WorldWideScience

Sample records for baghouses

  1. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - BAGHOUSE FILTRATION PRODUCTS - TETRATEC PTFE TECHNOLOGIES TETRATEX 8005

    Science.gov (United States)

    Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) pilot of the Environmental Technology Verification (ETV) Program. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of th...

  2. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - BAGHOUSE FILTRATION PRODUCTS - MENARDI-CRISWELL 50-504 FILTER SAMPLE

    Science.gov (United States)

    Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) pilot of the Environmental Technology Verification (ETV) Program. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of th...

  3. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - BAGHOUSE FILTRATION PRODUCTS - STANDARD FILTER CORPORATION PE16ZU FILTER SAMPLE

    Science.gov (United States)

    Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) pilot of the Environmental Technology Verification (ETV) Program. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of th...

  4. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - BAGHOUSE FILTRATION PRODUCTS - INSPEC FIBRES 5512BRF FILTER SAMPLE

    Science.gov (United States)

    Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) pilot of the Environmental Technology Verification (ETV) Program. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of th...

  5. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - BAGHOUSE FILTRATION PRODUCTS - AIR PURATOR CORPORATION HUYGLAS 1405M FILTER SAMPLE

    Science.gov (United States)

    Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) pilot of the Environmental Technology Verification (ETV) Program. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of th...

  6. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - BAGHOUSE FILTRATION PRODUCTS - BHA GROUP, INC. QG061 FILTER SAMPLE

    Science.gov (United States)

    Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) pilot of the Environmental Technology Verification (ETV) Program. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of th...

  7. Mineral phases and metals in baghouse dust from secondary ...

    Science.gov (United States)

    Baghouse dust (BHD) is a solid waste generated by air pollution control systems during secondary aluminum processing (SAP). Management and disposal of BHD can be challenging in the U.S. and elsewhere. In this study, the mineral phases, metal content and metal leachability of 78 BHD samples collected from 13 different SAP facilities across the U.S. were investigated. The XRD semi-quantitative analysis of BHD samples suggests the presence of metallic aluminum, aluminum oxide, aluminum nitride and its oxides, spinel, elpasolite as well as diaspora. BHD also contains halite, sylvite and fluorite, which are used as fluxes in SAP activities. Total aluminum (Al) in the BHD samples averaged 18% by weight. Elevated concentrations of trace metals (>100 µgL-1 As; >1000 µgL-1 Cu, Mn, Se, Pb, Mn and Zn) were also detected in the leachate. The U.S. toxicity characteristic leaching procedure (TCLP) results showed that some samples leached above the toxicity limit for Cd, Pb and Se. Exceeding the TCLP limits in all sample is independent of facilities generating the BHD. From the metal content perspective only, it appears that BHD has a higher potential to exhibit toxicity characteristics than salt cake (the largest waste stream generated by SAP facilities). The objective of this study was to investigate BHD from SAP facilities in the U.S. by determining the mineral phases and the metal (Al, As, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Pb, Se and Zn) content of the sample

  8. Mineral phases and metals in baghouse dust from secondary aluminum production

    Science.gov (United States)

    Baghouse dust (BHD) is a solid waste generated by air pollution control systems during secondary aluminum processing (SAP). Management and disposal of BHD can be challenging in the U.S. and elsewhere. In this study, the mineral phases, metal content and metal leachability of 78...

  9. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, BAGHOUSE FILTRATION PRODUCTS, TETRATEC PTFE PRODUCTS, TETRATEX 6212 FILTER SAMPLE

    Science.gov (United States)

    Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) Verification Center. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of the size of those particles equal to and smalle...

  10. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, BAGHOUSE FILTRATION PRODUCTS, BHA GROUP, INC., QP131 FILTER SAMPLE

    Science.gov (United States)

    Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) Verification Center. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of the size of those particles equal to and smalle...

  11. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, BAGHOUSE FILTRATION PRODUCTS, POLYMER GROUP, INC., DURAPEX PET FILTER SAMPLE

    Science.gov (United States)

    Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) Verification Center. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of the size of those particles equal to and smalle...

  12. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - BAGHOUSE FILTRATION PRODUCTS - W.L. GORE & ASSOCIATES, INC. L4347 FILTER SAMPLE

    Science.gov (United States)

    Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) pilot of the Environmental Technology Verification (ETV) Program. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of th...

  13. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - BAGHOUSE FILTRATION PRODUCTS - BASF CORPORATION AX/BA-14/9-SAXP FILTER SAMPLE

    Science.gov (United States)

    Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) pilot of the Environmental Technology Verification (ETV) Program. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of th...

  14. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - BAGHOUSE FILTRATION PRODUCTS - ALBANY INTERNATIONAL CORP. INDUSTRIAL PROCESS TECHNOLOGIES PRIMATEX PLUS I FILTER SAMPLE

    Science.gov (United States)

    Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) pilot of the Environmental Technology Verification (ETV) Program. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of th...

  15. Environmental Technology Verification Report and Statement for Baghouse Filtration Products, W. L. Gore & Associates, Inc. 5117 High Durability PPS Laminate Filtration Media (Tested March-April 2012)

    Science.gov (United States)

    Baghouses are air pollution control devices used to control particulate emissions from stationary sources and are among the technologies evaluated by the APCT Center. Baghouses and their accompanying filter media have long been one of the leading particulate control techniques fo...

  16. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: BAGHOUSE FILTRATION PRODUCTS, BWF AMERICA, INC. GRADE 700 MPS POLYESTER FELT FILTER SAMPLE

    Science.gov (United States)

    Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) Verification Center. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of the size for particles equal to or smaller than...

  17. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: BAGHOUSE FILTRATION PRODUCTS, W.L. GORE & ASSOCIATES, INC. LYSB3 FILTER SAMPLE

    Science.gov (United States)

    Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) Verification Center. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of the size for particles equal to or smaller than...

  18. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, BAGHOUSE FILTRATION PRODUCTS, W.L. GORE & ASSOCIATES, INC., L4427 FILTER SAMPLE

    Science.gov (United States)

    Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) Verification Center. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of the size of those particles equal to and smalle...

  19. Mineral phases and metals in baghouse dust from secondary aluminum production.

    Science.gov (United States)

    Huang, Xiao-Lan; El Badawy, Amro M; Arambewela, Mahendranath; Adkins, Renata; Tolaymat, Thabet

    2015-09-01

    Baghouse dust (BHD) is a solid waste generated by air pollution control systems during secondary aluminum processing (SAP). Management and disposal of BHD can be challenging in the U.S. and elsewhere. In this study, the mineral phases, metal content and metal leachability of 78 BHD samples collected from 13 different SAP facilities across the U.S. were investigated. The XRD semi-quantitative analysis of BHD samples suggests the presence of metallic aluminum, aluminum oxide, aluminum nitride and its oxides, spinel, elpasolite as well as diaspora. BHD also contains halite, sylvite and fluorite, which are used as fluxes in SAP activities. Total aluminum (Al) in the BHD samples averaged 18% by weight. Elevated concentrations of trace metals (>100 μg L(-1) As; >1000 μg L(-1) Cu, Mn, Se, Pb, Mn and Zn) were also detected in the leachate. The U.S. toxicity characteristic leaching procedure (TCLP) results showed that some samples leached above the toxicity limit for Cd, Pb and Se. Exceeding the TCLP limits in all sample is independent of facilities generating the BHD. From the metal content perspective only, it appears that BHD has a higher potential to exhibit toxicity characteristics than salt cake (the largest waste stream generated by SAP facilities). Published by Elsevier Ltd.

  20. Hydrometallurgical process for recovering iron sulfate and zinc sulfate from baghouse dust

    Science.gov (United States)

    Zaromb, Solomon; Lawson, Daniel B.

    1994-01-01

    A process for recovering zinc/rich and iron-rich fractions from the baghouse dust that is generated in various metallurgical operations, especially in steel-making and other iron-making plants, comprises the steps of leaching the dust by hot concentrated sulfuric acid so as to generate dissolved zinc sulfate and a precipitate of iron sulfate, separating the precipitate from the acid by filtration and washing with a volatile liquid, such as methanol or acetone, and collecting the filtered acid and the washings into a filtrate fraction. The volatile liquid may be recovered distillation, and the zinc may be removed from the filtrate by alternative methods, one of which involves addition of a sufficient amount of water to precipitate hydrated zinc sulfate at 10.degree. C., separation of the precipitate from sulfuric acid by filtration, and evaporation of water to regenerate concentrated sulfuric acid. The recovery of iron may also be effected in alternative ways, one of which involves roasting the ferric sulfate to yield ferric oxide and sulfur trioxide, which can be reconverted to concentrated sulfuric acid by hydration. The overall process should not generate any significant waste stream.

  1. Baghouse Slipstream Testing at TXU's Big Brown Station

    Energy Technology Data Exchange (ETDEWEB)

    John Pavlish; Jason Laumb; Robert Jensen; Jeffery Thompson; Christopher Martin; Mark Musich; Brandon Pavlish; Stanley Miller; Lucinda Hamre

    2007-04-30

    Performing sorbent testing for mercury control at a large scale is a very expensive endeavor and requires months of planning and careful execution. Even with good planning, there are plant limitations on what operating/design parameters can be varied/tested and when. For parameters that cannot be feasibly tested at the full scale (lower/higher gas flow, different bag material, cleaning methods, sorbents, etc.), an alternative approach is used to perform tests on a slipstream unit using flue gas from the plant. The advantage that a slipstream unit provides is the flexibility to test multiple operating and design parameters and other possible technology options without risking major disruption to the operation of the power plant. Additionally, the results generated are expected to simulate full-scale conditions closely, since the flue gas used during the tests comes directly from the plant in question. The Energy & Environmental Research Center developed and constructed a mobile baghouse that allows for cost-effective testing of impacts related to variation in operating and design parameters, as well as other possible mercury control options. Multiple sorbents, air-to-cloth ratios, bag materials, and cleaning frequencies were evaluated while flue gas was extracted from Big Brown when it fired a 70% Texas lignite-30% Powder River Basin (PRB) blend and a 100% PRB coal.

  2. Development process for the stabilization of incinerator bottom ash and sizing baghouse dust material

    International Nuclear Information System (INIS)

    Hunt, L.F.; Boehmer, A.M.

    1987-04-01

    EG ampersand G Idaho Inc. has initiated a program to develop safe, efficient, cost-effective treatment methods for the stabilization and subsequent disposal of some of the hazardous and mixed wastes generated at the Idaho National Engineering Laboratory (INEL). Lab-scale testing has shown that Extraction Procedure (EP) toxic wastes can be successfully stabilized by solidification, using various binders to produce nontoxic, stable waste forms for safe, long-term disposal. The purpose of this report is to present the results of drum-scale testing of WERF incinerator bottom ash and WERF sizing baghouse dust. The drum-scale test program was conducted to determine if a production procedure that would produce a waste form which was suitable for disposal as a low-level radioactive waste could be developed. The use of 71-gallon square drums for solidification processing were also evaluated. During the test program, eleven drums of ash material were solidified. All of the samples from all of the drums passed the EPA leach test criteria. Although there is a distinct weight addition associated with the solidification process, there is no relative volume increase. 4 refs., 6 figs., 8 tabs

  3. Operating experience, and emission rates of scrubber baghouses, scrubber ESP's and furnace injection of lime at RDF facilities

    International Nuclear Information System (INIS)

    Smith, J.M.; Hartman, R.M.

    1991-01-01

    This paper focuses on operational, economic and environmental considerations of different air pollution control devices at three ABB Resource REcovery Systems (RRS) refuse derived fuel (RDF) facilities (Mid-Connecticut Facility in Hartford, CT, The Greater Detroit Resource Recovery Facility, the H-POWER Facility in Honolulu, HI). The air pollution control devices are: a dry scrubber absorber followed by a fabric filter baghouse, a dry scrubber absorber followed by a five field ESP, lime injection to the furnace followed by a hot electrostatic precipitator. Evaluating these three types of control devices is important because of new EPA emission guideline regulations that mandate restricted particulate, dioxin, and acid gas emission limits on municipal waste combustion facilities (MWC) greater than 250 tons per day combustion capacity. As a result of these new regulations, many existing MWC's will be faced with requirements to upgrade their air pollution control systems

  4. The development and testing of a prototype mini-baghouse to control the release of respirable crystalline silica from sand movers.

    Science.gov (United States)

    Alexander, Barbara M; Esswein, Eric J; Gressel, Michael G; Kratzer, Jerry L; Feng, H Amy; King, Bradley; Miller, Arthur L; Cauda, Emanuele

    2016-08-01

    Inhalation of respirable crystalline silica (RCS) is a significant risk to worker health during well completions operations (which include hydraulic fracturing) at conventional and unconventional oil and gas extraction sites. RCS is generated by pneumatic transfer of quartz-containing sand during hydraulic fracturing operations. National Institute for Occupational Safety and Health (NIOSH) researchers identified concentrations of RCS at hydraulic fracturing sites that exceed 10 times the Occupational Safety and Health Administration (OSHA) Permissible Exposure Limit (PEL) and up to 50 times the NIOSH Recommended Exposure Limit (REL). NIOSH research identified at least seven point sources of dust release at contemporary oil and gas extraction sites where RCS aerosols were generated.  NIOSH researchers recommend the use of engineering controls wherever they can be implemented to limit the RCS released. A control developed to address one of the largest sources of RCS aerosol generation is the NIOSH mini-baghouse assembly, mounted on the thief hatches on top of the sand mover. This article details the results of a trial of the NIOSH mini-baghouse at a sand mine in Arkansas from November 18-21, 2013.  During the trial, area air samples were collected at 12 locations on and around a sand mover with and without the mini-baghouse control installed. Analytical results for respirable dust and RCS indicate the use of the mini-baghouse effectively reduced both respirable dust and RCS downwind of the thief hatches. Reduction of airborne respirable dust ranged from 85-98%; reductions in airborne RCS ranged from 79-99%. A bulk sample of dust collected by the baghouse assembly showed the likely presence of freshly fractured quartz, a particularly hazardous form of RCS.  Planned future design enhancements will increase the performance and durability of the mini-baghouse, including an improved bag clamp mechanism and upgraded filter fabric with a modified air-to-cloth ratio

  5. The Development and Testing of a Prototype Mini-Baghouse to Control the Release of Respirable Crystalline Silica from Sand Movers

    Science.gov (United States)

    Alexander, Barbara M.; Esswein, Eric J.; Gressel, Michael G.; Kratzer, Jerry L.; Feng, H. Amy; King, Bradley; Miller, Arthur L.; Cauda, Emanuele

    2016-01-01

    Inhalation of respirable crystalline silica (RCS) is a significant risk to worker health during well completions operations (which include hydraulic fracturing) at conventional and unconventional oil and gas extraction sites. RCS is generated by pneumatic transfer of quartz-containing sand during hydraulic fracturing operations. National Institute for Occupational Safety and Health (NIOSH) researchers identified concentrations of RCS at hydraulic fracturing sites that exceed 10 times the Occupational Safety and Health Administration (OSHA) Permissible Exposure Limit (PEL) and up to 50 times the NIOSH Recommended Exposure Limit (REL). NIOSH research identified at least seven point sources of dust release at contemporary oil and gas extraction sites where RCS aerosols were generated. NIOSH researchers recommend the use of engineering controls wherever they can be implemented to limit the RCS released. A control developed to address one of the largest sources of RCS aerosol generation is the NIOSH mini-baghouse assembly, mounted on the thief hatches on top of the sand mover. This manuscript details the results of a trial of the NIOSH mini-baghouse at a sand mine in Arkansas, November 18 – 21, 2013. During the trial, area air samples were collected at 12 locations on and around a sand mover with and without the mini-baghouse control installed. Analytical results for respirable dust and RCS indicate the use of the mini-baghouse effectively reduced both respirable dust and RCS downwind of the thief hatches. Reduction of airborne respirable dust ranged from 85% to 98%; reductions in airborne RCS ranged from 79% to 99%. A bulk sample of dust collected by the baghouse assembly showed the likely presence of freshly fractured quartz, a particularly hazardous form of RCS. Planned future design enhancements will increase the performance and durability of the mini-baghouse, including an improved bag clamp mechanism and upgraded filter fabric with a modified air-to-cloth ratio

  6. Recovery of value-added products from red mud and foundry bag-house dust

    Science.gov (United States)

    Hammond, Keegan

    "Waste is wasted if you waste it, otherwise it is a resource. Resource is wasted if you ignore it and do not conserve it with holistic best practices and reduce societal costs. Resource is for the transformation of people and society." Red mud is a worldwide problem with reserves in the hundreds of millions of tons and tens of millions of tons being added annually. Currently there is not an effective way to deal with this byproduct of the Bayer Process, the primary means of refining bauxite ore in order to provide alumina. This alumina is then treated by electrolysis using the Hall-Heroult process to produce elemental aluminum. The resulting mud is a mixture of solid and metallic oxides, and has proven to be a great disposal problem. This disposal problem is compounded by the fact that the typical bauxite processing plant produces up to three times as much red mud as alumina. Current practice of disposal is to store red mud in retention ponds until an economical fix can be discovered. The danger associated with this current method of storage is immense to the surrounding communities and environment, thus the interest from the Center for Resource Recovery and Recycling (CR3). The purpose of this document is to explain one way to remove the value added materials, primarily iron, from the Jamaican red mud using both pyrometallurgical and hydrometallurgical approaches. In the beginning, soda ash and carbon roasting were completed simultaneously at 800°C. This type of roasting produced results that were unacceptable. After the soda ash roast was completed independently of carbon roasting, a water wash produced results that separations of alumina at 90%, Iron at 99%, calcium at 99%, titanium t 100%, and sodium by 74%. Smelting produced separations of 97% for alumina, 99% for iron, 87% for sodium, 94% for calcium and 72% for titanium.

  7. Plant uptake and geochemical phase distribution of Cd, Pb and Zn from soils after application of baghouse dust from the electric arc furnace production of steel

    Energy Technology Data Exchange (ETDEWEB)

    Rule, J.H. [Old Dominion Univ., Norfolk, VA (United States). Dept. of Chemistry and Biochemistry; Adriano, D.C. [Georgia Univ., Savannah River Ecology Laboratory, Aiken (United States)

    1997-12-31

    The objectives of this study are to determine the uptake of Cd, Pb and Zn from two soils (silt loam and sandy loam) by the common dandelion, Taraxacum officinale Weber, and ragweed, Ambrosia artemisiifolia L., after application of varying rates of flue dust, to determine the geochemical phase distribution of Cd, Pb and Zn of treated soils, to examine the effect of pH on the phase distribution and plant uptake and to measure the correlation between plant uptake and metals in the geochemical phases. Carbonate, including metal hydroxides, was the major geochemical phase for the metals in the flue dust and treated soils. Especially for the plants grown on the silt loam, yield decreased dramatically as flue dust treatment rate increased and a significant pH effect was observed. Plant uptake of the metals increased with increasing treatment level but the pattern of uptake varied with the element and plant species. Concentrations of the metals were generally greater in plant roots than leaves or stems. Due to very low biomass at high treatment levels, neither species seems to have potential for stabilization of highly contaminated soils but further studies are warranted on the use of the dandelion as a phyto-monitor. Typically, there was a significant correlation between plant concentrations and levels in all soil geochemical phases for all metals. The results of this study confirm the utility of selective sequential chemical extractants in predicting plant uptake of trace metals from contaminated soils

  8. Characterizing toxic emissions from a coal-fired power plant demonstrating the AFGD ICCT Project and a plant utilizing a dry scrubber/baghouse system: Bailly Station Units 7 and 8 and AFGD ICCT Project. Final report. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dismukes, E.B.

    1994-10-20

    This report describes results of assessment of the risk of emissions of hazardous air pollutants at one of the electric power stations, Bailly Station, which is also the site of a Clean Coal Technology project demonstrating the Pure Air Advanced Flue Gas Desulfurization process (wet limestone). This station represents the configuration of no NO{sub x} reduction, particulate control with electrostatic precipitators, and SO{sub 2} control with a wet scrubber. The test was conducted September 3--6, 1993. Sixteen trace metals were determined along with 5 major metals. Other inorganic substances and organic compounds were also determined.

  9. 40 CFR 63.548 - Monitoring requirements.

    Science.gov (United States)

    2010-07-01

    ... the particulate emissions. (g) Baghouses equipped with HEPA filters as a secondary filter used to... filter shall monitor and record the pressure drop across the HEPA filter system daily. If the pressure... bag leak detection and corrective action plans for all baghouses (fabric filters) that are used to...

  10. Mass Balance, Beneficial Use Products, and Cost Comparisons of Four Sediment Treatment Technologies Near Commercialization

    Science.gov (United States)

    2011-03-01

    Corporation) X Base catalyzed decomposition (BCD)/thermal desorption (Batelle)) X Fluidized bed thermal treatment (Biosafe) X Manufactured soil X...Dryer, kiln, granulator , grinder, secondary combustion, heat recovery, generators, lime baghouses, carbon baghouses Dryer, glass furnace...quench tank, grinder, heat exchangers, packed tower scrubber, particulate collector, carbon bed Mixers, flotation, collision chambers, cavitation

  11. 77 FR 35287 - Approval and Promulgation of Air Quality Implementation Plans; Virginia; Regional Haze State...

    Science.gov (United States)

    2012-06-13

    ... VADEQ overestimated the costs of a New Caustic flue gas desulfurization (FGD) and new Spray Dryer with Baghouse, while the commenters analysis shows that the costs of a New Caustic FGD and new Spray Dryer with... to calculate the revised costs of the New Caustic FGD and Spray Dryer with Baghouse use a cumulative...

  12. 76 FR 70078 - Approval and Promulgation of Implementation Plans and Designation of Areas for Air Quality...

    Science.gov (United States)

    2011-11-10

    .......... Wet suppression..... 11.91 2008 Roads & process areas Paving 3.58 2007/2008 Cupola melting New Cupola... Steel Meltshop fugitives... Baghouse & physical 28.1 2008 improvements. U.S. Pipe Cupola charge make-up...

  13. 40 CFR 60.47c - Emission monitoring for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... Emission Opacity from Stationary Sources Using Computer-Based Photographic Analysis Systems.” This document...) and that uses a bag leak detection system to monitor the performance of a fabric filter (baghouse...

  14. 40 CFR 60.48b - Emission monitoring for particulate matter and nitrogen oxides.

    Science.gov (United States)

    2010-07-01

    ... Using Computer-Based Photographic Analysis Systems.” This document is available from the U.S... performance of a fabric filter (baghouse) according to the most recent requirements in section § 60.48Da of...

  15. Cytotoxicity of municipal solid waste incinerator ash wastes toward mammalian kidney cell lines.

    Science.gov (United States)

    Huang, Wu-Jang; Tsai, Jia-Lin; Liao, Ming-Huei

    2008-05-01

    In this study, three municipal solid waste incinerator (MSWI) ash wastes-bottom ash, scrubber residue, and baghouse ash-were extracted using a toxicity characteristic leaching procedure (TCLP) extractant. These so-called final TCLP extracts were applied to African green monkey kidney cells (Vero), baby hamster kidney cells (BHK-21), and pig kidney cells (PK-15), multi-well absorption reader analysis was performed to test how the cytotoxicity of the incineration ashes would affect the digestive systems of animals. Ion-coupled plasma analyses indicated that the baghouse ash extract possessed the highest pH and heavy metal concentration, its cytotoxicity was also the highest. In contrast, the bottom ash and the scrubber residue exhibited very low cytotoxicities. The cytotoxicities of mixtures of baghouse ash and scrubber residue toward the three tested cell lines increased as the relative ratio of the baghouse ash increased, especially for the Vero cells. The slight cytotoxicity of the scrubber residue arose mainly from the presence of Cr species, whereas the high cytotoxicity of the baghouse ash resulted from its high content of heavy metals and alkali ions. In addition, it appears that the dissolved total organic carbon content of these ash wastes can reduce the cytotoxicity of ash wastes that collect in animal cells.

  16. Recent developments in particulate control with low-rank fuels

    International Nuclear Information System (INIS)

    Miller, S.J.; Laudal, D.L.

    1991-01-01

    Regulations appear to be focusing on fine particle emissions rather than total mass particulate emissions. There is concern that electrostatic precipitators (ESPs) may not be able to meet potentially stricter finer particle emission standards. A new development in the area of fabric filtration is the use of flue gas-conditioning agents to reduce particulate emissions and pressure drop. Theoretical analysis of the factors that control the size of a baghouse indicates that pulse-jet baghouses can be designed to operate at much higher air-to-cloth ratios than is currently employed. To help optimize performance of both ESPs and baghouses, quantitative characterization of the cohesive properties of fly ash is necessary. Appropriate methods are determination of aerated and packed porosity and measurement of tensile strength as a function of porosity

  17. 40 CFR 63.8600 - What are my monitoring installation, operation, and maintenance requirements?

    Science.gov (United States)

    2010-07-01

    ...) For positive pressure fabric filter systems, a bag leak detector must be installed in each baghouse compartment or cell. (7) For negative pressure or induced air fabric filters, the bag leak detector must be....5 inch of water or a transducer with a minimum measurement sensitivity of 1 percent of the pressure...

  18. 40 CFR 63.9804 - What are my monitoring system installation, operation, and maintenance requirements?

    Science.gov (United States)

    2010-07-01

    ... systems, a bag leak detector must be installed in each baghouse compartment or cell. (7) For negative pressure or induced air fabric filters, the bag leak detector must be installed downstream of the fabric...) (0.5 inches of water column (in. w.c.)), whichever is greater. (2) Use a data recording system with a...

  19. 40 CFR 63.1547 - Monitoring requirements.

    Science.gov (United States)

    2010-07-01

    ... multiplied by 100. (h) Baghouses equipped with HEPA filters as a secondary filter used to control process or... source that uses a HEPA filter shall monitor and record the pressure drop across the HEPA filter system... Agency guidance document “Fabric Filter Bag Leak Detection Guidance” (EPA-454/R-98-015). Other bag leak...

  20. 40 CFR 63.1459 - What definitions apply to this subpart?

    Science.gov (United States)

    2010-07-01

    ... other effect to continuously monitor relative particulate matter loadings. Baghouse means a control... converter in which copper matte is oxidized to form blister copper by a process that is performed in... converter bath. Capture system means the collection of components used to capture gases and fumes released...

  1. 75 FR 10174 - Source-Specific Federal Implementation Plan for Navajo Generating Station; Navajo Nation

    Science.gov (United States)

    2010-03-05

    ..., any conveyor belt transfer point, any pneumatic material transferring, any baghouse or other control... than 20% from any crusher, grinding mill, screening operation, belt conveyor, truck loading or... system for SO 2 or particulates from the monitoring requirements of part 75, if the source ``can...

  2. 78 FR 54835 - Air Quality Implementation Plan; Alabama; Attainment Plan for the Troy Area 2008 Lead...

    Science.gov (United States)

    2013-09-06

    ... by the new hoods and building enclosure (including the kettle basement ventilation). Control and... above. Combustion gases and Refining Sanders Lead is proposing to control the Kettle Hoods. combustion gases and kettle hoods with a new 60,000 actual cubic feet per minute (ACFM) baghouse (with HEPAs...

  3. 76 FR 70091 - Approval and Promulgation of Implementation Plans and Designation of Areas for Air Quality...

    Science.gov (United States)

    2011-11-10

    ........ 11.91 2008 Roads & process Paving 3.58 2007/2008 areas. Cupola melting New Cupola/Bag house 5.84 2007... fugitives.. Baghouse & physical 28.1 2008 improvements. U.S. Pipe Cupola charge make- Wet suppression..... 1...

  4. 40 CFR 49.24 - Federal Implementation Plan Provisions for Navajo Generating Station, Navajo Nation.

    Science.gov (United States)

    2010-07-01

    ... atmosphere exhibiting greater than 20% opacity, excluding condensed uncombined water droplets, averaged over..., and 3 based on the heat input to each unit as determined by 40 CFR part 75. (6) Point source means any crusher, any conveyor belt transfer point, any pneumatic material transferring, any baghouse or other...

  5. 40 CFR 63.1542 - Definitions.

    Science.gov (United States)

    2010-07-01

    ... defined in the Act, in subpart A of this part, or in this section as follows: Bag leak detection system... the exhaust of a baghouse in order to detect bag leaks and other upset conditions. A bag leak... techniques. Process fugitive source means a source of hazardous air pollutant emissions at a primary lead...

  6. 77 FR 38515 - Approval and Promulgation of Implementation Plans; State of Alabama; Regional Haze State...

    Science.gov (United States)

    2012-06-28

    ... activities which are located across a broad geographic area and emit fine particles (e.g., sulfates, nitrates... ), nitrogen oxides (NO X ), and in some cases, ammonia and volatile organic compounds. Fine particle... operation of any air pre-heaters; installing fabric filters or baghouses; installing or upgrading...

  7. 77 FR 50973 - Revision to the South Coast Portion of the California State Implementation Plan, CPV Sentinel...

    Science.gov (United States)

    2012-08-23

    ... operating data and reported emissions. \\1\\ For one project, Seagull Sanitation, the source shutdown and... Retrofit Technology at the time of shutdown. Then the District subtracted the amount of offsets that the... water or dust suppressants, enclosures and baghouses; and equipment and work standards to minimize track...

  8. 40 CFR 63.7833 - How do I demonstrate continuous compliance with the emission limitations that apply to me?

    Science.gov (United States)

    2010-07-01

    ... lowest values or settings established for the operating limits in your operation and maintenance plan... baghouse equipped with a bag leak detection system, operating and maintaining each bag leak detection... requirements. If you increase or decrease the sensitivity of the bag leak detection system beyond the limits...

  9. Designing a model for selection of air pollution control equipment using fuzzy logic

    Directory of Open Access Journals (Sweden)

    F. Golbabaei

    2014-07-01

    Conclusion: Finally, the proposed model that is based on the Fuzzy Analytic Hierarchy Process indicates that the Baghouse Technique is the most appropriate technique for the purpose of dust filtration in major sources of air pollution spread in Shargh Cement Company.

  10. Field Test Program for Long-Term Operation of a COHPAC System for Removing Mercury from Coal-Fired Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    C. Jean Bustard; Charles Lindsey; Paul Brignac

    2006-05-01

    This document provides a summary of the full-scale demonstration efforts involved in the project ''Field Test Program for Long-Term Operation of a COHPAC{reg_sign} System for Removing Mercury from Coal-Fired Flue Gas''. The project took place at Alabama Power's Plant Gaston Unit 3 and involved the injection of sorbent between an existing particulate collector (hot-side electrostatic precipitators) and a COHPAC{reg_sign} fabric filter (baghouse) downstream. Although the COHPAC{reg_sign} baghouse was designed originally for polishing the flue gas, when activated carbon injection was added, the test was actually evaluating the EPRI TOXECON{reg_sign} configuration. The results from the baseline tests with no carbon injection showed that the cleaning frequency in the COHPAC{reg_sign} unit was much higher than expected, and was above the target maximum cleaning frequency of 1.5 pulses/bag/hour (p/b/h), which was used during the Phase I test in 2001. There were times when the baghouse was cleaning continuously at 4.4 p/b/h. In the 2001 tests, there was virtually no mercury removal at baseline conditions. In this second round of tests, mercury removal varied between 0 and 90%, and was dependent on inlet mass loading. There was a much higher amount of ash exiting the electrostatic precipitators (ESP), creating an inlet loading greater than the design conditions for the COHPAC{reg_sign} baghouse. Tests were performed to try to determine the cause of the high ash loading. The LOI of the ash in the 2001 baseline tests was 11%, while the second baseline tests showed an LOI of 17.4%. The LOI is an indication of the carbon content in the ash, which can affect the native mercury uptake, and can also adversely affect the performance of ESPs, allowing more ash particles to escape the unit. To overcome this, an injection scheme was implemented that balanced the need to decrease carbon injection during times when inlet loading to the baghouse was high and

  11. Investigation and demonstration of dry carbon-based sorbent injection for mercury control. Quarterly technical report, July 1, 1996--September 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, T.; Sjostrom, S.; Smith, J. [and others

    1996-11-06

    The overall objective of this two phase program is to investigate the use of dry carbon-based sorbents for mercury control. This information is important to the utility industry in anticipation of pending regulations. During Phase I, a bench-scale field test device that can be configured as an electrostatic precipitator, a pulse-jet baghouse, or a reverse-gas baghouse has been designed, built and integrated with an existing pilot-scale facility at PSCo`s Comanche Station. Up to three candidate sorbents will be injected into the flue gas stream upstream of the test device to and mercury concentration measurements will be made to determine the mercury removal efficiency for each sorbent. During the Phase II effort, component integration for the most promising dry sorbent technology shall be tested at the 5000 acfm pilot-scale.

  12. Off-gas filtration and releases: bag filters

    International Nuclear Information System (INIS)

    Hennart, D.M.J.G.

    1985-01-01

    During high-temperature incineration of radioactive waste, some metal oxides are volatilized and carried out with the off-gases. During cooling those oxides react with acidic components generated by the combustion of the fuel oil or of the waste itself. This results in a submicronic crystalline dust in which cesium isotopes are concentrated. Bag filters have been selected at S.C.K./C.E.N. to carry out the first step of dust separation. Two baghouses equipped with Teflon bags with a total filtering area of 100 m 2 have been installed. The bags are cleaned on line by compressed air backflow. The residual dust content is below 3 mg/m 3 , which is sufficiently low to be removed by HEPA filters. The baghouses were put into operation in October 1981 and since then have been on line for about 3000 hours. Some bags had to be replaced after a fire in mid-1983. (orig.)

  13. An emerging pollutant contributing to the cytotoxicity of MSWI ash wastes: Strontium

    International Nuclear Information System (INIS)

    Huang, Wu-Jang; Tang, Hsing-Chuan; Lin, Kae-Long; Liao, Ming-Huei

    2010-01-01

    In this study, we used the multiple toxicity characteristic leaching procedure to test the long-term leaching behavior of bottom ash, scrubber residue, and baghouse ash from a municipal solid waste incinerator (MSWI). We used the short-term viability percentage of African green monkey kidney cells (Vero cells) as a bioindicator to investigate the cytotoxicity of the leachates from the MSWI ash wastes. We found that strontium was a significant contributor to the cytotoxicity of the bottom ash.

  14. An emerging pollutant contributing to the cytotoxicity of MSWI ash wastes: strontium.

    Science.gov (United States)

    Huang, Wu-Jang; Tang, Hsing-Chuan; Lin, Kae-Long; Liao, Ming-Huei

    2010-01-15

    In this study, we used the multiple toxicity characteristic leaching procedure to test the long-term leaching behavior of bottom ash, scrubber residue, and baghouse ash from a municipal solid waste incinerator (MSWI). We used the short-term viability percentage of African green monkey kidney cells (Vero cells) as a bioindicator to investigate the cytotoxicity of the leachates from the MSWI ash wastes. We found that strontium was a significant contributor to the cytotoxicity of the bottom ash.

  15. An emerging pollutant contributing to the cytotoxicity of MSWI ash wastes: Strontium

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Wu-Jang, E-mail: wjhuang@mail.npust.edu.tw [Department of Environmental Engineering and Science, National Ping-Tung University of Science and Technology, 912 Ping-Tung, Taiwan (China); Tang, Hsing-Chuan [Department of Environmental Engineering and Science, National Ping-Tung University of Science and Technology, 912 Ping-Tung, Taiwan (China); Lin, Kae-Long [Department of Environmental Engineering, National I-Lan University, 260 I-Lan, Taiwan (China); Liao, Ming-Huei [Department of Veterinary Medicine, National Ping-Tung University of Science and Technology, 912 Ping-Tung, Taiwan (China)

    2010-01-15

    In this study, we used the multiple toxicity characteristic leaching procedure to test the long-term leaching behavior of bottom ash, scrubber residue, and baghouse ash from a municipal solid waste incinerator (MSWI). We used the short-term viability percentage of African green monkey kidney cells (Vero cells) as a bioindicator to investigate the cytotoxicity of the leachates from the MSWI ash wastes. We found that strontium was a significant contributor to the cytotoxicity of the bottom ash.

  16. SOx-NOx-Rox Box{trademark} flue gas clean-up demonstration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Babcock and Wilcox`s (B and W) SOx-NOx-Rox Box{trademark} process effectively removes SOx, NOx and particulate (Rox) from flue gas generated from coal-fired boilers in a single unit operation, a high temperature baghouse. The SNRB technology utilizes dry sorbent injection upstream of the baghouse for removal of SOx and ammonia injection upstream of a zeolitic selective catalytic reduction (SCR) catalyst incorporated in the baghouse to reduce NOx emissions. Because the SOx and NOx removal processes require operation at elevated gas temperatures (800--900 F) for high removal efficiency, high-temperature fabric filter bags are used in the baghouse. The SNRB technology evolved from the bench and laboratory pilot scale to be successfully demonstrated at the 5-MWe field scale. This report represents the completion of Milestone M14 as specified in the Work Plan. B and W tested the SNRB pollution control system at a 5-MWe demonstration facility at Ohio Edison`s R.E. Burger Plant located near Shadyside, Ohio. The design and operation were influenced by the results from laboratory pilot testing at B and W`s Alliance Research Center. The intent was to demonstrate the commercial feasibility of the SNRB process. The SNRB facility treated a 30,000 ACFM flue gas slipstream from Boiler No. 8. Operation of the facility began in May 1992 and was completed in May 1993. About 2,300 hours of high-temperature operation were achieved. The main emissions control performance goals of: greater than 70% SO{sub 2} removal using a calcium-based sorbent; greater than 90% NOx removal with minimal ammonia slip; and particulate emissions in compliance with the New Source Performance Standards (NSPS) of 0.03 lb/million Btu were exceeded simultaneously in the demonstration program when the facility was operated at optimal conditions. Testing also showed significant reductions in emissions of some hazardous air pollutants.

  17. CRNL active waste incinerator

    International Nuclear Information System (INIS)

    McQuade, D.W.

    1965-02-01

    At CRNL the daily collection of 1200 pounds of active combustible waste is burned in a refractory lined multi-chamber incinerator. Capacity is 500-550 pounds per hour; volume reduction 96%. Combustion gases are cooled by air dilution and decontaminated by filtration through glass bags in a baghouse dust collector. This report includes a description of the incinerator plant, its operation, construction and operating costs, and recommendations for future designs. (author)

  18. Volume reduction of reactor wastes by spray drying

    International Nuclear Information System (INIS)

    Gay, R.L.; Grantham, L.F.; McKenzie, D.E.

    1983-01-01

    Three simulated low-level reactor wastes were dried using a spray dryer-baghouse system. The three aqueous feedstocks were sodium sulfate waste characteristic of a BWR, boric acid waste characteristic of a PWR, and a waste mixture of ion exchange resins and filter aid. These slurries were spiked with nonradioactive iron, cobalt, and manganese (representing corrosion products) and nonradioactive cesium and iodine (representing fission products). The throughput for the 2.1-m-diameter spray dryer and baghouse system was 160-180 kg/h, which is comparable to the requirements for a full-scale commercial installation. A free-flowing, dry product was produced in all of the tests. The volume reduction factor ranged from 2.5 to 5.8; the baghouse decontamination factor was typically in the range of 10 3 to 10 4 . Using an overall system decontamination factor of 10 6 , the activity of the off-gas was calculated to be one to two orders of magnitude less than the nuclide release limit of the major active species, Cs-137

  19. Sodium bicarbonate in-duct injection with sodium sulfate recovery for SO2/NOx control

    International Nuclear Information System (INIS)

    Bennett, R.; Darmstaedter, E.

    1991-01-01

    Dry sodium injection with sodium bicarbonate has been used commercially at industrial sites since the mid 1980's. In the past three years, five full scale commercial demonstrations have been completed on electric utility coal fired units. Up to 75% SO 2 removal with 0-40% NO x removal has been achieved on units equipped with ESPs. Recent slip stream studies have proven up to 90% SO 2 removal and 25% NO x removal when injection is ahead of a baghouse. If dry sodium bicarbonate sorbent injection technology is used prior to a retrofitted baghouse, but after an existing ESP the sodium sulfate by-product/flyash mixture in the baghouse is over 90% Na 2 SO 4 . Simple filtration and crystallization will yield a high value 99% + pure Na 2 SO 4 for sale. In this application, no liquid discharge occurs and potentially no solids discharge, since flyash recovered from the filter is either recycled to the boiler with the coal stream or reinjected into the boiler. EPA IAPCS model Version 4 is modified to project costs for this SO 2 /NO x removal technology when couples with Na 2 SO 4 recovery. In this paper an example is used to show hardware requirements, consumables accountability, by-product recovery rates, capital costs and levelized costs

  20. Field Testing of Activated Carbon Injection Options for Mercury Control at TXU's Big Brown Station

    Energy Technology Data Exchange (ETDEWEB)

    John Pavlish; Jeffrey Thompson; Christopher Martin; Mark Musich; Lucinda Hamre

    2009-01-07

    The primary objective of the project was to evaluate the long-term feasibility of using activated carbon injection (ACI) options to effectively reduce mercury emissions from Texas electric generation plants in which a blend of lignite and subbituminous coal is fired. Field testing of ACI options was performed on one-quarter of Unit 2 at TXU's Big Brown Steam Electric Station. Unit 2 has a design output of 600 MW and burns a blend of 70% Texas Gulf Coast lignite and 30% subbituminous Powder River Basin coal. Big Brown employs a COHPAC configuration, i.e., high air-to-cloth baghouses following cold-side electrostatic precipitators (ESPs), for particulate control. When sorbent injection is added between the ESP and the baghouse, the combined technology is referred to as TOXECON{trademark} and is patented by the Electric Power Research Institute in the United States. Key benefits of the TOXECON configuration include better mass transfer characteristics of a fabric filter compared to an ESP for mercury capture and contamination of only a small percentage of the fly ash with AC. The field testing consisted of a baseline sampling period, a parametric screening of three sorbent injection options, and a month long test with a single mercury control technology. During the baseline sampling, native mercury removal was observed to be less than 10%. Parametric testing was conducted for three sorbent injection options: injection of standard AC alone; injection of an EERC sorbent enhancement additive, SEA4, with ACI; and injection of an EERC enhanced AC. Injection rates were determined for all of the options to achieve the minimum target of 55% mercury removal as well as for higher removals approaching 90%. Some of the higher injection rates were not sustainable because of increased differential pressure across the test baghouse module. After completion of the parametric testing, a month long test was conducted using the enhanced AC at a nominal rate of 1.5 lb/Macf. During

  1. Control technology for fine-particulate emissions. [71 references; novel devices considered but rejected

    Energy Technology Data Exchange (ETDEWEB)

    1978-10-01

    This report presents a detailed review and critical evaluation of current control technologies as applied to fine particulate emissions from coal-fired utility boilers. Topics reviewed are: sources and characteristics of coals and fly ash; performance characteristics of various types of coal-fired utility boilers; design, operation, performance and maintenance features of the conventional control devices (electrostatic precipitator, fabric filter baghouse, wet scrubber), and descriptions of (and where available, performance data on) novel control devices. The report also includes quantitative assessments of the capabilities of both conventional novel devices to meet three different performance standards - the present New Source Performance Standard (NSPS) of 0.1 lb particulate per MBtu heat input, and standards of 0.05 and 0.03 lb particulate per MBtu. Each of the three conventional devices is compared and rated with respect to eight different performance categories. This information is presented in charts, which can be used to determine the relative effectiveness and attractiveness of these three control devices. The novel devices are compared and rated in the same manner. The major conclusions of the report are: (1) The use of conventional scrubbers for fine particulate control on coal-fired utility boilers will no longer be feasible should a more stringent NSPS be promulgated. (2) At the present NSPS, conventional electrostatic precipitators and baghouses are competitive. For a stricter standard, however, the baghouse will become a more attractive alternative than the precipitator. (3) Novel devices appear to offer almost no hope for this particular application (at a commercial level) between now and 1985 and only little hope before 1990.

  2. 10 MMBt/Hr AFBC Commercial Demonstration Cedar Lane Farms

    Energy Technology Data Exchange (ETDEWEB)

    Harold M. Keener; Mary H. Wicks; Tom Machamer; Dave Hoecke; Don Bonk; Bob Brown

    2005-10-31

    The objective of this project was to demonstrate and promote the commercialization of coal-fired atmospheric fluidized bed combustion (AFBC) systems, with limestone addition for SO2 emissions control and a baghouse for particulate emissions control. This AFBC system was targeted for small scale industrial-commercial-institutional space and process heat applications in the 4-40 MMBtu/hr size range. A cost effective and environmentally acceptable AFBC technology in this size range could displace a considerable amount of heating gas and oil with coal, while resulting in significant total cost savings to the owner/operators.

  3. Kinetic studies of dry sorent for medium temperature applications. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Keener, T.C.; Wang, Z.

    1996-07-12

    The purpose of this project is to investigate the fundamental nature of sorbent reactivity and reaction kinetics in the medium temperature range from 600{degrees}F (316{degrees}C) to 1200{degrees}F (649{degrees}C) available in the convective pass of a boiler upstream of the economizer, where dry sorbents are injected to remove SO{sub 2} from the flue gas. Research focuses on the mechanisms of sorbent- flue gas interaction under economizer and hot baghouse conditions utilizing the experimental setup and the results of the first four years of research.

  4. Remediação de drenagem ácida de mina usando zeólitas sintetizadas a partir de cinzas leves de carvão Remediation of acid mine drainage using zeolites synthesized from coal fly ash

    Directory of Open Access Journals (Sweden)

    Denise Alves Fungaro

    2006-07-01

    Full Text Available Zeolitic material was synthesized from coal fly ashes (baghouse filter fly ash and cyclone filter fly ash by hydrothermal alkaline activation. The potential application of the zeolitic product for decontamination of waters from acid mine drainage was evaluated. The results showed that a dose of 30 g L-1 of zeolitic material allowed the water to reach acceptable quality levels after treatment. Both precipitation and cation-exchange processes accounted for the reduction in the pollutant concentration in the treated waters.

  5. Assessment of energy and economic impacts of particulate-control technologies in coal-fired power generation

    Energy Technology Data Exchange (ETDEWEB)

    1980-04-01

    Under contract to Argonne National Laboratory, Midwest Research Institute has derived models to assess the economic and energy impacts of particulate-control systems for coal-fired power plants. The models take into account the major functional variables, including plant size and location, coal type, and applicable particulate-emission standards. The algorithms obtained predict equipment and installation costs, as well as operating costs (including energy usage), for five control devices: (1) cold-side electrostatic precipitators, (2) hot-side electrostatic precipitators, (3) reverse-flow baghouses, (4) shake baghouses, and (5) wet scrubbers. A steam-generator performance model has been developed, and the output from this model has been used as input for the control-device performance models that specify required design and operating parameters for the control systems under study. These parameters then have been used as inputs to the cost models. Suitable guideline values have been provided for independent variables wherever necessary, and three case studies are presented to demonstrate application of the subject models. The control-equipment models aggregate the following cost items: (1) first costs (capital investment), (2) total, first-year annualized costs, and (3) integrated cost of ownership and operation over any selected plant lifetime. Although the models have been programmed for rapid computation, the algorithms can be solved with a hand calculator.

  6. ADVANCED HYBRID PARTICULATE COLLECTOR

    Energy Technology Data Exchange (ETDEWEB)

    Stanley J. Miller; Grant L. Schelkoph; Grant E. Dunham

    2000-12-01

    A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the US Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in an entirely novel manner. The AHPC concept combines fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two methods, both in the particulate collection step and in transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and solves the problem of reentrainment and recollection of dust in conventional baghouses. Phase I of the development effort consisted of design, construction, and testing of a 5.7-m{sup 3}/min (200-acfm) working AHPC model. Results from both 8-hour parametric tests and 100-hour proof-of-concept tests with two different coals demonstrated excellent operability and greater than 99.99% fine-particle collection efficiency.

  7. ADVANCED HYBRID PARTICULATE COLLECTOR - PHASE III

    Energy Technology Data Exchange (ETDEWEB)

    Stanley J. Miller; Ye Zhuang; Michael E. Collings; Michelle R. Olderbak

    2000-10-01

    A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the U.S. Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration. The AHPC concept consists of a combination of fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emission with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. In Phase II, a 2.5-MW-scale AHPC was designed, constructed, installed, and tested at the Big Stone power station. For Phase III, further testing of an improved version of the 2.5-MW-scale AHPC at the Big Stone power station is being conducted to facilitate commercialization of the AHPC technology.

  8. Evaluation of activated carbon for control of mercury from coal-fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    Miller, S.; Laudal, D.; Dunham, G. [Univ. of North Dakota, Grand Forks, ND (United States)

    1995-11-01

    The ability to remove mercury from power plant flue gas may become important because of the Clean Air Act amendments` requirement that the U.S. Environmental Protection Agency (EPA) assess the health risks associated with these emissions. One approach for mercury removal, which may be relatively simple to retrofit, is the injection of sorbents, such as activated carbon, upstream of existing particulate control devices. Activated carbon has been reported to capture mercury when injected into flue gas upstream of a spray dryer baghouse system applied to waste incinerators or coal-fired boilers. However, the mercury capture ability of activated carbon injected upstream of an electrostatic precipitator (ESP) or baghouse operated at temperatures between 200{degrees} and 400{degrees}F is not well known. A study sponsored by the U.S. Department of Energy and the Electric power Research Institute is being conducted at the University of North Dakota Energy & Environmental Research Center (EERC) to evaluate whether mercury control with sorbents can be a cost-effective approach for large power plants. Initial results from the study were reported last year. This paper presents some of the recent project results. Variables of interest include coal type, sorbent type, sorbent addition rate, collection media, and temperature.

  9. Advanced emissions control development program: Phase 2 final report, February 29, 1996--August 31, 1997. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Evans, A.P.; Holmes, M.J.; Redinger, K.E.

    1998-04-01

    The objective of the advanced emissions control development program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of air toxics from coal-fired boilers. Ideally, the project aim is to effectively control air toxic emissions through the use of conventional flue gas cleanup equipment such as electrostatic precipitators (ESPs), fabric filters (baghouse), and wet flue gas desulfurization. Development work to date has concentrated on the capture of mercury, other trace metals [antimony, arsenic, barium, cadmium, chromium, cobalt, lead, manganese, nickel, and selenium], fine particulate and hydrogen chloride. Some general comments that can be made about the control of air toxics while burning a high-sulfur bituminous coal are as follows: (1) particulate control devices such as ESP`s and baghouses do a good job of removing non-volatile trace metals; (2) mercury goes through particulate control devices almost entirely uncontrolled; (3) wet scrubbing can effectively remove hydrogen chloride; and (4) wet scrubbers show good potential for the removal of mercury when operated under certain conditions, however additional work is needed to understand the relationship between the wet scrubber`s operating conditions and mercury capture.

  10. Non toxic additives for improved fabric filter performance

    Energy Technology Data Exchange (ETDEWEB)

    Bustard, C.J.; Baldrey, K.E.; Ebner, T.G. [ADA Technologies, Inc., Englewood, CO (United States)] [and others

    1995-11-01

    The overall objective of this three-phase Small Business innovative Research (SBIR) program funded by the Department of Energy pittsburgh Energy Technology Center (PETC) is to commercialize a technology based upon the use of non-toxic, novel flue gas conditioning agents to improve particulate air toxic control and overall fabric filter performance. The ultimate objective of the Phase II program currently in progress is to demonstrate that the candidate additives are successful at full-scale on flue gas from a coal-fired utility boiler. This paper covers bench-scale field tests conducted during the period February through May, 1995. The bench-scale additives testing was conducted on a flue gas slipstream taken upstream of the existing particulate control device at a utility power plant firing a Texas lignite coal. These tests were preceded by extensive testing with additives in the laboratory using a simulated flue gas stream and re-dispersed flyash from the same power plant. The bench-scale field testing was undertaken to demonstrate the performance with actual flue gas of the bet candidate additives previously identified in the laboratory. Results from the bench-scale tests will be used to establish operating parameters for a larger-scale demonstration on either a single baghouse compartment or a full baghouse at the same site.

  11. Impacts of cement industries on environment and control measure

    International Nuclear Information System (INIS)

    Hashmi, H.N.; Malik, H.N.; Naushad, Z.

    2005-01-01

    Utilization of cement as building material is gaining more importance. Cement industries around the world are contributing in global and as well as local pollution. In Pakistan most of the cement industries are constructed in remote areas without any proper environmental impact assessment. Unawareness of peoples toward sustainable environment and due to lack of job opportunities, dwellers are demanding employment rather than clean environment from title-holder of the industry. Air pollution caused by cement industries is harmful to the human's health, spoils and erodes building surface, corrodes metals, weakens textiles, deteriorates atmospheric visibility, affects plant life and leads to ecological imbalances. To investigate environmental impact of cement industries in Pakistan, environmental conditions around and inside the five cement industries in the vicinity of Taxila city are studied. To inspect the whole scenario, air pollution control devices in these industries were also examined in detail. These industries are using Electrostatic Precipitators and Baghouses to control air pollution (dust particulates). Proper caring of these equipment is necessary for better results. Detailed study shows that emissions from their stacks and dust particulates are causing problems. Health consultants in study area are much worry about the health of workers and environmental degradation in the vicinity of these industries. The comparison of air pollution control devices shows that Baghouses are environmental friendly. Considering the field conditions it is also concluded that involvement of government and environmental pollution control agencies is much more necessary. (author)

  12. MERCURY CONTROL WITH ADVANCED HYBRID PARTICULATE COLLECTOR

    Energy Technology Data Exchange (ETDEWEB)

    Ye Zhuang; Stanley J. Miller

    2005-05-01

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addressed Technical Topical Area 4-Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team included the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Power Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore & Associates, Inc., and has been marketed as the Advanced Hybrid{trademark} filter by Gore. The Advanced Hybrid{trademark} filter combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The Advanced Hybrid{trademark} filter provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The Advanced Hybrid{trademark} filter also appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas--solid contactor. The objective of the project was to demonstrate 90% total mercury control in the Advanced Hybrid{trademark} filter at a lower cost than current mercury control estimates. The approach included bench-scale batch tests, larger-scale pilot testing with real flue gas on a coal-fired combustion system, and field demonstration at the 2.5-MW (9000-acfm) scale at a utility power plant to prove scale-up and demonstrate longer-term mercury control

  13. SAMPLING, ANALYSIS, AND PROPERTIES OF PRIMARY PM-2.5: APPLICATION TO COAL-FIRED UTILITY BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    Allen L. Robinson; Spyros N. Pandis; Eric Lipsky; Charles Stainer; Natalie Anderson; Satoshi Takahama; Sarah Rees

    2003-02-01

    A dilution sampler was used to examine the effects of dilution ratio and residence time on the particulate emissions from a pilot-scale pulverized coal combustor. Measurements include the particle size distribution from 0.003 to 2.5 {micro}m, PM{sub 2.5} mass emission rate and PM2.5 composition (OC/EC, major ions, and elemental). Hot filter samples were also collected simultaneously in order to compare the dilution sampler measurement with standard stack sampling methodologies such as EPA Method 5. Measurements were made both before and after the bag-house, the particle control device used on the coal combustor. Measurements were made with three different coal types and a coal-biomass blend. The residence time and dilution ratio do not influence the PM{sub 2.5} mass emission rate, but have a significant effect on the size distribution and total number emissions. Measurements made before the bag-house showed increasing the residence time dramatically decreases the total particle number concentration, and shifts the particle mass to larger sizes. The effects of residence time can be explained quantitatively by the coagulation of the emitted particles. Measurements made after the bag-house were not affected by coagulation due to the lower concentration of particles. Nucleation of sulfuric acid vapor within the dilution was an important source of ultrafine particles. This nucleation is strongly a function of dilution ratio because of the competition between condensation and nucleation. At low dilution ratios condensation dominates and little nucleation is observed; increasing the dilution ratio promotes nucleation because of the corresponding decrease in available surface area per unit volume for condensation. No nucleation was observed after the bag house where conditions greatly favor nucleation over condensation; we suspect that the bag house removed the SO{sub 3} in the flue gas. Exhaust SO{sub 3} levels were not measured during these experiments. Dilution caused

  14. Savannah River Plant low-level waste incinerator: Operational results and technical development

    International Nuclear Information System (INIS)

    Irujo, M.J.; Bucci, J.R.

    1987-04-01

    Volume reduction of solid and liquid low-level waste has been demonstrated at the Savannah River Plant (SRP) in the Waste Management Beta-Gamma Incinerator facility (BGI). The BGI uses a two-stage, controlled-air incinerator capable of processing 180 kg/hr (400 lbs/hr) of solid waste or 150 liters/hr (40 gal/hr) of liquid waste. These wastes are pyrolyzed in a substoichiometric air environment at 900 to 1100 degrees Celsius in the primary chamber. Products of partial combustion from the primary chamber are oxidized at 950 to 1150 degrees Celsius in the secondary chamber. A spray dryer, baghouse,and HEPA filter unit cool and filter the incinerator offgases. 2 refs., 9 tabs

  15. Modified IRC bench-scale arc melter for waste processing

    International Nuclear Information System (INIS)

    Eddy, T.L.; Sears, J.W.; Grandy, J.D.; Kong, P.C.; Watkins, A.D.

    1994-03-01

    This report describes the INEL Research Center (IRC) arc melter facility and its recent modifications. The arc melter can now be used to study volatilization of toxic and high vapor pressure metals and the effects of reducing and oxidizing (redox) states in the melt. The modifications include adding an auger feeder, a gas flow control and monitoring system, an offgas sampling and exhaust system, and a baghouse filter system, as well as improving the electrode drive, slag sampling system, temperature measurement and video monitoring and recording methods, and oxidation lance. In addition to the volatilization and redox studies, the arc melter facility has been used to produce a variety of glass/ceramic waste forms for property evaluation. Waste forms can be produced on a daily basis. Some of the melts performed are described to illustrate the melter's operating characteristics

  16. Advanced Emissions Control Development Program

    Energy Technology Data Exchange (ETDEWEB)

    A.P.Evans; K.E. Redinger; M.J. Holmes

    1998-04-01

    The objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of air toxics from coal-fired boilers. Ideally, the project aim is to effectively control air toxic emissions through the use of conventional flue gas cleanup equipment such as electrostatic precipitators (ESPS), fabric filters (baghouse), and wet flue gas desulfurization. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate and hydrogen chloride. Following the construction and evaluation of a representative air toxics test facility in Phase I, Phase II focused on the evaluation of mercury and several other air toxics emissions. The AECDP is jointly funded by the United States Department of Energy's Federal Energy Technology Center (DOE), the Ohio Coal Development Office within the Ohio Department of Development (oCDO), and Babcock& Wilcox-a McDermott company (B&W).

  17. Grid Connected Integrated Community Energy System. Volume 3A. Integrated demonstration systems and costs. Final report: Phase I, February 1, 1977-May 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    1977-06-01

    In 1973, the University of Minnesota set a goal of conversion and retrofit for University Heating Plant whereby coal or lignite would become the primary fuel by the year 1980. The University, with the addition of St. Mary's and Fairview Hospitals, Augsburg College, and possibly some small Community add-ons, provides a community wherein a major portion of steam distribution is already established. This provides for the development of a larger Grid-ICES for relatively low capital expenditures. Steam demand factors, equipment, and costs are discussed. A discussion on the steam production system is followed by a description of the capital costs of demonstration systems (specifically, baghouses). The solid waste heat recovery system, fuel and energy transport and storage, and district heating by steam and hot water are discussed. The combined community service demands are detailed.

  18. High Performance Gasification with the Two-Stage Gasifier

    DEFF Research Database (Denmark)

    Gøbel, Benny; Hindsgaul, Claus; Henriksen, Ulrik Birk

    2002-01-01

    , air preheating and pyrolysis, hereby very high energy efficiencies can be achieved. Encouraging results are obtained at a 100 kWth laboratory facility. The tar content in the raw gas is measured to be below 25 mg/Nm3 and around 5 mg/Nm3 after gas cleaning with traditional baghouse filter. Furthermore...... a cold gas efficiency exceeding 90% is obtained. In the original design of the two-stage gasification process, the pyrolysis unit consists of a screw conveyor with external heating, and the char unit is a fixed bed gasifier. This design is well proven during more than 1000 hours of testing with various...... fuels, and is a suitable design for medium size gasifiers....

  19. The Studsvik incinerator

    International Nuclear Information System (INIS)

    Hetzler, F.

    1988-01-01

    The Studsvik Incinerator is a Faurholdt designed, multi-stage, partial pyrolysis, controlled-air system taken into operation in 1976. The incinerator was initially operated without flue-gas filtration from 1976 until 1979 and thereafter with a bag-house filter. The Studsvik site has been host to radioactive activities for approximately 30 years. The last 10 years have included on site incineration of more than 3,000 tons of LLW. During this time routine sampling for activity has been performed, of releases and in the environment, to carefully monitor the area. The author discusses records examined to determine levels of activity prior to incinerator start-up, without and with filter

  20. Applications of nonwoven filter media

    Energy Technology Data Exchange (ETDEWEB)

    1988-11-01

    The multi-client technical and marketing report, Nonwovens in Filtration (1987) World Wide, has been completed by Filter Media Consulting, Inc. According to this 450-page report, $818 million in sales worldwide in nonwoven filter media represents a substantial segment of the entire nonwoven market. This total is mainly roll goods with a few exceptions. Meltblown composites represent $108 million, 13% of the total, and is the fastest growing segment as compared to needled felts, dry formed, thermobonded, spunbonded, wet laid and other unique processes, all extensively covered in this report. Included are 20 filtration applications covered in 190 pages, such as baghouse and dust filtration, Torit-type cartridge filters, HEPA/ULPA filtration, and heating, ventilation and air conditioning. Major markets are addressed, and trends in different fields are highlighted throughout the report.

  1. What is unburned carbon?; Vad aer ofoerbraent?

    Energy Technology Data Exchange (ETDEWEB)

    Bjurstroem, Henrik [AaF-Process AB, Stockholm (Sweden); Suer, Pascal [Swedish Geotechnical Inst., Linkoeping (Sweden)

    2006-01-15

    Different methods to determine unburned carbon in an ash yield different results, which raises the question of what actually is unburned. Using knowledge on the chemistry of ashes, one can identify which processes that contribute to the results from a method of analysis, but it is not possible to quantify these contributions. The project that is reported here aimed at clarifying what the results from the different methods mean using practical examples. Approximately twenty ash samples have been collected and their content of unburned carbon determined using loss on ignition at different temperatures, instrumental analysis of TOC and wet oxidation (the so-called colorimetric method). In order to identify the processes contributing to the results the samples have been investigated using a thermobalance instrumented with DTA and mass spectrometry for the species released when the samples are heated in air. The results can be grouped according to the type of ash: bottom ash, ESP ashes or baghouse filter ashes. They each have their specific fingerprints. Although the same processes contribute to the LOI, the proportions differ. In the case of bottom ashes, LOI and TOC yield results close to each other. A large part of the LOI is TOC, but not all. TOC is dominated by charred fuel (elementar carbon) and organic is a minor part. In the case of fly ashes, LOI and TOC yield results that differ from each other. As for bottom ashes, a large part of the LOI at 550 deg C is TOC, dominated by char or elemental carbon. The LOI at higher temperatures is often at least double and includes much more. Igniting ESP and baghouse filter ash samples at ca 1000 deg C leads to losses of volatile salts, e g chlorides. The colorimetric method takes some of the TOC, not only organic matter. The TOC methods should be preferred to it. The LOI methods yield values that are generally too high. As they are easy to implement their use will be continued. We recommend that: Ash is not ignited at

  2. WERF MACT Feasibility Study Report

    Energy Technology Data Exchange (ETDEWEB)

    B. Bonnema; D. Moser; J. Riedesel; K. Kooda; K. Liekhus; K. Rebish; S. Poling

    1998-11-01

    This study was undertaken to determine the technical feasibility of upgrading the Waste Experimental Reduction Facility (WERF) at the Idaho National Engineering and Environmental Laboratory to meet the offgas emission limits proposed in the Maximum Achievable Control Technologies (MACT)rule. Four practicable offgas treatment processes were identified, which, if installed, would enable the WERF to meet the anticipated MACT emission limits for dioxins and furans (D/F), hydrochloric acid (HCI), and mercury (Hg). Due to the three-year time restraint for MACT compliance, any technology chosen for the upgrade must be performed within the general plant project funding limit of $5 M. The option selected consists of a partial-quench evaporative cooler with dry sorbent injection for HCI removal followed by a sulfur-impregnated activated carbon bed for Hg control. The planning cost estimate for implementing the option is $4.17 M (with 24% contingency). The total estimated cost includes capital costs, design and construction costs, and project management costs. Capital costs include the purchase of a new offgas evaporative cooler, a dry sorbent injection system with reagent storage, a new fabric filter baghouse, a fixed carbon bed absorber, and two offgas induced draft exhaust fans. It is estimated that 21 months will be required to complete the recommended modification to the WERF. The partial-quench cooler is designed to rapidly cool the offgas exiting the secondary combustion chamber to minimize D/F formation. Dry sorbent injection of an alkali reagent into the offgas is recommended. The alkali reacts with the HCI to form a salt, which is captured with the fly ash in the baghouse. A design HCI removal efficiency of 97.2% allows for the feeding 20 lbs/hr of chlorine to the WERF incinerator. The sorbent feed rate can be adjusted to achieve the desired HCI removal efficiency. A fixed bed of sulfur-impregnated carbon was conservatively sized for a total Hg removal capacity when

  3. Toxecon Retrofit for Mercury and Mulit-Pollutant Control on Three 90-MW Coal-Fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Steven Derenne; Robin Stewart

    2009-09-30

    This U.S. Department of Energy (DOE) Clean Coal Power Initiative (CCPI) project was based on a cooperative agreement between We Energies and the DOE Office of Fossil Energy's National Energy Technology Laboratory (NETL) to design, install, evaluate, and demonstrate the EPRI-patented TOXECON{trademark} air pollution control process. Project partners included Cummins & Barnard, ADA-ES, and the Electric Power Research Institute (EPRI). The primary goal of this project was to reduce mercury emissions from three 90-MW units that burn Powder River Basin coal at the We Energies Presque Isle Power Plant in Marquette, Michigan. Additional goals were to reduce nitrogen oxide (NO{sub x}), sulfur dioxide (SO{sub 2}), and particulate matter emissions; allow reuse and sale of fly ash; advance commercialization of the technology; demonstrate a reliable mercury continuous emission monitor (CEM) suitable for use at power plants; and demonstrate recovery of mercury from the sorbent. Mercury was controlled by injection of activated carbon upstream of the TOXECON{trademark} baghouse, which achieved more than 90% removal on average over a 44-month period. During a two-week test involving trona injection, SO{sub 2} emissions were reduced by 70%, although no coincident removal of NOx was achieved. The TOXECON{trademark} baghouse also provided enhanced particulate control, particularly during startup of the boilers. On this project, mercury CEMs were developed and tested in collaboration with Thermo Fisher Scientific, resulting in a reliable CEM that could be used in the power plant environment and that could measure mercury as low as 0.1 {micro}g/m{sup 3}. Sorbents were injected downstream of the primary particulate collection device, allowing for continued sale and beneficial use of captured fly ash. Two methods for recovering mercury using thermal desorption on the TOXECON{trademark} PAC/ash mixture were successfully tested during this program. Two methods for using the TOXECON

  4. Pressurized fluidized bed combustion second-generation system research and development. Technical progress for Phase 2 and Phase 3, October 1, 1997--September 30, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, A.; Horazak, D.; Newby, R.; Rehmat, A.; White, J.

    1998-10-01

    When DOE funds were exhausted in March 1995, all Phase 2 activities were placed on hold. In February 1996 a detailed cost estimate was submitted to the DOE for completing the two remaining Phase 2 Multi Annular Swirl Burner (MASB) topping combustor test burns; in August 1996 release was received from METC to proceed with these tests. The first test (Test Campaign No.3) will be conducted to: (1) test the MASB at proposed demonstration plant full to minimum loading operating conditions; (2) identify the lower oxygen limit of the MASB; and (3) demonstrate natural gas to carbonizer fuel gas switching. The Livingston Phase 3 Pilot Plant was last operated under contract DE-AC21-86MC21023 in September 1995 for seven days in an integrated carbonizer-CPFBC configuration. In May, 1996, the pilot plant was transferred to Contract DE-AC22-95PC95143 to allow testing in support of the High Performance Power Systems (HIPPS) Program. The HIPPS Program required modifications to the pilot plant and the following changes were incorporated: (1) installation of a dense phase transport system for loading pulverized coal into the feed system lock hopper directly from a pneumatic transport truck; (2) removal of the char transfer pipe between the char collecting hopper and the CPFBC to allow carbonizer only operation; (3) installation of a lock hopper directly under the char collecting hopper to facilitate char removal from the process, the hopper vent gases exhaust to the carbonizer baghouse filter and the depressured char is transferred via nitrogen to the CPFBC baghouse for dumping into drums; (4) removal of the carbonizer cyclone and top of bed overflow drain line; all material elutriated from the carbonizer bed will thus be removed by the 22-element Westinghouse ceramic candle filter; (5) replacement of the carbonizer continuous bottom bed drain (screw feeder) with a batch-type drain removal system; and (6) installation of a mass spectrometer that draws sample gas via a steam jacketed

  5. Prototype air cleaning system for a firing range

    Energy Technology Data Exchange (ETDEWEB)

    Glissmeyer, J.A.; Mishima, J.; Bamberger, J.A.

    1985-01-01

    This report recommends air cleaning system components for the US Army Ballistics Research Laboratory's new large-caliber firing range, which is used for testing depleted uranium (DU) penetrators. The new air cleaning system has lower operating costs during the life of the system compared to that anticipated for the existing air cleaning system. The existing system consists of three banks of filters in series; the first two banks are prefilters and the last are high-efficiency particulate air (HEPA) filters. The principal disadvantage of the existing filters is that they are not cleanable and reusable. Pacific Northwest Laboratory focused the search for alternate air cleaning equipment on devices that do not employ liquids as part of the particle collection mechanism. Collected dry particles were assumed preferable to a liquid waste stream. The dry particle collection devices identified included electrostatic precipitators; inertial separators using turning vanes or cyclones; and several devices employing a filter medium such as baghouses, cartridge houses, cleanable filters, and noncleanable filters similar to those in the existing system. The economics of practical air cleaning systems employing the dry particle collection devices were evaluated in 294 different combinations. 7 references, 21 figures, 78 tables.

  6. Conventional crops and organic amendments for Pb, Cd and Zn treatment at a severely contaminated site.

    Science.gov (United States)

    Pichtel, J; Bradway, D J

    2008-03-01

    The ability of selected plants and amendments to treat Pb, Cd and Zn accumulations from a metalliferous waste disposal site was studied both in the greenhouse and field. Spinach (Spinacea oleracea), cabbage (Brassica oleracea), and a grass-legume mix (red fescue, Festuca rubra; ryegrass, Lolium perenne); and bean (Vicia faba) were grown in the greenhouse on blast furnace slag or baghouse dust amended with composted peat (CP). All plant species accumulated Pb, Cd and Zn to varying degrees. Total soil metal concentrations had a marked influence on plant uptake. Topdressing versus incorporating CP had a significant (p<0.05) effect on spinach and cabbage tissue metal concentrations. Soil Pb and Zn tended to shift towards less bioavailable forms after treatment with CP. Field plots were treated with CP, farmyard manure (FYM), or inorganic fertilizer. Dry matter production of spinach, cabbage and a grass-legume mix was greatest on either the CP or FYM treatments. Phytostabilization in combination with organic amendments may be the most appropriate technology to ensure stabilization of soil metals at this site.

  7. Systems studies on the extraction of uranium from seawater

    International Nuclear Information System (INIS)

    Driscoll, M.J.; Best, F.R.

    1981-11-01

    This report summarizes the work done at MIT during FY 1981 on the overall system design of a uranium-from-seawater facility. It consists of a sequence of seven major chapters, each of which was originally prepared as a stand-alone internal progress report. These chapters trace the historical progression of the MIT effort, from an early concern with scoping calculations to define the practical boundaries of a design envelope, as constrained by elementary economic and energy balance considerations, through a parallel evaluation of actively-pumped and passive current-driven concepts, and thence to quantification of the features of a second generation system based on a shipboard-mounted, actively-pumped concept designed around the use of thin beds of powdered ion exchange resin supported by cloth fiber cylinders (similar to the baghouse flyash filters used on power station offgas). An assessment of the apparently inherent limitations of even thin settled-bed sorber media then led to selection of an expanded bed (in the form of an ion exchange wool), which would permit an order of magnitude increase in flow loading, as a desirable advance. Thus the final two chapters evaluate ways in which this approach could be implemented, and the resulting performance levels which could be attained. Overall, U 3 O 8 production costs under 200 $/lb appear to be within reach if a high capacity (several thousand ppM U) ion exchange wool can be developed

  8. Atmospheric fluidized bed combustion for small scale market sectors. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Ashworth, R.A.; Plessinger, D.A.; Sommer, T.M. [Energy and Environmental Research Corp., Orville, OH (United States); Keener, H.M. [Ohio Agricultural Research and Development Center, OH (United States); Webner, R.L. [Will-Burt Co., Orrville, OH (United States)

    1997-03-31

    The objective of this project was to demonstrate and promote the commercialization of coal-fired atmospheric fluidized bed combustion (AFBC) systems, with limestone addition for SO{sub 2} emissions control and a baghouse for particulate emissions control. This AFBC system was targeted for small scale industrial-commercial-institutional space and process heat applications. A cost effective and environmentally acceptable AFBC technology in this size range would displace a considerable amount of gas/oil with coal while resulting in significant total cost savings to the owner/operators. In the Proof-of-Concept Phase, a 2.2 x 10{sup 6} Btu/hr unit was installed and successfully operated at Cedar Lane Farms (CLF), a commercial nursery in Ohio. The heat from the fluidized bed was used to heat hot water which was recirculated through greenhouses for cool weather heating. The system was designed to be fully automated with minimal operator attention required. The AFBC system installed at CLF was an improved design that incorporated flyash/sorbent reinjection and an underbed feed system to improve limestone utilization. With these additions it was possible to lower the Ca/S ratio from {approximately} 3.0 to 2.0, and still maintain an SO{sub 2} emissions level of 1.2 lb/10{sup 6} Btu when burning the same high sulfur Ohio coal tested at OARDC.

  9. Regulation of suspended particulate matter (SPM) in Indian coal-based thermal power plants

    Science.gov (United States)

    Sengupta, Ishita

    Air borne particulate matter, in major Indian cities is at least three times the standard prescribed by the WHO. Coal-based thermal power plants are the major emitters of particulate matter in India. The lack of severe penalty for non-compliance with the standards has worsened the situation and thus calls for an immediate need for investment in technologies to regulate particulate emissions. My dissertation studies the optimal investment decisions in a dynamic framework, for a random sample of forty Indian coal-based power plants to abate particulate emissions. I used Linear Programming to solve the double cost minimization problem for the optimal choices of coal, boiler and pollution-control equipment. A policy analysis is done to choose over various tax policies, which would induce the firms to adopt the energy efficient as well as cost efficient technology. The aim here is to reach the WHO standards. Using the optimal switching point model I show that in a dynamic set up, switching the boiler immediately is always the cost effective option for all the power plants even if there is no policy restriction. The switch to a baghouse depends upon the policy in place. Theoretically, even though an emission tax is considered the most efficient tax, an ash tax or a coal tax can also be considered to be a good substitute especially in countries like India where monitoring costs are very high. As SPM is a local pollutant the analysis here is mainly firm specific.

  10. Mercury Oxidation via Catalytic Barrier Filters Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Wayne Seames; Michael Mann; Darrin Muggli; Jason Hrdlicka; Carol Horabik

    2007-09-30

    In 2004, the Department of Energy National Energy Technology Laboratory awarded the University of North Dakota a Phase II University Coal Research grant to explore the feasibility of using barrier filters coated with a catalyst to oxidize elemental mercury in coal combustion flue gas streams. Oxidized mercury is substantially easier to remove than elemental mercury. If successful, this technique has the potential to substantially reduce mercury control costs for those installations that already utilize baghouse barrier filters for particulate removal. Completed in 2004, Phase I of this project successfully met its objectives of screening and assessing the possible feasibility of using catalyst coated barrier filters for the oxidation of vapor phase elemental mercury in coal combustion generated flue gas streams. Completed in September 2007, Phase II of this project successfully met its three objectives. First, an effective coating method for a catalytic barrier filter was found. Second, the effects of a simulated flue gas on the catalysts in a bench-scale reactor were determined. Finally, the performance of the best catalyst was assessed using real flue gas generated by a 19 kW research combustor firing each of three separate coal types.

  11. Applying environmental externalities to US Clean Coal Technologies for Taiwan

    International Nuclear Information System (INIS)

    Szpunar, C.B.; Gillette, J.L.

    1992-01-01

    During the period 1971 to 1980, electricity consumption in Taiwan increased remarkably at an average rate of 12.2% per year. Despite experiencing a record low in 1982 and 1983, electricity demand returned to double digit growth, reaching 11.6% and 10.2% in 1987 and 1988, respectively, due to a strong economic recovery. In 1988, 71.6 TWh of electricity was produced, 21.1 TWh of which was from coal-fired units (29%). The electricity demand for Taiwan is expected to continue to grow at a very rapid rate during the 1990--2006 time frame. The average load is expected to grow at an annual rate of 5.6% while the peak load is projected to increase at an annual rate of 6.0%. All new coal-fired power plants are expected to comply with government regulations on S0 2 , NO x , and particulate emissions. Taper reports that all of its proposed coal-fired units will be equipped with modern flue gas emission reduction devices, such as electrostatic precipitators or baghouse filters, flue gas desulfurization and deco x devices, to reduce the pollutants to their minimum practical levels. New coal-based generation requirements in the sizes needed in Taiwan create an opportunity for several of the Cats currently under demonstration in the United States. Options to be considered are described

  12. Impact of Mars sand on dust on the design of space suits and life support equipment: A technology assessment

    Science.gov (United States)

    Simonds, Charles H.

    1991-01-01

    Space suits and life support equipment will come in intimate contact with Martian soil as aerosols, wind blown particles and material thrown up by men and equipment on the Martian surface. For purposes of this discussion the soil is assumed to consist of a mixture of cominuted feldspar, pyroxene, olivine, quartz, titanomagnetite and other anhydrous and hydrous iron bearing oxides, clay minerals, scapolite and water soluble chlorides and sulfates. The soil may have photoactivated surfaces that acts as a strong oxidizer with behavior similar to hydrogen peroxide. The existing data about the Mars soil suggests that the dust and sand will require designs analogous to those uses on equipment exposed to salty air and blowing sand and dust. The major design challenges are in developing high performance radiators which can be cleaned after each EVA without degradation, designing seals that are readily cleaned and possibly in selecting materials which will not be degraded by any strong oxidants in the soil. The magnitude of the dust filtration challenge needs careful evaluation in terms of the trade off between fine-particle dust filters with low pressure drop that are either physically large and heavy, like filter baghouses require frequent replacement of filter elements, of low volume high pressure thus power consumption approaches, or washable filters. In the latter, filter elements are cleaned with water, as could the outsides of the space suits in the airlock.

  13. DEMONSTRATION OF A FULL-SCALE RETROFIT OF THE ADVANCED HYBRID PARTICULATE COLLECTOR TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Tom Hrdlicka; William Swanson

    2005-12-01

    The Advanced Hybrid Particulate Collector (AHPC), developed in cooperation between W.L. Gore & Associates and the Energy & Environmental Research Center (EERC), is an innovative approach to removing particulates from power plant flue gas. The AHPC combines the elements of a traditional baghouse and electrostatic precipitator (ESP) into one device to achieve increased particulate collection efficiency. As part of the Power Plant Improvement Initiative (PPII), this project was demonstrated under joint sponsorship from the U.S. Department of Energy and Otter Tail Power Company. The EERC is the patent holder for the technology, and W.L. Gore & Associates was the exclusive licensee for this project. The project objective was to demonstrate the improved particulate collection efficiency obtained by a full-scale retrofit of the AHPC to an existing electrostatic precipitator. The full-scale retrofit was installed on an electric power plant burning Powder River Basin (PRB) coal, Otter Tail Power Company's Big Stone Plant, in Big Stone City, South Dakota. The $13.4 million project was installed in October 2002. Project related testing concluded in December 2005. The following Final Technical Report has been prepared for the project entitled ''Demonstration of a Full-Scale Retrofit of the Advanced Hybrid Particulate Collector Technology'' as described in DOE Award No. DE-FC26-02NT41420. The report presents the operation and performance results of the system.

  14. High SO{sub 2} removal duct injection: A low-cost FGD alternative

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, S.G. [Sorbent Technologies Corp., Twinsburg, OH (United States)

    1995-12-01

    Sorbent Technologies Corporation, of the United States, is currently developing and demonstrating a new waste free, retrofitable, high-SO{sub 2} removal duct-injection process. Up to 85 percent SO{sub 2} removal is achieved by simply injecting a new dry lime-based sorbent into the flue-gas duct, collecting the sorbent downstream in a particulate collector, and then recycling the sorbent. By avoiding large, expensive components, the process can have low capital costs, making it especially appropriate for smaller, older, less-utilized plants. The key to the new technology is the use of sorbent supports. Supported sorbents are produced by coating hydrated lime onto inexpensive mineral supports, such as exfoliated vermiculite or perlite. Consequently, there are no liquid, sludge, or solid wastes with the new technology. Once saturated with SO{sub 2}, the spent sorbent can be easily pelletized into a valuable soil-conditioning agricultural by-product, for the sustainable development that the future requires. This paper describes Sorbent Technologies` pilot demonstration of supported sorbent injection at the Ohio Edison Company`s R.E. Burger station. The Burger effort is also the first demonstration of the Electric Power Research Institute`s new {open_quotes}COHPAC{close_quotes} baghouse technology in a sorbent-injection desulfurization application.

  15. Vojany Station reconstruction, repowering and expansion assessment: Options, issues and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Coe, W.F. [Southern Electric International, Inc., Atlanta, GA (United States); Griswold, G.H.; Peyton, J.C. [Southern Company Services, Inc., Birmingham, AL (United States)

    1995-12-01

    Recent European community and state specific environmental guideline, legislative, and regulatory activities have led power producers to assess their currently installed generation technologies with regard to clean air compliance strategies. For the application to older generation facilities, the prudence of linking facility rehabilitation with the addition of environmental control systems to repowering options is warranted. Similarly, ongoing privatization efforts emphasize the necessity for sound economic decisions of site specific technological applications that consider maintaining or enhancing thermal efficiencies. Southern Electric International (SEI) has conducted such a feasibility study assessment evaluating the reconstruction, repowering and possible expansion of the Slovensky Energeticky Podnik (SEP) 1320 MWe Vojany Station in the Republic of Slovakia. Alternatives included such technologies as atmospheric fluid bed combustion, furnace and duct sorbent injection, low NOx burners, gas re-burn, selective catalytic reduction, selective non-catalytic reduction, state of the art precipitators and baghouses, wet and dry flue gas desulfurization systems and repowering technologies. In addition, new, turn of the century environmentally plausible and efficient electric power technologies were addressed.

  16. Ultrafine particle emission of waste incinerators and comparison to the exposure of urban citizens.

    Science.gov (United States)

    Buonanno, Giorgio; Morawska, Lidia

    2015-03-01

    On the basis of the growing interest on the impact of airborne particles on human exposure as well as the strong debate in Western countries on the emissions of waste incinerators, this work reviewed existing literature to: (i) show the emission factors of ultrafine particles (particles with a diameter less than 100 nm) of waste incinerators; and (ii) assess the contribution of waste incinerators in terms of ultrafine particles to exposure and dose of people living in the surrounding areas of the plants in order to estimate eventual risks. The review identified only a limited number of studies measuring ultrafine particle emissions, and in general they report low particle number concentrations at the stack (the median value was equal to 5.5×10(3) part cm(-3)), in most cases higher than the outdoor background value. The lowest emissions were achieved by utilization of the bag-house filter which has an overall number-based filtration efficiency higher than 99%. Referring to reference case, the corresponding emission factor is equal to 9.1×10(12) part min(-1), that is lower than one single high-duty vehicle. Since the higher particle number concentrations found in the most contributing microenvironments to the exposure (indoor home, transportation, urban outdoor), the contribution of the waste incinerators to the daily dose can be considered as negligible. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Coal ash usage in environmental restoration at the Hanford site

    Energy Technology Data Exchange (ETDEWEB)

    Scanlon, P.L.; Sonnichsen, J.C.; Phillips, S.J.

    1994-08-01

    The ash stockpiled next to the 284E steam plant is mixed fly ash, bottom ash, and slag. The ash consists of (1) baghouse residue and (2) a mixture of bottom ash and slag which is washed out of the bottom of the boilers daily. In 1991, a Toxicity Characteristic Leaching Procedure (TCLP) was performed on several samples of this ash (Hazen Research 1991). This procedure is designed to determine the mobility of organic and inorganic anatytes present in liquid, solid, or multiphasic wastes (EPA 1994). The ash tested came from surge bins, conveyor samples, and bottom ash and fly ash from the boilers at 284E. Antimony, cadmium, germanium, molybdenum, silver, thallium, tungsten, and vanadium were tested for, but on all samples were below detection Limits for the testing method. Analytes present in relatively high concentrations (but less than one part per thousand) included barium, boron, chromium, fluorine, and zinc. The size of ash particles passing through a Taylor sieve series was very evenly distributed from 1 to 200m.

  18. A review of the global emissions, transport and effects of heavy metals in the environment

    International Nuclear Information System (INIS)

    Friedman, J.R.; Ashton, W.B.; Rapoport, R.D.

    1993-06-01

    The purpose of this report is to describe the current state of knowledge regarding the sources and quantities of heavy metal emissions, their transport and fate, their potential health and environmental effects, and strategies to control them. The approach is to review the literature on this topic and to consult with experts in the field. Ongoing research activities and research needs are discussed. Estimates of global anthropogenic and natural emissions indicate that anthropogenic emissions are responsible for most of the heavy metals released into the atmosphere and that industrial activities have had a significant impact on the global cycling of trace metals. The largest anthropogenic sources of trace metals are coal combustion and the nonferrous metal industry. Atmospheric deposition is an important pathway by which trace metals enter the environment. Atmospheric deposition varies according to the solubility of the element and the length of time it resides in the atmosphere. Evidence suggests that deposition is influenced by other chemicals in the atmosphere, such as ozone and sulfur dioxide. Trace metals also enter the environment through leaching. Existing emissions-control technologies such as electrostatic precipitators, baghouses, and scrubbers are designed to remove other particulates from the flue gas of coal-fired power plants and are only partially effective at removing heavy metals. Emerging technologies such as flue gas desulfurization, lignite coke, and fluidized bed combustion could further reduce emissions. 108 refs

  19. Reaction characteristics of Ca(OH)2, HCl and SO2 at low temperature in a spray dryer integrated with a fabric filter.

    Science.gov (United States)

    Liu, Zhen-Shu; Wey, Ming-Yen; Lin, Chiou-Liang

    2002-12-02

    The objective of this research was to evaluate the reaction characteristics of CaOH2, HCl and SO2 in the flue gas emitted by a laboratory incinerator. The amount of sulfur retained in the residues (including the spray dryer ash and baghouse ash) was also evaluated in this study. The experimental parameters included HCl concentration (500-2000 ppm), SO2 concentration (500-2000 ppm), relative humidity (40-80% RH), and the addition of CaCl2 (30 wt.%). The results indicated that an HCl concentration of 500-2000 ppm did not affect HCl removal efficiency in the spray dryer at 150 degrees C and 45+/-5% RH. On the other hand, increase in SO2 concentration from 500 to 2000 ppm enhanced SO2 removal at 150 degrees C and 75+/-5% RH. Moreover, increase in removal efficiency of SO2 was more obvious when the relative humidity was greater than 80%. When the flue gas contained both HCl and SO2 simultaneously, the removal efficiency of SO2 could increase from 56.7 to 90.33% at HCl concentration of 236 ppm. However, when the concentration of HCl exceeded 535 ppm, the removal efficiency of SO2 decreased with increasing concentration of HCl. The removal efficiency of SO2 could be increase to 97.7% with the addition of CaCl2.

  20. Characterization of polycyclic aromatic hydrocarbons (PAHs) on lime spray dryer (LSD) ash using different extraction methods.

    Science.gov (United States)

    Sun, Ping; Weavers, Linda K; Taerakul, Panuwat; Walker, Harold W

    2006-01-01

    In this study, traditional Soxhlet, automatic Soxhlet and ultrasonic extraction techniques were employed to determine the speciation and concentration of polycyclic aromatic hydrocarbons (PAHs) on lime spray dryer (LSD) ash samples collected from the baghouse of a spreader stoker boiler. To test the efficiencies of different extraction methods, LSD ash samples were doped with a mixture of 16 US EPA specified PAHs to measure the matrix spike recoveries. The results showed that the spike recoveries of PAHs were different using these three extraction methods with dichloromethane (DCM) as the solvent. Traditional Soxhlet extraction achieved slightly higher recoveries than automatic Soxhlet and ultrasonic extraction. Different solvents including toluene, DCM:acetone (1:1 V/V) and hexane:acetone (1:1 V/V) were further examined to optimize the recovery using ultrasonic extraction. Toluene achieved the highest spike recoveries of PAHs at a spike level of 10 microg kg(-1). When the spike level was increased to 50 microg kg(-1), the spike recoveries of PAHs also correspondingly increased. Although the type and concentration of PAHs detected on LSD ash samples by different extraction methods varied, the concentration of each detected PAH was consistently low, at microg kg(-1) levels.

  1. ADVANCED HYBRID PARTICULATE COLLECTOR - PILOT-SCALE TESTING

    Energy Technology Data Exchange (ETDEWEB)

    Ye Zhuang; Stanley J. Miller; Michael E. Collings; Michelle R. Olderbak

    2001-09-30

    A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed at the Energy and Environmental Research Center (EERC) with U.S. Department of Energy (DOE) funding. In addition to DOE and the EERC, the project team includes W.L. Gore and Associates, Inc., Allied Environmental Technologies, Inc., and the Big Stone power station. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique approach to develop a compact but highly efficient system. Filtration and electrostatics are employed in the same housing, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and solves the problem of reentrainment and re-collection of dust in conventional baghouses. The objective of the AHPC is to provide >99.99% particulate collection efficiency for particle sizes from 0.01 to 50 {micro}m and be applicable for use with all U.S. coals at a lower cost than existing technologies. In previous field tests with the AHPC, some minor bag damage was observed that appeared to be caused by electrical effects. Extensive studies were then carried out to determine the reason for the bag damage and to find possible solutions without compromising AHPC performance. The best solution to prevent the bag damage was found to be perforated plates installed between the electrodes and the bags, which can block the electric field from the bag surface and intercept current to the bags. The perforated plates not only solve the bag damage problem, but also offer many other advantages such as operation at higher A/C (air-to-cloth) ratios, lower pressure drop, and an even more compact geometric arrangement. For this project, AHPC pilot-scale tests were carried out to understand the effect of the

  2. ADVANCED HYBRID PARTICULATE COLLECTOR

    Energy Technology Data Exchange (ETDEWEB)

    Ye Zhuang; Stanley J. Miller; Michelle R. Olderbak; Rich Gebert

    2001-12-01

    A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the U.S. Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in an entirely novel manner. The AHPC concept combines fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two methods, both in the particulate collection step and in transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and solves the problem of reentrainment and re-collection of dust in conventional baghouses. Phase I of the development effort consisted of design, construction, and testing of a 5.7-m{sup 3}/min (200-acfm) working AHPC model. Results from both 8-hr parametric tests and 100-hr proof-of-concept tests with two different coals demonstrated excellent operability and greater than 99.99% fine-particle collection efficiency. Since all of the developmental goals of Phase I were met, the approach was scaled up in Phase II to a size of 255 m{sup 3}/min (9000 acfm) (equivalent in size to 2.5 MW) and was installed on a slipstream at the Big Stone Power Plant. For Phase II, the AHPC at Big Stone Power Plant was operated continuously from late July 1999 until mid-December 1999. The Phase II results were highly successful in that ultrahigh particle collection efficiency was achieved, pressure drop was well controlled, and system operability was excellent. For Phase III, the AHPC was modified into a more compact configuration, and components were installed that were closer to what would be used in a full-scale commercial design. The modified AHPC was operated from April to July 2000. While operational results were acceptable during this time, inspection of bags in the summer of 2000 revealed some membrane damage to the fabric that appeared to be

  3. ADVANCED HYBRID PARTICULATE COLLECTOR - PILOT-SCALE TESTING; TOPICAL

    International Nuclear Information System (INIS)

    Ye Zhuang; Stanley J. Miller; Michael E. Collings; Michelle R. Olderbak

    2001-01-01

    A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed at the Energy and Environmental Research Center (EERC) with U.S. Department of Energy (DOE) funding. In addition to DOE and the EERC, the project team includes W.L. Gore and Associates, Inc., Allied Environmental Technologies, Inc., and the Big Stone power station. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique approach to develop a compact but highly efficient system. Filtration and electrostatics are employed in the same housing, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and solves the problem of reentrainment and re-collection of dust in conventional baghouses. The objective of the AHPC is to provide and gt;99.99% particulate collection efficiency for particle sizes from 0.01 to 50(micro)m and be applicable for use with all U.S. coals at a lower cost than existing technologies. In previous field tests with the AHPC, some minor bag damage was observed that appeared to be caused by electrical effects. Extensive studies were then carried out to determine the reason for the bag damage and to find possible solutions without compromising AHPC performance. The best solution to prevent the bag damage was found to be perforated plates installed between the electrodes and the bags, which can block the electric field from the bag surface and intercept current to the bags. The perforated plates not only solve the bag damage problem, but also offer many other advantages such as operation at higher A/C (air-to-cloth) ratios, lower pressure drop, and an even more compact geometric arrangement. For this project, AHPC pilot-scale tests were carried out to understand the effect of

  4. ADVANCED HYBRID PARTICULATE COLLECTOR; FINAL

    International Nuclear Information System (INIS)

    Ye Zhuang; Stanley J. Miller; Michelle R. Olderbak; Rich Gebert

    2001-01-01

    A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the U.S. Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in an entirely novel manner. The AHPC concept combines fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two methods, both in the particulate collection step and in transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and solves the problem of reentrainment and re-collection of dust in conventional baghouses. Phase I of the development effort consisted of design, construction, and testing of a 5.7-m(sup 3)/min (200-acfm) working AHPC model. Results from both 8-hr parametric tests and 100-hr proof-of-concept tests with two different coals demonstrated excellent operability and greater than 99.99% fine-particle collection efficiency. Since all of the developmental goals of Phase I were met, the approach was scaled up in Phase II to a size of 255 m(sup 3)/min (9000 acfm) (equivalent in size to 2.5 MW) and was installed on a slipstream at the Big Stone Power Plant. For Phase II, the AHPC at Big Stone Power Plant was operated continuously from late July 1999 until mid-December 1999. The Phase II results were highly successful in that ultrahigh particle collection efficiency was achieved, pressure drop was well controlled, and system operability was excellent. For Phase III, the AHPC was modified into a more compact configuration, and components were installed that were closer to what would be used in a full-scale commercial design. The modified AHPC was operated from April to July 2000. While operational results were acceptable during this time, inspection of bags in the summer of 2000 revealed some membrane damage to the fabric that appeared to be

  5. Thermal treatment of petroleum contaminated soils - A case study

    International Nuclear Information System (INIS)

    Bubier, T.W.; Bilello. C.M.

    1993-01-01

    Thermal treatment is a cost-effective treatment method for removing chemicals from contaminated soils. However, detailed applicability studies are lacking. The goals of this paper are to (1) present the results of a thermal treatment study and (2) discuss the specific elements which must be evaluated prior to determining whether thermal treatment is a feasible option for a remediation project. Results of data collected during a pilot study involving thermal treatment of petroleum contaminated soils at a Marine Terminal are presented. The pilot study consisted of thermally treating the C8 through C40 + (gasoline, kerosene, diesel, motor oil, bunker fuel, etc.) hydrocarbon contaminated soils at treatment temperatures ranging from 250 degrees Fahrenheit (degree F) up to 550 degrees F. The low-temperature thermal treatment unit consisted of a rotary kiln with a temperature capacity of approximately 600 degrees F, a baghouse, and a catalytic oxidizer. The soil was monitored for concentrations of petroleum hydrocarbons and volatile organic compounds before and after treatment. The results of the pilot study were used to determine if thermal treatment technology is a cost-efficient and effective option of remediating the estimated 300,000 tons of petroleum contaminated soil to acceptable cleanup levels. The low-temperature thermal treatment pilot study was effective in desorbing the short chain hydrocarbons (gasoline and diesel) but was not effective in desorbing the long-chain petroleum hydrocarbons, such as motor oils and bunker fuels, from the soil. This was primarily due to the boiling points of motor oil and bunker fuels which were higher than the temperature capacity of the pilot study treatment equipment. Additional factors that influenced the effectiveness of the desorption process included configuration of the treatment equipment, soil moisture content, soil particle size, and type and concentration of petroleum hydrocarbons

  6. York County Energy Partners CFB Cogeneration Project. Annual report, [September 30, 1992--September 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    The Department of Energy, under the Clean Coal Technology program, proposes to provide cost-shared financial assistance for the construction of a utility-scale circulating fluidized bed technology cogeneration facility by York County Energy Partners, L.P (YCEP). YCEP, a project company of ir Products and Chemicals, Inc., would design, construct and operate a 250 megawatt (gross) coal-fired cogeneration facility on a 38-acre parcel in North Codorus Township, York County, Pennsylvania. The facility would be located adjacent to the P. H. Glatfelter Company paper mill, the proposed steam host. Electricity would be delivered to Metropolitan Edison Company. The facility would demonstrate new technology designed to greatly increase energy efficiency and reduce air pollutant emissions over current generally available commercial technology which utilizes coal fuel. The facility would include a single train circulating fluidized bed boiler, a pollution control train consisting of limestone injection for reducing emissions of sulfur dioxide by greater than 92 percent, selective non-catalytic reduction for reducing emissions of nitrogen oxides, and a fabric filter (baghouse) for reducing emissions of particulates. Section II of this report provides a general description of the facility. Section III describes the site specifics associated with the facility when it was proposed to be located in West Manchester Township. After the Cooperative Agreement was signed, YCEP decided to move the proposed site to North Codorus Township. The reasons for the move and the site specifics of that site are detailed in Section IV. This section of the report also provides detailed descriptions of several key pieces of equipment. The circulating fluidized bed boiler (CFB), its design scale-up and testing is given particular emphasis.

  7. Very low emissions of airborne particulate pollutants measured from two municipal solid waste incineration plants in Switzerland

    Science.gov (United States)

    Setyan, Ari; Patrick, Michael; Wang, Jing

    2017-10-01

    A field campaign has been performed in two municipal solid waste incineration (MSWI) plants in Switzerland, at Hinwil (ZH) and Giubiasco (TI). The aim was to measure airborne pollutants at different locations of the abatement systems (including those released from the stacks into the atmosphere) and at a near-field (∼1 km) downwind site, in order to assess the efficiency of the abatement systems and the environmental impact of these plants. During this study, we measured the particle number concentration with a condensation particle counter (CPC), and the size distribution with a scanning mobility particle sizer (SMPS) and an aerodynamic particle sizer (APS). We also sampled particles on filters for subsequent analyses of the morphology, size and elemental composition with a scanning electron microscope coupled to an energy dispersive X-ray spectroscope (SEM/EDX), and of water soluble ions by ion chromatography (IC). Finally, volatile organic compounds (VOCs) were sampled on adsorbing cartridges and analyzed by thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS), and a portable gas analyzer was used to monitor NO, SO2, CO, CO2, and O2. The particle concentration decreased significantly at two locations of the plants: at the electrostatic precipitator and the bag-house filter. The particle concentrations measured at the stacks were very low (efficiency of the abatement system of the two plants. At Hinwil, particles sampled at the stack were mainly constituted of NaCl and KCl, two salts known to be involved in the corrosion process in incinerators. At Giubiasco, no significant differences were observed for the morphology and chemical composition of the particles collected in the ambient background and at the downwind site, suggesting that the incineration plant released very limited amounts of particles to the surrounding areas.

  8. Cadmium in forest ecosystems around lead smelters in Missouri.

    Science.gov (United States)

    Gale, N L; Wixson, B G

    1979-01-01

    The development of Missouri's new lead belt within the past decase has provided an excellent opportunity to study the dissemination and effects of heavy metals in a deciduous forest ecosystem. Primary lead smelters within the new lead belt have been identified as potential sources of cadmium as well as lead, zinc, and copper. Sintering and blast furnace operations tend to produce significant quantities of small particulates highly enriched in cadmium and other heavy metals. At one smelter, samples of stack particulate emissions indicate that as ms accompanied by 0.44 lb zinc, 4.66 lb lead, and 0.01 lb copper/hr. These point-source emissions, as well as a number of other sources of fugitive (wind blown) and waterborne emissions contribute to a significant deposition of cadmium in the surrounding forest and stream beds. Mobilization of vagrant heavy metals may be significantly increased by contact of baghouse dusts or scrubber slurries with acidic effluents emanating from acid plants designed to produce H2SO4 as a smelter by-product. Two separate drainage forks within the Crooked Creek watershed permit some comparisons of the relative contributions of cadmium by air-borne versus water-borne contaminants. Cadmium and other heavy metals have been found to accumulate in the forest litter and partially decomposed litter along stream beds. Greater solubility, lower levels of complexation with organic ligands in the litter, and greater overall mobility of cadmium compared with lead, zinc, and copper result in appreciable contributions of dissolved cadmium to the watershed runoff. The present paper attempts to define the principle sources and current levels of heavy metal contamination and summarizes the efforts undertaken by the industry to curtail the problem. PMID:488037

  9. Evaluation of radionuclide contamination of soil, coal ash and zeolitic materials from Figueira thermoelectric power plant

    Energy Technology Data Exchange (ETDEWEB)

    Fungaro, Denise Alves; Silva, Paulo Sergio Cardoso da; Campello, Felipe Arrelaro; Miranda, Caio da Silva; Izidoro, Juliana de Carvalho, E-mail: dfungaro@ipen.br, E-mail: pscsilva@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    Neutron activation analysis and gamma-ray spectrometry was used to determine {sup 238}U, {sup 226}Ra, {sup 228}Ra, {sup 210}Pb, {sup 232}Th and {sup 40}K contents in feed pulverized coal, bottom ash, fly ash from cyclone and baghouse filters, zeolites synthesized from the ashes and two different soil samples. All the samples used in the study was collected at Figueira thermoelectric power plant, located in the city of Figueira, Paraná State, which coal presents a significant amount of uranium concentration. The natural radionuclide concentrations in pulverized coal were 4216 Bq kg{sup -1} for {sup 238}U, 180 Bq kg{sup -1} for {sup 226}Ra, 27 Bq kg{sup -1} for {sup 228}Ra, 28 Bq kg{sup -1} for {sup 232}Th and 192 Bq kg{sup -1} for {sup 40}K. The ashes fraction presented concentrations ranging from 683.5 to 1479 Bq kg{sup -1} for {sup 238}U, from 484 to 1086 Bq kg{sup -1} for {sup 226}Ra, from 291 to 1891 Bq kg{sup -1} for {sup 210}Pb, from 67 to 111 Bq kg{sup -1} for {sup 228}Ra, from 80 to 87 Bq{sup -1} for {sup 232}Th and from 489 to 718 Bq kg{sup -1} for {sup 40}K. Similar ranges were observed for zeolites. The activity concentration of {sup 238}U was higher than worldwide average concentration for all samples. The concentration of the uranium series found in the ashes were lower than the values observed in similar studies carried out 10 years ago and under the limit adopted by the Brazilian guideline (CNEN-NN-4.01). Nevertheless, the concentrations of this specific area are higher than others coal mines and thermoelectric power plants in and out of Brazil, so it is advisable to evaluate the environmental impact of the installation. (author).

  10. Off-gas treatment system Process Experimental Pilot Plant (PREPP) k-t evaluation

    International Nuclear Information System (INIS)

    Hedahl, T.G.; Cargo, C.H.; Ayers, A.L.

    1982-06-01

    The scope of work for this task involves a systems' evaluation, using the Kepner-Tregoe (K-T) decision analysis methodology, of off-gas treatment alternatives for a Process Experimental Pilot Plant (PREPP). Two basic systems were evaluated: (1) a wet treatment system using a quencher and scrubber system; and (2) a dry treatment system using a spray dryer and baghouse arrangement. Both systems would neutralize acidic off-gases (HCL and SO 2 ) and remove radioactive particulates prior to release to the environment. The K-T analysis results provided a numerical comparison of the two basic off-gas treatments systems for PREPP. The overall ratings for the two systems differ by only 7%. The closeness of the evaluation indicates that either system is capable of treating the off-gases from PREPP. Based on the analysis, the wet treatment system design is slightly more favorable for PREPP. Technology development, expected operability, total costs, and safety aspects were determined to be more advantageous for the wet system design. Support technology was the only major category that appears less favorable for using the wet off-gas system for PREPP. When considering the two criteria considered most important for PREPP (capital cost and major accident prevention - both rated 10), the wet treatment system received maximum ratings. Space constraints placed on the design by the existing TAN-607 building configuration also are more easily met by the wet system design. Lastly, the level of development for the wet system indicates more applicable experience for nuclear waste processing

  11. Results of bench-scale plasma system testing in support of the Plasma Hearth Process

    International Nuclear Information System (INIS)

    Leatherman, G.L.; Cornelison, C.; Frank, S.

    1996-01-01

    The Plasma Hearth Process (PHP) is a high-temperature process that destroys hazardous organic components and stabilizes the radioactive components and hazardous metals in a leach-resistant vitreous slag waste form. The PHP technology development program is targeted at mixed waste that cannot be easily treated by conventional means. For example, heterogeneous debris, which may contain hazardous organics, toxic metals, and radionuclides, is difficult to characterize and cannot be treated with conventional thermal, chemical, or physical treatment methods. A major advantage of the PHP over other plasma processes is its ability to separate nonradioactive, non-hazardous metals from the non-metallic and radioactive components which are contained in the vitreous slag. The overall PHP program involves the design, fabrication, and operation of test hardware to demonstrate and certify that the PHP concept is viable for DOE waste treatment. The program involves bench-scale testing of PHP equipment in radioactive service, as well as pilot-scale demonstration of the PHP concept using nonradioactive, surrogate test materials. The fate of secondary waste streams is an important consideration for any technology considered for processing mixed waste. The main secondary waste stream generated by the PHP is flyash captured by the fabric- filter baghouse. The PHP concept is that flyash generated by the process can, to a large extent, be treated by processing this secondary waste stream in the PHP. Prior to the work presented in the paper, however, the PHP project has not quantitatively demonstrated the ability to treat PHP generated flyash. A major consideration is the quantity of radionuclides and RCRA-regulated metals in the flyash that can be retained the resultant waste form

  12. Safety analysis of the 700-horsepower combustion test facility

    Energy Technology Data Exchange (ETDEWEB)

    Berkey, B.D.

    1981-05-01

    The objective of the program reported herein was to provide a Safety Analysis of the 700 h.p. Combustion Test Facility located in Building 93 at the Pittsburgh Energy Technology Center. Extensive safety related measures have been incorporated into the design, construction, and operation of the Combustion Test Facility. These include: nitrogen addition to the coal storage bin, slurry hopper, roller mill and pulverizer baghouse, use of low oxygen content combustion gas for coal conveying, an oxygen analyzer for the combustion gas, insulation on hot surfaces, proper classification of electrical equipment, process monitoring instrumentation and a planned remote television monitoring system. Analysis of the system considering these factors has resulted in the determination of overall probabilities of occurrence of hazards as shown in Table I. Implementation of the recommendations in this report will reduce these probabilities as indicated. The identified hazards include coal dust ignition by hot ductwork and equipment, loss of inerting within the coal conveying system leading to a coal dust fire, and ignition of hydrocarbon vapors or spilled oil, or slurry. The possibility of self-heating of coal was investigated. Implementation of the recommendations in this report will reduce the ignition probability to no more than 1 x 10/sup -6/ per event. In addition to fire and explosion hazards, there are potential exposures to materials which have been identified as hazardous to personal health, such as carbon monoxide, coal dust, hydrocarbon vapors, and oxygen deficient atmosphere, but past monitoring experience has not revealed any problem areas. The major environmental hazard is an oil spill. The facility has a comprehensive spill control plan.

  13. SOx-NOx-Rox Box{trademark} flue gas clean-up demonstration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The SNRB{trademark} Flue Gas Cleanup Demonstration Project was cooperatively funded by the U.S. Department of Energy (DOE), the Ohio Coal Development Office (OCDO), B&W, the Electric Power Research Institute (EPRI), Ohio Edison, Norton Chemical Process Products Company and the 3M Company. The SNRB{trademark} technology evolved from the bench and laboratory pilot scale to be successfully demonstrated at the 5-MWe field scale. Development of the SNRB{trademark} process at B&W began with pilot testing of high-temperature dry sorbent injection for SO{sub 2} removal in the 1960`s. Integration of NO{sub x} reduction was evaluated in the 1970`s. Pilot work in the 1980`s focused on evaluation of various NO{sub x} reduction catalysts, SO{sub 2} sorbents and integration of the catalyst with the baghouse. This early development work led to the issuance of two US process patents to B&W - No. 4,309,386 and No. 4,793,981. An additional patent application for improvements to the process is pending. The OCDO was instrumental in working with B&W to develop the process to the point where a larger scale demonstration of the technology was feasible. This report represents the completion of Milestone M14 as specified in the Work Plan. B&W tested the SNRB{trademark} pollution control system at a 5-MWe demonstration facility at Ohio Edison`s R. E. Burger Plant located near Shadyside, Ohio. The design and operation were influenced by the results from laboratory pilot testing at B&W`s Alliance Research Center. The intent was to demonstrate the commercial feasibility of the SNRB{trademark} process. The SNRB{trademark} facility treated a 30,000 ACFM flue gas slipstream from Boiler No. 8. Operation of the facility began in May 1992 and was completed in May 1993.

  14. Advanced Hybrid Particulate Collector Project Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Miller, S.J.

    1995-11-01

    As the consumption of energy increases, its impact on ambient air quality has become a significant concern. Recent studies indicate that fine particles from coal combustion cause health problems as well as atmospheric visibility impairment. These problems are further compounded by the concentration of hazardous trace elements such as mercury, cadmium, selenium, and arsenic in fine particles. Therefore, a current need exists to develop superior, but economical, methods to control emissions of fine particles. Since most of the toxic metals present in coal will be in particulate form, a high level of fine- particle collection appears to be the best method of overall air toxics control. However, over 50% of mercury and a portion of selenium emissions are in vapor form and cannot be collected in particulate control devices. Therefore, this project will focus on developing technology not only to provide ultrahigh collection efficiency of particulate air toxic emissions, but also to capture vapor- phase trace metals such as mercury and selenium. Currently, the primary state-of-the-art technologies for particulate control are fabric filters (baghouses) and electrostatic precipitators (ESPs). However, they both have limitations that prevent them from achieving ultrahigh collection of fine particulate matter and vapor-phase trace metals. The objective of this project is to develop a highly reliable advanced hybrid particulate collector (AHPC) that can provide > 99.99 % particulate collection efficiency for all particle sizes between 0.01 and 50 14m, is applicable for use with all U.S. coals, and is cost-0443competitive with existing technologies. Phase I of the project is organized into three tasks: Task I - Project Management, Reporting, and Subcontract Consulting Task 2 - Modeling, Design, and Construction of 200-acfm AHPC Model Task 3 - Experimental Testing and Subcontract Consulting

  15. Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Edward Levy; Harun Bilirgen; John DuPoint

    2011-03-31

    Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: (1) An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing high-moisture, low rank coals. (2) Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. (3) Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. (4) Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. (5) Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. (6) Condensed flue gas water treatment needs and costs. (7) Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. (8) Results of cost-benefit studies of condensing heat exchangers.

  16. Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Levy, Edward; Bilirgen, Harun; DuPont, John

    2011-03-31

    Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: • An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing highmoisture, low rank coals. • Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. • Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. • Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. • Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. • Condensed flue gas water treatment needs and costs. • Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. • Results of cost-benefit studies of condensing heat exchangers.

  17. Operating and environmental performances of commercial-scale waste gasification and melting technology.

    Science.gov (United States)

    Tanigaki, Nobuhiro; Fujinaga, Yasuka; Kajiyama, Hirohisa; Ishida, Yoshihiro

    2013-11-01

    Gasification technologies for waste processing are receiving increased interest. A lot of gasification technologies, including gasification and melting, have been developed in Japan and Europe. However, the flue gas and heavy metal behaviors have not been widely reported, even though those of grate furnaces have been reported. This article reports flue gas components of gasification and melting technology in different flue gas treatment systems. Hydrogen chloride concentrations at the inlet of the bag filter ranged between 171 and 180 mg Nm(-3) owing to de-acidification by limestone injection to the gasifier. More than 97.8% of hydrogen chlorides were removed by a bag filter in both of the flue gas treatment systems investigated. Sulfur dioxide concentrations at the inlet of the baghouse were 4.8 mg Nm(-3) and 12.7 mg Nm(-3), respectively. Nitrogen oxides are highly decomposed by a selective catalytic reduction system. Owing to the low regenerations of polychlorinated dibenzo-p-dioxins and furans, and the selective catalytic reduction system, the concentrations of polychlorinated dibenzo-p-dioxins and furans at the stacks were significantly lower without activated carbon injection. More than 99% of chlorine is distributed in fly ash. Low-boiling-point heavy metals, such as lead and zinc, are distributed in fly ash at rates of 97.6% and 96.5%, respectively. Most high-boiling-point heavy metals, such as iron and copper, are distributed in metal. It is also clarified that the slag is stable and contains few harmful heavy metals, such as lead. The heavy metal distribution behaviors are almost the same regardless of the compositions of the processed waste. These results indicate that the gasification of municipal solid waste constitutes an ideal approach to environmental conservation and resource recycling.

  18. Engineering study for a melting, casting, rolling and fabrication facility for recycled contaminated stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-01-01

    This Preliminary Report is prepared to study the facilities required for recycling contaminated stainless steel scrap into plate which will be fabricated into boxes suitable for the storage of contaminated wastes and rubble. The study is based upon the underlying premise that the most cost effective way to produce stainless steel is to use the same processes employed by companies now in production of high quality stainless steel. Therefore, the method selected for this study for the production of stainless steel plate from scrap is conventional process using an Electric Arc Furnace for meltdown to hot metal, a Continuous Caster for production of cast slabs, and a Reversing Hot Mill for rolling the slabs into plate. The fabrication of boxes from the plate utilizes standard Shears, Punch Presses and welding equipment with Robotic Manipulators. This Study presumes that all process fumes, building dusts and vapors will be cycled through a baghouse and a nuclear grade HEPA filter facility prior to discharge. Also, all process waste water will be evaporated into the hot flue gas stream from the furnace utilizing a quench tank; so there will be no liquid discharges from the facility and all vapors will be processed through a HEPA filter. Even though HEPA filters are used today in controlling radioactive contamination from nuclear facilities there is a sparsity of data concerning radioactivity levels and composition of waste that may be collected from contaminated scrap steel processing. This report suggests some solutions to these problems but it is recommended that additional study must be given to these environmental problems.

  19. Engineering study for a melting, casting, rolling and fabrication facility for recycled contaminated stainless steel

    International Nuclear Information System (INIS)

    1994-01-01

    This Preliminary Report is prepared to study the facilities required for recycling contaminated stainless steel scrap into plate which will be fabricated into boxes suitable for the storage of contaminated wastes and rubble. The study is based upon the underlying premise that the most cost effective way to produce stainless steel is to use the same processes employed by companies now in production of high quality stainless steel. Therefore, the method selected for this study for the production of stainless steel plate from scrap is conventional process using an Electric Arc Furnace for meltdown to hot metal, a Continuous Caster for production of cast slabs, and a Reversing Hot Mill for rolling the slabs into plate. The fabrication of boxes from the plate utilizes standard Shears, Punch Presses and welding equipment with Robotic Manipulators. This Study presumes that all process fumes, building dusts and vapors will be cycled through a baghouse and a nuclear grade HEPA filter facility prior to discharge. Also, all process waste water will be evaporated into the hot flue gas stream from the furnace utilizing a quench tank; so there will be no liquid discharges from the facility and all vapors will be processed through a HEPA filter. Even though HEPA filters are used today in controlling radioactive contamination from nuclear facilities there is a sparsity of data concerning radioactivity levels and composition of waste that may be collected from contaminated scrap steel processing. This report suggests some solutions to these problems but it is recommended that additional study must be given to these environmental problems

  20. Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems

    Energy Technology Data Exchange (ETDEWEB)

    Richard Rhudy

    2006-06-30

    , mercury oxidation catalyst testing began in September 2003 and continued through the end of April 2005, interrupted only by a host unit outage in late February/early March 2005. With a baghouse upstream of the catalysts, sonic horns did not appear to be necessary and were never installed. Pressure drop across the four catalysts remained low. Catalyst activity for elemental mercury oxidation was difficult to evaluate at this site. It was found that the baghouse effectively oxidized elemental mercury in the flue gas, with the baghouse outlet flue gas averaging 81% mercury oxidation. This oxidation resulted in little elemental mercury remaining in the flue gas going to the oxidation catalyst pilot unit. In many instances, catalyst outlet elemental mercury concentrations were near detection limits for the measurement methods employed, so mercury oxidation percentages across the catalyst were uncertain.

  1. Characteristics of fly ashes from full-scale coal-fired power plants and their relationship to mercury adsorption

    Science.gov (United States)

    Lu, Y.; Rostam-Abadi, M.; Chang, R.; Richardson, C.; Paradis, J.

    2007-01-01

    Nine fly ash samples were collected from the particulate collection devices (baghouse or electrostatic precipitator) of four full-scale pulverized coal (PC) utility boilers burning eastern bituminous coals (EB-PC ashes) and three cyclone utility boilers burning either Powder River Basin (PRB) coals or PRB blends,(PRB-CYC ashes). As-received fly ash samples were mechanically sieved to obtain six size fractions. Unburned carbon (UBC) content, mercury content, and Brunauer-Emmett-Teller (BET)-N2 surface areas of as-received fly ashes and their size fractions were measured. In addition, UBC particles were examined by scanning electron microscopy, high-resolution transmission microscopy, and thermogravimetry to obtain information on their surface morphology, structure, and oxidation reactivity. It was found that the UBC particles contained amorphous carbon, ribbon-shaped graphitic carbon, and highly ordered graphite structures. The mercury contents of the UBCs (Hg/UBC, in ppm) in raw ash samples were comparable to those of the UBC-enriched samples, indicating that mercury was mainly adsorbed on the UBC in fly ash. The UBC content decreased with a decreasing particle size range for all nine ashes. There was no correlation between the mercury and UBC contents of different size fractions of as-received ashes. The mercury content of the UBCs in each size fraction, however, generally increased with a decreasing particle size for the nine ashes. The mercury contents and surface areas of the UBCs in the PRB-CYC ashes were about 8 and 3 times higher than UBCs in the EB-PC ashes, respectively. It appeared that both the particle size and surface area of UBC could contribute to mercury capture. The particle size of the UBC in PRB-CYC ash and thus the external mass transfer was found to be the major factor impacting the mercury adsorption. Both the particle size and surface reactivity of the UBC in EB-PC ash, which generally had a lower carbon oxidation reactivity than the PRB

  2. Molten Metal Treatment by Salt Fluxing with Low Environmental Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Yogeshwar Sahai

    2007-07-31

    Abstract: Chlorine gas is traditionally used for fluxing of aluminum melt for removal of alkali and alkaline earth elements. However this results in undesirable emissions of particulate matter and gases such as HCl and chlorine, which are often at unacceptable levels. Additionally, chlorine gas is highly toxic and its handling, storage, and use pose risks to employees and the local community. Holding of even minimal amounts of chlorine necessitates extensive training for all plant employees. Fugitive emissions from chlorine usage within the plant cause accelerated corrosion of plant equipment. The Secondary Aluminum Maximum Achievable Control Technology (MACT) under the Clean Air Act, finalized in March 2000 has set very tough new limits on particulate matter (PM) and total hydrogen chloride emissions from aluminum melting and holding furnaces. These limits are 0.4 and 0.1 lbs per ton of aluminum for hydrogen chloride and particulate emissions, respectively. Assuming new technologies for meeting these limits can be found, additional requirements under the Clean Air Act (Prevention of Significant Deterioration and New Source Review) trigger Best Available Control Technology (BACT) for new sources with annual emissions (net emissions not expressed per ton of production) over specified amounts. BACT currently is lime coated bag-houses for control of particulate and HCl emissions. These controls are expensive, difficult to operate and maintain, and result in reduced American competitiveness in the global economy. Solid salt fluxing is emerging as a viable option for the replacement of chlorine gas fluxing, provided emissions can be consistently maintained below the required levels. This project was a cooperative effort between the Ohio State University and Alcoa to investigate and optimize the effects of solid chloride flux addition in molten metal for alkali impurity and non-metallic inclusion removal minimizing dust and toxic emissions and maximizing energy

  3. Greenidge Multi-Pollutant Control Project

    Energy Technology Data Exchange (ETDEWEB)

    Connell, Daniel

    2008-10-18

    The Greenidge Multi-Pollutant Control Project was conducted as part of the U.S. Department of Energy's Power Plant Improvement Initiative to demonstrate an innovative combination of air pollution control technologies that can cost-effectively reduce emissions of SO{sub 2}, NO{sub x}, Hg, acid gases (SO{sub 3}, HCl, and HF), and particulate matter from smaller coal-fired electric generating units (EGUs). There are about 400 units in the United States with capacities of 50-300 MW that currently are not equipped with selective catalytic reduction (SCR), flue gas desulfurization (FGD), or mercury control systems. Many of these units, which collectively represent more than 55 GW of installed capacity, are difficult to retrofit for deep emission reductions because of space constraints and unfavorable economies of scale, making them increasingly vulnerable to retirement or fuel switching in the face of progressively more stringent environmental regulations. The Greenidge Project sought to confirm the commercial readiness of an emissions control system that is specifically designed to meet the environmental compliance requirements of these smaller coal-fired EGUs by offering a combination of deep emission reductions, low capital costs, small space requirements, applicability to high-sulfur coals, mechanical simplicity, and operational flexibility. The multi-pollutant control system includes a NO{sub x}OUT CASCADE{reg_sign} hybrid selective non-catalytic reduction (SNCR)/in-duct SCR system for NO{sub x} control and a Turbosorp{reg_sign} circulating fluidized bed dry scrubbing system (with a new baghouse) for SO{sub 2}, SO{sub 3}, HCl, HF, and particulate matter control. Mercury removal is provided as a co-benefit of the in-duct SCR, dry scrubber, and baghouse, and by injection of activated carbon upstream of the scrubber, if required. The multi-pollutant control system was installed and tested on the 107-MW{sub e}, 1953-vintage AES Greenidge Unit 4 by a team including

  4. Development and Testing of Industrial Scale Coal Fired Combustion System, Phase 3

    Energy Technology Data Exchange (ETDEWEB)

    Bert Zauderer

    1998-09-30

    Combustor'. The details of the task 5 effort are contained in Appendix 'C'. It was implemented between 1994 and 1998 after the entire 20 MMBtu/hr combustor-boiler facility was relocated to Philadelphia, PA in 1994. A new test facility was designed and installed. A substantially longer combustor was fabricated. Although not in the project plan or cost plan, an entire steam turbine-electric power generating plant was designed and the appropriate new and used equipment for continuous operation was specified. Insufficient funds and the lack of a customer for any electric power that the test facility could have generated prevented the installation of the power generating equipment needed for continuous operation. All other task 5 project measures were met and exceeded. 107 days of testing in task 5, which exceeded the 63 days (about 500 hours) in the test plan, were implemented. Compared to the first generation 20 MMBtu/hr combustor in Williamsport, the 2nd generation combustor has a much higher combustion efficiency, the retention of slag inside the combustor doubled to about 75% of the coal ash, and the ash carryover into the boiler, a major problem in the Williamsport combustor was essentially eliminated. In addition, the project goals for coal-fired emissions were exceeded in task 5. SO{sub 2} was reduced by 80% to 0.2 lb/MMBtu in a combination of reagent injection in the combustion and post-combustion zones. NO{sub x} was reduced by 93% to 0.07 lb/MMBtu in a combination of staged combustion in the combustor and post-combustion reagent injection. A baghouse was installed that was rated to 0.03 lb/MMBtu stack particle emissions. The initial particle emission test by EPA Method 5 indicated substantially higher emissions far beyond that indicated by the clear emission plume. These emissions were attributed to steel particles released by wall corrosion in the baghouse, correction of which had no effect of emissions.

  5. Emissions control for sensitive areas

    International Nuclear Information System (INIS)

    Baud, Trevor

    2011-01-01

    Full text: The Gorgon project needs almost no introduction. Located off the north-west coast of Western Australia, it is one of the world's largest natural gas projects, set on the environmentally sensitive Barrow Island. To protect the island's unique habitats, stringent environmental conditions have been imposed in terms of air, noise and light emissions, making the emission control system critical to the project's viability. Luhr Filter, specialists in dust and fume control solutions, were chosen by KMH Environmental to supply an emission control system for a waste incinerator facility serving the LNG processing plant on Barrow Island. KMH's preference was for a 'one stop' supplier of the entire pollution control system. This included a heat exchanger which had the added benefit of a compact build to fit in the limited real estate. The solution put forward was tailored to the unique environmental requirements of the Gorgon project. It was very much about collaboration and innovation to achieve the requisite results. KMH were also keen to limit the number of sub-contractors they had to deal with, and Luhr offered them a turn-key plant for the gas cleaning, integrating design and supply of all the equipment. Among the environmental requirements was that all putrescible waste created on-site - from the accommodation camps during the construction and, eventually, production phases - had to be incinerated rather than sent to landfill. The flue gas from the incinerators had to be treated in order to meet world-class environmental standards for emission of particulate, acid gases, metals and dioxins. KMH designed an incinerator system with primary and secondary combustion chambers in modular units to minimise labour requirements on site. The dry absorption system integrates Luhr's unique technologies for heat exchangers, absorption reactors, utilisation of the absorbent and the baghouse style filters with reverse pulse bag cleaning

  6. JV Task 108 - Circulating Fluidized-Bed Combustion and Combustion Testing of Turkish Tufanbeyli Coal

    Energy Technology Data Exchange (ETDEWEB)

    Douglas Hajicek; Jay Gunderson; Ann Henderson; Stephen Sollom; Joshua Stanislowski

    2007-08-15

    Two combustion tests were performed at the Energy & Environmental Research Center (EERC) using Tufanbeyli coal from Turkey. The tests were performed in a circulating fluidized-bed combustor (CFBC) and a pulverized coal-fired furnace, referred to as the combustion test facility (CTF). One of the goals of the project was to determine the type of furnace best suited to this coal. The coal is high in moisture, ash, and sulfur and has a low heating value. Both the moisture and the sulfur proved problematic for the CTF tests. The fuel had to be dried to less than 37% moisture before it could be pulverized and further dried to about 25% moisture to allow more uniform feeding into the combustor. During some tests, water was injected into the furnace to simulate the level of flue gas moisture had the fuel been fed without drying. A spray dryer was used downstream of the baghouse to remove sufficient sulfur to meet the EERC emission standards permitted by the North Dakota Department of Health. In addition to a test matrix varying excess air, burner swirl, and load, two longer-term tests were performed to evaluate the fouling potential of the coal at two different temperatures. At the lower temperature (1051 C), very little ash was deposited on the probes, but deposition did occur on the walls upstream of the probe bank, forcing an early end to the test after 2 hours and 40 minutes of testing. At the higher temperature (1116 C), ash deposition on the probes was significant, resulting in termination of the test after only 40 minutes. The same coal was burned in the CFBC, but because the CFBC uses a larger size of material, it was able to feed this coal at a higher moisture content (average of 40.1%) compared to the CTF (ranging from 24.2% to 26.9%). Sulfur control was achieved with the addition of limestone to the bed, although the high calcium-to-sulfur rate required to reduce SO{sub 2} emissions resulted in heat loss (through limestone calcination) and additional ash

  7. Behaviour of radionuclides during accidental melting of orphan sources in electric arc furnaces by means of C.F.D. gas flow modeling

    International Nuclear Information System (INIS)

    Penalva, I.; Damborenea, J.; Legarda, F.; Zuloaga, P.; Ordonez, M.; Serrano, I.

    2006-01-01

    .) together with the prevailing conditions inside the furnace (temperature, characteristics of the refractory material and slag, turbulences, etc.) will characterize the scenario for the dispersion of the radioactivity. In this sense, behaviour of radioactive sources made up with 137 Cs deserves special consideration, as long as it will be easily incorporated to the fumes. Caesium is highly volatile and the experience shows that it is dragged along stuck on dust particles towards the filter baghouse. As a consequence, plate out processes take place on the pipes of the gas treatment system. This plate out process has also been studied using C.F.D. techniques, tracking dust particles of different sizes to analyze the retention of dust and, in consequence, of radioactivity along the pipes. The results obtained in the simulations match reasonably well with those obtained in real facilities for the deposition of dust. (authors)

  8. Globally sustainable manganese metal production and use.

    Science.gov (United States)

    Hagelstein, Karen

    2009-09-01

    reduces the quantity of solid wastes generated during processing. Secondary aluminum facilities have reported hazardous waste generation management issues due to baghouse dusts from rotary furnaces processing selenium contaminated manganese alloys. Environmental impacts resulting from industry are represented by emission inventories of chemical releases to the air, water, and soil. The U.S. metals industry releases reported to EPA Toxic Release Inventory indicate the primary metals industry is the major source of metal air toxic emissions, exceeding electric utility air toxic emissions. The nonferrous metals industry is reported to be the Organization for Economic Co-operation and Development (OECD) most intensive airborne and land pollution source of bioaccumulative metals. However, total waste emissions from industries in the OECD countries have declined due to improving energy consumption. Emission registers and access are improving around the world. However, environmental databases for metal particulates have low confidence ratings since the majority of air toxic emissions are not reported, not monitored, or are estimated based on worst-case emission factors. Environmental assessments including biological monitoring are necessary to validate mandated particulate metal emission reductions and control technologies during metal processing.

  9. JV Task 90 - Activated Carbon Production from North Dakota Lignite

    Energy Technology Data Exchange (ETDEWEB)

    Steven Benson; Charlene Crocker; Rokan Zaman; Mark Musich; Edwin Olson

    2008-03-31

    The Energy & Environmental Research Center (EERC) has pursued a research program for producing activated carbon from North Dakota lignite that can be competitive with commercial-grade activated carbon. As part of this effort, small-scale production of activated carbon was produced from Fort Union lignite. A conceptual design of a commercial activated carbon production plant was drawn, and a market assessment was performed to determine likely revenue streams for the produced carbon. Activated carbon was produced from lignite coal in both laboratory-scale fixed-bed reactors and in a small pilot-scale rotary kiln. The EERC was successfully able to upgrade the laboratory-scale activated carbon production system to a pilot-scale rotary kiln system. The activated carbon produced from North Dakota lignite was superior to commercial grade DARCO{reg_sign} FGD and Rheinbraun's HOK activated coke product with respect to iodine number. The iodine number of North Dakota lignite-derived activated carbon was between 600 and 800 mg I{sub 2}/g, whereas the iodine number of DARCO FGD was between 500 and 600 mg I{sub 2}/g, and the iodine number of Rheinbraun's HOK activated coke product was around 275 mg I{sub 2}/g. The EERC performed both bench-scale and pilot-scale mercury capture tests using the activated carbon made under various optimization process conditions. For comparison, the mercury capture capability of commercial DARCO FGD was also tested. The lab-scale apparatus is a thin fixed-bed mercury-screening system, which has been used by the EERC for many mercury capture screen tests. The pilot-scale systems included two combustion units, both equipped with an electrostatic precipitator (ESP). Activated carbons were also tested in a slipstream baghouse at a Texas power plant. The results indicated that the activated carbon produced from North Dakota lignite coal is capable of removing mercury from flue gas. The tests showed that activated carbon with the greatest

  10. Evaluation of MerCAP for Power Plant Mercury Control

    Energy Technology Data Exchange (ETDEWEB)

    Carl Richardson

    2008-09-30

    This report is submitted to the U.S. Department of Energy National Energy Technology Laboratory (DOE-NETL) as part of Cooperative Agreement DE-FC26-03NT41993, 'Evaluation of EPRI's MerCAP{trademark} Technology for Power Plant Mercury Control'. This project has investigated the mercury removal performance of EPRI's Mercury Capture by Amalgamation Process (MerCAP{trademark}) technology. Test programs were conducted to evaluate gold-based MerCAP{trademark} at Great River Energy's Stanton Station Unit 10 (Site 1), which fired both North Dakota lignite (NDL) and Power River Basin (PRB) coal during the testing period, and at Georgia Power's Plant Yates Unit 1 (Site 2) [Georgia Power is a subsidiary of The Southern Company] which fires a low sulfur Eastern bituminous coal. Additional tests were carried out at Alabama Power's Plant Miller, which fires Powder River Basin Coal, to evaluate a carbon-based MerCAP{trademark} process for removing mercury from flue gas downstream of an electrostatic precipitator [Alabama Power is a subsidiary of The Southern Company]. A full-scale gold-based sorbent array was installed in the clean-air plenum of a single baghouse compartment at GRE's Stanton Station Unit 10, thereby treating 1/10th of the unit's exhaust gas flow. The substrates that were installed were electroplated gold screens oriented parallel to the flue gas flow. The sorbent array was initially installed in late August of 2004, operating continuously until its removal in July 2006, after nearly 23 months. The initial 4 months of operation were conducted while the host unit was burning North Dakota lignite (NDL). In November 2004, the host unit switched fuel to burn Powder River Basin (PRB) subbituminous coal and continued to burn the PRB fuel for the final 19 months of this program. Tests were conducted at Site 1 to evaluate the impacts of flue gas flow rate, sorbent plate spacing, sorbent pre-cleaning and regeneration, and spray

  11. Greenridge Multi-Pollutant Control Project Preliminary Public Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Connell, Daniel P

    2009-01-12

    The Greenidge Multi-Pollutant Control Project is being conducted as part of the U.S. Department of Energy's Power Plant Improvement Initiative to demonstrate an innovative combination of air pollution control technologies that can cost-effectively reduce emissions of SO{sub 2}, NO{sub x}, Hg, acid gases (SO{sub 3}, HCl, and HF), and particulate matter from smaller coal-fired electrical generating units (EGUs). The multi-pollutant control system includes a hybrid selective non-catalytic reduction (SNCR)/in-duct selective catalytic reduction (SCR) system to reduce NOx emissions by {ge}60%, followed by a Turbosorp{reg_sign} circulating fluidized bed dry scrubber system to reduce emissions of SO{sub 2}, SO{sub 3}, HCl, and HF by {ge}95%. Mercury removal of {ge}90% is also targeted via the co-benefits afforded by the in-duct SCR, dry scrubber, and baghouse and by injection of activated carbon upstream of the scrubber, as required. The technology is particularly well suited, because of its relatively low capital and maintenance costs and small space requirements, to meet the needs of coal-fired units with capacities of 50-300 MWe. There are about 440 such units in the United States that currently are not equipped with SCR, flue gas desulfurization (FGD), or mercury control systems. These smaller units are a valuable part of the nation's energy infrastructure, constituting about 60 GW of installed capacity. However, with the onset of the Clean Air Interstate Rule, Clean Air Mercury Rule, and various state environmental actions requiring deep reductions in emissions of SO{sub 2}, NO{sub x}, and mercury, the continued operation of these units increasingly depends upon the ability to identify viable air pollution control retrofit options for them. The large capital costs and sizable space requirements associated with conventional technologies such as SCR and wet FGD make these technologies unattractive for many smaller units. The Greenidge Project aims to confirm