WorldWideScience

Sample records for bagasse soda lignin

  1. APPLICATION OF SURFACTANTS AS PULPING ADDITIVES IN SODA PULPING OF BAGASSE

    OpenAIRE

    2009-01-01

    The effects of several non-ionic commercial surfactants and their dosage on soda pulping and ECF bleaching of soda and soda-surfactant pulps of bagasse were investigated. The properties of bleachable pulps obtained with conventional soda and with soda-surfactants were studied and compared. The results showed application of surfactants during the soda pulping of bagasse decreased kappa number and improved the yield and brightness of resulting pulp. Using the surfactants reduced alkali consumpt...

  2. Low Temperature Soda-Oxygen Pulping of Bagasse

    Directory of Open Access Journals (Sweden)

    Fengxia Yue

    2016-01-01

    Full Text Available Wood shortages, environmental pollution and high energy consumption remain major obstacles hindering the development of today’s pulp and paper industry. Energy-saving and environmental friendly pulping processes are still needed, especially for non-woody materials. In this study, soda-oxygen pulping of bagasse was investigated and a successful soda-oxygen pulping process for bagasse at 100 °C was established. The pulping parameters of choice were under active alkali charge of 23%, maximum cooking temperature 100 °C, time hold at maximum temperature 180 min, initial pressure of oxygen 0.6 MPa, MgSO4 charge 0.5%, and de-pithed bagasse consistency 12%. Properties of the resultant pulp were screened yield 60.9%, Kappa number 14, viscosity 766 dm3/kg, and brightness 63.7% ISO. Similar pulps were also obtained at 110 °C or 105 °C with a cooking time of 90 min. Compared with pulps obtained at higher temperatures (115–125 °C, this pulp had higher screened yield, brightness, and acceptable viscosity, while the delignification degree was moderate. These results indicated that soda-oxygen pulping at 100 °C, the lowest cooking temperature reported so far for soda-oxygen pulping, is a suitable process for making chemical pulp from bagasse. Pulping at lower temperature and using oxygen make it an environmental friendly and energy-saving pulping process.

  3. Low Temperature Soda-Oxygen Pulping of Bagasse.

    Science.gov (United States)

    Yue, Fengxia; Chen, Ke-Li; Lu, Fachuang

    2016-01-13

    Wood shortages, environmental pollution and high energy consumption remain major obstacles hindering the development of today's pulp and paper industry. Energy-saving and environmental friendly pulping processes are still needed, especially for non-woody materials. In this study, soda-oxygen pulping of bagasse was investigated and a successful soda-oxygen pulping process for bagasse at 100 °C was established. The pulping parameters of choice were under active alkali charge of 23%, maximum cooking temperature 100 °C, time hold at maximum temperature 180 min, initial pressure of oxygen 0.6 MPa, MgSO4 charge 0.5%, and de-pithed bagasse consistency 12%. Properties of the resultant pulp were screened yield 60.9%, Kappa number 14, viscosity 766 dm³/kg, and brightness 63.7% ISO. Similar pulps were also obtained at 110 °C or 105 °C with a cooking time of 90 min. Compared with pulps obtained at higher temperatures (115-125 °C), this pulp had higher screened yield, brightness, and acceptable viscosity, while the delignification degree was moderate. These results indicated that soda-oxygen pulping at 100 °C, the lowest cooking temperature reported so far for soda-oxygen pulping, is a suitable process for making chemical pulp from bagasse. Pulping at lower temperature and using oxygen make it an environmental friendly and energy-saving pulping process.

  4. Transition metal catalyzed oxidation of Alcell lignin, soda lignin, and lignin model compounds in ionic liquids

    NARCIS (Netherlands)

    Zakzeski, J.|info:eu-repo/dai/nl/326160256; Jongerius, A.L.|info:eu-repo/dai/nl/325840202; Weckhuysen, B.M.|info:eu-repo/dai/nl/285484397

    2013-01-01

    Lignin is a component of lignocellulosic biomass from which important aromatic compounds can potentially be obtained. In the present work, Alcell and soda lignin were dissolved in the ionic liquid 1-ethyl-3-methylimidazolium diethylphosphate (EMIM DEP) and subsequently oxidized using several transit

  5. Transition metal catalyzed oxidation of Alcell lignin, soda lignin, and lignin model compounds in ionic liquids

    NARCIS (Netherlands)

    Zakzeski, J.|info:eu-repo/dai/nl/326160256; Jongerius, A.L.|info:eu-repo/dai/nl/325840202; Weckhuysen, B.M.|info:eu-repo/dai/nl/285484397

    2013-01-01

    Lignin is a component of lignocellulosic biomass from which important aromatic compounds can potentially be obtained. In the present work, Alcell and soda lignin were dissolved in the ionic liquid 1-ethyl-3-methylimidazolium diethylphosphate (EMIM DEP) and subsequently oxidized using several

  6. NEWSPRINT FROM SODA BAGASSE PULP IN ADMIXTURE WITH HARDWOOD CMP PULP

    OpenAIRE

    Seed Rahman Jafari Petroudy; Hossein Resalati Mail; pejman Rezayati Charani Mail

    2011-01-01

    Based on global research and experiences producing newsprint from bagasse, the possibility of using bagasse chemical pulp in the furnish of local mill-made mixed hardwood CMP pulp was studied at laboratory scale, for making newsprint. Bagasse soda chemical pulp at digester yield of about 47% was bleached to about 60% brightness by single stage hydrogen peroxide. The effects of using up to 30% bagasse chemical pulp in a blend with hardwood CMP pulp, with or without softwood kraft pulp, were st...

  7. NEWSPRINT FROM SODA BAGASSE PULP IN ADMIXTURE WITH HARDWOOD CMP PULP

    Directory of Open Access Journals (Sweden)

    Seed Rahman Jafari Petroudy

    2011-05-01

    Full Text Available Based on global research and experiences producing newsprint from bagasse, the possibility of using bagasse chemical pulp in the furnish of local mill-made mixed hardwood CMP pulp was studied at laboratory scale, for making newsprint. Bagasse soda chemical pulp at digester yield of about 47% was bleached to about 60% brightness by single stage hydrogen peroxide. The effects of using up to 30% bagasse chemical pulp in a blend with hardwood CMP pulp, with or without softwood kraft pulp, were studied. The results showed that superior hand sheet properties could be achieved by using bagasse chemical pulp; in comparison with main mill pulp furnish (83% hardwood CMP pulp and 17% imported long fiber pulp. In other words, by using bagasse chemical pulp in a blend with local mill made hardwood CMP pulp, acceptable newsprint could be made with considerable reduction in the consumptions of hardwood species and softwood reinforcing kraft pulp.

  8. APPLICATION OF SURFACTANTS AS PULPING ADDITIVES IN SODA PULPING OF BAGASSE

    Directory of Open Access Journals (Sweden)

    Yahya Hamzeh

    2009-11-01

    Full Text Available The effects of several non-ionic commercial surfactants and their dosage on soda pulping and ECF bleaching of soda and soda-surfactant pulps of bagasse were investigated. The properties of bleachable pulps obtained with conventional soda and with soda-surfactants were studied and compared. The results showed application of surfactants during the soda pulping of bagasse decreased kappa number and improved the yield and brightness of resulting pulp. Using the surfactants reduced alkali consumption during pulping. The bleaching experiments showed that the pulps obtained with the three types of applied surfactants namely, ELA-2, FAE-20, and PEG1000 could be easily bleached with D0ED1 or D0EpD1 sequences. The addition of most used surfactants in soda pulping of bagasse led to higher brightness in comparison to reference pulp with the same bleaching sequence. Strength properties of bleached pulps obtained with surfactants were higher than the pulp obtained with conventional soda pulping.

  9. Decomposition of lignin from sugar cane bagasse during ozonation process monitored by optical and mass spectrometries.

    Science.gov (United States)

    Souza-Corrêa, J A; Ridenti, M A; Oliveira, C; Araújo, S R; Amorim, J

    2013-03-21

    Mass spectrometry was used to monitor neutral chemical species from sugar cane bagasse that could volatilize during the bagasse ozonation process. Lignin fragments and some radicals liberated by direct ozone reaction with the biomass structure were detected. Ozone density was monitored during the ozonation by optical absorption spectroscopy. The optical results indicated that the ozone interaction with the bagasse material was better for bagasse particle sizes less than or equal to 0.5 mm. Both techniques have shown that the best condition for the ozone diffusion in the bagasse was at 50% of its moisture content. In addition, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) were employed to analyze the lignin bond disruptions and morphology changes of the bagasse surface that occurred due to the ozonolysis reactions as well. Appropriate chemical characterization of the lignin content in bagasse before and after its ozonation was also carried out.

  10. Lewis acid-catalyzed depolymerization of soda lignin in supercritical ethanol/water mixtures

    NARCIS (Netherlands)

    Güvenatam, Burcu; Heeres, Erik H.J.; Pidko, Evgeny A.; Hensen, Emiel J M

    2016-01-01

    The depolymerization of lignin model compounds and soda lignin by super Lewis acidic metal triflates has been investigated in a mixture of ethanol and water at 400 °C. The strong Lewis acids convert representative model compounds for the structure-forming linkages in lignin, namely α-O-4, 5-O-4

  11. CHARACTERISTICS OF LIGNIN REACTIONS IN SODA COOKING OF WHEAT STRAW——PART 1 REACTION OF UNCONDENSED LIGNIN

    Institute of Scientific and Technical Information of China (English)

    HuaminZhai; YuanzongLai

    2004-01-01

    Characteristics of uncondensed lignin reactions in soda cooking of wheat straw were studied. Mild and intense cooking conditions were used to get the pulp sample in which lignin was dissolved physically and the pulp sample in which lignin was dissolved chemically respectively. The pulp samples were analyzed by phenolic group determination, alkaline nitrobenzene oxidation and ozonation method. The results indicated that around 90% of lignin in wheat straw is alkali-soluble at the mild conditions, is basically dissolved physically without chemical change. The phenolic group content was not changed greatly, the nitrobenzene oxidation yield only changed slightly during the mild cooking. The phenolic group content was increased obviously and uncondensed lignin content was decreased very much when the intense cooking conditions were applied and the delignification was over 90%. The lignin structure was changed greatly during this period.

  12. Flocculation of high purity wheat straw soda lignin

    Science.gov (United States)

    Flocculant action on lignocellulose mixtures has been studied, but flocculant action on purified sulfur-free lignin has not been reported. In the last step of the industrial process, the purified lignin solution is acidified with sulfuric acid which causes the lignin to become insoluble. The feasi...

  13. Hydrogenolysis and Activation of Soda Lignin Using [BMIM]Cl as a Catalyst and Solvent

    Directory of Open Access Journals (Sweden)

    Shengming Zhang

    2017-07-01

    Full Text Available To improve the reactivity of the soda lignin, an acid ionic liquid 1-butyl-3-mthylimidazolium chloride ([BMIM]Cl was used as the catalyst and solvent to degrade the soda lignin through hydrogenolysis. Structural elucidation of the lignin samples was conducted by using a combination of analytical methods including chemical analysis, ultraviolet spectrophotometry (UV spectrophotometry, Fourier transform infrared spectroscopy (FT-IR spectra, two-dimensional heteronuclear single quantum coherence nuclear magnetic resonance (2D-HSQC NMR techniques, and gel permeation chromatography (GPC. The antioxidant activities of the lignin samples were evaluated using the diammonium 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonate (ABTS+ radical scavenging and 1,1-diphenyl-2-picrylhydrazyl (DPPH radical scavenging methods. The degradation mechanism was proposed based on the characterization results. The optimal reaction condition was as follows: the concentration of [BMIM]Cl in the solution was 10 wt %, the hydrogen initial pressure was 3 MPa, and the solution was heated for 4 h at 90 °C. After the reaction, the total hydroxyl content of the soda lignin increased by 81.3%, while the phenolic hydroxyl content increased by 23.1%. At the same time, the weight-average molar mass of the soda lignin sample decreased from 8220 to 6450 g/mol with an improved antioxidant activity. In addition, approximately 56.7% of the β-O-4 linkages were degraded in the lreaction. The main effect of the acid ionic liquid [BMIM]C1 was related to the cleavage of β-O-4 linkages. This study has shown the potential of using the catalyzed soda lignin as a natural polymer antioxidant.

  14. Purification of empty fruit bunch (EFB) and kenaf soda lignin with acidified water

    Science.gov (United States)

    Hashim, Sharifah Nurul Ain Syed; Zakaria, Sarani; Jaafar, Sharifah Nabihah Syed; Hua, Chia Chin

    2014-09-01

    In this current study, the soda lignins from empty fruit bunch (EFB) and kenaf core were recovered by two step precipitation method. The objective of this research is to study the purity of lignin by washing the lignins with acidified water. The purified lignins were undergone characterization by FT-IR, Uv-Vis and XRD. The FT-IR analysis shows that kenaf core has Guaiacyl(G) and Syringyl(S) unit meanwhile EFB has Hydroxyphenyl(H), Guaiacyl(G) and Syringyl(S) unit of lignin. As for XRD analysis, the non-purified shows that the existence of impurities which is salt (NaCl). The UV analysis shows the higher absorbance which lead to the purity of lignin.

  15. Isolation and Characterization of Gramineae and Fabaceae Soda Lignins

    Science.gov (United States)

    Domínguez-Robles, Juan; Sánchez, Rafael; Espinosa, Eduardo; Savy, Davide; Mazzei, Pierluigi; Piccolo, Alessandro; Rodríguez, Alejandro

    2017-01-01

    Some agricultural residues such as wheat or barley straw, as well as certain fast-growing plants like Leucaena leucocephala and Chamaecytisus proliferus, could be used as raw materials for the paper industry as an alternative to traditional plants (eucalyptus, pine, etc.). In the present study, four types of lignin obtained from the spent liquors produced by the pulping processes using the abovementioned feedstocks were isolated and characterized. Lignin samples were acquired through an acid precipitation from these spent liquors. The characterization of the precipitated lignin samples were performed using a Fourier transform infrared spectroscopy (FT-IR) and both liquid- and solid-state nuclear magnetic resonance spectroscopy (NMR) to analyse the chemical structure, and thermogravimetric analysis (TGA) for determining the thermal properties. Additionally, chemical composition of lignin fractions was also measured. Even though they were of different botanical origin, all the studied samples except for wheat straw lignin had a similar chemical composition and thermal behaviour, and identical chemical structure. Wheat straw lignin showed a greater amount of Klason lignin and lower carbohydrate content. Furthermore, this lignin sample showed a higher thermal stability and significantly different cross-peak patterns in the 2D-NMR experiments. The molecular structures corresponding to p-coumarate (PCA), ferulate (FA) and cinnamyl aldehyde end-groups (J) were only detected in wheat isolated lignin. PMID:28165411

  16. Isolation and Characterization of Gramineae and Fabaceae Soda Lignins

    Directory of Open Access Journals (Sweden)

    Juan Domínguez-Robles

    2017-02-01

    Full Text Available Some agricultural residues such as wheat or barley straw, as well as certain fast-growing plants like Leucaena leucocephala and Chamaecytisus proliferus, could be used as raw materials for the paper industry as an alternative to traditional plants (eucalyptus, pine, etc.. In the present study, four types of lignin obtained from the spent liquors produced by the pulping processes using the abovementioned feedstocks were isolated and characterized. Lignin samples were acquired through an acid precipitation from these spent liquors. The characterization of the precipitated lignin samples were performed using a Fourier transform infrared spectroscopy (FT-IR and both liquid- and solid-state nuclear magnetic resonance spectroscopy (NMR to analyse the chemical structure, and thermogravimetric analysis (TGA for determining the thermal properties. Additionally, chemical composition of lignin fractions was also measured. Even though they were of different botanical origin, all the studied samples except for wheat straw lignin had a similar chemical composition and thermal behaviour, and identical chemical structure. Wheat straw lignin showed a greater amount of Klason lignin and lower carbohydrate content. Furthermore, this lignin sample showed a higher thermal stability and significantly different cross-peak patterns in the 2D-NMR experiments. The molecular structures corresponding to p-coumarate (PCA, ferulate (FA and cinnamyl aldehyde end-groups (J were only detected in wheat isolated lignin.

  17. Fractionation of bagasse into cellulose, hemicelluloses, and lignin with ionic liquid treatment followed by alkaline extraction.

    Science.gov (United States)

    Lan, Wu; Liu, Chuan-Fu; Sun, Run-Cang

    2011-08-24

    Lignocellulose materials are potentially valuable resources for transformation into biofuels and bioproducts. However, their complicated structures make it difficult to fractionate them into cellulose, hemicelluloses, and lignin, which limits their utilization and economical conversion into value-added products. This study proposes a novel and feasible fractionation method based on complete dissolution of bagasse in 1-butyl-3-methylimidazolium chloride ([C(4)mim]Cl) followed by precipitation in acetone/water (9:1, v/v) and extraction with 3% NaOH solution. The ionic liquid [C(4)mim]Cl was easily recycled after concentration and treatment with acetonitrile. (1)H NMR analysis confirmed that there was no obvious difference between the recycled [C(4)mim]Cl and fresh material. Bagasse was fractionated with this method to 36.78% cellulose, 26.04% hemicelluloses, and 10.51% lignin, accounting for 47.17 and 33.85% of the original polysaccharides and 54.62% of the original lignin, respectively. The physicochemical properties of the isolated fractions were characterized by chemical analysis, high-performance anion exchange chromatography (HPAEC), gel permeation chromatography (GPC), Fourier transform infrared (FT-IR), and (1)H and 2D (13)C-(1)H correlation (HSQC) nuclear magnetic resonance spectroscopy. The results showed that the acetone-soluble lignin and alkaline lignin fractions had structures similar to those of milled wood lignin (MWL). The easy extraction of the noncellulose components from homogeneous bagasse solution and amorphous regenerated materials resulted in the relatively high purity of cellulosic fraction (>92%). The hemicellulosic fraction was mainly 4-O-methyl-D-glucuronoxylans with some α-L-arabinofuranosyl units substituted at C-2 and C-3.

  18. Characterization of Hardwood Soda-AQ Lignins Precipitated from Black Liquor through Selective Acidification

    OpenAIRE

    Kumar, Hemanathan; Alén, Raimo; Sahoo, Gokarneswar

    2016-01-01

    In the development of integrated biorefinery process alternatives to produce value-added by-products, various black liquors from sulfur-free pulping processes offer potential feedstocks for recovering their main chemical constituents, lignin and aliphatic carboxylic acids. In this study, lignin fractions were obtained from silver birch (Betula pendula) soda-anthraquinone black liquor by carbonation (pH to about 8.5) or by acidification (pH to about 2) with H2SO4 after carbonation or directly....

  19. Lignin solubilization and aqueous phase reforming for the production of aromatic chemicals and hydrogen

    NARCIS (Netherlands)

    Zakzeski, J.; Weckhuysen, B.M.

    2011-01-01

    The solubilization and aqueous phase reforming of lignin, including kraft, soda, and alcell lignin along with sugarcane bagasse, at low temperatures (T≤498 K) and pressures (P≤29 bar) is reported for the first time for the production of aromatic chemicals and hydrogen. Analysis of lignin model compo

  20. Lignin solubilization and aqueous phase reforming for the production of aromatic chemicals and hydrogen

    NARCIS (Netherlands)

    Zakzeski, J.; Weckhuysen, B.M.

    2011-01-01

    The solubilization and aqueous phase reforming of lignin, including kraft, soda, and alcell lignin along with sugarcane bagasse, at low temperatures (T≤498 K) and pressures (P≤29 bar) is reported for the first time for the production of aromatic chemicals and hydrogen. Analysis of lignin model

  1. Extraction of lignin from sugar cane bagasse and its modification into a high performance dispersant for pesticide formulations

    OpenAIRE

    Li, Zhili; Ge, Yuanyuan

    2011-01-01

    In order to effectively utilize a by-product of non-wood material, lignin was extracted from sugar cane bagasse via acidification of black liquor. The extracted sugar cane bagasse lignin (EBL) was modified by oxidation, hydroxymethylation, and sulfonation into a water-soluble lignosulfonate (EBL-M). It was characterized by IR, UV, GPC and elemental analysis. The results showed that the aromatic units of EBL-M were kept well and it was effectively sulfonated, that the percentage of S was high ...

  2. Fungal pretreatment of sweet sorghum bagasse with supplements: improvement in lignin degradation, selectivity and enzymatic saccharification.

    Science.gov (United States)

    Mishra, Vartika; Jana, Asim K; Jana, Mithu Maiti; Gupta, Antriksh

    2017-06-01

    Sweet sorghum bagasse (SSB) from food processing and agricultural industry has attracted the attention for uses in production of biofuel, enzymes and other products. The alteration in lignocellulolytic enzymes by use of supplements in fungal pretreatment of SSB to achieve higher lignin degradation, selectivity value and enzymatic hydrolysis to fermentable sugar was studied. Fungal strain Coriolus versicolor was selected for pretreatment due to high ligninolytic and low cellulolytic enzyme production resulting in high lignin degradation and selectivity value. SSB was pretreated with supplements of veratryl alcohol, syringic acid, catechol, gallic acid, vanillin, guaiacol, CuSO4 and MnSO4. The best results were obtained with CuSO4, gallic acid and syringic acid supplements. CuSO4 increased the activities of laccase (4.9-fold) and polyphenol oxidase (1.9-fold); gallic acid increased laccase (3.5-fold) and manganese peroxidase (2.5-fold); and syringic acid increased laccase (5.6-fold), lignin peroxidase (13-fold) and arylalcohol oxidase (2.8-fold) resulting in enhanced lignin degradations and selectivity values than the control. Reduced cellulolytic enzyme activities resulted in high cellulose recovery. Enzymatic hydrolysis of pretreated SSB yielded higher sugar due to degradation of lignin and reduced the crystallinity of cellulose. The study showed that supplements could be used to improve the pretreatment process. The results were confirmed by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy and thermogravimetric/differential thermogravimetric analysis of SSB.

  3. Lignin from sugar cane bagasse: extraction, fabrication of nanostructured films, and application.

    Science.gov (United States)

    Pereira, A A; Martins, G F; Antunes, P A; Conrrado, R; Pasquini, D; Job, A E; Curvelo, A A S; Ferreira, M; Riul, A; Constantino, C J L

    2007-06-05

    Four lignin samples were extracted from sugar cane bagasse using four different alcohols (methanol, ethanol, n-propanol, and 1-butanol) via the organosolv-CO2 supercritical pulping process. Langmuir films were characterized by surface pressure vs mean molecular area (Pi-A) isotherms to exploit information at the molecular level carrying out stability tests, cycles of compression/expansion (hysteresis), subphase temperature variations, and metallic ions dissolved into the water subphase at different concentrations. Briefly, it was observed that these lignins are relatively stable on the water surface when compared to those obtained via different extraction processes. Besides, the Pi-A isotherms are shifted to smaller molecular areas at higher subphase temperatures and to larger molecular areas when the metallic ions are dissolved into the subphase. The results are related to the formation of stable aggregates (domains) onto the water subphase by these lignins, as shown in the Pi-A isotherms. It was found as well that the most stable lignin monolayer onto the water subphase is that extracted with 1-butanol. Homogeneous Langmuir-Blodgett (LB) films of this lignin could be produced as confirmed by UV-vis absorption spectroscopy and the cumulative transfer parameter. In addition, FTIR analysis showed that this lignin LB film is structured in a way that the phenyl groups are organized preferentially parallel to the substrate surface. Further, these LB films were deposited onto gold interdigitated electrodes and ITO and applied in studies involving the detection of Cd+2 ions in aqueous solutions at low concentration levels through impedance spectroscopy and electrochemical measurements. FTIR spectroscopy was carried out before and after soaking the thin films into Cd+2 aqueous solutions, revealing a possible physical interaction between the lignin phenyl groups and the heavy metal ions. The importance of using nanostructured systems is demonstrated as well by comparing

  4. Isolation and structural characterization of sugarcane bagasse lignin after dilute phosphoric acid plus steam explosion pretreatment and its effect on cellulose hydrolysis.

    Science.gov (United States)

    Zeng, Jijiao; Tong, Zhaohui; Wang, Letian; Zhu, J Y; Ingram, Lonnie

    2014-02-01

    The structure of lignin after dilute phosphoric acid plus steam explosion pretreatment process of sugarcane bagasse in a pilot scale and the effect of the lignin extracted by ethanol on subsequent cellulose hydrolysis were investigated. The lignin structural changes caused by pretreatment were identified using advanced nondestructive techniques such as gel permeation chromatography (GPC), quantitative (13)C, and 2-D nuclear magnetic resonance (NMR). The structural analysis revealed that ethanol extractable lignin preserved basic lignin structure, but had relatively lower amount of β-O-4 linkages, syringyl/guaiacyl units ratio (S/G), p-coumarate/ferulate ratio, and other ending structures. The results also indicated that approximately 8% of mass weight was extracted by pure ethanol. The bagasse after ethanol extraction had an approximate 22% higher glucose yield after enzyme hydrolysis compared to pretreated bagasse without extraction. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Biodegradation behaviors and color change of composites based on type of bagasse pulp/polylactic acid

    Directory of Open Access Journals (Sweden)

    maryam allahdadi

    2017-05-01

    Full Text Available In this research, appearance quality and decay resistance of polylactic acid (PLA based green composites made from monoethanolamine (MEA bagasse pulp, alkaline sulfite-anthraquinone (AS bagasse pulp, bleached soda (B S bagasse pulp, unbleached soda (UN S bagasse pulp (UN S bagasse pulp and raw bagasse fibers (B were investigated. For the investigation of biodegradation behaviors, effect of the white rot fungi (Coriolus versicolor on the neat PLA and composites with natural fibers during 30 and 60 days were studied. It is found that when the bagasse fibers were incorporated into composites matrix, percentage weight reduction and stiffness of samples have been increased. Also, the rate of loss mentioned of the composites made from bagasse pulp fibers were superior to the relevant raw bagase fibers. This can be explained by the removal of non-cellulosic components such as lignin and hemicelluloses from the fibers by pulping process. Also, the results indicates the inferior of surface qualities of fabricated composites regarding to neat PLA. Depending on the fiber type, different reductions of the surface qualities were attained. However, the degree of color change of the composites with any type of bagasse pulp fibers were lower compared with composite with raw bagasse fiber. Finally, as compared with the raw bagasse fibers, bagasse pulp fibers have better reinforcing capability.

  6. Effect of Bagasse Chemical Pulping and Coupling Agent on the Physical - Mechanical Properties of Composites Based on Bagasse pulp/Low density polyethylene

    Directory of Open Access Journals (Sweden)

    maryam allahdadi

    2016-12-01

    Full Text Available In this research, effect of reinforcing bagasse pulp and raw bagasse fibers and applying coupling agent MAPE (Maleic Anhydride Polyethylene on physical-mechanical properties of low density polyethylene (LDPE composites were studided. Fresh bagasse were collected from an experimental field in Khuzestan and after investigating anatomy and chemical properties of Different pulp fibers including monoethanolamine (MEA bagasse pulp, alkaline sulfite-anthraquinone (AS bagasse pulp, bleached soda (BS bagasse pulp, unbleached soda (UNS bagasse pulp and raw bagasse fibers (B were prepared. Then, composites with 30wt.% fiber content were manufactured by twin-screw extrusion followed by compression molding processing. The mechanical and physical properties of these composites were analyzed and compared. Results revealed that the chemical pulping dissolved a fraction of lignin and hemicelluloses so that the linkage potential and aspect ratio of bagasse fibers was improved and consequently, as compared with the raw bagasse fibers, bagasse pulp fibers have better reinforcing capability. The best overall properties were achieved with MEA and AS/AQ fibers. Addition of 5% (wt/wt of coupling agent MAPE resulted in a significant enhancement in the tensile strength, tensile modulus and impact strength in line with the improvement of the fiber-matrix interfacial adhesion making more effective the transfer of stress from the matrix to the rigid reinforcement.

  7. Use of steam explosion liquor from sugar cane bagasse for lignin peroxidase production by Phanerochaete chrysosporium.

    Science.gov (United States)

    Ferrara, Maria Antonieta; Bon, Elba P S; Araujo Neto, Julio Silva

    2002-01-01

    The possibility of using two by-products of the sugar cane industry, molasses and bagasse steam explosion liquor (SEL), for lignin peroxidase (LiP) production by Phanerochaete chrysosporium was investigated. For comparison, the fungus was initially cultivated in synthetic media containing either glucose, sucrose, xylose, or xylan as sole carbon sources. The effect of veratryl alcohol (VA) was also investigated in relation to the enzyme activity levels. Results showed that sucrose was not metabolized by this fungus, which precluded the use of molasses as a carbon source. Glucose, xylose, and xylan promoted equivalent cell growth. Enzyme levels in the absence of VA were lower than 28 UI/L and in the presence of VA reached 109 IU/L with glucose and 85 IU/L with xylose or xylan. SEL was adequate for P. chrysosporium LiP production as LiP activity reached 90 IU/L. When VA was added to this medium, enzyme concentration increased to 155 IU/L.

  8. Integrated processes for use of pulps and lignins obtained from sugarcane bagasse and straw: a review of recent efforts in Brazil.

    Science.gov (United States)

    Gonçalves, Adilson R; Benar, Priscila; Costa, Sirlene M; Ruzene, Denise S; Moriya, Regina Y; Luz, Sandra M; Ferretti, Lais P

    2005-01-01

    Sugarcane bagasse and straw can be converted into pulps, oils, controlled-release formulations, chelating agents, and composites. This article reviews bagasse and straw conversion efforts in Brazil. Laboratory-scale processes were developed aiming at the integral use of these biomass byprod ucts. Organosolv pulping and oxidation of lignin are the most promising processes for the rational use of sugarcane residues. Fungal pretreatment and spectroscopic characterization are also discussed.

  9. Comparison of lignin extraction processes: Economic and environmental assessment.

    Science.gov (United States)

    Carvajal, Juan C; Gómez, Álvaro; Cardona, Carlos A

    2016-08-01

    This paper presents the technical-economic and environmental assessment of four lignin extraction processes from two different raw materials (sugarcane bagasse and rice husks). The processes are divided into two categories, the first processes evaluates lignin extraction with prior acid hydrolysis step, while in the second case the extraction processes are evaluated standalone for a total analysis of 16 scenarios. Profitability indicators as the net present value (NPV) and environmental indicators as the potential environmental impact (PEI) are used through a process engineering approach to understand and select the best lignin extraction process. The results show that both economically and environmentally process with sulfites and soda from rice husk presents the best results; however the quality of lignin obtained with sulfites is not suitable for high value-added products. Then, the soda is an interesting option for the extraction of lignin if high quality lignin is required for high value-added products at low costs.

  10. Enhancement in multiple lignolytic enzymes production for optimized lignin degradation and selectivity in fungal pretreatment of sweet sorghum bagasse.

    Science.gov (United States)

    Mishra, Vartika; Jana, Asim K; Jana, Mithu Maiti; Gupta, Antriksh

    2017-07-01

    The objective of this work was to study the increase in multiple lignolytic enzyme productions through the use of supplements in combination in pretreatment of sweet sorghum bagasse (SSB) by Coriolus versicolor such that enzymes act synergistically to maximize the lignin degradation and selectivity. Enzyme activities were enhanced by metallic salts and phenolic compound supplements in SSF. Supplement of syringic acid increased the activities of LiP, AAO and laccase; gallic acid increased MnP; CuSO4 increased laccase and PPO to improve the lignin degradations and selectivity individually, higher than control. Combination of supplements optimized by RSM increased the production of laccase, LiP, MnP, PPO and AAO by 17.2, 45.5, 3.5, 2.4 and 3.6 folds respectively for synergistic action leading to highest lignin degradation (2.3 folds) and selectivity (7.1 folds). Enzymatic hydrolysis of pretreated SSB yielded ∼2.43 times fermentable sugar. This technique could be widely applied for pretreatment and enzyme productions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Valorization of an industrial organosolv-sugarcane bagasse lignin: Characterization and use as a matrix in biobased composites reinforced with sisal fibers.

    Science.gov (United States)

    Ramires, Elaine C; Megiatto, Jackson D; Gardrat, Christian; Castellan, Alain; Frollini, Elisabete

    2010-11-01

    In the present study, the main focus was the characterization and application of the by-product lignin isolated through an industrial organosolv acid hydrolysis process from sugarcane bagasse, aiming at the production of bioethanol. The sugarcane lignin was characterized and used to prepare phenolic-type resins. The analysis confirmed that the industrial sugarcane lignin is of HGS type, with a high proportion of the less substituted aromatic ring p-hydroxyphenyl units, which favors further reaction with formaldehyde. The lignin-formaldehyde resins were used to produce biobased composites reinforced with different proportions of randomly distributed sisal fibers. The presence of lignin moieties in both the fiber and matrix increases their mutual affinity, as confirmed by SEM images, which showed good adhesion at the biocomposite fiber/matrix interface. This in turn allowed good load transference from the matrix to the fiber, leading to biobased composites with good impact strength (near 500 J m(-1) for a 40 wt% sisal fiber-reinforced composite). The study demonstrates that sugarcane bagasse lignin obtained from a bioethanol plant can be used without excessive purification in the preparation of lignocellulosic fiber-reinforced biobased composites displaying high mechanical properties.

  12. Comparative study of lignin characteristics from wheat straw obtained by soda-AQ and kraft pretreatment and effect on the following enzymatic hydrolysis process.

    Science.gov (United States)

    Yang, Haitao; Xie, Yimin; Zheng, Xing; Pu, Yunqiao; Huang, Fang; Meng, Xianzhi; Wu, Weibing; Ragauskas, Arthur; Yao, Lan

    2016-05-01

    To understand the structural changes of lignin after soda-AQ and kraft pretreatment, milled straw lignin, black liquor lignin and residual lignin extracted from wheat straw were characterized by FT-IR, UV, GPC and NMR. The results showed that the main lignin linkages were β-aryl ether substructures (β-O-4'), followed by phenylcoumaran (β-5') and resinol (β-β') substructures, while minor content of spirodienone (β-1'), dibenzodioxocin (5-5') and α,β-diaryl ether linkages were detected as well. After pretreatment, most lignin inter-units and lignin-carbohydrate complex (LCC) linkages were degraded and dissolved in black liquor, with minor amount left in residual pretreated biomass. In addition, through quantitative (13)C and 2D-HSQC NMR spectral analysis, lignin and LCC were found to be more degraded after kraft pretreatment than soda-AQ pretreatment. Furthermore, the subsequent enzymatic hydrolysis results showed that more cellulose in wheat straw was converted to glucose after kraft pretreatment, indicating that LCC linkages were important in the enzymatic hydrolysis process.

  13. Recovery of wheat straw soda lignin using flocculation by proteins, synthetic flocculants, and a metal coagulant

    Science.gov (United States)

    Non-sulfonated lignin, a byproduct of biomass conversion to fuel ethanol, is finding increasing applications and can be converted to chemical substances which replace those obtained from petrochemicals. To date, most studies of flocculant function on non-sulfonated lignin have used mixtures of lign...

  14. Flocculation of wheat straw soda lignin by hemoglobin and chicken blood: Effects of cationic polymer or calcium chloride

    Science.gov (United States)

    Flocculation can be used to separate non-sulfonated lignin from base hydrolyzed biomass. In the industrial process, the lignin is isolated by filtration and washed with water. Some of the lignin is lost in the wash water, and flocculation can be used to recover this lignin. Several ways of enhanc...

  15. Polymerization of different lignins by laccase

    NARCIS (Netherlands)

    Mattinen, M.L.; Suortti, T.; Gosselink, R.J.A.; Argyropoulos, D.S.; Evtuguin, D.; Suurnäkki, A.; Jong, de E.; Tamminen, T.

    2008-01-01

    In this study the oxidative polymerization of different lignins, i.e. Flax Soda lignin, Spruce EMAL, and Eucalyptus Dioxane lignin by Trametes hirsuta laccase was compared. Initially the structures of the different lignins were compared by Fourier transform infrared spectroscopy. The reactivity of l

  16. Dissolution of wood flour and lignin in 1-butyl-3-methyl-1-imidazolium chloride

    Directory of Open Access Journals (Sweden)

    Yasmin Nasiri Khonsari

    2013-10-01

    Full Text Available The ionic solvent, 1-butyl-3-methyl imidazolium chloride was used to dissolve the samples. Two lignocellulosic material including bagasse soda lignin and Populus deltoides wood flour were used. One gram of samples were dissolved in 10 ml ionic solvent, 1-butyl-3-methyl- imidazolium chloride at 70 ºC for 72 h while stirring with a magnetic stirrer. The wood flour and lignin samples were acetylated with addition of acetic anhydride to each container with a ratio of 0.25 ml/ 0.25 ml. The samples were heated for 3 days at 110 ° C. Two control samples (without acetylation and two treatments (acetylation were used. The functional groups were determined using FT-IR Spectrometer. The number and type of carbon and their structure were examined using 13CNMR Spectrometer. The guaiacyl, syringyl, coniferyl alcohol and biphenyls structures were identified.

  17. Bagasse paper from squeezed sugar cane refuse; Satokibi no shiborikasu kara umareta bagasse shi ni suite

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimura, T.; Mochizuki, Y.; Hara, H. [Mishima Paper Co. Ltd., Tokyo (Japan)

    1998-07-01

    This paper describes paper making from sugar cane bagasse. Sugar cane stem includes water content of 70-75% and sugar content of nearly 20%. Squeezed sugar cane bagasse is composed of water content of 45%, cell content of 50% and sugar content of 5%. Chemical composition of bagasse is composed of cellulose of 46.0-62.9%, lignin of 16.4-22.5%, pentosan of 25.5-33.4% and ash of 1.0-5.4%, including rich lignin and hemicellulose as compared with flax. Bagasse fiber is featured by length of 0.5-2.5mm and weight average fiber length of nearly 1.5mm, showing a property more close to wood pulp than flax or cotton fiber. Under the same beating condition, non-wood pulp such as flax and kenaf (ambary) pulp forms bulky low-density sheet, while bagasse pulp generally forms high-density sheet. Bagasse paper with basic characteristics as printing paper can be manufactured through appropriate beating treatment of bagasse pulp after appropriate de-pith, digestion and bleaching treatments. 14 refs., 15 figs., 13 tabs.

  18. New insights into the structure and composition of technical lignins: a comparative characterisation study

    NARCIS (Netherlands)

    Constant, Sandra; Wienk, Hans L.J.; Frissen, A.E.; Peinder, de Peter; Boelens, Rolf; Es, van D.S.; Grisel, Ruud J.H.; Weckhuysen, Bert M.; Huijgen, W.J.J.; Gosselink, R.J.A.; Bruijnincx, Pieter C.A.

    2016-01-01

    Detailed insight into the structure and composition of industrial (technical) lignins is needed to deviseefficient thermal, bio- or chemocatalytic valorisation strategies. Six such technical lignins covering threemain industrial pulping methods (Indulin AT Kraft, Protobind 1000 soda lignin and

  19. New insights into the structure and composition of technical lignins : A comparative characterisation study

    NARCIS (Netherlands)

    Constant, Sandra|info:eu-repo/dai/nl/374650519; Wienk, Hans L J|info:eu-repo/dai/nl/203884884; Frissen, Augustinus E.; Peinder, Peter De|info:eu-repo/dai/nl/325810818; Boelens, Rolf|info:eu-repo/dai/nl/070151407; Van Es, Daan S.; Grisel, Ruud J H; Weckhuysen, Bert M.|info:eu-repo/dai/nl/285484397; Huijgen, Wouter J J; Gosselink, Richard J A; Bruijnincx, Pieter C A|info:eu-repo/dai/nl/33799529X

    2016-01-01

    Detailed insight into the structure and composition of industrial (technical) lignins is needed to devise efficient thermal, bio- or chemocatalytic valorisation strategies. Six such technical lignins covering three main industrial pulping methods (Indulin AT Kraft, Protobind 1000 soda lignin and

  20. New insights into the structure and composition of technical lignins: a comparative characterisation study

    NARCIS (Netherlands)

    Constant, Sandra; Wienk, Hans L.J.; Frissen, A.E.; Peinder, de Peter; Boelens, Rolf; Es, van D.S.; Grisel, Ruud J.H.; Weckhuysen, Bert M.; Huijgen, W.J.J.; Gosselink, R.J.A.; Bruijnincx, Pieter C.A.

    2016-01-01

    Detailed insight into the structure and composition of industrial (technical) lignins is needed to deviseefficient thermal, bio- or chemocatalytic valorisation strategies. Six such technical lignins covering threemain industrial pulping methods (Indulin AT Kraft, Protobind 1000 soda lignin and Alcel

  1. Sugarcane bagasse lignin, and silica gel and magneto-silica as drug vehicles for development of innocuous methotrexate drug against rheumatoid arthritis disease in albino rats

    Energy Technology Data Exchange (ETDEWEB)

    Wahba, Sanaa M.R. [Zoology department, Women College, Ain-Shams University,11566 Cairo (Egypt); Darwish, Atef S., E-mail: atef_mouharam@sci.asu.edu.eg [Chemistry department, Faculty of Science, Ain Shams University, Cairo (Egypt); Shehata, Iman H. [Microbiology and Immunology Department, Faculty of Medicine, Ain-Shams University, Cairo (Egypt); Abd Elhalem, Sahar S. [Zoology department, Women College, Ain-Shams University,11566 Cairo (Egypt)

    2015-03-01

    The present study clarifies co-therapy action of deliveries from their textural changes point of view. Methotrexate (MTX) was immobilized onto biodegradable lignin, silica gel and iron/silica nanocomposite. Loaded-MTX was i.p. injected into albino rats at doses of 0.25 and 0.5 mg/kg/week for 2.5 months, after which spleen, liver, testes and knee joint tissues were collected for tests. IFN-γ and IL-17A mRNA gene expressions in spleen in all biological samples were determined by RT-PCR. Physicochemical features of drug carriers were monitored by XRD, BET-PSD, SEM and TEM. Drug inflammatory-site targeting was found to be closely related to the physico-features of deliverers. The interlayered lignin of micro- and meso-pore channels directed MTX toward concealed infected cells in liver and testes tissues, while meso-structured silica flacks satisfied by gathering MTX around knee joints. The magneto-silica nanocomposite targeted MTX toward spleen tissue, which is considered as a lively factory for the production of electron rich compounds. - Highlights: • Opening the door to synthesize smart targeted drug deliveries against RA disease • Therapy action of MTX-laden lignin and Fe{sub 3}O{sub 4}/SiO{sub 2} composite toward RA disease • Procure selective targeted drug deliveries of near 100% curing against RA disease • Revolutionary clinical therapies for RA disease by inventive MTX-delivery models.

  2. Baking soda overdose

    Science.gov (United States)

    Soda loading ... Baking soda contains sodium bicarbonate. ... Symptoms of baking soda overdose include: Constipation Convulsions Diarrhea Feeling of being full Frequent urination Irritability Muscle spasms Muscle weakness Vomiting

  3. Mixture Design Approach on the Physical Properties of Lignin-Resorcinol-Formaldehyde Xerogels

    Directory of Open Access Journals (Sweden)

    Chris D. Castro

    2015-01-01

    Full Text Available Organic xerogels were functionalized by incorporating sugarcane bagasse lignin from soda pulping black liquor, not used so far in this materials, with the aim of introducing new functional groups on traditional gels that could improve its adsorptive capacity. Two mixing designs were applied to identify the reactive combinations that allow a well gel formation and to adjust models that predict physical properties. The designs study five components: resorcinol (R, 0.04–0.3, lignin (L, 0.004–0.14, formaldehyde (F, 0.08–0.17, water (W, 0.45–0.8, and NaOH (C, 0.0003–0.0035. The first experimental design was an extreme vertices design and its results showed shrinkage between 4.3 and 59.7 and a bulk density from 0.54 to 1.3; a mass ratio LR/F near 1.5 was required for gel formation. In the second design a D-Optimal was used to achieve better adjusted coefficients and incorporate the largest possible amount of lignin in the gels. Bulk density varies from 0.42 to 0.9, shrinkage varies from 3.42 to 25.35, and specific surface area reaches values of 451.86 m2/g with 13% lignin and 270 m2/g with 27% lignin. High catalyst content improves lignin dissolution and increase shrinkage and bulk density of xerogels and bulk density. Lignin contributes to reducing shrinkage and specific surface area due to his compact and rigid structure.

  4. Biodegradation of sugarcane bagasse by Pleurotus citrinopileatus.

    Science.gov (United States)

    Pandey, V K; Singh, M P; Srivastava, A K; Vishwakarma, S K; Takshak, S

    2012-12-22

    The chemically as well as hot water treated agrowaste sugarcane bagasse was subjected to degradation by Pleurotus citrinopileatus. The fungus degraded lignin, cellulose, hemicellulose, and carbon content of both chemically as well as hot water treated waste and produced in turn the edible and nutritious fruiting body. Biodegradation of the waste in terms of loss of lignin, cellulose and hemicellulose showed positive correlation with cellulases, xylanase, laccase and polyphenol oxidase (PPO) activity of the fungus. During mycelial growth of the fungus, lignin degradation was faster and during fructification, lignin degradation was slower than cellulose and hemicellulose. The carbon content of the sugarcane bagasse decreased while, nitrogen content increased during degradation of the waste. Hot water treated substrate supported better production of enzymatic activity and degraded more efficiently than chemically sterilized substrate. The total yield and biological efficiency of the mushroom was maximum on the hot water treated substrates. Degradation of the hot water treated sugarcane bagasse was better and faster than chemically treated substrates.

  5. System analyse cellulose ethanol in combines - Combustion characterisation of lignin from cellulose based ethanol production; Systemanalys foer cellulosabaserad etanol i kombinat - Foerbraenningskarakterisering av lignin fraan cellulosabaserad etanolproduktion

    Energy Technology Data Exchange (ETDEWEB)

    Lindstedt, Jan; Wingren, Anders; Magnusson, Staffan; Wiinikka, Henrik; Westbom, Urban; Lidman, Marcus; Groenberg, Carola

    2012-02-15

    In this work 3 different hydrolysed lignin fractions produced from Sugarcane Bagasse, Spruce and Wheat Straw were burned in a 150 kW horizontal furnace equipped with a powder burner to assess the combustion behaviour of hydrolysed lignin fuels. The combustion experiments showed that the feeding properties of all three lignin fractions were better compared to ordinary wood powder

  6. Pretreatment strategies for delignification of sugarcane bagasse: a review

    Directory of Open Access Journals (Sweden)

    Susan Grace Karp

    2013-08-01

    Full Text Available The valorization of agro-residues by biological routes is a key technology that contributes to the development of sustainable processes and the generation of value-added products. Sugarcane bagasse is an agro-residue generated by the sugar and alcohol industry in Brazil (186 million tons per year, composed essentially of cellulose (32-44%, hemicellulose (27-32% and lignin (19-24%. The conversion of sugarcane bagasse into fermentable sugars requires essentially two steps: pretreatment and hydrolysis. The aim of the pretreatment is to separate the lignin and break the structure of lignocellulose, and it is one of the most critical steps in the process of converting biomass to fermentable sugars. The aim of this review is to describe different pretreatment strategies to promote the delignification of the sugarcane bagasse by thermo-chemical and biological processes.

  7. Cytocompatible cellulose hydrogels containing trace lignin.

    Science.gov (United States)

    Nakasone, Kazuki; Kobayashi, Takaomi

    2016-07-01

    Sugarcane bagasse was used as a cellulose resource to prepare transparent and flexible cellulose hydrogel films. On the purification process from bagasse to cellulose, the effect of lignin residues in the cellulose was examined for the properties and cytocompatibility of the resultant hydrogel films. The cellulose was dissolved in lithium chloride/N,N-dimethylacetamide solution and converted to hydrogel films by phase inversion. In the purification process, sodium hydroxide (NaOH) treatment time was changed from 1 to 12h. This resulted in cellulose hydrogel films having small amounts of lignin from 1.62 to 0.68%. The remaining lignin greatly affected hydrogel properties. Water content of the hydrogel films was increased from 1153 to 1525% with a decrease of lignin content. Moreover, lower lignin content caused weakening of tensile strength from 0.80 to 0.43N/mm(2) and elongation from 45.2 to 26.5%. Also, similar tendency was observed in viscoelastic behavior of the cellulose hydrogel films. Evidence was shown that the lignin residue was effective for the high strength of the hydrogel films. In addition, scanning probe microscopy in the morphological observation was suggested that the trace lignin in the cellulose hydrogel affected the cellulose fiber aggregation in the hydrogel network. The trace of lignin in the hydrogels also influenced fibroblast cell culture on the hydrogel films. The hydrogel film containing 1.68% lignin showed better fibroblast compatibility as compared to cell culture polystyrene dish used as reference.

  8. POLYMERIZATION OF DIFFERENT LIGNINS BY LACCASE

    Directory of Open Access Journals (Sweden)

    Maija-Liisa Mattinen

    2008-02-01

    Full Text Available In this study the oxidative polymerization of different lignins, i.e. Flax Soda lignin, Spruce EMAL, and Eucalyptus Dioxane lignin by Trametes hirsuta laccase was compared. Initially the structures of the different lignins were compared by Fourier transform infrared spectroscopy. The reactivity of laccase with the different types of lignins in the absence of mediators was examined and verified by oxygen consumption measurements. The molecular weight distributions of treated and untreated lignins were determined by two different size exclusion chromatography methods. Furthermore, the potential of matrix-assisted laser desorption/ionisation-time of flight-mass spectroscopy for determination of the absolute molecular weights of the different lignins was evaluated. The data showed that all the technical lignins could be activated and polymerized by laccase to different degrees. The efficiency as indicated by measurements of the degree of polymerization was found to increase in the order of Spruce EMAL < Eucalyptus Dioxane lignin < Flax Soda lignin. Overall, this data supplies foundations for using enzymes more efficiently in the enzymatic upgrading of lignin.

  9. 蔗渣碱法蒸煮甲醇发生量与木素溶出率和聚戊糖溶出率的关系%The Relationship between Generation of Methanol and Dissolution of Lignin and Pentosan in Bagasse Alkaline Pulping

    Institute of Scientific and Technical Information of China (English)

    刘秋娟; 邱昱桥

    2013-01-01

    甲醇是碱法蒸煮过程中产生的主要醇类大气污染物.研究了蔗渣烧碱-蒽醌法蒸煮过程中,不同蒸煮条件下甲醇发生量与木素溶出率和聚戊糖溶出率之间的关系.结果表明,在蔗渣烧碱-蒽醌法蒸煮过程中,甲醇发生量随木素溶出率和聚戊糖溶出率的增大而升高;若增加用碱量、提高蒸煮最高温度和延长保温时间,甲醇发生量的变化趋势与木素溶出率的变化趋势相近,而与聚戊糖溶出率的变化趋势有所不同;蒽醌用量为0.025%时,甲醇发生量最低.%Methanol is the main alcohol of air pollutants generated in alkaline pulping process. The relationships between the methanol generation and the dissolution of lignin and pentosan in bagasse alkaline cooking under different pulping conditions were investigated. The results showed that the quantity of the methanol generation increased with the increase of the dissolution of lignin and pentosan. The change trend of methanol generation was similar to that of the lignin dissolution, but unlike the dissolution of pentosan.

  10. Use of agave bagasse for production of an organic fertilizer by pretreatment with Bjerkandera adusta and vermicomposting with Eisenia fetida.

    Science.gov (United States)

    Moran-Salazar, Rene G; Marino-Marmolejo, Erika N; Rodriguez-Campos, Jacobo; Davila-Vazquez, Gustavo; Contreras-Ramos, Silvia M

    2016-01-01

    Agave tequilana Weber is used in tequila and fructans production, with agave bagasse generated as a solid waste. The main use of bagasse is to produce compost in tequila factories with a long traditional composting that lasts 6-8 months. The aim of this study was to evaluate the degradation of agave bagasse by combining a pretreatment with fungi and vermicomposting. Experiments were carried out with fractionated or whole bagasse, sterilized or not, subjecting it to a pretreatment with Bjerkandera adusta alone or combined with native fungi, or only with native bagasse fungi (non-sterilized), for 45 days. This was followed by a vermicomposting with Eisenia fetida and sewage sludge, for another 45 days. Physicochemical parameters, lignocellulose degradation, stability and maturity changes were measured. The results indicated that up to 90% of the residual sugars in bagasse were eliminated after 30 days in all treatments. The highest degradation rate in pretreatment was observed in non-sterilized, fractionated bagasse with native fungi plus B. adusta (BNFns) (71% hemicellulose, 43% cellulose and 71% lignin) at 45 days. The highest total degradation rates after vermicomposting were in fractionated bagasse pre-treated with native fungi (94% hemicellulose, 86% cellulose and 91% lignin). However, the treatment BNFns showed better maturity and stability parameters compared to that reported for traditional composts. Thus, it seems that a process involving vermicomposting and pretreatment with B. adusta could reduce the degradation time of bagasse to 3 months, compared to the traditional composting process, which requires from 6 to 8 months.

  11. New insights into the structure and composition of technical lignins : A comparative characterisation study

    NARCIS (Netherlands)

    Constant, Sandra; Wienk, Hans L J; Frissen, Augustinus E.; Peinder, Peter De; Boelens, Rolf; Van Es, Daan S.; Grisel, Ruud J H; Weckhuysen, Bert M.; Huijgen, Wouter J J; Gosselink, Richard J A; Bruijnincx, Pieter C A

    2016-01-01

    Detailed insight into the structure and composition of industrial (technical) lignins is needed to devise efficient thermal, bio- or chemocatalytic valorisation strategies. Six such technical lignins covering three main industrial pulping methods (Indulin AT Kraft, Protobind 1000 soda lignin and Alc

  12. Liquid-phase reforming and hydrodeoxygenation as a two-step route to aromatics from lignin

    NARCIS (Netherlands)

    Jongerius, A.L.; Bruijnincx, P.C.A.; Weckhuysen, B.M.

    2013-01-01

    A two-step approach to the conversion of organosolv, kraft and sugarcane bagasse lignin to monoaromatic compounds of low oxygen content is presented. The first step consists of lignin depolymerization in a liquid phase reforming (LPR) reaction over a 1 wt% Pt/γ-Al2O3 catalyst at 225 °C in alkaline

  13. Baking Soda Science.

    Science.gov (United States)

    Science Activities, 1994

    1994-01-01

    Discusses the basic principles of baking soda chemistry including the chemical composition of baking soda, its acid-base properties, the reaction of bicarbonate solution with calcium ions, and a description of some general types of chemical reactions. Includes a science activity that involves removing calcium ions from water. (LZ)

  14. COMPARISON BETWEEN WET OXIDATION AND STEAM EXPLOSION AS PRETREATMENT METHODS FOR ENZYMATIC HYDROLYSIS OF SUGARCANE BAGASSE

    OpenAIRE

    Carlos Martín; Marcelo Marcet; Anne Belinda Thomsen

    2008-01-01

    Alkaline wet oxidation and steam explosion pretreatments of sugarcane bagasse were compared with regard to biomass fractionation, formation of by-products, and enzymatic convertibility of the pretreated material. Wet oxidation led to the solubilisation of 82% of xylan and 50% of lignin, and to a two-fold increase of cellulose content in the pretreated solids, while steam explosion solubilised only 60% of xylan and 35% of lignin and increased cellulose content in the solid material by one thir...

  15. Co-pyrolysis of sugarcane bagasse with petroleum residue. Part 1: thermogravimetric analysis

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Perez, M.; Chaala, A.; Yang, J.; Roy, C. [Universite Laval, Ste-Foy, PQ (Canada). Departement de genie chimique

    2001-07-06

    Thermal decomposition under nitrogen of sugarcane bagasse, petroleum residue and their blends was studied by thermogravimetry (TG) at different heating rates (10, 20 and 60 deg C/min). Thermal decomposition kinetic parameters were determined. Sugarcane bagasse pyrolysis was described as the sum of cellulose, hemicellulose, and lignin individual contributions. First order equations were used to determine the bagasse component thermal decomposition kinetics. Activation energies calculated were 235, 105, and 26 kJ/mol for cellulose, hemiceullose and lignin, respectively. Thermal decomposition of petroleum residue can be explained by the additive effect of its three major fractions, following kinetic equation orders of 2.5, 2.3 and 1.5 with activation energies of 100, 180 and 220 kJ/mol respectively. It has been found that during thermal decomposition of bagasse/petroleum residue mixtures, no significant interaction occurred in the solid phase between the components under the experimental conditions investigated. The kinetic parameters associated with the bagasse/petroleum residue mixture involved the sum of bagasse and petroleum residue individual component kinetic parameters. The information obtained can be used to develop a correlation between the thermogravimetric data and the feedstock composition. 55 refs., 13 figs., 7 tabs.

  16. APPLICATION OF NSSC PULPING TO SUGARCANE BAGASSE

    Directory of Open Access Journals (Sweden)

    Alireza Khakifirooz

    2011-06-01

    Full Text Available The NSSC pulping process was investigated to produce pulp from bagasse for corrugating board manufacture. The chemical contents including cellulose, lignin, ash, and extractives soluble in alcohol-acetone measured 55.75, 20.5, 1.85, and 3.25, respectively. The average fiber length, fiber diameter, lumen width, and cell wall thickness of bagasse were 1.59 mm, 20.96, 9.72, and 5.64 μm, respectively. The optimum conditions, with a yield of 74.95%, were achieved using 20 percent chemicals on the basis of sodium oxide, cooking temperature of 170 °C, and cooking time of 30 minutes. Pulp was refined to freeness 345 and 433 mL CSF according to Canadian standards. 127 g m-2 handsheets from both pulps were made and strength properties measured. Statistical analysis of results indicated that paper derived from freeness 345 and 433 mL CSF had better strength properties in all indices in comparison with NSSC pulp from hardwoods produced at Mazandaran Pulp and Paper factory, Iran.

  17. Sugar cane bagasse prehydrolysis using hot water

    Directory of Open Access Journals (Sweden)

    D. Abril

    2012-03-01

    Full Text Available Results are presented on the hot water prehydrolysis of sugar cane bagasse for obtaining ethanol by fermentation. The experimental study consisted of the determination of the effect of temperature and time of prehydrolysis on the extraction of hemicelluloses, with the objective of selecting the best operating conditions that lead to increased yield of extraction with a low formation of inhibitors. The study, carried out in a pilot plant scale rotational digester, using a 3² experimental design at temperatures of 150-190ºC and times of 60-90 min, showed that it is possible to perform the hot water prehydrolysis process between 180-190ºC in times of 60-82 min, yielding concentrations of xylose > 35 g/L, furfural < 2.5 g/L, phenols from soluble lignin < 1.5 g/L, and concentrations < 3.0 g/L of hemicelluloses in the cellolignin residue. These parameters of temperature and prehydrolysis time could be used for the study of the later hydrolysis and fermentation stages of ethanol production from sugar cane bagasse.

  18. Deconstruction of lignin linked p-coumarates, ferulates and xylan by NaOH enhances the enzymatic conversion of glucan

    NARCIS (Netherlands)

    Murciano Martínez, Patricia; Punt, Arjen M.; Kabel, Mirjam A.; Gruppen, Harry

    2016-01-01

    Thermo-assisted NaOH pretreatment to deconstruct xylan and lignin in sugar cane bagasse (SCB) is poorly understood. Hence, in this research it is was aimed to study the effect of NaOH pretreatment on the insoluble remaining lignin structures. Hereto, SCB milled fibres were pretreated using differ

  19. Soda pulp and fuel gases synthesis from Hesperaloe funifera.

    Science.gov (United States)

    Sánchez, Rafael; Rodríguez, Alejandro; Requejo, Ana; Ferrer, Ana; Navarro, Enrique

    2010-09-01

    The main objective of this work is to evaluate the suitability of Hesperaloe funifera which is an alternative raw material, for pulping with soda-anthraquinone to produce pulp and paper. It was studied the influence of operational variables (temperature (155-185 degrees C), cooking time (20-60 min) and soda concentration (5-15%), with a constant addition of 1% of anthraquinone and a liquid/solid ratio of 8, in soda-anthraquinone cooking of H. funifera on pulps and paper sheets properties obtained. Finally, the cooking liquors were acidified to separate solid fractions that were subjected to pyrolysis and gasification in order to obtain synthesis and fuel gases. H. funifera contains little lignin and abundant alpha-cellulose; this, together with the morphological characteristics of its fibers, makes it a potentially highly useful papermaking raw material.

  20. Functional microbiology of soda lakes

    NARCIS (Netherlands)

    Sorokin, D.Y.; Banciu, H.L.; Muyzer, G.

    2015-01-01

    Soda lakes represent unique permanently haloalkaline system. Despite the harsh conditions, they are inhabited by abundant, mostly prokaryotic, microbial communities. This review summarizes results of studies of main functional groups of the soda lake prokaryotes responsible for carbon, nitrogen and

  1. Pretreatment of sugar cane bagasse for enhanced ruminal digestion.

    Science.gov (United States)

    Deschamps, F C; Ramos, L P; Fontana, J D

    1996-01-01

    Crop residues, such as sugar cane bagasse (SCB), have been largely used for cattle feeding. However, the close association that exists among the three major plant cell-wall components, cellulose, hemicellulose, and lignin, limits the efficiency by which ruminants can degrade these materials. Previously, we have shown that pretreatment with 3% (w/w) phosphoric acid, under relatively mild conditions, increased considerably the nutritional value for SCB. However, in this preliminary study, pretreated residues were not washed prior to in situ degradability assays because we wanted to explore the high initial solvability of lowmol-wt substances that were produced during pretreatment. We have now studied the suitability of water-and/or alkali-washed residues to in situ ruminal digestion. Alkali washing increased substrate cellulose content by removing most of the lignin and other residual soluble substances. As a result the ruminal degradability of these cleaner materials had first-order rate constants five times higher than those substrates with higher lignin content (e.g., stem-exploded bagasse). However, alkali washing also increased the time of ruminal lag phase of the cellulosic residue, probably because of hemicellulose and/or lignin removal and to the development of substrates with higher degree of crystallinity. Therefore, longer lag phases appear to be related to low microbial adherence after extensive water and alkali extraction, as Novell as to the slower process of cellulase induction during ruminal growth. The kinetic data on ruminal digestion were shown to be very well adjusted by a nonlinear model. Although pretreatment enhances substrate accessibility, the occurrence of an exceedingly high amount of lignin byproducts within the pretreated material reduces considerably its potential degradability.

  2. Lewis-acid catalyzed depolymerization of Protobind lignin in supercritical water and ethanol

    NARCIS (Netherlands)

    Guvenatam, Burcu; Heeres, Erik H.J.; Pidko, Evgeny A.; Hensen, Ernie J. M.

    2016-01-01

    The use of metal acetates, metal chlorides and metal triflates as Lewis acid catalysts for the depolymerization of soda lignin under supercritical conditions was investigated. The reactions were carried out at 400 degrees C in water and ethanol. Lignin conversion in supercritical water led to format

  3. Lewis-acid catalyzed depolymerization of Protobind lignin in supercritical water and ethanol

    NARCIS (Netherlands)

    Guvenatam, Burcu; Heeres, Erik H.J.; Pidko, Evgeny A.; Hensen, Ernie J. M.

    2016-01-01

    The use of metal acetates, metal chlorides and metal triflates as Lewis acid catalysts for the depolymerization of soda lignin under supercritical conditions was investigated. The reactions were carried out at 400 degrees C in water and ethanol. Lignin conversion in supercritical water led to

  4. Model-free kinetics applied to sugarcane bagasse combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ramajo-Escalera, B.; Espina, A.; Garcia, J.R. [Department of Organic and Inorganic Chemistry, University of Oviedo, 33006 Oviedo (Spain); Sosa-Arnao, J.H. [Mechanical Engineering Faculty, State University of Campinas (UNICAMP), P.O. Box 6122, 13083-970 Campinas, SP (Brazil); Nebra, S.A. [Interdisciplinary Center of Energy Planning, State University of Campinas (UNICAMP), R. Shigeo Mori 2013, 13083-770 Campinas, SP (Brazil)

    2006-09-15

    Vyazovkin's model-free kinetic algorithms were applied to determine conversion, isoconversion and apparent activation energy to both dehydration and combustion of sugarcane bagasse. Three different steps were detected with apparent activation energies of 76.1+/-1.7, 333.3+/-15.0 and 220.1+/-4.0kJ/mol in the conversion range of 2-5%, 15-60% and 70-90%, respectively. The first step is associated with the endothermic process of drying and release of water. The others correspond to the combustion (and carbonization) of organic matter (mainly cellulose, hemicellulose and lignin) and the combustion of the products of pyrolysis. (author)

  5. Utilization of lignin

    Energy Technology Data Exchange (ETDEWEB)

    Machihara, A.

    1981-01-01

    The chemical structure of lignin, the composition of pulping spent liquors, conversion of lignin into fine chemicals, utilization of lignin products, and physical and chemical properties of lignin and and derivatives are reviewed. (Refs 29).

  6. Dissolving Lignin in Water through Enzymatic Sulfation with Aryl Sulfotransferase.

    Science.gov (United States)

    Prinsen, Pepijn; Narani, Anand; Hartog, Aloysius F; Wever, Ron; Rothenberg, Gadi

    2017-05-22

    We introduce the concept of using site-specific sulfation of various lignins for increasing their aqueous solubility and thereby their processability. Using p-nitrophenylsulfate as a sulfate source and an aryl sulfotransferase enzyme as catalyst, lignins are easily sulfated at ambient conditions. We demonstrate the specific sulfation of phenolic hydroxyl groups on five different lignins: Indulin AT (Kraft softwood), Protobind 1000 (mixed wheat straw/Sarkanda grass soda) and three organosolv lignins. The reaction proceeds smoothly and the increase in solubility is visible to the naked eye. We then examine the reaction kinetics, and show that these are easily monitored qualitatively and quantitatively using UV/Vis spectroscopy. The UV/Vis results are validated with (31) P NMR spectroscopy of the lignin phenol groups after derivatization with phosphorylation reagent II. In general, the results are more significant with organosolv lignins, as Kraft and soda lignins are produced from aqueous lignocellulose extraction processes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. CHARACTERIZATION OF ALKALINE LIGNINS FOR USE IN PHENOL-FORMALDEHYDE AND EPOXY RESINS

    Directory of Open Access Journals (Sweden)

    Nour Eddine El Mansouri

    2011-05-01

    Full Text Available Besides polyurethanes and polyesters, phenolic and epoxy resins are the most prominent applications for technical lignins in thermosetting materials. To evaluate the potential application of lignin raw materials in phenol formaldehyde and epoxy resins, three types of alkaline lignins were characterized in terms of their structures and thermal properties. The lignin samples analyzed were kraft lignin (LIG-1, soda–rice straw lignin (LIG-2, and soda-wheat straw lignin (LIG-3. FTIR and 1H-NMR methods were used to determine their structure. Gel permeation chromatography (GPC was used to determine the molecular weight distribution (MWD. Differential scanning calorimetry (DSC was used to measure the glass transition temperature (Tg, and thermogravimetric analysis (TGA to determine the thermal stability of lignin samples. Results showed that kraft lignin (LIG-1 has moderate hydroxyl-group content, is rich in G-type units, and has good thermal stability. These properties make it more suitable for direct use in phenol formaldehyde resins, and it is therefore a good raw material for this purpose. The alkaline soda-rice straw lignin (LIG-2 with a high hydroxyl-group content and excellent thermal stability is most suited to preparing lignin-based epoxy resins.

  8. Citrus pulp pellets as an additive for orange bagasse silage

    Directory of Open Access Journals (Sweden)

    R. K. Grizotto

    2017-03-01

    Full Text Available This study evaluated the fermentation profile of orange bagasse ensiled with three levels of dry matter (DM using citrus pulp pellets as a moisture-absorbing additive. Thirty experimental silos (3 treatments, 5 storage times, 2 replicates were prepared using 25-liter plastic buckets containing orange bagasse and three levels of pelleted citrus pulp (0, 6% and 20% as additive. A completely randomized design with repeated measures over time was used. The periods of anaerobic storage were 3, 7, 14, 28 and 56 days. Natural orange bagasse contained 13.9% DM, which increased to 19.1% and 25.5% with the inclusion of 6% and 20% citrus pulp pellets, respectively. The apparent density was inversely correlated with DM content and a higher level of compaction (982 kg/m3 was observed in the mass ensiled with the lowest DM level (13.9%. Additionally, lower compaction (910 kg/m3 was found in the mass ensiled with the additive. The chemical composition of the mass ensiled with or without citrus pulp pellets did not differ significantly in terms of protein, ether extract, neutral detergent fiber, lignin or in vitro DM digestibility (P≥0.05, as expected. Thus, it was possible to analyze only the effect of the inclusion of citrus pulp pellets on the increase in DM content. The inclusion of 20% of the additive reduced (P<0.01 losses due to effluent (98% less and gas production (81% less compared to the control treatment at the end of the anaerobic storage period. In this treatment, a higher (P≤0.05 log number of lactic acid bacteria (4.61 log CFU/g was also observed compared to the other treatments, indicating that the increase in DM favored the growth of these bacteria. In addition, the low yeast count (about 1 log CFU/g sample and the pH below 4.0, which were probably due to the production of lactic and acetic acids, show that the orange bagasse is rich in fermentable soluble carbohydrates and is indicated for ensiling. In conclusion, orange bagasse can be

  9. Alkaline Pretreatment of Sugarcane Bagasse and Filter Mud Codigested to Improve Biomethane Production

    Science.gov (United States)

    Mehryar, Esmaeil; Bi, Jinhua

    2016-01-01

    To enhance the codigestion of degradation and improve biomethane production potential, sugarcane bagasse and filter mud were pretreated by sodium hydroxide NaOH 1 N at 100°C for 15, 30, and 45 minutes, respectively. Biomethane generation from 1-liter batch reactor was studied at mesophilic temperature (37 ± 1)°C, solid concentrations of 6%, and five levels of mixing proportion with and without pretreatment. The results demonstrate that codigestion of filter mud with bagasse produces more biomethane than fermentation of filter mud as single substrate; even codigested substrate composition presented a better balance of nutrients (C/N ratio of 24.70) when codigestion ratio between filter mud and bagasse was 25 : 75 in comparison to filter mud as single substrate (C/N ratio 9.68). All the pretreatments tested led to solubilization of the organic matter, with a maximum lignin reduction of 86.27% and cumulative yield of biomethane (195.8 mL·gVS−1, digestion of pretreated bagasse as single substrate) obtained after 45 minutes of cooking by NaOH 1 N at 100°C. Under this pretreatment condition, significant increase in cumulative methane yield was observed (126.2 mL·gVS−1) at codigestion ratio of 25 : 75 between filter mud and bagasse by increase of 81.20% from untreated composition.

  10. Reducing sugar production of sweet sorghum bagasse kraft pulp

    Science.gov (United States)

    Solihat, Nissa Nurfajrin; Fajriutami, Triyani; Adi, Deddy Triyono Nugroho; Fatriasari, Widya; Hermiati, Euis

    2017-01-01

    Kraft pulping of sweet sorghum bagasse (SSB) has been used for effective delignification method for cellulose production. This study was conducted to evaluate the performance pulp kraft of SSB for reducing sugar production. The study intended to investigate the effect of active alkali and sulfidity loading variation of SSB pulp kraft on reducing sugar yield per biomass. The SSB pulp was prepared after pulping using three variations of active alkali (17, 19, and 22%) and sulfidity loading (20, 22, and 24%) at 170°C for 4 h with liquor to wood ratio of 10. A total of 9 pulps were obtained from these pretreatments. Delignification pretreatment has been succesfully removed lignin and hemicellulose more than 90% and 50%, respectively. Increasing active alkali and sulfidity loading has significantly increased lignin removal caused by disruption of the cell wall structure for releasing lignin into black liquor in the cellulose extraction. The enzymatic hydrolysis of pulp was carried out with cellulase loading of 40 FPU per g substrate in the shaking incubator at 50°C and 150 rpm for 78 h. For each 24 h, the reducing sugar yield (DNS assay) has been observed. Even though the lignin and hemicellulose loss occurred along with higher active alkali loading, this condition tends to decrease its yield. The reducing sugar concentration varied between 7-8 g/L. Increasing active alkali and sulfidity was significantly decreased the reducing sugar per biomass. Pulp delignified by 17% active alkali and 20% sulfidity has demonstrated the maximum reducing sugar yield per biomass of 45.57% resulted after 72 h enzymatic hydrolysis. These results indicated that kraft pulping was success to degrade more lignin and hemicellulose content to facilitate the enzyme for breaking down the cellulose into its sugar monomer. A high loss of lignin and hemicellulose are not single factor to improve digestibility of SSB. This sugar has potential for yeast fermented into bioethanol.

  11. Tropical Soda Apple (Solanum viarum)

    Science.gov (United States)

    Tropical soda apple (Solanum viarum Dunal), a perennial shrub, is a Federal Noxious Weed that continues to spread at an alarming rate in the southeastern United States. Information is provided on the impact of tropical soda apple on agricultural and natural areas, federal regulations for restricted...

  12. Mass balance of pilot-scale pretreatment of sugarcane bagasse by steam explosion followed by alkaline delignification.

    Science.gov (United States)

    Rocha, George J M; Martín, Carlos; da Silva, Vinícius F N; Gómez, Edgardo O; Gonçalves, Adilson R

    2012-05-01

    Five pilot-scale steam explosion pretreatments of sugarcane bagasse followed by alkaline delignification were explored. The solubilised lignin was precipitated with 98% sulphuric acid. Most of the pentosan (82.6%), and the acetyl group fractions were solubilised during pretreatment, while 90.2% of cellulose and 87.0% lignin were recovered in the solid fraction. Approximately 91% of the lignin and 72.5% of the pentosans contained in the steam-exploded solids were solubilised by delignification, resulting in a pulp with almost 90% of cellulose. The acidification of the black liquors allowed recovery of 48.3% of the lignin contained in the raw material. Around 14% of lignin, 22% of cellulose and 26% of pentosans were lost during the process. In order to increase material recovery, major changes, such as introduction of efficient condensers and the reduction in the number of washing steps, should be done in the process setup.

  13. Lignin nanoparticle synthesis

    Science.gov (United States)

    Dirk, Shawn M.; Cicotte, Kirsten Nicole; Wheeler, David R.; Benko, David A.

    2015-08-11

    A method including reducing a particle size of lignin particles to an average particle size less than 40 nanometers; after reducing the particle size, combining the lignin particles with a polymeric material; and forming a structure of the combination. A method including exposing lignin to a diazonium precursor including a functional group; modifying the lignin by introducing the functional group to the lignin; and combining the modified lignin with a polymeric material to form a composite. An apparatus including a composite of a polymer and lignin wherein the lignin has an average particle size less than 100 micrometers.

  14. Optimization pretreatment condition of sweet sorghum bagasse for production of second generation bioethanol

    Science.gov (United States)

    Sudiyani, Yanni; Waluyo, Joko; Triwahyuni, Eka; Burhani, Dian; Muryanto, Primandaru, Prasetyo; Riandy, Andika Putra; Sumardi, Novia

    2017-01-01

    The bagasse residue of Sweet sorghum (Sorghum bicolor (L.) Moench) consist of cellulose 39.48%; hemicellulose 16.56% and lignin 24.77% that can be converted to ethanol. Pretreatment is of great importance to ethanol yield. In this study, pretreatment process was conducted in a 5-liter reactor using NaOH 10% at various temperature 110, 130, 150°C and reaction time 10, 20, 30 minutes and optimizing severity parameter (log R0 between 1.3 - 2.9). The statistical analysis using two way anova showed that third variations of temperature give different effects significant on lignin, hemicellulose and cellulose content at 95% the confidence level. The optimum pretreatment of bagasse sorghum were obtained with Log R0 value between 2.4-2.9. High severity value in pretreatment condition reduce lignin almost 84-86%, maximum reducing lignin content was 86% obtained at temperature 150°C for 20 minutes reaction time and cellulose increased almost two times the initial content.

  15. SODA: Smart Objects, Dumb Archives

    Science.gov (United States)

    Nelson, Michael L.; Maly, Kurt; Zubair, Mohammad; Shen, Stewart N. T.

    2004-01-01

    We present the Smart Object, Dumb Archive (SODA) model for digital libraries (DLs). The SODA model transfers functionality traditionally associated with archives to the archived objects themselves. We are exploiting this shift of responsibility to facilitate other DL goals, such as interoperability, object intelligence and mobility, and heterogeneity. Objects in a SODA DL negotiate presentation of content and handle their own terms and conditions. In this paper we present implementations of our smart objects, buckets, and our dumb archive (DA). We discuss the status of buckets and DA and how they are used in a variety of DL projects.

  16. Functional microbiology of soda lakes.

    Science.gov (United States)

    Sorokin, Dimitry Y; Banciu, Horia L; Muyzer, Gerard

    2015-06-01

    Soda lakes represent unique permanently haloalkaline system. Despite the harsh conditions, they are inhabited by abundant, mostly prokaryotic, microbial communities. This review summarizes results of studies of main functional groups of the soda lake prokaryotes responsible for carbon, nitrogen and sulfur cycling, including oxygenic and anoxygenic phototrophs, aerobic chemolithotrophs, fermenting and respiring anaerobes. The main conclusion from this work is that the soda lakes are very different from other high-salt systems in respect to microbial richness and activity. The reason for this difference is determined by the major physico-chemical features of two dominant salts - NaCl in neutral saline systems and sodium carbonates in soda lakes, that are influencing the amount of energy required for osmotic adaptation.

  17. Sugarcane biomass for biorefineries: comparative composition of carbohydrate and non-carbohydrate components of bagasse and straw.

    Science.gov (United States)

    Szczerbowski, Danielle; Pitarelo, Ana Paula; Zandoná Filho, Arion; Ramos, Luiz Pereira

    2014-12-19

    Two fractions of sugarcane, namely bagasse and straw (or trash), were characterized in relation to their chemical composition. Bagasse presented values of glucans, hemicelluloses, lignin and ash of 37.74, 27.23, 20.57 and 6.53%, respectively, while straw had 33.77, 27.38, 21.28 and 6.23% of these same components. Ash content was relatively high in both cane biomass fractions. Bagasse showed higher levels of contaminating oxides while straw had a higher content of alkaline and alkaline-earth oxides. A comparison between the polysaccharide chemical compositions of these lignocellulosic materials suggests that similar amounts of fermentable sugars are expected to arise from their optimal pretreatment and enzymatic hydrolysis. Details about the chemical properties of cane biomass holocellulose, hemicelluloses A and B and α-cellulose are provided, and these may offer a good opportunity for designing more efficient enzyme cocktails for substrate saccharification.

  18. Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility

    Directory of Open Access Journals (Sweden)

    Rezende Camila

    2011-11-01

    Full Text Available Abstract Background In recent years, biorefining of lignocellulosic biomass to produce multi-products such as ethanol and other biomaterials has become a dynamic research area. Pretreatment technologies that fractionate sugarcane bagasse are essential for the successful use of this feedstock in ethanol production. In this paper, we investigate modifications in the morphology and chemical composition of sugarcane bagasse submitted to a two-step treatment, using diluted acid followed by a delignification process with increasing sodium hydroxide concentrations. Detailed chemical and morphological characterization of the samples after each pretreatment condition, studied by high performance liquid chromatography, solid-state nuclear magnetic resonance, diffuse reflectance Fourier transformed infrared spectroscopy and scanning electron microscopy, is reported, together with sample crystallinity and enzymatic digestibility. Results Chemical composition analysis performed on samples obtained after different pretreatment conditions showed that up to 96% and 85% of hemicellulose and lignin fractions, respectively, were removed by this two-step method when sodium hydroxide concentrations of 1% (m/v or higher were used. The efficient lignin removal resulted in an enhanced hydrolysis yield reaching values around 100%. Considering the cellulose loss due to the pretreatment (maximum of 30%, depending on the process, the total cellulose conversion increases significantly from 22.0% (value for the untreated bagasse to 72.4%. The delignification process, with consequent increase in the cellulose to lignin ratio, is also clearly observed by nuclear magnetic resonance and diffuse reflectance Fourier transformed infrared spectroscopy experiments. We also demonstrated that the morphological changes contributing to this remarkable improvement occur as a consequence of lignin removal from the sample. Bagasse unstructuring is favored by the loss of cohesion between

  19. Kinetics of lime pretreatment of sugarcane bagasse to enhance enzymatic hydrolysis.

    Science.gov (United States)

    Fuentes, Laura L G; Rabelo, Sarita C; Filho, Rubens Maciel; Costa, Aline C

    2011-03-01

    The objective of this work was to determine the optimum conditions of sugarcane bagasse pretreatment with lime to increase the enzymatic hydrolysis of the polysaccharide component and to study the delignification kinetics. The first stage was an evaluation of the influence of temperature, reaction time, and lime concentration in the pretreatment performance measured as glucose release after hydrolysis using a 2(3) central composite design and response surface methodology. The maximum glucose yield was 228.45 mg/g raw biomass, corresponding to 409.9 mg/g raw biomass of total reducing sugars, with the pretreatment performed at 90°C, for 90 h, and with a lime loading of 0.4 g/g dry biomass. The enzymes loading was 5.0 FPU/dry pretreated biomass of cellulase and 1.0 CBU/dry pretreated biomass of β-glucosidase. Kinetic data of the pretreatment were evaluated at different temperatures (60°C, 70°C, 80°C, and 90°C), and a kinetic model for bagasse delignification with lime as a function of temperature was determined. Bagasse composition (cellulose, hemicellulose, and lignin) was measured, and the study has shown that 50% of the original material was solubilized, lignin and hemicellulose were selectively removed, but cellulose was not affected by lime pretreatment in mild temperatures (60-90°C). The delignification was highly dependent on temperature and duration of pretreatment.

  20. NEAR INFRARED SPECTROSCOPY FOR ESTIMATING SUGARCANE BAGASSE CONTENT IN MEDIUM DENSITY FIBERBOARD

    Directory of Open Access Journals (Sweden)

    Ugo Leandro Belini

    2011-04-01

    Full Text Available Medium density fiberboard (MDF is an engineered wood product formed by breaking down selected lignin-cellulosic material residuals into fibers, combining it with wax and a resin binder, and then forming panels by applying high temperature and pressure. Because the raw material in the industrial process is ever-changing, the panel industry requires methods for monitoring the composition of their products. The aim of this study was to estimate the ratio of sugarcane (SC bagasse to Eucalyptus wood in MDF panels using near infrared (NIR spectroscopy. Principal component analysis (PCA and partial least square (PLS regressions were performed. MDF panels having different bagasse contents were easily distinguished from each other by the PCA of their NIR spectra with clearly different patterns of response. The PLS-R models for SC content of these MDF samples presented a strong coefficient of determination (0.96 between the NIR-predicted and Lab-determined values and a low standard error of prediction (~1.5% in the cross-validations. A key role of resins (adhesives, cellulose, and lignin for such PLS-R calibrations was shown. PLS-DA model correctly classified ninety-four percent of MDF samples by cross-validations and ninety-eight percent of the panels by independent test set. These NIR-based models can be useful to quickly estimate sugarcane bagasse vs. Eucalyptus wood content ratio in unknown MDF samples and to verify the quality of these engineered wood products in an online process.

  1. Evaluation of Brazilian Sugarcane Bagasse Characterization: An Interlaboratory Comparison Study

    Energy Technology Data Exchange (ETDEWEB)

    Sluiter, Justin B.; Chum, Helena; Gomes, Absai C.; Tavares, Renata P.A.; Azevedo, Vinicius; Pimenta, Maria T.B.; Rabelo, Sarita C.; Marabezi, Karen; Curvelo, Antonio A.S.; Alves, Aparecido R.; Garcia, Wokimar T.; Carvalho, Walter; Esteves, Paula J.; Mendonca, Simone; Oliveira, Patricia A.; Ribeiro, Jose A.A.; Mendes, Thais D.; Vicentin, Marcos P.; Duarte, Celina L.; Mori, Manoel N.

    2016-05-01

    This paper describes a study of the variability of measured composition for a single bulk sugarcane bagasse conducted across eight laboratories using similar analytical methods, with the purpose of determining the expected variation for compositional analysis performed by different laboratories. The results show good agreement of measured composition within a single laboratory, but greater variability when results are compared among laboratories. These interlaboratory variabilities do not seem to be associated with a specific method or technique or any single piece of instrumentation. The summary censored statistics provide mean values and pooled standard deviations as follows: total extractives 6.7% (0.6%), whole ash 1.5% (0.2%), glucan 42.3% (1.2%), xylan 22.3% (0.5%), total lignin 21.3% (0.4%), and total mass closure 99.4% (2.9%).

  2. Methane Potential and Enzymatic Saccharification of Steam-exploded Bagasse

    Directory of Open Access Journals (Sweden)

    Vivekanand Vivekanand

    2014-01-01

    Full Text Available To evaluate the biofuel potential of bagasse, an abundant co-product in sugarcane-based industries, the effect of steam explosion on the efficiency of enzymatic saccharification and anaerobic digestion was studied. Bagasse was steam exploded at four different severity levels, and the impact of pretreatment was evaluated by analyzing the release of glucose after enzymatic saccharification with Cellic CTec2 and by analyzing methane production during anaerobic batch digestions. Increasing the severity of pretreatment led to degradation of xylan and the formation of pseudo-lignin. The severity of pretreatment was correlated with the enzymatic release of glucose; at optimal conditions, > 90% of the glucan was released. The highest methane yield (216 mL/gVS was 1.3 times higher than the yield from untreated bagasse. More importantly, the pretreatment dramatically increased the rate of methane production; after 10 days, methane production from pretreated material was approximately twice that of the untreated material. To assess the possibility of developing combined processes, steam-exploded bagasse was enzymatically pre-hydrolyzed and, after the removal of released sugars, the remaining solid was subjected to anaerobic digestion. The results indicated that, in terms of total heating value, combined ethanol and biogas production is as beneficial as producing only biogas.

  3. Importance of acid or alkali concentration on the removal of xylan and lignin for enzymatic cellulose hydrolysis

    NARCIS (Netherlands)

    Murciano-Martinez, P.; Bakker, R.; Harmsen, P.F.H.; Gruppen, H.; Kabel, M.A.

    2015-01-01

    The effect of hemicellulose and lignin solubilisation by H2SO4 and NaOH catalysed pretreatments was correlated to the extent of subsequent enzymatic cellulose hydrolysis. Three different grass-type feedstocks, palm empty fruit bunch, sugarcane bagasse and barley straw, were investigated. Soluble

  4. Importance of acid or alkali concentration on the removal of xylan and lignin for enzymatic cellulose hydrolysis

    NARCIS (Netherlands)

    Murciano-Martinez, P.; Bakker, R.; Harmsen, P.F.H.; Gruppen, H.; Kabel, M.A.

    2015-01-01

    The effect of hemicellulose and lignin solubilisation by H2SO4 and NaOH catalysed pretreatments was correlated to the extent of subsequent enzymatic cellulose hydrolysis. Three different grass-type feedstocks, palm empty fruit bunch, sugarcane bagasse and barley straw, were investigated. Soluble fra

  5. Effect of Subsequent Dilute Acid and Enzymatic Hydrolysis on Reducing Sugar Production from Sugarcane Bagasse and Spent Citronella Biomass

    Directory of Open Access Journals (Sweden)

    Robinson Timung

    2016-01-01

    Full Text Available This work was aimed at investigating the effect of process parameters on dilute acid pretreatment and enzymatic hydrolysis of spent citronella biomass (after citronella oil extraction and sugarcane bagasse on total reducing sugar (TRS yield. In acid pretreatment, the parameters studied were acid concentration, temperature, and time. At the optimized condition (0.1 M H2SO4, 120°C, and 120 min, maximum TRS obtained was 452.27 mg·g−1 and 487.50 mg·g−1 for bagasse and citronella, respectively. Enzymatic hydrolysis of the pretreated biomass using Trichoderma reesei 26291 showed maximum TRS yield of 226.99 mg·g−1 for citronella and 282.85 mg·g−1 for bagasse at 10 FPU, 50°C, and 48 hr. The maximum crystallinity index (CI of bagasse and citronella after acid pretreatment obtained from X-ray diffraction analysis was 64.41% and 56.18%, respectively. Decreased CI after enzymatic hydrolysis process to 37.28% and 34.16% for bagasse and citronella, respectively, revealed effective conversion of crystalline cellulose to glucose. SEM analysis of the untreated and treated biomass revealed significant hydrolysis of holocellulose and disruption of lignin.

  6. COMPLETE CHARACTERIZATION OF BAGASSE OF EARLY SPECIES OF SACCHARUM OFFICINERUM-CO 89003 FOR PULP AND PAPER MAKING

    Directory of Open Access Journals (Sweden)

    Swarnima Agnihotri

    2010-04-01

    Full Text Available Bagasse from early species of Saccharum officinerum-Co 89003 has 71.36% useful, long, and thick-walled fibers with good slenderness ratio, but the rigidity coefficient is less than that of Eucalyptus tereticornis and Leucaena leucocephala. The kink index and kink per mm length are lower in bagasse fiber than E. terticornis, which gives rise to fewer weak points in the fiber. Low alcohol–benzene soluble substances in bagasse induce less pitch problems and favor more homogeneity in the paper. Lignin content in bagasse is comparable to Eucalyptus globulus and Leucaena leucocephala, but α-cellulose, and pentosans are slightly lower. A higher proportion of carbon content compared to hydrogen and oxygen increases the energy value of bagasse. It produces 42.2% pulp yield of kappa number 28.2 at optimum cooking conditions, such as active alkali 12% (as Na2O, temperature 150oC, and time (at temperature 60 min. An addition of 0.1% anthraquinone at the optimum condition improves pulp yield by 2.6% and mitigates kappa number by 3.9 units.

  7. Alkali-based AFEX pretreatment for the conversion of sugarcane bagasse and cane leaf residues to ethanol.

    Science.gov (United States)

    Krishnan, Chandraraj; Sousa, Leonardo da Costa; Jin, Mingjie; Chang, Linpei; Dale, Bruce E; Balan, Venkatesh

    2010-10-15

    Sugarcane is one of the major agricultural crops cultivated in tropical climate regions of the world. Each tonne of raw cane production is associated with the generation of 130 kg dry weight of bagasse after juice extraction and 250 kg dry weight of cane leaf residue postharvest. The annual world production of sugarcane is approximately 1.6 billion tones, generating 279 MMT tones of biomass residues (bagasse and cane leaf matter) that would be available for cellulosic ethanol production. Here, we investigated the production of cellulosic ethanol from sugar cane bagasse and sugar cane leaf residue using an alkaline pretreatment: ammonia fiber expansion (AFEX). The AFEX pretreatment improved the accessibility of cellulose and hemicelluloses to enzymes during hydrolysis by breaking down the ester linkages and other lignin carbohydrate complex (LCC) bonds and the sugar produced by this process is found to be highly fermentable. The maximum glucan conversion of AFEX pretreated bagasse and cane leaf residue by cellulases was approximately 85%. Supplementation with hemicellulases during enzymatic hydrolysis improved the xylan conversion up to 95-98%. Xylanase supplementation also contributed to a marginal improvement in the glucan conversion. AFEX-treated cane leaf residue was found to have a greater enzymatic digestibility compared to AFEX-treated bagasse. Co-fermentation of glucose and xylose, produced from high solid loading (6% glucan) hydrolysis of AFEX-treated bagasse and cane leaf residue, using the recombinant Saccharomyces cerevisiae (424A LNH-ST) produced 34-36 g/L of ethanol with 92% theoretical yield. These results demonstrate that AFEX pretreatment is a viable process for conversion of bagasse and cane leaf residue into cellulosic ethanol.

  8. Calorie count - sodas and energy drinks

    Science.gov (United States)

    ... ency/patientinstructions/000888.htm Calorie count - sodas and energy drinks To use the sharing features on this page, ... to have a few servings of soda or energy drinks a day without thinking about it. Like other ...

  9. Hemorrhagic Encephalopathy From Acute Baking Soda Ingestion.

    Science.gov (United States)

    Hughes, Adrienne; Brown, Alisha; Valento, Matthew

    2016-09-01

    Baking soda is a readily available household product composed of sodium bicarbonate. It can be used as a home remedy to treat dyspepsia. If used in excessive amounts, baking soda has the potential to cause a variety of serious metabolic abnormalities. We believe this is the first reported case of hemorrhagic encephalopathy induced by baking soda ingestion. Healthcare providers should be aware of the dangers of baking soda misuse and the associated adverse effects.

  10. Hemorrhagic Encephalopathy From Acute Baking Soda Ingestion

    Directory of Open Access Journals (Sweden)

    Adrienne Hughes

    2016-09-01

    Full Text Available Baking soda is a readily available household product composed of sodium bicarbonate. It can be used as a home remedy to treat dyspepsia. If used in excessive amounts, baking soda has the potential to cause a variety of serious metabolic abnormalities. We believe this is the first reported case of hemorrhagic encephalopathy induced by baking soda ingestion. Healthcare providers should be aware of the dangers of baking soda misuse and the associated adverse effects.

  11. Combustion of thermochemically torrefied sugar cane bagasse.

    Science.gov (United States)

    Valix, M; Katyal, S; Cheung, W H

    2017-01-01

    This study compared the upgrading of sugar bagasse by thermochemical and dry torrefaction methods and their corresponding combustion behavior relative to raw bagasse. The combustion reactivities were examined by non-isothermal thermogravimetric analysis. Thermochemical torrefaction was carried out by chemical pre-treatment of bagasse with acid followed by heating at 160-300°C in nitrogen environment, while dry torrefaction followed the same heating treatment without the chemical pretreatment. The results showed thermochemical torrefaction generated chars with combustion properties that are closer to various ranks of coal, thus making it more suitable for co-firing applications. Thermochemical torrefaction also induced greater densification of bagasse with a 335% rise in bulk density to 340kg/m(3), increased HHVmass and HHVvolume, greater charring and aromatization and storage stability. These features demonstrate the potential of thermochemical torrefaction in addressing the practical challenges in using biomass such as bagasse as fuel.

  12. Study of bagasse/tapioca starch film preparation and characterization

    Science.gov (United States)

    Chen, Yanyang; Wei, Xiaoyi; Chang, Gang; Fu, Tiaokun; Cui, Lihong; Li, Jihua

    2017-06-01

    Bagasse/tapioca starch films (BT) were prepared with various contents of bagasse (10, 20, 30, 40 and 50 wt% based on tapioca starch), and the effect of bagasse concentration was studied by the performance of the BT films. Then, the BT films characteristics were analyzed using the instruments about ultraviolet spectrophotometer (US), SEM, TGA and XRD. The dispersion of the bagasse became better with bagasse concentration increasing, the intermolecular hydrogen bonding became stronger while the transparency values of the films decreased.

  13. Modulating lignin in plants

    Science.gov (United States)

    Apuya, Nestor; Bobzin, Steven Craig; Okamuro, Jack; Zhang, Ke

    2013-01-29

    Materials and methods for modulating (e.g., increasing or decreasing) lignin content in plants are disclosed. For example, nucleic acids encoding lignin-modulating polypeptides are disclosed as well as methods for using such nucleic acids to generate transgenic plants having a modulated lignin content.

  14. Baking Soda and Vinegar Rockets

    Science.gov (United States)

    Claycomb, James R.; Zachary, Christopher; Tran, Quoc

    2009-01-01

    Rocket experiments demonstrating conservation of momentum will never fail to generate enthusiasm in undergraduate physics laboratories. In this paper, we describe tests on rockets from two vendors that combine baking soda and vinegar for propulsion. The experiment compared two analytical approximations for the maximum rocket height to the…

  15. Baking Soda and Vinegar Rockets

    Science.gov (United States)

    Claycomb, James R.; Zachary, Christopher; Tran, Quoc

    2009-01-01

    Rocket experiments demonstrating conservation of momentum will never fail to generate enthusiasm in undergraduate physics laboratories. In this paper, we describe tests on rockets from two vendors that combine baking soda and vinegar for propulsion. The experiment compared two analytical approximations for the maximum rocket height to the…

  16. The History of Soda Water

    Institute of Scientific and Technical Information of China (English)

    赵余燕

    2007-01-01

    <正>The name soda water tells something of its origins in US.Naturally carbonated(含二氧化碳的)water flows out of the ground in mineral springs around the world.These mineral springs have attracted people in

  17. Sequential enzymatic saccharification and fermentation of ionic liquid and organosolv pretreated agave bagasse for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Pérez-Pimienta, Jose A. [Univ. Autonoma de Nayarit, Tepic (Mexico); Vargas-Tah, Alejandra [Univ. Nacional Autonoma de Mexico (UNAM), Cuernavaca (Mexico).; López-Ortega, Karla M. [Univ. Autonoma de Nayarit, Tepic (Mexico); Medina-López, Yessenia N. [Univ. Autonoma de Nayarit, Tepic (Mexico); Mendoza-Pérez, Jorge A. [Inst. Politecnico Nacional (IPN), Mexico City (Mexico); Avila, Sayeny [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Singh, Seema [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Sandia National Lab. (SNL-CA), Livermore, CA (United States); Simmons, Blake A. [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Sandia National Lab. (SNL-CA), Livermore, CA (United States); Loaces, Inés [Univ. Nacional Autonoma de Mexico (UNAM), Cuernavaca (Mexico).; Martinez, Alfredo [Univ. Nacional Autonoma de Mexico (UNAM), Cuernavaca (Mexico).

    2016-11-16

    Agave bagasse (AGB) has gained recognition as a drought-tolerant biofuel feedstock with high productivity in semiarid regions. A comparative analysis of ionic liquid (IL) and organosolv (OV) pretreatment technologies in AGB was performed using a sequential enzymatic saccharification and fermentation (SESF) strategy with cellulolytic enzymes and the ethanologenic Escherichia coli strain MS04. After pretreatment, 86% of xylan and 45% of lignin were removed from OV-AGB, whereas IL-AGB reduced lignin content by 28% and xylan by 50% when compared to the untreated biomass. High glucan ( > 90%) and xylan ( > 83%) conversion was obtained with both pretreated samples. During the fermentation stage (48 h), 12.1 and 12.7 kg of ethanol were produced per 100 kg of untreated AGB for IL and OV, respectively. These comparative analyses showed the advantages of SESF using IL and OV in a biorefinery configuration where a better understanding of AGB recalcitrance is key for future applications.

  18. Sequential enzymatic saccharification and fermentation of ionic liquid and organosolv pretreated agave bagasse for ethanol production.

    Science.gov (United States)

    Pérez-Pimienta, Jose A; Vargas-Tah, Alejandra; López-Ortega, Karla M; Medina-López, Yessenia N; Mendoza-Pérez, Jorge A; Avila, Sayeny; Singh, Seema; Simmons, Blake A; Loaces, Inés; Martinez, Alfredo

    2017-02-01

    Agave bagasse (AGB) has gained recognition as a drought-tolerant biofuel feedstock with high productivity in semiarid regions. A comparative analysis of ionic liquid (IL) and organosolv (OV) pretreatment technologies in AGB was performed using a sequential enzymatic saccharification and fermentation (SESF) strategy with cellulolytic enzymes and the ethanologenic Escherichia coli strain MS04. After pretreatment, 86% of xylan and 45% of lignin were removed from OV-AGB, whereas IL-AGB reduced lignin content by 28% and xylan by 50% when compared to the untreated biomass. High glucan (>90%) and xylan (>83%) conversion was obtained with both pretreated samples. During the fermentation stage (48h), 12.1 and 12.7kg of ethanol were produced per 100kg of untreated AGB for IL and OV, respectively. These comparative analyses showed the advantages of SESF using IL and OV in a biorefinery configuration where a better understanding of AGB recalcitrance is key for future applications.

  19. Monodisperse lignin fractions as standards in size-exclusion analysis: comparison with polystyrene standards.

    Science.gov (United States)

    Botaro, Vagner Roberto; Curvelo, Antonio Aprígio da Silva

    2009-05-01

    The difficulty of preparing monodisperse lignin fractions on a large scale is a limiting factor in many applications. The present paper addresses this problem by examining the properties and size-exclusion behavior of lignin isolated by the acetosolv pulping process from post-extraction crushed sugarcane bagasse. The isolated lignin was subjected to a solvent pretreatment, followed by preparative gel permeation chromatography fractionation. The fractions were analyzed by high-performance size-exclusion chromatography (HPSEC) and these samples showed a great decrease in polydispersity, compared to the original acetosolv lignin. Several fractions of very low polydispersity, close to unity, were employed as calibration curve standards in HPSEC analysis. This original analytical approach allowed calibration with these lignin fractions to be compared with the polystyrene standards that are universally employed for lignin molecular mass determination. This led to a noteworthy result, namely that the lignin fractions and polystyrene standards showed very similar behavior over a large range of molecular masses in a typical HPSEC analysis of acetosolv lignin.

  20. Sugarcane bagasse pretreatment using three imidazolium-based ionic liquids; mass balances and enzyme kinetics

    Directory of Open Access Journals (Sweden)

    Karatzos Sergios

    2012-08-01

    Full Text Available Abstract Background Effective pretreatment is key to achieving high enzymatic saccharification efficiency in processing lignocellulosic biomass to fermentable sugars, biofuels and value-added products. Ionic liquids (ILs, still relatively new class of solvents, are attractive for biomass pretreatment because some demonstrate the rare ability to dissolve all components of lignocellulosic biomass including highly ordered (crystalline cellulose. In the present study, three ILs, 1-butyl-3-methylimidazolium chloride ([C4mim]Cl, 1-ethyl-3-methylimidazolium chloride ([C2mim]Cl, 1-ethyl-3-methylimidazolium acetate ([C2mim]OAc are used to dissolve/pretreat and fractionate sugarcane bagasse. In these IL-based pretreatments the biomass is completely or partially dissolved in ILs at temperatures greater than 130°C and then precipitated by the addition of an antisolvent to the IL biomass mixture. For the first time mass balances of IL-based pretreatments are reported. Such mass balances, along with kinetics data, can be used in process modelling and design. Results Lignin removals of 10% mass of lignin in bagasse with [C4mim]Cl, 50% mass with [C2mim]Cl and 60% mass with [C2mim]OAc, are achieved by limiting the amount of water added as antisolvent to 0.5 water:IL mass ratio thus minimising lignin precipitation. Enzyme saccharification (24 h, 15FPU yields (% cellulose mass in starting bagasse from the recovered solids rank as: [C2mim]OAc(83% > >[C2mim]Cl(53% = [C4mim]Cl(53%. Composition of [C2mim]OAc-treated solids such as low lignin, low acetyl group content and preservation of arabinosyl groups are characteristic of aqueous alkali pretreatments while those of chloride IL-treated solids resemble aqueous acid pretreatments. All ILs are fully recovered after use (100% mass as determined by ion chromatography. Conclusions In all three ILs regulated addition of water as an antisolvent effected a polysaccharide enriched precipitate since some of the lignin

  1. Microbial Flocculant for Nature Soda

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Peiyong; Zhang, Tong; Chen, Cuixian

    2004-03-31

    Microbial flocculant for nature soda has been studied. Lactobacillus TRJ21, which was able to produce an excellent biopolymer flocculant for nature soda, was obtained in our lab. The microbial flocculant was mainly produced when the bacteria laid in stationary growth phase. Fructose or glucose, as carbon sources, were more favorable for the bacterial growth and flocculant production. The bacteria was able to use ammonium sulfate or Urea as nitrogen to produce flocculant, but was not able to use peptone effectively. High C/N ratio was more favorable to Lactobacillus TRJ21 growth and flocculant production than low C/N ratio. The biopolymer flocculant was mainly composed of polysaccharide and protein with a molecular weight 1.38x106 by gel permeation chromatography. It was able to be easily purified from the culture medium by acetone. Protein in the flocculant was tested for the flocculating activity ingredient by heating the flocculant.

  2. Analytical methodology for sulfonated lignins

    NARCIS (Netherlands)

    Brudin, S.; Schoenmakers, P.

    2010-01-01

    There is a significant need to characterize and classify lignins and sulfonated lignins. Lignins have so far received a good deal of attention, whereas this is not true for sulfonated lignins. There is a clear demand for a better understanding of sulfonated lignins on a chemical as well as physical

  3. Analytical methodology for sulfonated lignins

    NARCIS (Netherlands)

    Brudin, S.; Schoenmakers, P.

    2010-01-01

    There is a significant need to characterize and classify lignins and sulfonated lignins. Lignins have so far received a good deal of attention, whereas this is not true for sulfonated lignins. There is a clear demand for a better understanding of sulfonated lignins on a chemical as well as physical

  4. Fractionation and physicochemical characterization of lignin from waste jute bags: Effect of process parameters on yield and thermal degradation.

    Science.gov (United States)

    Ahuja, Dheeraj; Kaushik, Anupama; Chauhan, Ghanshyam S

    2017-04-01

    In this work lignin was extracted from waste jute bags using soda cooking method and effect of varying alkali concentration and pH on yield, purity, structure and thermal degradation of lignin were studied. The Lignin yield, chemical composition and purity were assessed using TAPPI method and UV-vis spectroscopy. Yield and purity of lignin ranged from 27 to 58% and 50-94%, respectively for all the samples and was maximum for 8% alkali concentration and at pH 2 giving higher thermal stability. Chemical structure, thermal stability and elementary analysis of lignin were studied using FTIR, (H)NMR, thermo gravimetric analysis (TGA) and Elemental analyzer. FTIR and (H)NMR results showed that core structure of lignin starts breaking beyond 10% alkali concentration. S/G ratio shows the dominance of Syringyl unit over guaiacyl unit. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Investigating the possibility of chemi-mechanical pulping of bagasse

    Directory of Open Access Journals (Sweden)

    Alireza Khakifirooz

    2013-02-01

    Full Text Available Chemi-mechanical pulping was evaluated as a potential way to prepare sugarcane bagasse fibers for papermaking. Cellulose, lignin, ash, and extractives soluble in alcohol-acetone were measured as 55.75%, 20.5%, 1.85%, and 3.25%, respectively. Fiber length, diameter, lumen cavity, and cell wall thickness were measured as 1.59 mm, 20.96, 9.72, and 5.64 µm. The chemi-mechanical pulping conditions were selected as follows: three charging levels of 10, 15, and 20% sodium sulphite, and three pulping times of 20, 30, and 40 minutes after reaching the pulping temperature. Pulping temperature was held constant at 165 C. Different pulping conditions resulted in pulp yields between 65.38 and 84.28%. The highest yield (84.28% was obtained using a treatment combination of 20 minutes pulping time and 10% sodium sulphite. The lowest yield (65.38% was related to 40 minutes pulping time and 20% sodium sulphite. Pulps were refined to 300 ± 25 mL CSF, 60 gm-2 handsheets were made, and then strength indices and optical properties of the handsheets were measured. The results showed that 20% sodium sulphite, 40 minutes pulping time, at 165 ºC can be considered as the optimum pulping conditions for bagasse CMP pulping. Tensile, tear, and burst strength indices, as well as the opacity of this pulp were measured as 39.59 Nmg-1, 6.66 mNm2g-1, 2.1 KPa m2g-1, and 95.35%, respectively.

  6. Alkaline Pretreatment of Sweet Sorghum Bagasse for Bioethanol Production

    Directory of Open Access Journals (Sweden)

    Yanni Sudiyani

    2016-08-01

    Full Text Available Lignocellulosic material, which consist mainly of cellulose, hemicelluloses and lignin, are among the most promising renewable feedstocks for the production of energy and chemicals.   The bagasse residue of sweet sorghum can be utilized as raw material for alternative energy such as bioethanol.  Bioethanol production consists of pretreatment, saccharification, fermentation and purification process.  The pretreatment process was of great importance to ethanol yield.  In the present study, alkaline pretreatment was conducted using a steam explosion reactor at 1300C with concentrations of NaOH  6, and 10% (kg/L for 10, and 30 min.  For ethanol production separated hydrolysis and fermentation (SHF and simultaneous saccharification and fermentation (SSF process were conducted with 30 FPU of Ctec2 and Htec2 enzyme and yeast of Saccharomyces cerevisiae.   The results showed that maximum cellulose conversion to total glucose plus xylose were showed greatest with NaOH 10% for 30 min.  The highest yield of ethanol is 96.26% and high concentration of ethanol 66.88 g/L were obtained at SSF condition during 48 h process. Using SSF process could increase yields and concentration of ethanol with less energy process. Article History: Received January 16th 2016; Received in revised form May 25th 2016; Accepted June 28th 2016; Available online How to Cite This Article: Sudiyani, Y., Triwahyuni, E., Muryanto, Burhani, D., Waluyo, J. Sulaswaty, A. and Abimanyu, H. (2016 Alkaline Pretreatment of Sweet Sorghum Bagasse for Bioethanol Production. Int. Journal of Renewable Energy Development, 5(2, 113-118. http://dx.doi.org/10.14710/ijred.5.2.113-118 

  7. THERMOMECHANICAL PROPERTIES OF JUTE/BAGASSE HYBRID FIBRE REINFORCED EPOXY THERMOSET COMPOSITES

    Directory of Open Access Journals (Sweden)

    Sudhir Kumar Saw

    2009-11-01

    Full Text Available Natural fibres are partly replacing currently used synthetic fibres as reinforcement for polymer composites. Jute fibre bundles were high-cellulose-content modified by alkali treatment, while the bagasse fibre bundles were modified by creating quinones in the lignin portions of fibre surfaces and reacting them with furfuryl alcohol (FA to increase their adhesiveness. The effects of different fibre bundle loading and modification of bagasse fibre surfaces in hybrid fibre reinforced epoxy composites have been studied. The role of fibre/matrix interactions in chemically modified hybrid composites were investigated using Differential Scanning Calorimeter, Differential Thermo Gravimetry, and a Universal Tensile Machine and compared with those of unmodified bagasse fibre bundles incorporated with modified jute fibre bundles reinforced hybrid composites. Fibre surface modification reduced the hydrophilicity of fibre bundles, and significantly increased mechanical properties of hybrid composites were observed in conjunction with SEM images. The SEM analysis of the fibre and the composite fractured surfaces have confirmed the FA grafting and shown a better compatibility at the interface between chemically modified fibre bundles and epoxy resin. This paper incorporates interesting results of thermomechanical properties and evaluation of fibre/matrix interactions.

  8. Sulfur-free lignins from alkaline pulping tested in mortar for use as mortar additives.

    Science.gov (United States)

    Nadif, A; Hunkeler, D; Käuper, P

    2002-08-01

    Sulfur-free lignin, obtained through the acid precipitation of black liquor from the soda pulping process, has been tested as water reducer in mortar. It has also been compared to existing commercial additives such as naphthalene sulfonates and lignosulfonates. The ash content and sugar content of these lignins are low in comparison to lignosulfonates, conferring on them higher purity. A procedure for small scale testing derived from the industrial norms SN-EN196 and ASTM (Designation C230-90) is presented. Specifically, all the sulfur-free lignins tested improved the flow of the mortar. Selected flax lignins performed better than lignosulfonates though still less than naphthalene sulfonates. Furthermore, certain hemp lignins gave comparable results to the lignosulfonates. Overall, the straw lignin prepared herein is comparable in performance to commercially available lignins, such as Organocell, Alcell and Curan 100. The plant from which the lignin was isolated, and the process of the pulp mill are the primary influences on the performance of the lignin.

  9. Sulfur-free lignins from alkaline pulping tested in mortar for use as mortar additives

    Energy Technology Data Exchange (ETDEWEB)

    Nadif, A.; Hunkeler, D.; Kauper, P. [Ecole Polytechnique Federale de Lausanne (Switzerland). Dept. de Chimie

    2002-08-01

    Sulfur-free lignin, obtained through the acid precipitation of black liquor from the soda pulping process, has been tested as water reducer in mortar. It has also been compared to existing commercial additives such as naphthalene sulfonates and lignosulfonates. The ash content and sugar content of these lignins are low in comparison to lignosulfonates, conferring on them higher purity. A procedure for small scale testing derived from the industrial norms SN-EN196 and ASTM (Designation C230-90) is presented. Specifically, all the sulfur-free lignins tested improved the flow of the mortar. Selected flax lignins performed better than lignosulfonates though still less than naphthalene sulfonates. Furthermore, certain hemp lignins gave comparable results to the lignosulfonates. Overall, the straw lignin prepared herein is comparable in performance to commercially available lignins, such as Organocells, Aicello and Curan 100. The plant from which the lignin was isolated, and the process of the pulp mill are the primary influences on the performance of the lignin. (author)

  10. Bacteria and lignin degradation

    Institute of Scientific and Technical Information of China (English)

    Jing LI; Hongli YUAN; Jinshui YANG

    2009-01-01

    Lignin is both the most abundant aromatic (phenolic) polymer and the second most abundant raw material.It is degraded and modified by bacteria in the natural world,and bacteria seem to play a leading role in decomposing lignin in aquatic ecosystems.Lignin-degrading bacteria approach the polymer by mechanisms such as tunneling,erosion,and cavitation.With the advantages of immense environmental adaptability and biochemical versatility,bacteria deserve to be studied for their ligninolytic potential.

  11. Effect of ionic liquid pretreatment on the chemical composition, structure and enzymatic hydrolysis of energy cane bagasse.

    Science.gov (United States)

    Qiu, Zenghui; Aita, Giovanna M; Walker, Michelle S

    2012-08-01

    Ionic liquids (ILs) are promising solvents for the pretreatment of lignocellulose as they are thermally stable, environmentally friendly, recyclable, and have low volatility. This study evaluated the effect of 1-ethyl-3-methylimidazolium acetate ([EMIM][OAc]) for the pretreatment of energy cane bagasse in terms of biomass composition, structural changes and enzymatic digestibility. Energy cane bagasse was pretreated with [EMIM][OAc] (5% (w/w)) at 120 °C for 30 min followed by hydrolysis with commercially available enzymes, Spezyme CP and Novozyme 188. IL-treated energy cane bagasse resulted in significant lignin removal (32.0%) with slight glucan and xylan losses (8.8% and 14.0%, respectively), and exhibited a much higher enzymatic digestibility (87.0% and 64.3%) than untreated (5.5% and 2.8%) or water-treated (4.0% and 2.1%) energy cane bagasse in terms of both cellulose and hemicellulose digestibilities, respectively. The enhanced digestibilities of IL-treated biomass can be attributed to delignification and reduction of cellulose crystallinity as confirmed by FTIR and XRD analyses.

  12. COMPARISON BETWEEN WET OXIDATION AND STEAM EXPLOSION AS PRETREATMENT METHODS FOR ENZYMATIC HYDROLYSIS OF SUGARCANE BAGASSE

    Directory of Open Access Journals (Sweden)

    Carlos Martín

    2008-08-01

    Full Text Available Alkaline wet oxidation and steam explosion pretreatments of sugarcane bagasse were compared with regard to biomass fractionation, formation of by-products, and enzymatic convertibility of the pretreated material. Wet oxidation led to the solubilisation of 82% of xylan and 50% of lignin, and to a two-fold increase of cellulose content in the pretreated solids, while steam explosion solubilised only 60% of xylan and 35% of lignin and increased cellulose content in the solid material by one third. Wet oxidation formed more aliphatic acids and phenolics, and less furan aldehydes in the liquid fraction than steam explosion did. A better enzymatic convertibility of cellulose was achieved for the wet-oxidised material (57.4 % than for the steam-exploded material (48.9 %. Cellulose convertibility was lower for the whole slurry than for the washed solids in both pretreatments, but more significantly in steam explosion. This investigation demonstrates the potential of wet oxidation as a promising pretreatment method for enzyme-based bagasse-to-ethanol processes.

  13. Fractionation of sugarcane bagasse using a combined process of dilute acid and ionic liquid treatments.

    Science.gov (United States)

    Diedericks, Danie; van Rensburg, Eugéne; Görgens, Johann F

    2012-08-01

    Biorefineries processing lignocellulose will produce chemicals and fuels from chemical constituents, cellulose, hemicelluloses, and lignin to replace fossil-derived products. Fractionation of sugarcane bagasse into three pure streams of chemical constituents was addressed through dissolution of constituents with the ionic liquids, 1-ethyl-3-methylimidazolium acetate ([EMiM]CH(3)COO) or 1-butyl-3-methylimidazolium methyl sulfate ([BMiM]MeSO(4)). Constituents were isolated from the reaction mixture with the anti-solvents acetone (Ā), acetone-water (AW), and sodium hydroxide (NaOH). Delignification was enhanced by NaOH, although resulting in impure product streams. Xylose pre-extraction (75 % w/w) by dilute acid pretreatment, prior to ionic liquid treatment, improved lignin purity after anti-solvent separation. Fractionation efficiency of the combined process was maximized (84 %) by ionic liquid treatment at 125 °C for 120 min, resulting in 80.2 % (w/w) lignin removal and 76.5 % (w/w) lignin recovery. Ionic liquids achieved similar degrees of delignification, although fully digestible cellulose-rich solids were produced only by [EMiM]CH(3)COO treatment.

  14. Biobased Polystyrene Foam-like Material from Crosslinked Cassava Starch and Nanocellulose from Sugarcane Bagasse

    Directory of Open Access Journals (Sweden)

    Parichat Phaodee

    2014-11-01

    Full Text Available This research aimed to study the effect of lignin, natural rubber latex (NRL, nanocellulose, and talc on production of biobased foam using cassava starch as matrix. Comparison study on lignin extraction from sugarcane bagasse (SCB for different types of base (KOH and NaOH, concentration (10 %w/w and 40 %w/w, and temperatures (60 C for 3 h and 120 C for 1 h was performed. The most suitable isolation condition giving the highest yield of lignin and lowest hemicellulose contamination was 40 %KOH at 120 oC for 1 h. A mechanical method was superior to a chemical method for cellulose size reduction owing to more appropriate size distribution and uniformity of nanocellulose. The most favorable proportion of foam contained 20% nanocellulose, 3% talc, 0.1% NRL, 38.5% water, and 76.9% crosslinked cassava starch. These conditions resulted in favorable flexural strength, modulus, and percentage of elongation, analogous to polystyrene foam. An appropriate amount of added lignin increased the elasticity of biofoam.

  15. Effect of lime pre-treatment on the synergistic hydrolysis of sugarcane bagasse by hemicellulases.

    Science.gov (United States)

    Beukes, Natasha; Pletschke, Brett I

    2010-06-01

    Agricultural crop wastes are typically lignocellulosic in composition and thus partially recalcitrant to enzymatic degradation. The recalcitrant nature of plant biomass and the inability to obtain complete enzymatic hydrolysis has led to the establishment of various pre-treatment strategies. Alkaline pre-treatments increase the accessibility of the exposed surface to enzymatic hydrolysis through the removal of acetyl and uronic acid substituents on hemicelluloses. Unlike the use of steam and acid pre-treatments, alkaline pre-treatments (e.g. lime) solubilise lignin and a small percentage of the hemicelluloses. The most common alkaline pre-treatments that are employed make use of sodium hydroxide and lime. This study compared the synergistic degradation of un-treated and lime pre-treated sugarcane bagasse using cellulosomal and non-cellulosomal hemicellulases as free enzymes. The enzyme combination of 37.5% ArfA and 62.5% ManA produced the highest amount of reducing sugar of 91.834 micromol/min for the degradation of un-treated bagasse. This enzyme combination produced a degree of synergy of 1.87. The free enzymes displayed an approximately 6-fold increase in the enzyme activity, i.e. the total amount of reducing sugar released (593.65 micromol/min) with the enzyme combination of 37.5% ArfA, 25% ManA and 37.5% XynA for the lime pre-treated substrate and a degree of synergy of 2.14. To conclude, this study indicated that pre-treating the sugarcane bagasse is essential, in order to increase the efficiency of lignocellulose enzymatic hydrolysis by disruption of the lignin sheath, that the lime pre-treatment did not have any dramatic effect on the synergistic relationship between the free enzymes, and that time may play an important role in the establishment of synergistic relationships between enzymes.

  16. Comparative hydrolysis and fermentation of sugarcane and agave bagasse.

    Science.gov (United States)

    Hernández-Salas, J M; Villa-Ramírez, M S; Veloz-Rendón, J S; Rivera-Hernández, K N; González-César, R A; Plascencia-Espinosa, M A; Trejo-Estrada, S R

    2009-02-01

    Sugarcane and agave bagasse samples were hydrolyzed with either mineral acids (HCl), commercial glucanases or a combined treatment consisting of alkaline delignification followed by enzymatic hydrolysis. Acid hydrolysis of sugar cane bagasse yielded a higher level of reducing sugars (37.21% for depithed bagasse and 35.37% for pith bagasse), when compared to metzal or metzontete (agave pinecone and leaves, 5.02% and 9.91%, respectively). An optimized enzyme formulation was used to process sugar cane bagasse, which contained Celluclast, Novozyme and Viscozyme L. From alkaline-enzymatic hydrolysis of sugarcane bagasse samples, a reduced level of reducing sugar yield was obtained (11-20%) compared to agave bagasse (12-58%). Selected hydrolyzates were fermented with a non-recombinant strain of Saccharomyces cerevisiae. Maximum alcohol yield by fermentation (32.6%) was obtained from the hydrolyzate of sugarcane depithed bagasse. Hydrolyzed agave waste residues provide an increased glucose decreased xylose product useful for biotechnological conversion.

  17. Evaluation of lignins from side-streams generated in an olive tree pruning-based biorefinery: Bioethanol production and alkaline pulping.

    Science.gov (United States)

    Santos, José I; Fillat, Úrsula; Martín-Sampedro, Raquel; Eugenio, María E; Negro, María J; Ballesteros, Ignacio; Rodríguez, Alejandro; Ibarra, David

    2017-07-06

    In modern lignocellulosic-based biorefineries, carbohydrates can be transformed into biofuels and pulp and paper, whereas lignin is burned to obtain energy. However, a part of lignin could be converted into value-added products including bio-based aromatic chemicals, as well as building blocks for materials. Then, a good knowledge of lignin is necessary to define its valorisation procedure. This study characterized different lignins from side-streams produced from olive tree pruning bioethanol production (lignins collected from steam explosion pretreatment with water or phosphoric acid as catalysts, followed by simultaneous saccharification and fermentation process) and alkaline pulping (lignins recovered from kraft and soda-AQ black liquors). Together with the chemical composition, the structure of lignins was investigated by FTIR, (13)C NMR, and 2D NMR. Bioethanol lignins had clearly distinct characteristics compared to pulping lignins; a certain number of side-chain linkages (mostly alkyl-aryl ether and resinol) accompanied with lower phenolic hydroxyls content. Bioethanol lignins also showed a significant amount of carbohydrates, mainly glucose and protein impurities. By contrast, pulping lignins revealed xylose together with a dramatical reduction of side-chains (some resinol linkages survive) and thereby higher phenol content, indicating rather severe lignin degradation during alkaline pulping processes. All lignins showed a predominance of syringyl units. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Usefulness of raw bagasse for oil absorption: a comparison of raw and acylated bagasse and their components.

    Science.gov (United States)

    Said, Abd El-Aziz A; Ludwick, Adriane G; Aglan, Heshmat A

    2009-04-01

    Raw bagasse or sugar cane cellulosic residues were modified using acylation grafting with fatty acid. The capability of the grafted bagasse to absorb oil from aqueous solution was studied and compared with the raw bagasse. It was found that the grafted material was significantly more hydrophobic than the raw bagasse. This grafted bagasse had little affinity for water and good affinity for oil. It was also found that bleaching of raw bagasse did not enhance its oil absorptivity. The grafted raw bagasse would be most suitable for applications where oil is to be removed from an aqueous environment. For oil absorbing applications in the absence of water, the raw bagasse was an excellent material.

  19. Use of Agave tequilana-lignin and zinc oxide nanoparticles for skin photoprotection.

    Science.gov (United States)

    Gutiérrez-Hernández, José Manuel; Escalante, Alfredo; Murillo-Vázquez, Raquel Nalleli; Delgado, Ezequiel; González, Francisco Javier; Toríz, Guillermo

    2016-10-01

    The use of sunscreens is essential for preventing skin damage and the potential appearance of skin cancer in humans. Inorganic active components such as zinc oxide (ZnO) have been used commonly in sunscreens due to their ability to block UVA radiation. This ultraviolet (UV) protection might be enhanced to cover the UVB and UVC bands when combined with other components such as titanium dioxide (TiO2). In this work we evaluate the photoprotection properties of organic nanoparticles made from lignin in combination with ZnO nanoparticles as active ingredients for sunscreens. Lignin nanoparticles were synthesized from Agave tequilana lignin. Two different pulping methods were used for dissolving lignin from agave bagasse. ZnO nanoparticles were synthesized by the precipitation method. All nanoparticles were characterized by SEM, UV-Vis and FT-IR spectroscopy. Nanoparticles were mixed with a neutral vehicle in different concentrations and in-vitro sun protection factor (SPF) values were calculated. Different sizes of spherical lignin nanoparticles were obtained from the spent liquors of two different pulping methods. ZnO nanoparticles resulted with a flake shape. The mixture of all components gave SPF values in a range between 4 and 13. Lignin nanoparticles showed absorption in the UVB and UVC regions which can enhance the SPF value of sunscreens composed only of zinc oxide nanoparticles. Lignin nanoparticles have the added advantage of being of organic nature and its brown color can be used to match the skin tone of the person using it.

  20. Biotechnological modification of lignin

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    A literature search of organisms capable of degrading lignin was conducted. Four fungi were selected for study and these were Phanerochaete chrysosporium, Chrysosporium pruinosum, Phlebia tremellosus and Trametes versicolor. Other organisms, Pleurotus ostreatus, Pleurotus florida and Lentinus edodes were also tested in preliminary experiments. All cultures were screened for their ability to degrade the lignin component of aspen sawdust and also lignin extracted from steam-exploded wood. This type of screen was followed by analysis of culture filtrates for the presence of ligninase, the marker enzyme for lignin degradation. Phanerochaete chrysosporium and consequently chosen for further studies in fermentors. Considerable efforts were directed to production of ligninase in fermentors. Only when Chrysosporium pruinosum was pre-cultured in a shake flask for 4 days and then transferred to a fermentor could ligninase activity be detected. The enzyme from shake flasks has been concentrated ready for use in bench-scale studies on cell-free depolymerization of lignin. 13 refs., 8 tabs.

  1. Corrosion effects on soda lime glass

    NARCIS (Netherlands)

    Veer, F.A.; Rodichev, Y.M.

    2010-01-01

    Although soda lime glass is the most common used transparent material in architecture, little is known about the corrosion effects on long term strength and the interaction between corrosion and defects. Extensive testing on soda lime bars under different environmental conditions and different degre

  2. Production of water-free soda

    NARCIS (Netherlands)

    Meijer, J.A.M.; Geertman, R.M.; Oosterhof, H.; Witkamp, G.J.; Van Rosmalen, G.M.

    1999-01-01

    A process is presented in which anhydrous soda is crystallized and worked up to produce anhydrous soda crystals with a bulk density from 1300 to 1600 kg/m<3>. The process is characterized in that a solvent is used that allows the crystals to be formed and handled at atomspheric pressure in the prese

  3. Production of water-free soda

    NARCIS (Netherlands)

    Meijer, J.A.M.; Geertman, R.M.; Oosterhof, H.; Witkamp, G.J.; Van Rosmalen, G.M.

    1999-01-01

    A process is presented in which anhydrous soda is crystallized and worked up to produce anhydrous soda crystals with a bulk density from 1300 to 1600 kg/m<3>. The process is characterized in that a solvent is used that allows the crystals to be formed and handled at atomspheric pressure in the

  4. Corrosion effects on soda lime glass

    NARCIS (Netherlands)

    Veer, F.A.; Rodichev, Y.M.

    2010-01-01

    Although soda lime glass is the most common used transparent material in architecture, little is known about the corrosion effects on long term strength and the interaction between corrosion and defects. Extensive testing on soda lime bars under different environmental conditions and different

  5. Lignin Sulfonation - A different Approach

    DEFF Research Database (Denmark)

    Bjørkmann, Anders

    2001-01-01

    . It was found that lignin is very reactive, that is why the sulfonation chemistry alone does not necessarily determine its dissolution rate. It became evident that the ultrastructure dispersion of lignin in wood is beneficial for its dissolution. For W, the rate was much higher at pH 1.5 than at 6. MW lignin...... and MWL dissolved (after extraction of the "immediate" lignin) at higher rates than W lignin. For MWL, the rate difference between pH 1.5 and 6 was moderate, compared to W lignin. Borohydride reduction did not affect the lignin dissolution from W, but gave a large decrease of sulfonation rate for MWL...

  6. Preparation and Characterization of Lignin Graft Copolymer as a Filtrate Loss Control Agent for the Hydrocarbon Drilling Industry

    Directory of Open Access Journals (Sweden)

    Mohamad Nasir Mohamad Ibrahim

    2014-01-01

    Full Text Available Lignin graft copolymer (LGC was prepared using an addition polymerization technique that involved grafting a 2-acrylamido-2-methylpropane sulfonic acid (AMPS monomer onto soda lignin (SL. The optimal polymerization conditions were found to be as follows: soda lignin, 2.0 g; initiator, 3% (w/w potassium persulphate of SL; mass ratio of AMPS to SL, 1:2; reaction time, 7 h; and reaction temperature, 60 °C. The LGC was characterized using a Fourier transform infrared (FTIR spectroscopy, a thermogravimetric analyzer (TGA, and gel permeation chromatography (GPC. The filtrate loss controlling ability of the LGC was evaluated using the American Petroleum Institute Recommended Practice 13-B 1 standard procedures. The results showed that the LGC has remarkable rheological and filtration controlling properties at both room temperature and high aging temperatures (190 °C.

  7. Evaluation of electricity generation from lignin residue and biogas in cellulosic ethanol production.

    Science.gov (United States)

    Liu, Gang; Bao, Jie

    2017-11-01

    This study takes the first insight on the rigorous evaluation of electricity generation based on the experimentally measured higher heating value (HHV) of lignin residue, as well as the chemical oxygen demand (COD) and biological oxygen demand (BOD5) of wastewater. For producing one metric ton of ethanol fuel from five typical lignocellulose substrates, including corn stover, wheat straw, rice straw, sugarcane bagasse and poplar sawdust, 1.26-1.85tons of dry lignin residue is generated from biorefining process and 0.19-0.27tons of biogas is generated from anaerobic digestion of wastewater, equivalent to 4335-5981kWh and 1946-2795kWh of electricity by combustion of the generated lignin residue and biogas, respectively. The electricity generation not only sufficiently meets the electricity needs of process requirement, but also generates more than half of electricity surplus selling to the grid. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. 27 CFR 21.102 - Caustic soda, liquid.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Caustic soda, liquid. 21....102 Caustic soda, liquid. (a) The liquid caustic soda may consist of either 50 percent or 73 percent by weight sodium hydroxide in aqueous solution. The amount of caustic soda used shall be such...

  9. Caustic Soda Will Be Oversupply in 2007

    Institute of Scientific and Technical Information of China (English)

    Yao Liqin

    2007-01-01

    @@ Rapid output increase There are more than 220 caustic soda producers in China today. At the end of 2006 the capacity of caustic soda in China was 17.61 million t/a. The output of caustic soda was 15.118 million tons in 2006, an increase of 19.0% over 2005 and 1.331 million tons were exported, an increase of 55.8%. Production increased fastest in Northwest China, with growth 51.9% faster than 2005. The output in East China grew 22.9% and 22.3% in Southwest China, both higher than the national average level.

  10. Microbiological decomposition of bagasse after radiation pasteurization

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Hitoshi; Ishigaki, Isao

    1987-11-01

    Microbiological decomposition of bagasse was studied for upgrading to animal feeds after radiation pasteurization. Solid-state culture media of bagasse were prepared with addition of some amount of inorganic salts for nitrogen source, and after irradiation, fungi were infected for cultivation. In this study, many kind of cellulosic fungi such as Pleurotus ostreatus, P. flavellatus, Verticillium sp., Coprinus cinereus, Lentinus edodes, Aspergillus niger, Trichoderma koningi, T. viride were used for comparison of decomposition of crude fibers. In alkali nontreated bagasse, P. ostreatus, P. flavellatus, C. cinereus and Verticillium sp. could decompose crude fibers from 25 to 34 % after one month of cultivation, whereas other fungi such as A. niger, T. koningi, T. viride, L. edodes decomposed below 10 %. On the contrary, alkali treatment enhanced the decomposition of crude fiber by A. niger, T. koningi and T. viride to be 29 to 47 % as well as Pleurotus species or C. cinereus. Other species of mushrooms such as L. edodes had a little ability of decomposition even after alkali treatment. Radiation treatment with 10 kGy could not enhance the decomposition of bagasse compared with steam treatment, whereas higher doses of radiation treatment enhanced a little of decomposition of crude fibers by microorganisms.

  11. Removal of hexenuronic acid by xylanase to reduce adsorbable organic halides formation in chlorine dioxide bleaching of bagasse pulp.

    Science.gov (United States)

    Nie, Shuangxi; Wang, Shuangfei; Qin, Chengrong; Yao, Shuangquan; Ebonka, Johnbull Friday; Song, Xueping; Li, Kecheng

    2015-11-01

    Xylanase-aided chlorine dioxide bleaching of bagasse pulp was investigated. The pulp was pretreated with xylanase and followed a chlorine dioxide bleaching stage. The ATR-FTIR and XPS were employed to determine the surface chemistry of the control pulp, xylanase treated and chlorine dioxide treated pulps. The hexenuronic acid (HexA) could obviously be reduced after xylanase pretreatment, and the adsorbable organic halides (AOX) were reduced after chlorine dioxide bleaching. Compared to the control pulp, AOX could be reduced by 21.4-26.6% with xylanase treatment. Chlorine dioxide demand could be reduced by 12.5-22% to achieve the same brightness. The ATR-FTIR and XPS results showed that lignin and hemicellulose (mainly HexA) were the main source for AOX formation. Xylanase pretreatment could remove HexA and expose more lignin, which decreased the chlorine dioxide demand and thus reduced formation of AOX.

  12. Gas Experiments with Plastic Soda Bottles.

    Science.gov (United States)

    Kavanah, Patrick; Zipp, Arden P.

    1998-01-01

    Describes the use of an inexpensive device consisting of a plastic soda bottle and a modified plastic cap in a range of demonstrations and experimental activities having to do with the behavior of gases. (Author/WRM)

  13. Pretreatment of sugarcane bagasse using the advanced oxidation process by electron beam for enzymatic hydrolysis of cellulose; Pre-tratamento do bagaco de cana utilizando o processo de oxidacao avancada por feixe de eletrons para hidrolise enzimatica da celulose

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Marcia Almeida

    2013-07-01

    The sugar cane bagasse is a renewable energy source and a raw material promise in the biofuel production, once represents about 30% of glucose contained in the plant with the potential to be hydrolyzed and then converted to ethanol. The bagasse is composed of cellulose, straight chain of glucose, of hemicellulose, an amorphous polymer consisting of xylose, arabinose, galactose, and mannose, and of lignin, a complex polymer consisting of fenilpropan units that acts as waterproof coating on the fibers, which is hard to remove due its recalcitrant nature. The aim of this work was to study the electron beam processing as a pretreatment of sugarcane bagasse to enzymatic hydrolysis of cellulose. The pretreatment of sugarcane bagasse is one of the most important steps to make this material economically viable and competitive on the energy production. As a pretreatment the electron beam processing can weak the hemicellulose and lignin structures by the action highly reactive radicals that breaks the links, reducing the degree of polymerization fibers. It was evaluated the chemical and structural modifications on fibers caused by the irradiation, the enzymatic hydrolysis of electron beam as the only pretreatment and combined to steam explosion. For enzymatic hydrolysis it was used the commercial enzymes from Novozymes. The radiation processing promotes changes in structure and composition of sugarcane bagasse, increasing the solubility, that is related to hemicellulose and cellulose cleavage, and also increasing the enzymatic conversion yield. In the case of exploded bagasse there is no changes in the enzymatic hydrolysis yield, however the electron beam processing promoted a 67% reduction of furfural, that is formed in the steam explosion process. (author)

  14. Experimental Evaluation of Sugar Cane Bagasse Storage in Bales System

    Directory of Open Access Journals (Sweden)

    J. Lois-Correa

    2010-12-01

    Full Text Available An experimental evaluation was carried out on three bagasse storage piles with the following characteristics: wetbaled raw bagasse, wet baled depithed bagasse and pre-dried baled depithed bagasse. In each of these formerlymentioned alternatives, the storage time influence was analyzed on temperature profile, humidity behavior,granulometry and morphology, with and without mechanical treatment, solubility in hot water, NaOH and alcoholbenzeneextractives. In the same way, the behavior of brightness in mechanical pulps produced from stored bagassewas studied. Storage losses were calculated for each alternative on the basis of obtained results and it wasdemonstrated that pre-dried bagasse as compared with wet bagasse storage, yields lower losses and betterconservation of its characteristics.

  15. Development of Asbestos - Free Brake Pad Using Bagasse

    Directory of Open Access Journals (Sweden)

    V. S. Aigbodion

    2010-03-01

    Full Text Available Development of asbestos-free brake pad using bagasse was investigated with a view to replace the use of asbestos whose dust is carcinogenic. The bagasse were sieve into sieve grades of 100, 150, 250, 350 and 710µm. the sieve bagasse was used in production of brake pad in ratio of 70%bagasse-30%resin using compression moulding. The properties examined are microstructure analysis, hardness, compressive strength, density, flame resistance, water and oil absorption. The microstructure reveals uniform distribution of resin in the bagasse. The results obtained showed that the finer the sieve size the better the properties. The results obtained in this work were compared with that of commercial brake pad (asbestos based and optimum formulation laboratory brake pad Palm Kernel Shell based (PKS, the results are in close agreement. Hence bagasse can be used in production of asbestos-free brake pad.

  16. Effect of dry torrefaction on kinetics of catalytic pyrolysis of sugarcane bagasse

    Science.gov (United States)

    Daniyanto, Sutijan, Deendarlianto, Budiman, Arief

    2015-12-01

    Decreasing world reserve of fossil resources (i.e. petroleum oil, coal and natural gas) encourage discovery of renewable resources as subtitute for fossil resources. Biomass is one of the main natural renewable resources which is promising resource as alternate resources to meet the world's energy needs and raw material to produce chemical platform. Conversion of biomass, as source of energy, fuel and biochemical, is conducted using thermochemical process such as pyrolysis-gasification process. Pyrolysis step is an important step in the mechanism of pyrolysis - gasification of biomass. The objective of this study is to obtain the kinetic reaction of catalytic pyrolysis of dry torrified sugarcane bagasse which used Ca and Mg as catalysts. The model of kinetic reaction is interpreted using model n-order of single reaction equation of biomass. Rate of catalytic pyrolysis reaction depends on the weight of converted biomass into char and volatile matters. Based on TG/DTA analysis, rate of pyrolysis reaction is influenced by the composition of biomass (i.e. hemicellulose, cellulose and lignin) and inorganic component especially alkali and alkaline earth metallic (AAEM). From this study, it has found two equations rate of reaction of catalytic pyrolysis in sugarcane bagasse using catalysts Ca and Mg. First equation is equation of pyrolysis reaction in rapid zone of decomposition and the second equation is slow zone of decomposition. Value of order reaction for rapid decomposition is n > 1 and for slow decomposition is nConstant and order of reactions for catalytic pyrolysis of dry-torrified sugarcane bagasse with presence of Ca tend to higher than that's of presence of Mg.

  17. Alkali-explosion pretreatment of straw and bagasse for enzymic hydrolysis.

    Science.gov (United States)

    Puri, V P; Pearce, G R

    1986-04-01

    Sugarcane bagasse and wheat straw were subjected to alkali treatment at 200 degrees C for 5 min and at 3.45 MPa gas pressure (steam and nitrogen), followed by an explosive discharge through a defibrating nozzle, in an attempt to improve the rate and extent of digestibility. The treatment resulted in the solubilization of 40-45% of the components and in the production of a pulp that gave saccharification yields of 80 and 65% in 8 h for bagasse and wheat straw, respectively. By comparison, alkali steaming at 200 degrees C (1.72 MPa) for 5 min gave saccharification yields of only 58 and 52% in 48 h. The increase in temperature from 140 to 200 degrees C resulted in a gradual increase in in vitro organic matter digestibility (IVOMD) for both the substrates. Also, the extent of alkalinity during pretreatment appears to effect the reactivity of the final product towards enzymes. Pretreatment times ranging from 5 to 60 caused a progressive decline in the IVOMD of bagasse and wheat straw by the alkali explosion method and this was accompanied by a progressive decrease in pH values after explosion. In the alkali-steaming method, pretreatment time had no apparent effect with either substrate. An analysis of the alkali-exploded products showed that substantial amounts of hemicellulose and a small proportion of the lignin were solubilized. The percentage crystallinity of the cellulose did not alter in either substrate but there was a substantial reduction in the degree of polymerization. The superiority of the alkali-explosion pretreatment is attributed to the efficacy of fiber separation and disintegration; this increases the surface area and reduces the degree of polymerization.

  18. Through Lignin Biodegradation to Lignin-based Plastics

    Science.gov (United States)

    Wang, Yun-Yan

    The consequences of strong noncovalent intermolecular interactions between oligomeric and/or polymeric lignin components are encountered during enzyme-catalyzed lignin degradation and in the properties of lignin-based plastics. A new chapter in the 30-year quest for functional lignin-depolymerizing enzymes has been opened. The lignin-degrading capacity of the flavin-dependent monooxygenase, salicylate hydroxylase acting as a putative lignin depolymerase, has been characterized using a water-soluble native softwood lignin substrate under mildly acidic aqueous conditions. When macromolecular lignins undergo lignin-depolymerase catalyzed degradation, the cleaved components tend to associate with one another, or with nearby associated lignin complexes, through processes mediated by the enzyme acting in a non-catalytic capacity. As a result, the radius of gyration (Rg) falls rapidly to approximately constant values, while the weight-average molecular weight (Mw) of the substrate rises more slowly to an extent dependent on enzyme concentration. Xylanase, when employed in an auxiliary capacity, is able to facilitate dissociation of the foregoing complexes through its interactions with the lignin depolymerase. The flavin-dependent lignin depolymerase must be reduced before reaction with oxygen can occur to form the hydroperoxy intermediate that hydroxylates the lignin substrate prior to cleavage. In the absence of the cofactor, NADH, the necessary reducing power can be provided (albeit more slowly) by the lignin substrate itself. Under such conditions, a simultaneous decrease in R g and Mw is initially observed during the enzymatic process through which the lignin is cleaved. The partially degraded product-lignins arising from lignin depolymerase activity can be readily converted into polymeric materials with mechanical properties that supersede those of polystyrene. Methylation and blending of ball-milled softwood lignins with miscible low-Tg polymers, or simple low

  19. The acetyl bromide method is faster, simpler and presents best recovery of lignin in different herbaceous tissues than Klason and thioglycolic acid methods.

    Science.gov (United States)

    Moreira-Vilar, Flavia Carolina; Siqueira-Soares, Rita de Cássia; Finger-Teixeira, Aline; de Oliveira, Dyoni Matias; Ferro, Ana Paula; da Rocha, George Jackson; Ferrarese, Maria de Lourdes L; dos Santos, Wanderley Dantas; Ferrarese-Filho, Osvaldo

    2014-01-01

    We compared the amount of lignin as determined by the three most traditional methods for lignin measurement in three tissues (sugarcane bagasse, soybean roots and soybean seed coat) contrasting for lignin amount and composition. Although all methods presented high reproducibility, major inconsistencies among them were found. The amount of lignin determined by thioglycolic acid method was severely lower than that provided by the other methods (up to 95%) in all tissues analyzed. Klason method was quite similar to acetyl bromide in tissues containing higher amounts of lignin, but presented lower recovery of lignin in the less lignified tissue. To investigate the causes of the inconsistencies observed, we determined the monomer composition of all plant materials, but found no correlation. We found that the low recovery of lignin presented by the thioglycolic acid method were due losses of lignin in the residues disposed throughout the procedures. The production of furfurals by acetyl bromide method does not explain the differences observed. The acetyl bromide method is the simplest and fastest among the methods evaluated presenting similar or best recovery of lignin in all the tissues assessed.

  20. DELIGNIFICATION OF SUGARCANE BAGASSE WITH ALKALI AND PERACETIC ACID AND CHARACTERIZATION OF THE PULP

    Directory of Open Access Journals (Sweden)

    Ting Zhang

    2010-06-01

    Full Text Available Sugarcane bagasse was delignified with alkali and peracetic acid in a two-stage process to obtain pulps with high yield and low kappa number. The experimental results indicated that alkali pretreatment prior to peracetic acid (PAA delignification could significantly reduce PAA loading by partially removing lignin and swelling the fibers. An optimum condition for the two-stage delignification was obtained for pulping of sugarcane bagasse. The pulps were further characterized by chemical composition analysis, strength property tests, Fourier Transform Infrared Spectroscopy (FTIR, X-Ray Diffraction (XRD, and Thermal Gravimetric Analysis (TGA. It was found that the alkali-PAA process could be conducted under milder conditions with resulting higher pulping selectivity, higher degree of polymerization (DP, and superior mechanical properties of pulps, compared to the kraft pulping process. Both kraft pulps and alkali-PAA pulp had similar FTIR spectra, XRD spectra, and TGA (DTG curves. However, further analysis indicated that the alkali-PAA pulp had higher infrared crystallization index and cellulose crystallinity.

  1. Bioethanol production from sugarcane bagasse by simultaneous sacarification and fermentation using Saccharomyces cerevisiae

    Science.gov (United States)

    Hernawan, Maryana, R.; Pratiwi, D.; Wahono, S. K.; Darsih, C.; Hayati, S. N.; Poeloengasih, C. D.; Nisa, K.; Indrianingsih, A. W.; Prasetyo, D. J.; Jatmiko, T. H.; Kismurtono, M.; Rosyida, V. T.

    2017-03-01

    Sugarcane bagasse (SCB) is most abundant agricultural wastes in the world. It is an attractive feedstock for the large-scale biological production of bioethanol. However, the limitation in bagase use is its high degree of complexity because of its mixed composition of extremely inhomogeneous fibers. Therefore, ethanol production from bagase is often complex, with three main steps, i.e pretreatment, sacharification, and fermentation. Here we used alkali pretreatment using delignification reactor with NaOH 1N and 1.5 bar for 2 hours. Followed by Simultaneous Sacarification and Fermentation (SSF) using Saccharomyces cerevisiae in addition of cellulase and β-glucosidase enzyme. We found that the alkaline pretreatment can decrease cellulose crystallinity, decrease lignin content up to 84.83% and increased cellulose content up to 74.29%. SSF using cellulase enzymes and combination of cellulase enzymes and β-glucosidase derived bioethanol levels respectively 5.87±0.78% and 6.83±0.07%. In conclusion these results strongly suggest that addition of β-glucosidase enzyme on alkali-pretreated bagasse increased the bioethanol production.

  2. Environmental and technical feasibility of cellulose nanocrystal manufacturing from sugarcane bagasse.

    Science.gov (United States)

    Leão, Rosineide Miranda; Miléo, Patrícia Câmara; Maia, João M L L; Luz, Sandra Maria

    2017-11-01

    The environmental and technical feasibility of cellulose nanocrystal production from sugarcane bagasse fibers was evaluated. First, the life cycle assessment (LCA) is presented as a methodology to investigate the most feasible form of obtainment. The environmental impacts regarding climate change and water footprint were evaluated considering a gate-to-gate process and a functional unit of 1kg. The inventory data encompassed sugarcane plantation and pretreatment, bleaching and hydrolysis for bagasse generation. The twelve scenarios for extracting nanocrystals that were investigated consisted of treatment with sodium hydroxide or sodium chlorite followed by sulfuric acid hydrolysis. All products and processes were characterized by their yield and X-ray diffraction. As a result, all scenarios showed that the pretreatment stage was the most important contributor to the environmental impact. The comparison among the scenarios showed that nanocrystals produced by processes V - NaClO2/NaOH/H2SO4/30min/1x and IX - NaClO2/NaOH/HNO3/H2SO4/30min/1x presented low water consumption and minimal contributions to climate change. Therefore, considering the LCA, yield and crystallinity, the best processes were V and IX sequences. Finally, these cellulose nanocrystals were evaluated by their chemical composition, morphology and thermal stability, exhibiting hemicellulose and lignin removal, nanometric dimensions from 8 to 12nm, high crystallinity and low thermal stability. Copyright © 2017. Published by Elsevier Ltd.

  3. Statistical analysis of NaOH pretreatment effects on sweet sorghum bagasse characteristics

    Science.gov (United States)

    Putri, Ary Mauliva Hada; Wahyuni, Eka Tri; Sudiyani, Yanni

    2017-01-01

    We analyze the behavior of sweet sorghum bagasse characteristics before and after NaOH pretreatments by statistical analysis. These characteristics include the percentages of lignocellulosic materials and the degree of crystallinity. We use the chi-square method to get the values of fitted parameters, and then deploy student's t-test to check whether they are significantly different from zero at 99.73% confidence level (C.L.). We obtain, in the cases of hemicellulose and lignin, that their percentages after pretreatment decrease statistically. On the other hand, crystallinity does not possess similar behavior as the data proves that all fitted parameters in this case might be consistent with zero. Our statistical result is then cross examined with the observations from X-ray diffraction (XRD) and Fourier Transform Infrared (FTIR) Spectroscopy, showing pretty good agreement. This result may indicate that the 10% NaOH pretreatment might not be sufficient in changing the crystallinity index of the sweet sorghum bagasse.

  4. Evaluation of high density polyethylene composite filled with bagasse after accelerated weathering followed by biodegradation

    Directory of Open Access Journals (Sweden)

    Peyvand Darabi

    2012-11-01

    Full Text Available Wood-plastic composites (WPC have many applications as structural and non-structural material. As their outdoor application becomes more widespread, their resistance against weathering, particularly ultraviolet light and biodegradation becomes of more concern. In the present study, natural fiber composites (NFPC made of bagasse and high density polyethylene, with and without pigments, were prepared by extrusion and subjected to accelerated weathering for 1440 h; then weathered and un-weathered samples were exposed to fungal and termite resistance tests. The chemical and surface qualities of samples were studied by ATR-FTIR spectroscopy, colorimetry, contact angle, and roughness tests before and after weathering. Using bagasse as filler does reduce the discoloration of weathered samples. Adding pigments may reduce the effect of weathering on lignin degradation, although it favors polymer oxidation, but it increases the weight loss caused by fungi. Despite the high resistance of samples against biological attack, weathering triggers attack by termites and fungi on the surface and causes surface quality loss.

  5. Utilization of cellulosic waste from tequila bagasse and production of polyhydroxyalkanoate (PHA) bioplastics by Saccharophagus degradans.

    Science.gov (United States)

    Alva Munoz, Luis Esteban; Riley, Mark R

    2008-08-01

    Utilization of wastes from agriculture is becoming increasingly important due to concerns of environmental impact. The goals of this work were to evaluate the ability of an unusual organism, Saccharophagus degradans (ATCC 43961), to degrade the major components of plant cell walls and to evaluate the ability of S. degradans to produce polyhydroxyalkanoates (PHAs, also known as bioplastics). S. degradans can readily attach to cellulosic fibers, degrade the cellulose, and utilize this as the primary carbon source. The growth of S. degradans was assessed in minimal media (MM) containing glucose, cellobiose, avicel, and bagasse with all able to support growth. Cells were able to attach to avicel and bagasse fibers; however, growth on these insoluble fibers was much slower and led to a lower maximal biomass production than observed with simple sugars. Lignin in MM alone did not support growth, but did support growth upon addition of glucose, although with an increased adaptation phase. When culture conditions were switched to a nitrogen depleted status, PHA production commences and extends for at least 48 h. At early stationary phase, stained inclusion bodies were visible and two chronologically increasing infrared light absorbance peaks at 1,725 and 1,741 cm(-1) confirmed the presence of PHAs. This work demonstrates for what we believe to be the first time, that a single organism can degrade insoluble cellulose and under similar conditions can produce and accumulate PHA. Additional work is necessary to more fully characterize these capabilities and to optimize the PHA production and purification.

  6. Statistical Optimization of Laccase Production and Delignification of Sugarcane Bagasse by Pleurotus ostreatus in Solid-State Fermentation

    Science.gov (United States)

    Karp, Susan Grace; Faraco, Vincenza; Amore, Antonella; Letti, Luiz Alberto Junior; Thomaz Soccol, Vanete; Soccol, Carlos Ricardo

    2015-01-01

    Laccases are oxidative enzymes related to the degradation of phenolic compounds, including lignin units, with concomitant reduction of oxygen to water. Delignification is a necessary pretreatment step in the process of converting plant biomass into fermentable sugars. The objective of this work was to optimize the production of laccases and to evaluate the delignification of sugarcane bagasse by Pleurotus ostreatus in solid-state fermentation. Among eight variables (pH, water activity, temperature, and concentrations of CuSO4, (NH4)2SO4, KH2PO4, asparagine, and yeast extract), copper sulfate and ammonium sulfate concentrations were demonstrated to significantly influence laccase production. The replacement of ammonium sulfate by yeast extract and the addition of ferulic acid as inducer provided increases of 5.7- and 2.0-fold, respectively, in laccase activity. Optimization of laccase production as a function of yeast extract, copper sulfate, and ferulic acid concentrations was performed by response surface methodology and optimal concentrations were 6.4 g/L, 172.6 μM, and 1.86 mM, respectively. Experimentally, the maximum laccase activity of 151.6 U/g was produced at the 5th day of solid-state fermentation. Lignin content in sugarcane bagasse was reduced from 31.89% to 26.36% after 5 days and to 20.79% after 15 days by the biological treatment of solid-state fermentation. PMID:26180784

  7. Sugar-rich sweet sorghum is distinctively affected by wall polymer features for biomass digestibility and ethanol fermentation in bagasse.

    Science.gov (United States)

    Li, Meng; Feng, Shengqiu; Wu, Leiming; Li, Ying; Fan, Chunfen; Zhang, Rui; Zou, Weihua; Tu, Yuanyuan; Jing, Hai-Chun; Li, Shizhong; Peng, Liangcai

    2014-09-01

    Sweet sorghum has been regarded as a typical species for rich soluble-sugar and high lignocellulose residues, but their effects on biomass digestibility remain unclear. In this study, we examined total 63 representative sweet sorghum accessions that displayed a varied sugar level at stalk and diverse cell wall composition at bagasse. Correlative analysis showed that both soluble-sugar and dry-bagasse could not significantly affect lignocellulose saccharification under chemical pretreatments. Comparative analyses of five typical pairs of samples indicated that DP of crystalline cellulose and arabinose substitution degree of non-KOH-extractable hemicelluloses distinctively affected lignocellulose crystallinity for high biomass digestibility. By comparison, lignin could not alter lignocellulose crystallinity, but the KOH-extractable G-monomer predominately determined lignin negative impacts on biomass digestions, and the G-levels released from pretreatments significantly inhibited yeast fermentation. The results also suggested potential genetic approaches for enhancing soluble-sugar level and lignocellulose digestibility and reducing ethanol conversion inhibition in sweet sorghum.

  8. Statistical Optimization of Laccase Production and Delignification of Sugarcane Bagasse by Pleurotus ostreatus in Solid-State Fermentation.

    Science.gov (United States)

    Karp, Susan Grace; Faraco, Vincenza; Amore, Antonella; Letti, Luiz Alberto Junior; Thomaz Soccol, Vanete; Soccol, Carlos Ricardo

    2015-01-01

    Laccases are oxidative enzymes related to the degradation of phenolic compounds, including lignin units, with concomitant reduction of oxygen to water. Delignification is a necessary pretreatment step in the process of converting plant biomass into fermentable sugars. The objective of this work was to optimize the production of laccases and to evaluate the delignification of sugarcane bagasse by Pleurotus ostreatus in solid-state fermentation. Among eight variables (pH, water activity, temperature, and concentrations of CuSO4, (NH4)2SO4, KH2PO4, asparagine, and yeast extract), copper sulfate and ammonium sulfate concentrations were demonstrated to significantly influence laccase production. The replacement of ammonium sulfate by yeast extract and the addition of ferulic acid as inducer provided increases of 5.7- and 2.0-fold, respectively, in laccase activity. Optimization of laccase production as a function of yeast extract, copper sulfate, and ferulic acid concentrations was performed by response surface methodology and optimal concentrations were 6.4 g/L, 172.6 μM, and 1.86 mM, respectively. Experimentally, the maximum laccase activity of 151.6 U/g was produced at the 5th day of solid-state fermentation. Lignin content in sugarcane bagasse was reduced from 31.89% to 26.36% after 5 days and to 20.79% after 15 days by the biological treatment of solid-state fermentation.

  9. Ethanol production from cashew apple bagasse: improvement of enzymatic hydrolysis by microwave-assisted alkali pretreatment.

    Science.gov (United States)

    Rodrigues, Tigressa Helena Soares; Rocha, Maria Valderez Ponte; de Macedo, Gorete Ribeiro; Gonçalves, Luciana R B

    2011-07-01

    In this work, the potential of microwave-assisted alkali pretreatment in order to improve the rupture of the recalcitrant structures of the cashew able bagasse (CAB), lignocellulosic by-product in Brazil with no commercial value, is obtained from cashew apple process to juice production, was studied. First, biomass composition of CAB was determined, and the percentage of glucan and lignin was 20.54 ± 0.70% and 33.80 ± 1.30%, respectively. CAB content in terms of cellulose, hemicelluloses, and lignin, 19.21 ± 0.35%, 12.05 ± 0.37%, and 38.11 ± 0.08%, respectively, was also determined. Results showed that, after enzymatic hydrolysis, alkali concentration exerted influence on glucose formation, after pretreatment with 0.2 and 1.0 mo L(-1) of NaOH (372 ± 12 and 355 ± 37 mg g(glucan)(-1) ) when 2% (w/v) of cashew apple bagasse pretreated by microwave-assisted alkali pretreatment (CAB-M) was used. On the other hand, pretreatment time (15-30 min) and microwave power (600-900 W) exerted no significant effect on hydrolysis. On enzymatic hydrolysis step, improvement on solid percentage (16% w/v) and enzyme load (30 FPU g (CAB-M) (-1) ) increased glucose concentration to 15 g L(-1). The fermentation of the hydrolyzate by Saccharomyces cerevesiae resulted in ethanol concentration and productivity of 5.6 g L(-1) and 1.41 g L(-1) h(-1), respectively.

  10. Exposure to soda commercials affects sugar-sweetened soda consumption in young women. An observational experimental study.

    Science.gov (United States)

    Koordeman, Renske; Anschutz, Doeschka J; van Baaren, Rick B; Engels, Rutger C M E

    2010-06-01

    The present study examines the direct effects of television commercials advertising soda on actual sugar-sweetened soda consumption among young women. An experimental-observational study design was used, in which 51 female students (ages 18-29) were exposed to a 35-min movie clip, interrupted by two commercial breaks consisting of soda or water commercials. Their actual soda consumption while watching the movie clip was examined. An analysis of variance was used to examine the effects of commercial condition on soda consumption. Thirst and first glass consumed before the first commercial break were added as covariates in the analyses. Results indicated that participants assigned to the condition with soda commercials consumed 1.3 ounces more soda than participants in the water commercial condition. Exposure to soda commercials while watching a movie can have a strong influence on increasing sugar-sweetened soda consumption in young women.

  11. NMR of lignins

    Science.gov (United States)

    John Ralph; Larry L. Landucci

    2010-01-01

    This chapter will consider the basic aspects and findings of several forms of NMR spectroscopy, including separate discussions of proton, carbon, heteronuclear, and multidimensional NMR. Enhanced focus will be on 13C NMR, because of its qualitative and quantitative importance, followed by NMR’s contributions to our understanding of lignin...

  12. Fungal rock phosphate solubilization using sugarcane bagasse.

    Science.gov (United States)

    Mendes, Gilberto O; Dias, Carla S; Silva, Ivo R; Júnior, José Ivo Ribeiro; Pereira, Olinto L; Costa, Maurício D

    2013-01-01

    The effects of different doses of rock phosphate (RP), sucrose, and (NH(4))(2)SO(4) on the solubilization of RP from Araxá and Catalão (Brazil) by Aspergillus niger, Penicillium canescens, Eupenicillium ludwigii, and Penicillium islandicum were evaluated in a solid-state fermentation (SSF) system with sugarcane bagasse. The factors evaluated were combined following a 2(3) + 1 factorial design to determine their optimum concentrations. The fitted response surfaces showed that higher doses of RP promoted higher phosphorus (P) solubilization. The addition of sucrose did not have effects on P solubilization in most treatments due to the presence of soluble sugars in the bagasse. Except for A. niger, all the fungi required high (NH(4))(2)SO(4) doses to achieve the highest level of P solubilization. Inversely, addition of (NH(4))(2)SO(4) was inhibitory to P solubilization by A. niger. Among the fungi tested, A. niger stood out, showing the highest solubilization capacity and for not requiring sucrose or (NH(4))(2)SO(4) supplementation. An additional experiment with A. niger showed that the content of soluble P can be increased by adding higher RP doses in the medium. However, P yield decreases with increasing RP doses. In this experiment, the maximal P yield (approximately 60 %) was achieved with the lower RP dose (3 g L(-1)). Our results show that SSF can be used to obtain a low cost biofertilizer rich in P combining RP, sugarcane bagasse, and A. niger. Moreover, sugarcane bagasse is a suitable substrate for SSF aiming at RP solubilization, since this residue can supply the C and N necessary for the metabolism of A. niger within a range that favors RP solubilization.

  13. Lignin-Based Thermoplastic Materials.

    Science.gov (United States)

    Wang, Chao; Kelley, Stephen S; Venditti, Richard A

    2016-04-21

    Lignin-based thermoplastic materials have attracted increasing interest as sustainable, cost-effective, and biodegradable alternatives for petroleum-based thermoplastics. As an amorphous thermoplastic material, lignin has a relatively high glass-transition temperature and also undergoes radical-induced self-condensation at high temperatures, which limits its thermal processability. Additionally, lignin-based materials are usually brittle and exhibit poor mechanical properties. To improve the thermoplasticity and mechanical properties of technical lignin, polymers or plasticizers are usually integrated with lignin by blending or chemical modification. This Review attempts to cover the reported approaches towards the development of lignin-based thermoplastic materials on the basis of published information. Approaches reviewed include plasticization, blending with miscible polymers, and chemical modifications by esterification, etherification, polymer grafting, and copolymerization. Those lignin-based thermoplastic materials are expected to show applications as engineering plastics, polymeric foams, thermoplastic elastomers, and carbon-fiber precursors.

  14. Thermoset phenolic matrices reinforced with unmodified and surface-grafted furfuryl alcohol sugar cane bagasse and curaua fibers: properties of fibers and composites.

    Science.gov (United States)

    Trindade, W G; Hoareau, W; Megiatto, J D; Razera, I A T; Castellan, A; Frollini, E

    2005-01-01

    Composites based on phenolic matrices and unmodified and chemically modified sugar cane bagasse and curaua fibers were prepared. The fibers were oxidized by chlorine dioxide, mainly phenolic syringyl and guaiacyl units of the lignin polymer, followed by grafting furfuryl alcohol (FA), which is a chemical obtained from a renewable source. The fibers were widely characterized by chemical composition analysis, crystallinity, UV-vis diffuse reflectance spectroscopy, SEM, DSC, TG, tensile strength, and 13C CP-MAS NMR. The composites were analyzed by SEM, impact strength, and DMA. The SEM images and DMA results showed that the oxidation of sugar cane bagasse fibers followed by reaction with FA favored the fiber/matrix interaction at the interface. The same chemical modification was less effective for curaua fibers, probably due to its lower lignin content, since the reaction considered touches mainly the lignin moiety. The tensile strength results obtained showed that the fibers were partially degraded by the chemical treatment, decreasing then the impact strength of the composites reinforced with them. In the continuity of the present project, efforts has been addressed to the optimization of fiber surface modification, looking for reagents preferably obtained from renewable resources and for chemical modifications that intensify the fiber/matrix interaction without loss of mechanical properties.

  15. Large-sized soda ban as an alternative to soda tax.

    Science.gov (United States)

    Min, Hery Michelle

    2013-01-01

    This Note examines New York City's Sugary Drinks Portion Cap Rule (Soda Ban), which was originally set to become effective March 12, 2013. The New York County Supreme Court's decision in New York Statewide Coalition of Hispanic Chambers of Commerce v. New York City Department of Health and Mental Hygiene suspended the Soda Ban on March 11, 2013. The First Department of the Appellate Division of New York State Supreme Court affirmed the suspension on July 30, 2013. However, the complex economic policy and constitutional issues arising from the proposed Soda Ban deserve as much attention as the ultimate result of the legal challenge to the ban. Both courts struck down the Soda Ban on the grounds that it violated the separation of powers doctrine. The lower court further held that the Soda Ban was arbitrary and capricious. This Note does not focus solely on the holdings of the two courts, but takes a broader approach in analyzing the issues involved in the Soda Ban. By comparing and contrasting tobacco products with sugary beverages, this Note explains why the public seems to find the Soda Ban less appealing than tobacco regulations. Specifically, this Note addresses how the failed attempts of numerous states and cities to implement soda taxes demonstrate the complexity of policies geared toward curbing obesity; how fundamental values, such as health, fairness, efficiency, and autonomy factor into obesity policies; and the fact that legislatures and courts are struggling to determine the scope of public health law intervention. The Note explores how the Soda Ban, despite its judicial suspension, could represent a stepping-stone in combating the obesity epidemic.

  16. PENURUNAN KADAR PROTEIN LIMBAH CAIR TAHU DENGAN PEMANFAATAN KARBON BAGASSE TERAKTIVASI (Protein Reduction of Tofu Wastewater Using Activated Carbon Bagasse

    Directory of Open Access Journals (Sweden)

    Candra Purnawan

    2014-10-01

    Full Text Available ABSTRAK Penurunan kadar protein limbah tahu telah dilakukan dengan pemanfaatan karbon Bagasse teraktivasi. Tujuan dari penelitian ini adalah untuk mengetahui kondisi optimum dari karbon teraktivasi NaOH dan H2SO4 dalam menurunkan kadar protein limbah cair tahu dan mengetahui jenis isoterm adsorpsi dari karbon aktif yang digunakan untuk menyerap protein limbah cair tahu. Hasil penelitian menunjukkan konsentrasi NaOH yang optimum untuk aktivasi karbon aktif 15%, massa optimum karbon bagasse teraktivasi NaOH adalah 2 g dan penurunan kadar proteinnya 71,95%, sedangkan massa optimum karbon bagasse teraktivasi H2SO4 adalah 1 g dengan penurunan kadar protein sebesar 38,19%. Waktu kontak optimum karbon bagasse teraktivasi  NaOH dan H2SO4 adalah 12 jam. Adsorpsi protein oleh karbon bagasse teraktivasi NaOH mengikuti isoterm adsorpsi Langmuir dan Freundlich sedangkan karbon bagasse teraktivasi H2SO4 dominan mengikuti isoterm Freundlich.   ABSTRACT The protein reduction of tofu wastewater using activated carbon from bagasse  had been conducted. The purposes of this research were to analysis optimum condition of activated carbon bagsse using NaOH and H2SO4 for reduction protein in tofu wastewater, and analysis adsorption isotherm of activated carbon with protein. The result showed that optimum mass of carbon bagasse activated NaOH was  2 g with 71.95% protein reduction, while carbon bagasse activated H2SO4 has 1 g with 38.19% protein reduction. The optimum contact time between protein and activated carbon (with NaOH and H2SO4 was happened in 12 hours. Adsorption protein with carbon bagasse activated NaOH had followed Langmuir and Freundlich adsorption isotherm, while adsorption with carbon bagasse activated H2SO4 dominantlyhad followed Freundlich adsorption isotherm

  17. Oil spill sorption using raw and acetylated sugarcane bagasse

    Institute of Scientific and Technical Information of China (English)

    Reza Behnood; Bagher Anvaripour; Nematollah Jaafarzadeh; Masoome Farasati

    2016-01-01

    In the recent decades oil spills in the aquatic environments are one of the major sources of environmental pollutions, which are steadily growing with the increase in oil consumption. Adsorption is a rapid and cost effective processto minimize the environmental impacts of oil spills andcleanup these pollutants. In this work, the crude oil sorption capacity was examined with raw sugarcane bagasse and acetylated sugarcane bagasse. Results show that the acetylated bagasse was significantly more oleophilic than the raw bagasse and acetylation reaction can increase bagasse oil sorption ability by about 90%. The maximum sorption capacities of acetylated bagasse were obtained about 11.3 g and 9.1 g in dry system (crude oil sorption) and oil layer sorption, respectively. The physicochemical characteristics of the sorbents such as composition, water solubility, moisture content and density were measured according to ASTM standard methods. Also Fourier transform infrared spectroscopy (FTIR) of raw and acetylated bagasse was performed to investigate the effect of acetylation on sugarcane bagasse structure.

  18. classical optimization of bagasse ash content in cement- stabilized ...

    African Journals Online (AJOL)

    user

    Optimzation and the use of bagasse ash gave a cost benefit of 9.24% with a better mix. The classical .... more complex in that the minerals present in the soil and the bagasse ash .... unit coefficients, required to make up the left-hand side to the ...

  19. A comparison of various lignin-extraction methods to enhance the accessibility and ease of enzymatic hydrolysis of the cellulosic component of steam-pretreated poplar.

    Science.gov (United States)

    Tian, Dong; Chandra, Richard P; Lee, Jin-Suk; Lu, Canhui; Saddler, Jack N

    2017-01-01

    Current single-stage delignification-pretreatment technologies to overcome lignocellulosic biomass recalcitrance are usually achieved at the expense of compromising the recovery of the polysaccharide components, particularly the hemicellulose fraction. One way to enhance overall sugar recovery is to tailor an efficient two-stage pretreatment that can pre-extract the more labile hemicellulose component before subjecting the cellulose-rich residual material to a second-stage delignification process. Previous work had shown that a mild steam pretreatment could recover >65% of the hemicellulose from poplar while limiting the acid-catalysed condensation of lignin. This potentially allowed for subsequent lignin extraction using various lignin solvents to produce a more accessible cellulosic substrate. A two-stage approach using steam and/or solvent pretreatment was assessed for its ability to separate hemicellulose and lignin from poplar wood chips while providing a cellulose-rich fraction that could be readily hydrolysed by cellulase enzymes. An initial steam-pretreatment stage was performed over a range of temperatures (160-200 °C) using an equivalent severity factor of 3.6. A higher steam temperature of 190 °C applied over a shorter residence time of 10 min effectively solubilized and recovered 75% of the hemicellulose while enhancing the ability of various solvents [deep eutectic solvent (DES), ethanol organosolv, soda/anthraquinone (soda/AQ) or a hydrotrope] to extract lignin in a second stage. When the second-stage treatments were compared, the mild DES treatment (lactic acid and betaine) at 130 °C, removed comparable amounts of lignin with higher selectivity than did the soda/AQ and organosolv pretreatments at 170 °C. However, the cellulose-rich substrates obtained after the second-stage organosolv and soda/AQ pretreatments showed the highest cellulose accessibility, as measured by the Simon's staining technique. They were also the most susceptible to

  20. 21 CFR 573.1020 - Yellow prussiate of soda.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Yellow prussiate of soda. 573.1020 Section 573.1020 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Additive Listing § 573.1020 Yellow prussiate of soda. Yellow prussiate of soda...

  1. On the biology and evolution of fungi from soda soils

    NARCIS (Netherlands)

    Grum-Grzhimaylo, A.

    2015-01-01

    Summary to the thesis “On the biology and evolution of fungi from soda soils” Alexey Grum-Grzhimaylo The presented thesis addresses aspects of biology and evolution of fungi that were recovered from saline soda soils. The work highlights the fact that saline soda soils are populated by a

  2. On the biology and evolution of fungi from soda soils

    NARCIS (Netherlands)

    Grum-Grzhimaylo, A.

    2015-01-01

    Summary to the thesis “On the biology and evolution of fungi from soda soils” Alexey Grum-Grzhimaylo The presented thesis addresses aspects of biology and evolution of fungi that were recovered from saline soda soils. The work highlights the fact that saline soda soils are populated by a

  3. Partially acetylated sugarcane bagasse for wicking oil from contaminated wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Chung, S. [Samsung Engineering Co. Ltd., R and D Center, Suwon, Gyeonggi (Korea, Republic of); Suidan, M.T. [University of Cincinnati, School of Energy, Environmental, Biological and Medical Engineering, Cincinnati, OH (United States); Venosa, A.D. [NRMRL, U.S. EPA, Cincinnati, OH (United States)

    2011-12-15

    Sugarcane bagasse was partially acetylated to enhance its oil-wicking ability in saturated environments while holding moisture for hydrocarbon biodegradation. The water sorption capacity of raw bagasse was reduced fourfold after treatment, which indicated considerably increased hydrophobicity but not a limited capability to hold moisture for hydrocarbon biodegradation. Characterization results by Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and surface area analyzer suggested that treated bagasse exhibited enhanced hydrophobicity and surface area. Oil wicking test results indicate that treated bagasse is more effective in wicking oil from highly saturated environments than raw bagasse and suggest that application of this material in remediation of oil spills in highly saturated wetlands is promising. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Catalytic gasification of bagasse for the production of methanol

    Energy Technology Data Exchange (ETDEWEB)

    Baker, E.G.; Brown, M.D.; Robertus, R.J.

    1985-10-01

    The purpose of the study was to evaluate the technical and economic feasibility of catalytic gasification of bagasse to produce methanol. In previous studies, a catalytic steam gasification process was developed which converted wood to methanol synthesis gas in one step using nickel based catalysts in a fluid-bed gasifier. Tests in a nominal 1 ton/day process development unit (PDU) gasifier with these same catalysts showed bagasse to be a good feedstock for fluid-bed gasifiers, but the catalysts deactivated quite rapidly in the presence of bagasse. Laboratory catalyst screening tests showed K/sub 2/CO/sub 3/ doped on the bagasse to be a promising catalyst for converting bagasse to methanol synthesis gas. PDU tests with 10 wt % K/sub 2/CO/sub 3/ doped on bagasse showed the technical feasibility of this type of catalyst on a larger scale. A high quality synthesis gas was produced and carbon conversion to gas was high. The gasifier was successfully operated without forming agglomerates of catalyst, ash, and char in the gasifier. There was no loss of activity throughout the runs because catalysts is continually added with the bagasse. Laboratory tests showed about 80% of the potassium carbonate could be recovered and recycled with a simple water wash. An economic evaluation of the process for converting bagasse to methanol showed the required selling price of methanol to be significantly higher than the current market price of methanol. Several factors make this current evaluaton using bagasse as a feedstock less favorable: (1) capital costs are higher due to inflation and some extra costs required to use bagasse, (2) smaller plant sizes were considered so economies of scale are lost, and (3) the market price of methanol in the US has fallen 44% in the last six months. 24 refs., 14 figs., 16 tabs.

  5. Evaluation of agave bagasse recalcitrance using AFEX™, autohydrolysis, and ionic liquid pretreatments.

    Science.gov (United States)

    Perez-Pimienta, Jose A; Flores-Gómez, Carlos A; Ruiz, Héctor A; Sathitsuksanoh, Noppadon; Balan, Venkatesh; da Costa Sousa, Leonardo; Dale, Bruce E; Singh, Seema; Simmons, Blake A

    2016-07-01

    A comparative analysis of the response of agave bagasse (AGB) to pretreatment by ammonia fiber expansion (AFEX™), autohydrolysis (AH) and ionic liquid (IL) was performed using 2D nuclear magnetic resonance (NMR) spectroscopy, wet chemistry, enzymatic saccharification and mass balances. It has been found that AFEX pretreatment preserved all carbohydrates in the biomass, whereas AH removed 62.4% of xylan and IL extracted 25% of lignin into wash streams. Syringyl and guaiacyl lignin ratio of untreated AGB was 4.3, whereas for the pretreated biomass the ratios were 4.2, 5.0 and 4.7 for AFEX, AH and IL, respectively. Using NMR spectra, the intensity of β-aryl ether units in aliphatic, anomeric, and aromatic regions decreased in all three pretreated samples when compared to untreated biomass. Yields of glucose plus xylose in the major hydrolysate stream were 42.5, 39.7 and 26.9kg per 100kg of untreated AGB for AFEX, IL and AH, respectively.

  6. Chemical composition and enzymatic digestibility of sugarcane clones selected for varied lignin content

    Directory of Open Access Journals (Sweden)

    Masarin Fernando

    2011-12-01

    Full Text Available Abstract Background The recalcitrance of lignocellulosic materials is a major limitation for their conversion into fermentable sugars. Lignin depletion in new cultivars or transgenic plants has been identified as a way to diminish this recalcitrance. In this study, we assessed the success of a sugarcane breeding program in selecting sugarcane plants with low lignin content, and report the chemical composition and agronomic characteristics of eleven experimental hybrids and two reference samples. The enzymatic digestion of untreated and chemically delignified samples was evaluated to advance the performance of the sugarcane residue (bagasse in cellulosic-ethanol production processes. Results The ranges for the percentages of glucan, hemicellulose, lignin, and extractive (based on oven-dry biomass of the experimental hybrids and reference samples were 38% to 43%, 25% to 32%, 17% to 24%, and 1.6% to 7.5%, respectively. The samples with the smallest amounts of lignin did not produce the largest amounts of total polysaccharides. Instead, a variable increase in the mass of a number of components, including extractives, seemed to compensate for the reduction in lignin content. Hydroxycinnamic acids accounted for a significant part of the aromatic compounds in the samples, with p-coumaric acid predominating, whereas ferulic acid was present only in low amounts. Hydroxycinnamic acids with ester linkage to the hemicelluloses varied from 2.3% to 3.6%. The percentage of total hydroxycinnamic acids (including the fraction linked to lignin through ether linkages varied from 5.0% to 9.2%, and correlated to some extent with the lignin content. These clones released up to 31% of glucose after 72 hours of digestion with commercial cellulases, whereas chemically delignified samples led to cellulose conversion values of more than 80%. However, plants with lower lignin content required less delignification to reach higher efficiencies of cellulose conversion during

  7. Deconstruction of lignin linked p-coumarates, ferulates and xylan by NaOH enhances the enzymatic conversion of glucan.

    Science.gov (United States)

    Murciano Martínez, Patricia; Punt, Arjen M; Kabel, Mirjam A; Gruppen, Harry

    2016-09-01

    Thermo-assisted NaOH pretreatment to deconstruct xylan and lignin in sugar cane bagasse (SCB) is poorly understood. Hence, in this research it is was aimed to study the effect of NaOH pretreatment on the insoluble remaining lignin structures. Hereto, SCB milled fibres were pretreated using different dosages of NaOH at different temperatures and residence times. Of untreated SCB about 63% of the lignin compounds were assigned as p-coumarates and ferulates, analysed by pyrolysis-GC/MS as 4-vinyl phenol and 4-vinyl guaiacol, and designated as non-core lignin (NCL) compounds. More severe NaOH pretreatments resulted in lower xylan and lower lignin recoveries in the insoluble residues. Especially, the relative abundance of NCL decreased and this decrease followed a linear trend with the decrease in xylan. Core lignin compounds, analysed as phenol, guaiacol and syringol, accumulated in the residues. The decrease in residual xylan and NCL correlated positively with the enzymatic hydrolysis of the residual glucan.

  8. Can soda fountains be recommended in hospitals?

    Science.gov (United States)

    Chaberny, Iris F; Kaiser, Peter; Sonntag, Hans-Günther

    2006-09-01

    Mineral water (soda water) is very popular in Germany. Therefore, soda fountains were developed as alternatives to the traditional deposit bottle system. Nowadays, different systems of these devices are commercially available. For several years, soda fountains produced by different companies have been examined at the University Hospital of Heidelberg. In 1998, it was possible for the first time to observe and evaluate one of these systems over a period of 320 days in a series of microbiological examinations. The evaluation was implemented on the basis of the German drinking water regulation (Anonymous, 1990. Gesetz über Trinkwasser und Wasser für Lebensmittelbetriebe (Trinkwasserverordnung - TrinkwV) vom 12. Dezember 1990. Bundesgesetzblatt 66, 2613ff). Initially, the bacteria counts exceeded the reference values imposed by the German drinking water regulation in almost 50% of the analyses. Pseudomonas aeruginosa was also detected in almost 38% of the samples. After a re-arrangement of the disinfection procedure and the removal of the charcoal filter, Pseudomonas aeruginosa was not detectable any more. However, the bacteria counts still frequently exceeded the reference values of the German drinking water regulation. Following our long-term analysis, we would not recommend soda fountains in high-risk areas of hospitals. If these devices are to be used in hospitals, the disinfection procedures should be executed in weekly or fortnightly intervals and the water quality should be examined periodically.

  9. Lignin biodegradation and industrial implications

    Directory of Open Access Journals (Sweden)

    Adam B Fisher

    2014-12-01

    Full Text Available Lignocellulose, which comprises the cell walls of plants, is the Earth’s most abundant renewable source of convertible biomass. However, in order to access the fermentable sugars of the cellulose and hemicellulose fraction, the extremely recalcitrant lignin heteropolymer must be hydrolyzed and removed—usually by harsh, costly thermochemical pretreatments. Biological processes for depolymerizing and metabolizing lignin present an opportunity to improve the overall economics of the lignocellulosic biorefinery by facilitating pretreatment, improving downstream cellulosic fermentations or even producing a valuable effluent stream of aromatic compounds for creating value-added products. In the following review we discuss background on lignin, the enzymology of lignin degradation, and characterized catabolic pathways for metabolizing the by-products of lignin degradation. To conclude we survey advances in approaches to identify novel lignin degrading phenotypes and applications of these phenotypes in the lignocellulosic bioprocess.

  10. Lignin as renewable raw material.

    Science.gov (United States)

    Calvo-Flores, Francisco García; Dobado, José A

    2010-11-22

    Lignin is by far the most abundant substance based on aromatic moieties in nature, and the largest contributor to soil organic matter. Millions of tonnes of several lignin preparations are produced by the paper industry every year, and a minimal amount of lignin is isolated by direct extraction of lignin from plants. Lignin is used either directly or chemically modified, as a binder, dispersant agent for pesticides, emulsifier, heavy metal sequestrant, or component for composites and copolymers. For value-added applications of lignin to be improved, medium- and long-term conversion technologies must be developed, especially for the preparation of low-molecular-weight compounds as an alternative to the petrochemical industry.

  11. Lignin Sulfonation - A different Approach

    DEFF Research Database (Denmark)

    Bjørkmann, Anders

    2001-01-01

    . It was found that lignin is very reactive, that is why the sulfonation chemistry alone does not necessarily determine its dissolution rate. It became evident that the ultrastructure dispersion of lignin in wood is beneficial for its dissolution. For W, the rate was much higher at pH 1.5 than at 6. MW lignin....... Methylation had also a small rate effect for W, but again a large decrease for MWL....

  12. Lime pretreatment and fermentation of enzymatically hydrolyzed sugarcane bagasse.

    Science.gov (United States)

    Rabelo, Sarita C; Maciel Filho, Rubens; Costa, Aline C

    2013-03-01

    Sugarcane bagasse was subjected to lime (calcium hydroxide) pretreatment and enzymatic hydrolysis for second-generation ethanol production. A central composite factorial design was performed to determine the best combination of pretreatment time, temperature, and lime loading, as well as to evaluate the influence of enzymatic loadings on hydrolysis conversion. The influence of increasing solids loading in the pretreatment and enzymatic hydrolysis stages was also determined. The hydrolysate was fermented using Saccharomyces cerevisiae in batch and continuous mode. In the continuous fermentation, the hydrolysates were concentrated with molasses. Lime pretreatment significantly increased the enzymatic digestibility of sugarcane bagasse without the need for prior particle size reduction. In the optimal pretreatment conditions (90 h, 90 °C, 0.47 glime/g bagasse) and industrially realistic conditions of hydrolysis (12.7 FPU/g of cellulase and 7.3 CBU/g of β-glucosidase), 139.6 kglignin/ton raw bagasse and 126.0 kg hemicellulose in the pretreatment liquor per ton raw bagasse were obtained. The hydrolysate from lime pretreated sugarcane bagasse presented low amounts of inhibitors, leading to ethanol yield of 164.1 kgethanol/ton raw bagasse.

  13. Lignin Valorization: Improving Lignin Processing in the Biorefinery

    Energy Technology Data Exchange (ETDEWEB)

    Ragauskas, Arthur [Georgia Institute of Technology, Atlanta; Beckham, Gregg [National Renewable Energy Laboratory (NREL); Biddy, Mary J [National Renewable Energy Laboratory (NREL); Chandra, Richard [University of British Columbia, Vancouver; Chen, Fang [University of North Texas; Davis, Dr. Mark F. [National Renewable Energy Laboratory (NREL); Davison, Brian H [ORNL; Dixon, Richard [University of North Texas; Gilna, Paul [ORNL; Keller, Martin [ORNL; Langan, Paul [ORNL; Naskar, Amit K [ORNL; Saddler, Jack N [University of British Columbia, Vancouver; Tschaplinski, Timothy J [ORNL; Tuskan, Gerald A [ORNL; Wyman, Charles E, [University of California, Riverside; Harber, Karen S [ORNL

    2014-01-01

    Research and development activities directed toward commercial production of cellulosic ethanol have created the opportunity to dramatically increase the transformation of lignin to value-added products. Here we highlight recent advances in this lignin valorization effort. Discovery of genetic variants in native populations of bioenergy crops and direct manipulation of biosynthesis pathways have produced lignin feedstocks with favorable properties for recovery and downstream conversion. Advances in analytical chemistry and computational modeling detail the structure of the modified lignin and direct bioengineering strategies for future targeted properties. Refinement of biomass pretreatment technologies has further facilitated lignin recovery, and this coupled with genetic engineering will enable new uses for this biopolymer, including low-cost carbon fibers, engineered plastics and thermoplastic elastomers, polymeric foams, fungible fuels, and commodity chemicals.

  14. Ozone decay on stainless steel and sugarcane bagasse surfaces

    Science.gov (United States)

    Souza-Corrêa, Jorge A.; Oliveira, Carlos; Amorim, Jayr

    2013-07-01

    Ozone was generated using dielectric barrier discharges at atmospheric pressure to treat sugarcane bagasse for bioethanol production. It was shown that interaction of ozone molecules with the pretreatment reactor wall (stainless steel) needs to be considered during bagasse oxidation in order to evaluate the pretreatment efficiency. The decomposition coefficients for ozone on both materials were determined to be (3.3 ± 0.2) × 10-8 for stainless steel and (2.0 ± 0.3) × 10-7 for bagasse. The results have indicated that ozone decomposition has occurred more efficiently on the biomass material.

  15. Olive bagasse (Olea europa L.) pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Sensoz, S.; Demiral, I. [Osmangazi Univ., Eskisehir (Turkey). Dept. of Chemical Engineering; Gercel, H.F. [Anadolu Univ., Eskisehir (Turkey). Dept. of Chemical Engineering

    2006-02-15

    Olive bagasse (Olea europea L.) was pyrolysed in a fixed-bed reactor. The effects of pyrolysis temperature, heating rate, particle size and sweep gas flow rates on the yields of the products were investigated. Pyrolysis runs were performed using pyrolysis temperatures between 350 and 550 {sup o}C with heating rates of 10 and 50 {sup o}C min{sup -} {sup 1}. The particle size and sweep gas flow rate varied in the ranges 0.224-1.8 mm and 50-200 cm{sup 3} min {sup -1}, respectively. The bio-oil obtained at 500 {sup o}C was analysed and at this temperature the liquid product yield was the maximum. The various characteristics of bio-oil obtained under these conditions were identified on the basis of standard test methods. The empirical formula of the bio-oil with heating value of 31.8 MJ kg{sup -1} was established as CH{sub 1.65}O{sub 0.25}N{sub 0.03}. The chemical characterization showed that the bio-oil obtained from olive bagasse may be potentially valuable as a fuel and chemical feedstock. (author)

  16. Pembuatan dan Karakteristik Komposit Polimer Berpenguat Bagasse

    Directory of Open Access Journals (Sweden)

    Eqitha Dea Clareyna

    2013-09-01

    Full Text Available Bagasse memiliki kandungan serat yang cukup besar dan berpotensi digunakan sebagai bahan penguat dalam pembuatan komposit karena sifatnya yang kuat dan ringan. Dalam penelitian tugas akhir ini telah dibuat bahan komposit berpenguat bagasse dengan empat macam ukuran penguat yaitu serat chopped serta partikel berukuran 100 mesh, 140 mesh, dan 200 mesh. Pembuatan komposit menggunakan metode hand lay-up dan fraksi volume penguat divariasi dari 2,5% hingga 15%. Hasil karakterisasi yang telah dilakukan, menunjukkan bahwa kekuatan tarik dan densitas terbaik dimiliki oleh sampel komposit dengan penguat berukuran 200 mesh sebanyak 7,5% volume. Kekuatan tarik sampel tersebut adalah  28,83  MPa dan densitasnya adalah 1,15 gr/cm3. Adapun kekuatan impak terbesar dimiliki oleh sampel komposit dengan 2,5% volume sebesar 0,00271 J/mm2. Dengan demikian sampel komposit yang telah dibuat dapat digunakan sebagai alternatif bahan baku industri menggantikan tiang penyangga (scantlings pada struktur kayu (timber structure sesuai standar AS 1720.1.

  17. Alkaline Hydrolysis Kinetics Modeling of Bagasse Pentosan Dissolution

    Directory of Open Access Journals (Sweden)

    Yuxin Liu

    2013-11-01

    Full Text Available The main pentosan components of sugarcane bagasse, which can be subjected to alkaline hydrolysis, are xylose, arabinose, glucose, and galactose. The pentosan reaction mechanism was considered for alkali-treated bagasse with variation of temperature and time. The kinetics of pentosan degradation were studied concurrently at temperatures of 50 °C, 70 °C, and 90 °C, with a solid-liquid mass ratio of 1:15, a stirring speed of 500 revolutions/min, and different holding times for bagasse alkali pre-extraction. With respect to residual pentosan content and the losses of raw material, the hydrolysis rates of alkali pre-extraction and pentosan degradation reactions of bagasse all followed pseudo-first-order kinetic models. Finally, the main degradation activation energy was determined to be 20.86 KJ/mol, and the residual degradation activation energy was 28.75 KJ/mol according to the Arrhenius equation.

  18. Application of sugarcane bagasse ash as a partial cement ...

    African Journals Online (AJOL)

    The disposal of this material is already causing environmental problems ... shortage in most of concrete making materials especially cement, resulting in an ... This study examined the potential use of sugarcane bagasse ash as a partial ...

  19. Process Alternatives for Second Generation Ethanol Production from Sugarcane Bagasse

    DEFF Research Database (Denmark)

    F. Furlan, Felipe; Giordano, Roberto C.; Costa, Caliane B. B.

    2015-01-01

    on the economic feasibility of the process. For the economic scenario considered in this study, using bagasse to increase ethanol production yielded higher ethanol production costs compared to using bagasse for electric energy production, showing that further improvements in the process are still necessary.......In ethanol production from sugarcane juice, sugarcane bagasse is used as fuel for the boiler, to meet the steam and electric energy demand of the process. However, a surplus of bagasse is common, which can be used either to increase electric energy or ethanol production. While the first option uses...... already established processes, there are still many uncertainties about the techno-economic feasibility of the second option. In this study, some key parameters of the second generation ethanol production process were analyzed and their influence in the process feasibility assessed. The simulated process...

  20. Preliminary evaluation of organosolv pre-treatment of sugar cane bagasse for glucose production: Application of 2{sup 3} experimental design

    Energy Technology Data Exchange (ETDEWEB)

    Mesa, Leyanis; Gonzalez, Erenio [Centro de Analisis de Procesos, Facultad de Quimica-Farmacia, Universidad Central de Las Villas, Villa Clara (Cuba); Ruiz, Encarnacion; Romero, Inmaculada; Cara, Cristobal; Castro, Eulogio [Department of Chemical, Environmental and Materials Engineering, University of Jaen, 23071 Jaen (Spain); Felissia, Fernando [Programa de Celulosa y Papel, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Misiones, Misiones (Argentina)

    2010-01-15

    Sugar cane bagasse was submitted to ethanol organosolv pre-treatment using a 50 L pilot scale reactor. The influence of catalyst type (H{sub 2}SO{sub 4} or NaOH), catalyst concentration (1.25-1.50% w/w on dry fiber) and process time (60-90 min) on total solid recovery and solid composition (glucan, xylan and lignin contents) was evaluated by performing a 2{sup 3} full factorial experimental design. Pretreated sugar cane bagasse was further submitted to enzymatic hydrolysis using a commercial enzyme complex formed by cellulases and {beta}-glucosidases. Glucose concentration in the hydrolysates and glucose yield referred to initial raw material (g glucose/100 g sugar cane bagasse) were used to select the best operational conditions. Concerning the enzymatic hydrolysis, the resulting glucose concentration was found to be dependent on xylan contents of the pretreated material. The modelling equations for glucose concentration and glucose yield as a function of the pre-treatment variables and the statistical analysis are also discussed in this work. (author)

  1. Olive bagasse and nutshell as gamma shielding material

    Science.gov (United States)

    Inaç, Esra; Baytaş, A. Filiz

    2013-12-01

    Gamma ray linear attenuation coefficients have been measured experimentally for olive bagasse and nutshell by using narrow beam geometry for Co-60 and the values have been compared with soil. These values have been used calculate mean free path, half value layer and tenth value layer parameters. Besides, effect of multi-layered systems (soil + olive bagasse and soil + nutshell) has been analyzed in terms of half value layer.

  2. Validação de metodologia para a caracterização química de bagaço de cana-de-açúcar Validation of methodology for the chemical characterization of sugar cane bagasse

    Directory of Open Access Journals (Sweden)

    Ester Ribeiro Gouveia

    2009-01-01

    Full Text Available In this work, a methodology for the characterization of sugar cane bagasse was validated. Bagasse pre-treated with steam in a 5000 L reactor at a pressure of 15.3 kgf/cm², during 7 min, was used to test the methodology. The methodology consisted of the hydrolysis of the material with H2SO4 at 72% v/v, for the quantification of carbohydrates, organic acid, furfural and hydroxymethylfurfural by HPLC; insoluble lignin and ash by gravimetry; and soluble lignin by spectrophotometry. Linearity, repeatability, reproducibility and accuracy of the results obtained in two Research Laboratories were determined, and were considered to be suitable for the validation of the methodology.

  3. Particle geometry affects differentially substrate composition and enzyme profiles by Pleurotus ostreatus growing on sugar cane bagasse.

    Science.gov (United States)

    Membrillo, Isabel; Sánchez, Carmen; Meneses, Marcos; Favela, Ernesto; Loera, Octavio

    2011-01-01

    The growth of Pleurotus ostreatus was analyzed on three particle sizes of sugar cane bagasse: 0.92 mm and 1.68 mm in diameter, in addition to heterogeneous fibers (average 2.9 mm in diameter). Specific growth rate on heterogeneous particles was lower (μ=0.043 h(-1)), although soluble protein production was maximal (809 μg/g dry wt). Higher μ values were reached on the other two particles sizes (0.049-0.05 h(-1)) with less soluble protein (500 μg/g dry wt). Xylanases and laccases were favored in heterogeneous particles; while the highest selectivity for xylanases over cellulases was observed in 1.68 mm particles, corresponding with the maximal hemicellulose breakdown. Lignin and cellulose were preferentially degraded in smallest particles. This study shows that the geometrical ratio, shape and size of sugar cane bagasse fibers strongly influence packing density for SSF substrate, with an impact in the production of extracellular enzymes, growth rates and composition changes in substrate.

  4. Effects of sodium hypochlorite on Agave tequilana Weber bagasse fibers used to elaborate cyto and biocompatible hydrogel films.

    Science.gov (United States)

    Tovar-Carrillo, Karla Lizette; Nakasone, Kazuki; Sugita, Satoshi; Tagaya, Motohiro; Kobayashi, Takaomi

    2014-09-01

    Waste bagasse of Agave tequilana-Weber fibers treated with sodium hydroxide was used to elaborate hydrogel films. The bagasse was offered in an alternative use for the preparation of hydrogel films by phase inversion method without crosslinking and further purification of cellulose. The effect on the properties of the obtained films was studied when the chemical treatment of the agave fibers was changed. It was found that the resultant hydrogels showed increment in tensile from 40 N/mm(2) to 56 N/mm(2) with the increase of sodium hypochlorite concentration from 1 to 10 vol.%, respectively. With regard to biocompatibility properties of the hydrogel films, platelet adhesion, clotting time and protein adsorption were investigated. Analysis of the morphology of adherent NIH3T3 fibroblast indicated that the projected cell area, aspect ratio and long axis gradually increased with the increment of sodium hypochlorite content in the agave treatment. It was presented that the chemical treatment affects cell adhesion and morphology and lignin content remains in the brown fibers.

  5. An update on the dangers of soda pop.

    Science.gov (United States)

    Kaplowitz, Gary J

    2011-01-01

    The consumption of soda pop in the United States continues to increase in alarming proportions with consequent drastic effects on the dentition of many people. Patients should be asked about how much soda pop they ingest. Parents should be counseled on the effects of soda pop demineralization and begin to limit the amounts given to children at home and in schools. The dental team has the expertise and training to intervene with diet counseling, home care instructions and professionally applied fluoride to decrease the potential ravages of soda pop.

  6. ACID HYDROLYSIS OF HEMICELLULOSE FROM SUGARCANE BAGASSE

    Directory of Open Access Journals (Sweden)

    A. PESSOA JR.

    1997-09-01

    Full Text Available Hydrolysis of the hemicellulosic fraction of sugarcane bagasse by sulphuric acid was performed in laboratory (25 mL and semi-pilot (25 L reactors under different conditions of temperature, time and acid concentration. On the laboratory scale, the three highest recovery yields were obtained at: 140ºC for 10 min with 100 mgacid/gdm (yield=73.4%; 140ºC for 20 min with 100 mgacid/gdm (yield=73.9% and 150ºC for 20 min with 70 mgacid/gdm (yield=71.8%. These conditions were also used for hydrolysis in a semi-pilot reactor, and the highest xylose recovery yield (83.3% was obtained at 140ºC for 20 min with 100 mgacid/gdm

  7. Fermentable sugars from biopolymers of bagasse

    Energy Technology Data Exchange (ETDEWEB)

    Ramachandran, K.; Das, K.; Sharma, D.K.

    1987-11-01

    Ethanol can replace oil as a fuel and its use would help in the conservation of the meagre oil reserves in India. The article indicates some convenient and cost-effective processes for the production of ethanol from biopolymers available in bagasse, an agricultural residue. A two-stage acid hydrolysis process produced a maximum of fermentable sugars at 35%. Calcium chloride used as a promoter enhanced production by 3.5%. Other promoters are under investigation. Agitation had a significant effect on production, complete hydrolysis being possible between 10-45 minutes depending on temperature. The fermentable sugars obtained, xylose and glucose, can then be fermented to ethanol in an integrated three-stage process. 11 refs., 3 figs., 3 tabs.

  8. Kraft lignin biorefinery: A proposal.

    Science.gov (United States)

    Hu, Jianjun; Zhang, Quanguo; Lee, Duu-Jong

    2017-09-01

    Lignin is a huge energy and carbon reserve but owing to its highly biologically recalcitrant nature it is commonly regarded as a waste in lignocellulosic biomass biorefinery. To realize the lignin biorefinery, it is proposed to use Kraft lignin, isolated from black liquor from Kraft pulping mills, as starting material to be fragmented by fast pyrolysis or selective catalysis to aromatic sub-units and to be post-refining with additional cleavage reaction and separation/purification as commodity aromatics pool in chemical industries. This Note calls for research efforts on detailed investigation of the feasibility of this proposed scenario. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. THE PROPERTIES OF CHARCOAL FROM THE BLACK LIQUOR OF THE SODA PULPING OF RICE STRAW

    Directory of Open Access Journals (Sweden)

    Nyoman Jaya Wistara

    2013-11-01

    Full Text Available The main goal of the present works was to determine chemical changes, thermal decomposition, and the content of moisture, ash, volatile, fixed carbon and calorific value of soda pulping black liquor of the rice straw. Neutralized black liquor was dried to a moisture content of 10% and then pyrolized at 106oC-750oC. It was found that calorific value, fixed carbon, volatile mater, and moisture content were in the range of 2782-4716 cal/g, 49.2-81.6%, 15.5-47.5%, and 0.2-3.5%, respectively. Ash content was not influenced by the temperature of pyrolysis and was thought to depend on its initial silicate content. The weight loss of pulp was higher than that of black liquor. Extreme weight loss has been found in the temperature of 200-400oC. Noticeable functional groups changes were found with the increasing temperature of pyrolysis. Hydroxyl group completely disappeared at 300oC and above. Carbonyl related groups were also disappeared at 300-500oC, but it was reformed at 650 and 750oC. It might be brought about by the deformation of chemical bonding of oxygen ring in lignin structures. SIFAT-SIFAT ARANG LINDI HITAM DARI PEMASAKAN JERAMI DENGAN LARUTAN SODA API. Penelitian ini bertujuan untuk menentukan perubahan sifat kimia, dekomposisi termal dan kadar air, abu, zat terbang, karbon terikat serta nilai kalor arang lindi hitam pemasakan soda jerami padi. Dalam penelitian ini, lindi hitam netral dikeringkan (kadar air 10%, kemudian dipirolisis pada selang suhu 100-750oC di dalam reaktor berpengatur suhu. Hasil penelitian menunjukkan bahwa nilai kalor, karbon terikat, zat terbang dan kadar air masing-masing berselangdari 2782-4716 cal/g, 49,2-81,6%, 15,5-47,5%, dan 0,2-3,5%. Kadar abu tidak dipengaruhi oleh suhu pirolisis dan diduga bergantung pada kadar silika bahan bakunya. Nilai kalor meningkat dengan meningkatnya kadar karbon terikat. Perilaku kehilangan berat arang dari lindi hitam berbeda dengan perilaku kehilangan berat pulp jerami. Kehilangan

  10. UTILIZATION OF BAGASSE FIBER FOR PREPARATION OF BIODEGRADABLE FLAME RETARDING COMPOSITES (BFRCS)

    OpenAIRE

    2010-01-01

    Bagasse is a renewable resource characterized by its low cost and environmental friendliness. In this work a novel technological process was proposed to make flame retarding composites (BFRCs) by using bagasse fiber. The bagasse was disintegrated by twisting it up and applying high consistency refining, and then it was used to prepare BFRCs via hot pressure. Chemical groups and thermal properties of bagasse fiber were studied through the use of FTIR spectroscopy, a universal mechanical testin...

  11. EVALUATION OF COMPOSITION, CHARACTERIZATION AND ENZYMATIC HYDROLYSIS OF PRETREATED SUGAR CANE BAGASSE

    OpenAIRE

    A. A. Guilherme; Dantas,P. V. F.; Santos, E.S.; FERNANDES F. A. N.; G. R. Macedo

    2015-01-01

    Abstract Glucose production from sugarcane bagasse was investigated. Sugarcane bagasse was pretreated by four different methods: combined acid and alkaline, combined hydrothermal and alkaline, alkaline, and peroxide pretreatment. The raw material and the solid fraction of the pretreated bagasse were characterized according to the composition, SEM, X-ray and FTIR analysis. Glucose production after enzymatic hydrolysis of the pretreated bagasse was also evaluated. All these results were used to...

  12. Lignin-Furfural Based Adhesives

    Directory of Open Access Journals (Sweden)

    Prajakta Dongre

    2015-07-01

    Full Text Available Lignin recovered from the hot-water extract of sugar maple (Acer saccharum is used in this study to synthesize adhesive blends to replace phenol-formaldehyde (PF resin. Untreated lignin is characterized by lignin content and nuclear magnetic resonance (NMR analysis. The molecular weight distribution of the lignin and the blends are characterized by size exclusion chromatography (SEC. The effect of pH (0.3, 0.65 and 1, ex situ furfural, and curing conditions on the tensile properties of adhesive reinforced glass fibers is determined and compared to the reinforcement level of commercially available PF resin. The adhesive blend prepared at pH = 0.65 with no added furfural exhibits the highest tensile properties and meets 90% of the PF tensile strength.

  13. Catalytic wet-air oxidation of lignin in a three-phase reactor with aromatic aldehyde production

    Directory of Open Access Journals (Sweden)

    Sales F.G.

    2004-01-01

    Full Text Available In the present work a process of catalytic wet air oxidation of lignin obtained from sugar-cane bagasse is developed with the objective of producing vanillin, syringaldehyde and p-hydroxybenzaldehyde in a continuous regime. Palladium supported on g-alumina was used as the catalyst. The reactions in the lignin degradation and aldehyde production were described by a kinetic model as a system of complex parallel and series reactions, in which pseudo-first-order steps are found. For the purpose of producing aromatic aldehydes in continuous regime, a three-phase fluidized reactor was built, and it was operated using atmospheric air as the oxidizer. The best yield in aromatic aldehydes was of 12%. The experimental results were compatible with those values obtained by the pseudo-heterogeneous axial dispersion model (PHADM applied to the liquid phase.

  14. Cream Soda. The rhythm of everyday life

    OpenAIRE

    2011-01-01

    In this work I will focus my attention on a specific manga, Cream Soda by Adachi Mitsuru (1996). As suggested by Eco (1999), I will analyze this single work keeping in mind that it belongs to a medium and some genre practiced through this medium, but focusing my attention on the specific syntax of the speech of Adachi. This means that in this work I won’t talk about manga in general or in itself, at least, not in the foreground and in the first instance, but I will consider Adachi’s specific ...

  15. Effect of feed source and pyrolysis conditions on properties of sugarcane bagasse biochar

    Science.gov (United States)

    Processing of sugarcane in sugar mills yield ca. 30% bagasse, a fibrous waste material composed mostly of crushed cane stalks. While 80-90% of the bagasse used on site as fuel, the remaining portion can be converted into a value-added product. One such option is thermal conversion of bagasse into bi...

  16. U.S. High School Kids Abandoning Sweetened Sodas

    Science.gov (United States)

    ... CDC team said. Despite declines in soda consumption, "intake of other sugar-sweetened beverages, including energy drinks and sports drinks, ... Dietary Guidelines for Americans currently recommends no-added-sugar beverages such ... decline in soda intake was seen across all subgroups -- boys and girls, ...

  17. Soda taxes, soft drink consumption, and children's body mass index.

    Science.gov (United States)

    Sturm, Roland; Powell, Lisa M; Chriqui, Jamie F; Chaloupka, Frank J

    2010-05-01

    Taxes on sugar-sweetened beverages have been proposed to combat obesity. Using data on state sales taxes for soda and individual-level data on children, we examine whether small taxes are likely to change consumption and weight gain or whether larger tax increases would be needed. We find that existing taxes on soda, which are typically not much higher than 4 percent in grocery stores, do not substantially affect overall levels of soda consumption or obesity rates. We do find, however, that subgroups of at-risk children--children who are already overweight, come from low-income families, or are African American--may be more sensitive than others to soda taxes, especially when soda is available at school. A greater impact of these small taxes could come from the dedication of the revenues they generate to other obesity prevention efforts rather than through their direct effect on consumption.

  18. Sugared soda consumption and dental caries in the United States.

    Science.gov (United States)

    Heller, K E; Burt, B A; Eklund, S A

    2001-10-01

    Because of the complexity of the caries process, the potential cariogenicity of specific food items is difficult to assess. The purpose of this study was to investigate the associations between sugared soda consumption and caries. Dietary and dental examination data from the 1988-94 Third National Health and Nutrition Examination Survey (NHANES III) were used. From the food frequency questionnaire and 24-hour recall data, significant associations between DMFS and soda consumption were generally seen in persons over age 25. No differences in DMFS, relative to soda consumption, were seen in persons under age 25, or in analyses of dfs for children under age 12. The observed associations could be due to the cumulative effects of the long-term consumption of sugared soda. The absence of apparent effects of sugared soda consumption in younger people may also be related to the increased use of fluorides since the 1960s.

  19. Two proposals to determine the efficiency of bagasse boiler

    Energy Technology Data Exchange (ETDEWEB)

    Sosa-Arnao, Juan Harold; Modesto, Marcelo [Universidade Estadual de Campinas (DE/FEM/UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica. Dept. de Energia], e-mail: jhsosa@fem.unicamp.br; Nebra, Silvia A. [State University of Campinas (NIPE/UNICAMP), SP (Brazil). Interdisciplinary Center of Energy Planning], e-mail: silvia.nebra@pesquisador.cnpq

    2006-07-01

    This work analyzes and compares two proposals for determination of the bagasse boiler efficiency, one of it based on bagasse higher heating value (HHV), the other one based on bagasse lower heating value (LHV). The methodology of calculation, for both proposals, uses the heat loss method. The results, obtained through the two proposal's, presented important differences; the boiler efficiency determined through the proposal of code ASME PTC 4.1, based on HHV, highlights the effect of bagasse moisture content upon boiler efficiency. This effect, in the Beaton and Lora proposal, is hidden, because the energy required to evaporate the bagasse moisture content and the water vapour from hydrogen contained in the fuel are discounted in the LHV calculation. Three types of boilers, with different capacity and leaving steam properties were analysed. Considering the boiler constituted by a sequential arrangement of a steam generator, an air heater and an economizer, a simulation was made determining the influence of the variation of the air heater exit gases temperature upon theirs performances. The performance analysis was based on the second law of thermodynamics. (author)

  20. Production of biohydrogen from hydrolyzed bagasse with thermally preheated sludge

    Energy Technology Data Exchange (ETDEWEB)

    Chairattanamanokorn, Prapaipid [Environmental Technology Unit, Department of Environmental Science, Kasetsart University, Bangkok (Thailand); Research Group for Development of Microbial Hydrogen Production Process from Biomass (Thailand); Penthamkeerati, Patthra [Environmental Technology Unit, Department of Environmental Science, Kasetsart University, Bangkok (Thailand); Reungsang, Alissara [Research Group for Development of Microbial Hydrogen Production Process from Biomass (Thailand); Department of Biotechnology, Khon Kaen University, Khon Kaen, Bangkok (Thailand); Lo, Yung-Chung [Department of Chemical Engineering, National Cheng Kung University, Tainan (China); Lu, Wei-Bin [Department of Cosmetic Science, Chung Hwa University of Medical Technology, Tainan (China); Chang, Jo-Shu [Department of Chemical Engineering, National Cheng Kung University, Tainan (China); Sustainable Environment Research Center, National Cheng Kung University, Tainan (China)

    2009-09-15

    Production of biohydrogen from dark fermentation is an interesting alternative to producing renewable fuels because of its low cost and various usable substrates. Cellulosic content in plentiful bagasse residue is an economically feasible feedstock for biohydrogen production. A statistical experimental design was applied to identify the optimal condition for biohydrogen production from enzymatically hydrolyzed bagasse with 60-min preheated seed sludge. The bagasse substrate was first heated at 100 C for 2 h and was then hydrolyzed with cellulase. Culture of the pretreated bagasse at 55 C provided a higher H{sub 2} production performance than that obtained from cultures at 45 C, 65 C, 35 C and 25 C. On the other hand, the culture at pH 5 resulted in higher H{sub 2} production than the cultures at pH 6, pH 4 and pH 7. The optimal culture condition for the hydrogen production rate was around 56.5 C and pH 5.2, which was identified using response surface methodology. Moreover, the pretreatment of bagasse under alkaline conditions gave a thirteen-fold increase in H{sub 2} production yield when compared with that from preheatment under neutral condition. (author)

  1. Sponsorship of National Health Organizations by Two Major Soda Companies.

    Science.gov (United States)

    Aaron, Daniel G; Siegel, Michael B

    2017-01-01

    Obesity is a pervasive public health problem in the U.S. Reducing soda consumption is important for stemming the obesity epidemic. However, several articles and one book suggest that soda companies are using their resources to impede public health interventions that might reduce soda consumption. Although corporate sponsorship by tobacco and alcohol companies has been studied extensively, there has been no systematic attempt to catalog sponsorship activities of soda companies. This study investigates the nature, extent, and implications of soda company sponsorship of U.S. health and medical organizations, as well as corporate lobbying expenditures on soda- or nutrition-related public health legislation from 2011 to 2015. Records of corporate philanthropy and lobbying expenditures on public health legislation by soda companies in the U.S. during 2011-2015 were found through Internet and database searches. From 2011 to 2015, the Coca-Cola Company and PepsiCo were found to sponsor a total of 95 national health organizations, including many medical and public health institutions whose specific missions include fighting the obesity epidemic. During the study period, these two soda companies lobbied against 29 public health bills intended to reduce soda consumption or improve nutrition. There is surprisingly pervasive sponsorship of national health and medical organizations by the nation's two largest soda companies. These companies lobbied against public health intervention in 97% of cases, calling into question a sincere commitment to improving the public's health. By accepting funding from these companies, health organizations are inadvertently participating in their marketing plans. Copyright © 2016 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  2. Exposure to soda commercials affects sugar-sweetened soda consumption in young woman: an observational experimental study

    NARCIS (Netherlands)

    Koordeman, R.; Anschutz, D.J.; van Baaren, R.B.; Engels, R.C.M.E.

    2010-01-01

    The present study examines the direct effects of television commercials advertising soda on actual sugar-sweetened soda consumption among young women. An experimental-observational study design was used, in which 51 female students (ages 18-29) were exposed to a 35-min movie clip, interrupted by two

  3. Exposure to soda commercials affects sugar-sweetened soda consumption in young women: An observational experimental study

    NARCIS (Netherlands)

    Koordeman, R.; Anschutz, D.J.; Baaren, R.B. van; Engels, R.C.M.E.

    2010-01-01

    The present study examines the direct effects of television commercials advertising soda on actual sugar-sweetened soda consumption among young women. An experimental-observational study design was used, in which 51 female students (ages 18-29) were exposed to a 35-min movie clip, interrupted by two

  4. Exposure to soda commercials affects sugar-sweetened soda consumption in young women: An observational experimental study

    NARCIS (Netherlands)

    Koordeman, R.; Anschutz, D.J.; Baaren, R.B. van; Engels, R.C.M.E.

    2010-01-01

    The present study examines the direct effects of television commercials advertising soda on actual sugar-sweetened soda consumption among young women. An experimental-observational study design was used, in which 51 female students (ages 18-29) were exposed to a 35-min movie clip, interrupted by two

  5. Exposure to soda commercials affects sugar-sweetened soda consumption in young woman: an observational experimental study

    NARCIS (Netherlands)

    Koordeman, R.; Anschutz, D.J.; van Baaren, R.B.; Engels, R.C.M.E.

    2010-01-01

    The present study examines the direct effects of television commercials advertising soda on actual sugar-sweetened soda consumption among young women. An experimental-observational study design was used, in which 51 female students (ages 18-29) were exposed to a 35-min movie clip, interrupted by two

  6. Mechanochemical modification of lignin and application of the modified lignin for thermoplastics and thermosets

    Science.gov (United States)

    Guo, Xiaojie; Zhang, Jinwen; Xin, Junna

    In this work, mechanochemical modification of lignin and use of the modified lignin in thermoplastics and thermosets were studied. Oleated lignin was successfully prepared by transesterification between lignin and methyl, and the oleation reaction was performed in a solvent-free and room temperature ball milling process with a relatively short time. PLA/lignin blends were prepared through melt extrusion. Compared with the PLA/lignin blends, the PLA/oleated lignin blends exhibited finer dispersion of lignin in the blends, increased glass transition temperature and higher tensile properties, suggesting improved compatibility between lignin and PLA. Carboxylic and anhydride groups were also introduced into the structure of lignin via mechanochemical modification, and the resulting lignin derivatives were used as curing agents for epoxies. The dynamic mechanical properties and thermal stability of the cured epoxy resins were studied using dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA).

  7. Lignin biosynthesis and its molecular regulation

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Lignin biosynthesis has become increasingly highlighted because it plays an important role in the growth and development of plant, in the systematic evolution of plant and in the human life. Due to the progress in the field of lignin studies in recent years, the lignin biosynthesis pathway has been 修订日期:. Here we discuss some genetic engineering approaches on lignin biosynthesis, and conceive strategy to regulate lignin biosynthesis in order to use lignin resource more efficiently in agricultural and industrial productions.

  8. Simultaneous saccharification and co-fermentation of peracetic acid pretreated sugar cane bagasse

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, L.C. [Fundacao Centro Tecnologico de Minas Gerais, Belo Horizonte (Brazil); Linden, J.C.; Schroeder, H.A. [Colorado State University, Fort Collins, CO (United States)

    1999-07-01

    Previous work in our laboratory has demonstrated that peracetic acid improves the enzymatic digestibility of lignocellulosic materials. From the same studies, use of dilute alkali solutions as a pre-pretreatment prior to peracetic acid lignin oxidation increases sugar conversion yields in a synergistic, not additive, manner. Deacetylation of xylan is conducted easily by use of dilute alkali solutions at mild conditions. In this paper, the effectiveness of peracetic acid pretreatment of sugar cane bagasse combined with an alkaline pre-pretreatment, is evaluated through simultaneous saccharification and co-fermentation (SSCF) procedures. A practical 92% of theoretical ethanol yield using recombinant Zymomonas mobilis CP4/pZB5 is achieved using 6% NaOH/I5% peracetic acid pretreated substrate. No sugar accumulation is observed during SSCF; the recombinant microorganism exhibits greater glucose utilization rates than those of xylose. Acetate levels at the end of the co-fermentations are less than 0.2% (w/v). Based on demonstrated reduction of acetyl groups of the biomass, alkaline pre-pretreatments help to reduce peracetic acid requirements. The influence of deacetylation is more pronounced in combined pretreatments using lower peracetic acid loadings. Stereochemical impediments of the acetyl groups in hemicellulase on the activity of specific enzymes may be involved. (author)

  9. Improving green waste composting by addition of sugarcane bagasse and exhausted grape marc.

    Science.gov (United States)

    Zhang, Lu; Sun, Xiangyang

    2016-10-01

    The composting of lignocellulosic waste into compost is a potential way of sustainably disposing of a waste while generating a useful product. The current study determined whether the addition of sugarcane bagasse (SCB) (at 0, 15, and 25%) and/or exhausted grape marc (EGM) (at 0, 10, and 20%) improved the two-stage composting of green waste (GW). The combined addition of SCB and EGM improved composting conditions and the quality of the compost product in terms of temperature, water-holding capacity, particle-size distribution, coarseness index, pH, electrical conductivity, water-extractable organic carbon and nitrogen, microbial numbers, enzymatic activities, polysaccharide and lignin content, nutrient content, respiration, and phytotoxicity. The optimal two-stage composting and the best quality compost were obtained with the combined addition of 15% SCB and 20% EGM. With the optimized two-stage composting method, the compost matured in only 21days rather than in the 90-270days required for traditional composting.

  10. Optimization of sugarcane bagasse autohydrolysis for methane production from hemicellulose hydrolyzates in a biorefinery concept.

    Science.gov (United States)

    Baêta, Bruno Eduardo Lôbo; Lima, Diego Roberto Sousa; Adarme, Oscar Fernando Herrera; Gurgel, Leandro Vinícius Alves; Aquino, Sérgio Francisco de

    2016-01-01

    This study aimed to optimize through design of experiments, the process variables (temperature - T, time - t and solid-to-liquid ratio - SLR) for sugarcane bagasse (SB) autohydrolysis (AH) to obtain hemicellulose hydrolyzates (HH) prone to anaerobic digestion (AD) and biochemical methane production (BMP). The results indicated that severe AH conditions, which lead to maximum hemicelluloses dissolution and sugar content in the HH, were not the best for BMP, probably due to the accumulation of toxic/recalcitrant compounds (furans and lignin). Mild AH conditions (170°C, 35min and SLR=0.33) led to the highest BMP (0.79Nm(3)kg TOC(-1)), which was confirmed by the desirability tool. HH produced by AH carried out at the desired condition DC2 (178.6°C, 43.6min and SLR=0.24) showed the lowest accumulation of inhibitory compounds and volatile fatty acids (VFA) and highest BMP (1.56Nm(3)kg TOC(-1)). The modified Gompertz model best fit the experimental data and led to a maximum methane production rate (R) of 2.6mmol CH4d(-1) in the best condition.

  11. Effect of bisulfite treatment on composition, structure, enzymatic hydrolysis and cellulase adsorption profiles of sugarcane bagasse.

    Science.gov (United States)

    Liu, Z J; Lan, T Q; Li, H; Gao, X; Zhang, H

    2017-01-01

    The effect of sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) on composition, structure, enzymatic hydrolysis and cellulase adsorption profiles of sugarcane bagasse (SCB) was investigated. SPORL gave a higher SCB hydrolysis yield (85.33%) compared to dilute acid pretreatment (DA) (64.39%). The SEM pictures showed that SPORL SCB structure became more disordered and looser, suggesting SPORL SCB was more accessible to cellulase. The zeta potential of SPORL SCB suspension (-21.89mV) was significantly different from that of DA SCB (-12.87mV), which demonstrated the lignin in SPORL SCB was more hydrophilic. With regard to cellulase adsorption profiles, SPORL SCB had a lower non-productive adsorption (14.87mg/glignin) and a higher productive adsorption (37.67 mg/gcarbohydrate) compared with DA SCB (17.05mg/glignin; 25.79mg/gcarbohydrate). These results indicated that SPORL SCB had better accessibility to cellulase and the higher productive cellulase adsorption of SPORL SCB had improved hydrolysis.

  12. Optimization of alkaline and dilute acid pretreatment of agave bagasse by response surface methodology

    Directory of Open Access Journals (Sweden)

    Abimael I. Ávila-Lara

    2015-09-01

    Full Text Available Utilization of lignocellulosic materials for the production of value-added chemicals or biofuels generally requires a pretreatment process to overcome the recalcitrance of the plant biomass for further enzymatic hydrolysis and fermentation stages. Two of the most employed pretreatment processes are the ones that used dilute acid (DA and alkaline (AL catalyst providing specific effects on the physicochemical structure of the biomass such as high xylan and lignin removal for DA and AL, respectively. Another important effect that need to be studied is the use of a high solids pretreatment (≥15% since offers many advantaged over lower solids loadings, including increased sugar and ethanol concentrations (in combination with a high solids saccharification which will be reflected in lower capital costs, however this data is currently limited. In this study, several variables such as catalyst loading, retention time and solids loading, were studied using Response Surface Methodology (RSM based on a factorial Central Composite Design (CCD of DA and AL pretreatment on agave bagasse using a range of solids from 3 to 30% (w/w to obtain optimal process conditions for each pretreatment. Subsequently enzymatic hydrolysis was performed using Novozymes Cellic CTec2 and HTec2 presented as total reducing sugar (TRS yield. Pretreated biomass

  13. Preparation and Analysis of Biomass Lignins

    Science.gov (United States)

    Compere, Alicia L.; Griffith, William L.

    Lignin, comprised primarily of three randomly polymerized phenylpropenyl monomers, is, arguably, the second most common organic molecule on earth. In current biorefinery applications, lignin is burned, usually in concentrated pulping or hydrolysis liquor, as a source of process steam and both internal and exported electricity. The aromatic content of lignin makes it a potentially attractive feedstock for high-value aromatic chemicals, polymers, and carbon products (graphite, activated carbon, and carbon fiber). Revenue from production of lignin-based chemicals could play a major role in biorefinery profitability if cost-effective methods for lignin separation and purification can be developed. This chapter presents descriptions of methods for assessing and purifying biorefinery lignins so that they can be evaluated for use as feedstock for production of chemical products. Areas covered are: (1) initial evaluations of as-received lignin samples (visual, microscopic, separable organics); (2) analysis of common contaminants (bulk and filterable ash and particulate contaminants in liquid and dry lignin samples); (3) preparation of lignins for experimental use as chemical feedstock (prefiltration, filtration using bench-scale chemical apparatus and larger scale bag filters, one-step lignin precipitation, two-step carbohydrate and lignin precipitation, desalting of dry powdered or precipitated lignin, and lyophilization). These methods have been used successfully at the bench scale to produce the 1-50 kg amounts of wood and grass lignins typically required for bench-scale assessment as chemical feedstocks.

  14. Does elevated N make lignin more recalcitrant?

    Science.gov (United States)

    Weintraub, M. N.; Rinkes, Z. L.; Grandy, S.; Wickings, K.; Bertrand, I.

    2014-12-01

    Increases in nitrogen (N) availability are often found to reduce decomposition rates of lignin-rich plant litter. However, the biological and chemical mechanisms that cause this inhibitory effect are still unclear. Our goal was to determine why increased N availability inhibits lignin decomposition. We tested two competing hypotheses: 1) decomposers degrade lignin to obtain protected N compounds and stop producing lignin-degrading enzymes if mineral N is available; or 2) chemical reactions between lignin and mineral N make lignin more recalcitrant, thereby limiting the ability of decomposers to break it down. To test these hypotheses, we followed changes in carbon (C) mineralization, microbial biomass and enzyme activities, litter chemistry, and lignin monomer concentrations over a 478-day laboratory incubation of three genotypes of maize stem internodes varying in litter quality. They were factorially combined with either an acidic or neutral pH sandy soil, with and without added N. Adding N reduced C mineralization, microbial biomass, and lignin-degrading enzyme activities in all treatments. Furthermore, our data on litter chemistry and lignin monomers indicate that N addition did not significantly alter the quantity or quality of lignin in any treatment. These results suggest that abiotic interactions between N and lignin compounds did not alter the ability of decomposers to breakdown lignin. Thus, we conclude that mineral N alters microbial enzyme and biomass dynamics, but not lignin chemistry during maize decomposition.

  15. Micro-analytical studies on sugar cane bagasse ash

    Indian Academy of Sciences (India)

    P Jagadesh; A Ramachandramurthy; R Murugesan; K Sarayu

    2015-08-01

    The worldwide production of sugar generates large volumes of bagasse wastes, which are burnt in uncontrolled manner for heating boiler, which are deposited in landfills, which create negative effects in the environment. The ash obtained by burning bagasse is generally used as Supplementary Cementing Material (SCM) in concrete production without proper knowledge of pozzolanic material characterization. This paper summarizes the results obtained from the various techniques to determine pozzolanic mineral profiles in sugarcane bagasse ash (SCBA). Techniques employed in the present study include X-Ray Diffraction (XRD), Energy-Dispersive X-ray Analysis (EDAX) spectrometer, Fourier Transform Infra-Red Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and Thermal Analysis [Thermo-Gravimetric Analysis (TGA) and Derivative Thermo-Gravimetric (DTG)] in order to understand the type, form, nature, morphology, concentration, etc. of pozzolanic minerals.

  16. SUGARCANE BAGASSE PULPING AND BLEACHING: THERMAL AND CHEMICAL CHARACTERIZATION

    Directory of Open Access Journals (Sweden)

    Paulo Henrique Fernandes Pereira

    2011-05-01

    Full Text Available Cellulose fibers were isolated from sugarcane bagasse in three stages. Initially sugarcane bagasse was subjected to a pre-treatment process with hydrolyzed acid to eliminate hemicellulose. Whole cellulosic fibers thus obtained were then subjected to a two-stage delignification process and finally to a bleaching process. The chemical structure of the resulting cellulose fibers was studied by Fourier Transform Infrared (FTIR spectroscopy. Scanning Electron Microscopy (SEM and X-ray diffraction (XRD were used to analyze the effects of hydrolysis, delignification, and bleaching on the structure of the fibers. Two different thermal analysis techniques were used to study the bleaching cellulose fibers. These techniques confirmed that cellulose fibers were isolated from sugarcane bagasse. A future goal is to use these fibers as reinforcement elements in composites, organic-inorganic hybrid, and membranes for nanofiltration.

  17. Conversion of bagasse cellulose into ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Cuzens, J.E.

    1997-11-19

    The study conducted by Arkenol was designed to test the conversion of feedstocks such as sugar cane bagasse, sorghum, napier grass and rice straw into fermentable sugars, and then ferment these sugars using natural yeasts and genetically engineered Zymomonis mobilis bacteria (ZM). The study did convert various cellulosic feedstocks into fermentable sugars utilizing the patented Arkenol Concentrated Acid Hydrolysis Process and equipment at the Arkenol Technology Center in Orange, California. The sugars produced using this process were in the concentration range of 12--15%, much higher than the sugar concentrations the genetically engineered ZM bacteria had been developed for. As a result, while the ZM bacteria fermented the produced sugars without initial inhibition, the completion of high sugar concentration fermentations was slower and at lower yield than predicted by the National Renewable Energy Laboratory (NREL). Natural yeasts performed as expected by Arkenol, similar to the results obtained over the last four years of testing. Overall, at sugar concentrations in the 10--13% range, yeast produced 850090% theoretical ethanol yields and ZM bacteria produced 82--87% theoretical yields in 96 hour fermentations. Additional commercialization work revealed the ability to centrifugally separate and recycle the ZM bacteria after fermentation, slight additional benefits from mixed culture ZM bacteria fermentations, and successful utilization of defined media for ZM bacteria fermentation nutrients in lieu of natural media.

  18. Unravelling lignin formation and structure

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, N.G. (Washington State Univ., Pullman, WA (United States). Inst. of Biological Chemistry)

    1991-01-01

    During this study, we established that the Fagaceae exclusively accumulate Z-monolignois/glucosides, and not the E-isomers. Evidence for the presence of a novel E{yields}Z isomerse has been obtained. Our pioneering work in lignin biosynthesis and structure in situ has also progressed smoothly. We established the bonding environments of a woody angiosperm, Leucanea leucocephala, as well as wheat (T. aestivum) and tobacco (N. tabacum). A cell culture system from Pinus taeda was developed which seems ideal for investigating the early stages of lignification. These cultures excrete peroxidase isozymes, considered to be specifically involved in lignin deposition. We also studied the effect of the putative lignin-degrading enzyme, lignin peroxidase, on monolignols and dehydropolymerisates therefrom. In all cases, polymerization was observed, and not degradation; these polymers are identical to that obtained with horseradish peroxidases/H{sub 2}O{sub 2}. It seems inconceivable that these enzymes can be considered as being primarily responsible for lignin biodegradation.

  19. Pyrolysis kinetics of bagasse at high heating rates

    Energy Technology Data Exchange (ETDEWEB)

    Stubington, J.F.; Aiman, S. (University of New South Wales, Kensington, NSW (Australia). Dept. of Fuel Technology)

    The rate of pyrolysis of bagasse was studied at high heating rates (200-10,000 [degree]C/s) to obtain engineering data for incorporation into computational fluid dynamic models of bagasse ignition and combustion in suspension-fired and swirl burners. Experiments were performed using an electrically-heated grid under a nitrogen atmosphere at atmosphere pressure. Yields of char, tar, individual gas components, and water were measured as a function of peak temperature, for ranges of heating rate, residence time at peak temperature, and particle size. At higher peak temperatures, significant tar cracking occurred so that tar yields passed through a maximum as peak temperature increased. For dry bagasse, this tar cracking produced gases with no change in char yield, suggesting that it occurred external to the particle. Moisture in the atmosphere increased the tar cracking in the vapor phase outside the bagasse particle producing more gases but did not affect the char yield. However, moisture in the bagasse reduced the char yield and further enhanced the tar cracking reactions, producing even more gases (predominantly carbon monoxide). These results suggested an interaction between water vapor and the tar cracking reactions. For the short residence times appropriate to such burners, a single, first-order reaction model gave the best fit to the total weight loss for the ranges of heating rate and particle sizes studied. However, the first-order kinetic parameters fitted to primary tar production were recommended for modeling purposes because the total weight loss included significant yields of noncombustible water and carbon dioxide. Different ultimate primary tar yields were recommended to fit the dry and wet bagasse pyrolysis results. No chemical significance should be attributed to the kinetic parameters, which were determined to provide the simplest and best fit to the pyrolysis data. 19 refs., 15 figs., 5 tabs.

  20. Saccharification of Sugarcane Bagasse by Enzymatic Treatment for bioethanol production

    Directory of Open Access Journals (Sweden)

    Ahmed, F. M.

    2012-06-01

    Full Text Available Aims: The escalating demands for traditional fossil fuels with unsecured deliverance and issues of climate change compel the researchers to develop alternative fuels like bioethanol. This study examines the prospect of biofuel production from high carbohydrate containing lignocellulosic material, e.g. sugarcane bagasse through biological means. Methodology and Results: Cellulolytic enzymes were collected from the culture filtrate of thermotolerant Trichodermaviride grown on variously pre-treated sugarcane bagasse. CMCase and FPase enzyme activities were determined as a measure of suitable substrate pre-treatment and optimum condition for cellulolytic enzyme production. The highest CMCase and FPase activity was found to be 1.217 U/ml and 0.109 U/ml respectively under the production conditions of 200 rpm, pH 4.0 and 50 °C using steamed NaOH treated bagasse as substrate. SEM was carried out to compare and confirm the activity of cellulolytic enzymes on sugarcane bagasse. Saccharification of pre-treated bagasse was carried out with crude enzymes together using a two-factor experimental design. Under optimized conditions the pre-treated bagasse was saccharified up to 42.7 % in 24 h. The hydrolysate was concentrated by heating to suitable concentration and then used for fermentation by an indigenous isolate of Saccharomyces cerevisiae. With 50 and 80 % brix containing liquor the concentration of alcohol was 0.579 % and 1.15 % respectively. Conclusion, significance and impact of study: This is the first report in Bangladesh for the production of cellulosicethanol using local isolates. Though the rate of alcohol production was very low, a great impetus in this field can maximize the production thereby meet the demand for fuel in future.

  1. Sugar-sweetened soda consumption, hyperuricemia, and kidney disease.

    Science.gov (United States)

    Bomback, Andrew S; Derebail, Vimal K; Shoham, David A; Anderson, Cheryl A; Steffen, Lyn M; Rosamond, Wayne D; Kshirsagar, Abhijit V

    2010-04-01

    The metabolism of high-fructose corn syrup used to sweeten soda drinks may lead to elevations in uric acid levels. Here we determined whether soda drinking is associated with hyperuricemia and, as a potential consequence, reduced kidney function. At baseline, 15,745 patients in the Atherosclerosis Risk in Communities Study completed a dietary questionnaire and had measurements of their serum creatinine and uric acid. After 3 and 9 years of follow-up, multivariate odds ratios from logistic regressions for binary outcome of hyperuricemia and chronic kidney disease (eGFR less than 60 ml/min per 1.73 m(2)) were evaluated. Compared to participants who drank less, consumption of over one soda per day was associated with increased odds of prevalent hyperuricemia and chronic kidney disease. The odds ratio for chronic kidney disease significantly increased to 2.59 among participants who drank more than one soda per day and had a serum uric acid level over 9.0 mg/dl. In longitudinal analyses, however, drinking more than one soda per day was not associated with hyperuricemia or chronic kidney disease. Neither preexistent hyperuricemia nor development of hyperuricemia modified the lack of association between soda drinking and incident chronic kidney disease. Thus our study shows that high consumption of sugar-sweetened soda was associated with prevalent but not incident hyperuricemia and chronic kidney disease.

  2. Potential Uses of Bagasse for Ethanol Production Versus Electricity Production

    Directory of Open Access Journals (Sweden)

    Zumalacárregui-De Cárdenas Lourdes Margarita

    2015-07-01

    Full Text Available The procedure to carry out the energy balance for ethanol production by bagasse’s hydrolysis is presented. The loss of potentialities for electric power generation when bagasse is used to produce ethanol instead of electricity directly is calculated. Potential losses are 45-64% according to the efficiency of the lignocellulosic ethanol production. The relationship that exists between the volume of ethanol and the efficiency of Otto and Rankine cycles is analyzed. Those cycles are used to produce electricity from ethanol and bagasse, respectively.

  3. Lithium storage into carbonaceous materials obtained from sugarcane bagasse

    Energy Technology Data Exchange (ETDEWEB)

    Matsubara, Elaine Y.; Lala, Stella M.; Rosolen, Jose Mauricio, E-mail: rosolen@ffclrp.usp.b [University of Sao Paulo (FFCLRP/USP), Ribeirao Preto, SP (Brazil). Dept. of Chemistry

    2010-07-01

    Carbonaceous materials with different structures are prepared by carbonization of sugarcane bagasse. Depending on carbonization conditions, it is possible to obtain soot rich in flakes or in honeycomb-shaped micrometric particles, whose concentration has large influence on lithium storage into electrodes. The soot rich in honeycomb-shaped particles provides the best electrochemical performance, with a reversible specific capacity of 310 mAh g{sup -1}. The results suggest that the sugarcane bagasse can be potentially used in the design of anodic materials for lithium ion batteries. (author)

  4. Pyrolysis - gas chromatography - mass spectrometry of lignins

    Energy Technology Data Exchange (ETDEWEB)

    Martin, F.; Saiz-Jimenez, C.; Gonzalez-Vila, F.J.

    1979-01-01

    Milled wood lignins from spruce, beech and bamboo were pyrolysed. The high-boiling products of pyrolysis were studied by GLC and mass spectrometry. The forty-three products identified provide information on the structural units of lignin.

  5. Photodegradation of Acidolysis Lignin from BCMP

    Directory of Open Access Journals (Sweden)

    Ahmad Jahan Latibari

    2008-12-01

    Full Text Available A mild acidic dioxane extraction method was employed to isolate lignin from hardwood bleached chemimechanical pulp (BCMP. The isolated lignin was then purified and undergone elemental analysis. To study the photodegradation behavior, the lignin samples were impregnated onto the Whatman filter papers and irradiated with UV light for various periods. The photolyzed lignin was then recovered and analyzed by 1H-NMR spectroscopy. Phenylpropane-based formula (C9 of CMP pulp lignin and the photolyzed samples were then established with elemental analysis and 1H-NMR spectroscopy data. The results indicated that the benzaldehyde and benzoic acid type compounds were the main photodegradation products of BCMP lignin. The lignin photodegradation probably involved the degradation of phenylcoumaran units. Irradiation also increased the phenolic hydroxyl group content and decreased that of methoxyl groups, due to demethoxylation. The degrees of aromatic ring condensation were increased upon continuing the irradiation time, which imples the formation of condensed structures in photolyzed lignin.

  6. Lignin analysis by FT-Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, U.P.; Obst, J.R.; Cannon, A.B. [USDA Forest Products Lab., Madison, WI (United States)

    1996-10-01

    Traditional methods of lignin analysis, such as Klason (acid insoluble) lignin determinations, give satisfactory results, are widely accepted, and often are considered as standard analyses. However, the Klason lignin method is laborious and time consuming; it also requires a fairly large-amount of isolated analyte. FT-Raman spectroscopy offers an opportunity to simplify and speed up lignin analyses. FT-Raman data for a number of hardwoods (angiosperms) and softwoods (gymnosperms) are compared with data obtained using other analytical methods, including Klason lignin (with corrections for acid soluble lignin), acetyl bromide, and FT-IR determinations. In addition, 10 different specimens of Nothofagus dombeyii (chosen because of the widely varying syringyl:guaiacyl monomer compositions of their lignins) were also analyzed. Lignin monomer compositions were determined by thioacidolysis of by nitrobenzene oxidation.

  7. Lignin poly(lactic acid) copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, Johan Vilhelm; Chung, Yi-Lin; Li, Russell Jingxian; Waymouth, Robert; Sattely, Elizabeth; Billington, Sarah; Frank, Curtis W.

    2017-02-14

    Provided herein are graft co-polymers of lignin and poly(lactic acid) (lignin-g-PLA copolymer), thermoset and thermoplastic polymers including them, methods of preparing these polymers, and articles of manufacture including such polymers.

  8. Photodegradation of acidolysis lignin from BCMP.

    Science.gov (United States)

    Azadfallah, Mohammad; Mirshokraei, Seyed Ahmad; Latibari, Ahmad Jahan

    2008-12-15

    A mild acidic dioxane extraction method was employed to isolate lignin from hardwood bleached chemimechanical pulp (BCMP). The isolated lignin was then purified and undergone elemental analysis. To study the photodegradation behavior, the lignin samples were impregnated onto the Whatman filter papers and irradiated with UV light for various periods. The photolyzed lignin was then recovered and analyzed by (1)H-NMR spectroscopy. Phenylpropane-based formula (C(9)) of CMP pulp lignin and the photolyzed samples were then established with elemental analysis and (1)H-NMR spectroscopy data. The results indicated that the benzaldehyde and benzoic acid type compounds were the main photodegradation products of BCMP lignin. The lignin photodegradation probably involved the degradation of phenylcoumaran units. Irradiation also increased the phenolic hydroxyl group content and decreased that of methoxyl groups, due to demethoxylation. The degrees of aromatic ring condensation were increased upon continuing the irradiation time, which imples the formation of condensed structures in photolyzed lignin.

  9. The Inhibition of Hepatic and Renal Glucuronidation of p-Nitrophenol and 4-Methylumbelliferone by Oil Palm Empty Fruit Bunch Lignin and Its Main Oxidation Compounds.

    Science.gov (United States)

    Salleh, Norliyana Mohamad; Ismail, Sabariah; Ibrahim, Mohamad Nasir Mohamad

    2017-01-01

    In order to develop oil palm empty fruit bunch (EFB) lignin as a nutraceutical and health supplement, the investigation of its potential in interacting with other drugs via inhibition of drug-metabolizing enzymes (DMEs) would ensure product safety. The study was aimed to investigate the in vitro effect of oil palm EFB lignin and its main oxidation compounds on phase II DME UDP-glucuronosyltransferases (UGTs) in rat liver and kidney microsomes. The p-nitrophenol (p-NP) and 4-methylumbelliferone (4-MU) were employed as probe substrates in glucuronidation assays. The effect of soda oil palm EFB lignin on Vmax, Km, CLint, Ki, and mode of inhibition of 4-MU glucuronidation in RLM was also determined. The inhibitory potency of oil palm EFB lignin for both p-NP and 4-MU glucuronidation in rat liver microsome (RLM) and rat kidneys microsomes (RKM) was found to be in the rank order of soda > kraft > organosolv. However, the inhibitory potency of its main oxidation compounds were in the rank order of vanillin > syringaldehyde > p-hydroxybenzaldehyde. Soda oil palm EFB lignin exhibited mixed-type inhibition against 4-MU glucuronidation in RLM, showing the change in apparent Vmax and with only a minor effect on Km compared with control. The findings showed that effect of oil palm EFB lignin on both p-NP and 4-MU glucuronidation in RLM and RKM was enhanced by the presence of vanillin as well as flavonoids. Kinetic study showed that soda oil palm EFB lignin exhibited strong inhibition on UGT activity in RLM with mixed-type inhibition mode. The inhibitory potential of oil palm EFB lignin extracts for p-NP and 4-MU glucuronidation in RLM and RKM can be listed in the following rank order: soda > kraft > organosolvThe inhibitory potential of oil palm EFB lignin main oxidation compounds for p-NP and 4-MU glucuronidation in RLM and RKM can be listed in the following rank order: vanillin > syringaldehyde > p-hydroxybenzaldehydeResults suggested that the effect of oil palm EFB lignin on

  10. Effect of Bagasse ash reinforcement on the wear behaviour of Al-Cu-Mg/Bagasse ash particulate composites

    Institute of Scientific and Technical Information of China (English)

    V.S.; Aigbodion; S.B.; Hassan; G.B.; Nyior; T.; Ause

    2010-01-01

    The effect of Bagasse ash(BAp) particle reinforcement on the wear behavior of Al-CuMg alloy has been studied.Bagasse ash particles were varied from 0 wt pct-10 wt pct with interval of 2 wt pct.Unlubricated pin-on disc tests were conducted to examine the wear behaviour of the aluminium alloy/Bagasse ash particulate composites.The tests were conducted at varying loads,from 5 to 20 N and sliding speeds of 1.26 m/s,2.51 m/s,3.77 m/s and 5.02 m/s for a constant sliding distance of 5000 m.The results showed that ...

  11. Development of Soda Residue Concrete Expansion Agent

    Institute of Scientific and Technical Information of China (English)

    WANG Bao-min; WANG Li-jiu; M F Mohd Zain; F C Lai

    2003-01-01

    A new type of concrete expansion agent has been successfully developed for the first time in the world by utilizing an industrial waste residue-soda residue and an industrial wasteliquor.Adding 3%-6% of the agent into Portland cement enables a shrinkage-compensating concrete to be prepared.Mortar and concrete containing this expansion agent have better shrinkage-compensating and mechanical properties.The raw materials component,production process,technical properties,micro-analysis of mortar made with this expansion agent,mechanism of expansion and research results are described in this article.The experimental results show that the new type of concrete expansion agent accords with the standard and its main mineral component is xCaO-ySO3-zAl2O3.

  12. Lignin degradation during plant litter photodegradation

    Science.gov (United States)

    Lin, Y.; King, J. Y.

    2014-12-01

    Lignin is the second most abundant compound, after cellulose, synthesized by plants. Numerous studies have demonstrated that initial lignin concentration is negatively correlated with litter decomposition rate under both laboratory and field conditions. Thus lignin is commonly considered to be a "recalcitrant" compound during litter decomposition. However, lignin can also serve as a radiation-absorbing compound during photodegradation, the process through which solar radiation breaks down organic matter. Here, we synthesize recent studies concerning lignin degradation during litter photodegradation and report results from our study on how photodegradation changes lignin chemistry at a molecular scale. Recent field studies have found that litter with high initial lignin concentration does not necessarily exhibit high mass loss during photodegradation. A meta-analysis (King et al. 2012) even found a weak negative correlation between initial lignin concentration and photodegradation rate. Contradicting results have been reported with regard to the change in lignin concentration during photodegradation. Some studies have found significant loss of lignin during photodegradation, while others have not. In most studies, loss of lignin only accounts for a small proportion of the overall mass loss. Using NMR spectroscopy, we found significant loss of lignin structural units containing beta-aryl ether linkages during photodegradation of a common grass litter, Bromus diandrus, even though conventional forage fiber analysis did not reveal changes in lignin concentration. Both our NMR and fiber analyses supported the idea that photodegradation induced loss of hemicellulose, which was mainly responsible for the litter mass loss during photodegradation. Our results suggest that photodegradation induces degradation, but not necessarily complete breakdown, of lignin structures and consequently exposes hemicellulose and cellulose to microbial decomposition. We conclude that lignin

  13. Redox Catalysis Facilitates Lignin Depolymerization.

    Science.gov (United States)

    Bosque, Irene; Magallanes, Gabriel; Rigoulet, Mathilde; Kärkäs, Markus D; Stephenson, Corey R J

    2017-06-28

    Lignin is a recalcitrant and underexploited natural feedstock for aromatic commodity chemicals, and its degradation generally requires the use of high temperatures and harsh reaction conditions. Herein we present an ambient temperature one-pot process for the controlled oxidation and depolymerization of this potent resource. Harnessing the potential of electrocatalytic oxidation in conjugation with our photocatalytic cleavage methodology, we have developed an operationally simple procedure for selective fragmentation of β-O-4 bonds with excellent mass recovery, which provides a unique opportunity to expand the existing lignin usage from energy source to commodity chemicals and synthetic building block source.

  14. Lignin biopolymer based triboelectric nanogenerators

    Science.gov (United States)

    Bao, Yukai; Wang, Ruoxing; Lu, Yunmei; Wu, Wenzhuo

    2017-07-01

    Ongoing research in triboelectric nanogenerators (TENGs) focuses on increasing power generation, but obstacles concerning economical and eco-friendly utilization of TENGs continue to prevail. Being the second most abundant biopolymer on earth, lignin offers a valuable opportunity for low-cost TENG applications in biomedical devices, benefitting from its biodegradability and biocompatibility. Here, we develop for the first time a lignin biopolymer based TENGs for harvesting mechanical energy in the environment, which shows great potential for self-powered biomedical devices among other applications and opens doors to new technologies that utilize otherwise wasted materials for economically feasible and ecologically friendly production of energy devices.

  15. Liquid Fuels from Lignins: Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Chum, H. L.; Johnson, D. K.

    1986-01-01

    This task was initiated to assess the conversion of lignins into liquid fuels, primarily of lignins relevant to biomass-to-ethanol conversion processes. The task was composed of a literature review of this area and an experimental part to obtain pertinent data on the conversion of lignins germane to biomass-to-ethanol conversion processes.

  16. Lignin Valorization using Heterogenous Catalytic Oxidation

    DEFF Research Database (Denmark)

    Melián Rodríguez, Mayra; Shunmugavel, Saravanamurugan; Kegnæs, Søren

    is complex so different model compounds are often used to study lignin valorization. These model compounds contain the linkages present in lignin, simplifying catalytic analysis and present analytical challenges related to the study of the complicated lignin polymer and the plethora of products that could...

  17. Lignin pyrolysis for profitable lignocellulosic biorefineries

    NARCIS (Netherlands)

    Wild, de P.J.; Gosselink, R.J.A.; Huijgen, W.J.J.

    2014-01-01

    Bio-based industries (pulp and paper and biorefineries) produce > 50 Mt/yr of lignin that results from fractionation of lignocellulosic biomass. Lignin is world's second biopolymer and a major potential source for production of performance materials and aromatic chemicals. Lignin valorization is

  18. Disinfection byproduct formation from lignin precursors.

    Science.gov (United States)

    Hua, Guanghui; Kim, Junsung; Reckhow, David A

    2014-10-15

    Lignin is the most abundant aromatic plant component in terrestrial ecosystems. This study was conducted to determine the contribution of lignin residues in natural water to the formation of disinfection byproducts (DBPs) in drinking water. We investigated the formation of different classes of DBPs from lignin model compounds, lignin polymers, and humic substances using two common disinfection techniques, chlorination and chloramination. The contributions of lignin to the overall formation of DBPs from these organic products were determined based on the observed abundances of individual lignin phenols and their DBP yields. Model lignin phenols generally produced higher trichloroacetic acid (TCAA) yields than chloroform and dichloroacetic acid (DCAA) during chlorination. Lignin phenols generally produced higher DBP yields but lower percentages of unknown total organic halogen compared to bulk humic substances and lignin polymers. The relative significance of lignin phenols as chlorination DBP precursors generally follows the order of TCAA > DCAA&chloroform. The relative significance of lignin phenols to DBP formation by chloramination follows the order: TCAA > DCAA&DCAN > chloroform. Overall, lignin phenols are more important as TCAA precursors than as chloroform and DCAA precursors.

  19. BICARBONATE OF SODA BLASTING TECHNOLOGY FOR AIRCRAFT WHEEL PAINTING

    Science.gov (United States)

    This evaluation addressed product quality, waste reduction/pollution prevention and economics in replacing chemical solvent strippers with a bicarbonate of soda blasting technology for removal of paint from aircraft wheels. The evaluation was conducted in the Paint Stripping Sho...

  20. Effect NaOH Concentration on Bagasse Ash Based Geopolymerization

    Directory of Open Access Journals (Sweden)

    Saloma

    2016-01-01

    Full Text Available Geopolymer is a natural adhesive material which can be developed as a substitute for cement. The natural ingredients which want to use should contain silica and alumina. This paper uses bagasse ash as a basic material of mortar geopolymer. As an adhesive, the bagasse ash should be mixed with water and another activator alkali such as sodium hydroxide (NaOH and sodium silicate (Na2SiO3. The NaOHs molarity variation are 8, 10, 12, 14 and 16 M with Na2SiO3/NaOH = 1,0 sand/bagasse ash = 2,75 and activator/bagasse ash = 0,42. This research use 50 × 50 × 50 mm cube sized specimen and conduct a compressive strength test with 3, 7, 14, 21 and 28 days. The fresh mortar test result showed that the use of NaOHs molarity variation influences the slump value and time setting. The bigger NaOH molarity variation that been used, the smaller slump value. But, the time setting is increased. While the result for density and compressive strength shown that the bigger NaOH molarity variation, the bigger density and the compressive strength. Maximum compressive strength resulted from the mixture of mortar geopolymer with 16 M concentration.

  1. Oxygen pitting failure of a bagasse boiler tube

    CSIR Research Space (South Africa)

    Heyes, AM

    2001-04-01

    Full Text Available Examination of a failed roof tube from a bagasse boiler showed transverse through-cracks and extensive pitting. The pitting was typically oxygen induced pitting and numerous fatigue cracks had started within these pits. It is highly probable...

  2. Corrosion of Modified Concrete with Sugar Cane Bagasse Ash

    Directory of Open Access Journals (Sweden)

    R. E. Núñez-Jaquez

    2012-01-01

    Full Text Available Concrete is a porous material and the ingress of water, oxygen, and aggressive ions, such as chlorides, can cause the passive layer on reinforced steel to break down. Additives, such as fly ash, microsilica, rice husk ash, and cane sugar bagasse ash, have a size breakdown that allows the reduction of concrete pore size and, consequently, may reduce the corrosion process. The objective of this work is to determine the corrosion rate of steel in reinforced concrete by the addition of 20% sugar cane bagasse ash by weight of cement. Six prismatic specimens (7×7×10 cm with an embedded steel rod were prepared. Three contained 20% sugar cane bagasse ash by weight of cement and the other three did not. All specimens were placed in a 3.5% NaCl solution and the corrosion rate was determined using polarization resistance. The results showed that reinforced concrete containing sugar cane bagasse ash has the lowest corrosion rates in comparison to reinforced concrete without the additive.

  3. Wet explosion pretreatment of sugarcane bagasse for enhanced enzymatic hydrolysis

    DEFF Research Database (Denmark)

    Biswas, Rajib; Uellendahl, Hinrich; Ahring, Birgitte Kiær

    2014-01-01

    Wet explosion pretreatment of sugarcane bagasse was investigated in pilot-scale with the aim of obtaining the highest possible sugar yield after pretreatment. The temperatures used were 155, 170, 185 and 200 C with or without addition of oxygen (0.6 MPa pressure). Enzymatic hydrolysis of washed...

  4. Mechanical Properties and Morphological Study of Fly-Ash-Bagasse Composites

    Science.gov (United States)

    Verma, Deepak; Gope, Prakash Chandra; Maheshwari, Mohit Kumar; Sharma, Ravinder Kumar

    2012-10-01

    In recent years the natural fiber epoxy composite has attracted substantial importance as a potential structural material. The natural fiber composites can be very cost effective material. In the present investigation the development of a Fly ash—Bagasse fiber composite material has been discussed. The Bagasse fiber has been used in two different sizes for the developed material. In two developed composites, diameter of Bagasse fiber has been varied between 13-16 μm and 83-95 μm in length. Correspondingly in other two developed composites; length of Bagasse fiber has been varied from 1 to 5 mm. It was observed that the density decreases by mixing the fiber was more as compared to the composite having both Bagasse fiber and Fly ash. A Bagasse fiber composite with size in the range of μm exhibited better tensile strength than the composite having Bagasse fiber size in mm. The compressive strength of the material increases, if Fly ash alone is used for the composite material but, when Bagasse fiber was mixed with the Fly ash, it was found that there has been a decrease in the compressive strength. It was also observed that there has been a decrease in the flexural strength of the material by mixing the Bagasse fiber in the matrix. The microstructure of composite material was investigated by using Scanning Electron Microscope. The images from Scanning Electron Microscope demonstrated that the Fly ash and Bagasse fiber particles are uniformly distributed over the matrix.

  5. Lignin based controlled release coatings

    NARCIS (Netherlands)

    Mulder, W.J.; Gosselink, R.J.A.; Vingerhoeds, M.H.; Harmsen, P.F.H.; Eastham, D.

    2011-01-01

    Urea is a commonly used fertilizer. Due to its high water-solubility, misuse easily leads to excess nitrogen levels in the soil. The aim of this research was to develop an economically feasible and biodegradable slow-release coating for urea. For this purpose, lignin was selected as coating material

  6. Lignin based controlled release coatings

    NARCIS (Netherlands)

    Mulder, W.J.; Gosselink, R.J.A.; Vingerhoeds, M.H.; Harmsen, P.F.H.; Eastham, D.

    2011-01-01

    Urea is a commonly used fertilizer. Due to its high water-solubility, misuse easily leads to excess nitrogen levels in the soil. The aim of this research was to develop an economically feasible and biodegradable slow-release coating for urea. For this purpose, lignin was selected as coating

  7. Lignin based controlled release coatings

    NARCIS (Netherlands)

    Mulder, W.J.; Gosselink, R.J.A.; Vingerhoeds, M.H.; Harmsen, P.F.H.; Eastham, D.

    2011-01-01

    Urea is a commonly used fertilizer. Due to its high water-solubility, misuse easily leads to excess nitrogen levels in the soil. The aim of this research was to develop an economically feasible and biodegradable slow-release coating for urea. For this purpose, lignin was selected as coating material

  8. Damage Development in Confined Borosilicate and Soda-Lime Glasses

    Science.gov (United States)

    2011-07-11

    Elmira, NY). BF is a borosilicate glass manufactured by Schott Glass using a float process. SP float glass is a crystal clear, soda-lime glass . This...2005. 22 21. ASTM £494, "Technique for Measuring Ultrasonic Velocity in Materials", July 2001. 22. Schott Glass , Borofloat 33 Thermal Properties...21945 Damage Development in Conf"med Borosilicate and Soda-Lime Glasses Kathryn A. Dannemann1, Charles E. Anderson. Jr. 1, Sidney Chocron1, James

  9. Occurrence of naturally acetylated lignin units.

    Science.gov (United States)

    Del Río, José C; Marques, Gisela; Rencoret, Jorge; Martínez, Angel T; Gutiérrez, Ana

    2007-07-11

    This work examines the occurrence of native acetylated lignin in a large set of vascular plants, including both angiosperms and gymnosperms, by a modification of the so-called Derivatization Followed by Reductive Cleavage (DFRC) method. Acetylated lignin units were found in the milled wood lignins of all angiosperms selected for this study, including mono- and eudicotyledons, but were absent in the gymnosperms analyzed. In some plants (e.g., abaca, sisal, kenaf, or hornbeam), lignin acetylation occurred at a very high extent, exceeding 45% of the uncondensed (alkyl-aryl ether linked) syringyl lignin units. Acetylation was observed exclusively at the gamma-carbon of the lignin side chain and predominantly on syringyl units, although a predominance of acetylated guaiacyl over syringyl units was observed in some plants. In all cases, acetylation appears to occur at the monomer stage, and sinapyl and coniferyl acetates seem to behave as real lignin monomers participating in lignification.

  10. Microbiology of Lonar Lake and other soda lakes.

    Science.gov (United States)

    Antony, Chakkiath Paul; Kumaresan, Deepak; Hunger, Sindy; Drake, Harold L; Murrell, J Colin; Shouche, Yogesh S

    2013-03-01

    Soda lakes are saline and alkaline ecosystems that are believed to have existed throughout the geological record of Earth. They are widely distributed across the globe, but are highly abundant in terrestrial biomes such as deserts and steppes and in geologically interesting regions such as the East African Rift valley. The unusual geochemistry of these lakes supports the growth of an impressive array of microorganisms that are of ecological and economic importance. Haloalkaliphilic Bacteria and Archaea belonging to all major trophic groups have been described from many soda lakes, including lakes with exceptionally high levels of heavy metals. Lonar Lake is a soda lake that is centered at an unusual meteorite impact structure in the Deccan basalts in India and its key physicochemical and microbiological characteristics are highlighted in this article. The occurrence of diverse functional groups of microbes, such as methanogens, methanotrophs, phototrophs, denitrifiers, sulfur oxidizers, sulfate reducers and syntrophs in soda lakes, suggests that these habitats harbor complex microbial food webs that (a) interconnect various biological cycles via redox coupling and (b) impact on the production and consumption of greenhouse gases. Soda lake microorganisms harbor several biotechnologically relevant enzymes and biomolecules (for example, cellulases, amylases, ectoine) and there is the need to augment bioprospecting efforts in soda lake environments with new integrated approaches. Importantly, some saline and alkaline lake ecosystems around the world need to be protected from anthropogenic pressures that threaten their long-term existence.

  11. Immunotoxicity of washing soda in a freshwater sponge of India.

    Science.gov (United States)

    Mukherjee, Soumalya; Ray, Mitali; Ray, Sajal

    2015-03-01

    The natural habitat of sponge, Eunapius carteri faces an ecotoxicological threat of contamination by washing soda, a common household cleaning agent of India. Washing soda is chemically known as sodium carbonate and is reported to be toxic to aquatic organisms. Domestic effluent, drain water and various human activities in ponds and lakes have been identified as the major routes of washing soda contamination of water. Phagocytosis and generation of cytotoxic molecules are important immunological responses offered by the cells of sponges against environmental toxins and pathogens. Present study involves estimation of phagocytic response and generation of cytotoxic molecules like superoxide anion, nitric oxide and phenoloxidase in E. carteri under the environmentally realistic concentrations of washing soda. Sodium carbonate exposure resulted in a significant decrease in the phagocytic response of sponge cells under 4, 8, 16 mg/l of the toxin for 96h and all experimental concentrations of the toxin for 192h. Washing soda exposure yielded an initial increase in the generation of the superoxide anion and nitric oxide followed by a significant decrease in generation of these cytotoxic agents. Sponge cell generated a high degree of phenoloxidase activity under the experimental exposure of 2, 4, 8, 16 mg/l of sodium carbonate for 96 and 192 h. Washing soda induced alteration of phagocytic and cytotoxic responses of E. carteri was indicative to an undesirable shift in their immune status leading to the possible crises of survival and propagation of sponges in their natural habitat.

  12. COMMERCIAL VIABILITY ANALYSIS OF LIGNIN BASED CARBON FIBRE

    OpenAIRE

    2014-01-01

    Lignin is a rich renewable source of aromatic compounds. As a potentialpetroleum feedstock replacement, lignin can reduce environmental impacts such ascarbon emission. Due to its complex chemical structure, lignin is currently underutilized.Exploiting lignin as a precursor for carbon fibre adds high economic value to lignin andencourages further development in lignin extraction technology. This report includes apreliminary cost analysis and identifies the key aspects of lignin-based carbon fi...

  13. Characterisation of Cassava Bagasse and Composites Prepared by Blending with Low-Density Polyethylene

    Directory of Open Access Journals (Sweden)

    Fabiane Oliveira Farias

    2014-12-01

    Full Text Available The main objective of this study was to characterise the cassava bagasse and to evaluate its addition in composites. Two cassava bagasse samples were characterised using physicochemical, thermal and microscopic techniques, and by obtaining their spectra in the mid-infrared region and analysing them by using x-ray diffraction. Utilising sorption isotherms, it was possible to establish the acceptable conditions of temperature and relative humidity for the storage of the cassava bagasse. The incorporation of cassava bagasse in a low-density polyethylene (LDP matrix was positive, increasing the elasticity modulus values from 131.90 for LDP to 186.2 for 70% LDP with 30% SP bagasse. These results were encouraging because cassava bagasse could serve as a structural reinforcement, as well as having environmental advantages for its application in packaging, construction and automotive parts.

  14. Influence of Soda Pulping Variables on Properties of Pineapple (Ananas comosus Merr. Leaf Pulp and Paper Studied by Face-Centered Composite Experimental Design

    Directory of Open Access Journals (Sweden)

    Jantharat Wutisatwongkul

    2016-01-01

    Full Text Available Face-centered composite design (FCC was used to study the effect of pulping variables: soda concentration (4-5 wt%, temperature (90–130°C, and pulping time (20–60 min on the properties of pineapple leaf pulp and paper employing soda pulping. Studied pulp responses were screened yield and lignin content (kappa number. Paper properties, which include tensile index, burst index, and tear index, were also investigated. Effects of the pulping variables on the properties were statistically analyzed using Minitab 16. The optimum conditions to obtain the maximum tensile index were soda concentration of 4 wt%, pulping temperature of 105°C, and pulping time of 20 min. The predicted optimum conditions provided tensile index, burst index, tear index, screened yield, and kappa number of 44.13 kN·m/kg, 1.76 kPa·m2, 1.68 N·m2/kg, 21.29 wt%, and 28.12, respectively, and were experimentally confirmed.

  15. Influence of sugarcane bagasse-derived biochar application on nitrate leaching in calcaric dark red soil.

    Science.gov (United States)

    Kameyama, K; Miyamoto, T; Shiono, T; Shinogi, Y

    2012-01-01

    Application of biochar has been suggested to improve water- and fertilizer-retaining capacity of agricultural soil. The objective of this study was to evaluate the effects of bagasse charcoal (sugarcane [ L.] bagasse-derived biochar) on nitrate (NO) leaching from Shimajiri Maji soil, which has low water- and fertilizer-retaining capacity. The nitrate adsorption properties of bagasse charcoal formed at five pyrolysis temperatures (400-800° C) were investigated to select the most suitable bagasse charcoal for NO adsorption. Nitrate was able to adsorb onto the bagasse charcoal formed at pyrolysis temperatures of 700 to 800° C. Nitrate adsorption by bagasse charcoal (formed at 800° C) that passed through a 2-mm sieve was in a state of nonequilibrium even at 20 h after the addition of 20 mg N L KNO solution. Measurements suggested that the saturated and unsaturated hydraulic conductivity of bagasse charcoal (800° C)-amended soils are affected by changes in soil tortuosity and porosity and the presence of meso- and micropores in the bagasse charcoal, which did not contribute to soil water transfer. In NO leaching studies using bagasse charcoal (800° C)-amended soils with different charcoal contents (0-10% [w/w]), the maximum concentration of NO in effluents from bagasse charcoal-amended soil columns was approximately 5% less than that from a nonamended soil column because of NO adsorption by bagasse charcoal (800° C). We conclude that application of bagasse charcoal (800°C) to the soil will increase the residence time of NO in the root zone of crops and provide greater opportunity for crops to absorb NO.

  16. Effects of forming processing conditions on the flexural properties of bagasse and bamboo plastic composites

    OpenAIRE

    2012-01-01

    The effects of processing conditions such as pressure, temperature, and holding time on the flexural properties of bagasse and bamboo biodegradable composites were investigated. Each sample of bagasse or bamboo was mixed with a corn-starch-based biodegradable resin and fabricated by a hot press forming method. The cross-sectional structure of the bagasse fiber was found to be porous and compressible, while that of bamboo was found to be more solid. The relationship between flexural strength, ...

  17. Effect of Storing of Sugar Cane Bagasse on Physical Properties from Cellulose for Paper

    OpenAIRE

    Aguilar-Rivera N.

    2011-01-01

    Sugarcane bagasse is now a major source of fibre for pulp and papermaking in Mexico, bagasse pulps are used for all grades of paper: writing, toilet tissue, towelling, glassine, and others. The storage and handling of fibres are critical factors in the resulting pulp yield and quality because bagasse is a fibrous residue that remains after crushing the stalks, and contains short fibres and is a seasonal raw material. The storage produced at harvest time becomes necessary when it is used for o...

  18. Effect of different pretreatments on egyptian sugar-cane bagasse saccharification and bioethanol production

    Directory of Open Access Journals (Sweden)

    Mervate A. Abo-State

    2013-06-01

    Separate biological hydrolysis and fermentation (SHF process for bagasse was done by the two selected fungal isolates; Trichoderma viride F-94 and Aspergillus terreus F-98 and the two yeast isolates identified as Candida tropicalis Y-26 and Saccharomyces cerevisiae Y-39. SHF processes by F-94 and Y-26 produced 226 kg of ethanol/ton bagasse while that of F-98 and Y-39 produced 185 kg of ethanol/ton bagasse.

  19. Characterization of sugar cane bagasse ash as supplementary material for Portland cement

    OpenAIRE

    Janneth Torres Agredo; Ruby Mejía de Gutiérrez; Escandón Giraldo, Camilo E.; Luis Octavio González Salcedo

    2014-01-01

    Sugar Cane Bagasse is a by-product of the sugar agroindustry; it is partly used as fuel. However, bagasse ash (SCBA) is considered waste, which creates a disposal problem. Furthermore, if sugar cane bagasse is burned under controlled conditions, the SCBA can be potentially reused. This paper considers the technical viability of using SCBA as a partial replacement for cement. Two samples of SCBA from a Colombian sugar industry were characterized. The chemical composition of the samples shows h...

  20. Performance Evaluation of Sugarcane Bagasse Ash-Based Cement for Durable Concrete

    OpenAIRE

    Bahurudeen, A.; Santhanam, Manu

    2014-01-01

    Sugarcane bagasse ash (SCBA) is obtained as a by-product from cogeneration combustion boilers in sugar industries. Bagasse ash is mainly composed of reactive silica and can be used as pozzolanic material in concrete. Previous studies have reported that the utilization of SCBA as pozzolanic material in concrete can significantly improve its performance. A comprehensive investigation of durability performance of bagasse ash in concrete is not available in existing literature. In all previous st...

  1. Bending Modulus of Elasticity of the Press Forming Composite Material from Bagasse Fiber and Biodegradable Resin

    OpenAIRE

    柴田, 信一; 曹, 勇; 福本, 功; Shibata, Shin-ichi; Cao, Yong; Fukumoto, Isao

    2005-01-01

    Bending modulus of elasticity of the composite material from bagasse fiber (remains after sugar cane squeezed) and biodegradable resin was investigated in view of the content of bagasse fiber and the fiber length. The result was validated by short fiber strengthen theory. The result is as followings. Bending modulus of elasticity increased with increasing the content of bagasse fiber. The increase of Bending modulus of elasticity is predicted by short fiber strengthen theory incorporated with...

  2. Influence of Torrefaction on the Conversion Efficiency of the Gasification Process of Sugarcane Bagasse.

    Science.gov (United States)

    Anukam, Anthony; Mamphweli, Sampson; Okoh, Omobola; Reddy, Prashant

    2017-03-10

    Sugarcane bagasse was torrefied to improve its quality in terms of properties prior to gasification. Torrefaction was undertaken at 300 °C in an inert atmosphere of N₂ at 10 °C·min(-1) heating rate. A residence time of 5 min allowed for rapid reaction of the material during torrefaction. Torrefied and untorrefied bagasse were characterized to compare their suitability as feedstocks for gasification. The results showed that torrefied bagasse had lower O-C and H-C atomic ratios of about 0.5 and 0.84 as compared to that of untorrefied bagasse with 0.82 and 1.55, respectively. A calorific value of about 20.29 MJ·kg(-1) was also measured for torrefied bagasse, which is around 13% higher than that for untorrefied bagasse with a value of ca. 17.9 MJ·kg(-1). This confirms the former as a much more suitable feedstock for gasification than the latter since efficiency of gasification is a function of feedstock calorific value. SEM results also revealed a fibrous structure and pith in the micrographs of both torrefied and untorrefied bagasse, indicating the carbonaceous nature of both materials, with torrefied bagasse exhibiting a more permeable structure with larger surface area, which are among the features that favour gasification. The gasification process of torrefied bagasse relied on computer simulation to establish the impact of torrefaction on gasification efficiency. Optimum efficiency was achieved with torrefied bagasse because of its slightly modified properties. Conversion efficiency of the gasification process of torrefied bagasse increased from 50% to approximately 60% after computer simulation, whereas that of untorrefied bagasse remained constant at 50%, even as the gasification time increased.

  3. Effect of diet orange soda on urinary lithogenicity.

    Science.gov (United States)

    Sumorok, Nicola T; Asplin, John R; Eisner, Brian H; Stoller, Marshall L; Goldfarb, David S

    2012-06-01

    Studies have shown that certain beverages decrease urinary lithogenicity by increasing urine citrate excretion. Diet Sunkist Orange soda had the highest concentration of citrate and total alkali content among 12 diet sodas previously assayed. We studied the effect of Diet Sunkist Orange soda consumption on urinary chemistry. Nine healthy men and women ages 26-54 years completed the study. During the control period, subjects drank 36 oz of water for 3 days in addition to their own, self-selected diet and recorded a food diary. During the study period, the subjects drank three 12-oz cans of Diet Sunkist Orange soda a day instead of water, and replicated their diets from the control period. In each period, the subjects performed 24-h urine collections on days 2 and 3. Urine chemical analysis was performed, including urinary citrate levels and pH. Diet Sunkist Orange soda increased urinary citrate excretion by 60 mg/day, which was not statistically significant (95% CI -75 to 195, P value 0.34). There was no significant change in pH from the control period to the study period (pH: 6.29-6.21; 95% CI: -0.09 to 0.25, P = 0.30). Urine volumes and creatinine excretions were not significantly different between the control and study periods. Despite the relatively high citrate and total alkali content of Diet Sunkist Orange soda, the volume consumed in this study (36 oz per day) did not provide sufficient potential base to significantly alter urine composition in healthy subjects with normocitraturia. The effect of Diet Sunkist Orange soda on urinary chemistry in patients with hypocitraturia and nephrolithiasis is not likely to have a clinically significant effect to prevent calcium or uric acid stones.

  4. Homogeneous Modification of Sugarcane Bagasse by Graft Copolymerization in Ionic Liquid for Oil Absorption Application

    Directory of Open Access Journals (Sweden)

    Ming-Jie Chen

    2016-01-01

    Full Text Available Sugarcane bagasse, lignocellulosic residue from the sugar industry, is an abundant and renewable bioresource on the earth. The application of ionic liquids in sugarcane bagasse biorefinery is gaining increasing interest. The homogeneous modification of sugarcane bagasse by free radical initiated graft copolymerization of acrylate monomers using 1-allyl-3-methylimidazolium chloride as solvent was performed. A variety of sugarcane bagasse graft copolymers with different weight percent gain were prepared via adjusting the monomer dosage. FT-IR studies confirmed the success in attaching the poly(acrylate side chains onto sugarcane bagasse. Oil absorbency studies suggested that the sugarcane bagasse graft copolymers were potential biobased materials for effective treatment of ester-based oils. SEM studies showed that the sugarcane bagasse graft copolymers displayed a dense morphology structure. Thermogravimetric analysis demonstrated that the thermal stability of sugarcane bagasse decreased after the homogeneous modification by the graft copolymerization. The present study provides an alternative strategy to convert sugarcane bagasse into a value-added functional biobased material.

  5. Lignin phenols derivatives in lichens.

    Science.gov (United States)

    Zavarzina, A G; Romankevich, E A; Peresypkin, V I; Ulyantzev, A S; Belyaev, N A; Zavarzin, A A

    2015-01-01

    Lignin monophenols have been measured in the cupric oxide oxidation products from lichens of different systematic groups. It is shown for the first time that syringyl structures in most lichens strongly dominate over vanillyl and p-hydroxyl ones (S/V 7-583, S/P 3-30). This distinguishes lichens from algae and mosses (p-hydroxyl phenols are dominant) and from higher plants (S/V ratios are from 0 in gymnosperms to 1.1-5.2 in angiosperms). Molecular ratios of phenols as well as the ratios of acids to aldehydes in lichens were different from lignin of higher plants, suggesting contribution of non-lignin phenols in CuO oxidation products. The contents of syringyl and vanillyl phenols in some lichen species were comparable to non-woody tissues of higher plants. Results of the study suggest that lichens can be important source of aromatic structures in soils and hydrosphere, particularly in the regions were lichens are abundant.

  6. Lignin-Retaining Transparent Wood.

    Science.gov (United States)

    Li, Yuanyuan; Fu, Qiliang; Rojas, Ramiro; Yan, Min; Lawoko, Martin; Berglund, Lars

    2017-09-11

    Optically transparent wood, combining optical and mechanical performance, is an emerging new material for light-transmitting structures in buildings with the aim of reducing energy consumption. One of the main obstacles for transparent wood fabrication is delignification, where around 30 wt % of wood tissue is removed to reduce light absorption and refractive index mismatch. This step is time consuming and not environmentally benign. Moreover, lignin removal weakens the wood structure, limiting the fabrication of large structures. A green and industrially feasible method has now been developed to prepare transparent wood. Up to 80 wt % of lignin is preserved, leading to a stronger wood template compared to the delignified alternative. After polymer infiltration, a high-lignin-content transparent wood with transmittance of 83 %, haze of 75 %, thermal conductivity of 0.23 W mK(-1) , and work-tofracture of 1.2 MJ m(-3) (a magnitude higher than glass) was obtained. This transparent wood preparation method is efficient and applicable to various wood species. The transparent wood obtained shows potential for application in energy-saving buildings. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  7. Lignin-Derived Advanced Carbon Materials.

    Science.gov (United States)

    Chatterjee, Sabornie; Saito, Tomonori

    2015-12-07

    Lignin is a highly abundant source of renewable carbon that can be considered as a valuable sustainable source of biobased materials. By applying specific pretreatments and manufacturing methods, lignin can be converted into a variety of value-added carbon materials. However, the physical and chemical heterogeneities of lignin complicate its use as a feedstock. Herein lignin manufacturing process, the effects of pretreatments and manufacturing methods on the properties of product lignin, and structure-property relationships in various applications of lignin-derived carbon materials, such as carbon fibers, carbon mats, activated carbons, carbon films, and templated carbon, are discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Soda consumption during ad libitum food intake predicts weight change.

    Science.gov (United States)

    Bundrick, Sarah C; Thearle, Marie S; Venti, Colleen A; Krakoff, Jonathan; Votruba, Susanne B

    2014-03-01

    Soda consumption may contribute to weight gain over time. Objective data were used to determine whether soda consumption predicts weight gain or changes in glucose regulation over time. Subjects without diabetes (128 men, 75 women; mean age 34.3±8.9 years; mean body mass index 32.5±7.4; mean percentage body fat 31.6%±8.6%) self-selected their food from an ad libitum vending machine system for 3 days. Mean daily energy intake was calculated from food weight. Energy consumed from soda was recorded as were food choices that were low in fat (30%). Food choices were expressed as percentage of daily energy intake. A subset of 85 subjects had measurement of follow-up weights and oral glucose tolerance (57 men, 28 women; mean follow-up time=2.5±2.1 years, range 6 months to 9.9 years). Energy consumed from soda was negatively related to age (r=-0.27, P=0.0001) and choosing low-fat foods (r=-0.35, Psoda correlated with change in weight (r=0.21, P=0.04). This relationship was unchanged after adjusting for follow-up time and initial weight. Soda consumption is a marker for excess energy consumption and is associated with weight gain.

  9. Optimization of Alkaline and Dilute Acid Pretreatment of Agave Bagasse by Response Surface Methodology

    Science.gov (United States)

    Ávila-Lara, Abimael I.; Camberos-Flores, Jesus N.; Mendoza-Pérez, Jorge A.; Messina-Fernández, Sarah R.; Saldaña-Duran, Claudia E.; Jimenez-Ruiz, Edgar I.; Sánchez-Herrera, Leticia M.; Pérez-Pimienta, Jose A.

    2015-01-01

    Utilization of lignocellulosic materials for the production of value-added chemicals or biofuels generally requires a pretreatment process to overcome the recalcitrance of the plant biomass for further enzymatic hydrolysis and fermentation stages. Two of the most employed pretreatment processes are the ones that used dilute acid (DA) and alkaline (AL) catalyst providing specific effects on the physicochemical structure of the biomass, such as high xylan and lignin removal for DA and AL, respectively. Another important effect that need to be studied is the use of a high solids pretreatment (≥15%) since offers many advantaged over lower solids loadings, including increased sugar and ethanol concentrations (in combination with a high solids saccharification), which will be reflected in lower capital costs; however, this data is currently limited. In this study, several variables, such as catalyst loading, retention time, and solids loading, were studied using response surface methodology (RSM) based on a factorial central composite design of DA and AL pretreatment on agave bagasse using a range of solids from 3 to 30% (w/w) to obtain optimal process conditions for each pretreatment. Subsequently enzymatic hydrolysis was performed using Novozymes Cellic CTec2 and HTec2 presented as total reducing sugar (TRS) yield. Pretreated biomass was characterized by wet-chemistry techniques and selected samples were analyzed by calorimetric techniques, and scanning electron/confocal fluorescent microscopy. RSM was also used to optimize the pretreatment conditions for maximum TRS yield. The optimum conditions were determined for AL pretreatment: 1.87% NaOH concentration, 50.3 min and 13.1% solids loading, whereas DA pretreatment: 2.1% acid concentration, 33.8 min and 8.5% solids loading. PMID:26442260

  10. Lignin peroxidase functionalities and prospective applications

    OpenAIRE

    Falade, Ayodeji O.; Nwodo, Uchechukwu U.; Iweriebor, Benson C.; Green, Ezekiel; Leonard V. Mabinya; Okoh, Anthony I.

    2016-01-01

    Abstract Ligninolytic extracellular enzymes, including lignin peroxidase, are topical owing to their high redox potential and prospective industrial applications. The prospective applications of lignin peroxidase span through sectors such as biorefinery, textile, energy, bioremediation, cosmetology, and dermatology industries. The litany of potentials attributed to lignin peroxidase is occasioned by its versatility in the degradation of xenobiotics and compounds with both phenolic and non‐phe...

  11. A method for exergy analysis of sugar cane bagasse boilers

    Energy Technology Data Exchange (ETDEWEB)

    Cortez, L.A.B.; Gomez, E.O. [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Agricola

    1998-03-01

    This work presents a method to conduct a thermodynamic analysis of sugarcane bagasse boilers. The method is based on the standard and actual reactions which allows the calculation of the enthalpies of each process subequation and the exergies of each of the main flowrates participating in the combustion. The method is presented using an example with real data from a sugarcane bagasse boiler. A summary of the results obtained is also presented together based on the 1 st Law of Thermodynamics analysis, the exergetic efficiencies, and the irreversibility rates. The method presented is very rigorous with respect to data consistency, particularly for the flue gas composition. (author) 11 refs., 1 fig., 6 tabs.; e-mail: cortez at agr.unicamp.br

  12. Recovering hydrocarbons with surfactants from lignin

    Energy Technology Data Exchange (ETDEWEB)

    Naae, D.G.; Whittington, L.E.; Ledoux, W.A.; Debons, F.E.

    1988-11-29

    This patent describes a method of recovering hydrocarbons from an underground hydrocarbon formation penetrated by at least one injection well and at least one production well, which comprises: injecting into the formation through an injection well a surfactant slug comprising about 0.1% to about 10% by weight of surfactants produced from lignin, the surfactants produced by placing lignin in contact with water, converting the lignin into low molecular weight lignin phenols by reducing the lignin in the presence of a reducing agent of carbon monoxide or hydrogen creating a reduction reaction mixture comprising oil soluble lignin phenols, the reduction occurring at a temperature greater than about 200/sup 0/C and a pressure greater than about 100 psi, recovering the oil soluble lignin phenols from the reduction mixture, and converting the lignin phenols into lignin surfactants by a reaction selected from the group consisting of alkoxylation, sulfonation, sulfation, aklylation, sulfomethylation, and alkoxysulfation; injecting into the formation through the injection well a drive fluid to push the surfactant slug towards a production well; and recovering hydrocarbons at the production well.

  13. Transcriptome analysis of Aspergillus niger grown on sugarcane bagasse

    Directory of Open Access Journals (Sweden)

    Goldman Gustavo H

    2011-10-01

    Full Text Available Abstract Background Considering that the costs of cellulases and hemicellulases contribute substantially to the price of bioethanol, new studies aimed at understanding and improving cellulase efficiency and productivity are of paramount importance. Aspergillus niger has been shown to produce a wide spectrum of polysaccharide hydrolytic enzymes. To understand how to improve enzymatic cocktails that can hydrolyze pretreated sugarcane bagasse, we used a genomics approach to investigate which genes and pathways are transcriptionally modulated during growth of A. niger on steam-exploded sugarcane bagasse (SEB. Results Herein we report the main cellulase- and hemicellulase-encoding genes with increased expression during growth on SEB. We also sought to determine whether the mRNA accumulation of several SEB-induced genes encoding putative transporters is induced by xylose and dependent on glucose. We identified 18 (58% of A. niger predicted cellulases and 21 (58% of A. niger predicted hemicellulases cellulase- and hemicellulase-encoding genes, respectively, that were highly expressed during growth on SEB. Conclusions Degradation of sugarcane bagasse requires production of many different enzymes which are regulated by the type and complexity of the available substrate. Our presently reported work opens new possibilities for understanding sugarcane biomass saccharification by A. niger hydrolases and for the construction of more efficient enzymatic cocktails for second-generation bioethanol.

  14. Total condensable effluents yield in slow pyrolysis of bagasse briquettes

    Energy Technology Data Exchange (ETDEWEB)

    Brossard, L.E.; Penedo, M. [Universidade de Oriente, Dept. of Chemical Engineering, Santiago de Cuba (Cuba); Cortez, L.A.B.; Bezzon, G.; Olivares, E. [University of Campinas (UNICAMP), Interdisciplinary Energy Planning Center (NIPE), Campinas, SP (Brazil)

    2000-07-01

    A full 2{sup 3} experimental factorial design approach was applied to obtain a mathematical model relating the total condensable effluents in slow pyrolysis of bagasse briquettes to three independent variables. These were apparent density of pressed bagasse briquettes (231 and 371 kg/m{sup 3}), highest pyrolysis temperature (400 and 450degC) and residence time at highest pyrolysis temperature (0 and 30 min). Detailed data processing to obtain a model as well as the model's statistical evaluation are shown. The conclusions are that the studied response depends on all three factors, although it is believed that the particular conditions of the pyrolysis installation used could be the cause of the significant result found for the residence time variable. It is inferred that measurable amounts of very low boiling organic compounds are present in the bagasse's liquid effluents. These volatile substances should require effluents' cooling devices working at temperatures well below 0degC. (Author)

  15. Caffeine content of energy drinks, carbonated sodas, and other beverages.

    Science.gov (United States)

    McCusker, Rachel R; Goldberger, Bruce A; Cone, Edward J

    2006-03-01

    The caffeine content of 10 energy drinks, 19 carbonated sodas, and 7 other beverages was determined. In addition, the variability of the caffeine content of Coca-Cola fountain soda was evaluated. Caffeine was isolated from the samples by liquid-liquid extraction and analyzed by gas chromatography with nitrogen-phosphorus detection. The caffeine concentration of the caffeinated energy drinks ranged from none detected to 141.1 mg/serving. The caffeine content of the carbonated sodas ranged from none detected to 48.2 mg/serving, and the content of the other beverages ranged from < 2.7 to 105.7 mg/serving. The intra-assay mean, standard deviation, and % coefficient of variation for the Coca-Cola fountain samples were 44.5, 2.95, and 6.64 mg/serving, respectively.

  16. The Beatability of Wheat Straw Soda and Monoethanolamine Pulps

    Directory of Open Access Journals (Sweden)

    mohammad ahmadi

    2016-09-01

    Full Text Available In this study the beatability of soda and monoethanolamine pulps was compared. The refining of pulps was done in pilot scale Voith refiner Model LR 40. The results show that the maximum tensile and burst indices of monothanolamine pulp are reached with consumption of 70 kWh energy in pilot scale Voith refiner and the increasing of energy more than this level has the adverse effect on these indices. In the case of soda pulp increasing the energy up to 500 kWh has the linear relationship with tensile and burst indices. In comparison to monoethanolamine pulp, the refining of soda pulp is more difficult and needs more energy. Using monoethanolamine pulp resulted in saving of energy by 70-80 % to reach the optimum strength indices.

  17. Valorization of Lignin to Simple Phenolic Compounds over Tungsten Carbide: Impact of Lignin Structure.

    Science.gov (United States)

    Guo, Haiwei; Zhang, Bo; Qi, Zaojuan; Li, Changzhi; Ji, Jianwei; Dai, Tao; Wang, Aiqin; Zhang, Tao

    2017-02-08

    Lignins isolated from representative hardwood, softwood, and grass materials were effectively hydrocracked to aromatics catalyzed by tungsten carbide over activated carbon (W2 C/AC). The effects of botanical species and fractionation methods on lignin structure and the activity of W2 C/AC were studied in detail. Gas permeation chromatography (GPC), FTIR, elemental analysis, and 2 D HSQC NMR showed that all the extracted samples shared the basic skeleton of lignin, whereas the fractionation method significantly affected the structure. The organosolv process provided lignin with a structure more similar to the native lignin, which was labile to be depolymerized by W2 C/AC. Softwood lignins (i.e., spruce and pine) possessed higher molecular weights than hardwood lignins (i.e., poplar and basswood); whereas corn stalk lignin that has noncanonical subunits and exhibited the lowest molecular weight owing to its shorter growth period. β-O-4 bonds were the major linkages in all lignin samples, whereas softwood lignins contained more resistant linkages of β-5 and less β-β than corn stalk and hardwood lignins; as a result, lowest hydrocracking efficiency was obtained in softwood lignins, followed by corn stalk and hardwood lignins. 2 D HSQC NMR spectra of lignin and the liquid oil as well as the solid residue showed that W2 C/AC exhibited high activity not only in β-O-4 cleavage, but also in deconstruction of other ether linkages between aromatic units, so that high yield of liquid oil was obtained from lignin. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Optimizing the acid hydrolysis process of bagasse nanocrystalline cellulose via the surface response method%甘蔗渣纳晶纤维素酸法制备工艺的响应面法优化

    Institute of Scientific and Technical Information of China (English)

    李春光; 彭伟功; 许可; 王香平; 田魏

    2012-01-01

    In this paper, we would like to introduce a new approach to optimizing the acid hydrolysis process of bagasse nanocrystalline cellulose via the surface response method. As is known, nanocrystalline cellulose enjoys a lot of marvelous behaviors, which make it widely used in the field of food processing, papermaking, environmental protection and renewable medical materials, and so on. However , due to the high cost of nanoerystalline cellulose preparation, its application in industrial fields remains severely restricted. As a major byproduct of the sugar industry, bagasse contains a lot of cellulose, lignin, hemicellulose and other natural polymer substances. If the cellulose of bagasse can be successfully extracted with nanocrystalline cellulose, huge economic and environmental benefits will be brought about to enrich our life and industrial production. It is for this urgent need that we have made great endeavors to explore potential for utilizing bagasse nanocrystalline cellulose and improve on the processing conditions for its future development. Based on the Box-Behnken design, we have studied and chosen sulfuric acid mass fraction, hy-drolytic temperature and hydrolytic time as the three key factors at the five levels. Furthermore, we have optimized the process conditions of bagasse nanocrystalline cellulose by using acid hydrolysis and response surface methodology, and worked out a mathematical model of a second order quadratic equation for the yield of nanocrystalline cellulose . The regression coefficient and variance analysis prove that the regression model is fit for the relationship of bagasse nanocrystalline cellulose yield and sulfuric acid mass fraction, the hydrolytic temperature and hydrolytic time. And, finally, we have managed to optimize the following technological parameters: the maintenance sulfuric acid mass fraction (56% ), the hydrolytic time (180 min) , the hydrolytic temperature (38 ℃ ) , the yield of bagasse nanocrystalline cellulose that

  19. Glass-Forming Ability of Soda Lime Borate Liquids

    DEFF Research Database (Denmark)

    Zheng, Qiuju; Mauro, J.C.; Smedskjær, Morten Mattrup

    2012-01-01

    We investigate the composition dependence of glass-forming ability (GFA) of a series of iron-containing soda lime borate liquids by substituting Na2O for B2O3. We have characterized GFA by measuring the glass stability against crystallization using a differential scanning calorimeter (DSC......). The results show that the GFA decreases when substituting Na2O for B2O3. Moreover, we find that there is no direct link between the kinetic fragility and GFA for the soda lime borate series studied herein. We have also discovered and clarified a striking thermal history dependence of the glass stability...

  20. Lignina em espumas fenólicas Lignin in phenolic foams 66

    Directory of Open Access Journals (Sweden)

    Gil de Carvalho

    1999-01-01

    Full Text Available A lignina extraída do bagaço de cana de açúcar pode substituir parcialmente o fenol na preparação de resinas fenólicas. Este trabalho aborda a aplicação de pré-polímero resólico, sendo que o fenol foi parcialmente substituído por lignina (25%, massa lignina/massa fenol , visando a obtenção de material com características de plástico celular. No presente trabalho descreve-se a caracterização das espumas obtidas por microscopia eletrônica de varredura, conteúdo de células fechadas, densidade aparente, resistência à compressão e dureza. A espuma lignina-fenol-formaldeído apresentou propriedades mecânicas consideravelmente superiores àquelas da espuma fenólica convencional, caracterizando-se como uma espuma estrutural, com características de isolante térmico.Lignin can be recovered from sugar cane bagasse, which is largely available in Brazil, as a residue from sugar mills. This work presents a new application for lignin-phenol formaldehyde polymers in cellular materials. The foams obtained were characterized by scanning electron microscopy, open cell content, apparent density, compressive strength, hardness. The lignin-phenol-formaldehyde foam presents a thermal insulating characteristics combined with remarkable mechanical properties, which allows its application as structural-thermal insulation foam

  1. Effects of forming processing conditions on the flexural properties of bagasse and bamboo plastic composites

    Directory of Open Access Journals (Sweden)

    Shinichi Shibata

    2012-11-01

    Full Text Available The effects of processing conditions such as pressure, temperature, and holding time on the flexural properties of bagasse and bamboo biodegradable composites were investigated. Each sample of bagasse or bamboo was mixed with a corn-starch-based biodegradable resin and fabricated by a hot press forming method. The cross-sectional structure of the bagasse fiber was found to be porous and compressible, while that of bamboo was found to be more solid. The relationship between flexural strength, flexural modulus, and pressure in bagasse fiber was apparently different from that of bamboo due to the differences in the cross-sectional structure. In bagasse, the flexural strength and flexural modulus increased with the increase in pressure, whereas in bamboo those properties decreased. In bagasse, an increase in pressure made the fibers into a more compressed structure, increasing their flexural properties. In rigid bamboo, an increase in pressure caused the resin to extrude between fibers, and this resulted in lower flexural properties. At temperatures above 170 oC, the resin depolymerized thermally and the degree of polymerization decreased. Thus, the flexural modulus and strength decreased gradually with increase in holding temperature in both bagasse and bamboo composites. Furthermore, a maximum fiber volume fraction existed for both bagasse and bamboo plastic composites in the approximate range of 75% to 80%.

  2. Life cycle inventory of electricity cogeneration from bagasse in the South African sugar industry

    CSIR Research Space (South Africa)

    Mashoko, L

    2013-01-01

    Full Text Available crushed per year. Renewable energy sources like bagasse are generally regarded as cleaner energy sources as opposed to coal-derived energy. However, the environmental benefits of power production from bagasse must be verified using a systematic scientific...

  3. Production of fuel by pyrolysis of the bagasse of grapes: yield and high thermal power

    Energy Technology Data Exchange (ETDEWEB)

    Foussard, J.N.; Talayrach, B.; Besombes Vailhe, J.

    1979-01-01

    A liquid fuel of high calorific value was obtained by the pyrolysis of grape bagasse, with the pyrolysis temperature being the factor determining the product composition. Grape bagasse is produced in distilleries and is thus a practical and readily available material.

  4. Utilization of Chinese tallow tree and bagasse for medium density fiberboard

    Science.gov (United States)

    Sangyeob Lee; Todd F. Shupe; Chung Y. Hse

    2004-01-01

    The objective of this research was to investigate various adhesive systems and determine the best composite formulation for selected mechanical and physical properties of medium density fiberboard (MDF) made from wood and bagasse fibers. This study investigated opportunities ofbiomass utilization for natural fiber-based composites from agricultural (bagasse) and...

  5. 40 CFR 430.20 - Applicability; description of the bleached papergrade kraft and soda subcategory.

    Science.gov (United States)

    2010-07-01

    ... bleached papergrade kraft and soda subcategory. 430.20 Section 430.20 Protection of Environment... POINT SOURCE CATEGORY Bleached Papergrade Kraft and Soda Subcategory § 430.20 Applicability; description of the bleached papergrade kraft and soda subcategory. The provisions of this subpart apply...

  6. Soda consumption and risk of hip fractures in postmenopausal women in the Nurses’ Health Study1234

    OpenAIRE

    2014-01-01

    Background: The frequency of soda consumption remains high in the United States. Soda consumption has been associated with poor bone health in children, but few studies have examined this relation in adults, and to our knowledge, no study has examined the relation of soda consumption with risk of hip fractures.

  7. Performance characterization of rigid polyurethane foam with refined alkali lignin and modified alkali lignin

    Institute of Scientific and Technical Information of China (English)

    LIU Zhi-ming; YU Fei; FANG Gui-zhen; YANG Hui-jun

    2009-01-01

    The two kinds of rigid polyurethane (PU) foams were prepared with respectively adding the refined alkali lignin and alkali lignin modified by 3-chloro-1,2-epoxypropane to be instead of 15% of the polyether glycol in weight. The indexes of mechanical performance, apparent density, thermal stability and aging resistance were separately tested for the prepared PU foams. The results show that the mechanical property, thermal insulation and thermal stability for PU foam with modified alkali lignin are excellent among two kinds of PU foams and control samples. The additions of the refined alkali lignin and modified alkali lignin to PU foam have little effect on the natural aging or heat aging resistance except for decreasing hot alkali resistance apparently. Additionally, the thermal conductivity of modified alkali lignin PU foam is lowest among two kinds of PU foams and control samples. The alkali lignin PU foam modified by 3-chloro-1,2-epoxypropane could be applied in the heat preservation field.

  8. Bacterial enzymes involved in lignin degradation

    NARCIS (Netherlands)

    de Gonzalo, Gonzalo; Colpa, Dana I; Habib, Mohamed H M; Fraaije, Marco W

    2016-01-01

    Lignin forms a large part of plant biomass. It is a highly heterogeneous polymer of 4-hydroxyphenylpropanoid units and is embedded within polysaccharide polymers forming lignocellulose. Lignin provides strength and rigidity to plants and is rather resilient towards degradation. To improve the (bio)p

  9. Effects of lignin on nitrification in soil

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The effects of two lignins isolated from black liquor from pulping process on nitrification in soils after addition of urea, (NH4)2SO4 and (NH4)2HPO4 were investigated by incubation at 20 or 30℃ for 7 or 14d. The effects of lignin on nitrous oxide emissions from soil were also determined. Results showed that both lignins were more effective for inhibiting nitrification of NH4+-N as (NH4)2SO4 or (NH4)2HPO4 as compared to urea-N. The effectiveness of lignin on nitrification was markedly affected by different soil type and temperature. Nitrous oxide emissions from soil declined when lignin was used. Urea plus 20 and 50 g/kg lignin reduced N2O emissions by about 83% and 96%, respectively, while (NH4)2HPO4 plus 20 and 50 g/kg lignin respectively reduced emissions by 83% and 93%. Because of its low cost and nonhazardous characteristics, lignin has potential value as a fertilizer amendment to improve N fertilizer efficiency.

  10. Structural elucidation of inhomogeneous lignins from bamboo.

    Science.gov (United States)

    Wen, Jia-Long; Sun, Shao-Long; Xue, Bai-Liang; Sun, Run-Cang

    2015-01-01

    A better understanding of the inhomogeneous molecular structure of lignin from bamboo is a prerequisite for promoting the "biorefinery" technologies of the bamboo feedstock. A mild and successive method for fractionating native lignin from bamboo species was proposed in the present study. The molecular structure and structural inhomogeneity of the isolated lignin polymers were comprehensively investigated by elemental analysis, carbohydrate analysis, state-of-the-art NMR and analytical pyrolysis techniques (quantitative (13)C NMR, (13)C-DEPT 135 NMR, 2D-HSQC NMR, (31)P NMR, and pyrolysis-GC-MS). The results showed that the proposed method is effective for extracting lignin from bamboo. NMR results showed that syringyl (S) was the predominant unit in bamboo lignin over guaiacyl (G) and p-hydroxyphenyl (H) units. In addition, the lignin was associated with p-coumarates and ferulates via ester and ether bonds, respectively. Moreover, various substructures, such as β-O-4, β-β, β-5, β-1, and α,β-diaryl ether linkages, were identified and quantified by NMR techniques. Based on the results obtained, a proposed schematic diagram of structural heterogeneity of the lignin polymers extracted from the bamboo is presented. In short, well-defined inhomogeneous structures of native lignin from bamboo will facilitate further applications of bamboo in current biorefineries.

  11. Fabrication of Environmentally Biodegradable Lignin Nanoparticles

    NARCIS (Netherlands)

    Frangville, C.; Rutkevicius, M.; Richter, A.P.; Velev, O.D.; Stoyanov, S.D.; Paunov, V.N.

    2012-01-01

    We developed a method for the fabrication of novel biodegradable nanoparticles (NPs) from lignin which are apparently non-toxic for microalgae and yeast. We compare two alternative methods for the synthesis of lignin NPs which result in particles of very different stability upon change of pH. The fi

  12. Can laccases catalyze bond cleavage in lignin?

    DEFF Research Database (Denmark)

    Munk, Line; Sitarz, Anna Katarzyna; Kalyani, Dayanand

    2015-01-01

    Modification of lignin is recognized as an important aspect of the successful refining of lignocellulosic biomass, and enzyme-assisted processing and upcycling of lignin is receiving significant attention in the literature. Laccases (EC 1.103.2) are taking the centerstage of this attention, since...... is proposed. (C) 2015 Elsevier Inc. All rights reserved....

  13. Bacterial enzymes involved in lignin degradation

    NARCIS (Netherlands)

    de Gonzalo, Gonzalo; Colpa, Dana I; Habib, Mohamed H M; Fraaije, Marco W

    2016-01-01

    Lignin forms a large part of plant biomass. It is a highly heterogeneous polymer of 4-hydroxyphenylpropanoid units and is embedded within polysaccharide polymers forming lignocellulose. Lignin provides strength and rigidity to plants and is rather resilient towards degradation. To improve the

  14. Comparison of Microwave and Ozonolysis Effect as Pretreatment on Sugarcane Bagasse Enzymatic Hydrolysis

    Directory of Open Access Journals (Sweden)

    N Eqra

    2015-03-01

    Full Text Available Bioethanol production from agricultural residues is one of the promising methods. Pretreatment is the most important step in this type of bioethanol production. In this study, the saccharification percentage of sugarcane bagasse was investigated after two types of pretreatments including ozone steaming and microwave. Microwave pretreatment was studied with two factors of microwave radiation (170, 450, and 850 w and microwave duration (2, 6, and 10 min. The ozonolysis (ozone steaming pretreatment was surveyed with two factors of moisture content of bagasse (30, 40, and 50% and ozonolysis time (1.5, 2.5, 3.5, and 4.5 hr. After hydrolysis, the Saccharification percentage of sugarcane bagasse increased to 57.2% and 67.06% with microwave and ozonolysis pretreatments, respectively; compare to 20.85% in non-ozonated bagasse. It can be concluded that the ozonolysis is the most effective pretreatment regarding to saccharification percentage of sugarcane bagasse.

  15. THE SHEAR-THINNING PHENOMENON OF BAGASSE KRAFT BLACK LIQUOR FLUID

    Institute of Scientific and Technical Information of China (English)

    RendangYang; KefuChen; JunXu; HengZhang; QifengChen; JinWang

    2004-01-01

    The flow curvesshear-rate rangeby using theof bagasse Kraft black liquor over aof 10-1 s- 1-103s- 1 were investigatedRheometric RFSII rheometerExperimental results show that Bagasse black liquorsare non-Newtonian fluids instead of Newtonian fluidsat higher solids contents, and the viscosities of blackliquor would decrease about 2-3 orders of magnitudewith an increase in the shear rates. The apparentviscosity and flow behavior of bagasse black liquorare also affected by its solids content, and the highersolids content the more shear-thinning bagasse blackliquor fluid is. In addition, the power-law equationwas utilized to fit these flow curves at differentconditions. Finally, the significances ofshear-thinning properties of bagasse black liquor inthe chemical recovery system, such as frictioncalculation of pipe and design optimization of thewhole recovery system, were presented.

  16. Bioconversion of industrial solid waste--cassava bagasse for pullulan production in solid state fermentation.

    Science.gov (United States)

    Sugumaran, K R; Jothi, P; Ponnusami, V

    2014-01-01

    The purpose of the work was to produce commercially important pullulan using industrial solid waste namely cassava bagasse in solid state fermentation and minimize the solid waste disposal problem. First, influence of initial pH on cell morphology and pullulan yield was studied. Effect of various factors like fermentation time, moisture ratio, nitrogen sources and particle size on pullulan yield was investigated. Various supplementary carbon sources (3%, w/w) namely glucose, sucrose, fructose, maltose, mannose and xylose with cassava bagasse was also studied to improve the pullulan yield. After screening the suitable supplement, effect of supplement concentration on pullulan production was investigated. The pullulan from cassava bagasse was characterized by FTIR, (1)H-NMR and (13)C-NMR. Molecular weight of pullulan from cassava bagasse was determined by gel permeation chromatography. Thus, cassava bagasse emerged to be a cheap and novel substrate for pullulan production.

  17. Enhanced enzymatic hydrolysis and acetone-butanol-ethanol fermentation of sugarcane bagasse by combined diluted acid with oxidate ammonolysis pretreatment.

    Science.gov (United States)

    Li, Hailong; Xiong, Lian; Chen, Xuefang; Wang, Can; Qi, Gaoxiang; Huang, Chao; Luo, Mutan; Chen, Xinde

    2017-03-01

    This study aims to propose a biorefinery pretreatment technology for the bioconversion of sugarcane bagasse (SB) into biofuels and N-fertilizers. Performance of diluted acid (DA), aqueous ammonia (AA), oxidate ammonolysis (OA) and the combined DA with AA or OA were compared in SB pretreatment by enzymatic hydrolysis, structural characterization and acetone-butanol-ethanol (ABE) fermentation. Results indicated that DA-OA pretreatment improves the digestibility of SB by sufficiently hydrolyzing hemicellulose into fermentable monosaccharides and oxidating lignin into soluble N-fertilizer with high nitrogen content (11.25%) and low C/N ratio (3.39). The enzymatic hydrolysates from DA-OA pretreated SB mainly composed of glucose was more suitable for the production of ABE solvents than the enzymatic hydrolysates from OA pretreated SB containing high ratio of xylose. The fermentation of enzymatic hydrolysates from DA-OA pretreated SB produced 12.12g/L ABE in 120h. These results suggested that SB could be utilized efficient, economic, and environmental by DA-OA pretreatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Simultaneous production of cellulase and reducing sugar through modification of compositional and structural characteristic of sugarcane bagasse.

    Science.gov (United States)

    Yoon, Li Wan; Ngoh, Gek Cheng; Chua, Adeline Seak May

    2013-09-10

    This study examined the potential of untreated and alkali-pretreated sugarcane bagasse (SCB) in cellulase, reducing sugar (RS) and fungal biomass production via solid state fermentation (SSF) using Pycnoporus sanguineus. The impact of the composition, structure and cellulase adsorption ability of SCB on the production of cellulase, RS and fungal biomass was investigated. From the morphological and compositional analyses, untreated SCB has relatively more structural changes with a higher percentage of depolymerisation on the cellulose, hemicellulose and lignin content compared to alkali-pretreated SCB. Thus, untreated SCB favoured the production of cellulase and fungal biomass whereas alkali-pretreated SCB yielded a higher amount of RS. The composition and morphology of untreated SCB did not encourage RS production and this suggested that RS produced during SSF might be consumed in a faster rate by the more abundantly grown fungus. Besides that, alkali-pretreated SCB with higher cellulase adsorption ability could have adsorbed the cellulase produced and resulted in a lower cellulase titre. In short, the production of specific bioproducts via SSF is dependent on the structure and composition of the substrate applied.

  19. Efficient chemical and enzymatic saccharification of the lignocellulosic residue from Agave tequilana bagasse to produce ethanol by Pichia caribbica.

    Science.gov (United States)

    Saucedo-Luna, Jaime; Castro-Montoya, Agustin Jaime; Martinez-Pacheco, Mauro Manuel; Sosa-Aguirre, Carlos Ruben; Campos-Garcia, Jesus

    2011-06-01

    Bagasse of Agave tequilana (BAT) is the residual lignocellulosic waste that remains from tequila production. In this study we characterized the chemical composition of BAT, which was further saccharified and fermented to produce ethanol. BAT was constituted by cellulose (42%), hemicellulose (20%), lignin (15%), and other (23%). Saccharification of BAT was carried out at 147 °C with 2% sulfuric acid for 15 min, yielding 25.8 g/l of fermentable sugars, corresponding to 36.1% of saccharificable material (cellulose and hemicellulose contents, w/w). The remaining lignocellulosic material was further hydrolyzed by commercial enzymes, ~8.2% of BAT load was incubated for 72 h at 40 °C rendering 41 g/l of fermentable sugars corresponding to 73.6% of the saccharificable material (w/w). Mathematic surface response analysis of the acid and enzymatic BAT hydrolysis was used for process optimization. The results showed a satisfactory correlation (R (2) = 0.90) between the obtained and predicted responses. The native yeast Pichia caribbica UM-5 was used to ferment sugar liquors from both acid and enzymatic hydrolysis to ethanol yielding 50 and 87%, respectively. The final optimized process generated 8.99 g ethanol/50 g of BAT, corresponding to an overall 56.75% of theoretical ethanol (w/w). Thus, BAT may be employed as a lignocellulosic raw material for bioethanol production and can contribute to BAT residue elimination from environment.

  20. Biodegradation of lignin by Agaricus Bisporus

    Energy Technology Data Exchange (ETDEWEB)

    Vane, C.H.; Abbott, G.D.; Head, I.M. [Univ. of Newcastle upon Tyne (United Kingdom)

    1996-12-31

    The lignolytic activity of Agaricus bisporus will be addressed in this paper. Sound and fungally degraded lignins were characterized by Pyrolysis-Gas Chromatography-Mass Spectrometry (Py-GC-MS), Fourier Transform Infrared Spectroscopy (FnR) and elemental analysis. Fungally degraded lignins displayed increased wt%N, wt%H and wt%O content and decreased wt%C content The FTIR spectrum of decayed lignin showed an increase in the relative intensity of absorption bands assigned to carbonyl and carboxyl functional groups located on the aliphatic side chain and a decrease in absorption bands assigned to aromatic skeletal vibration modes. Semiquantitative Py-GC-MS revealed an 82% decrease in lignin derived pyrolysis products upon biodegradation. No significant increase in pyrolysis products with an oxygenated aliphatic side chain were detected in the fungally degraded lignin however shortening of the aliphatic side chain via cleavage at the {alpha}, {beta} and {gamma} positions was observed.

  1. Lignin biomass conversion into chemicals and fuels

    DEFF Research Database (Denmark)

    Melián Rodríguez, Mayra

    % of the weight and 40% of the energy content of lignocellulosic biomass. While designated applications for cellulose already exist in form of the current pulp and paper production as well as its prospective hydrolysis and fermentation into biofuels (mainly bioethanol), sustainable ways to valorize the lignin...... fraction of wood are yet to be established, due to its poor solubility and complex heterogeneous structure. This constitutes a major drawback in the economic viability of a biorefinery, where complete valorization of lignocellulosic biomass is necessary. For this reason, and due to its potential...... as a valuable feedstock for the production of organic chemicals, lignin valorization has become an important issue to solve. For a better understanding and analysis of the catalytic performance of lignin, it is common to use lignin model compounds, which contain the most significant linkages present in lignin...

  2. Opportunities and challenges in biological lignin valorization.

    Science.gov (United States)

    Beckham, Gregg T; Johnson, Christopher W; Karp, Eric M; Salvachúa, Davinia; Vardon, Derek R

    2016-12-01

    Lignin is a primary component of lignocellulosic biomass that is an underutilized feedstock in the growing biofuels industry. Despite the fact that lignin depolymerization has long been studied, the intrinsic heterogeneity of lignin typically leads to heterogeneous streams of aromatic compounds, which in turn present significant technical challenges when attempting to produce lignin-derived chemicals where purity is often a concern. In Nature, microorganisms often encounter this same problem during biomass turnover wherein powerful oxidative enzymes produce heterogeneous slates of aromatics compounds. Some microbes have evolved metabolic pathways to convert these aromatic species via 'upper pathways' into central intermediates, which can then be funneled through 'lower pathways' into central carbon metabolism in a process we dubbed 'biological funneling'. This funneling approach offers a direct, biological solution to overcome heterogeneity problems in lignin valorization for the modern biorefinery. Coupled to targeted separations and downstream chemical catalysis, this concept offers the ability to produce a wide range of molecules from lignin. This perspective describes research opportunities and challenges ahead for this new field of research, which holds significant promise towards a biorefinery concept wherein polysaccharides and lignin are treated as equally valuable feedstocks. In particular, we discuss tailoring the lignin substrate for microbial utilization, host selection for biological funneling, ligninolytic enzyme-microbe synergy, metabolic engineering, expanding substrate specificity for biological funneling, and process integration, each of which presents key challenges. Ultimately, for biological solutions to lignin valorization to be viable, multiple questions in each of these areas will need to be addressed, making biological lignin valorization a multidisciplinary, co-design problem.

  3. Opportunities and challenges in biological lignin valorization

    Energy Technology Data Exchange (ETDEWEB)

    Beckham, Gregg T.; Johnson, Christopher W.; Karp, Eric M.; Salvachúa, Davinia; Vardon, Derek R.

    2016-12-01

    Lignin is a primary component of lignocellulosic biomass that is an underutilized feedstock in the growing biofuels industry. Despite the fact that lignin depolymerization has long been studied, the intrinsic heterogeneity of lignin typically leads to heterogeneous streams of aromatic compounds, which in turn present significant technical challenges when attempting to produce lignin-derived chemicals where purity is often a concern. In Nature, microorganisms often encounter this same problem during biomass turnover wherein powerful oxidative enzymes produce heterogeneous slates of aromatics compounds. Some microbes have evolved metabolic pathways to convert these aromatic species via ‘upper pathways’ into central intermediates, which can then be funneled through ‘lower pathways’ into central carbon metabolism in a process we dubbed ‘biological funneling’. This funneling approach offers a direct, biological solution to overcome heterogeneity problems in lignin valorization for the modern biorefinery. Coupled to targeted separations and downstream chemical catalysis, this concept offers the ability to produce a wide range of molecules from lignin. This perspective describes research opportunities and challenges ahead for this new field of research, which holds significant promise towards a biorefinery concept wherein polysaccharides and lignin are treated as equally valuable feedstocks. In particular, we discuss tailoring the lignin substrate for microbial utilization, host selection for biological funneling, ligninolytic enzyme–microbe synergy, metabolic engineering, expanding substrate specificity for biological funneling, and process integration, each of which presents key challenges. Ultimately, for biological solutions to lignin valorization to be viable, multiple questions in each of these areas will need to be addressed, making biological lignin valorization a multidisciplinary, co-design problem.

  4. Successful biological control of tropical soda apple in Florida

    Science.gov (United States)

    Tropical soda apple, Solanum viarum, is a small shrub native to tropical regions of Brazil, Paraguay, and Argentina. This weed was first found in Florida in 1988. In May 2003, a leaf feeding beetle, Gratiana boliviana, from South America was released in Florida as a biological control agent of tro...

  5. Using Soda Cans to Teach Physical Science Students about Density

    Science.gov (United States)

    Sanger, Michael J.; Humphreys, Teari C.; LaPorte, Mark M.

    2009-01-01

    In this experiment, physical science students measured the mass of several soda cans, measured the mass and volume of water displaced when these cans were placed in water, and determined whether these cans sank or floated in water. Then, the students plotted graphs of the mass of displaced water versus the volume of displaced water, the mass of…

  6. Studies on Fast Remediation of Soda Meadow Alkaline Soil

    Institute of Scientific and Technical Information of China (English)

    ZHOU Lianren; SUN Yankun; LI Dawei

    2010-01-01

    Researches on models of remediation quickly in soda meadow alkaline soil, and dynamic variation of water-salt in saline soil of Zhaozhou County were studied systematically from 2001 to 2006. Realize the vegetation cover of those years through the artificial planting, mixed seeding lymc grass (Elymus dahuricus Turcz) and melilot in the mode of rotary tillage and deep loosening in lower and medium saline soils. The results showed that there was remarkable relationship between net evaporation (difference of precipitation and evaporation) and total salt content in the soil. The net evaporation could be used as a new method to forecast the dynamics variation of salt to ensure the pasture optimum sowing time. Realize the autumnal vegetation cover of those years through direct planting on the bourgeon layer of soda meadow alkaline soil, on the other hand, the covered pasture made the function of restraining salt and alkaline content to realize the biology reverse succession quickly. Forage seeds were seeded directly on the seeding bed of soda alkaline meadow at the end of July. In fall of the same year, a certain amount of biomass was obtained. The model, which has remarkable economical efficiency and use widely, represented the innovative model for the fast vegetation restoration on the soda alkaline meadow soil.

  7. Cream Soda. The rhythm of everyday life

    Directory of Open Access Journals (Sweden)

    Eleonora Benecchi

    2011-03-01

    Full Text Available In this work I will focus my attention on a specific manga, Cream Soda by Adachi Mitsuru (1996. As suggested by Eco (1999, I will analyze this single work keeping in mind that it belongs to a medium and some genre practiced through this medium, but focusing my attention on the specific syntax of the speech of Adachi. This means that in this work I won’t talk about manga in general or in itself, at least, not in the foreground and in the first instance, but I will consider Adachi’s specific execution of the art of manga. This work will start from the analysis of single panels, and their relationship with each other inside the page layout, following the critical path indicated by Thierry Groensteen (1999, and will be then accompanied by the analysis of images and texts contained inside those panels, with special regard to their relationship with each other and with images and texts contained in other panels, following the lead of Barbieri (1995 and Pellitteri (1998.

    The analysis of the elements that this text brings together to create a coherent narrative, and those elements it will not, will show that to properly understand Adachi’s manga the reader must recognize the fictional nature of what he is reading and his function as co-author of the story. Obviously this reflection is based on a first level or narrative interpretation of the text because it is starting from this basic layer that all the other layers can be explored. This is also the reason why this work provides a punctual examination of the single panels.

    The analysis here proposed will also demonstrate that, despite many panels open up to different levels of readings, the activation of the second or third level of reading is not a given. It will also become evident, though, that if one stops at a first level reading, the most obvious one, the text in question isn’t really fulfilled according to its author’s expectations: the reader’s high engagement

  8. CHEMICAL AND THERMAL CHARACTERIZATION OF THREE INDUSTRIAL LIGNINS AND THEIR CORRESPONDING LIGNIN ESTERS

    Directory of Open Access Journals (Sweden)

    Stephen Carter Fox

    2010-04-01

    Full Text Available Corn stover and rice straw lignin samples received from ethanol pilot plants, along with softwood kraft lignin samples, were characterized using pyrolysis GC-MS, 13C CP/MAS NMR spectroscopy, and permanganate oxidation degradation. The lignins were then esterified using 1-methylimidazole as a catalyst in a pyridine-free reaction, and the thermal properties of the products were evaluated. Solid state NMR showed the rice straw lignin contained 18% residual polysaccharides. Pyrolysis GC-MS showed the softwood kraft, corn stover, and rice straw lignins to be G – type, H/G/S – type, and G/S – type, respectively. However, some discrepancy was apparent between the pyrolysis and permanganate oxidation studies as to the ratios of the monomeric make-up of the lignins. The kraft and rice straw lignins were determined to have high degrees of condensation, while the corn stover lignin was uncondensed. Little to no increase in solubility was noticed for corn stover or rice straw lignin esters in organic solvents. Glass transition temperatures (Tg of the lignin derivatives were determined by a combination of differential scanning calorimetry, dynamic mechanical analysis, and parallel plate rheometry.

  9. Genetic Augmentation of Syringyl Lignin in Low-lignin Aspen Trees, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Chung-Jui Tsai; Mark F. Davis; Vincent L. Chiang

    2004-11-10

    As a polysaccharide-encrusting component, lignin is critical to cell wall integrity and plant growth but also hinders recovery of cellulose fibers during the wood pulping process. To improve pulping efficiency, it is highly desirable to genetically modify lignin content and/or structure in pulpwood species to maximize pulp yields with minimal energy consumption and environmental impact. This project aimed to genetically augment the syringyl-to-guaiacyl lignin ratio in low-lignin transgenic aspen in order to produce trees with reduced lignin content, more reactive lignin structures and increased cellulose content. Transgenic aspen trees with reduced lignin content have already been achieved, prior to the start of this project, by antisense downregulation of a 4-coumarate:coenzyme A ligase gene (Hu et al., 1999 Nature Biotechnol 17: 808- 812). The primary objective of this study was to genetically augment syringyl lignin biosynthesis in these low-lignin trees in order to enhance lignin reactivity during chemical pulping. To accomplish this, both aspen and sweetgum genes encoding coniferaldehyde 5-hydroxylase (Osakabe et al., 1999 PNAS 96: 8955-8960) were targeted for over-expression in wildtype or low-lignin aspen under control of either a constitutive or a xylem-specific promoter. A second objective for this project was to develop reliable and cost-effective methods, such as pyrolysis Molecular Beam Mass Spectrometry and NMR, for rapid evaluation of cell wall chemical components of transgenic wood samples. With these high-throughput techniques, we observed increased syringyl-to-guaiacyl lignin ratios in the transgenic wood samples, regardless of the promoter used or gene origin. Our results confirmed that the coniferaldehyde 5-hydroxylase gene is key to syringyl lignin biosynthesis. The outcomes of this research should be readily applicable to other pulpwood species, and promise to bring direct economic and environmental benefits to the pulp and paper industry.

  10. Altered processing of sweet taste in the brain of diet soda drinkers.

    Science.gov (United States)

    Green, Erin; Murphy, Claire

    2012-11-05

    Artificially sweetened beverage consumption has been linked to obesity, and it has been hypothesized that considerable exposure to nonnutritive sweeteners may be associated with impaired energy regulation. The reward system plays an integral role in modulating energy intake, but little is known about whether habitual use of artificial sweetener (i.e., diet soda consumption) may be related to altered reward processing of sweet taste in the brain. To investigate this, we examined fMRI response after a 12-hour fast to sucrose (a nutritive sweetener) and saccharin (a nonnutritive sweetener) during hedonic evaluation in young adult diet soda drinkers and non-diet soda drinkers. Diet soda drinkers demonstrated greater activation to sweet taste in the dopaminergic midbrain (including ventral tegmental area) and right amygdala. Saccharin elicited a greater response in the right orbitofrontal cortex (Brodmann Area 47) relative to sucrose in non-diet soda drinkers. There was no difference in fMRI response to the nutritive or nonnutritive sweetener for diet soda drinkers. Within the diet soda drinkers, fMRI activation of the right caudate head in response to saccharin was negatively associated with the amount of diet sodas consumed per week; individuals who consumed a greater number of diet sodas had reduced caudate head activation. These findings suggest that there are alterations in reward processing of sweet taste in individuals who regularly consume diet soda, and this is associated with the degree of consumption. These findings may provide some insight into the link between diet soda consumption and obesity.

  11. Method of producing prepolymers from hydroxyalkyl lignin derivatives

    OpenAIRE

    1990-01-01

    A method of producing prepolymeric materials from lignin is disclosed. The method uses lignin which has been hydroxyalkyl modified, such that the lignin is substantially non-phenolic and solvent soluble and/or liquid. The modified lignin is reacted with materials which yield prepolymers which may be polymerized according to known methods to produce useful polymers.

  12. Lignin solubilisation and gentle fractionation in liquid ammonia

    NARCIS (Netherlands)

    Strassberger, Z.; Prinsen, P.; Klis, van der F.; Es, van D.S.; Tanase, S.; Rothenberg, G.

    2015-01-01

    We present a simple method for solubilising lignin using liquid ammonia. Unlike water, which requires harsh conditions, ammonia can solubilise technical lignins, in particular kraft lignin. A commercial pine wood Kraft lignin (Indulin AT) was solubilized instantaneously at room temperature and 7–11

  13. Lignin solubilisation and gentle fractionation in liquid ammonia

    NARCIS (Netherlands)

    Strassberger, Z.; Prinsen, P.; van der Klis, F.; van Es, D.S.; Tanase, S.; Rothenberg, G.

    2015-01-01

    We present a simple method for solubilizing lignin using liq. ammonia. Unlike water, which requires harsh conditions, ammonia can solubilize tech. lignins, in particular kraft lignin. A com. pine wood Kraft lignin (Indulin AT) was solubilized instantaneously at room temp. and 7-​11 bars autogenous

  14. Characterization of electrospun lignin based carbon fibers

    Science.gov (United States)

    Poursorkhabi, Vida; Mohanty, Amar; Misra, Manjusri

    2015-05-01

    The production of lignin fibers has been studied in order to replace the need for petroleum based precursors for carbon fiber production. In addition to its positive environmental effects, it also benefits the economics of the industries which cannot take advantage of carbon fiber properties because of their high price. A large amount of lignin is annually produced as the byproduct of paper and growing cellulosic ethanol industry. Therefore, finding high value applications for this low cost, highly available material is getting more attention. Lignin is a biopolymer making about 15 - 30 % of the plant cell walls and has a high carbon yield upon carbonization. However, its processing is challenging due to its low molecular weight and also variations based on its origin and the method of separation from cellulose. In this study, alkali solutions of organosolv lignin with less than 1 wt/v% of poly (ethylene oxide) and two types of lignin (hardwood and softwood) were electrospun followed by carbonization. Different heating programs for carbonization were tested. The carbonized fibers had a smooth surface with an average diameter of less than 5 µm and the diameter could be controlled by the carbonization process and lignin type. Scanning electron microscopy (SEM) was used to study morphology of the fibers before and after carbonization. Thermal conductivity of a sample with amorphous carbon was 2.31 W/m.K. The electrospun lignin carbon fibers potentially have a large range of application such as in energy storage devices and water or gas purification systems.

  15. Lignin from Micro- to Nanosize: Production Methods

    Science.gov (United States)

    Beisl, Stefan; Miltner, Angela; Friedl, Anton

    2017-01-01

    Lignin is the second most abundant biopolymer after cellulose. It has long been obtained as a by-product of cellulose production in pulp and paper production, but had rather low added-value applications. A changing paper market and the emergence of biorefinery projects should generate vast amounts of lignin with the potential of value addition. Nanomaterials offer unique properties and the preparation of lignin nanoparticles and other nanostructures has therefore gained interest as a promising technique to obtain value-added lignin products. Due to lignin’s high structural and chemical heterogeneity, methods must be adapted to these different types. This review focuses on the ability of different formation methods to cope with the huge variety of lignin types and points out which particle characteristics can be achieved by which method. The current research’s main focus is on pH and solvent-shifting methods where the latter can yield solid and hollow particles. Solvent shifting also showed the capability to cope with different lignin types and solvents and antisolvents, respectively. However, process conditions have to be adapted to every type of lignin and reduction of solvent demand or the integration in a biorefinery process chain must be focused. PMID:28604584

  16. Lignin from Micro- to Nanosize: Production Methods

    Directory of Open Access Journals (Sweden)

    Stefan Beisl

    2017-06-01

    Full Text Available Lignin is the second most abundant biopolymer after cellulose. It has long been obtained as a by-product of cellulose production in pulp and paper production, but had rather low added-value applications. A changing paper market and the emergence of biorefinery projects should generate vast amounts of lignin with the potential of value addition. Nanomaterials offer unique properties and the preparation of lignin nanoparticles and other nanostructures has therefore gained interest as a promising technique to obtain value-added lignin products. Due to lignin’s high structural and chemical heterogeneity, methods must be adapted to these different types. This review focuses on the ability of different formation methods to cope with the huge variety of lignin types and points out which particle characteristics can be achieved by which method. The current research’s main focus is on pH and solvent-shifting methods where the latter can yield solid and hollow particles. Solvent shifting also showed the capability to cope with different lignin types and solvents and antisolvents, respectively. However, process conditions have to be adapted to every type of lignin and reduction of solvent demand or the integration in a biorefinery process chain must be focused.

  17. Lignin peroxidase functionalities and prospective applications.

    Science.gov (United States)

    Falade, Ayodeji O; Nwodo, Uchechukwu U; Iweriebor, Benson C; Green, Ezekiel; Mabinya, Leonard V; Okoh, Anthony I

    2017-02-01

    Ligninolytic extracellular enzymes, including lignin peroxidase, are topical owing to their high redox potential and prospective industrial applications. The prospective applications of lignin peroxidase span through sectors such as biorefinery, textile, energy, bioremediation, cosmetology, and dermatology industries. The litany of potentials attributed to lignin peroxidase is occasioned by its versatility in the degradation of xenobiotics and compounds with both phenolic and non-phenolic constituents. Over the years, ligninolytic enzymes have been studied however; research on lignin peroxidase seems to have been lagging when compared to other ligninolytic enzymes which are extracellular in nature including laccase and manganese peroxidase. This assertion becomes more pronounced when the application of lignin peroxidase is put into perspective. Consequently, a succinct documentation of the contemporary functionalities of lignin peroxidase and, some prospective applications of futuristic relevance has been advanced in this review. Some articulated applications include delignification of feedstock for ethanol production, textile effluent treatment and dye decolourization, coal depolymerization, treatment of hyperpigmentation, and skin-lightening through melanin oxidation. Prospective application of lignin peroxidase in skin-lightening functions through novel mechanisms, hence, it holds high value for the cosmetics sector where it may serve as suitable alternative to hydroquinone; a potent skin-lightening agent whose safety has generated lots of controversy and concern. © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  18. Power generation using sugar cane bagasse: A heat recovery analysis

    Science.gov (United States)

    Seguro, Jean Vittorio

    The sugar industry is facing the need to improve its performance by increasing efficiency and developing profitable by-products. An important possibility is the production of electrical power for sale. Co-generation has been practiced in the sugar industry for a long time in a very inefficient way with the main purpose of getting rid of the bagasse. The goal of this research was to develop a software tool that could be used to improve the way that bagasse is used to generate power. Special focus was given to the heat recovery components of the co-generation plant (economizer, air pre-heater and bagasse dryer) to determine if one, or a combination, of them led to a more efficient co-generation cycle. An extensive review of the state of the art of power generation in the sugar industry was conducted and is summarized in this dissertation. Based on this models were developed. After testing the models and comparing the results with the data collected from the literature, a software application that integrated all these models was developed to simulate the complete co-generation plant. Seven different cycles, three different pressures, and sixty-eight distributions of the flue gas through the heat recovery components can be simulated. The software includes an economic analysis tool that can help the designer determine the economic feasibility of different options. Results from running the simulation are presented that demonstrate its effectiveness in evaluating and comparing the different heat recovery components and power generation cycles. These results indicate that the economizer is the most beneficial option for heat recovery and that the use of waste heat in a bagasse dryer is the least desirable option. Quantitative comparisons of several possible cycle options with the widely-used traditional back-pressure turbine cycle are given. These indicate that a double extraction condensing cycle is best for co-generation purposes. Power generation gains between 40 and

  19. Enzyme loading dependence of cellulose hydrolysis of sugarcane bagasse

    Directory of Open Access Journals (Sweden)

    Carlos Martín

    2012-01-01

    Full Text Available The enzymatic hydrolysis of steam-pretreated sugarcane bagasse, either delignified or non-delignified, was studied as a function of enzyme loading. Hydrolysis experiments were carried out using five enzyme loadings (2.5 to 20 FPU/g cellulose and the concentration of solids was 2% for both materials. Alkaline delignification improved cellulose hydrolysis by increasing surface area. For both materials, glucose concentrations increased with enzyme loading. On the other hand, enzyme loadings higher than 15 FPU/g did not result in any increase in the initial rate, since the excess of enzyme adsorbed onto the substrate restricted the diffusion process through the structure.

  20. FT-Raman investigation of milled-wood lignins : softwood, hardwood, and chemically modified black spruce lignins

    Science.gov (United States)

    Umesh P. Agarwal; James D. McSweeny; Sally A. Ralph

    2011-01-01

    Raman spectroscopy is being increasingly applied to study wood and other lignin-containing biomass/biomaterials. Lignin’s contribution to the Raman spectra of such materials needs to be understood in the context of various lignin structures, substructures, and functional groups so that lignin-specific features could be identified and the spectral information could be...

  1. Co-processing of olive bagasse with crude rapeseed oil via pyrolysis.

    Science.gov (United States)

    Uçar, Suat; Karagöz, Selhan

    2017-05-01

    The co-pyrolysis of olive bagasse with crude rapeseed oil at different blend ratios was investigated at 500ºC in a fixed bed reactor. The effect of olive bagasse to crude rapeseed oil ratio on the product distributions and properties of the pyrolysis products were comparatively investigated. The addition of crude rapeseed oil into olive bagasse in the co-pyrolysis led to formation of upgraded biofuels in terms of liquid yields and properties. While the pyrolysis of olive bagasse produced a liquid yield of 52.5 wt %, the highest liquid yield of 73.5 wt % was obtained from the co-pyrolysis of olive bagasse with crude rapeseed oil at a blend ratio of 1:4. The bio-oil derived from olive bagasse contained 5% naphtha, 10% heavy naphtha, 30% gas oil, and 55% heavy gas oil. In the case of bio-oil obtained from the co-pyrolysis of olive bagasse with crude rapeseed oil at a blend ratio of 1:4, the light naphtha, heavy naphtha, and light gas oil content increased. This is an indication of the improved characteristics of the bio-oil obtained from the co-processing. The heating value of bio-oil from the pyrolysis of olive bagasse alone was 34.6 MJ kg(-1) and the heating values of bio-oils obtained from the co-pyrolysis of olive bagasse with crude rapeseed oil ranged from 37.6 to 41.6 MJ kg(-1). It was demonstrated that the co-processing of waste biomass with crude plant oil is a good alternative to improve bio-oil yields and properties.

  2. Characterization of the effects of lignin and lignin complex particles as filler on a polystyrene film

    Energy Technology Data Exchange (ETDEWEB)

    El-Zawawy, Waleed K., E-mail: wkzawawy@yahoo.com [Cellulose and Paper Department, National Research Center, El-Tahrir St., Giza (Egypt); Ibrahim, Maha M. [Cellulose and Paper Department, National Research Center, El-Tahrir St., Giza (Egypt); Belgacem, Mohamed Naceur; Dufresne, Alain [Grenoble Institute of Technology (INP) - The International School of Paper, Print Media and Biomaterials (PAGORA), BP 65, 38402 Saint Martin d' Heres cedex, Grenoble (France)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer We have studied the use of Co(II) to form a complex with the lignin. We use first vanillin as the lignin model and we observed a change in color for the produced complex depending on the light wavelength. The use of other transition metals does not give the same observation. Black-Right-Pointing-Pointer The use of the transition metal with the lignin precipitated from the black liquor after pulping of agricultural residues, gave a fluorescent color under fluorescent microscope. Black-Right-Pointing-Pointer We applied the resulted lignin complex to prepare polymer film that can be used as special polymer packaging which can be color changed under different wavelengths. - Abstract: The work in this research outlines the use of lignin precipitated from lignocellulosic substrate as fillers after modified with transition metal cations, Fe(III), Ni(II) and Co(II), in the production of a polystyrene based composite for polymer packaging applications. Virgin polystyrene was compared with lignin and lignin complex filled composites with loading of 5% by weight prepared using twin screw extrusion. The lignin complexes were first characterized by the UV spectra to identify the new absorption bands occurred due to the complex formation. Moreover, lignin model, namely vanillin, was used to notify the geometric structure of the resulting complexes applying the GC mass spectra. Scanning electron microscopy was used to indicate the change in the morphological structure of the filler particles. On the other hand, the mechanical and thermal analysis for the resulting polymer composites was studied and it was noticed that the type of lignin or lignin complex plays a roll in the results. The inclusion of the Co(II)-lignin complex was observed to increase the tensile strength of the resulting polymer composite and a decrease of the glass transition temperature. Furthermore, light wave lengths and UV fluorescent microscope were used to identify

  3. Organosolv Lignin-Based Wood Adhesive. Influence of the Lignin Extraction Conditions on the Adhesive Performance

    Directory of Open Access Journals (Sweden)

    Issam Dababi

    2016-09-01

    Full Text Available Ethanol organosolv alfa grass lignins were extracted in the presence of sulfuric acid or Lewis acids (Sc(OTf3, FeCl3 as catalysts and subjected to a comprehensive structural characterization by solid state 13C NMR, GPC, MALDI-TOF, and ASAP-MS/MS. The impact of the severity of the treatment and of the nature of the acid catalyst on the recovered lignin structure was investigated. The lignins isolated at high severity were highly recondensed and partly composed of regular structures composed of furan-like rings. The alfa (Stipa tenacissima L. organosolv lignins were used for the preparation of formaldehyde-free adhesives which were characterized by TMA and used for the preparation of particleboard without any addition of synthetic resin. It has been demonstrated for the first time that: (1 the addition of 10% to 30% of organosolv alfa lignin in a tannin-based adhesive improved the adhesive performance; and (2 the conditions of the lignin extraction strongly impact the lignin-based adhesive performances. The highly recondensed lignin extracted with sulfuric acid as a catalyst allowed the production of resins with improved performances. Formulations composed of 50% glyoxalated alfa lignin and 50% of Aleppo Pine tannins yielded good internal bond strength results for the panels (IB = 0.45 MPa and satisfied relevant international standard specifications for interior-grade panels.

  4. Highly improved chromium (III uptake capacity in modified sugarcane bagasse using different chemical treatments

    Directory of Open Access Journals (Sweden)

    Vanessa Cristina Gonçalves Dos Santos

    2012-01-01

    Full Text Available The present paper focuses on improving chromium (III uptake capacity of sugarcane bagasse through its chemical modification with citric acid and/or sodium hydroxide. The chemical modifications were confirmed by infrared spectroscopy, with an evident peak observed at 1730 cm-1, attributed to carbonyl groups. Equilibrium was reached after 24 h, and the kinetics followed the pseudo-second-order model. The highest chromium (III maximum adsorption capacity (MAC value was found when using sugarcane bagasse modified with sodium hydroxide and citric acid (58.00 mg g-1 giving a MAC value about three times greater (20.34 mg g-1 than for raw sugarcane bagasse.

  5. Evaluation of Plasticity and Particle Size Distribution Characteristics of Bagasse Ash on Cement Treated Lateritic Soil

    Directory of Open Access Journals (Sweden)

    Mohammed Abdullahi MU'AZU

    2007-01-01

    Full Text Available Lateritic soil was treated with 1-4% cement contents and was admixtured with 2-8% bagasse ash content. The paper evaluated the plasticity and particle size distribution characteristic of bagasse ash on cement treated laterite. It was observed that liquid limit and plasticity index reduced while plastic limit increased. As regards the particle size distribution, the was reduction in the percentage of fines as a result of formation of heavier pseudo- and particle with percentage passing BS Sieve No. 200 reduced from 63% to almost zero. However the recommended percentage of bagasse ash should be between 4%-6%.

  6. Thermal Decomposition and Kinetics of Rigid Poly-urethane Foams Derived from Sugarcane Bagasse

    Institute of Scientific and Technical Information of China (English)

    YAN Yongbin; XU Jingwei; PANG Hao; ZHANG Rongli; LIAO Bing

    2009-01-01

    Rigid polyurethane foams were fabricated with five kinds of liquefied sugarcane bagasse polyols(LBP).The foams derived from sugarcane bagasse were investigated by thermogra-vimetric analysis(TGA),and the thermal degradation data were analyzed using the Coast-Redfern method and Ozawa method to obtain the reaction order and activation energy.The results indicate that the sugarcane bagasse-foams exhibit an excellent heat-resistant property,whereas their pyrolysis procedures are quite complicated.The reaction as first order only takes place from 250 to 400℃,and the pyrolysis activation energies vary from 20 to 140 kJ/mol during the whole pyrolysis process.

  7. Bioethanol Production from Sugarcane Bagasse using Fermentation Process

    Directory of Open Access Journals (Sweden)

    Y. C. Wong

    2014-06-01

    Full Text Available The aim of this study is to produce bioethanol from sugarcane bagasse using fermentation process and to determine the effect of pH and temperature on bioethanol yield. Enzymes such as alpha- amylase and glucoamylase were used to breakdown the cellulose in sugarcane bagasse. Saccharomyces cerevisiea, (yeast also was used in the experiment for fermentation. Five samples were prepared at different pH was varied to determine the effects of pH on ethanol yield at 370 C and another five samples were prepared to determine the effect of temperature on ethanol yield, the pH was kept constant at 4.5. The ethanol concentrations were determined by running the samples in High Performance Liquid Chromatography (HPLC. The results showed that at highest ethanol concentration was obtained pH 4.5 and temperature 350C. This indicated that pH 4.5 and 350C was the optimum parameter for the yeast to produce ethanol.

  8. The Penicillium echinulatum Secretome on Sugar Cane Bagasse

    Science.gov (United States)

    Ribeiro, Daniela A.; Cota, Júnio; Alvarez, Thabata M.; Brüchli, Fernanda; Bragato, Juliano; Pereira, Beatriz M. P.; Pauletti, Bianca A.; Jackson, George; Pimenta, Maria T. B.; Murakami, Mario T.; Camassola, Marli; Ruller, Roberto; Dillon, Aldo J. P.; Pradella, Jose G. C.; Paes Leme, Adriana F.; Squina, Fabio M.

    2012-01-01

    Plant feedstocks are at the leading front of the biofuel industry based on the potential to promote economical, social and environmental development worldwide through sustainable scenarios related to energy production. Penicillium echinulatum is a promising strain for the bioethanol industry based on its capacity to produce large amounts of cellulases at low cost. The secretome profile of P. echinulatum after grown on integral sugarcane bagasse, microcrystalline cellulose and three types of pretreated sugarcane bagasse was evaluated using shotgun proteomics. The comprehensive chemical characterization of the biomass used as the source of fungal nutrition, as well as biochemical activity assays using a collection of natural polysaccharides, were also performed. Our study revealed that the enzymatic repertoire of P. echinulatum is geared mainly toward producing enzymes from the cellulose complex (endogluganases, cellobiohydrolases and β-glucosidases). Glycoside hydrolase (GH) family members, important to biomass-to-biofuels conversion strategies, were identified, including endoglucanases GH5, 7, 6, 12, 17 and 61, β-glycosidase GH3, xylanases GH10 and GH11, as well as debranching hemicellulases from GH43, GH62 and CE2 and pectinanes from GH28. Collectively, the approach conducted in this study gave new insights on the better comprehension of the composition and degradation capability of an industrial cellulolytic strain, from which a number of applied technologies, such as biofuel production, can be generated. PMID:23227186

  9. The pyrolysis kinetics of bagasse at low heating rates

    Energy Technology Data Exchange (ETDEWEB)

    Aiman, S.; Stubington, J.F. (New South Wales Univ., Kensington, NSW (Australia))

    1993-01-01

    Thermogravimetric Analysis (TGA) was used to study the thermal degradation of wet and dry bagasse at low heating rates (5 to 50[sup o]C min[sup -1]) under a nitrogen atmosphere. For engineering purposes, it was found that a single first-order reaction gave the simplest and best fit to the rapid pyrolysis zone between 195 and 395[sup o]C, with an activation energy of 93.2 kJ mol[sup -1] and pre-exponential factor of 4.33 x 10[sup 4]s[sup -1]. These values have no chemical significance, but have been derived for use in modelling studies of the ignition and combustion of bagasse. Sample moisture content up to 18% by weight had no effect on the degradation, because moisture evaporation was complete before pyrolysis commenced at these low heating rates. The choice of the final mass from the TGA curve significantly affected the deduced kinetic parameters. The final sample mass at the end of the rapid pyrolysis zone was 26.2% of the dry sample mass. (author)

  10. The Penicillium echinulatum secretome on sugar cane bagasse.

    Directory of Open Access Journals (Sweden)

    Daniela A Ribeiro

    Full Text Available Plant feedstocks are at the leading front of the biofuel industry based on the potential to promote economical, social and environmental development worldwide through sustainable scenarios related to energy production. Penicillium echinulatum is a promising strain for the bioethanol industry based on its capacity to produce large amounts of cellulases at low cost. The secretome profile of P. echinulatum after grown on integral sugarcane bagasse, microcrystalline cellulose and three types of pretreated sugarcane bagasse was evaluated using shotgun proteomics. The comprehensive chemical characterization of the biomass used as the source of fungal nutrition, as well as biochemical activity assays using a collection of natural polysaccharides, were also performed. Our study revealed that the enzymatic repertoire of P. echinulatum is geared mainly toward producing enzymes from the cellulose complex (endogluganases, cellobiohydrolases and β-glucosidases. Glycoside hydrolase (GH family members, important to biomass-to-biofuels conversion strategies, were identified, including endoglucanases GH5, 7, 6, 12, 17 and 61, β-glycosidase GH3, xylanases GH10 and GH11, as well as debranching hemicellulases from GH43, GH62 and CE2 and pectinanes from GH28. Collectively, the approach conducted in this study gave new insights on the better comprehension of the composition and degradation capability of an industrial cellulolytic strain, from which a number of applied technologies, such as biofuel production, can be generated.

  11. Kinetic study of the enzymatic hydrolysis of sugarcane bagasse

    Directory of Open Access Journals (Sweden)

    M. L. Carvalho

    2013-09-01

    Full Text Available This work presents a kinetic study of the enzymatic hydrolysis of three cellulosic substrates: filter paper (FP, used as a low recalcitrance substrate model; steam exploded sugarcane bagasse (SB; and weak acid pretreated SB (1:20 dry bagasse:H2SO4 solution 1% w/w, the last two delignified with 4% NaOH (w/w. The influence of substrate concentration was assessed in hydrolysis experiments in a shaker, using Accellerase® 1500, at pH 4.8, in 50 mM sodium citrate buffer. Cellulose loads (weight substrate/weight total were changed between 0.5%-13% (for FP and 0.99%-9.09% (for SB. For FP and low loads of steam exploded SB, it was possible to fit pseudo-homogeneous Michaelis-Menten models (with inhibition. For FP and higher loads of steam exploded SB, modified Michaelis-Menten models were fitted. Besides, it was observed that, after retuning of the model parameters, it is possible to apply a model fitted for one situation to a different case. Chrastil models were also fitted and they were the only feasible approach for the highly recalcitrant acid-treated SB.

  12. The Penicillium echinulatum secretome on sugar cane bagasse.

    Science.gov (United States)

    Ribeiro, Daniela A; Cota, Júnio; Alvarez, Thabata M; Brüchli, Fernanda; Bragato, Juliano; Pereira, Beatriz M P; Pauletti, Bianca A; Jackson, George; Pimenta, Maria T B; Murakami, Mario T; Camassola, Marli; Ruller, Roberto; Dillon, Aldo J P; Pradella, Jose G C; Paes Leme, Adriana F; Squina, Fabio M

    2012-01-01

    Plant feedstocks are at the leading front of the biofuel industry based on the potential to promote economical, social and environmental development worldwide through sustainable scenarios related to energy production. Penicillium echinulatum is a promising strain for the bioethanol industry based on its capacity to produce large amounts of cellulases at low cost. The secretome profile of P. echinulatum after grown on integral sugarcane bagasse, microcrystalline cellulose and three types of pretreated sugarcane bagasse was evaluated using shotgun proteomics. The comprehensive chemical characterization of the biomass used as the source of fungal nutrition, as well as biochemical activity assays using a collection of natural polysaccharides, were also performed. Our study revealed that the enzymatic repertoire of P. echinulatum is geared mainly toward producing enzymes from the cellulose complex (endogluganases, cellobiohydrolases and β-glucosidases). Glycoside hydrolase (GH) family members, important to biomass-to-biofuels conversion strategies, were identified, including endoglucanases GH5, 7, 6, 12, 17 and 61, β-glycosidase GH3, xylanases GH10 and GH11, as well as debranching hemicellulases from GH43, GH62 and CE2 and pectinanes from GH28. Collectively, the approach conducted in this study gave new insights on the better comprehension of the composition and degradation capability of an industrial cellulolytic strain, from which a number of applied technologies, such as biofuel production, can be generated.

  13. Reuse of sugarcane bagasse ash (SCBA) to produce ceramic materials.

    Science.gov (United States)

    Souza, A E; Teixeira, S R; Santos, G T A; Costa, F B; Longo, E

    2011-10-01

    Sugarcane bagasse ash (SCBA) is a residue resulting from the burning of bagasse in boilers in the sugarcane/alcohol industry. SCBA has a very high silica concentration and contains aluminum, iron, alkalis and alkaline earth oxides in smaller amounts. In this work, the properties of sintered ceramic bodies were evaluated based on the concentration of SCBA, which replaced non-plastic material. The ash was mixed (up to 60 wt%) with a clayed raw material that is used to produce roof tiles. Prismatic probes were pressed and sintered at different temperatures (up to 1200 °C). Technological tests of ceramic probes showed that the addition of ash has little influence on the ceramic properties up to 1000 °C. X-ray diffraction and thermal analysis data showed that, above this temperature the ash participates in the sintering process and in the formation of new important phases. The results reported show that the reuse of SCBA in the ceramic industry is feasible.

  14. Isolation and Physicochemical Characterization of Lignin from ...

    African Journals Online (AJOL)

    Muzakir

    2 Department of Chemistry, Faculty of Science, Gombe State University, P. M. B. 127, Gombe, Nigeria. .... remaining solid is the acid insoluble lignin (Toledano et al., 2012). .... dmso/licl system induced by microwave-assisted irradiation.

  15. Composition comprising lignin and antidi arrheal component

    DEFF Research Database (Denmark)

    2008-01-01

    The present invention relates to a composition comprising lignin and at least one compound selected from the group consisting of bromelain, papain, tannin, carvacrol, thymol, alliin, allicin, fenugreek seed, egg, poppy, poppy seeds, humic acid, roots, kaolin, catechu, cellulase, flavonoid...

  16. SINTESIS SILIKA AEROGEL DENGAN BAHAN DASAR ABU BAGASSE

    Directory of Open Access Journals (Sweden)

    Nazriati Nazriati

    2012-05-01

    Full Text Available SYNTHESIS OF SILICA AEROGEL FROM BAGASSE ASH. Synthesis of silica aerogel from bagasse ash was done by alkaline extraction followed by sol-gel. Bagasse ash was extracted with NaOH at its boiling temperature for one hour with continue stirring, to produce sodium silicate. Subsequently, sodium silicate was pass through ionic exchanger resin, to produces silicic acid (SA. Silicic acid solution was then added with TMCS and HMDS as surface modifier agent. In order to form gel pH must be adjusted to final pH of 8-9 by addition of NH4OH solution. The resulting gel then was aged and dried at ambient pressure and at a certain time and temperature. Characterization of products was done by measuring its pore volume, surface area, and hydrophobisity (contact angle. TMCS serves as water expeller from the pores and subsequently surface was modified by HMDS and TMCS. HMDS content will linearly increase surface area, pore volume, and the contact angle of the resulting silica aerogel. Characteristics of silica aerogel was generated by varying the composition of the SA:TMCS:HMDS resulting has a surface area of 50-488 m2/g, pore volume from 0.2 to 0.9 m3 /g, the contact angle of 48-119 and pore diameter ranging from 5.7-22.56 nm. Based on the resulting pore diameter, the synthesized of silica aerogel categorized as mesoporous.      Abstrak   Sintesis silika aerogel dari bahan dasar abu bagasse dilakukan dengan ekstraksi basa dan diikuti dengan sol-gel. Abu bagasse diekstrak dengan NaOH pada suhu didihnya sambil diaduk selama satu jam, menghasilkan sodium silikat. Selanjutnya, sodium silikat dilewatkan resin penukar ion, menghasilkan asam silicic (SA. Larutan asam silicic kemudian ditambahkan trimethy­l­chlorosilane (TMCS dan hexamethyldisilazane (HMDS sebagai agen pemodifikasi permukaan. Untuk terjadinya gel pH diatur hingga mencapai 8-9 dengan penambahan larutan NH4OH. Gel yang dihasilkan kemudian di-aging dan dikeringkan pada tekanan ambien pada suhu dan

  17. Haloalkaliphilic sulfur-oxidizing bacteria in soda lakes.

    Science.gov (United States)

    Sorokin, Dimitry Yu; Kuenen, Johannes Gijs

    2005-09-01

    The existence of chemolithoautotrophic sulfur-oxidizing bacteria (SOB) capable of growth in an extremely alkaline and saline environment has not been recognized until recently. Extensive studies of saline, alkaline (soda) lakes located in Central Asia, Africa and North America have now revealed the presence, at relatively high numbers, of a new branch of obligately autotrophic SOB in these doubly extreme environments. Overall more than 100 strains were isolated in pure culture. All of them have the potential to grow optimally at around pH 10 in media strongly buffered with sodium carbonate/bicarbonate and cannot grow at pHbacteria, dominating in hyposaline steppe soda lakes of Central Asia. The genus Thioalkalivibrio includes mostly slowly growing species better adapted to life in hypersaline conditions and with a more versatile metabolism. It includes denitrifying, thiocyanate-utilizing and facultatively alkaliphilic species.

  18. Use of lignin extracted from different plant sources as standards in the spectrophotometric acetyl bromide lignin method.

    Science.gov (United States)

    Fukushima, Romualdo S; Kerley, Monty S

    2011-04-27

    A nongravimetric acetyl bromide lignin (ABL) method was evaluated to quantify lignin concentration in a variety of plant materials. The traditional approach to lignin quantification required extraction of lignin with acidic dioxane and its isolation from each plant sample to construct a standard curve via spectrophotometric analysis. Lignin concentration was then measured in pre-extracted plant cell walls. However, this presented a methodological complexity because extraction and isolation procedures are lengthy and tedious, particularly if there are many samples involved. This work was targeted to simplify lignin quantification. Our hypothesis was that any lignin, regardless of its botanical origin, could be used to construct a standard curve for the purpose of determining lignin concentration in a variety of plants. To test our hypothesis, lignins were isolated from a range of diverse plants and, along with three commercial lignins, standard curves were built and compared among them. Slopes and intercepts derived from these standard curves were close enough to allow utilization of a mean extinction coefficient in the regression equation to estimate lignin concentration in any plant, independent of its botanical origin. Lignin quantification by use of a common regression equation obviates the steps of lignin extraction, isolation, and standard curve construction, which substantially expedites the ABL method. Acetyl bromide lignin method is a fast, convenient analytical procedure that may routinely be used to quantify lignin.

  19. A Simple Ballistic Material Model for Soda-Lime Glass

    Science.gov (United States)

    2009-01-01

    for soda-lime glass devel- oped and parameterized in the previous sections is next imple- mented in a VUMAT Material User Subroutine of the commercial...each element. The essential features of the coupling between the ABAQUS/ Explicit finite-element solver and the VUMAT Material User Subroutine at...state as well as values of the material state variables at the end of the time increment are determined within the VUMAT and returned to the ABAQUS

  20. An application of SODA methodology in student accommodation problems

    OpenAIRE

    E. Teimoury; H. Gitinavard; Mousavi, S. M.

    2014-01-01

    The one of the main problems that students have faced with are the accommodation problems. In this paper, we review problems that may occur in university systems. Also, we use strategic options development and analysis method (SODA) to represent the accommodation problems and to create an agreement between student and staff. This method can help us with achieving goals; because in the same situation, there are different viewpoints for various reasons. By plotting the cognitive maps of involve...

  1. Commentary: Soda taxes, obesity, and the shifty behavior of consumers.

    Science.gov (United States)

    Edwards, Ryan D

    2011-06-01

    Rising obesity is a threat to public health, and taxing sugar-sweetened beverages (SSBs) in order to reduce consumption and thus caloric intake could be a viable policy response. But raising the price of SSB calories will raise the quantity demanded of relatively cheaper calories, and net effect on obesity is unclear. I review the evidence on shifting calorie demand and discuss the viability of soda taxes to achieve improvements in public health.

  2. Improvement in hardness of soda-lime-silica glass

    Science.gov (United States)

    Chakraborty, Riya; De, Moumita; Roy, Sudakshina; Dey, Arjun; Biswas, Sampad K.; Middya, Tapas Ranjan; Mukhopadhyay, Anoop K.

    2012-06-01

    Hardness is a key design parameter for structural application of brittle solids like glass. Here we report for the first time the significant improvement of about 10% in Vicker's hardness of a soda-lime-silica glass with loading rate in the range of 0.1-10 N.s-1. Corroborative dark field optical and scanning electron microscopy provided clue to this improvement through evidence of variations in spatial density of shear deformation band formation as a function of loading rate.

  3. Ecomorphological variability of Arthrospira fusiformis (Cyanoprokaryota) in African soda lakes.

    Science.gov (United States)

    Kaggwa, Mary Nakabungo; Burian, Alfred; Oduor, Steve Omondi; Schagerl, Michael

    2013-10-01

    The filamentous spirally coiled cyanoprokaryote Arthrospira fusiformis is found in extremely high densities in tropical soda lakes acting as driving force of the food web. We studied pronounced temporal morphological changes of Arthrospira in Kenyan soda lakes, Nakuru and Bogoria, and identified underlying key factors. Cell (diameter and height) and filament (height of coil, coil diameter, and number) dimensions were measured from weekly samples collected over a period of 16 months. In both lakes, medium-sized cells and large, widely coiled filaments prevailed most. Percentage of large, widely coiled filaments was promoted by elevated levels of soluble reactive phosphorus, wind speed, temperature and conductivity and the opposite for small filaments. Large, narrow-coiled filaments were associated with an increase in mainly Arthrospira-grazing zooplankton and cyanophage infections. Widely coiled spirals were promoted by increased turbulences. Based on fluorescence measurements, we found widely coiled filaments representing high vitality. From this study we were able to demonstrate for the first time morphological patterns of Arthrospira in nature. Arthrospira morphotypes are suitable for indicating the biological status in soda lakes as they are subjective and therefore reflective of what is happening in its habitat. Additionally, this outcome might be also of interest for commercial 'Spirulina' farms in enhancing high-quality production.

  4. KRAFT PULPING CHARACTERISTICS OF THREE MOROCCAN EUCALYPTI. PART 2. COMPARISON OF THE GUAIACYL FRACTION OF THE NATIVE LIGNINS BY A NOVEL METHOD

    Directory of Open Access Journals (Sweden)

    Ericka F. Alves,

    2012-02-01

    Full Text Available In Part 1 of this series it was observed that one of the eucalypti (EGC 39 was more reactive than the other two in kraft and soda-AQ (SAQ cooking. However, the lignin in EGC 39 contained equal or less syringyl (S units than the other two eucalypti. In the present research an attempt was made to compare the guaiacyl (G fraction of the three lignins. The approach was to use SAQ treatment to cleave β-O-4 bonds in dimeric units containing uncondensed guaiacyl A-rings (those rearranging to quinone methides. The coniferyl alcohol, vinylguaiacol and isoeugenol generated from β-O-4 cleavage are then trapped as dimers by ethylguaiacol that is included in the SAQ liquor. Research with sugar maple (Acer saccharum showed that the estimate of these structures (uncondensed G-β-O-4 by this approach was in close agreement with traditional but more tedious methods such as permanganate oxidation and 31P NMR. It was also shown that the lignin in the EGC 39 hybrid contained a higher concentration of uncondensed G-β-O-4 structures than the other two eucalypti lignins.

  5. SYNTHESIS AND CHARACTERIZATION OF KRAFT LIGNIN-BASED EPOXY RESINS

    Directory of Open Access Journals (Sweden)

    Nour Eddine El Mansouri

    2011-05-01

    Full Text Available Epoxidization is an interesting way to develop a new application of lignin and therefore to improve its application potential. In this work, kraft lignin-based epoxy resins were obtained by the epoxidization reaction, using the kraft lignin recovered directly from pulping liquor and modified by a methylolation reaction. The methylolated lignins were obtained by the reaction of original kraft lignin with formaldehyde and glyoxal, which is a less volatile and less toxic aldehyde. 1H-NMR spectroscopy showed that methylolated kraft lignin has more hydroxymethyl groups than glyoxalated kraft lignin. For the epoxidization reaction we studied the influence of the lignin:NaOH (w/w ratio, temperature, and time of the reaction on the properties of the prepared epoxidized lignins. The structures of lignin-based epoxy resins were followed by epoxy index test and FTIR spectroscopy. Optimal conditions were obtained for lignin-based epoxy resin produced at lignin/NaOH = 1/3 at 70 ºC for 3h. Thermogravimetry analysis (TGA revealed that the epoxidization enhances the thermal stability of lignins and may allow a wider temperature range for applications with lignin epoxy-PF blends.

  6. Sugar cane bagasse as a feedstock for an industrial fast pyrolysis process under development

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, R.; Magne, P.; Deglise, X.

    1987-11-01

    In order to determine if it is possible to use sugar cane bagasse in an industrial pyrolysis process (developed by the TNEE Company, a subsidiary of St. Gobain, France) to obtain a medium heating value gas, a comparative study of this material with pine bark, already used in the process, and with oak sawdust has been performed. The study showed only some minor differences between the three materials, essentially due to a difference of structure and a higher H/sub 2/ content for bagasse. In addition it is noticeable that the heating value of bagasse is higher than that of pine bark. Consequently sugar cane bagasse can be considered as a good feedstock for the TNEE industrial process. 20 figs., 2 tabs., 7 refs.

  7. Methane Potential and Enzymatic Saccharification of Steam-exploded Bagasse

    National Research Council Canada - National Science Library

    Vivekanand Vivekanand; Elisabeth F. Olsen; Vincent G.H. Eijsink; Svein Jarle Horn

    2014-01-01

    To evaluate the biofuel potential of bagasse, an abundant co-product in sugarcane-based industries, the effect of steam explosion on the efficiency of enzymatic saccharification and anaerobic digestion was studied...

  8. DETERMINATION OF MOISTURE CONTENT OF BAGASSE OF JAGGERY UNIT USING MICROWAVE OVEN

    Directory of Open Access Journals (Sweden)

    S.I. ANWAR

    2010-12-01

    Full Text Available In jaggery making furnaces, sugarcane bagasse is used as fuel. Moisture content of bagasse affects its calorific value. So burning of bagasse at suitable level of moisture is essential from the viewpoint of furnace performance. Moisture content can also be used for indirect calculation of fibre content in sugarcane. Normally gravimetric method is used for moisture content determination, which is time consuming. Therefore, an attempt has been made to use microwave oven for drying of bagasse. It took about 20 to 25 minutes for the determination as compared to 8-10 hours in conventional hot air drying method and the results were comparable to the values obtained from hot air drying method.

  9. Optimum Parameters for the Formulation of Charcoal Briquettes Using Bagasse and Clay as Binder

    National Research Council Canada - National Science Library

    M.S. Rao; B.N. Chikamai; J.M. Onchieku

    2012-01-01

    ... for the formulation of charcoal briquettes for household use tosupplement wood charcoal. In this study briquettes were formulated usingcarbonized bagasse, clay as a binder and molasses as a filler...

  10. Optimum Parameters for the Formulation of Charcoal Briquettes Using Bagasse and Clay as Binder

    National Research Council Canada - National Science Library

    J.M. Onchieku; B.N. Chikamai; M.S. Rao

    2014-01-01

    ... for the formulation of charcoal briquettes for household use tosupplement wood charcoal. In this study briquettes were formulated usingcarbonized bagasse, clay as a binder and molasses as a filler...

  11. Removal of petroleum hydrocarbons from aqueous solution using sugarcane bagasse as adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Brandao, Poliana C.; Souza, Tulio C.; Ferreira, Cintia A.; Hori, Carla E. [Federal University of Uberlandia, Av. Joao Naves de Avila, 2160, Bloco K, Campus Santa Monica, CEP: 38400-902 Uberlandia, MG (Brazil); Romanielo, Lucienne L., E-mail: lucienne@ufu.br [Federal University of Uberlandia, Av. Joao Naves de Avila, 2160, Bloco K, Campus Santa Monica, CEP: 38400-902 Uberlandia, MG (Brazil)

    2010-03-15

    In the present work, the adsorption ability of sugarcane bagasse to remove oil by-products from aqueous solution was evaluated. The objective was treating the contaminated wastewater while enriching the bagasse for its later use as fuel in boilers. Adsorption experiments were carried out in an agitated reactor at room temperature to obtain kinetic curves and adsorption isotherms of gasoline and n-heptane on sugarcane bagasse. The results showed the great potential of bagasse as an adsorbent, since it was able to adsorb up to 99% of gasoline and 90% of n-heptane in solutions containing about 5% of these contaminants. In the adsorption kinetics of gasoline, the equilibrium was reached after just 5 min. This result shows that the adsorption is very favorable. Langmuir, Freundlich, Temkin and D-R models did not describe well the adsorption behavior obtained for these systems.

  12. Influence of Compactive Effort on Bagasse Ash with Cement Treated Lateritic Soil

    Directory of Open Access Journals (Sweden)

    Mohammed Abdullahi MU'AZU

    2007-01-01

    Full Text Available The result of a laboratory study on the influence of British Standard Light (BSL, West African Standard (WAS and British Standard Heavy (BSH compactive effort on up to 8% bagasse ash content with up to 4% cement treated lateritic soil on compaction and shear strength characteristic of laterite. The result shows decreased in Maximum Dry Density with increased in bagasse ash content and in shear strength properties there was decreased in cohesion and an increased in angle internal friction. The decreased was greater with higher bagasse ash content. However, as compactive effort increased from BSL, WAS and BSH, the value of MDD increased and OMC decreased as a result of flocculation and agglomeration of clay particle occupying larger space with a corresponding drop in dry density and because of extra water required for the pozzalanic reaction of bagasse ash and hydration of cement respectively.

  13. Lignin degradation by a white-rot fungus lacking lignin peroxidase and manganese peroxidase

    Energy Technology Data Exchange (ETDEWEB)

    Eggert, C.B.; Eriksson, K.E.L. [Univ. of Georgia, Athens, GA (United States)

    1996-10-01

    Phanerochaete chrysosporium has been the organism of choice for studies of lignin degradation and much of this work has focused on two phenol oxidases, lignin peroxidase (LiP) and manganese peroxidase (MnP), secreted by the fungus under ligninolytic conditions. However, many white-rot fungi, including a number of aggressive lignin degraders, seem to operate without expressing LiP activity. Laccase is another phenol oxidase that white-rot fungi often produce. However, the role played by laccase in lignin degradation has remained obscured since its low redox potential appeared to make it incapable of oxidizing non-phenolic lignin constituents. We have identified, Pychnoporus cinnabarinus lacking both LiP and MnP, but a high producer of laccase, to degrade lignin as efficiently as UP producing fungi. We have found that P. cinnabarinus, to overcome the redox potential barrier for laccase, produces a mediator for oxidation of non-phenolic lignin structures. This is the first description of how laccase may be used in a biological system for the degradation of lignin.

  14. Multiphase materials with lignin. VI. Effect of cellulose derivative structure on blend morphology with lignin

    Science.gov (United States)

    Timothy G. Rials; Wolfgang G. Glasser

    1989-01-01

    Polymeric blends of lignin with ethyl cellulose (EC) and cellulose acetate/butyrate (CAB) prepared by solution casting from dioxane. Fracture surface analysis by scanning electron microscopy revealed phase separation when the lignin content exceeded 10% for blends with EC and 5% in the CAB system. While this phase behavior is as predicted for the EC blends, a greater...

  15. Added value of lignin as lignin-based hybrid polyurethane for a compatibilizing agent

    Science.gov (United States)

    Ilmiati, S.; Haris Mustafa, J.; Yaumal, A.; Hanum, F.; Chalid, M.

    2017-07-01

    As biomass-based material, lignin contains abundant hydroxyl groups promising to be used as chain extender in building hybrid polyurethanes. Consisting of polyehtylene glycol (PEG) content as hydrophobic part and lignin as hydrophilic part, the hybrid PU is expected to be as a novel compatibilizing agent in new materials production such as polyblends and composites. The hybrid PU was synthesized via two reaction stages, viz. pre-polyurethanization through reacting 4,4'-Methylenebis (Cyclohexyl Isocyanate) (HMDI) and PEG as polyol, and chain extention through adding lignin in the pre-polyurethanization system. The composition effect of lignin in hybrid PU syntehsis, to chemical structure corelated to hydrophobic to hydrophilic ratio, thermal and morphological properties, was evaluated by measuring NMR, FTIR, DSC, TGA and FE-SEM. The experiments showed that addition of lignin was able to extend the pre-polyurethane into hybrid polyurethane and to increase the lignin/polyol ratio in the hybrid polyurethanes, which were indicated by NMR and FTIR Analysis. And change of the ratio lead to increase the glass transition from 60.9 until 62.1°C and degradation temperature from 413.9 until 416.0°C. Observation of the morphology implied that addition of lignin gave more agglomerations. A Further investigation for this characterization study should be focused on a feasibility for this modified lignin as a novel compatibilizing agent.

  16. Systematic Parameterization of Lignin for the CHARMM Force Field

    Energy Technology Data Exchange (ETDEWEB)

    Vermaas, Joshua; Petridis, Loukas; Beckham, Gregg; Crowley, Michael

    2017-07-06

    Plant cell walls have three primary components, cellulose, hemicellulose, and lignin, the latter of which is a recalcitrant, aromatic heteropolymer that provides structure to plants, water and nutrient transport through plant tissues, and a highly effective defense against pathogens. Overcoming the recalcitrance of lignin is key to effective biomass deconstruction, which would in turn enable the use of biomass as a feedstock for industrial processes. Our understanding of lignin structure in the plant cell wall is hampered by the limitations of the available lignin forcefields, which currently only account for a single linkage between lignins and lack explicit parameterization for emerging lignin structures both from natural variants and engineered lignin structures. Since polymerization of lignin occurs via radical intermediates, multiple C-O and C-C linkages have been isolated , and the current force field only represents a small subset of lignin the diverse lignin structures found in plants. In order to take into account the wide range of lignin polymerization chemistries, monomers and dimer combinations of C-, H-, G-, and S-lignins as well as with hydroxycinnamic acid linkages were subjected to extensive quantum mechanical calculations to establish target data from which to build a complete molecular mechanics force field tuned specifically for diverse lignins. This was carried out in a GPU-accelerated global optimization process, whereby all molecules were parameterized simultaneously using the same internal parameter set. By parameterizing lignin specifically, we are able to more accurately represent the interactions and conformations of lignin monomers and dimers relative to a general force field. This new force field will enables computational researchers to study the effects of different linkages on the structure of lignin, as well as construct more accurate plant cell wall models based on observed statistical distributions of lignin that differ between

  17. Chemical torrefaction as an alternative to established thermal technology for stabilisation of sugar cane bagasse as fuel.

    Science.gov (United States)

    Valix, M; Katyal, S; Cheung, W H

    2016-10-11

    Dry and chemical torrefaction of sugar cane bagasse was examined in this study with the aim of stabilising and upgrading the fuel properties of bagasse. Dry torrefaction was conducted at temperatures from 160°C to 300°C under inert conditions, whilst chemical torrefaction incorporated a H2SO4 pre-treatment of bagasse. Chemical torrefaction imparted superior chemical and physical properties inducing morphological transformation and textural development with the potential to address issues in handling, feeding and processing bagasse. It increased the energy density of the chars with maximum HHVmass 21.5 MJ/kg and maximum HHVvolume of 7.4 GJ/m(3). Chemically torrefied bagasse demonstrated resistance against microbiological attack for 18 months. These features demonstrate the practical value of chemical torrefaction in advancing the utilisation of bagasse as fuel.

  18. Tensile Strength Assessment of Injection-Molded High Yield Sugarcane Bagasse-Reinforced Polypropylene

    OpenAIRE

    2016-01-01

    Sugarcane bagasse was treated to obtain sawdust, in addition to mechanical, thermomechanical, and chemical-thermomechanical pulps. The obtained fibers were used to obtain reinforced polypropylene composites prepared by injection molding. Coupling agent contents ranging from 2 to 10% w/w were added to the composite to obtain the highest tensile strength. All the composites included 30% w/w of reinforcing fibers. The tensile strength of the different sugarcane bagasse fiber composites were test...

  19. Effect of fiber loading on the mechanical properties of bagasse fiber–reinforced polypropylene composites

    OpenAIRE

    2016-01-01

    It is evident that sugarcane/bagasse is a highly potential natural composite fiber. In this study, the correlation of composition fiber amount to the mechanical strength was presented. Bagasse was treated with alkali and then reinforced in polypropylene by means of hot pressing. Fiber loading was set to be varied from 10 to 20 wt%. Composite samples were subjected to tensile, hardness, and flexural characterization. Composites with 30 wt% of fiber loading registered maximum tensile strength w...

  20. Thermal properties of chipboard panels made of sugar cane bagasse (Saccharum officinarum L)

    OpenAIRE

    Carvalho,Sylvia Thaís Martins; Mendes, Lourival Marin; César,Antônia Amanda da Silva; Yanagi Junior,Tadayuki

    2013-01-01

    The sugar cane bagasse is the most abundant agricultural residue produced in Brazil. It can be used for the production of chipboard panels and as constructive components for several types of environments. The substitution of timber for the bagasse minimizes environmental impacts and contributes to the generation of a new product with lower density and lower thermal conductivity which can improve the thermal conditioning of buildings. This study aims at determining the heat flow through chipbo...

  1. Depithers for Efficient Preparation of Sugar Cane Bagasse Fibers in Pulp and Paper Industry

    OpenAIRE

    Lois-Correa J.A

    2012-01-01

    Among the by-products originated in the agro-industrial process of sugar cane, bagasse is one of the most relevant (Paturau, 1989). The negative influence of signifi cant amount of pith, or parenchymatous tissue, present in sugarcane bagasse is discussed. Since this non-fi brous material does not give any desired properties in the pulp and paper, agglomerated boards and polymer productions, it is remarked the importance of its maximum removal. A brief historical review in the development of b...

  2. COMPARATIVE EXTRACTION OF PECTIC AND POLYPHENOLS FROM MEXICAN LIME POMACE AND BAGASSE

    OpenAIRE

    2013-01-01

    Mexican lime bagasse and pomace are rich in pectin and they also represent an important source of value-added compounds such as polyphenols. Two different options for the combined recovery of pectin and phenolic compounds from Mexican lime bagasse and pomace, two byproducts of industrial lime processing, were developed. Conventional and microwave-assisted extraction methods were used. All pectic extracts presented a degree of esterification in the range of 70%. Pomace extracts had the higher ...

  3. College Cafeteria Signage Increases Water Intake but Water Position on the Soda Dispenser Encourages More Soda Consumption.

    Science.gov (United States)

    Montuclard, Astrid Linn; Park-Mroch, Jennifer; O'Shea, Amy M J; Wansink, Brian; Irvin, Jill; Laroche, Helena H

    2017-07-22

    To evaluate the effects of improved water location visibility and water dispenser position on the soda dispenser on undergraduate students' beverage choices. Two focus groups with pilot intervention surveys before and after, adding a small sign above the soda dispensers' water button for 6 weeks in a large US university's all-you-can-eat, prepaid dining hall (measured with chi-square tests and logistic and ordinal logistic regression). Focus groups included 15 students. Survey participants included 357 students before and 301 after the intervention. After the intervention, more students reported ever having drunk water with the meal (66.4% to 77.0%; P = .003) and water consumption frequency increased (P = .005). Postintervention, the odds of drinking water increased by 1.57. Preference for other drinks was the main reason for not drinking water. A total of 59% of students had ever changed their preference from water to soda. The clear indication of the water's location increased students' reported water consumption. Further investigation is needed into how a non-independent water dispenser influences students' beverage choice. Clearly labeled, independent water dispensers are recommended. Copyright © 2017 Society for Nutrition Education and Behavior. All rights reserved.

  4. Evaluation of the environmental aging and mechanical properties of the polypropylene/sugarcane bagasse composites; Avaliacao do envelhecimento ambiental e das propriedades mecanicas dos compositos de polipropileno/bagaco de cana-de-acucar

    Energy Technology Data Exchange (ETDEWEB)

    Paiva, Rayane Lima de Moura; Mulinari, Daniella Regina [Centro Universitario de Volta Redonda (UNIFOA), Volta Redonda, RJ (Brazil)

    2013-06-15

    Polypropylene (PP) reinforced with fibers from sugarcane bagasse composites in different proportions were prepared. Also environmental aging was conducted for the composites and their mechanical properties determined. The results showed that chemical treatment caused changes in color and chemical composition of the fibers, removing impurities and amorphous constituents such as lignin and hemicellulose, techniques of FTIR, X-ray diffraction and scanning electron microscopy confirmed these data. Also, it was observed that addition of natural fiber in PP matrix provided an improvement in the mechanical properties materials. The weathering test revealed a slight mass gain after 75 days, but it was clear that the inclusion of fibers has a higher mass gain compared to pure PP. (author)

  5. Cellulose acetate nanocomposite with nanocellulose obtained from bagasse of sugarcane; Nanocomposito de acetato de celulose com nanocelulose obtida a partir do bagaco de cana-de-acucar

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Frirllei Cardozo dos

    2016-07-01

    This study presents a methodology for the extraction of nanocellulose of sugarcane bagasse for use in nanocomposites with cellulose acetate (CA). The bagasse sugarcane was treated with sodium hydroxide (NaOH) and sodium hypochlorite (NaClO) to remove lignin, hemicellulose, pectin and impurities. For removal of the amorphous region of cellulose microfibrils obtained from alkali treatments were submitted to acid hydrolysis with sulfuric acid under different temperature conditions. The nanocellulose obtained through acid hydrolysis heated at 45 ° C was used for the formulation of nanocomposites by smaller dimensions presented. The films were formulated at different concentrations (1, 2, 4 and 6 wt%) by the casting technique at room temperature. Each alkaline treatment was accompanied by spectrophotometry by infrared and fluorescence analysis to confirm the removal of the amorphous fraction, micrographs carried out by Scanning Electron Microscope (SEM) to display the fiber defibration. The efficiency of acid hydrolysis was confirmed by micrographs obtained by transmission electron microscope (TEM). The crystallinity index (CI) of the nanocrystals was determined by X-ray Diffraction (XRD). The surface of the obtained films were characterized by SEM and AFM microscopy of. The results showed that the sugarcane bagasse is an excellent source for nanocellulose extraction, the amorphous fraction of the fiber can be removed with the suggested alkaline treatments, and hydrolysis with H{sub 2}SO{sub 4} was efficient both in the removal of amorphous cellulose as in reducing cellulose nanoscale with a length around 250 nm and a diameter of about 10 nm. The use of heated nanocellulose obtained through hydrolysis was selected after analysis of XRD, it was confirmed that this material had higher when compared to IC hydrolysis at room temperature. The nanocomposites showed high rigidity and brittleness with high crystallinity when compared to the pure polymer film was observed by

  6. Characterization of electrospun lignin based carbon fibers

    Energy Technology Data Exchange (ETDEWEB)

    Poursorkhabi, Vida; Mohanty, Amar; Misra, Manjusri [School of Engineering, Thornbrough Building, University of Guelph, Guelph, N1G 2W1, Ontario (Canada); Bioproducts Discovery and Development Centre, Department of Plant Agriculture, Crop Science Building, University of Guelph, Guelph, N1G 2W1, Ontario (Canada)

    2015-05-22

    The production of lignin fibers has been studied in order to replace the need for petroleum based precursors for carbon fiber production. In addition to its positive environmental effects, it also benefits the economics of the industries which cannot take advantage of carbon fiber properties because of their high price. A large amount of lignin is annually produced as the byproduct of paper and growing cellulosic ethanol industry. Therefore, finding high value applications for this low cost, highly available material is getting more attention. Lignin is a biopolymer making about 15 – 30 % of the plant cell walls and has a high carbon yield upon carbonization. However, its processing is challenging due to its low molecular weight and also variations based on its origin and the method of separation from cellulose. In this study, alkali solutions of organosolv lignin with less than 1 wt/v% of poly (ethylene oxide) and two types of lignin (hardwood and softwood) were electrospun followed by carbonization. Different heating programs for carbonization were tested. The carbonized fibers had a smooth surface with an average diameter of less than 5 µm and the diameter could be controlled by the carbonization process and lignin type. Scanning electron microscopy (SEM) was used to study morphology of the fibers before and after carbonization. Thermal conductivity of a sample with amorphous carbon was 2.31 W/m.K. The electrospun lignin carbon fibers potentially have a large range of application such as in energy storage devices and water or gas purification systems.

  7. Evaluation of Mechanical Properties of Injection Molding Composites Reinforced by Bagasse Fiber

    Science.gov (United States)

    Cao, Yong; Fukumoto, Isao

    BMC (Bulk Molding Compound) is composed of UP (Unsaturated Polyester) resin, glass fibers, and bagasse fibers which have been obtained after squeezing sugar cane. Our purpose is to use the bagasse fibers as reinforcement and filler in BMC to fabricate composites by injection molding and injection compression molding. The mechanical properties of injection molding composites were improved after adding the bagasse fibers. Observing the fracture surface of the tensile test specimen through SEM, we could notice the glass fibers were penetrated into the bagasse fibers longitudinally. Along with UP resin solidifying, the glass fibers were firmly fixed in the bagasse fibers and finally united with them. This phenomenon could bring on the same effect as the glass fibers length was prolonged, so that the adhesion interface between fiber and matrix resin became larger, which leads to the increase in the mechanical properties. Otherwise, it was observed that UP resin sufficiently permeated the bagasse fibers and solidified. This also contributes to enhancing the mechanical properties drastically.

  8. Effect of Acidic Environment (HCL on Concrete With Sugarcane Bagasse Ash As Pozzolona

    Directory of Open Access Journals (Sweden)

    P V Rambabu

    2015-11-01

    Full Text Available With increasing demand and consumption of cement, researchers and scientist are in search of developing alternate binders that are eco friendly and contribute towards waste management. The utilization of industrial and agricultural waste produced by industrial processes has been the focus on waste reduction. One of the agro waste sugarcane bagasse ash (SCBA which is a fibrous waste product obtained from sugar mills as byproduct is taken for study area. This experimental and analytical study investigates the durability of M35 concrete mix using Ordinary Portland Cement and Sugarcane Bagasse Ash as partial replacement in Ordinary Portland Cement. Sugarcane Bagasse Ash was obtained by burning of Sugarcane at 700 to 800 degree Centigrade in sugar refining industry, Bagasse Ash obtained from burning was grounded until the particles passing the 90 micron sieve. The disposal of this material is already causing environmental problems around the sugar factories. In this project objective is to study the influence of partial replacement of Portland cement with sugarcane bagasse ash in concrete subjected to different acidic Environments. The variable factors considered in this study were concrete grade of M35 & curing periods of 28, 60, 90 days of the concrete specimens in 1%, 3%, and 5% of hydrochloric acid in water for curing the specimens. Bagasse ash has been partially replaced in the ratio of 0%, 5%, 6%, 7%, 8%, 9%, and 10% by weight.

  9. Acid and enzymatic hydrolysis to recover reducing sugars from cassava bagasse: an economic study

    Directory of Open Access Journals (Sweden)

    Woiciechowski Adenise Lorenci

    2002-01-01

    Full Text Available The objective of this work was to study the acid and enzymatic hydrolysis of cassava bagasse for the recovery of reducing sugars and to establish the operational costs. A statistical program "Statistica", based on the surface response was used to optimize the recovery of reducing sugars in both the processes. The process economics was determined considering the values of reducing sugars obtained at laboratory scale, and the operations costs of a cylindrical reactor of 1500 L, with flat walls at the top and bottom. The reactor was operated with 150 kg of cassava bagasse and 1350 kg of water. The yield of the acid hydrolysis was 62.4 g of reducing sugars from 100 g of cassava bagasse containing 66% starch. It represented 94.5% of reducing sugar recovery. The yield of the enzymatic hydrolysis was 77.1 g of reducing sugars from 120 g of cassava bagasse, which represented 97.3% of reducing sugars recovery. Concerning to the time, a batch of acid hydrolysis required 10 minutes, plus the time to heat and cool the reactor, and a batch of the enzymatic hydrolysis needed 25 hours and 20 minutes, plus the time to heat and to cool the reactor. Thus, the acid hydrolysis of 150 kg of cassava bagasse required US$ 34.27, and the enzymatic hydrolysis of the same amount of cassava bagasse required US$ 2470.99.

  10. Combined effects of sugarcane bagasse extract and Zinc(II) ions on the growth and bioaccumulation properties of yeast isolates.

    OpenAIRE

    Geetanjali Basak; CHARUMATHI D; NILANJANA DAS

    2011-01-01

    Bioaccumulation of zinc(II) ions by yeast isolates viz. Candida rugosa and Cryptococcus laurentii was investigated in different growth media. Both the isolates showed maximum bioaccumulation of zinc(II) in the medium prepared from sugarcane bagasse extract. The growth and zinc(II) bioaccumulation properties of yeasts in sugar cane bagasse extract were tested as a function of pH, temperature and initial metal concentrations. The combined effects of sugar extracted from bagasse and initial zinc...

  11. Characterization and evaluation of coconut aroma produced by Trichoderma viride EMCC-107 in solid state fermentation on sugarcane bagasse

    OpenAIRE

    Fadel,Hoda Hanem Mohamed; Mahmoud,Manal Gomaa; Asker,Mohsen Mohamed Selim; Lotfy,Shereen Nazeh

    2015-01-01

    Background Sugarcane bagasse was shown to be an adequate substrate for the growth and aroma production by Trichoderma species. In the present work the ability of Trichoderma viride EMCC-107 to produce high yield of coconut aroma in solid state fermentation (SSF) by using sugarcane bagasse as solid substrate was evaluated. The produced aroma was characterized. Results Total carbohydrates comprised the highest content (43.9% w/w) compared with the other constituents in sugarcane bagasse. The se...

  12. Analysis of Lignin-Polysaccharide Complexes Formed during Grass Lignin Degradation by Cultures of Pleurotus Species.

    Science.gov (United States)

    Gutierrez, A; Bocchini, P; Galletti, G C; Martinez, A T

    1996-06-01

    A brown material, precipitable with ethanol, was formed during wheat straw and lignin degradation by liquid cultures of different species of Pleurotus. Fourier transform infrared spectroscopy and cross-polarization and magic-angle-spinning (sup13)C nuclear magnetic resonance spectroscopy showed that most of the precipitable material was formed from exopolysaccharide secreted by the fungus but it also contained an aromatic fraction. The results of acid hydrolysis, methylation analysis, and Smith degradation indicated that the major exopolysaccharide produced by these fungi is a (1(symbl)3)-(beta)-glucan branched at C-6 every two or three residues along the main chain. The presence of lignin or straw in the culture medium had little effect on the composition and structure of the extracellular polysaccharide. Cross-polarization and magic-angle-spinning (sup13)C nuclear magnetic resonance spectroscopy provided an estimation of the aromatic content of the lignin-polysaccharide complexes, assigning 20% of the total (sup13)C signal in the material recovered from cultures of Pleurotus eryngii in lignin medium to aromatic carbon. Analytical pyrolysis indicated that the aromatic fractions of the lignin-polysaccharide complexes were derived from lignin, since products characteristic of pyrolytic breakdown of H (p-hydroxyphenylpropane), G (guaiacylpropane), and S (syringylpropane) lignin units were identified. These complexes cannot be fractionated by treatment with polyvinylpyrrolidone or extraction with lignin solvents, suggesting that the two polymers were chemically linked. Moreover, differences in composition with respect to the original lignin indicated that this macromolecule was modified by the fungi during the process of formation of the lignin-polysaccharide complexes.

  13. Metadata and Buckets in the Smart Object, Dumb Archive (SODA) Model

    Science.gov (United States)

    Nelson, Michael L.; Maly, Kurt; Croom, Delwin R., Jr.; Robbins, Steven W.

    2004-01-01

    We present the Smart Object, Dumb Archive (SODA) model for digital libraries (DLs), and discuss the role of metadata in SODA. The premise of the SODA model is to "push down" many of the functionalities generally associated with archives into the data objects themselves. Thus the data objects become "smarter", and the archives "dumber". In the SODA model, archives become primarily set managers, and the objects themselves negotiate and handle presentation, enforce terms and conditions, and perform data content management. Buckets are our implementation of smart objects, and da is our reference implementation for dumb archives. We also present our approach to metadata translation for buckets.

  14. Matriz termofixa fenólica em compósitos reforçados com fibras de bagaço de cana-de-açúcar Thermoset phenolic matrix in sugar cane bagasse fiber-reinforced composites

    Directory of Open Access Journals (Sweden)

    Jane Maria F. de Paiva

    1999-06-01

    Full Text Available Neste trabalho, a lignina extraída pelo processo organossolve do bagaço de cana-de-açúcar substituiu parcialmente fenol (40% em massa em matrizes termofixas reforçadas com fibras curtas de bagaço de cana-de-açúcar (30, 40, 50, 60 e 70%, v/v. Os compósitos obtidos foram caracterizados por TG, DSC, DMTA, Resistência ao Impacto Charpy, Dureza Shore D. Os resultados obtidos mostraram ser viável a substituição de fenol por lignina em matrizes fenólicas. No entanto, para que se obtenha compósitos com propriedades compatíveis com às exigidas para aplicações industriais, modificações devem ser feitas: modificação de fibras por meio de reações químicas, diversificação do comprimento das fibras vegetais, realização de etapas de cura em temperaturas superiores as consideradas no presente trabalho.In this work the performance of thermoset phenolic/sugar cane bagasse composites were ascertained as a function of fiber content and matrix modification. The matrix was modified by using lignin, extracted from sugar cane bagasse, as a partial (40% wt phenol substitute. The thermoset polymer matrices and related composites were compression moulded and the products were characterized by TG, DSC, DMTA, Impact Strength, Shore D Hardness. Our results indicate that phenol can be substituted by lignin in the synthesis of phenolic resins. However, further work is necessary if one is to obtain composites complying with the performance demanded for industrial applications. In this case, chemical modification of the fibers, varying lengths of the vegetables fibers and cure steps at higher temperatures than the ones considered here must be performed.

  15. Comprehensive utilization of glycerol from sugarcane bagasse pretreatment to fermentation.

    Science.gov (United States)

    Jiang, Liqun; Zheng, Anqing; Zhao, Zengli; He, Fang; Li, Haibin

    2015-11-01

    In this study, the effects of glycerol pretreatment on subsequent glycerol fermentation and biomass fast pyrolysis were investigated. The liquid fraction from the pretreatment process was evaluated to be feasible for fermentation by Paenibacillus polymyxa and could be an economic substrate. The pretreated biomass was further utilized to obtain levoglucosan by fast pyrolysis. The pretreated sugarcane bagasse exhibited significantly higher levoglucosan yield (47.70%) than that of un-pretreated sample (11.25%). The promotion could likely be attributed to the effective removal of alkali and alkaline earth metals by glycerol pretreatment. This research developed an economically viable manufacturing paradigm to utilize glycerol comprehensively and enhance the formation of levoglucosan effectively from lignocellulose.

  16. Sorption of 2,4-dinitroanisole (DNAN) on lignin

    Institute of Scientific and Technical Information of China (English)

    Rabih Saad; Zorana Radovic-Hrapovic; Behzad Ahvazi; Sonia Thiboutot; Guy Ampleman; Jalal Hawari

    2012-01-01

    The present study describes the use of two commercially available lignins,namely,alkali and organosolv lignin,for the removal of 2,4-dinitroanisole (DNAN),a chemical widely used by the military and the dye industry,from water.Sorption of DNAN on both lignins reached equilibrium within 10 hr and followed pseudo second-order kinetics with sorption being faster with alkali than with organosolv lignin,i.e.k2 10.3 and 0.3 g/(mg.hr),respectively.In a separate study we investigated sorption of DNAN between 10 and 40℃ and found that the removal of DNAN by organosolv lignin increased from 0.8 to 7.5 mg/g but reduced slightly from 8.5 to 7.6 mg/g in the case of alkali lignin.Sorption isotherms for either alkali or organosolv lignin best fitted Freundlich equation with enthalpy of formation,△H0 equaled to 14 or 80 kJ/mol.To help understand DNAN sorption mechanisms we characterized the two lignins by elemental analysis,BET nitrogen adsorption-desorption and 31p NMR.Variations in elemental compositions between the two lignins indicated that alkali lignin should have more sites (O- and S-containing functionalities) for H-bonding.The BET surface area and calculated total pore volume of alkali lignin were almost 10 times greater than that of organosolv lignin suggesting that alkali lignin should provide more sites for sorption.31p NMR showed that organosolv lignin contains more phenolic -OH groups than alkali lignin,i.e.,70% and 45%,respectively.The variations in the type of OH groups between the two lignins might have affected the strength of H-bonding between DNAN and the type of lignin used.

  17. Sorption of 2,4-dinitroanisole (DNAN) on lignin.

    Science.gov (United States)

    Saad, Rabih; Radovic-Hrapovic, Zorana; Ahvazi, Behzad; Thiboutot, Sonia; Ampleman, Guy; Hawari, Jalal

    2012-01-01

    The present study describes the use of two commercially available lignins, namely, alkali and organosolv lignin, for the removal of 2,4-dinitroanisole (DNAN), a chemical widely used by the military and the dye industry, from water. Sorption of DNAN on both lignins reached equilibrium within 10 hr and followed pseudo second-order kinetics with sorption being faster with alkali than with organosolv lignin, i.e. k2 10.3 and 0.3 g/(mg x hr), respectively. In a separate study we investigated sorption of DNAN between 10 and 40 degrees C and found that the removal of DNAN by organosolv lignin increased from 0.8 to 7.5 mg/g but reduced slightly from 8.5 to 7.6 mg/g in the case of alkali lignin. Sorption isotherms for either alkali or organosolv lignin best fitted Freundlich equation with enthalpy of formation, deltaH0 equaled to 14 or 80 kJ/mol. To help understand DNAN sorption mechanisms we characterized the two lignins by elemental analysis, BET nitrogen adsorption-desorption and 31P NMR. Variations in elemental compositions between the two lignins indicated that alkali lignin should have more sites (O- and S-containing functionalities) for H-bonding. The BET surface area and calculated total pore volume of alkali lignin were almost 10 times greater than that of organosolv lignin suggesting that alkali lignin should provide more sites for sorption. 31P NMR showed that organosolv lignin contains more phenolic -OH groups than alkali lignin, i.e., 70% and 45%, respectively. The variations in the type of OH groups between the two lignins might have affected the strength of H-bonding between DNAN and the type of lignin used.

  18. Reductive Catalytic Fractionation of Corn Stover Lignin

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Eric M.; Katahira, Rui; Reed, Michelle; Resch, Michael G.; Karp, Eric M.; Beckham, Gregg T.; Román-Leshkov, Yuriy

    2016-12-05

    Reductive catalytic fractionation (RCF) has emerged as an effective biomass pretreatment strategy to depolymerize lignin into tractable fragments in high yields. We investigate the RCF of corn stover, a highly abundant herbaceous feedstock, using carbon-supported Ru and Ni catalysts at 200 and 250 degrees C in methanol and, in the presence or absence of an acid cocatalyst (H3PO4 or an acidified carbon support). Three key performance variables were studied: (1) the effectiveness of lignin extraction as measured by the yield of lignin oil, (2) the yield of monomers in the lignin oil, and (3) the carbohydrate retention in the residual solids after RCF. The monomers included methyl coumarate/ferulate, propyl guaiacol/syringol, and ethyl guaiacol/syringol. The Ru and Ni catalysts performed similarly in terms of product distribution and monomer yields. The monomer yields increased monotonically as a function of time for both temperatures. At 6 h, monomer yields of 27.2 and 28.3% were obtained at 250 and 200 degrees C, respectively, with Ni/C. The addition of an acid cocatalysts to the Ni/C system increased monomer yields to 32% for acidified carbon and 38% for phosphoric acid at 200 degrees C. The monomer product distribution was dominated by methyl coumarate regardless of the use of the acid cocatalysts. The use of phosphoric acid at 200 degrees C or the high temperature condition without acid resulted in complete lignin extraction and partial sugar solubilization (up to 50%) thereby generating lignin oil yields that exceeded the theoretical limit. In contrast, using either Ni/C or Ni on acidified carbon at 200 degrees C resulted in moderate lignin oil yields of ca. 55%, with sugar retention values >90%. Notably, these sugars were amenable to enzymatic digestion, reaching conversions >90% at 96 h. Characterization studies on the lignin oils using two-dimensional heteronuclear single quantum coherence nuclear magnetic resonance and gel permeation chromatrography revealed

  19. Mathematical modeling of controlled-release systems of herbicides using lignins as matrices. A review.

    Science.gov (United States)

    Oliveira, S C; Pereira, F M; Ferraz, A; Silva, F T; Gonçalves, A R

    2000-01-01

    The herbicides applied in soils can be easily lost, owing to leaching, volatilization, and bio- and photodegradation. Controlled-release systems using polymeric matrices claim to solve these problems. The movement of the herbicides in the soil is also an important phenomenon to be studied in order to evaluate the loss processes. The development of mathematical models is a relevant requirement for simulation and optimization of such systems. This study reviews mathematical models as an initial step for modeling data obtained for controlled-release systems of herbicides (diuron, 2,4-dichlorophenoxyacetic acid, and ametryn) using sugarcane bagasse lignin as a polymeric matrix. The release kinetic studies were carried out using several acceptor systems including a water bath, soil, and soil-packed columns. Generally, these models take into account phenomena such as unsteady-state mass transfer by diffusion (Fick's law) and convection, consumption by several processes, and partitioning processes, resulting in partial differential equations with respect to time and space variables.

  20. Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization.

    Science.gov (United States)

    Shuai, Li; Amiri, Masoud Talebi; Questell-Santiago, Ydna M; Héroguel, Florent; Li, Yanding; Kim, Hoon; Meilan, Richard; Chapple, Clint; Ralph, John; Luterbacher, Jeremy S

    2016-10-21

    Practical, high-yield lignin depolymerization methods could greatly increase biorefinery productivity and profitability. However, development of these methods is limited by the presence of interunit carbon-carbon bonds within native lignin, and further by formation of such linkages during lignin extraction. We report that adding formaldehyde during biomass pretreatment produces a soluble lignin fraction that can be converted to guaiacyl and syringyl monomers at near theoretical yields during subsequent hydrogenolysis (47 mole % of Klason lignin for beech and 78 mole % for a high-syringyl transgenic poplar). These yields were three to seven times those obtained without formaldehyde, which prevented lignin condensation by forming 1,3-dioxane structures with lignin side-chain hydroxyl groups. By depolymerizing cellulose, hemicelluloses, and lignin separately, monomer yields were between 76 and 90 mole % for these three major biomass fractions. Copyright © 2016, American Association for the Advancement of Science.

  1. Oxidation of wheat straw lignin by fungal lignin peroxidase, manganese peroxidase and laccase: A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Ingo, M.J.; Kurek, B. [Laboratorie de Chimie Biologique, Thiverval-Grignon (France)

    1996-10-01

    Lignin peroxidase (LiP), manganese peroxidase (MnP) from Phanerochaete chrysosporium and laccase from Pleurotus eryngii were separately used to degrade alkali wheat straw lignin (AL). In order to characterize the catalytic action of the different enzymes, the chemical structure and the hydrodynamic properties of the treated lignin were analyzed by thioacidolysis-gas chromatography and molecular size exclusion chromatography. The results confirmed that only LiP was able to degrade guiacyl (G) and syringyl (S) structures in non-phenolic methylated lignins. However, provided that some phenolic terminal structures are present, MnP and laccase were able to degrade the non-phenolic portion of the polymer linked by {beta}-O-4 alkyl aryl ether bonds. This suggested that the oxidative reactions catalyzed in alkali straw lignin could progress through bond cleavages generating phenoxy radicals. The molecular size distribution of both thioacidolysis products and the oxidized polymer showed that AL underwent condensation side-reactions regardless of the enzyme treatment, but only LiP oxidation led to the increase in the hydrodynamic volume of the recovered lignin. This indicated that modification of enzymes by bonding patterns in lignin is not always associated with alterations in the spatial network of the polymer.

  2. Altered processing of sweet taste in the brain of diet soda drinkers

    Science.gov (United States)

    Green, Erin; Murphy, Claire

    2012-01-01

    Artificially sweetened beverage consumption has been linked to obesity, and it has been hypothesized that considerable exposure to nonnutritive sweeteners may be associated with impaired energy regulation. The reward system plays an integral role in modulating energy intake, but little is known about whether habitual use of artificial sweetener (i.e., diet soda consumption) may be related to altered reward processing of sweet taste in the brain. To investigate this, we examined fMRI response after a 12-hour fast to sucrose (a nutritive sweetener) and saccharin (a nonnutritive sweetener) during hedonic evaluation in young adult diet soda drinkers and non-diet soda drinkers. Diet soda drinkers demonstrated greater activation to sweet taste in the dopaminergic midbrain (including ventral tegmental area) and right amygdala. Saccharin elicited a greater response in the right orbitofrontal cortex (Brodmann Area 47) relative to sucrose in non-diet soda drinkers. There was no difference in fMRI response to the nutritive or nonnutritive sweetener for diet soda drinkers. Within the diet soda drinkers, fMRI activation of the right caudate head in response to saccharin was negatively associated with the amount of diet sodas consumed per week; individuals who consumed a greater number of diet sodas had reduced caudate head activation. These findings suggest that there are alterations in reward processing of sweet taste in individuals who regularly consume diet soda, and this is associated with the degree of consumption. These findings may provide some insight into the link between diet soda consumption and obesity. PMID:22583859

  3. Bubbling over: soda consumption and its link to obesity in California.

    Science.gov (United States)

    Babey, Susan H; Jones, Malia; Yu, Hongjian; Goldstein, Harold

    2009-09-01

    Background The prevalence of overweight and obesity has increased dramatically in both adults and children in the last three decades in the n California, 62% of adolescents ages 12-17 and 41% of children ages 2-11 drink at least one soda or other sweetened beverage every day. In addition, 24% of adults drink at least one soda or other sweetened beverage on an average day. Adults who drink soda occasionally (not every day) are 15% more likely to be overweight or obese, and adults who drink one or more sodas per day are 27% more likely to be overweight or obese than adults who do not drink soda, even when adjusting for poverty status and race/ethnicity. This policy brief, produced collaboratively by the California Center for Public Health Advocacy and the UCLA Center for Health Policy Research, examines soda consumption in California by cities and counties using data from the 2005 California Health Interview Survey (CHIS 2005). In addition, the brief investigates whether there is an association between soda consumption and the prevalence of overweight and obesity. There are major differences in soda consumption rates by geographic area in California, suggesting that social and environmental factors affect the consumption of soda. Also, the prevalence of overweight and obesity is higher among those who drink one or more sodas or other sweetened beverages every day than among those who do not consume these soft drinks. Establishing public policies that focus on reducing soda consumption could contribute to reversing California's increasing overweight and obesity problem.

  4. PYROLYSIS KINETICS OF WASHED PRECIPITATED LIGNIN

    Directory of Open Access Journals (Sweden)

    Christina Gustafsson

    2009-02-01

    Full Text Available This article describes the pyrolysis behavior of precipitated washed lignin in a Laminar Entrained Flow Reactor between 700 and 1000°C and at different residence times. Lignin was precipitated by acidification of softwood black liquor using CO2. After acid washing, the solid material was dried and sieved (80-100 μm. This material was then fed into the reactor at a rate of about 0.1 g/min. The formed gases were analyzed with respect to CO, CO2, and CH4, and char was collected and weighed. A traditional first order Arrhenius kinetic expression, based on the temperature of the particles with respect to residence time, was adapted to the experimental results. The activation energy was found to be 32.1 kJ/mol. The low ash content in the washed lignin gave a very low solid material residue after the reactor.

  5. Mechanochemical Lignin-Mediated Strecker Reaction

    Directory of Open Access Journals (Sweden)

    Saumya Dabral

    2017-01-01

    Full Text Available A mechanochemical Strecker reaction involving a wide range of aldehydes (aromatic, heteroaromatic and aliphatic, amines, and KCN afforded a library of α-aminonitriles upon mechanical activation. This multicomponent process was efficiently activated by lignocellulosic biomass as additives. Particularly, commercially available Kraft lignin was found to be the best activator for the addition of cyanide to the in situ formed imines. A comparative study of the 31P-NMR (Nuclear Magnetic Resonance along with IR (Infrared data analysis for the Kraft lignin and methylated Kraft lignin samples ascertained the importance of the free hydroxyl groups in the activation of the mechanochemical reaction. The solvent-free mechanochemical Strecker reaction was then coupled with a lactamization process leading to the formation of the N-benzylphthalimide (5a and the isoindolinone derivative 6a.

  6. Assessment of soda ash calcination treatment of Turkish trona ore

    Directory of Open Access Journals (Sweden)

    Gezer Sibel

    2016-01-01

    Full Text Available Trona is relatively rare, non-metallic mineral, Na2CO3 · NaHCO3 · 2H2O. The pure material contains 70.3% sodium carbonate and by calcination the excess CO2 and water can be driven off, yielding natural soda ash. The terms soda ash and sodium carbonate are used interchangeably. Trona calcining is a key process step in production of soda ash (sodium carbonate anhydrate from the relatively cheap trona ore. The calcination reaction may proceeds in a sequence of steps. Depending on the conditions, it may result in formation of either sodium carbonate monohydrate (Na2CO3 · H2O, sodium sesquicarbonate or weigschederite (Na2CO3 · 3NaHCO3. The Beypazarı Turkish trona deposit is the second largest deposit in the world with the content of 84% trona. The decomposition of trona appeared to be a single stage process across the temperature range studied (150-200 °C with the representative samples of different size fractions in the draught up metallurgical furnace. The optimum particle size and calcination time were −6.35 mm and 30 minutes, respectively, at calcination temperature of 175 °C in a metallurgical furnace. Microwave-induced dry calcination of trona was possible and 5 minutes of calcination time at a power level of 900 was sufficient for complete calcination of −6.35 mm feed. This includes short time calcinations with the goal of improving economics and simplifying the thermal process.

  7. Lignin as a renewable aromatic resource for the chemical industry

    OpenAIRE

    Gosselink, R.J.A.

    2011-01-01

    Valorization of lignin plays a key role in the further development of lignocellulosic biorefinery processes for biofuels and biobased materials production. Today’s increased demand for alternatives to fossil carbon-based products expands the interest and the need to create added value to the unconverted lignin fraction. The aim of the research was to study the potential of lignin to become a renewable aromatic resource for the chemical industry. Lignin can be considered as an abundantly...

  8. Tratamiento de sodas gastadas sulfhídricas

    Directory of Open Access Journals (Sweden)

    Alejandro Fierro Franco

    2011-02-01

    Full Text Available Una solución práctica a un problema de contaminación, en el cual se cumplen más de los objetivos previstos ya que la "Joda gastada" se puede reutilizar en varias plantas. Para este fin se realizó una caracterización de las "sodas gastadas sulfhidricas" y tres tratamientos a nivel de laboratorio y planta piloto: neutralización, aireación catalizada y oxidación catalizada.

  9. Improvement in hardness of soda-lime-silica glass

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Riya; De, Moumita; Roy, Sudakshina; Dey, Arjun; Biswas, Sampad K.; Middya, Tapas Ranjan; Mukhopadhyay, Anoop K. [CSIR-Central Glass and Ceramic Research Institute, Kolkata-700032, CSIR (India); Department of Physics, Jadavpur University, Kolkata-700032 (India); CSIR-Central Glass and Ceramic Research Institute, Kolkata-700032, CSIR (India)

    2012-06-05

    Hardness is a key design parameter for structural application of brittle solids like glass. Here we report for the first time the significant improvement of about 10% in Vicker's hardness of a soda-lime-silica glass with loading rate in the range of 0.1-10 N.s{sup -1}. Corroborative dark field optical and scanning electron microscopy provided clue to this improvement through evidence of variations in spatial density of shear deformation band formation as a function of loading rate.

  10. Radical Nature of C-Lignin

    Energy Technology Data Exchange (ETDEWEB)

    Berstis, Laura; Elder, Thomas; Crowley, Michael; Beckham, Gregg T.

    2016-10-03

    The recently discovered lignin composed of caffeoyl alcohol monolignols or C-lignin is particularly intriguing given its homogeneous, linear polymeric structure and exclusive benzodioxane linkage between monomers. By virtue of this simplified chemistry, the potential emerges for improved valorization strategies with C-lignin relative to other natural heterogeneous lignins. To better understand caffeoyl alcohol polymers, we characterize the thermodynamics of the radical recombination dimerization reactions forming the benzodioxane linkage and the bond dissociation into radical monolignol products. These properties are also predicted for the cross-coupling of caffeoyl alcohol with the natural monolignols, coniferyl alcohol, sinapyl alcohol, and p-coumaryl alcohol, in anticipation of polymers potentially enabled by genetic modification. The average BDEs for the C-lignin benzodioxane ..alpha..- and ..beta..-bonds are 56.5 and 63.4 kcal/mol, respectively, with similar enthalpies for heterodimers. The BDE of the ..alpha..-bond within the benzodioxane linkage is consistently greater than that of the ..beta..-bond in all dimers of each stereochemical arrangement, explained by the ability the ..alpha..-carbon radical generated to delocalize onto the adjacent phenyl ring. Relative thermodynamics of the heterodimers demonstrates that the substituents on the phenyl ring directly neighboring the bond coupling the monolignols more strongly impact the dimer bond strengths and product stability, compared to the substituents present on the terminal phenyl ring. Enthalpy comparisons furthermore demonstrate that the erythro stereochemical configurations of the benzodioxane bond are slightly less thermodynamically stable than the threo configurations. The overall differences in strength of bonds and reaction enthalpies between stereoisomers are generally found to be insignificant, supporting that postcoupling rearomatization is under kinetic control. Projecting the lowest

  11. Chemical composition of elephant grass silages supplemented with different levels of dehydrated cashew bagasse

    Directory of Open Access Journals (Sweden)

    Danillo Glaydson Farias Guerra

    2016-04-01

    Full Text Available The objective of the present study was to evaluate the chemical composition of elephant grass silages supplemented with different levels dried cashew bagasse (DCB. Our experiment used a randomized design replicated four times, each replicate consisting of the following five treatments: 100% elephant grass; 95% elephant grass + 5% DCB; 90% elephant grass + 10% DCB; 85% elephant grass + 15% DCB; and 80% elephant grass + 20% DCB. The elephant grass was cut manually to a residual height of 5 cm at 80 days of age, and cashew bagasse was obtained from the processing of cashew stalks used in fruit pulp manufacturing in Mossoró/RN. Plastic buckets were used as experimental silos, and 90 days after ensiling the experimental silos were opened and the contents analyzed. The addition of dried cashew bagasse to silage linearly increased the levels of dried matter and crude protein by 0.59% and 0.13%, respectively, for each 1% addition (P < 0.05. The neutral detergent fiber and acid detergent content of the silages was reduced by 0.22% and 0.09%, respectively, for each 1% addition of the bagasse. The total carbohydrate content was not influenced by the bagasse addition (P > 0.05, and averaged 82.29%. The levels of non-fiber carbohydrate showed linear growth (P < 0.05 as the dehydrated cashew bagasse was added, and pH and ammoniacal nitrogen levels were reduced. The addition of the dehydrated bagasse to elephant grass silage improves its chemical composition, and it can be effectively added up to the level of 20%.

  12. Value-added of used cooking oil using noni (Morinda citrofilia) extract and bagasse

    Science.gov (United States)

    Rahayu, Sri; Supriyatin

    2017-08-01

    This study aimed to investigate the effect of noni extract and bagasse to the number of free fatty acids and peroxide on used cooking oil. This study used a completely randomized design with factorial experiment consisting of two factors: noni extract and administration bagasse. The oil used was cooking oil that has been used 3 times to fry catfish. The study was conducted in the laboratory of Biochemistry, Department ofBiology Science UNJ. Data was analyzed by 2-way ANOVA (α Oil fortification analysis result in negative value of vit A, D and E on cooking oil used. Preliminary test results showed that the used cooking oil on catfish 3 times frying has a peroxide value of 20.2 MeK O2/kg and the number of free fatty acids of 2.2%, which is already quite high and out of SNI limit. This basis the reason of usingthe oil as a sample. Combination of noni and bagasse applied on cooking oil has shown the lowest peroxide value (0.533 mg-equivalen peroxide per kg sample (MeK O2/kg)) compared with administration of bagasse (0.8 MeK O2/kg) and noni alone (0.67 MeK O2/kg). Giving noni and bagasse also figured lower fatty acids (1,878%) compared to administration of noni (1.94%) and bagasse (2,191%) only on used cooking oil. Statistical analysis shows p cooking oil. It can be concluded that the administration of noni extract and bagasse gave effect on free fatty acids and peroxide on used oil.

  13. Lignin removal and benzene-alcohol extraction effects on lignin measurements of the hydrothermal pretreated bamboo substrate.

    Science.gov (United States)

    Ma, X J; Cao, S L; Yang, X F; Lin, L; Chen, L H; Huang, L L

    2014-01-01

    Lignin content of hydrothermal pretreated bamboo chips was determined by the two methods: TAPPI standard method (222om-06) and TAPPI standard method without benzene-alcohol extraction (BAE). The results showed that including BAE resulted in lower Klason lignin (KL) and acid soluble lignin (ASL) measurements in the prehydrolyzed substrate, that is to say, BAE removed parts of KL and ASL. Therefore, the TAPPI standard method should be modified by omitting the BAE for lignin measurements of pretreated substrate. The following lignin removal analysis suggested that lignin was removed from the bamboo substrate during pretreatment by a combination of degradation reaction and deconstruction; thereafter the pseudo lignin generated in the hydrothermal pretreatment and condensation reaction between the lignin fragments accounted for the later KL increase. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Pyrolysis of wheat straw-derived organosolv lignin

    NARCIS (Netherlands)

    Wild, P.J. de; Huijgen, W.J.J.; Heeres, H.J.

    2012-01-01

    The cost-effectiveness of a lignocellulose biorefinery may be improved by developing applications for lignin with a higher value than application as fuel. We have developed a pyrolysis based lignin biorefinery approach, called LIBRA, to transform lignin into phenolic bio-oil and biochar using bubbli

  15. Diesel-soluble lignin oils and methods of their production

    DEFF Research Database (Denmark)

    2016-01-01

    Solvent consumption in supercritical ethanol, propanol or butanol treatment of either refined pre-extracted lignin or comparatively impure lignin-rich solid residual from hydrothermally pretreated lignocellulosic biomass can be minimized by conducting the reaction at very high loading of lignin...

  16. Analytical methods for lignin characterization - Differential scanning calorimetry

    NARCIS (Netherlands)

    Koullas, D.P.; Koukios, E.G.; Avgerinos, E.; Abaecherli, A.; Gosselink, R.; Vasile, C.; Lehnen, R.; Saake, B.; Suren, J.

    2006-01-01

    Results of a round robin on lignin thermal analyses are reported. Six laboratories have conducted thermal analyses of four lignin types to determine their cp values and softening points, and to study the thermal behaviour, materials endo- and exotherms included. The lignin types examined were wood

  17. Genetic engineering of syringyl-enriched lignin in plants

    Science.gov (United States)

    Chiang, Vincent Lee; Li, Laigeng

    2004-11-02

    The present invention relates to a novel DNA sequence, which encodes a previously unidentified lignin biosynthetic pathway enzyme, sinapyl alcohol dehydrogenase (SAD) that regulates the biosynthesis of syringyl lignin in plants. Also provided are methods for incorporating this novel SAD gene sequence or substantially similar sequences into a plant genome for genetic engineering of syringyl-enriched lignin in plants.

  18. Genetics and chemistry of lignin degradation by Streptomyces

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, D.L.

    1992-01-01

    Our research goal was to define the involvement of lignin peroxidases and other extracellular enzymes in lignin degradation by Streptomyces. We examined the biochemistry and genetics of lignin degrading enzyme production by several strains of Streptomyces. The lignin peroxidase ALiP-P3 of S. viridosporus was characterized kinetically and its activity optimized for oxidation of 2,4-dichlorophenol and vanillyl-acetone. Sensitive spectrophotometric assays were developed for monitoring oxidation of these substrates. ALiP-P3 reaction chemistry was examined using both spectrophotometric assays and gas chromatography/mass spectroscopy. Results showed that the enzyme oxidizes phenolic lignin substructure models in strong preference to nonphenolic ones. The peroxidase was also shown to depolymerize native lignin. We also cloned the ALip-P3 gene S. lividans in plasmid vector pIJ702. The cloned gene was partially sequenced, We also immunologically characterized the lignin peroxidase of S. viridosporus T7A and showed it to be structurally related to peroxidases produced by other lignin-solubilizing Streptomyces, but not the the H8 lignin peroxidase of P. chrysosporium. Studies with peroxidase deficient mutants of strain T7A showed that lignin peroxidases of S. viridosporus are directly involved in the solubilization of lignin. Additional research showed that other enzymes are also probably involved in lignin solubilization, possibly including extracellular esterases.

  19. The complete nucleotide sequence and genomic characterization of tropical soda apple mosaic virus

    Science.gov (United States)

    Tropical soda apple mosaic virus (TSAMV) was first identified in tropical soda apple (Solanum viarum), a noxious weed, in Florida in 2002. This report provides the first full genome sequence of TSAMV. The full genome sequence of this virus will enable research scientists to develop additional spec...

  20. Economic impact of tropical soda apple (Solanum viarum) on Florida cattle production

    Science.gov (United States)

    A written survey administered to 3,500 Florida cattle producers in 2006 documented tropical soda apple, as the most common pasture weed across the state of Florida. Over 80% of the survey respondents reported tropical soda apple on their ranches, and over 65% declared the plant to be a major proble...

  1. Natronobacillus azotifigens gen. nov., sp. nov., an anaerobic diazotrophic haloalkaliphile from soda-rich habitats

    NARCIS (Netherlands)

    Sorokin, I.D.; Zadorina, E.V.; Kravchenko, I.K.; Boulygina, E.S.; Tourova, T.P.; Sorokin, D.Y.

    2009-01-01

    Gram-positive bacteria capable of nitrogen fixation were obtained in microoxic enrichments from soda soils in south-western Siberia, north-eastern Mongolia, and the Lybian desert (Egypt). The same organisms were obtained in anoxic enrichments with glucose from soda lake sediments in the Kulunda Step

  2. Hydrogen peroxide and caustic soda: Dancing with a dragon while bleaching

    Science.gov (United States)

    Peter W. Hart; Carl Houtman; Kolby Hirth

    2013-01-01

    When hydrogen peroxide is mixed with caustic soda, an auto-accelerating reaction can lead to generation of significant amounts of heat and oxygen. On the basis of experiments using typical pulp mill process concentration and temperatures, a relatively simple kinetic model has been developed. Evaluation of these model results reveals that hydrogen peroxide-caustic soda...

  3. Produksi Biogas dari Campuran Feses Sapi dan Ampas Tebu (Bagasse dengan Rasio C/N yang Berbeda (Biogas Production from Mixture of Dairy Manure and Bagasse with Different C/N Ratio

    Directory of Open Access Journals (Sweden)

    Trisno Saputra

    2012-02-01

    COD value decrease, pH value, biogas temperature, and total biogas volume was different among treatment. The optimal mixture was C/N ratio 30 treatment. The results indicated that bagasse could be used as material mixture in biogas production. (Key words : Biogas, Dairy manure, Bagasse, C/N ratio, Methane

  4. What contributes to excessive diet soda intake in eating disorders: appetitive drive, weight concerns, or both?

    Science.gov (United States)

    Brown, Tiffany A; Keel, Pamela K

    2013-01-01

    Excessive diet soda intake is common in eating disorders. The present study examined factors contributing to excessive intake in a sample of individuals with lifetime eating disorders based on proposed DSM-5 criteria (n = 240) and non-eating disorder controls (n = 157). Individuals with eating disorders, particularly bulimia nervosa, consumed more diet soda than controls. Eating disorder symptoms that reflect increased appetitive drive or increased weight concerns were associated with increased diet soda intake. Increased weight concerns were associated with increased diet soda intake when levels of appetitive drive were high, but not when they were low. Results highlight the importance of monitoring diet soda intake in individuals with eating disorders and may have implications for the maintenance of dysregulated taste reward processing in bulimia nervosa.

  5. Propensity of lignin to associate: light scattering photometry study with native lignins.

    Science.gov (United States)

    Contreras, Sofía; Gaspar, Armindo R; Guerra, Anderson; Lucia, Lucian A; Argyropoulos, Dimitris S

    2008-12-01

    Many studies of lignins in solution invoke association and aggregation phenomena to explain their solution behavior (e.g., reprecipitation onto pulp fibers, condensation, etc.). Following their colloidal (apparent) molecular weights in solution as a function of time allows us to explore observable dissociation phenomena. These measurements were carried out using multiple angle laser light scattering (MALLS) photometry in the static mode. The challenges and opportunities of measuring the specific refractive index increment (dn/dC) of lignin solutions and determining the kinetics of the dissociation process were thus investigated. Hardwood and softwood representative lignins were isolated, and method for their full dissolution in THF was further developed, which then lead to accurate dn/dC values being obtained as a function of time. When coupled to additional work using light scattering static measurements and Zimm plots for the same solutions, this effort offers insight into the aggregation and ensuing dissociative events that operate within the lignin macromolecules.

  6. Microbial diversity and biogeochemical cycling in soda lakes.

    Science.gov (United States)

    Sorokin, Dimitry Y; Berben, Tom; Melton, Emily Denise; Overmars, Lex; Vavourakis, Charlotte D; Muyzer, Gerard

    2014-09-01

    Soda lakes contain high concentrations of sodium carbonates resulting in a stable elevated pH, which provide a unique habitat to a rich diversity of haloalkaliphilic bacteria and archaea. Both cultivation-dependent and -independent methods have aided the identification of key processes and genes in the microbially mediated carbon, nitrogen, and sulfur biogeochemical cycles in soda lakes. In order to survive in this extreme environment, haloalkaliphiles have developed various bioenergetic and structural adaptations to maintain pH homeostasis and intracellular osmotic pressure. The cultivation of a handful of strains has led to the isolation of a number of extremozymes, which allow the cell to perform enzymatic reactions at these extreme conditions. These enzymes potentially contribute to biotechnological applications. In addition, microbial species active in the sulfur cycle can be used for sulfur remediation purposes. Future research should combine both innovative culture methods and state-of-the-art 'meta-omic' techniques to gain a comprehensive understanding of the microbes that flourish in these extreme environments and the processes they mediate. Coupling the biogeochemical C, N, and S cycles and identifying where each process takes place on a spatial and temporal scale could unravel the interspecies relationships and thereby reveal more about the ecosystem dynamics of these enigmatic extreme environments.

  7. Obesity prevention strategies: could food or soda taxes improve health?

    Science.gov (United States)

    Encarnação, R; Lloyd-Williams, F; Bromley, H; Capewell, S

    2016-03-01

    Evidence shows that one of the main causes for rising obesity rates is excessive consumption of sugar, which is due in large part to the high sugar content of most soda and juice drinks and junk foods. Worryingly, UK and global populations are consuming increasing amounts of sugary drinks and junk foods (high in salt, sugar and saturated fats). However, there is raised public awareness, and parents in particular want something to be done to curb the alarming rise in childhood obesity. Population-wide policies (i.e. taxation, regulation, legislation, reformulation) consistently achieve greater public health gains than interventions and strategies targeted at individuals. Junk food and soda taxes are supported by increasing evidence from empirical and modelling studies. The strongest evidence base is for a tax on sugar sweetened beverages, but in order to effectively reduce consumption, that taxation needs to be at least 20%. Empirical data from a number of countries which have implemented a duty on sugar or sugary drinks shows rapid, substantial benefits. In the UK, increasing evidence from recent scientific reports consistently support substantial reductions in sugar consumption through comprehensive strategies which include a tax. Furthermore, there is increasing public support for such measures. A sugar sweetened beverages tax will happen in the UK so the question is not 'If?' but 'When?' this tax will be implemented. And, crucially, which nation will get there first? England, Ireland, Scotland or Wales?

  8. 40 CFR 63.443 - Standards for the pulping system at kraft, soda, and semi-chemical processes.

    Science.gov (United States)

    2010-07-01

    ... kraft, soda, and semi-chemical processes. 63.443 Section 63.443 Protection of Environment ENVIRONMENTAL... Paper Industry § 63.443 Standards for the pulping system at kraft, soda, and semi-chemical processes. (a... operator of each pulping system using a semi-chemical or soda process subject to the requirements of...

  9. Accelerated solvent extraction of lignin from Aleurites moluccana (Candlenut) nutshells.

    Science.gov (United States)

    Klein, Andrew P; Beach, Evan S; Emerson, John W; Zimmerman, Julie B

    2010-09-22

    Lignin from candlenut shells was isolated using an ethanol-water accelerated solvent extraction method. Yields (based on Klason lignin) increased from about 14 to 33% as temperature increased from 100 to 195 °C and were also influenced by the amount of aqueous acid used to precipitate lignin from the extraction liquor. These yields were higher than could be obtained using a conventional dioxane-water acidolysis method. The resulting lignin was characterized by IR, 31P NMR, and 1H-13C HMQC NMR spectroscopic techniques. The lignin contained predominantly guaiacyl units, and both the total hydroxyl group content and phenolic hydroxyl group content were high.

  10. POTENSI MELANOTUS SP. DALAM MENDEGRADASI LIGNIN

    Directory of Open Access Journals (Sweden)

    NUNIK SULISTINAH

    2008-06-01

    Full Text Available Ten isolates of fungus were isolated from oil palm stem at oil palm plantation in Medan All of them were tested its abilities to degrade lignin. The results showed that one of them was able to grow on ligninase media and the fungi has the ability to degrade ligin. The fungi is identified as Melanotus sp.

  11. Analytical methods for lignin characterization. I. Thermogravimetry

    NARCIS (Netherlands)

    Vasile, C.; Gosselink, R.J.A.; Quintus, P.; Koukios, E.G.; Koullas, D.P.; Avgerinos, E.; Abacherli, D.A.

    2006-01-01

    The paper discusses the results of a round robin experiment initiated by the participants to "EUROLIGNIN", an EC network, meant at standardizing thermogravimetry as an useful method for the thermal characterization of lignins obtained from different sources or by different extraction methods. Five

  12. Nylon biodegradation by lignin-degrading fungi.

    OpenAIRE

    Deguchi, T; Kakezawa, M; Nishida, T

    1997-01-01

    The biodegradation of nylon by lignin-degrading fungi was investigated. The fungus IZU-154 significantly degraded nylon-66 membrane under ligninolytic conditions. Nuclear magnetic resonance analysis showed that four end groups, CHO, NHCHO, CH3, and CONH2, were formed in the biodegraded nylon-66 membranes, suggesting that nylon-66 was degraded oxidatively.

  13. Analytical methods for lignin characterization. I. Thermogravimetry

    NARCIS (Netherlands)

    Vasile, C.; Gosselink, R.J.A.; Quintus, P.; Koukios, E.G.; Koullas, D.P.; Avgerinos, E.; Abacherli, D.A.

    2006-01-01

    The paper discusses the results of a round robin experiment initiated by the participants to "EUROLIGNIN", an EC network, meant at standardizing thermogravimetry as an useful method for the thermal characterization of lignins obtained from different sources or by different extraction methods. Five l

  14. Alkaline pretreatment and the synergic effect of water and tetralin enhances the liquefaction efficiency of bagasse.

    Science.gov (United States)

    Li, Zhixia; Cao, Jiangfei; Huang, Kai; Hong, Yaming; Li, Cunlong; Zhou, Xinxin; Xie, Ning; Lai, Fang; Shen, Fang; Chen, Congjin

    2015-02-01

    Bagasse liquefaction (BL) in water, tetralin, and water/tetralin mixed solvents (WTMS) was investigated, and effects of tetralin content in WTMS, temperature, and alkaline pretreatment of bagasse on liquefaction efficiency were studied. At 300°C, bagasse conversion in WTMS with tetralin content higher than 50 wt% was 86-87 wt%, whereas bagasse conversion in water or tetralin was 67 wt% or 84 wt%, respectively. Because the solid conversion from liquefaction in WTMS with tetralin content higher than 50 wt% was always higher than that in water or tetralin at temperatures between 250 and 300°C, a synergic effect between water and tetralin is suggested. Alkaline pretreatment of bagasse resulted in significantly higher conversion and heavy oil yield from BL in water or WTMS. The effect of deoxygenation by the present liquefaction method is demonstrated by lower oxygen contents (16.01-19.59 wt%) and higher heating values (31.9-34.8 MJ/kg) in the produced oils.

  15. UTILIZATION OF BAGASSE FIBER FOR PREPARATION OF BIODEGRADABLE FLAME RETARDING COMPOSITES (BFRCS

    Directory of Open Access Journals (Sweden)

    Wenjia Han

    2010-06-01

    Full Text Available Bagasse is a renewable resource characterized by its low cost and environmental friendliness. In this work a novel technological process was proposed to make flame retarding composites (BFRCs by using bagasse fiber. The bagasse was disintegrated by twisting it up and applying high consistency refining, and then it was used to prepare BFRCs via hot pressure. Chemical groups and thermal properties of bagasse fiber were studied through the use of FTIR spectroscopy, a universal mechanical testing machine, and TGA, while properties of BFRCs were also analyzed by SEM, and the surface water resistance and burning characteristics were measured. Results showed the pyrolysis temperature of bagasse fibers to be about 273oC. Chemical groups were not changed, while the content of groups was reduced a little during the manufacturing process. The BFRCs showed good performance for water resistance, and the optimum value was 1.7g. They also had good flame retardant performance. The index of flame spread was 13.6 and the smoke index was 108, which reaches Class A by the ASTM E84-08 Standard.

  16. Production of D-lactic acid from sugarcane bagasse using steam-explosion

    Science.gov (United States)

    Sasaki, Chizuru; Okumura, Ryosuke; Asakawa, Ai; Asada, Chikako; Nakamura, Yoshitoshi

    2012-03-01

    This study investigated the production of D-lactic acid from unutilized sugarcane bagasse using steam explosion pretreatment. The optimal steam pressure for a steaming time of 5 min was determined. By enzymatic saccharification using Meicellase, the highest recovery of glucose from raw bagasse, 73.7%, was obtained at a steam pressure of 20 atm. For residue washed with water after steam explosion, the glucose recovery increased up to 94.9% at a steam pressure of 20 atm. These results showed that washing with water is effective in removing enzymatic reaction inhibitors. After steam pretreatment (steam pressure of 20 atm), D-lactic acid was produced by Lactobacillus delbrueckii NBRC 3534 from the enzymatic hydrolyzate of steam-exploded bagasse and washed residue. The conversion rate of D-lactic acid obtained from the initial glucose concentration was 66.6% for the hydrolyzate derived from steam-exploded bagasse and 90.0% for that derived from the washed residue after steam explosion. These results also demonstrated that the hydrolyzate of steam-exploded bagasse (without washing with water) contains fermentation inhibitors and washing with water can remove them.

  17. Methane production from acid hydrolysates of Agave tequilana bagasse: evaluation of hydrolysis conditions and methane yield.

    Science.gov (United States)

    Arreola-Vargas, Jorge; Ojeda-Castillo, Valeria; Snell-Castro, Raúl; Corona-González, Rosa Isela; Alatriste-Mondragón, Felipe; Méndez-Acosta, Hugo O

    2015-04-01

    Evaluation of diluted acid hydrolysis for sugar extraction from cooked and uncooked Agave tequilana bagasse and feasibility of using the hydrolysates as substrate for methane production, with and without nutrient addition, in anaerobic sequencing batch reactors (AnSBR) were studied. Results showed that the hydrolysis over the cooked bagasse was more effective for sugar extraction at the studied conditions. Total sugars concentration in the cooked and uncooked bagasse hydrolysates were 27.9 g/L and 18.7 g/L, respectively. However, 5-hydroxymethylfurfural was detected in the cooked bagasse hydrolysate, and therefore, the uncooked bagasse hydrolysate was selected as substrate for methane production. Interestingly, results showed that the AnSBR operated without nutrient addition obtained a constant methane production (0.26 L CH4/g COD), whereas the AnSBR operated with nutrient addition presented a gradual methane suppression. Molecular analyses suggested that methane suppression in the experiment with nutrient addition was due to a negative effect over the archaeal/bacterial ratio.

  18. Mathematical modeling of thin-layer drying of fermented and non-fermented sugarcane bagasse

    Energy Technology Data Exchange (ETDEWEB)

    Mazutti, Marcio A.; Zabot, Giovani; Boni, Gabriela; Skovronski, Aline; de Oliveira, Debora; Di Luccio, Marco; Oliveira, J. Vladimir; Treichel, Helen [Department of Food Engineering, URI - Campus de Erechim, P.O. Box 743, CEP 99700-000, Erechim - RS (Brazil); Rodrigues, Maria Isabel; Maugeri, Francisco [Department of Food Engineering, Faculty of Food Engineering, University of Campinas - UNICAMP, P.O. Box 6121, CEP 13083-862, Campinas - SP (Brazil)

    2010-05-15

    This work reports hot-air convective drying of thin-layer fermented and non-fermented sugarcane bagasse. For this purpose, experiments were carried out in a laboratory-scale dryer assessing the effects of solid-state fermentation (SSF) on the drying kinetics of the processing material. The fermented sugarcane bagasse in SSF was obtained with the use of Kluyveromyces marxianus NRRL Y-7571. Drying experiments were carried out at 30, 35, 40 and 45 C, at volumetric air flow rates of 2 and 3 m{sup 3} h{sup -1}. The ability of ten different thin-layer mathematical models was evaluated towards representing the experimental drying profiles obtained. Results showed that the fermented sugarcane bagasse presents a distinct, faster drying, behavior from that verified for the non-fermented material at the same conditions of temperature and volumetric air flow rate. It is shown that the fermented sugarcane bagasse presented effective diffusion coefficient values of about 1.3 times higher than the non-fermented material. A satisfactory agreement between experimental data and model results of the thin-layer drying of fermented and non-fermented sugarcane bagasse was achieved at the evaluated experimental conditions. (author)

  19. Hydrolysis of Ammonia-pretreated Sugar Cane Bagasse with Cellulase, β-Glucosidase, and Hemicellulase Preparations

    Science.gov (United States)

    Prior, Bernard A.; Day, Donal F.

    Sugar cane bagasse consists of hemicellulose (24%) and cellulose (38%), and bioconversion of both fractions to ethanol should be considered for a viable process. We have evaluated the hydrolysis of pretreated bagasse with combinations of cellulase, β-glucosidase, and hemicellulase. Ground bagasse was pretreated either by the AFEX process (2NH3: 1 biomass, 100 °C, 30 min) or with NH4OH (0.5 g NH4OH of a 28% [v/v] per gram dry biomass; 160 °C, 60 min), and composition analysis showed that the glucan and xylan fractions remained largely intact. The enzyme activities of four commercial xylanase preparations and supernatants of four laboratory-grown fungi were determined and evaluated for their ability to boost xylan hydrolysis when added to cellulase and β-glucosidase (10 filter paper units [FPU]: 20 cellobiase units [CBU]/g glucan). At 1% glucan loading, the commercial enzyme preparations (added at 10% or 50% levels of total protein in the enzyme preparations) boosted xylan and glucan hydrolysis in both pretreated bagasse samples. Xylanase addition at 10% protein level also improved hydrolysis of xylan and glucan fractions up to 10% glucan loading (28% solids loading). Significant xylanase activity in enzyme cocktails appears to be required for improving hydrolysis of both glucan and xylan fractions of ammonia pretreated sugar cane bagasse.

  20. Lignin isolation process from rice husk by alkaline hydrogen peroxide: Lignin and silica extracted

    Science.gov (United States)

    Ma'ruf, Anwar; Pramudono, Bambang; Aryanti, Nita

    2017-03-01

    Biomass is one of abundance resources in the world. Biomass consists of three main materials such as cellulose, hemicelluloses and lignin. Therefore, biomass can be referred to lignocellulosic material. Both the cellulose and hemicelluloses fractions are polymers of sugars, and thereby a potential source of fermentable sugars, or other processes that convert sugars into products. Lignin is a polymer compound which contains of phenolic compounds. Rice husk is one of biomass, which has high contain of lignin. Rice husk has special characteristics because of silica content. The aim of this paper is to analyze lignin and silica extracted during lignin isolation process of rice husk using alkaline hydrogen peroxide. Three main variables such as solvent/solid ratio, concentration of hydrogen peroxide and pH of the mixture are studied. The optimum conditions for lignin isolation are at solvent/solid ratio 9:1 ml/gr, hydrogen peroxide concentration of 1.5%v and pH of the mixture of 11.

  1. Catalytic conversion of sugarcane bagasse to cellulosic ethanol: TiO2 coupled nanocellulose as an effective hydrolysis enhancer.

    Science.gov (United States)

    Jabasingh, S Anuradha; Lalith, D; Prabhu, M Arun; Yimam, Abubekker; Zewdu, Taye

    2016-01-20

    The present study deals with the production of cellulosic ethanol from bagasse using the synthesized TiO2 coupled nanocellulose (NC-TiO2) as catalyst. Aspergillus nidulans AJSU04 cellulase was used for the hydrolysis of bagasse. NC-TiO2 at various concentrations was added to bagasse in order to enhance the yield of reducing sugars. Complex interaction between cellulase, bagasse, NC-TiO2 and the reaction environment is thoroughly studied. A mathematical model was developed to describe the hydrolysis reaction. Ethanol production from enzymatically hydrolyzed sugarcane bagasse catalyzed with NC-TiO2 was carried out using Saccharomyces cerevisiae ATCC 20602. The glucose release rates and ethanol concentrations were determined. Ethanol produced was found to be strongly dependent on pretreatment given, hydrolysis and fermentation conditions. The study confirmed the promising accessibility of NC-TiO2, for enhanced glucose production rates and improved ethanol yield.

  2. STUDY ON LIGNIN COVERAGE OF MASSON PINE FIBER

    Directory of Open Access Journals (Sweden)

    Beihai He

    2010-06-01

    Full Text Available In order to obtain the adhesion force of fiber in a paper sheet easily, the relationships between internal bonding strength (IBS and surface lignin content of masson pine CTMP treated with peracetic acid (PAA have been investigated with XPS technique, and the surface morphology of fibers was also imaged by AFM. The results showed that the extent of lignin covered on the fiber surface was two times as high as that of whole pulp lignin, and the IBS was inversely proportional to surface lignin. The relationship between IBS and lignin coverage was formulated based on the experimental data. The mutual adhesion forces, cellulose-to-cellulose and lignin-to-lignin, were calculated using these equations, and the results were 28.69 mN/m and 2.487mN/m, respectively.

  3. Reactions of Lignin Model Compounds in Ionic Liquids

    Energy Technology Data Exchange (ETDEWEB)

    Holladay, John E.; Binder, Joseph B.; Gray, Michel J.; White, James F.; Zhang, Z. Conrad

    2009-09-15

    Lignin, a readily available form of biomass, awaits novel chemistry for converting it to valuable aromatic chemicals. Recent work has demonstrated that ionic liquids are excellent solvents for processing woody biomass and lignin. Seeking to exploit ionic liquids as media for depolymerization of lignin, we investigated reactions of lignin model compounds in these solvents. Using Brønsted acid catalysts in 1-ethyl-3-methylimidazolium triflate at moderate temperatures, we obtained up to 11.6% yield of the dealkylation product guaiacol from the model compound eugenol and cleaved phenethyl phenyl ether, a model for lignin ethers. Despite these successes, acid catalysis failed in dealkylation of the unsaturated model compound 4-ethylguaiacol and did not produce monomeric products from organosolv lignin, demonstrating that further work is required to understand the complex chemistry of lignin depolymerization.

  4. Photodegradation of sugarcane bagasse fibers: influence of acetylation or grafting UV-absorber and/or hindered nitroxide radical on their photostability

    Energy Technology Data Exchange (ETDEWEB)

    Ruggiero, Reinaldo; Machado, Antonio E.H. [Universidade Federal de Uberlandia, MG (Brazil). Lab. de Fotoquimica e Quumica de Lignocelulosicos]. E-mail: reinaldo@ufu.br; Hoareau, William; Gardrat, Christian; Nourmamode, Aziz; Grelier, Stephane; Castellan, Alain [Universite Bordeaux 1, Talence (France). Lab. de Chimie des Substances Vegetales]. E-mail: a.castellan@lcsv.u-bordeaux1.fr

    2006-08-15

    Unbleached (SCB) and peroxide bleached (PB-SCB) sugarcane bagasse fibers were grafted with hydroxyphenyl benzotriazole UV absorber (1) and/or hindered nitroxide radical of piperidinyloxy type (3). PB-SCB fibers were also acetylated with acetic anhydride. The photosensitivity of the various fibers to UV light was comparatively evaluated using Lab color coordinates and by monitoring their UV-Visible diffuse reflectance spectra. SCB fibers were found to be photostable whereas PB-SCB fibers presented some sensitivity to UV light. The stability of SCB fibers was attributed to the presence of photostable para-hydroxy phenylpropane units in SCB lignin. The grafted and non-grafted SCB fibers showed similar behaviors against UV-Visible light whereas grafted PB-SCB were photostabilized by the presence of 2 or 4 or both. Acetylation of PB-SCB fibers induced photostabilization in addition to some photobleaching effect. The photobleaching was also revealed by fluorescence emission studies. As a consequence of these observations, SCB fibers might be considered to have a high potential for lignocellulosic materials to be used outdoors. (author)

  5. Lignin depolymerization by fungal secretomes and a microbial sink

    Energy Technology Data Exchange (ETDEWEB)

    Salvachúa, Davinia; Katahira, Rui; Cleveland, Nicholas S.; Khanna, Payal; Resch, Michael G.; Black, Brenna A.; Purvine, Samuel O.; Zink, Erika M.; Prieto, Alicia; Martínez, María J.; Martínez, Angel T.; Simmons, Blake A.; Gladden, John M.; Beckham, Gregg T.

    2016-08-25

    In Nature, powerful oxidative enzymes secreted by white rot fungi and some bacteria catalyze lignin depolymerization and some microbes are able to catabolize the resulting aromatic compounds as carbon and energy sources. Taken together, these two processes offer a potential route for microbial valorization of lignin. However, many challenges remain in realizing this concept, including that oxidative enzymes responsible for lignin depolymerization also catalyze polymerization of low molecular weight (LMW) lignin. Here, multiple basidiomycete secretomes were screened for ligninolytic enzyme activities in the presence of a residual lignin solid stream from a corn stover biorefinery, dubbed DMR-EH (Deacetylation, Mechanical Refining, and Enzymatic Hydrolysis) lignin. Two selected fungal secretomes, with high levels of laccases and peroxidases, were utilized for DMR-EH lignin depolymerization assays. The secretome from Pleurotus eryngii, which exhibited the highest laccase activity, reduced the lignin average molecular weight by 63% and 75% at pH 7 compared to the Mw of the control treated at the same conditions and the initial DMR-EH lignin, respectively, and was applied in further depolymerization assays as a function of time. As repolymerization was observed after 3 days of incubation, an aromatic-catabolic microbe (Pseudomonas putida KT2440) was incubated with the fungal secretome and DMR-EH lignin. These experiments demonstrated that the presence of the bacterium enhances lignin depolymerization, likely due to bacterial catabolism of LMW lignin, which may partially prevent repolymerization. In addition, proteomics was also applied to the P. eryngii secretome to identify the enzymes present in the fungal cocktail utilized for the depolymerization assays, which highlighted a significant number of glucose/ methanol/choline (GMC) oxidoreductases and laccases. Overall, this study demonstrates that ligninolytic enzymes can be used to partially depolymerize a solid, high

  6. Lignin Depolymerization by Fungal Secretomes and a Microbial Sink

    Energy Technology Data Exchange (ETDEWEB)

    Salvachua, Davinia; Katahira, Rui; Cleveland, Nicholas S.; Khanna, Payal; Resch, Michael G.; Black, Brenna A.; Purvine, Samuel O.; Zink, Erika M.; Prieto, Alicia; Martinez, Maria J.; Martinez, Angel T.; Simmons, Blake A.; Gladden, John M.; Beckham, Gregg T.

    2016-11-21

    In Nature, powerful oxidative enzymes secreted by white rot fungi and some bacteria catalyze lignin depolymerization and some microbes are able to catabolize the resulting aromatic compounds as carbon and energy sources. Taken together, these two processes offer a potential route for microbial valorization of lignin. However, many challenges remain in realizing this concept, including that oxidative enzymes responsible for lignin depolymerization also catalyze polymerization of low molecular weight (LMW) lignin. Here, multiple basidiomycete secretomes were screened for ligninolytic enzyme activities in the presence of a residual lignin solid stream from a corn stover biorefinery, dubbed DMR-EH (Deacetylation, Mechanical Refining, and Enzymatic Hydrolysis) lignin. Two selected fungal secretomes, with high levels of laccases and peroxidases, were utilized for DMR-EH lignin depolymerization assays. The secretome from Pleurotus eryngii, which exhibited the highest laccase activity, reduced the lignin average molecular weight (Mw) by 63% and 75% at pH 7 compared to the Mw of the control treated at the same conditions and the initial DMR-EH lignin, respectively, and was applied in further depolymerization assays as a function of time. As repolymerization was observed after 3 days of incubation, an aromatic-catabolic microbe (Pseudomonas putida KT2440) was incubated with the fungal secretome and DMR-EH lignin. These experiments demonstrated that the presence of the bacterium enhances lignin depolymerization, likely due to bacterial catabolism of LMW lignin, which may partially prevent repolymerization. In addition, proteomics was also applied to the P. eryngii secretome to identify the enzymes present in the fungal cocktail utilized for the depolymerization assays, which highlighted a significant number of glucose/methanol/choline (GMC) oxidoreductases and laccases. Overall, this study demonstrates that ligninolytic enzymes can be used to partially depolymerize a solid

  7. Pyrolysis of sugar cane bagasse in a wire-mesh reactor

    Energy Technology Data Exchange (ETDEWEB)

    Drummond, A.R.F.; Drummond, I.W. [Univ. of London (United Kingdom)

    1996-04-01

    Improved experimental techniques are described, using a wire mesh reactor; for determining the pyrolysis yields of lignocellulosic materials. In this apparatus pyrolysis tars are rapidly swept from the hot zone of the reactor and quenched, secondary reactions are thereby greatly diminished. Particular emphasis is placed upon the measurement of the pyrolysis yields for sugar cane bagasse, an abundant agricultural waste product. The role of the important pyrolysis parameters, peak temperature and heating rate, in defining the ultimate tar yield is investigated, with the value for bagasse being 54.6% at 500 C and 1,000 C/s. The pyrolysis yields, under similar conditions, of another biomass material, silver birch, are also reported and compared to those of bagasse.

  8. ENHANCEMENT OF OPTICAL PROPERTIES OF BAGASSE PULP BY IN-SITU FILLER PRECIPITATION

    Directory of Open Access Journals (Sweden)

    Pradeep Kumar

    Full Text Available In-situ precipitation of calcium carbonate in bagasse fibers resulted in a very significant increase in specific scattering coefficient and consequently large improvements in opacity and brightness of the handsheets made from such pulp. At the same level of filler loading, the scattering coefficient of in-situ precipitated pulp was much greater than for directly loaded pulp. In-situ precipitation of calcium carbonate caused a drop in strength properties of bagasse pulp, but such loss could be recovered to a large extent by blending with other pulps. The effect of in-situ precipitation of calcium carbonate on pulp fibers was quite different for bagasse pulp from hardwood pulp. In-situ precipitation of calcium carbonate on hardwood fibers showed neither much improvement in optical properties nor much reduction in strength properties.

  9. Hydrothermal carbonization of sugarcane bagasse via wet torrefaction in association with microwave heating.

    Science.gov (United States)

    Chen, Wei-Hsin; Ye, Song-Ching; Sheen, Herng-Kuang

    2012-08-01

    Hydrothermal carbonization of sugarcane bagasse using wet torrefaction is studied. The biomass is torrefied in water or dilute sulfuric acid solution and microwaves are employed to heat the solutions where the reaction temperature is fixed at 180 °C. The effects of acid concentration, heating time and solid-to-liquid ratio on the performance of wet torrefaction are investigated. It is found that the addition of sulfuric acid and increasing heating time are conducive to carbonizing bagasse. The calorific value of bagasse can be increased up to 20.3% from wet torrefaction. With the same improvement in calorific value, the temperature of wet torrefaction is lower than that of dry torrefaction around 100 °C, revealing that wet torrefaction is a promising method to upgrade biomass as fuel. The calorific value of torrefied biomass can be predicted well based on proximate, elemental or fiber analysis, and the last one gives the best estimation.

  10. Recycling of sugarcane bagasse ash waste in the production of clay bricks.

    Science.gov (United States)

    Faria, K C P; Gurgel, R F; Holanda, J N F

    2012-06-30

    This work investigates the recycling of sugarcane bagasse ash waste as a method to provide raw material for clay brick bodies, through replacement of natural clay by up 20 wt.%. Initially, the waste sample was characterized by its chemical composition, X-ray diffraction, differential thermal analysis, particle size, morphology and pollution potential. Clay bricks pieces were prepared, and then tested, so as to determine their technological properties (e.g., linear shrinkage, water absorption, apparent density, and tensile strength). The sintered microstructure was evaluated by scanning electron microscopy (SEM). It was found that the sugarcane bagasse ash waste is mainly composed by crystalline silica particles. The test results indicate that the sugarcane bagasse ash waste could be used as a filler in clay bricks, thus enhancing the possibility of its reuse in a safe and sustainable way.

  11. Enhancement of starting up anaerobic digestion of lignocellulosic substrate: fique's bagasse as an example.

    Science.gov (United States)

    Quintero, Mabel; Castro, Liliana; Ortiz, Claudia; Guzmán, Carolina; Escalante, Humberto

    2012-03-01

    In Colombia there are 20,000 ha of fique fields (Furcraea sp., family Agavaceae), that produce around 93,400 tons of fique's bagasse per year. These residuals are disposed into rivers and soil causing pollution. According to physicochemical characteristics, the lignocellulosic residues from fique crops (fique's bagasse) are appropriate carbon source to biogas production. Anaerobic digestion from fique's Bagasse (FB) requires a specialized microbial consortium capable of degrading its high lignocellulosic concentration. In this study, the capacities of seven microbial consortia for biomethane potential (BMP) from FB were evaluated. Inoculum of ruminal liquid achieved high hydrolytic activity (0.068 g COD/g VSS day), whereas pig waste sludge inoculum showed high methanogenic activity (0.146 g COD/g VSS day). Mixtures of these two inoculums (RL+PWS) showed the best yields for biomethane potential (0.3 m(3) CH4/Kg VS ad).

  12. Production of phenols and charcoal from bagasse by a rapid continuous pyrolysis process

    Energy Technology Data Exchange (ETDEWEB)

    Mobarak, F.; Fahmy, Y.; Schweers, W.

    1982-01-01

    Tar and charcoal could be produced in high yields from bagasse by applying a rapid continuous pyrolysis process at a relatively low temperature. The ether extractives of the pyrolytic tar and oil amounted to 9.4% based on bagasse. Phenols represented 79% of these extractives. Gas chromatographic separation showed that guaiacol and its derivatives constituted 38% of the identified simple phenols. There were much smaller amounts of syringol and none at high pyrolysis temperatures. Depithing did not reduce the ash content of the charcoal, but it yielded an environmentally clean charcoal containing practically no sulfur or nitrogen. It was necessary to remove the fine particle size fraction of the bagasse after grinding in order to reduce the ash content of the charcoal. The carbon content of the charcoal increased rapidly with increasing temperature, and reached 96% at 720/sup 0/C. The charcoal had a remarkably high adsorption capacity despite the fact that it had not been subjected to any activation treatment.

  13. Production of phenols and charcoal from bagasse by a rapid continuous pyrolysis process

    Energy Technology Data Exchange (ETDEWEB)

    Mobarak, F.; Fahmy, Y.

    1982-01-01

    Tar and charcoal could be produced in high yields from bagasse by applying a rapid continuous pyrolysis at a relatively low temperature. The ether extractives of the pyrolytic tar and oil amounted to 9.4% based on bagasse. Phenols represented 79% of these extractives. Gas chromatographic separation showed that guaiacol and its derivatives constituted 38% of the identified simple phenols. There were much smaller amounts of syringol and none at high pyrolysis temperatures. Depithing did not reduce the ash content of the charcoal, but it yielded an environmentally clean charcoal containing practically no sulfur or nitrogen. It was necessary to remove the fine particle size fraction of the bagasse after grinding in order to reduce the ash content of the charcoal. The carbon content of the charcoal increased rapidly with increasing temperature, and reached 96% at 720 degrees C. The charcoal had a remarkably high adsorption capacity despite the fact that it had not been subjected to any activation treatment.

  14. Novel seed coat lignins in the Cactaceae: structure, distribution and implications for the evolution of lignin diversity.

    Science.gov (United States)

    Chen, Fang; Tobimatsu, Yuki; Jackson, Lisa; Nakashima, Jin; Ralph, John; Dixon, Richard A

    2013-01-01

    We have recently described a hitherto unsuspected catechyl lignin polymer (C-lignin) in the seed coats of Vanilla orchid and in cacti of one genus, Melocactus (Chen et al., Proc. Natl. Acad. Sci. USA. 2012, 109, 1772-1777.). We have now determined the lignin types in the seed coats of 130 different cactus species. Lignin in the vegetative tissues of cacti is of the normal guaiacyl/syringyl (G/S) type, but members of most genera within the subfamily Cactoidae possess seed coat lignin of the novel C-type only, which we show is a homopolymer formed by endwise β-O-4-coupling of caffeyl alcohol monomers onto the growing polymer resulting in benzodioxane units. However, the species examined within the genera Coryphantha, Cumarinia, Escobaria and Mammillaria (Cactoideae) mostly had normal G/S lignin in their seeds, as did all six species in the subfamily Opuntioidae that were examined. Seed coat lignin composition is still evolving in the Cactaceae, as seeds of one Mammillaria species (M. lasiacantha) possess only C-lignin, three Escobaria species (E. dasyacantha, E. lloydii and E. zilziana) contain an unusual lignin composed of 5-hydroxyguaiacyl units, the first report of such a polymer that occurs naturally in plants, and seeds of some species contain no lignin at all. We discuss the implications of these findings for the mechanisms that underlie the biosynthesis of these newly discovered lignin types.

  15. Evaluation of sugarcane bagasse acid hydrolysate treatments for xylitol production

    Energy Technology Data Exchange (ETDEWEB)

    Gurgel, P.V.; Mancilha, I.M. [Vicosa Univ., MG (Brazil). Dept. de Tecnologia de Alimentos; Furlan, S.A.; Martinez, S.E.R. [Faculdade de Engenharia Quimica de Lorena (FAENQUIL), SP (Brazil). Centro de Biotecnologia

    1998-09-01

    Acid sugarcane bagasse hydrolysate was submitted to pH shifts in order to remove toxic compounds from the medium. The hydrolysate was treated with bases containing mono-, di- or tri-valent cations and H{sub 2}SO{sub 4}, and its performance as a fermentation medium was evaluated by the production of xylitol by Candida guilliermondii FTI 20037. The use of bases containing mono-valent cations was not an efficient method of detoxification, and the use of a tri-valent cation did not show any detectable improvement in detoxification. The treated hydrolysate recovery (in volume) is greatly affected by the utilized base. Treatment using Al(OH){sub 3} and NaOH showed the best hydrolysate recovery (87.5%), while the others presented a recovery of about 45% of the original hydrolysate volume. Considering the whole process, best results were achieved by treatment using Al(OH){sub 3} and NaOH which allowed 0.55 g of xylitol produced from each gram of xylose in the raw hydrolysate. (author)

  16. Bagasse wastewater treatment using biopolymer: A novel approach

    Directory of Open Access Journals (Sweden)

    Thirugnanasambandham K.

    2014-01-01

    Full Text Available In this present study, the removal of turbidity, biological oxygen demand (BOD and chemical oxygen demand (COD were investigated under different operating conditions such as agitation time (X1: 15-25 min, initial pH (X2:4-8, chitosan dose (X3:1.2-2 g L-1 and settling time (X4:40-80 min to treat bagasse based paper and pulp industry wastewater via response surface methodology (RSM. The experimental data obtained were fitted to a second-order polynomial equation using multiple regression analysis and ANOVA (analysis of variance was used to examine the significance of the developed mathematical models. The 3-D response surface plots were derived from the mathematical models in order to study the interactive effects process variables on the treatment efficiency. Derringer’s desired function methodology were applied to determine the optimal conditions and it was found to be: agitation time of 20 min, initial pH of 6, chitosan dose of 1.8 gL-1 and settling time of 60 min. Under these conditions, the removal of turbidity, BOD and COD were found to be 84 %, 90 % and 93 % respectively.

  17. EVALUATION OF SUGARCANE BAGASSE ACID HYDROLYZATE TREATMENTS FOR XYLITOL PRODUCTION

    Directory of Open Access Journals (Sweden)

    P.V. GURGEL

    1998-09-01

    Full Text Available Acid sugarcane bagasse hydrolyzate was submitted to pH shifts in order to remove toxic compounds from the medium. The hydrolyzate was treated with bases containing mono-, di- or tri-valent cations and H2SO4, and its performance as a fermentation medium was evaluated by the production of xylitol by Candida guilliermondii FTI 20037. The use of bases containing mono-valent cations was not an efficient method of detoxification, and the use of a tri-valent cation did not show any detectable improvement in detoxification. The treated hydrolyzate recovery (in volume is greatly affected by the utilized base. Treatment using Al(OH3 and NaOH showed the best hydrolyzate recovery (87.5%, while the others presented a recovery of about 45% of the original hydrolyzate volume. Considering the whole process, best results were achieved by treatment using Al(OH3 and NaOH which allowed 0.55 g of xylitol produced from each gram of xylose in the raw hydrolyzate.

  18. Optimization of electrocoagulation process to treat biologically pretreated bagasse effluent

    Directory of Open Access Journals (Sweden)

    Thirugnanasambandham K.

    2014-01-01

    Full Text Available The main objective of the present study was to investigate the efficiency of electrocoagulation process as a post-treatment to treat biologically pretreated bagasse effluent using iron electrodes. The removal of chemical oxygen demand (COD and total suspended solids (TSS were studied under different operating conditions such as amount of dilution, initial pH, applied current and electrolyte dose by using response surface methodology (RSM coupled with four-factor three-level Box-Behnken experimental design (BBD. The experimental results were analyzed by Pareto analysis of variance (ANOVA and second order polynomial mathematical models were developed with high correlation of efficiency (R2 for COD, TSS removal and electrical energy consumption (EEC. The individual and combined effect of variables on responses was studied using three dimensional response surface plots. Under the optimum operating conditions, such as amount of dilution at 30 %, initial pH of 6.5, applied current of 8 mA cm-2 and electrolyte dose of 740 mg l-1 shows the higher removal efficiency of COD (98 % and TSS (93 % with EEC of 2.40 Wh, which were confirmed by validation experiments.

  19. Organosolv ethanol lignin from hybrid poplar as a radical scavenger: relationship between lignin structure, extraction conditions, and antioxidant activity.

    Science.gov (United States)

    Pan, Xuejun; Kadla, John F; Ehara, Katsunobu; Gilkes, Neil; Saddler, Jack N

    2006-08-09

    Twenty-one organosolv ethanol lignin samples were prepared from hybrid poplar (Populus nigra xP. maximowiczii) under varied conditions with an experimental matrix designed using response surface methodology (RSM). The lignin preparations were evaluated as potential antioxidants. Results indicated that the lignins with more phenolic hydroxyl groups, less aliphatic hydroxyl groups, low molecular weight, and narrow polydispersity showed high antioxidant activity. Processing conditions affected the functional groups and molecular weight of the extracted organosolv ethanol lignins, and consequently influenced the antioxidant activity of the lignins. In general, the lignins prepared at elevated temperature, longer reaction time, increased catalyst, and diluted ethanol showed high antioxidant activity. Regression models were developed to enable the quantitative prediction of lignin characteristics and antioxidant activity based on the processing conditions.

  20. Optimizing cellulase usage for improved mixing and rheological properties of acid-pretreated sugarcane bagasse.

    Science.gov (United States)

    Geddes, Claudia C; Peterson, James J; Mullinnix, Michael T; Svoronos, Spyros A; Shanmugam, K T; Ingram, Lonnie O

    2010-12-01

    Consolidation of bioprocessing steps with lignocellulose is limited by hydrolysate toxicity, the fibrous nature of suspensions, and low activity of cellulase enzymes. Combinations of enzyme dose and treatment conditions improved the flow properties and pumping of acid-pretreated sugarcane bagasse slurries (10% dry weight). Low levels of cellulase enzyme (0.1 and 0.5 FPU/g dry weight acid-pretreated bagasse) were found to reduce viscosities by 77-95% after 6 h, solubilizing 3.5% of the bagasse dry weight. Flow of slurries through small funnels was a useful predictor of success with centrifugal and diaphragm pumps. Equations were derived that describe viscosity and solubilized carbohydrates as a function of time and cellulase dosage. Blending of acid-pretreated bagasse (10% dry weight) with suspensions of acid-pretreated bagasse (10% dry weight) that had been previously digested with cellulase enzymes (low viscosity) did not increase viscosity in a linear fashion. Viscosity of these mixtures remained relatively constant until a threshold level of new fiber was reached, followed by a rapid increase with further additions. Up to 35% fresh acid-pretreated bagasse could be blended with enzyme-digested fiber (5.0 FPU/g dry weight acid-pretreated fiber; 6 h) with only a modest increase in viscosity. The smooth surfaces of enzyme-treated fiber are proposed to hinder the frequency and extent of interactions between fibrils of fresh fiber particles (acid-pretreated) until a threshold concentration is achieved, after which fiber interactions and viscosity increase dramatically. These results were used to model the viscosity in an ideal continuous stirred tank reactor (liquefaction) as a function of residence time and enzyme dosage.

  1. Pyrolysis of olive residue and sugar cane bagasse: non-isothermal thermogravimetric kinetic analysis.

    Science.gov (United States)

    Ounas, A; Aboulkas, A; El Harfi, K; Bacaoui, A; Yaacoubi, A

    2011-12-01

    Thermal degradation and kinetics for olive residue and sugar cane bagasse have been evaluated under dynamic conditions in the presence of nitrogen atmosphere, using a non-isothermal thermogravimetric method (TGA). The effect of heating rate was evaluated in the range of 2-50 K min(-1) providing significant parameters for the fingerprinting of the biomass. The DTG plot for the olive residue and sugar cane bagasse clearly shows that the bagasse begins to degrade at 473 K and exhibits two major peaks. The initial mass-loss was associated with hemicellulose pyrolysis and responsible for the first peak (538-543 K) whereas cellulose pyrolysis was initiated at higher temperatures and responsible for the second peak (600-607 K). The two biomass mainly devolatilized around 473-673 K, with total volatile yield of about 70-75%. The char in final residue was about 19-26%. Mass loss and mass loss rates were strongly affected by heating rate. It was found that an increase in heating rate resulted in a shift of thermograms to higher temperatures. Ozawa-Flynn-Wall and Vyazovkin methods were applied to determine apparent activation energy to the olive residue and sugar cane bagasse. Two different steps were detected with apparent activation energies in the 10-40% conversion range have a value of 153-162 kJ mol(-1) and 168-180 kJ mol(-1) for the hemicellulose degradation of olive residue and sugar cane bagasse, respectively. In the 50-80% conversion range, this value is 204-215 kJ mol(-1) and 231-240 kJ mol(-1) for the cellulose degradation of olive residue and sugar cane bagasse, respectively.

  2. The Untapped Power of Soda Taxes: Incentivizing Consumers, Generating Revenue, and Altering Corporate Behavior

    Directory of Open Access Journals (Sweden)

    Sarah A. Roache

    2017-09-01

    Full Text Available Globally, soda taxes are gaining momentum as powerful interventions to discourage sugar consumption and thereby reduce the growing burden of obesity and non-communicable diseases (NCDs. Evidence from early adopters including Mexico and Berkeley, California, confirms that soda taxes can disincentivize consumption through price increases and raise revenue to support government programs. The United Kingdom’s new graduated levy on sweetened beverages is yielding yet another powerful impact: soda manufacturers are reformulating their beverages to significantly reduce the sugar content. Product reformulation – whether incentivized or mandatory – helps reduce overconsumption of sugars at the societal level, moving away from the long-standing notion of individual responsibility in favor of collective strategies to promote health. But as a matter of health equity, soda product reformulation should occur globally, especially in low- and middleincome countries (LMICs, which are increasingly targeted as emerging markets for soda and junk food and are disproportionately impacted by NCDs. As global momentum for sugar reduction increases, governments and public health advocates should harness the power of soda taxes to tackle the economic, social, and informational drivers of soda consumption, driving improvements in food environments and the public’s health.

  3. The performance of activated carbons from sugarcane bagasse, babassu, and coconut shells in removing residual chlorine

    Energy Technology Data Exchange (ETDEWEB)

    Jaguaribe, E.F.; Araujo, L.P. [Paraiba Univ., Joao Pessoa, PB (Brazil). Centro de Ciencias da Saude. Lab. de Carvao Ativado]. E-mail:emersonjaguaribe@globo.com; Medeiros, L.L.; Barreto, M.C.S. [Paraiba Univ., Joao Pessoa, PB (Brazil). Dept. de Quimica]. E-mail: luciana-lucena@bol.com.br

    2005-03-01

    The capacity of activated carbons obtained from different raw materials, such as sugarcane bagasse, babassu (Orbygnia speciosa), and coconut (Cocus nucifera) shells, to remove residual chlorine is studied. The influence of particle size and time of contact between particles of activated carbon and the chlorinated solution were taken into account. The adsorptive properties of the activated carbons were measured by gas adsorption (BET method), using an ASAP 2010 porosimeter, and liquid phase adsorption, employing iodine and methylene blue adsorbates. The activated carbon from sugarcane bagasse was the only adsorbent capable of removing 100% of the residual chlorine. (author)

  4. Characterization of the pyrolysis oil produced in the slow pyrolysis of sunflower-extracted bagasse

    Energy Technology Data Exchange (ETDEWEB)

    Yorgun, S.; Sensoz, S. [Osmangazi Univ., Eskisehir (Turkey). Dept. of Chemical Engineering; Kockar, O.M. [Anadolu Univ., Eskisehir (Turkey). Dept. of Chemical Engineering

    2001-07-01

    Sunflower (Helianthus annus L.)-extracted bagasse pyrolysis experiments were performed in a fixed-bed reactor. The effects of heating rate, final pyrolysis temperature, particle size and pyrolysis atmosphere on the pyrolysis product yields and chemical compositions have been investigated. The maximum oil yield of 23% was obtained in N{sub 2} atmosphere at a pyrolysis temperature of 550 {sup o}C and a heating rate of 7 {sup o}C min {sup -1}. The chemical characterisation has shown that the oil obtained from sunflower-extracted bagasse may be potentially valuable as fuel and chemical feedstocks. (Author)

  5. PREPARATION OF BAGASSE XANTHATES(BX)AND NICKEL REMOVAL FROM WASTEWATER BY BX

    Institute of Scientific and Technical Information of China (English)

    ZhongChanggeng; TangDonggong; 等

    1996-01-01

    Water-insoluble bagasse xanthates were prepared by xanthation of alkalified celluloses by treating bagasse with chromium hydroxide reaction effluent.The removel of nickel from both test solutions and electroplating industrial wastewater samples with BX was investigated.The process was studied taking into account such parameters as pH of water,precipitation time,xanthate dosage and storage time of BX.These products wrer found to be highly efficient in removing nickel.The residual concentration of nickel after treatment can be reduced to a value of the ordor of 0.01mg·l-1.

  6. Isolation and characterization of acetylated glucuronoarabinoxylan from sugarcane bagasse and straw.

    Science.gov (United States)

    Morais de Carvalho, Danila; Martínez-Abad, Antonio; Evtuguin, Dmitry V; Colodette, Jorge Luiz; Lindström, Mikael E; Vilaplana, Francisco; Sevastyanova, Olena

    2017-01-20

    Sugarcane bagasse and straw are generated in large volumes as by-products of agro-industrial production. They are an emerging valuable resource for the generation of hemicellulose-based materials and products, since they contain significant quantities of xylans (often twice as much as in hardwoods). Heteroxylans (yields of ca 20% based on xylose content in sugarcane bagasse and straw) were successfully isolated and purified using mild delignification followed by dimethyl sulfoxide (DMSO) extraction. Delignification with peracetic acid (PAA) was more efficient than traditional sodium chlorite (NaClO2) delignification for xylan extraction from both biomasses, resulting in higher extraction yields and purity. We have shown that the heteroxylans isolated from sugarcane bagasse and straw are acetylated glucuronoarabinoxylans (GAX), with distinct molecular structures. Bagasse GAX had a slightly lower glycosyl substitution molar ratio of Araf to Xylp to (0.5:10) and (4-O-Me)GlpA to Xylp (0.1:10) than GAX from straw (0.8:10 and 0.1:10 respectively), but a higher degree of acetylation (0.33 and 0.10, respectively). A higher frequency of acetyl groups substitution at position α-(1→3) (Xyl-3Ac) than at position α-(1→2) (Xyl-2Ac) was confirmed for both bagasse and straw GAX, with a minor ratio of diacetylation (Xyl-2,3Ac). The size and molecular weight distributions for the acetylated GAX extracted from the sugarcane bagasse and straw were analyzed using multiple-detection size-exclusion chromatography (SEC-DRI-MALLS). Light scattering data provided absolute molar mass values for acetylated GAX with higher average values than did standard calibration. Moreover, the data highlighted differences in the molar mass distributions between the two isolation methods for both types of sugarcane GAX, which can be correlated with the different Araf and acetyl substitution patterns. We have developed an empirical model for the molecular structure of acetylated GAX extracted from

  7. Shock wave propagation in soda lime glass using optical shadowgraphy

    Indian Academy of Sciences (India)

    PRASAD Y B S R; BARNWAL S; NAIK P A; YADAV Y; PATIDAR R; KAMATH M P; UPADHYAY A; BAGCHI S; KUMAR A; JOSHI A S; GUPTA P D

    2016-07-01

    Propagation of shock waves in soda lime glass, which is a transparent material, has been studied using the optical shadowgraphy technique. The time-resolved shock velocity information has been obtained (1) in single shot, using the chirped pulse shadowgraphy technique, with a temporal resolution of tens of picoseconds and (2) in multiple shots, using conventional snapshot approach, with a second harmonic probe pulse. Transient shock velocities of $(5–7) \\times 10^{6}$ cm/s have been obtained. The scaling of the shock velocity with intensity in the $2 \\times 10^{13}–10^{14}$ W/cm$^2$ range has been obtained. The shock velocity is observed to scale with laser intensity as $I^{0.38}$. The present experiments also show the presence of ionization tracks, generated probably due to X-ray hotspots from small-scale filamentation instabilities. The results and various issues involved in these experiments are discussed

  8. Autotrophic microbial arsenotrophy in arsenic-rich soda lakes

    Science.gov (United States)

    Oremland, Ronald S.; Saltikov, Chad W.; Stolz, John F.; Hollibaugh, James T.

    2017-01-01

    A number of prokaryotes are capable of employing arsenic oxy-anions as either electron acceptors [arsenate; As(V)] or electron donors [arsenite; As(III)] to sustain arsenic-dependent growth (‘arsenotrophy’). A subset of these microorganisms function as either chemoautotrophs or photoautotrophs, whereby they gain sufficient energy from their redox metabolism of arsenic to completely satisfy their carbon needs for growth by autotrophy, that is the fixation of inorganic carbon (e.g. HCO3−) into their biomass. Here we review what has been learned of these processes by investigations we have undertaken in three soda lakes of the western USA and from the physiological characterizations of the relevant bacteria, which include the critical genes involved, such as respiratory arsenate reductase (arrA) and the discovery of its arsenite-oxidizing counterpart (arxA). When possible, we refer to instances of similar process occurring in other, less extreme ecosystems and by microbes other than haloalkaliphiles.

  9. STRESS RELAXATION AND RELIABILITY EVALUATION OF SODA-LIME GLASS

    Institute of Scientific and Technical Information of China (English)

    Y.W.Bao; Y.F.Han; F.T.Gong

    2004-01-01

    Stress relaxation of glass is a dualism effect, it often lead to strength degradation in strengthened glass, but on the other hand, it improves the reliability and stressuniformity of glasses. In this work, stress relaxation of soda-lime glass was investigated using three-point bending tests at 400-560℃ which is near the brittle to ductile transition temperature, for enhancing the safety of glass productions and exploring the most economic anneal process. The experimental results show that the speed of stress relaxation increases but the ultimate stress decreases with increasing temperature. The stress uniformity of the glass samples before and after anneal was examined using spherical indentation at arranged testing points. It indicates that the scatter of the local strength measured by the Hertzian indentation is smaller in the anneal glass than in initial specimen, so that the estimated Weibull modulus for the anneal specimen is higher. Furthermore, the strength evaluation by Hertzian indentation and statistical analysis was presented.

  10. STATISTICAL ANALYSIS OF A SODA LIME GLASS THERMAL SHOCK RESISTANCE

    Directory of Open Access Journals (Sweden)

    Gilbert FANTOZZI

    2011-09-01

    Full Text Available Comparatively to the as received soda lime glass samples, the strength distribution after thermal shocks showed the appearance of a second branch in the Weibull curves. This branch is observed for temperature differences (ΔT equal or higher than the critical temperature difference (ΔTc for both water and motor oil cooling baths. The dispersion is more spread out in these two baths in comparison with the olive oil bath probably because of more pronounced slow crack growth effect. The Weibull modulus varies according to the used cooling bath and the considered temperature difference. In the case of thermal shock caused by air blast cooling at T = 20°C, a bimodal distribution is observed for only the critical state. The initial cracking time, obtained by acoustic emission, corresponds to the unstable propagation of the most critical defect. The number of cracks induced by thermal shock is proportional to the number of acoustic events.

  11. Soda Cans Metamaterial: A Subwavelength-Scaled Phononic Crystal

    Directory of Open Access Journals (Sweden)

    Fabrice Lemoult

    2016-07-01

    Full Text Available Photonic or phononic crystals and metamaterials, due to their very different typical spatial scales—wavelength and deep subwavelength—and underlying physical mechanisms—Bragg interferences or local resonances—, are often considered to be very different composite media. As such, while the former are commonly used to manipulate and control waves at the scale of the unit cell, i.e., wavelength, the latter are usually considered for their effective properties. Yet we have shown in the last few years that under some approximations, metamaterials can be used as photonic or phononic crystals, with the great advantage that they are much more compact. In this review, we will concentrate on metamaterials made out of soda cans, that is, Helmholtz resonators of deep subwavelength dimensions. We will first show that their properties can be understood, likewise phononic crystals, as resulting from interferences only, through multiple scattering effects and Fano interferences. Then, we will demonstrate that below the resonance frequency of its unit cell, a soda can metamaterial supports a band of subwavelength varying modes, which can be excited coherently using time reversal, in order to beat the diffraction limit from the far field. Above this frequency, the metamaterial supports a band gap, which we will use to demonstrate cavities and waveguides, very similar to those obtained in phononic crystals, albeit of deep subwavelength dimensions. We will finally show that multiple scattering can be taken advantage of in these metamaterials, by correctly structuring them. This allows to turn a metamaterial with a single negative effective property into a negative index metamaterial, which refracts waves negatively, hence acting as a superlens.

  12. Low Velocity Sphere Impact of a Soda Lime Silicate Glass

    Energy Technology Data Exchange (ETDEWEB)

    Wereszczak, Andrew A [ORNL; Fox, Ethan E [ORNL; Morrissey, Timothy G [ORNL; Vuono, Daniel J [ORNL

    2011-10-01

    This report summarizes TARDEC-sponsored work at Oak Ridge National Laboratory (ORNL) during the FY11 involving low velocity (< 30 m/s or < 65 mph) ball impact testing of Starphire soda lime silicate glass. The intent was to better understand low velocity impact response in the Starphire for sphere densities that bracketed that of rock. Five sphere materials were used: borosilicate glass, soda-lime silicate glass, steel, silicon nitride, and alumina. A gas gun was fabricated to produce controlled velocity delivery of the spheres against Starphire tile targets. Minimum impact velocities to initiate fracture in the Starphire were measured and interpreted in context to the kinetic energy of impact and the elastic property mismatch between the any of the five sphere-Starphire-target combinations. The primary observations from this low velocity (< 30 m/s or < 65 mph) testing were: (1) Frictional effects contribute to fracture initiation. (2) Spheres with a lower elastic modulus require less force to initiate fracture in the Starphire than spheres with a higher elastic modulus. (3) Contact-induced fracture did not initiate in the Starphire SLS for impact kinetic energies < 150 mJ. Fracture sometimes initiated or kinetic energies between {approx} 150-1100 mJ; however, it tended to occur when lower elastic modulus spheres were impacting it. Contact-induced fracture would always occur for impact energies > 1100 mJ. (4) The force necessary to initiate contact-induced fracture is higher under dynamic or impact conditions than it is under quasi-static indentation conditions. (5) Among the five used sphere materials, silicon nitride was the closest match to 'rock' in terms of both density and (probably) elastic modulus.

  13. Dynamics and turnover of lignins in soils: a review

    Science.gov (United States)

    Thevenot, M.; Rumpel, C.; Dignac, M.-F.

    2009-04-01

    Lignins are amongst the most studied bio-macromolecules in natural environments, for their properties as biomarkers and their suggested influence on soil organic carbon dynamics. A large number of methods exists to characterize lignins, but the alkaline CuO oxidation is the most used for determining lignin fate in soils. The CuO oxidation products of lignins yield quantitative information (sum of V, S and C monomers) as well as qualitative information on the degradation of lignins (S/V, C/V, (Ad/Al)V,S…). The CuO-lignin products provide information on lignins but also on the environment and particularly on the present and past vegetation. Data from several studies were compiled in order to evaluate the relations between lignins in soils and various environmental parameters. The results of the multiple correspondence analysis (MCA) performed suggest that the lignin content in soils is directly related to the C and N contents, confirming its contribution to the pool of organic carbon. The lignin distribution appears also related to the climate and to the soil texture, which suggests the impact of these parameters on the lignin degradation and retention in soils, as observed for organic carbon (Burke et al., 1989). The total lignin content generally decreases with the soil depth and with the decreasing size of the granulometric fractions. Hence, the more lignins are degraded, the more they are associated with the finest fractions. In addition, it appears that lignin contents are linked to land-use. Thus, in accordance with the land cover, management type and amount of annual input, the forest soils are described by high contents of VSC, C and N, in contrast with the arable land. Lignins were often considered to greatly participate to the stock of slowly degradable and stable carbon in soils. However, several studies suggest that lignin turnover can be more rapid than that of the bulk soil organic carbon (SOC), suggesting that they are not stabilized in soil. On the

  14. Oxidative depolymerization of lignin in ionic liquids.

    Science.gov (United States)

    Stärk, Kerstin; Taccardi, Nicola; Bösmann, Andreas; Wasserscheid, Peter

    2010-06-21

    Beech lignin was oxidatively cleaved in ionic liquids to give phenols, unsaturated propylaromatics, and aromatic aldehydes. A multiparallel batch reactor system was used to screen different ionic liquids and metal catalysts. Mn(NO(3))(2) in 1-ethyl-3-methylimidazolium trifluoromethanesulfonate [EMIM][CF(3)SO(3)] proved to be the most effective reaction system. A larger scale batch reaction with this system in a 300 mL autoclave (11 g lignin starting material) resulted in a maximum conversion of 66.3 % (24 h at 100 degrees C, 84x10(5) Pa air). By adjusting the reaction conditions and catalyst loading, the selectivity of the process could be shifted from syringaldehyde as the predominant product to 2,6-dimethoxy-1,4-benzoquinone (DMBQ). Surprisingly, the latter could be isolated as a pure substance in 11.5 wt % overall yield by a simple extraction/crystallization process.

  15. [Modification of fasting blood glucose in adults with diabetes mellitus type 2 after regular soda and diet soda intake in the State of Querétaro, Mexico].

    Science.gov (United States)

    Olalde-Mendoza, Liliana; Moreno-González, Yazmín Esmeralda

    2013-06-01

    The objective of the study was to compare the modification of fasting blood glucose in adults with diabetes mellitus type 2 after intake of regular soda and diet soda. We conducted a randomized clinical trial in clinics of Instituto Mexicano del Seguro Social in Querétaro, México. We included 80 patients with diabetes (mean weight 74.2 +/- 13.66, BMI 30.5 +/- 4.305, waist 98.2 +/- 12.9 and time evolution of diabetes 3.8 +/- 3.009) who were asked to come with fasting for 8 hours and without taking any medicine before testing. They were divided into two groups of 40 subjects, to whom was measured fasting blood glucose after the ingestion of 200 ml of diet soda (with aspartame and acesulfame potassium) or regular soda (without sweetener) we measure glucose at 10, 15 and 30 minutes. For statistical analysis performed we used Student's t-test for dependent and independent samples, and paired t-test, and chi square test (chi2). Capillary glucose levels at 10 minutes were -34.52 and -25.41%, at 15 minutes -48.8 and -36.2% and at 30 minutes 57.75 and 43.6% of absolute and relative differences, with p = 0.000. In conclusion, according to the observations, diet soda doesn't increased blood glucose levels, with a significant difference in fasting decreased at 30 minutes.

  16. Optimization of simultaneous saccharification and fermentation conditions with amphipathic lignin derivatives for concentrated bioethanol production.

    Science.gov (United States)

    Cheng, Ningning; Koda, Keiichi; Tamai, Yutaka; Yamamoto, Yoko; Takasuka, Taichi E; Uraki, Yasumitsu

    2017-05-01

    Amphipathic lignin derivatives (A-LDs) prepared from the black liquor of soda pulping of Japanese cedar are strong accelerators for bioethanol production under a fed-batch simultaneous enzymatic saccharification and fermentation (SSF) process. To improve the bioethanol production concentration, conditions such as reaction temperature, stirring program, and A-LDs loadings were optimized in both small scale and large scale fed-batch SSF. The fed-batch SSF in the presence of 3.0g/L A-LDs at 38°C gave the maximum ethanol production and a high enzyme recovery rate. Furthermore, a jar-fermenter equipped with a powerful mechanical stirrer was designed for 1.5L-scale fed-batch SSF to achieve rigorous mixing during high substrate loading. Finally, the 1.5L fed-batch SSF with a substrate loading of 30% (w/v) produced a high ethanol concentration of 87.9g/L in the presence of A-LDs under optimized conditions.

  17. Incorporation of hydroxy-cinnamaldehydes into lignins

    Science.gov (United States)

    John. Ralph; Hoon. Kim; Fachuang. Lu; Sally A. Ralph; Larry L. Landucci; Takashi. Ito; Shingo. Kawai

    1999-01-01

    Peroxidase/H2O2-mediated radical coupling of hydroxycinnamaldehydes produced 81O14-, 8-5-, 818-, and 5-5dimers as had been documented earlier (although we found that the 815-dimer is produced in its cyclic phenylcoumaran form at neutral pH). Spectral data from dimers and oligomers has allowed a more substantive assignment of aldehyde components in lignins isolated from...

  18. Effect of use of citrus bagasse as functional product-extender on physicochemical and textural properties of cooked ham

    Directory of Open Access Journals (Sweden)

    José Antonio Aguilar-Rico

    2011-12-01

    Full Text Available The substitution effect of carrageenan, soy protein and potato starch by orange bagasse on physico-chemical characteristics of cooked ham was evaluated. A 33 factorial design was used, with substitution levels of 0, 50 and 100%. The results indicate that the substitution of potato starch for orange bagasse results in increase in the ham yield, but to replace the carrageenan and/or soy protein by orange bagasse, cause decrease in yield below that non-substituted ham. Moreover, if even yields increase with substitution of potato starch by orange bagasse, however, the textural characteristics of the product obtained showed deficiency in comparison with thenon-substituted ham. Apparently orange bagasse substitution does not alter the matrix stability formation in ham, so there was no significant difference in expressible moisture. Substitution of carrageenan, soy protein and potato starch by orange bagasse in ham has highest influence on pH and color parameters, this due probably to compounds presents in the fruit (citric acid and carotenoids. Orange bagasse has high potential as a novel source of dietary fiber in food industry.

  19. De novo assembly, transcriptome characterization, lignin accumulation, and anatomic characteristics: novel insights into lignin biosynthesis during celery leaf development.

    Science.gov (United States)

    Jia, Xiao-Ling; Wang, Guang-Long; Xiong, Fei; Yu, Xu-Run; Xu, Zhi-Sheng; Wang, Feng; Xiong, Ai-Sheng

    2015-02-05

    Celery of the family Apiaceae is a biennial herb that is cultivated and consumed worldwide. Lignin is essential for cell wall structural integrity, stem strength, water transport, mechanical support, and plant pathogen defense. This study discussed the mechanism of lignin formation at different stages of celery development. The transcriptome profile, lignin distribution, anatomical characteristics, and expression profile of leaves at three stages were analyzed. Regulating lignin synthesis in celery growth development has a significant economic value. Celery leaves at three stages were collected, and Illumina paired-end sequencing technology was used to analyze large-scale transcriptome sequences. From Stage 1 to 3, the collenchyma and vascular bundles in the petioles and leaf blades thickened and expanded, whereas the phloem and the xylem extensively developed. Spongy and palisade mesophyll tissues further developed and were tightly arranged. Lignin accumulation increased in the petioles and the mesophyll (palisade and spongy), and the xylem showed strong lignification. Lignin accumulation in different tissues and at different stages of celery development coincides with the anatomic characteristics and transcript levels of genes involved in lignin biosynthesis. Identifying the genes that encode lignin biosynthesis-related enzymes accompanied by lignin distribution may help elucidate the regulatory mechanisms of lignin biosynthesis in celery.

  20. Advanced Model Compounds for Understanding Acid-Catalyzed Lignin Depolymerization: Identification of Renewable Aromatics and a Lignin-Derived Solvent.

    Science.gov (United States)

    Lahive, Ciaran W; Deuss, Peter J; Lancefield, Christopher S; Sun, Zhuohua; Cordes, David B; Young, Claire M; Tran, Fanny; Slawin, Alexandra M Z; de Vries, Johannes G; Kamer, Paul C J; Westwood, Nicholas J; Barta, Katalin

    2016-07-20

    The development of fundamentally new approaches for lignin depolymerization is challenged by the complexity of this aromatic biopolymer. While overly simplified model compounds often lack relevance to the chemistry of lignin, the direct use of lignin streams poses significant analytical challenges to methodology development. Ideally, new methods should be tested on model compounds that are complex enough to mirror the structural diversity in lignin but still of sufficiently low molecular weight to enable facile analysis. In this contribution, we present a new class of advanced (β-O-4)-(β-5) dilinkage models that are highly realistic representations of a lignin fragment. Together with selected β-O-4, β-5, and β-β structures, these compounds provide a detailed understanding of the reactivity of various types of lignin linkages in acid catalysis in conjunction with stabilization of reactive intermediates using ethylene glycol. The use of these new models has allowed for identification of novel reaction pathways and intermediates and led to the characterization of new dimeric products in subsequent lignin depolymerization studies. The excellent correlation between model and lignin experiments highlights the relevance of this new class of model compounds for broader use in catalysis studies. Only by understanding the reactivity of the linkages in lignin at this level of detail can fully optimized lignin depolymerization strategies be developed.

  1. Effect of lignin on water vapor barrier, mechanical, and structural properties of agar/lignin composite films.

    Science.gov (United States)

    Shankar, Shiv; Reddy, Jeevan Prasad; Rhim, Jong-Whan

    2015-11-01

    Biodegradable composite films were prepared using two renewable resources based biopolymers, agar and lignin alkali. The lignin was used as a reinforcing material and agar as a biopolymer matrix. The effect of lignin concentration (1, 3, 5, and 10wt%) on the performance of the composite films was studied. In addition, the mechanical, water vapor barrier, UV light barrier properties, FE-SEM, and TGA of the films were analyzed. The agar/lignin films exhibited higher mechanical and UV barrier properties along with lower water vapor permeability compared to the neat agar film. The FTIR and SEM results showed the compatibility of lignin with agar polymer. The swelling ratio and moisture content of agar/lignin composite films were decreased with increase in lignin content. The thermostability and char content of agar/lignin composite films increased with increased lignin content. The results suggested that agar/lignin films have a potential to be used as a UV barrier food packaging material for maintaining food safety and extending the shelf-life of the packaged food.

  2. The association between state bans on soda only and adolescent substitution with other sugar-sweetened beverages: a cross-sectional study

    OpenAIRE

    2015-01-01

    Background: Across the United States, many states have actively banned the sale of soda in high schools, and evidence suggests that students’ in-school access to soda has declined as a result. However, schools may be substituting soda with other sugar-sweetened beverages (SSBs), and national trends indicate that adolescents are consuming more sports drinks and energy drinks. This study examined whether students consumed more non-soda SSBs in states that banned the sale of soda in school. Meth...

  3. PREPARATION AND PROPERTIES OF CHITOSAN/LIGNIN COMPOSITE FILMS

    Institute of Scientific and Technical Information of China (English)

    Long Chen; Chang-yu Tang; Nan-ying Ning; Chao-yu Wang; Qiang Fu; Qin Zhang

    2009-01-01

    Biodegradable composite films based on chitosan and lignin with various composition were prepared via the solution-casting technique.FT-IR results indicate the existence of hydrogen bonding between chitosan and lignin,and SEM images show that lignin could be well dispersed in chitosan when the content of lignin is below 20 wt% due to the strong interfacial interaction.As a result of strong interaction and good dispersion,the tensile strength,storage modulus,thermal degradation temperature and glass transition temperature of chitosan have been largely improved by adding lignin.Our work provides a simple and cheap way to prepare fully biodegradable chitosan/lignin composites,which could be used as packaging films or wound dressings.

  4. Lignin profiling in extracted xylans by size-exclusion chromatography.

    Science.gov (United States)

    Hutterer, Christian; Schild, Gabriele; Kliba, Gerhard; Potthast, Antje

    2016-10-20

    Utilization of the polymeric parts of lignocellulose is expected to gain increasing importance in future biorefinery scenarios. In that respect, a particular focus is placed on hemicelluloses from different wood species gained from an industrially feasible upgrading step in the production of dissolving pulps from paper pulps. During alkaline post-extractions for hemicellulose removal, residual lignins are extracted as well. They are either covalently linked to the extracted hardwood xylans or simply co-dissolved in the alkaline lye. In order to better describe the lignin in xylan containing lyes, a method for lignin profiling was set up by hyphenating size-exclusion chromatography of xylans with UV detection which facilitates visualization of the residual lignin distribution. Simultaneous lignin quantification was achieved with lignin standards prepared from Kraft cooking liquors. The setup presented may serve as advanced characterization for novel xylan products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Biobased Epoxy Resins from Deconstructed Native Softwood Lignin.

    Science.gov (United States)

    van de Pas, Daniel J; Torr, Kirk M

    2017-08-14

    The synthesis of novel epoxy resins from lignin hydrogenolysis products is reported. Native lignin in pine wood was depolymerized by mild hydrogenolysis to give an oil product that was reacted with epichlorohydrin to give epoxy prepolymers. These were blended with bisphenol A diglycidyl ether or glycerol diglycidyl ether and cured with diethylenetriamine or isophorone diamine. The key novelty of this work lies in using the inherent properties of the native lignin in preparing new biobased epoxy resins. The lignin-derived epoxy prepolymers could be used to replace 25-75% of the bisphenol A diglycidyl ether equivalent, leading to increases of up to 52% in the flexural modulus and up to 38% in the flexural strength. Improvements in the flexural strength were attributed to the oligomeric products present in the lignin hydrogenolysis oil. These results indicate lignin hydrogenolysis products have potential as sustainable biobased polyols in the synthesis of high performance epoxy resins.

  6. Lignin-rich Enzyme Lignin (LREL), a Cellulase-treated Lignin-Carbohydrate Derived from Plants, Activates Myeloid Dendritic Cells via Toll-like Receptor 4 (TLR4)

    Science.gov (United States)

    Tsuji, Ryohei; Koizumi, Hideki; Aoki, Dan; Watanabe, Yuta; Sugihara, Yoshihiko; Matsushita, Yasuyuki; Fukushima, Kazuhiko; Fujiwara, Daisuke

    2015-01-01

    Lignin-carbohydrates, one of the major cell wall components, are believed to be the structures that form chemical linkage between lignin and cell wall polysaccharides. Due to the molecular complexity of lignin-containing substances, their isolation and the assignment of their biological activities have so far remained a difficult task. Here, we extracted two lignin-containing carbohydrates, lignin-rich enzyme lignin (LREL) and pure enzyme lignin (PEL), from barley husk and demonstrated that they act as immune stimulators of dendritic cells (DCs), which are particularly important in linking innate and adaptive immunity. Thioacidolysis, acid hydrolysis, and mild alkali hydrolysis of both LREL and PEL revealed that their immunostimulatory activities depended on the lignin structure and/or content, neutral sugar content (especially the characteristic distribution of galactose and mannose), and presence of an ester bond. Furthermore, we showed that the immunostimulatory potency of the lignin-carbohydrate depended on its molecular weight and degree of polymerization. We also demonstrated that the LREL-induced activation of DCs was mediated via TLR4. Thus, LREL-induced increases in the expression levels of several cell surface marker proteins, production of inflammatory cytokines IL-12p40 and TNF-α, and activation and nuclear translocation of transcription factors, as was observed in the WT DCs, were completely abrogated in DCs derived from the TLR4−/− mice but not in DCs derived from the TLR2−/−, TLR7−/−, and TLR9−/− mice. We further demonstrated that LRELs isolated from other plant tissues also activated DCs. These immunostimulatory activities of lignin-carbohydrates, extracted from edible plant tissues, could have potential relevance in anti-infectious immunity and vaccine adjuvants. PMID:25548274

  7. Evidence for lignin oxidation by the giant panda fecal microbiome.

    Directory of Open Access Journals (Sweden)

    Wei Fang

    Full Text Available The digestion of lignin and lignin-related phenolic compounds from bamboo by giant pandas has puzzled scientists because of the lack of lignin-degrading genes in the genome of the bamboo-feeding animals. We constructed a 16S rRNA gene library from the microorganisms derived from the giant panda feces to identify the possibility for the presence of potential lignin-degrading bacteria. Phylogenetic analysis showed that the phylotypes of the intestinal bacteria were affiliated with the phyla Proteobacteria (53% and Firmicutes (47%. Two phylotypes were affiliated with the known lignin-degrading bacterium Pseudomonas putida and the mangrove forest bacteria. To test the hypothesis that microbes in the giant panda gut help degrade lignin, a metagenomic library of the intestinal bacteria was constructed and screened for clones that contained genes encoding laccase, a lignin-degrading related enzyme. A multicopper oxidase gene, designated as lac51, was identified from a metagenomic clone. Sequence analysis and copper content determination indicated that Lac51 is a laccase rather than a metallo-oxidase and may work outside its original host cell because it has a TAT-type signal peptide and a transmembrane segment at its N-terminus. Lac51 oxidizes a variety of lignin-related phenolic compounds, including syringaldazine, 2,6-dimethoxyphenol, ferulic acid, veratryl alcohol, guaiacol, and sinapinic acid at conditions that simulate the physiologic environment in giant panda intestines. Furthermore, in the presence of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS, syringic acid, or ferulic acid as mediators, the oxidative ability of Lac51 on lignin was promoted. The absorbance of lignin at 445 nm decreased to 36% for ABTS, 51% for syringic acid, and 51% for ferulic acid after incubation for 10 h. Our findings demonstrate that the intestinal bacteria of giant pandas may facilitate the oxidation of lignin moieties, thereby clarifying the digestion

  8. Solubilization and Mineralization of Lignin by White Rot Fungi

    OpenAIRE

    Boyle, C. David; Bradley R. Kropp; Reid, Ian D.

    1992-01-01

    The white rot fungi Lentinula edodes, Phanerochaete chrysosporium, Pleurotus sajor-caju, Flammulina velutipes, and Schizophyllum commune were grown in liquid media containing 14C-lignin-labelled wood, and the formation of water-soluble 14C-labelled products and 14CO2, the growth of the fungi, and the activities of extracellular lignin peroxidase, manganese peroxidase, and laccase were measured. Conditions that affect the rate of lignin degradation were imposed, and both long-term (0- to 16-da...

  9. Biodegradation of alkaline lignin by Bacillus ligniniphilus L1

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Daochen; Zhang, Peipei; Xie, Changxiao; Zhang, Weimin; Sun, Jianzhong; Qian, Wei-Jun; Yang, Bin

    2017-02-21

    Background: Lignin is the most abundant aromatic biopolymer in the biosphere and it comprises up to 30% of plant biomass. Although lignin is the most recalcitrant component of the plant cell wall, still there are microorganisms able to decompose it or degrade it. Fungi are recognized as the most widely used microbes for lignin degradation. However, bacteria have also been known to be able to utilize lignin as a carbon or energy source. Bacillus ligniniphilus L1 was selected in this study due to its capability to utilize alkaline lignin as a single carbon or energy source and its excellent ability to survive in extreme environments. Results: To investigate the aromatic metabolites of strain L1 decomposing alkaline lignin, GC-MS analyze was performed and fifteen single phenol ring aromatic compounds were identified. The dominant absorption peak included phenylacetic acid, 4-hydroxy-benzoicacid, and vanillic acid with the highest proportion of metabolites resulting in 42%. Comparison proteomic analysis were carried out for further study showed that approximately 1447 kinds of proteins were produced, 141 of which were at least 2-fold up-regulated with alkaline lignin as the single carbon source. The up-regulated proteins contents different categories in the biological functions of protein including lignin degradation, ABC transport system, environmental response factors, protein synthesis and assembly, etc. Conclusions: GC-MS analysis showed that alkaline lignin degradation of strain L1 produced 15 kinds of aromatic compounds. Comparison proteomic data and metabolic analysis showed that to ensure the degradation of lignin and growth of strain L1, multiple aspects of cells metabolism including transporter, environmental response factors, and protein synthesis were enhanced. Based on genome and proteomic analysis, at least four kinds of lignin degradation pathway might be present in strain L1, including a Gentisate pathway, the benzoic acid pathway and the

  10. Effect of use of citrus bagasse as functional product-extender on physicochemical and textural properties of cooked ham

    OpenAIRE

    2011-01-01

    The substitution effect of carrageenan, soy protein and potato starch by orange bagasse on physico-chemical characteristics of cooked ham was evaluated. A 33 factorial design was used, with substitution levels of 0, 50 and 100%. The results indicate that the substitution of potato starch for orange bagasse results in increase in the ham yield, but to replace the carrageenan and/or soy protein by orange bagasse, cause decrease in yield below that non-substituted ham. Moreover, if even yields i...

  11. Adsorption of Procion Blue MX-R dye from aqueous solutions by lignin chemically modified with aluminium and manganese

    Energy Technology Data Exchange (ETDEWEB)

    Adebayo, Matthew A. [Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Postal Box 15003, 91501-970 Porto Alegre, RS (Brazil); Department of Chemical Sciences, Ajayi Crowther University, PMB 1066 Oyo, Oyo State (Nigeria); Prola, Lizie D.T. [Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Postal Box 15003, 91501-970 Porto Alegre, RS (Brazil); Lima, Eder C., E-mail: eder.lima@ufrgs.br [Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Postal Box 15003, 91501-970 Porto Alegre, RS (Brazil); Puchana-Rosero, M.J.; Cataluña, Renato; Saucier, Caroline; Umpierres, Cibele S.; Vaghetti, Julio C.P. [Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Postal Box 15003, 91501-970 Porto Alegre, RS (Brazil); Silva, Leandro G. da; Ruggiero, Reinaldo [Institute of Chemistry, Federal University of Uberlândia (UFU), AV. João Naves de Ávila 2121 block 1D—Campus Santa Mônica, 38400-902 Uberlândia, MG (Brazil)

    2014-03-01

    Graphical abstract: - Highlights: • Complexes of carboxy-methylated lignin with Al and Mn were used as adsorbents. • The optimum adsorption conditions were achieved at pH 2 and 298 K. • Maximum adsorption capacities are 73.52 mg g{sup −1} (CML-Al) and 55.16 mg g{sup −1} (CML-Mn). • CML-Al could remove ca. 95.83% of dye-contaminated industrial effluents. • CML-Al and CML-Mn are effective for treatment of simulated dye-house effluents. - Abstract: A macromolecule, CML, was obtained by purifying and carboxy-methylating the lignin generated from acid hydrolysis of sugarcane bagasse during bioethanol production from biomass. The CMLs complexed with Al{sup 3+} (CML-Al) and Mn{sup 2+} (CML-Mn) were utilised for the removal of a textile dye, Procion Blue MX-R (PB), from aqueous solutions. CML-Al and CML-Mn were characterised using Fourier transform infrared spectroscopy (FTIR), scanning differential calorimetry (SDC), scanning electron microscopy (SEM) and pH{sub PZC}. The established optimum pH and contact time were 2.0 and 5 h, respectively. The kinetic and equilibrium data fit into the general order kinetic model and Liu isotherm model, respectively. The CML-Al and CML-Mn have respective values of maximum adsorption capacities of 73.52 and 55.16 mg g{sup −1} at 298 K. Four cycles of adsorption/desorption experiments were performed attaining regenerations of up to 98.33% (CML-Al) and 98.08% (CML-Mn) from dye-loaded adsorbents, using 50% acetone + 50% of 0.05 mol L{sup −1} NaOH. The CML-Al removed ca. 93.97% while CML-Mn removed ca. 75.91% of simulated dye house effluents.

  12. Lignin valorization: lignin nanoparticles as high-value bio-additive for multifunctional nanocomposites.

    Science.gov (United States)

    Tian, Dong; Hu, Jinguang; Bao, Jie; Chandra, Richard P; Saddler, Jack N; Lu, Canhui

    2017-01-01

    Although conversion of low value but high-volume lignin by-product to its usable form is one of the determinant factors for building an economically feasible integrated lignocellulose biorefinery, it has been challenged by its structural complexity and inhomogeneity. We and others have shown that uniform lignin nanoparticles can be produced from a wide range of technical lignins, despite the varied lignocellulosic biomass and the pretreatment methods/conditions applied. This value-added nanostructure lignin enriched with multifunctional groups can be a promising versatile material platform for various downstream utilizations especially in the emerging nanocomposite fields. Inspired by the story of successful production and application of nanocellulose biopolymer, two types of uniform lignin nanoparticles (LNPs) were prepared through self-assembling of deep eutectic solvent (DES) and ethanol-organosolv extracted technical lignins derived from a two-stage fractionation pretreatment approach, respectively. Both LPNs exhibited sphere morphology with unique core-shell nanostructure, where the DES-LNPs showed a more uniform particle size distribution. When incorporated into the traditional polymeric matrix such as poly(vinyl alcohol), these LPN products displayed great potential to formulate a transparent nanocomposite film with additional UV-shielding efficacy (reached ~80% at 400 nm with 4 wt% of LNPs) and antioxidant functionalities (reached ~160 μm mol Trolox g(-1) with 4 wt% of LNPs). At the same time, the abundant phenolic hydroxyl groups on the shell of LNPs also provided good interfacial adhesion with PVA matrix through the formation of hydrogen bonding network, which further improved the mechanical and thermal performances of the fabricated LNPs/PVA nanocomposite films. Both LNPs are excellent candidates for producing multifunctional polymer nanocomposites using facile technical route. The prepared transparent and flexible LNPs/PVA composite films with

  13. Screening of Xylanolytic Aspergillus fumigatus for Prebiotic Xylooligosaccharide Production Using Bagasse

    Directory of Open Access Journals (Sweden)

    Pedro de Oliva Neto

    2015-01-01

    Full Text Available Sugarcane bagasse is an important lignocellulosic material studied for the production of xylooligosaccharides (XOS. Some XOS are considered soluble dietary fibre, with low caloric value and prebiotic effect, but they are expensive and not easily available. In a screening of 138 fungi, only nine were shortlisted, and just Aspergillus fumigatus M51 (35.6 U/mL and A. fumigatus U2370 (28.5 U/mL were selected as the most significant producers of xylanases. These fungi had low β-xylosidase activity, which is desirable for the production of XOS. The xylanases from Trichoderma reesei CCT 2768, A. fumigatus M51 and A. fumigatus U2370 gave a significantly higher XOS yield, 11.9, 14.7 and 7.9 % respectively, in a 3-hour reaction with hemicellulose from sugarcane bagasse. These enzymes are relatively thermostable at 40–50 °C and can be used in a wide range of pH values. Furthermore, these xylanases produced more prebiotic XOS (xylobiose and xylotriose when compared with a commercial xylanase. The xylanases from A. fumigatus M51 reached a high level of XOS production (37.6 % in 48–72 h using hemicellulose extracted from sugarcane bagasse. This yield represents 68.8 kg of prebiotic XOS per metric tonne of cane bagasse. In addition, in a biorefinery, after hemicellulose extraction for XOS production, the residual cellulose could be used for the production of second-generation ethanol.

  14. Computer Simulation of the Mass and Energy Balance during Gasification of Sugarcane Bagasse

    Directory of Open Access Journals (Sweden)

    Anthony Anukam

    2014-01-01

    Full Text Available This paper investigated the mass and energy balance of the gasification of sugarcane bagasse using computer simulation. The key parameters and gasifier operating conditions were investigated in order to establish their impact on gas volume and conversion efficiency of the gasification process. The heating value of sugarcane bagasse was measured and found to be 17.8 MJ/kg which was used during calculation of the conversion efficiency of the gasification process. Fuel properties and gasifier design parameters were found to have an impact on conversion efficiency of the gasification process of sugarcane bagasse. The moisture content of sugarcane bagasse was varied by 1.14%, 15%, and 25%, respectively. Optimum conversion efficiency was achieved at low moisture content (1.14% after computer simulation of the gasification process. The volume of carbon monoxide increased at low moisture content. It was also found that maximum conversion efficiency was achieved at reduced particle diameter (6 cm and at reduced throat diameter (10 cm and throat angle (25°, respectively, after these parameters were varied. Temperature of input air was also found to have an impact on the conversion efficiency of the gasification process as conversion efficiency increased slightly with increasing temperature of input air.

  15. Respiratory, allergy and eye problems in bagasse-exposed sugar cane workers in Costa Rica

    NARCIS (Netherlands)

    Gascon, M.; Kromhout, H.; Heederik, D.; Eduard, W.; van Wendel de Joode, B.N.

    2012-01-01

    AIMS: To evaluate bagasse (sugar cane fibres) and microbiological exposure among sugar cane refinery workers in Costa Rica and its relationships with respiratory, allergy and eye problems. METHODS: Ventilatory lung function and total serum IgE were measured in 104 sugar cane workers in five

  16. Shiitake (lentinula edodes production on a sterilized bagasse substrate enriched with rice bran and sugarcane molasses

    Directory of Open Access Journals (Sweden)

    Rossi Ivan Henrique

    2003-01-01

    Full Text Available This investigation was performed to evaluate the biological efficiency (BE, mean mushroom weight (MMW, mean number of mushroom (MNM and mushroom quality of Shiitake [ Lentinula edodes (Berk. Pegler] when grown on a sterilized substrate composed by sugarcane bagasse enriched with rice bran and sugarcane molasses. The proportions of rice bran were 0, 15, 20, 25 and 30% (dry weight/dry weight of bagasse; and the concentrations of sugarcane molasses were 0, 30 and 60 g/kg (dry weight/dry weight of bagasse plus rice bran. Four flushes were obtained during the production cycle, providing 3 accumulated productions which were used for production analysis. The substrate supplemented with 25 and 30% rice bran yielded the highest BE (98.42 and 99.84%, respectively, about 230 days after spawning and MNM and initially produced a lower MMW than the substrates supplemented with 15 and 20% rice bran. Any amount of rice bran added to the sugarcane bagasse improved mushroom quality, with the best production of marketable mushrooms obtained by the addition of 15% rice bran. The largest amount of sugarcane molasses (60 g/kg increased BE (90.3 and 23.6%, on first and second accumulated productions, respectively and MNM and no quantity affected mushroom quality.

  17. Fast pyrolysis of organic acid leached wood, straw, hay and bagasse: Improved oil and sugar yields

    NARCIS (Netherlands)

    Oudenhoven, S.R.G; Westerhof, R.J.M.; Kersten, S.R.A.

    2015-01-01

    Organic acid leaching of pine wood, straw, bagasse and hay effectively reduced the amount of catalytically active alkali and alkaline earth metals (AAEMs). Using the (acetic) acid produced by pyrolysis as leaching agent, the AAEMs content could be reduced to 90–600 mg/kg. Tests with AAEMs impregnate

  18. Obtaining nanofibers from curauá and sugarcane bagasse fibers using enzymatic hydrolysis followed by sonication

    DEFF Research Database (Denmark)

    Campos, Adriana de; Correa, Ana Carolina; Cannella, David

    2013-01-01

    This paper is an initial study of the implementation of two new enzymes, an endoglucanase and a concoction of hemicellulases and pectinases to obtain cellulosic nanoparticles. In this study, curauá and sugarcane bagasse were dewaxed and bleached prior to enzymatic action for 72 h at 50 °C, and th...

  19. Physical and Mechanical Characterization of Sugarcane Bagasse Particleboards for Civil Construction

    Directory of Open Access Journals (Sweden)

    Rosane Battistelle

    2016-12-01

    Full Text Available In the worldwide market of particleboard production, the use of alternative raw materials is increasing, due to high demand and lack of traditional raw material, despite efforts of reforestation. In Brazil, the main agricultural commodity is sugarcane due to the copious production of sugar and ethanol. In the state of São Paulo alone approximately 140 million tons of sugarcane bagasse are produced every year, from which around 70% is burned for energy production, not adding value to the residue and generating pollution to the environment; and the other 30% is sold for composting. The objective of this work is to add value to the sugarcane bagasse by using it as a raw material for particleboard production to be employed as flooring in the area of civil construction. To achieve this, the present research characterized the physical and mechanical characteristics of the particleboards with the following alternative raw materials: sugarcane bagasse and leaves of bamboo. Particleboards were produced to reach high density (0.8g/cm3 using the resin (bi-component polyurethane castor oil. Tests for abrasion, roughness and resistance to denting and wear (Janka hardness verified that the addition of leaves of bamboo in the mixtures, contrary to what was expected, did not confer a greater degree of resistance to the particleboards. Lastly, the results showed that sugarcane bagasse is a viable raw material alternative for the production of particleboards, intended to be used as products and flooring.

  20. Simultaneous production of α-cellulose and furfural from bagasse by steam explosion pretreatment

    Directory of Open Access Journals (Sweden)

    Vittaya Punsuvon

    2008-02-01

    Full Text Available Sugar cane bagasse was pretreated by steam explosion for the simultaneous production of furfural and α-cellulose pulp. The components of bagasse were fractionated after steam explosion. The details of the process are as follows. Bagasse was soaked in water for one night and steamed at temperatures varying between 206 and 223 C for 4 minutes. The steam exploded pulp was strained and washed with hot water to yield a liquor rich in hemicellulose-derived mono- and oligosaccharides. The remaining pulp was delignified by alkali for 120 minutes at 170C using, separately, NaOH load of 15, 20 and 25% of weight of the pulp. The delignified pulp was further bleached twice with 4% H2O2 charge of weight of the pulp to produce high α-cellulose pulp. The water liquor was evaporated and further hydrolysed and dehydrated with diluted H2SO4 in a stainless steel reactor to produce furfural. The result shows that the optimal pretreatment of steam explosion for 4 min at 218C leads to the yield of α-cellulose pulp at 193-201 g∙kg-1 of the original bagasse, and that furfural can be produced from xylose present in the liquor with a maximum conversion factor of 0.16.

  1. Depithers for Efficient Preparation of Sugar Cane Bagasse Fibers in Pulp and Paper Industry

    Directory of Open Access Journals (Sweden)

    Lois-Correa J.A

    2012-10-01

    Full Text Available Among the by-products originated in the agro-industrial process of sugar cane, bagasse is one of the most relevant (Paturau, 1989. The negative influence of significant amount of pith, or parenchymatous tissue, present in sugarcane bagasse is discussed. Since this non-fibrous material does not give any desired properties in the pulp and paper, agglomerated boards and polymer productions, it is remarked the importance of its maximum removal. A brief historical review in the development of bagasse depithers and depithing systems is presented in this paper. Further results in the development of depither, named S.M. Caribe by its author, are described. The mechanical performance of first prototypes was evaluated in a test installation where vibration control values and temperatures in the upper and lower rotor bearings were monitored. For comparison it was made a vibrational analysis of other depithers that were in operation. For the technological evaluation the input capacity, the bagasse fiber quality obtained and the influence on the produced paper quality were controlled during two sugar cane crop seasons, as well. The results obtained were superior of those reached by most of depithers currently available in the market.

  2. Draft Genome Sequence of Kluyveromyces marxianus Strain DMB1, Isolated from Sugarcane Bagasse Hydrolysate.

    Science.gov (United States)

    Suzuki, Toshihiro; Hoshino, Tamotsu; Matsushika, Akinori

    2014-07-24

    We determined the genome sequence of a thermotolerant yeast, Kluyveromyces marxianus strain DMB1, isolated from sugarcane bagasse hydrolysate, and the sequence provides further insights into the genomic differences between this strain and other reported K. marxianus strains. The genome described here is composed of 11,165,408 bases and has 4,943 protein-coding genes.

  3. Impact of sugarcane field residue and mill bagasse on seed germination

    Science.gov (United States)

    Research indicates that sugarcane field residue and sugarcane mill bagasse may be allelopathic. Allelopathy is the chemical interaction between plants, which may result in the inhibition of plant growth and development. Previous research in Louisiana indicated that sugarcane field residue may inhibi...

  4. Optimization of Verticillium lecanii spore production in solid-state fermentation on sugarcane bagasse

    NARCIS (Netherlands)

    Shi, Y.; Xu, X.; Zhu, Y.

    2009-01-01

    Verticillium lecanii is an entomopathogen with high potential in biological control of pests. We developed a solid-state fermentation with sugarcane bagasse as carrier absorbing liquid medium to propagate V. lecanii spores. Using statistical experimental design, we optimized the medium composition f

  5. The Cost Implications of Replacing Soda Lime with Amsorb Plus in Clinical Practice

    OpenAIRE

    Osman Ahmed; Stephen Mannion

    2011-01-01

    Background and Goal of the Study. Desiccated soda lime is known to produce toxic compounds when interacting with volatile anesthetic agents. Amsorb Plus does not produce these but is more expensive per unit weight. Materials and Methods. In a prospective cross-over study, we evaluated the cost of using soda lime (Spherasorb, Intersurgical, UK) and Amsorb Plus. In four operating theatres over two 4-week periods, one for each product, we measured sevoflurane consumption, amount of absorbent use...

  6. Regular-soda intake independent of weight status is associated with asthma among US high school students.

    Science.gov (United States)

    Park, Sohyun; Blanck, Heidi M; Sherry, Bettylou; Jones, Sherry Everett; Pan, Liping

    2013-01-01

    Limited research shows an inconclusive association between soda intake and asthma, potentially attributable to certain preservatives in sodas. This cross-sectional study examined the association between regular (nondiet)-soda intake and current asthma among a nationally representative sample of high school students. Analysis was based on the 2009 national Youth Risk Behavior Survey and included 15,960 students (grades 9 through 12) with data for both regular-soda intake and current asthma status. The outcome measure was current asthma (ie, told by doctor/nurse that they had asthma and still have asthma). The main exposure variable was regular-soda intake (ie, drank a can/bottle/glass of soda during the 7 days before the survey). Multivariable logistic regression was used to estimate the adjusted odds ratios for regular-soda intake with current asthma after controlling for age, sex, race/ethnicity, weight status, and current cigarette use. Overall, 10.8% of students had current asthma. In addition, 9.7% of students who did not drink regular soda had current asthma, and 14.7% of students who drank regular soda three or more times per day had current asthma. Compared with those who did not drink regular soda, odds of having current asthma were higher among students who drank regular soda two times per day (adjusted odds ratio=1.28; 95% CI 1.02 to 1.62) and three or more times per day (adjusted odds ratio=1.64; 95% CI 1.25 to 2.16). The association between high regular-soda intake and current asthma suggests efforts to reduce regular-soda intake among youth might have benefits beyond improving diet quality. However, this association needs additional research, such as a longitudinal examination.

  7. Selective conversion of biorefinery lignin into dicarboxylic acids.

    Science.gov (United States)

    Ma, Ruoshui; Guo, Mond; Zhang, Xiao

    2014-02-01

    The emerging biomass-to-biofuel conversion industry has created an urgent need for identifying new applications for biorefinery lignin. This paper demonstrates a new route to producing dicarboxylic acids from biorefinery lignin through chalcopyrite-catalyzed oxidation in a highly selective process. Up to 95 % selectivity towards stable dicarboxylic acids was obtained for several types of biorefinery lignin and model compounds under mild, environmentally friendly reaction conditions. The findings from this study paved a new avenue to biorefinery lignin conversions and applications. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Experimental Study of Mechanistic Acid Deconstruction of Lignin

    Energy Technology Data Exchange (ETDEWEB)

    Sturgeon, M.; Kim, S.; Chmely, S. C.; Katahira, R.; Foust, T. D.; Beckham, G. T.

    2012-01-01

    Lignin is a major component of biomass, which remains highly underutilized in selective biomass conversion strategies to renewable fuels and chemicals. Here we are interested in studying the mechanisms related to the acid deconstruction of lignin with a combined theoretical and experimental approach. Quantum mechanical calculations were employed to elucidate possible deconstruction mechanisms with transition state theory. Model dimers, imitating H, S, and G lignins, were synthesized with the most abundant {beta} - O - 4 linkage in lignin. These compounds were then depolymerized using various acids and at different operating conditions. The deconstruction products were analyzed to complement the QM studies and investigate proposed mechanisms.

  9. Effective Release of Lignin Fragments from Lignocellulose by Lewis Acid Metal Triflates in the Lignin-First Approach.

    Science.gov (United States)

    Huang, Xiaoming; Zhu, Jiadong; Korányi, Tamás I; Boot, Michael D; Hensen, Emiel J M

    2016-12-08

    Adding value to lignin, the most complex and recalcitrant fraction in lignocellulosic biomass, is highly relevant to costefficient operation of biorefineries. We report the use of homogeneous metal triflates to rapidly release lignin from biomass. Combined with metal-catalyzed hydrogenolysis, the process separates woody biomass into few lignin-derived alkylmethoxyphenols and cellulose under mild conditions. Model compound studies show the unique catalytic properties of metal triflates in cleaving lignin-carbohydrate interlinkages. The lignin fragments can then be disassembled by hydrogenolysis. The tandem process is flexible and allows obtaining good aromatic monomer yields from different woods (36-48 wt %, lignin base). The cellulose-rich residue is an ideal feedstock for established biorefining processes. The highly productive strategy is characterized by short reaction times, low metal triflate catalyst requirement, and leaving cellulose largely untouched. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Biosynthesis and incorporation of side-chain-truncated lignin monomers to reduce lignin polymerization and enhance saccharification.

    Science.gov (United States)

    Eudes, Aymerick; George, Anthe; Mukerjee, Purba; Kim, Jin S; Pollet, Brigitte; Benke, Peter I; Yang, Fan; Mitra, Prajakta; Sun, Lan; Cetinkol, Ozgül P; Chabout, Salem; Mouille, Grégory; Soubigou-Taconnat, Ludivine; Balzergue, Sandrine; Singh, Seema; Holmes, Bradley M; Mukhopadhyay, Aindrila; Keasling, Jay D; Simmons, Blake A; Lapierre, Catherine; Ralph, John; Loqué, Dominique

    2012-06-01

    Lignocellulosic biomass is utilized as a renewable feedstock in various agro-industrial activities. Lignin is an aromatic, hydrophobic and mildly branched polymer integrally associated with polysaccharides within the biomass, which negatively affects their extraction and hydrolysis during industrial processing. Engineering the monomer composition of lignins offers an attractive option towards new lignins with reduced recalcitrance. The presented work describes a new strategy developed in Arabidopsis for the overproduction of rare lignin monomers to reduce lignin polymerization degree (DP). Biosynthesis of these 'DP reducers' is achieved by expressing a bacterial hydroxycinnamoyl-CoA hydratase-lyase (HCHL) in lignifying tissues of Arabidopsis inflorescence stems. HCHL cleaves the propanoid side-chain of hydroxycinnamoyl-CoA lignin precursors to produce the corresponding hydroxybenzaldehydes so that plant stems expressing HCHL accumulate in their cell wall higher amounts of hydroxybenzaldehyde and hydroxybenzoate derivatives. Engineered plants with intermediate HCHL activity levels show no reduction in total lignin, sugar content or biomass yield compared with wild-type plants. However, cell wall characterization of extract-free stems by thioacidolysis and by 2D-NMR revealed an increased amount of unusual C₆C₁ lignin monomers most likely linked with lignin as end-groups. Moreover the analysis of lignin isolated from these plants using size-exclusion chromatography revealed a reduced molecular weight. Furthermore, these engineered lines show saccharification improvement of pretreated stem cell walls. Therefore, we conclude that enhancing the biosynthesis and incorporation of C₆C₁ monomers ('DP reducers') into lignin polymers represents a promising strategy to reduce lignin DP and to decrease cell wall recalcitrance to enzymatic hydrolysis. © 2012 The Authors. Plant Biotechnology Journal © 2012 Society for Experimental Biology, Association of Applied

  11. Self-heating and drying in two-dimensional bagasse piles

    Science.gov (United States)

    Sexton, M. J.; Macaskill, C.; Gray, B. F.

    2001-12-01

    This paper describes a two-dimensional model for self-heating and changes in water levels in bagasse piles of constant rectangular or triangular cross section. (Bagasse is the residue, mainly cellulose, that remains after sugar has been extracted from sugar-cane.) After milling, the bagasse has almost 50% water by weight, as hot water is used to remove the last of the sugar. The bagasse can be used as fuel in electrical power stations, but needs to be dried out before use. This paper discusses the way in which the drying out of a pile depends on the ambient conditions, and the shape and size of the pile. Accordingly, the energy equation, and equations for liquid water, water vapour and oxygen are solved numerically using the method of lines. The equations include terms describing heat conduction, diffusion of water vapour and oxygen, condensation and evaporation and an Arrhenius self-heating term. In addition, recent measurements show that there is also self-heating due to the presence of water in the bagasse, with a maximum effect near 60 °C, which is modelled by a modified Arrhenius expression. The local maximum in the heat release curve for the problem leads to approximate steady-state behaviour on short time scales that eventually is lost as the pile dries out. This interesting physical behaviour motivates an approximate analytical model for the rate at which liquid water is reduced in the pile. Analytical and numerical results are presented for a variety of pile configurations and some fairly general conclusions are drawn.

  12. Removal of reactive dyes from aqueous solution using bagasse fly ash

    Directory of Open Access Journals (Sweden)

    Sumate Teachakulwiroj

    2004-02-01

    Full Text Available Bagasse fly ash, a waste from the sugar industry, was investigated as a replacement for the current expensive methods of removing reactive dyes (Remazol Black B; RBB, Remazol Brilliant Blue R; RBBR, and Remazol Brilliant Red F3B; RBRF3B from aqueous solutions. Bagasse fly ash was collected from a local sugar factory in Saraburi province, Thailand. It was oven dried at 110ºC overnight and sieved to the desired particle size of 150 µm or smaller. The 50 mL plastic conical tubes containing solution and bagasse fly ash were shaken at room temperature (27±2ºC. The pH values of solutions were adjusted by addition of HNO3 and NaOH. The batch study indicated that initial pH of aqueous solutions did not affect dye removal. While the removal efficiency decreased with increasing initial concentration, it increased with increasing adsorbent concentration. The best adsorptions were obtained under condition of 50 mg/L concentration, original pH solution of about 5, and 240, 300, and 240 minutes contact time for RBB, RBBR, and RBRF3B, respectively. Most adsorption experiments showed in the range of about 50% to 98% removal; that is, the efficiencies of RBB, RBBR, and RBRF3B adsorption were found to be between 58.48-98.03%, 46.15-93.47%, and 46.30- 94.60%, respectively. For the linear and nonlinear forms of the Langmuir and Freundlich models, the results indicated that the Langmuir adsorption isotherm fitted the data better than the Freundlich adsorption isotherm. Adsorption of these dyes onto bagasse fly ash was favorable sorption. Therefore, bagasse fly ash, the low-cost agricultural waste in Thailand, is suitable for use as adsorbent for RBB, RBBR, and RBRF3B under this investigation.

  13. Anaerobic digestion of hemicellulose hydrolysate produced after hydrothermal pretreatment of sugarcane bagasse in UASB reactor.

    Science.gov (United States)

    Ribeiro, Fernanda Resende; Passos, Fabiana; Gurgel, Leandro Vinícius Alves; Baêta, Bruno Eduardo Lobo; de Aquino, Sérgio Francisco

    2017-04-15

    In the context of a sugarcane biorefinery, sugarcane bagasse produced may be pretreated generating a solid and liquid fraction. The solid fraction may be used for 2G bioethanol production, while the liquid fraction may be used to produce biogas through anaerobic digestion. The aim of this study consisted in evaluating the anaerobic digestion performance of hemicellulose hydrolysate produced after hydrothermal pretreatment of sugarcane bagasse. For this, hydrothermal pretreatment was assessed in a continuous upflow anaerobic sludge blanket (UASB) reactor operated at a hydraulic retention time (HRT) of 18.4h. Process performance was investigated by varying the dilution of sugarcane bagasse hydrolysate with a solution containing xylose and the inlet organic loading rate (OLR). Experimental data showed that an increase in the proportion of hydrolysate in the feed resulted in better process performance for steps using 50% and 100% of real substrate. The best performance condition was achieved when increasing the organic loading rate (OLR) from 1.2 to 2.4gCOD/L·d, with an organic matter removal of 85.7%. During this period, the methane yield estimated by the COD removal would be 270LCH4/kg COD. Nonetheless, when further increasing the OLR to 4.8gCOD/L·d, the COD removal decreased to 74%, together with an increase in effluent concentrations of VFA (0.80gCOD/L) and furans (115.3mg/L), which might have inhibited the process performance. On the whole, the results showed that anaerobic digestion of sugarcane bagasse hydrolysate was feasible and may improve the net energy generation in a bioethanol plant, while enabling utilization of the surplus sugarcane bagasse in a sustainable manner. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Evaluating the bio-energy potential of groundnut shell and sugarcane bagasse waste composite

    Directory of Open Access Journals (Sweden)

    Olatunde Ajani Oyelaran

    2015-12-01

    Full Text Available An assessment has been carried out on bio-coal briquettes from coal with sugarcane bagasse and coal with groundnut shell. Proximate analyses and elemental compositions of the coal and biomasses were determined. Different samples of briquettes were produced by blending varying composition of the coal with the biomasses in the ratio of 100:0; 90:10, 80:20, 70:30, 60:40, 50:50, 40:60 and 0: 100, using calcium carbonate as a desulfurizing agent and cassava starch as a binder. A manual hydraulically operated briquetting machine was used with the pressure kept at 5MPa. The results of the properties evaluated shows that biomass increases the burning efficiency of briquettes with increase in the biomass material, increasing combustion rate, faster ignition, producing lesser ash and fewer pollutants. Results obtained shows that the calorific value of briquettes produced from coal-groundnut shells and coal-sugarcane bagasse ranges from 16.94 - 20.81 and 17.31 – 21.03 MJ/kg respectively. The ignition time ranges from 6.9 – 12.5 minutes for coal-groundnut shells briquettes while that of coal-sugarcane bagasse ranges from 6.5 – 11.1 minutes. The bio-coal blends with sugarcane bagasse were better than that of groundnut shells. However, both sugarcane bagasse and groundnut shells produce bio-coal briquettes that are very efficient, providing sufficient heat as at the time necessary, generating less smoke and gases (e.g sulphur that are harmful to environment, and generating less ash, as these have adverse effect during cooking.

  15. Silencing CHALCONE SYNTHASE in Maize Impedes the Incorporation of Tricin into Lignin and Increases Lignin Content1[OPEN

    Science.gov (United States)

    2017-01-01

    Lignin is a phenolic heteropolymer that is deposited in secondary-thickened cell walls, where it provides mechanical strength. A recent structural characterization of cell walls from monocot species showed that the flavone tricin is part of the native lignin polymer, where it is hypothesized to initiate lignin chains. In this study, we investigated the consequences of altered tricin levels on lignin structure and cell wall recalcitrance by phenolic profiling, nuclear magnetic resonance, and saccharification assays of the naturally silenced maize (Zea mays) C2-Idf (inhibitor diffuse) mutant, defective in the CHALCONE SYNTHASE Colorless2 (C2) gene. We show that the C2-Idf mutant produces highly reduced levels of apigenin- and tricin-related flavonoids, resulting in a strongly reduced incorporation of tricin into the lignin polymer. Moreover, the lignin was enriched in β-β and β-5 units, lending support to the contention that tricin acts to initiate lignin chains and that, in the absence of tricin, more monolignol dimerization reactions occur. In addition, the C2-Idf mutation resulted in strikingly higher Klason lignin levels in the leaves. As a consequence, the leaves of C2-Idf mutants had significantly reduced saccharification efficiencies compared with those of control plants. These findings are instructive for lignin engineering strategies to improve biomass processing and biochemical production. PMID:27940492

  16. Characterization and enzymatic hydrolysis of wood from transgenic Pinus taeda engineered with syringyl lignin or reduced lignin content

    Energy Technology Data Exchange (ETDEWEB)

    Edmunds, Charles W.; Peralta, Perry; Kelley, Stephen S.; Chiang, Vincent L.; Sharma-Shivappa, Ratna R.; Davis, Mark F.; Harman-Ware, Anne E.; Sykes, Robert W.; Gjersing, Erica; Cunningham, Michael W.; Rottmann, William; Miller, Zachary D.; Peszlen, Ilona

    2017-02-22

    Softwood is an abundant resource; however, currently its utilization for bioconversion to obtain platform sugars is limited. Pinus taeda trees which were genetically modified to either produce S lignin or to decrease lignin content were characterized with a suite of analytic techniques. Syringyl lignin was visualized in the secondary xylem of one genetic line with Maule staining. Solid-state nuclear magnetic resonance identified the S lignin units were coupled into the lignin through ..beta..-O-4 linkages, and thioacidolysis measured approximately 13% S lignin content in the same sample. Reductions of the lignin of as much as 33% were observed in the transgenics. To better understand how these modifications affect bioconversion, their amenability to hot water and dilute acid pretreatments and enzymatic hydrolysis was evaluated. Lignin reductions resulted in 1.9-3.2-fold increases in glucose release compared to the control. However, no apparent benefit was observed by S lignin incorporation at the concentrations reported in this study. These results highlight the potential for softwood cell wall properties to be improved for bioenergy/biochemical applications.

  17. Formic-acid-induced depolymerization of oxidized lignin to aromatics.

    Science.gov (United States)

    Rahimi, Alireza; Ulbrich, Arne; Coon, Joshua J; Stahl, Shannon S

    2014-11-13

    Lignin is a heterogeneous aromatic biopolymer that accounts for nearly 30% of the organic carbon on Earth and is one of the few renewable sources of aromatic chemicals. As the most recalcitrant of the three components of lignocellulosic biomass (cellulose, hemicellulose and lignin), lignin has been treated as a waste product in the pulp and paper industry, where it is burned to supply energy and recover pulping chemicals in the operation of paper mills. Extraction of higher value from lignin is increasingly recognized as being crucial to the economic viability of integrated biorefineries. Depolymerization is an important starting point for many lignin valorization strategies, because it could generate valuable aromatic chemicals and/or provide a source of low-molecular-mass feedstocks suitable for downstream processing. Commercial precedents show that certain types of lignin (lignosulphonates) may be converted into vanillin and other marketable products, but new technologies are needed to enhance the lignin value chain. The complex, irregular structure of lignin complicates chemical conversion efforts, and known depolymerization methods typically afford ill-defined products in low yields (that is, less than 10-20wt%). Here we describe a method for the depolymerization of oxidized lignin under mild conditions in aqueous formic acid that results in more than 60wt% yield of low-molecular-mass aromatics. We present the discovery of this facile C-O cleavage method, its application to aspen lignin depolymerization, and mechanistic insights into the reaction. The broader implications of these results for lignin conversion and biomass refining are also considered.

  18. Formic-acid-induced depolymerization of oxidized lignin to aromatics

    Science.gov (United States)

    Rahimi, Alireza; Ulbrich, Arne; Coon, Joshua J.; Stahl, Shannon S.

    2014-11-01

    Lignin is a heterogeneous aromatic biopolymer that accounts for nearly 30% of the organic carbon on Earth and is one of the few renewable sources of aromatic chemicals. As the most recalcitrant of the three components of lignocellulosic biomass (cellulose, hemicellulose and lignin), lignin has been treated as a waste product in the pulp and paper industry, where it is burned to supply energy and recover pulping chemicals in the operation of paper mills. Extraction of higher value from lignin is increasingly recognized as being crucial to the economic viability of integrated biorefineries. Depolymerization is an important starting point for many lignin valorization strategies, because it could generate valuable aromatic chemicals and/or provide a source of low-molecular-mass feedstocks suitable for downstream processing. Commercial precedents show that certain types of lignin (lignosulphonates) may be converted into vanillin and other marketable products, but new technologies are needed to enhance the lignin value chain. The complex, irregular structure of lignin complicates chemical conversion efforts, and known depolymerization methods typically afford ill-defined products in low yields (that is, less than 10-20wt%). Here we describe a method for the depolymerization of oxidized lignin under mild conditions in aqueous formic acid that results in more than 60wt% yield of low-molecular-mass aromatics. We present the discovery of this facile C-O cleavage method, its application to aspen lignin depolymerization, and mechanistic insights into the reaction. The broader implications of these results for lignin conversion and biomass refining are also considered.

  19. Quantitative proteomic analysis of the influence of lignin on biofuel production by Clostridium acetobutylicum ATCC 824

    National Research Council Canada - National Science Library

    Raut, Mahendra P; Couto, Narciso; Pham, Trong K; Evans, Caroline; Noirel, Josselin; Wright, Phillip C

    2016-01-01

    ... cellobiose, prior to bioproduction of acetone-butanol-ethanol (ABE) and hydrogen. Fermentation capability is limited by lignin and thus process optimization requires knowledge of lignin inhibition...

  20. Selective aerobic alcohol oxidation method for conversion of lignin into simple aromatic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Stahl, Shannon S; Rahimi, Alireza

    2015-03-03

    Described is a method to oxidize lignin or lignin sub-units. The method includes oxidation of secondary benzylic alcohol in the lignin or lignin sub-unit to a corresponding ketone in the presence of unprotected primarily aliphatic alcohol in the lignin or lignin sub-unit. The optimal catalyst system consists of HNO.sub.3 in combination with another Bronsted acid, in the absence of a metal-containing catalyst, thereby yielding a selectively oxidized lignin or lignin sub-unit. The method may be carried out in the presence or absence of additional reagents including TEMPO and TEMPO derivatives.