is another well motivated potential source of extra terrestrial neutrinos. The ANTARES detector is located 40 km off the coast of Toulon (France) at a depth of 2475m in the Mediterranean Sea. Being located in the Northern hemisphere it studies the Southern sky and in particular has the Galactic Centre in its field of view. Since 2006, the detector has operated continuously in a partial configuration. The detector was compl...

  19. The Lake Baikal telescope NT-36. A first deep underwater multistring array

    Energy Technology Data Exchange (ETDEWEB)

    Belolaptikov, I.A.; Bezrukov, L.B.; Borisovets, B.A.; Budnev, N.M.; Chensky, A.G.; Djilkibaev, Zh.A.M.; Dobrynin, V.I.; Domogatsky, G.V.; Donskych, L.A.; Doroshenko, A.A.; Fialkovsky, S.V.; Gress, O.A.; Golikov, A.V.; Heller, R.; Heukenkamp, H.; Kabikov, V.B.; Klabukov, A.M.; Klimov, A.I.; Klimushin, S.I.; Konopleva, T.A.; Koshechkin, A.P.; Krabi, J.; Kulepov, V.F.; Kuzmichov, L.A.; Lanin, O.J.; Lubsandorzhiev, B.K.; Milenin, M.B.; Mikolajski, T.; Mirgazov, R.R.; Nikiforov, S.A.; Ogievietzky, N.V.; Osipova, E.A.; Padusenko, A.H.; Panfilov, A.I.; Parfenov, Yu.V.; Pavlov, A.A.; Petuchov, D.P.; Pocheikin, K.A.; Pochil, P.G.; Pokalev, O.P.; Rosanov, M.I.; Rzhetshizki, A.V.; Rubzov, V.Yu.; Sinegovsky, S.I.; Sokalsky, I.A.; Spiering, C.; Streicher, O.; Tarashansky, V.A.; Thon, T.; Trofimenko, I.I.; Wischnewski, R.; Zurbanov, V.L. [Inst. for Nuclear Research, Russian Academy of Science, Moscow (Russian Federation)]|[Irkutsk State Univ. (Russian Federation)]|[Moscow State Univ. (Russian Federation)]|[Tomsk Polytechnical Inst. (Russian Federation)]|[Polytechnical Inst., Nizhni Novgorod (Russian Federation)]|[Marine Technical Univ., St. Petersburg (Russian Federation)]|[Kurchatov Inst. of Atomic Energy, Moscow (Russian Federation)]|[Joint Inst. for Nuclear Research, Dubna (Russian Federation)]|[DESY, Inst. for High Energy Physics, Zeuthen (Germany); Baikal Collaboration

    1994-03-01

    Since April 13th, 1993 the underwater Cherenkov telescope NT-36 consisting of 36 photomultipliers attached to 3 strings, is operated in lake Baikal. We describe this first stationary underwater multistring array and present results from the first months of operation. (orig.)

  20. The data acquisition system for Baikal-GVD

    Directory of Open Access Journals (Sweden)

    Avrorin A.D.

    2016-01-01

    Full Text Available Baikal-GVD will be a neutrino telescope at the cubic-kilometer scale in Lake Baikal. The first out of 10-12 clusters of the first phase of GVD has been deployed and commissioned in April 2015. This paper describes design and implementation of the dataacquisition system of GVD.

  1. Cherenkov counter of extensive air showers for combined operation with the neutrino telescope NT-200

    International Nuclear Information System (INIS)

    The Baikal NT-200 neutrino telescope consists of 192 optical modules based on the Quasar-370 hybrid photodetectors. To study the angular resolution of NT-200 neutrino telescope one has developed the Cherenkov counter of extensive air showers with 1 deg angular resolution. Paper describes the electron structure of the facility made in terms of the CAMAC standard. One evaluates the measurement error for time intervals depending on the amplitude of output signals of photodetector. The counting rate of coinciding events of the Cherenkov counter for extensive air showers and of NT-200 deep-sea neutrino telescope constitutes about 0.5 min-1.Measuring of time interval between the trigger signals of the neutrino telescope and of the Cherenkov counter enables to suppress efficiently random coincidences and to obtain additional information on the muon trajectory

  2. Cosmic Neutrino Flavor Democracy and Unitarity Violation at Neutrino Telescopes

    CERN Document Server

    Xing, Zhi-zhong

    2008-01-01

    Provided ultrahigh-energy cosmic neutrinos are produced from the decays of charged pions arising from proton-proton and (or) proton-gamma collisions, their flavor ratios at a neutrino telescope will be \\phi^T_e : \\phi^T_\\mu : \\phi^T_\\tau \\approx 1 : 1 : 1. We show that the exact flavor democracy can occur if the unitary neutrino mixing matrix satisfies either \\theta_13 = 0 and \\theta_{23} = \\pi/4 (CP invariance) or \\delta= \\pm \\pi/2 and \\theta_{23} = \\pi/4 (CP violation) in the standard parametrization. Allowing for slight deviations from either condition, we calculate the corresponding neutrino flavor distribution at neutrino telescopes. If the neutrino mixing matrix is non-unitary, as expected in a class of seesaw models with TeV-scale Majorana neutrinos, we demonstrate that the effect of unitarity violation on the flavor democracy of cosmic neutrinos at neutrino telescopes can be as large as several percent.

  3. ANTARES: The first undersea neutrino telescope

    International Nuclear Information System (INIS)

    The ANTARES Neutrino Telescope was completed in May 2008 and is the first operational Neutrino Telescope in the Mediterranean Sea. The main purpose of the detector is to perform neutrino astronomy and the apparatus also offers facilities for marine and Earth sciences. This paper describes the design, the construction and the installation of the telescope in the deep sea, offshore from Toulon in France. An illustration of the detector performance is given.

  4. ANTARES: The first undersea neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Ageron, M. [CPPM, Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Aguilar, J.A. [IFIC-Instituto de Fisica Corpuscular, Edificios Investigacion de Paterna, CSIC-Universitat de Valencia, Apdo. de Correos 22085, 46071 Valencia (Spain); Al Samarai, I. [CPPM, Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Albert, A. [GRPHE-Institut universitaire de technologie de Colmar, 34 rue du Grillenbreit BP 50568, 68008 Colmar (France); Ameli, F. [INFN-Sezione di Roma, P.le Aldo Moro 2, 00185 Roma (Italy); Andre, M. [Technical University of Catalonia, Laboratory of Applied Bioacoustics, Rambla Exposicio, 08800 Vilanova i la Geltru, Barcelona (Spain); Anghinolfi, M. [INFN-Sezione di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Anton, G. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany); Anvar, S. [Direction des Sciences de la Matiere-Institut de recherche sur les lois fondamentales de l' Univers-Service d' Electronique des Detecteurs et d' Informatique, CEA Saclay, 91191 Gif-sur-Yvette Cedex (France); Ardid, M. [Institut d' Investigacio per a la Gestio Integrada de Zones Costaneres (IGIC)-Universitat Politecnica de Valencia. C/Paranimf 1., 46730 Gandia (Spain); Arnaud, K.; Aslanides, E. [CPPM, Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Assis Jesus, A.C.; Astraatmadja, T. [Nikhef, Science Park, Amsterdam (Netherlands); Aubert, J.-J. [CPPM, Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Auer, R. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany); Barbarito, E. [INFN-Sezione di Bari, Via E. Orabona 4, 70126 Bari (Italy); Baret, B. [APC-Laboratoire AstroParticule et Cosmologie, UMR 7164 (CNRS, Universite Paris 7 Diderot, CEA, Observatoire de Paris), 10 rue Alice Domon et Leonie Duquet, 75205 Paris Cedex 13 (France); and others

    2011-11-11

    The ANTARES Neutrino Telescope was completed in May 2008 and is the first operational Neutrino Telescope in the Mediterranean Sea. The main purpose of the detector is to perform neutrino astronomy and the apparatus also offers facilities for marine and Earth sciences. This paper describes the design, the construction and the installation of the telescope in the deep sea, offshore from Toulon in France. An illustration of the detector performance is given.

  5. ANTARES: The first undersea neutrino telescope

    OpenAIRE

    Ageron, M.; H. van Haren; ANTARES Collaboration

    2011-01-01

    The ANTARES Neutrino Telescope was completed in May 2008 and is the first operational Neutrino Telescope in the Mediterranean Sea. The main purpose of the detector is to perform neutrino astronomy and the apparatus also offers facilities for marine and Earth sciences. This paper describes the design, the construction and the installation of the telescope in the deep sea, offshore from Toulon in France. An illustration of the detector performance is given.

  6. Status and perspectives of the BAIKAL-GVD project

    Directory of Open Access Journals (Sweden)

    Avrorin A.D.

    2016-01-01

    Full Text Available The neutrino telescope Baikal-GVD in Lake Baikal will be a research infrastructure aimed mainly at studying astrophysical neutrino fluxes. The telescope will consist of clusters of strings – functionally independent sub-arrays. The deployment of the first demonstration cluster has been started in April 2013. In 2014 the deployment of the second stage of the demonstration cluster has been performed. We describe the configuration and design of the first GVD cluster and review the current status of cluster deployment in Lake Baikal.

  7. The AMANDA-II Neutrino-Telescope

    OpenAIRE

    Wischnewski, R; collaboration, for the AMANDA

    2002-01-01

    The AMANDA-II telescope at the South Pole is constructed of 677 optical modules at 19 strings. We describe the observation of atmospheric neutrinos with the first stage 10-string detector AMANDA-B10, which establishes AMANDA as a working neutrino telescope. The expected performance for the AMANDA-II detector is discussed.

  8. Recent results from the ANTARES neutrino telescope

    CERN Document Server

    Van Elewyck, V

    2013-01-01

    The ANTARES neutrino telescope is currently the largest operating water Cherenkov detector and the largest neutrino detector in the Northern Hemisphere. Its main scientific target is the detection of high-energy (TeV and beyond) neutrinos from cosmic accelerators, as predicted by hadronic interaction models, and the measurement of the diffuse neutrino flux. Its location allows for surveying a large part of the Galactic Plane, including the Galactic Centre. In addition to the standalone searches for point-like and diffuse high-energy neutrino signals, ANTARES has developed a range of multi-messenger strategies to exploit the close connection between neutrinos and other cosmic messengers such as gamma-rays, charged cosmic rays and gravitational waves. This contribution provides an overview of the recently conducted analyses, including a search for neutrinos from the Fermi bubbles region, searches for optical counterparts with the TAToO program, and searches for neutrinos in correlation with gamma-ray bursts, bl...

  9. Astrophysical Neutrino Event Rates and Sensitivity for Neutrino Telescopes

    OpenAIRE

    Albuquerque, Ivone F. M.; Lamoureux, Jodi; Smoot, George F.

    2001-01-01

    Spectacular processes in astrophysical sites produce high-energy cosmic rays which are further accelerated by Fermi-shocks into a power-law spectrum. These, in passing through radiation fields and matter, produce neutrinos. Neutrino telescopes are designed with large detection volumes to observe such astrophysical sources. A large volume is necessary because the fluxes and cross-sections are small. We estimate various telescopes' sensitivities and expected event rates from astrophysical sourc...

  10. Recent results of the ANTARES neutrino telescope

    International Nuclear Information System (INIS)

    The latest results from the ANTARES Neutrino Telescope are reported. Limits on a high energy neutrino diffuse flux have been set using for the first time both muon–track and showering events. The results for point sources obtained by ANTARES are also shown. These are the most stringent limits for the southern sky for neutrino energies below 100 TeV. Constraints on the nature of the cluster of neutrino events near the Galactic Centre observed by IceCube are also reported. In particular, ANTARES data excludes a single point–like neutrino source as the origin of this cluster. Looking for neutrinos coming from the Sun or the centre of the Galaxy, very competitive limits are set by the ANTARES data to the flux of neutrinos produced by self-annihilation of weakly interacting massive particles

  11. Measurement of Atmospheric Neutrino Oscillations with the ANTARES Neutrino Telescope

    CERN Document Server

    Adrian-Martinez, S; Albert, A; Andre, M; Anghinolfi, M; Anton, G; Anvar, S; Ardid, M; Astraatmadja, T; Aubert, J -J; Baret, B; Basa, S; Bertin, V; Biagi, S; Bigongiari, C; Bogazzi, C; Bou-Cabo, M; Bouhou, B; Bouwhuis, M C; Brunner, J; Busto, J; Capone, A; Carloganu, C; Carr, J; Cecchini, S; Charif, Z; Charvis, Ph; Chiarusi, T; Circella, M; Coniglione, R; Core, L; Costantini, H; Coyle, P; Creusot, A; Curtil, C; De Bonis, G; Decowski, M P; Dekeyser, I; Deschamps, A; Distefano, C; Donzaud, C; Dornic, D; Dorosti, Q; Drouhin, D; Eberl, T; Emanuele, U; Enzenhoefer, A; Ernenwein, J -P; Escoffier, S; Fehn, K; Fermani, P; Ferri, M; Ferry, S; Flaminio, V; Folger, F; Fritsch, U; Fuda, J -L; Galata, S; Gay, P; Geyer, K; Giacomelli, G; Giordano, V; Gleixner, A; Gomez-Gonzalez, J P; Graf, K; Guillard, G; Hallewell, G; Hamal, M; van Haren, H; Heijboer, A J; Hello, Y; Hernandez-Rey, J J; Herold, B; Hoessl, J; Hsu, C C; de Jong, M; Kadler, M; Kalekin, O; Kappes, A; Katz, U; Kavatsyuk, O; Kooijman, P; Kopper, C; Kouchner, A; Kreykenbohm, I; Kulikovskiy, V; Lahmann, R; Lambard, G; Larosa, G; Lattuada, D; Lefevre, D; Lim, G; Presti, D Lo; Loehner, H; Loucatos, S; Louis, F; Mangano, S; Marcelin, M; Margiotta, A; Martinez-Mora, J A; Meli, A; Montaruli, T; Morganti, M; Moscoso, L; Motz, H; Neff, M; Nezri, E; Palioselitis, D; Pavalas, G E; Payet, K; Petrovic, J; Piattelli, P; Popa, V; Pradier, T; Presani, E; Racca, C; Reed, C; Riccobene, G; Richardt, C; Richter, R; Riviere, C; Robert, A; Roensch, K; Rostovtsev, A; Ruiz-Rivas, J; Rujoiu, M; Russo, G V; Samtleben, D F E; Sanchez-Losa, A; Sapienza, P; Schmid, J; Schnabel, J; Schoeck, F; Schuller, J -P; Schuessler, F; Seitz, T; Shanidze, R; Simeone, F; Spies, A; Spurio, M; Steijger, J J M; Stolarczyk, Th; Taiuti, M; Tamburini, C; Trovato, A; Vallage, B; Vallee, C; Van Elewyck, V; Vecchi, M; Vernin, P; Visser, E; Wagner, S; Wijnker, G; Wilms, J; de Wolf, E; Yepes, H; Zaborov, D; Zornoza, J D; Zuniga, J

    2012-01-01

    The data taken with the ANTARES neutrino telescope from 2007 to 2010, a total live time of 863 days, are used to measure the oscillation parameters of atmospheric neutrinos. Muon tracks are reconstructed with energies as low as 20 GeV. Neutrino oscillations will cause a suppression of vertical upgoing muon neutrinos of such energies crossing the Earth. The parameters determining the oscillation of atmospheric neutrinos are extracted by fitting the event rate as a function of the ratio of the estimated neutrino energy and reconstructed flight path through the Earth. Measurement contours of the oscillation parameters in a two-flavour approximation are derived. Assuming maximum mixing, a mass difference of $\\Delta m_{32}^2=(3.1\\pm 0.9)\\cdot 10^{-3}$ eV$^2$ is obtained, in good agreement with the world average value.

  12. Measurement of atmospheric neutrino oscillations with the ANTARES neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Adrian-Martinez, S. [Institut d' Investigacio per a la Gestio Integrada de les Zones Costaneres (IGIC), Universitat Politecnica de Valencia, C/ Paranimf 1, 46730 Gandia (Spain); Al Samarai, I. [CPPM, Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Albert, A. [GRPHE - Institut universitaire de technologie de Colmar, 34 rue du Grillenbreit, BP 50568, 68008 Colmar (France); Andre, M. [Technical University of Catalonia, Laboratory of Applied Bioacoustics, Rambla Exposicio, 08800 Vilanova i la Geltru, Barcelona (Spain); Anghinolfi, M. [INFN - Sezione di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Anton, G. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany); Anvar, S. [Direction des Sciences de la Matiere, Institut de recherche sur les lois fondamentales de l' Univers, Service d' Electronique des Detecteurs et d' Informatique, CEA Saclay, 91191 Gif-sur-Yvette Cedex (France); Ardid, M. [Institut d' Investigacio per a la Gestio Integrada de les Zones Costaneres (IGIC), Universitat Politecnica de Valencia, C/ Paranimf 1, 46730 Gandia (Spain); Astraatmadja, T. [Nikhef, Science Park, Amsterdam (Netherlands); Aubert, J.-J. [CPPM, Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); and others

    2012-08-14

    The data taken with the ANTARES neutrino telescope from 2007 to 2010, a total live time of 863 days, are used to measure the oscillation parameters of atmospheric neutrinos. Muon tracks are reconstructed with energies as low as 20 GeV. Neutrino oscillations will cause a suppression of vertical upgoing muon neutrinos of such energies crossing the Earth. The parameters determining the oscillation of atmospheric neutrinos are extracted by fitting the event rate as a function of the ratio of the estimated neutrino energy and reconstructed flight path through the Earth. Measurement contours of the oscillation parameters in a two-flavour approximation are derived. Assuming maximal mixing, a mass difference of {Delta}m{sub 32}{sup 2}=(3.1{+-}0.9) Dot-Operator 10{sup -3} eV{sup 2} is obtained, in good agreement with the world average value.

  13. Measurement of atmospheric neutrino oscillations with the ANTARES neutrino telescope

    International Nuclear Information System (INIS)

    The data taken with the ANTARES neutrino telescope from 2007 to 2010, a total live time of 863 days, are used to measure the oscillation parameters of atmospheric neutrinos. Muon tracks are reconstructed with energies as low as 20 GeV. Neutrino oscillations will cause a suppression of vertical upgoing muon neutrinos of such energies crossing the Earth. The parameters determining the oscillation of atmospheric neutrinos are extracted by fitting the event rate as a function of the ratio of the estimated neutrino energy and reconstructed flight path through the Earth. Measurement contours of the oscillation parameters in a two-flavour approximation are derived. Assuming maximal mixing, a mass difference of Δm322=(3.1±0.9)⋅10-3 eV2 is obtained, in good agreement with the world average value.

  14. Selected results from the ANTARES neutrino telescope

    CERN Document Server

    Mangano, Salvatore

    2012-01-01

    The ANTARES telescope is the largest underwater neutrino telescope existing at present. It is based on the detection of Cherenkov light produced in sea water by neutrino-induced muons. The detector, consisting of a tri-dimensional array of 885 photomultipliers arranged on twelve vertical lines, is located at a depth of 2475 m in the Mediterranean Sea, 40 km off the French coast. The main goal of the experiment is to probe the Universe by means of neutrino events in an attempt to investigate the nature of high energy astrophysical sources, to contribute to the identification of cosmic ray sources, and to explore the nature of dark matter. In this contribution we will review the status of the detector, illustrate its operation and performance, and present the first results from the analysis carried out on atmospheric muons and neutrinos, as well as from the search for astrophysical neutrino sources.

  15. Asp-15—A stationary device for the measurement of the optical water properties at the NT200 neutrino telescope site

    International Nuclear Information System (INIS)

    The operation of large underwater neutrino telescopes requires the precise knowledge of the water parameters governing light absorption and scattering, as well as a continuous monitoring of these parameters. For this purpose, a stationary underwater device, ASP-15, has been developed by the Baikal collaboration. We describe the basic assumptions and formulae behind ASP-15, the methods how absorption length, scattering length and phase functions are determined, the design of the device, and give some results obtained over many years of operation in conjuction with the Baikal telescope NT200.

  16. Recent results from the ANTARES neutrino telescope

    International Nuclear Information System (INIS)

    The ANTARES detector, located in the deep sea 40 km off the French coast, is the largest neutrino telescope in the northern hemisphere. It consists of an array of 885 photomultipliers detecting the Cherenkov light induced by charged leptons created in neutrino interactions in and around the detector. The main goal of ANTARES is to search for astrophysical neutrinos in the TeV-PeV range. This comprises searches for a diffuse cosmic neutrino flux and for fluxes from possible galactic and extragalactic sources of neutrinos. The search program also includes multi-messenger analyses based on time and/or space coincidences with other cosmic probes. The ANTARES detector is sensitive to a wide range of other phenomena, from atmospheric neutrino oscillations to dark matter annihilation or potential exotics such as nuclearites and magnetic monopoles

  17. Searching for tau neutrinos with Cherenkov telescopes

    CERN Document Server

    Gora, D; Kappes, A

    2014-01-01

    Cherenkov telescopes have the capability of detecting high energy tau neutrinos in the energy range of 1--1000 PeV by searching for very inclined showers. If a tau lepton, produced by a tau neutrino, escapes from the Earth or a mountain, it will decay and initiate a shower in the air which can be detected by an air shower fluorescence or Cherenkov telescope. In this paper, we present detailed Monte Carlo simulations of corresponding event rates for the VERITAS and two proposed Cherenkov Telescope Array sites: Meteor Crater and Yavapai Ranch, which use representative AGN neutrino flux models and take into account topographic conditions of the detector sites. The calculated neutrino sensitivities depend on the observation time and the shape of the energy spectrum, but in some cases are comparable or even better than corresponding neutrino sensitivities of the IceCube detector. For VERITAS and the considered Cherenkov Telescope Array sites the expected neutrino sensitivities are up to factor 3 higher than for th...

  18. Recent results from the ANTARES neutrino telescope

    Science.gov (United States)

    Van Elewyck, Véronique

    2014-04-01

    The ANTARES neutrino telescope is currently the largest operating water Cherenkov detector and the largest neutrino detector in the Northern Hemisphere. Its main scientific target is the detection of high-energy (TeV and beyond) neutrinos from cosmic accelerators, as predicted by hadronic interaction models, and the measurement of the diffuse neutrino flux. Its location allows for surveying a large part of the Galactic Plane, including the Galactic Centre. In addition to the standalone searches for point-like and diffuse high-energy neutrino signals, ANTARES has developed a range of multi-messenger strategies to exploit the close connection between neutrinos and other cosmic messengers such as gamma-rays, charged cosmic rays and gravitational waves. This contribution provides an overview of the recently conducted analyses, including a search for neutrinos from the Fermi bubbles region, searches for optical counterparts with the TAToO program, and searches for neutrinos in correlation with gamma-ray bursts, blazars, and microquasars. Further topics of investigation, covering e.g. the search for neutrinos from dark matter annihilation, searches for exotic particles and the measurement of neutrino oscillations, are also reviewed.

  19. Recent results from the ANTARES neutrino telescope

    International Nuclear Information System (INIS)

    The ANTARES neutrino telescope is currently the largest operating water Cherenkov detector and the largest neutrino detector in the Northern Hemisphere. Its main scientific target is the detection of high-energy (TeV and beyond) neutrinos from cosmic accelerators, as predicted by hadronic interaction models, and the measurement of the diffuse neutrino flux. Its location allows for surveying a large part of the Galactic Plane, including the Galactic Centre. In addition to the standalone searches for point-like and diffuse high-energy neutrino signals, ANTARES has developed a range of multi-messenger strategies to exploit the close connection between neutrinos and other cosmic messengers such as gamma-rays, charged cosmic rays and gravitational waves. This contribution provides an overview of the recently conducted analyses, including a search for neutrinos from the Fermi bubbles region, searches for optical counterparts with the TAToO program, and searches for neutrinos in correlation with gamma-ray bursts, blazars, and microquasars. Further topics of investigation, covering e.g. the search for neutrinos from dark matter annihilation, searches for exotic particles and the measurement of neutrino oscillations, are also reviewed

  20. A sensor architecture for neutrino telescopes

    International Nuclear Information System (INIS)

    In the Mediterranean Sea the ANTARES telescope is operating since 2006. Building on the success of this telescope and on the experiences of the DUMAND, IceCube, NEMO and NESTOR projects, a design for a new generation deep-sea neutrino telescope has been developed, which relies on the paradigm of the neutrino telescope as a giant sensor. Slender flexible strings with optical sensors form the basic building blocks for the telescope. The sensor concept has been implemented using photonic technologies for readout, data acquisition and communication, which allow for migration of functionalities from the deep-sea to the shore. This is one of the detector designs options developed during the EU funded KM3NeT Design Study. We will present its concept and implications for the detector as a whole.

  1. Acoustic Transmitters for Underwater Neutrino Telescopes

    CERN Document Server

    Ardid, Miguel; Bou-Cabo, Manuel; Larosa, Giuseppina; Adrián-Martínez, Silvia; Llorens, Carlos D

    2012-01-01

    In this paper acoustic transmitters that were developed for use in underwater neutrino telescopes are presented. Firstly, an acoustic transceiver has been developed as part of the acoustic positioning system of neutrino telescopes. These infrastructures are not completely rigid and require a positioning system in order to monitor the position of the optical sensors which move due to sea currents. To guarantee a reliable and versatile system, the transceiver has the requirements of reduced cost, low power consumption, high pressure withstanding (up to 500 bars), high intensity for emission, low intrinsic noise, arbitrary signals for emission and the capacity of acquiring and processing received signals. Secondly, a compact acoustic transmitter array has been developed for the calibration of acoustic neutrino detection systems. The array is able to mimic the signature of ultra-high-energy neutrino interaction in emission directivity and signal shape. The technique of parametric acoustic sources has been used to...

  2. Recent results from the ANTARES neutrino telescope

    International Nuclear Information System (INIS)

    The ANTARES detector, located 40 km off the French coast, is the largest deep-sea neutrino telescope in the world. It consists of an array of 885 photomultipliers detecting the Cherenkov light induced by charged leptons produced by neutrino interactions in and around the detector. The primary goal of ANTARES is to search for astrophysical neutrinos in the TeV–PeV range. This comprises generic searches for any diffuse cosmic neutrino flux as well as more specific searches for astrophysical sources such as active galactic nuclei or galactic sources. The search program also includes multi messenger analyses based on time and/or space coincidences with other cosmic probes. The ANTARES observatory is sensitive to a wide range of other phenomena, from atmospheric neutrino oscillations to dark matter annihilation or potential exotics such as nuclearites and magnetic monopoles. The most recent results are reported. (author)

  3. Time calibration of the ANTARES neutrino telescope

    International Nuclear Information System (INIS)

    The ANTARES deep-sea neutrino telescope comprises a three-dimensional array of photomultipliers to detect the Cherenkov light induced by upgoing relativistic charged particles originating from neutrino interactions in the vicinity of the detector. The large scattering length of light in the deep sea facilitates an angular resolution of a few tenths of a degree for neutrino energies exceeding 10 TeV. In order to achieve this optimal performance, the time calibration procedures should ensure a relative time calibration between the photomultipliers at the level of 1 ns. The methods developed to attain this level of precision are described. (authors)

  4. Time Calibration of the ANTARES Neutrino Telescope

    CERN Document Server

    Aguilar, J A; Albert, A; André, M; Anghinolfi, M; Anton, G; Anvar, S; Ardid, M; Jesus, A C Assis; Astraatmadja, T; Aubert, J J; Auer, R; Baret, B; Basa, S; Bazzotti, M; Bertin, V; Biagi, S; Bigongiari, C; Bou-Cabo, M; Bouwhuis, M C; Brown, A M; Brunner, J; Busto, J; Camarena, F; Capone, A; Carloganu, C; Carminati, G; Carr, J; Cecchini, S; Charvis, Ph; Chiarusi, T; Circella, M; Costantini, H; Cottini, N; Coyle, P; Curtil, C; Decowski, M P; Dekeyser, I; Deschamps, A; Distefano, C; Donzaud, C; Dornic, D; Drouhin, D; Eberl, T; Emanuele, U; Ernenwein, J P; Escoffier, S; Fehr, F; Flaminio, V; Fritsch, U; Fuda, J L; Galata, S; Gay, P; Giacomelli, G; Gómez-González, J P; Graf, K; Guillard, G; Halladjian, G; Hallewell, G; van Haren, H; Heijboer, A J; Hello, Y; Hernández-Rey, J J; Herold, B; Hössl, J; Hsu, C C; de Jong, M; Kadler, M; Kalantar-Nayestanaki, N; Kalekin, O; Kappes, A; Katz, U; Kooijman, P; Kopper, C; Kouchner, A; Kulikovskiy, V; Lahmann, R; Lamare, P; Larosa, G; Lefèvre, D; Lim, G; Presti, D Lo; Loehner, H; Loucatos, S; Lucarelli, F; Mangano, S; Marcelin, M; Margiotta, A; Martinez-Mora, J A; Mazure, A; Montaruli, T; Morganti, M; Moscoso, L; Motz, H; Naumann, C; Neff, M; Palioselitis, D; Pavalas, G E; Payre, P; Petrovic, J; Piattelli, P; Picot-Clemente, N; Picq, C; Popa, V; Pradier, T; Presani, E; Racca, C; Reed, C; Riccobene, G; Richardt, C; Rujoiu, M; Russo, G V; Salesa, F; Sapienza, P; Schöck, F; Schuller, J P; Shanidze, R; Simeone, F; Spies, A; Spurio, M; Steijger, J J M; Stolarczyk, Th; Taiuti, M; Tamburini, C; Tasca, L; Toscano, S; Vallage, B; Van Elewyck, V; Vannoni, G; Vecchi, M; Vernin, P; Wijnker, G; de Wolf, E; Yepes, H; Zaborov, D; Zornoza, J D; Zúñiga, J

    2010-01-01

    The ANTARES deep-sea neutrino telescope comprises a three-dimensional array of photomultipliers to detect the Cherenkov light induced by upgoing relativistic charged particles originating from neutrino interactions in the vicinity of the detector. The large scattering length of light in the deep sea facilitates an angular resolution of a few tenths of a degree for neutrino energies exceeding 10 TeV. In order to achieve this optimal performance, the time calibration procedures should ensure a relative time calibration between the photomultipliers at the level of about 1ns. The methods developed to attain this level of precision are described.

  5. Searching for tau neutrinos with Cherenkov telescopes

    OpenAIRE

    Gora, D.; Bernardini, E.; Kappes, A.

    2015-01-01

    Cherenkov telescopes have the capability of detecting high energy tau neutrinos in the energy range of 1--1000 PeV by searching for very inclined showers. If a tau lepton, produced by a tau neutrino, escapes from the Earth or a mountain, it will decay and initiate a shower in the air which can be detected by an air shower fluorescence or Cherenkov telescope. In this paper, we present detailed Monte Carlo simulations of corresponding event rates for the VERITAS and two proposed Cherenkov Teles...

  6. Neutrino Telescopes' Sensitivity to Dark Matter

    OpenAIRE

    Albuquerque, Ivone F. M.; Lamoureux, Jodi; Smoot, George F.

    2002-01-01

    The nature of the dark matter of the Universe is yet unknown and most likely is connected with new physics. The search for its composition is under way through direct and indirect detection. Fundamental physical aspects such as energy threshold, geometry and location are taken into account to investigate proposed neutrino telescopes of km^3 volume sensitivities to dark matter. These sensitivities are just sufficient to test a few WIMP scenarios. Telescopes of km^3 volume, such as IceCube, can...

  7. Flavor distribution of UHE cosmic neutrino oscillations at neutrino telescopes

    Science.gov (United States)

    Xing, Zhi-Zhong

    2009-04-01

    If the ultrahigh-energy (UHE) cosmic neutrinos produced from a distant astrophysical source can be measured at a km-size neutrino telescope such as the IceCube or KM3NeT, they will open a new window to understand the nature of flavor mixing and to probe possible new physics. Considering the conventional UHE cosmic neutrino source with the flavor ratio φe:φμ:φτ=1:2:0, I point out two sets of conditions for the flavor democracy φeT:φμT:φτT=1:1:1 to show up at neutrino telescopes: either θ13=0 and θ23=π/4 (CP invariance) or δ=±π/2 and θ23=π/4 (CP violation) in the standard parametrization of the 3×3 neutrino mixing matrix V. Allowing for slight μ-τ symmetry breaking effects characterized by Δ∈[-0.1,+0.1], I find φeT:φμT:φτT=(1-2Δ):(1+Δ):(1+Δ) as a good approximation. Another possibility to constrain Δ is to detect the ν flux of E≈6.3PeV via the Glashow resonance channel νe→W→anything. I also give some brief comments on (1) possible non-unitarity of V in the seesaw framework and its effects on the flavor distribution at neutrino telescopes and (2) a generic description and determination of the cosmic neutrino flavor composition at distant astrophysical sources.

  8. The ANTARES telescope neutrino alert system

    NARCIS (Netherlands)

    Ageron, M.; Aguilar, J. A.; Al Samarai, I.; Albert, A.; Andre, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Jesus, A. C. Assis; Astraatmadja, T.; Aubert, J. -J.; Baret, B.; Basa, S.; Bertin, V.; Biagi, S.; Bigi, A.; Bigongiari, C.; Bogazzi, C.; Bou-Cabo, M.; Bouhou, B.; Bouwhuis, M. C.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Carloganu, C.; Carminati, G.; Carr, J.; Cecchini, S.; Charif, Z.; Charvis, Ph.; Chiarusi, T.; Circella, M.; Coniglione, R.; Costantini, H.; Coyle, P.; Curtil, C.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drouhin, D.; Eberl, T.; Emanuele, U.; Enzenhoefer, A.; Ernenwein, J-P.; Escoffier, S.; Fermani, P.; Ferri, M.; Flaminio, V.; Folger, F.; Fritsch, U.; Fuda, J-L.; Galata, S.; Gay, P.; Giacomelli, G.; Giordano, V.; Gomez-Gonzalez, J. P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Hartman, J.; Heijboer, A. J.; Hello, Y.; Hernandez-Rey, J. J.; Herold, B.; Hoessl, J.; Hsu, C. C.; de Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U.; Kavatsyuk, O.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lamare, P.; Larosa, G.; Lattuada, D.; Lefevre, D.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J. A.; Meli, A.; Montaruli, T.; Moscoso, L.; Motz, H.; Neff, M.; Nezri, E.; Palioselitis, D.; Pavalas, G. E.; Payet, K.; Payre, P.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Reed, C.; Richardt, C.; Richter, R.; Riviere, C.; Robert, A.; Roensch, K.; Rostovtsev, A.; Ruiz-Rivas, J.; Rujoiu, M.; Russo, G. V.; Salesa, F.; Sapienza, P.; Schoeck, F.; Schuller, J-P.; Schuessler, F.; Shanidze, R.; Simeone, F.; Spies, A.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Sanchez-Losa, A.; Taiuti, M.; Tamburini, C.; Toscano, S.; Vallage, B.; Van Elewyck, V.; Vannoni, G.; Vecchi, M.; Vernin, P.; Wijnker, G.; Wilms, J.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J. D.; Zuniga, J.

    2012-01-01

    The ANTARES telescope has the capability to detect neutrinos produced in astrophysical transient sources. Potential sources include gamma-ray bursts, core collapse supernovae, and flaring active galactic nuclei. To enhance the sensitivity of ANTARES to such sources, a new detection method based on c

  9. Long-lived staus at neutrino telescopes

    International Nuclear Information System (INIS)

    We perform an exhaustive study of the role neutrino telescopes could play in the discovery and exploration of supersymmetric extensions of the Standard Model with a long-lived stau next-to-lightest superparticle. These staus are produced in pairs by cosmic neutrino interactions in the Earth matter. We show that the background of stau events to the standard muon signal is negligible and plays no role in the determination of the cosmic neutrino flux. On the other hand, one can expect up to 50 pair events per year in a cubic kilometer detector such as IceCube, if the superpartner mass spectrum and the high-energy cosmic neutrino flux are close to experimental bounds. (Orig.)

  10. Astrophysical Neutrino Event Rates and Sensitivity for Neutrino Telescopes

    CERN Document Server

    Albuquerque, I F M; Smoot, G F; Albuquerque, Ivone F.M.; Lamoureux, Jodi; Smoot, George F.

    2001-01-01

    Spectacular processes in astrophysical sites produce high-energy cosmic rays which are further accelerated by Fermi-shocks into a power-law spectrum. These, in passing through radiation fields and matter, produce neutrinos. Neutrino telescopes are designed with large detection volumes to observe such astrophysical sources. A large volume is necessary because the fluxes and cross-sections are small. We estimate various telescopes' sensitivity and expected event rates from astrophysical sources of high-energy neutrinos. We find that an ideal detector of km^2 incident area can be sensitive to a flux of neutrinos integrated over energy from 10^5 and 10^{7} GeV as low as 1.3 * 10^(-8) * E^(-2) (GeV/cm^2 s sr) which is three times smaller than the Waxman-Bachall conservative upper limit on potential neutrino flux. Detection from point sources is possible from known bursts and unlikely if there is no prior knowledge of the location and time of the burst. A real detector will have degraded performance.

  11. Neutrino telescopes' sensitivity to dark matter

    International Nuclear Information System (INIS)

    The nature of the dark matter of the Universe is yet unknown and most likely is connected with new physics. The search for its composition is underway through direct and indirect detection. Fundamental physical aspects such as energy threshold, geometry and location are taken into account to investigate proposed neutrino telescopes of km3 volume sensitivities to dark matter. These sensitivities are just sufficient to test a few weakly interacting massive particle scenarios. Telescopes of km3 volume, such as IceCube, can definitely discover or exclude superheavy (M>1010 GeV) strong interacting massive particles (simpzillas). Smaller neutrino telescopes such as ANTARES, AMANDA-II and NESTOR can probe a large region of simpzilla parameter space

  12. Results from the ANTARES neutrino telescope

    Science.gov (United States)

    Spurio, M.

    2016-04-01

    ANTARES is the largest neutrino telescope in the Northern hemisphere, running in its final configuration since 2008. After the discovery of a cosmic neutrino diffuse flux by the IceCube detector, the search for its origin has become a key mission in high-energy astrophysics. The ANTARES sensitivity is large enough to constrain the origin of the IceCube excess from regions extended up to 0.2 sr in the Southern sky. The Southern sky has been studied searching for point-like objects, for extended regions of emission (as the Galactic plane) and for signal from transient objects selected through multimessenger observations. Upper limits are presented assuming different spectral indexes for the energy spectrum of neutrino sources. In addition, ANTARES provides results on studies of the sky in combination with different multimessenger experiments, on atmospheric neutrinos, on the searches for rare particles in the cosmic radiation (such as magnetic monopoles and nuclearites), and on Earth and Sea science. Particularly relevant are the searches for Dark Matter: the limits obtained for the spin-dependent WIMP-nucleon cross section overcome that of existing direct-detection experiments. The recent results, widely discussed in dedicated presentations during the 7th edition of the Very Large Volume Neutrino Telescope Workshop (VLVνT-2015), are highlighted in this paper.

  13. High energy neutrino astronomy and its telescopes

    International Nuclear Information System (INIS)

    Doing astronomy with photons of energies in excess of a GeV has turned out to be extremely challenging. Efforts are underway to develop instruments that may push astronomy to wavelengths smaller than 10-14 cm by mapping the sky using high energy neutrinos instead. Neutrino astronomy, born with the identification of thermonuclear fusion in the sun and the particle processes controlling the fate of a nearby supernova, will reach outside the galaxy and make measurements relevant to cosmology. The field is immersed in technology in the domains of particle physics to which many of its research goals are intellectually connected. To mind come the search for neutrino mass, cold dark matter (supersymmetric particles?) and the monopoles of the Standard Model. While a variety of collaborations are pioneering complementary methods by building telescopes with effective area in excess of 0.01 km2, we show here that the natural scale of a high energy neutrino telescope is 1 km2. With several thousand optical modules and a price tag unlikely to exceed 100 million dollars, the scope of a kilometer-scale instrument is similar to that of experiments presently being commissioned such as the SNO neutrino observatory in Canada and the Superkamiokande experiment in Japan

  14. Results from the ANTARES neutrino telescope

    Directory of Open Access Journals (Sweden)

    Spurio M.

    2016-01-01

    Full Text Available ANTARES is the largest neutrino telescope in the Northern hemisphere, running in its final configuration since 2008. After the discovery of a cosmic neutrino diffuse flux by the IceCube detector, the search for its origin has become a key mission in high-energy astrophysics. The ANTARES sensitivity is large enough to constrain the origin of the IceCube excess from regions extended up to 0.2 sr in the Southern sky. The Southern sky has been studied searching for point-like objects, for extended regions of emission (as the Galactic plane and for signal from transient objects selected through multimessenger observations. Upper limits are presented assuming different spectral indexes for the energy spectrum of neutrino sources. In addition, ANTARES provides results on studies of the sky in combination with different multimessenger experiments, on atmospheric neutrinos, on the searches for rare particles in the cosmic radiation (such as magnetic monopoles and nuclearites, and on Earth and Sea science. Particularly relevant are the searches for Dark Matter: the limits obtained for the spin-dependent WIMP-nucleon cross section overcome that of existing direct-detection experiments. The recent results, widely discussed in dedicated presentations during the 7th edition of the Very Large Volume Neutrino Telescope Workshop (VLVνT-2015, are highlighted in this paper.

  15. Recent Results from the AMANDA-II neutrino telescope

    OpenAIRE

    Groß, Andreas; Collaboration, The AMANDA

    2005-01-01

    AMANDA-II is an operating neutrino telescope located at the South Pole. Recent results of AMANDA are presented, including the examination of the diffuse neutrino flux, permanent and transient point source analyses, and indirect dark matter searches. A brief outlook on the IceCube neutrino telescope currently under construction at the South Pole is given.

  16. Acoustic Transmitters for Underwater Neutrino Telescopes

    Directory of Open Access Journals (Sweden)

    Carlos D. Llorens

    2012-03-01

    Full Text Available In this paper acoustic transmitters that were developed for use in underwater neutrino telescopes are presented. Firstly, an acoustic transceiver has been developed as part of the acoustic positioning system of neutrino telescopes. These infrastructures are not completely rigid and require a positioning system in order to monitor the position of the optical sensors which move due to sea currents. To guarantee a reliable and versatile system, the transceiver has the requirements of reduced cost, low power consumption, high pressure withstanding (up to 500 bars, high intensity for emission, low intrinsic noise, arbitrary signals for emission and the capacity of acquiring and processing received signals. Secondly, a compact acoustic transmitter array has been developed for the calibration of acoustic neutrino detection systems. The array is able to mimic the signature of ultra-high-energy neutrino interaction in emission directivity and signal shape. The technique of parametric acoustic sources has been used to achieve the proposed aim. The developed compact array has practical features such as easy manageability and operation. The prototype designs and the results of different tests are described. The techniques applied for these two acoustic systems are so powerful and versatile that may be of interest in other marine applications using acoustic transmitters.

  17. Energy Reconstruction Methods in the IceCube Neutrino Telescope

    CERN Document Server

    Aartsen, M G; Ackermann, M; Adams, J; Aguilar, J A; Ahlers, M; Altmann, D; Arguelles, C; Auffenberg, J; Bai, X; Baker, M; Barwick, S W; Baum, V; Bay, R; Beatty, J J; Tjus, J Becker; Becker, K -H; BenZvi, S; Berghaus, P; Berley, D; Bernardini, E; Bernhard, A; Besson, D Z; Binder, G; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Bose, D; Böser, S; Botner, O; Brayeur, L; Bretz, H -P; Brown, A M; Bruijn, R; Casey, J; Casier, M; Chirkin, D; Christov, A; Christy, B; Clark, K; Classen, L; Clevermann, F; Coenders, S; Cohen, S; Cowen, D F; Silva, A H Cruz; Danninger, M; Daughhetee, J; Davis, J C; Day, M; De Clercq, C; De Ridder, S; Desiati, P; de Vries, K D; de With, M; DeYoung, T; D\\'\\iaz-Vélez, J C; Dunkman, M; Eagan, R; Eberhardt, B; Eichmann, B; Eisch, J; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feintzeig, J; Feusels, T; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Franckowiak, A; Frantzen, K; Fuchs, T; Gaisser, T K; Gallagher, J; Gerhardt, L; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Golup, G; Gonzalez, J G; Goodman, J A; Góra, D; Grandmont, D T; Grant, D; Gretskov, P; Groh, J C; Groß, A; Ha, C; Ismail, A Haj; Hallen, P; Hallgren, A; Halzen, F; Hanson, K; Hebecker, D; Heereman, D; Heinen, D; Helbing, K; Hellauer, R; Hickford, S; Hill, G C; Hoffman, K D; Hoffmann, R; Homeier, A; Hoshina, K; Huang, F; Huelsnitz, W; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jackson, S; Jacobi, E; Jacobsen, J; Jagielski, K; Japaridze, G S; Jero, K; Jlelati, O; Kaminsky, B; Kappes, A; Karg, T; Karle, A; Kauer, M; Kelley, J L; Kiryluk, J; Kläs, J; Klein, S R; Köhne, J -H; Kohnen, G; Kolanoski, H; Köpke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Krasberg, M; Kriesten, A; Krings, K; Kroll, G; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Landsman, H; Larson, M J; Lesiak-Bzdak, M; Leuermann, M; Leute, J; Lünemann, J; Macías, O; Madsen, J; Maggi, G; Maruyama, R; Mase, K; Matis, H S; McNally, F; Meagher, K; Merck, M; Meures, T; Miarecki, S; Middell, E; Milke, N; Miller, J; Mohrmann, L; Montaruli, T; Morse, R; Nahnhauer, R; Naumann, U; Niederhausen, H; Nowicki, S C; Nygren, D R; Obertacke, A; Odrowski, S; Olivas, A; Omairat, A; O'Murchadha, A; Paul, L; Pepper, J A; Heros, C Pérez de los; Pfendner, C; Pieloth, D; Pinat, E; Posselt, J; Price, P B; Przybylski, G T; Quinnan, M; Rädel, L; Rameez, M; Rawlins, K; Redl, P; Reimann, R; Resconi, E; Rhode, W; Ribordy, M; Richman, M; Riedel, B; Rodrigues, J P; Rott, C; Ruhe, T; Ruzybayev, B; Ryckbosch, D; Saba, S M; Sander, H -G; Santander, M; Sarkar, S; Schatto, K; Scheriau, F; Schmidt, T; Schmitz, M; Schoenen, S; Schöneberg, S; Schönwald, A; Schukraft, A; Schulte, L; Schulz, O; Seckel, D; Sestayo, Y; Seunarine, S; Shanidze, R; Sheremata, C; Smith, M W E; Soldin, D; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stanisha, N A; Stasik, A; Stezelberger, T; Stokstad, R G; Stößl, A; Strahler, E A; Ström, R; Strotjohann, N L; Sullivan, G W; Taavola, H; Taboada, I; Tamburro, A; Tepe, A; Ter-Antonyan, S; Tešić, G; Tilav, S; Toale, P A; Tobin, M N; Toscano, S; Tselengidou, M; Unger, E; Usner, M; Vallecorsa, S; van Eijndhoven, N; Van Overloop, A; van Santen, J; Vehring, M; Voge, M; Vraeghe, M; Walck, C; Waldenmaier, T; Wallraff, M; Weaver, Ch; Wellons, M; Wendt, C; Westerhoff, S; Whitehorn, N; Wiebe, K; Wiebusch, C H; Williams, D R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, D L; Xu, X W; Yanez, J P; Yodh, G; Yoshida, S; Zarzhitsky, P; Ziemann, J; Zierke, S; Zoll, M

    2013-01-01

    Accurate measurement of neutrino energies is essential to many of the scientific goals of large-volume neutrino telescopes. The fundamental observable in such detectors is the Cherenkov light produced by charged particles created in neutrino interactions. The amount of light emitted is proportional to the deposited energy, which is approximately equal to the neutrino energy for $\

  18. Detection of extended galactic sources with an underwater neutrino telescope

    International Nuclear Information System (INIS)

    In this study we investigate the discovery capability of a Very Large Volume Neutrino Telescope to Galactic extended sources. We focus on the brightest HESS gamma rays sources which are considered also as very high energy neutrino emitters. We use the unbinned method taking into account both the spatial and the energy distribution of high energy neutrinos and we investigate parts of the Galactic plane where nearby potential neutrino emitters form neutrino source clusters. Neutrino source clusters as well as isolated neutrino sources are combined to estimate the observation period for 5 sigma discovery of neutrino signals from these objects

  19. Searching for dark matter with neutrino telescopes

    International Nuclear Information System (INIS)

    One of the most interesting mysteries of astrophysics is the puzzle of dark matter. Although numerous techniques have been explored and developed to detect this elusive substance, its nature remains unknown. One such method uses large high-energy neutrino telescopes to look for the annihilation products of dark matter annihilations. In this paper, we briefly review this technique. We describe the calculations used to find the rate of capture of WIMPs in the Sun or Earth and the spectrum of neutrinos produced in the resulting dark matter annihilations. We will discuss these calculations within the context of supersymmetry and models with universal extra dimensions, the lightest supersymmetric particle and lightest Kaluza-Klein particle providing the WIMP candidate in these cases, respectively. We will also discuss the status of some of the experiments relevant to these searches: AMANDA, IceCube and ANTARES

  20. PORFIDO: Oceanographic data for neutrino telescopes

    International Nuclear Information System (INIS)

    PORFIDO (Physical Oceanography by RFID Outreach) is a system designed to be installed in the optical modules of the NEMO experiment and possibly, in future underwater neutrino telescopes to gather oceanographic data with a minimum of disturbance to the main project and a very limited budget. The system gathers oceanographic data (temperature, etc.) from passive RFID tags (WISPs) attached to the outside of the NEMO optical modules with an RF reader situated inside the glass sphere, without the need of connectors or penetrators, which are very expensive and offer low reliability. Ten PORFIDOs will be deployed with the NEMO Phase 2 tower in 2011.

  1. High Energy Neutrinos from Space

    CERN Document Server

    Gaisser, Thomas K

    2012-01-01

    This paper reviews the status of the search for high-energy neutrinos from astrophysical sources. Results from large neutrino telescopes in water (Antares, Baikal) and ice (IceCube) are discussed as well as observations from the surface with Auger and from high altitude with ANITA. Comments on IceTop, the surface component of IceCube are also included.

  2. News from the ANTARES underwater neutrino telescope

    International Nuclear Information System (INIS)

    The ANTARES telescope is a device of 0.1km2 size to detect high energy neutrinos. It is located in the Mediterranean Sea at a depth of 2500 m. It consists of a three-dimensional matrix of optical modules (OM) containing photomultiplier tubes. As of September 2006 two complete lines and an instrumentation line, called MILOM, are deployed and fully operational for data taking. Three additional lines have been connected by the end of January 2007 allowing the first up-going muon track reconstruction. At the beginning of 2008, the full Antares telescope will be operational with 12 lines. All technical aspects are under control from the mechanical architecture to the constant improvement of the 'all-data-to-shore' concept. This talk will focus on the photon signal processing that allows to reconstruct the neutrino track. After a first review of the line architecture, we will present the signal processing and transport from the OM detector to the on-shore storage. During the R and D phases, the ANTARES collaboration has developed new concepts in terms of detector integration, front-end electronics architecture, cables, DAQ hardware architecture and software management. Finally, preliminary results of the performance of the detector will be shown

  3. Energy Reconstruction Methods in the IceCube Neutrino Telescope

    DEFF Research Database (Denmark)

    Aartsen, M.G.; Abbasi, R.; Ackermann, M.;

    2014-01-01

    Accurate measurement of neutrino energies is essential to many of the scientific goals of large-volume neutrino telescopes. The fundamental observable in such detectors is the Cherenkov light produced by the transit through a medium of charged particles created in neutrino interactions. The amount...... of light emitted is proportional to the deposited energy, which is approximately equal to the neutrino energy for νe and νμ charged-current interactions and can be used to set a lower bound on neutrino energies and to measure neutrino spectra statistically in other channels. Here we describe methods...

  4. A database for the ANTARES neutrino telescope

    Science.gov (United States)

    Albert, A.; ANTARES Collaboration

    2011-01-01

    ANTARES is a telescope for neutrino astronomy installed in the Mediterranean Sea at a depth of about 2500 m. While the event data are stored in root files, an Oracle 10 G Relational Data Base Management Server (RDBMS) is used for storing structural, control and monitoring information. The database includes complete configuration tables for the whole detector, allowing to store calibration information for each acquisition chain element. Such an information is stored in a large number of tables with relational behavior, in order to maintain the necessary correlations between the different data entries. This complex structure has been designed, so as to facilitate the development of the software for acquisition and analysis of the ANTARES data. In this paper the structure of the ANTARES database is illustrated for what concerns two major functionalities: calibration and apparatus configuration.

  5. VSiPMT for underwater neutrino telescopes

    International Nuclear Information System (INIS)

    Underwater neutrino telescopes are nowadays considered among the most important aims in the field of astroparticle physics. Their structure consists of a cubic-kilometer three-dimensional array of photosensitive devices aimed at the detection of the Cherenkov light emitted by charged particles produced by high energy neutrino interactions with the Earth. To date, a crucial role in this kind of experiments has been played by PhotoMultiplier Tubes (PMTs), however they suffer from many drawbacks such as linearity-to-gain relationship and difficulty in single photon counting. The next generation of experiments will require further improvements in photon detectors performances, therefore alternatives to PMTs are currently under study. In particular the most promising development in this field is represented by the rapidly emerging CMOS p-n Geiger-mode avalanche photodiode technology (G-APD or SiPM), that will allow the detection of high-speed single photons with high gain and linearity. In order to overcome the limit of small sensitive surfaces we suggest an innovative design for a modern hybrid, high gain, silicon based Vacuum Silicon Photomultiplier Tube (VSiPMT) based on the combination of a SiPM with a hemispherical vacuum glass PMT standard envelope. In this work we describe the full SiPM characterization realized by our group and we present the results of our Geant4-based simulations of electron backscattering over the SiPM surface

  6. The quest for dark matter with neutrino telescopes

    CERN Document Server

    Heros, Carlos Pérez de los

    2015-01-01

    There should be not doubt by now that neutrino telescopes are competitive instruments when it comes to searches for dark matter. Their large detector volumes collect hundreds of neutrinos per day. They scrutinize the whole sky continuously, being sensitive to neutrino signals of all flavours from dark matter annihilations in nearby objects (Sun, Earth, Milky Way Center and Halo) as well as from far away galaxies or galaxy clusters, and over a wide energy range. In this review we summarize the analysis techniques and recent results on dark matter searches from the neutrino telescopes currently in operation.

  7. Status of Neutrino Astronomy - a mini-review on neutrino telescopes

    CERN Document Server

    Kappes, Alexander

    2011-01-01

    With the completion of the first cubic-kilometer class neutrino telescopes, IceCube, the race for the discovery of the first cosmic high-energy neutrino sources enters into a new phase. The usage of neutrinos as cosmic messengers has the potential to significantly enhance and extend our knowledge on Galactic and extragalactic sources of the high-energy universe. This article gives a short review on the status of neutrino telescopes and their sensitivities concentrating on point-like sources. It discusses the current upper limits on neutrino emissions and their implications for models of different source classes.

  8. First search for neutrinos in correlation with gamma-ray bursts with the ANTARES neutrino telescope

    CERN Document Server

    Adrián-Martínez, S; Albert, A; André, M; Anghinolfi, M; Anton, G; Anvar, S; Ardid, M; Jesus, A C Assis; Astraatmadja, T; Aubert, J-J; Baret, B; Basa, S; Bertin, V; Biagi, S; Bigongiari, C; Bogazzi, C; Bou-Cabo, M; Bouhou, B; Bouwhuis, M; Brunner, J; Busto, J; Capone, A; Carloganu, C; Carr, J; Cecchini, S; Charif, Z; Charvis, Ph; Chiarusi, T; Circella, M; Coniglione, R; Core, L; Costantini, H; Coyle, P; Creusot, A; Curtil, C; De Bonis, G; Decowski, M P; Dekeyser, I; Deschamps, A; Distefano, C; Donzaud, C; Dornic, D; Dorosti, Q; Drouhin, D; Eberl, T; Emanuele, U; Enzenhöfer, A; Ernenwein, J-P; Escoffier, S; Fehn, K; Fermani, P; Ferri, M; Ferry, S; Flaminio, V; Folger, F; Fritsch, U; Fuda, J-L; Galatà, S; Gay, P; Geyer, K; Giacomelli, G; Giordano, V; Gómez-González, J P; Graf, K; Guillard, G; Hallewell, G; Hamal, M; van Haren, H; Heijboer, A J; Hello, Y; Hernández-Rey, J J; Herold, B; Hößl, J; Hsu, C C; de Jong, M; Kadler, M; Kalekin, O; Kappes, A; Katz, U; Kavatsyuk, O; Kooijman, P; Kopper, C; Kouchner, A; Kreykenbohm, I; Kulikovskiy, V; Lahmann, R; Lambard, G; Larosa, G; Lattuada, D; Lefèvre, D; Lim, G; Presti, D Lo; Loehner, H; Loucatos, S; Louis, F; Mangano, S; Marcelin, M; Margiotta, A; Martínez-Mora, J A; Montaruli, T; Morganti, M; Moscoso, L; Motz, H; Neff, M; Nezri, E; Palioselitis, D; Pavalas, G E; Payet, K; Petrovic, J; Piattelli, P; Popa, V; Pradier, T; Presani, E; Racca, C; Reed, C; Riccobene, G; Richardt, C; Richter, R; Rivière, C; Robert, A; Roensch, K; Rostovtsev, A; Ruiz-Rivas, J; Rujoiu, M; Russo, G V; Salesa, F; Samtleben, D F E; Sánchez-Losa, A; Sapienza, P; Schnabel, J; Schöck, F; Schuller, J-P; Schüssler, F; Seitz, T; Shanidze, R; Simeone, F; Spies, A; Spurio, M; Steijger, J J M; Stolarczyk, Th; Taiuti, M; Tamburini, C; Trovato, A; Vallage, B; Vallée, C; Van Elewyck, V; Vecchi, M; Vernin, P; Visser, E; Wagner, S; Wijnker, G; Wilms, J; de Wolf, E; Yepes, H; Zaborov, D; Zornoza, J D; Zúniga, J

    2013-01-01

    A search for neutrino-induced muons in correlation with a selection of 40 gamma-ray bursts that occurred in 2007 has been performed with the ANTARES neutrino telescope. During that period, the detector consisted of 5 detection lines. The ANTARES neutrino telescope is sensitive to TeV--PeV neutrinos that are predicted from gamma-ray bursts. No events were found in correlation with the prompt photon emission of the gamma-ray bursts and upper limits have been placed on the flux and fluence of neutrinos for different models.

  9. First search for neutrinos in correlation with gamma-ray bursts with the ANTARES neutrino telescope

    International Nuclear Information System (INIS)

    A search for neutrino-induced muons in correlation with a selection of 40 gamma-ray bursts that occurred in 2007 has been performed with the ANTARES neutrino telescope. During that period, the detector consisted of 5 detection lines. The ANTARES neutrino telescope is sensitive to TeV–PeV neutrinos that are predicted from gamma-ray bursts. No events were found in correlation with the prompt photon emission of the gamma-ray bursts and upper limits have been placed on the flux and fluence of neutrinos for different models

  10. Implications of leptonic unitarity violation at neutrino telescopes

    Science.gov (United States)

    Xing, Zhi-Zhong; Zhou, Shun

    2008-08-01

    A measurement of the ultrahigh-energy (UHE) cosmic neutrinos at a km3-size neutrino telescope will open a new window to constrain the 3×3 neutrino mixing matrix V and probe possible new physics. We point out that it is in principle possible to examine the non-unitarity of V, which is naturally expected in a class of seesaw models with one or more TeV-scale Majorana neutrinos, by using neutrino telescopes. Considering the UHE neutrinos produced from the decays of charged pions arising from pp and (or) pγ collisions at a distant astrophysical source, we show that their flavor ratios at a terrestrial neutrino telescope may deviate from the democratic flavor distribution ϕeT:ϕμT:ϕτT=1:1:1 due to the seesaw-induced unitarity violation of V. Its effect can be as large as several percent and can serve for an illustration of how sensitive a neutrino telescope should be to this kind of new physics.

  11. Simultaneous measurements of water optical properties by AC9 trasmissometer and ASP-15 Inherent Optical Properties meter in Lake Baikal

    CERN Document Server

    Balkanov, V A; Masullo, R; Migneco, E; Petruccetti, M; Riccobene, G

    2003-01-01

    Measurements of optical properties in media enclosing Cherenkov neutrino telescopes are important not only at the moment of the selection of an adequate site, but also for the continuous characterization of the medium as a function of time. Over the two last decades, the Baikal collaboration has been measuring the optical properties of the deep water in Lake Baikal (Siberia) where, since April 1998, the neutrino telescope NT-200 is in operation. Measurements have been made with custom devices. The NEMO Collaboration, aiming at the construction of a km3 Cherenkov neutrino detector in the Mediterranean Sea, has developed an experimental setup for the measurement of oceanographic and optical properties of deep sea water. This setup is based on a commercial transmissometer. During a joint campaign of the two collaborations in March and April 2001, light absorption, scattering and attenuation in water have been measured. The results are compatible with previous ones reported by the Baikal Collaboration and show co...

  12. A Feasibility Study for the Detection of Supernova Explosions with an Undersea Neutrino Telescope

    CERN Document Server

    Leisos, A; Tzamarias, S E

    2012-01-01

    We study the potential of a very large volume underwater Mediterranean neutrino telescope to observe neutrinos from supernova (SN) explosions within our galaxy. The intense neutrino burst emitted in a SN explosion results in a large number of MeV neutrinos inside the instrumented volume of the neutrino telescope that can be detected (mainly) via the reaction \

  13. Energy reconstruction methods in the IceCube neutrino telescope

    International Nuclear Information System (INIS)

    Accurate measurement of neutrino energies is essential to many of the scientific goals of large-volume neutrino telescopes. The fundamental observable in such detectors is the Cherenkov light produced by the transit through a medium of charged particles created in neutrino interactions. The amount of light emitted is proportional to the deposited energy, which is approximately equal to the neutrino energy for νe and νμ charged-current interactions and can be used to set a lower bound on neutrino energies and to measure neutrino spectra statistically in other channels. Here we describe methods and performance of reconstructing charged-particle energies and topologies from the observed Cherenkov light yield, including techniques to measure the energies of uncontained muon tracks, achieving average uncertainties in electromagnetic-equivalent deposited energy of ∼ 15% above 10 TeV

  14. Search for a diffuse cosmic neutrino flux using shower events in the ANTARES neutrino telescope

    OpenAIRE

    Folger, Florian

    2014-01-01

    The ANTARES neutrino telescope is a three-dimensional array of 885 photomultiplier tubes that has been installed in the Mediterranean Sea and that is designed to detect high energy neutrinos from the cosmos. Neutrinos that interact with nucleons in water in deep inelastic scattering processes induce secondary particles, such as muon tracks or hadronic and electromagnetic particle showers, that move faster than the speed of light in water and hence, emit Cherenkov radiation. By measuring the a...

  15. Search for magnetic monopoles with the neutrino telescope ANTARES

    International Nuclear Information System (INIS)

    The ANTARES neutrino telescope is located at a 2500 meters depth, and is composed of an array of 900 photomultipliers installed for the detection of Cherenkov light emitted by neutrino-induced muons, after having interacted with matter, and in order to reconstruct their directions. However, besides of being capable of detecting high energy neutrinos, neutrino telescopes could measure the incoming flux of magnetic monopoles in the detector. In this work, were first presented the different methods used in order to calibrate the photomultipliers, which are the heart of a neutrino telescope. The possibility of detecting magnetic monopoles with ANTARES was then discussed, and a first analysis optimised for the search for high velocity magnetic monopoles showed the great sensitivity offered by the telescope. Finally, a track reconstruction algorithm was modified, and a new analysis this time sensitive over a wider range of velocities was performed. After the application of the last analysis on the data taken in 2008 with the ANTARES telescope, new upper limits on the upward going magnetic monopole flux, of masses lower than 1014 GeV were obtained, and are the best experimental constraints on their flux for the velocity region β ∼ [0.65, 0.995]. (author)

  16. Indirect search for dark matter with neutrino telescopes

    CERN Document Server

    Zornoza, J D

    2016-01-01

    The quest to understand the nature dark matter is one of the most relevant ones in Particle Physics nowadays, since it constitutes most of the matter of the Universe and it is still unknown what it is made of. In order to answer to this question, a multi-front attack is needed because our knowledge of its properties is very incomplete. Among the di?erent experimental strategies, neutrino telescopes are very relevant tools. There are several promising sources to look at: the Sun, the Galactic Center, the Earth, dwarf galaxies, galaxy clusters... As an example of the power of neutrino telescopes, we can mention the analysis of the Sun, which o?ers the best sensitivity for spin dependent WIMP-nucleon scattering and is free of alternative astrophysical interpretations. In this talk I will review the status and prospects of the main present and future neutrino telescopes: ANTARES, IceCube and KM3NeT.

  17. Dark matter signals at neutrino telescopes in effective theories

    International Nuclear Information System (INIS)

    We constrain the effective theory of one-body dark matter-nucleon interactions using neutrino telescope observations. We derive exclusion limits on the 28 coupling constants of the theory, exploring interaction operators previously considered in dark matter direct detection only, and using new nuclear response functions recently derived through nuclear structure calculations. We determine for what interactions neutrino telescopes are superior to current direct detection experiments, and show that Hydrogen is not the most important element in the exclusion limit calculation for the majority of the spin-dependent operators

  18. Measurement of Atmospheric Neutrino Oscillations with Very Large Volume Neutrino Telescopes

    Directory of Open Access Journals (Sweden)

    J. P. Yáñez

    2015-01-01

    Full Text Available Neutrino oscillations have been probed during the last few decades using multiple neutrino sources and experimental set-ups. In the recent years, very large volume neutrino telescopes have started contributing to the field. First ANTARES and then IceCube have relied on large and sparsely instrumented volumes to observe atmospheric neutrinos for combinations of baselines and energies inaccessible to other experiments. Using this advantage, the latest result from IceCube starts approaching the precision of other established technologies and is paving the way for future detectors, such as ORCA and PINGU. These new projects seek to provide better measurements of neutrino oscillation parameters and eventually determine the neutrino mass ordering. The results from running experiments and the potential from proposed projects are discussed in this review, emphasizing the experimental challenges involved in the measurements.

  19. Indirect detection of dark matter with the ANTARES neutrino telescope

    International Nuclear Information System (INIS)

    The ANTANARES telescope is composed of an array of 900 photomultipliers (12 lines) that will be immersed in the Mediterranean sea at a depth of 2500 m. The photomultipliers are sensitive to the Cherenkov light emitted by high energy muons produced in the interactions of neutrinos with matter. My work consisted in the calibration of the detector, in time and charge in order to extract the crucial data for the reconstruction of the particle tracks and the ability of the detector to distinguish the atmospheric neutrinos from astrophysical neutrinos. The first part of this work is dedicated to the today understanding of the universe and of its models and of the importance of the neutrinos as the messengers of what occurs in the remote parts of the universe. The detection of neutrinos through the Cerenkov effect is detailed and the ANTANARES detector is presented. The second part deals with the study of the background radiation due to atmospheric muons and neutrinos. A simulation is the only tool to assess the background radiation level and to be able to extract the signal due to solar neutrinos. The third part shows how the solar neutrino flux might be influenced by the interaction of dark matter with baryonic matter. A Monte-Carlo simulation has allowed us to quantify this interaction and measure its impact on the number of events detected by ANTANARES. (A.C.)

  20. The KM3NeT neutrino telescope

    International Nuclear Information System (INIS)

    KM3NeT is a deep-sea research infrastructure to be constructed in the Mediterranean Sea hosting a neutrino telescope with a volume of at least one cubic kilometre. The scientific case for a neutrino telescope of a cubic kilometre scale is overwhelming. The infrastructure it requires will be shared by a host of other sciences, making continuous and long-term measurements in the fields of oceanography, geophysics, and marine biological sciences possible. The feasibility of neutrino astronomy with a detector in the deep sea was proven by the successful deployment and operation of the ANTARES prototype detector. The potential of the detection technique, based on the reconstruction of the tracks of muons, the possible reaction products of the sought after neutrinos, has been demonstrated. With two other pilot projects, NEMO and NESTOR, different detector configurations and techniques were explored. The three projects have provided a wealth of information on the technologies required for a large deep-sea neutrino telescope. KM3NeT will reap the benefits. It is planned to make KM3NeT a CO2-neutral facility, using wind or solar energy to supply the required power for the underwater system as well as the shore station. The proposed infrastructure will be built by a European consortium (KM3NeT). The total cost is estimated at 220-250 M Euro .

  1. Results on dark matter searches with the ANTARES neutrino telescope

    CERN Multimedia

    Zornoza, Juande

    2016-01-01

    Neutrino telescopes have a wide scientific scope. One of their main goals is the detection of dark matter, for which they have specific advantages. The understanding of the nature of dark matter requires a multi-front approach since we still do not know many of their properties. Neutrino telescopes offer the possibility of look at several kinds of sources, not all of them available to other indirect searches. In this work we provide an overview of the results obtained by the ANTARES neutrino telescope, which has been taking data for almost ten years. It is installed in the Mediterranean Sea at a depth of 2475 m, off the coast of Toulon (France). The results presented in this work include searches for neutrino excess from several astrophysical sources. One of the most interesting ones is the Sun. Dark matter particles by the solar system would scatter with nuclei of the Sun, lose energy and accumulate in its centre. Among the final products of their annihilations, only neutrinos could escape. Therefore, a dete...

  2. Detection of tau neutrinos by Imaging Air Cherenkov Telescopes

    CERN Document Server

    Gora, Dariusz

    2016-01-01

    This paper investigates the potential to detect tau neutrinos in the energy range of 1-1000 PeV searching for very inclined showers with imaging Cherenkov telescopes. A neutrino induced tau lepton escaping from the Earth may decay and initiate an air shower which can be detected by a fluorescence or Cherenkov telescope. We present here a study of the detection potential of Earth-skimming neutrinos taking into account neutrino interactions in the Earth crust, local matter distributions at various detector sites, the development of tau-induced showers in air and the detection of Cherenkov photons with IACTs. We analyzed simulated shower images on the camera focal plane and implemented generic reconstruction chains based on Hillas parameters. We find that present IACTs can distinguish air showers induced by tau neutrinos from the background of hadronic showers in the PeV-EeV energy range. We present the neutrino trigger efficiency obtained for a few configurations being considered for the next-generation Cherenk...

  3. Detection of tau neutrinos by Imaging Air Cherenkov Telescopes

    CERN Document Server

    Gora, Dariusz

    2015-01-01

    This paper investigates the potential to detect tau neutrinos in the energy range of 1-1000 PeV searching for very inclined showers with imaging Cherenkov telescopes. A neutrino induced tau lepton escaping from the Earth may decay and initiate an air shower which can be detected by a fluorescence or Cherenkov telescope. We present here a study of the detection potential of Earth-skimming neutrinos taking into account neutrino interactions in the Earth crust, local matter distributions at various detector sites, the development of tau-induced showers in air and the detection of Cherenkov photons with IACTs. We analysed simulated shower images on the camera focal plane and implemented generic reconstruction chains based on Hillas parameters. We find that present IACTs can distinguish air showers induced by tau neutrinos from the background of hadronic showers in the PeV-EeV energy range. We present the neutrino trigger efficiency obtained for a few configurations being considered for the next-generation Cherenk...

  4. The positioning system of the ANTARES Neutrino Telescope

    NARCIS (Netherlands)

    Adrian-Martinez, S.; Ageron, M.; Aguilar, J. A.; Al Samarai, I.; Albert, A.; Andre, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Jesus, A. C. Assis; Astraatmadja, T.; Aubert, J. -J.; Baret, B.; Basa, S.; Bertin, V.; Biagi, S.; Bigi, A.; Bigongiari, C.; Bogazzi, C.; Bou-Cabo, M.; Bouhou, B.; Bouwhuis, M. C.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Carloganu, C.; Carminati, G.; Carr, J.; Cecchini, S.; Charif, Z.; Charvis, Ph.; Chiarusi, T.; Circella, M.; Coniglione, R.; Costantini, H.; Coyle, P.; Curtil, C.; De Bonis, G.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drouhin, D.; Eberl, T.; Emanuele, U.; Enzenhoefer, A.; Ernenwein, J. -P.; Escoffier, S.; Fermani, P.; Ferri, M.; Flaminio, V.; Folger, F.; Fritsch, U.; Fuda, J. -L.; Galata, S.; Gay, P.; Giacomelli, G.; Giordano, V.; Gomez-Gonzalez, J. P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Hartman, J.; Heijboer, A. J.; Hello, Y.; Hernandez-Rey, J. J.; Herold, B.; Hoessl, J.; Hsu, C. C.; de Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U.; Kavatsyuk, O.; Keller, P.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lamare, P.; Larosa, G.; Lattuada, D.; Lefevre, D.; Le Van Suu, A.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J. A.; Meli, A.; Montaruli, T.; Moscoso, L.; Motz, H.; Neff, M.; Nezri, E.; Niess, V.; Palioselitis, D.; Pavalas, G. E.; Payet, K.; Payre, P.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Real, D.; Reed, C.; Riccobene, G.; Richardt, C.; Richter, R.; Riviere, C.; Robert, A.; Roensch, K.; Rostovtsev, A.; Ruiz-Rivas, J.; Rujoiu, M.; Russo, G. V.; Salesa, F.; Samtleben, D. F. E.; Schoeck, F.; Schuller, J. -P.; Schuessler, F.; Seitz, T.; Shanidze, R.; Simeone, F.; Spies, A.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Sanchez-Losa, A.; Taiuti, M.; Tamburini, C.; Toscano, S.; Vallage, B.; Van Elewyck, V.; Vannoni, G.; Vecchi, M.; Vernin, P.; Wagner, S.; Wijnker, G.; Wilms, J.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J. D.; Zuniga, J.

    2012-01-01

    The ANTARES neutrino telescope, located 40km off the coast of Toulon in the Mediterranean Sea at a mooring depth of about 2475m, consists of twelve detection lines equipped typically with 25 storeys. Every storey carries three optical modules that detect Cherenkov light induced by charged secondary

  5. Reconstruction of hadronic cascades in large-scale neutrino telescopes

    International Nuclear Information System (INIS)

    A strategy that allows for the reconstruction of the direction and energy of hadronic cascades is presented, as well as the preliminary results from corresponding simulation studies of the ANTARES twelve string detector. The analysis techniques are of very generic nature and can thus be easily applied for large-scale neutrino telescopes, such as KM3NeT.

  6. Absolute angular calibration of a submarine km3 neutrino telescope

    International Nuclear Information System (INIS)

    A requirement for neutrino telescope is the ability to resolve point sources of neutrinos. In order to understand its resolving power a way to perform absolute angular calibration with muons is required. Muons produced by cosmic rays in the atmosphere offer an abundant calibration source. By covering a surface vessel with 200 modules of 5 m2 plastic scintillator a surface air shower array can be set up. Running this array in coincidence with a deep-sea km3 size neutrino detector, where the coincidence is defined by the absolute clock timing stamp for each event, would allow absolute angular calibration to be performed. Monte Carlo results simulating the absolute angular calibration of the km3 size neutrino detector will be presented. Future work and direction will be discussed.

  7. The ANTARES demonstrator towards an undersea neutrino telescope

    International Nuclear Information System (INIS)

    The ANTARES demonstrator is intended to prove the feasibility of a large undersea high energy neutrino telescope aimed at the observation of galactic and extra-galactic sources. An array of photo-multiplier tubes (PMT) detects the Cherenkov light emitted in the sea water from the muons produced by the neutrinos in the surrounding medium. The demonstrator will consist of several elementary structures connected to the coast via a single optical cable. The mechanical structure organisation, the optical cable connection, the position monitoring and the data transmission schemes will be extrapolable to a km-scale telescope. The demonstrator with approximately 100 optical modules is planned be deployed in 1999 in the Mediterranean sea of the coast of Toulon (France). ANTARES is also building autonomous systems in order to measure undersea optical parameters in view of the selection of a site for a km-scale telescope

  8. Dark matter search with the ANTARES neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Zornoza, Juan de Dios, E-mail: zornoza@ific.uv.es [IFIC, Ed. Institutos de Investigacin, AC 20085, E-46071 Valencia (Spain)

    2012-11-11

    The ANTARES neutrino telescope was completed in 2008 with the installation of its 12th line. Its scientific scope is very broad, but the two main goals are the observation of astrophysical sources and the indirect detection of dark matter. The latter is possible through neutrinos produced after the annihilation of WIMPs, which would accumulate in sources like the Sun, the Earth or the Galactic Centre. The neutralino, which arises in Supersymmetry models, is one of the most popular WIMP candidates. KK particles, which appear in Universal Extra Dimension models, are another one. Though in most models these annihilations would not directly produce neutrinos, they are expected from the decay of secondary particles. An important advantage of neutrino telescopes with respect to other indirect searches (like gamma rays or cosmic rays) is that a potential signal (for instance from the Sun) would be very clean, since no other astrophysical explanations could mimic it (like pulsars for the case of the positron excess seen by PAMELA). Moreover, the Galactic Centre is accessible for ANTARES, being in the Northern Hemisphere. In this talk I will present the results of the ANTARES telescope for dark matter searches, which include neutralino and KK particles.

  9. Probing TeV gravity at neutrino telescopes

    CERN Document Server

    Illana, J I; Meloni, D

    2006-01-01

    Models with extra dimensions and the fundamental scale at the TeV could imply sign als in large neutrino telescopes due to gravitational scattering of cosmogenic neu trinos in the detection volume. Apart from the production of microscopic black hol es, extensively studied in the literature, we present gravity-mediated interactions at larger distances, that can be calculated in the e ikonal approximation. In these elastic processes the neutrino loses a small fracti on of energy to a hadronic shower and keeps going. The event rate of these events is higher than that of black hole formation and the signal is distinct: no charged leptons and possibly multiple-bang events.

  10. New technology allows closer study of neutrinos; researchers credit specialized telescope

    CERN Multimedia

    Huang, N

    2002-01-01

    With the help of a newly designed telescope, University of California-Berkeley scientists and an international team of researchers have made a recent breakthrough in the study of neutrino emissions from the sun. The turning point is the Sudbury Neutrino Observatory in Canada. This telescope is the first of its kind to be sensitive enough to detect all types of neutrinos (1 page).

  11. Calibration systems and methods for the ANTARES neutrino telescope

    CERN Document Server

    Fehr, Felix

    2007-01-01

    The ANTARES neutrino telescope is currently being constructed in the Mediterranean Sea. The complete detector will consist of 12 strings, supplemented by an additional instrumentation line. Nine strings are at present deployed of which five are already connected to the shore and operating. Each string is equipped with 75 Optical Modules (OMs) housing the photomultipliers to detect the Cherenkov light induced by the charged particles produced in neutrino reactions. An accurate measurement of the Cherenkov photon arrival times as well as the positions and orientations of the OMs is required for a precise reconstruction of the direction of the detected neutrinos. For this purpose the ANTARES detector is provided with several system s to facilitate the calibration of the detector. The time calibration is performed using light pulses emitted from LED and laser devices. The positioning is done via acoustic triangulation using hydrophones. Additionally, local tilt angles and the orientations of the modules are measu...

  12. Trigger and data acquisition system for the ANTARES neutrino telescope

    International Nuclear Information System (INIS)

    The ANTARES collaboration is building a deep underwater neutrino telescope to be immersed in the Mediterranean Sea 40 km off the French coast. This detector will be able to detect the Cherenkov light emitted by muons produced in neutrino interactions using a three-dimensional matrix of optical sensors. The telescope will be made of nearly 1000 of these elementary units distributed over a wide area of about 0.1 km2 at an average depth of 2400 m. In order to reach a sub-nanosecond resolution on light pulse detection, signals from all OMs are analyzed and digitized locally before being sent to shore through a 50 km electro-optical cable. Front-end electronics, time alignment (clock distribution), triggering and data acquisition for such a large and remote detector represent a real challenge and required considerable R and D studies. The technical solutions adopted by the collaboration will be described and their performances discussed

  13. Charge Calibration of the ANTARES high energy neutrino telescope

    CERN Document Server

    Baret, Bruny

    2009-01-01

    ANTARES is a deep-sea, large volume Mediterranean neutrino telescope installed off the Coast of Toulon, France. It is taking data in its complete configuration since May 2008 with nearly 900 photomultipliers installed on 12 lines. It is today the largest high energy neutrino telescope of the northern hemisphere. The charge calibration and threshold tuning of the photomultipliers and their associated front-end electronics is of primary importance. It indeed enables to translate signal amplitudes into number of photo-electrons which is the relevant information for track and energy reconstruction. It has therefore a strong impact on physics analysis. We will present the performances of the front-end chip, so-called ARS, including the waveform mode of acquisition. The in-laboratory as well as regularly performed in situ calibrations will be presented together with related studies like the time evolution of the gain of photomultipliers

  14. The data acquisition system for the ANTARES neutrino telescope

    CERN Document Server

    Aguilar, J A; Ameli, F; Anghinolfi, M; Anton, G; Anvar, S; Aslanides, E; Aubert, Jean-Jacques; Barbarito, E; Basa, S; Battaglieri, M; Becherini, Y; Bellotti, R; Beltramelli, J; Bertin, V; Bigi, A; Billault, M; Blaes, R; De Botton, N R; Bouwhuis, M C; Bradbury, S M; Bruijn, R; Brunner, J; Burgio, G F; Busto, J; Cafagna, F; Caillat, L; Calzas, A; Capone, A; Caponetto, L; Carmona, E; Carr, J; Cartwright, S L; Castel, D; Castorina, E; Cavasinni, V; Cecchini, S; Ceres, A; Charvis, P; Chauchot, P; Chiarusi, T; Circella, M; Colnard, C; Compere, C; Coniglione, R; Cottini, N; Coyle, P; Cuneo, S; Cussatlegras, A S; Damy, G; Van Dantzig, R; De Marzo, C; Dekeyser, I; Delagnes, E; Denans, D; Deschamps, A; Dessages-Ardellier, F; Destelle, J J; Dinkespieler, B; Distefano, C; Donzaud, C; Drogou, J F; Druillole, F; Durand, D; Ernenwein, J P; Escoffier, S; Falchini, E; Favard, S; Feinstein, F; Ferry, S; Festy, D; Fiorello, C; Flaminio, V; Galeotti, S; Gallone, J M; Giacomelli, G; Girard, N; Gojak, C; Goret, P; Graf, K; Hallewell, G D; Harakeh, M N; Hartmann, B; Heijboer, A; Heine, E; Hello, Y; Hernández-Rey, J J; Hossl, J; Hoffman, C; Hogenbirk, J; Hubbard, John R; Jaquet, M; Jaspers, M; De Jong, M; Jouvenot, F; Kalantar-Nayestanaki, N; Kappes, A; Karg, T; Karkar, S; Katz, U; Keller, P; Kok, H; Kooijman, P; Kopper, C; Korolkova, E V; Kouchner, A; Kretschmer, W; Kruijer, A; Kuch, S; Kudryavtsev, V A; Lachartre, D; Lafoux, H; Lagier, P; Lahmann, R; Lamanna, G; Lamare, P; Languillat, J C; Laschinsky, H; Le Guen, Y; Le Provost, H; Le Van-Suu, A; Legou, T; Lim, G; Lo Nigro, L; Lo Presti, D; Löhner, H; Loucatos, Sotirios S; Louis, F; Lucarelli, F; Lyashuk, V; Marcelin, M; Margiotta, A; Masullo, R; Mazéas, F; Mazure, A; McMillan, J E; Megna, R; Melissas, M; Migneco, E; Milovanovic, A; Mongelli, M; Montaruli, T; Morganti, M; Moscoso, L; Musumeci, M; Naumann, C; Naumann-Godo, M; Niess, V; Olivetto, C; Ostasch, R; Palanque-Delabrouille, Nathalie; Payre, P; Peek, H; Petta, C; Piattelli, P; Pineau, J P; Poinsignon, J; Popa, V; Pradier, T; Racca, C; Randazzo, N; Van Randwijk, J; Real, D; Van Rens, B; Rethore, F; Rewiersma, P A M; Riccobene, G; Rigaud, V; Ripani, M; Roca, V; Roda, C; Rolin, J F; Romita, M; Rose, H J; Rostovtsev, A; Roux, J; Ruppi, M; Russo, G V; Salesa, F; Salomon, K; Sapienza, P; Schmitt, F; Schuller, J P; Shanidze, R; Sokalski, I A; Spona, T; Spurio, M; van der Steenhoven, G; Stolarczyk, T; Streeb, K; Stubert, D; Sulak, L; Taiuti, M; Tamburini, C; Tao, C; Terreni, G; Thompson, L F; Valdy, P; Valente, V; Vallage, B; Venekamp, G; Verlaat, B; Vernin, P; De Vita, R; De Vries, G; Van Wijk, R F; De Witt-Huberts, P K A; Wobbe, G; De Wolf, E; Yao, A F; Zaborov, D; Zaccone, Henri; De Dios-Zornoza-Gomez, Juan; Zúñiga, J; al, et

    2006-01-01

    The ANTARES neutrino telescope is being constructed in the Mediterranean Sea. It consists of a large three-dimensional array of photo-multiplier tubes. The data acquisition system of the detector takes care of the digitisation of the photo-multiplier tube signals, data transport, data filtering, and data storage. The detector is operated using a control program interfaced with all elements. The design and the implementation of the data acquisition system are described.

  15. The deep-sea hub of the ANTARES neutrino telescope

    OpenAIRE

    Anghinolfi, M.; Calzas, A.; Dinkespiler, B.; Cuneo, S.; Favard, S; Hallewell, G.; Jaquet, M.; Musumeci, M.; Papaleo, R.; Raia, G.; Valdy, P.; Vernin, P.

    2006-01-01

    The ANTARES neutrino telescope, currently under construction at 2500 in depth off the French Mediterranean coast, will contain 12 detection lines, powered and read out through a deep-sea junction box (JB) hub. Electrical energy from the shore station is distributed through a transformer with multiple secondary windings and a plugboard with 16 deep sea-mateable electro-optic connectors. Connections are made to the JB outputs using manned or remotely operated submersible vehicles. The triply re...

  16. FIRST SEARCH FOR POINT SOURCES OF HIGH-ENERGY COSMIC NEUTRINOS WITH THE ANTARES NEUTRINO TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Adrian-Martinez, S.; Ardid, M.; Bou-Cabo, M. [Institut d' Investigacio per a la Gestio Integrada de les Zones Costaneres (IGIC), Universitat Politecnica de Valencia, C/Paranimf 1, 46730 Gandia (Spain); Aguilar, J. A.; Bigongiari, C. [IFIC-Instituto de Fisica Corpuscular, Edificios Investigacion de Paterna, CSIC, Universitat de Valencia, Apdo. de Correos 22085, 46071 Valencia (Spain); Al Samarai, I.; Aubert, J.-J.; Bertin, V. [CPPM, Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Albert, A. [GRPHE-Institut universitaire de technologie de Colmar, 34 rue du Grillenbreit BP 50568-68008 Colmar (France); Andre, M. [Technical University of Catalonia, Laboratory of Applied Bioacoustics, Rambla Exposicio, 08800 Vilanova i la Geltru, Barcelona (Spain); Anghinolfi, M. [INFN-Sezione di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Anton, G. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany); Anvar, S. [Direction des Sciences de la Matiere, Institut de recherche sur les lois fondamentales de l' Univers, Service d' Electronique des Detecteurs et d' Informatique, CEA Saclay, 91191 Gif-sur-Yvette Cedex (France); Assis Jesus, A. C.; Astraatmadja, T.; Bogazzi, C. [Nikhef, Science Park, Amsterdam (Netherlands); Baret, B. [APC-Laboratoire AstroParticule et Cosmologie, UMR 7164 (CNRS, Universite Paris 7 Diderot, CEA, Observatoire de Paris) 10, rue Alice Domon et Leonie Duquet 75205 Paris Cedex 13 (France); Basa, S. [LAM-Laboratoire d' Astrophysique de Marseille, Pole de l' Etoile Site de Chateau-Gombert, rue Frederic Joliot-Curie 38, 13388 Marseille Cedex 13 (France); Biagi, S. [INFN-Sezione di Bologna, Viale C. Berti-Pichat 6/2, 40127 Bologna (Italy); Bigi, A. [INFN-Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); and others

    2011-12-10

    Results are presented of a search for cosmic sources of high-energy neutrinos with the ANTARES neutrino telescope. The data were collected during 2007 and 2008 using detector configurations containing between 5 and 12 detection lines. The integrated live time of the analyzed data is 304 days. Muon tracks are reconstructed using a likelihood-based algorithm. Studies of the detector timing indicate a median angular resolution of 0.5 {+-} 0.1 deg. The neutrino flux sensitivity is 7.5 Multiplication-Sign 10{sup -8}(E{sub {nu}}/ GeV){sup -2} GeV{sup -1} s{sup -1} cm{sup -2} for the part of the sky that is always visible ({delta} < -48 deg), which is better than limits obtained by previous experiments. No cosmic neutrino sources have been observed.

  17. FIRST SEARCH FOR POINT SOURCES OF HIGH-ENERGY COSMIC NEUTRINOS WITH THE ANTARES NEUTRINO TELESCOPE

    International Nuclear Information System (INIS)

    Results are presented of a search for cosmic sources of high-energy neutrinos with the ANTARES neutrino telescope. The data were collected during 2007 and 2008 using detector configurations containing between 5 and 12 detection lines. The integrated live time of the analyzed data is 304 days. Muon tracks are reconstructed using a likelihood-based algorithm. Studies of the detector timing indicate a median angular resolution of 0.5 ± 0.1 deg. The neutrino flux sensitivity is 7.5 × 10–8(Eν/ GeV)–2 GeV–1 s–1 cm–2 for the part of the sky that is always visible (δ < –48 deg), which is better than limits obtained by previous experiments. No cosmic neutrino sources have been observed.

  18. Search for a neutrino emission from the Fermi Bubbles with the ANTARES telescope

    CERN Multimedia

    BIAGI, S

    2012-01-01

    The first search for neutrinos from the Fermi Bubbles is presented using data collected by the ANTARES telescope. No evidence of a neutrino signal from the Fermi Bubbles region was found, hence upper limits were calculated for different energy cutoffs.

  19. A feasibility study for the detection of supernova explosions with an undersea neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Leisos, A., E-mail: leisos@eap.gr [Physics Laboratory, School of Science and Technology, Hellenic Open University, Tsamadou 13-15 and Ag. Andreou, Patras 26222 (Greece); Tsirigotis, A.G.; Tzamarias, S.E. [Physics Laboratory, School of Science and Technology, Hellenic Open University, Tsamadou 13-15 and Ag. Andreou, Patras 26222 (Greece)

    2013-10-11

    We study the potential of a very large volume underwater Mediterranean neutrino telescope to observe neutrinos from supernova (SN) explosions within our galaxy. The intense neutrino burst emitted in a SN explosion results in a large number of MeV neutrinos inside the instrumented volume of the neutrino telescope that can be detected (mainly) via the reaction ν{sup ¯}{sub e}+p⟶e{sup +}+n. In this study we simulated the response of the underwater neutrino telescope to the electron antineutrino flux predicted by the Garching model for SN explosions. We assumed that the neutrino telescope comprises 6160 direction sensitive optical modules, each containing 31 small photomultiplier tubes. Multiple coincidences between the photomultiplier tubes of the same optical module are utilized to suppress the noise produced by {sup 40}K radioactive decays and to establish a statistical significant signature of the SN explosion.

  20. A feasibility study for the detection of supernova explosions with an undersea neutrino telescope

    International Nuclear Information System (INIS)

    We study the potential of a very large volume underwater Mediterranean neutrino telescope to observe neutrinos from supernova (SN) explosions within our galaxy. The intense neutrino burst emitted in a SN explosion results in a large number of MeV neutrinos inside the instrumented volume of the neutrino telescope that can be detected (mainly) via the reaction ν¯e+p⟶e++n. In this study we simulated the response of the underwater neutrino telescope to the electron antineutrino flux predicted by the Garching model for SN explosions. We assumed that the neutrino telescope comprises 6160 direction sensitive optical modules, each containing 31 small photomultiplier tubes. Multiple coincidences between the photomultiplier tubes of the same optical module are utilized to suppress the noise produced by 40K radioactive decays and to establish a statistical significant signature of the SN explosion

  1. The Positioning System of the ANTARES Neutrino Telescope

    CERN Document Server

    Adrián-Martínez, S; Aguilar, J A; Samarai, I Al; Albert, A; André, M; Anghinolfi, M; Anton, G; Anvar, S; Ardid, M; Jesus, A C Assis; Astraatmadja, T; Aubert, J-J; Baret, B; Basa, S; Bertin, V; Biagi, S; Bigi, A; Bigongiari, C; Bogazzi, C; Bou-Cabo, M; Bouhou, B; Bouwhuis, M C; Brunner, J; Busto, J; Camarena, F; Capone, A; Carloganu, C; Carminati, G; Carr, J; Cecchini, S; Charif, Z; Charvis, Ph; Chiarusi, T; Circella, M; Coniglione, R; Costantini, H; Coyle, P; Curtil, C; Decowski, M P; Dekeyser, I; Deschamps, A; Distefano, C; Donzaud, C; Dornic, D; Dorosti, Q; Drouhin, D; Eberl, T; Emanuele, U; Enzenhöfer, A; Ernenwein, J-P; Escoffier, S; Fermani, P; Ferri, M; Flaminio, V; Folger, F; Fritsch, U; Fuda, J-L; Galatá, S; Gay, P; Giacomelli, G; Giordano, V; Gómez-González, J P; Graf, K; Guillard, G; Halladjian, G; Hallewell, G; van Haren, H; Hartman, J; Heijboer, A J; Hello, Y; Hernández-Rey, J J; Herold, B; Hößl, J; Hsu, C C; de Jong, M; Kadler, M; Kalekin, O; Kappes, A; Katz, U; Kavatsyuk, O; Keller, P; Kooijman, P; Kopper, C; Kouchner, A; Kreykenbohm, I; Kulikovskiy, V; Lahmann, R; Lamare, P; Larosa, G; Lattuada, D; Lefévre, D; Van Suu, A Le; Lim, G; Presti, D Lo; Loehner, H; Loucatos, S; Mangano, S; Marcelin, M; Margiotta, A; Martínez-Mora, J A; Meli, A; Montaruli, T; Moscoso, L; Motz, H; Neff, M; Nezri, E; Niess, V; Palioselitis, D; Păvălaş, G E; Payet, K; Payre, P; Petrovic, J; Piattelli, P; Picot-Clemente, N; Popa, V; Pradier, T; Presani, E; Racca, C; Real, D; Reed, C; Riccobene, G; Richardt, C; Richter, R; Rivière, C; Robert, A; Roensch, K; Rostovtsev, A; Ruiz-Rivas, J; Rujoiu, M; Russo, G V; Salesa, F; Samtleben, D F E; Schöck, F; Schuller, J-P; Schüssler, F; Seitz, T; Shanidze, R; Simeone, F; Spies, A; Spurio, M; Steijger, J J M; Stolarczyk, Th; Sánchez-Losa, A; Taiuti, M; Tamburini, C; Toscano, S; Vallage, B; Van Elewyck, V; Vannoni, G; Vecchi, M; Vernin, P; Wagner, S; Wijnker, G; Wilms, J; de Wolf, E; Yepes, H; Zaborov, D; Zornoza, J D; Zúñiga, J

    2012-01-01

    The ANTARES neutrino telescope, located 40km off the coast of Toulon in the Mediterranean Sea at a mooring depth of about 2475m, consists of twelve detection lines equipped typically with 25 storeys. Every storey carries three optical modules that detect Cherenkov light induced by charged secondary particles (typically muons) coming from neutrino interactions. As these lines are flexible structures fixed to the sea bed and held taut by a buoy, sea currents cause the lines to move and the storeys to rotate. The knowledge of the position of the optical modules with a precision better than 10cm is essential for a good reconstruction of particle tracks. In this paper the ANTARES positioning system is described. It consists of an acoustic positioning system, for distance triangulation, and a compass-tiltmeter system, for the measurement of the orientation and inclination of the storeys. Necessary corrections are discussed and the results of the detector alignment procedure are described.

  2. The positioning system of the ANTARES Neutrino Telescope

    International Nuclear Information System (INIS)

    The ANTARES neutrino telescope, located 40 km off the coast of Toulon in the Mediterranean Sea at a mooring depth of about 2475 m, consists of twelve detection lines equipped typically with 25 storeys. Every storey carries three optical modules that detect Cherenkov light induced by charged secondary particles (typically muons) coming from neutrino interactions. As these lines are flexible structures fixed to the sea bed and held taut by a buoy, sea currents cause the lines to move and the storeys to rotate. The knowledge of the position of the optical modules with a precision better than 10 cm is essential for a good reconstruction of particle tracks. In this paper the ANTARES positioning system is described. It consists of an acoustic positioning system, for distance triangulation, and a compass-tiltmeter system, for the measurement of the orientation and inclination of the storeys. Necessary corrections are discussed and the results of the detector alignment procedure are described.

  3. Cosmogenic neutrinos and signals of TeV gravity in air showers and neutrino telescopes.

    Science.gov (United States)

    Illana, J I; Masip, M; Meloni, D

    2004-10-01

    The existence of extra dimensions allows the possibility that the fundamental scale of gravity is at the TeV. If that is the case, gravity could dominate the interactions of ultrahigh energy cosmic rays. In particular, the production of microscopic black holes by cosmogenic neutrinos has been estimated in a number of papers. We consider here gravity-mediated interactions at larger distances, where they can be calculated in the eikonal approximation. We show that for the expected flux of cosmogenic neutrinos these elastic processes give a stronger signal than black hole production in neutrino telescopes. Taking the bounds on the higher-dimensional Planck mass M(D) (D=4 + n) from current air shower experiments, for n=2(6) elastic collisions could produce up to 118 (34) events per year at IceCube. On the other hand, the absence of any signal would imply a bound of M(D) > or approximately 5 TeV. PMID:15524863

  4. Timing calibration of the optical sensors for undersea neutrino telescopes

    International Nuclear Information System (INIS)

    This paper describes the timing calibration system for the NEMO underwater neutrino telescope. The NEMO Project aims at the construction of a km3 detector, equipped with a large number of photomultipliers, in the Mediterranean Sea. We foresee a redundant system to perform the time calibration of our apparatus. Such a system can be extended to work for a very large apparatus, even for complex arrangements of widely spaced sensors. The NEMO prototyping activities ongoing at a test site off the coast of Sicily will allow the system described in this work to be operated and tested in situ next year

  5. Search for high-energy neutrinos from GRB130427A with the ANTARES neutrino telescope

    Science.gov (United States)

    Celli, Silvia

    2016-02-01

    ANTARES is the first deep under-sea high-energy astrophysical neutrino telescope, in operation since 2008, in the Northern Hemisphere. In the light of a multi-messenger approach, one of the most ever intense (photon fluence Fγ ≃10-3 erg/cm2) and close (redshift z = 0.34) transient γ-source, GRB130427A, is considered in the ANTARES physics program for a co-incident search for photons and high-energy neutrinos. The first time-dependent analysis on GRBs neutrino emissions has been performed for this source: Konus-Wind parameters of the γ time-dependent spectrum are used to predict the expected neutrino flux from each peak of the burst, through the numerical calculation code NeuCosmA. An extended maximum likelihood ratio search is performed in order to maximize the discovery probability of prompt neutrinos from the burst: at the end, ANTARES sensitivity to this source is evaluated to be E2Φv ∼ 1 -10 GeV/cm2 in the energy range from 2 x 105 GeV to 2 x 107 GeV.

  6. Data filtering and expected muon and neutrino event rates in the KM3NeT neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Shanidze, Rezo [ECAP, University of Erlangen-Nuremberg, Erwin-Rommel-Str.1, 91058 Erlangen (Germany); Collaboration: ANTARES-KM3NeT-Erlangen-Collaboration

    2011-07-01

    KM3NeT is a future Mediterranean deep sea neutrino telescope with an instrumented volume of several cubic kilometres. The neutrino and muon events in KM3NeT will be reconstructed from the signals collected from the telescope's photo detectors. However, in the deep sea the dominant source of photon signals are the decays of K40 nuclei and bioluminescence. The selection of neutrino and muon events requires the implementation of fast and efficient data filtering algorithms for the reduction of accidental background event rates. Possible data filtering and triggering schemes for the KM3NeT neutrino telescope and expected muon and neutrino event rates are discussed.

  7. Search for Cosmic Neutrino Point Sources with Four Year Data of the ANTARES Telescope

    CERN Document Server

    Adrián-Martínez, S; Albert, A; André, M; Anghinolfi, M; Anton, G; Anvar, S; Ardid, M; Astraatmadja, T; Aubert, J -J; Baret, B; Basa, S; Bertin, V; Biagi, S; Bigongiari, C; Bogazzi, C; Bou-Cabo, M; Bouhou, B; Bouwhuis, M C; Brunner, J; Busto, J; Capone, A; Carloganu, C; Carr, J; Cecchini, S; Charif, Z; Charvis, Ph; Chiarusi, T; Circella, M; Coniglione, R; Core, L; Costantini, H; Coyle, P; Creusot, A; Curtil, C; De Bonis, G; Decowski, M P; Dekeyser, I; Deschamps, A; Distefano, C; Donzaud, C; Dornic, D; Dorosti, Q; Drouhin, D; Eberl, T; Emanuele, U; Enzenhöfer, A; Ernenwein, J -P; Escoffier, S; Fehn, K; Fermani, P; Ferri, M; Ferry, S; Flaminio, V; Folger, F; Fritsch, U; Fuda, J -L; Galatà, S; Gay, P; Geyer, K; Giacomelli, G; Giordano, V; Gleixner, A; Gómez-González, J P; Graf, K; Guillard, G; Hallewell, G; Hamal, M; van Haren, H; Heijboer, A J; Hello, Y; Hernández-Rey, J J; Herold, B; Hößl, J; Hsu, C C; de Jong, M; Kadler, M; Kalekin, O; Kappes, A; Katz, U; Kavatsyuk, O; Kooijman, P; Kopper, C; Kouchner, A; Kreykenbohm, I; Kulikovskiy, V; Lahmann, R; Lambard, G; Larosa, G; Lattuada, D; Leonora, E; Lefèvre, D; Lim, G; Presti, D Lo; Loehner, H; Loucatos, S; Louis, F; Mangano, S; Marcelin, M; Margiotta, A; Martínez-Mora, J A; Meli, A; Montaruli, T; Morganti, M; Motz, H; Neff, M; Nezri, E; Palioselitis, D; Păvălaş, G E; Payet, K; Petrovic, J; Piattelli, P; Popa, V; Pradier, T; Presani, E; Racca, C; Reed, C; Riccobene, G; Richter, R; Rivière, C; Robert, A; Roensch, K; Rostovtsev, A; Ruiz-Rivas, J; Rujoiu, M; Samtleben, D F E; Sapienza, P; Schmid, J; Schnabel, J; Schuller, J -P; Schüssler, F; Seitz, T; Shanidze, R; Simeone, F; Spies, A; Spurio, M; Steijger, J J M; Stolarczyk, Th; Sánchez-Losa, A; Taiuti, M; Tamburini, C; Trovato, A; Vallage, B; Vallée, C; Van Elewyck, V; Vecchi, M; Vernin, P; Visser, E; Wagner, S; Wijnker, G; Wilms, J; de Wolf, E; Yepes, H; Zaborov, D; Zornoza, J D; Zúñiga, J

    2012-01-01

    In this paper, a time integrated search for point sources of cosmic neutrinos is presented using the data collected from 2007 to 2010 by the ANTARES neutrino telescope. No statistically significant signal has been found and upper limits on the neutrino flux have been obtained. Assuming an $E_{\

  8. Searches for diffuse fluxes of cosmic neutrinos with the ANTARES telescope

    Directory of Open Access Journals (Sweden)

    Fusco Luigi Antonio

    2016-01-01

    Full Text Available In this proceedings we report on the status of searches for diffuse fluxes of cosmic neutrinos with the ANTARES neutrino telescope data. A complete overview of full sky searches will be given, together with the analysis of possible diffuse neutrino emission from regions such as the Fermi Bubbles or the Galactic Plane.

  9. Detection potential to point-like neutrino sources with the NEMO-km3 telescope

    OpenAIRE

    Distefano, C.

    2006-01-01

    The NEMO Collaboration is conducting an R&D activity towards the construction of a Mediterranean km3 neutrino telescope. In this work, we present the results of Monte Carlo simulation studies on the capability of the proposed NEMO telescope to detect and identify point-like sources of high energy muon neutrinos.

  10. Kalman filter tracking in a Cherenkov neutrino telescope

    International Nuclear Information System (INIS)

    The reconstruction of tracks in underwater Cherenkov neutrino telescopes is strongly complicated due to large background counting rate originates from 40K beta decay and to the electromagnetic showers accompanying high energy muons together with the effects of light propagation in the water, in particular the photon scattering. These two effects lead to a non-linear problem with a non-Gaussian measurement noise. A method for track reconstruction based on Kalman filter approach in this situation is presented. We use Gaussian Sum Filter algorithm to take into account non-Gaussian process noise. While usual Kalman filter estimators based on linear least-square method are optimal in case all observations are Gaussian distributed, the Gaussian Sum Filter offers a better treatment of non-Gaussian process noise and/or measurement errors when these are modeled by Gaussian mixtures. As an example of the application, the results of muon track reconstruction in NEMO underwater neutrino telescope are presented as well as the comparison of its capability with other standard track reconstruction methods.

  11. Limits on dark matter annihilation in the sun using the ANTARES neutrino telescope

    OpenAIRE

    Adrián-Martínez, S.; Albert, A.; André, M.; Anton, G.; Ardid, M.; J.-J. Aubert; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bormuth, R.; M. C. Bouwhuis; R. Bruijn

    2016-01-01

    A search for muon neutrinos originating from dark matter annihilations in the Sun is performed using the data recorded by the ANTARES neutrino telescope from 2007 to 2012. In order to obtain the best possible sensitivities to dark matter signals, an optimisation of the event selection criteria is performed taking into account the background of atmospheric muons, atmospheric neutrinos and the energy spectra of the expected neutrino signals. No significant excess over the background is observed...

  12. Dependability analysis of a very large volume neutrino telescope

    International Nuclear Information System (INIS)

    This work considers a first order approximation to the dependability analysis of complex large scale installations. The dependability criterion used here is quantitative unavailability, and an appropriate unavailability model is presented. The model assumes that the system is symmetrical, has various levels of hierarchy, and components found in the same level are similar and function independently. The application example comes from very large volume neutrino telescopes installed under water or ice, consisting of several thousands of optical modules. The readout architecture of the detector has several levels of multiplexing including optical detection towers, branches and tower sectors. The paper presents results for various alternative detector layouts and distances of the detector from the onshore facilities. It also develops dependability requirements for major components and/or subsystems consistent with an overall system performance target. The results depict the dependence of the system unavailability on the number of optical modules and the alternative deep sea infrastructure configurations for transferring the measured signals.

  13. NESTOR - Neutrino Extended Submarine Telescope with Oceanographic Research

    CERN Multimedia

    2002-01-01

    {\\bf NESTOR} is a deep-sea neutrino telescope that is being deployed in the Mediterranean off the south-west coast of the Peleponnese in Greece. Neutrinos, when they interact in the earth below or in the seawater around the detector, produce muons that can be observed by the Cherenkov radiation, which they emit. At an operating depth of 4000 metres, the detector is effectively shielded from muons produced in atmospheric interactions. {\\bf The site:} A major feature of the Ionian Sea floor is the Hellenic Trench, the deepest in the Mediterranean, which in places exceeds 5000 meters. It runs close to the western coast of the Peleponnese and is protected on its western side by the submarine Eastern Mediterranean Ridge. It is far from big city pollution or the effluent of major river systems flowing into the Mediterranean and is protected from deep-water perturbations.\\\\ The NESTOR site is located on a broad plateau some 8 $\\times$ 9 kilometres in area on the eastern side of the Hellenic Trench at a mean depth of...

  14. Study of data filtering algorithms for the KM3NeT neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Herold, B., E-mail: Bjoern.Herold@physik.uni-erlangen.d [Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany); Seitz, T., E-mail: Thomas.Seitz@physik.uni-erlangen.d [Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany); Shanidze, R., E-mail: shanidze@physik.uni-erlangen.d [Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany)

    2011-01-21

    The photomultiplier signals above a defined threshold (hits) are the main data collected from the KM3NeT neutrino telescope. The neutrino and muon events will be reconstructed from these signals. However, in the deep sea the dominant source of hits are the decays of {sup 40}K isotope and marine fauna bioluminescence. The selection of neutrino and muon events requires the implementation of fast and efficient data filtering algorithms for the reduction of accidental background event rates. A possible data filtering scheme for the KM3NeT neutrino telescope is discussed in the paper.

  15. The KM3NeT deep-sea neutrino telescope

    International Nuclear Information System (INIS)

    KM3NeT is a deep-sea research infrastructure being constructed in the Mediterranean Sea. It will host the next generation Cherenkov neutrino telescope and nodes for a deep sea multidisciplinary observatory, providing oceanographers, marine biologists, and geophysicists with real time measurements. The neutrino telescope will complement IceCube in its field of view and exceed it substantially in sensitivity. Its main goal is the detection of high energy neutrinos of astrophysical origin. The detector will have a modular structure with six building blocks, each consisting of about 100 Detection Units (DUs). Each DU will be equipped with 18 multi-PMT digital optical modules. The first phase of construction has started and shore and deep-sea infrastructures hosting the future KM3NeT detector are being prepared in offshore Toulon, France and offshore Capo Passero on Sicily, Italy. The technological solutions for the neutrino detector of KM3NeT and the expected performance of the neutrino telescope are presented and discussed. - Highlights: • A deep-sea research infrastructure is being built in the Mediterranean Sea. • It will host a km3-size neutrino telescope and a deep-sea multidisciplinary observatory. • The main goal of the neutrino telescope is the search for Galactic neutrino sources. • A major innovation is adopted in the design of the optical module. • 31 3 in. photomultiplier tubes (PMTs) will be hosted in the same glass sphere

  16. Search of Dark Matter Annihilation in the Galactic Centre using the ANTARES Neutrino Telescope

    CERN Document Server

    Adrián-Martínez, S; André, M; Anton, G; Ardid, M; Aubert, J -J; Baret, B; Barrios-Martí, J; Basa, S; Bertin, V; Biagi, S; Bogazzi, C; Bormuth, R; Bou-Cabo, M; Bouwhuis, M C; Bruijn, R; Brunner, J; Busto, J; Capone, A; Caramete, L; Carr, J; Chiarusi, T; Circella, M; Coniglione, R; Costantini, H; Coyle, P; Creusot, A; Dekeyser, I; Deschamps, A; DeBonis, G; Distefano, C; Donzaud, C; Dornic, D; Drouhin, D; Dumas, A; Eberl, T; Elsässer, D; Enzenhöfer, A; Fehn, K; Felis, I; Fermani, P; Folger, F; Fusco, L A; Galatà, S; Gay, P; Geißelsöder, S; Geyer, K; Giordano, V; Gleixner, A; Gracia-Ruiz, R; Graf, K; vanHaren, H; Heijboer, A J; Hello, Y; Hernández-Rey, J J; Herrero, A; Hößl, J; Hofestädt, J; Hugon, C; WJames, C; deJong, M; Kadler, M; Kalekin, O; Katz, U; Kießling, D; Kooijman, P; Kouchner, A; Kreykenbohm, I; Kulikovskiy, V; Lahmann, R; Lambard, G; Lattuada, D; Lefèvre, D; Leonora, E; Loucatos, S; Marcelin, M; Margiotta, A; Martínez-Mora, J A; Martini, S; Mathieu, A; Michael, T; Migliozzi, P; Moussa, A; Mueller, C; Neff, M; Nezri, E; Păvălaş, G E; Pellegrino, C; Perrina, C; Piattelli, P; Popa, V; Pradier, T; Racca, C; Riccobene, G; Richter, R; Roensch, K; Rostovtsev, A; Saldaña, M; Samtleben, D F E; Sanguineti, M; Sapienza, P; Schmid, J; Schnabel, J; Schulte, S; Schüssler, F; Seitz, T; Sieger, C; Spurio, M; Steijger, J J M; Stolarczyk, Th; Sánchez-Losa, A; Taiuti, M; Tamburini, C; Trovato, A; Tselengidou, M; Tönnis, C; Vallage, B; Vallée, C; VanElewyck, V; Visser, E; Vivolo, D; Wagner, S; Wilms, J; Zornoza, J D; Zúñiga, J

    2015-01-01

    A search for high-energy neutrinos coming from the direction of the Galactic Centre is performed using the data recorded by the ANTARES neutrino telescope from 2007 to 2012. The event selection criteria are chosen to maximise the sensitivity to possible signals produced by the self-annihilation of weakly interacting massive particles accumulated around the centre of the Milky Way with respect to the atmospheric background. After data unblinding, the number of neutrinos observed in the line of sight of the Galactic Centre is found to be compatible with background expectations. The 90% C.L. upper limits in terms of the neutrino+anti-neutrino flux, $\\rm \\Phi_{\

  17. SEARCHES FOR POINT-LIKE AND EXTENDED NEUTRINO SOURCES CLOSE TO THE GALACTIC CENTER USING THE ANTARES NEUTRINO TELESCOPE

    International Nuclear Information System (INIS)

    A search for cosmic neutrino sources using six years of data collected by the ANTARES neutrino telescope has been performed. Clusters of muon neutrinos over the expected atmospheric background have been looked for. No clear signal has been found. The most signal-like accumulation of events is located at equatorial coordinates R.A. = –46.°8 and decl. = –64.°9 and corresponds to a 2.2σ background fluctuation. In addition, upper limits on the flux normalization of an E –2 muon neutrino energy spectrum have been set for 50 pre-selected astrophysical objects. Finally, motivated by an accumulation of seven events relatively close to the Galactic Center in the recently reported neutrino sample of the IceCube telescope, a search for point sources in a broad region around this accumulation has been carried out. No indication of a neutrino signal has been found in the ANTARES data and upper limits on the flux normalization of an E –2 energy spectrum of neutrinos from point sources in that region have been set. The 90% confidence level upper limits on the muon neutrino flux normalization vary between 3.5 and 5.1 × 10–8 GeV cm–2 s–1, depending on the exact location of the source

  18. SEARCHES FOR POINT-LIKE AND EXTENDED NEUTRINO SOURCES CLOSE TO THE GALACTIC CENTER USING THE ANTARES NEUTRINO TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Adrián-Martínez, S.; Ardid, M.; Bou-Cabo, M. [Institut d' Investigació per a la Gestió Integrada de les Zones Costaneres (IGIC) - Universitat Politècnica de València. C/Paranimf 1, E-46730 Gandia (Spain); Albert, A. [GRPHE - Institut universitaire de technologie de Colmar, 34 rue du Grillenbreit BP 50568, F-68008 Colmar (France); André, M. [Technical University of Catalonia, Laboratory of Applied Bioacoustics, Rambla Exposició, E-08800 Vilanova i la Geltrú, Barcelona (Spain); Anghinolfi, M. [INFN - Sezione di Genova, Via Dodecaneso 33, I-16146 Genova (Italy); Anton, G. [Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, D-91058 Erlangen (Germany); Aubert, J.-J.; Bertin, V.; Brunner, J.; Busto, J. [CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille (France); Baret, B. [APC, Université Paris Diderot, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cité, F-75205 Paris (France); Barrios-Martí, J. [IFIC - Instituto de Física Corpuscular, Edificios Investigación de Paterna, CSIC - Universitat de València, Apdo. de Correos 22085, E-46071 Valencia (Spain); Basa, S. [LAM - Laboratoire d' Astrophysique de Marseille, Pôle de l' Étoile Site de Château-Gombert, rue Frédéric Joliot-Curie 38, F-13388 Marseille Cedex 13 (France); Biagi, S. [INFN - Sezione di Bologna, Viale Berti-Pichat 6/2, I-40127 Bologna (Italy); Bogazzi, C.; Bormuth, R.; Bouwhuis, M. C.; Bruijn, R. [Nikhef, Science Park, Amsterdam (Netherlands); Capone, A. [INFN -Sezione di Roma, P.le Aldo Moro 2, I-00185 Roma (Italy); and others

    2014-05-01

    A search for cosmic neutrino sources using six years of data collected by the ANTARES neutrino telescope has been performed. Clusters of muon neutrinos over the expected atmospheric background have been looked for. No clear signal has been found. The most signal-like accumulation of events is located at equatorial coordinates R.A. = –46.°8 and decl. = –64.°9 and corresponds to a 2.2σ background fluctuation. In addition, upper limits on the flux normalization of an E {sup –2} muon neutrino energy spectrum have been set for 50 pre-selected astrophysical objects. Finally, motivated by an accumulation of seven events relatively close to the Galactic Center in the recently reported neutrino sample of the IceCube telescope, a search for point sources in a broad region around this accumulation has been carried out. No indication of a neutrino signal has been found in the ANTARES data and upper limits on the flux normalization of an E {sup –2} energy spectrum of neutrinos from point sources in that region have been set. The 90% confidence level upper limits on the muon neutrino flux normalization vary between 3.5 and 5.1 × 10{sup –8} GeV cm{sup –2} s{sup –1}, depending on the exact location of the source.

  19. Searches for clustering in the time integrated skymap of the ANTARES neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Adrián-Martínez, S.; Ardid, M.; Bou-Cabo, M. [Institut d' Investigació per a la Gestió Integrada de les Zones Costaneres (IGIC) - Universitat Politècnica de València. C/ Paranimf 1 , 46730 Gandia, Spain. (Spain); Albert, A. [GRPHE - Institut universitaire de technologie de Colmar, 34 rue du Grillenbreit BP 50568 - 68008 Colmar (France); André, M. [Technical University of Catalonia, Laboratory of Applied Bioacoustics, Rambla Exposició,08800 Vilanova i la Geltrú,Barcelona (Spain); Anton, G. [Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany); Aubert, J.-J.; Bertin, V.; Brunner, J.; Busto, J. [CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille (France); Baret, B. [APC, Université Paris Diderot, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cité, 75205 Paris (France); Barrios-Martí, J. [IFIC - Instituto de Física Corpuscular, Edificios Investigación de Paterna, CSIC - Universitat de València, Apdo. de Correos 22085, 46071 Valencia (Spain); Basa, S. [LAM - Laboratoire d' Astrophysique de Marseille, Pôle de l' Étoile Site de Château-Gombert, rue Frédéric Joliot-Curie 38, 13388 Marseille Cedex 13 (France); Biagi, S. [INFN - Sezione di Bologna, Viale Berti-Pichat 6/2, 40127 Bologna (Italy); Bogazzi, C.; Bormuth, R.; Bouwhuis, M.C.; Bruijn, R. [Nikhef, Science Park, Amsterdam (Netherlands); Capone, A. [INFN -Sezione di Roma, P.le Aldo Moro 2, 00185 Roma (Italy); Caramete, L., E-mail: fabian.schussler@cea.fr [Institute for Space Sciences, R-77125 Bucharest, Măgurele (Romania); and others

    2014-05-01

    This paper reports a search for spatial clustering of the arrival directions of high energy muon neutrinos detected by the ANTARES neutrino telescope. An improved two-point correlation method is used to study the autocorrelation of 3058 neutrino candidate events as well as cross-correlations with other classes of astrophysical objects: sources of high energy gamma rays, massive black holes and nearby galaxies. No significant deviations from the isotropic distribution of arrival directions expected from atmospheric backgrounds are observed.

  20. Searches for clustering in the time integrated skymap of the ANTARES neutrino telescope

    International Nuclear Information System (INIS)

    This paper reports a search for spatial clustering of the arrival directions of high energy muon neutrinos detected by the ANTARES neutrino telescope. An improved two-point correlation method is used to study the autocorrelation of 3058 neutrino candidate events as well as cross-correlations with other classes of astrophysical objects: sources of high energy gamma rays, massive black holes and nearby galaxies. No significant deviations from the isotropic distribution of arrival directions expected from atmospheric backgrounds are observed

  1. Stacked search for time shifted high energy neutrinos from gamma ray bursts with the \\ANTARES neutrino telescope

    CERN Document Server

    Adrian-Martínez, S; André, M; Anton, G; Ardid, M; Aubert, J -J; Baret, B; Barrios-Marti, J; Basa, S; Bertin, V; Biagi, S; Bormuth, R; Bouwhuis, M C; Bruijn, R; Brunner, J; Busto, J; Capone, A; Caramete, L; Carr, J; Chiarusi, T; Circella, M; Coniglione, R; Costantini, H; Coyle, P; Creusot, A; Dekeyser, I; Deschamps, A; De Bonis, G; Distefano, C; Donzaud, C; Dornic, D; Drouhin, D; Dumas, A; Eberl, T; Elsasser, D; Enzenhofer, A; Fehn, K; Felis, I; Fermani, P; Folger, F; Fusco, L A; Galatà, S; Gay, P; Geisselsoeder, S; Geyer, K; Giordano, V; Gleixner, A; Gracia-Ruiz, R; Graf, K; Hallmann, S; van Haren, H; Heijboer, A J; Hello, Y; Hernàndez-Rey, J J; Hoessl, J; Hofestadt, J; Hugon, C; James, C W; de Jong, M; Kadler, M; Kadler, M; Kalekin, O; Katz, U; Kiessling, D; Kooijman, P; Kouchner, A; Kreter, M; Kreykenbohm, I; Kulikovskiy, V; Lahmann, R; Lefèvre, D; Leonora, E; Marcelin, M; Margiotta, A; Marinelli, A; Martínez-Mora, J A; Mathieu, A; Michael, T; Migliozzi, P; Moussa, A; Muller, C; Nezri, E; Pavalas, G E; Pellegrino, C; Perrina, C; Piattelli, P; Popa, V; Pradier, T; Racca, C; Riccobene, G; Richter, R; Roensch, K; Saldaña, M; Samtleben, D F E; Sánchez-Losa, A; Sanguineti, M; Sapienza, P; Schmid, J; Schnabel, J; Schussler, F; Seitz, T; Sieger, C; Spurio, M; Steijger, J J M; Stolarczyk, Th; Taiuti, M; Tamburini, C; Trovato, A; Tselengidou, M; Tonnis, C; Vallage, B; Vallée, C; Van Elewyck, V; Visser, E; Vivolo, D; Wagner, S; Wilms, J; Zornoza, J D; Zúñiga, J

    2016-01-01

    A search for high-energy neutrino emission correlated with gamma-ray bursts outside the electromagnetic prompt-emission time window is presented. Using a stacking approach of the time delays between reported gamma-ray burst alerts and spatially coincident muon-neutrino signatures, data from the Antares neutrino telescope recorded between 2007 and 2012 are analysed. One year of public data from the IceCube detector between 2008 and 2009 have been also investigated. The respective timing pro?les are scanned for statistically significant accumulations within 40 days of the Gamma Ray Burst, as expected from Lorentz Invariance Violation effects and some astrophysical models. No significant excess over the expected accidental coincidence rate could be found in either of the two data sets. The average strength of the neutrino signal is found to be fainter than one detectable neutrino signal per hundred gamma-ray bursts in the Antares data at 90% confidence level.

  2. AMADEUS-The acoustic neutrino detection test system of the ANTARES deep-sea neutrino telescope

    International Nuclear Information System (INIS)

    The AMADEUS (ANTARES Modules for the Acoustic Detection Under the Sea) system which is described in this article aims at the investigation of techniques for acoustic detection of neutrinos in the deep sea. It is integrated into the ANTARES neutrino telescope in the Mediterranean Sea. Its acoustic sensors, installed at water depths between 2050 and 2300 m, employ piezo-electric elements for the broad-band recording of signals with frequencies ranging up to 125 kHz. The typical sensitivity of the sensors is around -145 dB re 1 V/μPa (including preamplifier). Completed in May 2008, AMADEUS consists of six 'acoustic clusters', each comprising six acoustic sensors that are arranged at distances of roughly 1 m from each other. Two vertical mechanical structures (so-called lines) of the ANTARES detector host three acoustic clusters each. Spacings between the clusters range from 14.5 to 340 m. Each cluster contains custom-designed electronics boards to amplify and digitise the acoustic signals from the sensors. An on-shore computer cluster is used to process and filter the data stream and store the selected events. The daily volume of recorded data is about 10 GB. The system is operating continuously and automatically, requiring only little human intervention. AMADEUS allows for extensive studies of both transient signals and ambient noise in the deep sea, as well as signal correlations on several length scales and localisation of acoustic point sources. Thus the system is excellently suited to assess the background conditions for the measurement of the bipolar pulses expected to originate from neutrino interactions.

  3. AMADEUS-The acoustic neutrino detection test system of the ANTARES deep-sea neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, J.A. [IFIC - Instituto de Fisica Corpuscular, Edificios Investigacion de Paterna, CSIC - Universitat de Valencia, Apdo. de Correos 22085, 46071 Valencia (Spain); Al Samarai, I. [CPPM - Centre de Physique des Particules de Marseille, CNRS/IN2P3 et Universite de la Mediterranee, 163 Avenue de Luminy, Case 902, 13288 Marseille Cedex 9 (France); Albert, A. [GRPHE - Institut Universitaire de Technologie de Colmar, 34 rue du Grillenbreit BP 50568, 68008 Colmar (France); Anghinolfi, M. [INFN - Sezione di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Anton, G. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany); Anvar, S. [Direction des Sciences de la Matiere - Institut de Recherche sur les lois fondamentales de l' Univers - Service d' Electronique des Detecteurs et d' Informatique, CEA Saclay, 91191 Gif-sur-Yvette Cedex (France); Ardid, M. [Institut d' Investigacio per a la Gestio Integrada de Zones Costaneres (IGIC) - Universitat Politecnica de Valencia. C/ Paranimf 1., 46730 Gandia (Spain); Assis Jesus, A.C.; Astraatmadja, T. [FOM Instituut voor Subatomaire Fysica Nikhef, Science Park 105, 1098 XG Amsterdam (Netherlands); Aubert, J.-J. [CPPM - Centre de Physique des Particules de Marseille, CNRS/IN2P3 et Universite de la Mediterranee, 163 Avenue de Luminy, Case 902, 13288 Marseille Cedex 9 (France); Auer, R. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany); Barbarito, E. [INFN - Sezione di Bari, Via E. Orabona 4, 70126 Bari (Italy); Baret, B. [APC - Laboratoire AstroParticule et Cosmologie, UMR 7164 (CNRS, Universite Paris 7 Diderot, CEA, Observatoire de Paris) 10, rue Alice Domon et Leonie Duquet, 75205 Paris Cedex 13 (France); Basa, S. [LAM - Laboratoire d' Astrophysique de Marseille, Pole de l' Etoile Site de Chateau-Gombert, 13388 Marseille Cedex 13 (France)

    2011-01-21

    The AMADEUS (ANTARES Modules for the Acoustic Detection Under the Sea) system which is described in this article aims at the investigation of techniques for acoustic detection of neutrinos in the deep sea. It is integrated into the ANTARES neutrino telescope in the Mediterranean Sea. Its acoustic sensors, installed at water depths between 2050 and 2300 m, employ piezo-electric elements for the broad-band recording of signals with frequencies ranging up to 125 kHz. The typical sensitivity of the sensors is around -145 dB re 1 V/{mu}Pa (including preamplifier). Completed in May 2008, AMADEUS consists of six 'acoustic clusters', each comprising six acoustic sensors that are arranged at distances of roughly 1 m from each other. Two vertical mechanical structures (so-called lines) of the ANTARES detector host three acoustic clusters each. Spacings between the clusters range from 14.5 to 340 m. Each cluster contains custom-designed electronics boards to amplify and digitise the acoustic signals from the sensors. An on-shore computer cluster is used to process and filter the data stream and store the selected events. The daily volume of recorded data is about 10 GB. The system is operating continuously and automatically, requiring only little human intervention. AMADEUS allows for extensive studies of both transient signals and ambient noise in the deep sea, as well as signal correlations on several length scales and localisation of acoustic point sources. Thus the system is excellently suited to assess the background conditions for the measurement of the bipolar pulses expected to originate from neutrino interactions.

  4. AMADEUS - The Acoustic Neutrino Detection Test System of the ANTARES Deep-Sea Neutrino Telescope

    CERN Document Server

    Aguilar, J A; Albert, A; Anghinolfi, M; Anton, G; Anvar, S; Ardid, M; Jesus, A C Assis; Astraatmadja, T; Aubert, J-J; Auer, R; Barbarito, E; Baret, B; Basa, S; Bazzotti, M; Bertin, V; Biagi, S; Bigongiari, C; Bou-Cabo, M; Bouwhuis, M C; Brown, A; Brunner, J; Busto, J; Camarena, F; Capone, A; Cârloganu, C; Carminati, G; Carr, J; Cassano, B; Castorina, E; Cavasinni, V; Cecchini, S; Ceres, A; Charvis, Ph; Chiarusi, T; Sen, N Chon; Circella, M; Coniglione, R; Costantini, H; Cottini, N; Coyle, P; Curtil, C; De Bonis, G; Decowski, M P; Dekeyser, I; Deschamps, A; Distefano, C; Donzaud, C; Dornic, D; Drouhin, D; Eberl, T; Emanuele, U; Ernenwein, J-P; Escoffier, S; Fehr, F; Fiorello, C; Flaminio, V; Fritsch, U; Fuda, J-L; Gay, P; Giacomelli, G; Gómez-González, J P; Graf, K; Guillard, G; Halladjian, G; Hallewell, G; van Haren, H; Heijboer, A J; Heine, E; Hello, Y; Hernández-Rey, J J; Herold, B; Hößl, J; de Jong, M; Kalantar-Nayestanaki, N; Kalekin, O; Kappes, A; Katz, U; Keller, P; Kooijman, P; Kopper, C; Kouchner, A; Kretschmer, W; Lahmann, R; Lamare, P; Lambard, G; Larosa, G; Laschinsky, H; Le Provost, H; Lefèvre, D; Lelaizant, G; Lim, G; Presti, D Lo; Loehner, H; Loucatos, S; Louis, F; Lucarelli, F; Mangano, S; Marcelin, M; Margiotta, A; Martinez-Mora, J A; Mazure, A; Mongelli, M; Montaruli, T; Morganti, M; Moscoso, L; Motz, H; Naumann, C; Neff, M; Ostasch, R; Palioselitis, D; Pavalas, G E; Payre, P; Petrovic, J; Picot-Clemente, N; Picq, C; Popa, V; Pradier, T; Presani, E; Racca, C; Radu, A; Reed, C; Riccobene, G; Richardt, C; Rujoiu, M; Ruppi, M; Russo, G V; Salesa, F; Sapienza, P; Schöck, F; Schuller, J-P; Shanidze, R; Simeone, F; Spurio, M; Steijger, J J M; Stolarczyk, Th; Taiuti, M; Tamburini, C; Tasca, L; Toscano, S; Vallage, B; Van Elewyck, V; Vannoni, G; Vecchi, M; Vernin, P; Wijnker, G; de Wolf, E; Yepes, H; Zaborov, D; Zornoza, J D; Zúñiga, J; 10.1016/j.nima.2010.09.053

    2010-01-01

    The AMADEUS (ANTARES Modules for the Acoustic Detection Under the Sea) system which is described in this article aims at the investigation of techniques for acoustic detection of neutrinos in the deep sea. It is integrated into the ANTARES neutrino telescope in the Mediterranean Sea. Its acoustic sensors, installed at water depths between 2050 and 2300 m, employ piezo-electric elements for the broad-band recording of signals with frequencies ranging up to 125 kHz. The typical sensitivity of the sensors is around -145 dB re 1V/muPa (including preamplifier). Completed in May 2008, AMADEUS consists of six "acoustic clusters", each comprising six acoustic sensors that are arranged at distances of roughly 1 m from each other. Two vertical mechanical structures (so-called lines) of the ANTARES detector host three acoustic clusters each. Spacings between the clusters range from 14.5 to 340 m. Each cluster contains custom-designed electronics boards to amplify and digitise the acoustic signals from the sensors. An on...

  5. New Limits on Thermally annihilating Dark Matter from Neutrino Telescopes

    CERN Document Server

    Lopes, José

    2016-01-01

    We used a consistent and robust solar model to obtain upper limits placed by neutrino telescopes, such as Ice- Cube and Super-Kamiokande, on the Dark Matter-nucleon scattering cross-section, for a general model of Dark Matter with a velocity dependent (p-wave) thermally averaged cross-section. In this picture, the Boltzmann equation for the Dark Matter abundance is numerically solved satisfying the Dark Matter density measured from the Cosmic Microwave Background (CMB). We show that for lower cross-sections and higher masses, the Dark Matter annihilation rate drops sharply, resulting in upper bounds on the scattering cross-section one order of magnitude above those derived from a velocity independent (s-wave) annihilation cross-section. Our results show that upper limits on the scattering cross-section obtained from Dark Matter annihilating in the Sun are sensible to the uncertainty in current standard solar models, fluctuating a maximum of 20 % depending on the annihilation channel.

  6. Physics capabilities of the second stage Baikal detector NT-200

    Energy Technology Data Exchange (ETDEWEB)

    Spiering, C.; Heller, R.; Heukenkamp, H.; Krabi, J.; Mikolajski, T.; Thon, T.; Wischnewski, R. [Institut fuer Hochenergiephysik, Zeuthen (Germany); Alatin, S.D.; Fialkovsky, S.V.; Kulepov, V.F.; Milenin, M.B. [Polytechnical Inst., Nizhni Novgorod (Russia); Belolaptikov, I.A.; Bezrukov, L.B.; Borisovets, B.A.; Bugaev, E.V.; Djilkibaev, Zh.A.M.; Domogatsky, G.V.; Donskich, L.A.; Doroshenko, A.A.; Galperin, M.D.; Gushtan, M.N.; Klabukov, A.M.; Klimushin, S.I.; Lanin, O.J.; Lubsandorzhiev, B.K.; Ogievietzky, N.V.; Panfilov, A.I.; Sokalsky, I.A.; Trofimenko, I.I. [Inst. for Nuclear Research, Moscow (Russia); Budnev, N.M.; Chensky, A.G.; Dobrynin, V.I.; Gress, O.A.; Koshechkin, A.P.; Lanin, J.B.; Litunenko, G.A.; Lopin, A.L.; Naumov, V.A.; Nemchenko, M.I.; Parfenov, Yu.V.; Pavlov, A.A.; Pokalev, O.P.; Primin, V.A.; Sumanov, A.A.; Tarashansky, V.A.; Zurbanov, V.L. [Irkutsk State Univ. (Russia); Dudkin, G.N.; Egorov, V.Yu.; Lukanin, A.A.; Ovcharov, A.M.; Padalko, V.M.; Padusenko, A.H. [Tomsk Polytechnical Inst. (Russia); Golikov, A.V.; Kabikov, V.B.; Kuzmichov, L.A.; Osipova, E.A.; Zaslavskaya, E.S. [Moscow State Univ. (Russia); Jenek, L.; Kiss, D.; Tanko, L. [Central Research Inst. of Fundamental Physics, Budapest (Hungary)]|[Joint Inst. for Nuclear Research, Dubna (Russia); Kusner, Yu.S.; Poleschuk, V.A.; Sherstyankin, P.P. [Limnological Inst., Irkutsk (Russia); Levin, A.A.; Nikiforov, A.I.; Rosanov, M.I. [Marine Technical Univ., St. Petersburg (Russia); BAIKAL Collaboration

    1991-12-01

    We describe the lake Baikal deep underwater detector `NT-200` and discuss its physics capabilities to investigate problems in the field of neutrino astrophysics, cosmic ray physics and particle physics. (orig.).

  7. Physics capabilities of the second stage Baikal detector NT-200

    International Nuclear Information System (INIS)

    We describe the lake Baikal deep underwater detector 'NT-200' and discuss its physics capabilities to investigate problems in the field of neutrino astrophysics, cosmic ray physics and particle physics. (orig.)

  8. A search for Secluded Dark Matter in the Sun with the ANTARES neutrino telescope

    CERN Document Server

    Adrián-Martínez, S; André, M; Anton, G; Ardid, M; Aubert, J -J; Avgitas, T; Baret, B; Barrios-Martí, J; Basa, S; Bertin, V; Biagi, S; Bormuth, R; Bou-Cabo, M; Bouwhuis, M C; Bruijn, R; Brunner, J; Busto, J; Capone, A; Caramete, L; Carr, J; Celli, S; Chiarusi, T; Circella, M; Coleiro, A; Coniglione, R; Costantini, H; Coyle, P; Creusot, A; Deschamps, A; De Bonis, G; Distefano, C; Donzaud, C; Dornic, D; Drouhin, D; Eberl, T; Bojaddaini, I El; Elsässer, D; Enzenhöfer, A; Fehn, K; Felis, I; Fusco, L A; Galatà, S; Gay, P; Geißelsöder, S; Geyer, K; Giordano, V; Gleixner, A; Glotin, H; Gracia-Ruiz, R; Graf, K; Hallmann, S; van Haren, H; Heijboer, A J; Hello, Y; Hernández-Rey, J J; Hößl, J; Hofestädt, J; Hugon, C; Illuminati, G; James, C W; de Jong, M; Kadler, M; Kalekin, O; Katz, U; Kießling, D; Kouchner, A; Kreter, M; Kreykenbohm, I; Kulikovskiy, V; Lachaud, C; Lahmann, R; Lefèvre, D; Leonora, E; Loucatos, S; Marcelin, M; Margiotta, A; Marinelli, A; Martínez-Mora, J A; Mathieu, A; Michael, T; Migliozzi, P; Moussa, A; Mueller, C; Nezri, E; Păvălaş, G E; Pellegrino, C; Perrina, C; Piattelli, P; Popa, V; Pradier, T; Racca, C; Riccobene, G; Roensch, K; Saldaña, M; Samtleben, D F E; Sanguineti, M; Sapienza, P; Schnabel, J; Schüssler, F; Seitz, T; Sieger, C; Spurio, M; Stolarczyk, Th; Sánchez-Losa, A; Taiuti, M; Trovato, A; Tselengidou, M; Turpin, D; Tönnis, C; Vallage, B; Vallée, C; Van Elewyck, V; Vivolo, D; Wagner, S; Wilms, J; Zornoza, J D; Zúñiga, J

    2016-01-01

    A search for Secluded Dark Matter annihilation in the Sun using 2007-2012 data of the ANTARES neutrino telescope is presented. Three different cases are considered: a) detection of dimuons that result from the decay of the mediator, or neutrino detection from: b) mediator that decays into a dimuon and, in turn, into neutrinos, and c) mediator that decays directly into neutrinos. As no significant excess over background is observed, constraints are derived on the dark matter mass and the lifetime of the mediator.

  9. Recent results from operation of the ANTARES deep-sea neutrino telescope

    International Nuclear Information System (INIS)

    The ANTARES neutrino telescope is currently the largest operating water Cherenkov detector and the largest neutrino detector in the Northern hemisphere. It comprises 885 optical modules distributed on 12 detection lines anchored at a depth of 2.5 km in the Mediterranean Sea near Toulon, France; at a latitude that accesses a large part of the Galactic Plane, including the Galactic Centre. Its main scientific target is the detection of multi-TeV neutrinos predicted in charged cosmic particle acceleration mechanisms. In addition, ANTARES has developed a range of multi-messenger search strategies to look for correlations with optical counterparts and other cosmic messengers including γ-rays and charged cosmic rays. Other topics of investigation include the search for neutrinos from dark matter annihilation, searches for exotic particles and the measurement of neutrino oscillations. Details of the telescope are discussed together with examples of recently-conducted searches

  10. A Search for Time Dependent Neutrino Emission from Microquasars with the ANTARES Telescope

    CERN Document Server

    Adrián-Martínez, S; André, M; Anghinolfi, M; Anton, G; Ardid, M; Astraatmadja, T; Aubert, J -J; Baret, B; Barrios, J; Basa, S; Bertin, V; Biagi, S; Bigongiari, C; Bogazzi, C; Bouhou, B; Bouwhuis, M C; Brunner, J; Busto, J; Capone, A; Caramete, L; Cârloganu, C; Carr, J; Cecchini, S; Charif, Z; Charvis, P; Chiarusi, T; Circella, M; Coniglione, R; Core, L; Costantini, H; Coyle, P; Creusot, A; De Rosa, G; Dekeyser, I; Deschamps, A; De Bonis, G; Distefano, C; Donzaud, C; Dornic, D; Dorosti, Q; Drouhin, D; Dumas, A; Eberl, T; Elsässer, D; Emanuele, U; Enzenhöfer, A; Ernenwein, J -P; Escoffier, S; Fehn, K; Felis, I; Fermani, P; Folger, F; Fusco, L A; Galatà, S; Gay, P; Geißelsöder, S; Geyer, K; Giordano, V; Gleixner, A; Gómez-González, J P; Graf, K; Guillard, G; van Haren, H; Heijboer, A J; Hello, Y; Hernández-Rey, J J; Herold, B; Hößl, J; Hofestädt, J; James, C W; de Jong, M; Kadler, M; Kalekin, O; Kappes, A; Katz, U; Kooijman, P; Kouchner, A; Kreykenbohm, I; Kulikovskiy, V; Lahmann, R; Lambard, E; Lambard, G; Larosa, G; Lattuada, D; Lefèvre, D; Leonora, E; Loehner, H; Loucatos, S; Mangano, S; Marcelin, M; Margiotta, A; Martínez-Mora, J A; Martini, S; Mathieu, A; Michael, T; Migliozzi, P; Montaruli, T; Müller, C; Neff, M; Nezri, E; Palioselitis, D; Păvălaş, G E; Perrina, C; Piattelli, P; Popa, V; Pradier, T; Racca, C; Riccobene, G; Richter, R; Rivière, C; Robert, A; Roensch, K; Rostovtsev, A; Salda\; Samtleben, D F E; Sánchez-Losa, A; Sanguineti, M; Sapienza, P; Schmid, J; Schnabel, J; Schulte, S; Schüssler, F; Seitz, T; Sieger, C; Spies, A; Spurio, M; Steijger, J J M; Stolarczyk, T; Taiuti, M; Tamburini, C; Tayalati, Y; Trovato, A; Vallage, B; Vallée, C; Van Elewyck, V; Vernin, P; Visser, E; Vivolo, D; Wagner, S; Wilms, J; de Wolf, E; Yatkin, K; Yepes, H; Zornoza, J D; Zúñiga, J

    2014-01-01

    Results are presented on a search for neutrino emission from a sample of six microquasars, based on the data collected by the ANTARES neutrino telescope between 2007 and 2010. By means of appropriate time cuts, the neutrino search has been restricted to the periods when the acceleration of relativistic jets was taking place at the microquasars under study. The time cuts have been chosen using the information from the X-ray telescopes RXTE/ASM and Swift/BAT, and, in one case, the gamma-ray telescope Fermi/LAT. Since none of the searches has produced a statistically significant signal, upper limits on the neutrino fluences are derived and compared to the predictions from theoretical models.

  11. Five years of searches for point sources of astrophysical neutrinos with the AMANDA-II neutrino telescope

    CERN Document Server

    Achterberg, A; Adams, J; Ahrens, J; Andeen, K; Atlee, D W; Bahcall, J N; Bai, X; Baret, B; Barwick, S W; Bay, R; Beattie, K; Becka, T; Becker, J K; Becker, K H; Berghaus, P; Berley, D; Bernardini, E; Bertrand, D; Besson, D Z; Blaufuss, E; Boersma, D J; Bohm, C; Bolmont, J; Boser, S; Botner, O; Bouchta, A; Braun, J; Burgess, C; Burgess, T; Castermans, T; Chirkin, D; Christy, B; Clem, J; Cowen, D F; D'Agostino, M V; Davour, A; Day, C T; De Clercq, C; Demirors, L; Descamps, F; Desiati, P; De Young, T; Díaz-Veléz, J C; Dreyer, J; Dumm, J P; Duvoort, M R; Edwards, W R; Ehrlich, R; Eisch, J; Ellsworth, R W; Evenson, P A; Fadiran, O; Fazely, A R; Feser, T; Filimonov, K; Fox, B D; Gaisser, T K; Gallagher, J; Ganugapati, R; Geenen, H; Gerhardt, L; Goldschmidt, A; Goodman, J A; Gozzini, R; Grullon, S; Gross, A; Gunasingha, R M; Gurtner, M; Hallgren, A; Halzen, F; Han, K; Hanson, K; Hardtke, D; Hardtke, R; Harenberg, T; Hart, J E; Hauschildt, T; Hays, D; Heise, J; Helbing, K; Hellwig, M; Herquet, P; Hill, G C; Hodges, J; Hoffman, K D; Hommez, B; Hoshina, K; Hubert, D; Hughey, B; Hulth, P O; Hultqvist, K; Hundertmark, S; Hulss, J P; Ishihara, A; Jacobsen, J; Japaridze, G S; Johansson, H; Jones, A; Joseph, J M; Kampert, K H; Karle, A; Kawai, H; Kelley, J L; Kestel, M; Kitamura, N; Klein, S R; Klepser, S; Kohnen, G; Kolanoski, H; Kowalski, M; Köpke, L; Krasberg, M; Kühn, K; Landsman, H; Leich, H; Leier, D; Leuthold, M; Liubarsky, I; Lundberg, J; Lunemann, J; Madsen, J; Mase, K; Matis, H S; McCauley, T; McParland, C P; Meli, A; Messarius, T; Mészáros, P; Miyamoto, H; Mokhtarani, A; Montaruli, T; Morey, A; Morse, R; Movit, S M; Munich, K; Nahnhauer, R; Nam, J W; Niessen, P; Nygren, D R; Ogelman, H; Olivas, A; Patton, S; Peña-Garay, C; Pérez de los Heros, C; Piegsa, A; Pieloth, D; Pohl, A C; Porrata, R; Pretz, J; Price, P B; Przybylski, G T; Rawlins, K; Razzaque, S; Resconi, E; Rhode, W; Ribordy, M; Rizzo, A; Robbins, S; Roth, P; Rott, C; Rutledge, D; Ryckbosch, D; Sander, H G; Sarkar, S; Schlenstedt, S; Schmidt, T; Schneider, D; Seckel, D; Seo, S H; Seunarine, S; Silvestri, A; Smith, A J; Solarz, M; Song, C; Sopher, J E; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Steffen, P; Stezelberger, T; Stokstad, R G; Stoufer, M C; Stoyanov, S; Strahler, E A; Straszheim, T; Sulanke, K H; Sullivan, G W; Sumner, T J; Taboada, I; Tarasova, O; Tepe, A; Thollander, L; Tilav, S; Tluczykont, M; Toale, P A; Turcan, D; van Eijndhoven, N; Vandenbroucke, J; Van Overloop, A; Voigt, B; Wagner, W; Walck, C; Waldmann, H; Walter, M; Wang, Y R; Wendt, C; Wiebusch, C; Wikström, G; Williams, D R; Wischnewski, R; Wissing, H; Woschnagg, K; Xu, X W; Yodh, G; Yoshida, S; De Dios-Zornoza-Gomez, Juan

    2006-01-01

    We report the results of a five-year survey of the northern sky to search for point sources of high energy neutrinos. The search was performed on the data collected with the AMANDA-II neutrino telescope in the years 2000 to 2004, with a live-time of 1001 days. The sample of selected events consists of 4282 upward going muon tracks with high reconstruction quality and an energy larger than about 100 GeV. We found no indication of point sources of neutrinos and set 90% confidence level flux upper limits for an all-sky search and also for a catalog of 32 selected sources. For the all-sky search, our average (over declination and right ascension) experimentally observed upper limit \\Phi^{0}=(E/TeV)^\\gamma d\\Phi/dE to a point source flux of muon and tau neutrino (detected as muons arising from taus) is \\Phi_{\

  12. Search for Lorentz Violation in km$^3$-Scale Neutrino Telescopes

    CERN Document Server

    Argüelles, C A; Conrad, J M; Katori, T; Kheirandish, A

    2016-01-01

    Kilometer$^3$-scale neutrino detectors such as IceCube, ANTARES, and the proposed Km3Net neutrino observatory in the Mediterranean have measured, and will continue to characterize, the atmospheric neutrino spectrum above 1 TeV. Such precise measurements enable us to probe new neutrino physics, in particular, those that arise from Lorentz violation. In this paper, we first relate the effective new physics hamiltonian terms with the Lorentz violating literature. Second, we calculate the oscillation probability formulas for the two-level $\

  13. Baikal: Myth and Image

    Directory of Open Access Journals (Sweden)

    Konstantin Lidin

    2013-09-01

    Full Text Available Baikal is not only one of the greatest lakes of the world. Baikal is a system of myths and images which has been formed for many centuries. The analysis of old maps shows that only 200-300 years ago the existence of Baikal was the subject of wild speculations. Today the image of Baikal is a world brand. However citizens of Irkutsk and other towns located around Baikal can hardly make any profit on it. The reason is the absence of specialists who would be able to work with such a complex and strong image as Baikal.

  14. The Calibration Units of the KM3NeT neutrino telescope

    Directory of Open Access Journals (Sweden)

    Baret B.

    2016-01-01

    Full Text Available KM3NeT is a network of deep-sea neutrino telescopes to be deployed in the Mediterranean Sea that will perform neutrino astronomy and oscillation studies. It consists of three-dimensional arrays of thousands of optical modules that detect the Cherenkov light induced by charged particles resulting from the interaction of a neutrino with the surrounding medium. The performance of the neutrino telescope relies on the precise timing and positioning calibration of the detector elements. Other environmental conditions which may affect light and sound transmission, such as water temperature and salinity, must also be continuously monitored. This contribution describes the technical design of the first Calibration Unit, to be deployed on the French site as part of KM3NeT Phase 1.

  15. What else can we learn about Dark Matter from Neutrino Telescopes?

    International Nuclear Information System (INIS)

    Neutrino telescopes are known to provide an indirect way of testing dark matter models. In particular, the flux of neutrinos coming from the annihilation of dark matter in the centre of the Earth and the Sun has been widely studied. We have investigated an alternative way of learning about dark matter with neutrino telescopes. High energy neutrinos coming from astrophysical sources can produce exotic particles via inelastic scattering inside the Earth. If these are charged and long-lived, they can be detected in km3 Cerenkov detectors such as IceCube. We study such possibility considering two scenarios in which the presence of a long-lived charged particle, namely the lightest stau, is naturally associated to viable supersymmetric dark matter candidates, in particular the neutralino and the gravitino. In both cases, we have calculated the flux of staus at IceCube for different regions of the CMSSM parameter space.

  16. Sensitivity of the space-based CHerenkov from Astrophysical Neutrinos Telescope (CHANT)

    CERN Document Server

    Neronov, A; Anchordoqui, L A; Adams, J; Olinto, A V

    2016-01-01

    Neutrinos with energies in the PeV to EeV range produce upgoing extensive air showers when they interact underground close enough to the surface of the Earth. We study the possibility for detection of such showers with a system of very wide field-of-view imaging atmospheric Cherenkov telescopes, named CHANT for CHerenkov from Astrophysical Neutrinos Telescope, pointing down to a strip below the Earth's horizon from space. We find that CHANT provides sufficient sensitivity for the study of the astrophysical neutrino flux in a wide energy range, from 10~PeV to 10~EeV. A space-based CHANT system can discover and study in detail the cosmogenic neutrino flux originating from interactions of ultra-high-energy cosmic rays in the intergalactic medium.

  17. The Calibration Units of the KM3NeT neutrino telescope

    Science.gov (United States)

    Baret, B.; Keller, P.; Clark, M. Lindsey

    2016-04-01

    KM3NeT is a network of deep-sea neutrino telescopes to be deployed in the Mediterranean Sea that will perform neutrino astronomy and oscillation studies. It consists of three-dimensional arrays of thousands of optical modules that detect the Cherenkov light induced by charged particles resulting from the interaction of a neutrino with the surrounding medium. The performance of the neutrino telescope relies on the precise timing and positioning calibration of the detector elements. Other environmental conditions which may affect light and sound transmission, such as water temperature and salinity, must also be continuously monitored. This contribution describes the technical design of the first Calibration Unit, to be deployed on the French site as part of KM3NeT Phase 1.

  18. Prospects for detecting dark matter with neutrino telescopes in intermediate mass black hole scenarios

    International Nuclear Information System (INIS)

    Current strategies of indirect dark matter detection with neutrino telescopes are based on the search for high-energy neutrinos from the solar core or from the center of the Earth. Here, we propose a new strategy based on the detection of neutrinos from dark matter annihilations in mini-spikes around intermediate mass black holes. Neutrino fluxes, in this case, depend on the annihilation cross-section of dark matter particles, whereas solar and terrestrial fluxes are sensitive to the scattering cross-section off nucleons, a circumstance that makes the proposed search complementary to the existing ones. We discuss the prospects for detection with upcoming underwater and under-ice experiments such as ANTARES and IceCube, and show that several, up to many, sources could be detected with both experiments. A kilometer-scale telescope in the Mediterranean appears to be ideally suited for the proposed search

  19. Atmospheric MUons from PArametric formulas: a fast GEnerator for neutrino telescopes (MUPAGE)

    OpenAIRE

    Carminati, G.; Margiotta, A; Spurio, M

    2008-01-01

    Neutrino telescopes will open, in the next years, new opportunities in observational high energy astrophysics. For these experiments, atmospheric muons from primary cosmic ray interactions in the atmosphere play an important role, because they provide the most abundant source of events for calibration and test. On the other side, they represent the major background source. In this paper a fast Monte Carlo generator (called MUPAGE) of bundles of atmospheric muons for underwater/ice neutrino te...

  20. Optical Modules and Readout Scheme for the KM3NeT Neutrino Telescope

    International Nuclear Information System (INIS)

    The KM3NeT consortium has completed a Technical Design Report (TDR) for a proposed multi-cubic-kilometer sized underwater neutrino telescope that will be deployed in the Mediterranean Sea. The basic unit of an underwater neutrino telescope is the Optical Module (OM), a pyrex glass sphere capable of withstanding the great pressure of the deep sea (up to 5 km water depth) where the telescope will be deployed. The glass spheres house photomultipliers (PMTs), either a single large PMT or many smaller ones, which register the Cherenkov light arising from the secondaries of neutrino interactions. The front-end electronics, installed off-shore, will be based on an ASIC implementing a time-over-threshold signal processing. For the readout scheme, the preferred solution is a fully optical fibre-based approach with point-to-point connections between OMs and shore. All signals above an adjustable noise-rejection threshold will be transferred to shore.

  1. Follow-up of high energy neutrinos detected by the ANTARES telescope

    Science.gov (United States)

    Mathieu, Aurore

    2016-04-01

    The ANTARES telescope is well-suited to detect high energy neutrinos produced in astrophysical transient sources as it can observe a full hemisphere of the sky with a high duty cycle. Potential neutrino sources are gamma-ray bursts, core-collapse supernovae and flaring active galactic nuclei. To enhance the sensitivity of ANTARES to such sources, a detection method based on follow-up observations from the neutrino direction has been developed. This program, denoted as TAToO, includes a network of robotic optical telescopes (TAROT, Zadko and MASTER) and the Swift-XRT telescope, which are triggered when an "interesting" neutrino is detected by ANTARES. A follow-up of special events, such as neutrino doublets in time/space coincidence or a single neutrino having a very high energy or in the specific direction of a local galaxy, significantly improves the perspective for the detection of transient sources. The analysis of early and long term follow-up observations to search for fast and slowly varying transient sources, respectively, has been performed and the results covering optical and X-ray data are presented in this contribution.

  2. Follow-up of high energy neutrinos detected by the ANTARES telescope

    Directory of Open Access Journals (Sweden)

    Mathieu Aurore

    2016-01-01

    Full Text Available The ANTARES telescope is well-suited to detect high energy neutrinos produced in astrophysical transient sources as it can observe a full hemisphere of the sky with a high duty cycle. Potential neutrino sources are gamma-ray bursts, core-collapse supernovae and flaring active galactic nuclei. To enhance the sensitivity of ANTARES to such sources, a detection method based on follow-up observations from the neutrino direction has been developed. This program, denoted as TAToO, includes a network of robotic optical telescopes (TAROT, Zadko and MASTER and the Swift-XRT telescope, which are triggered when an “interesting” neutrino is detected by ANTARES. A follow-up of special events, such as neutrino doublets in time/space coincidence or a single neutrino having a very high energy or in the specific direction of a local galaxy, significantly improves the perspective for the detection of transient sources. The analysis of early and long term follow-up observations to search for fast and slowly varying transient sources, respectively, has been performed and the results covering optical and X-ray data are presented in this contribution.

  3. Time calibration with atmospheric muon tracks in the ANTARES neutrino telescope

    CERN Document Server

    Adrián-Martínez, S; André, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bogazzi, C.; Bormuth, R.; Bou-Cabo, M.; Bouwhuis, M.C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Chiarusi, T.; Circella, M.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Dekeyser, I.; Deschamps, A.; De Bonis, G.; Distefano, C.; Donzaud, C.; Dornic, D.; Drouhin, D.; Dumas, A.; Eberl, T.; Elsässer, D.; Enzenhöfer, A.; Fehn, K.; Felis, I.; Fermani, P.; Flaminio, V.; Folger, F.; Fusco, L.A.; Galatà, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giordano, V.; Gleixner, A.; Gracia-Ruiz, R.; Gómez-González, J.P.; Graf, K.; van Haren, H.; Heijboer, A.J.; Hello, Y.; Hernández-Rey, J.J.; Herrero, A.; Hößl, J.; Hofestädt, J.; Hugon, C.; James, C.W.; de Jong, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kooijman, P.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lambard, G.; Lattuada, D.; Lefèvre, D.; Leonora, E.; Loucatos, S.; Mangano, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J.A.; Martini, S.; Mathieu, A.; Michael, T.; Migliozzi, P.; Moussa, A.; Mueller, C.; Neff, M.; Nezri, E.; Păvălaş, G.E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Racca, C.; Riccobene, G.; Richter, R.; Roensch, K.; Rostovtsev, A.; Saldaña, M.; Samtleben, D.F.E.; Sánchez-Losa, A.; Sanguineti, M.; Sapienza, P.; Schmid, J.; Schnabel, J.; Schulte, S.; Schüssler, F.; Seitz, T.; Sieger, C.; Spurio, M.; Steijger, J.J.M.; Stolarczyk, Th.; Taiuti, M.; Tamburini, C.; Trovato, A.; Tselengidou, M.; Tönnis, C.; Turpin, D.; Vallage, B.; Vallée, C.; Van Elewyck, V.; Visser, E.; Vivolo, D.; Wagner, S.; Wilms, J.; Zornoza, J.D.; Zúñiga, J.

    2016-01-01

    The ANTARES experiment consists of an array of photomultipliers distributed along 12 lines and located deep underwater in the Mediterranean Sea. It searches for astrophysical neutrinos collecting the Cherenkov light induced by the charged particles, mainly muons, produced in neutrino interactions around the detector. Since at energies of $\\sim$10 TeV the muon and the incident neutrino are almost collinear, it is possible to use the ANTARES detector as a neutrino telescope and identify a source of neutrinos in the sky starting from a precise reconstruction of the muon trajectory. To get this result, the arrival times of the Cherenkov photons must be accurately measured. A to perform time calibrations with the precision required to have optimal performances of the instrument is described. The reconstructed tracks of the atmospheric muons in the ANTARES detector are used to determine the relative time offsets between photomultipliers. Currently, this method is used to obtain the time calibration constants for ph...

  4. Limits on dark matter annihilation in the sun using the ANTARES neutrino telescope

    Directory of Open Access Journals (Sweden)

    S. Adrián-Martínez

    2016-08-01

    Full Text Available A search for muon neutrinos originating from dark matter annihilations in the Sun is performed using the data recorded by the ANTARES neutrino telescope from 2007 to 2012. In order to obtain the best possible sensitivities to dark matter signals, an optimisation of the event selection criteria is performed taking into account the background of atmospheric muons, atmospheric neutrinos and the energy spectra of the expected neutrino signals. No significant excess over the background is observed and 90% C.L. upper limits on the neutrino flux, the spin-dependent and spin-independent WIMP-nucleon cross-sections are derived for WIMP masses ranging from 50 GeV to 5 TeV for the annihilation channels WIMP+WIMP→bb¯,W+W− and τ+τ−.

  5. Limits on Dark Matter Annihilation in the Sun using the ANTARES Neutrino Telescope

    CERN Document Server

    Adrián-Martínez, S; André, M; Anton, G; Ardid, M; Aubert, J -J; Avgitas, T; Baret, B; Barrios-Martí, J; Basa, S; Bertin, V; Biagi, S; Bormuth, R; Bouwhuis, M C; Bruijn, R; Brunner, J; Busto, J; Capone, A; Caramete, L; Carr, J; Celli, S; Chiarusi, T; Circella, M; Coleiro, A; Coniglione, R; Costantini, H; Coyle, P; Creusot, A; Deschamps, A; De Bonis, G; Distefano, C; Donzaud, C; Dornic, D; Drouhin, D; Eberl, T; Bojaddaini, I El; Elsässer, D; Enzenhöfer, A; Fehn, K; Felis, I; Fusco, L A; Galatà, S; Gay, P; Geißelsöder, S; Geyer, K; Giordano, V; Gleixner, A; Glotin, H; Gracia-Ruiz, R; Graf, K; Hallmann, S; van Haren, H; Heijboer, A J; Hello, Y; Hernández-Rey, J J; Hößl, J; Hofestädt, J; Hugon, C; Illuminati, G; James, C W; de Jong, M; Jongen, M; Kadler, M; Kalekin, O; Katz, U; Kießling, D; Kouchner, A; Kreter, M; Kreykenbohm, I; Kulikovskiy, V; Lachaud, C; Lahmann, R; Lefèver, D; Leonora, E; Loucatos, S; Marcelin, M; Margiotta, A; Marinelli, A; Martínez-Mora, J A; Mathieu, A; Melis, K; Michael, T; Migliozzi, P; Moussa, A; Mueller, C; Nezri, E; Păvălaş, G E; Pellegrino, C; Perrina, C; Piattelli, P; Popa, V; Pradier, T; Racca, C; Riccobene, G; Roensch, K; Saldana, M; Samtleben, D F E; Sánchez-Losa, A; Sanguineti, M; Sapienza, P; Schnabel, J; Schüssler, F; Seitz, T; Sieger, C; Spurio, M; Stolarczyk, Th; Taiuti, M; Tönnis, C; Trovato, A; Tselengidou, M; Turpin, D; Vallage, B; Vallée, C; Van Elewyck, V; Vivolo, D; Wagner, S; Wilms, J; Zornoza, J D; Zúñiga, J

    2016-01-01

    A search for muon neutrinos originating from dark matter annihilations in the Sun is performed using the data recorded by the ANTARES neutrino telescope from 2007 to 2012. In order to obtain the best possible sensitivities to dark matter signals, an optimisation of the event selection criteria is performed taking into account the background of atmospheric muons, atmospheric neutrinos and the energy spectra of the expected neutrino signals. No significant excess over the background is observed and $90\\%$ C.L. upper limits on the neutrino flux, the spin--dependent and spin--independent WIMP-nucleon cross--sections are derived for WIMP masses ranging from $ \\rm 50$ GeV to $\\rm 5$ TeV for the annihilation channels $\\rm WIMP + WIMP \\to b \\bar b, W^+ W^-$ and $\\rm \\tau^+ \\tau^-$.

  6. Limits on dark matter annihilation in the sun using the ANTARES neutrino telescope

    Science.gov (United States)

    Adrián-Martínez, S.; Albert, A.; André, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bormuth, R.; Bouwhuis, M. C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Celli, S.; Chiarusi, T.; Circella, M.; Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Deschamps, A.; De Bonis, G.; Distefano, C.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; Elsässer, D.; Enzenhöfer, A.; Fehn, K.; Felis, I.; Fusco, L. A.; Galatà, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giordano, V.; Gleixner, A.; Glotin, H.; Gracia-Ruiz, R.; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Hößl, J.; Hofestädt, J.; Hugon, C.; Illuminati, G.; James, C. W.; de Jong, M.; Jongen, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefèvre, D.; Leonora, E.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J. A.; Mathieu, A.; Melis, K.; Michael, T.; Migliozzi, P.; Moussa, A.; Mueller, C.; Nezri, E.; Păvălaş, G. E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Racca, C.; Riccobene, G.; Roensch, K.; Saldaña, M.; Samtleben, D. F. E.; Sánchez-Losa, A.; Sanguineti, M.; Sapienza, P.; Schnabel, J.; Schüssler, F.; Seitz, T.; Sieger, C.; Spurio, M.; Stolarczyk, Th.; Taiuti, M.; Tönnis, C.; Trovato, A.; Tselengidou, M.; Turpin, D.; Vallage, B.; Vallée, C.; Van Elewyck, V.; Vivolo, D.; Wagner, S.; Wilms, J.; Zornoza, J. D.; Zúñiga, J.

    2016-08-01

    A search for muon neutrinos originating from dark matter annihilations in the Sun is performed using the data recorded by the ANTARES neutrino telescope from 2007 to 2012. In order to obtain the best possible sensitivities to dark matter signals, an optimisation of the event selection criteria is performed taking into account the background of atmospheric muons, atmospheric neutrinos and the energy spectra of the expected neutrino signals. No significant excess over the background is observed and 90% C.L. upper limits on the neutrino flux, the spin-dependent and spin-independent WIMP-nucleon cross-sections are derived for WIMP masses ranging from 50 GeV to 5 TeV for the annihilation channels WIMP + WIMP → b b bar ,W+W- and τ+τ-.

  7. SEARCH FOR COSMIC NEUTRINO POINT SOURCES WITH FOUR YEARS OF DATA FROM THE ANTARES TELESCOPE

    International Nuclear Information System (INIS)

    In this paper, a time-integrated search for point sources of cosmic neutrinos is presented using the data collected from 2007 to 2010 by the ANTARES neutrino telescope. No statistically significant signal has been found and upper limits on the neutrino flux have been obtained. Assuming an E –2ν spectrum, these flux limits are at 1-10 ×10–8 GeV cm–2 s–1 for declinations ranging from –90° to 40°. Limits for specific models of RX J1713.7–3946 and Vela X, which include information on the source morphology and spectrum, are also given.

  8. Sensitivity of an underwater Cerenkov km3 telescope to TeV neutrinos from Galactic Microquasars

    CERN Document Server

    Distefano, C; Ambriola, M; Ameli, F; Amore, I; Anghinolfi, M; Anzalone, A; Barbarino, G C; Barbarito, E; Battaglieri, M; Bellotti, R; Beverini, N; Bonori, M; Bouhadef, B; Brescia, M; Cacopardo, G; Cafagna, F; Capone, A; Caponetto, L; Castorina, E; Ceres, A; Chiarusi, T; Circella, M; Cocimano, R; Coniglione, R; Cordelli, M; Costa, M; Cuneo, S; D'Amico, A; De Bonis, G; De Marzo, C; De Rosa, G; De Vita, R; Falchini, E; Fiorello, C; Flaminio, V; Fratini, K; Gabrielli, A; Galeotti, S; Gandolfi, E; Giacomelli, G; Giorgi, F; Grimaldi, A; Habel, R; Leonora, E; Lonardo, A; Longo, G; Lo Presti, D; Lucarelli, F; Maccioni, E; Margiotta, A; Martini, A; Masullo, R; Megna, R; Migneco, E; Mongelli, M; Montaruli, T; Morganti, M; Musumeci, M; Nicolau, C A; Orlando, A; Osipenko, M; Osteria, G; Papaleo, R; Pappalardo, V; Petta, C; Piattelli, P; Raia, G; Randazzo, N; Reito, S; Ricco, G; Riccobene, G; Ripani, M; Rovelli, A; Ruppi, M; Russo, G V; Russo, S; Sapienza, P; Sedita, M; Shirokov, E; Simeone, F; Sipala, V; Spurio, M; Taiuti, M; Terreni, G; Trasatti, L; Urso, S; Valente, V; Vicini, P

    2006-01-01

    In this paper are presented the results of Monte Carlo simulations on the capability of the proposed NEMO-km$^3$ telescope to detect TeV muon neutrinos from Galactic microquasars. For each known microquasar we compute the number of detectable events, together with the atmospheric neutrino and muon background events. We also discuss the detector sensitivity to neutrino fluxes expected from known microquasars, optimizing the event selection also to reject the background; the number of events surviving the event selection are given.

  9. Neutrino searches with the IceCube telescope

    CERN Document Server

    ,

    2013-01-01

    The IceCube Neutrino Observatory is an array of 5,160 photomultipliers (PMTs) deployed on 86 strings at 1.5-2.5 km depth within the ice at the South Pole. The main goal of the IceCube experiment is the detection of an astrophysical neutrino signal. In this contribution we present the results of the point source analysis on the data taken from April 2008 to May 2011, when three detector configurations were operated: the 40-string configuration (IC-40), the 59-string configuration (IC-59) and the 79-string configuration (IC-79). No significant excess indicative of point sources of neutrinos has been found, and we present upper limits for an $E^{-2}$ muon neutrino flux for a list of candidate sources. For the first time these limits start to reach $10^{-12}$ TeV$^{-1}$ cm$^{-2}$ s$^{-1}$ in some parts of the sky.

  10. Neutrino searches with the IceCube telescope

    Science.gov (United States)

    Aguilar, Juan A.

    2013-04-01

    The IceCube Neutrino Observatory is an array of 5,160 photomultipliers (PMTs) deployed on 86 strings at 1.5-2.5 km depth within the ice at the South Pole. The main goal of the IceCube experiment is the detection of an astrophysical neutrino signal. In this contribution we present the results of the point source analysis on the data taken from April 2008 to May 2011, when three detector configurations were operated: the 40-string configuration (IC-40), the 59-string configuration (IC-59) and the 79-string configuration (IC-79). No significant excess indicative of point sources of neutrinos has been found, and we present upper limits for an E-2 muon neutrino flux for a list of candidate sources. For the first time these limits start to reach 10-12 TeV cm s in some parts of the sky.

  11. Parallel Neutrino Triggers using GPUs for an underwater telescope

    OpenAIRE

    Bouhadef, Bachir; Morganti, Mauro; Terreni, Giuseppe; KM3Net-It Collaboration

    2015-01-01

    Graphics Processing Units are high performance co-processors originally intended to improve the use and the acceleration of computer graphics applications. Because of their performance, researchers have extended their use beyond the computer graphics scope. We have investigated the possibility of implementing online neutrino trigger algorithms in the KM3Net-It experiment using a CPU-GPU system. The results of a neutrino trigger simulation on a NEMO Phase II tower and a KM3-It 14 floors tower ...

  12. Parallel Neutrino Triggers using GPUs for an underwater telescope

    OpenAIRE

    Bouhadef, Bachir; Morganti, Mauro; Terreni, Giuseppe

    2014-01-01

    Graphics Processing Units are high performance co-processors originally intended to improve the use and the acceleration of computer graphics applications. Because of their performance, researchers have extended their use beyond the computer graphics scope. We have investigated the possibility of implementing online neutrino trigger algorithms in the KM3Net-It experiment using a CPU-GPU system. The results of a neutrino trigger simulation on a NEMO Phase II tower and a KM3-It 14 floors tower ...

  13. A photonic readout and data acquisition system for deep-sea neutrino telescopes

    International Nuclear Information System (INIS)

    In the context of the KM3NeT Design Study and building on the experience with the data acquisition system of the ANTARES telescope, an alternative readout and DAQ architecture has been developed for deep-sea neutrino telescopes. The system relies on sensor technology using photonic readout and a 10 Gb/s optical network for data acquisition and communication. Compared to ANTARES, more functionality has been migrated to the shore, thus allowing for timely deployment of the telescope components and easy access to the system during the long lifetime of neutrino telescopes. Also the reconfiguration of the DAQ system is located on shore. Timing calibration is an integral part of the network architecture providing an event timing integrity with less than 1 ns. Although developed for use in the deep-sea, the concept of the system can be used in other applications, e.g. in the LHC experiments.

  14. A Kalman Filter approach for track reconstruction in a neutrino telescope

    International Nuclear Information System (INIS)

    In high energy neutrino telescopes, the detection principle relies on the detection of Cherenkov light emitted from an up-going muon induced by νμ that have penetrated the Earth. In the muon energy range of interest for astrophysical searches (namely from about 100 GeV to about 1 PeV), the electromagnetic showers accompanying the muon track generate Cherenkov light emitted within a few degrees of the cone associated to the primary particle. Furthermore, because of photon scattering in the water, the measurement is affected by non-Gaussian noise. Consequently, the track reconstruction in underwater Cherenkov neutrino telescopes is strongly complicated. Moreover, environmental background originates large noise counting rate. In an undersea neutrino detector, in fact, the decay of radioactive elements, mainly the β-decay of potassium isotope 40K, generates electrons that produce Cherenkov light leading an isotropic background of photons. Therefore, the hit-pattern identification of neutrino induced event is non-trivial and the track reconstruction has to deal with a non-linear problem due to this non-Gaussian measurement noise. In this paper a method, based on the Gaussian Sum Filter algorithm to take into account non-Gaussian process noise, for track reconstruction in a km3 underwater neutrino telescope, is presented

  15. The KM3NeT deep-sea neutrino telescope

    CERN Document Server

    Margiotta, Annarita

    2014-01-01

    KM3NeT is a deep-sea research infrastructure being constructed in the Mediterranean Sea. It will host the next generation Cherenkov neutrino telescope and nodes for a deep sea multidisciplinary observatory, providing oceanographers, marine biologists, and geophysicists with real time measurements. The neutrino telescope will complement IceCube in its field of view and exceed it substantially in sensitivity. Its main goal is the detection of high energy neutrinos of astrophysical origin. The detector will have a modular structure with six building blocks, each consisting of about one hundred Detection Units (DUs). Each DU will be equipped with 18 multi-PMT digital optical modules. The first phase of construction has started and shore and deep-sea infrastructures hosting the future KM3NeT detector are being prepared offshore Toulon, France and offshore Capo Passero on Sicily, Italy. The technological solutions for the neutrino detector of KM3NeT and the expected performance of the neutrino telescope are present...

  16. A Kalman Filter approach for track reconstruction in a neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    De Rosa, G., E-mail: gderosa@na.infn.it [Dipartimento di Scienze Fisiche, Università “Federico II” and INFN sez. di Napoli, 80126 Napoli (Italy); Petukhov, Y., E-mail: Yuri.Petukhov@ihep.ru [Joint Institute for Nuclear Research, Dubna (Russian Federation)

    2013-10-11

    In high energy neutrino telescopes, the detection principle relies on the detection of Cherenkov light emitted from an up-going muon induced by ν{sub μ} that have penetrated the Earth. In the muon energy range of interest for astrophysical searches (namely from about 100 GeV to about 1 PeV), the electromagnetic showers accompanying the muon track generate Cherenkov light emitted within a few degrees of the cone associated to the primary particle. Furthermore, because of photon scattering in the water, the measurement is affected by non-Gaussian noise. Consequently, the track reconstruction in underwater Cherenkov neutrino telescopes is strongly complicated. Moreover, environmental background originates large noise counting rate. In an undersea neutrino detector, in fact, the decay of radioactive elements, mainly the β-decay of potassium isotope {sup 40}K, generates electrons that produce Cherenkov light leading an isotropic background of photons. Therefore, the hit-pattern identification of neutrino induced event is non-trivial and the track reconstruction has to deal with a non-linear problem due to this non-Gaussian measurement noise. In this paper a method, based on the Gaussian Sum Filter algorithm to take into account non-Gaussian process noise, for track reconstruction in a km{sup 3} underwater neutrino telescope, is presented.

  17. Parallel Neutrino Triggers using GPUs for an underwater telescope

    CERN Document Server

    Bouhadef, Bachir; Terreni, Giuseppe

    2014-01-01

    Graphics Processing Units are high performance co-processors originally intended to improve the use and the acceleration of computer graphics applications. Because of their performance, researchers have extended their use beyond the computer graphics scope. We have investigate the possibility of implementing and speeding up online neutrino trigger algorithms in the KM3Net-It experiment using a CPU-GPU system. The results of a neutrino trigger simulation on NEMO Phase II tower and a KM3-It 14 floors Tower are reported.

  18. Optical Module Front-End for a Neutrino Underwater Telescope PMT interface

    CERN Document Server

    Lo Presti, D; Caponetto, L

    2007-01-01

    A proposal for a new system to capture signals in the Optical Module (OM) of an Underwater Neutrino Telescope is described. It concentrates on the problem of power consumption in relation to precision. In particular, a solution for the interface between the photomultiplier (PMT) and the front-end electronics is presented.

  19. A mu-metal mesh for the optical module of the underwater neutrino telescope, NESTOR

    International Nuclear Information System (INIS)

    The conceptual design, the manufacturing process and the production of a mu-metal mesh to screen from the geomagnetic field, the 15'' Hamamatsu phototube, contained in the optical module of the underwater neutrino telescope NESTOR, are described. Some measurements of the efficiency of the mesh are reported. (orig.)

  20. Low-power front-end for the optical module of a neutrino underwater telescope

    International Nuclear Information System (INIS)

    A proposal for a new system to capture signals in the Optical Module (OM) of an underwater neutrino telescope is described. It concentrates on the problem of power consumption and time precision. In particular, a solution for the interface between the photomultiplier (PMT) and the front-end electronics is presented.

  1. Low Power Front End for the Optical Module of a Neutrino Underwater Telescope

    CERN Document Server

    Lo Presti, D; Caponetto, L; Giorgi, F; Gabrielli, A

    2007-01-01

    A proposal for a new system to capture signals in the Optical Module (OM) of an underwater neutrino telescope is described. It concentrates on the problem of power consumption and time precision. In particular, a solution for the interface between the photomultiplier (PMT) and the front-end electronics is presented.

  2. A deep sea telescope for high energy neutrinos

    International Nuclear Information System (INIS)

    This document presents the scientific motivation for building a high energy neutrino undersea detector, with an effective area of 0.1 km2, along with a review of the technical issues involved in its design and construction. It contents: the scientific program, the detection principles, the research and development program, the detector design and performances and complementary technique. (A.L.B.)

  3. The neutrino mass hierarchy measurement with a neutrino telescope in the Mediterranean Sea: A feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Tsirigotis, A. G. [Physics Laboratory, Hellenic Open University (Greece); Collaboration: KM3NeT Collaboration

    2014-11-18

    With the measurement of a non zero value of the θ{sub 13} neutrino mixing parameter, interest in neutrinos as source of the baryon asymmetry of the universe has increased. Among the measurements of a rich and varied program in near future neutrino physics is the determination of the mass hierarchy. We present the status of a study of the feasibility of using a densely instrumented undersea neutrino detector to determine the mass hierarchy, utilizing the Mikheyev-Smirnov-Wolfenstein (MSW) effect on atmospheric neutrino oscillations. The detector will use technology developed for KM3NeT. We present the systematic studies of the optimization of a detector in the required 5–10 GeV energy regime. These studies include new tracking and interaction identification algorithms as well as geometrical optimizations of the detector.

  4. Search for neutrinos from transient sources with the ANTARES telescope and optical follow-up observations (TAToO)

    Science.gov (United States)

    Dornic, Damien; Brunner, Jurgen; Basa, Stéphane; Al Samarai, Imen; Bertin, Vincent; Boer, Michel; Busto, José; Escoffier, Stéphanie; Klotz, Alain; Mazure, Alain; Vallage, Bertrand; ANTARES Collaboration; TAROT Collaboration

    2011-01-01

    The ANTARES telescope has the opportunity to detect transient neutrino sources, such as gamma-ray bursts, core-collapse supernovae, flares of active galactic nuclei. In order to enhance the sensitivity to these sources, we have developed a new detection method based on the follow-up by optical telescopes of “golden” neutrino events, such as neutrino doublets coincident in time and space or single neutrinos of very high energy. The ANTARES collaboration has therefore implemented a very fast on-line reconstruction with a good angular resolution. These characteristics allow us to trigger an optical telescope network. Since February 2009, ANTARES is sending alert triggers once or twice per month to the two 25 cm robotic telescope of TAROT. This optical follow-up of such special events would not only give access to the nature of the sources, but also would improve the sensitivity to transient neutrino sources.

  5. Search for neutrinos from transient sources with the ANTARES telescope and optical follow-up observations (TAToO)

    Energy Technology Data Exchange (ETDEWEB)

    Dornic, Damien, E-mail: dornic@cppm.in2p3.f [CPPM, CNRS/IN2P3-Universite de la Mediterranee, 163 avenue de Luminy, 13288 Marseille Cedex 09 (France); IFIC, Edificios Investigacion de Paterna, CSIC-Universitat de Valenciaa, Apdo. de correos 22085, 46071 Valencia (Spain); Brunner, Jurgen [CPPM, CNRS/IN2P3-Universite de la Mediterranee, 163 avenue de Luminy, 13288 Marseille Cedex 09 (France); Basa, Stephane [LAM, BP8, Traverse du siphon, 13376 Marseille Cedex 12 (France); Al Samarai, Imen; Bertin, Vincent [CPPM, CNRS/IN2P3-Universite de la Mediterranee, 163 avenue de Luminy, 13288 Marseille Cedex 09 (France); Boer, Michel [OHP, 04870 Saint Michel de l' Observatoire (France); Busto, Jose; Escoffier, Stephanie [CPPM, CNRS/IN2P3-Universite de la Mediterranee, 163 avenue de Luminy, 13288 Marseille Cedex 09 (France); Klotz, Alain [OHP, 04870 Saint Michel de l' Observatoire (France); CESR, Observatiore Midi-Pyrenees, CNRS Universite de Toulouse, BP4346, 31028 Toulouse Cedex 04 (France); Mazure, Alain [LAM, BP8, Traverse du siphon, 13376 Marseille Cedex 12 (France); Vallage, Bertrand [CEA-IRFU, Centre de Saclay, 91191 Gif-sur-Yvette (France)

    2011-01-21

    The ANTARES telescope has the opportunity to detect transient neutrino sources, such as gamma-ray bursts, core-collapse supernovae, flares of active galactic nuclei. In order to enhance the sensitivity to these sources, we have developed a new detection method based on the follow-up by optical telescopes of 'golden' neutrino events, such as neutrino doublets coincident in time and space or single neutrinos of very high energy. The ANTARES collaboration has therefore implemented a very fast on-line reconstruction with a good angular resolution. These characteristics allow us to trigger an optical telescope network. Since February 2009, ANTARES is sending alert triggers once or twice per month to the two 25 cm robotic telescope of TAROT. This optical follow-up of such special events would not only give access to the nature of the sources, but also would improve the sensitivity to transient neutrino sources.

  6. Search for neutrinos from transient sources with the ANTARES telescope and optical follow-up observations (TAToO)

    International Nuclear Information System (INIS)

    The ANTARES telescope has the opportunity to detect transient neutrino sources, such as gamma-ray bursts, core-collapse supernovae, flares of active galactic nuclei. In order to enhance the sensitivity to these sources, we have developed a new detection method based on the follow-up by optical telescopes of 'golden' neutrino events, such as neutrino doublets coincident in time and space or single neutrinos of very high energy. The ANTARES collaboration has therefore implemented a very fast on-line reconstruction with a good angular resolution. These characteristics allow us to trigger an optical telescope network. Since February 2009, ANTARES is sending alert triggers once or twice per month to the two 25 cm robotic telescope of TAROT. This optical follow-up of such special events would not only give access to the nature of the sources, but also would improve the sensitivity to transient neutrino sources.

  7. Constraints on the neutrino emission from the Galactic Ridge with the ANTARES telescope

    CERN Document Server

    Adrián-Martínez, S; André, M; Anghinolfi, M; Anton, G; Ardid, M; Aubert, J -J; Avgitas, T; Baret, B; Barrios-Martí, J; Basa, S; Bertin, V; Biagi, S; Bormuth, R; Bouwhuis, M C; Bruijn, R; Brunner, J; Busto, J; Capone, A; Caramete, L; Carr, J; Celli, S; Chiarusi, T; Circella, M; Coleiro, A; Coniglione, R; Costantini, H; Coyle, P; Creusot, A; Deschamps, A; De Bonis, G; Distefano, C; Donzaud, C; Dornic, D; Drouhin, D; Eberl, T; Bojaddaini, I El; Elsässer, D; Enzenhöfer, A; Fehn, K; Felis, I; Fusco, L A; Galatà, S; Gay, P; Geißelsöder, S; Geyer, K; Giordano, V; Gleixner, A; Glotin, H; Gracia-Ruiz, R; Graf, K; Hallmann, S; van Haren, H; Heijboer, A J; Hello, Y; Hernández-Rey, J J; Hößl, J; Hofestädt, J; Hugon, C; Illuminati, G; James, C W; de Jong, M; Kadler, M; Kalekin, O; Katz, U; Kießling, D; Kouchner, A; Kreter, M; Kreykenbohm, I; Kulikovskiy, V; Lachaud, C; Lahmann, R; Lefèvre, D; Leonora, E; Loucatos, S; Marcelin, M; Margiotta, A; Marinelli, A; Martínez-Mora, J A; Mathieu, A; Michael, T; Migliozzi, P; Moussa, A; Mueller, C; Nezri, E; Păvălaş, G E; Pellegrino, C; Perrina, C; Piattelli, P; Popa, V; Pradier, T; Racca, C; Riccobene, G; Roensch, K; Saldaña, M; Samtleben, D F E; Sánchez-Losa, A; Sanguineti, M; Sapienza, P; Schnabel, J; Schüssler, F; Seitz, T; Sieger, C; Spurio, M; Stolarczyk, Th; Taiuti, M; Trovato, A; Tselengidou, M; Turpin, D; Tönnis, C; Vallage, B; Vallée, C; Van Elewyck, V; Visser, E; Vivolo, D; Wagner, S; Wilms, J; Zornoza, J D; Zúñiga, J

    2016-01-01

    Compelling evidence for the existence of astrophysical neutrinos has been reported by the IceCube collaboration. Some features of the energy and declination distributions of IceCube events hint at a North/South asymmetry of the neutrino flux. This could be due to the presence of the bulk of our Galaxy in the Southern hemisphere. The ANTARES neutrino telescope, located in the Mediterranean Sea, has been taking data since 2007. It offers the best sensitivity to muon neutrinos produced by galactic cosmic ray interactions in this region of the sky. In this letter a search for an extended neutrino flux from the Galactic Ridge region is presented. Different models of neutrino production by cosmic ray propagation are tested. No excess of events is observed and upper limits for different neutrino flux spectral indices are set. This constrains the number of IceCube events possibly originating from the Galactic Ridge. A simple power-law extrapolation of the Fermi-LAT flux to associated IceCube High Energy Starting Even...

  8. A deep sea telescope for high energy neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Aslanides, E.; Aubert, J.J.; Basa, S. [and others

    1999-05-01

    This document presents the scientific motivation for building a high energy neutrino undersea detector, with an effective area of 0.1 km{sup 2}, along with a review of the technical issues involved in its design and construction. It contents: the scientific program, the detection principles, the research and development program, the detector design and performances and complementary technique. (A.L.B.)

  9. The optical module for the NESTOR neutrino telescope

    CERN Document Server

    Anassontzis, E G; Bottai, S; Cartacci, A; Fanourakis, G K; Grammatikakis, George A; Ioannou, P; Katsanevas, S; Keusen, U; Koske, P; Kourkoumelis, C; Ledenev, V V; Manousakis-Katsikakis, A; McNutt, J; Monteleoni, B; Moraitis, L; Resvanis, L K; Rucol, V K; Siotis, I; Sotiriou, S A; Tsagli, V; Voulgaris, G; Zhukov, V A

    2002-01-01

    NESTOR is a deep-sea water Cherenkov neutrino detector now under construction for deployment in the Mediterranean off Greece. Its key component is an optical module employing a photomultiplier tube with a 15 in. hemispherical photocathode in a transparent glass pressure housing. Extensive tests have been made on the sensitivity, uniformity, time resolution, noise rates and mechanical properties of the module: several test deployments have been made at sea.

  10. Possibility of observing high energy neutrinos from gamma bursts, with the Antanares telescope, feasibility study

    International Nuclear Information System (INIS)

    The European Antares collaboration intends to build a deep-sea neutrino telescope with a detection surface of about 1/10 km2 in the Mediterranean sea. The universe is transparent to neutrinos, so their study provides a unique means of improving our knowledge of the nature and origin of cosmic rays and their emission from the most powerful astrophysical sources in the cosmos. Neutrinos also offer the possibility of opening a new energy window (E>TeV) for observation of the universe. The first part of the thesis is dedicated to a study of the possibility of using the future telescope to look for correlations between gamma-ray bursts and high-energy neutrinos. It is based, on one hand, on the predictions of neutrino fluxes from gamma-ray bursts in the framework of the theoretical model of 'fireballs', and, on the other hand, on the temporal properties of the gamma-ray bursts in the 4. BATSE catalogue. The second part of the thesis presents the results obtained with a prototype detector line deployed, at the end of 1999, some forty km south-west off Marseilles. The objective was to operate a complete apparatus, similar to the future detector lines, from the shore, and under realistic conditions. Data from 7 photomultiplier tubes disposed along the detector line were transmitted through 37 km of optical fiber to the shore, where they were used to reconstruct tracks due to atmospheric muons, thus validating the detection principles and methods. (author)

  11. Search for neutrinos from transient sources with the ANTARES telescope and optical follow-up observations

    Energy Technology Data Exchange (ETDEWEB)

    Ageron, Michel [CPPM, CNRS/IN2P3 - Universite de Mediterranee, 163 avenue de Luminy, 13288 Marseille Cedex 09 (France); Al Samarai, Imen, E-mail: samarai@cppm.in2p3.fr [CPPM, CNRS/IN2P3 - Universite de Mediterranee, 163 avenue de Luminy, 13288 Marseille Cedex 09 (France); Akerlof, Carl [Randall Laboratory of Physics, University of Michigan, 450 Church Street, Ann Arbor, MI 48109-1040 (United States); Basa, Stephane [LAM, BP8, Traverse du siphon, 13376 Marseille Cedex 12 (France); Bertin, Vincent [CPPM, CNRS/IN2P3 - Universite de Mediterranee, 163 avenue de Luminy, 13288 Marseille Cedex 09 (France); Boer, Michel [OHP, 04870 Saint Michel de l' Observatoire (France); Brunner, Juergen; Busto, Jose; Dornic, Damien [CPPM, CNRS/IN2P3 - Universite de Mediterranee, 163 avenue de Luminy, 13288 Marseille Cedex 09 (France); Klotz, Alain [OHP, 04870 Saint Michel de l' Observatoire (France); IRAP, 9 avenue du colonel Roche, 31028 Toulouse Cedex 4 (France); Schussler, Fabian; Vallage, Bertrand [CEA-IRFU, centre de Saclay, 91191 Gif-sur-Yvette (France); Vecchi, Manuela [CPPM, CNRS/IN2P3 - Universite de Mediterranee, 163 avenue de Luminy, 13288 Marseille Cedex 09 (France); Zheng, Weikang [Randall Laboratory of Physics, University of Michigan, 450 Church Street, Ann Arbor, MI 48109-1040 (United States)

    2012-11-11

    The ANTARES telescope is well suited to detect neutrinos produced in astrophysical transient sources as it can observe a full hemisphere of the sky at all the times with a duty cycle close to unity and an angular resolution better than 0.5 Degree-Sign . Potential sources include gamma-ray bursts (GRBs), core collapse supernovae (SNe), and flaring active galactic nuclei (AGNs). To enhance the sensitivity of ANTARES to such sources, a new detection method based on coincident observations of neutrinos and optical signals has been developed. A fast online muon track reconstruction is used to trigger a network of small automatic optical telescopes. Such alerts are generated one or two times per month for special events such as two or more neutrinos coincident in time and direction or single neutrinos of very high energy. Since February 2009, ANTARES has sent 37 alert triggers to the TAROT and ROTSE telescope networks, 27 of them have been followed. First results on the optical images analysis to search for GRBs are presented.

  12. Five years of searches for point sources of astrophysical neutrinos with the AMANDA-II neutrino telescope

    Science.gov (United States)

    Achterberg, A.; Ackermann, M.; Adams, J.; Ahrens, J.; Andeen, K.; Atlee, D. W.; Bahcall, J. N.; Bai, X.; Baret, B.; Barwick, S. W.; Bay, R.; Beattie, K.; Becka, T.; Becker, J. K.; Becker, K.-H.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Blaufuss, E.; Boersma, D. J.; Bohm, C.; Bolmont, J.; Böser, S.; Botner, O.; Bouchta, A.; Braun, J.; Burgess, C.; Burgess, T.; Castermans, T.; Chirkin, D.; Christy, B.; Clem, J.; Cowen, D. F.; D'Agostino, M. V.; Davour, A.; Day, C. T.; de Clercq, C.; Demirörs, L.; Descamps, F.; Desiati, P.; De Young, T.; Diaz-Velez, J. C.; Dreyer, J.; Dumm, J. P.; Duvoort, M. R.; Edwards, W. R.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Feser, T.; Filimonov, K.; Fox, B. D.; Gaisser, T. K.; Gallagher, J.; Ganugapati, R.; Geenen, H.; Gerhardt, L.; Goldschmidt, A.; Goodman, J. A.; Gozzini, R.; Grullon, S.; Groß, A.; Gunasingha, R. M.; Gurtner, M.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Hardtke, D.; Hardtke, R.; Harenberg, T.; Hart, J. E.; Hauschildt, T.; Hays, D.; Heise, J.; Helbing, K.; Hellwig, M.; Herquet, P.; Hill, G. C.; Hodges, J.; Hoffman, K. D.; Hommez, B.; Hoshina, K.; Hubert, D.; Hughey, B.; Hulth, P. O.; Hultqvist, K.; Hundertmark, S.; Hülß, J.-P.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Jones, A.; Joseph, J. M.; Kampert, K.-H.; Karle, A.; Kawai, H.; Kelley, J. L.; Kestel, M.; Kitamura, N.; Klein, S. R.; Klepser, S.; Kohnen, G.; Kolanoski, H.; Kowalski, M.; Köpke, L.; Krasberg, M.; Kuehn, K.; Landsman, H.; Leich, H.; Leier, D.; Leuthold, M.; Liubarsky, I.; Lundberg, J.; Lünemann, J.; Madsen, J.; Mase, K.; Matis, H. S.; McCauley, T.; McParland, C. P.; Meli, A.; Messarius, T.; Mészáros, P.; Miyamoto, H.; Mokhtarani, A.; Montaruli, T.; Morey, A.; Morse, R.; Movit, S. M.; Münich, K.; Nahnhauer, R.; Nam, J. W.; Nießen, P.; Nygren, D. R.; Ögelman, H.; Olivas, A.; Patton, S.; Peña-Garay, C.; Pérez de Los Heros, C.; Piegsa, A.; Pieloth, D.; Pohl, A. C.; Porrata, R.; Pretz, J.; Price, P. B.; Przybylski, G. T.; Rawlins, K.; Razzaque, S.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Robbins, S.; Roth, P.; Rott, C.; Rutledge, D.; Ryckbosch, D.; Sander, H.-G.; Sarkar, S.; Schlenstedt, S.; Schmidt, T.; Schneider, D.; Seckel, D.; Seo, S. H.; Seunarine, S.; Silvestri, A.; Smith, A. J.; Solarz, M.; Song, C.; Sopher, J. E.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Steffen, P.; Stezelberger, T.; Stokstad, R. G.; Stoufer, M. C.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Sulanke, K.-H.; Sullivan, G. W.; Sumner, T. J.; Taboada, I.; Tarasova, O.; Tepe, A.; Thollander, L.; Tilav, S.; Tluczykont, M.; Toale, P. A.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; van Overloop, A.; Voigt, B.; Wagner, W.; Walck, C.; Waldmann, H.; Walter, M.; Wang, Y.-R.; Wendt, C.; Wiebusch, C. H.; Wikström, G.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Woschnagg, K.; Xu, X. W.; Yodh, G.; Yoshida, S.; Zornoza, J. D.

    2007-05-01

    We report the results of a five-year survey of the northern sky to search for point sources of high energy neutrinos. The search was performed on the data collected with the AMANDA-II neutrino telescope in the years 2000 to 2004, with a live time of 1001 days. The sample of selected events consists of 4282 upward going muon tracks with high reconstruction quality and an energy larger than about 100 GeV. We found no indication of point sources of neutrinos and set 90% confidence level flux upper limits for an all-sky search and also for a catalog of 32 selected sources. For the all-sky search, our average (over declination and right ascension) experimentally observed upper limit Φ0=((E)/(1TeV))γ·(dΦ)/(dE) to a point source flux of muon and tau neutrino (detected as muons arising from taus) is Φνμ+ν¯μ0+Φντ+ν¯τ0=11.1×10-11TeV-1cm-2s-1, in the energy range between 1.6 TeV and 2.5 PeV for a flavor ratio Φνμ+ν¯μ0/Φντ+ν¯τ0=1 and assuming a spectral index γ=2. It should be noticed that this is the first time we set upper limits to the flux of muon and tau neutrinos. In previous papers we provided muon neutrino upper limits only neglecting the sensitivity to a signal from tau neutrinos, which improves the limits by 10% to 16%. The value of the average upper limit presented in this work corresponds to twice the limit on the muon neutrino flux Φνμ+ν¯μ0=5.5×10-11TeV-1cm-2s-1. A stacking analysis for preselected active galactic nuclei and a search based on the angular separation of the events were also performed. We report the most stringent flux upper limits to date, including the results of a detailed assessment of systematic uncertainties.

  13. Data Acquisition Architecture Studies for the KM3NeT Deep Sea Neutrino Telescope

    International Nuclear Information System (INIS)

    KM3NeT is a European consortium whose goal is a future underwater neutrino telescope of cubic kilometer size in the Mediterranean Sea. The science case includes the study of high energy phenomena in the Universe involving the emission of neutrinos. The detection principle is based on an extended array of photomultipliers detecting single Cherenkov photons emitted by the charged products of neutrino interactions. This paper describes the conceptual design of a data acquisition and trigger architecture for the KM3NeT telescope. Its main features are based on the experience of the NEMO, NESTOR and ANTARES neutrino telescope pilot projects. The main issues addressed by this design include the integration of hundreds of acquisition nodes interconnected through a high bandwidth network and the seamless management of high rate data flows resulting from challenging levels of background noise. The networking technologies used -e.g. dense or coarse wavelength division multiplexing- address optimization issues such as minimizing the number of deep-sea fiber connections The network topology is optimized for 'all data to shore' transmission in which a real-time distributed data acquisition application manages a fluctuating data flow. The data are organized as time-slices and routed accordingly to a workstation farm running trigger algorithms which are expected to reduce the data flow by a factor of 10(4). The control and configuration schemes that allow the proper operation of the neutrino telescope are specified together with their associated database organization principle. These principles address the issues of hardware description management, configurations and run conditions and their association with the acquired data. We will illustrate how the KM3NeT data acquisition system is intended to make the most of the available and affordable software and hardware technologies in a challenging data flow context involving embedded, real-time processing. (author)

  14. On the selection of AGN neutrino source candidates for a source stacking analysis with neutrino telescopes

    CERN Document Server

    Achterberg, A; Adams, J; Ahrens, J; Atlee, D W; Bahcall, J N; Bai, X; Baret, B; Bartelt, M; Barwick, S W; Bay, R; Beattie, K; Becka, T; Becker, J K; Becker, K H; Berghaus, P; Berley, D; Bernardini, E; Bertrand, D; Besson, D Z; Blaufuss, E; Boersma, D J; Bohm, C; Boser, S; Botner, O; Bouchta, A; Braun, J; Burgess, C; Burgess, T; Castermans, T; Chirkin, D; Clem, J; Collin, B; Conrad, J; Cooley, J; Cowen, D F; D'Agostino, M V; Davour, A; Day, C T; De Clercq, C; Desiati, P; De Young, T; Dreyer, J; Duvoort, M R; Edwards, W R; Ehrlich, R; Ellsworth, R W; Evenson, P A; Fazely, A R; Feser, T; Filimonov, K; Gaisser, T K; Gallagher, J; Ganugapati, R; Geenen, H; Gerhardt, L; Goldschmidt, A; Goodman, J A; Greene, M G; Grullon, S; Gross, A; Gunasingha, R M; Hallgren, A; Halzen, F; Han, K; Hanson, K; Hardtke, D; Hardtke, R; Harenberg, T; Hart, J E; Hauschildt, T; Hays, D; Heise, J; Helbing, K; Hellwig, M; Herquet, P; Hill, G C; Hodges, J; Hoffman, K D; Hoshina, K; Hubert, D; Hughey, B; Hulth, P O; Hultqvist, K; Hundertmark, S; Ishihara, A; Jacobsen, J; Japaridze, G S; Jones, A; Joseph, J M; Kampert, K H; Karle, A; Kawai, H; Kelley, J L; Kestel, M; Kitamura, N; Klein, S R; Klepser, S; Kohnen, G; Kolanoski, H; Köpke, L; Krasberg, M; Kühn, K; Landsman, H; Lang, R; Leich, H; Leuthold, M; Liubarsky, I; Lundberg, J; Madsen, J; Mase, K; Matis, H S; McCauley, T; McParland, C P; Meli, A; Messarius, T; Mészáros, P; Minor, R H; Miocinovic, P; Miyamoto, H; Mokhtarani, A; Montaruli, T; Morey, A; Morse, R; Movit, S M; Munich, K; Nahnhauer, R; Nam, J W; Niessen, P; Nygren, D R; Ogelman, H; Olbrechts, P; Olivas, A; Patton, S; Peña-Garay, C; Pérez de los Heros, C; Pieloth, D; Pohl, A C; Porrata, R; Pretz, J; Price, P B; Przybylski, G T; Rawlins, K; Razzaque, S; Reinghaus, F; Resconi, E; Rhode, W; Ribordy, M; Richter, S; Rizzo, A; Robbins, S; Rott, C; Rutledge, D; Sander, H G; Schlenstedt, S; Schneider, D; Seckel, D; Seo, S H; Seunarine, S; Silvestri, A; Smith, A J; Solarz, M; Song, C; Sopher, J E; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Steffen, P; Steele, D; Stezelberger, T; Stokstad, R G; Stoufer, M C; Stoyanov, S; Sulanke, K H; Sullivan, G W; Sumner, T J; Taboada, I; Tarasova, O; Tepe, A; Thollander, L; Tilav, S; Toale, P A; Turcan, D; van Eijndhoven, N; Vandenbroucke, J; Voigt, B; Wagner, W; Walck, C; Waldmann, H; Walter, M; Wang, Y R; Wendt, C; Wiebusch, C; Wikström, G; Williams, D R; Wischnewski, R; Wissing, H; Woschnagg, K; Xu, X W; Yodh, G; Yoshida, S; De Dios-Zornoza-Gomez, Juan; Biermann, P L

    2006-01-01

    The sensitivity of a search for sources of TeV neutrinos can be improved by grouping potential sources together into generic classes in a procedure that is known as source stacking. In this paper, we define catalogs of Active Galactic Nuclei (AGN) and use them to perform a source stacking analysis. The grouping of AGN into classes is done in two steps: first, AGN classes are defined, then, sources to be stacked are selected assuming that a potential neutrino flux is linearly correlated with the photon luminosity in a certain energy band (radio, IR, optical, keV, GeV, TeV). Lacking any secure detailed knowledge on neutrino production in AGN, this correlation is motivated by hadronic AGN models, as briefly reviewed in this paper. The source stacking search for neutrinos from generic AGN classes is illustrated using the data collected by the AMANDA-II high energy neutrino detector during the year 2000. No significant excess for any of the suggested groups was found.

  15. Neutrino Telescopes as a Direct Probe of Supersymmetry Breaking

    CERN Document Server

    Albuquerque, I F M; Chacko, Z

    2003-01-01

    We consider supersymmetric models where the scale of supersymmetry breaking lies between 5 $\\times 10^6$ GeV and 5 $\\times 10^8$ GeV. In this class of theories, which includes models of gauge mediated supersymmetry breaking, the lightest supersymmetric particle is the gravitino. The next to lightest supersymmetric particle is typically a long lived charged slepton with a lifetime between a microsecond and a second, depending on its mass. Collisions of high energy neutrinos with nucleons in the earth can result in the production of a pair of these sleptons. Their very high boost means they typically decay outside the earth. We investigate the production of these particles by the diffuse flux of high energy neutrinos, and the potential for their observation in large ice or water Cerenkov detectors. The relatively small cross-section for the production of supersymmetric particles is partially compensated for by the very long range of heavy particles. The signal in the detector consists of two parallel charged tr...

  16. Low power multi-dynamics front-end architecture for the optical module of a neutrino underwater telescope

    International Nuclear Information System (INIS)

    A proposal for a new front-end architecture intended to capture signals in the optical module of an underwater neutrino telescope is described. It concentrates on the problem of power consumption, signal reconstruction, charge and time precision.

  17. A Search for Neutrino Emission from the Fermi Bubbles with the ANTARES Telescope

    CERN Document Server

    Adrián-Martínez, S; Samarai, I Al; André, M; Anghinolfi, M; Anton, G; Anvar, S; Ardid, M; Astraatmadja, T; Aubert, J-J; Baret, B; Barrios-Martí, J; Basa, S; Bertin, V; Biagi, S; Bigongiari, C; Bogazzi, C; Bouhou, B; Bouwhuis, M C; Brunner, J; Busto, J; Capone, A; Caramete, L; Cârloganu, C; Carr, J; Cecchini, S; Charif, Z; Charvis, Ph; Chiarusi, T; Circella, M; Classen, F; Coniglione, R; Core, L; Costantini, H; Coyle, P; Creusot, A; Curtil, C; De Bonis, G; Dekeyser, I; Deschamps, A; Decowski, M P; Distefano, C; Donzaud, C; Dornic, D; Dorosti, Q; Drouhin, D; Dumas, A; Eberl, T; Emanuele, U; Enzenhöfer, A; Ernenwein, J-P; Escoffier, S; Fehn, K; Fermani, P; Ferry, S; Flaminio, V; Folger, F; Fritsch, U; Fuda, J-L; Fusco, L A; Galatà, S; Gay, P; Geißelsöder, S; Geyer, K; Giacomelli, G; Giordano, V; Gleixner, A; Gómez-González, J P; Graf, K; Guillard, G; Hallewell, G; Hamal, M; van Haren, H; Heijboer, A J; Hello, Y; Hernández-Rey, J J; Herold, B; Hößl, J; Hsu, C C; James, C W; de Jong, M; Kadler, M; Kalekin, O; Kappes, A; Katz, U; Kooijman, P; Kopper, C; Kouchner, A; Kreykenbohm, I; Kulikovskiy, V; Lahmann, R; Lambard, E; Lambard, G; Larosa, G; Lattuada, D; Lefèvre, D; Leonora, E; Presti, D Lo; Loehner, H; Loucatos, S; Louis, F; Mangano, S; Marcelin, M; Margiotta, A; Martínez-Mora, J A; Martini, S; Michael, T; Montaruli, T; Morganti, M; Motz, H; Müller, C; Neff, M; Nezri, E; Palioselitis, D; Păvălaş, G E; Perrina, C; Petrovic, J; Piattelli, P; Popa, V; Pradier, T; Racca, C; Reed, C; Riccobene, G; Richter, R; Rivière, C; Robert, A; Roensch, K; Rostovtsev, A; Rujoiu, M; Samtleben, D F E; Sanguineti, M; Sapienza, P; Schmid, J; Schnabel, J; Schulte, S; Schüssler, F; Seitz, T; Shanidze, R; Sieger, C; Simeone, F; Spies, A; Spurio, M; Steijger, J J M; Stolarczyk, Th; Sánchez-Losa, A; Taiuti, M; Tamburini, C; Tayalati, Y; Trovato, A; Vallage, B; Vallée, C; Van Elewyck, V; Vecchi, M; Vernin, P; Visser, E; Wagner, S; Wijnker, G; Wilms, J; de Wolf, E; Yatkin, K; Yepes, H; Zaborov, D; Zornoza, J D; Zúñiga, J

    2013-01-01

    Analysis of the Fermi-LAT data has revealed two extended structures above and below the Galactic Centre emitting gamma rays with a hard spectrum, the so-called Fermi bubbles. Hadronic models attempting to explain the origin of the Fermi bubbles predict the emission of high-energy neutrinos and gamma rays with similar fluxes. The ANTARES detector, a neutrino telescope located in the Mediterranean Sea, has a good visibility to the Fermi bubble regions. Using data collected from 2008 to 2011 no statistically significant excess of events is observed and therefore upper limits on the neutrino flux in TeV range from the Fermi bubbles are derived for various assumed energy cutoffs of the source.

  18. SEARCH FOR COSMIC NEUTRINO POINT SOURCES WITH FOUR YEARS OF DATA FROM THE ANTARES TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Adrian-Martinez, S.; Ardid, M.; Bou-Cabo, M. [Institut d' Investigacio per a la Gestio Integrada de les Zones Costaneres (IGIC) - Universitat Politecnica de Valencia. C/Paranimf 1, E-46730 Gandia (Spain); Al Samarai, I.; Aubert, J-J.; Bertin, V.; Brunner, J. [CPPM, Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Albert, A. [GRPHE - Institut universitaire de technologie de Colmar, 34 rue du Grillenbreit, BP 50568 - 68008 Colmar (France); Andre, M. [Technical University of Catalonia, Laboratory of Applied Bioacoustics, Rambla Exposicio, E-08800 Vilanova i la Geltru, Barcelona (Spain); Anghinolfi, M. [INFN - Sezione di Genova, Via Dodecaneso 33, I-16146 Genova (Italy); Anton, G. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, D-91058 Erlangen (Germany); Anvar, S. [Direction des Sciences de la Matiere - Institut de recherche sur les lois fondamentales de l' Univers - Service d' Electronique des Detecteurs et d' Informatique, CEA Saclay, F-91191 Gif-sur-Yvette Cedex (France); Astraatmadja, T.; Bogazzi, C.; Bouwhuis, M. C. [Nikhef, Science Park, Amsterdam (Netherlands); Baret, B.; Bouhou, B. [APC - Laboratoire AstroParticule et Cosmologie, UMR 7164 (CNRS, Universite Paris 7 Diderot, CEA, Observatoire de Paris) 10, rue Alice Domon et Leonie Duquet, F-75205 Paris Cedex 13 (France); Basa, S. [LAM - Laboratoire d' Astrophysique de Marseille, Pole de l' Etoile Site de Chateau-Gombert, rue Frederic Joliot-Curie 38, F-13388 Marseille Cedex 13 (France); Biagi, S. [INFN - Sezione di Bologna, Viale Berti-Pichat 6/2, I-40127 Bologna (Italy); Bigongiari, C. [IFIC - Instituto de Fisica Corpuscular, Edificios Investigacion de Paterna, CSIC - Universitat de Valencia, Apdo. de Correos 22085, E-46071 Valencia (Spain); and others

    2012-11-20

    In this paper, a time-integrated search for point sources of cosmic neutrinos is presented using the data collected from 2007 to 2010 by the ANTARES neutrino telescope. No statistically significant signal has been found and upper limits on the neutrino flux have been obtained. Assuming an E {sup -2} {sub {nu}} spectrum, these flux limits are at 1-10 Multiplication-Sign 10{sup -8} GeV cm{sup -2} s{sup -1} for declinations ranging from -90 Degree-Sign to 40 Degree-Sign . Limits for specific models of RX J1713.7-3946 and Vela X, which include information on the source morphology and spectrum, are also given.

  19. A search for neutrino emission from the Fermi bubbles with the ANTARES telescope

    International Nuclear Information System (INIS)

    Analysis of the Fermi-LAT data has revealed two extended structures above and below the Galactic Centre emitting gamma rays with a hard spectrum, the so-called Fermi bubbles. Hadronic models attempting to explain the origin of the Fermi bubbles predict the emission of high-energy neutrinos and gamma rays with similar fluxes. The ANTARES detector, a neutrino telescope located in the Mediterranean Sea, has a good visibility to the Fermi bubble regions. Using data collected from 2008 to 2011 no statistically significant excess of events is observed and therefore upper limits on the neutrino flux in TeV range from the Fermi bubbles are derived for various assumed energy cutoffs of the source. (orig.)

  20. A search for neutrino emission from the Fermi bubbles with the ANTARES telescope

    Energy Technology Data Exchange (ETDEWEB)

    Adrian-Martinez, S.; Ardid, M.; Larosa, G.; Martinez-Mora, J.A. [Universitat Politecnica de Valencia, Institut d' Investigacio per a la Gestio Integrada de les Zones Costaneres (IGIC), Gandia (Spain); Albert, A.; Drouhin, D.; Racca, C. [GRPHE, Institut Universitaire de Technologie de Colmar, 34 rue du Grillenbreit, BP 50568, Colmar (France); Al Samarai, I.; Aubert, J.J.; Bertin, V.; Brunner, J.; Busto, J.; Carr, J.; Charif, Z.; Core, L.; Costantini, H.; Coyle, P.; Curtil, C.; Dornic, D.; Ernenwein, J.P.; Escoffier, S.; Lambard, E.; Riviere, C.; Vallee, C.; Vecchi, M.; Yatkin, K. [CPPM, Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Andre, M. [Technical University of Catalonia, Laboratory of Applied Bioacoustics, Vilanova i la Geltru, Barcelona (Spain); Anton, G.; Classen, F.; Eberl, T.; Enzenhoefer, A.; Fehn, K.; Folger, F.; Fritsch, U.; Geisselsoeder, S.; Geyer, K.; Gleixner, A.; Graf, K.; Herold, B.; Hoessl, J.; James, C.W.; Kalekin, O.; Kappes, A.; Katz, U.; Lahmann, R.; Neff, M.; Richter, R.; Roensch, K.; Schmid, J.; Schnabel, J.; Seitz, T.; Shanidze, R.; Sieger, C.; Spies, A.; Wagner, S. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erlangen (Germany); Anvar, S.; Louis, F.; Schuessler, F.; Stolarczyk, T.; Vallage, B.; Vernin, P. [Institut de recherche sur les lois fondamentales de l' Univers, Service d' Electronique des Detecteurs et d' Informatique, CEA Saclay, Direction des Sciences de la Matiere, Gif-sur-Yvette Cedex (France); Astraatmadja, T.; Bogazzi, C.; Heijboer, A.J.; Jong, M. de; Michael, T.; Palioselitis, D.; Schulte, S.; Steijger, J.J.M.; Visser, E. [Nikhef, Science Park, Amsterdam (Netherlands); Baret, B.; Bouhou, B.; Creusot, A.; Galata, S.; Kouchner, A.; Elewyck, V. van [APC, Universite Paris Diderot, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cite, Paris (France); Barrios-Marti, J.; Bigongiari, C.; Bouwhuis, M.C.; Emanuele, U.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Lambard, G.; Mangano, S.; Sanchez-Losa, A.; Yepes, H.; Zornoza, J.D.; Zuniga, J. [Universitat de Valencia, IFIC, Instituto de Fisica Corpuscular, Edificios Investigacion de Paterna, CSIC, Valencia (Spain); Basa, S.; Marcelin, M.; Nezri, E. [Pole de l' Etoile Site de Chateau-Gombert, LAM, Laboratoire d' Astrophysique de Marseille, Marseille Cedex 13 (France); Biagi, S.; Fusco, L.A.; Giacomelli, G.; Margiotta, A.; Spurio, M. [INFN, Sezione di Bologna, Bologna (Italy); Dipartimento di Fisica dell' Universita, Bologna (Italy); Capone, A.; De Bonis, G.; Fermani, P.; Perrina, C.; Simeone, F. [INFN, Sezione di Roma, Rome (Italy); Dipartimento di Fisica dell' Universita La Sapienza, Rome (Italy); Caramete, L.; Pavalas, G.E.; Popa, V. [Institute for Space Sciences, Bucharest, Magurele (Romania); Carloganu, C.; Dumas, A.; Gay, P.; Guillard, G. [Clermont Universite, Universite Blaise Pascal, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, BP 10448, Clermont-Ferrand (France); Cecchini, S.; Chiarusi, T. [INFN, Sezione di Bologna, Bologna (Italy); Charvis, P.; Deschamps, A.; Hello, Y. [Geoazur, Universite Nice Sophia-Antipolis, CNRS/INSU, IRD, Observatoire de la Cote d' Azur, Sophia Antipolis (France); Circella, M. [INFN, Sezione di Bari, Bari (Italy); Coniglione, R.; Lattuada, D.; Riccobene, G.; Sapienza, P.; Trovato, A. [INFN, Laboratori Nazionali del Sud (LNS), Catania (Italy); Dekeyser, I.; Lefevre, D.; Martini, S.; Robert, A.; Tamburini, C. [Mediterranean Institute of Oceanography (MIO), Aix-Marseille University, Marseille Cedex 9 (France); Universit du Sud Toulon-Var, CNRS-INSU/IRD UM 110, La Garde Cedex (France); Donzaud, C. [APC, Universite Paris Diderot, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cite, Paris (France); Universite Paris-Sud, Orsay Cedex (France); Dorosti, Q.; Loehner, H. [University of Groningen, Kernfysisch Versneller Instituut (KVI), Groningen (Netherlands); Flaminio, V. [INFN, Sezione di Pisa, Pisa (Italy); Dipartimento di Fisica dell' Universita, Pisa (Italy); Giordano, V. [INFN, Sezione di Catania, Catania (Italy); Haren, H. van [Royal Netherlands Institute for Sea Research (NIOZ), ' t Horntje (Texel) (Netherlands); Hugon, C.; Sanguineti, M. [INFN, Sezione di Genova, Genoa (Italy); Kadler, M. [Universitaet Wuerzburg, Institut fuer Theoretische Physik und Astrophysik, Wuerzburg (Germany); Kooijman, P. [Nikhef, Science Park, Amsterdam (Netherlands); Universiteit Utrecht, Faculteit Betawetenschappen, Utrecht (Netherlands); Universiteit van Amsterdam, Instituut voor Hoge-Energie Fysica, Amsterdam (Netherlands); Kreykenbohm, I.; Mueller, C.; Wilms, J. [Universitaet Erlangen-Nuernberg, Dr. Remeis-Sternwarte and ECAP, Bamberg (Germany); Kulikovskiy, V. [INFN, Sezione di Genova, Genoa (Italy); Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow (Russian Federation); Leonora, E.; Lo Presti, D. [INFN, Sezione di Catania, Catania (Italy); Dipartimento di Fisica ed Astronomia dell' Universita, Catania (Italy); Loucatos, S. [Institut de recherche sur les lois fondamentales de l' Univers, Service d' Electronique des Detecteurs et d' Informatique, CEA Saclay, Direction des Sciences de la Matiere, Gif-sur-Yvette Cedex (France); APC, Universite Paris Diderot, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cite, Paris (France); Montaruli, T. [Mediterranean Institute of Oceanography (MIO), Aix-Marseille University, Marseille Cedex 9 (France); Universite de Geneve, Departement de Physique Nucleaire et Corpusculaire, Geneva (Switzerland); Morganti, M. [INFN, Sezione di Pisa, Pisa (Italy); Pradier, T. [Universite de Strasbourg et CNRS/IN2P3, IPHC-Institut Pluridisciplinaire Hubert Curien, 23 rue du Loess, BP 28, Strasbourg Cedex 2 (France); Rostovtsev, A. [ITEP, Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Samtleben, D.F.E. [Nikhef, Science Park, Amsterdam (Netherlands); Universiteit Leiden, Leids Instituut voor Onderzoek in Natuurkunde, Leiden (Netherlands); Taiuti, M. [Technical University of Catalonia, Laboratory of Applied Bioacoustics, Vilanova i la Geltru, Barcelona (Spain); Dipartimento di Fisica dell' Universita, Genoa (IT); Tayalati, Y. [University Mohammed I, Laboratory of Physics of Matter and Radiations, B.P.717, Oujda (MA); Wolf, E. de [Nikhef, Science Park, Amsterdam (NL); Universiteit van Amsterdam, Instituut voor Hoge-Energie Fysica, Amsterdam (NL); Collaboration: The ANTARES Collaboration

    2014-02-15

    Analysis of the Fermi-LAT data has revealed two extended structures above and below the Galactic Centre emitting gamma rays with a hard spectrum, the so-called Fermi bubbles. Hadronic models attempting to explain the origin of the Fermi bubbles predict the emission of high-energy neutrinos and gamma rays with similar fluxes. The ANTARES detector, a neutrino telescope located in the Mediterranean Sea, has a good visibility to the Fermi bubble regions. Using data collected from 2008 to 2011 no statistically significant excess of events is observed and therefore upper limits on the neutrino flux in TeV range from the Fermi bubbles are derived for various assumed energy cutoffs of the source. (orig.)

  1. First Year Performance of The IceCube Neutrino Telescope

    CERN Document Server

    Achterberg, A; Adams, J; Ahrens, J; Andeen, K; Atlee, D W; Baccus, J; Bahcall, J N; Bai, X; Baret, B; Bartelt, M; Barwick, S W; Bay, R; Beattie, K; Becka, T; Becker, J K; Becker, K H; Berghaus, P; Berley, D; Bernardinia, E; Bertrand, D; Besson, D Z; Blaufuss, E; Boersma, D J; Bohm, C; Böser, S; Botner, O; Bouchta, A; Braun, J; Burgess, C; Burgess, T; Castermans, T; Cherwinka, J; Chirkin, D; Clem, J; Cowen, D F; D'Agostino, M V; Davour, A; Day, C T; De Clercq, C; Demirörs, L; Desiati, P; De Young, O T; Díaz-Veléz, J C; Dreyer, J; Duvoort, M R; Edwards, W R; Ehrlich, R; Eisch, J; Elcheikh, A; Ellsworth, R W; Evenson, P A; Fadiran, O; Fazely, A R; Feser, T; Filimonov, K; Fox, B D; Gaisser, T K; Gallagher, J; Ganugapati, R; Geenen, H; Gerhardt, L; Goldschmidt, A; Goodman, J A; Gozzini, R; Greene, M G; Grullon, S; Groß, A; Gunasingha, R M; Gurtner, M; Hallgren, A; Halzen, F; Han, K; Hanson, K; Hardtke, D; Hardtke, R; Harenberg, T; Hart, J E; Haugen, J; Hauschildt, T; Hays, D; Heise, J; Helbing, K; Hellwig, M; Herquet, P; Hill, G C; Hodges, J; Hoffman, K D; Hoshina, K; Hubert, D; Hughey, B; Hulth, P O; Hultqvist, K; Hundertmark, S; Hülß, J P; Ishihara, A; Jacobsen, J; Japaridze, G S; Jones, A; Joseph, J M; Kampert, K H; Karle, A; Kawai, H; Kelley, J L; Kestel, M; Kitamura, N; Klein, S R; Klepser, S; Kohnen, G; Kolanoski, H; Köpke, L; Krasberg, M; Kühn, K; Landsman, H; Laundrie, A; Leich, H; Liubarsky, I; Lundberg, J; Mackenzie, C; Madsen, J; Mase, K; Matis, H S; McCauley, T; McParland, C P; Meli, A; Messarius, T; Mészáros, P; Miyamoto, H; Mokhtarani, A; Montaruli, T; Morey, A; Morse, R; Movit, S M; Münich, K; Muratas, A; Nahnhauer, R; Nam, J W; Nießen, P; Nygren, D R; Ögelman, H; Olbrechts, P; Olivas, A; Patton, S; Peña-Garay, C; Pérez de los Heros, C; Pettersen, C; Piegsa, A; Pieloth, D; Pohl, A C; Porrata, R; Pretz, J; Price, P B; Przybylski, G T; Rawlins, K; Razzaque, S; Reinghaus, F; Resconi, E; Rhode, W; Ribordy, M; Rizzo, A; Robbins, S; Rott, C; Rutledge, D; Sander, H G; Sandström, P; Sarkar, S; Schlenstedt, S; Schneider, D; Seckel, D; Seo, S H; Seunarine, S; Silvestri, A; Smith, A J; Solarz, M; Song, C; Sopher, J E; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Steffen, P; Stezelberger, T; Stokstad, R G; Stoufer, M C; Stoyanov, S; Strahler, E A; Sulanke, K H; Sullivan, G W; Taboada, I; Tarasova, O; Tepe, A; Thollander, L; Tilav, S; Toale, P A; Turcan, D; van Eijndhoven, N; Vandenbroucke, J; Van Overloop, A; Voigt, B; Wagner, W; Walck, C; Waldmann, H; Walter, M; Wang, Y R; Wendt, C; Whitney, M; Wiebusch, C; Wikström, G; Williams, D R; Wischnewski, R; Wisniewski, P; Wissing, H; Woschnagg, K; Xu, X W; Yodh, G; Yoshida, S; De Dios-Zornoza-Gomez, Juan

    2006-01-01

    The first sensors of the IceCube neutrino observatory were deployed at the South Pole during the austral summer of 2004-05 and have been producing data since February 2005. One string of 60 sensors buried in the ice and a surface array of 8 ice Cherenkov tanks took data until December 2005 when deployment of the next set of strings and tanks began. We have analyzed these data, demonstrating that the performance of the system meets or exceeds design requirements. Times are determined across the whole array to a relative precision of better than 3 nanoseconds, allowing reconstruction of muon tracks and light bursts in the ice, of air-showers in the surface array and of events seen in coincidence by surface and deep-ice detectors separated by up to 2.5 km.

  2. Can the new Neutrino Telescopes and LHC reveal the gravitational proprieties of antimatter?

    CERN Document Server

    Hajdukovic, Dragan Slavkov

    2011-01-01

    What are the gravitational proprieties of antimatter is still not known. One possibility is the gravitational repulsion between matter and antimatter (in short we call it antigravity). We point out two possible signatures of the assumed existence of antigravity. First, the supermassive black hole in the center of our Galaxy (Southern Sky)and in the center of the Andromeda Galaxy (Northern Sky)may produce a flux of antineutrinos measurable with the new generation of the neutrino telescopes; like the IceCube Neutrino Detector under construction at the South Pole, and the future one cubic kilometer telescope in Mediterranean Sea. Second, if microscopic black holes are successfully produced at the Large Hadron Collider (LHC) at CERN, their thermal (Hawking's) radiation should be dominated by a non-thermal radiation caused by antigravity.

  3. Search for ultra-high energy photons and neutrinos using Telescope Array surface detector

    Directory of Open Access Journals (Sweden)

    Troitsky S.V.

    2013-06-01

    Full Text Available We search for ultra-high energy photons by analyzing geometrical properties of shower fronts of events registered by the Telescope Array surface detector. By making use of an event-by-event statistical method, we derive upper limits on the absolute flux of primary photons with energies above 1019eV, 1019.5eV and above 1020eV based on the three years data from Telescope Array surface detector (May 2008 – May 2011. We report the results of down-going neutrino search based on the analysis of very inclined events.

  4. The capability to detect wimps with a high energy neutrino telescope

    International Nuclear Information System (INIS)

    We studied the potential of the proposed ANTARES undersea neutrino telescope to detect muons coming from from neutralinos annihilating at the center of the Earth. First results show that the full 1 km3-scale detector can indicate, after a few years of operation, if there are indeed neutralinos trapped at the core of celestial bodies, as expected are the major form of dark matter in our galaxy. (author)

  5. KM3NeT Neutrino Telescope 1-ns Resolution Time To Digital Converters

    OpenAIRE

    Calvo David; Real Diego

    2016-01-01

    The KM3NeT collaboration aims the construction of a multi-km3 high-energy neutrino telescope in the Mediterranean sea consisting of thousands of glass spheres, each of them containing 31 photomultiplier of small photocathode area. The main digitization system is composed by 31 Time to Digital Converter channels with 1-ns resolution embedded in a Field Programmable Gate Array. An architecture with low resource occupancy has been chosen allowing the implementation of other instrumentation, comm...

  6. A time dependent search for neutrino emission from micro-quasars with the ANTARES telescope

    International Nuclear Information System (INIS)

    The ANTARES collaboration has successfully built, deployed and is currently operating an underwater Cherenkov detector dedicated to high energy neutrino astronomy. The primary aim of the experiment is to detect cosmic sources of neutrinos in order to reveal the production sites of cosmic rays. Among the sources likely to be significant sources of neutrinos are those accelerating relativistic jets, like gamma ray bursts, active galactic nuclei and micro-quasars. Micro-quasars are binary systems formed by a compact object accreting mass from a companion star. The mass transfer causes the emission of X-rays, whereas the onset of magnetic forces in the accreting plasma can cause the acceleration of relativistic jets, which are observed by radio telescopes via their non-thermal synchrotron emission. In some systems, a correlation between X-ray and radio light curves indicates an interplay between accretion and ejection respectively. Some micro-quasars are also high energy and very high energy gamma ray emitters. In this thesis, a time dependent search for neutrino emission from micro-quasars was performed with a multi-messenger approach (photon/neutrino). The data from the X-ray monitors RXTE/ASM and SWIFT/BAT, and the gamma-ray telescope FERMI/LAT were used to select transient events in which the source was supposed to accelerate relativistic jets. The restriction of the analysis to the ejection periods allows a drastic reduction of atmospheric muon and neutrino background, and thus to increase the chances of a discovery. The search was performed with the ANTARES data taken between 2007 and 2010. Statistical analysis was carried out using an un-binned likelihood method based on a likelihood ratio test. The cuts for the event selection were optimized in order to maximize the chance of a discovery. As no neutrino signal was observed in correlation with these micro-quasars, upper limits on the neutrino fluxes of the micro-quasars under study were calculated and compared

  7. Nanobeacon: A low cost time calibration instrument for the KM3NeT neutrino telescope

    International Nuclear Information System (INIS)

    The KM3NeT collaboration aims at the construction of a multi-km3 high-energy neutrino telescope in the Mediterranean Sea consisting of a matrix of pressure resistant glass spheres holding each one a set (31) of small area photomultipliers. The main goal of the telescope is to observe cosmic neutrinos through the Cherenkov light induced in sea water by charged particles produced in neutrino interactions with the surrounding medium. A relative time calibration between photomultipliers of the order of 1 ns is required to achieve an optimal performance. Due to the high volume to be covered by KM3NeT, a cost reduction of the different systems is a priority. To this end a very low price calibration device, the so called Nanobeacon, has been designed and developed. At present one of such devices has already been integrated successfully at the KM3NeT telescope and eight of them in the Nemo Tower Phase II. In this article the main properties and operation of this device are described

  8. Search for Neutrino Emission from Gamma-Ray Flaring Blazars with the ANTARES Telescope

    CERN Document Server

    Adrián-Martínez, S; Albert, A; André, M; Anghinolfi, M; Anton, G; Anvar, S; Ardid, M; Astraatmadja, T; Aubert, J-J; Baret, B; Basa, S; Bertin, V; Biagi, S; Bigongiari, C; Bogazzi, C; Bou-Cabo, M; Bouhou, B; Bouwhuis, M C; Brunner, J; Busto, J; Camarena, F; Capone, A; Cârloganu, C; Carminati, G; Carr, J; Cecchini, S; Charif, Z; Charvis, Ph; Chiarusi, T; Circella, M; Core, L; Costantini, H; Coyle, P; Creusot, A; Curtil, C; De Bonis, G; Decowski, M P; Dekeyser, I; Deschamps, A; Distefano, C; Donzaud, C; Dornic, D; Dorosti, Q; Drouhin, D; Eberl, T; Emanuele, U; Enzenhöfer, A; Ernenwein, J-P; Escoffier, S; Fehn, K; Fermani, P; Ferri, M; Ferry, S; Flaminio, V; Folger, F; Fritsch, U; Fuda, J-L; Galatà, S; Gay, P; Geyer, K; Giacomelli, G; Giordano, V; Gómez-González, J P; Graf, K; Guillard, G; Halladjian, G; Hallewell, G; van Haren, H; Hartman, J; Heijboer, A J; Hello, Y; Hernández-Rey, J J; Herold, B; Hößl, J; Hsu, C C; de Jong, M; Kadler, M; Kalekin, O; Kappes, A; Katz, U; Kavatsyuk, O; Kooijman, P; Kopper, C; Kouchner, A; Kreykenbohm, I; Kulikovskiy, V; Lahmann, R; Lambard, G; Larosa, G; Lattuada, D; Lefèvre, D; Lim, G; Presti, D Lo; Loehner, H; Loucatos, S; Louis, F; Mangano, S; Marcelin, M; Margiotta, A; Martínez-Mora, J A; Meli, A; Montaruli, T; Morganti, N; Moscoso, L; Motz, H; Neff, M; Nezri, E; Palioselitis, D; Păvălaş, G E; Payet, K; Payre, P; Petrovic, J; Piattelli, P; Picot-Clemente, N; Popa, V; Pradier, T; Presani, E; Racca, C; Reed, C; Riccobene, G; Richardt, C; Richter, R; Rivière, C; Robert, A; Roensch, K; Rostovtsev, A; Ruiz-Rivas, J; Rujoiu, M; Russo, G V; Salesa, F; Samtleben, D F E; Sapienza, P; Schöck, F; Schuller, J-P; Schüssler, F; Seitz, T; Shanidze, R; Simeone, F; Spies, A; Spurio, M; Steijger, J M; Stolarczyk, Th; Sánchez-Losa, A; Taiuti, M; Tamburini, C; Toscano, S; Vallage, B; Vallée, C; Van Elewyck, V; Vannoni, G; Vecchi, M; Vernin, P; Visser, E; Wagner, S; Wijnker, G; Wilms, J; de Wolf, E; Yepes, H; Zaborov, D; Zornoza, J D; Zúñiga, J

    2011-01-01

    The ANTARES telescope is well-suited to detect neutrinos produced in astrophysical transient sources as it can observe a full hemisphere of the sky at all times with a high duty cycle. Radio-loud active galactic nuclei with jets pointing almost directly towards the observer, the so-called blazars, are particularly attractive potential neutrino point sources. The all-sky monitor LAT on board the Fermi satellite probes the variability of any given gamma-ray bright blazar in the sky on time scales of hours to months. Assuming hadronic models, a strong correlation between the gamma-ray and the neutrino fluxes is expected. Selecting a narrow time window on the assumed neutrino production period can significantly reduce the background. An unbinned method based on the minimization of a likelihood ratio was applied to a subsample of data collected in 2008 (61 days live time). By searching for neutrinos during the high state periods of the AGN light curve, the sensitivity to these sources was improved by about a facto...

  9. Time calibration with atmospheric muon tracks in the ANTARES neutrino telescope

    Science.gov (United States)

    Adrián-Martínez, S.; Albert, A.; André, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bogazzi, C.; Bormuth, R.; Bou-Cabo, M.; Bouwhuis, M. C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Chiarusi, T.; Circella, M.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Dekeyser, I.; Deschamps, A.; De Bonis, G.; Distefano, C.; Donzaud, C.; Dornic, D.; Drouhin, D.; Dumas, A.; Eberl, T.; Elsässer, D.; Enzenhöfer, A.; Fehn, K.; Felis, I.; Fermani, P.; Flaminio, V.; Folger, F.; Fusco, L. A.; Galatà, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giordano, V.; Gleixner, A.; Gracia-Ruiz, R.; Gómez-González, J. P.; Graf, K.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Herrero, A.; Hößl, J.; Hofestädt, J.; Hugon, C.; James, C. W.; de Jong, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kooijman, P.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lambard, G.; Lattuada, D.; Lefèvre, D.; Leonora, E.; Loucatos, S.; Mangano, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J. A.; Martini, S.; Mathieu, A.; Michael, T.; Migliozzi, P.; Moussa, A.; Mueller, C.; Neff, M.; Nezri, E.; Păvălaş, G. E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Racca, C.; Riccobene, G.; Richter, R.; Roensch, K.; Rostovtsev, A.; Saldaña, M.; Samtleben, D. F. E.; Sánchez-Losa, A.; Sanguineti, M.; Sapienza, P.; Schmid, J.; Schnabel, J.; Schulte, S.; Schüssler, F.; Seitz, T.; Sieger, C.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Taiuti, M.; Tamburini, C.; Trovato, A.; Tselengidou, M.; Tönnis, C.; Turpin, D.; Vallage, B.; Vallée, C.; Van Elewyck, V.; Visser, E.; Vivolo, D.; Wagner, S.; Wilms, J.; Zornoza, J. D.; Zúñiga, J.

    2016-05-01

    The ANTARES experiment consists of an array of photomultipliers distributed along 12 lines and located deep underwater in the Mediterranean Sea. It searches for astrophysical neutrinos collecting the Cherenkov light induced by the charged particles, mainly muons, produced in neutrino interactions around the detector. Since at energies of ∼10 TeV the muon and the incident neutrino are almost collinear, it is possible to use the ANTARES detector as a neutrino telescope and identify a source of neutrinos in the sky starting from a precise reconstruction of the muon trajectory. To get this result, the arrival times of the Cherenkov photons must be accurately measured. A to perform time calibrations with the precision required to have optimal performances of the instrument is described. The reconstructed tracks of the atmospheric muons in the ANTARES detector are used to determine the relative time offsets between photomultipliers. Currently, this method is used to obtain the time calibration constants for photomultipliers on different lines at a precision level of 0.5 ns. It has also been validated for calibrating photomultipliers on the same line, using a system of LEDs and laser light devices.

  10. First results on dark matter annihilation in the Sun using the ANTARES neutrino telescope

    International Nuclear Information System (INIS)

    A search for high-energy neutrinos coming from the direction of the Sun has been performed using the data recorded by the ANTARES neutrino telescope during 2007 and 2008. The neutrino selection criteria have been chosen to maximize the selection of possible signals produced by the self-annihilation of weakly interacting massive particles accumulated in the centre of the Sun with respect to the atmospheric background. After data unblinding, the number of neutrinos observed towards the Sun was found to be compatible with background expectations. The 90% CL upper limits in terms of spin-dependent and spin-independent WIMP-proton cross-sections are derived and compared to predictions of two supersymmetric models, CMSSM and MSSM-7. The ANTARES limits are comparable with those obtained by other neutrino observatories and are more stringent than those obtained by direct search experiments for the spin-dependent WIMP-proton cross-section in the case of hard self-annihilation channels (W+W−, τ+τ−)

  11. Search for neutrino emission of gamma-ray flaring blazars with the ANTARES telescope

    CERN Document Server

    Dornic, D

    2011-01-01

    The ANTARES telescope is well suited to detect neutrinos produced in astrophysical transient sources as it can observe a full hemisphere of the sky at all times with a high duty cycle. The background and point source sensitivity can be drastically reduced by selecting a narrow time window around the assumed neutrino production period. Radio-loud active galactic nuclei with their jets pointing almost directly towards the observer, the so- called blazars, are particularly attractive potential neutrino point sources, since they are among the most likely sources of the observed ultra high energy cosmic rays and therefore, neutrinos and gamma-rays may be produced in hadronic interactions with the surrounding medium. The gamma-ray light curves of blazars measured by the LAT instrument on-board the Fermi satellite reveal important time variability information. A strong correlation between the gamma-ray and the neutrino fluxes is expected in this scenario. An unbinned method based on the minimization of a likelihood ...

  12. A launching vehicle for optical modules of a deep-sea neutrino telescope

    International Nuclear Information System (INIS)

    KM3NeT is a future deep-sea research facility that will be built at depths between 3 and 5 km in the Mediterranean Sea. The facility will host a neutrino telescope consisting of several hundreds of detection units—vertical mechanical structures that suspend the optical sensor modules of the telescope. During the design phase of the KM3NeT telescope, two concepts for the mechanical design for the detection unit have been worked out, one of which is a mooring consisting of two parallel ropes with 20 optical sensor modules attached at regular intervals; a data cable runs along the full length of the structure. For this design, which usually is referred to as a string, a novel deployment method using a recyclable launching vehicle has been successfully tested during two cruises in the Ionian Sea. We will present the design and the results of the deployment tests

  13. A launching vehicle for optical modules of a deep-sea neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, E. de, E-mail: e.dewolf@nikhef.nl [Nikhef, Science Park 105, 1098 XG Amsterdam (Netherlands); University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Bakker, R. [NIOZ Royal Institute for Sea Research, Texel (Netherlands); Boer Rookhuizen, H. [Nikhef, Science Park 105, 1098 XG Amsterdam (Netherlands); Gostiaux, L. [CNRS/Grenoble-INP/UJF-Grenoble, LEGI UMR 5519, Grenoble F-38041 (France); Groenewegen, R.; Haren, H. van; Heerwaarden, J. van; Hillebrand, Th.; Laan, M. [NIOZ Royal Institute for Sea Research, Texel (Netherlands); Smit, A. [Smit Techniek, Texel (Netherlands)

    2013-10-11

    KM3NeT is a future deep-sea research facility that will be built at depths between 3 and 5 km in the Mediterranean Sea. The facility will host a neutrino telescope consisting of several hundreds of detection units—vertical mechanical structures that suspend the optical sensor modules of the telescope. During the design phase of the KM3NeT telescope, two concepts for the mechanical design for the detection unit have been worked out, one of which is a mooring consisting of two parallel ropes with 20 optical sensor modules attached at regular intervals; a data cable runs along the full length of the structure. For this design, which usually is referred to as a string, a novel deployment method using a recyclable launching vehicle has been successfully tested during two cruises in the Ionian Sea. We will present the design and the results of the deployment tests.

  14. Monte Carlo simulation studies of the timing calibration accuracy required by the NEMO underwater neutrino telescope

    International Nuclear Information System (INIS)

    The results of Monte Carlo simulation studies of the timing calibration accuracy required by the NEMO underwater neutrino telescope are presented. The NEMO Collaboration is conducting a long term R and D activity toward the installation of a km3 apparatus in the Mediterranean Sea. An optimal site has been found and characterized at 3500 m depth off the Sicilian coast. Monte Carlo simulation shows that the angular resolution of the telescope remains approximately unchanged if the offset errors of timing calibration are less than 1 ns. This value is tolerable because the apparatus performance is not significantly changed when such inaccuracies are added to the other sources of error (e.g., the accuracy position of optical modules). We also discuss the optical background rate effect on the angular resolution of the apparatus and we compare the present version of the NEMO telescope with a different configuration.

  15. SEARCH FOR MUON NEUTRINOS FROM GAMMA-RAY BURSTS WITH THE IceCube NEUTRINO TELESCOPE

    International Nuclear Information System (INIS)

    We present the results of searches for high-energy muon neutrinos from 41 gamma-ray bursts (GRBs) in the northern sky with the IceCube detector in its 22 string configuration active in 2007/2008. The searches cover both the prompt and a possible precursor emission as well as a model-independent, wide time window of -1 hr to +3 hr around each GRB. In contrast to previous searches with a large GRB population, we do not utilize a standard Waxman-Bahcall GRB flux for the prompt emission but calculate individual neutrino spectra for all 41 GRBs from the burst parameters measured by satellites. For all of the three time windows, the best estimate for the number of signal events is zero. Therefore, we place 90% CL upper limits on the fluence from the prompt phase of 3.7 x 10-3 erg cm-2 (72 TeV-6.5 PeV) and on the fluence from the precursor phase of 2.3 x 10-3 erg cm-2 (2.2-55 TeV), where the quoted energy ranges contain 90% of the expected signal events in the detector. The 90% CL upper limit for the wide time window is 2.7 x 10-3 erg cm-2 (3 TeV-2.8 PeV) assuming an E -2 flux.

  16. Search for muon neutrinos from Gamma-Ray Bursts with the IceCube neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    IceCube Collaboration; Abbasi, R

    2010-01-19

    We present the results of searches for high-energy muon neutrinos from 41 gamma- ray bursts (GRBs) in the northern sky with the IceCube detector in its 22-string con-figuration active in 2007/2008. The searches cover both the prompt and a possible precursor emission as well as a model-independent, wide time window of -1 h to +3 haround each GRB. In contrast to previous searches with a large GRB population, we do not utilize a standard Waxman?Bahcall GRB flux for the prompt emission but calcu- late individual neutrino spectra for all 41 GRBs from the burst parameters measured by satellites. For all three time windows the best estimate for the number of signal events is zero. Therefore, we place 90percent CL upper limits on the fluence from the prompt phase of 3.7 x 10-3 erg cm-2 (72TeV - 6.5 PeV) and on the fluence from the precursor phase of 2.3 x 10-3 erg cm-2 (2.2TeV - 55TeV), where the quoted energy ranges contain 90percent of the expected signal events in the detector. The 90percent CL upper limit for the wide time window is 2.7 x 10-3 erg cm-2 (3TeV - 2.8 PeV) assuming an E-2 flux.

  17. TeV to PeV neutrinos and gamma-rays with Mountain SHALON Mirror Cherenkov Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Sinitsyna, V.G.; Arsov, T.P.; Musin, F.I.; Nikolsky, S.I.; Sinitsyna, V.Y.; Platonov, G.F. [P.N. Lebedev Physical Institute, Leninsky prospect 53, Moscow, 119991 (Russian Federation)

    2008-01-15

    Problems in observation of extensive air showers generated by neutrinos are connected with an extremely small cross-section of inelastic collisions of neutrinos with nuclei. However, two facts allow to search for showers generated by neutrinos: (1) a hadron cascade with a primary energy of more than 10{sup 13} eV leaves a mountain ridge to the atmosphere from a depth {approx} 300 g/cm{sup 2} without any essential loss of the total energy in the hadron cascade, and (2) air Cherenkov radiation from such hadron cascades will be observed with a 7.5 km distant telescope over an area of more than 7x10{sup 5}m{sup 2}. This partially compensates for the small cross-section of inelastic neutrino collisions. Observations have been carried out since 1992 at the high mountain Tien-Shan station using the SHALON Cherenkov mirror telescope with {approx}11.2 m{sup 2} mirror area and image matrix of 144 PMT with full angle >8{sup o}. The telescope characteristics allowed to start searching for local neutrino sources with energy 10{sup 13}-10{sup 16} eV on EAS generated in the mountain-range located at some 7.5 and more kilometers from the gamma-telescope (in Russian the abbreviation SHALON means - the Extensive Air Showers from Neutrino)

  18. A fast algorithm for muon track reconstruction and its application to the ANTARES neutrino telescope

    International Nuclear Information System (INIS)

    An algorithm is presented, that provides a fast and robust reconstruction of neutrino induced upward going muons and a discrimination of these events from downward-going atmospheric muon background in data collected by the ANTARES neutrino telescope. The algorithm consists of a hit merging and hit selection procedure followed by fitting steps for a track hypothesis and a point-like light source. It is particularly well-suited for real time applications such as online monitoring and fast triggering of optical follow- up observations for multi-messenger studies. The performance of the algorithm is evaluated with Monte Carlo simulations and various distributions are compared with that obtained in ANTARES data. (authors)

  19. A Fast Algorithm for Muon Track Reconstruction and its Application to the ANTARES Neutrino Telescope

    CERN Document Server

    Aguilar, J A; Albert, A; Andre, M; Anghinolfi, M; Anton, G; Anvar, S; Ardid, M; Jesus, A C Assis; Astraatmadja, T; Aubert, J-J; Auer, R; Baret, B; Basa, S; Bazzotti, M; Bertin, V; Biagi, S; Bigongiari, C; Bogazzi, C; Bou-Cabo, M; Bouwhuis, M C; Brown, A M; Brunner, J; Busto, J; Camarena, F; Capone, A; Carloganu, C; Carminati, G; Carr, J; Cecchini, S; Charvis, Ph; Chiarusi, T; Circella, M; Coniglione, R; Costantini, H; Cottini, N; Coyle, P; Curtil, C; Decowski, M P; Dekeyser, I; Deschamps, A; Distefano, C; Donzaud, C; Dornic, D; Dorosti, Q; Drouhin, D; Eberl, T; Emanuele, U; Ernenwein, J-P; Escoffier, S; Fehr, F; Flaminio, V; Fritsch, U; Fuda, J-L; Galata, S; Gay, P; Giacomelli, G; Gomez-Gonzalez, J P; Graf, K; Guillard, G; Halladjian, G; Hallewell, G; van Haren, H; Heijboer, A J; Hello, Y; Hernandez-Rey, J J; Herold, B; Hößl, J; Hsu, C C; de Jong, M; Kadler, M; Kalantar-Nayestanaki, N; Kalekin, O; Kappes, A; Katz, U; Kooijman, P; Kopper, C; Kouchner, A; Kulikovskiy, V; Lahmann, R; Lamare, P; Larosa, G; Lefevre, D; Lim, G; Presti, D Lo; Loehner, H; Loucatos, S; Lucarelli, F; Mangano, S; Marcelin, M; Margiotta, A; Martinez-Mora, J A; Mazure, A; Meli, A; Montaruli, T; Morganti, M; Moscoso, L; Motz, H; Naumann, C; Neff, M; Palioselitis, D; Pavalas, G E; Payre, P; Petrovic, J; Picot-Clemente, N; Picq, C; Popa, V; Pradier, T; Presani, E; Racca, C; Reed, C; Riccobene, G; Richardt, C; Richter, R; Rostovtsev, A; Rujoiu, M; Russo, G V; Salesa, F; Sapienza, P; Schöck, F; Schuller, J-P; Shanidze, R; Simeone, F; Spiess, A; Spurio, M; Steijger, J J M; Stolarczyk, Th; Taiuti, M; Tamburini, C; Tasca, L; Toscano, S; Vallage, B; Van Elewyck, V; Vannoni, G; Vecchi, M; Vernin, P; Wijnker, G; de Wolf, E; Yepes, H; Zaborov, D; Zornoza, J D; Zuniga, J

    2011-01-01

    An algorithm is presented, that provides a fast and robust reconstruction of neutrino induced upward-going muons and a discrimination of these events from downward-going atmospheric muon background in data collected by the ANTARES neutrino telescope. The algorithm consists of a hit merging and hit selection procedure followed by fitting steps for a track hypothesis and a point-like light source. It is particularly well-suited for real time applications such as online monitoring and fast triggering of optical follow-up observations for multi-messenger studies. The performance of the algorithm is evaluated with Monte Carlo simulations and various distributions are compared with that obtained in ANTARES data.

  20. Reconstruction efficiency and discovery potential of a Mediterranean neutrino telescope: A simulation study using the Hellenic Open University Reconstruction and Simulation (HOURS) package

    International Nuclear Information System (INIS)

    We report on the evaluation of the performance of a Mediterranean very large volume neutrino telescope. We present results of our studies concerning the capability of the telescope in detecting/discovering Galactic (steady point sources) and extragalactic, transient (Gamma Ray Bursts) high energy neutrino sources as well as measuring ultra high energy diffuse neutrino fluxes. The neutrino effective area and angular resolution are presented as a function of the neutrino energy, and the background event rate (atmospheric neutrinos and muons) is estimated. The discovery potential of the neutrino telescope is evaluated and the experimental time required for a significant discovery of potential neutrino emitters (known from their gamma ray emission, assumedly produced by hadronic interactions) is estimated. For the simulation we use the HOU Reconstruction and Simulation (HOURS) software package

  1. The Trigger and Data Acquisition System for the KM3NeT neutrino telescope

    Science.gov (United States)

    Pellegrino, Carmelo; Chiarusi, Tommaso

    2016-04-01

    KM3NeT is a large research infrastructure in the Mediterranean Sea that includes a network of deep-sea neutrino telescopes. The telescopes consist of vertical detection units carrying optical modules, whose separation is optimised according to the different ranges of neutrino energy that shall be explored. Two building blocks, each one made of 115 detection units, will be deployed at the KM3NeT-IT site, about 80 km from Capo Passero, Italy, to search for high-energy neutrino sources (ARCA); another building block will be installed at the KM3NeT-Fr site, about 40 km from Toulon, France, to study the hierarchy of neutrino masses (ORCA). The modular design of the KM3NeT allows for a progressive implementation and data taking even with an incomplete detector. The same scalable design is used for the Trigger and Data Acquisition Systems (TriDAS). In order to reduce the complexity of the hardware inside the optical modules, the "all data to shore" concept is adopted. This implies that the throughput is dominated by the optical background due to the decay of 40K dissolved in the sea water and to the bursts of bioluminescence, about 3 orders of magnitude larger than the physics signal, ranging from 20 Gbps to several hundreds Gbps, according to the number of detection units. In addition, information from the acoustic positioning system of the detection units must be transmitted. As a consequence of the detector construction, the on-shore DAQ infrastructure must be expanded to handle an increasing data-rate and implement an efficient fast data filtering for both the optical and acoustic channels. In this contribution, the Trigger and Data Acquisition System designed for the Phase 1 of KM3NeT and its future expansion are presented. The network infrastructure, the shore computing resources and the developed applications for handling, filtering and monitoring the optical and acoustic data-streams are described.

  2. KM3NeT - a multi-kilometre-cubed neutrino telescope for the Mediterranean

    International Nuclear Information System (INIS)

    KM3NeT will be a multi-cubic-kilometre telescope for the study of neutrinos in the TeV to PeV range. Consisting of arrays of photomultiplier tubes on slender vertical structures anchored to the sea floor, it will detect the Cherenkov light induced by the passage of relativistic particles through the water surrounding the detector. To be located at three sites in the Mediterranean Sea, its Northern latitude, and the sheer size of the detection volume, will make KM3NeT well-positioned to study the expected neutrino flux from galactic objects such as supernova remnants, while it will also be sensitive to higher-energy fluxes, such as that discovered by IceCube. This contribution gives an overview of the KM3NeT detector. The current status of KM3NeT Phase 1 construction, the physics potential of Phase 1.5, and the envisioned final (Phase 2) detector are described. The projected ability of KM3NeT to determine the energies and arrival directions of cosmic neutrinos is presented, in particular the detector resolution to through-going muons and cascade-like interactions inside the instrumented volume. Finally, the projected sensitivities of the different stages of KM3NeT to both diffuse and point-like cosmic neutrino fluxes are given. Specific details of KM3NeT methods and technology, including the ORCA project to resolve the neutrino mass hierarchy and θ23, will be presented in other contributions.

  3. Digital optical modules for the KM3NeT neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Kalekin, Oleg [Universitaet Erlangen, ECAP (Germany); Collaboration: ANTARES-KM3NeT-Erlangen-Collaboration

    2015-07-01

    KM3NeT is multi-cubic-kilometer neutrino telescope under construction in the Mediterranean Sea. In the currently running Phase 1 of the project, almost 30 detection units - 700 m tall vertical structures holding 18 Digital Optical Modules (DOMs) each - will be produced and deployed. A KM3NeT DOM consists of a pressure resistant glass sphere encapsulating 31 photomultiplier tubes of 80 mm diameter, readout electronics and additional instrumentation for calibration and monitoring. The Erlangen Centre for Astroparticle Physics is one of the DOM integration sites of the project. This contribution describes the design, functionality and integration procedure of the KM3NeT DOM.

  4. Study of Large Hemispherical Photomultiplier Tubes for the ANTARES Neutrino Telescope

    CERN Document Server

    Aguilar, J A; Ameli, F; Amram, P; Anghinolfi, M; Anton, G; Anvar, S; Ardellier-Desages, F E; Aslanides, E; Aubert, Jean-Jacques; Bailey, D; Basa, S; Battaglieri, M; Becherini, Y; Bellotti, R; Beltramelli, J; Bertin, V; Billault, M; Blaes, R; Blanc, F; De Botton, N R; Boulesteix, J; Bouwhuis, M C; Brooks, C B; Bradbury, S M; Bruijn, R; Brunner, J; Burgio, G F; Cafagna, F; Calzas, A; Capone, A; Caponetto, L; Carmona, E; Carr, J; Cartwright, S L; Castorina, E; Cavasinni, V; Cecchini, S; Charvis, P; Circella, M; Colnard, C; Compere, C; Coniglione, R; Cooper, S; Coyle, P; Cuneo, S; Damy, G; Van Dantzig, R; Deschamps, A; De Marzo, C; Denans, D; Destelle, J J; De Vita, R; Dinkelspiler, B; Distefano, C; Drogou, J F; Druillole, F; Engelen, J; Ernenwein, J P; Falchini, E; Favard, S; Feinstein, F; Ferry, S; Festy, D; Flaminio, V; Fopma, J; Fuda, J L; Gallone, J M; Giacomelli, G; Girard, N; Goret, P; Graf, K; Hallewell, G D; Hartmann, B; Heijboer, A; Hello, Y; Hernández-Rey, J J; Herrouin, G; Hossl, J; Hoffmann, C; Hubbard, John R; Jaquet, M; De Jong, M; Jouvenot, F; Kappes, A; Karg, T; Karkar, S; Karolak, M; Katz, U; Keller, P; Kooijman, P; Korolkova, E V; Kouchner, A; Kretschmer, W; Kuch, S; Kudryavtsev, V A; Lafoux, H; Lagier, P; Lahmann, R; Lamare, P; Languillat, J C; Laschinsky, H; Laubier, L; Legou, T; Le Guen, Y; Le Provost, H; Le Van-Suu, A; Lo Nigro, L; Lo Presti, D; Loucatos, Sotirios S; Louis, F; Lyashuk, V; Marcelin, M; Margiotta, A; Maron, C; Massol, A; Masullo, R; Mazéas, F; Mazure, A; McMillan, J E; Migneco, E; Millot, C; Milovanovic, A; Montanet, François; Montaruli, T; Morel, J P; Morganti, M; Moscoso, L; Musumeci, M; Naumann, C; Naumann-Godo, M; Nezri, E; Niess, V; Nooren, G J; Ogden, P; Olivetto, C; Palanque-Delabrouille, Nathalie; Papaleo, R; Payre, P; Petta, C; Piattelli, P; Pineau, J P; Poinsignon, J; Popa, V; Potheau, R; Pradier, T; Racca, C; Raia, G; Randazzo, N; Real, D; Van Rens, B A P; Rethore, F; Riccobene, G; Rigaud, V; Ripani, M; Roca-Blay, V; Rolin, J F; Romita, M; Rose, H J; Rostovtsev, A; Ruppi, M; Russo, G V; Sacquin, Yu; Salesa, F; Salomon, K; Saouter, S; Sapienza, P; Shanidze, R; Schuller, J P; Schuster, W; Sokalski, I A; Spurio, M; Stolarczyk, T; Stubert, D; Taiuti, M; Thompson, L F; Tilav, S; Valdy, P; Valente, V; Vallage, B; Vernin, P; Virieux, J; De Vries, G; De Witt-Huberts, P K A; De Wolf, E; Zaborov, D; Zaccone, Henri; Zakharov, V; De Dios-Zornoza-Gomez, Juan; Zúñiga, J

    2005-01-01

    The ANTARES neutrino telescope, to be immersed depth in the Mediterranean Sea, will consist of a 3 dimensional matrix of 900 large area photomultiplier tubes housed in pressure resistant glass spheres. The selection of the optimal photomultiplier was a critical step for the project and required an intensive phase of tests and developments carried out in close collaboration with the main manufacturers worldwide. This paper provides an overview of the tests performed by the collaboration and describes in detail the features of the PMT chosen for ANTARES.

  5. Power and Submarine Cable Systems for the KM3NeT kilometre cube Neutrino Telescope

    CERN Document Server

    Sedita, M; Hallewell, G

    2009-01-01

    The KM3NeT EU-funded consortium, pursuing a cubic kilometre scale neutrino telescope in the Mediterranean Sea, is developing technical solutions for the construction of this challenging project, to be realized several kilometres below the sea level. In this framework a proposed DC/DC power system has been designed, maximizing reliability and minimizing difficulties and expensive underwater activities. The power conversion, delivery, transmission and distribution network will be described with particular attention to: the main electro-optical cable, on shore and deep sea power conversion, the subsea distribution network and connection systems, together with installation and maintenance issues.

  6. The sensitivity of the Antares detector to the galactic neutrino flux; Sensibilite du telescope Antares au flux diffus de neutrinos galactiques

    Energy Technology Data Exchange (ETDEWEB)

    Jouvenot, F

    2005-06-15

    The Antares european collaboration builds an underwater neutrinos telescope which will be deployed in the Mediterranean by 2500 m depth. This detector consists of a three-dimensional network of 900 photomultipliers which detects the Cherenkov light produced in water by muons created from the interaction of neutrinos in the Earth. Cosmic rays are confined in the Galaxy and interact with the interstellar matter producing charged pions which decay into neutrinos. The observation of the sky with high energy neutrinos (> 100 GeV) could open a new window on the Galaxy, in particular, the detection of these neutrinos may make it possible to directly observe the dense parts of the Galaxy. In this work, corresponding fluxes have been calculated using a simulation program GALPROP, for several models, constrained by various gamma and cosmic rays observations. The expected sensitivity of the Antares detector to these models was reviewed, as well as a first estimation of the performances of what would give a future km{sup 3} scale detector. A shape recognition algorithm was also developed: it would permit to highlight the structures of the Galaxy in the optimistic case which the number of events detected would be sufficient. This work shows that Antares has an insufficient size for observing the galactic plane. It was also demonstrated that a new generation of neutrino telescope having an effective area at least 40 times larger will be needed to detect the hardest spectrum model and put limits on the other models. (author)

  7. Status of the central logic board (CLB) of the KM3NeT neutrino telescope

    International Nuclear Information System (INIS)

    The KM3NeT collaboration aims at the construction of a multi-km3 high-energy neutrino telescope in the Mediterranean Sea consisting of thousands of glass spheres, each of them containing 31 photomultiplier of small photocathode area. The readout and data acquisition system of KM3NeT has to collect, treat and send to shore, the enormous amount of data produced by the photomultipliers, the acoustics sensor and the rest of the instrumentation. The electronics design includes a multiboot module which allows for the re-configuration of the nodes of the telescope remotely from the shore station. All the modules and subsystems are controlled by two embedded microprocessors, implemented on a Kintetx-7 FPGA, and complex embedded software

  8. Status of the central logic board (CLB) of the KM3NeT neutrino telescope

    Science.gov (United States)

    Calvo, D.; Real, D.

    2015-12-01

    The KM3NeT collaboration aims at the construction of a multi-km3 high-energy neutrino telescope in the Mediterranean Sea consisting of thousands of glass spheres, each of them containing 31 photomultiplier of small photocathode area. The readout and data acquisition system of KM3NeT has to collect, treat and send to shore, the enormous amount of data produced by the photomultipliers, the acoustics sensor and the rest of the instrumentation. The electronics design includes a multiboot module which allows for the re-configuration of the nodes of the telescope remotely from the shore station. All the modules and subsystems are controlled by two embedded microprocessors, implemented on a Kintetx-7 FPGA, and complex embedded software.

  9. Studies of an alternative glass pressure housing for optical modules in the KM3NeT neutrino telescope

    International Nuclear Information System (INIS)

    KM3NeT is a future European research infrastructure, which will host a neutrino telescope with a volume of at least 1 Km3 in the deep Mediterranean Sea. This challenging project will require the installation of thousands of photon detectors with their related electronics and calibration systems several kilometres below the sea level. The design builds on the extensive experience gained in the pioneering ANTARES, NEMO and NESTOR underwater neutrino telescope projects. However, independent of the technical and scientific challenges inherent to such a project, new solutions must be pursued in order to significantly increase the cost effectiveness. This contribution presents the first results of a finite element analysis (FEA) performed at CPPM, in association with the Schott glass R and D department, for an alternative low cost glass pressure housing for optical modules in the KM3NeT neutrino telescope.

  10. Characterization benches for neutrino telescope Optical Modules at the APC laboratory

    Science.gov (United States)

    Avgitas, Theodore; Creusot, Alexandre; Kouchner, Antoine

    2016-04-01

    As has been demonstrated by the first generation of neutrino telescopes Antares and IceCube, precise knowledge of the photon detection efficiency of optical modules is of fundamental importance for the understanding of the instrument and accurate event reconstruction. Dedicated test benches have been developed to measure all related quantities for the Digital Optical Modules of the KM3NeT neutrino telescope being currently deployed in the Mediterranean sea. The first bench is a black box with robotic arms equipped with a calibrated single photon source or laser which enable a precise mapping of the detection efficiency at arbitrary incident angles as well as precise measurements of the time delays induced by the photodetection chain. These measurement can be incorporated and compared to full GEANT MonteCarlo simulations of the optical modules. The second bench is a 2 m×2 m ×2 m water tank equipped with muon hodoscopes on top and bottom. It enables to study and measure the angular dependence of the DOM's detection efficiency of the Cherenkov light produced in water by relativistic muons, thus reproducing in situ detection conditions. We describe these two benches and present their first results and status.

  11. Evaluation of the discovery potential of an underwater Mediterranean neutrino telescope taking into account the estimated directional resolution and energy of the reconstructed tracks

    International Nuclear Information System (INIS)

    We report on the development of search methods for point-like and extended neutrino sources, utilizing the tracking and energy estimation capabilities of an underwater, Very Large Volume Neutrino Telescope (VLVnT). We demonstrate that the developed techniques offer a significant improvement on the telescope's discovery potential. We also present results on the potential of the Mediterranean KM3NeT to discover galactic neutrino sources

  12. Indirect research of dark matter toward dwarf galaxies with the ANTARES neutrino telescope

    International Nuclear Information System (INIS)

    The first part of this document summarizes the astrophysical arguments to suppose the existence of dark matter. The cosmological model γCDM is presented as well as the concept of cross section of dark matter self-annihilation. Dwarf galaxies satellites of the Milky Way, the sources of our study are introduced into a second chapter. After recalling the large structures that make up the universe, the issues related to dwarf galaxies are addressed: missing satellites problem, distribution of dark matter density within them and tidal forces due to the Milky Way. The second part discusses the modeling of the dark matter density in dwarf galaxies. The methodology, using the Jeans equation and dispersion of projected stars velocities, is presented. Three dark matter profiles are retained: NFW, Burkert and Einasto and fifteen dwarf galaxies. Neutrino production during the self-annihilation of dark matter is then addressed. The energy spectra of neutrinos are generated with PYTHIA software and compared with other results for the galactic center. Twenty-three assumptions of mass dark matter candidates are chosen, ranging from 25 GeV/c2 100 TeV/c2. Five self-annihilation channels are selected for analysis: b-b, W+W- T+T- μ+μ- νμ νμ. The third part includes a presentation of the detector used for the study, the ANTARES neutrino telescope. Three reconstruction algorithms developed and used in collaboration are also detailed: AAFIT, BBFit and GridFit. The analysis of data ANTARES aimed to find a neutrinos excess characteristic of dark matter self-annihilation is summarized in the sixth and final chapter. No excess was observed, a limit on the cross section of dark matter self-annihilation was determined. (author)

  13. The Trigger and Data Acquisition System for the KM3NeT neutrino telescope

    Directory of Open Access Journals (Sweden)

    Pellegrino Carmelo

    2016-01-01

    Full Text Available KM3NeT is a large research infrastructure in the Mediterranean Sea that includes a network of deep-sea neutrino telescopes. The telescopes consist of vertical detection units carrying optical modules, whose separation is optimised according to the different ranges of neutrino energy that shall be explored. Two building blocks, each one made of 115 detection units, will be deployed at the KM3NeT-IT site, about 80 km from Capo Passero, Italy, to search for high-energy neutrino sources (ARCA; another building block will be installed at the KM3NeT-Fr site, about 40 km from Toulon, France, to study the hierarchy of neutrino masses (ORCA. The modular design of the KM3NeT allows for a progressive implementation and data taking even with an incomplete detector. The same scalable design is used for the Trigger and Data Acquisition Systems (TriDAS. In order to reduce the complexity of the hardware inside the optical modules, the “all data to shore” concept is adopted. This implies that the throughput is dominated by the optical background due to the decay of 40K dissolved in the sea water and to the bursts of bioluminescence, about 3 orders of magnitude larger than the physics signal, ranging from  20 Gbps to several hundreds Gbps, according to the number of detection units. In addition, information from the acoustic positioning system of the detection units must be transmitted. As a consequence of the detector construction, the on-shore DAQ infrastructure must be expanded to handle an increasing data-rate and implement an efficient fast data filtering for both the optical and acoustic channels. In this contribution, the Trigger and Data Acquisition System designed for the Phase 1 of KM3NeT and its future expansion are presented. The network infrastructure, the shore computing resources and the developed applications for handling, filtering and monitoring the optical and acoustic data-streams are described.

  14. On the measurement of high-energetic neutrinos with the IceCube neutrino telescope and with acoustic detection methods

    International Nuclear Information System (INIS)

    In this thesis, two subjects have been addressed to enhance the detection of astrophysical neutrinos with the existing IceCube neutrino telescope as well as to explore new detection methods, namely the acoustic detection. In the first part of this thesis, the determination of the acoustic attenuation length in South-Pole ice is presented. This is part of a feasibility study to investigate the acoustic neutrino detection as a possibility to enhance the detection of the highest-energy neutrinos. For this, the acoustic properties of the ice have to be known, and the South-Pole Acoustic Test Setup (SPATS) has been built to determine these. The attenuation length is determined using in-situ measurements with SPATS and a retrievable transmitter (pinger), which was deployed in a depth between 190 and 500 m into the water-filled drilling holes. Even though, the unknown angular-dependent sensitivities of the SPATS sensor channels cannot be avoided and are considered as the dominant systematic effect for these measurements. In this thesis, the acoustic attenuation length is calculated by comparing the energy contents of the pinger pulses recorded by the various SPATS sensor channels for different distances between the pinger and the respective channel. The energy was calculated from the Fourier spectra of the pinger pulses for a frequency range between 5 and 35 kHz. The attenuation coefficient is calculated for each channel individually and the weighted mean over the distribution of all considered channels leads to an attenuation length of 264+52-37 m. The dependence of the attenuation on both depth and frequency has been investigated, showing no indications for either. In the second part, a new event reconstruction method based on a Top-Down approach is presented. The method has been implemented for the IC40 detector and applied to the muon energy reconstruction. The Top-Down method is based on the direct comparison of single measured events with a large sample of simulated

  15. On the measurement of high-energetic neutrinos with the IceCube neutrino telescope and with acoustic detection methods

    Energy Technology Data Exchange (ETDEWEB)

    Schunck, Matthias

    2011-10-07

    In this thesis, two subjects have been addressed to enhance the detection of astrophysical neutrinos with the existing IceCube neutrino telescope as well as to explore new detection methods, namely the acoustic detection. In the first part of this thesis, the determination of the acoustic attenuation length in South-Pole ice is presented. This is part of a feasibility study to investigate the acoustic neutrino detection as a possibility to enhance the detection of the highest-energy neutrinos. For this, the acoustic properties of the ice have to be known, and the South-Pole Acoustic Test Setup (SPATS) has been built to determine these. The attenuation length is determined using in-situ measurements with SPATS and a retrievable transmitter (pinger), which was deployed in a depth between 190 and 500 m into the water-filled drilling holes. Even though, the unknown angular-dependent sensitivities of the SPATS sensor channels cannot be avoided and are considered as the dominant systematic effect for these measurements. In this thesis, the acoustic attenuation length is calculated by comparing the energy contents of the pinger pulses recorded by the various SPATS sensor channels for different distances between the pinger and the respective channel. The energy was calculated from the Fourier spectra of the pinger pulses for a frequency range between 5 and 35 kHz. The attenuation coefficient is calculated for each channel individually and the weighted mean over the distribution of all considered channels leads to an attenuation length of 264{sup +52} {sub -37} m. The dependence of the attenuation on both depth and frequency has been investigated, showing no indications for either. In the second part, a new event reconstruction method based on a Top-Down approach is presented. The method has been implemented for the IC40 detector and applied to the muon energy reconstruction. The Top-Down method is based on the direct comparison of single measured events with a large sample

  16. The effects of Earth's magnetic field on 3-inch diameter photomultipliers used in KM3NeT neutrino telescope

    Science.gov (United States)

    Giordano, V.; Aiello, S.; Leonora, E.; Randazzo, N.

    2016-04-01

    The KM3NeT neutrino telescope will be the largest underwater neutrino telescope and will be located in the abyss of the Mediterranean Sea. In neutrino telescopes the key element of the detector is the optical module and for KM3NeT it consists of 31 PMTs stored inside a transparent pressure-resistant glass sphere of 17-inch that serves as mechanical protection while ensuring good light transmission. Since the PMTs installed into an underwater neutrino telescope can change their orientation because of movements of the detector structure due to sea currents, the influence of Earth's magnetic field has been investigated. Magnetic shielding by means of a mu-metal cage is used to reduce magnetic effects and to make the response of the PMT sufficiently orientation independent. In order to quantify the effect on magnetic field, we compared measurements on variation of gain, transit time spread and detection efficiency for a 3-inch PMT in shielded and unshielded condition at 3 PMT inclinations. Data shows that variations are sufficiently low especially for timing properties.

  17. The effects of Earth's magnetic field on 3-inch diameter photomultipliers used in KM3NeT neutrino telescope

    Directory of Open Access Journals (Sweden)

    Giordano V.

    2016-01-01

    Full Text Available The KM3NeT neutrino telescope will be the largest underwater neutrino telescope and will be located in the abyss of the Mediterranean Sea. In neutrino telescopes the key element of the detector is the optical module and for KM3NeT it consists of 31 PMTs stored inside a transparent pressure-resistant glass sphere of 17-inch that serves as mechanical protection while ensuring good light transmission. Since the PMTs installed into an underwater neutrino telescope can change their orientation because of movements of the detector structure due to sea currents, the influence of Earth's magnetic field has been investigated. Magnetic shielding by means of a mu-metal cage is used to reduce magnetic effects and to make the response of the PMT sufficiently orientation independent. In order to quantify the effect on magnetic field, we compared measurements on variation of gain, transit time spread and detection efficiency for a 3-inch PMT in shielded and unshielded condition at 3 PMT inclinations. Data shows that variations are sufficiently low especially for timing properties.

  18. Proposal of a new generation of Laser Beacon for time calibration in the KM3NeT neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Real, Diego [IFIC, Instituto de Física Corpuscular, CSIC-Universidad de Valencia, C/Catedrático José Beltrán, 2. 46980 Paterna (Spain); Collaboration: KM3NeT Collaboration

    2014-11-18

    The KM3NeT collaboration aims at the construction of a multi-km3 high-energy neutrino telescope in the Mediterranean Sea consisting of a matrix of pressure resistant glass spheres holding each a set (31) of small area photomultipliers. The main motivation of the telescope is to observe cosmic neutrinos through the Cherenkov light induced in sea water by charged particles produced in neutrino interactions with the surrounding medium. A relative time calibration between photomultipliers of the order of 1 ns is required to achieve an optimal performance. To this end, several time calibration subsystems have been developed. In this article, the proposal of a last generation Laser Beacon, to be used in KM3NeT and developed to measure and monitor the relative time offsets between photomultipliers, is presented.

  19. Proposal of a new generation of Laser Beacon for time calibration in the KM3NeT neutrino telescope

    International Nuclear Information System (INIS)

    The KM3NeT collaboration aims at the construction of a multi-km3 high-energy neutrino telescope in the Mediterranean Sea consisting of a matrix of pressure resistant glass spheres holding each a set (31) of small area photomultipliers. The main motivation of the telescope is to observe cosmic neutrinos through the Cherenkov light induced in sea water by charged particles produced in neutrino interactions with the surrounding medium. A relative time calibration between photomultipliers of the order of 1 ns is required to achieve an optimal performance. To this end, several time calibration subsystems have been developed. In this article, the proposal of a last generation Laser Beacon, to be used in KM3NeT and developed to measure and monitor the relative time offsets between photomultipliers, is presented

  20. PREFACE: Nobel Symposium 129 on Neutrino Physics

    Science.gov (United States)

    Bergström, Lars; Botner, Olga; Carlson, Per; Hulth, Per Olof; Ohlsson, Tommy

    2005-01-01

    telescopes are built deep in the Antarctic ice, in the Baikal Lake, and in the Mediterranean Sea. Among prominent unanswered questions, highlighted as one of the most important, was whether neutrinos are Dirac or Majorana particles. By studying neutrino double beta decay, researchers hope to answer this question, but it will put very large demands on detectors. The programme also included ample time for lively and valuable discussions, which cannot normally be held at ordinary conferences. The symposium concluded with a round-table discussion, where participants discussed the future of neutrino physics.Without a doubt, neutrino physics today is moving toward a very exciting and interesting period. An important contribution to the success of the symposium was the wonderful setting that the Haga Slott manor house hotel and conference center offered to the participants.

  1. First combined search for neutrino point-sources in the southern sky with the ANTARES and IceCube neutrino telescopes

    Directory of Open Access Journals (Sweden)

    Barrios-Martí J.

    2016-01-01

    Full Text Available A search for cosmic neutrino point-like sources using the ANTARES and IceCube neutrino telescopes over the Southern Hemisphere is presented. The ANTARES data were collected between January 2007 and December 2012, whereas the IceCube data ranges from April 2008 to May 2011. An unbinned maximum likelihood method is used to search for a localized excess of muon events in the southern sky assuming an E−2 neutrino source spectrum. A search over a pre-selected list of candidate sources has also been carried out for different source assumptions: spectral indices of 2.0 and 2.5, and energy cutoffs of 1 PeV, 300 TeV and 100 TeV. No significant excess over the background has been found, and upper limits for the candidate sources are presented compared to the individual experiments.

  2. The First Combined Search for Neutrino Point-sources in the Southern Hemisphere with the ANTARES and IceCube Neutrino Telescopes

    Science.gov (United States)

    Adrián-Martínez, S.; Albert, A.; André, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bormuth, R.; Bouwhuis, M. C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Chiarusi, T.; Circella, M.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Dekeyser, I.; Deschamps, A.; De Bonis, G.; Distefano, C.; Donzaud, C.; Dornic, D.; Drouhin, D.; Dumas, A.; Eberl, T.; Elsässer, D.; Enzenhöfer, A.; Fehn, K.; Felis, I.; Fermani, P.; Folger, F.; Fusco, L. A.; Galatà, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giordano, V.; Gleixner, A.; Gracia-Ruiz, R.; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Hößl, J.; Hofestädt, J.; Hugon, C.; James, C. W.; de Jong, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kooijman, P.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lefèvre, D.; Leonora, E.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J. A.; Mathieu, A.; Michael, T.; Migliozzi, P.; Moussa, A.; Mueller, C.; Nezri, E.; Păvălaş, G. E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Racca, C.; Riccobene, G.; Richter, R.; Roensch, K.; Saldaña, M.; Samtleben, D. F. E.; Sánchez-Losa, A.; Sanguineti, M.; Sapienza, P.; Schmid, J.; Schnabel, J.; Schüssler, F.; Seitz, T.; Sieger, C.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Taiuti, M.; Tamburini, C.; Trovato, A.; Tselengidou, M.; Tönnis, C.; Vallage, B.; Vallée, C.; Van Elewyck, V.; Visser, E.; Vivolo, D.; Wagner, S.; Wilms, J.; Zornoza, J. D.; Zúñiga, J.; ANTARES Collaboration; Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Ansseau, I.; Archinger, M.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; Beiser, E.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Buzinsky, N.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Cowen, D. F.; Cruz Silva, A. H.; Daughhetee, J.; Davis, J. C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; del Pino Rosendo, E.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; De Young, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Fösig, C.-C.; Fuchs, T.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Gier, D.; Gladstone, L.; Glagla, M.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Góra, D.; Grant, D.; Griffith, Z.; Groß, A.; Ha, C.; Haack, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hansen, E.; Hansmann, B.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Homeier, A.; Hoshina, K.; Huang, F.; Huber, M.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jurkovic, M.; Kappes, A.; Karg, T.; Karle, A.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kiryluk, J.; Kläs, J.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, G.; Kroll, M.; Krückl, G.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lesiak-Bzdak, M.; Leuermann, M.; Leuner, J.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mandelartz, M.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Middell, E.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; Omairat, A.; O’Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Pütz, J.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Richter, S.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Sabbatini, L.; Sander, H.-G.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Schatto, K.; Scheriau, F.; Schimp, M.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schulte, L.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stahlberg, M.; Stamatikos, M.; Stanev, T.; Stasik, A.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vallecorsa, S.; Vandenbroucke, J.; van Eijndhoven, N.; Vanheule, S.; van Santen, J.; Veenkamp, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.; IceCube Collaboration

    2016-05-01

    We present the results of searches for point-like sources of neutrinos based on the first combined analysis of data from both the ANTARES and IceCube neutrino telescopes. The combination of both detectors, which differ in size and location, forms a window in the southern sky where the sensitivity to point sources improves by up to a factor of 2 compared with individual analyses. Using data recorded by ANTARES from 2007 to 2012, and by IceCube from 2008 to 2011, we search for sources of neutrino emission both across the southern sky and from a preselected list of candidate objects. No significant excess over background has been found in these searches, and flux upper limits for the candidate sources are presented for E ‑2.5 and E ‑2 power-law spectra with different energy cut-offs.

  3. First combined search for neutrino point-sources in the Southern Hemisphere with the ANTARES and IceCube neutrino telescopes

    CERN Document Server

    Adrián-Martínez, S; André, M; Anton, G; Ardid, M; Aubert, J -J; Baret, B; Barrios-Martí, J; Basa, S; Bertin, V; Biagi, S; Bormuth, R; Bouwhuis, M C; Bruijn, R; Brunner, J; Busto, J; Capone, A; Caramete, L; Carr, J; Chiarusi, T; Circella, M; Coniglione, R; Costantini, H; Coyle, P; Creusot, A; Dekeyser, I; Deschamps, A; De Bonis, G; Distefano, C; Donzaud, C; Dornic, D; Drouhin, D; Dumas, A; Eberl, T; Elsässer, D; Enzenhöfer, A; Fehn, K; Felis, I; Fermani, P; Folger, F; Fusco, L A; Galatà, S; Gay, P; Geißelsöder, S; Geyer, K; Giordano, V; Gleixner, A; Gracia-Ruiz, R; Graf, K; Hallmann, S; van Haren, H; Heijboer, A J; Hello, Y; Hernández-Rey, J J; Hößl, J; Hofestädt, J; Hugon, C; James, C W; de Jong, M; Kadler, M; Kalekin, O; Katz, U; Kießling, D; Kooijman, P; Kouchner, A; Kreter, M; Kreykenbohm, I; Kulikovskiy, V; Lahmann, R; Lefèvre, D; Leonora, E; Loucatos, S; Marcelin, M; Margiotta, A; Marinelli, A; Martínez-Mora, J A; Mathieu, A; Michael, T; Migliozzi, P; Moussa, A; Mueller, C; Nezri, E; Păvălaş, G E; Pellegrino, C; Perrina, C; Piattelli, P; Popa, V; Pradier, T; Racca, C; Riccobene, G; Richter, R; Roensch, K; Saldaña, M; Samtleben, D F E; Sánchez-Losa, A; Sanguineti, M; Sapienza, P; Schmid, J; Schnabel, J; Schüssler, F; Seitz, T; Sieger, C; Spurio, M; Steijger, J J M; Stolarczyk, Th; Taiuti, M; Tamburini, C; Trovato, A; Tselengidou, M; Tönnis, C; Vallage, B; Vallée, C; Van Elewyck, V; Visser, E; Vivolo, D; Wagner, S; Wilms, J; Zornoza, J D; Zúñiga, J; :,; Aartsen, M G; Abraham, K; Ackermann, M; Adams, J; Aguilar, J A; Ahlers, M; Ahrens, M; Altmann, D; Anderson, T; Ansseau, I; Archinger, M; Arguelles, C; Arlen, T C; Auffenberg, J; Bai, X; Barwick, S W; Baum, V; Bay, R; Beatty, J J; Tjus, J Becker; Becker, K -H; Beiser, E; Berghaus, P; Berley, D; Bernardini, E; Bernhard, A; Besson, D Z; Binder, G; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Börner, M; Bos, F; Bose, D; Böser, S; Botner, O; Braun, J; Brayeur, L; Bretz, H -P; Buzinsky, N; Casey, J; Casier, M; Cheung, E; Chirkin, D; Christov, A; Clark, K; Classen, L; Coenders, S; Cowen, D F; Silva, A H Cruz; Daughhetee, J; Davis, J C; Day, M; de André, J P A M; De Clercq, C; Rosendo, E del Pino; Dembinski, H; De Ridder, S; Desiati, P; de Vries, K D; de Wasseige, G; de With, M; DeYoung, T; D{\\'ı}az-Vélez, J C; di Lorenzo, V; Dumm, J P; Dunkman, M; Eberhardt, B; Ehrhardt, T; Eichmann, B; Euler, S; Evenson, P A; Fahey, S; Fazely, A R; Feintzeig, J; Felde, J; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Fösig, C -C; Fuchs, T; Gaisser, T K; Gaior, R; Gallagher, J; Gerhardt, L; Ghorbani, K; Gier, D; Gladstone, L; Glagla, M; Glüsenkamp, T; Goldschmidt, A; Golup, G; Gonzalez, J G; Góra, D; Grant, D; Griffith, Z; Groß, A; Ha, C; Haack, C; Ismail, A Haj; Hallgren, A; Halzen, F; Hansen, E; Hansmann, B; Hanson, K; Hebecker, D; Heereman, D; Helbing, K; Hellauer, R; Hickford, S; Hignight, J; Hill, G C; Hoffman, K D; Hoffmann, R; Holzapfel, K; Homeier, A; Hoshina, K; Huang, F; Huber, M; Huelsnitz, W; Hulth, P O; Hultqvist, K; In, S; Ishihara, A; Jacobi, E; Japaridze, G S; Jero, K; Jurkovic, M; Kappes, A; Karg, T; Karle, A; Kauer, M; Keivani, A; Kelley, J L; Kemp, J; Kheirandish, A; Kiryluk, J; Kläs, J; Klein, S R; Kohnen, G; Koirala, R; Kolanoski, H; Konietz, R; Köpke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Krings, K; Kroll, G; Kroll, M; Krückl, G; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Lanfranchi, J L; Larson, M J; Lesiak-Bzdak, M; Leuermann, M; Leuner, J; Lu, L; Lünemann, J; Madsen, J; Maggi, G; Mahn, K B M; Mandelartz, M; Maruyama, R; Mase, K; Matis, H S; Maunu, R; McNally, F; Meagher, K; Medici, M; Meli, A; Menne, T; Merino, G; Meures, T; Miarecki, S; Middell, E; Mohrmann, L; Montaruli, T; Morse, R; Nahnhauer, R; Naumann, U; Neer, G; Niederhausen, H; Nowicki, S C; Nygren, D R; Obertacke, A; Pollmann,; Olivas, A; Omairat, A; O'Murchadha, A; Palczewski, T; Pandya, H; Pankova, D V; Paul, L; Pepper, J A; Heros, C Pérez de los; Pfendner, C; Pieloth, D; Pinat, E; Posselt, J; Price, P B; Przybylski, G T; Pütz, J; Quinnan, M; Raab, C; Rädel, L; Rameez, M; Rawlins, K; Reimann, R; Relich, M; Resconi, E; Rhode, W; Richman, M; Richter, S; Riedel, B; Robertson, S; Rongen, M; Rott, C; Ruhe, T; Ryckbosch, D; Sabbatini, L; Sander, H -G; Sandrock, A; Sandroos, J; Sarkar, S; Schatto, K; Scheriau, F; Schimp, M; Schmidt, T; Schmitz, M; Schoenen, S; Schöneberg, S; Schönwald, A; Schulte, L; Schumacher, L; Seckel, D; Seunarine, S; Soldin, D; Song, M; Spiczak, G M; Spiering, C; Stahlberg, M; Stamatikos, M; Stanev, T; Stasik, A; Steuer, A; Stezelberger, T; Stokstad, R G; Stößl, A; Ström, R; Strotjohann, N L; Sullivan, G W; Sutherland, M; Taavola, H; Taboada, I; Tatar, J; Ter-Antonyan, S; Terliuk, A; Te{š}ić, G; Tilav, S; Toale, P A; Tobin, M N; Toscano, S; Tosi, D; Turcati, A; Unger, E; Usner, M; Vallecorsa, S; Vandenbroucke, J; van Eijndhoven, N; Vanheule, S; van Santen, J; Veenkamp, J; Vehring, M; Voge, M; Vraeghe, M; Walck, C; Wallace, A; Wallraff, M; Wandkowsky, N; Weaver, Ch; Wendt, C; Westerhoff, S; Whelan, B J; Wiebe, K; Wiebusch, C H; Wille, L; Williams, D R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, D L; Xu, X W; Xu, Y; Yanez, J P; Yodh, G; Yoshida, S; Zoll, M

    2015-01-01

    We present the results of searches for point-like sources of neutrinos based on the first combined analysis of data from both the ANTARES and IceCube neutrino telescopes. The combination of both detectors which differ in size and location forms a window in the Southern sky where the sensitivity to point sources improves by up to a factor of two compared to individual analyses. Using data recorded by ANTARES from 2007 to 2012, and by IceCube from 2008 to 2011, we search for sources of neutrino emission both across the Southern sky and from a pre-selected list of candidate objects. No significant excess over background has been found in these searches, and flux upper limits for the candidate sources are presented for $E^{-2.5}$ and $E^{-2}$ power-law spectra with different energy cut-offs.

  4. ICRC 2015 proceedings: First combined search for neutrino point-sources in the Southern Sky with the ANTARES and IceCube neutrino telescopes

    CERN Document Server

    ,

    2015-01-01

    A search for cosmic neutrino point-like sources using the ANTARES and IceCube neutrino telescopes over the Southern Hemisphere is presented. The ANTARES data was collected between January 2007 and December 2012, whereas the IceCube data ranges from April 2008 to May 2011. Clusters of muon neutrinos over the diffusely distributed background have been looked for by means of an unbinned maximum likelihood maximisation. This method is used to search for a localised excess of events over the whole Southern Sky assuming an $E^{-2}$ source spectrum. A search over a pre-selected list of candidate sources has also been carried out for different source assumptions: spectral indices of 2.0 and 2.5, and energy cutoffs of 1 PeV, 300 TeV and 100 TeV. No significant excess over the expected background has been found, and upper limits for the candidate sources are presented compared to the individual experiments.

  5. Performance of the front-end electronics of the ANTARES neutrino telescope

    International Nuclear Information System (INIS)

    ANTARES is a high-energy neutrino telescope installed in the Mediterranean Sea at a depth of 2475 m. It consists of a three-dimensional array of optical modules, each containing a large photomultiplier tube. A total of 2700 front-end ASICs named analogue ring samplers (ARS) process the phototube signals, measure their arrival time, amplitude and shape as well as perform monitoring and calibration tasks. The ARS chip processes the analogue signals from the optical modules and converts information into digital data. All the information is transmitted to shore through further multiplexing electronics and an optical link. This paper describes the performance of the ARS chip; results from the functionality and characterization tests in the laboratory are summarized and the long-term performance in the apparatus is illustrated.

  6. Performance of the front-end electronics of the ANTARES neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, J.A. [IFIC - Instituto de Fisica Corpuscular, Edificios Investigacion de Paterna, CSIC - Universitat de Valencia, Apdo. de Correos 22085, 46071 Valencia (Spain); Al Samarai, I. [CPPM - Centre de Physique des Particules de Marseille, CNRS/IN2P3 et Universite de la Mediterranee, 163 Avenue de Luminy, Case 902, 13288 Marseille Cedex 9 (France); Albert, A. [GRPHE - Institut universitaire de technologie de Colmar, 34 rue du Grillenbreit BP 50568 - 68008 Colmar (France); Anghinolfi, M. [INFN - Sezione di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Anton, G. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, D-91058 Erlangen (Germany); Anvar, S. [Direction des Sciences de la Matiere - Institut de recherche sur les lois fondamentales de l' Univers - Service d' Electronique des Detecteurs et d' Informatique, CEA Saclay, 91191 Gif-sur-Yvette Cedex (France); Ardid, M. [Institut d' Investigacio per a la Gestio Integrada de Zones Costaneres (IGIC) - Universitat Politecnica de Valencia. C/ Paranimf, 1. E-46730 Gandia (Spain); Assis Jesus, A.C.; Astraatmadja, T. [FOM Instituut voor Subatomaire Fysica Nikhef, Science Park 105, 1098 XG Amsterdam (Netherlands); Aubert, J.-J. [CPPM - Centre de Physique des Particules de Marseille, CNRS/IN2P3 et Universite de la Mediterranee, 163 Avenue de Luminy, Case 902, 13288 Marseille Cedex 9 (France); Auer, R. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, D-91058 Erlangen (Germany); Baret, B. [APC - Laboratoire AstroParticule et Cosmologie, UMR 7164 (CNRS, Universite Paris 7 Diderot, CEA, Observatoire de Paris) 10, rue Alice Domon et Leonie Duquet 75205 Paris Cedex 13 (France); Basa, S. [LAM - Laboratoire d' Astrophysique de Marseille, Pole de l' Etoile Site de Ch-Gombert, rue Frederic Joliot-Curie 38, 13388 Marseille cedex 13 (France)

    2010-10-01

    ANTARES is a high-energy neutrino telescope installed in the Mediterranean Sea at a depth of 2475 m. It consists of a three-dimensional array of optical modules, each containing a large photomultiplier tube. A total of 2700 front-end ASICs named analogue ring samplers (ARS) process the phototube signals, measure their arrival time, amplitude and shape as well as perform monitoring and calibration tasks. The ARS chip processes the analogue signals from the optical modules and converts information into digital data. All the information is transmitted to shore through further multiplexing electronics and an optical link. This paper describes the performance of the ARS chip; results from the functionality and characterization tests in the laboratory are summarized and the long-term performance in the apparatus is illustrated.

  7. First results of the Instrumentation Line for the deep-sea ANTARES neutrino telescope

    CERN Document Server

    Aguilar, J A; Ameli, F; Anghinolfi, M; Anton, G; Anvar, S; Aslanides, E; Aubert, Jean-Jacques; Barbarito, E; Basa, S; Battaglieri, M; Becherini, Y; Bellotti, R; Beltramelli, J; Bertin, V; Bigi, A; Billault, M; Blaes, R; de Botton, N; Bouwhuis, M C; Bradbury, S M; Bruijn, R; Brunner, J; Burgio, G F; Busto, J; Cafagna, F; Caillat, L; Calzas, A; Capone, A; Caponetto, L; Carmona, E; Carr, J; Cartwright, S L; Castel, D; Castorina, E; Cavasinni, V; Cecchini, S; Ceres, A; Charvis, P; Chauchot, P; Chiarusi, T; Circella, M; Colnard, C; Compere, C; Coniglione, R; Cottini, N; Coyle, P; Cuneo, S; Cussatlegras, A S; Damy, G; Van Dantzig, R; De Marzo, C; Dekeyser, I; Delagnes, E; Denans, D; Deschamps, A; Dessages-Ardellier, F; Destelle, J J; Dinkespieler, B; Distefano, C; Donzaud, C; Drogou, J F; Druillole, F; Durand, D; Ernenwein, J P; Escoffier, S; Falchini, E; Favard, S; Feinstein, F; Ferry, S; Festy, D; Fiorello, C; Flaminio, V; Galeotti, S; Gallone, J M; Giacomelli, G; Girard, N; Gojak, C; Goret, P; Graf, K; Hallewell, G D; Harakeh, M N; Hartmann, B; Heijboer, A; Heine, E; Hello, Y; Hernández-Rey, J J; Hossl, J; Hoffman, C; Hogenbirk, J; Hubbard, John R; Jaquet, M; Jaspers, M; De Jong, M; Jouvenot, F; Kalantar-Nayestanaki, N; Kappes, A; Karg, T; Karkar, S; Katz, U; Keller, P; Kok, H; Kooijman, P; Kopper, C; Korolkova, E V; Kouchner, A; Kretschmer, W; Kruijer, A; Kuch, S; Kudryavtsev, V A; Lachartre, D; Lafoux, H; Lagier, P; Lahmann, R; Lamanna, G; Lamare, P; Languillat, J C; Laschinsky, H; Le Guen, Y; Le Provost, H; Le Van-Suu, A; Legou, T; Lim, G; Lo Nigro, L; Lo Presti, D; Löhner, H; Loucatos, Sotirios S; Louis, F; Lucarelli, F; Lyashuk, V; Marcelin, M; Margiotta, A; Masullo, R; Mazéas, F; Mazure, A; McMillan, J E; Megna, R; Melissas, M; Migneco, E; Milovanovic, A; Mongelli, M; Montaruli, T; Morganti, M; Moscoso, L; Musumeci, M; Naumann, C; Naumann-Godo, M; Niess, V; Olivetto, C; Ostasch, R; Palanque-Delabrouille, Nathalie; Payre, P; Peek, H; Petta, C; Piattelli, P; Pineau, J P; Poinsignon, J; Popa, V; Pradier, T; Racca, C; Randazzo, N; Van Randwijk, J; Real, D; Van Rens, B; Rethore, F; Rewiersma, P A M; Riccobene, G; Rigaud, V; Ripani, M; Roca, V; Roda, C; Rolin, J F; Romita, M; Rose, H J; Rostovtsev, A; Roux, J; Ruppi, M; Russo, G V; Salesa, F; Salomon, K; Sapienza, P; Schmitt, F; Schuller, J P; Shadnize, R; Sokalski, I A; Spona, T; Spurio, M; van der Steenhoven, G; Stolarczyk, T; Streeb, K; Stubert, D; Sulak, L; Taiuti, M; Tamburini, C; Tao, C; Terreni, G; Thompson, L F; Valdy, P; Valente, V; Vallage, B; Venekamp, G; Verlaat, B; Vernin, P; De Vita, R; De Vries, G; Van Wijk, R F; De Witt-Huberts, P K A; Wobbe, G; De Wolf, E; Yao, A F; Zaborov, D; Zaccone, Henri; De Dios-Zornoza-Gomez, Juan; Zúñiga, J; Deceased

    2006-01-01

    In 2005, the ANTARES Collaboration deployed and operated at a depth of 2500 m a so-called Mini Instrumentation Line equipped with Optical Modules (MILOM) at the ANTARES site. The various data acquired during the continuous operation from April to December 2005 of the MILOM confirm the satisfactory performance of the Optical Modules, their front-end electronics and readout system, as well as the calibration devices of the detector. The in-situ measurement of the Optical Module time response yields a resolution better than 0.5 ns. The performance of the acoustic positioning system, which enables the spatial reconstruction of the ANTARES detector with a precision of about 10 cm, is verified. These results demonstrate that with the full ANTARES neutrino telescope the design angular resolution of better than $0.3^\\circ$ can be realistically achieved.

  8. Study of the high energy Cosmic Rays large scale anisotropies with the ANTARES neutrino telescope

    Science.gov (United States)

    Illuminati, Giulia

    2016-02-01

    We present the analysis method used to search for an anisotropy in the high energy Cosmic Rays arrival distribution using data collected by the ANTARES telescope. ANTARES is a neutrino detector, where the collected data are dominated by a large background of cosmic ray muons. Therefore, the background data are suitable for high-statistics studies of cosmic rays in the Northern sky. The main challenge for this analysis is accounting for those effects which can mimic an apparent anisotropy in the muon arrival direction: the detector exposure asymmetries, non-uniform time coverage, diurnal and seasonal variation of the atmospheric temperature. Once all these effects have been corrected, a study of the anisotropy profiles along the right ascension can be performed.

  9. KM3NeT Neutrino Telescope 1-ns Resolution Time To Digital Converters

    Directory of Open Access Journals (Sweden)

    Calvo David

    2016-01-01

    Full Text Available The KM3NeT collaboration aims the construction of a multi-km3 high-energy neutrino telescope in the Mediterranean sea consisting of thousands of glass spheres, each of them containing 31 photomultiplier of small photocathode area. The main digitization system is composed by 31 Time to Digital Converter channels with 1-ns resolution embedded in a Field Programmable Gate Array. An architecture with low resource occupancy has been chosen allowing the implementation of other instrumentation, communication and synchronization systems on the same device. The 4-oversampling technique with two high frequency clocks working in opposed phases has been used together with an asymmetric FIFO memory. In the present article the architecture and the first results obtained with the Time to Digital Converters are presented.

  10. KM3NeT Neutrino Telescope 1-ns Resolution Time To Digital Converters

    Science.gov (United States)

    Calvo, David; Real, Diego

    2016-04-01

    The KM3NeT collaboration aims the construction of a multi-km3 high-energy neutrino telescope in the Mediterranean sea consisting of thousands of glass spheres, each of them containing 31 photomultiplier of small photocathode area. The main digitization system is composed by 31 Time to Digital Converter channels with 1-ns resolution embedded in a Field Programmable Gate Array. An architecture with low resource occupancy has been chosen allowing the implementation of other instrumentation, communication and synchronization systems on the same device. The 4-oversampling technique with two high frequency clocks working in opposed phases has been used together with an asymmetric FIFO memory. In the present article the architecture and the first results obtained with the Time to Digital Converters are presented.

  11. Determination of the atmospheric muon flux with the neutrino telescope ANTARES

    International Nuclear Information System (INIS)

    The neutrino telescope ANTARES is a deep-sea detector located in the Mediterranean Sea. The universe is transparent to neutrinos, so their study provides a unique means of improving our knowledge of the nature of cosmic rays, their origins and their emission from the most powerful astrophysical sources in the cosmos. Neutrinos also offer the possibility of opening a new energy window (>TeV) for observation of the universe. This thesis is dedicated to the study of the main background noise of the detector, due to the passage of atmospheric muons produced by high energy cosmic rays interacting with atmospheric nuclei. The first part of this thesis focuses on the study of the detector. The different characteristics and the calibration of the detector as well as the techniques of monitoring the electronic are described. The second part of this thesis reports the various results obtained on the atmospheric muons with the five line detector. A detailed presentation of the simulations used is presented. The first difficulty of detecting atmospheric muons is due to the geometry of the detector. The second is due to the fact that the atmospheric muons often arrive in bundles and that the number of muons in these bundles is unknown at a depth of 2500 m. A first study based on simulations makes it possible to discriminate between the muons alone and the bundles of muons. A second study is dedicated to the measurement of the muon flux depending on the slant depth. The measurement is compatible with the results of other instruments when the systematic uncertainties are taken into account. (author)

  12. Use of event-level neutrino telescope data in global fits for theories of new physics

    Science.gov (United States)

    Scott, P.; Savage, C.; Edsjö, J.; IceCube Collaboration

    2012-11-01

    We present a fast likelihood method for including event-level neutrino telescope data in parameter explorations of theories for new physics, and announce its public release as part of DarkSUSY 5.0.6. Our construction includes both angular and spectral information about neutrino events, as well as their total number. We also present a corresponding measure for simple model exclusion, which can be used for single models without reference to the rest of a parameter space. We perform a number of supersymmetric parameter scans with IceCube data to illustrate the utility of the method: example global fits and a signal recovery in the constrained minimal supersymmetric standard model (CMSSM), and a model exclusion exercise in a 7-parameter phenomenological version of the MSSM. The final IceCube detector configuration will probe almost the entire focus-point region of the CMSSM, as well as a number of MSSM-7 models that will not otherwise be accessible to e.g. direct detection. Our method accurately recovers the mock signal, and provides tight constraints on model parameters and derived quantities. We show that the inclusion of spectral information significantly improves the accuracy of the recovery, providing motivation for its use in future IceCube analyses.

  13. Use of event-level neutrino telescope data in global fits for theories of new physics

    International Nuclear Information System (INIS)

    We present a fast likelihood method for including event-level neutrino telescope data in parameter explorations of theories for new physics, and announce its public release as part of DarkSUSY 5.0.6. Our construction includes both angular and spectral information about neutrino events, as well as their total number. We also present a corresponding measure for simple model exclusion, which can be used for single models without reference to the rest of a parameter space. We perform a number of supersymmetric parameter scans with IceCube data to illustrate the utility of the method: example global fits and a signal recovery in the constrained minimal supersymmetric standard model (CMSSM), and a model exclusion exercise in a 7-parameter phenomenological version of the MSSM. The final IceCube detector configuration will probe almost the entire focus-point region of the CMSSM, as well as a number of MSSM-7 models that will not otherwise be accessible to e.g. direct detection. Our method accurately recovers the mock signal, and provides tight constraints on model parameters and derived quantities. We show that the inclusion of spectral information significantly improves the accuracy of the recovery, providing motivation for its use in future IceCube analyses

  14. Use of event-level neutrino telescope data in global fits for theories of new physics

    CERN Document Server

    Scott, P; Edsjö, J; Abbasi, R; Abdou, Y; Ackermann, M; Adams, J; Aguilar, J A; Ahlers, M; Altmann, D; Andeen, K; Auffenberg, J; Bai, X; Baker, M; Barwick, S W; Baum, V; Bay, R; Beattie, K; Beatty, J J; Bechet, S; Tjus, J Becker; Becker, K -H; Bell, M; Benabderrahmane, M L; BenZvi, S; Berdermann, J; Berghaus, P; Berley, D; Bernardini, E; Bertrand, D; Besson, D Z; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Bose, D; Böser, S; Botner, O; Brayeur, L; Brown, A M; Bruijn, R; Brunner, J; Buitink, S; Caballero-Mora, K S; Carson, M; Casey, J; Casier, M; Chirkin, D; Christy, B; Clevermann, F; Cohen, S; Cowen, D F; Silva, A H Cruz; Danninger, M; Daughhetee, J; Davis, J C; De Clercq, C; Descamps, F; Desiati, P; de Vries-Uiterweerd, G; DeYoung, T; Díaz-Vélez, J C; Dreyer, J; Dumm, J P; Dunkman, M; Eagan, R; Eisch, J; Ellsworth, R W; Engdegård, O; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feintzeig, J; Feusels, T; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Franckowiak, A; Franke, R; Frantzen, K; Fuchs, T; Gaisser, T K; Gallagher, J; Gerhardt, L; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Goodman, J A; Góra, D; Grant, D; Groß, A; Grullon, S; Gurtner, M; Ha, C; Ismail, A Haj; Hallgren, A; Halzen, F; Hanson, K; Heereman, D; Heimann, P; Heinen, D; Helbing, K; Hellauer, R; Hickford, S; Hill, G C; Hoffman, K D; Hoffmann, R; Homeier, A; Hoshina, K; Huelsnitz, W; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jacobi, E; Jacobsen, J; Japaridze, G S; Jlelati, O; Johansson, H; Kappes, A; Karg, T; Karle, A; Kiryluk, J; Kislat, F; Kläs, J; Klein, S R; Köhne, J -H; Kohnen, G; Kolanoski, H; Köpke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Krasberg, M; Kroll, G; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Laihem, K; Landsman, H; Larson, M J; Lauer, R; Lesiak-Bzdak, M; Lünemann, J; Madsen, J; Maruyama, R; Mase, K; Matis, H S; McNally, F; Meagher, K; Merck, M; Mészáros, P; Meures, T; Miarecki, S; Middell, E; Milke, N; Miller, J; Mohrmann, L; Montaruli, T; Morse, R; Movit, S M; Nahnhauer, R; Naumann, U; Nowicki, S C; Nygren, D R; Obertacke, A; Odrowski, S; Olivas, A; Olivo, M; O'Murchadha, A; Panknin, S; Paul, L; Pepper, J A; Heros, C Pérez de los; Pieloth, D; Pirk, N; Posselt, J; Price, P B; Przybylski, G T; Rädel, L; Rawlins, K; Redl, P; Resconi, E; Rhode, W; Ribordy, M; Richman, M; Riedel, B; Rodrigues, J P; Rothmaier, F; Rott, C; Ruhe, T; Rutledge, D; Ruzybayev, B; Ryckbosch, D; Salameh, T; Sander, H -G; Santander, M; Sarkar, S; Saba, S M; Schatto, K; Scheel, M; Scheriau, F; Schmidt, T; Schmitz, M; Schoenen, S; Schöneberg, S; Schönherr, L; Schönwald, A; Schukraft, A; Schulte, L; Schulz, O; Seckel, D; Seo, S H; Sestayo, Y; Seunarine, S; Smith, M W E; Soiron, M; Soldin, D; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stasik, A; Stezelberger, T; Stokstad, R G; Stößl, A; Strahler, E A; Ström, R; Sullivan, G W; Taavola, H; Taboada, I; Tamburro, A; Ter-Antonyan, S; Tilav, S; Toale, P A; Toscano, S; Usner, M; van Eijndhoven, N; van Der Drift, D; Van Overloop, A; van Santen, J; Vehring, M; Voge, M; Walck, C; Waldenmaier, T; Wallraff, M; Walter, M; Wasserman, R; Weaver, Ch; Wendt, C; Westerhoff, S; Whitehorn, N; Wiebe, K; Wiebusch, C H; Williams, D R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, C; Xu, D L; Xu, X W; Yanez, J P; Yodh, G; Yoshida, S; Zarzhitsky, P; Ziemann, J; Zilles, A; Zoll, M

    2012-01-01

    We present a fast likelihood method for including event-level neutrino telescope data in parameter explorations of theories for new physics, and announce its public release as part of DarkSUSY 5.0.6. Our construction includes both angular and spectral information about neutrino events, as well as their total number. We also present a corresponding measure for simple model exclusion, which can be used for single models without reference to the rest of a parameter space. We perform a number of supersymmetric parameter scans with IceCube data to illustrate the utility of the method: example global fits and a signal recovery in the constrained minimal supersymmetric standard model (CMSSM), and a model exclusion exercise in a 7-parameter phenomenological version of the MSSM. The final IceCube detector configuration will probe almost the entire focus-point region of the CMSSM, as well as a number of MSSM-7 models that will not otherwise be accessible to e.g. direct detection. Our method accurately recovers the mock...

  15. Neutrinos

    CERN Document Server

    de Gouvea, A; Scholberg, K; Zeller, G P; Alonso, J; Bernstein, A; Bishai, M; Elliott, S; Heeger, K; Hoffman, K; Huber, P; Kaufman, L J; Kayser, B; Link, J; Lunardini, C; Monreal, B; Morfin, J G; Robertson, H; Tayloe, R; Tolich, N; Abazajian, K; Akiri, T; Albright, C; Asaadi, J; Babu, K S; Balantekin, A B; Barbeau, P; Bass, M; Blake, A; Blondel, A; Blucher, E; Bowden, N; Brice, S J; Bross, A; Carls, B; Cavanna, F; Choudhary, B; Coloma, P; Connolly, A; Conrad, J; Convery, M; Cooper, R L; Cowen, D; da Motta, H; de Young, T; Di Lodovico, F; Diwan, M; Djurcic, Z; Dracos, M; Dodelson, S; Efremenko, Y; Ekelof, T; Feng, J L; Fleming, B; Formaggio, J; Friedland, A; Fuller, G; Gallagher, H; Geer, S; Gilchriese, M; Goodman, M; Grant, D; Gratta, G; Hall, C; Halzen, F; Harris, D; Heffner, M; Henning, R; Hewett, J L; Hill, R; Himmel, A; Horton-Smith, G; Karle, A; Katori, T; Kearns, E; Kettell, S; Klein, J; Kim, Y; Kim, Y K; Kolomensky, Yu; Kordosky, M; Kudenko, Yu; Kudryavtsev, V A; Lande, K; Lang, K; Lanza, R; Lau, K; Lee, H; Li, Z; Littlejohn, B R; Lin, C J; Liu, D; Liu, H; Long, K; Louis, W; Luk, K B; Marciano, W; Mariani, C; Marshak, M; Mauger, C; McDonald, K T; McFarland, K; McKeown, R; Messier, M; Mishra, S R; Mosel, U; Mumm, P; Nakaya, T; Nelson, J K; Nygren, D; Gann, G D Orebi; Osta, J; Palamara, O; Paley, J; Papadimitriou, V; Parke, S; Parsa, Z; Patterson, R; Piepke, A; Plunkett, R; Poon, A; Qian, X; Raaf, J; Rameika, R; Ramsey-Musolf, M; Rebel, B; Roser, R; Rosner, J; Rott, C; Rybka, G; Sahoo, H; Sangiorgio, S; Schmitz, D; Shrock, R; Shaevitz, M; Smith, N; Smy, M; Sobel, H; Sorensen, P; Sousa, A; Spitz, J; Strauss, T; Svoboda, R; Tanaka, H A; Thomas, J; Tian, X; Tschirhart, R; Tully, C; Van Bibber, K; Van de Water, R G; Vahle, P; Vogel, P; Walter, C W; Wark, D; Wascko, M; Webber, D; Weerts, H; White, C; White, H; Whitehead, L; Wilson, R J; Winslow, L; Wongjirad, T; Worcester, E; Yokoyama, M; Yoo, J; Zimmerman, E D

    2013-01-01

    This document represents the response of the Intensity Frontier Neutrino Working Group to the Snowmass charge. We summarize the current status of neutrino physics and identify many exciting future opportunities for studying the properties of neutrinos and for addressing important physics and astrophysics questions with neutrinos.

  16. Probing BSM Neutrino Physics with Flavor and Spectral Distortions: Prospects for Future High-Energy Neutrino Telescopes

    CERN Document Server

    Shoemaker, Ian M

    2015-01-01

    The flavor of cosmic neutrinos may help unveil their sources and could reveal the presence of new physics in the neutrino sector. We consider the impacts of next-generation neutrino detectors, including the planned upgrade to neutrino detector--IceCube-Gen2, which is well-positioned to make dramatic improvements in both flavor and spectral measurements. We show that various models in neutrino physics beyond the Standard Model, such as neutrino decay, pseudo-Dirac states, and neutrino self-scattering, may be found or strongly constrained at IceCube-Gen2 and KM3NeT. We find that the additional flavor discriminants given by Glashow resonance events and so-called "double-bang" topologies improve the ability to access the flavor of the cosmic high-energy neutrinos and probe the BSM physics. In addition, although the details depend on source properties, Glashow resonance events have the additional feature of being able to inform us of the relative strengths of neutrino and antineutrino emission, which may help us d...

  17. Development of an acoustic transceiver for positioning systems in Underwater Neutrino Telescopes

    CERN Document Server

    Larosa, Giuseppina; Llorens, Carlos D; Bou-Cabo, Manuel; Martínez-Mora, Juan A; Adrián-Martínez, Silvia

    2012-01-01

    In this paper, we present the acoustic transceiver developed for the positioning system in underwater neutrino telescopes. These infrastructures are not completely rigid and need a positioning system in order to monitor the position of the optical sensors of the telescope which have some degree of motion due to sea currents. To have a highly reliable and versatile system in the infrastructure, the transceiver has the requirements of reduced cost, low power consumption, high intensity for emission, low intrinsic noise, arbitrary signals for emission and the capacity of acquiring and processing the received signal on the board. The solution proposed and presented here consists of an acoustic transducer that works in the 20-40 kHz region and withstands high pressures (up to 500 bars). The electronic-board can be configured from shore and is able to feed the transducer with arbitrary signals and to control the transmitted and received signals with very good timing precision. The results of the different tests don...

  18. Search for a diffuse flux of high-energy {nu}{sub {mu}} with the ANTARES neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, J.A. [IFIC - Instituto de Fisica Corpuscular, Edificios Investigacion de Paterna, CSIC - Universitat de Valencia, Apdo. de Correos 22085, 46071 Valencia (Spain); Samarai, I. Al [CPPM, Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Albert, A. [GRPHE - Institut universitaire de technologie de Colmar, 34 rue du Grillenbreit BP 50568 - 68008 Colmar (France); Andre, M. [Technical Univ. of Catalonia, Laboratory of Applied Bioacoustics, Rambla Exposicio, 08800 Vilanova i la Geltru, Barcelona (Spain); Anghinolfi, M. [INFN - Sezione di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Anton, G. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany); Anvar, S. [Direction des Sciences de la Matiere - Institut de recherche sur les lois fondamentales de l' Univers - Service d' Electronique des Detecteurs et d' Informatique, CEA Saclay, 91191 Gif-sur-Yvette Cedex (France); Ardid, M. [Institut d' Investigacio per a la Gestio Integrada de Zones Costaneres (IGIC) - Univ. Politecnica de Valencia. C/Paranimf 1., 46730 Gandia (Spain); Assis Jesus, A.C.; Astraatmadja, T. [Nikhef, Science Park, Amsterdam (Netherlands); Aubert, J.-J. [CPPM, Aix-Marseille Univ., CNRS/IN2P3, Marseille (France); Auer, R. [Friedrich-Alexander-Univ. Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany); Baret, B. [APC - Laboratoire AstroParticule et Cosmologie, UMR 7164 (CNRS, Universite Paris 7 Diderot, CEA, Observatoire de Paris) 10, rue Alice Domon et Leonie Duquet, 75205 Paris Cedex 13 (France); Basa, S. [LAM - Laboratoire d' Astrophysique de Marseille, Pole de l' Etoile Site de Chateau-Gombert, rue Frederic Joliot-Curie 38, 13388 Marseille Cedex 13 (France); Bazzotti, M. [INFN - Sezione di Bologna, Viale Berti Pichat 6/2, 40127 Bologna (Italy); Dipt. di Fisica dell' Univ., Viale Berti Pichat 6/2, 40127 Bologna (Italy)

    2011-01-24

    A search for a diffuse flux of astrophysical muon neutrinos, using data collected by the ANTARES neutrino telescope is presented. A (0.83x2{pi}) sr sky was monitored for a total of 334 days of equivalent live time. The searched signal corresponds to an excess of events, produced by astrophysical sources, over the expected atmospheric neutrino background. The observed number of events is found compatible with the background expectation. Assuming an E{sup -2} flux spectrum, a 90% c.l. upper limit on the diffuse {nu}{sub {mu}} flux of E{sup 2{Phi}}{sub 90%}=5.3x10{sup -8} GeVcm{sup -2}s{sup -1}sr{sup -1} in the energy range 20 TeV-2.5 PeV is obtained. Other signal models with different energy spectra are also tested and some rejected.

  19. Search for a diffuse flux of high-energy νμ with the ANTARES neutrino telescope

    International Nuclear Information System (INIS)

    A search for a diffuse flux of astrophysical muon neutrinos, using data collected by the ANTARES neutrino telescope is presented. A (0.83x2π) sr sky was monitored for a total of 334 days of equivalent live time. The searched signal corresponds to an excess of events, produced by astrophysical sources, over the expected atmospheric neutrino background. The observed number of events is found compatible with the background expectation. Assuming an E-2 flux spectrum, a 90% c.l. upper limit on the diffuse νμ flux of E2Φ90%=5.3x10-8 GeVcm-2s-1sr-1 in the energy range 20 TeV-2.5 PeV is obtained. Other signal models with different energy spectra are also tested and some rejected.

  20. Sensitivity of an underwater Čerenkov km 3 telescope to TeV neutrinos from Galactic microquasars

    Science.gov (United States)

    Aiello, S.; Ambriola, M.; Ameli, F.; Amore, I.; Anghinolfi, M.; Anzalone, A.; Barbarino, G.; Barbarito, E.; Battaglieri, M.; Bellotti, R.; Beverini, N.; Bonori, M.; Bouhadef, B.; Brescia, M.; Cacopardo, G.; Cafagna, F.; Capone, A.; Caponetto, L.; Castorina, E.; Ceres, A.; Chiarusi, T.; Circella, M.; Cocimano, R.; Coniglione, R.; Cordelli, M.; Costa, M.; Cuneo, S.; D'Amico, A.; De Bonis, G.; De Marzo, C.; De Rosa, G.; De Vita, R.; Distefano, C.; Falchini, E.; Fiorello, C.; Flaminio, V.; Fratini, K.; Gabrielli, A.; Galeotti, S.; Gandolfi, E.; Giacomelli, G.; Giorgi, F.; Grimaldi, A.; Habel, R.; Leonora, E.; Lonardo, A.; Longo, G.; Lo Presti, D.; Lucarelli, F.; Maccioni, E.; Margiotta, A.; Martini, A.; Masullo, R.; Megna, R.; Migneco, E.; Mongelli, M.; Montaruli, T.; Morganti, M.; Musumeci, M.; Nicolau, C. A.; Orlando, A.; Osipenko, M.; Osteria, G.; Papaleo, R.; Pappalardo, V.; Petta, C.; Piattelli, P.; Raia, G.; Randazzo, N.; Reito, S.; Ricco, G.; Riccobene, G.; Ripani, M.; Rovelli, A.; Ruppi, M.; Russo, G. V.; Russo, S.; Sapienza, P.; Sedita, M.; Shirokov, E.; Simeone, F.; Sipala, V.; Spurio, M.; Taiuti, M.; Terreni, G.; Trasatti, L.; Urso, S.; Valente, V.; Vicini, P.

    2007-09-01

    In this paper are presented the results of Monte Carlo simulations on the capability of the proposed NEMO-km 3 telescope to detect TeV muon neutrinos from Galactic microquasars. For each known microquasar we compute the number of detectable events, together with the atmospheric neutrino and muon background events. We also discuss the detector sensitivity to neutrino fluxes expected from known microquasars, optimizing the event selection also to reject the background; the number of events surviving the event selection are given. The best candidates are the steady microquasars SS433 and GX339-4 for which we estimate a sensitivity of about 5 × 10 -11 erg/cm 2 s; the predicted fluxes are expected to be well above this sensitivity. For bursting microquasars the most interesting candidates are Cygnus X-3, GRO J1655-40 and XTE J1118+480: their analyses are more complicated because of the stochastic nature of the bursts.

  1. Lake Baikal Bibliography, 1989- 1999

    OpenAIRE

    Limnological Institute of RAS SB

    1999-01-01

    This is a bibliography of 839 papers published in English in 1989- 1999 by members of Limnological Institute of RAS SB and by their partners within the framework of the Baikal International Center for Ecological Research. Some of the titles are accompanied by abstracts. Coverage is on different aspects of Lake Baikal.

  2. High resolution time to digital converter for the KM3NeT neutrino telescope

    Science.gov (United States)

    Calvo, D.; Real, D.

    2015-01-01

    The KM3NeT collaboration aims at the construction of a multi-km3 high-energy neutrino telescope in the Mediterranean Sea consisting of thousands of glass spheres, each of them containing 31 photomultipliers of small photocathode area. The readout and data acquisition system of KM3NeT has to collect, treat and send to shore, the enormous amount of data produced by the photomultipliers. For this purpose, 31 high-resolution time-interval measuring channels based on time to digital converter are implemented on the field-programmable gate arrays. Architectures with low resources occupancy are desirable allowing the implementation of other instrumentation, communication and synchronization systems on the same device. The required resolution to measure both, time of flight and time-stamp must be 1 ns. A 4-Oversampling technique with two high frequency clocks and an asymmetric FIFO memory is used to achieve this resolution. The proposed firmware has been developed in Xilinx Kintex-7.

  3. Notice of Intent to Prepare a Comprehensive Environmental Evaluation (CEE) for the Construction and Operation of a High-Energy Neutrino Telescope (Project Ice Cube) at the South Pole

    CERN Multimedia

    2003-01-01

    Request for comments from the NSF for a proposed project to construct and operate a high-energy neutrino telescope at the South Pole. The proposed telescope would be a second-generation instrument based on the successful evolution of a smaller neutrino telescope at the South Pole (1 page).

  4. Search for muon neutrinos from gamma-ray bursts with the ANTARES neutrino telescope using 2008 to 2011 data

    CERN Document Server

    Adrián-Martínez, S; Samarai, I Al; André, M; Anghinolfi, M; Anton, G; Anvar, S; Ardid, M; Astraatmadja, T; Aubert, J -J; Baret, B; Barrios-Marti, J; Basa, S; Bertin, V; Biagi, S; Bigongiari, C; Bogazzi, C; Bouhou, B; Bouwhuis, M C; Brunner, J; Busto, J; Capone, A; Caramete, L; Cârloganu, C; Carr, J; Cecchini, S; Charif, Z; Charvis, Ph; Chiarusi, T; Circella, M; Classen, F; Coniglione, R; Core, L; Costantini, H; Coyle, P; Creusot, A; Curtil, C; De Bonis, G; Dekeyser, I; Deschamps, A; Distefano, C; Donzaud, C; Dornic, D; Dorosti, Q; Drouhin, D; Dumas, A; Eberl, T; Emanuele, U; Enzenhöfer, A; Ernenwein, J -P; Escoffier, S; Fehn, K; Fermani, P; Flaminio, V; Folger, F; Fritsch, U; Fusco, L A; Galatà, S; Gay, P; Geißelsöder, S; Geyer, K; Giacomelli, G; Giordano, V; Gleixner, A; Gómez-González, J P; Graf, K; Guillard, G; van Haren, H; Heijboer, A J; Hello, Y; Hernández-Rey, J J; Herold, B; Hößl, J; James, C W; de Jong, M; Kadler, M; Kalekin, O; Kappes, A; Katz, U; Kooijman, P; Kouchner, A; Kreykenbohm, I; Kulikovskiy, V; Lahmann, R; Lambard, E; Lambard, G; Larosa, G; Lefèvre, D; Leonora, E; Presti, D Lo; Loehner, H; Loucatos, S; Louis, F; Mangano, S; Marcelin, M; Margiotta, A; Martínez-Mora, J A; Martini, S; Montaruli, T; Morganti, M; Müller, C; Neff, M; Nezri, E; Palioselitis, D; Pavalas, G E; Perrina, C; Piattelli, P; Popa, V; Pradier, T; Racca, C; Riccobene, G; Richter, R; Rivière, C; Robert, A; Roensch, K; Rostovtsev, A; Samtleben, D F E; Schmid, J; Schnabel, J; Schulte, S; Schüssler, F; Seitz, T; Shanidze, R; Sieger, C; Simeone, F; Spies, A; Spurio, M; Steijger, J J M; Stolarczyk, Th; Sánchez-Losa, A; Taiuti, M; Tamburini, C; Tayalati, Y; Trovato, A; Vallage, B; Vallée, C; Van Elewyck, V; Vernin, P; Visser, E; Wagner, S; Wilms, J; de Wolf, E; Yatkin, K; Yepes, H; Zornoza, J D; Zúñiga, J; Baerwald, P

    2013-01-01

    A search for muon neutrinos in coincidence with gamma-ray bursts with the ANTARES neutrino detector using data from the end of 2007 to 2011 is performed. Expected neutrino fluxes are calculated for each burst individually. The most recent numerical calculations of the spectra using the NeuCosmA code are employed, which include Monte Carlo simulations of the full underlying photohadronic interaction processes. The discovery probability for a selection of 296 gamma-ray bursts in the given period is optimised using an extended maximum-likelihood strategy. No significant excess over background is found in the data, and 90% confidence level upper limits are placed on the total expected flux according to the model.

  5. Near the Lake and around the Lake: Artists and Baikal

    OpenAIRE

    Marina Tkacheva; Iraida Fedchina

    2013-01-01

    The article considers several aspects of how Lake Baikal influences artists’ work:Baikal as a theme for painting and exhibiting;Creative events at Baikal;Baikal as a place where artists live;Half-amateur paintings for sale.

  6. Multi-PMT optical module for the KM3NeT neutrino telescope

    International Nuclear Information System (INIS)

    The future cubic kilometre scale neutrino telescope KM3NeT will employ a novel type of a Digital Optical Module (DOM), developed during the recent FP6 Design Study. A pressure-resistant glass sphere hosts 31 photomultiplier tubes (PMTs) of 3-in. diameter, together with all the electronics for high-voltage generation and signal readout. The optical module forms a complete stand-alone detector that is connected to the outside world via a single optical fibre and two copper conductors providing electrical power. The advantages of using multiple small PMTs in the same DOM are the higher quantum efficiency (>30% expected), smaller transit time spread, better two-photon separation capability and directional sensitivity. Moreover, a longer operating lifetime is expected than for large PMTs due to the accumulation of less charge on the anode. In addition, small PMTs are insensitive to the Earth's magnetic field and do not require μ-metal shielding. In order to maximise the detector sensitivity, each PMT will be surrounded by an expansion cone collecting photons that would normally miss the photocathode. Such an expansion cone consists of an aluminium ring filled with silicone gel. An increase in the overall sensitivity, integrated over all angles of incidence, was estimated to be about 27%. Monte-Carlo simulations have shown that a detector configuration with multi-PMT DOMs requires three times less OMs to achieve the same performance as conventional OMs hosting 10-in. PMTs. Prototype DOMs are currently being built by the KM3NeT consortium.

  7. Correlation between UHECRs measured by the Pierre Auger Observatory and Telescope Array and neutrino candidate events from IceCube

    Science.gov (United States)

    Christov, A.; Golup, G.; Montaruli, T.; Rameez, M.; Aublin, J.; Caccianiga, L.; Ghia, P. L.; Roulet, E.; Unger, M.; Sagawa, H.; Tinyakov, P.; Telescope Array Collaboration

    2016-05-01

    We present the results of three searches for correlations between ultra-high energy cosmic ray events (UHECRs) measured by Telescope Array and the Pierre Auger Observatory and high-energy neutrino candidate events from IceCube. Two cross-correlation analyses of UHECRs are done: one with 28 “cascades” from the IceCube ‘high-energy starting events’ sample and the other one with 12 high-energy “tracks”. The angular separation between the arrival directions of neutrinos and UHECRs is scanned. The same events are also used in a separate search stacking the neutrino arrival directions and using a maximum likelihood approach. We assume that UHECR magnetic deflections are inversely proportional to the energy with values 3°, 6° and 9° at 100 EeV to account for the various scenarios of the magnetic field strength and UHECR charges. A similar analysis is performed on stacked UHECR arrival directions and the IceCube 4-year sample of through-going muon-track events that was optimized for neutrino point source searches.

  8. Measurement of the atmospheric muon flux with a 4 GeV threshold in the ANTARES neutrino telescope

    International Nuclear Information System (INIS)

    A new method for the measurement of the muon flux in the deep-sea ANTARES neutrino telescope and its dependence on the depth is presented. The method is based oil the observation of coincidence signals in adjacent storeys of the detector. This yields an energy threshold of about 4 GeV. The main sources of optical background are the decay of 40K and the bioluminescence in the sea water. The 40K background is used to calibrate the efficiency of the photo-multiplier tubes. (authors)

  9. Measurement of the atmospheric muon flux with a 4 GeV threshold in the ANTARES neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, J.A. [IFIC - Instituto de Fisica Corpuscular, Edificios Investigacion de Paterna, CSIC - Universitat de Valencia, Apdo. de Correos 22085, 46071 Valencia (Spain); Al Samarai, I. [CPPM - Centre de Physique des Particules de Marseille, CNRS/IN2P3 et Universite de la Mediterranee, 163 Avenue de Luminy, Case 902, 13288 Marseille Cedex 9 (FR); Albert, A. [GRPHE - Institut Universitaire de Technologie de Colmar, 34 Rue du Grillenbreit, BP 50568, 68008 Colmar (FR); Anghinolfi, M. [INFN - Sezione di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Anton, G. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, D-91058 Erlangen (Germany); Anvar, S. [Direction des Sciences de la Matiere - Institut de Recherche sur les lois Fondamentales de l' Univers - Service d' Electronique des Detecteurs et d' Informatique, CEA Saclay, 91191 Gif-sur-Yvette Cedex (FR); Baret, B.; Donzaud, C.; Kouchner, A.; Moscoso, L.; Van Elewyck, V. [APC - Laboratoire AstroParticule et Cosmologie, UMR 7164, CNRS, Universite Paris 7 Diderot, CEA, Observatoire de Paris, 10, Rue Alice Domon et Leonie Duquet, 75205 Paris Cedex 13 (FR); Basa, S.; Marcelin, M.; Mazure, A.; Tasca, L. [Laboratoire d' Astrophysique de Marseille, Pole de l' Etoile Site de Chateau-Gombert, Marseille (FR); Carloganu, C.; Gay, P. [Lab. de Physique Corpusculaire, IN2P3-CNRS, Universite Blaise Pascal, Clermont-Ferrand (FR); Charvis, Ph.; Deschamps, A.; Hello, Y.; Pillet, R. [Geoazur - Universite de Nice Sophia-Antipolis, CNRS/INSU, IRD, Observatoire de la Cote d' Azur and Universite Pierre et Marie Curie, BP 48, F-06235 Villefranche-sur-mer (FR); Cottini, N.; Loucatos, S.; Moscoso, L.; Naumann, C.; Picq, C.; Schuller, J.P.; Stolarczyk, Th.; Vallage, B.; Vernin, P. [Direction des Sciences de la Matiere - Institut de Recherche sur les lois Fondamentales de l' Univers - Service de Physique des Particules, CEA Saclay, 91191 Gif-sur-Yvette (FR)

    2010-07-01

    A new method for the measurement of the muon flux in the deep-sea ANTARES neutrino telescope and its dependence on the depth is presented. The method is based oil the observation of coincidence signals in adjacent storeys of the detector. This yields an energy threshold of about 4 GeV. The main sources of optical background are the decay of {sup 40}K and the bioluminescence in the sea water. The {sup 40}K background is used to calibrate the efficiency of the photo-multiplier tubes. (authors)

  10. Measurement of the atmospheric muon flux with a 4 GeV threshold in the ANTARES neutrino telescope

    CERN Document Server

    Aguilar, J A

    2009-01-01

    A new method for the measurement of the muon flux in the deep-sea ANTARES neutrino telescope and its dependence on the depth is presented. The method is based on the observation of coincidence signals in adjacent storeys of the detector. This yields an energy threshold of about 4 GeV. The main sources of optical background are the decay of 40K and the bioluminescence in the sea water. The 40K background is used to calibrate the efficiency of the photo-multiplier tubes.

  11. Study of neutrino production in the Cannonball model of Gamma ray bursts: possibility of observation of these neutrinos with the Antares neutrinos telescope, and study of the optical background recorded with the prototype sector line

    International Nuclear Information System (INIS)

    ANTARES is a future neutrino telescope which will be build at 40 km off the french coast (Toulon), at a 2500 m depth. The interaction of a neutrino with matter produces a muon which emits Cerenkov light while propagating in water. This light is detected with 900 photomultipliers distributed over 12 lines. Gamma ray bursts (GRB) are violent cosmological phenomenon observed once per day. In the Cannonball Model, bursts are produced by the interaction of a jet made of cannonballs (CB) with a supernova remnant (SNR). Forward shocks propagate in the SNR, reverse ones in the CB and neutrinos are produced at the shock fronts. An estimation of the neutrino production is given and is studied over a large parameter range. For a typical GRB, 0.002 to 0.3 vμ, cm-2 can be produced. Depending on the viewing angle, ANTARES could detect 1 to 10 vμ per year in correlation with GRBs. The ambient optical background has been recorded by the ANTARES prototype sector line. The analysis is about the background influence on the detector performance and about the organisms activity which produces it. For example, it appears a 17.6 to 20.4 h periodicity which is compatible with the liquid masses movement imposed by the Coriolis force at the ANTARES latitude. (author)

  12. Neutrino astrophysics: A research briefing

    International Nuclear Information System (INIS)

    This report contains the following discussions on neutrino astrophysics: ongoing solar neutrino experiments; solar neutrino experiments under construction; developing new solar neutrino detectors; high-energy neutrinos; high-energy neutrino experiments under construction; and a kilometer-scale high-energy neutrino telescope

  13. Baikal-GVD: first cluster Dubna

    CERN Document Server

    Avrorin, A D; Aynutdinov, V M; Bannash, R; Belolaptikov, I A; Bogorodsky, D Yu; Brudanin, V B; Budnev, N M; Danilchenko, I A; Demidov, S V; Domogatsky, G V; Doroshenko, A A; Dyachok, A N; Dzhilkibaev, Zh -A M; Fialkovsky, S V; Gafarov, A R; Gaponenko, O N; Golubkov, K V; Gress, T I; Honz, Z; Kebkal, K G; Kebkal, O G; Konischev, K V; Korobchenko, A V; Koshechkin, A P; Koshel, F K; Kozhin, A V; Kulepov, V F; Kuleshov, D A; Ljashuk, V I; Milenin, M B; Mirgazov, R A; Osipova, E R; Panfilov, A I; Pan'kov, L V; Pliskovsky, E N; Rozanov, M I; Rjabov, E V; Shaybonov, B A; Sheifler, A A; Shelepov, M D; Skurihin, A V; Smagina, A A; Suvorova, O V; Tabolenko, V A; Tarashansky, B A; Yakovlev, S A; Zagorodnikov, A V; Zhukov, V A; Zurbanov, V L

    2015-01-01

    In April 2015 the demonstration cluster "Dubna" was deployed and started to take data in Lake Baikal. This array is the first cluster of the cubic kilometer scale Gigaton Volume Detector (Baikal-GVD), which is constructed in Lake Baikal. In this contribution we will review the design and status of the array.

  14. Quality assurance and risk assessment in the KM3NeT neutrino telescope design study

    Science.gov (United States)

    Sollima, C.; KM3NeT Consortium

    2011-01-01

    KM3NeT is an undersea neutrino detector currently under design. This paper summarises the quality management system (QMS) and risk assessment (RA) thought into the KM3NeT project. QMS and RA are set up as an integrated system for the improvement and optimization of components of the KM3NeT neutrino detector as well as its production and operation.

  15. Neutrino 2004: Collection of Presentations

    International Nuclear Information System (INIS)

    The scientific program covers the latest developments in neutrino physics, astrophysics and related topics through a set of invited talks and 2 poster sessions. The following issues are addressed: - solar neutrinos, - atmospheric neutrinos, - short and long baseline experiments, - neutrino oscillations, - double beta decay, - direct neutrino mass limits, - theory for neutrino masses, neutrino telescopes and ultra-high energy neutrinos, - dark matter searches, - neutrino in astrophysics and cosmology, and - future projects beams and experiments

  16. Neutrino 2004: Collection of Presentations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The scientific program covers the latest developments in neutrino physics, astrophysics and related topics through a set of invited talks and 2 poster sessions. The following issues are addressed: - solar neutrinos, - atmospheric neutrinos, - short and long baseline experiments, - neutrino oscillations, - double beta decay, - direct neutrino mass limits, - theory for neutrino masses, neutrino telescopes and ultra-high energy neutrinos, - dark matter searches, - neutrino in astrophysics and cosmology, and - future projects beams and experiments.

  17. Sensitivity of the JEM-EUSO telescope to gravity effects in neutrino-induced air showers

    CERN Document Server

    Mladenov, Stefan; Tsenov, Roumen; Bertaina, Mario; Santangelo, Andrea

    2015-01-01

    We examine the JEM-EUSO sensitivity to gravity effects in the context of Randall-Sundrum (RS) model with a single extra dimension and small curvature of the metric. Exchanges of reggeized Kaluza-Klein gravitons in the $t$-channel contribute to the inelastic cross-section for scattering of ultra-high-energy neutrinos off nucleons. Such effects can be detected in deeply penetrating quasi-horizontal air showers induced by interactions of cosmic neutrinos with atmospheric nucleons. For this reason, we calculate the expected number of quasi-horizontal air showers at the JEM-EUSO observatory as a function of two parameters of the RS model.

  18. Gas hydrates of Lake Baikal

    OpenAIRE

    Khlystov, O.; De Batist, M.; Shoji, H; Nishio, S.; L. Naudts; J. Poort

    2011-01-01

    This paper reviews some of the results of recent gas-hydrate studies in Lake Baikal, the only fresh-water lake in the world containing gas hydrates in its sedimentary infill. We give a historical overview of the different investigations and discoveries and highlight some recent breakthroughs in our understanding of the Baikal hydrate system. The importance of mapping mud volcanoes and gas seeps is stressed, as these are currently the only locations where gas hydrates at or very close to the f...

  19. Is the ultra-high energy cosmic-ray excess observed by the telescope array correlated with IceCube neutrinos?

    International Nuclear Information System (INIS)

    The Telescope Array (TA) has observed a statistically significant excess in cosmic rays with energies above 57 EeV in a region of approximately 1150 deg2 centered on coordinates R.A. = 146.7, decl. = 43.2. We note that the location of this excess correlates with 2 of the 28 extraterrestrial neutrinos recently observed by IceCube. The overlap between the two IceCube neutrinos and the TA excess is statistically significant at the 2σ level. Furthermore, the spectrum and intensity of the IceCube neutrinos is consistent with a single source which would also produce the TA excess. Finally, we discuss possible source classes with the correct characteristics to explain the cosmic-ray and neutrino fluxes with a single source.

  20. The electronics readout and data acquisition system of the KM3NeT neutrino telescope node

    International Nuclear Information System (INIS)

    The KM3NeT neutrino telescope will be composed by tens of thousands of glass spheres, called Digital Optical Module (DOM), each of them containing 31 PMTs of small photocathode area (3'). The readout and data acquisition system of KM3NeT have to collect, treat and send to shore, in an economic way, the enormous amount of data produced by the photomultipliers and at the same time to provide time synchronization between each DOM at the level of 1 ns. It is described in the present article the Central Logic Board, that integrates the Time to Digital Converters and the White Rabbit protocol used for the DOM synchronization in a transparent way, the Power Board used in the DOM, the PMT base to readout the photomultipliers and the respective collecting boards, the so called Octopus Board

  1. Search for spatial and temporal collective effects in the ANTARES neutrino telescope data

    Science.gov (United States)

    Coleiro, Alexis; Gracia Ruiz, Rodrigo; Kouchner, Antoine

    2016-04-01

    We investigate potential collective effects in the spatial and temporal domains in ANTARES data sets. On the one hand, we apply a two-point correlation analysis to look for inhomogeneities in the arrival directions of the high energy muon neutrino candidates detected between 2007 and 2012. This enables us to provide constraints on models of a population of point sources too faint to be detected by a likelihood-based method. On the other hand, we perform a search for ANTARES neutrino events in temporal coincidence with IceCube High-Energy Starting Events located within 45∘ from the Galactic Center. This study, also based on a two-point correlation function, is sensitive to transient emission and does not a prior on either the burst timing structure or on the electromagnetic emission. Therefore, it provides an effective way to acquire information on the possible origin of the IceCube astrophysical signal from transient sources.

  2. Search for spatial and temporal collective effects in the ANTARES neutrino telescope data

    Directory of Open Access Journals (Sweden)

    Coleiro Alexis

    2016-01-01

    Full Text Available We investigate potential collective effects in the spatial and temporal domains in ANTARES data sets. On the one hand, we apply a two-point correlation analysis to look for inhomogeneities in the arrival directions of the high energy muon neutrino candidates detected between 2007 and 2012. This enables us to provide constraints on models of a population of point sources too faint to be detected by a likelihood-based method. On the other hand, we perform a search for ANTARES neutrino events in temporal coincidence with IceCube High-Energy Starting Events located within 45∘ from the Galactic Center. This study, also based on a two-point correlation function, is sensitive to transient emission and does not a prior on either the burst timing structure or on the electromagnetic emission. Therefore, it provides an effective way to acquire information on the possible origin of the IceCube astrophysical signal from transient sources.

  3. Characterization of optical properties of the site of the ANTARES neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Yepes-Ramírez, H., E-mail: Harold.Yepes@ific.uv.es [Instituto de Física Corpuscular (IFIC), Edificios de investigación de Paterna, CSIC - Universitat de València, Apdo. de Correos 22085, E-46071 Valencia (Spain)

    2013-10-11

    ANTARES is a neutrino detector based on a three-dimensional grid of photomultipliers tubes (PMT's) arranged in several detection lines anchored to the seabed at depth of 2.5 km in the Mediterranean Sea (40 km off the Toulon coast in France), its main physics goal is the reconstruction and identification of high energy neutrinos of extra-terrestrial origin. The PMT's register the Cherenkov light induced by relativistic charged leptons produced by the interaction of neutrinos with material in the detector surroundings. The propagation of Cherenkov light strongly depends on the optical properties of the sea water, the understanding of which is crucial in order to achieve the expected detector performance. To reach the ANTARES physics goals, good time and positioning calibration systems are required. The ANTARES optical beacon system consists of a set of pulsed light sources strategically located throughout the detector. The system is mainly used for time calibration but can also be used as a tool to study the water optical properties and their stability. In this contribution we will present the current status of our measurements of the group velocity and transmission length of light carried out between 2008 and 2011. A set of water models strategically defined will be discussed as well as some preliminary results concerning track reconstruction parameters.

  4. Secluded Dark Matter search in the Sun with the ANTARES neutrino telescope

    CERN Multimedia

    Adrián-Martínez, S

    2014-01-01

    Models where Dark Matter (DM) is secluded from the Standard Model via a mediator have increased their presence during the last decade to explain some experimental observations. This is a special scenario where DM, which would gravitationally accumulate in sources like the Sun, the Earth or the Galactic Centre, is annihilated into a non-standard Model mediator which subsequently decays into Standard Model particles, two co-linear muons for example. As the lifetime of the mediator could be large enough, its decay may occur in the vicinity of the Earth and the resulting SM particles could be detected. In this work we will describe the analysis for secluded dark matter coming from the Sun with ANTARES in three different cases: a) detection of di-muons that result of the mediator decay, or neutrino detection from: b) mediator that decays into di-muon and, in turn, into neutrinos, and c) mediator that directly decays into neutrinos. Sensitivities and results of the analysis for each case will be presented.

  5. Study of the sensibility of the Antares neutrino telescope to very high energy photons: Contribution to the time calibration of the detector

    International Nuclear Information System (INIS)

    From the sea-floor, the 900-odd photomultiplier tubes of the Antares neutrino telescope scrutinize the abysses attempting to discern, amid bioluminescence and marine radioactivity, Cerenkov photons emitted by muons from astrophysical neutrinos, and to distinguish these muons from those generated by air showers produced by cosmic rays. Antares has been collecting data since 2006; this feat of engineering has paved the way for submarine neutrino astronomy: Antares is expected to be the forerunner of a larger instrument, KM3NeT. Telescope's performance is characterized in part by its angular resolution. In the case of Antares, the angular resolution is directly related to the time resolution of the detector's elements. This manuscript presents a correction for one of the main sources of deterioration of this time resolution, the walk effect induced by the set up of a fixed threshold for triggering the photomultiplier tubes signal. This correction, implemented in the official software chain of the Antares collaboration, improves in particular the events reconstruction quality estimator. This implementation allows further optimizations. The author also attempts to evaluate, using a complete Monte-Carlo simulation, the possibility of using very high energy photon sources as calibrated muon beams in order to estimate the absolute pointing and the angular resolution of the telescope. Although limited by large uncertainties, it is demonstrated that the possibility to detect such sources is extremely small. In addition, it is shown that the atmospheric neutrino background induced by very high-energy photons is negligible. (author)

  6. Light at the end of the shower: An all-flavour neutrino point-source search with the ANTARES neutrino telescope

    NARCIS (Netherlands)

    T. Michael

    2016-01-01

    The ANTARES detector is the largest deep sea neutrino observatory to date. This thesis describes a search for cosmic neutrino sources with ANTARES. There are three different types (or flavours) of neutrinos and several possible event signatures in the detector. Until now, most analyses solely relied

  7. Prospects for detection of the lunar Cerenkov emission by the UHE Cosmic Rays and Neutrinos using the GMRT and the Ooty Radio Telescope

    OpenAIRE

    Swarup, Govind; Panda, Sukanta

    2008-01-01

    Searching for the Ultra high energy Cosmic rays and Neutrinos of $> 10^{20} eV$ is of great cosmological importance. A powerful technique is to search for the \\v{C}erenkov radio emission caused by UHECR or UHE neutrinos impinging on the lunar regolith. We examine in this paper feasibility of detecting these events by observing with the Giant Metrewave Radio Telescope (GMRT) which has a large collecting area and operates over a wide frequency range with an orthogonal polarisation capability. W...

  8. Detection of magnetic monopoles in the future neutrino telescope Antares and characterization of the photomultiplier pulse treatment

    International Nuclear Information System (INIS)

    Grand unified theories (GUT) involve phase transitions in the early universe, that could create topological defects, like magnetic monopoles. Monopoles main characteristics are shown and in particular energy losses and flux limits. High energy neutrino telescopes offer a new opportunity for magnetic monopole search. The study of the photomultiplier pulse treatment by the Antares detector front-end electronics indicates that this one is well adapted to the telescope needs. The pulses detailed analysis has allowed to obtain a time measurement precision lower than 0.6 ns and electronic noise and saturation have no relevant effect on the telescope performances. Relativistic monopoles generate a large amount of light, that leads to an effective area for the Antares detector of about 0.06 km2 for velocities βmon = 0.6 and 0.35 km2 for velocities βmon ∼ 1. Monopole track are well reconstructed and the velocity determination is made with an error lower than few percents, which represents a decisive result for the background rejection, caused by high energy muons with a velocity βμ ∼ 1. The very dispersive light emission of monopoles below the Cherenkov limit, 0.6 ∼mon ≤ 0.74, via the delta-rays produced by ionisation, does not allow an accurate expecting signal and the bad reconstructed muons rejection must be improved. Above the Cherenkov limit, βmon ≥ 0.8, bad reconstructed events can be rejected from the Cherenkov emission parametrisation. A magnetic monopole signal can then clearly be distinguished from background. (author)

  9. Limits on dark matter proton scattering from neutrino telescopes using micrOMEGAs

    Energy Technology Data Exchange (ETDEWEB)

    Bélanger, G. [LAPTH, Université Savoie Mont Blanc, CNRS,B.P.110, F-74941 Annecy-le-Vieux Cedex (France); Silva, J. Da [Consortium for Fundamental Physics, School of Physics and Astronomy,University of Manchester,Manchester, M13 9PL (United Kingdom); Perrillat-Bottonet, T. [LAPTH, Université Savoie Mont Blanc, CNRS,B.P.110, F-74941 Annecy-le-Vieux Cedex (France); Pukhov, A. [Skobeltsyn Institute of Nuclear Physics, Moscow State University,Moscow 119992 (Russian Federation)

    2015-12-17

    Limits on dark matter spin dependent elastic scattering cross section on protons derived from IceCube data are obtained for different dark matter annihilation channels using micrOMEGAs. The uncertainty on the derived limits, estimated by using different neutrino spectra, can reach a factor two. For all dark matter annihilation channels except for quarks, the limits on the spin dependent cross section are more stringent than those obtained in direct detection experiments. The new functions that allow to derive those limits are described.

  10. Limits on dark matter proton scattering from neutrino telescopes using micrOMEGAs

    International Nuclear Information System (INIS)

    Limits on dark matter spin dependent elastic scattering cross section on protons derived from IceCube data are obtained for different dark matter annihilation channels using micrOMEGAs. The uncertainty on the derived limits, estimated by using different neutrino spectra, can reach a factor two. For all dark matter annihilation channels except for quarks, the limits on the spin dependent cross section are more stringent than those obtained in direct detection experiments. The new functions that allow to derive those limits are described

  11. High-energy cosmic rays: Puzzles, models, and giga-ton neutrino telescopes

    Indian Academy of Sciences (India)

    E Waxman

    2004-02-01

    The existence of cosmic rays of energies exceeding 1020 eV is one of the mysteries of high-energy astrophysics. The spectrum and the high energy to which it extends rule out almost all suggested source models. The challenges posed by observations to models for the origin of high-energy cosmic rays are reviewed, and the implications of recent new experimental results are discussed. Large area high-energy cosmic ray detectors and large volume high-energy neutrino detectors currently under construction may resolve the high-energy cosmic ray puzzle, and shed light on the identity and physics of the most powerful accelerators in the Universe.

  12. High energy cosmic-rays: puzzles, models, and giga-ton neutrino telescopes

    CERN Document Server

    Waxman, E

    2004-01-01

    The existence of cosmic rays of energies exceeding 10^20 eV is one of the mysteries of high energy astrophysics. The spectrum and the high energy to which it extends rule out almost all suggested source models. The challenges posed by observations to models for the origin of high energy cosmic rays are reviewed, and the implications of recent new experimental results are discussed. Large area high energy cosmic ray detectors and large volume high energy neutrino detectors currently under construction may resolve the high energy cosmic ray puzzle, and shed light on the identity and physics of the most powerful accelerators in the universe.

  13. Neutrino discoveries lead to precision measurements

    CERN Document Server

    Altmann, M

    2002-01-01

    The science of neutrino physics has reached a watershed, with discovery giving way to precision measurements. The author reports from the XXth International Conference on Neutrino Physics and Astrophysics. Topics covered are low-energy neutrinos, atmospheric neutrinos, long-baseline experiments, accelerator experiments, neutrino properties, neutrinos in astrophysics and cosmology, dark matter and neutrino telescopes.

  14. Neutrino Lensing

    Institute of Scientific and Technical Information of China (English)

    LUO Xin-Lian

    2009-01-01

    Due to the intrinsic properties of neutrinos, the gravitational lens effect for a neutrino should be more colorful and meaningful than the normal lens effect of a photon. Other than the experiments operated at terrestrial laboratory, in principle, we can propose a completely new astrophysical method to determine not only the nature of the gravity of lens objects but also the mixing parameters of neutrinos by analyzing neutrino trajectories near the central objects.However, the angular, energy and time resolution of the neutrino telescopes are still comparatively poor, so we just concentrate on the two classical tests of general relativity, i.e.the angular deflection and the time delay of the neutrino by a lens object as a preparative work in this paper.In addition, some simple properties of neutrino lensing are investigated.

  15. LUNASKA experiments using the Australia Telescope Compact Array to search for ultrahigh energy neutrinos and develop technology for the lunar Cherenkov technique

    International Nuclear Information System (INIS)

    We describe the design, performance, sensitivity and results of our recent experiments using the Australia Telescope Compact Array (ATCA) for lunar Cherenkov observations with a very wide (600 MHz) bandwidth and nanosecond timing, including a limit on an isotropic neutrino flux. We also make a first estimate of the effects of small-scale surface roughness on the effective experimental aperture, finding that contrary to expectations, such roughness will act to increase the detectability of near-surface events over the neutrino energy-range at which our experiment is most sensitive (though distortions to the time-domain pulse profile may make identification more difficult). The aim of our 'Lunar UHE Neutrino Astrophysics using the Square Kilometre Array' (LUNASKA) project is to develop the lunar Cherenkov technique of using terrestrial radio telescope arrays for ultrahigh energy (UHE) cosmic ray (CR) and neutrino detection, and, in particular, to prepare for using the Square Kilometre Array (SKA) and its path-finders such as the Australian SKA Pathfinder (ASKAP) and the Low Frequency Array (LOFAR) for lunar Cherenkov experiments.

  16. Search for muon-neutrino emission from GeV and TeV gamma-ray flaring blazars using five years of data of the ANTARES telescope

    CERN Document Server

    Adrián-Martínez, S; André, M; Anton, G; Ardid, M; Aubert, J -J; Baret, B; Barrios-Martí, J; Basa, S; Bertin, V; Biagi, S; Bogazzi, C; Bormuth, R; Bou-Cabo, M; Bouwhuis, M C; Bruijn, R; Brunner, J; Busto, J; Capone, A; Caramete, L; Carr, J; Chiarusi, T; Circella, M; Coniglione, R; Costantini, H; Coyle, P; Creusot, A; Dekeyser, I; Deschamps, A; De Bonis, G; Distefano, C; Donzaud, C; Dornic, D; Drouhin, D; Dumas, A; Eberl, T; Elsässer, D; Enzenhöfer, A; Fehn, K; Felis, I; Fermani, P; Folger, F; Fusco, L A; Galatà, S; Gay, P; Geißelsöder, S; Geyer, K; Giordano, V; Gleixner, A; Gracia-Ruiz, R; Graf, K; van Haren, H; Heijboer, A J; Hello, Y; Hernández-Rey, J J; Herrero, A; Hößl, J; Hofestädt, J; Hugon, C; James, C W; de Jong, M; Kadler, M; Kalekin, O; Katz, U; Kießling, D; Kooijman, P; Kouchner, A; Kreykenbohm, I; Kulikovskiy, V; Lahmann, R; Lambard, G; Lattuada, D; Lefèvre, D; Leonora, E; Loucatos, S; Mangano, S; Margiotta, A; Martínez-Mora, J A; Martini, S; Mathieu, A; Michael, T; Migliozzi, P; Moussa, A; Mueller, C; Neff, M; Nezri, E; Păvălaş, G E; Pellegrino, C; Perrina, C; Piattelli, P; Popa, V; Pradier, T; Racca, C; Riccobene, G; Richter, R; Roensch, K; Rostovtsev, A; Saldaña, M; Samtleben, D F E; Sanguineti, M; Sapienza, P; Schmid, J; Schnabel, J; Schulte, S; Schüssler, F; Seitz, T; Sieger, C; Spurio, M; Steijger, J J M; Stolarczyk, Th; Sánchez-Losa, A; Taiuti, M; Tamburini, C; Trovato, A; Tselengidou, M; Tönnis, C; Turpin, D; Vallage, B; Vallée, C; Van Elewyck, V; Visser, E; Vivolo, D; Wagner, S; Wilms, J; Zornoza, J D; Zúñiga, J

    2015-01-01

    The ANTARES telescope is well-suited for detecting astrophysical transient neutrino sources as it can observe a full hemisphere of the sky at all times with a high duty cycle. The background due to atmospheric particles can be drastically reduced, and the point-source sensitivity improved, by selecting a narrow time window around possible neutrino production periods. Blazars, being radio-loud active galactic nuclei with their jets pointing almost directly towards the observer, are particularly attractive potential neutrino point sources, since they are among the most likely sources of the very high-energy cosmic rays. Neutrinos and gamma rays may be produced in hadronic interactions with the surrounding medium. Moreover, blazars generally show high time variability in their light curves at different wavelengths and on various time scales. This paper presents a time-dependent analysis applied to a selection of flaring gamma-ray blazars observed by the FERMI/LAT experiment and by TeV Cherenkov telescopes using ...

  17. Distribution of bioluminescent organisms in the Mediterranean Sea and predicted effects on a deep-sea neutrino telescope

    International Nuclear Information System (INIS)

    The density of bioluminescent organisms was measured using an ISIT camera profiler in the eastern and western Mediterranean, from the subsurface layer to the seafloor; in the Ligurian, Tyrrhenian, Ionian, Adriatic Seas and the Strait of Sicily, including neutrino telescope sites at ANTARES and NESTOR. A west-east gradient in the density of bioluminescent animals in deep water (1500-2500 m) was observed, with the average density in the Ligurian (ANTARES) Sea (0.65±0.13 m-3) an order of magnitude greater than the E Ionian (NESTOR) Sea (0.06±0.04 m-3). Additionally, an exponential relationship was found between the density of near-bed bioluminescence (0-400 mab) and depth, with greatest divergence from the trend at the extreme west and easterly sites. For small scale effects we applied flash kinetics of bioluminescent organisms to map the bioluminescent field around a sphere; we predict most light emission downstream of an optical module.

  18. Distribution of bioluminescent organisms in the Mediterranean Sea and predicted effects on a deep-sea neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Craig, Jessica [University of Aberdeen, Oceanlab, Main Street, Newburgh, Aberdeenshire AB 41 6AA (United Kingdom)], E-mail: j.craig@abdn.ac.uk; Jamieson, Alan J.; Heger, Amandine; Priede, Imants G. [University of Aberdeen, Oceanlab, Main Street, Newburgh, Aberdeenshire AB 41 6AA (United Kingdom)

    2009-04-11

    The density of bioluminescent organisms was measured using an ISIT camera profiler in the eastern and western Mediterranean, from the subsurface layer to the seafloor; in the Ligurian, Tyrrhenian, Ionian, Adriatic Seas and the Strait of Sicily, including neutrino telescope sites at ANTARES and NESTOR. A west-east gradient in the density of bioluminescent animals in deep water (1500-2500 m) was observed, with the average density in the Ligurian (ANTARES) Sea (0.65{+-}0.13 m{sup -3}) an order of magnitude greater than the E Ionian (NESTOR) Sea (0.06{+-}0.04 m{sup -3}). Additionally, an exponential relationship was found between the density of near-bed bioluminescence (0-400 mab) and depth, with greatest divergence from the trend at the extreme west and easterly sites. For small scale effects we applied flash kinetics of bioluminescent organisms to map the bioluminescent field around a sphere; we predict most light emission downstream of an optical module.

  19. Yearlong moored bioluminescence and current data at KM3NeT neutrino telescope sites in the deep Ionian Sea

    Science.gov (United States)

    van Haren, Hans; de Jong, Maarten; Kooijman, Paul

    2015-07-01

    Yearlong observations are presented using stand-alone small optical sensors and current meters in the deep Ionian Sea, E-Mediterranean. At two future neutrino telescope sites, off Sicily (I) and off Peloponessos (Gr), we deployed 2500-3000 m long mooring lines with oceanographic instrumentation. At about 150 m above the sea-floor, a glass sphere was mounted to each line holding two 3″-diameter photo-multiplier-tubes 'PMTs' in opposing directions for a first deep-sea test. Due to technical problems the background optical count rate could not be well established. Here, the focus is on the variations with time of bioluminescence bursts and their correlation with currents. Spectral analysis demonstrates that the PMT data best resemble those of horizontal currents (kinetic energy), significantly peaking at near-inertial, sub-inertial mesoscale and (Gr only) at tidal frequencies. Out-of-phase differences between signals from opposing PMTs in the same optical unit indicate impacts of bioluminescent organisms as a function of current direction, rather than a bacterial glow constant with time.

  20. Search for correlations between the arrival directions of IceCube neutrino events and ultrahigh-energy cosmic rays detected by the Pierre Auger Observatory and the Telescope Array

    CERN Document Server

    Aartsen, M G; Ackermann, M; Adams, J; Aguilar, J A; Ahlers, M; Ahrens, M; Altmann, D; Anderson, T; Ansseau, I; Archinger, M; Arguelles, C; Arlen, T C; Auffenberg, J; Bai, X; Barwick, S W; Baum, V; Bay, R; Beatty, J J; Tjus, J Becker; Becker, K -H; Beiser, E; Berghaus, P; Berley, D; Bernardini, E; Bernhard, A; Besson, D Z; Binder, G; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Börner, M; Bos, F; Bose, D; Böser, S; Botner, O; Braun, J; Brayeur, L; Bretz, H -P; Buzinsky, N; Casey, J; Casier, M; Cheung, E; Chirkin, D; Christov, A; Clark, K; Classen, L; Coenders, S; Cowen, D F; Silva, A H Cruz; Daughhetee, J; Davis, J C; Day, M; de André, J P A M; De Clercq, C; Rosendo, E del Pino; Dembinski, H; De Ridder, S; Desiati, P; de Vries, K D; de Wasseige, G; de With, M; DeYoung, T; Díaz-Vélez, J C; di Lorenzo, V; Dumm, J P; Dunkman, M; Eberhardt, B; Ehrhardt, T; Eichmann, B; Euler, S; Evenson, P A; Fahey, S; Fazely, A R; Feintzeig, J; Felde, J; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Fösig, C -C; Fuchs, T; Gaisser, T K; Gaior, R; Gallagher, J; Gerhardt, L; Ghorbani, K; Gier, D; Gladstone, L; Glagla, M; Glüsenkamp, T; Goldschmidt, A; Golup, G; Gonzalez, J G; Góra, D; Grant, D; Griffith, Z; Groß, A; Ha, C; Haack, C; Ismail, A Haj; Hallgren, A; Halzen, F; Hansen, E; Hansmann, B; Hanson, K; Hebecker, D; Heereman, D; Helbing, K; Hellauer, R; Hickford, S; Hignight, J; Hill, G C; Hoffman, K D; Hoffmann, R; Holzapfel, K; Homeier, A; Hoshina, K; Huang, F; Huber, M; Huelsnitz, W; Hulth, P O; Hultqvist, K; In, S; Ishihara, A; Jacobi, E; Japaridze, G S; Jeong, M; Jero, K; Jurkovic, M; Kappes, A; Karg, T; Karle, A; Kauer, M; Keivani, A; Kelley, J L; Kemp, J; Kheirandish, A; Kiryluk, J; Kläs, J; Klein, S R; Kohnen, G; Koirala, R; Kolanoski, H; Konietz, R; Köpke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Krings, K; Kroll, G; Kroll, M; Krückl, G; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Lanfranchi, J L; Larson, M J; Lesiak-Bzdak, M; Leuermann, M; Leuner, J; Lu, L; Lünemann, J; Madsen, J; Maggi, G; Mahn, K B M; Mandelartz, M; Maruyama, R; Mase, K; Matis, H S; Maunu, R; McNally, F; Meagher, K; Medici, M; Meli, A; Menne, T; Merino, G; Meures, T; Miarecki, S; Middell, E; Mohrmann, L; Montaruli, T; Morse, R; Nahnhauer, R; Naumann, U; Neer, G; Niederhausen, H; Nowicki, S C; Nygren, D R; Pollmann, A Obertacke; Olivas, A; Omairat, A; O'Murchadha, A; Palczewski, T; Pandya, H; Pankova, D V; Paul, L; Pepper, J A; Heros, C Pérez de los; Pfendner, C; Pieloth, D; Pinat, E; Posselt, J; Price, P B; Przybylski, G T; Quinnan, M; Raab, C; Rädel, L; Rameez, M; Rawlins, K; Reimann, R; Relich, M; Resconi, E; Rhode, W; Richman, M; Richter, S; Riedel, B; Robertson, S; Rongen, M; Rott, C; Ruhe, T; Ryckbosch, D; Sabbatini, L; Sander, H -G; Sandrock, A; Sandroos, J; Sarkar, S; Schatto, K; Schimp, M; Schmidt, T; Schoenen, S; Schöneberg, S; Schönwald, A; Schulte, L; Schumacher, L; Seckel, D; Seunarine, S; Soldin, D; Song, M; Spiczak, G M; Spiering, C; Stahlberg, M; Stamatikos, M; Stanev, T; Stasik, A; Steuer, A; Stezelberger, T; Stokstad, R G; Stößl, A; Ström, R; Strotjohann, N L; Sullivan, G W; Sutherland, M; Taavola, H; Taboada, I; Tatar, J; Ter-Antonyan, S; Terliuk, A; Tešić, G; Tilav, S; Toale, P A; Tobin, M N; Toscano, S; Tosi, D; Tselengidou, M; Turcati, A; Unger, E; Usner, M; Vallecorsa, S; Vandenbroucke, J; van Eijndhoven, N; Vanheule, S; van Santen, J; Veenkamp, J; Vehring, M; Voge, M; Vraeghe, M; Walck, C; Wallace, A; Wallraff, M; Wandkowsky, N; Weaver, Ch; Wendt, C; Westerhoff, S; Whelan, B J; Wiebe, K; Wiebusch, C H; Wille, L; Williams, D R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, D L; Xu, X W; Xu, Y; Yanez, J P; Yodh, G; Yoshida, S; :,; Aab, A; Abreu, P; Aglietta, M; Ahn, E J; Samarai, I Al; Albuquerque, I F M; Allekotte, I; Allison, P; Almela, A; Castillo, J Alvarez; Alvarez-Muñiz, J; Batista, R Alves; Ambrosio, M; Aminaei, A; Anchordoqui, L; Andrada, B; Andringa, S; Aramo, C; Arqueros, F; Arsene, N; Asorey, H; Assis, P; Aublin, J; Avila, G; Awal, N; Badescu, A M; Baus, C; Becker, K H; Bellido, J A; Berat, C; Bertaina, M E; Bertou, X; Biermann, P L; Billoir, P; Blaess, S G; Blanco, A; Blanco, M; Blazek, J; Bleve, C; Blümer, H; Boháčová, M; Boncioli, D; Bonifazi, C; Borodai, N; Botti, A M; Brack, J; Brancus, I; Bretz, T; Bridgeman, A; Briechle, F L; Buchholz, P; Bueno, A; Buitink, S; Buscemi, M; Caballero-Mora, K S; Caccianiga, B; Caccianiga, L; Candusso, M; Caramete, L; Caruso, R; Castellina, A; Cataldi, G; Cazon, L; Cester, R; Chavez, A G; Chiavassa, A; Chinellato, J A; Diaz, J C Chirinos; Chudoba, J; Clay, R W; Colalillo, R; Coleman, A; Collica, L; Coluccia, M R; Conceição, R; Contreras, F; Cooper, M J; Cordier, A; Coutu, S; Covault, C E; Dallier, R; D'Amico, S; Daniel, B; Dasso, S; Daumiller, K; Dawson, B R; de Almeida, R M; de Jong, S J; De Mauro, G; Neto, J R T de Mello; De Mitri, I; de Oliveira, J; de Souza, V; Debatin, J; del Peral, L; Deligny, O; Dhital, N; Di Giulio, C; Di Matteo, A; Castro, M L Díaz; Diogo, F; Dobrigkeit, C; Docters, W; D'Olivo, J C; Dorofeev, A; Anjos, R C dos; Dova, M T; Dundovic, A; Ebr, J; Engel, R; Erdmann, M; Erfani, M; Escobar, C O; Espadanal, J; Etchegoyen, A; Falcke, H; Fang, K; Farrar, G; Fauth, A C; Fazzini, N; Ferguson, A P; Fick, B; Figueira, J M; Filevich, A; Filipčič, A; Fratu, O; Freire, M M; Fujii, T; Fuster, A; Gallo, F; García, B; Garcia-Gamez, D; Garcia-Pinto, D; Gate, F; Gemmeke, H; Gherghel-Lascu, A; Ghia, P L; Giaccari, U; Giammarchi, M; Giller, M; Głas, D; Glaser, C; Glass, H; Berisso, M Gómez; Vitale, P F Gómez; González, N; Gookin, B; Gordon, J; Gorgi, A; Gorham, P; Gouffon, P; Griffith, N; Grillo, A F; Grubb, T D; Guarino, F; Guedes, G P; Hampel, M R; Hansen, P; Harari, D; Harrison, T A; Harton, J L; Hasankiadeh, Q; Haungs, A; Hebbeker, T; Heck, D; Heimann, P; Herve, A E; Hojvat, C; Hollon, N; Holt, E; Homola, P; Hörandel, J R; Horvath, P; Hrabovský, M; Huege, T; Insolia, A; Isar, P G; Jandt, I; Jansen, S; Jarne, C; Johnsen, J A; Josebachuili, M; Kääpä, A; Kambeitz, O; Kampert, K H; Kasper, P; Katkov, I; Keilhauer, B; Kemp, E; Kieckhafer, R M; Klages, H O; Kleifges, M; Kleinfeller, J; Krause, R; Krohm, N; Kuempel, D; Mezek, G Kukec; Kunka, N; Awad, A Kuotb; LaHurd, D; Latronico, L; Lauer, R; Lauscher, M; Lautridou, P; Lebrun, D; Lebrun, P; de Oliveira, M A Leigui; Letessier-Selvon, A; Lhenry-Yvon, I; Link, K; Lopes, L; López, R; Casado, A López; Lucero, A; Malacari, M; Mallamaci, M; Mandat, D; Mantsch, P; Mariazzi, A G; Marin, V; Mariş, I C; Marsella, G; Martello, D; Martinez, H; Bravo, O Martínez; Meza, J J Masías; Mathes, H J; Mathys, S; Matthews, J; Matthews, J A J; Matthiae, G; Maurizio, D; Mayotte, E; Mazur, P O; Medina, C; Medina-Tanco, G; Mello, V B B; Melo, D; Menshikov, A; Messina, S; Micheletti, M I; Middendorf, L; Minaya, I A; Miramonti, L; Mitrica, B; Molina-Bueno, L; Mollerach, S; Montanet, F; Morello, C; Mostafá, M; Moura, C A; Müller, G; Muller, M A; Müller, S; Navas, S; Necesal, P; Nellen, L; Nelles, A; Neuser, J; Nguyen, P H; Niculescu-Oglinzanu, M; Niechciol, M; Niemietz, L; Niggemann, T; Nitz, D; Nosek, D; Novotny, V; Nožka, H; Núñez, L A; Ochilo, L; Oikonomou, F; Olinto, A; Pacheco, N; Selmi-Dei, D Pakk; Palatka, M; Pallotta, J; Papenbreer, P; Parente, G; Parra, A; Paul, T; Pech, M; Pękala, J; Pelayo, R; Peña-Rodriguez, J; Pepe, I M; Perrone, L; Petermann, E; Peters, C; Petrera, S; Phuntsok, J; Piegaia, R; Pierog, T; Pieroni, P; Pimenta, M; Pirronello, V; Platino, M; Plum, M; Porowski, C; Prado, R R; Privitera, P; Prouza, M; Quel, E J; Querchfeld, S; Quinn, S; Rautenberg, J; Ravel, O; Ravignani, D; Reinert, D; Revenu, B; Ridky, J; Risse, M; Ristori, P; Rizi, V; de Carvalho, W Rodrigues; Rojo, J Rodriguez; Rodríguez-Frías, M D; Rogozin, D; Rosado, J; Roth, M; Roulet, E; Rovero, A C; Saffi, S J; Saftoiu, A; Salazar, H; Saleh, A; Greus, F Salesa; Salina, G; Gomez, J D Sanabria; Sánchez, F; Sanchez-Lucas, P; Santos, E M; Santos, E; Sarazin, F; Sarkar, B; Sarmento, R; Sarmiento-Cano, C; Sato, R; Scarso, C; Schauer, M; Scherini, V; Schieler, H; Schmidt, D; Scholten, O; Schoorlemmer, H; Schovánek, P; Schröder, F G; Schulz, A; Schulz, J; Schumacher, J; Segreto, A; Settimo, M; Shadkam, A; Shellard, R C; Sigl, G; Sima, O; Śmiałkowski, A; Šmída, R; Snow, G R; Sommers, P; Sonntag, S; Sorokin, J; Squartini, R; Stanca, D; Stanič, S; Stapleton, J; Stasielak, J; Stephan, M; Strafella, F; Stutz, A; Suarez, F; Durán, M Suarez; Suomijärvi, T; Supanitsky, A D; Sutherland, M S; Swain, J; Szadkowski, Z; Taborda, O A; Tapia, A; Tepe, A; Theodoro, V M; Tibolla, O; Timmermans, C; Peixoto, C J Todero; Toma, G; Tomankova, L; Tomé, B; Tonachini, A; Elipe, G Torralba; Machado, D Torres; Travnicek, P; Trini, M; Ulrich, R; Unger, M; Urban, M; Galicia, J F Valdés; Valiño, I; Valore, L; van Aar, G; van Bodegom, P; Berg, A M van den; van Vliet, A; Varela, E; Cárdenas, B Vargas; Varner, G; Vasquez, R; Vázquez, J R; Vázquez, R A; Veberič, D; Verzi, V; Vicha, J; Videla, M; Villaseñor, L; Vorobiov, S; Wahlberg, H; Wainberg, O; Walz, D; Watson, A A; Weber, M; Weidenhaupt, K; Weindl, A; Wiencke, L; Wilczyński, H; Winchen, T; Wittkowski, D; Wundheiler, B; Wykes, S; Yang, L; Yapici, T; Yushkov, A; Zas, E; Zavrtanik, D; Zavrtanik, M; Zepeda, A; Zimmermann, B; Ziolkowski, M; Zong, Z; Abbasi, R U; Abe, M; Abu-Zayyad, T; Allen, M; Azuma, R; Barcikowski, E; Belz, J W; Bergman, D R; Blake, S A; Cady, R; Chae, M J; Cheon, B G; Chiba, J; Chikawa, M; Cho, W R; Fukushima, M; Goto, T; Hanlon, W; Hayashi, Y; Hayashida, N; Hibino, K; Honda, K; Ikeda, D; Inoue, N; Ishii, T; Ishimori, R; Ito, H; Ivanov, D; Jui, C C H; Kadota, K; Kakimoto, F; Kalashev, O; Kasahara, K; Kawai, H; Kawakami, S; Kawana, S; Kawata, K; Kido, E; Kim, H B; Kim, J H; Kitamura, S; Kitamura, Y; Kuzmin, V; Kwon, Y J; Lan, J; Lim, S I; Lundquist, J P; Machida, K; Martens, K; Matsuda, T; Matsuyama, T; Matthews, J N; Minamino, M; Mukai, Y; Myers, I; Nagasawa, K; Nagataki, S; Nakamura, T; Nonaka, T; Nozato, A; Ogio, S; Ogura, J; Ohnishi, M; Ohoka, H; Oki, K; Okuda, T; Ono, M; Oshima, A; Ozawa, S; Park, I H; Pshirkov, M S; Rodriguez, D C; Rubtsov, G; Ryu, D; Sagawa, H; Sakurai, N; Scott, L M; Shah, P D; Shibata, F; Shibata, T; Shimodaira, H; Shin, B K; Shin, H S; Smith, J D; Sokolsky, P; Springer, R W; Stokes, B T; Stratton, S R; Stroman, T A; Suzawa, T; Takamura, M; Takeda, M; Takeishi, R; Taketa, A; Takita, M; Tameda, Y; Tanaka, H; Tanaka, K; Tanaka, M; Thomas, S B; Thomson, G B; Tinyakov, P; Tkachev, I; Tokuno, H; Tomida, T; Troitsky, S; Tsunesada, Y; Tsutsumi, K; Uchihori, Y; Udo, S; Urban, F; Vasiloff, G; Wong, T; Yamane, R; Yamaoka, H; Yamazaki, K; Yang, J; Yashiro, K; Yoneda, Y; Yoshii, H; Zollinger, R; Zundel, Z

    2016-01-01

    This paper presents the results of different searches for correlations between very high-energy neutrino candidates detected by IceCube and the highest-energy cosmic rays measured by the Pierre Auger Observatory and the Telescope Array. We first consider samples of cascade neutrino events and of high-energy neutrino-induced muon tracks, which provided evidence for a neutrino flux of astrophysical origin, and study their cross-correlation with the ultrahigh-energy cosmic ray (UHECR) samples as a function of angular separation. We also study their possible directional correlations using a likelihood method stacking the neutrino arrival directions and adopting different assumptions on the size of the UHECR magnetic deflections. Finally, we perform another likelihood analysis stacking the UHECR directions and using a sample of through-going muon tracks optimized for neutrino point-source searches with sub-degree angular resolution. No indications of correlations at discovery level are obtained for any of the sear...

  1. Correlation between the UHECRs measured by the Pierre Auger Observatory and Telescope Array and neutrino candidate events from IceCube

    Directory of Open Access Journals (Sweden)

    Christov A.

    2016-01-01

    Full Text Available We present the results of three searches for correlations between ultra-high energy cosmic ray events measured by Telescope Array and the Pierre Auger Observatory and high-energy neutrino candidate events from IceCube. Two cross-correlation analyses of ultra-high energy cosmic rays are done: one with 39 “cascades” from the IceCube “high-energy starting events” sample and the other one with 16 high-energy “tracks”. The angular separation between the arrival directions of neutrinos and UHECRs is scanned. The same events are also used in a separate search stacking the neutrino arrival directions and using a maximum likelihood approach. We assume that UHECR magnetic deflections are inversely proportional to the energy with values 3∘, 6∘ and 9∘ at 100 EeV to account for the uncertainties in the magnetic field strength and UHECR charge. A similar analysis is performed on stacked UHECR arrival directions and the IceCube 4-year sample of through-going muon-track events that was optimized for neutrino point source searches.

  2. A further study of μ-τ symmetry breaking at neutrino telescopes after the Daya Bay and RENO measurements of θ13

    International Nuclear Information System (INIS)

    Current neutrino oscillation data indicate that θ13 is not strongly suppressed and θ23 might have an appreciable deviation from π/4, implying that the 3×3 neutrino mixing matrix V does not have an exact μ-τ permutation symmetry. We make a further study of the effect of μ-τ symmetry breaking on the democratic flavor distribution of ultrahigh-energy (UHE) cosmic neutrinos at a neutrino telescope, and find that it is characterized by |Vμi|2-|Vτi|2 which would vanish if either θ23=π/4 and θ13=0 or θ23=π/4 and δ=±π/2 held. We observe that the second-order μ-τ symmetry breaking term Δ¯ may be numerically comparable with or even larger than the first-order term Δ in the flux ratios φeT:φμT:φτT≃(1-2Δ):(1+Δ+Δ¯):(1+Δ-Δ¯), if sin(θ23-π/4) and cos δ have the same sign. The detection of the UHE ν¯e flux via the Glashow-resonance channel ν¯ee→W-→anything is also discussed by taking account of the first- and second-order μ-τ symmetry breaking effects.

  3. Correlation between the UHECRs measured by the Pierre Auger Observatory and Telescope Array and neutrino candidate events from IceCube

    Science.gov (United States)

    Christov, A.; Golup, G.; Montaruli, T.; Rameez, M.; Aublin, J.; Caccianiga, L.; Ghia, P. L.; Roulet, E.; Unger, M.; Sagawa, H.; Tinyakov, P.

    2016-04-01

    We present the results of three searches for correlations between ultra-high energy cosmic ray events measured by Telescope Array and the Pierre Auger Observatory and high-energy neutrino candidate events from IceCube. Two cross-correlation analyses of ultra-high energy cosmic rays are done: one with 39 "cascades" from the IceCube "high-energy starting events" sample and the other one with 16 high-energy "tracks". The angular separation between the arrival directions of neutrinos and UHECRs is scanned. The same events are also used in a separate search stacking the neutrino arrival directions and using a maximum likelihood approach. We assume that UHECR magnetic deflections are inversely proportional to the energy with values 3∘, 6∘ and 9∘ at 100 EeV to account for the uncertainties in the magnetic field strength and UHECR charge. A similar analysis is performed on stacked UHECR arrival directions and the IceCube 4-year sample of through-going muon-track events that was optimized for neutrino point source searches.

  4. The IceCube Neutrino Observatory, the Pierre Auger Observatory and the Telescope Array: Joint Contribution to the 34th International Cosmic Ray Conference (ICRC 2015)

    Energy Technology Data Exchange (ETDEWEB)

    Aartsen, M.G.; et al.

    2015-11-06

    We have conducted three searches for correlations between ultra-high energy cosmic rays detected by the Telescope Array and the Pierre Auger Observatory, and high-energy neutrino candidate events from IceCube. Two cross-correlation analyses with UHECRs are done: one with 39 cascades from the IceCube `high-energy starting events' sample and the other with 16 high-energy `track events'. The angular separation between the arrival directions of neutrinos and UHECRs is scanned over. The same events are also used in a separate search using a maximum likelihood approach, after the neutrino arrival directions are stacked. To estimate the significance we assume UHECR magnetic deflections to be inversely proportional to their energy, with values $3^\\circ$, $6^\\circ$ and $9^\\circ$ at 100 EeV to allow for the uncertainties on the magnetic field strength and UHECR charge. A similar analysis is performed on stacked UHECR arrival directions and the IceCube sample of through-going muon track events which were optimized for neutrino point-source searches.

  5. A further study of \\mu-\\tau symmetry breaking at neutrino telescopes after the Daya Bay and RENO measurements of \\theta_{13}

    CERN Document Server

    Xing, Zhi-zhong

    2012-01-01

    Current neutrino oscillation data indicate that \\theta_{13} is not strongly suppressed and \\theta_{23} might have an appreciable deviation from \\pi/4, implying that the 3 \\times 3 neutrino mixing matrix V does not have an exact \\mu-\\tau permutation symmetry. We make a further study of the effect of \\mu-\\tau symmetry breaking on the democratic flavor distribution of ultrahigh-energy (UHE) cosmic neutrinos at a neutrino telescope, and find that it is characterized by |V_{\\mu i}|^2 - |V_{\\tau i}|^2 which would vanish if either \\theta_{23} = \\pi/4 and \\theta_{13} = 0 or \\theta_{23} = \\pi/4 and \\delta = \\pm \\pi/2 held. We observe that the second-order \\mu-\\tau symmetry breaking term \\bar{\\Delta} may be numerically comparable with or even larger than the first-order term \\Delta in the flux ratios \\phi^{T}_e : \\phi^{T}_\\mu : \\phi^{T}_\\tau \\simeq (1- 2\\Delta) : (1 + \\Delta + \\bar{\\Delta}) : (1 + \\Delta - \\bar{\\Delta}), if \\sin (\\theta_{23} - \\pi/4) and \\cos\\delta have the same sign. The detection of the UHE \\bar{\

  6. A further study of μ- τ symmetry breaking at neutrino telescopes after the Daya Bay and RENO measurements of θ13

    Science.gov (United States)

    Xing, Zhi-zhong

    2012-09-01

    Current neutrino oscillation data indicate that θ13 is not strongly suppressed and θ23 might have an appreciable deviation from π / 4, implying that the 3 × 3 neutrino mixing matrix V does not have an exact μ- τ permutation symmetry. We make a further study of the effect of μ- τ symmetry breaking on the democratic flavor distribution of ultrahigh-energy (UHE) cosmic neutrinos at a neutrino telescope, and find that it is characterized by |Vμi | 2 -|Vτi | 2 which would vanish if either θ23 = π / 4 and θ13 = 0 or θ23 = π / 4 and δ = ± π / 2 held. We observe that the second-order μ- τ symmetry breaking term Δbar may be numerically comparable with or even larger than the first-order term Δ in the flux ratios ϕeT : ϕμT : ϕτT ≃ (1 - 2 Δ) : (1 + Δ +Δbar) : (1 + Δ -Δbar), if sin (θ23 - π / 4) and cos δ have the same sign. The detection of the UHE νbare flux via the Glashow-resonance channel νbare e →W- →anything is also discussed by taking account of the first- and second-order μ- τ symmetry breaking effects.

  7. Active faults of the Baikal depression

    Science.gov (United States)

    Levi, K.G.; Miroshnichenko, A.I.; San'kov, V. A.; Babushkin, S.M.; Larkin, G.V.; Badardinov, A.A.; Wong, H.K.; Colman, S.; Delvaux, D.

    1997-01-01

    The Baikal depression occupies a central position in the system of the basins of the Baikal Rift Zone and corresponds to the nucleus from which the continental lithosphere began to open. For different reasons, the internal structure of the Lake Baikal basin remained unknown for a long time. In this article, we present for the first time a synthesis of the data concerning the structure of the sedimentary section beneath Lake Baikal, which were obtained by complex seismic and structural investigations, conducted mainly from 1989 to 1992. We make a brief description of the most interesting seismic profiles which provide a rough idea of a sedimentary unit structure, present a detailed structural interpretation and show the relationship between active faults in the lake, heat flow anomalies and recent hydrothermalism.

  8. Search for ancient microorganisms in Lake Baikal

    Energy Technology Data Exchange (ETDEWEB)

    Hunter-Cevera, Jennie C.; Repin, Vladimir E.; Torok, Tamas

    2000-06-14

    Lake Baikal in Russia, the world's oldest and deepest continental lake lies in south central Siberia, near the border to Mongolia. The lake is 1,643 m deep and has an area of about 46,000 km2. It holds one-fifth of all the terrestrial fresh water on Earth. Lake Baikal occupies the deepest portion of the Baikal Rift Zone. It was formed some 30-45 million years ago. The isolated Lake Baikal ecosystem represents a unique niche in nature based on its historical formation. The microbial diversity present in this environment has not yet been fully harvested or examined for products and processes of commercial interest and value. Thus, the collection of water, soil, and sub-bottom sediment samples was decided to characterize the microbial diversity of the isolated strains and to screen the isolates for their biotechnological value.

  9. Detection of metagalactic and galactic sources of very high-energy gamma-quanta and neutrinos with the mirror Cherenkov telescope SHALON

    International Nuclear Information System (INIS)

    Gamma-astronomy and neutrino astronomy are unique experimental possibilities to search for sources of high-energy cosmic rays (1012-1014eV). Experimental data on sources of γ-quanta with the energy >1TeV are characterized by the fact that observed metagalactic sources (active galactic nuclei), being different in power from galactic sources by the factor of 106-107, do not differ in the energy spectrum, F(>Eγ)∝Eγ-1.3+/-0.15. The power of the metagalactic sources and their unlimited number casts doubts on the assumption of a galactic origin of the observed cosmic-ray flux. It is possible to assume that the uniform cosmic-ray spectrum is formed by ''braking'' in multiple elastic or inelastic collisions with relict photons in intergalactic space. Thus, the observed distribution of protons and cosmic-ray nuclei with the spectral index 2.72+/-0.02 (=2.718..., the Napier's constant) may be a consequence of such a ''braking'' that warms up the relict photons. Problems in observation of extensive air showers generated by neutrinos are connected with an extremely small cross section of inelastic collisions of neutrinos with nuclei. However, two facts allow to search for showers generated by neutrinos: (1) a hadron cascade with the primary energy of more than 1012eV leaves a mountain ridge to the atmosphere from the depth ∼300g/cm2 without an essential loss of the total energy in the hadron cascade, and (2) air Cherenkov radiation from such hadron cascades will be observed with a 7.5km distant telescope over an area of more than 7x105m2. This partially compensates the small cross section of inelastic neutrino collisions

  10. Results of the Baikal experiment on observations of macroscopic nonlocal correlations in reverse time

    CERN Document Server

    Korotaev, S M; Kiktenko, E O; Budnev, N M; Gorohov, J V

    2015-01-01

    Although the general theory macroscopic quantum entanglement of is still in its infancy, consideration of the matter in the framework of action-at-a distance electrodynamics predicts for the random dissipative processes observability of the advanced nonlocal correlations. These correlations were really revealed in our previous experiments with some large-scale heliogeophysical processes as the source ones and the lab detectors as the probe ones. Recently a new experiment has been performing on the base of Baikal Deep Water Neutrino Observatory. The thick water layer is an excellent shield against any local impacts on the detectors. The first annual series 2012/2013 has demonstrated that detector signals respond to the heliogeophysical processes and causal connection of the signals directed downwards: from the Earth surface to the Baikal floor. But this nonlocal connection proved to be in reverse time. In addition advanced nonlocal correlation of the detector signal with the regional source-process: the random...

  11. Extremely high energy cosmic neutrinos and relic neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Quigg, Chris; /Fermilab /CERN

    2006-03-01

    I review the essentials of ultrahigh-energy neutrino interactions, show how neutral-current detection and flavor tagging can enhance the scientific potential of neutrino telescopes, and sketch new studies on neutrino encounters with dark matter relics and on gravitational lensing of neutrinos.

  12. The IceCube Neutrino Observatory, the Pierre Auger Observatory and the Telescope Array: Joint Contribution to the 34th International Cosmic Ray Conference (ICRC 2015)

    CERN Document Server

    Aartsen, M G; Ackermann, M; Adams, J; Aguilar, J A; Ahlers, M; Ahrens, M; Altmann, D; Anderson, T; Ansseau, I; Archinger, M; Arguelles, C; Arlen, T C; Auffenberg, J; Bai, X; Barwick, S W; Baum, V; Bay, R; Beatty, J J; Tjus, J Becker; Becker, K -H; Beiser, E; BenZvi, S; Berghaus, P; Berley, D; Bernardini, E; Bernhard, A; Besson, D Z; Binder, G; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Börner, M; Bos, F; Bose, D; Böser, S; Botner, O; Braun, J; Brayeur, L; Bretz, H -P; Buzinsky, N; Casey, J; Casier, M; Cheung, E; Chirkin, D; Christov, A; Clark, K; Classen, L; Coenders, S; Cowen, D F; Silva, A H Cruz; Daughhetee, J; Davis, J C; Day, M; de André, J P A M; De Clercq, C; Rosendo, E del Pino; Dembinski, H; De Ridder, S; Desiati, P; de Vries, K D; de Wasseige, G; de With, M; DeYoung, T; Díaz-Vélez, J C; di Lorenzo, V; Dumm, J P; Dunkman, M; Eagan, R; Eberhardt, B; Ehrhardt, T; Eichmann, B; Euler, S; Evenson, P A; Fadiran, O; Fahey, S; Fazely, A R; Fedynitch, A; Feintzeig, J; Felde, J; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Fösig, C -C; Fuchs, T; Gaisser, T K; Gaior, R; Gallagher, J; Gerhardt, L; Ghorbani, K; Gier, D; Gladstone, L; Glagla, M; Glüsenkamp, T; Goldschmidt, A; Golup, G; Gonzalez, J G; Góra, D; Grant, D; Groh, J C; Groß, A; Ha, C; Haack, C; Ismail, A Haj; Hallgren, A; Halzen, F; Hansmann, B; Hanson, K; Hebecker, D; Heereman, D; Helbing, K; Hellauer, R; Hellwig, D; Hickford, S; Hignight, J; Hill, G C; Hoffman, K D; Hoffmann, R; Holzapfel, K; Homeier, A; Hoshina, K; Huang, F; Huber, M; Huelsnitz, W; Hulth, P O; Hultqvist, K; In, S; Ishihara, A; Jacobi, E; Japaridze, G S; Jero, K; Jurkovic, M; Kaminsky, B; Kappes, A; Karg, T; Karle, A; Kauer, M; Keivani, A; Kelley, J L; Kemp, J; Kheirandish, A; Kiryluk, J; Kläs, J; Klein, S R; Kohnen, G; Koirala, R; Kolanoski, H; Konietz, R; Koob, A; Köpke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Krings, K; Kroll, G; Kroll, M; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Lanfranchi, J L; Larson, M J; Lesiak-Bzdak, M; Leuermann, M; Leuner, J; Lu, L; Lünemann, J; Madsen, J; Maggi, G; Mahn, K B M; Maruyama, R; Mase, K; Matis, H S; Maunu, R; McNally, F; Meagher, K; Medici, M; Meli, A; Menne, T; Merino, G; Meures, T; Miarecki, S; Middell, E; Middlemas, E; Mohrmann, L; Montaruli, T; Morse, R; Nahnhauer, R; Naumann, U; Neer, G; Niederhausen, H; Nowicki, S C; Nygren, D R; Obertacke, A; Olivas, A; Omairat, A; O'Murchadha, A; Palczewski, T; Pandya, H; Paul, L; Pepper, J A; Heros, C Pérez de los; Pfendner, C; Pieloth, D; Pinat, E; Posselt, J; Price, P B; Przybylski, G T; Pütz, J; Quinnan, M; Raab, C; Rädel, L; Rameez, M; Rawlins, K; Reimann, R; Relich, M; Resconi, E; Rhode, W; Richman, M; Richter, S; Riedel, B; Robertson, S; Rongen, M; Rott, C; Ruhe, T; Ryckbosch, D; Saba, S M; Sabbatini, L; Sander, H -G; Sandrock, A; Sandroos, J; Sarkar, S; Schatto, K; Scheriau, F; Schimp, M; Schmidt, T; Schmitz, M; Schoenen, S; Schöneberg, S; Schönwald, A; Schulte, L; Seckel, D; Seunarine, S; Shanidze, R; Smith, M W E; Soldin, D; Song, M; Spiczak, G M; Spiering, C; Stahlberg, M; Stamatikos, M; Stanev, T; Stanisha, N A; Stasik, A; Stezelberger, T; Stokstad, R G; Stößl, A; Ström, R; Strotjohann, N L; Sullivan, G W; Sutherland, M; Taavola, H; Taboada, I; Ter-Antonyan, S; Terliuk, A; Tešić, G; Tilav, S; Toale, P A; Tobin, M N; Toscano, S; Tosi, D; Tselengidou, M; Turcati, A; Unger, E; Usner, M; Vallecorsa, S; Vandenbroucke, J; van Eijndhoven, N; Vanheule, S; van Santen, J; Veenkamp, J; Vehring, M; Voge, M; Vraeghe, M; Walck, C; Wallace, A; Wallraff, M; Wandkowsky, N; Weaver, Ch; Wendt, C; Westerhoff, S; Whelan, B J; Whitehorn, N; Wichary, C; Wiebe, K; Wiebusch, C H; Wille, L; Williams, D R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, D L; Xu, X W; Xu, Y; Yanez, J P; Yodh, G; Yoshida, S; Zoll, M; :,; Aab, A; Abreu, P; Aglietta, M; Ahn, E J; Samarai, I Al; Albuquerque, I F M; Allekotte, I; Allison, P; Almela, A; Castillo, J Alvarez; Alvarez-Muñiz, J; Batista, R Alves; Ambrosio, M; Aminaei, A; Anastasi, G A; Anchordoqui, L; Andringa, S; Aramo, C; Arqueros, F; Arsene, N; Asorey, H; Assis, P; Aublin, J; Avila, G; Awal, N; Badescu, A M; Baus, C; Becker, K H; Bellido, J A; Berat, C; Bertaina, M E; Bertou, X; Biermann, P L; Billoir, P; Blaess, S G; Blanco, A; Blanco, M; Blazek, J; Bleve, C; Blümer, H; Boháčová, M; Boncioli, D; Bonifazi, C; Borodai, N; Brack, J; Brancus, I; Bretz, T; Bridgeman, A; Brogueira, P; Buchholz, P; Bueno, A; Buitink, S; Buscemi, M; Caballero-Mora, K S; Caccianiga, B; Caccianiga, L; Candusso, M; Caramete, L; Caruso, R; Castellina, A; Cataldi, G; Cazon, L; Cester, R; Chavez, A G; Chiavassa, A; Chinellato, J A; Chudoba, J; Cilmo, M; Clay, R W; Cocciolo, G; Colalillo, R; Coleman, A; Collica, L; Coluccia, M R; Conceição, R; Contreras, F; Cooper, M J; Cordier, A; Coutu, S; Covault, C E; Dallier, R; Daniel, B; Dasso, S; Daumiller, K; Dawson, B R; de Almeida, R M; de Jong, S J; De Mauro, G; Neto, J R T de Mello; De Mitri, I; de Oliveira, J; de Souza, V; del Peral, L; Deligny, O; Dhital, N; Di Giulio, C; Di Matteo, A; Diaz, J C; Castro, M L Díaz; Diogo, F; Dobrigkeit, C; Docters, W; D'Olivo, J C; Dorofeev, A; Hasankiadeh, Q Dorosti; Anjos, R C dos; Dova, M T; Ebr, J; Engel, R; Erdmann, M; Erfani, M; Escobar, C O; Espadanal, J; Etchegoyen, A; Falcke, H; Fang, K; Farrar, G; Fauth, A C; Fazzini, N; Ferguson, A P; Fick, B; Figueira, J M; Filevich, A; Filipčič, A; Fratu, O; Freire, M M; Fujii, T; García, B; García-Gámez, D; Garcia-Pinto, D; Gate, F; Gemmeke, H; Gherghel-Lascu, A; Ghia, P L; Giaccari, U; Giammarchi, M; Giller, M; Głas, D; Glaser, C; Glass, H; Berisso, M Gómez; Vitale, P F Gómez; González, N; Gookin, B; Gordon, J; Gorgi, A; Gorham, P; Gouffon, P; Griffith, N; Grillo, A F; Grubb, T D; Guarino, F; Guedes, G P; Hampel, M R; Hansen, P; Harari, D; Harrison, T A; Hartmann, S; Harton, J L; Haungs, A; Hebbeker, T; Heck, D; Heimann, P; Hervé, A E; Hojvat, C; Hollon, N; Holt, E; Homola, P; Hörandel, J R; Horvath, P; Hrabovský, M; Huber, D; Huege, T; Insolia, A; Isar, P G; Jandt, I; Jansen, S; Jarne, C; Johnsen, J A; Josebachuili, M; Kääpä, A; Kambeitz, O; Kampert, K H; Kasper, P; Katkov, I; Keilhauer, B; Kemp, E; Kieckhafer, R M; Klages, H O; Kleifges, M; Kleinfeller, J; Krause, R; Krohm, N; Kuempel, D; Mezek, G Kukec; Kunka, N; Awad, A W Kuotb; LaHurd, D; Latronico, L; Lauer, R; Lauscher, M; Lautridou, P; Coz, S Le; Lebrun, D; Lebrun, P; de Oliveira, M A Leigui; Letessier-Selvon, A; Lhenry-Yvon, I; Link, K; Lopes, L; López, R; Casado, A López; Louedec, K; Lucero, A; Malacari, M; Mallamaci, M; Maller, J; Mandat, D; Mantsch, P; Mariazzi, A G; Marin, V; Mariş, I C; Marsella, G; Martello, D; Martinez, H; Bravo, O Martínez; Martraire, D; Meza, J J Masías; Mathes, H J; Mathys, S; Matthews, J; Matthews, J A J; Matthiae, G; Maurizio, D; Mayotte, E; Mazur, P O; Medina, C; Medina-Tanco, G; Meissner, R; Mello, V B B; Melo, D; Menshikov, A; Messina, S; Micheletti, M I; Middendorf, L; Minaya, I A; Miramonti, L; Mitrica, B; Molina-Bueno, L; Mollerach, S; Montanet, F; Morello, C; Mostafá, M; Moura, C A; Müller, G; Muller, M A; Müller, S; Navas, S; Necesal, P; Nellen, L; Nelles, A; Neuser, J; Nguyen, P H; Niculescu-Oglinzanu, M; Niechciol, M; Niemietz, L; Niggemann, T; Nitz, D; Nosek, D; Novotny, V; Nožka, L; Núñez, L A; Ochilo, L; Oikonomou, F; Olinto, A; Pacheco, N; Selmi-Dei, D Pakk; Palatka, M; Pallotta, J; Papenbreer, P; Parente, G; Parra, A; Paul, T; Pech, M; Pȩkala, J; Pelayo, R; Pepe, I M; Perrone, L; Petermann, E; Peters, C; Petrera, S; Petrov, Y; Phuntsok, J; Piegaia, R; Pierog, T; Pieroni, P; Pimenta, M; Pirronello, V; Platino, M; Plum, M; Porcelli, A; Porowski, C; Prado, R R; Privitera, P; Prouza, M; Quel, E J; Querchfeld, S; Quinn, S; Rautenberg, J; Ravel, O; Ravignani, D; Reinert, D; Revenu, B; Ridky, J; Risse, M; Ristori, P; Rizi, V; de Carvalho, W Rodrigues; Rojo, J Rodriguez; Rodríguez-Frías, M D; Rogozin, D; Rosado, J; Roth, M; Roulet, E; Rovero, A C; Saffi, S J; Saftoiu, A; Salamida, F; Salazar, H; Saleh, A; Greus, F Salesa; Salina, G; Gomez, J D Sanabria; Sánchez, F; Sanchez-Lucas, P; Santos, E M; Santos, E; Sarazin, F; Sarkar, B; Sarmento, R; Sarmiento-Cano, C; Sato, R; Scarso, C; Schauer, M; Scherini, V; Schieler, H; Schmidt, D; Scholten, O; Schoorlemmer, H; Schovánek, P; Schröder, F G; Schulz, A; Schulz, J; Schumacher, J; Sciutto, S J; Segreto, A; Settimo, M; Shadkam, A; Shellard, R C; Sigl, G; Sima, O; Śmiałkowski, A; Šmída, R; Snow, G R; Sommers, P; Sonntag, S; Sorokin, J; Squartini, R; Srivastava, Y N; Stanca, D; Stanič, S; Stapleton, J; Stasielak, J; Stephan, M; Stutz, A; Suarez, F; Durán, M Suarez; Suomijärvi, T; Supanitsky, A D; Sutherland, M S; Swain, J; Szadkowski, Z; Taborda, O A; Tapia, A; Tepe, A; Theodoro, V M; Tibolla, O; Timmermans, C; Peixoto, C J Todero; Toma, G; Tomankova, L; Tomé, B; Tonachini, A; Elipe, G Torralba; Machado, D Torres; Travnicek, P; Trini, M; Ulrich, R; Unger, M; Urban, M; Galicia, J F Valdés; Valiño, I; Valore, L; van Aar, G; van Bodegom, P; Berg, A M van den; van Velzen, S; van Vliet, A; Varela, E; Cárdenas, B Vargas; Varner, G; Vasquez, R; Vázquez, J R; Vázquez, R A; Veberič, D; Verzi, V; Vicha, J; Videla, M; Villaseñor, L; Vlcek, B; Vorobiov, S; Wahlberg, H; Wainberg, O; Walz, D; Watson, A A; Weber, M; Weidenhaupt, K; Weindl, A; Welling, C; Werner, F; Widom, A; Wiencke, L; Wilczyński, H; Winchen, T; Wittkowski, D; Wundheiler, B; Wykes, S; Yang, L; Yapici, T; Yushkov, A; Zas, E; Zavrtanik, D; Zavrtanik, M; Zepeda, A; Zimmermann, B; Ziolkowski, M; Zuccarello, F; Abbasi, R U; Abe, M; Abu-Zayyad, T; Allen, M; Azuma, R; Barcikowski, E; Belz, J W; Bergman, D R; Blake, S A; Cady, R; Chae, M J; Cheon, B G; Chiba, J; Chikawa, M; Cho, W R; Fukushima, M; Goto, T; Hanlon, W; Hayashi, Y; Hayashida, N; Hibino, K; Honda, K; Ikeda, D; Inoue, N; Ishii, T; Ishimori, R; Ito, H; Ivanov, D; Jui, C C H; Kadota, K; Kakimoto, F; Kalashev, O; Kasahara, K; Kawai, H; Kawakami, S; Kawana, S; Kawata, K; Kido, E; Kim, H B; Kim, J H; Kitamura, S; Kitamura, Y; Kuzmin, V; Kwon, Y J; Lan, J; Lim, S I; Lundquist, J P; Machida, K; Martens, K; Matsuda, T; Matsuyama, T; Matthews, J N; Minamino, M; Mukai, Y; Myers, I; Nagasawa, K; Nagataki, S; Nakamura, T; Nonaka, T; Nozato, A; Ogio, S; Ogura, J; Ohnishi, M; Ohoka, H; Oki, K; Okuda, T; Ono, M; Oshima, A; Ozawa, S; Park, I H; Pshirkov, M S; Rodriguez, D C; Rubtsov, G; Ryu, D; Sagawa, H; Sakurai, N; Scott, L M; Shah, P D; Shibata, F; Shibata, T; Shimodaira, H; Shin, B K; Shin, H S; Smith, J D; Sokolsky, P; Springer, R W; Stokes, B T; Stratton, S R; Stroman, T A; Suzawa, T; Takamura, M; Takeda, M; Takeishi, R; Taketa, A; Takita, M; Tameda, Y; Tanaka, H; Tanaka, K; Tanaka, M; Thomas, S B; Thomson, G B; Tinyakov, P; Tkachev, I; Tokuno, H; Tomida, T; Troitsky, S; Tsunesada, Y; Tsutsumi, K; Uchihori, Y; Udo, S; Urban, F; Vasiloff, G; Wong, T; Yamane, R; Yamaoka, H; Yamazaki, K; Yang, J; Yashiro, K; Yoneda, Y; Yoshii, H; Zollinger, R; Zundel, Z

    2015-01-01

    We have conducted three searches for correlations between ultra-high energy cosmic rays detected by the Telescope Array and the Pierre Auger Observatory, and high-energy neutrino candidate events from IceCube. Two cross-correlation analyses with UHECRs are done: one with 39 cascades from the IceCube `high-energy starting events' sample and the other with 16 high-energy `track events'. The angular separation between the arrival directions of neutrinos and UHECRs is scanned over. The same events are also used in a separate search using a maximum likelihood approach, after the neutrino arrival directions are stacked. To estimate the significance we assume UHECR magnetic deflections to be inversely proportional to their energy, with values $3^\\circ$, $6^\\circ$ and $9^\\circ$ at 100 EeV to allow for the uncertainties on the magnetic field strength and UHECR charge. A similar analysis is performed on stacked UHECR arrival directions and the IceCube sample of through-going muon track events which were optimized for n...

  13. Prospects for detection of the lunar Cerenkov emission by the UHE Cosmic Rays and Neutrinos using the GMRT and the Ooty Radio Telescope

    CERN Document Server

    Swarup, Govind

    2008-01-01

    Searching for the Ultra high energy Cosmic rays and Neutrinos of $> 10^{20} eV$ is of great cosmological importance. A powerful technique is to search for the \\v{C}erenkov radio emission caused by UHECR or UHE neutrinos impinging on the lunar regolith. We examine in this paper feasibility of detecting these events by observing with the Giant Metrewave Radio Telescope (GMRT) which has a large collecting area and operates over a wide frequency range with an orthogonal polarisation capability. We discuss here prospects of observations of the \\v{C}erenkov radio emission with the GMRT at 140 MHZ with 32 MHz bandwidth using the incoherent array and also forming 25 beams of the Central Array to cover the moon. We also consider using the Ooty Radio Telescope (ORT) which was specially designed in 1970 for tracking the Moon. With the ORT (530m long and 30m wide parabolic cylinder) it becomes possible to track the Moon for 9.5 hours on a given day by a simple rotation along the long axis of the parabolic cylinder. ORT o...

  14. Possibility of observing high energy neutrinos from gamma bursts, with the Antanares telescope, feasibility study; Possibilite d'observation, par le telescope antares, de neutrinos de haute energie associes aux sursauts gamma et validation des techniques de detection a l'aide d'un prototype

    Energy Technology Data Exchange (ETDEWEB)

    Kouchner, A

    2001-04-01

    The European Antares collaboration intends to build a deep-sea neutrino telescope with a detection surface of about 1/10 km{sup 2} in the Mediterranean sea. The universe is transparent to neutrinos, so their study provides a unique means of improving our knowledge of the nature and origin of cosmic rays and their emission from the most powerful astrophysical sources in the cosmos. Neutrinos also offer the possibility of opening a new energy window (E>TeV) for observation of the universe. The first part of the thesis is dedicated to a study of the possibility of using the future telescope to look for correlations between gamma-ray bursts and high-energy neutrinos. It is based, on one hand, on the predictions of neutrino fluxes from gamma-ray bursts in the framework of the theoretical model of 'fireballs', and, on the other hand, on the temporal properties of the gamma-ray bursts in the 4. BATSE catalogue. The second part of the thesis presents the results obtained with a prototype detector line deployed, at the end of 1999, some forty km south-west off Marseilles. The objective was to operate a complete apparatus, similar to the future detector lines, from the shore, and under realistic conditions. Data from 7 photomultiplier tubes disposed along the detector line were transmitted through 37 km of optical fiber to the shore, where they were used to reconstruct tracks due to atmospheric muons, thus validating the detection principles and methods. (author)

  15. Study of the sensibility of the Antares neutrino telescope to very high energy photons: Contribution to the time calibration of the detector; Etude de la sensibilite du telescope a neutrinos Antares aux photons de tres haute energie: Contribution a l'etalonnage en temps du detecteur

    Energy Technology Data Exchange (ETDEWEB)

    Guillard, G.

    2010-10-15

    From the sea-floor, the 900-odd photomultiplier tubes of the Antares neutrino telescope scrutinize the abysses attempting to discern, amid bioluminescence and marine radioactivity, Cerenkov photons emitted by muons from astrophysical neutrinos, and to distinguish these muons from those generated by air showers produced by cosmic rays. Antares has been collecting data since 2006; this feat of engineering has paved the way for submarine neutrino astronomy: Antares is expected to be the forerunner of a larger instrument, KM3NeT. Telescope's performance is characterized in part by its angular resolution. In the case of Antares, the angular resolution is directly related to the time resolution of the detector's elements. This manuscript presents a correction for one of the main sources of deterioration of this time resolution, the walk effect induced by the set up of a fixed threshold for triggering the photomultiplier tubes signal. This correction, implemented in the official software chain of the Antares collaboration, improves in particular the events reconstruction quality estimator. This implementation allows further optimizations. The author also attempts to evaluate, using a complete Monte-Carlo simulation, the possibility of using very high energy photon sources as calibrated muon beams in order to estimate the absolute pointing and the angular resolution of the telescope. Although limited by large uncertainties, it is demonstrated that the possibility to detect such sources is extremely small. In addition, it is shown that the atmospheric neutrino background induced by very high-energy photons is negligible. (author)

  16. SEARCH FOR HIGH-ENERGY MUON NEUTRINOS FROM THE 'NAKED-EYE' GRB 080319B WITH THE IceCube NEUTRINO TELESCOPE

    International Nuclear Information System (INIS)

    We report on a search with the IceCube detector for high-energy muon neutrinos from GRB 080319B, one of the brightest gamma-ray bursts (GRBs) ever observed. The fireball model predicts that a mean of 0.1 events should be detected by IceCube for a bulk Lorentz boost of the jet of 300. In both the direct on-time window of 66 s and an extended window of about 300 s around the GRB, no excess was found above background. The 90% CL upper limit on the number of track-like events from the GRB is 2.7, corresponding to a muon neutrino fluence limit of 9.5 x 10-3 erg cm-2 in the energy range between 120 TeV and 2.2 PeV, which contains 90% of the expected events.

  17. Search for high-energy muon neutrinos from the "naked-eye" GRB 080319B with the IceCube neutrino telescope

    DEFF Research Database (Denmark)

    Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.;

    2009-01-01

    We report on a search with the IceCube detector for high-energy muon neutrinos from GRB 080319B, one of the brightest gamma-ray bursts (GRBs) ever observed. The fireball model predicts that a mean of 0.1 events should be detected by IceCube for a bulk Lorentz boost of the jet of 300. In both the...... direct on-time window of 66 s and an extended window of about 300 s around the GRB, no excess was found above background. The 90% CL upper limit on the number of track-like events from the GRB is 2.7, corresponding to a muon neutrino fluence limit of 9.5x10^-3 erg cm^-2 in the energy range between 120 Te...

  18. Study of neutrino production in the Cannonball model of Gamma ray bursts: possibility of observation of these neutrinos with the Antares neutrinos telescope, and study of the optical background recorded with the prototype sector line; Etude de la production de neutrinos associes aux Sursauts Gamma dans le modele du Boulet de canon: possibilite d'observation de ces neutrinos par le detecteur ANTARES, et etude du bruit de fond optique enregistre par le prototype d'un secteur de ligne

    Energy Technology Data Exchange (ETDEWEB)

    Ferry, S

    2004-09-15

    ANTARES is a future neutrino telescope which will be build at 40 km off the french coast (Toulon), at a 2500 m depth. The interaction of a neutrino with matter produces a muon which emits Cerenkov light while propagating in water. This light is detected with 900 photomultipliers distributed over 12 lines. Gamma ray bursts (GRB) are violent cosmological phenomenon observed once per day. In the Cannonball Model, bursts are produced by the interaction of a jet made of cannonballs (CB) with a supernova remnant (SNR). Forward shocks propagate in the SNR, reverse ones in the CB and neutrinos are produced at the shock fronts. An estimation of the neutrino production is given and is studied over a large parameter range. For a typical GRB, 0.002 to 0.3 v{sub {mu}}, cm{sup -2} can be produced. Depending on the viewing angle, ANTARES could detect 1 to 10 v{sub {mu}} per year in correlation with GRBs. The ambient optical background has been recorded by the ANTARES prototype sector line. The analysis is about the background influence on the detector performance and about the organisms activity which produces it. For example, it appears a 17.6 to 20.4 h periodicity which is compatible with the liquid masses movement imposed by the Coriolis force at the ANTARES latitude. (author)

  19. A project for a high-efficiency direction-sensitive photo-detector to be used in underwater neutrino telescopes

    International Nuclear Information System (INIS)

    We propose and discuss the development of a new photo-detector to be employed in underwater neutrino detectors where large detection area and good background suppression are required. The design includes a position-sensitive hemispherical photomultiplier coupled to a direction-sensitive light-guide system

  20. Very low power, high voltage base for a Photo Multiplier Tube for the KM3NeT deep sea neutrino telescope

    International Nuclear Information System (INIS)

    The described system is developed in the framework of a deep-sea submerged Very Large Volume neutrino Telescope where photons are detected by a large number of Photo Multiplier Tubes. These PMTs are placed in optical modules (OM). A basic Cockcroft-Walton (CW) voltage multiplier circuit design is used to generate multiple voltages to drive the dynodes of the photomultiplier tube. To achieve a long lifetime and a high reliability the dissipation in the OM must be kept to the minimum. The design is also constrained by size restrictions, load current, voltage range, and the maximum allowable ripple in the output voltage. A surface mount PMT-base PCB prototype is designed and successfully tested. The system draws less than 1.5 mA of supply current at a voltage of 3.3 V with outputs up to -1400 Vdc cathode voltage, a factor 10 less than the commercially available state of the art.

  1. Search for correlations between the arrival directions of IceCube neutrino events and ultrahigh-energy cosmic rays detected by the Pierre Auger Observatory and the Telescope Array

    Science.gov (United States)

    IceCube Collaboration; Pierre Auger Collaboration; Telescope Array Collaboration

    2016-01-01

    This paper presents the results of different searches for correlations between very high-energy neutrino candidates detected by IceCube and the highest-energy cosmic rays measured by the Pierre Auger Observatory and the Telescope Array. We first consider samples of cascade neutrino events and of high-energy neutrino-induced muon tracks, which provided evidence for a neutrino flux of astrophysical origin, and study their cross-correlation with the ultrahigh-energy cosmic ray (UHECR) samples as a function of angular separation. We also study their possible directional correlations using a likelihood method stacking the neutrino arrival directions and adopting different assumptions on the size of the UHECR magnetic deflections. Finally, we perform another likelihood analysis stacking the UHECR directions and using a sample of through-going muon tracks optimized for neutrino point-source searches with sub-degree angular resolution. No indications of correlations at discovery level are obtained for any of the searches performed. The smallest of the p-values comes from the search for correlation between UHECRs with IceCube high-energy cascades, a result that should continue to be monitored.

  2. Neutrino sea scope takes shape

    Science.gov (United States)

    Cartlidge, Edwin

    2016-03-01

    A consortium of European physicists building a vast neutrino detector on the floor of the Mediterranean Sea has unveiled the science it will carry out. The Cubic Kilometre Neutrino Telescope (KM3NeT) will use strings of radiation detectors arranged in a 3D network to measure the light emitted when neutrinos very occasionally interact with the surrounding sea water.

  3. Neutrinos from the Milky Way

    NARCIS (Netherlands)

    Visser, Erwin Lourens

    2015-01-01

    A guaranteed source of neutrinos is the production in cosmic ray interactions with the interstellar matter in our Galaxy. The signal has never been detected however and only an upper limit on this flux of neutrinos has been published by the AMANDA-II detector. The ANTARES neutrino telescope, located

  4. Ultra- and extremely high energy neutrino astronomy

    OpenAIRE

    I. SokalskiINFN, Bari

    2014-01-01

    Scientific motivations for ultra- and extremely high energy neutrino astronomy are considered. Sources and expected fluxes of EHE/UHE neutrinos are briefly discussed. Operating and planned experiments on astrophysical neutrino detection are reviewed focusing on deep underwater/ice Cherenkov neutrino telescopes.

  5. Lower crustal intrusions beneath the southern Baikal Rift Zone

    DEFF Research Database (Denmark)

    Nielsen, Christoffer; Thybo, Hans

    2009-01-01

    centre. The BEST (Baikal Explosion Seismic Transect) project acquired a 360-km long, deep seismic, refraction/wide-angle reflection profile in 2002 across southern Lake Baikal. The data from this project is used for identification of large-scale crustal structures and modelling of the seismic velocities......The Cenozoic Baikal Rift Zone (BRZ) is situated in south-central Siberia in the suture between the Precambrian Siberian Platform and the Amurian plate. This more than 2000-km long rift zone is composed of several individual basement depressions and half-grabens with the deep Lake Baikal at its...... of the crust and uppermost mantle. Previous interpretation and velocity modelling of P-wave arrivals in the BEST data has revealed a multi layered crust with smooth variation in Moho depth between the Siberian Platform (41 km) and the Sayan-Baikal fold belt (46 km). The lower crust exhibits normal...

  6. Tectonically controlled methane escape in Lake Baikal

    OpenAIRE

    Klerkx, J.; De Batist, M.; J. Poort; Hus, R.; Van Rensbergen, P.; Khlystov, O.; Granin, N.

    2006-01-01

    Methane, which is at least partly stored in the bottom sediments of Lake Baikal as gas hydrates, is released on the lake floor in the deeper parts of the basin along major faults, forming venting structures similar to small mud volcanoes. The CH4 venting structures are considered to be the surface expression of escape pathways for excess CH4 generated by the dissociation of pre-existing hydrates. The existence of a local heat flow anomaly associated with the seep area is most likely due to a ...

  7. Detection of magnetic monopoles in the future neutrino telescope Antares and characterization of the photomultiplier pulse treatment; Etude de la detection de monopoles magnetiques au sein du futur telescope a neutrinos antares et caracterisation des performances du traitement des impulsions des photomultiplicateurs

    Energy Technology Data Exchange (ETDEWEB)

    Ricol, J.St

    2002-10-01

    Grand unified theories (GUT) involve phase transitions in the early universe, that could create topological defects, like magnetic monopoles. Monopoles main characteristics are shown and in particular energy losses and flux limits. High energy neutrino telescopes offer a new opportunity for magnetic monopole search. The study of the photomultiplier pulse treatment by the Antares detector front-end electronics indicates that this one is well adapted to the telescope needs. The pulses detailed analysis has allowed to obtain a time measurement precision lower than 0.6 ns and electronic noise and saturation have no relevant effect on the telescope performances. Relativistic monopoles generate a large amount of light, that leads to an effective area for the Antares detector of about 0.06 km{sup 2} for velocities {beta}{sub mon} = 0.6 and 0.35 km{sup 2} for velocities {beta}{sub mon} {approx} 1. Monopole track are well reconstructed and the velocity determination is made with an error lower than few percents, which represents a decisive result for the background rejection, caused by high energy muons with a velocity {beta}{sub {mu}} {approx} 1. The very dispersive light emission of monopoles below the Cherenkov limit, 0.6 {approx}< {beta}{sub mon} {<=} 0.74, via the delta-rays produced by ionisation, does not allow an accurate expecting signal and the bad reconstructed muons rejection must be improved. Above the Cherenkov limit, {beta}{sub mon} {>=} 0.8, bad reconstructed events can be rejected from the Cherenkov emission parametrisation. A magnetic monopole signal can then clearly be distinguished from background. (author)

  8. Neutrino Astronomy with the IceCube Observatory

    CERN Document Server

    Kappes, Alexander

    2012-01-01

    IceCube is the first representative of the km^3 class of neutrino telescopes and currently the most sensitive detector to high-energy neutrinos. Its main mission is to search for Galactic and extragalactic sources of high-energy neutrinos, but it is also an excellent detector for the investigation of a variety of other highly topical astrophysics and particle physics topics like supernovae, dark matter and neutrino oscillations. After an introduction to neutrino astronomy and neutrino telescopes, this article presents a selection of latest results from the IceCube neutrino detector with respect to searches for cosmic high-energy neutrino sources.

  9. Design and Development of an Acoustic Calibrator for Deep-Sea Neutrino Telescopes and First Search for Secluded Dark Matter with ANTARES

    OpenAIRE

    Adrián Martínez, Silvia

    2015-01-01

    [EN] Neutrino astronomy is a booming field in astroparticle physics. Due to the particular characteristics of neutrinos, these particles offer great advantages as probes for the study of the far and high-energy Universe. It is extensively accepted by the scientific community that a multi-messenger approach with the combination of information provided by neutrinos, photons and charged particles (cosmic rays) is possible to obtain a more complete image of the fundamental astrophysics processes ...

  10. The Class@Baikal project: studying recent tectonics, sedimentology and geochemistry on Lake Baikal

    Science.gov (United States)

    Akhmanov, Grigorii; Khlystov, Oleg; Mazzini, Adriano; Poort, Jeffrey; Giliazetdinova, Dina

    2016-04-01

    The Class@Baikal project - onboard training of the marine science students on the Baikal Lake - is successfully running for the second year following and carrying further the traditions laid out by the legendary UNESCO Training-through-Research (Floating University) Programme. Main areas studied during two Class@Baikal cruises are: "Bolshoy Mud Volcano" is located at the southern deep of the lake. Dense profiler lines grid has been acquired during the Class@Baikal-2015 expedition. A sedimentary core with mud breccia and massive gas hydrates was collected from the southern crater confirming its active status. "Krasny Yar seeps" are located within outer delta of the Selenga River. Side-scan sonar, profiler and multibeam data show that there is a well-expressed amphitheatre-shaped slump scour nearby. Slumped sediments and associated amphitheater scour were mapped. Data indicated that the seabed scour has steep walls. Propagation of the slumped sediments had been stopped by a seabed ridge of unknown origin. At the north the ridge is breached and the slumped material funnels out through a narrow opening spreading down the slope by gravity flows. "Novosibirsk" and "St.Petersburg mud volcanoes" are located along a fault. The mud volcanoes are located partially along its hanging wall and partially along its foot wall. Side-scan sonar and profiler data acquired during Class@Baikal-2015 expedition show that both mud volcanoes demonstrate evidence of a vertical material transport within feeder channels, which developed on both sides of the fault. The fault seems to be separating the mud volcano area into clusters. It is proposed that initially the fault did not have vertical offset but nevertheless initiated mud volcanic activity. The early mud volcanoes had usual symmetric morphology. The vertical offset of the fault took place later and this resulted in formation of the blocky asymmetry of the structures. "Khuray deep-water depositional system" study has begun in 2014 when

  11. Status of High-Energy Neutrino Astronomy

    CERN Document Server

    Kowalski, Marek

    2014-01-01

    With the recent discovery of high-energy neutrinos of extra-terrestrial origin by the IceCube neutrino observatory, neutrino-astronomy is entering a new era. This review will cover currently operating open water/ice neutrino telescopes, the latest evidence for a flux of extra-terrestrial neutrinos and current efforts in the search for steady and transient neutrino point sources. Generalised constraints on potential astrophysical sources are presented, allowing to focus the hunt for the sources of the observed high-energy neutrinos.

  12. Canine distemper virus in Lake Baikal seals (Phoca sibirica).

    OpenAIRE

    Mamaev, L.V.; Visser, Ilona; Belikov, S.I.; Denikina, N.N.; Harder, Timm; Goatley, L.; Rima, B.; Edginton, B.; Osterhaus, Albert; Barrett, Thomas,

    1996-01-01

    textabstractThe virus epizootic which resulted in significant mortality in Siberian seals (Phoca sibirica) in Lake Baikal during 1987/88 was caused by canine distemper virus. Sequence analysis of the virus glycoprotein genes revealed that it was most closely related to recent European field isolates of canine distemper virus. This paper presents evidence that the same virus continued to circulate in seals in Lake Baikal after the initial epizootic. Three out of 45 brain tissue samples collect...

  13. Neutrinos and dark matter

    International Nuclear Information System (INIS)

    Neutrinos could be key particles to unravel the nature of the dark matter of the Universe. On the one hand, sterile neutrinos in minimal extensions of the Standard Model are excellent dark matter candidates, producing potentially observable signals in the form of a line in the X-ray sky. On the other hand, the annihilation or the decay of dark matter particles produces, in many plausible dark matter scenarios, a neutrino flux that could be detected at neutrino telescopes, thus providing non-gravitational evidence for dark matter. More conservatively, the non-observation of a significant excess in the neutrino fluxes with respect to the expected astrophysical backgrounds can be used to constrain dark matter properties, such as the self-annihilation cross section, the scattering cross section with nucleons and the lifetime

  14. Neutrinos and dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Ibarra, Alejandro [Physik-Department T30d, Technische Universität München, James-Franck-Straße, 85748 Garching (Germany)

    2015-07-15

    Neutrinos could be key particles to unravel the nature of the dark matter of the Universe. On the one hand, sterile neutrinos in minimal extensions of the Standard Model are excellent dark matter candidates, producing potentially observable signals in the form of a line in the X-ray sky. On the other hand, the annihilation or the decay of dark matter particles produces, in many plausible dark matter scenarios, a neutrino flux that could be detected at neutrino telescopes, thus providing non-gravitational evidence for dark matter. More conservatively, the non-observation of a significant excess in the neutrino fluxes with respect to the expected astrophysical backgrounds can be used to constrain dark matter properties, such as the self-annihilation cross section, the scattering cross section with nucleons and the lifetime.

  15. Lectures on Neutrino Astronomy: Theory and Experiment

    OpenAIRE

    Halzen, F.

    1998-01-01

    1. Overview of neutrino astronomy: multidisciplinary science. 2. Cosmic accelerators: the highest energy cosmic rays. 3. Neutrino beam dumps: supermassive black holes and gamma ray bursts. 4. Neutrino telescopes: water and ice. 5. Indirect dark matter detection. 6. Towards kilometer-scale detectors.

  16. Neutrino astronomy: Present and future

    Indian Academy of Sciences (India)

    Thomas McCauley

    2006-10-01

    I briefly review the present and future status of the burgeoning field of neutrino astronomy. I outline the astrophysics and particle physics goals, design, and performance of the various current and proposed neutrino telescopes. Also described are present results and future expectations.

  17. Neutrinos and dark energy

    International Nuclear Information System (INIS)

    From the observed late-time acceleration of cosmic expansion arises the quest for the nature of Dark Energy. As has been widely discussed, the cosmic neutrino background naturally qualifies for a connection with the Dark Energy sector and as a result could play a key role for the origin of cosmic acceleration. In this thesis we explore various theoretical aspects and phenomenological consequences arising from non-standard neutrino interactions, which dynamically link the cosmic neutrino background and a slowly-evolving scalar field of the dark sector. In the considered scenario, known as Neutrino Dark Energy, the complex interplay between the neutrinos and the scalar field not only allows to explain cosmic acceleration, but intriguingly, as a distinct signature, also gives rise to dynamical, time-dependent neutrino masses. In a first analysis, we thoroughly investigate an astrophysical high energy neutrino process which is sensitive to neutrino masses. We work out, both semi-analytically and numerically, the generic clear-cut signatures arising from a possible time variation of neutrino masses which we compare to the corresponding results for constant neutrino masses. Finally, we demonstrate that even for the lowest possible neutrino mass scale, it is feasible for the radio telescope LOFAR to reveal a variation of neutrino masses and therefore to probe the nature of Dark Energy within the next decade. A second independent analysis deals with the recently challenged stability of Neutrino Dark Energy against the strong growth of hydrodynamic perturbations, driven by the new scalar force felt between neutrinos. Within the framework of linear cosmological perturbation theory, we derive the equation of motion of the neutrino perturbations in a model-independent way. This equation allows to deduce an analytical stability condition which translates into a comfortable upper bound on the scalar-neutrino coupling which is determined by the ratio of the densities in cold dark

  18. Neutrinos and dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Schrempp, L.

    2008-02-15

    From the observed late-time acceleration of cosmic expansion arises the quest for the nature of Dark Energy. As has been widely discussed, the cosmic neutrino background naturally qualifies for a connection with the Dark Energy sector and as a result could play a key role for the origin of cosmic acceleration. In this thesis we explore various theoretical aspects and phenomenological consequences arising from non-standard neutrino interactions, which dynamically link the cosmic neutrino background and a slowly-evolving scalar field of the dark sector. In the considered scenario, known as Neutrino Dark Energy, the complex interplay between the neutrinos and the scalar field not only allows to explain cosmic acceleration, but intriguingly, as a distinct signature, also gives rise to dynamical, time-dependent neutrino masses. In a first analysis, we thoroughly investigate an astrophysical high energy neutrino process which is sensitive to neutrino masses. We work out, both semi-analytically and numerically, the generic clear-cut signatures arising from a possible time variation of neutrino masses which we compare to the corresponding results for constant neutrino masses. Finally, we demonstrate that even for the lowest possible neutrino mass scale, it is feasible for the radio telescope LOFAR to reveal a variation of neutrino masses and therefore to probe the nature of Dark Energy within the next decade. A second independent analysis deals with the recently challenged stability of Neutrino Dark Energy against the strong growth of hydrodynamic perturbations, driven by the new scalar force felt between neutrinos. Within the framework of linear cosmological perturbation theory, we derive the equation of motion of the neutrino perturbations in a model-independent way. This equation allows to deduce an analytical stability condition which translates into a comfortable upper bound on the scalar-neutrino coupling which is determined by the ratio of the densities in cold dark

  19. Which blazars are neutrino loud?

    International Nuclear Information System (INIS)

    Protons accelerated in the cores of active galactic nuclei can effectively produce neutrinos only if the soft radiation background in the core is sufficiently high. We find restrictions on the spectral properties and luminosity of blazars under which they can be strong neutrino sources. We analyze the possibility that the neutrino flux is highly beamed along the rotation axis of the central black hole. The enhancement of the neutrino flux compared to the GeV γ-ray flux from a given source makes the detection of neutrino point sources more probable. At the same time the smaller open angle reduces the number of possible neutrino-loud blazars compared to the number of γ-ray loud ones. We present a table of 15 blazars which are the most likely candidates for the detection by future neutrino telescopes

  20. Reconstruction of Atmospheric Neutrinos in Antares

    OpenAIRE

    Heijboer, Aart; Collaboration, for the ANTARES

    2009-01-01

    In May 2008, the Antares neutrino telescope was completed at 2.5 km depth in the Mediterranean Sea; data taking has been going on since. A prerequisite for neutrino astronomy is an accurate reconstruction of the neutrino events, as well as a detailed understanding of the atmospheric muon and neutrino backgrounds. Several methods have been developed to confront the challenges of muon reconstruction in the sea water environment, which are posed by e.g. backgrounds due to radioactivity and biolu...

  1. Prompt neutrino flux in the atmosphere revisited

    CERN Document Server

    Garzelli, M V; Sigl, G

    2016-01-01

    Prompt neutrino fluxes due to the interactions of high-energy cosmic rays with the Earth's atmosphere are backgrounds in the search for high-energy neutrinos of galactic or extra-galactic origin performed by Very Large Volume Neutrino Telescopes. We summarize our predictions for prompt neutrinos, showing their basic features as emerging from the calculation in a QCD framework capable of describing recent charm data from the Large Hadron Collider.

  2. Reconstruction of Atmospheric Neutrinos in Antares

    CERN Document Server

    Heijboer, Aart

    2009-01-01

    In May 2008, the Antares neutrino telescope was completed at 2.5 km depth in the Mediterranean Sea; data taking has been going on since. A prerequisite for neutrino astronomy is an accurate reconstruction of the neutrino events, as well as a detailed understanding of the atmospheric muon and neutrino backgrounds. Several methods have been developed to confront the challenges of muon reconstruction in the sea water environment, which are posed by e.g. backgrounds due to radioactivity and bioluminescence. I will discuss the techniques that allowed Antares to confidently identify its first neutrino events, as well as recent results on the measurement of atmospheric neutrinos.

  3. Cosmic Neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Quigg, Chris; /Fermilab /CERN

    2008-02-01

    I recall the place of neutrinos in the electroweak theory and summarize what we know about neutrino mass and flavor change. I next review the essential characteristics expected for relic neutrinos and survey what we can say about the neutrino contribution to the dark matter of the Universe. Then I discuss the standard-model interactions of ultrahigh-energy neutrinos, paying attention to the consequences of neutrino oscillations, and illustrate a few topics of interest to neutrino observatories. I conclude with short comments on the remote possibility of detecting relic neutrinos through annihilations of ultrahigh-energy neutrinos at the Z resonance.

  4. Neutrino oscillations

    International Nuclear Information System (INIS)

    Lecture notes on neutrino oscillations are given, including some background about neutrino mixing and masses, descriptions of flavour oscillations and experimental attempts to detect them, matter effects and neutrino-antineutrino oscillations. (U.K.)

  5. Neutrinos at CERN

    International Nuclear Information System (INIS)

    CERN's long and distinguished neutrino tradition began in 1958 at the then new 500 MeV synchrocyclotron (SC) with the first observation of the decay of a charged pion into an electron and a neutrino. At that time, the first ideas on the special (vector/axial vector) structure of the weak interactions had been put forward by Feynman and Gell-Mann and by Marshak and Sudarshan, but the continual non-observation of that charged pion decay was holding up progress. This decay is only one part in ten thousand, and is masked by the dominant muon-neutrino channel. A special telescope was built to pick up the high energy electrons from the pion decay. In 1962 came another SC neutrino success, with the first measurement of the decay of a charged pion into a neutral one, with emission of an electron and a neutrino. Meanwhile the main thrust of CERN's neutrino effort was taking shape at the PS. By the close of 1960, CERN had decided to attack neutrino physics using several detectors - a 1m heavy liquid bubble chamber from Andre Lagarrigue's team in Paris, a CERN 1 m heavy liquid bubble chamber, and a hybrid chamber/counter from a group led by Helmut Faissner

  6. Hydrocarbon gases in Baikal bottom sediments: preliminary results of the Second international Class@Baikal cruise

    Science.gov (United States)

    Vidischeva, Olesya; Akhmanov, Grigorii; Khlystov, Oleg; Giliazetdinova, Dina

    2016-04-01

    In July 2015 the research cruise in the waters of Lake Baikal was carried out onboard RV "G.Yu. Vereshchagin". The expedition was organized by Lomonosov Moscow State University and Limnological Institute of Russian Academy of Sciences. The main purpose of the expedition was to study the modern sedimentation and natural geological processes on the bottom of Lake Baikal. One of the tasks of the cruise was to conduct gas-geochemical survey of bottom sediments. The samples of hydrocarbon gases were collected during the cruise. Subsequent study of the composition and origin of the sampled gas was carried out in the laboratories of Moscow State University. 708 samples from 61 bottom sampling stations were studied. Analyzed samples are from seven different areas located in the southern and central depressions of the lake: (1) "Goloustnoe" seepage area; (2) Bolshoy mud volcano; (3) Elovskiy Area; (4) "Krasny Yar" Seep; (5) "St. Petersburg" Seep; (6) Khuray deep-water depositional system; and (7) Kukuy Griva (Ridge) area. The results of molecular composition analysis indicate that hydrocarbon gases in bottom sediments from almost all sampling stations are represented mostly by pure methane. Ethane was detected only in some places within "Krasny Yar", "Goloustnoe" and "St. Petersburg" seepage areas. The highest concentrations of methane were registered in the sediments from the "Krasny Yar" area - 14 457 μl/l (station TTR-BL15-146G) - and from the "St. Petersburg" area - 13 684 μl/l (station TTR-BL15-125G). The sediments with high concentrations of gases were sampled from active fluid discharge areas, which also can be well distinguished on the seismic profiles. Gas hydrates were obtained in the areas of "Krasny Yar", "Goloustnoe", and "St. Petersburg" seeps and in the area of the Bolshoy mud volcano. Isotopic composition δ13C(CH4) was studied for 100 samples of hydrocarbon gases collected in areas with high methane concentration in bottom sediments. The average value is

  7. Neutrino physics

    International Nuclear Information System (INIS)

    The fundamental properties of neutrinos are reviewed in these lectures. The first part is focused on the basic characteristics of neutrinos in the Standard Model and how neutrinos are detected. Neutrino masses and oscillations are introduced and a summary of the most important experimental results on neutrino oscillations to date is provided. Then, present and future experimental proposals are discussed, including new precision reactor and accelerator experiments. Finally, different approaches for measuring the neutrino mass and the nature (Majorana or Dirac), of neutrinos are reviewed. The detection of neutrinos from supernovae explosions and the information that this measurement can provide are also summarized at the end. (author)

  8. Neutrino Physics

    CERN Document Server

    Gil-Botella, I

    2013-01-01

    The fundamental properties of neutrinos are reviewed in these lectures. The first part is focused on the basic characteristics of neutrinos in the Standard Model and how neutrinos are detected. Neutrino masses and oscillations are introduced and a summary of the most important experimental results on neutrino oscillations to date is provided. Then, present and future experimental proposals are discussed, including new precision reactor and accelerator experiments. Finally, different approaches for measuring the neutrino mass and the nature (Majorana or Dirac) of neutrinos are reviewed. The detection of neutrinos from supernovae explosions and the information that this measurement can provide are also summarized at the end.

  9. Neutrino cosmology

    International Nuclear Information System (INIS)

    These lectures offer a self-contained review of the role of neutrinos in cosmology. The first part deals with the question 'What is a neutrino.' and describes in a historical context the theoretical ideas and experimental discoveries related to the different types of neutrinos and their properties. The basic differences between the Dirac neutrino and the Majorana neutrino are pointed out and the evidence for different neutrino 'flavours', neutrino mass, and neutrino oscillations is discussed. The second part summarizes current views on cosmology, particularly as they are affected by recent theoretical and experimental advances in high-energy particle physics. Finally, the close relationship between neutrino physics and cosmology is brought out in more detail, to show how cosmological constraints can limit the various theoretical possibilities for neutrinos and, more particularly, how increasing knowledge of neutrino properties can contribute to our understanding of the origin, history, and future of the Universe. The level is that of the beginning graduate student. (orig.)

  10. Elements of the iron and manganese cycles in Lake Baikal

    Science.gov (United States)

    Granina, L.Z.; Callender, E.

    2007-01-01

    Using data obtained in recent years, we considered the external mass balance and characteristics of internal iron and manganese cycles in Lake Baikal (biological uptake, remineralization, sedimentary and diffusive fluxes, accumulation in sediments, time of renewal, etc.). Some previous results and common concepts were critically reevaluated. ?? Pleiades Publishing, Ltd. 2007.

  11. Canine distemper virus in Lake Baikal seals (Phoca sibirica).

    NARCIS (Netherlands)

    L.V. Mamaev; I.K.G. Visser (Ilona); S.I. Belikov; N.N. Denikina; T.C. Harder (Timm); L. Goatley; B. Rima; B. Edginton; A.D.M.E. Osterhaus (Albert); T. Barrett (Thomas)

    1996-01-01

    textabstractThe virus epizootic which resulted in significant mortality in Siberian seals (Phoca sibirica) in Lake Baikal during 1987/88 was caused by canine distemper virus. Sequence analysis of the virus glycoprotein genes revealed that it was most closely related to recent European field isolates

  12. Determinations of flavor ratios and flavor transitions of astrophysical neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Guey-Lin; Liu, Tsung-Che; Lai, Kwang-Chang [Institute of Physics, National Chiao Tung University, Hsinchu, Taiwan (China); Huang, Minghuey [National United University, Lianda, Miaoli City, Miaoli County 360, Taiwan (China)

    2010-07-01

    We argue that effective flavor discrimination in neutrino telescopes is the key to probe the flavor ratios of astrophysical neutrinos at the source [1,3] and flavor transition mechanisms [2] of these neutrinos during their propagations from the source to the Earth. We first discuss how well one can reconstruct the flavor ratios of astrophysical neutrinos at the source, given achievable efficiencies of neutrino telescopes in flavor discriminations and expected understandings of neutrino mixing parameters in the future. It will be shown that the signatures for tau neutrinos are energy dependent, hence the methods for flavor reconstruction depend on neutrino energies as well. We then discuss how to probe flavor transition mechanisms of propagating astrophysical neutrinos. In this regard, we propose a model independent parametrization for neutrino flavor transitions, with the neutrino oscillation as a special case. We illustrate how one can determine parameters of this parameterization by neutrino telescope measurements. The situation with non-conservation of neutrino flux during neutrino propagations (such as that caused by neutrino decays) is also discussed. Refs.: [1] T. C. Liu, M. A. Huang and G. L. Lin, arXiv: 1004.5154. [2] K. C. Lai, G. L. Lin and T. C. Liu, arXiv: 1004.1583. [3] K. C. Lai, G. L. Lin and T. C. Liu, Phys. Rev. D80, 103005 (2009). (authors)

  13. Software for neutrino acoustic detection and localization

    Science.gov (United States)

    Bouhadef, B.

    2009-06-01

    The evidence of the existing of UHE (E>10eV) cosmic rays and its possible connection to UHE neutrino suggests the building of an acoustic telescope for neutrino, exploiting thermo-acoustic effect. We present software for neutrino acoustic signal detection and localization. The main points discussed here are the sea noise model, the determination of time differences of arrival (TDOA) between hydrophones signals, the source localization algorithm, and the telescope geometry effect. The effect of TDOAs errors and telescope geometry on the localization accuracy is also discussed.

  14. Software for neutrino acoustic detection and localization

    International Nuclear Information System (INIS)

    The evidence of the existing of UHE (E>1019eV) cosmic rays and its possible connection to UHE neutrino suggests the building of an acoustic telescope for neutrino, exploiting thermo-acoustic effect. We present software for neutrino acoustic signal detection and localization. The main points discussed here are the sea noise model, the determination of time differences of arrival (TDOA) between hydrophones signals, the source localization algorithm, and the telescope geometry effect. The effect of TDOAs errors and telescope geometry on the localization accuracy is also discussed.

  15. Software for neutrino acoustic detection and localization

    Energy Technology Data Exchange (ETDEWEB)

    Bouhadef, B. [INFN Sezione Pisa, Polo Fibonacci, Largo Bruno Pontecorvo 3, 56127 Pisa (Italy); Dipartimento di Fisica, ' E. Fermi' University of Pisa, Largo Pontecorvo 3, 56127 Pisa (Italy)], E-mail: bouhadef@df.unipi.it

    2009-06-01

    The evidence of the existing of UHE (E>10{sup 19}eV) cosmic rays and its possible connection to UHE neutrino suggests the building of an acoustic telescope for neutrino, exploiting thermo-acoustic effect. We present software for neutrino acoustic signal detection and localization. The main points discussed here are the sea noise model, the determination of time differences of arrival (TDOA) between hydrophones signals, the source localization algorithm, and the telescope geometry effect. The effect of TDOAs errors and telescope geometry on the localization accuracy is also discussed.

  16. Neutrino Physics

    Science.gov (United States)

    Lederman, L. M.

    1963-01-09

    The prediction and verification of the neutrino are reviewed, together with the V A theory for its interactions (particularly the difficulties with the apparent existence of two neutrinos and the high energy cross section). The Brookhaven experiment confirming the existence of two neutrinos and the cross section increase with momentum is then described, and future neutrino experiments are considered. (D.C.W.)

  17. Neutrino Masses

    CERN Document Server

    Weinheimer, Christian

    2013-01-01

    The various experiments on neutrino oscillation evidenced that neutrinos have indeed non-zero masses but cannot tell us the absolute neutrino mass scale. This scale of neutrino masses is very important for understanding the evolution and the structure formation of the universe as well as for nuclear and particle physics beyond the present Standard Model. Complementary to deducing constraints on the sum of all neutrino masses from cosmological observations two different methods to determine the neutrino mass scale in the laboratory are pursued: the search for neutrinoless double $\\beta$-decay and the direct neutrino mass search by investigating single $\\beta$-decays or electron captures. The former method is not only sensitive to neutrino masses but also probes the Majorana character of neutrinos and thus lepton number violation with high sensitivity. Currently quite a few experiments with different techniques are being constructed, commissioned or are even running, which aim for a sensitivity on the neutrino ...

  18. Neutrino physics

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Deborah A.; /Fermilab

    2008-09-01

    The field of neutrino physics has expanded greatly in recent years with the discovery that neutrinos change flavor and therefore have mass. Although there are many neutrino physics results since the last DIS workshop, these proceedings concentrate on recent neutrino physics results that either add to or depend on the understanding of Deep Inelastic Scattering. They also describe the short and longer term future of neutrino DIS experiments.

  19. Lake-catchment systems and sediment information in Baikal district (Siberia and Mongolia)

    Institute of Scientific and Technical Information of China (English)

    KASHIWAYA Kenji

    2011-01-01

    Sediment information is closely related to a lake-catchment system. Lake Baikal and Lake Khuvsgul in the Baikal depression have shown different sedimentary trends during the past 800 ka; the sediment discharge (sedimentation rate) in Baikal basically followed the global climatic change, whereas that in Khuvsgul did not always do so. An elementary mathematical model is used to explain the difference, considering changes in the catchment area and water level. Numerical calculations based on the model suggest that sedimentary conditions are closely related to changes in the water level and erosion area, which probably had a signiifcant inlfuence on Lake Khuvsgul and little inlfuence on Lake Baikal.

  20. Atmospheric neutrinos and neutrino oscillations

    International Nuclear Information System (INIS)

    The results on the composition of atmospheric neutrinos interacting in underground detectors and on the rate of atmospheric muon neutrino interactions in the earth surrounding the detectors are reviewed. So far, systematic errors on the neutrino flux and on the electrons and muons neutrino interaction identifications are not yet reliable enough to prove that atmospheric neutrinos oscillate before being detected. (author) 22 refs., 5 figs

  1. GRB neutrino detection via time profile stacking

    CERN Document Server

    van Eijndhoven, Nick

    2007-01-01

    A method is presented for the identification of high-energy neutrinos from gamma ray bursts by means of a large-scale neutrino telescope. The procedure makes use of a time profile stacking technique of observed neutrino induced signals in correlation with satellite observations. By selecting a rather wide time window, a possible difference between the arrival times of the gamma and neutrino signals may also be identified. This might provide insight in the particle production processes at the source. By means of a toy model it will be demonstrated that a statistically significant signal can be obtained with a km$^{3}$-scale neutrino telescope on a sample of 500 gamma ray bursts for a signal rate as low as 1 detectable neutrino for 3% of the bursts.

  2. Reactor Neutrinos

    CERN Document Server

    Lasserre, T; Lasserre, Thierry; Sobel, Henry W.

    2005-01-01

    We review the status and the results of reactor neutrino experiments, that toe the cutting edge of neutrino research. Short baseline experiments have provided the measurement of the reactor neutrino spectrum, and are still searching for important phenomena such as the neutrino magnetic moment. They could open the door to the measurement of coherent neutrino scattering in a near future. Middle and long baseline oscillation experiments at Chooz and KamLAND have played a relevant role in neutrino oscillation physics in the last years. It is now widely accepted that a new middle baseline disappearance reactor neutrino experiment with multiple detectors could provide a clean measurement of the last undetermined neutrino mixing angle theta13. We conclude by opening on possible use of neutrinos for Society: NonProliferation of Nuclear materials and Geophysics.

  3. Searches for Sterile Neutrinos with the IceCube Detector

    CERN Document Server

    ,

    2016-01-01

    The IceCube neutrino telescope at the South Pole has measured the atmospheric muon neutrino spectrum as a function of zenith angle and energy in the approximate 320 GeV to 20 TeV range, to search for the oscillation signatures of light sterile neutrinos. No evidence for anomalous $\

  4. Neutrino astrophysics

    International Nuclear Information System (INIS)

    A general overview of neutrino physics and astrophysics is given, starting with a historical account of the development of our understanding of neutrinos and how they helped to unravel the structure of the Standard Model. We discuss why it is so important to establish if neutrinos are massive and introduce the main scenarios to provide them a mass. The present bounds and the positive indications in favor of non-zero neutrino masses are discussed, including the recent results on atmospheric and solar neutrinos. The major role that neutrinos play in astrophysics and cosmology is illustrated. (author)

  5. Organic matter degradation in Lake Baikal - a sediment trap study

    DEFF Research Database (Denmark)

    Schubert, Carsten J.; Niggemann, Jutta; Lomstein, Bente Aagaard;

    Lake Baikal offers a unique opportunity to study water column processes in a freshwater system with conditions similar to oceanic systems, e. g. great water depth and oxygenated water column. Investigations on sediment trap material provide information on the early stages of organic matter...... degradation in the water column. Sediment trap material from 18 different water depths has been analysed for bulk organic matter parameters, including organic carbon and nitrogen isotopic compositions, chlorin concentrations, and Chlorin Indices [1]. Detailed studies focused on the concentration and...... composition of amino acids and fatty acids. The extent of organic matter degradation in the water column of Lake Baikal is reflected in the fluxes of total organic carbon, chlorins, amino acids, and fatty acids at different water depths. In line with earlier studies in marine systems, the labile compounds...

  6. Uranium anomalies in deep-water sediments of Lake Baikal

    International Nuclear Information System (INIS)

    On the base of data of the element analysis of the Lake Baikal water and deep-water sediments are investigated the causes of uranium anomalous content in terrigenous pelitic silts. It is established that the anomaly cause is uranium accumulation by silt diatom aches component due to its complexation with humic acids. An attempt is made to carry out the uranium material balance with account for uranium coming with river water and sedimentation with diatom aceous slits

  7. Tau neutrinos underground: Signals of νμ→ντ oscillations with extragalactic neutrinos

    International Nuclear Information System (INIS)

    The appearance of high energy tau neutrinos due to νμ→ντ oscillations of extragalactic neutrinos can be observed by measuring the neutrino induced upward hadronic and electromagnetic showers and upward muons. We evaluate quantitatively the tau neutrino regeneration in the Earth for a variety of extragalactic neutrino fluxes. Charged-current interactions of the upward tau neutrinos below and in the detector, and the subsequent tau decay, create muons or hadronic and electromagnetic showers. The background for these events are muon neutrino and electron neutrino charged-current and neutral-current interactions, where in addition to extragalactic neutrinos, we consider atmospheric neutrinos. We find significant signal to background ratios for the hadronic combined with electromagnetic showers with energies above 10--100 TeV initiated by the extragalactic neutrinos. We show that the tau neutrinos from point sources also have the potential for discovery above a 1 TeV threshold. A kilometer-size neutrino telescope has a very good chance of detecting the appearance of tau neutrinos when both muon and hadronic combined with electromagnetic showers are detected

  8. Strontium hydrogeochemistry of thermal groundwaters from Baikal and Xinzhou

    Institute of Scientific and Technical Information of China (English)

    王焰新; 沈照理

    2001-01-01

    This paper reports our work on the strontium hydrogeochemistry of thermal groundwa-ters in the Baikal Rift System (BRS) in Russia and Mongolia and the Xinzhou basin of the Shanxi Rift System (SRS) in northern China. Though similar in geological background, groundwaters from the BRS and the Xinzhou basin have different strontium isotope compositions. Both the strontium contents and the 87Sr/86Sr ratios of thermal water samples from Xinzhou are higher than those of most samples from Baikal. The major reason is the difference in hostrock geochemistry. The hos-trocks of the Xinzhou waters are Archaean metamorphic rocks, while those of the Baikal waters except the Kejielikov spring are Proterozoic or younger rocks. In the study areas, cold groundwaters usually show lower 87Sr/86Sr ratio due to shorter water-rock interaction history and lower equilibration degree. Strontium hydrogeochemistry often provides important information about mixing processes. Ca/Sr ratio can be used as an important hydrogeochemical pa

  9. Neutrino masses

    CERN Document Server

    Buccella, F

    2004-01-01

    By requiring the lower limit for the lightest right-handed neutrino mass, obtained in the baryogenesis from leptogenesis scenario, and a Dirac neutrino mass matrix similar to the up-quark mass matrix we predict small values for the $\

  10. Neutrino astronomy

    International Nuclear Information System (INIS)

    In recent years, there has been considerable discussion on the field called neutrino astronomy which represents exciting prospect in that it deals with the radiations which are distinct from electromagnetic spectra. Because of the unique, enormously long interaction mean free path of neutrinos, this field can in principle give extremely valuable complementary information about the universe, in particular about the conditions in the core of the sun and the energy balance and extent of the galaxy. Remarkable difference is observed when outlining of the development of neutrino astronomy is attempted in a manner similar to that for radio astronomy. The development on solar neutrinos, calculation of solar neutrino flux, solar neutrino search experiments, efforts to resolve the discrepancy between theory and experiment concerning the neutrinos from the sun, chemistry consideration, nuclear physics problems, astrophysical calculation, neutrino physics and other physical accomplishments are reviewed in the report. (Iwase, T.)

  11. Oscillating neutrinos

    International Nuclear Information System (INIS)

    After a general introduction into the mixing of muon and electron neutrinos due to a possible mass difference between these particles some experiments for the study of neutrino oscillations are described. (HSI).

  12. Neutrino Astrophysics

    OpenAIRE

    Haxton, W. C.

    2000-01-01

    A general overview of neutrino physics and astrophysics is given, starting with a historical account of the development of our understanding of neutrinos and how they helped to unravel the structure of the Standard Model. We discuss why it is so important to establish if neutrinos are massive and introduce the main scenarios to provide them a mass. The present bounds and the positive indications in favor of non-zero neutrino masses are discussed, including the recent results on atmospheric an...

  13. Neutrino Physics

    CERN Document Server

    Romanino, Andrea

    2012-01-01

    These lectures aim at providing a pedagogical overview of neutrino physics. We will mostly deal with standard neutrinos, the ones that are part of the Standard Model of particle physics, and with their standard dynamics, which is enough to understand in a coherent picture most of the rich data available. After introducing the basic theoretical framework, we will illustrate the experimental determination of the neutrino parameters and their theoretical implications, in particular for the origin of neutrino masses.

  14. Neutrino Physics

    OpenAIRE

    Langacker, Paul; Erler, Jens; Peinado, Eduardo

    2005-01-01

    The theoretical and experimental bases of neutrino mass and mixing are reviewed. A brief chronological evolution of the weak interactions, the electroweak Standard Model, and neutrinos is presented. Dirac and Majorana mass terms are explained as well as models such as the seesaw mechanism. Schemes for two, three and four neutrino mixings are presented.

  15. Neutrino properties

    CERN Document Server

    Valle, José W F

    1996-01-01

    A brief sketch is made of the present observational status of neutrino properties, with emphasis on the hints from solar and atmospheric neutrinos, as well as cosmological data on the amplitude of primordial density fluctuations. Implications of neutrino mass in particle accelerators, astrophysics and cosmology are discussed.

  16. Neutrino Radar

    CERN Document Server

    Panigrahi, P K

    2002-01-01

    We point out that with improving our present knowledge of experimental neutrino physics it will be possible to locate nuclear powered vehicles like submarines, aircraft carriers and UFOs and detect nuclear testing. Since neutrinos cannot be shielded, it will not be possible to escape these detection. In these detectors it will also be possible to perform neutrino oscillation experiments during any nuclear testing.

  17. Measurements of group velocity of light in the lake Baikal water

    CERN Document Server

    Lubsandorzhiev, B K; Vasilev, R V; Vyatchin, Y E

    2003-01-01

    The results of direct measurements of group velocity of light in the lake Baikal water at the depth of 1100 m are presented. The lake Baikal water dispersion has been measured at three wavelengths: 370 nm, 470 nm and 525 nm. The results are in a rather good agreement with theoretical predictions.

  18. Solar neutrinos

    International Nuclear Information System (INIS)

    The problem with solar neutrinos is that there seem to be too few of them, at least near the top end of the spectrum, since the 37Cl detector finds only about 35% of the standard predicted flux. Various kinds of explanation have been offered: (a) the standard solar model is wrong, (b) neutrinos decay, (c) neutrinos have magnetic moments, (d) neutrinos oscillate. The paper surveys developments in each of these areas, especially the possible enhancement of neutrino oscillations by matter effects and adiabatic level crossing. The prospects for further independent experiments are also discussed. (author)

  19. Solar neutrinos and neutrino physics

    Science.gov (United States)

    Maltoni, Michele; Smirnov, Alexei Yu.

    2016-04-01

    Solar neutrino studies triggered and largely motivated the major developments in neutrino physics in the last 50 years. The theory of neutrino propagation in different media with matter and fields has been elaborated. It includes oscillations in vacuum and matter, resonance flavor conversion and resonance oscillations, spin and spin-flavor precession, etc. LMA MSW has been established as the true solution of the solar neutrino problem. Parameters θ_{12} and Δ m 2 21 have been measured; θ_{13} extracted from the solar data is in agreement with results from reactor experiments. Solar neutrino studies provide a sensitive way to test theory of neutrino oscillations and conversion. Characterized by long baseline, huge fluxes and low energies they are a powerful set-up to search for new physics beyond the standard 3 ν paradigm: new neutrino states, sterile neutrinos, non-standard neutrino interactions, effects of violation of fundamental symmetries, new dynamics of neutrino propagation, probes of space and time. These searches allow us to get stringent, and in some cases unique bounds on new physics. We summarize the results on physics of propagation, neutrino properties and physics beyond the standard model obtained from studies of solar neutrinos.

  20. NaNet3: The on-shore readout and slow-control board for the KM3NeT-Italia underwater neutrino telescope

    Science.gov (United States)

    Ammendola, R.; Biagioni, A.; Frezza, O.; Lo Cicero, F.; Martinelli, M.; Paolucci, P. S.; Pontisso, L.; Simula, F.; Vicini, P.; Ameli, F.; Nicolau, C. A.; Pastorelli, E.; Simeone, F.; Tosoratto, L.; Lonardo, A.

    2016-04-01

    The KM3NeT-Italia underwater neutrino detection unit, the tower, consists of 14 floors. Each floor supports 6 Optical Modules containing front-end electronics needed to digitize the PMT signal, format and transmit the data and 2 hydrophones that reconstruct in real-time the position of Optical Modules, for a maximum tower throughput of more than 600 MB/s. All floor data are collected by the Floor Control Module (FCM) board and transmitted by optical bidirectional virtual point-to-point connections to the on-shore laboratory, each FCM needing an on-shore counterpart as communication endpoint. In this contribution we present NaNet3, an on-shore readout board based on Altera Stratix V GX FPGA able to manage multiple FCM data channels with a capability of 800 Mbps each. The design is a NaNet customization for the KM3NeT-Italia experiment, adding support in its I/O interface for a synchronous link protocol with deterministic latency at physical level and for a Time Division Multiplexing protocol at data level.

  1. NaNet3: The on-shore readout and slow-control board for the KM3NeT-Italia underwater neutrino telescope

    Directory of Open Access Journals (Sweden)

    Ammendola R.

    2016-01-01

    Full Text Available The KM3NeT-Italia underwater neutrino detection unit, the tower, consists of 14 floors. Each floor supports 6 Optical Modules containing front-end electronics needed to digitize the PMT signal, format and transmit the data and 2 hydrophones that reconstruct in real-time the position of Optical Modules, for a maximum tower throughput of more than 600 MB/s. All floor data are collected by the Floor Control Module (FCM board and transmitted by optical bidirectional virtual point-to-point connections to the on-shore laboratory, each FCM needing an on-shore counterpart as communication endpoint. In this contribution we present NaNet3, an on-shore readout board based on Altera Stratix V GX FPGA able to manage multiple FCM data channels with a capability of 800 Mbps each. The design is a NaNet customization for the KM3NeT-Italia experiment, adding support in its I/O interface for a synchronous link protocol with deterministic latency at physical level and for a Time Division Multiplexing protocol at data level.

  2. Neutrino Factory

    CERN Document Server

    Bogomilov, M; Tsenov, R; Dracos, M; Bonesini, M; Palladino, V; Tortora, L; Mori, Y; Planche, T; Lagrange, J  B; Kuno, Y; Benedetto, E; Efthymiopoulos, I; Garoby, R; Gilardoini, S; Martini, M; Wildner, E; Prior, G; Blondel, A; Karadzhow, Y; Ellis, M; Kyberd, P; Bayes, R; Laing, A; Soler, F  J  P; Alekou, A; Apollonio, M; Aslaninejad, M; Bontoiu, C; Jenner, L  J; Kurup, A; Long, K; Pasternak, J; Zarrebini, A; Poslimski, J; Blackmore, V; Cobb, J; Tunnell, C; Andreopoulos, C; Bennett, J  R  J; Brooks, S; Caretta, O; Davenne, T; Densham, C; Edgecock, T  R; Fitton, M; Kelliher, D; Loveridge, P; McFarland, A; Machida, S; Prior, C; Rees, G; Rogers, C; Rooney, M; Thomason, J; Wilcox, D; Booth, C; Skoro, G; Back, J  J; Harrison, P; Berg, J  S; Fernow, R; Gallardo, J  C; Gupta, R; Kirk, H; Simos, N; Stratakis, D; Souchlas, N; Witte, H; Bross, A; Geer, S; Johnstone, C; Mokhov, N; Neuffer, D; Popovic, M; Strait, J; Striganov, S; Morfín, J  G; Wands, R; Snopok, P; Bogacz, S  A; Morozov, V; Roblin, Y; Cline, D; Ding, X; Bromberg, C; Hart, T; Abrams, R  J; Ankenbrandt, C  M; Beard, K  B; Cummings, M  A  C; Flanagan, G; Johnson, R  P; Roberts, T  J; Yoshikawa, C  Y; Graves, V  B; McDonald, K  T; Coney, L; Hanson, G

    2014-01-01

    The properties of the neutrino provide a unique window on physics beyond that described by the standard model. The study of subleading effects in neutrino oscillations, and the race to discover CP-invariance violation in the lepton sector, has begun with the recent discovery that $\\theta_{13} > 0$. The measured value of $\\theta_{13}$ is large, emphasizing the need for a facility at which the systematic uncertainties can be reduced to the percent level. The neutrino factory, in which intense neutrino beams are produced from the decay of muons, has been shown to outperform all realistic alternatives and to be capable of making measurements of the requisite precision. Its unique discovery potential arises from the fact that only at the neutrino factory is it practical to produce high-energy electron (anti)neutrino beams of the required intensity. This paper presents the conceptual design of the neutrino factory accelerator facility developed by the European Commission Framework Programme 7 EURO$\

  3. Neutrino masses

    Energy Technology Data Exchange (ETDEWEB)

    Weinheimer, Christian [Institut fuer Kernphysik, Westfaelische Wilhelms-Universitaet Muenster, Wilhelm-Klemm-Str. 9, D-48149 Muenster (Germany); Zuber, Kai [Institut fuer Kern- und Teilchenphysik, Technische Universitaet Dresden, Zellescher Weg 19, D-01069 Dresden (Germany)

    2013-09-15

    The various experiments on neutrino oscillation evidence that neutrinos have indeed non-zero masses but cannot provide the absolute neutrino mass scale. This scale of neutrino masses is very important for understanding the evolution and the structure formation of the universe as well as for nuclear and particle physics beyond the present Standard Model. Complementary to deducing constraints on the sum of all neutrino masses from cosmological observations, two different methods to determine the neutrino mass scale in the laboratory are pursued: the search for neutrinoless double {beta}-decay and the direct neutrino mass search by investigating single {beta}-decays or electron captures. The former method is not only sensitive to neutrino masses but also probes the Majorana character of neutrinos and thus lepton number violation with high sensitivity. Currently quite a few experiments using different techniques are being constructed, commissioned, or are even running, which aim for a sensitivity on the neutrino mass of O(100) meV. The principal methods and these experiments are discussed in this short review. (copyright 2013 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Neutrino sunshine

    International Nuclear Information System (INIS)

    Full text: On 10 June 1992, at the Neutrino 92 meeting in Grenada, Spain, Till Kirsten of Heidelberg's Max Planck Institute reported that neutrinos from sunshine had been seen. Most of the energy pumped out by the Sun comes from the fusion of protons into alpha particles, a process which also liberates neutrinos. While it takes about a million years for radiant energy formed in the deep interior of the Sun to fight its way to the surface, the highly penetrating neutrinos emerge almost immediately. It was in 1970 that Ray Davis and his team began taking data with a tank containing 615 tons of perchloroethylene (dry cleaning fluid) 1500 metres underground in the Homestake gold mine, South Dakota. The observed signal is consistently smaller than what is expected. This 'solar neutrino problem' was confirmed by the Kamioka mine experiment in Japan, looking at the Cherenkov light released by neutrino interactions in some 700 tons of water. However these experiments are only sensitive to a tiny high energy tail of the solar neutrino spectrum, and to understand what is going on needs measurements of the primary neutrinos from proton fusion. To get at these neutrinos, two large new detectors, using gallium and sensitive to these lower energy particles, have been built and commissioned in the past few years. The detectors are SAGE ('Soviet' American Gallium Experiment) in the Baksan Neutrino Observatory in the Caucasus, and Gallex, a team from France, Germany, Israel, Italy and the US in the Italian Gran Sasso underground Laboratory. At Grenada, Kirsten reported unmistakable signs of solar neutrinos of proton origin recorded in Gallex. SAGE and Gallex do not yet have enough data to unambiguously fix the level of primary solar neutrinos reaching the Earth, and the interpretation of the interim results tends to be subjective. However after 23 years of conditioning through watching the solar neutrinos' high energy tail, the prospect of a neutrino

  5. Observation of high energy atmospheric neutrinos with the Antarctic muon and neutrino detector array

    International Nuclear Information System (INIS)

    The Antarctic muon and neutrino detector array (AMANDA) began collecting data with ten strings in 1997. Results from the first year of operation are presented. Neutrinos coming through the Earth from the Northern Hemisphere are identified by secondary muons moving upward through the array. Cosmic rays in the atmosphere generate a background of downward moving muons, which are about 106 times more abundant than the upward moving muons. Over 130 days of exposure, we observed a total of about 300 neutrino events. In the same period, a background of 1.05x109 cosmic ray muon events was recorded. The observed neutrino flux is consistent with atmospheric neutrino predictions. Monte Carlo simulations indicate that 90% of these events lie in the energy range 66 GeV to 3.4 TeV. The observation of atmospheric neutrinos consistent with expectations establishes AMANDA-B10 as a working neutrino telescope

  6. Neutrino magnetic moment, large extra dimensions and high energy cosmic neutrino spectra

    CERN Document Server

    Balaji, K R S; Mohapatra, Rabindra N

    2002-01-01

    We point out that the presence of bulk neutrinos in models with large extra spatial dimensions can lead to observable flavour specific deformations in the spectra of extreme high energy cosmic neutrinos. These deformations are due to the spin precession of the high energy neutrinos in the background magnetic fields via electromagnetic interactions. Measurements with existing and proposed neutrino telescopes which are meant to detect high energy neutrinos can therefore provide a novel way to probe the size of extra hidden dimensions. We qualitatively illustrate the flavour suppression due to the Earth, Sun and intergalactic magnetic fields. An observable consequence of this precession could be an angular asymmetry for the extreme high energy neutrinos from the atmospheric and flavour specific deformations of the intergalactic neutrinos.

  7. Observation of high energy atmospheric neutrinos with antarctic muon and neutrino detector array

    Energy Technology Data Exchange (ETDEWEB)

    Ahrens, J.; Andres, E.; Bai, X.; Barouch, G.; Barwick, S.W.; Bay, R.C.; Becka, T.; Becker, K.-H.; Bertrand, D.; Binon, F.; Biron, A.; Booth, J.; Botner, O.; Bouchta, A.; Bouhali, O.; Boyce, M.M.; Carius, S.; Chen, A.; Chirkin, D.; Conrad, J.; Cooley, J.; Costa, C.G.S.; Cowen, D.F.; Dalberg, E.; De Clercq, C.; DeYoung, T.; Desiati, P.; Dewulf, J.-P.; Doksus, P.; Edsjo, J.; Ekstrom, P.; Feser, T.; Frere, J.-M.; Gaisser, T.K.; Gaug, M.; Goldschmidt, A.; Hallgren, A.; Halzen, F.; Hanson, K.; Hardtke, R.; Hauschildt, T.; Hellwig, M.; Heukenkamp, H.; Hill, G.C.; Hulth, P.O.; Hundertmark, S.; Jacobsen, J.; Karle, A.; Kim, J.; Koci, B.; Kopke, L.; Kowalski, M.; Lamoureux, J.I.; Leich, H.; Leuthold, M.; Lindahl, P.; Liubarsky, I.; Loaiza, P.; Lowder, D.M.; Madsen, J.; Marciniewski, P.; Matis, H.S.; McParland, C.P.; Miller, T.C.; Minaeva, Y.; Miocinovic, P.; Mock, P.C.; Morse, R.; Neunhoffer, T.; Niessen, P.; Nygren, D.R.; Ogelman, H.; Olbrechts, Ph.; Perez de los Heros, C.; Pohl, A.C.; Porrata, R.; Price, P.B.; Przybylski, G.T.; Rawlins, K.; Reed, C.; Rhode, W.; Ribordy, M.; Richter, S.; Rodriguez Martino, J.; Romenesko, P.; Ross, D.; Sander, H.-G.; Schmidt, T.; Schneider, D.; Schwarz, R.; Silvestri, A.; Solarz, M.; Spiczak, G.M.; Spiering, C.; Starinsky, N.; Steele, D.; Steffen, P.; Stokstad, R.G.; Streicher, O.; Sudhoff, P.; Sulanke, K.-H.; Taboada, I.; Thollander, L.; Thon, T.; Tilav, S.; Vander Donckt, M.; Walck, C.; Weinheimer, C.; Wiebusch, C.H.; Wiedeman, C.; Wischnewski, R.; Wissing, H.; Woschnagg, K.; Wu, W.; Yodh, G.; Young, S.

    2002-05-07

    The Antarctic Muon and Neutrino Detector Array (AMANDA) began collecting data with ten strings in 1997. Results from the first year of operation are presented. Neutrinos coming through the Earth from the Northern Hemisphere are identified by secondary muons moving upward through the array. Cosmic rays in the atmosphere generate a background of downward moving muons, which are about 10{sup 6} times more abundant than the upward moving muons. Over 130 days of exposure, we observed a total of about 300 neutrino events. In the same period, a background of 1.05 x 10{sup 9} cosmic ray muon events was recorded. The observed neutrino flux is consistent with atmospheric neutrino predictions. Monte Carlo simulations indicate that 90 percent of these events lie in the energy range 66 GeV to 3.4 TeV. The observation of atmospheric neutrinos consistent with expectations establishes AMANDA-B10 as a working neutrino telescope.

  8. Neutrino Oscillations With Two Sterile Neutrinos

    CERN Document Server

    Kisslinger, Leonard S

    2016-01-01

    This work estimates the probability of $\\mu$ to $e$ neutrino oscillation with two sterile neutrinos using a 5x5 U-matrix, an extension of the previous estimate with one sterile neutrino and a 4x4 U-matrix. The sterile neutrino-active neutrino mass differences and the mixing angles of the two sterile neutrinos with the three active neutrinos are taken from recent publications, and the oscillation probability for one sterile neutrino is compared to the previous estimate.

  9. Solar Neutrinos

    Science.gov (United States)

    Davis, R. Jr.; Harmer, D. S.

    1964-12-01

    The prospect of studying the solar energy generation process directly by observing the solar neutrino radiation has been discussed for many years. The main difficulty with this approach is that the sun emits predominantly low energy neutrinos, and detectors for observing low fluxes of low energy neutrinos have not been developed. However, experimental techniques have been developed for observing neutrinos, and one can foresee that in the near future these techniques will be improved sufficiently in sensitivity to observe solar neutrinos. At the present several experiments are being designed and hopefully will be operating in the next year or so. We will discuss an experiment based upon a neutrino capture reaction that is the inverse of the electron-capture radioactive decay of argon-37. The method depends upon exposing a large volume of a chlorine compound, removing the radioactive argon-37 and observing the characteristic decay in a small low-level counter.

  10. Distinguishing neutrino mass hierarchies using dark matter annihilation signals at IceCube

    International Nuclear Information System (INIS)

    We explore the possibility of distinguishing neutrino mass hierarchies through the neutrino signal from dark matter annihilation at neutrino telescopes. We consider a simple extension of the standard model where the neutrino masses and mixing angles are obtained via the type-II seesaw mechanism as an explicit example. We show that future extensions of IceCube neutrino telescope may detect the neutrino signal from DM annihilation at the Galactic Center and inside the Sun, and differentiate between the normal and inverted mass hierarchies, in this model

  11. Distinguishing neutrino mass hierarchies using dark matter annihilation signals at IceCube

    Energy Technology Data Exchange (ETDEWEB)

    Allahverdi, Rouzbeh [Department of Physics and Astronomy, University of New Mexico,1919 Lomas Blvd NE, Albuquerque, NM, 87131 (United States); Dutta, Bhaskar [Department of Physics and Astronomy,Mitchell Institute for Fundamental Physics and Astronomy,Texas A & M University, 4242 TAMU, College Station, TX, 77843-4242 (United States); Ghosh, Dilip Kumar [Department of Theoretical Physics, Indian Association for the Cultivation of Science, 2A & 2B, Raja S.C. Mullick Road, Kolkata, 700032 (India); Knockel, Bradley [Department of Physics and Astronomy, University of New Mexico,1919 Lomas Blvd NE, Albuquerque, NM, 87131 (United States); Saha, Ipsita [Department of Theoretical Physics, Indian Association for the Cultivation of Science, 2A & 2B, Raja S.C. Mullick Road, Kolkata, 700032 (India)

    2015-12-01

    We explore the possibility of distinguishing neutrino mass hierarchies through the neutrino signal from dark matter annihilation at neutrino telescopes. We consider a simple extension of the standard model where the neutrino masses and mixing angles are obtained via the type-II seesaw mechanism as an explicit example. We show that future extensions of IceCube neutrino telescope may detect the neutrino signal from DM annihilation at the Galactic Center and inside the Sun, and differentiate between the normal and inverted mass hierarchies, in this model.

  12. Atmospheric Neutrinos

    CERN Document Server

    Gaisser, Thomas K

    2016-01-01

    In view of the observation by IceCube of high-energy astrophysical neutrinos, it is important to quantify the uncertainty in the background of atmospheric neutrinos. There are two sources of uncertainty, the imperfect knowledge of the spectrum and composition of the primary cosmic rays that produce the neutrinos and the limited understanding of hadron production, including charm, at high energy. This paper is an overview of both aspects.

  13. Tectonics of the baikal rift deduced from volcanism and sedimentation: a review oriented to the Baikal and Hovsgol lake systems.

    Science.gov (United States)

    Ivanov, Alexei V; Demonterova, Elena I

    2009-01-01

    As known from inland sedimentary records, boreholes, and geophysical data, the initiation of the Baikal rift basins began as early as the Eocene. Dating of volcanic rocks on the rift shoulders indicates that volcanism started later, in the Early Miocene or probably in the Late Oligocene. Prominent tectonic uplift took place at about 20 Ma, but information (from both sediments and volcanics) on the initial stage of the rifting is scarce and incomplete. A comprehensive record of sedimentation derived from two stacked boreholes drilled at the submerged Akademichesky ridge indicates that the deep freshwater Lake Baikal existed for at least 8.4 Ma, while the exact formation of the lake in its roughly present-day shape and volume is unknown. Four important events of tectonic/environmental changes at about approximately 7, approximately 5, approximately 2.5, and approximately 0.1 Ma are seen in that record. The first event probably corresponds to a stage of rift propagation from the historical center towards the wings of the rift system. Rifting in the Hovsgol area was initiated at about this time. The event of ~5 Ma is a likely candidate for the boundary between slow and fast stages of rifting. It is reflected in a drastic change of sedimentation rate due to isolation of the Akademichesky ridge from the central and northern Lake Baikal basins. The youngest event of 0.1 Ma is reflected by the (87)0Sr/ (86)Sr ratio increase in Lake Baikal waters and probably related to an increasing rate of mountain growth (and hence erosion) resulting from glacial rebounding. The latter is responsible for the reorganization of the outflow pattern with the termination of the paleo-Manzurka outlet and the formation of the Angara outlet. The event of approximately 2.5 Ma is reflected in the decrease of the (87)Sr/(86)Sr and Na/Al ratios in Lake Baikal waters. We suggest that it is associated with a decrease of the dust load due to a reorganization of the atmospheric circulations in Mainland

  14. Atmospheric neutrinos and discovery of neutrino oscillations

    International Nuclear Information System (INIS)

    Neutrino oscillation was discovered through studies of neutrinos produced by cosmic-ray interactions in the atmosphere. These neutrinos are called atmospheric neutrinos. They are produced as decay products in hadronic showers resulting from collisions of cosmic rays with nuclei in the atmosphere. Electron-neutrinos and muon-neutrinos are produced mainly by the decay chain of charged pions to muons to electrons. Atmospheric neutrino experiments observed zenith-angle and energy dependent deficit of muon-neutrino events. Neutrino oscillations between muon-neutrinos and tau-neutrinos explain these data well. Neutrino oscillations imply that neutrinos have small but non-zero masses. The small neutrino masses have profound implications to our understanding of elementary particle physics and the Universe. This article discusses the experimental discovery of neutrino oscillations. (author)

  15. An interesting natural phenomenon - giant rings on Lake Baikal ice

    Science.gov (United States)

    Kouraev, Alexei; Shimaraev, Michail; Remy, Frederique; Ivanov, Andrei; Golubov, Boris

    2010-05-01

    Starting from May 2009 scientific community and large public have been puzzled by the formation of giant rings on Baikal ice. These rings (diameter 5-7 km, thickness of dark layer - 1 - 1.8 km) have almost perfect circular shape what makes them so interesting and attractive not only to scientists, but also for large public. . The rings have been observed since 1999 by various satellites and sensors (AVHRR, MODIS, Landsat, SPOT) as early as 1999 but probably also in 1984 and 1994 (Shuttle missions). These rings are usually well observed in April, when snow cover is thin or absent. Rings have been observed in the southern tip of the lake (2009), and in three places in the central part: near Krestovskiy cape (1999, 2003, 2005 and 2008), near Turka (2008), and near Cape Nizhnee Izgolovye (2009). All these places are located in the region of steep bottom topography, over depths of more than 500 m. According to in situ measurements done by the Limnological Institute in Irkutsk in 2009, ice thickness is about 70 cm in the center and on the outside of the ring, and 40 cm in the ring itself. It is known that the Baikal lake has important hydrothermal activity, and there are numerous observations of gas (methane etc) seepage from its 7 km-thick layer of bottom sediments. Local-scale absence of ice cover (steamthroughs or "propariny") is typical for some places in Lake Baikal. They result from gas emissions (associated with rise of warm water), near capes and straits (due to better vertical mixing), thermal sources, outlets of large rivers. Often they are observed near Capes Big and Small Kadil'niy, and in the Olkhonskiye vorota strait. However they size ranges from just a half a meter to several hundreds of meters (but not several kilometers) and this could not be an explanation for the formation of giant rings. We present several existing hypotheses of the origin of these rings including gas emission, heat flux, cyclonic subsurface currents and mega-bubble formation due to

  16. Sterile neutrinos and IceCube

    International Nuclear Information System (INIS)

    Although the framework for oscillations of the three neutrino flavors in the Standard Model has been convincingly established, indications persist that it may be incomplete. Challenges are coming from the LSND and MiniBooNe short-baseline experiments, from the neutrino sources used in the Gallex and Sage solar neutrino experiments and, more recently, from an a-posteriori analysis of reactor neutrino experiments. One way to accommodate the reported anomalies, if real, is to introduce one or more sterile neutrinos in the mass range δm2 ∼ 1eV2. TeV atmospheric neutrinos propagating through the Earth undergo resonant oscillations in the presence of sterile neutrinos; a clear signature in a neutrino telescope like IceCube is the the change in shape of the zenith-energy distribution of the atmospheric neutrinos. IceCube detects more than 100,000 atmospheric neutrinos per year. Statistics do not limit such a measurement, but the uncertainties in modeling the expectations of the conventional 3-flavor scenario, including the systematics of the detector, do. We review the status and future perspectives of understanding the zenith and energy response of IceCube in the TeV energy range.

  17. Solar Neutrinos

    CERN Document Server

    Bellini, G.; Ranucci, G.

    2010-01-01

    Solar neutrino investigation has represented one of the most active field of particle physics over the past decade, accumulating important and sometimes unexpected achievements. After reviewing some of the most recent impressive successes, the future perspectives of this exciting area of neutrino research will be discussed.

  18. Sterile Neutrinos in Cold Climates

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Benjamin J.P. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2015-09-01

    Measurements of neutrino oscillations at short baselines contain an intriguing set of experimental anomalies that may be suggestive of new physics such as the existence of sterile neutrinos. This three-part thesis presents research directed towards understanding these anomalies and searching for sterile neutrino oscillations. Part I contains a theoretical discussion of neutrino coherence properties. The open-quantum-system picture of neutrino beams, which allows a rigorous prediction of coherence distances for accelerator neutrinos, is presented. Validity of the standard treatment of active and sterile neutrino oscillations at short baselines is verified, and non-standard coherence loss effects at longer baselines are predicted. Part II concerns liquid argon detector development for the MicroBooNE experiment, which will search for short-baseline oscillations in the Booster Neutrino Beam at Fermilab. Topics include characterization and installation of the MicroBooNE optical system; test-stand measurements of liquid argon optical properties with dissolved impurities; optimization of wavelength-shifting coatings for liquid argon scintillation light detection; testing and deployment of high-voltage surge arrestors to protect TPC field cages; and software development for optical and TPC simulation and reconstruction. Part III presents a search for sterile neutrinos using the IceCube neutrino telescope, which has collected a large sample of atmospheric-neutrino-induced events in the 1-10 TeV energy range. Sterile neutrinos would modify the detected neutrino flux shape via MSW-resonant oscillations. Following a careful treatment of systematic uncertainties in the sample, no evidence for MSW-resonant oscillations is observed, and exclusion limits on 3+1 model parameter space are derived. Under the mixing assumptions made, the 90% confidence level exclusion limit extends to sin224 ≤ 0.02 at m2 ~ 0.3 eV2, and the LSND and Mini

  19. Lectures on High-Energy Neutrino Astronomy

    International Nuclear Information System (INIS)

    Kilometer-scale neutrino detectors such as IceCube are discovery instruments covering nuclear and particle physics, cosmology and astronomy. Examples of their multidisciplinary missions include the search for the particle nature of dark matter and for additional small dimensions of space. In the end, their conceptual design is very much anchored to the observational fact that Nature produces protons and photons with energies in excess of 1020 and 1013 eV, respectively. The cosmic ray connection sets the scale of cosmic neutrino fluxes. In this context, we discuss the first results of the completed AMANDA detector and the science reach of its extension, IceCube. Similar experiments are under construction in the Mediterranean. Neutrino astronomy is also expanding in new directions with efforts to detect air showers, acoustic and radio signals initiated by super-EeV neutrinos. The outline of these lectures is as follows: Introduction Cosmic Neutrinos Associated with the Highest Energy Cosmic Rays Why Kilometer-Scale Detectors? Blueprints of Cosmic Accelerators: Gamma Ray Bursts and Active Galaxies High Energy Neutrino Telescopes: Methodologies of Neutrino Detection High Energy Neutrino Telescopes: Status

  20. Neutrino magnetohydrodynamics

    International Nuclear Information System (INIS)

    A new neutrino magnetohydrodynamics (NMHD) model is formulated, where the effects of the charged weak current on the electron-ion magnetohydrodynamic fluid are taken into account. The model incorporates in a systematic way the role of the Fermi neutrino weak force in magnetized plasmas. A fast neutrino-driven short wavelengths instability associated with the magnetosonic wave is derived. Such an instability should play a central role in strongly magnetized plasma as occurs in supernovae, where dense neutrino beams also exist. In addition, in the case of nonlinear or high frequency waves, the neutrino coupling is shown to be responsible for breaking the frozen-in magnetic field lines condition even in infinite conductivity plasmas. Simplified and ideal NMHD assumptions were adopted and analyzed in detail

  1. Neutrino magnetohydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Haas, Fernando; Pascoal, Kellen Alves [Instituto de Física, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS (Brazil); Mendonça, José Tito [IPFN, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal and Instituto de Física, Universidade de São Paulo, 05508-090 São Paulo, SP (Brazil)

    2016-01-15

    A new neutrino magnetohydrodynamics (NMHD) model is formulated, where the effects of the charged weak current on the electron-ion magnetohydrodynamic fluid are taken into account. The model incorporates in a systematic way the role of the Fermi neutrino weak force in magnetized plasmas. A fast neutrino-driven short wavelengths instability associated with the magnetosonic wave is derived. Such an instability should play a central role in strongly magnetized plasma as occurs in supernovae, where dense neutrino beams also exist. In addition, in the case of nonlinear or high frequency waves, the neutrino coupling is shown to be responsible for breaking the frozen-in magnetic field lines condition even in infinite conductivity plasmas. Simplified and ideal NMHD assumptions were adopted and analyzed in detail.

  2. [Genetic Differentiation of Populations of Baikal Endemic Sergentia baicalensis Tshern. (Diptera, Chironomidae)].

    Science.gov (United States)

    Kravtsova, L S; Bukin, Yu S; Peretolchina, T E; Shcherbakov, D Yu

    2015-07-01

    The population structure of endemic species Sergentia baicalensis (Diptera, Chironomidae) from Lake Baikal was studied using the first subunit of the cytochrome C oxidase mitochondrial gene (Col). Two populations inhabiting different basins of this lake, the southern-central and northern, were detected. It was confirmed that the divergence time of this species was dated to Late Miocene (9.53 ± 3.9 Mya), during the period when geographically separated basins existed in the Baikal rift zone. PMID:26410937

  3. What is controlling shallow active methane seeps in Lake Baikal? Posolsky Bank case-study

    OpenAIRE

    L. Naudts; Granin, N.; Khlystov, O.; Chensky, A.G.; J. Poort; De Batist, M.

    2008-01-01

    Active methane seeps and gas hydrates occur worldwide in the marine environment especially at continental margins. Lake Baikal represents a unique case to study active methane seeps and gas hydrates in an active tectonic, lacustrine setting. In this study we present and explain the distribution of several shallow active methane seeps located on the Posolsky Bank, a major tilted fault block in the central part of Lake Baikal.Active methane seeps were detected with a single-beam echosounder, wh...

  4. Space Telescope.

    Science.gov (United States)

    National Aeronautics and Space Administration, Huntsville, AL. George C. Marshall Space Flight Center.

    This pamphlet describes the Space Telescope, an unmanned multi-purpose telescope observatory planned for launch into orbit by the Space Shuttle in the 1980s. The unique capabilities of this telescope are detailed, the major elements of the telescope are described, and its proposed mission operations are outlined. (CS)

  5. Composition of Humic Acids of the Lake Baikal Sediments

    Science.gov (United States)

    Vishnyakova, O.; Chimitdorzhieva, G.; Andreeva, D.

    2012-04-01

    Humic substances are the final stage of the biogeochemical transformation of organic matter in the biosphere. Its natural compounds are found not only in soil, peat, coal, and sediments of basins. Chemical composition and properties of humic substances are determined by the functioning of the ecosystem as a whole. Therefore the study of the unique Lake Baikal sediments can provide information about their genesis, as well as the processes of organic matter transformation. For this purpose, preparations of humic acids (HA) were isolated by alkaline extraction method. The composition of HA was investigated by the elemental analyzer CHNS/O PerkinElmer Series II. Various located sediments of the Lake Baikal were the objects of the study: 1 - Chivyrkuisky Bay, 2 - Kotovo Bay, 3 - Selenga river delta near Dubinino village, 4 - Selenga river delta near Murzino village. Data on the elemental composition of HA in terms of ash-free portion show that the carbon content (CC) is of 50-53% with a maximum value in a sample 3, and minimum - in a sample 2. Such values are characteristic also for the soils with low biochemical activity. The hydrogen content is of 4,2-5,3%, a maximum value is in a sample 1. Data recalculation to the atomic percentages identified following regularities. The CC of HA is of 35-39 at. %. Hydrogen content is of 37-43 at. %. According to the content of these elements investigated substances are clearly divided into two groups: HA of the sediments of the Lake Baikal and river Selenga delta. The magnitude of the atomic ratio H/C can be seen varying degrees of condensation of the molecules of humic acids. The high atomic ratio H/C in HA of the former group indicates the predominance of aliphatic structures in the molecules. Humic acids of the later group are characterized by a low value H/C (acids such as cystine, cysteine, methionine, which is reflected in the composition of HA. Oxygen content is about 33,8-39,1% (17-22 at. %). Data analysis of the elemental

  6. Methods and problems in neutrino observatories

    CERN Document Server

    Ribordy, M

    2012-01-01

    Gigantic neutrino telescopes are primarily designed to search for very high energy neutrino radiation from the cosmos. Neutrinos travel unhindered over cosmological distances and therefore carry unique undistorted information about its production sites: the most powerful accelerators of hadrons in nature. In these lectures, we present the relevant physics motivations and their specifics. We review methodological aspects of neutrino telescopes: the experimental technique, some of the faced problems and the capabilities in terms of discovery potential, effective area, isolation of a signal from atmospheric backgrounds, etc. Instruments and their operation in various media are described. We also mention the instrumental birth and provide an outlook of the detection technique toward very low and ultra-high energies.

  7. Quaternary terrestrial climatic response to orbital forcing printed in Lake Baikal sediment

    Institute of Scientific and Technical Information of China (English)

    OCHIAI Shinya; KASHIWAYA Kenji

    2011-01-01

    The long sediment core BDP98 obtained from Lake Baikal was analyzed in order to discuss the periodicity of glacial cycles in the terrestrial climatic record of the past 2.6 Ma. Spectral analysis shows that the Baikal grain size record has been dominated by orbit-related cycles with periods of about 100 ka, 41 ka, and 23 ka, similar to those in the marine isotope record. However, there are some notable differences between the Baikal and oceanic records. In the marine isotope record, the 41 ka cycle was dominant before 1 Ma and the 100 ka cycle became signiifcant only afterward. Conversely, in the Baikal record, the 100 ka period has appeared continuously throughout the past 2.6 Ma, and no appreciable shift in period is detected. These results suggest that the terrestrial climatic response to orbital forcing, as imprinted in the Baikal sediment, is different from the oceanic response. The 100 ka cycle detected in the Baikal record from before 1 Ma may be attributable to relatively long interglacials with skipping of two or three 41 ka obliquity cycles. This result may support the hypothesis that the 100 ka cycle is paced by the obliquity cycle.

  8. RECENT DEVELOPMENTS IN ULTRA-HIGH ENERGY NEUTRINO ASTRONOMY

    Directory of Open Access Journals (Sweden)

    Peter K. F. Grieder

    2013-12-01

    Full Text Available We outline the current situation in ultrahigh energy (UHE cosmic ray physics, pointing out the remaining problems, in particular the puzzle concerning the origin of the primary radiation and the role of neutrino astronomy for locating the sources. Various methods for the detection of UHE neutrinos are briefly described and their merits compared. We give an account of the achievements of the existing optical Cherenkov neutrino telescopes, outline the possibility of using air fluorescence and particle properties of air showers to identify neutrino induced events, and discuss various pioneering experiments employing radio and acoustic detection of extremely energetic neutrinos. The next generation of space, ground and sea based neutrino telescopes now under construction or in the planning phase are listed.

  9. Neutrino physics

    International Nuclear Information System (INIS)

    The basic concepts of neutrino physics are presented at a level appropriate for integration into elementary courses on quantum mechanics and/or modern physics. (c) 2000 American Association of Physics Teachers

  10. Neutrino cosmology

    CERN Document Server

    Lesgourgues, Julien; Miele, Gennaro; Pastor, Sergio

    2013-01-01

    The role that neutrinos have played in the evolution of the Universe is the focus of one of the most fascinating research areas that has stemmed from the interplay between cosmology, astrophysics and particle physics. In this self-contained book, the authors bring together all aspects of the role of neutrinos in cosmology, spanning from leptogenesis to primordial nucleosynthesis, their role in CMB and structure formation, to the problem of their direct detection. The book starts by guiding the reader through aspects of fundamental neutrino physics, such as the standard cosmological model and the statistical mechanics in the expanding Universe, before discussing the history of neutrinos in chronological order from the very early stages until today. This timely book will interest graduate students and researchers in astrophysics, cosmology and particle physics, who work with either a theoretical or experimental focus.

  11. Common simulation tools for large volume neutrino detectors

    International Nuclear Information System (INIS)

    A general discussion of the organization of the Monte Carlo (MC) simulation in a Cherenkov neutrino telescope is presented. Some practical examples are taken from the simulation chain used for the ANTARES and the IceCube detectors

  12. Neutrino masses and oscillations

    International Nuclear Information System (INIS)

    New effects related to refraction of neutrinos in different media are reviewed and implication of the effects to neutrino mass and mixing are discussed. Patterns of neutrino masses and mixing implied by existing hints/bounds are described. Recent results on neutrino mass generation are presented. They include neutrino masses in SO(10) GUT's and models with anomalous U(1), generation of neutrino mass via neutrino-neutralino mixing, models of sterile neutrino. (author). 95 refs, 9 figs

  13. Theoretical Results on Neutrinos

    CERN Document Server

    Zhou, Shun

    2015-01-01

    In this talk, I first summarize our current knowledge about the fundamental properties of neutrinos and emphasize the remaining unsolved problems in neutrino physics. Then, recent theoretical results on neutrino mass models are introduced. Different approaches to understanding tiny neutrino masses, lepton flavor mixing and CP violation are presented. Finally, I report briefly some new progress in the studies of astrophysical neutrinos, including keV sterile neutrinos, supernova neutrinos and ultrahigh-energy cosmic neutrinos.

  14. Sterile neutrinos

    Science.gov (United States)

    Kopp, J.; Machado, P. A. N.; Maltoni, M.; Schwetz, T.

    2016-06-01

    We characterize statistically the indications of a presence of one or more light sterile neutrinos from MiniBooNE and LSND data, together with the reactor and gallium anomalies, in the global context. The compatibility of the aforementioned signals with null results from solar, atmospheric, reactor, and accelerator experiments is evaluated. We conclude that a severe tension is present in the global fit, and therefore the addition of eV-scale sterile neutrinos does not satisfactorily explain the anomalies.

  15. Overview of Neutrino Mixing Models and Their Mixing Angle Predictions

    OpenAIRE

    Albright, Carl H.

    2009-01-01

    Comment: 5 pages, 6 figures, written version of talk presented at the 11th International Workshop on Neutrino Factories, Superbeams and Beta Beams, Illinois Institute of Technology, Chicago, July 20-25, 2009; abbreviated version of arXiv:0905.0146 which appeared in Proceedings of the 13th International Workshop on Neutrino Telescopes, Venice, March 10-13, 2009

  16. Classifying and probing flavor transition mechanisms of astrophysical high energy neutrinos

    International Nuclear Information System (INIS)

    The future neutrino telescopes are expected to identify the flavors of astrophysical neutrinos and therefore determine the flavor ratio. The flavor ratio of astrophysical neutrinos observed at the Earth depends on both the initial flavor ratio at the source and flavor transitions taking place during the propagations of these neutrinos. We propose a model-independent way to parameterize the above flavor transitions, including standard oscillations and beyond. A systematical way is also described to probe those mechanisms taking advantage of R ≡ φμ/(φe + φτ) and S ≡ φe/eτ, the observables in neutrino telescope measurements.

  17. Underwater acoustic detection of UHE neutrinos with the ANTARES experiment

    OpenAIRE

    Simeone, Francesco; collaboration, for the ANTARES

    2009-01-01

    The ANTARES Neutrino Telescope is a water Cherenkov detector composed of an array of approximately 900 photomultiplier tubes in 12 vertical strings, spread over an area of about 0.1 km^2 with an instrumented height of about 350 metres. ANTARES, built in the Mediterranean Sea, is the biggest neutrino Telescope operating in the northern hemisphere. Acoustic sensors (AMADEUS project) have been integrated into the infrastructure of ANTARES, grouped in small arrays, to evaluate the feasibility of ...

  18. NEUTRINOS AS COSMIC MESSENGERS IN THE ERA OF ICECUBE, ANTARES AND KM3NET

    Directory of Open Access Journals (Sweden)

    Uli F. Katz

    2013-12-01

    Full Text Available Using neutrinos as cosmic messengers for observation of non-thermal processes in the Universe is a highly attractive and promising vision, which has been pursued in various neutrino telescope projects for more than two decades. Recent results from ground-based TeV gamma-ray observatories and refinements of model calculations of the expected neutrino fluxes indicate that Gigaton target volumes will be necessary to establish neutrino astronomy. A first neutrino telescope of that size, IceCube, is operational at the South Pole. Based on experience with the smaller first-generation ANTARES telescope in the Mediterranean Sea, the multi-Gigaton KM3NeT device is in preparation. These neutrino telescopes are presented, and some selected results and the expected KM3NeT performance are discussed.

  19. Progress toward a Km-scale neutrino detector in the deep ocean

    Energy Technology Data Exchange (ETDEWEB)

    Stokstad, R.G.

    1997-11-01

    The best particles for observing distant objects are photons and neutrinos. Because of the neutrino`s weak interaction cross section, detectors suitable for astronomy must be very large and well shielded from cosmic rays. Eventually, a detector with the order of a square km of effective area will be needed for systematic observations of distant point sources such as active galactic nuclei. Prototype detectors are currently being developed at several sites in the ocean, at Lake Baikal, and in Antarctica. This talk summarizes the status of the projects that use the deep ocean for the detector medium and shielding: DUMAND, NESTOR and ANTARES. Technical developments will be needed for a future km-scale detector; progress on one of these, a digital electronic system, is also described.

  20. Neutrinos from WIMP Annihilations Obtained Using a Full Three-Flavor Monte Carlo Approach

    OpenAIRE

    Blennow, Mattias; Edsjö, Joakim; Ohlsson, Tommy

    2007-01-01

    Weakly interacting massive particles (WIMPs) are one of the main candidates for making up the dark matter in the Universe. If these particles make up the dark matter, then they can be captured by the Sun or the Earth, sink to the respective cores, annihilate, and produce neutrinos. Thus, these neutrinos can be a striking dark matter signature at neutrino telescopes looking towards the Sun and/or the Earth. Here, we improve previous analyses on computing the neutrino yields from WIMP annihilat...

  1. Detecting the Neutrino Mass Hierarchy with a Supernova at IceCube

    OpenAIRE

    Dighe, A. S.; Keil, M. T.; Raffelt, G. G.

    2003-01-01

    IceCube, a future km^3 antarctic ice Cherenkov neutrino telescope, is highly sensitive to a galactic supernova (SN) neutrino burst. The Cherenkov light corresponding to the total energy deposited by the SN neutrinos in the ice can be measured relative to background fluctuations with a statistical precision much better than 1%. If the SN is viewed through the Earth, the matter effect on neutrino oscillations can change the signal by more than 5%, depending on the flavor-depen...

  2. Search for neutrino-induced cascades with five years of AMANDA data

    OpenAIRE

    2010-01-01

    Abstract We report on the search for electromagnetic and hadronic showers (?cascades?) produced by a diffuse flux of extraterrestrial neutrinos in the AMANDA neutrino telescope. Data for this analysis were recorded during 1001 days of detector livetime in the years 2000 to 2004. The observed event rates are consistent with the background expectation from atmospheric neutrinos and muons. An upper limit is derived for the diffuse flux of neutrinos of all flavors assuming a flavor rat...

  3. Neutrino factory near detector

    OpenAIRE

    Bogomilov, M.; Y. Karadzhov; Matev, R.; Tsenov, R.; Laing, A.; F.J.P. Soler

    2013-01-01

    The neutrino factory is a facility for future precision studies of neutrino oscillations. A so-called near detector is essential for reaching the required precision for a neutrino oscillation analysis. The main task of the near detector is to measure the flux of the neutrino beam. Such a high intensity neutrino source like a neutrino factory provides also the opportunity for precision studies of various neutrino interaction processes in the near detector. We discuss the design concepts of suc...

  4. Neutrino Physics with JUNO

    OpenAIRE

    An, Fengpeng; An, Guangpeng; An, Qi; Antonelli, Vito; Baussan, Eric; Beacom, John; Bezrukov, Leonid; Blyth, Simon; Brugnera, Riccardo; Avanzini, Margherita Buizza; Busto, Jose; Cabrera, Anatael; Cai, Hao; Cai, Xiao; Cammi, Antonio

    2015-01-01

    The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purpose underground liquid scintillator detector, was proposed with the determination of the neutrino mass hierarchy as a primary physics goal. It is also capable of observing neutrinos from terrestrial and extra-terrestrial sources, including supernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos, atmospheric neutrinos, solar neutrinos, as well as exotic searches such as nucleon decays, dark matter,...

  5. Neutrino Data and Neutrino-Antineutrino Transition

    CERN Document Server

    Alexeyev, E N

    2005-01-01

    A problem, whether a neutrino-antineutrino transition could be responsible for the muon neutrino deficit found in underground experiments (Super-Kamiokande, MACRO, Soudan 2) and in the accelerator long-baseline K2K experiment, is discussed in this paper. The intention of the work is not consideration of concrete models for muon neutrino-antineutrino transition but a desire to attract an attention to another possibility of understanding the nature of the measured muon neutrino deficit in neutrino experiments.

  6. The isolation and characterization of actinobacteria from dominant benthic macroinvertebrates endemic to Lake Baikal.

    Science.gov (United States)

    Axenov-Gribanov, Denis; Rebets, Yuriy; Tokovenko, Bogdan; Voytsekhovskaya, Irina; Timofeyev, Maxim; Luzhetskyy, Andriy

    2016-03-01

    The high demand for new antibacterials fosters the isolation of new biologically active compounds producing actinobacteria. Here, we report the isolation and initial characterization of cultured actinobacteria from dominant benthic organisms' communities of Lake Baikal. Twenty-five distinct strains were obtained from 5 species of Baikal endemic macroinvertebrates of amphipods, freshwater sponges, turbellaria worms, and insects (caddisfly larvae). The 16S ribosomal RNA (rRNA)-based phylogenic analysis of obtained strains showed their affiliation to Streptomyces, Nocardia, Pseudonocardia, Micromonospora, Aeromicrobium, and Agromyces genera, revealing the diversity of actinobacteria associated with the benthic organisms of Lake Baikal. The biological activity assays showed that 24 out of 25 strains are producing compounds active against at least one of the test cultures used, including Gram-negative bacteria and Candida albicans. Complete dereplication of secondary metabolite profiles of two isolated strains led to identification of only few known compounds, while the majority of detected metabolites are not listed in existing antibiotic databases. PMID:26347255

  7. Uranium distribution in Baikal sediments using SSNTD method for paleoclimate reconstruction

    CERN Document Server

    Zhmodik, S M; Nemirovskaya, N A; Zhatnuev, N S

    1999-01-01

    First data on local distribution of uranium in the core of Lake Baikal floor sediments (Academician ridge, VER-95-2, St 3 BC, 53 deg. 113'12'N/108 deg. 25'01'E) are presented in this paper. They have been obtained using (n,f)-radiography. Various forms of U-occurrence in floor sediments are shown, i.e. evenly disseminated, associated with clayey and diatomaceous components; micro- and macroinclusions of uranium bearing minerals - microlocations with uranium content 10-50 times higher than U-concentrations associated with clayey and diatomaceous components. Relative and absolute U-concentration can be determined for every mineral. Signs of various order periodicity of U-distribution in the core of Lake Baikal floor sediments have been found. Using (n,f)-radiography method of the study of Baikal floor sediment permits gathering of new information that can be used at paleoclimate reconstruction.

  8. Overview of geology and tectonic evolution of the Baikal-Tuva area.

    Science.gov (United States)

    Gladkochub, Dmitry; Donskaya, Tatiana

    2009-01-01

    This chapter provides the results of geological investigations of the main tectonic units of the Baikal-Tuva region (southwestern part of Siberia) during the last decades: the ancient Siberian craton and adjacent areas of the Central Asian Orogenic belt. In the framework of these main units we describe small-scale blocks (terranes) with focus on details of their inner structure and evolution through time. As well as describing the geology and tectonics of the area studied, we give an overview of underwater sediments, neotectonics, and some phenomena of history and development of the Baikal, Khubsugul, Chargytai, and Tore-Chol Lakes basins of the Baikal-Tuva region. It is suggested that these lakes' evolution was controlled by neotectonic processes, modern seismic activity, and global climate changes. PMID:19198771

  9. Uranium distribution in Baikal sediments using SSNTD method for paleoclimate reconstruction

    International Nuclear Information System (INIS)

    First data on local distribution of uranium in the core of Lake Baikal floor sediments (Academician ridge, VER-95-2, St 3 BC, 53 deg. 113'12'N/108 deg. 25'01'E) are presented in this paper. They have been obtained using (n,f)-radiography. Various forms of U-occurrence in floor sediments are shown, i.e. evenly disseminated, associated with clayey and diatomaceous components; micro- and macroinclusions of uranium bearing minerals - microlocations with uranium content 10-50 times higher than U-concentrations associated with clayey and diatomaceous components. Relative and absolute U-concentration can be determined for every mineral. Signs of various order periodicity of U-distribution in the core of Lake Baikal floor sediments have been found. Using (n,f)-radiography method of the study of Baikal floor sediment permits gathering of new information that can be used at paleoclimate reconstruction

  10. Are Neutrinos Democratic?

    CERN Document Server

    Karl, G

    2002-01-01

    We generalize the notion of democratic mixing matrices for neutrinos and propose a scheme in which the electron neutrino is a superposition of three different mass eigenstates with equal weights. This scheme accounts for the recent SNO results as well as atmospheric muon neutrino and electron neutrino data. The outcomes of reactor neutrino and accelerator experiments are also discussed.

  11. Neutrino cave

    CERN Multimedia

    1977-01-01

    Here the end of the underground decay tunnel, its window and beam stopper. On the left one sees the end of the last quadrupole of the neutrino narrow-band beam, and the detectors measuring the beam profile. Further downstream one sees two Beam Current Transformers (BCT, see photo 7801005) measuring the beam intensity, and a Cerenkov counter.

  12. Neutrino horn

    CERN Multimedia

    1967-01-01

    View of the new neutrino horn installed in its blockhouse from the target end. Protons pass through the 2mm hole in the centre of the small fluorescent screen, hitting the target immediately behind it. The circular tubes carry pressurized cooling water.

  13. Differential bioaccumulation of potentially toxic elements in benthic and pelagic food chains in Lake Baikal.

    Science.gov (United States)

    Ciesielski, Tomasz M; Pastukhov, Mikhail V; Leeves, Sara A; Farkas, Julia; Lierhagen, Syverin; Poletaeva, Vera I; Jenssen, Bjørn M

    2016-08-01

    Lake Baikal is located in eastern Siberia in the center of a vast mountain region. Even though the lake is regarded as a unique and pristine ecosystem, there are existing sources of anthropogenic pollution to the lake. In this study, the concentrations of the potentially toxic trace elements As, Cd, Pb, Hg, and Se were analyzed in water, plankton, invertebrates, and fish from riverine and pelagic influenced sites in Lake Baikal. Concentrations of Cd, Hg, Pb and Se in Lake Baikal water and biota were low, while concentrations of As were similar or slightly higher compared to in other freshwater ecosystems. The bioaccumulation potential of the trace elements in both the pelagic and the benthic ecosystems differed between the Selenga Shallows (riverine influence) and the Listvenichnyĭ Bay (pelagic influence). Despite the one order of magnitude higher water concentrations of Pb in the Selenga Shallows, Pb concentrations were significantly higher in both pelagic and benthic fish from the Listvenichnyĭ Bay. A similar trend was observed for Cd, Hg, and Se. The identified enhanced bioavailability of contaminants in the pelagic influenced Listvenichnyĭ Bay may be attributed to a lower abundance of natural ligands for contaminant complexation. Hg was found to biomagnify in both benthic and pelagic Baikal food chains, while As, Cd, and Pb were biodiluted. At both locations, Hg concentrations were around seven times higher in benthic than in pelagic fish, while pelagic fish had two times higher As concentrations compared to benthic fish. The calculated Se/Hg molar ratios revealed that, even though Lake Baikal is located in a Se-deficient region, Se is still present in excess over Hg and therefore the probability of Hg induced toxicity in the endemic fish species of Lake Baikal is assumed to be low. PMID:27130338

  14. Neutrino experiments

    International Nuclear Information System (INIS)

    After participating in a several experiments near the reactor at Bugey, at distances from 15 to 100 m from the reactor the laboratory joined a collaboration for search of effect of neutrino oscillations at longer distances (1 km) from the neutrinos' point of origin. The zone covered by this experiment raises a particular interest because the results of several underground experiments on the atmospheric neutrinos indicated that oscillation could appear in this zone. The Chooz collaboration, reported here, joined three American universities (Philadelphia, New Mexico and Irvine), two Italian universities (Pisa and Trieste), the Kurchatov Institute in Moscow and two French laboratories (the LAPP in Annecy and the College de France). The first data have been recorded during the autumn of 1996 prior to the commissioning of the reactors (2 x 4200 MWth), to measure the background noise. The detector is a target of 6 t liquid scintillator doped with Gd, sunk in 120 t non-doped liquid scintillator separated by thin transparent wall. The target is viewed by 192 photomultipliers. The scintillator liquids are carried up to the detector and then to the exterior tanks by a tunnel of 200 m length and a height gradient of 15 m. The fragility of the detector imposes a simultaneous filling of its components, with an accuracy of the order of 1 cm. A 200 MHz sampling system of the photomultiplier pulses signing the neutrino interaction was developed in order to obtain simultaneously information on the pulse-height, timing and shape. This experiment could serve as a prototype for heavier experiments conceived in US, in Russia at Rovno and Krasnoyarsk, and in France, at 15 km from the Perry reactor, at 500 m underground. Still more ambitious is the Japan project at Kamioka, at 160 m distance from a nuclear reactor. The experiment at Perry will push the electron neutrino upper mass estimates down to 0.01 eV

  15. Concentration of nutrients in the water of Southern Baikal in summer

    Science.gov (United States)

    Sakirko, M. V.; Domysheva, V. M.; Pestunov, D. A.; Netsvetaeva, O. G.; Panchenko, M. V.

    2015-11-01

    Optical characteristics of Baikal water and their inter-annual, seasonal and diurnal variability depend on plankton composition, suspended particles of organic and inorganic substances, and dissolved chemical compounds. This work analyses the results of comprehensive studies on spatial distribution of nutrients (nitrogen, phosphorus, carbon, and silicon) in the water area of Southern Baikal performed in August 2014. The authors also compare the results of spatial measurements with the data of long-term observations in the littoral zone for summer conditions carried out at the Scientific Research Station of Limnological Institute of the Siberian Branch of the Russian Academy of Sciences.

  16. New evidence for important lake-level changes in Lake Baikal during the Last Glaciation

    OpenAIRE

    Khlystov, O.M.; E. Y. Osipov; De Batist, M.; Hus, R.

    2006-01-01

    In recent years, a number of estimates have been proposed of fluctuations of the Baikal lake level caused by climate changes. They were mainly based on the interpretation of reflection seismic data from the Selenga delta area (eastern coast of Lake Baikal). These estimates range between 2 m [Colman, 1998] and 600 m [Romashkin et al., 1997]. Better-constrained values of lake-level changes during the last 100 ky were presented by Urabe et al. [2004]. According to their reflection seismic data f...

  17. Neutrino refraction by the cosmic neutrino background

    CERN Document Server

    Diaz, J S

    2015-01-01

    We have determined the dispersion relation of a neutrino test particle propagating in the cosmic neutrino background. Describing the relic neutrinos and antineutrinos from the hot big bang as a dense medium, a matter potential or refractive index is obtained. The vacuum neutrino mixing angles are unchanged, but the energy of each mass state is modified. Using a matrix in the space of neutrino species, the induced potential is decomposed into a part which produces signatures in beta-decay experiments and another part which modifies neutrino oscillations. The low temperature of the relic neutrinos makes a direct detection extremely challenging. From a different point of view, the identified refractive effects of the cosmic neutrino background constitute an ultralow background for future experimental studies of nonvanishing Lorentz violation in the neutrino sector.

  18. Neutrino refraction by the cosmic neutrino background

    Science.gov (United States)

    Díaz, J. S.; Klinkhamer, F. R.

    2016-03-01

    We have determined the dispersion relation of a neutrino test particle propagating in the cosmic neutrino background. Describing the relic neutrinos and antineutrinos from the hot big bang as a dense medium, a matter potential or refractive index is obtained. The vacuum neutrino mixing angles are unchanged, but the energy of each mass state is modified. Using a matrix in the space of neutrino species, the induced potential is decomposed into a part which produces signatures in beta-decay experiments and another part which modifies neutrino oscillations. The low temperature of the relic neutrinos makes a direct detection extremely challenging. From a different point of view, the identified refractive effects of the cosmic neutrino background constitute an ultralow background for future experimental studies of nonvanishing Lorentz violation in the neutrino sector.

  19. Measuring neutrino mass without neutrinos!

    CERN Document Server

    Peach, Kenneth J

    2004-01-01

    Neutrinoless double beta decay offers the most precise (if challenging) way of measuring the absolute mass of the neutrino. Particle Physics met at the Rutherford Appleton Laboratory last autumn to discuss wether the UK should take a lead in setting up such an experiment

  20. Neutrino anomalies without oscillations

    Indian Academy of Sciences (India)

    Sandip Pakvasa

    2000-01-01

    I review explanations for the three neutrino anomalies (solar, atmospheric and LSND) which go beyond the `conventional' neutrino oscillations induced by mass-mixing. Several of these require non-zero neutrino masses as well.

  1. Neutrino beams and experiments

    International Nuclear Information System (INIS)

    After a brief review of the early history of neutrino experiments, the principle of neutrino beams at proton accelerators is described and a survey of neutrino experiments since 1963 is given. ((orig.))

  2. Experimental Neutrino Physics

    OpenAIRE

    Zuber, K.

    2008-01-01

    It's been a remarkable decade in neutrino physics. Ten years ago this summer, at the 1998 neutrino conference in Takayama, the Super-Kamiokande collaboration reported the observation of neutrinos changing flavor, thereby establishing the existence of neutrino mass. A few years later, the SNO experiment solved the long-standing solar neutrino problem demonstrating that it too was due to neutrino oscillation. Just a few years after that, these effects were confirmed and the oscillation paramete...

  3. Splitting Neutrino masses and Showering into Sky

    International Nuclear Information System (INIS)

    Neutrino masses might be as light as a few time the atmospheric neutrino mass splitting. The relic cosmic neutrinos may cluster in wide Dark Hot Local Group Halo. High Energy ZeV cosmic neutrinos (in Z-Showering model) might hit relic ones at each mass in different resonance energies in our nearby Universe. This non-degenerated density and energy must split UHE Z-boson secondaries (in Z-Burst model) leading to multi injection of UHECR nucleons within future extreme AUGER energy. Secondaries of Z-Burst as neutral gamma, below a few tens EeV are better surviving local GZK cut-off and they might explain recent Hires BL-Lac UHECR correlations at small angles. A different high energy resonance must lead to Glashow's anti-neutrino showers while hitting electrons in matter. In water and ice it leads to isotropic light explosions. In air, Glashow's anti-neutrino showers lead to collimated and directional air-showers offering a new Neutrino Astronomy. Because of neutrino flavor mixing, astrophysical energetic tau neutrino above tens GeV must arise over atmospheric background. At TeV range is difficult to disentangle tau neutrinos from other atmospheric flavors. At greater energy around PeV, Tau escaping mountains and Earth and decaying in flight are effectively showering in air sky. These Horizontal showering is splitting by geomagnetic field in forked shapes. Such air-showers secondaries release amplified and beamed gamma bursts (like observed TGF), made also by muon and electron pair bundles, with their accompanying rich Cherenkov flashes. Also planet's largest (Saturn, Jupiter) atmosphere limbs offer an ideal screen for UHE GZK and Z-burst tau neutrino, because their largest sizes. Titan thick atmosphere and small radius are optimal for discovering up-going resonant Glashow resonant anti-neutrino electron showers. Detection from Earth of Tau, anti-Tau, anti-electron neutrino induced Air-showers by twin Magic Telescopes on top mountains, or space based detection on

  4. Current ecosystem processes in steppe near Lake Baikal

    Science.gov (United States)

    Vanteeva, Julia

    2015-04-01

    The steppes and forest steppes complexes of Priol'khonie at the Lake Baikal (southern Siberia, Russia) were studied in this research. Recreational activity has a significant impact on the Priol'khonie region. During soviet time this area was actively used for agriculture. Nowadays, this territory is the part of Pribaikalskyi National Park and special protection is needed. As the landscapes satisfy different human demands there are many land-management conflicts. The specific climate and soil conditions and human activity lead to erosion processes on study area. Sediment loads are transferred into the Lake Baikal and cause water pollution. Consequently, vegetation cover and phytomass play an important role for regulating hydrological processes in the ecosystems. The process of phytomass formation and its proactive role playing on sedimentation and mitigate silt detaching by rill and inter-rill erosion are considered in the research as important indicators of the ecosystem functions for steppe landscapes. These indicators were studied for the different land cover types identified on the area because the study area has a large variety of steppe and forest steppe complexes, differing in the form of relief, soil types, vegetation species composition and degree of land degradation. The fieldwork was conducted in the study area in the July and August of 2013. Thirty-two experimental sites (10 x 10 m) which characterized different types of ecosystem were established. The level of landscape degradation was estimated. The method of clipping was used for the valuation of above-ground herbaceous phytomass. The phytomass of tree stands was calculated using the volume-conversion rates for forest-steppe complexes. For the quantification of transferred silt by inter-rill erosion in different conditions (vegetation, slope, soil type, anthropogenic load) a portable rainfall simulator was created with taking into account the characteristics of the study area. The aboveground

  5. Neutrinos: Theory and Phenomenology

    CERN Document Server

    Parke, Stephen J

    2013-01-01

    The theory and phenomenology of neutrinos will be addressed, especially that relating to the observation of neutrino flavor transformations. The current status and implications for future experiments will be discussed with special emphasis on the experiments that will determine the neutrino mass ordering, the dominant flavor content of the neutrino mass eigenstate with the smallest electron neutrino content and the size of CP violation in the neutrino sector. Beyond the neutrino Standard Model, the evidence for and a possible definitive experiment to confirm or refute the existence of light sterile neutrinos will be briefly discussed.

  6. Neutrinos: Theory and Phenomenology

    Energy Technology Data Exchange (ETDEWEB)

    Parke, Stephen

    2013-10-22

    The theory and phenomenology of neutrinos will be addressed, especially that relating to the observation of neutrino flavor transformations. The current status and implications for future experiments will be discussed with special emphasis on the experiments that will determine the neutrino mass ordering, the dominant flavor content of the neutrino mass eigenstate with the smallest electron neutrino content and the size of CP violation in the neutrino sector. Beyond the neutrino Standard Model, the evidence for and a possible definitive experiment to confirm or refute the existence of light sterile neutrinos will be briefly discussed.

  7. Neutrinos: theory and phenomenology

    International Nuclear Information System (INIS)

    The theory and phenomenology of neutrinos will be addressed, especially that relating to the observation of neutrino flavor transformations. The current status and implications for future experiments will be discussed with special emphasis on the experiments that will determine the neutrino mass ordering, the dominant flavor content of the neutrino mass eigenstate with the smallest electron neutrino content and the size of CP violation in the neutrino sector. Beyond the neutrino standard model, the evidence for and a possible definitive experiment to confirm or refute the existence of light sterile neutrinos will be briefly discussed. (paper)

  8. Supernova neutrinos

    International Nuclear Information System (INIS)

    In the first part of his in-depth article on the 1987 supernova, David Schramm of the University of Chicago and the NASA/Fermilab Astrophysics Centre reviewed the background to supernovae, the composition of massive stars and the optical history of SN 1987A, and speculated on what the 1987 remnant might be. In such a Type II supernova, gravitational pressure crushes the atoms of the star's interior producing neutron matter, or even a black hole, and releasing an intense burst of neutrinos. 1987 was the first time that physicists were equipped (but not entirely ready!) to intercept these particles, and in the second part of his article, David Schramm covers the remarkable new insights from the science of supernova neutrino astronomy, born on 23 February 1987

  9. Water chemistry and plankton composition in the mixing zone of the Selenga River with Lake Baikal

    Science.gov (United States)

    Tomberg, Irina; Sorokovikova, larisa; Popovskaya, Galina; Belykh, Olga; Bashenkhaeva, Nadya; Parfenova, Valentina

    2014-05-01

    Seasonal and inter-annual variations of chemical components, bacterio- and phytoplankton and autotrophic picoplankton (APP) were studied in the distributaries of the Selenga River, Selenga shallow waters (Selenga shoal) and Lake Baikal for 2003-2013. Major variations in the chemical composition of river waters were recorded at a distance of 1-3 km off the mouths of the Selenga River distributaries (mixing zone). The total quantity of major ions and plankton composition and abundance served as indicators to distinguish between river and lake waters. Phytoplankton concentration was high in the mixing zone and caused the reduction of nutrients in this area. Changes in species composition of phytoplankton, APP, dominant groups of bacterioplankton were observed in the Selenga shoal. River phytoplankton prevailed near the mouths of distributaries, in the mixing zone these were replaced by lake species, and at a distance of 7 km offshore phytoplankton composition was typical of Lake Baikal. Organotrophic microorganisms dominated in the Selenga River water. In the mixing zone, all bacterial groups were represented in equal proportions. Oligotrophic and psychrotolerant bacteria prevailed in Lake Baikal. As the distance from the river delta increased, phycocyanin-rich picocyanobacteria were replaced by phycoerythrin-rich picocyanobacteria and the contribution of picoplankton biomass to total phytoplankton biomass was raised. Near the mouth of distributaries, APP biomass was 5 times lower than the phytoplankton biomass whilst at a distance of 7 km it was 2 times higher than typical values for Baikal phytoplankton.

  10. Relationships and origin of endemic Lake Baikal gastropods (Caenogastropoda: Rissooidea) based on mitochondrial DNA sequences.

    Science.gov (United States)

    Hausdorf, Bernhard; Röpstorf, Peter; Riedel, Frank

    2003-03-01

    The phylogenetic relationships and the origin of two groups of rissooid freshwater snails endemic to Lake Baikal were investigated using partial mitochondrial COI, 12S rDNA, and 16S rDNA sequences. The Baikalian Benedictiinae proved to be closely related to the Lithoglyphinae. According to a molecular clock estimate the two groups diverged in the Paleogene. The Benedictiinae might have evolved autochthonously in precursors of Lake Baikal. The Baikalian Baicaliidae are probably most closely related to the Amnicolidae and the Bithyniidae. These groups diverged at the latest during the Cretaceous. Thus the origin of the Baicaliidae predates the origin of the Baikal rift zone. The Baicaliidae evolved probably in other Central Asian freshwater reservoirs. However, the radiation of the extant Baicaliidae only started in the Neogene and might have occurred autochthonously in Lake Baikal. The conchological similarity of the Baicaliidae and the Pyrgulidae is due to convergence. The Pyrgulidae diverged from the common stem lineage of the other hydrobiid families at the latest in the Jurassic. The Bithyniidae is derived from hydrobiids and is related to the Amnicolidae. PMID:12644402

  11. The Intermediate Neutrino Program

    CERN Document Server

    Adams, C; Ankowski, A M; Asaadi, J A; Ashenfelter, J; Axani, S N; Babu, K; Backhouse, C; Band, H R; Barbeau, P S; Barros, N; Bernstein, A; Betancourt, M; Bishai, M; Blucher, E; Bouffard, J; Bowden, N; Brice, S; Bryan, C; Camilleri, L; Cao, J; Carlson, J; Carr, R E; Chatterjee, A; Chen, M; Chen, S; Chiu, M; Church, E D; Collar, J I; Collin, G; Conrad, J M; Convery, M R; Cooper, R L; Cowen, D; Davoudiasl, H; De Gouvea, A; Dean, D J; Deichert, G; Descamps, F; DeYoung, T; Diwan, M V; Djurcic, Z; Dolinski, M J; Dolph, J; Donnelly, B; Dwyer, D A; Dytman, S; Efremenko, Y; Everett, L L; Fava, A; Figueroa-Feliciano, E; Fleming, B; Friedland, A; Fujikawa, B K; Gaisser, T K; Galeazzi, M; Galehouse, D C; Galindo-Uribarri, A; Garvey, G T; Gautam, S; Gilje, K E; Gonzalez-Garcia, M; Goodman, M C; Gordon, H; Gramellini, E; Green, M P; Guglielmi, A; Hackenburg, R W; Hackenburg, A; Halzen, F; Han, K; Hans, S; Harris, D; Heeger, K M; Herman, M; Hill, R; Holin, A; Huber, P; Jaffe, D E; Johnson, R A; Joshi, J; Karagiorgi, G; Kaufman, L J; Kayser, B; Kettell, S H; Kirby, B J; Klein, J R; Kolomensky, Yu G; Kriske, R M; Lane, C E; Langford, T J; Lankford, A; Lau, K; Learned, J G; Ling, J; Link, J M; Lissauer, D; Littenberg, L; Littlejohn, B R; Lockwitz, S; Lokajicek, M; Louis, W C; Luk, K; Lykken, J; Marciano, W J; Maricic, J; Markoff, D M; Caicedo, D A Martinez; Mauger, C; Mavrokoridis, K; McCluskey, E; McKeen, D; McKeown, R; Mills, G; Mocioiu, I; Monreal, B; Mooney, M R; Morfin, J G; Mumm, P; Napolitano, J; Neilson, R; Nelson, J K; Nessi, M; Norcini, D; Nova, F; Nygren, D R; Gann, G D Orebi; Palamara, O; Parsa, Z; Patterson, R; Paul, P; Pocar, A; Qian, X; Raaf, J L; Rameika, R; Ranucci, G; Ray, H; Reyna, D; Rich, G C; Rodrigues, P; Romero, E Romero; Rosero, R; Rountree, S D; Rybolt, B; Sanchez, M C; Santucci, G; Schmitz, D; Scholberg, K; Seckel, D; Shaevitz, M; Shrock, R; Smy, M B; Soderberg, M; Sonzogni, A; Sousa, A B; Spitz, J; John, J M St; Stewart, J; Strait, J B; Sullivan, G; Svoboda, R; Szelc, A M; Tayloe, R; Thomson, M A; Toups, M; Vacheret, A; Vagins, M; Van de Water, R G; Vogelaar, R B; Weber, M; Weng, W; Wetstein, M; White, C; White, B R; Whitehead, L; Whittington, D W; Wilking, M J; Wilson, R J; Wilson, P; Winklehner, D; Winn, D R; Worcester, E; Yang, L; Yeh, M; Yokley, Z W; Yoo, J; Yu, B; Yu, J; Zhang, C

    2015-01-01

    The US neutrino community gathered at the Workshop on the Intermediate Neutrino Program (WINP) at Brookhaven National Laboratory February 4-6, 2015 to explore opportunities in neutrino physics over the next five to ten years. Scientists from particle, astroparticle and nuclear physics participated in the workshop. The workshop examined promising opportunities for neutrino physics in the intermediate term, including possible new small to mid-scale experiments, US contributions to large experiments, upgrades to existing experiments, R&D plans and theory. The workshop was organized into two sets of parallel working group sessions, divided by physics topics and technology. Physics working groups covered topics on Sterile Neutrinos, Neutrino Mixing, Neutrino Interactions, Neutrino Properties and Astrophysical Neutrinos. Technology sessions were organized into Theory, Short-Baseline Accelerator Neutrinos, Reactor Neutrinos, Detector R&D and Source, Cyclotron and Meson Decay at Rest sessions.This report summ...

  12. Heavy neutrino decay at SHALON

    Directory of Open Access Journals (Sweden)

    Sinitsyna V.Y.

    2013-06-01

    Full Text Available The SHALON Cherenkov telescope has recorded over 2 × 106 extensive air showers during the past 17 years. The analysis of the signal at different zenith angles has included observations from the sub-horizontal direction Θ = 97° This inclination defines an Earth skimming trajectory with 7 km of air and around 1000 km of rock in front of the telescope. During a period of 324 hours of observation, after a cut of shower-like events that may be caused by chaotic sky flashes or reflections on the snow of vertical showers, we have detected 5 air showers of TeV energies. We argue that these events may be caused by the decay of a long-lived penetrating particle entering the atmosphere from the ground and decaying in front of the telescope. We show that this particle can it not be a muon or a tau lepton. As a possible explanation, we discuss two scenarios with an unstable neutrino of mass m ≈ 0.5 GeV and cτ ≈ 30 m. Remarkably, one of these models has been recently proposed to explain an excess of electron-like neutrino events at MiniBooNE.

  13. Space Telescopes

    Science.gov (United States)

    Rigby, Jane R.

    2011-01-01

    The science of astronomy depends on modern-day temples called telescopes. Astronomers make pilgrimages to remote mountaintops where these large, intricate, precise machines gather light that rains down from the Universe. Bit, since Earth is a bright, turbulent planet, our finest telescopes are those that have been launched into the dark stillness of space. These space telescopes, named after heroes of astronomy (Hubble, Chandra, Spitzer, Herschel), are some of the best ideas our species has ever had. They show us, over 13 billion years of cosmic history, how galaxies and quasars evolve. They study planets orbiting other stars. They've helped us determine that 95% of the Universe is of unknown composition. In short, they tell us about our place in the Universe. The next step in this journey is the James Webb Space Telescope, being built by NASA, Europe, and Canada for a 2018 launch; Webb will reveal the first galaxies that ever formed.

  14. SNAP telescope

    Energy Technology Data Exchange (ETDEWEB)

    Lampton, Michael L.; Akerlof, C.W.; Aldering, G.; Amanullah, R.; Astier, P.; Barrelet, E.; Bebek, C.; Bergstrom, L.; Bercovitz, J.; Bernstein, G.; Bester, M.; Bonissent, A.; Bower, C.; Carithers Jr., W.C.; Commins, E.D.; Day, C.; Deustua, S.E.; DiGennaro, R.; Ealet, A.; Ellis,R.S.; Eriksson, M.; Fruchter, A.; Genat, J.-F.; Goldhaber, G.; Goobar,A.; Groom, D.; Harris, S.E.; Harvey, P.R.; Heetderks, H.D.; Holland,S.E.; Huterer, D.; Karcher, A.; Kim, A.G.; Kolbe, W.; Krieger, B.; Lafever, R.; Lamoureux, J.; Levi, M.E.; Levin, D.S.; Linder, E.V.; Loken,S.C.; Malina, R.; Massey, R.; McKay, T.; McKee, S.P.; Miquel, R.; Mortsell, E.; Mostek, N.; Mufson, S.; Musser, J.; Nugent, P.; Oluseyi,H.; Pain, R.; Palaio, N.; Pankow, D.; Perlmutter, S.; Pratt, R.; Prieto,E.; Refregier, A.; Rhodes, J.; Robinson, K.; Roe, N.; Sholl, M.; Schubnell, M.; Smadja, G.; Smoot, G.; Spadafora, A.; Tarle, G.; Tomasch,A.; von der Lippe, H.; Vincent, R.; Walder, J.-P.; Wang, G.; Wang, G.

    2002-07-29

    The SuperNova/Acceleration Probe (SNAP) mission will require a two-meter class telescope delivering diffraction limited images spanning a one degree field in the visible and near infrared wavelength regime. This requirement, equivalent to nearly one billion pixel resolution, places stringent demands on its optical system in terms of field flatness, image quality, and freedom from chromatic aberration. We discuss the advantages of annular-field three-mirror anastigmat (TMA) telescopes for applications such as SNAP, and describe the features of the specific optical configuration that we have baselined for the SNAP mission. We discuss the mechanical design and choice of materials for the telescope. Then we present detailed ray traces and diffraction calculations for our baseline optical design. We briefly discuss stray light and tolerance issues, and present a preliminary wavefront error budget for the SNAP Telescope. We conclude by describing some of tasks to be carried out during the upcoming SNAP research and development phase.

  15. Quantum telescopes

    CERN Document Server

    Kellerer, Aglae

    2014-01-01

    In the 20th century, quantum mechanics connected the particle and wave concepts of light and thereby made mechanisms accessible that had never been imagined before. Processes such as stimulated emission and quantum entanglement have revolutionized modern technology. But even though astronomical observations rely on novel technologies, the optical layout of telescopes has fundamentally remained unchanged. While there is no doubt that Huyghens and Newton would be astounded by the size of our modern telescopes, they would nevertheless understand their optical design. The time may now have come to consider quantum telescopes, that make use of the fundamental scientific changes brought along by quantum mechanics. While one aim is to entertain our reader, our main purpose is to explore the possible future evolution of telescopes.

  16. Muons and Neutrinos 2007

    CERN Document Server

    Gaisser, Thomas K

    2008-01-01

    This paper is the written version of the rapporteur talk on Section HE-2, muons and neutrinos, presented at the 30th International Cosmic Ray Conference, Merida, Yucatan, July 11, 2007. Topics include atmospheric muons and neutrinos, solar neutrinos and astrophysical neutrinos as well as calculations and instrumentation related to these topics.

  17. Light Sterile Neutrinos

    CERN Document Server

    Giunti, Carlo

    2015-01-01

    The indications in favor of the existence of light sterile neutrinos at the eV scale found in short-baseline neutrino oscillation experiments is reviewed. The future perspectives of short-baseline neutrino oscillation experiments and the connections with beta-decay measurements of the neutrino masses and with neutrinoless double-beta decay experiments are discussed.

  18. Results from atmospheric neutrinos

    Indian Academy of Sciences (India)

    J G Learned

    2000-07-01

    With the announcement of new evidence for muon neutrino disappearance observed by the super-Kamiokande experiment, the more than a decade old atmospheric neutrino anomaly moved from a possible indication for neutrino oscillations to an apparently inescapable fact. The evidence is reviewed, and new indications are presented that the oscillations are probably between muon and tau neutrinos. Implications and future directions are discussed.

  19. ABSOLUTE NEUTRINO MASSES

    DEFF Research Database (Denmark)

    Schechter, J.; Shahid, M. N.

    2012-01-01

    We discuss the possibility of using experiments timing the propagation of neutrino beams over large distances to help determine the absolute masses of the three neutrinos.......We discuss the possibility of using experiments timing the propagation of neutrino beams over large distances to help determine the absolute masses of the three neutrinos....

  20. Search for Point Sources of High Energy Neutrinos with Final Data from AMANDA-II

    CERN Document Server

    Abbasi, R; Adams, J; Ahlers, M; Ahrens, J; Andeen, K; Auffenberg, J; Bai, X; Baker, M; Baret, B; Barwick, S W; Bay, R; Bazo Alba, J L; Beattie, K; Becka, T; Becker, J K; Becker, K H; Berdermann, J; Berghaus, P; Berley, D; Bernardini, E; Bertrand, D; Besson, D Z; Blaufuss, E; Boersma, D J; Bohm, C; Bolmont, J; Boser, S; Botner, O; Braun, J; Breder, D; Burgess, T; Castermans, T; Chirkin, D; Christy, B; Clem, J; Cowen, D F; D'Agostino, M V; Danninger, M; Davour, A; Day, C T; Depaepe, O; De Clercq, C; Demirors, L; Descamps, F; Desiati, P; De Vries-Uiterweerd, G; De Young, T; Díaz-Veléz, J C; Dreyer, J; Dumm, J P; Duvoort, M R; Edwards, W R; Ehrlich, R; Eisch, J; Ellsworth, R W; Engdegard, O; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Filimonov, K; Finley, C; Foerster, M M; Fox, B D; Franckowiak, A; Franke, R; Gaisser, T K; Gallagher, J; Ganugapati, R; Gerhardt, L; Gladstone, L; Goldschmidt, A; Goodman, J A; Gozzini, R; Grant, D; Griesel, T; Gro, A; Grullon, S; Gunasingha, R M; Gurtner, M; Ha, C; Hallgren, A; Halzen, F; Han, K; Hanson, K; Hardtke, R; Hasegawa, Y; Heise, J; Helbing, K; Hellwig, M; Herquet, P; Hickford, S; Hill, G C; Hodges, J; Hoffman, K D; Hoshina, K; Hubert, D; Huelsnitz, W; Hughey, B; Hul, J P; Hulth, P O; Hultqvist, K; Hundertmark, S; Hussain, S; Imlay, R L; Inaba, M; Ishihara, A; Jacobsen, J; Japaridze, G S; Johansson, H; Joseph, J M; Kampert, K H; Kappes, A; Karg, T; Karle, A; Kawai, H; Kelley, J L; Kiryluk, J; Kislat, F; Klein, S R; Klepser, S; Kohnen, G; Kolanoski, H; Köpke, L; Kowalski, M; Kowarik, T; Krasberg, M; Kühn, K; Kuwabara, T; Labare, M; Laihem, K; Landsman, H; Lauer, R; Leich, H; Leier, D; Lewis, C; Lucke, A; Lundberg, J; Lunemann, J; Madsen, J; Maruyama, R; Mase, K; Matis, H S; McParland, C P; Meagher, K; Meli, A; Merck, M; Messarius, T; Mészáros, P; Miyamoto, H; Mohr, A; Montaruli, T; Morse, R; Movit, S M; Munich, K; Nahnhauer, R; Nam, J W; Nieen, P; Nygren, D R; Odrowski, S; Olivas, A; Olivo, M; Ono, M; Panknin, S; Patton, S; Pérez de los Heros, C; Petrovic, J; Piegsa, A; Pieloth, D; Pohl, A C; Porrata, R; Potthoff, N; Pretz, J; Price, P B; Przybylski, G T; Rawlins, K; Razzaque, S; Redl, P; Resconi, E; Rhode, W; Ribordy, M; Rizzo, A; Robbins, W J; Rodríguez, J; Roth, P; Rothmaier, F; Rott, C; Roucelle, C; Rutledge, D; Ryckbosch, D; Sander, H G; Sarkar, S; Satalecka, K; Schlenstedt, S; Schmidt, T; Schneider, D; Schultz, O; Seckel, D; Semburg, B; Seo, S H; Sestayo, Y; Seunarine, S; Silvestri, A; Smith, A J; Song, C; Spiczak, G M; Spiering, C; Stanev, T; Stezelberger, T; Stokstad, R G; Stoufer, M C; Stoyanov, S; Strahler, E A; Straszheim, T; Sulanke, K H; Sullivan, G W; Swillens, Q; Taboada, I; Tarasova, O; Tepe, A; Ter-Antonyan, S; Tilav, S; Tluczykont, M; Toale, P A; Tosi, D; Turcan, D; van Eijndhoven, N; Vandenbroucke, J; Van Overloop, A; Viscomi, V; Vogt, C; Voigt, B; Walck, C; Waldenmaier, T; Walter, M; Wendt, C; Westerhoff, S; Whitehorn, N; Wiebusch, C H; Wiedemann, C; Wikström, G; Williams, D R; Wischnewski, R; Wissing, H; Woschnagg, K; Xu, X W; Yodh, G; Yoshida, S

    2008-01-01

    We present a search for point sources of high energy neutrinos using 3.8 years of data recorded by the AMANDA-II neutrino telescope during 2000-2006. Applying muon track reconstruction and quality criteria, we select 6595 candidate events, predominantly from atmospheric neutrinos. Our search reveals no indications of a neutrino point source. We place the most stringent limits to date on E$^{-2}$ neutrino fluxes from points in the Northern Sky, with an average upper limit of E$^{2}\\Phi_{\

  1. Distinguishing Neutrino Mass Hierarchies using Dark Matter Annihilation Signals at IceCube

    CERN Document Server

    Allahverdi, Rouzbeh; Ghosh, Dilip Kumar; Knockel, Bradley; Saha, Ipsita

    2015-01-01

    We explore the possibility of distinguishing neutrino mass hierarchies through the neutrino signal from dark matter annihilation at neutrino telescopes. We consider a simple extension of the standard model where the neutrino masses and mixing angles are obtained via the type-II seesaw mechanism. We show that for a detector with the same capability as the IceCube DeepCore array, multiyear data from DM annihilation at the Galactic Center and inside the Sun can be used to distinguish the normal and inverted neutrino mass hierarchies.

  2. First detection of high-energy astrophysical neutrinos with IceCube

    International Nuclear Information System (INIS)

    The IceCube detector at the South Pole is the world’s largest neutrino telescope, instrumenting a cubic kilometre of deep clear ice. Completed in late 2010, the detector has recorded the arrival directions and energies of tens of thousands of neutrinos – mostly those produced when cosmic rays collide with the Earth’s atmosphere. Here, we report on the first observation of high-energy neutrinos from beyond the Earth’s atmosphere, identified using a novel method to strongly suppress atmospheric neutrinos coming downward into the detector from the southern sky, leaving a sample of neutrinos highly likely to be of astrophysical origin

  3. Energy reconstruction of high energy muon and neutrino events in KM3NeT

    Directory of Open Access Journals (Sweden)

    Drakopoulou Evangelia

    2016-01-01

    Full Text Available KM3NeT will be a European deep-sea infrastructure of neutrino telescopes covering a volume of several cubic kilometers in the Mediterranean Sea aiming to search for high energy neutrinos from galactic and extragalactic sources. This analysis focuses on muons coming from neutrino charged-current interactions. In large water Cherenkov detectors the reconstructed muon is used to approximate the neutrino direction and energy, thus providing information on the astrophysical neutrino source. Muon energy estimation is also critical for the differentiation of neutrinos originating from astrophysical sources from neutrinos generated in the atmosphere which constitute the detector background. We describe a method to determine the muon and neutrino energy employing a Neural Network. An energy resolution of approximately 0.27 has been achieved for muons at the TeV range.

  4. Neutrinos in Nuclear Physics

    CERN Document Server

    McKeown, R D

    2014-01-01

    Since the discovery of nuclear beta decay, nuclear physicists have studied the weak interaction and the nature of neutrinos. Many recent and current experiments have been focused on the elucidation of neutrino oscillations and neutrino mass. The quest for the absolute value of neutrino mass continues with higher precision studies of the tritium beta decay spectrum near the endpoint. Neutrino oscillations are studied through measurements of reactor neutrinos as a function of baseline and energy. And experiments searching for neutrinoless double beta decay seek to discover violation of lepton number and establish the Majorana nature of neutrino masses.

  5. Neutrinos in Nuclear Physics

    Energy Technology Data Exchange (ETDEWEB)

    McKeown, Bob [bmck@jlab.org

    2015-06-01

    Since the discovery of nuclear beta decay, nuclear physicists have studied the weak interaction and the nature of neutrinos. Many recent and current experiments have been focused on the elucidation of neutrino oscillations and neutrino mass. The quest for the absolute value of neutrino mass continues with higher precision studies of the tritium beta decay spectrum near the endpoint. Neutrino oscillations are studied through measurements of reactor neutrinos as a function of baseline and energy. And experiments searching for neutrinoless double beta decay seek to discover violation of lepton number and establish the Majorana nature of neutrino masses.

  6. Low-energy neutrinos

    OpenAIRE

    Ludhova, Livia

    2016-01-01

    There exist several kinds of sources emitting neutrinos in the MeV energy range. These low-energy neutrinos from different sources can be often detected by the same multipurpose detectors. The status-of-art of the feld of solar neutrinos, geoneutrinos, and the search for sterile neutrino with artifcial neutrino sources is provided here; other neutrino sources, as for example reactor or high-energy neutrinos, are described elsewhere. For each of these three felds, the present-day motivation an...

  7. Neutrinos and the stars

    CERN Document Server

    Raffelt, Georg

    2012-01-01

    The role of neutrinos in stars is introduced for students with little prior astrophysical exposure. We begin with neutrinos as an energy-loss channel in ordinary stars and conversely, how stars provide information on neutrinos and possible other low-mass particles. Next we turn to the Sun as a measurable source of neutrinos and other particles. Finally we discuss supernova (SN) neutrinos, the SN 1987A measurements, and the quest for a high-statistics neutrino measurement from the next nearby SN. We also touch on the subject of neutrino oscillations in the high-density SN context.

  8. The solar neutrinos epopee

    CERN Document Server

    Lasserre, T

    2003-01-01

    The 2002 year has been fruitful for the neutrino physics. First, the Sudbury Neutrino Observatory (SNO) experiment has shown that the electron neutrinos nu sub e emitted by the sun are converted into muon neutrinos (nu submu) and tau neutrinos (nu subtau), thus closing the 30 years old problem of solar neutrinos deficit. This discovery validates the model of nuclear energy production inside the sun but it shakes the theory describing the weak interactions between the fundamental constituents of matter. This theory considers the neutrinos (and the photons) as massless particles, while the taste conversion phenomenon necessarily implies that neutrinos have a mass. In October 2000, the Universe exploration by the cosmic neutrinos is jointly recognized by R. Davis (USA) and M. Koshiba (Japan) who received the Nobel price of physics. Finally, in December 2000, the KamLAND experiment quantitatively demonstrated the neutrinos metamorphosis by detecting a deficit in the flux of electron antineutrinos coming from the ...

  9. Neutrino electromagnetic properties

    CERN Document Server

    Giunti, Carlo

    2008-01-01

    The main goal of the paper is to give a short review on a neutrino electromagnetic properties. In the introductory part of the paper a summary on what we really know about neutrinos is given: we discuss the basics of neutrino mass and mixing as well as the phenomenology of neutrino oscillations. This is important for the further discussion on a neutrino electromagnetic properties that starts with derivation of the neutrino electromagnetic vertex function in the most general form, that follows from the requirement of Lorentz invariance, for both the Dirac and Majorana cases. Then the problem of a neutrino form factors definition and calculation within gauge models is considered. In particular, we discuss a neutrino electric charge form factor and charge radius, dipole magnetic and electric and anapole form factors. Available experimental constraints on a neutrino electromagnetic properties are also reviewed, and the most important experiments on obtaining limits on a neutrino magnetic moment are discussed. A s...

  10. Neutrino Physics with JUNO

    CERN Document Server

    An, Fengpeng; An, Qi; Antonelli, Vito; Baussan, Eric; Beacom, John; Bezrukov, Leonid; Blyth, Simon; Brugnera, Riccardo; Avanzini, Margherita Buizza; Busto, Jose; Cabrera, Anatael; Cai, Hao; Cai, Xiao; Cammi, Antonio; Cao, Guofu; Cao, Jun; Chang, Yun; Chen, Shaomin; Chen, Shenjian; Chen, Yixue; Chiesa, Davide; Clemenza, Massimiliano; Clerbaux, Barbara; Conrad, Janet; D'Angelo, Davide; De Kerret, Herve; Deng, Zhi; Deng, Ziyan; Ding, Yayun; Djurcic, Zelimir; Dornic, Damien; Dracos, Marcos; Drapier, Olivier; Dusini, Stefano; Dye, Stephen; Enqvist, Timo; Fan, Donghua; Fang, Jian; Favart, Laurent; Ford, Richard; Goger-Neff, Marianne; Gan, Haonan; Garfagnini, Alberto; Giammarchi, Marco; Gonchar, Maxim; Gong, Guanghua; Gong, Hui; Gonin, Michel; Grassi, Marco; Grewing, Christian; Guan, Mengyun; Guarino, Vic; Guo, Gang; Guo, Wanlei; Guo, Xin-Heng; Hagner, Caren; Han, Ran; He, Miao; Heng, Yuekun; Hsiung, Yee; Hu, Jun; Hu, Shouyang; Hu, Tao; Huang, Hanxiong; Huang, Xingtao; Huo, Lei; Ioannisian, Ara; Jeitler, Manfred; Ji, Xiangdong; Jiang, Xiaoshan; Jollet, Cecile; Kang, Li; Karagounis, Michael; Kazarian, Narine; Krumshteyn, Zinovy; Kruth, Andre; Kuusiniemi, Pasi; Lachenmaier, Tobias; Leitner, Rupert; Li, Chao; Li, Jiaxing; Li, Weidong; Li, Weiguo; Li, Xiaomei; Li, Xiaonan; Li, Yi; Li, Yufeng; Li, Zhi-Bing; Liang, Hao; Lin, Guey-Lin; Lin, Tao; Lin, Yen-Hsun; Ling, Jiajie; Lippi, Ivano; Liu, Dawei; Liu, Hongbang; Liu, Hu; Liu, Jianglai; Liu, Jianli; Liu, Jinchang; Liu, Qian; Liu, Shubin; Liu, Shulin; Lombardi, Paolo; Long, Yongbing; Lu, Haoqi; Lu, Jiashu; Lu, Jingbin; Lu, Junguang; Lubsandorzhiev, Bayarto; Ludhova, Livia; Luo, Shu; Lyashuk, Vladimir; Mollenberg, Randolph; Ma, Xubo; Mantovani, Fabio; Mao, Yajun; Mari, Stefano M; McDonough, William F; Meng, Guang; Meregaglia, Anselmo; Meroni, Emanuela; Mezzetto, Mauro; Miramonti, Lino; Mueller, Thomas; Naumov, Dmitry; Oberauer, Lothar; Ochoa-Ricoux, Juan Pedro; Olshevskiy, Alexander; Ortica, Fausto; Paoloni, Alessandro; Peng, Haiping; Peng, Jen-Chieh; Previtali, Ezio; Qi, Ming; Qian, Sen; Qian, Xin; Qian, Yongzhong; Qin, Zhonghua; Raffelt, Georg; Ranucci, Gioacchino; Ricci, Barbara; Robens, Markus; Romani, Aldo; Ruan, Xiangdong; Ruan, Xichao; Salamanna, Giuseppe; Shaevitz, Mike; Sinev, Valery; Sirignano, Chiara; Sisti, Monica; Smirnov, Oleg; Soiron, Michael; Stahl, Achim; Stanco, Luca; Steinmann, Jochen; Sun, Xilei; Sun, Yongjie; Taichenachev, Dmitriy; Tang, Jian; Tkachev, Igor; Trzaska, Wladyslaw; van Waasen, Stefan; Volpe, Cristina; Vorobel, Vit; Votano, Lucia; Wang, Chung-Hsiang; Wang, Guoli; Wang, Hao; Wang, Meng; Wang, Ruiguang; Wang, Siguang; Wang, Wei; Wang, Yi; Wang, Yifang; Wang, Zhe; Wang, Zheng; Wang, Zhigang; Wang, Zhimin; Wei, Wei; Wen, Liangjian; Wiebusch, Christopher; Wonsak, Bjorn; Wu, Qun; Wulz, Claudia-Elisabeth; Wurm, Michael; Xi, Yufei; Xia, Dongmei; Xie, Yuguang; Xing, Zhi-zhong; Xu, Jilei; Yan, Baojun; Yang, Changgen; Yang, Chaowen; Yang, Guang; Yang, Lei; Yang, Yifan; Yao, Yu; Yegin, Ugur; Yermia, Frederic; You, Zhengyun; Yu, Boxiang; Yu, Chunxu; Yu, Zeyuan; Zavatarelli, Sandra; Zhan, Liang; Zhang, Chao; Zhang, Hong-Hao; Zhang, Jiawen; Zhang, Jingbo; Zhang, Qingmin; Zhang, Yu-Mei; Zhang, Zhenyu; Zhao, Zhenghua; Zheng, Yangheng; Zhong, Weili; Zhou, Guorong; Zhou, Jing; Zhou, Li; Zhou, Rong; Zhou, Shun; Zhou, Wenxiong; Zhou, Xiang; Zhou, Yeling; Zhou, Yufeng; Zou, Jiaheng

    2015-01-01

    The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purpose underground liquid scintillator detector, was proposed with the determination of the neutrino mass hierarchy as a primary physics goal. It is also capable of observing neutrinos from terrestrial and extra-terrestrial sources, including supernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos, atmospheric neutrinos, solar neutrinos, as well as exotic searches such as nucleon decays, dark matter, sterile neutrinos, etc. We present the physics motivations and the anticipated performance of the JUNO detector for various proposed measurements. By detecting reactor antineutrinos from two power plants at 53-km distance, JUNO will determine the neutrino mass hierarchy at a 3-4 sigma significance with six years of running. The measurement of antineutrino spectrum will also lead to the precise determination of three out of the six oscillation parameters to an accuracy of better than 1\\%. Neutrino burst from a typical cor...

  11. Sm-Nd age of ultrabasite-basite massifs of east part of Baikal-Mujya ophiolite belt

    International Nuclear Information System (INIS)

    Two stratified ultrabasite-basite massifs of the Urals mountains were selected for isotope-geochemical studies. The intrusives, related to plutonic members of the island-arc associations, were used for dating. The Sm-Nd method indicated that one more belt, namely the Vend belt, is taking shape in the Baikal-Mujya tectonic collage alongside with the later Riphean (pre-Baikal) episubconduction belt of stratified intrusives

  12. Neutrino Mass Models

    OpenAIRE

    King, S. F.

    2003-01-01

    This is a review article about neutrino mass models, particularly see-saw models involving three active neutrinos which are capable of describing both the atmospheric neutrino oscillation data, and the large mixing angle MSW solar solution, which is now uniquely specified by recent data. We briefly review the current experimental status, show how to parametrise and construct the neutrino mixing matrix, and present the leading order neutrino Majorana mass matrices. We then introduce the see-sa...

  13. Extra galactic sources of high energy neutrinos

    CERN Document Server

    Waxman, E

    2005-01-01

    The main goal of the construction of large volume, high energy neutrino telescopes is the detection of extra-Galactic neutrino sources. The existence of such sources is implied by observations of ultra-high energy, >10^{19} eV, cosmic-rays (UHECRs), the origin of which is a mystery. The observed UHECR flux sets an upper bound to the extra-Galactic high energy neutrino intensity, which implies that the detector size required to detect the signal in the energy range of 1 TeV to 1 PeV is >=1 giga-ton, and much larger at higher energy. Optical Cerenkov neutrino detectors, currently being constructed under ice and water, are expected to achieve 1 giga-ton effective volume for 1 TeV to 1 PeV neutrinos. Coherent radio Cerenkov detectors (and possibly large air-shower detectors) will provide the >> 1 giga-ton effective volume required for detection at ~10^{19} eV. Detection of high energy neutrinos associated with electromagnetically identified sources will allow to identify the sources of UHECRs, will provide a uniq...

  14. Progress toward a Km-scale neutrino detector in the deep ocean

    International Nuclear Information System (INIS)

    The best particles for observing distant objects are photons and neutrinos. Because of the neutrino's weak interaction cross section, detectors suitable for astronomy must be very large and well shielded from cosmic rays. Eventually, a detector with the order of a square km of effective area will be needed for systematic observations of distant point sources such as active galactic nuclei. Prototype detectors are currently being developed at several sites in the ocean, at Lake Baikal, and in Antarctica. This talk summarizes the status of the projects that use the deep ocean for the detector medium and shielding: DUMAND, NESTOR and ANTARES. Technical developments will be needed for a future km-scale detector; progress on one of these, a digital electronic system, is also described

  15. High-Energy Neutrinos in Light of Fermi-LAT

    CERN Document Server

    Ahlers, Markus

    2015-01-01

    The production of high-energy astrophysical neutrinos is tightly linked to the emission of hadronic gamma-rays. I will discuss the recent observation of TeV to PeV neutrinos by the IceCube Cherenkov telescope in the context of gamma-ray astronomy. The corresponding energy range of hadronic gamma-rays is not directly accessible by extragalactic gamma-ray astronomy due to interactions with cosmic radiation backgrounds. Nevertheless, the isotropic sub-TeV gamma-ray background observed by the Fermi Large Area Telescope (LAT) contains indirect information from secondary emission produced in electromagnetic cascades and constrains hadronic emission scenarios. On the other hand, observation of PeV gamma-rays would provide a smoking-gun signal for Galactic emission. In general, the cross-correlation of neutrino emission with (extended) Galactic and extragalactic gamma-ray sources will serve as the most sensitive probe for a future identification of neutrino sources.

  16. The Search for Neutrino Sources Beyond the Sun

    OpenAIRE

    Barwick, S.; Halzen, F.; P. B. Price

    1995-01-01

    The hope is that in the near future neutrino astronomy, born with the identification of thermonuclear fusion in the sun and the particle processes controlling the fate of a nearby supernova, will reach throughout and beyond our Galaxy and make measurements relevant to cosmology, astrophysics, cosmic-ray and particle physics. The construction of a high-energy neutrino telescope requires a huge volume of very transparent, deeply buried material such as ocean water or ice, which acts as the medi...

  17. Optical and X-ray early follow-up of ANTARES neutrino alerts

    CERN Document Server

    Adrian-Martinez, S; Albert, A; Samarai, I Al; Andre, M; Anton, G; Ardid, M; Aubert, J -J; Baret, B; Barrios-Marti, J; Basa, S; Bertin, V; Biagi, S; Bogazzi, C; Bormuth, R; Bou-Cabo, M; Bouwhuis, M C; Bruijn, R; Brunner, J; Busto, J; Capone, A; Caramete, L; Carr, J; Chiarusi, T; Circella, M; Coniglione, R; Costantini, H; Coyle, P; Creusot, A; Dekeyser, I; Deschamps, A; De Bonis, G; Distefano, C; Donzaud, C; Dornic, D; Drouhin, D; Dumas, A; Eberl, T; Elsasser, D; Enzenhofer, A; Fehn, K; Felis, I; Fermani, P; Folger, F; Fusco, L A; Galata, S; Gay, P; Geißelsoder, S; Geyer, K; Giordano, V; Gleixner, A; Gracia-Ruiz, R; Graf, K; van Haren, H; Heijboer, A J; Hello, Y; Hernandez-Rey, J J; Herrero, A; Hoßl, J; Hofestadt, J; Hugon, C; James, C W; de Jong, M; Kadler, M; Kalekin, O; Katz, U; Kießling, D; Kooijman, P; Kouchner, A; Kreykenbohm, I; Kulikovskiy, V; Lahmann, R; Lambard, G; Lattuada, D; Lefevre, D; Leonora, E; Loucatos, S; Mangano, S; Marcelin, M; Margiotta, A; Martinez-Mora, J A; Martini, S; Mathieu, A; Michael, T; Migliozzi, P; Moussa, A; Mueller, C; Neff, M; Nezri, E; Pavalas, G E; Pellegrino, C; Perrina, C; Piattelli, P; Popa, V; Pradier, T; Racca, C; Riccobene, G; Richter, R; Roensch, K; Rostovtsev, A; Saldana, M; Samtleben, D F E; Sanguineti, M; Sapienza, P; Schmid, J; Schnabel, J; Schulte, S; Schüssler, F; Seitz, T; Sieger, C; Spurio, M; Steijger, J J M; Stolarczyk, Th; Sanchez-Losa, A; Taiuti, M; Tamburini, C; Trovato, A; Tselengidou, M; Tonnis, C; Turpin, D; Vallage, B; Vallee, C; Van Elewyck, V; Vecchi, M; Visser, E; Vivolo, D; Wagner, S; Wilms, J; Zornoza, J D; Zuniga, J; Klotz, A; Boer, M; Van Suu, A Le; Akerlof, C; Zheng, W; Evans, P; Gehrels, N; Kennea, J; Osborne, J P; Coward, D M

    2015-01-01

    High-energy neutrinos could be produced in the interaction of charged cosmic rays with matter or radiation surrounding astrophysical sources. Even with the recent detection of extraterrestrial high-energy neutrinos by the IceCube experiment, no astrophysical neutrino source has yet been discovered. Transient sources, such as gamma-ray bursts, core-collapse supernovae, or active galactic nuclei are promising candidates. Multi-messenger programs offer a unique opportunity to detect these transient sources. By combining the information provided by the ANTARES neutrino telescope with information coming from other observatories, the probability of detecting a source is enhanced, allowing the possibility of identifying a neutrino progenitor from a single detected event. A method based on optical and X-ray follow-ups of high-energy neutrino alerts has been developed within the ANTARES collaboration. This program, denoted as TAToO, triggers a network of robotic optical telescopes (TAROT and ROTSE) and the Swift-XRT w...

  18. Neutrino Sources and Properties

    CERN Document Server

    Vissani, Francesco

    2014-01-01

    In this lecture, prepared for PhD students, basic considerations on neutrino interactions, properties and sites of production are overviewed. The detailed content is as follows: Sect. 1, Weak interactions and neutrinos: Fermi coupling; definition of neutrinos; global numbers. Sect. 2, A list of neutrino sources: Explanatory note and examples (solar pp- and supernova-neutrinos). Sect. 3, Neutrinos oscillations: Basic formalism (Pontecorvo); matter effect (Mikheev, Smirnov, Wolfenstein); status of neutrino masses and mixings. Sect. 4, Modifying the standard model to include neutrinos masses: The fermions of the standard model; one additional operator in the standard model (Weinberg); implications. One summary table and several exercises offer the students occasions to check, consolidate and extend their understanding; the brief reference list includes historical and review papers and some entry points to active research in neutrino physics.

  19. Molybdenum solar neutrino experiment

    International Nuclear Information System (INIS)

    The goal of the molybdenum solar neutrino experiment is to deduce the 8B solar neutrino flux, averaged over the past several million years, from the concentration of 98Tc in a deeply buried molybdenum deposit. The experiment is important to an understanding of stellar processes because it will shed light on the reason for the discrepancy between theory and observation of the chlorine solar neutrino experiment. Possible reasons for the discrepancy may lie in the properties of neutrinos (neutrino oscillations or massive neutrinos) or in deficiencies of the standard solar model. The chlorine experiment only measures the 8B neutrino flux in current times and does not address possible temporal variations in the interior of the sun, which are also not considered in the standard model. In the molybdenum experiment, we plan to measure 98Tc (4.2 Myr), also produced by 8B neutrinos, and possibly 97Tc (2.6 Myr), produced by lower energy neutrinos

  20. Neutrino fluxes from the Galactic plane and the ANTARES limit

    Directory of Open Access Journals (Sweden)

    Fusco Luigi Antonio

    2016-01-01

    Full Text Available The existence of cosmic neutrinos has been reported by the IceCube Collaboration. Though this measurement is consistent with an isotropic neutrino flux, a sub-dominant galactic component coming from extended regions such as the Galactic Plane cannot be excluded. The ANTARES detector, located in the Mediterranean Sea, is currently the largest and longest operated under-water neutrino telescope; its effective area and good exposure to the Southern Sky allow to constrain an enhanced muon neutrino emission from extended sources such as the Galactic Plane. ANTARES data from 2007 to 2013 have been analysed and upper limits on the neutrino production from the central region of our galaxy have been set.

  1. Searching PeV neutrinos from photomeson interactions in magnetars

    CERN Document Server

    Dey, Rajat K; Ray, Sabyasachi

    2016-01-01

    We estimate neutrino and gamma-ray fluxes at PeV energies generated in interactions between very high energy protons and ambient radiation field in the polar cap of certain type of local magnetars. As a plausible explanation of the origin of PeV neutrino events detected in IceCube recently, it is realized that the influence of photon splitting on ambient photons spectra and inclusion of appropriate polar cap geometry are important. The results indicate that in near future, possibility of any significant excess of neutrino events from a magnetar in Milky Way is extremely low. Further, we suggest that the simultaneous observation of PeV neutrinos and gamma-rays at Earth from next generation IceCube detector or future systems of Cherenkov telescopes would provide opportunities to explore the possible origin of very high energy neutrinos.

  2. Cosmic Rays Astrophysics and Neutrino Astronomy beyond and beneath the Horizons

    OpenAIRE

    Fargion, D.

    2005-01-01

    Modern Terrestrial Cerenkov Telescopes and Array Scintillators facing the Horizons may soon reveal far Cosmic Rays or nearer PeVs-EeVs Neutrino Showers Astronomy. Indeed UHE neutrino interactions in air, leading to Horizontal Showers, may take place through several channels: the main Glashow resonant one, the charged nuclear interactions and the neutral current events. Analogous events occur also for the neutrino-nucleon events. These interactions are producing hadronic or electromagnetic sho...

  3. Present theoretical uncertainties on charm hadroproduction in QCD and prompt neutrino fluxes

    Directory of Open Access Journals (Sweden)

    Garzelli M.V.

    2016-01-01

    Full Text Available Prompt neutrino fluxes are basic backgrounds in the search of high-energy neutrinos of astrophysical origin, performed by means of full-size neutrino telescopes located at Earth, under ice or under water. Predictions for these fluxes are provided on the basis of up-to-date theoretical results for charm hadroproduction in perturbative QCD, together with a comprehensive discussion of the various sources of theoretical uncertainty affecting their computation, and a quantitative estimate of each uncertainty contribution.

  4. Supernova neutrinos in AMANDA and IceCube - Monte Carlo development and data analysis

    OpenAIRE

    Kowarik, Thomas

    2010-01-01

    Supernovae are among the most energetic events occurring in the universe and are so far the only verified extrasolar source of neutrinos. As the explosion mechanism is still not well understood, recording a burst of neutrinos from such a stellar explosion would be an important benchmark for particle physics as well as for the core collapse models. The neutrino telescope IceCube is located at the Geographic South Pole and monitors the antarctic glacier for Cherenkov photons. Even though it was...

  5. Detecting Asymmetric Dark Matter in the Sun with Neutrinos

    OpenAIRE

    Murase, Kohta; Shoemaker, Ian M.

    2016-01-01

    Dark Matter (DM) may have a relic density that is in part determined by a particle/antiparticle asymmetry, much like baryons. If this is the case, it can accumulate in stars like the Sun to sizable number densities and annihilate to Standard Model (SM) particles including neutrinos. We show that the combination of neutrino telescope and direct detection data can be used in conjunction to determine or constrain the DM asymmetry from data. Depending on the DM mass, the current neutrino data fro...

  6. Hadronic flares and associated neutrinos for Markarian 421

    CERN Document Server

    Marinelli, A; Fraija, N

    2015-01-01

    Markarian 421 (Mrk 421) is one of the brightest, fastest and closest BL Lac object known. Its very high energy (VHE) spectrum has been successfully modeled with both leptonic and hadronic models and not conclusive results have been achieved yet about the origin of its VHE emission. Here we investigate the possibility that a fraction of the VHE flares of Mrk 421 are due to hadronic processes and calculate the expected neutrino flux associated. We introduce the obtained neutrino flux in a Monte Carlo simulation to see the expectation for a Km$^{3}$ Cherenkov neutrino telescope.

  7. Experimental Limit on the Cosmic Diffuse Ultrahigh Energy Neutrino Flux

    Science.gov (United States)

    Gorham, P. W.; Hebert, C. L.; Liewer, K. M.; Naudet, C. J.; Saltzberg, D.; Williams, D.

    2004-07-01

    We report results from 120h of live time with the Goldstone lunar ultrahigh energy neutrino experiment (GLUE). The experiment searches for ≤10 ns microwave pulses from the lunar regolith, appearing in coincidence at two large radio telescopes separated by 22km and linked by optical fiber. Such pulses would arise from subsurface electromagnetic cascades induced by interactions of ≥100 EeV (1 EeV=1018 eV neutrinos in the lunar regolith. No candidates are yet seen, and the implied limits constrain several current models for ultrahigh energy neutrino fluxes.

  8. Tau Neutrino Appearance with a 1000 Megaparsec Baseline

    OpenAIRE

    Halzen, Francis; Saltzberg, David

    1998-01-01

    A high-energy neutrino telescope, such as the operating AMANDA detector, may detect neutrinos produced in sources, possibly active galactic nuclei or gamma-ray bursts, distant by a thousand megaparsecs. These sources produce mostly nu_e or nu_mu neutrinos. Above 1 PeV, nu_e and nu_mu are absorbed by charged-current interactions in the Earth before reaching the opposite surface. However, the Earth never becomes opaque to nu_tau since the tau^- produced in a charged-current nu_tau interaction d...

  9. High Energy Neutrino Emission from Astrophysical Jets in the Galaxy

    International Nuclear Information System (INIS)

    We address simulated neutrino emission originated from astrophysical jets of compact objects within the Galaxy. These neutrinos are of high energies (Eν of the order up to a few TeV) and for their observation specialized instruments are in operation, both on Earth and in orbit. Furthermore, some next generation telescopes and detector facilities are in the process of design and construction. The jet flow simulations are performed using the modern PLUTO hydrocode in its relativistic magnetohydrodynamic version. One of the main ingredients of the present work is the presence of a toroidal magnetic field that confines the jet flow and furthermore greatly affects the distribution of the high energy neutrinos

  10. High Energy Neutrinos from Recent Blazar Flares

    CERN Document Server

    Halzen, Francis

    2016-01-01

    The energy density of cosmic neutrinos measured by IceCube matches the one observed by Fermi in extragalactic photons that predominantly originate in blazars. This has inspired attempts to match Fermi sources with IceCube neutrinos. A spatial association combined with a coincidence in time with a flaring source may represent a smoking gun for the origin of the IceCube flux. In June 2015, the Fermi Large Area Telescope observed an intense flare from blazar 3C 279 that exceeded the steady flux of the source by a factor of forty for the duration of a day. We show that IceCube is likely to observe neutrinos, if indeed hadronic in origin, in data that are still blinded at this time. We also discuss other opportunities for coincident observations that include a recent flare from blazar 1ES 1959+650 that previously produced an intriguing coincidence with AMANDA observations.

  11. First experience of seismodeformation monitoring of Baikal rift zone (by the example of South-Baikal earthquake of 27 August 2008)

    OpenAIRE

    Vstovsky, G. V.; S. A. Bornyakov

    2010-01-01

    A novel method of data processing – a structural functions curvature analysis method – was applied to the time series of seismodeformation monitoring of Baikal rift zone from April to November 2008, revealing the unique features of monitoring variable behaviour that can be considered as a revelation of precursors to the intensive South-Biakal earthquake (M=6.3, at 09:31 on 27 August 2008). The idea of a new approach leans upon basic ideas of modern physics of self-organized...

  12. First experience of seismodeformation monitoring of Baikal rift zone (by the example of South-Baikal earthquake of 27 August 2008

    Directory of Open Access Journals (Sweden)

    G. V. Vstovsky

    2010-04-01

    Full Text Available A novel method of data processing – a structural functions curvature analysis method – was applied to the time series of seismodeformation monitoring of Baikal rift zone from April to November 2008, revealing the unique features of monitoring variable behaviour that can be considered as a revelation of precursors to the intensive South-Biakal earthquake (M=6.3, at 09:31 on 27 August 2008. The idea of a new approach leans upon basic ideas of modern physics of self-organized criticality and open non-equilibrium systems in general.

  13. Neutrinos and Supernovae

    International Nuclear Information System (INIS)

    Core-collapse supernovae are one of the few astrophysical environments in which neutrinos play a dominant role. Neutrinos emission is the means by which a newly-born neutron star formed in a core-collapse event cools. Neutrinos may play a significant role in causing the supernova explosion. Finally neutrinos may significantly affect the nucleosynthesis occurring in the layers of the exploding star that are eventually ejected into interstellar space. This paper reviews some interesting neutrino-nucleus processes that may occur in the cores of exploding massive stars and then discusses some effects neutrinos may have on explosive nucleosynthesis in supernovae

  14. Democratic Neutrino Mixing Reexamined

    CERN Document Server

    Fritzsch, Harald; Fritzsch, Harald; Xing, Zhi-zhong

    2004-01-01

    We reexamine the democratic neutrino mixing ansatz, in which the mass matrices of charged leptons and Majorana neutrinos arise respectively from the explicit breaking of S(3)_L x S(3)_R and S(3) flavor symmetries. It is shown that a democracy term in the neutrino sector can naturally allow the ansatz to fit the solar neutrino mixing angle \\theta_sun \\approx 33^\\circ. We predict \\sin^2 2\\theta_atm \\approx 0.95 for atmospheric neutrino mixing and J \\approx 1.2% for leptonic CP violation in neutrino oscillations without any fine-tuning. Direct relations between the model parameters and experimental observables are also discussed.

  15. Experimental Neutrino Physics: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Charles E.; Maricic, Jelena

    2012-09-05

    Experimental studies of neutrino properties, with particular emphasis on neutrino oscillation, mass and mixing parameters. This research was pursued by means of underground detectors for reactor anti-neutrinos, measuring the flux and energy spectra of the neutrinos. More recent investigations have been aimed and developing detector technologies for a long-baseline neutrino experiment (LBNE) using a neutrino beam from Fermilab.

  16. Changing of the HSP70 Content in the Baikal Endemic Sponges Lubomirskiidae Under Conditions of Hyperthermia

    Directory of Open Access Journals (Sweden)

    Itskovich V.B.

    2015-12-01

    Full Text Available Baikal endemic sponges (Lubomirskiidae make up the bulk of the benthos biomass of the lake. For the first time the changes in the content of HSP70 in response to elevated environment temperature were analyzed in three endemic species of Baikal sponges: Baikalospongia bacillifera (Dybowski, 1880, B. intermedia (Dybowski, 1880 and Swartschewskia papyracea (Dybowski, 1880. Interspecific variability of constitutive HSP70 level was revealed for representatives of the three analyzed Lubomirskiidae species. After exposure at 13 °С for 3 and 7 days opposite changes were noted in the amount of HSP70. Under conditions of hyperthermia the protein level decrease at Baikalospongia species, while at the S. papyracea HSP70 content slightly increased. The differences in the mechanisms of stress adaptation probably affect the thermal resistance of the species, as well as are evidence supporting their specific status.

  17. Bottom sediments and pore waters near a hydrothermal vent in Lake Baikal (Frolikha Bay)

    Science.gov (United States)

    Granina, L.Z.; Klerkx, J.; Callender, E.; Leermakers, M.; Golobokova, L.P.

    2007-01-01

    We discuss the redox environments and the compositions of bottom sediments and sedimentary pore waters in the region of a hydrothermal vent in Frolikha Bay, Lake Baikal. According to our results, the submarine vent and its companion nearby spring on land originate from a common source. The most convincing evidence for their relation comes from the proximity of stable oxygen and hydrogen isotope compositions in pore waters and in the spring water. The isotope composition indicates a meteoric origin of pore waters, but their major- and minor-element chemistry bears imprint of deep water which may seep through permeable faulted crust. Although pore waters near the submarine vent have a specific enrichment in major and minor constituents, hydrothermal discharge at the Baikal bottom causes a minor impact on the lake water chemistry, unlike the case of freshwater geothermal lakes in the East-African Rift and North America. ?? 2007.

  18. Simultaneous thermoluminescence and optically stimulated luminescence dating of late Pleistocene sediments from Lake Baikal

    International Nuclear Information System (INIS)

    When the thermoluminescence (TL) method is applied to dating of partially bleached sediments the need to correct for the residual TL signal left in the mineral crystals at time of deposition is a complicated problem. In dating sediments from Lake Baikal we have attempted a combination of TL and optical stimulated luminescence (OSL). The method was applied to three samples from the uppermost 50 m of the sediment cored within the Baikal drilling project in 1993. The results indicate a fairly constant sedimentation rate back to 250 ka BP. This contradicts with results from radiocarbon dating of the same core but agrees reasonably well with preliminary paleomagnetic data and disequilibrium U-Th age determinations

  19. A reconstruction method for neutrino induced muon tracks taking into account the apriori knowledge of the neutrino source

    International Nuclear Information System (INIS)

    Gamma ray earthbound and satellite experiments have discovered, over the last years, many Galactic and extragalactic gamma ray sources. The detection of astrophysical neutrinos emitted by the same sources would imply that these astrophysical objects are charged cosmic ray accelerators and help to resolve the enigma of the origin of cosmic rays. A very large volume neutrino telescope will be able to detect these potential neutrino emitters. The apriori known direction of the neutrino source can be used to effectively suppress the 40K optical background and increase significantly the tracking efficiency through causality filters. We report on advancing filtering and prefit techniques using the known neutrino source direction and first results are presented

  20. A reconstruction method for neutrino induced muon tracks taking into account the apriori knowledge of the neutrino source

    Energy Technology Data Exchange (ETDEWEB)

    Tsirigotis, A.G., E-mail: tsirigotis@eap.gr [Physics Laboratory, School of Science and Technology, Hellenic Open University (Greece); Leisos, A.; Tzamarias, S.E. [Physics Laboratory, School of Science and Technology, Hellenic Open University (Greece)

    2013-10-11

    Gamma ray earthbound and satellite experiments have discovered, over the last years, many Galactic and extragalactic gamma ray sources. The detection of astrophysical neutrinos emitted by the same sources would imply that these astrophysical objects are charged cosmic ray accelerators and help to resolve the enigma of the origin of cosmic rays. A very large volume neutrino telescope will be able to detect these potential neutrino emitters. The apriori known direction of the neutrino source can be used to effectively suppress the {sup 40}K optical background and increase significantly the tracking efficiency through causality filters. We report on advancing filtering and prefit techniques using the known neutrino source direction and first results are presented.