WorldWideScience

Sample records for baghouses

  1. BAGHOUSE FILTRATION PRODUCTS VERIFICATION TESTING, HOW IT BENEFITS THE BOILER BAGHOUSE OPERATOR

    Science.gov (United States)

    The paper describes the Environmental Technology Verification (ETV) Program for baghouse filtration products developed by the Air Pollution Control Technology Verification Center, one of six Centers under the ETV Program, and discusses how it benefits boiler baghouse operators. A...

  2. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - BAGHOUSE FILTRATION PRODUCTS - TETRATEC PTFE TECHNOLOGIES TETRATEX 8005

    Science.gov (United States)

    Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) pilot of the Environmental Technology Verification (ETV) Program. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of th...

  3. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, BAGHOUSE FILTRATION PRODUCTS, TETRATEC PTFE PRODUCTS, TETRATEX 6212 FILTER SAMPLE

    Science.gov (United States)

    Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) Verification Center. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of the size of those particles equal to and smalle...

  4. Mineral phases and metals in baghouse dust from secondary aluminum production

    Science.gov (United States)

    Baghouse dust (BHD) is a solid waste generated by air pollution control systems during secondary aluminum processing (SAP). Management and disposal of BHD can be challenging in the U.S. and elsewhere. In this study, the mineral phases, metal content and metal leachability of 78...

  5. Using cement, lignite fly ash and baghouse filter waste for solidification of chromium electroplating treatment sludge

    Directory of Open Access Journals (Sweden)

    Wantawin, C.

    2004-02-01

    Full Text Available The objective of the study is to use baghouse filter waste as a binder mixed with cement and lignite fly ash to solidify sludge from chromium electroplating wastewater treatment. To save cost of solidification, reducing cement in binder and increasing sludge in the cube were focused on. Minimum percent cement in binder of 20 for solidification of chromium sludge was found when controlling lignite fly ash to baghouse filter waste at the ratio of 30:70, sludge to binder ratio of 0.5, water to mixer ratio of 0.3 and curing time of 7 days. Increase of sludge to binder ratio from 0.5 to 0.75 and 1 resulted in increase in the minimum percent cement in binder up to 30 percent in both ratios. With the minimum percent cement in binder, the calculated cement to sludge ratios for samples with sludge to binder ratios of 0.5, 0.75 and 1 were 0.4, 0.4 and 0.3 respectively. Leaching chromium and compressive strength of the samples with these ratios could achieve the solidified waste standard by the Ministry of Industry. For solidification of chromium sludge at sludge to binder ratio of 1, the lowest cost binder ratio of cement to lignite fly ash and baghouse filter waste in this study was 30:21:49. The cost of binder in this ratio was 718 baht per ton dry sludge.

  6. Hydrometallurgical process for recovering iron sulfate and zinc sulfate from baghouse dust

    Science.gov (United States)

    Zaromb, Solomon; Lawson, Daniel B.

    1994-01-01

    A process for recovering zinc/rich and iron-rich fractions from the baghouse dust that is generated in various metallurgical operations, especially in steel-making and other iron-making plants, comprises the steps of leaching the dust by hot concentrated sulfuric acid so as to generate dissolved zinc sulfate and a precipitate of iron sulfate, separating the precipitate from the acid by filtration and washing with a volatile liquid, such as methanol or acetone, and collecting the filtered acid and the washings into a filtrate fraction. The volatile liquid may be recovered distillation, and the zinc may be removed from the filtrate by alternative methods, one of which involves addition of a sufficient amount of water to precipitate hydrated zinc sulfate at 10.degree. C., separation of the precipitate from sulfuric acid by filtration, and evaporation of water to regenerate concentrated sulfuric acid. The recovery of iron may also be effected in alternative ways, one of which involves roasting the ferric sulfate to yield ferric oxide and sulfur trioxide, which can be reconverted to concentrated sulfuric acid by hydration. The overall process should not generate any significant waste stream.

  7. Development process for the stabilization of incinerator bottom ash and sizing baghouse dust material

    International Nuclear Information System (INIS)

    Hunt, L.F.; Boehmer, A.M.

    1987-04-01

    EG ampersand G Idaho Inc. has initiated a program to develop safe, efficient, cost-effective treatment methods for the stabilization and subsequent disposal of some of the hazardous and mixed wastes generated at the Idaho National Engineering Laboratory (INEL). Lab-scale testing has shown that Extraction Procedure (EP) toxic wastes can be successfully stabilized by solidification, using various binders to produce nontoxic, stable waste forms for safe, long-term disposal. The purpose of this report is to present the results of drum-scale testing of WERF incinerator bottom ash and WERF sizing baghouse dust. The drum-scale test program was conducted to determine if a production procedure that would produce a waste form which was suitable for disposal as a low-level radioactive waste could be developed. The use of 71-gallon square drums for solidification processing were also evaluated. During the test program, eleven drums of ash material were solidified. All of the samples from all of the drums passed the EPA leach test criteria. Although there is a distinct weight addition associated with the solidification process, there is no relative volume increase. 4 refs., 6 figs., 8 tabs

  8. The Development and Testing of a Prototype Mini-Baghouse to Control the Release of Respirable Crystalline Silica from Sand Movers

    Science.gov (United States)

    Alexander, Barbara M.; Esswein, Eric J.; Gressel, Michael G.; Kratzer, Jerry L.; Feng, H. Amy; King, Bradley; Miller, Arthur L.; Cauda, Emanuele

    2016-01-01

    Inhalation of respirable crystalline silica (RCS) is a significant risk to worker health during well completions operations (which include hydraulic fracturing) at conventional and unconventional oil and gas extraction sites. RCS is generated by pneumatic transfer of quartz-containing sand during hydraulic fracturing operations. National Institute for Occupational Safety and Health (NIOSH) researchers identified concentrations of RCS at hydraulic fracturing sites that exceed 10 times the Occupational Safety and Health Administration (OSHA) Permissible Exposure Limit (PEL) and up to 50 times the NIOSH Recommended Exposure Limit (REL). NIOSH research identified at least seven point sources of dust release at contemporary oil and gas extraction sites where RCS aerosols were generated. NIOSH researchers recommend the use of engineering controls wherever they can be implemented to limit the RCS released. A control developed to address one of the largest sources of RCS aerosol generation is the NIOSH mini-baghouse assembly, mounted on the thief hatches on top of the sand mover. This manuscript details the results of a trial of the NIOSH mini-baghouse at a sand mine in Arkansas, November 18 – 21, 2013. During the trial, area air samples were collected at 12 locations on and around a sand mover with and without the mini-baghouse control installed. Analytical results for respirable dust and RCS indicate the use of the mini-baghouse effectively reduced both respirable dust and RCS downwind of the thief hatches. Reduction of airborne respirable dust ranged from 85% to 98%; reductions in airborne RCS ranged from 79% to 99%. A bulk sample of dust collected by the baghouse assembly showed the likely presence of freshly fractured quartz, a particularly hazardous form of RCS. Planned future design enhancements will increase the performance and durability of the mini-baghouse, including an improved bag clamp mechanism and upgraded filter fabric with a modified air-to-cloth ratio

  9. Environmental Technology Verification: Baghouse Filtration Products--TDC Filter Manufacturing, Inc., SB025 Filtration Media

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) has created the Environmental Technology Verification (ETV) Program to facilitate the deployment of innovative or improved environmental technologies through performance verification and dissemination of information. ETV seeks to ach...

  10. The Characterization of Filtration Waste Solidified Product from Baghouse Filter of the Incineration Process

    International Nuclear Information System (INIS)

    Sutoto

    2000-01-01

    To increase of the safety, quality and to easy maintenance of the incinerator media of bag house filter, coating of the surface filter media by CaCO 3 powder were done. In the incinerator process, the CaCO 3 powder will scrub of fly ash as secondary waste. And finally, both of the secondary waste and CaCO 3 will immobilized by cement matrix. The research has an objective to study and characterizing of the CaCO 3 as secondary waste on their cemented product. The research were done on block samples with content of CaCO 3 and the properties characterized by compressive strength and density. From this research known that on their solidified, each quantity of CaCO 3 will be impact to decreasing of the quality cementation product. The optimum formula for solidification of bag house filter scrubbed is CaCO 3 : cement: water is 3 : 10 : 7. (author)

  11. Characterizing toxic emissions from a coal-fired power plant demonstrating the AFGD ICCT Project and a plant utilizing a dry scrubber/baghouse system: Bailly Station Units 7 and 8 and AFGD ICCT Project. Final report. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dismukes, E.B.

    1994-10-20

    This report describes results of assessment of the risk of emissions of hazardous air pollutants at one of the electric power stations, Bailly Station, which is also the site of a Clean Coal Technology project demonstrating the Pure Air Advanced Flue Gas Desulfurization process (wet limestone). This station represents the configuration of no NO{sub x} reduction, particulate control with electrostatic precipitators, and SO{sub 2} control with a wet scrubber. The test was conducted September 3--6, 1993. Sixteen trace metals were determined along with 5 major metals. Other inorganic substances and organic compounds were also determined.

  12. 40 CFR 63.11465 - What are the standards for new and existing sources?

    Science.gov (United States)

    2010-07-01

    ... Metals Processing Area Sources Standards, Compliance, and Monitoring Requirements § 63.11465 What are the... through a fabric filter or baghouse that achieves a particulate matter (PM) control efficiency of at least... affected source through a fabric filter or baghouse that achieves a PM control efficiency of at least 99.5...

  13. Low Temperature Particle Filtration of Wood Gas with Low Tar Content

    DEFF Research Database (Denmark)

    Hindsgaul, Claus; Henriksen, Ulrik Birk; Bentzen, Jens Dall

    2002-01-01

    Baghouse filters and cartridge filters were tested online with wood gas from a two stage down draft gasifier. The gas contained soot and very low levels (10-30 mg/Nm³) of tar. Particle collection efficiencies were above 95%. Continuous operation with cheap self cleaning baghouse filters were test...

  14. Recent developments in particulate control with low-rank fuels

    International Nuclear Information System (INIS)

    Miller, S.J.; Laudal, D.L.

    1991-01-01

    Regulations appear to be focusing on fine particle emissions rather than total mass particulate emissions. There is concern that electrostatic precipitators (ESPs) may not be able to meet potentially stricter finer particle emission standards. A new development in the area of fabric filtration is the use of flue gas-conditioning agents to reduce particulate emissions and pressure drop. Theoretical analysis of the factors that control the size of a baghouse indicates that pulse-jet baghouses can be designed to operate at much higher air-to-cloth ratios than is currently employed. To help optimize performance of both ESPs and baghouses, quantitative characterization of the cohesive properties of fly ash is necessary. Appropriate methods are determination of aerated and packed porosity and measurement of tensile strength as a function of porosity

  15. 40 CFR 63.7300 - What are my operation and maintenance requirements?

    Science.gov (United States)

    2010-07-01

    ...-term maintenance. (3) Corrective action for all baghouses applied to pushing emissions. In the event a... 40 Protection of Environment 13 2010-07-01 2010-07-01 false What are my operation and maintenance... Battery Stacks Operation and Maintenance Requirements § 63.7300 What are my operation and maintenance...

  16. 78 FR 49701 - Approval and Promulgation of Implementation Plans; Connecticut; Control of Visible Emissions...

    Science.gov (United States)

    2013-08-15

    ... Harbor 3.... Bridgeport/ Coal/Oil Operating Adaro Adaro Coal, Fairfield. Coal/Residual Oil. Electrostatic precipitator, Activated carbon injection, Pulse jet fabric filter baghouse, Low NOX Burner Technology w... by 52 percent, the maximum allowable NO X emission rate for existing coal-fired boilers was reduced...

  17. 76 FR 2096 - Record of Decision for the Environmental Impact Statement for the Proposed Abengoa Biorefinery...

    Science.gov (United States)

    2011-01-12

    ... have fabric filter dust collectors (baghouses). Volatile organic matter released during processing... plant under the Action Alternative would be used to operate a fire-tube boiler to produce steam. A small... resistant to many pests and plant diseases; uses relatively less water, fertilizer, and pesticides; and...

  18. 40 CFR 63.1383 - Monitoring requirements.

    Science.gov (United States)

    2010-07-01

    ... baghouse for air leaks, torn or broken bags or filter media, or any other conditions that may cause an... clean pilot sensor, as necessary; (ii) Ensure proper adjustment of combustion air and adjust, as... Section 63.1383 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS...

  19. 40 CFR 63.11468 - What are the monitoring requirements for new and existing sources?

    Science.gov (United States)

    2010-07-01

    ... baghouse, including but not limited to air leaks, torn or broken bags or filter media, or any other... install the bag leak detection sensor downstream of the fabric filter. (viii) Where multiple detectors are...) Inspecting the fabric filter for air leaks, torn or broken bags or filter media, or any other condition that...

  20. 40 CFR 60.273 - Emission monitoring.

    Science.gov (United States)

    2010-07-01

    ... sensor must provide output of relative particulate matter loadings and the owner or operator shall... system including quality assurance procedures; (iv) How the bag leak detection system will be maintained... stack, the bag leak detection sensor must be installed downstream of the baghouse and upstream of any...

  1. Designing a model for selection of air pollution control equipment using fuzzy logic

    Directory of Open Access Journals (Sweden)

    F. Golbabaei

    2014-07-01

    Conclusion: Finally, the proposed model that is based on the Fuzzy Analytic Hierarchy Process indicates that the Baghouse Technique is the most appropriate technique for the purpose of dust filtration in major sources of air pollution spread in Shargh Cement Company.

  2. 40 CFR 49.24 - Federal Implementation Plan Provisions for Navajo Generating Station, Navajo Nation.

    Science.gov (United States)

    2010-07-01

    ... crusher, any conveyor belt transfer point, any pneumatic material transferring, any baghouse or other..., grinding mill, screening operation, belt conveyor, truck loading or unloading operation, or railcar..., and the owner or operator uses best efforts regarding planning, design, and operating procedures to...

  3. 75 FR 10174 - Source-Specific Federal Implementation Plan for Navajo Generating Station; Navajo Nation

    Science.gov (United States)

    2010-03-05

    ..., any conveyor belt transfer point, any pneumatic material transferring, any baghouse or other control... than 20% from any crusher, grinding mill, screening operation, belt conveyor, truck loading or... emissions from this facility. This will be an ongoing process designed to incorporate suitable VCS as they...

  4. 40 CFR 63.1451 - How do I demonstrate initial compliance with the emission limitations, work practice standards...

    Science.gov (United States)

    2010-07-01

    ... compliance status according to the requirements in § 63.1454(e). (f) Venturi wet scrubbers. For each venturi... compliance status that you will operate the venturi wet scrubber within the established operating limits for... baghouse or venturi wet scrubber subject to operating limits in § 63.1444(h) or § 63.1446(e), you have...

  5. 40 CFR 63.1444 - What emissions limitations and work practice standards must I meet for my copper concentrate...

    Science.gov (United States)

    2010-07-01

    ... than 5 percent of the total operating time in any semiannual reporting period. (g) Venturi wet scrubbers. For each venturi wet scrubber applied to meet any total particulate matter emission limit in... test. (h) Other control devices. For each control device other than a baghouse or venturi wet scrubber...

  6. 40 CFR 63.7790 - What emission limitations must I meet?

    Science.gov (United States)

    2010-07-01

    ...) For each venturi scrubber applied to meet any particulate emission limit in Table 1 to this subpart, you must maintain the hourly average pressure drop and scrubber water flow rate at or above the... other than a baghouse, venturi scrubber, or electrostatic precipitator must submit a description of the...

  7. 40 CFR 63.1453 - How do I demonstrate continuous compliance with the emission limitations, work practice standards...

    Science.gov (United States)

    2010-07-01

    ... responsible official in the next semiannual compliance report. (d) Venturi wet scrubbers. For each venturi wet...; (2) Inspect and maintain each venturi wet scrubber CPMS according to § 63.1452(c) and recording all... device other than a baghouse or venturi wet scrubber subject to the operating limits for site-specific...

  8. 40 CFR 63.1446 - What alternative emission limitation may I meet for my combined gas streams?

    Science.gov (United States)

    2010-07-01

    ... than a baghouse or venturi wet scrubber applied to meet any total particulate matter emission limit in... than 5 percent of the total operating time in any semiannual reporting period. (d) For each venturi wet scrubber applied to meet any total particulate matter emission limit in paragraph (b) of this section, you...

  9. 40 CFR 63.1450 - What test methods and other procedures must I use to demonstrate initial compliance with the...

    Science.gov (United States)

    2010-07-01

    ... mean of the results for the three separate test runs is used. (4) For a venturi wet scrubber applied to... the applicable emission limit. (5) For a control device other than a baghouse or venturi wet scrubber... pressure drop and scrubber water flow rate, you must establish site-specific operating limits according to...

  10. 40 CFR 62.14840 - What definitions must I know?

    Science.gov (United States)

    2010-07-01

    ... primary chamber. Solid waste means any garbage, refuse, sludge from a waste treatment plant, water supply... fuel. Bag leak detection system means an instrument that is capable of monitoring particulate matter loadings in the exhaust of a fabric filter (i.e., baghouse) in order to detect bag failures. A bag leak...

  11. 40 CFR 60.2875 - What definitions must I know?

    Science.gov (United States)

    2010-07-01

    .... Solid waste means any garbage, refuse, sludge from a waste treatment plant, water supply treatment plant... fuel means natural gas, liquified petroleum gas, fuel oil, or diesel fuel. Bag leak detection system... filter (i.e., baghouse) in order to detect bag failures. A bag leak detection system includes, but is not...

  12. 40 CFR 63.11163 - What are the standards and compliance requirements for new sources?

    Science.gov (United States)

    2010-07-01

    ... Nonferrous Metals Area Sources-Zinc, Cadmium, and Beryllium Primary Zinc Production Facilities § 63.11163... of the baghouse and upstream of any wet scrubber. (viii) Where multiple detectors are required, the system's instrumentation and alarm may be shared among detectors. (2) You must develop and submit to the...

  13. 77 FR 51915 - Approval and Promulgation of Air Quality Implementation Plans; State of New York; Regional Haze...

    Science.gov (United States)

    2012-08-28

    ... requirements that are characteristic for the different types of emissions sources. These include electric... rotary kiln be removed from the permit since the requirement to install a baghouse was not intended to... EPA in the April 25, 2012 proposal for the rotary kiln. The permit amendments also provide a new SO 2...

  14. 77 FR 50973 - Revision to the South Coast Portion of the California State Implementation Plan, CPV Sentinel...

    Science.gov (United States)

    2012-08-23

    ... operating data and reported emissions. \\1\\ For one project, Seagull Sanitation, the source shutdown and... Retrofit Technology at the time of shutdown. Then the District subtracted the amount of offsets that the... water or dust suppressants, enclosures and baghouses; and equipment and work standards to minimize track...

  15. Investigation and demonstration of dry carbon-based sorbent injection for mercury control. Quarterly technical report, July 1, 1996--September 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, T.; Sjostrom, S.; Smith, J. [and others

    1996-11-06

    The overall objective of this two phase program is to investigate the use of dry carbon-based sorbents for mercury control. This information is important to the utility industry in anticipation of pending regulations. During Phase I, a bench-scale field test device that can be configured as an electrostatic precipitator, a pulse-jet baghouse, or a reverse-gas baghouse has been designed, built and integrated with an existing pilot-scale facility at PSCo`s Comanche Station. Up to three candidate sorbents will be injected into the flue gas stream upstream of the test device to and mercury concentration measurements will be made to determine the mercury removal efficiency for each sorbent. During the Phase II effort, component integration for the most promising dry sorbent technology shall be tested at the 5000 acfm pilot-scale.

  16. Off-gas filtration and releases: bag filters

    International Nuclear Information System (INIS)

    Hennart, D.M.J.G.

    1985-01-01

    During high-temperature incineration of radioactive waste, some metal oxides are volatilized and carried out with the off-gases. During cooling those oxides react with acidic components generated by the combustion of the fuel oil or of the waste itself. This results in a submicronic crystalline dust in which cesium isotopes are concentrated. Bag filters have been selected at S.C.K./C.E.N. to carry out the first step of dust separation. Two baghouses equipped with Teflon bags with a total filtering area of 100 m 2 have been installed. The bags are cleaned on line by compressed air backflow. The residual dust content is below 3 mg/m 3 , which is sufficiently low to be removed by HEPA filters. The baghouses were put into operation in October 1981 and since then have been on line for about 3000 hours. Some bags had to be replaced after a fire in mid-1983. (orig.)

  17. Coal combustion by-product quality at two stoker boilers: Coal source vs. fly ash collection system design

    Energy Technology Data Exchange (ETDEWEB)

    Mardon, Sarah M. [Kentucky Department for Environmental Protection, Division of Water, Frankfort, KY 40601 (United States); Hower, James C. [University of Kentucky Center for Applied Energy Research, 2540 Research Park Drive, Lexington, KY 40511 (United States); O' Keefe, Jennifer M.K. [Morehead State University, Department of Physical Sciences, Morehead, KY 40351 (United States); Marks, Maria N. [Environmental Consulting Services, Lexington, KY 40508 (United States); Hedges, Daniel H. [University of Kentucky, Department of Earth and Environmental Sciences, Lexington, KY 40506 (United States)

    2008-09-15

    Fly ashes from two stoker boilers burning Pennsylvanian Eastern Kentucky high volatile A bituminous coal blends were examined for their petrology and chemistry. The source coals have similar trace element contents. One of the ash collection systems was retrofitted with a baghouse (fabric filter) system, collecting a finer fly ash at a cooler flue gas temperature than the plant that has not been reconfigured. The baghouse ash has a markedly higher trace element content than the coarser fly ash from the other plant. The enhanced trace element content is most notable in the As concentration, reaching nearly 9000 ppm (ash basis) for one of the collection units. Differences in the ash chemistry are not due to any substantial differences in the coal source, even though the coal sources were from different counties and from different coal beds, but rather to the improved pollution control system in the steam plant with the higher trace element contents. (author)

  18. Field Test Program for Long-Term Operation of a COHPAC System for Removing Mercury from Coal-Fired Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    C. Jean Bustard; Charles Lindsey; Paul Brignac

    2006-05-01

    This document provides a summary of the full-scale demonstration efforts involved in the project ''Field Test Program for Long-Term Operation of a COHPAC{reg_sign} System for Removing Mercury from Coal-Fired Flue Gas''. The project took place at Alabama Power's Plant Gaston Unit 3 and involved the injection of sorbent between an existing particulate collector (hot-side electrostatic precipitators) and a COHPAC{reg_sign} fabric filter (baghouse) downstream. Although the COHPAC{reg_sign} baghouse was designed originally for polishing the flue gas, when activated carbon injection was added, the test was actually evaluating the EPRI TOXECON{reg_sign} configuration. The results from the baseline tests with no carbon injection showed that the cleaning frequency in the COHPAC{reg_sign} unit was much higher than expected, and was above the target maximum cleaning frequency of 1.5 pulses/bag/hour (p/b/h), which was used during the Phase I test in 2001. There were times when the baghouse was cleaning continuously at 4.4 p/b/h. In the 2001 tests, there was virtually no mercury removal at baseline conditions. In this second round of tests, mercury removal varied between 0 and 90%, and was dependent on inlet mass loading. There was a much higher amount of ash exiting the electrostatic precipitators (ESP), creating an inlet loading greater than the design conditions for the COHPAC{reg_sign} baghouse. Tests were performed to try to determine the cause of the high ash loading. The LOI of the ash in the 2001 baseline tests was 11%, while the second baseline tests showed an LOI of 17.4%. The LOI is an indication of the carbon content in the ash, which can affect the native mercury uptake, and can also adversely affect the performance of ESPs, allowing more ash particles to escape the unit. To overcome this, an injection scheme was implemented that balanced the need to decrease carbon injection during times when inlet loading to the baghouse was high and

  19. Power production from radioactively contaminated biomass and forest litter in Belarus - Phase 1b

    Energy Technology Data Exchange (ETDEWEB)

    Roed, J.; Andersson, K.G.; Fogh, C.L. [and others

    2000-03-01

    The Chernobyl accident has led to radioactive contamination of vast Belarussian forest areas. A total scheme for remediation of contaminated forest areas and utilisation of the removed biomass in safe energy production is being investigated in a Belarussian-American-Danish collaborative project. Here the total radiological impact of the scheme is considered. This means that not only the dose reductive effect of the forest decontamination is taken into account, but also the possible adverse health effects in connection with the much needed bio-energy production. This report presents the results of an in-country, commercial-scale investigation of the effect of a baghouse filter in retaining contaminants so that they are not released to the atmosphere in the biomass energy production process. Approximately 99,5 % of the activity of a commercially representative, dust-laden boiler flue gas was removed from the stream by using a combination of a cyclone and a baghouse filter. (au)

  20. Performance evaluation of air cleaning devices of an operating low level radioactive solid waste incinerator

    International Nuclear Information System (INIS)

    Subramanian, V.; Surya Narayana, D.S.; Sundararajan, A.R.; Satyasai, P.M.; Ahmed, Jaleel

    1997-01-01

    Particle removal efficiencies of a cyclone separator, baghouse filters and a high efficiency particulate activity (HEPA) filter bank of an incinerator have been determined during the incineration of combustible low level solid radioactive wastes with surface dose of 20 - 50 gy/h. Experimental runs have been carried out to collect the particulates in various aerodynamic size ranges using an eight stage Andersen sampler and a low pressure impactor (LPI) while the incinerator is in operation. The collection efficiencies of the cyclone, baghouse and HEPA filters have been found to be 100 per cent for particles of size greater than 4.7, 2.1 and 1.1 μm respectively. The results of our investigations indicate that the air cleaning devices of the incinerator are working according to their design criteria. The data will be useful in the design and operation of air cleaning devices for toxic gaseous effluents. (author). 3 refs., 2 figs., 1 tab

  1. MERCURY CONTROL WITH THE ADVANCED HYBRID PARTICULATE COLLECTOR

    International Nuclear Information System (INIS)

    Ye Zhuang; Stanley J. Miller; Grant E. Dunham; Michelle R. Olderbak

    2002-01-01

    Since 1995, DOE has supported development of a new concept in particulate control, called the advanced hybrid particulate collector (AHPC). The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emission with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the three-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes bench-scale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal-fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at a utility power plant to prove scaleup and demonstrate longer-term mercury control. This project, if successful, will demonstrate at the pilot-scale level a technology that would provide a cost-effective technique to accomplish control of mercury emissions and, at the same time, greatly enhance fine particulate collection efficiency. The technology can be used to retrofit systems currently employing inefficient ESP technology as well as for new construction, thereby providing a solution to a large segment of the U.S. utility industry as well as other industries requiring mercury control

  2. CRNL active waste incinerator

    International Nuclear Information System (INIS)

    McQuade, D.W.

    1965-02-01

    At CRNL the daily collection of 1200 pounds of active combustible waste is burned in a refractory lined multi-chamber incinerator. Capacity is 500-550 pounds per hour; volume reduction 96%. Combustion gases are cooled by air dilution and decontaminated by filtration through glass bags in a baghouse dust collector. This report includes a description of the incinerator plant, its operation, construction and operating costs, and recommendations for future designs. (author)

  3. SOx-NOx-Rox Box{trademark} flue gas clean-up demonstration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Babcock and Wilcox`s (B and W) SOx-NOx-Rox Box{trademark} process effectively removes SOx, NOx and particulate (Rox) from flue gas generated from coal-fired boilers in a single unit operation, a high temperature baghouse. The SNRB technology utilizes dry sorbent injection upstream of the baghouse for removal of SOx and ammonia injection upstream of a zeolitic selective catalytic reduction (SCR) catalyst incorporated in the baghouse to reduce NOx emissions. Because the SOx and NOx removal processes require operation at elevated gas temperatures (800--900 F) for high removal efficiency, high-temperature fabric filter bags are used in the baghouse. The SNRB technology evolved from the bench and laboratory pilot scale to be successfully demonstrated at the 5-MWe field scale. This report represents the completion of Milestone M14 as specified in the Work Plan. B and W tested the SNRB pollution control system at a 5-MWe demonstration facility at Ohio Edison`s R.E. Burger Plant located near Shadyside, Ohio. The design and operation were influenced by the results from laboratory pilot testing at B and W`s Alliance Research Center. The intent was to demonstrate the commercial feasibility of the SNRB process. The SNRB facility treated a 30,000 ACFM flue gas slipstream from Boiler No. 8. Operation of the facility began in May 1992 and was completed in May 1993. About 2,300 hours of high-temperature operation were achieved. The main emissions control performance goals of: greater than 70% SO{sub 2} removal using a calcium-based sorbent; greater than 90% NOx removal with minimal ammonia slip; and particulate emissions in compliance with the New Source Performance Standards (NSPS) of 0.03 lb/million Btu were exceeded simultaneously in the demonstration program when the facility was operated at optimal conditions. Testing also showed significant reductions in emissions of some hazardous air pollutants.

  4. An emerging pollutant contributing to the cytotoxicity of MSWI ash wastes: Strontium

    International Nuclear Information System (INIS)

    Huang, Wu-Jang; Tang, Hsing-Chuan; Lin, Kae-Long; Liao, Ming-Huei

    2010-01-01

    In this study, we used the multiple toxicity characteristic leaching procedure to test the long-term leaching behavior of bottom ash, scrubber residue, and baghouse ash from a municipal solid waste incinerator (MSWI). We used the short-term viability percentage of African green monkey kidney cells (Vero cells) as a bioindicator to investigate the cytotoxicity of the leachates from the MSWI ash wastes. We found that strontium was a significant contributor to the cytotoxicity of the bottom ash.

  5. An emerging pollutant contributing to the cytotoxicity of MSWI ash wastes: strontium.

    Science.gov (United States)

    Huang, Wu-Jang; Tang, Hsing-Chuan; Lin, Kae-Long; Liao, Ming-Huei

    2010-01-15

    In this study, we used the multiple toxicity characteristic leaching procedure to test the long-term leaching behavior of bottom ash, scrubber residue, and baghouse ash from a municipal solid waste incinerator (MSWI). We used the short-term viability percentage of African green monkey kidney cells (Vero cells) as a bioindicator to investigate the cytotoxicity of the leachates from the MSWI ash wastes. We found that strontium was a significant contributor to the cytotoxicity of the bottom ash.

  6. An emerging pollutant contributing to the cytotoxicity of MSWI ash wastes: Strontium

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Wu-Jang, E-mail: wjhuang@mail.npust.edu.tw [Department of Environmental Engineering and Science, National Ping-Tung University of Science and Technology, 912 Ping-Tung, Taiwan (China); Tang, Hsing-Chuan [Department of Environmental Engineering and Science, National Ping-Tung University of Science and Technology, 912 Ping-Tung, Taiwan (China); Lin, Kae-Long [Department of Environmental Engineering, National I-Lan University, 260 I-Lan, Taiwan (China); Liao, Ming-Huei [Department of Veterinary Medicine, National Ping-Tung University of Science and Technology, 912 Ping-Tung, Taiwan (China)

    2010-01-15

    In this study, we used the multiple toxicity characteristic leaching procedure to test the long-term leaching behavior of bottom ash, scrubber residue, and baghouse ash from a municipal solid waste incinerator (MSWI). We used the short-term viability percentage of African green monkey kidney cells (Vero cells) as a bioindicator to investigate the cytotoxicity of the leachates from the MSWI ash wastes. We found that strontium was a significant contributor to the cytotoxicity of the bottom ash.

  7. Volume reduction of reactor wastes by spray drying

    International Nuclear Information System (INIS)

    Gay, R.L.; Grantham, L.F.; McKenzie, D.E.

    1983-01-01

    Three simulated low-level reactor wastes were dried using a spray dryer-baghouse system. The three aqueous feedstocks were sodium sulfate waste characteristic of a BWR, boric acid waste characteristic of a PWR, and a waste mixture of ion exchange resins and filter aid. These slurries were spiked with nonradioactive iron, cobalt, and manganese (representing corrosion products) and nonradioactive cesium and iodine (representing fission products). The throughput for the 2.1-m-diameter spray dryer and baghouse system was 160-180 kg/h, which is comparable to the requirements for a full-scale commercial installation. A free-flowing, dry product was produced in all of the tests. The volume reduction factor ranged from 2.5 to 5.8; the baghouse decontamination factor was typically in the range of 10 3 to 10 4 . Using an overall system decontamination factor of 10 6 , the activity of the off-gas was calculated to be one to two orders of magnitude less than the nuclide release limit of the major active species, Cs-137

  8. Sodium bicarbonate in-duct injection with sodium sulfate recovery for SO2/NOx control

    International Nuclear Information System (INIS)

    Bennett, R.; Darmstaedter, E.

    1991-01-01

    Dry sodium injection with sodium bicarbonate has been used commercially at industrial sites since the mid 1980's. In the past three years, five full scale commercial demonstrations have been completed on electric utility coal fired units. Up to 75% SO 2 removal with 0-40% NO x removal has been achieved on units equipped with ESPs. Recent slip stream studies have proven up to 90% SO 2 removal and 25% NO x removal when injection is ahead of a baghouse. If dry sodium bicarbonate sorbent injection technology is used prior to a retrofitted baghouse, but after an existing ESP the sodium sulfate by-product/flyash mixture in the baghouse is over 90% Na 2 SO 4 . Simple filtration and crystallization will yield a high value 99% + pure Na 2 SO 4 for sale. In this application, no liquid discharge occurs and potentially no solids discharge, since flyash recovered from the filter is either recycled to the boiler with the coal stream or reinjected into the boiler. EPA IAPCS model Version 4 is modified to project costs for this SO 2 /NO x removal technology when couples with Na 2 SO 4 recovery. In this paper an example is used to show hardware requirements, consumables accountability, by-product recovery rates, capital costs and levelized costs

  9. Field Testing of Activated Carbon Injection Options for Mercury Control at TXU's Big Brown Station

    Energy Technology Data Exchange (ETDEWEB)

    John Pavlish; Jeffrey Thompson; Christopher Martin; Mark Musich; Lucinda Hamre

    2009-01-07

    The primary objective of the project was to evaluate the long-term feasibility of using activated carbon injection (ACI) options to effectively reduce mercury emissions from Texas electric generation plants in which a blend of lignite and subbituminous coal is fired. Field testing of ACI options was performed on one-quarter of Unit 2 at TXU's Big Brown Steam Electric Station. Unit 2 has a design output of 600 MW and burns a blend of 70% Texas Gulf Coast lignite and 30% subbituminous Powder River Basin coal. Big Brown employs a COHPAC configuration, i.e., high air-to-cloth baghouses following cold-side electrostatic precipitators (ESPs), for particulate control. When sorbent injection is added between the ESP and the baghouse, the combined technology is referred to as TOXECON{trademark} and is patented by the Electric Power Research Institute in the United States. Key benefits of the TOXECON configuration include better mass transfer characteristics of a fabric filter compared to an ESP for mercury capture and contamination of only a small percentage of the fly ash with AC. The field testing consisted of a baseline sampling period, a parametric screening of three sorbent injection options, and a month long test with a single mercury control technology. During the baseline sampling, native mercury removal was observed to be less than 10%. Parametric testing was conducted for three sorbent injection options: injection of standard AC alone; injection of an EERC sorbent enhancement additive, SEA4, with ACI; and injection of an EERC enhanced AC. Injection rates were determined for all of the options to achieve the minimum target of 55% mercury removal as well as for higher removals approaching 90%. Some of the higher injection rates were not sustainable because of increased differential pressure across the test baghouse module. After completion of the parametric testing, a month long test was conducted using the enhanced AC at a nominal rate of 1.5 lb/Macf. During

  10. MERCURY CONTROL WITH THE ADVANCED HYBRID PARTICULATE COLLECTOR

    International Nuclear Information System (INIS)

    Stanley J. Miller; Grant E. Dunham; Michelle R. Olderbak

    2001-01-01

    This project was awarded under U.S. Department of Energy (DOE) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4-Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot-Scale. The project team will include the Energy and Environmental Research Center (EERC) as the main contractor, W.L. Gore and Associates, Inc., as a technical and financial partner, and the Big Stone Power Plant operated by Otter Tail Power Company, which will host the field testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control, called the advanced hybrid particulate collector (AHPC). The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emission with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the three-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes bench-scale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal-fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at a utility power plant to prove scaleup and demonstrate longer-term mercury control. This project, if successful, will demonstrate at the pilot-scale level a

  11. Prototype firing range air cleaning system

    International Nuclear Information System (INIS)

    Glissmeyer, J.A.; Mishima, J.; Bamberger, J.A.

    1984-07-01

    PNL's study proceeded by examining the characteristics of the aerosol challenge to the filtration system and the operating experience at similar firing ranges. Candidate filtration systems were proposed; including baghouses, cartridge houses, electrostatic precipitators, cleanable high efficiency filters, rolling filters and cyclones--each followed by one or more of the existing filter banks. Methodology was developed to estimate the operating costs of the candidate systems. Costs addressed included the frequency (based on fractional efficiency and loading data) and cost of media replacement, capital investment, maintenance, waste disposal and electrical power consumption. The recommended system will be installed during calendar year 1984

  12. 10 MMBt/Hr AFBC Commercial Demonstration Cedar Lane Farms

    Energy Technology Data Exchange (ETDEWEB)

    Harold M. Keener; Mary H. Wicks; Tom Machamer; Dave Hoecke; Don Bonk; Bob Brown

    2005-10-31

    The objective of this project was to demonstrate and promote the commercialization of coal-fired atmospheric fluidized bed combustion (AFBC) systems, with limestone addition for SO2 emissions control and a baghouse for particulate emissions control. This AFBC system was targeted for small scale industrial-commercial-institutional space and process heat applications in the 4-40 MMBtu/hr size range. A cost effective and environmentally acceptable AFBC technology in this size range could displace a considerable amount of heating gas and oil with coal, while resulting in significant total cost savings to the owner/operators.

  13. NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project. Annual report, 1988

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    This Annual Report on Colorado-Ute Electric Association`s NUCLA Circulating Fluidized Bed (CFB) Demonstration Program covers the period from February 1987 through December 1988. The outline for presentation in this report includes a summary of unit operations along with individual sections covering progress in study plan areas that commenced during this reporting period. These include cold-mode shakedown and calibration, plant commercial performance statistics, unit start-up (cold), coal and limestone preparation and handling, ash handling system performance and operating experience, tubular air heater, baghouse operation and performance, materials monitoring, and reliability monitoring. During this reporting period, the coal-mode shakedown and calibration plan was completed. (VC)

  14. Remediação de drenagem ácida de mina usando zeólitas sintetizadas a partir de cinzas leves de carvão Remediation of acid mine drainage using zeolites synthesized from coal fly ash

    Directory of Open Access Journals (Sweden)

    Denise Alves Fungaro

    2006-07-01

    Full Text Available Zeolitic material was synthesized from coal fly ashes (baghouse filter fly ash and cyclone filter fly ash by hydrothermal alkaline activation. The potential application of the zeolitic product for decontamination of waters from acid mine drainage was evaluated. The results showed that a dose of 30 g L-1 of zeolitic material allowed the water to reach acceptable quality levels after treatment. Both precipitation and cation-exchange processes accounted for the reduction in the pollutant concentration in the treated waters.

  15. Pilot-scale demonstration of the OSCAR process for high-temperature multipollutant control of coal combustion flue gas, using carbonated fly ash and mesoporous calcium carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, H.; Thomas, T.J.; Park, A.H.A.; Iyer, M.V.; Gupta, P.; Agnihotri, R.; Jadhav, R.A.; Walker, H.W.; Weavers, L.K.; Butalia, T.; Fan, L.S. [Ohio State University, Columbus, OH (United States)

    2007-07-15

    A pilot-scale study of the Ohio State Carbonation Ash Reactivation (OSCAR) process was performed to demonstrate the reactivity of two novel calcium-based sorbents toward sulfur and trace heavy metal (arsenic, selenium, and mercury) capture in the furnace sorbent injection (FSI) mode on a 0.365 m{sup 3}/s slipstream of a bituminous coal-fired stoker boiler. The sorbents were synthesized by bubbling CO{sub 2} to precipitate calcium carbonate (a) from the unreacted calcium present in the lime spray dryer ash and (b) from calcium hydroxide slurry that contained a negatively charged dispersant. The heterogeneous reaction between these sorbents and SO{sub 2} gas occurred under entrained flow conditions by injecting fine sorbent powders into the flue gas slipstream. The reacted sorbents were captured either in a hot cyclone (about 650{sup o}C) or in the relatively cooler downstream baghouse (about 230{sup o}C). The baghouse samples indicated about 90% toward sulfation and captured arsenic, selenium and mercury to 800 ppmw, 175 ppmw and 3.6 ppmw, respectively.

  16. Evaluation of activated carbon for control of mercury from coal-fired boilers

    International Nuclear Information System (INIS)

    Miller, S.; Laudal, D.; Dunham, G.

    1995-01-01

    The ability to remove mercury from power plant flue gas may become important because of the Clean Air Act amendments' requirement that the U.S. Environmental Protection Agency (EPA) assess the health risks associated with these emissions. One approach for mercury removal, which may be relatively simple to retrofit, is the injection of sorbents, such as activated carbon, upstream of existing particulate control devices. Activated carbon has been reported to capture mercury when injected into flue gas upstream of a spray dryer baghouse system applied to waste incinerators or coal-fired boilers. However, the mercury capture ability of activated carbon injected upstream of an electrostatic precipitator (ESP) or baghouse operated at temperatures between 200 degrees and 400 degrees F is not well known. A study sponsored by the U.S. Department of Energy and the Electric power Research Institute is being conducted at the University of North Dakota Energy ampersand Environmental Research Center (EERC) to evaluate whether mercury control with sorbents can be a cost-effective approach for large power plants. Initial results from the study were reported last year. This paper presents some of the recent project results. Variables of interest include coal type, sorbent type, sorbent addition rate, collection media, and temperature

  17. Characteristics of ash and particle emissions during bubbling fluidised bed combustion of three types of residual forest biomass.

    Science.gov (United States)

    Ribeiro, João Peres; Vicente, Estela Domingos; Alves, Célia; Querol, Xavier; Amato, Fulvio; Tarelho, Luís A C

    2017-04-01

    Combustion of residual forest biomass (RFB) derived from eucalypt (Eucalyptus globulus), pine (Pinus pinaster) and golden wattle (Acacia longifolia) was evaluated in a pilot-scale bubbling fluidised bed reactor (BFBR). During the combustion experiments, monitoring of temperature, pressure and exhaust gas composition has been made. Ash samples were collected at several locations along the furnace and flue gas treatment devices (cyclone and bag filter) after each combustion experiment and were analysed for their unburnt carbon content and chemical composition. Total suspended particles (TSP) in the combustion flue gas were evaluated at the inlet and outlet of cyclone and baghouse filter and further analysed for organic and elemental carbon, carbonates and 57 chemical elements. High particulate matter collection efficiencies in the range of 94-99% were observed for the baghouse, while removal rates of only 1.4-17% were registered for the cyclone. Due to the sand bed, Si was the major element in bottom ashes. Fly ashes, in particular those from eucalypt combustion, were especially rich in CaO, followed by relevant amounts of SiO 2 , MgO and K 2 O. Ash characteristics varied among experiments, showing that their inorganic composition strongly depends on both the biomass composition and combustion conditions. Inorganic constituents accounted for TSP mass fractions up to 40 wt%. Elemental carbon, organic matter and carbonates contributed to TSP mass fractions in the ranges 0.58-44%, 0.79-78% and 0.01-1.7%, respectively.

  18. Impacts of cement industries on environment and control measure

    International Nuclear Information System (INIS)

    Hashmi, H.N.; Malik, H.N.; Naushad, Z.

    2005-01-01

    Utilization of cement as building material is gaining more importance. Cement industries around the world are contributing in global and as well as local pollution. In Pakistan most of the cement industries are constructed in remote areas without any proper environmental impact assessment. Unawareness of peoples toward sustainable environment and due to lack of job opportunities, dwellers are demanding employment rather than clean environment from title-holder of the industry. Air pollution caused by cement industries is harmful to the human's health, spoils and erodes building surface, corrodes metals, weakens textiles, deteriorates atmospheric visibility, affects plant life and leads to ecological imbalances. To investigate environmental impact of cement industries in Pakistan, environmental conditions around and inside the five cement industries in the vicinity of Taxila city are studied. To inspect the whole scenario, air pollution control devices in these industries were also examined in detail. These industries are using Electrostatic Precipitators and Baghouses to control air pollution (dust particulates). Proper caring of these equipment is necessary for better results. Detailed study shows that emissions from their stacks and dust particulates are causing problems. Health consultants in study area are much worry about the health of workers and environmental degradation in the vicinity of these industries. The comparison of air pollution control devices shows that Baghouses are environmental friendly. Considering the field conditions it is also concluded that involvement of government and environmental pollution control agencies is much more necessary. (author)

  19. Evaluation of activated carbon for control of mercury from coal-fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    Miller, S.; Laudal, D.; Dunham, G. [Univ. of North Dakota, Grand Forks, ND (United States)

    1995-11-01

    The ability to remove mercury from power plant flue gas may become important because of the Clean Air Act amendments` requirement that the U.S. Environmental Protection Agency (EPA) assess the health risks associated with these emissions. One approach for mercury removal, which may be relatively simple to retrofit, is the injection of sorbents, such as activated carbon, upstream of existing particulate control devices. Activated carbon has been reported to capture mercury when injected into flue gas upstream of a spray dryer baghouse system applied to waste incinerators or coal-fired boilers. However, the mercury capture ability of activated carbon injected upstream of an electrostatic precipitator (ESP) or baghouse operated at temperatures between 200{degrees} and 400{degrees}F is not well known. A study sponsored by the U.S. Department of Energy and the Electric power Research Institute is being conducted at the University of North Dakota Energy & Environmental Research Center (EERC) to evaluate whether mercury control with sorbents can be a cost-effective approach for large power plants. Initial results from the study were reported last year. This paper presents some of the recent project results. Variables of interest include coal type, sorbent type, sorbent addition rate, collection media, and temperature.

  20. PILOT-AND FULL-SCALE DEMONSTRATION OF ADVANCED MERCURY CONTROL TECHNOLOGIES FOR LIGNITE-FIRED POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Steven A. Benson; Charlene R. Crocker; Kevin C. Galbreath; Jay R. Gunderson; Michael J. Holmes; Jason D. Laumb; Jill M. Mackenzie; Michelle R. Olderbak; John H. Pavlish; Li Yan; Ye Zhuang

    2005-02-01

    The overall objective of the project was to develop advanced innovative mercury control technologies to reduce mercury emissions by 50%-90% in flue gases typically found in North Dakota lignite-fired power plants at costs from one-half to three-quarters of current estimated costs. Power plants firing North Dakota lignite produce flue gases that contain >85% elemental mercury, which is difficult to collect. The specific objectives were focused on determining the feasibility of the following technologies: Hg oxidation for increased Hg capture in dry scrubbers, incorporation of additives and technologies that enhance Hg sorbent effectiveness in electrostatic precipitators (ESPs) and baghouses, the use of amended silicates in lignite-derived flue gases for Hg capture, and the use of Hg adsorbents within a baghouse. The approach to developing Hg control technologies for North Dakota lignites involved examining the feasibility of the following technologies: Hg capture upstream of an ESP using sorbent enhancement, Hg oxidation and control using dry scrubbers, enhanced oxidation at a full-scale power plant using tire-derived fuel and oxidizing catalysts, and testing of Hg control technologies in the Advanced Hybrid{trademark} filter.

  1. Non toxic additives for improved fabric filter performance

    Energy Technology Data Exchange (ETDEWEB)

    Bustard, C.J.; Baldrey, K.E.; Ebner, T.G. [ADA Technologies, Inc., Englewood, CO (United States)] [and others

    1995-11-01

    The overall objective of this three-phase Small Business innovative Research (SBIR) program funded by the Department of Energy pittsburgh Energy Technology Center (PETC) is to commercialize a technology based upon the use of non-toxic, novel flue gas conditioning agents to improve particulate air toxic control and overall fabric filter performance. The ultimate objective of the Phase II program currently in progress is to demonstrate that the candidate additives are successful at full-scale on flue gas from a coal-fired utility boiler. This paper covers bench-scale field tests conducted during the period February through May, 1995. The bench-scale additives testing was conducted on a flue gas slipstream taken upstream of the existing particulate control device at a utility power plant firing a Texas lignite coal. These tests were preceded by extensive testing with additives in the laboratory using a simulated flue gas stream and re-dispersed flyash from the same power plant. The bench-scale field testing was undertaken to demonstrate the performance with actual flue gas of the bet candidate additives previously identified in the laboratory. Results from the bench-scale tests will be used to establish operating parameters for a larger-scale demonstration on either a single baghouse compartment or a full baghouse at the same site.

  2. Mercury Control With The Advanced Hybrid Particulate Collector

    International Nuclear Information System (INIS)

    Stanley J. Miller; Ye Zhuang; Jay C. Almlie

    2004-01-01

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory Program Solicitation DE-FC26-01NT41184 and specifically addresses Technical Topical Area 4 - Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team included the Energy and Environmental Research Center as the main contractor; W.L. Gore and Associates, Inc., as a technical and financial partner; and the Big Stone Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore and Associates, Inc., and is marketed as the Advanced Hybrid(trademark) filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC also appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas--solid contactor. The objective of the original five-task project was to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach included benchscale batch tests, larger-scale pilot testing with real flue gas on a coal-fired combustion system, and field demonstration at the 2.5-MW scale at a utility power plant to prove scale-up and demonstrate longer-term mercury control. The scope of work was modified to include an additional sixth task, initiated in April 2003. The objective of this task was to

  3. JV Task 107- Pilot-Scale Emission Control Technology Testing for Constellation Energy

    Energy Technology Data Exchange (ETDEWEB)

    Michael Jones; Brandon Pavlish; Stephen Sollom; John Kay

    2007-06-30

    An Indonesian, Colombian, and Russian coal were tested in the Energy & Environmental Research Center's combustion test facility for their performance and an evaluation of mercury release and capture with selected additives in both electrostatic precipitator and baghouse configurations. Sorbents included the carbon-based materials NORIT DARCO Hg, Sorbent Technologies B-PAC and B-PAC LC, STI Rejects provided by Constellation Energy, and Envergex e-Sorb, along with ChemMod's high-temperature additive. Each coal was evaluated over several days and compared. Ash-fouling tests were conducted, and mercury levels were monitored using continuous mercury monitors (CMMs). The Ontario Hydro mercury sampling method was also utilized. The Indonesian coal had the lowest ash content, lowest sulfur content, and lowest energy content of the three coals tested. The Colombian coal had the highest mercury content and did contain a significant level of selenium which can interfere with the ability of a CMM to monitor mercury in the gas stream. All sorbents displayed very favorable results. In most cases, mercury removal greater than 86% could be obtained. The Indonesian coal displayed the best mercury removal with sorbent addition. A maximum removal of 97% was measured with this coal using Envergex's carbon-based sorbent at a rate of 4 lb/Macf across an electrostatic precipitator. The high ash and selenium content of the Colombian coal caused it to be a problematic fuel, and ash plugging of the test furnace was a real concern. Problems with the baghouse module led to limited testing. Results indicated that native capture across the baghouse for each coal type was significant enough not to warrant sorbent addition necessary. The fouling potential was the lowest for the Indonesian coal. Low sulfur content contributes to the poor potential for fouling, as witnessed by the lack of deposits during testing. The Russian and Colombian coals had a much higher potential for fouling

  4. SAMPLING, ANALYSIS, AND PROPERTIES OF PRIMARY PM-2.5: APPLICATION TO COAL-FIRED UTILITY BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    Allen L. Robinson; Spyros N. Pandis; Eric Lipsky; Charles Stainer; Natalie Anderson; Satoshi Takahama; Sarah Rees

    2003-02-01

    A dilution sampler was used to examine the effects of dilution ratio and residence time on the particulate emissions from a pilot-scale pulverized coal combustor. Measurements include the particle size distribution from 0.003 to 2.5 {micro}m, PM{sub 2.5} mass emission rate and PM2.5 composition (OC/EC, major ions, and elemental). Hot filter samples were also collected simultaneously in order to compare the dilution sampler measurement with standard stack sampling methodologies such as EPA Method 5. Measurements were made both before and after the bag-house, the particle control device used on the coal combustor. Measurements were made with three different coal types and a coal-biomass blend. The residence time and dilution ratio do not influence the PM{sub 2.5} mass emission rate, but have a significant effect on the size distribution and total number emissions. Measurements made before the bag-house showed increasing the residence time dramatically decreases the total particle number concentration, and shifts the particle mass to larger sizes. The effects of residence time can be explained quantitatively by the coagulation of the emitted particles. Measurements made after the bag-house were not affected by coagulation due to the lower concentration of particles. Nucleation of sulfuric acid vapor within the dilution was an important source of ultrafine particles. This nucleation is strongly a function of dilution ratio because of the competition between condensation and nucleation. At low dilution ratios condensation dominates and little nucleation is observed; increasing the dilution ratio promotes nucleation because of the corresponding decrease in available surface area per unit volume for condensation. No nucleation was observed after the bag house where conditions greatly favor nucleation over condensation; we suspect that the bag house removed the SO{sub 3} in the flue gas. Exhaust SO{sub 3} levels were not measured during these experiments. Dilution caused

  5. Study of composition change and agglomeration of flue gas cleaning residue from a fluidized bed waste incinerator.

    Science.gov (United States)

    Lievens, P; Verbinnen, B; Bollaert, P; Alderweireldt, N; Mertens, G; Elsen, J; Vandecasteele, C

    2011-10-01

    Blocking of the collection hoppers of the baghouse filters in a fluidized bed incinerator for co-incineration of high calorific industrial solid waste and sludge was observed. The composition of the flue gas cleaning residue (FGCR), both from a blocked hopper and from a normal hopper, was investigated by (differential) thermogravimetric analysis, quantitative X-ray powder diffraction and wet chemical analysis. The lower elemental carbon concentration and the higher calcium carbonate concentration of the agglomerated sample was the result of oxidation of carbon and subsequent reaction of CO2 with CaO. The evolved heat causes a temperature increase, with the decomposition of CaOHCl as a consequence. The formation of calcite and calcium chloride and the evolution of heat caused agglomeration of the FGCR. Activated lignite coke was replaced by another adsorption agent with less carbon, so the auto-ignition temperature increased; since then no further block formation has occurred.

  6. Modified IRC bench-scale arc melter for waste processing

    International Nuclear Information System (INIS)

    Eddy, T.L.; Sears, J.W.; Grandy, J.D.; Kong, P.C.; Watkins, A.D.

    1994-03-01

    This report describes the INEL Research Center (IRC) arc melter facility and its recent modifications. The arc melter can now be used to study volatilization of toxic and high vapor pressure metals and the effects of reducing and oxidizing (redox) states in the melt. The modifications include adding an auger feeder, a gas flow control and monitoring system, an offgas sampling and exhaust system, and a baghouse filter system, as well as improving the electrode drive, slag sampling system, temperature measurement and video monitoring and recording methods, and oxidation lance. In addition to the volatilization and redox studies, the arc melter facility has been used to produce a variety of glass/ceramic waste forms for property evaluation. Waste forms can be produced on a daily basis. Some of the melts performed are described to illustrate the melter's operating characteristics

  7. Implementation plan for the Waste Experimental Reduction Facility Restart Operational Readiness Review

    International Nuclear Information System (INIS)

    1993-03-01

    The primary technical objective for the WERF Restart Project is to assess, upgrade where necessary, and implement management, documentation, safety, and operation control systems that enable the resumption and continued operation of waste treatment and storage operations in a manner that is compliant with all environment, safety, and quality requirements of the US Department of Energy and Federal and State regulatory agencies. Specific processes that will be resumed at WERF include compaction of low-level compatible waste; size reduction of LLW, metallic and wood waste; incineration of combustible LLW and MLLW; and solidification of low-level and mixed low-level incinerator bottom ash, baghouse fly ash, and compatible sludges and debris. WERF will also provide for the operation of the WWSB which includes storage of MLLW in accordance with Resource Conservation and Recovery Act requirements

  8. Waste utilization in electric energy industry

    International Nuclear Information System (INIS)

    Parate, N.S.; Harris, E.

    1991-01-01

    This paper reports that electric energy is an integral element of today's economy and the standard quality of life. The availability of energy at an affordable cost has always been of basic concern because of the intimate relationship of energy to our societal development and progress. Coal and Uranium are the primary alternative energy sources for large electric power plants. Coal remains the dominant fuel for electric generation. The pressurized fluidized bed combustion technology has the potential of utilizing all types of coal, including coal with high ash, high sulphur, and high moisture content. Fluidized bed combustion is a firing technique which fulfills today's pollution control requirements without downstream flue gas cleaning plants like scrubbers, baghouses, and precipitators

  9. Savannah River Plant low-level waste incinerator: Operational results and technical development

    International Nuclear Information System (INIS)

    Irujo, M.J.; Bucci, J.R.

    1987-04-01

    Volume reduction of solid and liquid low-level waste has been demonstrated at the Savannah River Plant (SRP) in the Waste Management Beta-Gamma Incinerator facility (BGI). The BGI uses a two-stage, controlled-air incinerator capable of processing 180 kg/hr (400 lbs/hr) of solid waste or 150 liters/hr (40 gal/hr) of liquid waste. These wastes are pyrolyzed in a substoichiometric air environment at 900 to 1100 degrees Celsius in the primary chamber. Products of partial combustion from the primary chamber are oxidized at 950 to 1150 degrees Celsius in the secondary chamber. A spray dryer, baghouse,and HEPA filter unit cool and filter the incinerator offgases. 2 refs., 9 tabs

  10. Advanced Emissions Control Development Program

    Energy Technology Data Exchange (ETDEWEB)

    A.P.Evans; K.E. Redinger; M.J. Holmes

    1998-04-01

    The objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of air toxics from coal-fired boilers. Ideally, the project aim is to effectively control air toxic emissions through the use of conventional flue gas cleanup equipment such as electrostatic precipitators (ESPS), fabric filters (baghouse), and wet flue gas desulfurization. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate and hydrogen chloride. Following the construction and evaluation of a representative air toxics test facility in Phase I, Phase II focused on the evaluation of mercury and several other air toxics emissions. The AECDP is jointly funded by the United States Department of Energy's Federal Energy Technology Center (DOE), the Ohio Coal Development Office within the Ohio Department of Development (oCDO), and Babcock& Wilcox-a McDermott company (B&W).

  11. The Studsvik incinerator

    International Nuclear Information System (INIS)

    Hetzler, F.

    1988-01-01

    The Studsvik Incinerator is a Faurholdt designed, multi-stage, partial pyrolysis, controlled-air system taken into operation in 1976. The incinerator was initially operated without flue-gas filtration from 1976 until 1979 and thereafter with a bag-house filter. The Studsvik site has been host to radioactive activities for approximately 30 years. The last 10 years have included on site incineration of more than 3,000 tons of LLW. During this time routine sampling for activity has been performed, of releases and in the environment, to carefully monitor the area. The author discusses records examined to determine levels of activity prior to incinerator start-up, without and with filter

  12. Radioactive waste incinerator at the Scientific Ecology Group, Inc

    International Nuclear Information System (INIS)

    Dalton, J.D.; Arrowsmith, H.W.

    1990-01-01

    Scientific Ecology Group, Inc. (SEG) is the largest radioactive waste processor in the United States. This paper discusses how SEG recently began operation of the first commercial low-level radioactive waste incinerator in the United States. This incinerator is an Envikraft EK 980 NC multi-stage, partial pyrolysis, controlled-air unit equipped with an off-gas train that includes a boiler, baghouse, HEPA bank, and wet scrubber. The incinerator facility has been integrated into a large waste management complex with several other processing systems. The incinerator is operated on a continuous around-the-clock basis, processing up to 725 kg/hr (1,600 lbs/hr) of solid waste while achieving volume reduction ratios in excess of 300:1

  13. Rotary kiln incinerator engineering tests on simulated transuranic wastes from the Idaho National Engineering Laboratory. Final report

    International Nuclear Information System (INIS)

    Pattengill, M.G.; Brunner, F.A.; Fasso, J.L.; Mitchel, S.R.; Praskac, R.T.

    1982-09-01

    Nine rotary kiln incineration tests were performed at Colorado School of Mines Research Institute on simulated transuranic waste materials. The rotary kiln incinerator used as 3 ft ID and 30 ft long and was included in an incineration system that also included an afterburner and a baghouse. The purpose of the incineration test program was to determine the applicability and operating characteristics of the rotary kiln with relation to the complete incineration of the simulated waste materials. The results of the study showed that the rotary kiln did completely incinerate the waste materials. Off-gas determinations showed emission levels of SO 2 , NO/sub x/, H 2 SO 4 , HC1, particulate loading, and hydrocarbons, as well as exhaust gas volume, to be within reasonable controllable ranges in a production operation. Included in the report are the results of materials and energy balances, based upon data collected, and design recommendations based upon the data and upon observations during the incineration operation

  14. India's first 100,000 lbs/hr atmospheric bed boiler

    International Nuclear Information System (INIS)

    Mahajan, S.K.

    1991-01-01

    This paper covers the operating experience at the Petrochemical Complex of Hindustan Polymers, a Member Company of the UB Group, India, on the India's first 100,000 Lbs/hr atmospheric fluidized bed boiler supplied by Bharat Heavy Electricals Ltd., India. This atmospheric fluidized bed boiler is in operation for over 7 years with over 51,000 operating hours. The paper covers the details of onstream hours, actual thermal efficiency achieved, type of coal used and operational advantages of such boilers as per experience of Hindustan Polymers. Paper also highlights the maintenance and equipment problems as well as the developments which have taken place to overcome such problems. Details of experience in the operation of this boiler with baghouse system using abrasive and high ash coal are also covered

  15. Thermal soil remediation

    International Nuclear Information System (INIS)

    Nelson, D.

    1999-01-01

    The environmental properties and business aspects of thermal soil remediation are described. Thermal soil remediation is considered as being the best option in cleaning contaminated soil for reuse. The thermal desorption process can remove hydrocarbons such as gasoline, kerosene and crude oil, from contaminated soil. Nelson Environmental Remediation (NER) Ltd. uses a mobile thermal desorption unit (TDU) with high temperature capabilities. NER has successfully applied the technology to target heavy end hydrocarbon removal from Alberta's gumbo clay in all seasons. The TDU consist of a feed system, a counter flow rotary drum kiln, a baghouse particulate removal system, and a secondary combustion chamber known as an afterburner. The technology has proven to be cost effective and more efficient than bioremediation and landfarming

  16. Grid Connected Integrated Community Energy System. Volume 3A. Integrated demonstration systems and costs. Final report: Phase I, February 1, 1977-May 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    1977-06-01

    In 1973, the University of Minnesota set a goal of conversion and retrofit for University Heating Plant whereby coal or lignite would become the primary fuel by the year 1980. The University, with the addition of St. Mary's and Fairview Hospitals, Augsburg College, and possibly some small Community add-ons, provides a community wherein a major portion of steam distribution is already established. This provides for the development of a larger Grid-ICES for relatively low capital expenditures. Steam demand factors, equipment, and costs are discussed. A discussion on the steam production system is followed by a description of the capital costs of demonstration systems (specifically, baghouses). The solid waste heat recovery system, fuel and energy transport and storage, and district heating by steam and hot water are discussed. The combined community service demands are detailed.

  17. NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Keith, Raymond E.; Heller, Thomas J.; Bush, Stuart A.

    1991-01-01

    This Annual Report on Colorado-Ute Electric Association's NUCLA Circulating Fluidized Bed (CFB) Demonstration Program covers the period from February 1987 through December 1988. The outline for presentation in this report includes a summary of unit operations along with individual sections covering progress in study plan areas that commenced during this reporting period. These include cold-mode shakedown and calibration, plant commercial performance statistics, unit start-up (cold), coal and limestone preparation and handling, ash handling system performance and operating experience, tubular air heater, baghouse operation and performance, materials monitoring, and reliability monitoring. During this reporting period, the coal-mode shakedown and calibration plan was completed. (VC)

  18. High Performance Gasification with the Two-Stage Gasifier

    DEFF Research Database (Denmark)

    Gøbel, Benny; Hindsgaul, Claus; Henriksen, Ulrik Birk

    2002-01-01

    , air preheating and pyrolysis, hereby very high energy efficiencies can be achieved. Encouraging results are obtained at a 100 kWth laboratory facility. The tar content in the raw gas is measured to be below 25 mg/Nm3 and around 5 mg/Nm3 after gas cleaning with traditional baghouse filter. Furthermore...... a cold gas efficiency exceeding 90% is obtained. In the original design of the two-stage gasification process, the pyrolysis unit consists of a screw conveyor with external heating, and the char unit is a fixed bed gasifier. This design is well proven during more than 1000 hours of testing with various...... fuels, and is a suitable design for medium size gasifiers....

  19. The Clean Coal Technology Program 100 MWe demonstration of gas suspension absorption for flue gas desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, F.E.; Hedenhag, J.G. [AirPol Inc., Teterboro, NJ (United States); Marchant, S.K.; Pukanic, G.W. [Dept. of Energy, Pittsburgh, PA (United States). Pittsburgh Energy Technology Center; Norwood, V.M.; Burnett, T.A. [Tennessee Valley Authority, Chattanooga, TN (United States)

    1997-12-31

    AirPol Inc., with the cooperation of the Tennessee Valley Authority (TVA) under a Cooperative Agreement with the United States Department of Energy, installed and tested a 10 MWe Gas Suspension Absorption (GSA) Demonstration system at TVA`s Shawnee Fossil Plant near Paducah, Kentucky. This low-cost retrofit project demonstrated that the GSA system can remove more than 90% of the sulfur dioxide from high-sulfur coal-fired flue gas, while achieving a relatively high utilization of reagent lime. This paper presents a detailed technical description of the Clean Coal Technology demonstration project. Test results and data analysis from the preliminary testing, factorial tests, air toxics texts, 28-day continuous demonstration run of GSA/electrostatic precipitator (ESP), and 14-day continuous demonstration run of GSA/pulse jet baghouse (PJBH) are also discussed within this paper.

  20. Test firing and emissions analysis of densified RDF (d-RDF) in a small power boiler

    International Nuclear Information System (INIS)

    Olson, B.A.; Chehaske, J.T.; Meadows, F.; Owens, H.J.; Yoest, H.H.

    1991-01-01

    A test program to determine the feasibility of burning densified refuse-derived fuel in a small power boiler has been successfully completed. The first phase of the contract entailed assembly and assessment of information on d-RDF combustion from other studies, compilation of existing and proposed regulations for the seven sponsoring Great Lakes states: Illinois, Indiana, Iowa, Michigan, Minnesota, Ohio, and Wisconsin, location of d-RDF and waste paper pellet manufacturers in the region, and fuel supply/test site selection. The second phase entailed conducting test burns with two types of d-RDF composed of municipal solid waste (MSW) and one type of d-RDF composed of waste cardboard. The tests were conducted at a small boiler located at Dordt College in Sioux Center, Iowa. The boiler is not equipped with any pollution control equipment and the emission measurements therefore represent those from an uncontrolled source. Results demonstrated that a particulate control system is required to meet the standard set by Iowa for less than 0.6 lbs particulate matter per million BTU heat input. With the planned addition of a baghouse system for control, the facility should meet all existing State limits for emissions levels. Air toxics concentrations including metals, dioxins, furans, and PCBs were low relative to other municipal waste combustors and will be further reduced after installation of baghouse filter equipment. The key remaining concerns relate to the acceptable level of HCl emissions which are a strong function of the plastic content of fuel raw material and SO 2 which varies widely with fuel raw material composition

  1. Partitioning of selected trace elements in coal combustion products from two coal-burning power plants in the United States

    Science.gov (United States)

    Swanson, Sharon M.; Engle, Mark A.; Ruppert, Leslie F.; Affolter, Ronald H.; Jones, Kevin B.

    2013-01-01

    Samples of feed coal (FC), bottom ash (BA), economizer fly ash (EFA), and fly ash (FA) were collected from power plants in the Central Appalachian basin and Colorado Plateau to determine the partitioning of As, Cr, Hg, Pb, and Se in coal combustion products (CCPs). The Appalachian plant burns a high-sulfur (about 3.9 wt.%) bituminous coal from the Upper Pennsylvanian Pittsburgh coal bed and operates with electrostatic precipitators (ESPs), with flue gas temperatures of about 163 °C in the ESPs. At this plant, As, Pb, Hg, and Se have the greatest median concentrations in FA samples, compared to BA and EFA. A mass balance (not including the FGD process) suggests that the following percentages of trace elements are captured in FA: As (48%), Cr (58%), Pb (54%), Se (20%), and Hg (2%). The relatively high temperatures of the flue gas in the ESPs and low amounts of unburned C in FA (0.5% loss-on-ignition for FA) may have led to the low amount of Hg captured in FA. The Colorado Plateau plant burns a blend of three low-S (about 0.74 wt.%) bituminous coals from the Upper Cretaceous Fruitland Formation and operates with fabric filters (FFs). Flue gas temperatures in the baghouses are about 104 °C. The elements As, Cr, Pb, Hg, and Se have the greatest median concentrations in the fine-grained fly ash product (FAP) produced by cyclone separators, compared to the other CCPs at this plant. The median concentration of Hg in FA (0.0983 ppm) at the Colorado Plateau plant is significantly higher than that for the Appalachian plant (0.0315 ppm); this higher concentration is related to the efficiency of FFs in Hg capture, the relatively low temperatures of flue gas in the baghouses (particularly in downstream compartments), and the amount of unburned C in FA (0.29% loss-on-ignition for FA).

  2. What is unburned carbon?; Vad aer ofoerbraent?

    Energy Technology Data Exchange (ETDEWEB)

    Bjurstroem, Henrik [AaF-Process AB, Stockholm (Sweden); Suer, Pascal [Swedish Geotechnical Inst., Linkoeping (Sweden)

    2006-01-15

    Different methods to determine unburned carbon in an ash yield different results, which raises the question of what actually is unburned. Using knowledge on the chemistry of ashes, one can identify which processes that contribute to the results from a method of analysis, but it is not possible to quantify these contributions. The project that is reported here aimed at clarifying what the results from the different methods mean using practical examples. Approximately twenty ash samples have been collected and their content of unburned carbon determined using loss on ignition at different temperatures, instrumental analysis of TOC and wet oxidation (the so-called colorimetric method). In order to identify the processes contributing to the results the samples have been investigated using a thermobalance instrumented with DTA and mass spectrometry for the species released when the samples are heated in air. The results can be grouped according to the type of ash: bottom ash, ESP ashes or baghouse filter ashes. They each have their specific fingerprints. Although the same processes contribute to the LOI, the proportions differ. In the case of bottom ashes, LOI and TOC yield results close to each other. A large part of the LOI is TOC, but not all. TOC is dominated by charred fuel (elementar carbon) and organic is a minor part. In the case of fly ashes, LOI and TOC yield results that differ from each other. As for bottom ashes, a large part of the LOI at 550 deg C is TOC, dominated by char or elemental carbon. The LOI at higher temperatures is often at least double and includes much more. Igniting ESP and baghouse filter ash samples at ca 1000 deg C leads to losses of volatile salts, e g chlorides. The colorimetric method takes some of the TOC, not only organic matter. The TOC methods should be preferred to it. The LOI methods yield values that are generally too high. As they are easy to implement their use will be continued. We recommend that: Ash is not ignited at

  3. Pressurized fluidized bed combustion second-generation system research and development. Technical progress for Phase 2 and Phase 3, October 1, 1997--September 30, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, A.; Horazak, D.; Newby, R.; Rehmat, A.; White, J.

    1998-10-01

    When DOE funds were exhausted in March 1995, all Phase 2 activities were placed on hold. In February 1996 a detailed cost estimate was submitted to the DOE for completing the two remaining Phase 2 Multi Annular Swirl Burner (MASB) topping combustor test burns; in August 1996 release was received from METC to proceed with these tests. The first test (Test Campaign No.3) will be conducted to: (1) test the MASB at proposed demonstration plant full to minimum loading operating conditions; (2) identify the lower oxygen limit of the MASB; and (3) demonstrate natural gas to carbonizer fuel gas switching. The Livingston Phase 3 Pilot Plant was last operated under contract DE-AC21-86MC21023 in September 1995 for seven days in an integrated carbonizer-CPFBC configuration. In May, 1996, the pilot plant was transferred to Contract DE-AC22-95PC95143 to allow testing in support of the High Performance Power Systems (HIPPS) Program. The HIPPS Program required modifications to the pilot plant and the following changes were incorporated: (1) installation of a dense phase transport system for loading pulverized coal into the feed system lock hopper directly from a pneumatic transport truck; (2) removal of the char transfer pipe between the char collecting hopper and the CPFBC to allow carbonizer only operation; (3) installation of a lock hopper directly under the char collecting hopper to facilitate char removal from the process, the hopper vent gases exhaust to the carbonizer baghouse filter and the depressured char is transferred via nitrogen to the CPFBC baghouse for dumping into drums; (4) removal of the carbonizer cyclone and top of bed overflow drain line; all material elutriated from the carbonizer bed will thus be removed by the 22-element Westinghouse ceramic candle filter; (5) replacement of the carbonizer continuous bottom bed drain (screw feeder) with a batch-type drain removal system; and (6) installation of a mass spectrometer that draws sample gas via a steam jacketed

  4. WERF MACT Feasibility Study Report

    Energy Technology Data Exchange (ETDEWEB)

    B. Bonnema; D. Moser; J. Riedesel; K. Kooda; K. Liekhus; K. Rebish; S. Poling

    1998-11-01

    This study was undertaken to determine the technical feasibility of upgrading the Waste Experimental Reduction Facility (WERF) at the Idaho National Engineering and Environmental Laboratory to meet the offgas emission limits proposed in the Maximum Achievable Control Technologies (MACT)rule. Four practicable offgas treatment processes were identified, which, if installed, would enable the WERF to meet the anticipated MACT emission limits for dioxins and furans (D/F), hydrochloric acid (HCI), and mercury (Hg). Due to the three-year time restraint for MACT compliance, any technology chosen for the upgrade must be performed within the general plant project funding limit of $5 M. The option selected consists of a partial-quench evaporative cooler with dry sorbent injection for HCI removal followed by a sulfur-impregnated activated carbon bed for Hg control. The planning cost estimate for implementing the option is $4.17 M (with 24% contingency). The total estimated cost includes capital costs, design and construction costs, and project management costs. Capital costs include the purchase of a new offgas evaporative cooler, a dry sorbent injection system with reagent storage, a new fabric filter baghouse, a fixed carbon bed absorber, and two offgas induced draft exhaust fans. It is estimated that 21 months will be required to complete the recommended modification to the WERF. The partial-quench cooler is designed to rapidly cool the offgas exiting the secondary combustion chamber to minimize D/F formation. Dry sorbent injection of an alkali reagent into the offgas is recommended. The alkali reacts with the HCI to form a salt, which is captured with the fly ash in the baghouse. A design HCI removal efficiency of 97.2% allows for the feeding 20 lbs/hr of chlorine to the WERF incinerator. The sorbent feed rate can be adjusted to achieve the desired HCI removal efficiency. A fixed bed of sulfur-impregnated carbon was conservatively sized for a total Hg removal capacity when

  5. Toxecon Retrofit for Mercury and Mulit-Pollutant Control on Three 90-MW Coal-Fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Steven Derenne; Robin Stewart

    2009-09-30

    This U.S. Department of Energy (DOE) Clean Coal Power Initiative (CCPI) project was based on a cooperative agreement between We Energies and the DOE Office of Fossil Energy's National Energy Technology Laboratory (NETL) to design, install, evaluate, and demonstrate the EPRI-patented TOXECON{trademark} air pollution control process. Project partners included Cummins & Barnard, ADA-ES, and the Electric Power Research Institute (EPRI). The primary goal of this project was to reduce mercury emissions from three 90-MW units that burn Powder River Basin coal at the We Energies Presque Isle Power Plant in Marquette, Michigan. Additional goals were to reduce nitrogen oxide (NO{sub x}), sulfur dioxide (SO{sub 2}), and particulate matter emissions; allow reuse and sale of fly ash; advance commercialization of the technology; demonstrate a reliable mercury continuous emission monitor (CEM) suitable for use at power plants; and demonstrate recovery of mercury from the sorbent. Mercury was controlled by injection of activated carbon upstream of the TOXECON{trademark} baghouse, which achieved more than 90% removal on average over a 44-month period. During a two-week test involving trona injection, SO{sub 2} emissions were reduced by 70%, although no coincident removal of NOx was achieved. The TOXECON{trademark} baghouse also provided enhanced particulate control, particularly during startup of the boilers. On this project, mercury CEMs were developed and tested in collaboration with Thermo Fisher Scientific, resulting in a reliable CEM that could be used in the power plant environment and that could measure mercury as low as 0.1 {micro}g/m{sup 3}. Sorbents were injected downstream of the primary particulate collection device, allowing for continued sale and beneficial use of captured fly ash. Two methods for recovering mercury using thermal desorption on the TOXECON{trademark} PAC/ash mixture were successfully tested during this program. Two methods for using the TOXECON

  6. Impact of Mars sand on dust on the design of space suits and life support equipment: A technology assessment

    Science.gov (United States)

    Simonds, Charles H.

    1991-01-01

    Space suits and life support equipment will come in intimate contact with Martian soil as aerosols, wind blown particles and material thrown up by men and equipment on the Martian surface. For purposes of this discussion the soil is assumed to consist of a mixture of cominuted feldspar, pyroxene, olivine, quartz, titanomagnetite and other anhydrous and hydrous iron bearing oxides, clay minerals, scapolite and water soluble chlorides and sulfates. The soil may have photoactivated surfaces that acts as a strong oxidizer with behavior similar to hydrogen peroxide. The existing data about the Mars soil suggests that the dust and sand will require designs analogous to those uses on equipment exposed to salty air and blowing sand and dust. The major design challenges are in developing high performance radiators which can be cleaned after each EVA without degradation, designing seals that are readily cleaned and possibly in selecting materials which will not be degraded by any strong oxidants in the soil. The magnitude of the dust filtration challenge needs careful evaluation in terms of the trade off between fine-particle dust filters with low pressure drop that are either physically large and heavy, like filter baghouses require frequent replacement of filter elements, of low volume high pressure thus power consumption approaches, or washable filters. In the latter, filter elements are cleaned with water, as could the outsides of the space suits in the airlock.

  7. Impact of Mars sand on dust on the design of space suits and life support equipment: A technology assessment

    Science.gov (United States)

    Simonds, Charles H.

    1991-05-01

    Space suits and life support equipment will come in intimate contact with Martian soil as aerosols, wind blown particles and material thrown up by men and equipment on the Martian surface. For purposes of this discussion the soil is assumed to consist of a mixture of cominuted feldspar, pyroxene, olivine, quartz, titanomagnetite and other anhydrous and hydrous iron bearing oxides, clay minerals, scapolite and water soluble chlorides and sulfates. The soil may have photoactivated surfaces that acts as a strong oxidizer with behavior similar to hydrogen peroxide. The existing data about the Mars soil suggests that the dust and sand will require designs analogous to those uses on equipment exposed to salty air and blowing sand and dust. The major design challenges are in developing high performance radiators which can be cleaned after each EVA without degradation, designing seals that are readily cleaned and possibly in selecting materials which will not be degraded by any strong oxidants in the soil. The magnitude of the dust filtration challenge needs careful evaluation in terms of the trade off between fine-particle dust filters with low pressure drop that are either physically large and heavy, like filter baghouses require frequent replacement of filter elements, of low volume high pressure thus power consumption approaches, or washable filters. In the latter, filter elements are cleaned with water, as could the outsides of the space suits in the airlock.

  8. Use of natural radionuclides to determine the time range of the accidental melting of an orphan radioactive source in a steel recycling plant.

    Science.gov (United States)

    Cantaluppi, Chiara; Ceccotto, Federica; Cianchi, Aldo

    2012-02-01

    In the rare event that an orphan radioactive source is melted in an Electric Arc Furnace steel recycling plant, the radionuclides present are partitioned in the different products, by-products and waste. As a consequence of an unforeseen melting of a radiocesium source, cesium radioisotopes can be found in the dust, together with many natural radionuclides from the decay of radon and thoron, which are present in the atmosphere, picked up from the off-gas evacuation system and associated with the dust of the air filtration system ("baghouse"). In this work we verified that the activity concentration of ²¹²Pb in this dust is essentially constant in a specific factory so that it is possible to use it to date back to the time of the accidental melting of the orphan radioactive source. The main features of this method are described below, together with the application to a particular case in which this method was used for dating the moment in which the dust was contaminated with ¹³⁷Cs. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. DEMONSTRATION OF A FULL-SCALE RETROFIT OF THE ADVANCED HYBRID PARTICULATE COLLECTOR TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Tom Hrdlicka; William Swanson

    2005-12-01

    The Advanced Hybrid Particulate Collector (AHPC), developed in cooperation between W.L. Gore & Associates and the Energy & Environmental Research Center (EERC), is an innovative approach to removing particulates from power plant flue gas. The AHPC combines the elements of a traditional baghouse and electrostatic precipitator (ESP) into one device to achieve increased particulate collection efficiency. As part of the Power Plant Improvement Initiative (PPII), this project was demonstrated under joint sponsorship from the U.S. Department of Energy and Otter Tail Power Company. The EERC is the patent holder for the technology, and W.L. Gore & Associates was the exclusive licensee for this project. The project objective was to demonstrate the improved particulate collection efficiency obtained by a full-scale retrofit of the AHPC to an existing electrostatic precipitator. The full-scale retrofit was installed on an electric power plant burning Powder River Basin (PRB) coal, Otter Tail Power Company's Big Stone Plant, in Big Stone City, South Dakota. The $13.4 million project was installed in October 2002. Project related testing concluded in December 2005. The following Final Technical Report has been prepared for the project entitled ''Demonstration of a Full-Scale Retrofit of the Advanced Hybrid Particulate Collector Technology'' as described in DOE Award No. DE-FC26-02NT41420. The report presents the operation and performance results of the system.

  10. Coal ash usage in environmental restoration at the Hanford site

    Energy Technology Data Exchange (ETDEWEB)

    Scanlon, P.L.; Sonnichsen, J.C.; Phillips, S.J.

    1994-08-01

    The ash stockpiled next to the 284E steam plant is mixed fly ash, bottom ash, and slag. The ash consists of (1) baghouse residue and (2) a mixture of bottom ash and slag which is washed out of the bottom of the boilers daily. In 1991, a Toxicity Characteristic Leaching Procedure (TCLP) was performed on several samples of this ash (Hazen Research 1991). This procedure is designed to determine the mobility of organic and inorganic anatytes present in liquid, solid, or multiphasic wastes (EPA 1994). The ash tested came from surge bins, conveyor samples, and bottom ash and fly ash from the boilers at 284E. Antimony, cadmium, germanium, molybdenum, silver, thallium, tungsten, and vanadium were tested for, but on all samples were below detection Limits for the testing method. Analytes present in relatively high concentrations (but less than one part per thousand) included barium, boron, chromium, fluorine, and zinc. The size of ash particles passing through a Taylor sieve series was very evenly distributed from 1 to 200m.

  11. Applying environmental externalities to US Clean Coal Technologies for Taiwan

    International Nuclear Information System (INIS)

    Szpunar, C.B.; Gillette, J.L.

    1992-01-01

    During the period 1971 to 1980, electricity consumption in Taiwan increased remarkably at an average rate of 12.2% per year. Despite experiencing a record low in 1982 and 1983, electricity demand returned to double digit growth, reaching 11.6% and 10.2% in 1987 and 1988, respectively, due to a strong economic recovery. In 1988, 71.6 TWh of electricity was produced, 21.1 TWh of which was from coal-fired units (29%). The electricity demand for Taiwan is expected to continue to grow at a very rapid rate during the 1990--2006 time frame. The average load is expected to grow at an annual rate of 5.6% while the peak load is projected to increase at an annual rate of 6.0%. All new coal-fired power plants are expected to comply with government regulations on S0 2 , NO x , and particulate emissions. Taper reports that all of its proposed coal-fired units will be equipped with modern flue gas emission reduction devices, such as electrostatic precipitators or baghouse filters, flue gas desulfurization and deco x devices, to reduce the pollutants to their minimum practical levels. New coal-based generation requirements in the sizes needed in Taiwan create an opportunity for several of the Cats currently under demonstration in the United States. Options to be considered are described

  12. Positive synergistic effect of the reuse and the treatment of hazardous waste on pyrometallurgical process of lead recovery from waste lead-acid batteries

    Directory of Open Access Journals (Sweden)

    Marija Štulović

    2014-09-01

    Full Text Available Modification and optimization of the pyrometallurgical process of lead recovering from the waste lead-acid batteries have been studied in this paper. The aim of this research is to develop a cleaner production in the field of the secondary lead metallurgy. Lead smelting process with the addition of flux (sodium(I-carbonate and reducing agents (coke, iron has been followed. The modified smelting process with the addition of hazardous waste (activated carbon as alternative reducing agents has shown positive results on the quality of the secondary lead, the generated slag and the process gases. Filtration efficiency of the gases, the return of baghouse dust to the process and use of oxygen burners have positive effect on the environment protection and energy efficiency. Optimization of the recycling process has been based on the properties of the slag. Stabilization of slag is proposed in the furnace with addition of waste dust from the recycling of cathode ray tube (CRT monitors. Phosphorus compounds from dust reduce leachability of toxic elements from the generated slag. Reduction the slag amount and its hazardous character through the elimination of migratory heavy metals and valorization of useful components have been proposed in the patented innovative device - cylindrical rotating washer/separator.

  13. The production and utilization of by-product agricultural fertilizer from flue gases

    International Nuclear Information System (INIS)

    Frank, N.W.; Hirano, S.

    1991-01-01

    The electron-beam process is one of the most effective methods for removing SO 2 and NO x from industrial flue gases and producing a usable by-product. This flue gas treatment consists of adding a small amount of ammonia to the flue gas and irradiating the gas by means of an electron beam. This causes reactions which convert SO 2 and NO x to ammonium sulfate and ammonium nitrate. These salts are then collected from the flue gas by conventional collectors, such as a baghouse or electrostatic precipitator. This paper will describe the potential for production of the fertilizer and will analyze the market potential and consumption of the by-product. A principal focus of the work is an analysis and quantification of the major large-scale, growing and profitable markets for utility solid wastes that can be generated in the form of agricultural fertilizer. Cost study data is arranged to define the impact of commercial by-product field and revenue on the economics of full scale SO 2 and NO x emission reduction activity

  14. Status and perspectives for the electron beam technology for flue gases treatment

    International Nuclear Information System (INIS)

    Frank, N.W.

    1992-01-01

    The electron-beam process is one of the most effective methods of removing SO 2 and NO x from industrial flue gases. This flue gas treatment consists of adding a small amount of ammonia to the flue gas and irradiating the gas by means of an electron beam, thereby causing reactions which convert the SO 2 and NO x to ammonium sulfate and ammonium sulfate-nitrate. These salts may then be collected from the flue gas by means of such conventional collectors as an electrostatic precipitator or baghouse. This process has numerous advantages over currently-used conventional processes as follows: (1) the process simultaneously removes SO 2 and NO x from flue gas at high efficiency levels; (2) it is a dry process which is easily controlled and has excellent load-following capability; (3) stack-gas reheat is not required; (4) the pollutants are converted into a saleable agricultural fertilizer; (5) the process has low capital and operating cost requirements. The history of the process is shown with a summary of the work that is presently underway. All of the current work is for the purpose of fine tuning the process for commercial usage. It is believed that with current testing and improvements, the process will be very competitive with existing processes and it will find its place in an environmentally conscious world. (Author)

  15. The economics of particulate pollution abatement technologies for wood-waste-fired combustors

    International Nuclear Information System (INIS)

    Ismail, A.; Stevenson, D.H.

    1991-07-01

    A study was conducted to quantify the impact of new and improved particulate abatement equipment (PAE) on the economics of new and existing wood waste combustion systems. The operating characteristics of current PAE technology are summarized and the basis for cost estimates is established. The technologies include multicyclone collectors, wet scrubbers, fabric filter baghouses, electrostatic precipitators, and new versus retrofit installations. Capital costs were determined for 4 generic types of PAE and 4 cases for each PAE type according to GJ/h in steam enthalpy. Cost information was developed for wood waste energy systems with and without PAE. In the cost analysis, a hypothetical steam selling price is determined which will give a 25% return on pretax cash flow over a 20-year period. Additional costs of the PAE are applied to the energy system cash flows and the impact on average annual return is calculated. Results indicate reductions in internal rate of return of 3-6% for most PAE systems. 54 refs., 2 figs., 12 tabs

  16. Systems studies on the extraction of uranium from seawater

    International Nuclear Information System (INIS)

    Driscoll, M.J.; Best, F.R.

    1981-11-01

    This report summarizes the work done at MIT during FY 1981 on the overall system design of a uranium-from-seawater facility. It consists of a sequence of seven major chapters, each of which was originally prepared as a stand-alone internal progress report. These chapters trace the historical progression of the MIT effort, from an early concern with scoping calculations to define the practical boundaries of a design envelope, as constrained by elementary economic and energy balance considerations, through a parallel evaluation of actively-pumped and passive current-driven concepts, and thence to quantification of the features of a second generation system based on a shipboard-mounted, actively-pumped concept designed around the use of thin beds of powdered ion exchange resin supported by cloth fiber cylinders (similar to the baghouse flyash filters used on power station offgas). An assessment of the apparently inherent limitations of even thin settled-bed sorber media then led to selection of an expanded bed (in the form of an ion exchange wool), which would permit an order of magnitude increase in flow loading, as a desirable advance. Thus the final two chapters evaluate ways in which this approach could be implemented, and the resulting performance levels which could be attained. Overall, U 3 O 8 production costs under 200 $/lb appear to be within reach if a high capacity (several thousand ppM U) ion exchange wool can be developed

  17. High SO{sub 2} removal duct injection: A low-cost FGD alternative

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, S.G. [Sorbent Technologies Corp., Twinsburg, OH (United States)

    1995-12-01

    Sorbent Technologies Corporation, of the United States, is currently developing and demonstrating a new waste free, retrofitable, high-SO{sub 2} removal duct-injection process. Up to 85 percent SO{sub 2} removal is achieved by simply injecting a new dry lime-based sorbent into the flue-gas duct, collecting the sorbent downstream in a particulate collector, and then recycling the sorbent. By avoiding large, expensive components, the process can have low capital costs, making it especially appropriate for smaller, older, less-utilized plants. The key to the new technology is the use of sorbent supports. Supported sorbents are produced by coating hydrated lime onto inexpensive mineral supports, such as exfoliated vermiculite or perlite. Consequently, there are no liquid, sludge, or solid wastes with the new technology. Once saturated with SO{sub 2}, the spent sorbent can be easily pelletized into a valuable soil-conditioning agricultural by-product, for the sustainable development that the future requires. This paper describes Sorbent Technologies` pilot demonstration of supported sorbent injection at the Ohio Edison Company`s R.E. Burger station. The Burger effort is also the first demonstration of the Electric Power Research Institute`s new {open_quotes}COHPAC{close_quotes} baghouse technology in a sorbent-injection desulfurization application.

  18. Vojany Station reconstruction, repowering and expansion assessment: Options, issues and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Coe, W.F. [Southern Electric International, Inc., Atlanta, GA (United States); Griswold, G.H.; Peyton, J.C. [Southern Company Services, Inc., Birmingham, AL (United States)

    1995-12-01

    Recent European community and state specific environmental guideline, legislative, and regulatory activities have led power producers to assess their currently installed generation technologies with regard to clean air compliance strategies. For the application to older generation facilities, the prudence of linking facility rehabilitation with the addition of environmental control systems to repowering options is warranted. Similarly, ongoing privatization efforts emphasize the necessity for sound economic decisions of site specific technological applications that consider maintaining or enhancing thermal efficiencies. Southern Electric International (SEI) has conducted such a feasibility study assessment evaluating the reconstruction, repowering and possible expansion of the Slovensky Energeticky Podnik (SEP) 1320 MWe Vojany Station in the Republic of Slovakia. Alternatives included such technologies as atmospheric fluid bed combustion, furnace and duct sorbent injection, low NOx burners, gas re-burn, selective catalytic reduction, selective non-catalytic reduction, state of the art precipitators and baghouses, wet and dry flue gas desulfurization systems and repowering technologies. In addition, new, turn of the century environmentally plausible and efficient electric power technologies were addressed.

  19. A review of the global emissions, transport and effects of heavy metals in the environment

    International Nuclear Information System (INIS)

    Friedman, J.R.; Ashton, W.B.; Rapoport, R.D.

    1993-06-01

    The purpose of this report is to describe the current state of knowledge regarding the sources and quantities of heavy metal emissions, their transport and fate, their potential health and environmental effects, and strategies to control them. The approach is to review the literature on this topic and to consult with experts in the field. Ongoing research activities and research needs are discussed. Estimates of global anthropogenic and natural emissions indicate that anthropogenic emissions are responsible for most of the heavy metals released into the atmosphere and that industrial activities have had a significant impact on the global cycling of trace metals. The largest anthropogenic sources of trace metals are coal combustion and the nonferrous metal industry. Atmospheric deposition is an important pathway by which trace metals enter the environment. Atmospheric deposition varies according to the solubility of the element and the length of time it resides in the atmosphere. Evidence suggests that deposition is influenced by other chemicals in the atmosphere, such as ozone and sulfur dioxide. Trace metals also enter the environment through leaching. Existing emissions-control technologies such as electrostatic precipitators, baghouses, and scrubbers are designed to remove other particulates from the flue gas of coal-fired power plants and are only partially effective at removing heavy metals. Emerging technologies such as flue gas desulfurization, lignite coke, and fluidized bed combustion could further reduce emissions. 108 refs

  20. Dedusting and de-vesiculating; Depoussierage et devesiculage

    Energy Technology Data Exchange (ETDEWEB)

    Siret, B. [Ecole Superieure de Physique et Chimie Industrielles, 75 - Paris (France)

    2001-06-01

    Gases and smokes purification involving dedusting (gas/solid separation of a substantial fraction of the solid suspended matter) or de-vesiculating (removal of a substantial fraction of the liquid droplets in a gaseous flux) is a problem encountered in various industrial sectors (power generation, metal, cement and petroleum industries etc..). Thus the selection of an efficient dedusting/de-vesiculating process/equipment is a delicate task because of the more and more constraining pollution regulations. This article aims at giving precise and useful information for the selection of the proper process/equipment according to the nature of the suspended matter and to the characteristics of the different separators considered: 1 - main factors involved in a dedusting problem (definition of particulates, grain size, shape, measurement methods, problems encountered); 2 - main factors involved in a de-vesiculating problem; 3 - centrifugal separators; 4 - inertial and sedimentation separators; 5 - electrical separators and electro-filters; 6 - sleeve-filters (baghouses); 7 - humid separators and washers; 8 - other kind of separators; 8 - dispersion of smokes (theoretical considerations, chimneys calculation, condensation and corrosion problems); 9 - selection guidelines. (J.S.)

  1. Advanced large-capacity commercial technology for multi-pollutant control

    Energy Technology Data Exchange (ETDEWEB)

    Graf, R.E. [Wulff Deutschland GmbH, Rosbach (Germany); Seitz, A. [Teplama Strakonice, a.s. (Czech Republic); Xia Fan Gao [Guangzhou Hengyun Enterprises Holiday, Ltd. (China)

    2003-09-01

    The presentation describes the application in commercial installations in Europe and China of circulating fluid bed (CFB) scrubbers of advanced GRAF/WULFF technology design, retrofitted to coal-fired steam boilers. Details are presented of design and operating experience with installations of CFB scrubbers that efficiently remove diverse pollutants down to and below the required and permitted levels. The paper describes successful solutions to substantial operating problems encountered at a CFB scrubbing plant. The described flue gas scrubbing plants of this simple system design clean the flue gases from boilers comprising units of a capacity of 100 to 300 MW using a single-train scrubbing system arrangement. Specifically, the simultaneous high rates of removal of multipollutants are, e.g., SO{sub 2}>98%, SO{sub 3}>99%, HF > 99%, HCl > 98%, mercury > 95%, and particulate matter > 99.99%. These pollutants are removed in a single scrubber module in combination, downstream, with baghouse or electrostatic precipitator means of dedusting. Information is given on rates and design of a single-module, 660 MW system as would be applied to a coal-fired power plant facility. (orig.)

  2. Regulation of suspended particulate matter (SPM) in Indian coal-based thermal power plants

    Science.gov (United States)

    Sengupta, Ishita

    Air borne particulate matter, in major Indian cities is at least three times the standard prescribed by the WHO. Coal-based thermal power plants are the major emitters of particulate matter in India. The lack of severe penalty for non-compliance with the standards has worsened the situation and thus calls for an immediate need for investment in technologies to regulate particulate emissions. My dissertation studies the optimal investment decisions in a dynamic framework, for a random sample of forty Indian coal-based power plants to abate particulate emissions. I used Linear Programming to solve the double cost minimization problem for the optimal choices of coal, boiler and pollution-control equipment. A policy analysis is done to choose over various tax policies, which would induce the firms to adopt the energy efficient as well as cost efficient technology. The aim here is to reach the WHO standards. Using the optimal switching point model I show that in a dynamic set up, switching the boiler immediately is always the cost effective option for all the power plants even if there is no policy restriction. The switch to a baghouse depends upon the policy in place. Theoretically, even though an emission tax is considered the most efficient tax, an ash tax or a coal tax can also be considered to be a good substitute especially in countries like India where monitoring costs are very high. As SPM is a local pollutant the analysis here is mainly firm specific.

  3. Mercury Oxidation via Catalytic Barrier Filters Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Wayne Seames; Michael Mann; Darrin Muggli; Jason Hrdlicka; Carol Horabik

    2007-09-30

    In 2004, the Department of Energy National Energy Technology Laboratory awarded the University of North Dakota a Phase II University Coal Research grant to explore the feasibility of using barrier filters coated with a catalyst to oxidize elemental mercury in coal combustion flue gas streams. Oxidized mercury is substantially easier to remove than elemental mercury. If successful, this technique has the potential to substantially reduce mercury control costs for those installations that already utilize baghouse barrier filters for particulate removal. Completed in 2004, Phase I of this project successfully met its objectives of screening and assessing the possible feasibility of using catalyst coated barrier filters for the oxidation of vapor phase elemental mercury in coal combustion generated flue gas streams. Completed in September 2007, Phase II of this project successfully met its three objectives. First, an effective coating method for a catalytic barrier filter was found. Second, the effects of a simulated flue gas on the catalysts in a bench-scale reactor were determined. Finally, the performance of the best catalyst was assessed using real flue gas generated by a 19 kW research combustor firing each of three separate coal types.

  4. ADVANCED HYBRID PARTICULATE COLLECTOR

    Energy Technology Data Exchange (ETDEWEB)

    Ye Zhuang; Stanley J. Miller; Michelle R. Olderbak; Rich Gebert

    2001-12-01

    A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the U.S. Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in an entirely novel manner. The AHPC concept combines fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two methods, both in the particulate collection step and in transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and solves the problem of reentrainment and re-collection of dust in conventional baghouses. Phase I of the development effort consisted of design, construction, and testing of a 5.7-m{sup 3}/min (200-acfm) working AHPC model. Results from both 8-hr parametric tests and 100-hr proof-of-concept tests with two different coals demonstrated excellent operability and greater than 99.99% fine-particle collection efficiency. Since all of the developmental goals of Phase I were met, the approach was scaled up in Phase II to a size of 255 m{sup 3}/min (9000 acfm) (equivalent in size to 2.5 MW) and was installed on a slipstream at the Big Stone Power Plant. For Phase II, the AHPC at Big Stone Power Plant was operated continuously from late July 1999 until mid-December 1999. The Phase II results were highly successful in that ultrahigh particle collection efficiency was achieved, pressure drop was well controlled, and system operability was excellent. For Phase III, the AHPC was modified into a more compact configuration, and components were installed that were closer to what would be used in a full-scale commercial design. The modified AHPC was operated from April to July 2000. While operational results were acceptable during this time, inspection of bags in the summer of 2000 revealed some membrane damage to the fabric that appeared to be

  5. Evaluation of radionuclide contamination of soil, coal ash and zeolitic materials from Figueira thermoelectric power plant

    International Nuclear Information System (INIS)

    Fungaro, Denise Alves; Silva, Paulo Sergio Cardoso da; Campello, Felipe Arrelaro; Miranda, Caio da Silva; Izidoro, Juliana de Carvalho

    2017-01-01

    Neutron activation analysis and gamma-ray spectrometry was used to determine 238 U, 226 Ra, 228 Ra, 210 Pb, 232 Th and 40 K contents in feed pulverized coal, bottom ash, fly ash from cyclone and baghouse filters, zeolites synthesized from the ashes and two different soil samples. All the samples used in the study was collected at Figueira thermoelectric power plant, located in the city of Figueira, Paraná State, which coal presents a significant amount of uranium concentration. The natural radionuclide concentrations in pulverized coal were 4216 Bq kg -1 for 238 U, 180 Bq kg -1 for 226 Ra, 27 Bq kg -1 for 228 Ra, 28 Bq kg -1 for 232 Th and 192 Bq kg -1 for 40 K. The ashes fraction presented concentrations ranging from 683.5 to 1479 Bq kg -1 for 238 U, from 484 to 1086 Bq kg -1 for 226 Ra, from 291 to 1891 Bq kg -1 for 210 Pb, from 67 to 111 Bq kg -1 for 228 Ra, from 80 to 87 Bq -1 for 232 Th and from 489 to 718 Bq kg -1 for 40 K. Similar ranges were observed for zeolites. The activity concentration of 238 U was higher than worldwide average concentration for all samples. The concentration of the uranium series found in the ashes were lower than the values observed in similar studies carried out 10 years ago and under the limit adopted by the Brazilian guideline (CNEN-NN-4.01). Nevertheless, the concentrations of this specific area are higher than others coal mines and thermoelectric power plants in and out of Brazil, so it is advisable to evaluate the environmental impact of the installation. (author).

  6. Advanced Hybrid Particulate Collector Project Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Miller, S.J.

    1995-11-01

    As the consumption of energy increases, its impact on ambient air quality has become a significant concern. Recent studies indicate that fine particles from coal combustion cause health problems as well as atmospheric visibility impairment. These problems are further compounded by the concentration of hazardous trace elements such as mercury, cadmium, selenium, and arsenic in fine particles. Therefore, a current need exists to develop superior, but economical, methods to control emissions of fine particles. Since most of the toxic metals present in coal will be in particulate form, a high level of fine- particle collection appears to be the best method of overall air toxics control. However, over 50% of mercury and a portion of selenium emissions are in vapor form and cannot be collected in particulate control devices. Therefore, this project will focus on developing technology not only to provide ultrahigh collection efficiency of particulate air toxic emissions, but also to capture vapor- phase trace metals such as mercury and selenium. Currently, the primary state-of-the-art technologies for particulate control are fabric filters (baghouses) and electrostatic precipitators (ESPs). However, they both have limitations that prevent them from achieving ultrahigh collection of fine particulate matter and vapor-phase trace metals. The objective of this project is to develop a highly reliable advanced hybrid particulate collector (AHPC) that can provide > 99.99 % particulate collection efficiency for all particle sizes between 0.01 and 50 14m, is applicable for use with all U.S. coals, and is cost-0443competitive with existing technologies. Phase I of the project is organized into three tasks: Task I - Project Management, Reporting, and Subcontract Consulting Task 2 - Modeling, Design, and Construction of 200-acfm AHPC Model Task 3 - Experimental Testing and Subcontract Consulting

  7. Thermal treatment of petroleum contaminated soils - A case study

    International Nuclear Information System (INIS)

    Bubier, T.W.; Bilello. C.M.

    1993-01-01

    Thermal treatment is a cost-effective treatment method for removing chemicals from contaminated soils. However, detailed applicability studies are lacking. The goals of this paper are to (1) present the results of a thermal treatment study and (2) discuss the specific elements which must be evaluated prior to determining whether thermal treatment is a feasible option for a remediation project. Results of data collected during a pilot study involving thermal treatment of petroleum contaminated soils at a Marine Terminal are presented. The pilot study consisted of thermally treating the C8 through C40 + (gasoline, kerosene, diesel, motor oil, bunker fuel, etc.) hydrocarbon contaminated soils at treatment temperatures ranging from 250 degrees Fahrenheit (degree F) up to 550 degrees F. The low-temperature thermal treatment unit consisted of a rotary kiln with a temperature capacity of approximately 600 degrees F, a baghouse, and a catalytic oxidizer. The soil was monitored for concentrations of petroleum hydrocarbons and volatile organic compounds before and after treatment. The results of the pilot study were used to determine if thermal treatment technology is a cost-efficient and effective option of remediating the estimated 300,000 tons of petroleum contaminated soil to acceptable cleanup levels. The low-temperature thermal treatment pilot study was effective in desorbing the short chain hydrocarbons (gasoline and diesel) but was not effective in desorbing the long-chain petroleum hydrocarbons, such as motor oils and bunker fuels, from the soil. This was primarily due to the boiling points of motor oil and bunker fuels which were higher than the temperature capacity of the pilot study treatment equipment. Additional factors that influenced the effectiveness of the desorption process included configuration of the treatment equipment, soil moisture content, soil particle size, and type and concentration of petroleum hydrocarbons

  8. Off-gas treatment system Process Experimental Pilot Plant (PREPP) k-t evaluation

    International Nuclear Information System (INIS)

    Hedahl, T.G.; Cargo, C.H.; Ayers, A.L.

    1982-06-01

    The scope of work for this task involves a systems' evaluation, using the Kepner-Tregoe (K-T) decision analysis methodology, of off-gas treatment alternatives for a Process Experimental Pilot Plant (PREPP). Two basic systems were evaluated: (1) a wet treatment system using a quencher and scrubber system; and (2) a dry treatment system using a spray dryer and baghouse arrangement. Both systems would neutralize acidic off-gases (HCL and SO 2 ) and remove radioactive particulates prior to release to the environment. The K-T analysis results provided a numerical comparison of the two basic off-gas treatments systems for PREPP. The overall ratings for the two systems differ by only 7%. The closeness of the evaluation indicates that either system is capable of treating the off-gases from PREPP. Based on the analysis, the wet treatment system design is slightly more favorable for PREPP. Technology development, expected operability, total costs, and safety aspects were determined to be more advantageous for the wet system design. Support technology was the only major category that appears less favorable for using the wet off-gas system for PREPP. When considering the two criteria considered most important for PREPP (capital cost and major accident prevention - both rated 10), the wet treatment system received maximum ratings. Space constraints placed on the design by the existing TAN-607 building configuration also are more easily met by the wet system design. Lastly, the level of development for the wet system indicates more applicable experience for nuclear waste processing

  9. Results of bench-scale plasma system testing in support of the Plasma Hearth Process

    International Nuclear Information System (INIS)

    Leatherman, G.L.; Cornelison, C.; Frank, S.

    1996-01-01

    The Plasma Hearth Process (PHP) is a high-temperature process that destroys hazardous organic components and stabilizes the radioactive components and hazardous metals in a leach-resistant vitreous slag waste form. The PHP technology development program is targeted at mixed waste that cannot be easily treated by conventional means. For example, heterogeneous debris, which may contain hazardous organics, toxic metals, and radionuclides, is difficult to characterize and cannot be treated with conventional thermal, chemical, or physical treatment methods. A major advantage of the PHP over other plasma processes is its ability to separate nonradioactive, non-hazardous metals from the non-metallic and radioactive components which are contained in the vitreous slag. The overall PHP program involves the design, fabrication, and operation of test hardware to demonstrate and certify that the PHP concept is viable for DOE waste treatment. The program involves bench-scale testing of PHP equipment in radioactive service, as well as pilot-scale demonstration of the PHP concept using nonradioactive, surrogate test materials. The fate of secondary waste streams is an important consideration for any technology considered for processing mixed waste. The main secondary waste stream generated by the PHP is flyash captured by the fabric- filter baghouse. The PHP concept is that flyash generated by the process can, to a large extent, be treated by processing this secondary waste stream in the PHP. Prior to the work presented in the paper, however, the PHP project has not quantitatively demonstrated the ability to treat PHP generated flyash. A major consideration is the quantity of radionuclides and RCRA-regulated metals in the flyash that can be retained the resultant waste form

  10. SOx-NOx-Rox Box{trademark} flue gas clean-up demonstration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The SNRB{trademark} Flue Gas Cleanup Demonstration Project was cooperatively funded by the U.S. Department of Energy (DOE), the Ohio Coal Development Office (OCDO), B&W, the Electric Power Research Institute (EPRI), Ohio Edison, Norton Chemical Process Products Company and the 3M Company. The SNRB{trademark} technology evolved from the bench and laboratory pilot scale to be successfully demonstrated at the 5-MWe field scale. Development of the SNRB{trademark} process at B&W began with pilot testing of high-temperature dry sorbent injection for SO{sub 2} removal in the 1960`s. Integration of NO{sub x} reduction was evaluated in the 1970`s. Pilot work in the 1980`s focused on evaluation of various NO{sub x} reduction catalysts, SO{sub 2} sorbents and integration of the catalyst with the baghouse. This early development work led to the issuance of two US process patents to B&W - No. 4,309,386 and No. 4,793,981. An additional patent application for improvements to the process is pending. The OCDO was instrumental in working with B&W to develop the process to the point where a larger scale demonstration of the technology was feasible. This report represents the completion of Milestone M14 as specified in the Work Plan. B&W tested the SNRB{trademark} pollution control system at a 5-MWe demonstration facility at Ohio Edison`s R. E. Burger Plant located near Shadyside, Ohio. The design and operation were influenced by the results from laboratory pilot testing at B&W`s Alliance Research Center. The intent was to demonstrate the commercial feasibility of the SNRB{trademark} process. The SNRB{trademark} facility treated a 30,000 ACFM flue gas slipstream from Boiler No. 8. Operation of the facility began in May 1992 and was completed in May 1993.

  11. Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Edward Levy; Harun Bilirgen; John DuPoint

    2011-03-31

    Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: (1) An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing high-moisture, low rank coals. (2) Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. (3) Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. (4) Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. (5) Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. (6) Condensed flue gas water treatment needs and costs. (7) Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. (8) Results of cost-benefit studies of condensing heat exchangers.

  12. Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Levy, Edward; Bilirgen, Harun; DuPont, John

    2011-03-31

    Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: • An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing highmoisture, low rank coals. • Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. • Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. • Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. • Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. • Condensed flue gas water treatment needs and costs. • Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. • Results of cost-benefit studies of condensing heat exchangers.

  13. Safety analysis of the 700-horsepower combustion test facility

    Energy Technology Data Exchange (ETDEWEB)

    Berkey, B.D.

    1981-05-01

    The objective of the program reported herein was to provide a Safety Analysis of the 700 h.p. Combustion Test Facility located in Building 93 at the Pittsburgh Energy Technology Center. Extensive safety related measures have been incorporated into the design, construction, and operation of the Combustion Test Facility. These include: nitrogen addition to the coal storage bin, slurry hopper, roller mill and pulverizer baghouse, use of low oxygen content combustion gas for coal conveying, an oxygen analyzer for the combustion gas, insulation on hot surfaces, proper classification of electrical equipment, process monitoring instrumentation and a planned remote television monitoring system. Analysis of the system considering these factors has resulted in the determination of overall probabilities of occurrence of hazards as shown in Table I. Implementation of the recommendations in this report will reduce these probabilities as indicated. The identified hazards include coal dust ignition by hot ductwork and equipment, loss of inerting within the coal conveying system leading to a coal dust fire, and ignition of hydrocarbon vapors or spilled oil, or slurry. The possibility of self-heating of coal was investigated. Implementation of the recommendations in this report will reduce the ignition probability to no more than 1 x 10/sup -6/ per event. In addition to fire and explosion hazards, there are potential exposures to materials which have been identified as hazardous to personal health, such as carbon monoxide, coal dust, hydrocarbon vapors, and oxygen deficient atmosphere, but past monitoring experience has not revealed any problem areas. The major environmental hazard is an oil spill. The facility has a comprehensive spill control plan.

  14. Very low emissions of airborne particulate pollutants measured from two municipal solid waste incineration plants in Switzerland

    Science.gov (United States)

    Setyan, Ari; Patrick, Michael; Wang, Jing

    2017-10-01

    A field campaign has been performed in two municipal solid waste incineration (MSWI) plants in Switzerland, at Hinwil (ZH) and Giubiasco (TI). The aim was to measure airborne pollutants at different locations of the abatement systems (including those released from the stacks into the atmosphere) and at a near-field (∼1 km) downwind site, in order to assess the efficiency of the abatement systems and the environmental impact of these plants. During this study, we measured the particle number concentration with a condensation particle counter (CPC), and the size distribution with a scanning mobility particle sizer (SMPS) and an aerodynamic particle sizer (APS). We also sampled particles on filters for subsequent analyses of the morphology, size and elemental composition with a scanning electron microscope coupled to an energy dispersive X-ray spectroscope (SEM/EDX), and of water soluble ions by ion chromatography (IC). Finally, volatile organic compounds (VOCs) were sampled on adsorbing cartridges and analyzed by thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS), and a portable gas analyzer was used to monitor NO, SO2, CO, CO2, and O2. The particle concentration decreased significantly at two locations of the plants: at the electrostatic precipitator and the bag-house filter. The particle concentrations measured at the stacks were very low (incinerators. At Giubiasco, no significant differences were observed for the morphology and chemical composition of the particles collected in the ambient background and at the downwind site, suggesting that the incineration plant released very limited amounts of particles to the surrounding areas.

  15. In situ measurement of electrostatic charge and charge distribution on flyash particles in power station exhaust stream

    Energy Technology Data Exchange (ETDEWEB)

    Guang, D.

    1992-01-01

    The electrostatic charges and charge distributions on individual flyash particles were experimentally measured in situ at four power stations in New South Wales and in the laboratory with an Electrostatic Charge Classifier. The global charge of these flyashes was also measured. The electrostatic charge on flyash particles of four power stations was found to be globally native. The median charge on the flyash particles varies linearly with particle diameter for all four flyashes. The electrostatic charge on the Tallawarra flyash particles was found to increase after passage through the air heater having huge metal surface areas, suggesting that triboelectrification was the primary charging mechanism for flyash particles. Distinctly different characteristics of the electrostatic charge, particle size and particle shape were found between the Eraring and the Tallawarra flyashes. The spherical Eraring ash has the highest proportion of lines and positively charged particles, but the lowest global charge level among the four flyashes. In contrast, the Tallawarra flyash has just the opposite. It is the distinct characteristics of the flyashes from Eraring and Tallawarra power stations that are responsible for the significant differences in their baghouse performance. The napping feature on the surface of the filter bags used in the Eraring and Tallawarra power stations provides an upstream surface of low fibre density above the fabric bulk. This feature presents and advantage to highly charged particles, like the Tallawarra flyash particles. Highly charged particles tend to deposit on such an upstream surface resulting in a porous dust cake with much less contact areas with the fabric medium than would otherwise be formed. This cake is easy to remove and provides less resistance to the gas flow. After singeing the naps on the filter bag surface at the Eraring power station, the problems of high pressure drop and retention of dust cake on the bas surface have been resolved.

  16. Operating and environmental performances of commercial-scale waste gasification and melting technology.

    Science.gov (United States)

    Tanigaki, Nobuhiro; Fujinaga, Yasuka; Kajiyama, Hirohisa; Ishida, Yoshihiro

    2013-11-01

    Gasification technologies for waste processing are receiving increased interest. A lot of gasification technologies, including gasification and melting, have been developed in Japan and Europe. However, the flue gas and heavy metal behaviors have not been widely reported, even though those of grate furnaces have been reported. This article reports flue gas components of gasification and melting technology in different flue gas treatment systems. Hydrogen chloride concentrations at the inlet of the bag filter ranged between 171 and 180 mg Nm(-3) owing to de-acidification by limestone injection to the gasifier. More than 97.8% of hydrogen chlorides were removed by a bag filter in both of the flue gas treatment systems investigated. Sulfur dioxide concentrations at the inlet of the baghouse were 4.8 mg Nm(-3) and 12.7 mg Nm(-3), respectively. Nitrogen oxides are highly decomposed by a selective catalytic reduction system. Owing to the low regenerations of polychlorinated dibenzo-p-dioxins and furans, and the selective catalytic reduction system, the concentrations of polychlorinated dibenzo-p-dioxins and furans at the stacks were significantly lower without activated carbon injection. More than 99% of chlorine is distributed in fly ash. Low-boiling-point heavy metals, such as lead and zinc, are distributed in fly ash at rates of 97.6% and 96.5%, respectively. Most high-boiling-point heavy metals, such as iron and copper, are distributed in metal. It is also clarified that the slag is stable and contains few harmful heavy metals, such as lead. The heavy metal distribution behaviors are almost the same regardless of the compositions of the processed waste. These results indicate that the gasification of municipal solid waste constitutes an ideal approach to environmental conservation and resource recycling.

  17. Evaluation of radionuclide contamination of soil, coal ash and zeolitic materials from Figueira thermoelectric power plant

    Energy Technology Data Exchange (ETDEWEB)

    Fungaro, Denise Alves; Silva, Paulo Sergio Cardoso da; Campello, Felipe Arrelaro; Miranda, Caio da Silva; Izidoro, Juliana de Carvalho, E-mail: dfungaro@ipen.br, E-mail: pscsilva@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    Neutron activation analysis and gamma-ray spectrometry was used to determine {sup 238}U, {sup 226}Ra, {sup 228}Ra, {sup 210}Pb, {sup 232}Th and {sup 40}K contents in feed pulverized coal, bottom ash, fly ash from cyclone and baghouse filters, zeolites synthesized from the ashes and two different soil samples. All the samples used in the study was collected at Figueira thermoelectric power plant, located in the city of Figueira, Paraná State, which coal presents a significant amount of uranium concentration. The natural radionuclide concentrations in pulverized coal were 4216 Bq kg{sup -1} for {sup 238}U, 180 Bq kg{sup -1} for {sup 226}Ra, 27 Bq kg{sup -1} for {sup 228}Ra, 28 Bq kg{sup -1} for {sup 232}Th and 192 Bq kg{sup -1} for {sup 40}K. The ashes fraction presented concentrations ranging from 683.5 to 1479 Bq kg{sup -1} for {sup 238}U, from 484 to 1086 Bq kg{sup -1} for {sup 226}Ra, from 291 to 1891 Bq kg{sup -1} for {sup 210}Pb, from 67 to 111 Bq kg{sup -1} for {sup 228}Ra, from 80 to 87 Bq{sup -1} for {sup 232}Th and from 489 to 718 Bq kg{sup -1} for {sup 40}K. Similar ranges were observed for zeolites. The activity concentration of {sup 238}U was higher than worldwide average concentration for all samples. The concentration of the uranium series found in the ashes were lower than the values observed in similar studies carried out 10 years ago and under the limit adopted by the Brazilian guideline (CNEN-NN-4.01). Nevertheless, the concentrations of this specific area are higher than others coal mines and thermoelectric power plants in and out of Brazil, so it is advisable to evaluate the environmental impact of the installation. (author).

  18. Engineering study for a melting, casting, rolling and fabrication facility for recycled contaminated stainless steel

    International Nuclear Information System (INIS)

    1994-01-01

    This Preliminary Report is prepared to study the facilities required for recycling contaminated stainless steel scrap into plate which will be fabricated into boxes suitable for the storage of contaminated wastes and rubble. The study is based upon the underlying premise that the most cost effective way to produce stainless steel is to use the same processes employed by companies now in production of high quality stainless steel. Therefore, the method selected for this study for the production of stainless steel plate from scrap is conventional process using an Electric Arc Furnace for meltdown to hot metal, a Continuous Caster for production of cast slabs, and a Reversing Hot Mill for rolling the slabs into plate. The fabrication of boxes from the plate utilizes standard Shears, Punch Presses and welding equipment with Robotic Manipulators. This Study presumes that all process fumes, building dusts and vapors will be cycled through a baghouse and a nuclear grade HEPA filter facility prior to discharge. Also, all process waste water will be evaporated into the hot flue gas stream from the furnace utilizing a quench tank; so there will be no liquid discharges from the facility and all vapors will be processed through a HEPA filter. Even though HEPA filters are used today in controlling radioactive contamination from nuclear facilities there is a sparsity of data concerning radioactivity levels and composition of waste that may be collected from contaminated scrap steel processing. This report suggests some solutions to these problems but it is recommended that additional study must be given to these environmental problems

  19. A model for dry sodium bicarbonate duct injection flue gas desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Changfa Wu; Soon-Jai Khang; Tim C. Keener; Sang-Kwun Lee [University of Cincinnati, Cincinnati, OH (United States). Department of Chemical Engineering

    2004-03-01

    A mathematical model is developed for simulation of dry sodium bicarbonate (NaHCO{sub 3}) duct injection for the removal of sulfur dioxide (SO{sub 2}) in flue gases across a fabric filter (baghouse). The model employs parallel reaction kinetics and assumes that the sodium bicarbonate injection process can be separated into two stages. The first stage is a transport duct section where NaHCO{sub 3} particles are injected into the sulfur dioxide laden gas stream. The second stage is the fabric filter section where sodium sorbents are collected and behave as a variable depth fixed bed reactor. The process simulation for the efficiency of desulfurization in flue gas is performed and evaluated for a variety of operating conditions. It is found that the removal of SO{sub 2} within the duct section is small and negligible for most practical conditions, with a contribution normally less than 5% of total SO{sub 2} removal. The major removal of SO{sub 2} occurs across the filter cake, which accumulates the sorbent particles on the fabric filter. These particles are periodically disposed as the filter is cleaned. The major factors for the process are temperature, particle size and SO{sub 2} gas concentration for all operating conditions. At low temperatures, the removal of SO{sub 2} increases as temperature increases, but the removal decreases at higher temperatures due to the impact of the thermal decomposition reaction of NaHCO{sub 3} on SO{sub 2} removal. It was found that the temperature for the highest removal of SO{sub 2} is within the range of 127-150{sup o}C and the removal efficiency also depends on particle size.

  20. The ADESORB Process for Economical Production of Sorbents for Mercury Removal from Coal Fired Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Robin Stewart

    2008-03-12

    The DOE's National Energy Technology Laboratory (NETL) currently manages the largest research program in the country for controlling coal-based mercury emissions. NETL has shown through various field test programs that the determination of cost-effective mercury control strategies is complex and highly coal- and plant-specific. However, one particular technology has the potential for widespread application: the injection of activated carbon upstream of either an electrostatic precipitator (ESP) or a fabric filter baghouse. This technology has potential application to the control of mercury emissions on all coal-fired power plants, even those with wet and dry scrubbers. This is a low capital cost technology in which the largest cost element is the cost of sorbents. Therefore, the obvious solutions for reducing the costs of mercury control must focus on either reducing the amount of sorbent needed or decreasing the cost of sorbent production. NETL has researched the economics and performance of novel sorbents and determined that there are alternatives to the commercial standard (NORIT DARCO{reg_sign} Hg) and that this is an area where significant technical improvements can still be made. In addition, a key barrier to the application of sorbent injection technology to the power industry is the availability of activated carbon production. Currently, about 450 million pounds ($250 million per year) of activated carbon is produced and used in the U.S. each year - primarily for purification of drinking water, food, and beverages. If activated carbon technology were to be applied to all 1,100 power plants, EPA and DOE estimate that it would require an additional $1-$2 billion per year, which would require increasing current capacity by a factor of two to eight. A new facility to produce activated carbon would cost approximately $250 million, would increase current U.S. production by nearly 25%, and could take four to five years to build. This means that there could be

  1. Engineering development of coal-fired high-performance power systems

    International Nuclear Information System (INIS)

    1998-01-01

    program. The CETF design effort continued through this quarter with the completion of the following systems: 1. Char Storage and Transport System 2. Reheat Burner The char storage system is required for the HIPPS program because the ball mill needs to be de-coupled from the burner. This de-coupling of the mill and the burner allows greater flexibility in changing char particle size distribution one of the main test variables under the HIPPS program. The reheat burner is employed to prevent condensation of the flue gas in the baghouse

  2. Mercury-impacted scrap metal: Source and nature of the mercury.

    Science.gov (United States)

    Finster, Molly E; Raymond, Michelle R; Scofield, Marcienne A; Smith, Karen P

    2015-09-15

    The reuse and recycling of industrial solid wastes such as scrap metal is supported and encouraged both internationally and domestically, especially when such wastes can be used as substitutes for raw material. However, scrap metal processing facilities, such as mini-mills, have been identified as a source of mercury (Hg) emissions in the United States. This research aims to better define some of the key issues related to the source and nature of mercury in the scrap metal waste stream. Overall, it is difficult to pinpoint the key mercury sources feeding into scrap metal recycling facilities, quantify their associated mercury concentrations, or determine which chemical forms are most significant. Potential sources of mercury in scrap metal include mercury switches from discarded vehicles, electronic-based scrap from household appliances and related industrial systems, and Hg-impacted scrap metal from the oil and gas industry. The form of mercury associated with scrap metal varies and depends on the source type. The specific amount of mercury that can be adsorbed and retained by steel appears to be a function of both metallurgical and environmental factors. In general, the longer the steel is in contact with a fluid or condensate that contains measurable concentrations of elemental mercury, the greater the potential for mercury accumulation in that steel. Most mercury compounds are thermally unstable at elevated temperatures (i.e., above 350 °C). As such, the mercury associated with impacted scrap is expected to be volatilized out of the metal when it is heated during processing (e.g., shredding or torch cutting) or melted in a furnace. This release of fugitive gas (Hg vapor) and particulates, as well as Hg-impacted bag-house dust and control filters, could potentially pose an occupational exposure risk to workers at a scrap metal processing facility. Thus, identifying and characterizing the key sources of Hg-impacted scrap, and understanding the nature and extent

  3. Emissions control for sensitive areas

    International Nuclear Information System (INIS)

    Baud, Trevor

    2011-01-01

    Full text: The Gorgon project needs almost no introduction. Located off the north-west coast of Western Australia, it is one of the world's largest natural gas projects, set on the environmentally sensitive Barrow Island. To protect the island's unique habitats, stringent environmental conditions have been imposed in terms of air, noise and light emissions, making the emission control system critical to the project's viability. Luhr Filter, specialists in dust and fume control solutions, were chosen by KMH Environmental to supply an emission control system for a waste incinerator facility serving the LNG processing plant on Barrow Island. KMH's preference was for a 'one stop' supplier of the entire pollution control system. This included a heat exchanger which had the added benefit of a compact build to fit in the limited real estate. The solution put forward was tailored to the unique environmental requirements of the Gorgon project. It was very much about collaboration and innovation to achieve the requisite results. KMH were also keen to limit the number of sub-contractors they had to deal with, and Luhr offered them a turn-key plant for the gas cleaning, integrating design and supply of all the equipment. Among the environmental requirements was that all putrescible waste created on-site - from the accommodation camps during the construction and, eventually, production phases - had to be incinerated rather than sent to landfill. The flue gas from the incinerators had to be treated in order to meet world-class environmental standards for emission of particulate, acid gases, metals and dioxins. KMH designed an incinerator system with primary and secondary combustion chambers in modular units to minimise labour requirements on site. The dry absorption system integrates Luhr's unique technologies for heat exchangers, absorption reactors, utilisation of the absorbent and the baghouse style filters with reverse pulse bag cleaning

  4. Development and Testing of Industrial Scale Coal Fired Combustion System, Phase 3

    Energy Technology Data Exchange (ETDEWEB)

    Bert Zauderer

    1998-09-30

    Combustor'. The details of the task 5 effort are contained in Appendix 'C'. It was implemented between 1994 and 1998 after the entire 20 MMBtu/hr combustor-boiler facility was relocated to Philadelphia, PA in 1994. A new test facility was designed and installed. A substantially longer combustor was fabricated. Although not in the project plan or cost plan, an entire steam turbine-electric power generating plant was designed and the appropriate new and used equipment for continuous operation was specified. Insufficient funds and the lack of a customer for any electric power that the test facility could have generated prevented the installation of the power generating equipment needed for continuous operation. All other task 5 project measures were met and exceeded. 107 days of testing in task 5, which exceeded the 63 days (about 500 hours) in the test plan, were implemented. Compared to the first generation 20 MMBtu/hr combustor in Williamsport, the 2nd generation combustor has a much higher combustion efficiency, the retention of slag inside the combustor doubled to about 75% of the coal ash, and the ash carryover into the boiler, a major problem in the Williamsport combustor was essentially eliminated. In addition, the project goals for coal-fired emissions were exceeded in task 5. SO{sub 2} was reduced by 80% to 0.2 lb/MMBtu in a combination of reagent injection in the combustion and post-combustion zones. NO{sub x} was reduced by 93% to 0.07 lb/MMBtu in a combination of staged combustion in the combustor and post-combustion reagent injection. A baghouse was installed that was rated to 0.03 lb/MMBtu stack particle emissions. The initial particle emission test by EPA Method 5 indicated substantially higher emissions far beyond that indicated by the clear emission plume. These emissions were attributed to steel particles released by wall corrosion in the baghouse, correction of which had no effect of emissions.

  5. Effects of NO{sub x}, {alpha}-Fe{sub 2}O{sub 3}, {gamma}-Fe{sub 2}O{sub 3}, and HCl on mercury transformations in a 7-kW coal combustion system

    Energy Technology Data Exchange (ETDEWEB)

    Galbreath, Kevin C.; Zygarlicke, Christopher J.; Tibbetts, James E.; Schulz, Richard L.; Dunham, Grant E. [University of North Dakota Energy and Environmental Research Center, 15 North 23rd Street, P.O. Box 9018, Grand Forks, ND 58202-9018 (United States)

    2005-01-25

    Bench-scale investigations indicate that NO, NO{sub 2}, hematite ({alpha}-Fe{sub 2}O{sub 3}), maghemite ({gamma}-Fe{sub 2}O{sub 3}), and HCl promote the conversion of gaseous elemental mercury (Hg{sup 0}) to gaseous oxidized mercury (Hg{sup 2+}) and/or particle-associated mercury (Hg[p]) in simulated coal combustion flue gases. In this investigation, the effects of NO{sub x}, {alpha}-Fe{sub 2}O{sub 3}, {gamma}-Fe{sub 2}O{sub 3}, and HCl on Hg transformations were evaluated by injecting them into actual coal combustion flue gases produced from burning subbituminous Absaloka and lignitic Falkirk coals in a 7-kW down-fired cylindrical furnace. A bituminous Blacksville coal known to produce an Hg{sup 2+}-rich combustion flue gas was also burned in the system. The American Society for Testing and Materials Method D6784-02 (Ontario Hydro method) or an online Hg analyzer equipped to measure Hg{sup 0} and total gaseous mercury (Hg[tot]) was used to monitor Hg speciation at the baghouse inlet (160-195 {sup o}C) and outlet (110-140 {sup o}C) locations of the system. As expected, the baseline Blacksville flue gas was composed predominantly of Hg{sup 2+} (Hg{sup 2+}/Hg[tot]=0.77), whereas Absaloka and Falkirk flue gases contained primarily Hg{sup 0} (Hg{sup 0}/Hg[tot]=0.84 and 0.78, respectively). Injections of NO{sub 2} (80-190 ppmv) at 440-880 {sup o}C and {alpha}-Fe{sub 2}O{sub 3} (15 and 6 wt.%) at 450 {sup o}C into Absaloka and Falkirk coal combustion flue gases did not significantly affect Hg speciation. The lack of Hg{sup 0} to Hg{sup 2+} conversion suggests that components of Absaloka and Falkirk combustion flue gases and/or fly ashes inhibit heterogeneous Hg{sup 0}-NO{sub x}-{alpha}-Fe{sub 2}O{sub 3} reactions or that the flue gas quench rate in the 7-kW system is much different in relation to bench-scale flue gas simulators.An abundance of Hg{sup 2+}, HCl, and {gamma}-Fe{sub 2}O{sub 3} in Blacksville flue gas and the inertness of injected {alpha}-Fe{sub 2}O{sub 3

  6. Greenidge Multi-Pollutant Control Project

    Energy Technology Data Exchange (ETDEWEB)

    Connell, Daniel

    2008-10-18

    The Greenidge Multi-Pollutant Control Project was conducted as part of the U.S. Department of Energy's Power Plant Improvement Initiative to demonstrate an innovative combination of air pollution control technologies that can cost-effectively reduce emissions of SO{sub 2}, NO{sub x}, Hg, acid gases (SO{sub 3}, HCl, and HF), and particulate matter from smaller coal-fired electric generating units (EGUs). There are about 400 units in the United States with capacities of 50-300 MW that currently are not equipped with selective catalytic reduction (SCR), flue gas desulfurization (FGD), or mercury control systems. Many of these units, which collectively represent more than 55 GW of installed capacity, are difficult to retrofit for deep emission reductions because of space constraints and unfavorable economies of scale, making them increasingly vulnerable to retirement or fuel switching in the face of progressively more stringent environmental regulations. The Greenidge Project sought to confirm the commercial readiness of an emissions control system that is specifically designed to meet the environmental compliance requirements of these smaller coal-fired EGUs by offering a combination of deep emission reductions, low capital costs, small space requirements, applicability to high-sulfur coals, mechanical simplicity, and operational flexibility. The multi-pollutant control system includes a NO{sub x}OUT CASCADE{reg_sign} hybrid selective non-catalytic reduction (SNCR)/in-duct SCR system for NO{sub x} control and a Turbosorp{reg_sign} circulating fluidized bed dry scrubbing system (with a new baghouse) for SO{sub 2}, SO{sub 3}, HCl, HF, and particulate matter control. Mercury removal is provided as a co-benefit of the in-duct SCR, dry scrubber, and baghouse, and by injection of activated carbon upstream of the scrubber, if required. The multi-pollutant control system was installed and tested on the 107-MW{sub e}, 1953-vintage AES Greenidge Unit 4 by a team including

  7. JV Task 90 - Activated Carbon Production from North Dakota Lignite

    Energy Technology Data Exchange (ETDEWEB)

    Steven Benson; Charlene Crocker; Rokan Zaman; Mark Musich; Edwin Olson

    2008-03-31

    The Energy & Environmental Research Center (EERC) has pursued a research program for producing activated carbon from North Dakota lignite that can be competitive with commercial-grade activated carbon. As part of this effort, small-scale production of activated carbon was produced from Fort Union lignite. A conceptual design of a commercial activated carbon production plant was drawn, and a market assessment was performed to determine likely revenue streams for the produced carbon. Activated carbon was produced from lignite coal in both laboratory-scale fixed-bed reactors and in a small pilot-scale rotary kiln. The EERC was successfully able to upgrade the laboratory-scale activated carbon production system to a pilot-scale rotary kiln system. The activated carbon produced from North Dakota lignite was superior to commercial grade DARCO{reg_sign} FGD and Rheinbraun's HOK activated coke product with respect to iodine number. The iodine number of North Dakota lignite-derived activated carbon was between 600 and 800 mg I{sub 2}/g, whereas the iodine number of DARCO FGD was between 500 and 600 mg I{sub 2}/g, and the iodine number of Rheinbraun's HOK activated coke product was around 275 mg I{sub 2}/g. The EERC performed both bench-scale and pilot-scale mercury capture tests using the activated carbon made under various optimization process conditions. For comparison, the mercury capture capability of commercial DARCO FGD was also tested. The lab-scale apparatus is a thin fixed-bed mercury-screening system, which has been used by the EERC for many mercury capture screen tests. The pilot-scale systems included two combustion units, both equipped with an electrostatic precipitator (ESP). Activated carbons were also tested in a slipstream baghouse at a Texas power plant. The results indicated that the activated carbon produced from North Dakota lignite coal is capable of removing mercury from flue gas. The tests showed that activated carbon with the greatest

  8. Greenridge Multi-Pollutant Control Project Preliminary Public Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Connell, Daniel P

    2009-01-12

    The Greenidge Multi-Pollutant Control Project is being conducted as part of the U.S. Department of Energy's Power Plant Improvement Initiative to demonstrate an innovative combination of air pollution control technologies that can cost-effectively reduce emissions of SO{sub 2}, NO{sub x}, Hg, acid gases (SO{sub 3}, HCl, and HF), and particulate matter from smaller coal-fired electrical generating units (EGUs). The multi-pollutant control system includes a hybrid selective non-catalytic reduction (SNCR)/in-duct selective catalytic reduction (SCR) system to reduce NOx emissions by {ge}60%, followed by a Turbosorp{reg_sign} circulating fluidized bed dry scrubber system to reduce emissions of SO{sub 2}, SO{sub 3}, HCl, and HF by {ge}95%. Mercury removal of {ge}90% is also targeted via the co-benefits afforded by the in-duct SCR, dry scrubber, and baghouse and by injection of activated carbon upstream of the scrubber, as required. The technology is particularly well suited, because of its relatively low capital and maintenance costs and small space requirements, to meet the needs of coal-fired units with capacities of 50-300 MWe. There are about 440 such units in the United States that currently are not equipped with SCR, flue gas desulfurization (FGD), or mercury control systems. These smaller units are a valuable part of the nation's energy infrastructure, constituting about 60 GW of installed capacity. However, with the onset of the Clean Air Interstate Rule, Clean Air Mercury Rule, and various state environmental actions requiring deep reductions in emissions of SO{sub 2}, NO{sub x}, and mercury, the continued operation of these units increasingly depends upon the ability to identify viable air pollution control retrofit options for them. The large capital costs and sizable space requirements associated with conventional technologies such as SCR and wet FGD make these technologies unattractive for many smaller units. The Greenidge Project aims to confirm

  9. Globally sustainable manganese metal production and use.

    Science.gov (United States)

    Hagelstein, Karen

    2009-09-01

    reduces the quantity of solid wastes generated during processing. Secondary aluminum facilities have reported hazardous waste generation management issues due to baghouse dusts from rotary furnaces processing selenium contaminated manganese alloys. Environmental impacts resulting from industry are represented by emission inventories of chemical releases to the air, water, and soil. The U.S. metals industry releases reported to EPA Toxic Release Inventory indicate the primary metals industry is the major source of metal air toxic emissions, exceeding electric utility air toxic emissions. The nonferrous metals industry is reported to be the Organization for Economic Co-operation and Development (OECD) most intensive airborne and land pollution source of bioaccumulative metals. However, total waste emissions from industries in the OECD countries have declined due to improving energy consumption. Emission registers and access are improving around the world. However, environmental databases for metal particulates have low confidence ratings since the majority of air toxic emissions are not reported, not monitored, or are estimated based on worst-case emission factors. Environmental assessments including biological monitoring are necessary to validate mandated particulate metal emission reductions and control technologies during metal processing.

  10. Dirac operator, chirality and random matrix theory

    International Nuclear Information System (INIS)

    Pullirsch, R.

    2001-05-01

    Quantum Chromodynamics (QCD) is considered to be the correct theory which describes quarks and gluons and, thus, all strong interaction phenomena from the fundamental forces of nature. However, important properties of QCD such as the physical mechanism of color confinement and the spontaneous breaking of chiral symmetry are still not completely understood and under extensive discussion. Analytical calculations are limited, because in the low-energy regime where quarks are confined, application of perturbation theory is restricted due to the large gluon coupling. A powerful tool to investigate numerically and analytically the non-perturbative region is provided by the lattice formulation of QCD. From Monte Carlo simulations of lattice QCD we know that chiral symmetry is restored above a critical temperature. As the chiral condensate is connected to the spectral density of the Dirac operator via the Banks-Casher relation, the QCD Dirac spectrum is an interesting object for detailed studies. In search for an analytical expression of the infrared limit of the Dirac spectrum it has been realized that chiral random-matrix theory (chRMT) is a suitable tool to compare with the distribution and the correlations of the small Dirac eigenvalues. Further, it has been shown that the correlations of eigenvalues on the scale of mean level spacings are universal for complex physical systems and are given by random-matrix theory (Rm). This has been formulated as the Baghouse-Giannoni-Schmit conjecture which states that spectral correlations of a classically chaotic system are given by RMT on the quantum level. The aim of this work is to analyze the relationship between chiral phase transitions and chaos to order transitions in quantum field theories. We study the eigenvalues of the Dirac operator for Quantum Electrodynamics (QED) with compact gauge group U(1) on the lattice. This theory shows chiral symmetry breaking and confinement in the strong coupling region. Although being

  11. Behaviour of radionuclides during accidental melting of orphan sources in electric arc furnaces by means of C.F.D. gas flow modeling

    International Nuclear Information System (INIS)

    Penalva, I.; Damborenea, J.; Legarda, F.; Zuloaga, P.; Ordonez, M.; Serrano, I.

    2006-01-01

    .) together with the prevailing conditions inside the furnace (temperature, characteristics of the refractory material and slag, turbulences, etc.) will characterize the scenario for the dispersion of the radioactivity. In this sense, behaviour of radioactive sources made up with 137 Cs deserves special consideration, as long as it will be easily incorporated to the fumes. Caesium is highly volatile and the experience shows that it is dragged along stuck on dust particles towards the filter baghouse. As a consequence, plate out processes take place on the pipes of the gas treatment system. This plate out process has also been studied using C.F.D. techniques, tracking dust particles of different sizes to analyze the retention of dust and, in consequence, of radioactivity along the pipes. The results obtained in the simulations match reasonably well with those obtained in real facilities for the deposition of dust. (authors)

  12. Behaviour of radionuclides during accidental melting of orphan sources in electric arc furnaces by means of C.F.D. gas flow modeling

    Energy Technology Data Exchange (ETDEWEB)

    Penalva, I.; Damborenea, J.; Legarda, F. [University of the Basque Country, Nuclear Engineering and Fluids Mechanics (Spain); Zuloaga, P.; Ordonez, M. [Empresa Nacional de Residuos Radiactivos, SA (ENRESA), Madrid (Spain); Serrano, I. [Consejo de Seguridad Nuclear, Madrid (Spain)

    2006-07-01

    .) together with the prevailing conditions inside the furnace (temperature, characteristics of the refractory material and slag, turbulences, etc.) will characterize the scenario for the dispersion of the radioactivity. In this sense, behaviour of radioactive sources made up with {sup 137}Cs deserves special consideration, as long as it will be easily incorporated to the fumes. Caesium is highly volatile and the experience shows that it is dragged along stuck on dust particles towards the filter baghouse. As a consequence, plate out processes take place on the pipes of the gas treatment system. This plate out process has also been studied using C.F.D. techniques, tracking dust particles of different sizes to analyze the retention of dust and, in consequence, of radioactivity along the pipes. The results obtained in the simulations match reasonably well with those obtained in real facilities for the deposition of dust. (authors)

  13. EVALUATION OF MERCURY EMISSIONS FROM COAL-FIRED FACILITIES WITH SCR AND FGD SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    J. A. Withum; S.C. Tseng; J. E. Locke

    2004-10-31

    CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP) - wet flue gas desulfurization (FGD) combination or a spray dyer absorber--fabric filter (SDA-FF) combination. In this program CONSOL is determining mercury speciation and removal at 10 coal-fired facilities. The objectives are (1) to evaluate the effect of SCR on mercury capture in the ESP-FGD and SDA-FF combinations at coal-fired power plants, (2) evaluate the effect of catalyst degradation on mercury capture; (3) evaluate the effect of low load operation on mercury capture in an SCR-FGD system, and (4) collect data that could provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on Hg speciation and the efficacy of different FGD technologies for Hg capture. This document, the second in a series of topical reports, describes the results and analysis of mercury sampling performed on a 330 MW unit burning a bituminous coal containing 1.0% sulfur. The unit is equipped with a SCR system for NOx control and a spray dryer absorber for SO{sub 2} control followed by a baghouse unit for particulate emissions control. Four sampling tests were performed in March 2003. Flue gas mercury speciation and concentrations were determined at the SCR inlet, air heater outlet (ESP inlet), and at the stack (FGD outlet) using the Ontario Hydro method. Process stream samples for a mercury balance were collected to coincide with the flue gas measurements. Due to mechanical problems with the boiler feed water pumps, the actual gross output was between 195 and 221 MW during the tests. The results showed that the SCR/air heater combination oxidized nearly 95% of the elemental mercury. Mercury removal, on a