WorldWideScience

Sample records for bag-type fiberglass ventilation

  1. Sensory pollution from bag-type fiberglass ventilation filters: Conventional filter compared with filters containing various amounts of activated carbon

    DEFF Research Database (Denmark)

    Bekö, Gabriel; Fadeyi, M.O.; Clausen, Geo

    2009-01-01

    was judged to be significantly better than the air downstream of the 6-month-old F7 filter, and was comparable to that from an unused F7 filter. Additionally, the combination filters removed more ozone from the air than the F7 filter, with their respective fractional removal efficiencies roughly scaling......As ventilation filters accumulate particles removed from the airstream, they become emitters of sensory pollutants that degrade indoor air quality. Previously we demonstrated that an F7 bag-type filter that incorporates activated carbon (a "combination filter") reduces this adverse effect compared...... to an equivalent filter without carbon. The aim of the present study was to examine how the amount of activated carbon (AC) used in combination filters affects their ability to remove both sensory offending pollutants and ozone. A panel evaluated the air downstream of four different filters after each had...

  2. Forces exerted during exercises by patients with adolescent idiopathic scoliosis wearing fiberglass braces

    OpenAIRE

    Romano Michele; Carabalona Roberta; Petrilli Silvia; Sibilla Paolo; Negrini Stefano

    2006-01-01

    Abstract Objective To quantify and compare the forces exerted by scoliosis patients in fiberglass braces during exercises usually prescribed in departments where casts are made. The exercises are intended to increase corrective forces, activate muscles, stimulate ventilation and help the patient psychologically. Setting Outpatient care. Patients 17 consecutive adolescent patients wearing fiberglass brace for idiopathic scoliosis. Interventions Exercises (kyphotization, rotation, "escape from ...

  3. Ventilation

    DEFF Research Database (Denmark)

    Nielsen, Toke Rammer; Svendsen, Sv Aa Højgaard

    1999-01-01

    The note concerns ventilation in residential buildings. Describes components in ventilation systems, electric energy consumption and different ventilation systems with heat exchanger.......The note concerns ventilation in residential buildings. Describes components in ventilation systems, electric energy consumption and different ventilation systems with heat exchanger....

  4. Fungal production of volatiles during growth on fiberglass.

    OpenAIRE

    Ezeonu, I M; Price, D L; Simmons, R B; Crow, S A; Ahearn, D G

    1994-01-01

    Acoustic and thermal fiberglass insulation materials used in heating, ventilation, and air-conditioning systems were colonized with fungi in laboratory chambers. The mixed fungal population, principally Aspergillus versicolor, Acremonium obclavatum, and Cladosporium herbarum, produced odoriferous volatiles, including 2-ethyl hexanol, cyclohexane, and benzene. These volatiles may be related to poor indoor air quality and the sick building syndrome.

  5. Modelling of fiberglass pipe destruction process

    Directory of Open Access Journals (Sweden)

    А. К. Николаев

    2017-03-01

    Full Text Available The article deals with important current issue of oil and gas industry of using tubes made of high-strength composite corrosion resistant materials. In order to improve operational safety of industrial pipes it is feasible to use composite fiberglass tubes. More than half of the accidents at oil and gas sites happen at oil gathering systems due to high corrosiveness of pumped fluid. To reduce number of accidents and improve environmental protection we need to solve the issue of industrial pipes durability. This problem could be solved by using composite materials from fiberglass, which have required physical and mechanical properties for oil pipes. The durability and strength can be monitored by a fiberglass winding method, number of layers in composite material and high corrosion-resistance properties of fiberglass. Usage of high-strength composite materials in oil production is economically feasible; fiberglass pipes production is cheaper than steel pipes. Fiberglass has small volume weight, which simplifies pipe transportation and installation. In order to identify the efficiency of using high-strength composite materials at oil production sites we conducted a research of their physical-mechanical properties and modelled fiber pipe destruction process.

  6. Two-year Wisconsin thermal loads for roof assemblies and wood, wood–plastic composite, and fiberglass shingles

    Science.gov (United States)

    Jerrold E. Winandy; Michael Grambsch; Cherilyn Hatfield

    2005-01-01

    Temperature histories for various types of roof shingles, wood roof sheathing, roof rafters, and non-ventilated attics are being monitored in outdoor attic structures using simulated North American light-framed construction. This report presents 2-year data histories for annual thermal loads for western redcedar, wood–thermoplastic composite, and fiberglass shingles...

  7. Selected properties of MDF and flakeboard overlaid with fiberglass mats

    Science.gov (United States)

    Zhiyong Cai

    2006-01-01

    Nonwoven fiberglass face laminates have long been applied to consolidated wood- based composites to improve their performance and serviceability. In this study, fiberglass mats with 50 percent resin binder were applied as face laminates to unconsolidated wood fiber or flake mats, then hot-pressed to make overlaid medium density fiberboard and flakeboard. Fiberglass...

  8. Eicosapentaenoic acid production from Nannochloropsis oceanica CY2 using deep sea water in outdoor plastic-bag type photobioreactors.

    Science.gov (United States)

    Chen, Chun-Yen; Nagarajan, Dillirani; Cheah, Wai Yan

    2018-04-01

    In this study, Nannochloropsis oceanica CY2 was grown in deep-sea water (DSW)-based medium in 5-L plastic bag-type photobioreactors (PBRs) for the autotrophic production of Eicosapentaenoic acid (EPA, 20:5n-3). EPA production of N. oceanica CY2 was stimulated when it was grown in 100% DSW amended with 1.5 g L -1 NaNO 3 , achieving a EPA content of 3.1% and a biomass concentration of 3.3 g L -1 . An outdoor-simulated microalgae cultivation system was also conducted to validate the feasibility of outdoor cultivation of the CY2 strain in plastic bag-type PBRs. Using an inoculum size of 0.6 g/L, the biomass concentration in the PBR culture was 3.5 g L -1 , while the EPA content and productivity reached a maximal level of 4.12% and 7.49 mg L -1  d -1 , respectively. When the PBRs were operated on semi-batch mode, the EPA productivity could further increase to 9.9 mg L -1  d -1 with a stable EPA content of 4.1%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. : ventilators for noninvasive ventilation

    OpenAIRE

    Fauroux , Brigitte; Leroux , Karl; Desmarais , Gilbert; Isabey , Daniel; Clément , Annick; Lofaso , Frédéric; Louis , Bruno

    2008-01-01

    International audience; The aim of the present study was to evaluate the performance characteristics of all the ventilators proposed for home noninvasive positive-pressure ventilation in children in France. The ventilators (one volume-targeted, 12 pressure-targeted and four dual) were evaluated on a bench which simulated six different paediatric ventilatory patterns. For each ventilator, the quality of the inspiratory and expiratory trigger and the ability to reach and maintain the preset pre...

  10. The Use of the Fiberglass at the Reinforced Concrete Elements

    Directory of Open Access Journals (Sweden)

    Răzvan Giuşcă

    2005-01-01

    Full Text Available The main constituent of the reinforced fiberglass concrete are: the glass fibers, the binder, the sand and the water. In order to change certain characteristics there can be used different types of additives of fillers. The fiberglass is used in the shape of beams and cords having the lengths comprised between 12 and 15 mm; the cutting is realized with different devices, which are designed, built and used by variant firms. The reinforced fiberglass concretes use the following binders: hydraulic binders - based on Portland cement, like the normal Portland cement, the Portland cement with additions, the fast - hardening cement (in Romania the RIM, the white and coloured cements; the alumina cements, non-hydraulic binders - the burnt plaster, the magnesite cement, clay.

  11. Thermal expansion of epoxy-fiberglass composite specimens

    International Nuclear Information System (INIS)

    McElroy, D.L.; Weaver, F.J.; Bridgman, C.

    1986-01-01

    The thermal expansion behavior of three epoxy-fiberglass composite specimens was measured from 20 to 120 0 C (70 to 250 0 F) using a fused quartz push-rod dilatometer. Billets produced by vacuum impregnating layers of two types of fiberglass cloth with an epoxy resin were core-drilled to produce cylindrical specimens. These were used to study expansion perpendicular and parallel to the fiberglass layers. The dilatometer is held at a preselected temperature until steady-state is indicated by stable length and temperature data. Before testing the composite specimens, a reliability check of the dilatometer was performed using a copper secondary standard. This indicated thermal expansion coefficient (α) values within +-2% of expected values from 20 to 200 0 C

  12. Mechanical Ventilation

    Science.gov (United States)

    ... ventilation is a life support treatment. A mechanical ventilator is a machine that helps people breathe when ... to breathe enough on their own. The mechanical ventilator is also called a ventilator , respirator, or breathing ...

  13. Ventilation systems

    International Nuclear Information System (INIS)

    Gossler

    1980-01-01

    The present paper deals with - controlled area ventilation systems - ventilation systems for switchgear-building and control-room - other ventilation systems for safety equipments - service systems for ventilation systems. (orig./RW)

  14. Systemic allergic contact dermatitis to fiberglass in a factory worker of wind turbine blades.

    Science.gov (United States)

    Nogueira, Ana; Morais, Paulo; Cunha, Ana Paula; Azevedo, Filomena

    2011-09-01

    Fiberglass is extensively used due to its properties of thermal, acoustic and electrical insulation, and also to reinforce other materials such as plastics. Irritant contact dermatitis to fiberglass is a well established occupational dermatose and is due to penetration of small fragments in the cornified layer of the skin. On the other hand, allergic contact dermatitis (ACD) is rare and is more often triggered by sensitivity to the additives and resins used in the manufacture of fiberglass products. We report a case of ACD to fiberglass in a factory worker of fiberglass reinforced products.

  15. Flexural Strength of Polymethyl Methacrylate Repaired with Fiberglass.

    Science.gov (United States)

    Golbidi, Fariba; Pozveh, Maryam Amini

    2017-07-01

    The purpose of this experimental study was to discover a method to increase the strength of repaired polymethyl methacrylate (PMMA) samples. In this experimental study, 40 specimens with the dimensions of 65×10×2.5mm 3 were fabricated using heat-curing acrylic resin. Sixteen specimens were repaired with fiberglass and self-curing PMMA, while 16 samples were repaired with self-curing PMMA. Eight specimens were left intact as the control group. Afterwards, the flexural strengths of the repaired and intact specimens were measured by three-point bending test in a universal testing machine. Data were analyzed with one-way analysis of variance (ANOVA) and Tukey's HSD and LSD tests. The level of significance was set at P<0.05. The mean flexural strength of the samples repaired with fiberglass was higher than that of the other repaired samples. However, the difference was statistically significant only with respect to the Meliodent group (P=0.008). Impregnated fiberglass could be used in the repair of denture bases to improve the flexural strength. In terms of the fracture site, it can be concluded that the lower flexural strength of the auto-polymerizing acryl compared to that of the heat-curing type was the main reason for the occurrence of fractures, rather than the weak bond between heat-curing and auto-polymerizing acrylic resins.

  16. Flexural Strength of Polymethyl Methacrylate Repaired with Fiberglass

    Directory of Open Access Journals (Sweden)

    Fariba Golbidi

    2017-10-01

    Full Text Available Objectives: The purpose of this experimental study was to discover a method to increase the strength of repaired polymethyl methacrylate (PMMA samples.Materials and Methods: In this experimental study, 40 specimens with the dimensions of 65×10×2.5mm3 were fabricated using heat-curing acrylic resin. Sixteen specimens were repaired with fiberglass and self-curing PMMA, while 16 samples were repaired with self-curing PMMA. Eight specimens were left intact as the control group. Afterwards, the flexural strengths of the repaired and intact specimens were measured by three-point bending test in a universal testing machine. Data were analyzed with one-way analysis of variance (ANOVA and Tukey's HSD and LSD tests. The level of significance was set at P<0.05.Results: The mean flexural strength of the samples repaired with fiberglass was higher than that of the other repaired samples. However, the difference was statistically significant only with respect to the Meliodent group (P=0.008.Conclusions: Impregnated fiberglass could be used in the repair of denture bases to improve the flexural strength. In terms of the fracture site, it can be concluded that the lower flexural strength of the auto-polymerizing acryl compared to that of the heat-curing type was the main reason for the occurrence of fractures, rather than the weak bond between heat-curing and auto-polymerizing acrylic resins.

  17. Anaesthesia ventilators

    Science.gov (United States)

    Jain, Rajnish K; Swaminathan, Srinivasan

    2013-01-01

    Anaesthesia ventilators are an integral part of all modern anaesthesia workstations. Automatic ventilators in the operating rooms, which were very simple with few modes of ventilation when introduced, have become very sophisticated with many advanced ventilation modes. Several systems of classification of anaesthesia ventilators exist based upon various parameters. Modern anaesthesia ventilators have either a double circuit, bellow design or a single circuit piston configuration. In the bellows ventilators, ascending bellows design is safer than descending bellows. Piston ventilators have the advantage of delivering accurate tidal volume. They work with electricity as their driving force and do not require a driving gas. To enable improved patient safety, several modifications were done in circle system with the different types of anaesthesia ventilators. Fresh gas decoupling is a modification done in piston ventilators and in descending bellows ventilator to reduce th incidence of ventilator induced volutrauma. In addition to the conventional volume control mode, modern anaesthesia ventilators also provide newer modes of ventilation such as synchronised intermittent mandatory ventilation, pressure-control ventilation and pressure-support ventilation (PSV). PSV mode is particularly useful for patients maintained on spontaneous respiration with laryngeal mask airway. Along with the innumerable benefits provided by these machines, there are various inherent hazards associated with the use of the ventilators in the operating room. To use these workstations safely, it is important for every Anaesthesiologist to have a basic understanding of the mechanics of these ventilators and breathing circuits. PMID:24249886

  18. Anaesthesia ventilators

    OpenAIRE

    Jain, Rajnish K; Swaminathan, Srinivasan

    2013-01-01

    Anaesthesia ventilators are an integral part of all modern anaesthesia workstations. Automatic ventilators in the operating rooms, which were very simple with few modes of ventilation when introduced, have become very sophisticated with many advanced ventilation modes. Several systems of classification of anaesthesia ventilators exist based upon various parameters. Modern anaesthesia ventilators have either a double circuit, bellow design or a single circuit piston configuration. In the bello...

  19. Evaluation of S-type fiberglass composites for use in high-level radioactive waste environments

    International Nuclear Information System (INIS)

    Parra, S.A.

    1996-01-01

    Two types of S-type fiberglass materials were evaluated for use in a high-level radioactive waste environment. The S-type fiberglass composites tested were in the form of tubes and were exposed to a simulated high-level radioactive waste environment consisting of corrosive chemicals, high gamma radiation, and elevated temperatures. The physical properties of the exposed and unexposed tube samples were compared to determine the effects of the simulated environment on the S-type fiberglass composites

  20. Displacement ventilation

    DEFF Research Database (Denmark)

    Kosonen, Risto; Melikov, Arsen Krikor; Mundt, Elisabeth

    The aim of this Guidebook is to give the state-of-the art knowledge of the displacement ventilation technology, and to simplify and improve the practical design procedure. The Guidebook discusses methods of total volume ventilation by mixing ventilation and displacement ventilation and it gives...... insights of the performance of the displacement ventilation. It also shows practical case studies in some typical applications and the latest research findings to create good local micro-climatic conditions....

  1. An automated method for the layup of fiberglass fabric

    Science.gov (United States)

    Zhu, Siqi

    This dissertation presents an automated composite fabric layup solution based on a new method to deform fiberglass fabric referred to as shifting. A layup system was designed and implemented using a large robotic gantry and custom end-effector for shifting. Layup tests proved that the system can deposit fabric onto two-dimensional and three-dimensional tooling surfaces accurately and repeatedly while avoiding out-of-plane deformation. A process planning method was developed to generate tool paths for the layup system based on a geometric model of the tooling surface. The approach is analogous to Computer Numerical Controlled (CNC) machining, where Numerical Control (NC) code from a Computer-Aided Design (CAD) model is generated to drive the milling machine. Layup experiments utilizing the proposed method were conducted to validate the performance. The results show that the process planning software requires minimal time or human intervention and can generate tool paths leading to accurate composite fabric layups. Fiberglass fabric samples processed with shifting deformation were observed for meso-scale deformation. Tow thinning, bending and spacing was observed and measured. Overall, shifting did not create flaws in amounts that would disqualify the method from use in industry. This suggests that shifting is a viable method for use in automated manufacturing. The work of this dissertation provides a new method for the automated layup of broad width composite fabric that is not possible with any available composite automation systems to date.

  2. VENTILATION MODEL

    International Nuclear Information System (INIS)

    V. Chipman

    2002-01-01

    The purpose of the Ventilation Model is to simulate the heat transfer processes in and around waste emplacement drifts during periods of forced ventilation. The model evaluates the effects of emplacement drift ventilation on the thermal conditions in the emplacement drifts and surrounding rock mass, and calculates the heat removal by ventilation as a measure of the viability of ventilation to delay the onset of peak repository temperature and reduce its magnitude. The heat removal by ventilation is temporally and spatially dependent, and is expressed as the fraction of heat carried away by the ventilation air compared to the fraction of heat produced by radionuclide decay. One minus the heat removal is called the wall heat fraction, or the remaining amount of heat that is transferred via conduction to the surrounding rock mass. Downstream models, such as the ''Multiscale Thermohydrologic Model'' (BSC 2001), use the wall heat fractions as outputted from the Ventilation Model to initialize their postclosure analyses

  3. Ventilation models

    Science.gov (United States)

    Skaaret, Eimund

    Calculation procedures, used in the design of ventilating systems, which are especially suited for displacement ventilation in addition to linking it to mixing ventilation, are addressed. The two zone flow model is considered and the steady state and transient solutions are addressed. Different methods of supplying air are discussed, and different types of air flow are considered: piston flow, plane flow and radial flow. An evaluation model for ventilation systems is presented.

  4. Industrial ventilation

    Science.gov (United States)

    Goodfellow, H. D.

    Industrial ventilation design methodology, using computers and using fluid dynamic models, is considered. It is noted that the design of a ventilation system must be incorporated into the plant design and layout at the earliest conceptual stage of the project. A checklist of activities concerning the methodology for the design of a ventilation system for a new facility is given. A flow diagram of the computer ventilation model shows a typical input, the initialization and iteration loop, and the output. The application of the fluid dynamic modeling techniques include external and internal flow fields, and individual sources of heat and contaminants. Major activities for a ventilation field test program are also addressed.

  5. Study on the Filament Yarns Spreading Techniques and Assessment Methods of the Electronic Fiberglass Fabric

    Science.gov (United States)

    Wang, Xi; Chen, Shouhui; Zheng, Tianyong; Ning, Xiangchun; Dai, Yifei

    2018-03-01

    The filament yarns spreading techniques of electronic fiberglass fabric were developed in the past few years in order to meet the requirements of the development of electronic industry. Copper clad laminate (CCL) requires that the warp and weft yarns of the fabric could be spread out of apart and formed flat. The penetration performance of resin could be improved due to the filament yarns spreading techniques of electronic fiberglass fabric, the same as peeling strength of CCL and drilling performance of printed circuit board (PCB). This paper shows the filament yarns spreading techniques of electronic fiberglass fabric from several aspects, such as methods and functions, also with the assessment methods of their effects.

  6. Mine ventilation engineering

    Energy Technology Data Exchange (ETDEWEB)

    Hall, C.J.

    1981-01-01

    This book on mine ventilation covers psychometrics, airflow through roadways and ducts, natural ventilation, fans, instruments, ventilation surveys, auxiliary ventilation, air quality, and planning and economics.

  7. Demand Controlled Ventilation and Classroom Ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, William J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mendell, Mark J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Davies, Molly [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Eliseeva, Ekaterina [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Faulkner, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hong, Tienzen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sullivan, Douglas P. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-05-01

    This document summarizes a research effort on demand controlled ventilation and classroom ventilation. The research on demand controlled ventilation included field studies and building energy modeling.

  8. Demand controlled ventilation and classroom ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, William J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mendell, Mark J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Davies, Molly [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Eliseeva, Ekaterina [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Faulkner, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hong, Tienzen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sullivan, Douglas P. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-01-06

    This document summarizes a research effort on demand controlled ventilation and classroom ventilation. The research on demand controlled ventilation included field studies and building energy modeling.

  9. Displacement Ventilation

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm

    Displacement ventilation is an interesting new type of air distribution principle which should be considered in connection with design of comfort ventilation in both smal1 and large spaces. Research activities on displacement ventilation are large all over the world and new knowledge of design...... methods appears continuously. This book gives an easy introduction to the basis of displacement ventilation and the chapters are written in the order which is used in a design procedure. The main text is extended by five appendices which show some of the new research activities taking place at Aalborg...

  10. Behovstyret ventilation

    DEFF Research Database (Denmark)

    Afshari, Alireza; Heiselberg, Per; Reinhold, Claus

    2010-01-01

    I en nylig afsluttet undersøgelse er der udført en række målinger på otte udvalgte børneinstitutioner. Fire af disse med mekanisk ventilation og fire med naturlig ventilation. Formålet er at udvide den erfaringsbaserede viden om funktionen af naturlige og mekaniske ventilationsløsninger i...

  11. Ventilation Model

    International Nuclear Information System (INIS)

    Yang, H.

    1999-01-01

    The purpose of this analysis and model report (AMR) for the Ventilation Model is to analyze the effects of pre-closure continuous ventilation in the Engineered Barrier System (EBS) emplacement drifts and provide heat removal data to support EBS design. It will also provide input data (initial conditions, and time varying boundary conditions) for the EBS post-closure performance assessment and the EBS Water Distribution and Removal Process Model. The objective of the analysis is to develop, describe, and apply calculation methods and models that can be used to predict thermal conditions within emplacement drifts under forced ventilation during the pre-closure period. The scope of this analysis includes: (1) Provide a general description of effects and heat transfer process of emplacement drift ventilation. (2) Develop a modeling approach to simulate the impacts of pre-closure ventilation on the thermal conditions in emplacement drifts. (3) Identify and document inputs to be used for modeling emplacement ventilation. (4) Perform calculations of temperatures and heat removal in the emplacement drift. (5) Address general considerations of the effect of water/moisture removal by ventilation on the repository thermal conditions. The numerical modeling in this document will be limited to heat-only modeling and calculations. Only a preliminary assessment of the heat/moisture ventilation effects and modeling method will be performed in this revision. Modeling of moisture effects on heat removal and emplacement drift temperature may be performed in the future

  12. Ventilation Effectiveness

    DEFF Research Database (Denmark)

    Mundt, M.; Mathisen, H. M.; Moser, M.

    Improving the ventilation effectiveness allows the indoor air quality to be significantly enhanced without the need for higher air changes in the building, thereby avoiding the higher costs and energy consumption associated with increasing the ventilation rates. This Guidebook provides easy-to-un...

  13. Ventilative Cooling

    DEFF Research Database (Denmark)

    Heiselberg, Per Kvols; Kolokotroni, Maria

    This report, by venticool, summarises the outcome of the work of the initial working phase of IEA ECB Annex 62 Ventilative Cooling and is based on the findings in the participating countries. It presents a summary of the first official Annex 62 report that describes the state-of-the-art of ventil......This report, by venticool, summarises the outcome of the work of the initial working phase of IEA ECB Annex 62 Ventilative Cooling and is based on the findings in the participating countries. It presents a summary of the first official Annex 62 report that describes the state......-of-the-art of ventilative cooling potentials and limitations, its consideration in current energy performance regulations, available building components and control strategies and analysis methods and tools. In addition, the report provides twenty six examples of operational buildings using ventilative cooling ranging from...

  14. Optimization of Production Lines and Cross-sections of Fiberglass Rebar

    Science.gov (United States)

    Maksimov, S. P.; Dildin, A. N.; Maksimova, A. E.

    2017-11-01

    The article substantiates the need of the construction industry in new lightweight and durable materials that ensure reduction in the cost of work and increase in the operational characteristics of the constructed facilities. These materials include fiberglass reinforcement which is an auxiliary bar made of heavy-duty glass fibers impregnated with a polymer adhesive composition and additionally entwined to create a ribbed surface and tight fit with fiberglass threads. This fitting has undeniable advantages in comparison with steel fittings. The polymer composite is resistant to corroding medium, does not corrode, does not conduct electricity, has high elastic properties, low thermal conductivity, increased tensile strength, etc. It is shown that the issues related to the improvement of technology and the form of a fiberglass rebar section are relevant for the construction industry. So, in particular, the presented developments will significantly reduce the consumption of adhesive composition for impregnating roving threads, reduce production costs by eliminating the loss of adhesive composition in impregnating vessels and pull-guide rollers, increasing the environmental friendliness of production and increasing the line productivity. In addition, it is possible to improve the strength characteristics by optimizing the cross-section and longitudinal cross-sections of the resulting fiberglass reinforcement. The presented changes in the design and technology of fiberglass reinforcement production can be realized as a separate independent module. It is easy to integrate into existing lines during repair work or routine maintenance of equipment.

  15. Spectrum Fatigue Lifetime and Residual Strength for Fiberglass Laminates; TOPICAL

    International Nuclear Information System (INIS)

    WAHL, NEIL K.; MANDELL, JOHN F.; SAMBORSKY, DANIEL D.

    2002-01-01

    This report addresses the effects of spectrum loading on lifetime and residual strength of a typical fiberglass laminate configuration used in wind turbine blade construction. Over 1100 tests have been run on laboratory specimens under a variety of load sequences. Repeated block loading at two or more load levels, either tensile-tensile, compressive-compressive, or reversing, as well as more random standard spectra have been studied. Data have been obtained for residual strength at various stages of the lifetime. Several lifetime prediction theories have been applied to the results. The repeated block loading data show lifetimes that are usually shorter than predicted by the most widely used linear damage accumulation theory, Miner's sum. Actual lifetimes are in the range of 10 to 20 percent of predicted lifetime in many cases. Linear and nonlinear residual strength models tend to fit the data better than Miner's sum, with the nonlinear providing a better fit of the two. Direct tests of residual strength at various fractions of the lifetime are consistent with the residual strength models. Load sequencing effects are found to be insignificant. The more a spectrum deviates from constant amplitude, the more sensitive predictions are to the damage law used. The nonlinear model provided improved correlation with test data for a modified standard wind turbine spectrum. When a single, relatively high load cycle was removed, all models provided similar, though somewhat non-conservative correlation with the experimental results. Predictions for the full spectrum, including tensile and compressive loads were slightly non-conservative relative to the experimental data, and accurately captured the trend with varying maximum load. The nonlinear residual strength based prediction with a power law S-N curve extrapolation provided the best fit to the data in most cases. The selection of the constant amplitude fatigue regression model becomes important at the lower stress, higher

  16. Analysis of Energy Saving Potential and Optimization of Thermally Broken Fiberglass Window Frames

    DEFF Research Database (Denmark)

    Zajas, Jan Jakub; Heiselberg, Per

    2011-01-01

    of a window frame can be significantly reduced by these means. Performance of an actual fiberglass frame optimized in this work is significantly improved, but still not competitive against state of the art frames. This indicates that more drastic improvements need to be done in order to achieve satisfying......This paper elaborates on the energy saving potential and development process of fiberglass window frames, with intention for application in cold climates. A method is presented, where different means of improving thermal performance of a window frame are evaluated. Firstly, very simple geometries...

  17. Investigating compression failure mechanisms in composite laminates with a transient fiberglass-epoxy birefringent material

    Science.gov (United States)

    Shuart, M. J.; Williams, J. G.

    1984-01-01

    An experimental study is reported in which a nondestructive technique involving the use of a transparent fiberglass-epoxy composite birefringent material has been used to investigate compression failure mechanisms in graphite-epoxy laminates. It is shown that the birefringency and transparency of the fiberglass-epoxy material permits regions of high stress to be located and the mechanisms of local failure propagation to be identified within the laminate. The material may also be useful for studying stress fields and for identifying failure initiation and propagation mechanisms in a wide variety of composite-structure problems.

  18. Personalized ventilation

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor

    2004-01-01

    The thermal environment and air quality in buildings affects occupants' health, comfort and performance. The heating, ventilating and air-conditioning (HVAC) of buildings today is designed to provide a uniform room environment. However, large individual differences exist between occupants in regard...... microenvironment. Furthermore, HVAC systems should be designed to protect occupants from airborne transmission of infectious agents that may be present in exhaled air. Personalized ventilation is a new development in the field of HVAC and has the potential to fulfill the above requirements. This paper reviews...... existing knowledge on performance of personalized ventilation (PV) and on human response to it. The airflow interaction in the vicinity of the human body is analyzed and its impact on thermal comfort and inhaled air quality is discussed together with control strategies and the application of PV in practice...

  19. Mixing Ventilation

    DEFF Research Database (Denmark)

    Kandzia, Claudia; Kosonen, Risto; Melikov, Arsen Krikor

    In this guidebook most of the known and used in practice methods for achieving mixing air distribution are discussed. Mixing ventilation has been applied to many different spaces providing fresh air and thermal comfort to the occupants. Today, a design engineer can choose from large selection...

  20. Displacement Ventilation

    DEFF Research Database (Denmark)

    Bjørn, Erik; Mattsson, Magnus; Sandberg, Mats

    Full-scale experiments were made in a displacement ventilated room with two breathing thermal manikins to study the effect of movements and breathing on the vertical contaminant distribution, and on the personal exposure of occupants. Concentrations were measured with tracer gas equipment...

  1. Fatigue testing of low-cost fiberglass composite wind turbine blade materials

    Science.gov (United States)

    Hofer, K. E.; Bennett, L. C.

    1981-01-01

    The static and fatigue behavior of transverse filament tape (TFT) fiberglass/epoxy and TFT/polyester composites was established by the testing of specimens cut from panels fabricated by a filament winding process used for the construction of large experimental wind turbine blades.

  2. Analysis of Energy Saving Potential and Optimization of Thermally Broken Fiberglass Window Frames

    DEFF Research Database (Denmark)

    Zajas, Jan Jakub; Heiselberg, Per

    2011-01-01

    This paper elaborates on the energy saving potential and development process of fiberglass window frames, with intention for application in cold climates. A method is presented, where different means of improving thermal performance of a window frame are evaluated. Firstly, very simple geometries...

  3. Influence of injection temperatures and fiberglass compositions on mechanical properties of polypropylene

    Science.gov (United States)

    Keey, Tony Tiew Chun; Azuddin, M.

    2017-06-01

    Injection molding process appears to be one of the most suitable mass and cost efficiency manufacturing processes for polymeric parts nowadays due to its high efficiency of large scale production. When down-scaling the products and components, the limits of conventional injection molding process are reached. These constraints had initiated the development of conventional injection molding process into a new era of micro injection molding technology. In this study, fiberglass reinforced polypropylenes (PP) with various glass fiber percentage materials were used. The study start with fabrication of micro tensile specimens at three different injection temperature, 260°C, 270°C and 280°C for different percentage by weight of fiberglass reinforced PP. Then evaluate the effects of various injection temperatures on the tensile properties of micro tensile specimens. Different percentage by weight of fiberglass reinforced PP were tested as well and it was found that 20% fiberglass reinforced PP possessed the greatest percentage increase of tensile strength with increasing temperatures.

  4. High Strength Wood-based Sandwich Panels reinforced with fiberglass and foam

    Science.gov (United States)

    Jinghao Li; John F. Hunt; Shaoqin Gong; Zhiyong Cai

    2014-01-01

    Mechanical analysis is presented for new high-strengthsandwich panels made from wood-based phenolic impregnated laminated paper assembled with an interlocking tri-axial ribbed core. Four different panel configurations were tested, including panels with fiberglass fabric bonded to both outside faces with self-expanding urethane foam used to fill the ribbed core. The...

  5. Effect of Electrospun Nanofibers on the Short Beam Strength of Laminated Fiberglass Composite

    Science.gov (United States)

    Shinde, Dattaji K.

    High specific modulus and strength are the most desirable properties for the material used in structural applications. Composite materials exhibit these properties and over the last decade, their usage has increased significantly, particularly in automotive, defense, and aerospace applications. The major cause of failures in composite laminates is due to delaminations. Delamination in composite laminates can occur due to fatigue, low velocity impact and other loadings modes. Conventional methods like "through-the-thickness stitching" or "Z-Pinning" have limitations for improving flexural and interlaminar properties in woven composites due to the fact that while improving interlaminar properties, the presence of stitches or Z pins affects in-plane properties. This study investigates the flexural behavior of fiberglass composites interleaved with non-woven Tetra Ethyl Orthosilicate (TEOS) electrsopsun nanofibers (ENFs). TEOS ENFs were manufactured using an electrospinning technique and then sintered. Nanoengineered beams were fabricated by interleaving TEOS ENFs between the laminated fiberglass composites to improve the flexural properties. TEOS ENFs, resin film, and failed fiberglass laminated composites with and without nanofibers were characterized using SEM Imaging and ASTM standard testing methods. A hybrid composite was made by interleaving a non-woven sheet of TEOS ENFs between the fiberglass laminates with additional epoxy resin film and fabricated using the out of autoclave vacuum bagging method. Four commonly used stacking sequences of fiberglass laminates with and without nanofibers were used to study the progressive failure and deformation mechanics under flexural loadings. The experimental study has shown significant improvements in short beam strength and strain energy absorption in the nanoengineered laminated fiberglass composites before complete failure. The modes were investigated by performing detailed fractographic examination of failed specimens

  6. G-Plus report to Owens Corning-thermal conductivity Measurements of Fiberglass

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H

    2003-04-15

    Fiberglass made by Owens Corning is being used in noise reduction of automobile exhaust system. Specifically, the glass fibers are packed inside the muffler to achieve the desired acoustic effect. A secondary benefit of the fibers is to serve as a thermal insulation. Because of this insulating property, the glass fibers can serve to reduce the temperature of the muffler shell. This in turn reduces the need for heat shields around mufflers and reduces the amount of exterior temperature accelerated corrosion of the muffler shell, especially in the winter ''salt belts'' where large amounts of salt are placed on highways to minimize the safety impact of snow and ice. In addition, for some applications the use of the fiberglass could allow the use of lighter weight carbon based polymer composite materials in place of steel for muffler shells. However, in order to properly design exhaust systems without heat shields or to take advantage of new materials, the thermal conductivity of the fiberglass material at operating temperatures (for some applications above 750 C) must be known. We selected two types of Owens Corning glass fibers, 17 {micro}m and 24 {micro}m in diameter, for this study. There are some room temperature thermal conductivity data for the fiberglass, but high temperature data are not available. Based on the thermal radiation model, thermal conductivity should increase rapidly at high temperature, providing less thermal insulation. In addition, thermal conductivity depends on packing density of the glass fibers. We will study the effect of packing density on thermal conductivity. Another issue is that the glass fiber conducts heat better along the fiber, while the conduction across the fibers is poor, because thermal conduction from one fiber to another has to go through an interface with thermal resistance. In fiberglass, most fibers are not in good contact with the surrounding fibers, thus, most heat transfer is dependent on the

  7. Transient altitude-induced compartment syndrome associated with fiberglass casts using waterproof cast padding.

    Science.gov (United States)

    Kadzielski, John; Bae, Donald S

    2013-01-01

    Changes in aircraft cabin pressure and its interplay with a fixed diameter fiberglass cylindrical cast and the closed air cells in waterproof cast padding may cause a transient altitude-induced compartment syndrome. In this case series, 2 patients reported transient compartment syndromes that resolved with aircraft decent. As proof of concept, this work displays photographic and video evidence showing the difference in air cell volume from experimental data in a vacuum chamber as well as real-world volume changes at cruise altitude in a commercial airliner. Transient altitude-induced compartment syndromes associated with fiberglass casts using waterproof cast padding are real and surgeons and patients should be advised of this potentially devastating complication.

  8. Extraterrestrial fiberglass production using solar energy. [lunar plants or space manufacturing facilities

    Science.gov (United States)

    Ho, D.; Sobon, L. E.

    1979-01-01

    A conceptual design is presented for fiberglass production systems in both lunar and space environments. The raw material, of lunar origin, will be plagioclase concentrate, high silica content slag, and calcium oxide. Glass will be melted by solar energy. The multifurnace in the lunar plant and the spinning cylinder in the space plant are unique design features. Furnace design appears to be the most critical element in optimizing system performance. A conservative estimate of the total power generated by solar concentrators is 1880 kW; the mass of both plants is 120 tons. The systems will reproduce about 90 times their total mass in fiberglass in 1 year. A new design concept would be necessary if glass rods were produced in space.

  9. A cold mass support system based on the use of oriented fiberglass epoxy rods in bending

    International Nuclear Information System (INIS)

    Green, Michael A.; Corradi, Carol A.; LaMantia, Roberto F.; Zbasnik, Jon P.

    2002-01-01

    This report describes a cold mass support system that uses oriented fiberglass epoxy (other low heat leak oriented fiber material can also be used) rods. In the direction of the rods, where forces are carried in tension or compression, the support system is very stiff. In the other directions, the rods are subjected to bending stresses. When the support rods are put in bending the cold mass support is quite compliant. This type of support system can be used in situation where space for a cold mass support system is limited and where compliance can be tolerated in at least one direction. Break test data for 15.9-mm and 19.1-mm diameter oriented fiberglass rods is presented in this report. The cold mass supports for the DFBX distribution boxes are presented as an example of this type of cold mass support system

  10. Fracture repair with transfixation pins and fiberglass cast in llamas and small ruminants.

    Science.gov (United States)

    Kaneps, A J; Schmotzer, W B; Huber, M J; Riebold, T W; Watrous, B J; Arnold, J S

    1989-11-01

    Transfixation pinning with fiberglass casting is an effective and adaptable method of longbone fracture fixation in llamas and small ruminants. Treatment of fractures in 7 limbs of 4 llamas and 2 small ruminants with this technique are described. Steinmann pins are placed transcortically proximal, and if necessary, distal to the fracture. The pin ends and limb are encased in fiberglass cast material. The cast is strong enough in animals of this size to eliminate the need for external frames or connecting bars. Severely comminuted fractures and fractures near joints are especially suited to fixation with this technique. Complications encountered in these cases included loosening of pins and one delayed union. All fractures healed to permit full use of the limb.

  11. External fixation of the metacarpal fracture with transcortical pins and fiberglass east in Simmental calf

    International Nuclear Information System (INIS)

    Martins, E.A.N.; Camargo, L.M.

    2003-01-01

    A six-month-old 245 kg male Simmental calf was referred to the Veterinary Hospital in Cuiabá, MT, with closed comminuted diaphyseal fracture in metacarpus. It was given preference to external fixation as means of fracture immobilization, and transcortical pins and fiberglass cast were used. This technique showed effective immobilization of the fracture, less expensive and feasible to be done in the field [pt

  12. Investigating compression failure mechanisms in composite laminates with a transparent fiberglass-epoxy birefringent materials

    Science.gov (United States)

    Shuart, M. J.; Williams, J. G.

    1984-01-01

    The response and failure of a + or - 45s class laminate was studied by transparent fiberglass epoxy composite birefringent material. The birefringency property allows the laminate stress distribution to be observed during the test and also after the test if permanent residual stresses occur. The location of initial laminate failure and of the subsequent failure propagation are observed through its transparency characteristics. Experimental results are presented.

  13. Mechanical ventilator - infants

    Science.gov (United States)

    Ventilator - infants; Respirator - infants ... WHY IS A MECHANICAL VENTILATOR USED? A ventilator is used to provide breathing support for ill or immature babies. Sick or premature babies are often ...

  14. Evaluation of intake efficiencies and associated sediment-concentration errors in US D-77 bag-type and US D-96-type depth-integrating suspended-sediment samplers

    Science.gov (United States)

    Sabol, Thomas A.; Topping, David J.

    2013-01-01

    of flume and tow tests alone. This study has three interrelated goals. First, the intake efficiencies of the older US D-77 bag-type and newer, FISP-approved US D-96-type1 depth-integrating suspended‑sediment samplers are evaluated at multiple cross‑sections under a range of actual-river conditions. The intake efficiencies measured in these actual-river tests are then compared to those previously measured in flume and tow tests. Second, other physical effects, mainly water temperature and the duration of sampling at a vertical, are examined to determine whether these effects can help explain observed differences in intake efficiency both between the two types of samplers and between the laboratory and field tests. Third, the signs and magnitudes of the likely errors in suspendedsand concentration in measurements made with both types of samplers are predicted based the intake efficiencies of these two types of depth-integrating samplers. Using the relative difference in isokinetic sampling observed between the US D-77 bag-type and D-96-type samplers during river tests, measured differences in suspended-sediment concentration in a variety of size classes were evaluated between paired equal-discharge-increment (EDI) and equal-width-increment (EWI) measurements made with these two types of samplers to determine whether these differences in concentration are consistent with the differences in concentrations expected on the basis of the 1940s FISP laboratory experiments. In addition, sequential single-vertical depth-integrated samples were collected (concurrent with velocity measurements) with the US D-96-type bag sampler and two different rigidcontainer samplers to evaluate whether the predicted errors in suspended-sand concentrations measured with the US D-96- type sampler are consistent with those expected on the basis of the 1940s FISP laboratory experiments. Results from our study indicate that the intake efficiency of the US D-96-type sampler is superior to that

  15. Study Orientation Ply of Fiberglass on Blade Salt Water Pump Windmill using Abaqus

    Science.gov (United States)

    Badruzzaman, B.; Sifa, A.

    2018-02-01

    Windmill is one tool to generate energy from wind energy is converted into energy motion, salt production process still using traditional process by utilizing windmill to move sea water to salt field With a windmill driven water system, a horizontal axis type windmill with an average windmill height of 3-4 m, with a potential wind speed of 5-9 m / s, the amount of blade used for salt water pumps as much as 4 blades, one of the main factor of the windmill component is a blade, blade designed for the needs of a salt water pump by using fiberglass material. On layer orientation 0°,30°,45°,60° and 90° with layer number 10 and layer thickness 2 mm, the purpose of this study was to determine the strength of fiberglass that was influenced by the orientation of the layer, and to determine the orientation of fiberglass layer before making. This method used Finite Element Analysis method using ABAQUS, with homogenous and heterogeneous layer parameters. The simulation result shows the difference in von misses value at an angle of 0°, 30°, 45°,60° homogeneous value is greater than heterogeneous value, whereas in orientation 90 heterogeneous values have value 1,689e9 Pa, greater than homogenous 90 orientation value of 1,296e9 Pa.

  16. Nonremovable, windowed, fiberglass cast boot in the treatment of diabetic plantar ulcers: efficacy, safety, and compliance.

    Science.gov (United States)

    Ha Van, Georges; Siney, Hubert; Hartmann-Heurtier, Agnes; Jacqueminet, Sophie; Greau, Françoise; Grimaldi, André

    2003-10-01

    To compare the efficacy, safety, and compliance of a nonremovable fiberglass cast boot and off-loading shoes in the treatment of diabetic plantar ulcers. Patients (n = 93) with noninfected, nonischemic plantar ulcers were included in this prospective nonrandomized study. Treatment used a nonremovable fiberglass cast boot for longer standing and deeper ulcers (n = 42) and a half shoe or heel-relief shoe for other ulcers (n = 51). We evaluated off-loading therapy, compliance, and complications in both groups. The healing rate was significantly higher with the cast boot than with the off-loading shoe (81 vs. 70%, P = 0.017), with healing times of 68.6 +/- 35.1 vs. 134.2 +/- 133.0 days, respectively, and hazard ratio 1.68 (95% CI 1.04-2.70); complete compliance with treatment was 98 vs. 10% (P = 0.001), respectively. Secondary osteomyelitis developed in 3 patients in the cast boot group and 13 patients in the off-loading shoe group (P = 0.026). A nonremovable fiberglass cast boot was effective in healing diabetic plantar ulcers and in decreasing the risk of secondary osteomyelitis. The cast boot forced compliance with off-loading, thus promoting healing.

  17. Home Ventilator Guide

    Science.gov (United States)

    HOME VENTILATOR GUIDE This project is made possible by a bequest from ventilator user Ira Holland. ©Copyright 2017 Post-Polio Health ... proper balance between the two. What is a ventilator? A ventilator, also known as a respirator, is ...

  18. VENTILATION NEEDS DURING CONSTRUCTION

    International Nuclear Information System (INIS)

    C.R. Gorrell

    1998-01-01

    The purpose of this analysis is to determine ventilation needs during construction and development of the subsurface repository and develop systems to satisfy those needs. For this analysis, construction is defined as pre-emplacement excavation and development is excavation that takes place simultaneously with emplacement. The three options presented in the ''Overall Development and Emplacement Ventilation Systems'' analysis (Reference 5.5) for development ventilation will be applied to construction ventilation in this analysis as well as adding new and updated ventilation factors to each option for both construction and development. The objective of this analysis is to develop a preferred ventilation system to support License Application Design. The scope of this analysis includes: (1) Description of ventilation conditions; (2) Ventilation factors (fire hazards, dust control, construction logistics, and monitoring and control systems); (3) Local ventilation alternatives; (4) Global ventilation options; and (5) Evaluation of options

  19. Variable mechanical ventilation.

    Science.gov (United States)

    Fontela, Paula Caitano; Prestes, Renata Bernardy; Forgiarini, Luiz Alberto; Friedman, Gilberto

    2017-01-01

    To review the literature on the use of variable mechanical ventilation and the main outcomes of this technique. Search, selection, and analysis of all original articles on variable ventilation, without restriction on the period of publication and language, available in the electronic databases LILACS, MEDLINE®, and PubMed, by searching the terms "variable ventilation" OR "noisy ventilation" OR "biologically variable ventilation". A total of 36 studies were selected. Of these, 24 were original studies, including 21 experimental studies and three clinical studies. Several experimental studies reported the beneficial effects of distinct variable ventilation strategies on lung function using different models of lung injury and healthy lungs. Variable ventilation seems to be a viable strategy for improving gas exchange and respiratory mechanics and preventing lung injury associated with mechanical ventilation. However, further clinical studies are necessary to assess the potential of variable ventilation strategies for the clinical improvement of patients undergoing mechanical ventilation.

  20. In vitro evaluation of four methods of attaching transfixation pins into a fiberglass cast for use in horses.

    Science.gov (United States)

    McClure, S R; Watkins, J P; Hogan, H A

    1996-07-01

    To compare the axial stability provided by 4 methods of attaching transfixation pins into a fiberglass cast. Axial stability of 4 methods of transfixation pin attachment to a fiberglass cast cylinder was determined in vitro. Methods of attachment included simple incorporation of the pins into the cast, placement of a washer and nut on the pin and incorporation into the cast, extension of pins beyond the cast and attachment to a steel halo, and washers within the cast and attachment to a steel halo. A model was designed to simulate a transfixation cast applied to the equine metacarpus. 8 identical constructs were present in each of the 4 groups. 6 fiberglass cylinders were also tested to identify the contribution of the cast cylinder to the overall stability of the transfixation cast. Load-sufficient curves were recorded, and a stiffness modulus was calculated for each treatment group and for a simple fiberglass cylinder without transfixation pins. There was no significant difference among the 4 methods of attachment. The fiberglass cast material appears to be the major determinant of axial stability.

  1. Design and fabrication of the PDX poloidal field solenoid utilizing fiberglass reinforced epoxy

    International Nuclear Information System (INIS)

    Young, K.S.C.

    1975-11-01

    This paper discusses the basic design of the Poloidal Field Solenoid Coil. It will be mainly concerned with the more unique features of the Solenoid such as the copper coil windings and the design of the epoxy-glass structural support mandrels. The center solenoid coil of the PDX machine consists of five different coil systems (OH No. 8, No. 9; NF No. 11; DF No. 7; EF Solenoid and CF No. 9). Three concentric fiberglass reinforced epoxy cylinders fabricated in-house will act as mandrels to support and to house the coils that will result as an integral unit

  2. Development of steel head joints with fiberglass sucker rod on the base of contact stresses investigation

    Energy Technology Data Exchange (ETDEWEB)

    Kopey, B.V.; Kopey, L.B. [Ivano-Frankivsk State Technical Oil and Gas University (Ukraine); Maksymuk, A.V.; Shcherbyna, N.M. [National Ukrainian Academy of Sciences (Ukraine)

    1998-12-31

    The methods of calculation of contact stresses during cylinder shell tube - steel bandage interaction are presented. Tymoshenko`s generalized theory of shells serves as a basis for investigating steel head to fiberglass sucker rod joint strength. This theory allows to consider mechanical performance of composite materials. The problem is reduced to solving Fredholm integral equation of second degree. The numeric analysis is performed. Several joints of composite body with steel head are proposed. The full-size sucker rod fatigue tests are performed to determine the fatigue limit under the bending and axial cyclic loads in the medium of oil well fluids. (orig.)

  3. ANALISA TEKNIS DAN EKONOMIS PENGGUNAAN COREMAT UNTUK KONSTRUKSI FRP (FIBERGLASS REINFORCED PLASTIC SANDWICH PADA BADAN KAPAL

    Directory of Open Access Journals (Sweden)

    Parlindungan Manik

    2012-02-01

    Full Text Available Planning of ship construction is make its having good effectivity value and efficiency. Composite as materialalternative to changes of steel feedstock and wood has many applied named FRP (fiberglass reinforcedplastics single skin. The weakness of this FRP was heavy construction and requires many production time.Therefore, will be checked comparison between single skin with sandwich constructions for shell.In this research, the way for making composite is hand lay up method with three various thickness of skinthere are : t, t/2, and t/4. To know strength comparison from the various skin of sandwich with single skin,must be test, consist of tensile test.. The result is analyzed then compared by BKI (Biro Klasifikasi Indonesiarules for the fiberglass ship.Based on the result, indicates that optimization skin thickness of sandwich construction applies Corematwhich tensile strength it is equivalent with Single Skin at 2/3t and usage of Sandwich construction causes23,12 % lighter. In economic analyze, advantage from low weight is compensation of addition 23,12 % DWT.Material cost for Sandwich about 11,35% bigger than Single Skin construction.

  4. ANALISA TEKNIS DAN EKONOMIS PENGGUNAAN COREMAT UNTUK KONSTRUKSI FRP (FIBERGLASS REINFORCED PLASTIC SANDWICH PADA BADAN KAPAL

    Directory of Open Access Journals (Sweden)

    Parlindungan Manik

    2012-04-01

    Full Text Available Planning of ship construction is make its having good effectivity value and efficiency. Composite as material alternative to changes of steel feedstock and wood has many applied named FRP (fiberglass reinforced plastics single skin. The weakness of this FRP was heavy construction and requires many production time. Therefore, will be checked comparison between single skin with sandwich constructions for shell. In this research, the way for making composite is hand lay up method with three various thickness of skin there are : t, t/2, and t/4. To know strength comparison from the various skin of sandwich with single skin, must be test, consist of tensile test.. The result is analyzed then compared by BKI (Biro Klasifikasi Indonesia rules for the fiberglass ship. Based on the result, indicates that optimization skin thickness of sandwich construction applies Coremat which tensile strength it is equivalent with Single Skin at 2/3t and usage of Sandwich construction causes 23,12 % lighter. In economic analyze, advantage from low weight is compensation of addition 23,12 % DWT. Material cost for Sandwich about 11,35% bigger than Single Skin construction.

  5. Effect of Sonic Vibrations on Bond Strength of Fiberglass Posts Bonded to Root Dentin.

    Science.gov (United States)

    Mushashe, Amanda Mahammad; Amaral, Rodrigo Otavio Jatahy Ferreira do; Rezende, Carlos Eduardo Edwards; Filho, Flares Baratto; Cunha, Leonardo Fernandes da; Gonzaga, Carla Castiglia

    2017-01-01

    Sonic vibrations may improve the bond strength and durability of fiberglass posts by improving adhesive penetration into dentin as well as the cement flow. The objective of this study was to evaluate the effect of sonic vibrations on the bond strength between fiberglass posts and root dentin using the pull-out test. Bovine roots were endodontically treated and divided randomly into four groups (n=12): Group C - conventional cementation (control); Group SA - sonic vibration (Smart Sonic Device, FGM) of the adhesive system and conventional post accommodation; SP group - conventional adhesive application and sonic vibration of the post during accommodation; and SASP - sonic vibration of the system adhesive and the post during accommodation. The posts were cleaned, treated with a silane and adhesive system (Ambar, FGM), and cemented with a dual-cured resin cement (Allcem Core, FGM). After 24 h, the specimens were subjected to mechanical tests and failure analyses. Representative specimens were analyzed by a scanning electron microscope to observe the cementation line. The results were analyzed using ANOVA and Tukey's test (a=5%). The bond strengths were as follows: SASP (90.9±27.1 N), C (121.4±60.6 N), SA (127.6±31.8 N) and SP (156.4±41.3 N). The use of sonic vibrations during the application of adhesive or post cementation separately did not affect the bond strength but had a negative effect when used for both procedures.

  6. Short term tests on fiberglass unidirectional composite for ITER pre-compression

    International Nuclear Information System (INIS)

    Nardi, C.; Bettinali, L.

    2007-01-01

    As one of the candidate materials for ITER pre-compression rings has been proposed the unidirectional fiberglass composite. In the frame of ITER pre-compression rings manufacturing and testing, material samples have been produced and tested. In 2003 a first batch has been produced, giving results interesting, but presenting only a lower bound of the mechanical characteristics of the material. Therefore a grip system has been developed and tested, finding the need to have longer samples (650 mm) in order to obtain reproducible and standard-conform results. This development lead to a grip system using 45 fiberglass for grips and INCONEL compression rings in order to keep in place the grips. In 2006 the fifth batch gave results in short term tests, resulting in an ultimate tensile strength of about 2200 MPa (room temperature) and a very limited dispersion of results. Tests at 77 K temperature gave a mean value greater than 2750 MPa with a similar dispersion. From the above results an allowable stress value of 900 MPa can be envisaged at operating temperature. Stress relaxation tests are presently in progress. (orig.)

  7. Nb/sub 3/Sn critical-current measurements using tubular fiberglass-epoxy mandrels

    International Nuclear Information System (INIS)

    Goodrich, L.F.; Bray, S.L.; Stauffer, T.C.

    1989-01-01

    A systematic study of the effect of sample mounting techniques on the superconducting critical-current measurement was made in conjunction with the VAMAS (Versailles Agreement on Advanced Materials and Standards) interlaboratory comparison (round robin) measurements. A seemingly small change in mandrel geometry can result in a 40% change in the measured critical current of a Nb/sub 3/Sn sample at 12 T. This is a result of a change in the conductor pre-strain at 4 K caused by variation in thermal contraction between thick- and thin-walled fiberglass-epoxy composite (G-10) tubes. An approximate measure of the variations in thermal contraction (from room to liquid nitrogen temperature) indicate a 0.2% greater contraction for the thick-walled tube. This difference, combined with strain sensitivity measurements, is consistent with the observed decrease in critical current. Previous publications on thermal contraction of G-10 have addressed the plate geometry, but not the tube geometry. The contraction of a G-10 plate is highly anisotropic. The radial contraction of a tube is different than the contraction of a plate, however, because the circumferential fiberglass is put into hoop compression by the epoxy, and the resulting contraction is a competition between the two structural components. This appears to be the source of the variation in thermal contraction with tube wall thickness

  8. On the Behavior of Fiberglass Epoxy Composites under Low Velocity Impact Loading

    Directory of Open Access Journals (Sweden)

    Gautam S. Chandekar

    2010-01-01

    Full Text Available Response of fiberglass epoxy composite laminates under low velocity impact loading is investigated using LS-DYNA®, and the results are compared with experimental analysis performed using an instrumented impact test setup (Instron dynatup 8250. The composite laminates are manufactured using H-VARTM© process with basket weave E-Glass fabrics. Epon 862 is used as a resin system and Epicure-W as a hardening agent. Composite laminates, with 10 layers of fiberglass fabrics, are modeled using 3D solid elements in a mosaic fashion to represent basket weave pattern. Mechanical properties are calculated by using classical micromechanical theory and assigned to the elements using ORTHOTROPIC ELASTIC material model. The damage occurred since increasing impact energy is incorporated using ADVANCED COMPOSITE DAMAGE material model in LS-DYNA®. Good agreements are obtained with the failure damage results in LS-DYNA® and experimental results. Main considerations for comparison are given to the impact load carrying capacity and the amount of impact energy absorbed by the laminates.

  9. Environmental stress-corrosion cracking of fiberglass: lessons learned from failures in the chemical industry.

    Science.gov (United States)

    Myers, T J; Kytömaa, H K; Smith, T R

    2007-04-11

    Fiberglass reinforced plastic (FRP) composite materials are often used to construct tanks, piping, scrubbers, beams, grating, and other components for use in corrosive environments. While FRP typically offers superior and cost effective corrosion resistance relative to other construction materials, the glass fibers traditionally used to provide the structural strength of the FRP can be susceptible to attack by the corrosive environment. The structural integrity of traditional FRP components in corrosive environments is usually dependent on the integrity of a corrosion-resistant barrier, such as a resin-rich layer containing corrosion resistant glass fibers. Without adequate protection, FRP components can fail under loads well below their design by an environmental stress-corrosion cracking (ESCC) mechanism when simultaneously exposed to mechanical stress and a corrosive chemical environment. Failure of these components can result in significant releases of hazardous substances into plants and the environment. In this paper, we present two case studies where fiberglass components failed due to ESCC at small chemical manufacturing facilities. As is often typical, the small chemical manufacturing facilities relied largely on FRP component suppliers to determine materials appropriate for the specific process environment and to repair damaged in-service components. We discuss the lessons learned from these incidents and precautions companies should take when interfacing with suppliers and other parties during the specification, design, construction, and repair of FRP components in order to prevent similar failures and chemical releases from occurring in the future.

  10. Standard practice for examination of fiberglass reinforced plastic fan blades using acoustic emission

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice provides guidelines for acoustic emission (AE) examinations of fiberglass reinforced plastic (FRP) fan blades of the type used in industrial cooling towers and heat exchangers. 1.2 This practice uses simulated service loading to determine structural integrity. 1.3 This practice will detect sources of acoustic emission in areas of sensor coverage that are stressed during the course of the examination. 1.4 This practice applies to examinations of new and in-service fan blades. 1.5 This practice is limited to fan blades of FRP construction, with length (hub centerline to tip) of less than 3 m [10 ft], and with fiberglass content greater than 15 % by weight. 1.6 AE measurements are used to detect emission sources. Other nondestructive examination (NDE) methods may be used to evaluate the significance of AE sources. Procedures for other NDE methods are beyond the scope of this practice. 1.7 Units—The values stated in either SI units or inch-pound units are to be regarded separately as sta...

  11. Patient-Ventilator Dyssynchrony

    Directory of Open Access Journals (Sweden)

    Elvira-Markela Antonogiannaki

    2017-11-01

    Full Text Available In mechanically ventilated patients, assisted mechanical ventilation (MV is employed early, following the acute phase of critical illness, in order to eliminate the detrimental effects of controlled MV, most notably the development of ventilator-induced diaphragmatic dysfunction. Nevertheless, the benefits of assisted MV are often counteracted by the development of patient-ventilator dyssynchrony. Patient-ventilator dyssynchrony occurs when either the initiation and/or termination of mechanical breath is not in time agreement with the initiation and termination of neural inspiration, respectively, or if the magnitude of mechanical assist does not respond to the patient’s respiratory demand. As patient-ventilator dyssynchrony has been associated with several adverse effects and can adversely influence patient outcome, every effort should be made to recognize and correct this occurrence at bedside. To detect patient-ventilator dyssynchronies, the physician should assess patient comfort and carefully inspect the pressure- and flow-time waveforms, available on the ventilator screen of all modern ventilators. Modern ventilators offer several modifiable settings to improve patient-ventilator interaction. New proportional modes of ventilation are also very helpful in improving patient-ventilator interaction.

  12. Diffuse ceiling ventilation

    DEFF Research Database (Denmark)

    Zhang, Chen

    Diffuse ceiling ventilation is an innovative ventilation concept where the suspended ceiling serves as air diffuser to supply fresh air into the room. Compared with conventional ventilation systems, diffuse ceiling ventilation can significantly reduce or even eliminate draught risk due to the low...... momentum supply. In addition, this ventilation system uses a ceiling plenum to deliver air and requires less energy consumption for air transport than full-ducted systems. There is a growing interest in applying diffuse ceiling ventilation in offices and other commercial buildings due to the benefits from...... both thermal comfort and energy efficient aspects. The present study aims to characterize the air distribution and thermal comfort in the rooms with diffuse ceiling ventilation. Both the stand-alone ventilation system and its integration with a radiant ceiling system are investigated. This study also...

  13. Learning about ventilators

    Science.gov (United States)

    ... medlineplus.gov/ency/patientinstructions/000458.htm Learning about ventilators To use the sharing features on this page, ... fixed or changed. How Does Being on a Ventilator Feel? A person receives medicine to remain comfortable ...

  14. VENTILATION TECHNOLOGY SYSTEMS ANALYSIS

    Science.gov (United States)

    The report gives results of a project to develop a systems analysis of ventilation technology and provide a state-of-the-art assessment of ventilation and indoor air quality (IAQ) research needs. (NOTE: Ventilation technology is defined as the hardware necessary to bring outdoor ...

  15. Ventilation of nuclear facilities

    International Nuclear Information System (INIS)

    1982-01-01

    In this work an examination is made of ventilation problems in nuclear installations, of the fuel cycle or the handling of radioactive compounds. The study covers the detection of radioactive aerosols, purification, iodine trapping, ventilation equipment and its maintenance, engineering, safety of ventilation, fire efficiency, operation, regulations and normalization [fr

  16. Ventilation and ventilation/perfusion ratios

    International Nuclear Information System (INIS)

    Valind, S.O.

    1989-01-01

    The thesis is based on five different papers. The labelling of specific tracer compounds with positron emitting radionuclides enables a range of structural, physiological and biochemical parameters in the lung to be measured non-invasively, using positron emission tomography. This concept affords a unique opportunity for in vivo studies of different expressions of pulmonary pathophysiology at the regional level. The present thesis describes the application of positron emission tomography to the measurements of ventilation and ventilation/perfusion ratios using inert gas tracers, neon-19 and nitrogen-13 respectively. The validity of the methods applied was investigated with respect to the transport of inert gas tracers in the human lung. Both ventilation and the ventilation/perfusion ratio may be obtained with errors less than 10 % in the normal lung. In disease, however, errors may increase in those instances where the regional ventilation is very low or the intra-regional gas flow distribution is markedly nonuniform. A 2-3 fold increase in ventilation was demonstrated in normal nonsmoking subjects going from ventral to dorsal regions in the supine posture. These large regional differences could be well explained by the intrinsic elastic properties of lung tissue, considering the gravitational gradient in transpulmonary pressure. In asymptomatic smokers substantial regional ventilatroy abnormalities were found whilst the regional gas volume was similar in smokers and nonsmokers. The uncoupling between ventilation and gas volume probably reflects inflammatory changes in the airways. The regional differences in dV/dt/dQ/dt were relatively small and blood flow was largely matched to ventilation in the supine posture. However, small regions of lung with very low ventilation, unmatched by blood flow commonly exists in the most dependent parts of the lung in both smokers and nonsmokers. (29 illustrations, 7 tables, 113 references)

  17. Evaluation of ventilators for mouthpiece ventilation in neuromuscular disease.

    Science.gov (United States)

    Khirani, Sonia; Ramirez, Adriana; Delord, Vincent; Leroux, Karl; Lofaso, Frédéric; Hautot, Solène; Toussaint, Michel; Orlikowski, David; Louis, Bruno; Fauroux, Brigitte

    2014-09-01

    Daytime mouthpiece ventilation is a useful adjunct to nocturnal noninvasive ventilation (NIV) in patients with neuromuscular disease. The aims of the study were to analyze the practice of mouthpiece ventilation and to evaluate the performance of ventilators for mouthpiece ventilation. Practice of mouthpiece ventilation was assessed by a questionnaire, and the performance of 6 home ventilators with mouthpiece ventilation was assessed in a bench test using 24 different conditions per ventilator: 3 mouthpieces, a child and an adult patient profile, and 4 ventilatory modes. Questionnaires were obtained from 30 subjects (mean age 33 ± 11 y) using NIV for 12 ± 7 y. Fifteen subjects used NIV for > 20 h/day, and 11 were totally ventilator-dependent. The subject-reported benefits of mouthpiece ventilation were a reduction in dyspnea (73%) and fatigue (93%) and an improvement in speech (43%) and eating (27%). The bench study showed that none of the ventilators, even those with mouthpiece ventilation software, were able to deliver mouthpiece ventilation without alarms and/or autotriggering in each condition. Alarms and/or ineffective triggering or autotriggering were observed in 135 of the 198 conditions. The occurrence of alarms was more common with a large mouthpiece without a filter compared to a small mouthpiece with a filter (P ventilator. Subjects are satisfied with mouthpiece ventilation. Alarms are common with home ventilators, although less common in those with mouthpiece ventilation software. Improvements in home ventilators are needed to facilitate the expansion of mouthpiece ventilation. Copyright © 2014 by Daedalus Enterprises.

  18. Ventilation of uranium mines

    International Nuclear Information System (INIS)

    Francois, Y.; Pradel, J.; Zettwoog, P.; Dumas, M.

    1975-01-01

    In the first part of the paper the authors describe the ventilation of French mines in terms of the primary ventilation system, which brings the outside air close to the working places using the overall structure of the mine to form the airways, and the secondary ventilation system, which is for the distribution of the primary air or for the ventilation of the development drifts and blind tunnels. Brief mention is made of the French regulations on the ventilation of mines in general and uranium mines in particular. The authors describe the equipment used and discuss the installed capacities and air flow per man and per working place. The difficulties encountered in properly ventilating various types of working places are mentioned, such as sublevel development drifts, reinforced stopes, and storage chambers with an artificial crown. The second part of the paper is devoted to computer calculations of the primary ventilation system. It is explained why the Commissariat a l'energie atomique has found it necessary to make these calculations. Without restating the mathematical theories underlying the methods employed, the authors demonstrate how simple measuring instruments and a small-size computer can be used to solve the ventilation problems arising in French mines. Emphasis is given to the layout of the ventilation system and to air flow and negative pressure measurements at the base of the mine. The authors show how calculations can be applied to new heading operations, a change in resistance, the replacement or addition of a ventilator, and a new air inlet or outlet. The authors come to the conclusion that since ventilation is at present the most reliable way of avoiding the pollution of mines, a thorough knowledge of the capabilities in this respect can often help improve working conditions. Despite the progress made, however, constant surveillance of the ventilation systems in uranium mines by a separate team with no responsibility for production problems is

  19. Protective garment ventilation system

    Science.gov (United States)

    Lang, R. (Inventor)

    1970-01-01

    A method and apparatus for ventilating a protective garment, space suit system, and/or pressure suits to maintain a comfortable and nontoxic atmosphere within is described. The direction of flow of a ventilating and purging gas in portions of the garment may be reversed in order to compensate for changes in environment and activity of the wearer. The entire flow of the ventilating gas can also be directed first to the helmet associated with the garment.

  20. Design Principles for Hybrid Ventilation

    DEFF Research Database (Denmark)

    Heiselberg, Per

    For many years mechanical and natural ventilation systems have developed separately. Naturally, the next step in this development is the development of ventilation concepts that utilize and combine the best features from each system to create a new type of ventilation system -Hybrid Ventilation. ....... The hybrid ventilation concepts, design challenges and - principles are discussed and illustrated by four building examples....

  1. Styret naturlig ventilation

    DEFF Research Database (Denmark)

    Morsing, S.; Strøm, J.S.

    Publikationen præsenterer et generelt dimensioneringsgrundlag for naturlig ventilation i husdyrstalde. Det er kontrolleret ved forsøg i slagtesvinestalde, hvor det ligeledes er undersøgt hvilken temperaturstabilitet, der kan opnås ved naturlig ventilation, samt produktions- og adfærdsmæssige...

  2. Natural Ventilation in Atria

    DEFF Research Database (Denmark)

    Svidt, Kjeld; Heiselberg, Per; Hendriksen, Ole Juhl

    This case study comprises a monitoring programme as well as a Computational Fluid Dynamics (CFD) analysis of a natural ventilated atrium. The purpose has been to analyse the performance of a typical natural ventilation system in Denmark under both summer and winter conditions....

  3. Multifamily Ventilation Retrofit Strategies

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, K.; Lstiburek, J.; Bergey, D.

    2012-12-01

    In multifamily buildings, central ventilation systems often have poor performance, overventilating some portions of the building (causing excess energy use), while simultaneously underventilating other portions (causing diminished indoor air quality). BSC and Innova Services Corporation performed a series of field tests at a mid-rise test building undergoing a major energy audit and retrofit, which included ventilation system upgrades.

  4. Ventilation rates and health

    DEFF Research Database (Denmark)

    Sundell, Jan; Levin, H; Nazaroff, W W

    2011-01-01

    studies of the relationship between ventilation rates and health, especially in diverse climates, in locations with polluted outdoor air and in buildings other than offices. PRACTICAL IMPLICATIONS: Ventilation with outdoor air plays an important role influencing human exposures to indoor pollutants......The scientific literature through 2005 on the effects of ventilation rates on health in indoor environments has been reviewed by a multidisciplinary group. The group judged 27 papers published in peer-reviewed scientific journals as providing sufficient information on both ventilation rates...... and health effects to inform the relationship. Consistency was found across multiple investigations and different epidemiologic designs for different populations. Multiple health endpoints show similar relationships with ventilation rate. There is biological plausibility for an association of health outcomes...

  5. Off-loading of hindfoot and midfoot neuropathic ulcers using a fiberglass cast with a metal stirrup.

    Science.gov (United States)

    Tamir, Eran; Daniels, Timothy R; Finestone, Aharon; Nof, Matityahu

    2007-10-01

    This study was designed to assess the effectiveness of a method of off-loading large neuropathic ulcers of the hindfoot and midfoot. The device used is composed of a fiberglass cast with a metal stirrup and a window around the ulcer. A retrospective study of 14 diabetic and nondiabetic patients was performed. All had chronic plantar hindfoot or midfoot neuropathic ulcers that failed to heal with conventional treatment methods. A fiberglass total contact cast with a metal stirrup was applied. A window was made over the ulcer to allow daily ulcer care. The average duration of ulcer before application of the metal stirrup was 26 + 13.2 (range 7 to 52) months. The ulcer completely healed in 12 of the 14 patients treated. The mean time for healing was 10.8 weeks for midfoot ulcers and 12.3 weeks for heel ulcers. Complications developed in four patients: three developed superficial wounds and one developed a full-thickness wound. In three of these four patients, local wound care was initiated, and the stirrup cast was continued to complete healing of the primary ulcer. A fiberglass cast with a metal stirrup is an effective off-loading device for midfoot and hindfoot ulcers. It is not removable and does not depend on patient compliance. The window around the ulcer allows for daily wound care, drainage of the ulcer and the use of vacuum-assisted closure (VAC) treatment. The complication rate is comparable to that of total contact casting.

  6. Synthesis on the durability of composite fiberglass/epoxy resin structures

    International Nuclear Information System (INIS)

    Thevenin, P.

    1997-01-01

    The purpose of this paper is to collect together in a systematic way information and results relating to the durability of composite fiberglass/ epoxy resin structures. First it is a matter of assessing the average level of understanding the long term behaviour of these structures which change under the combined effects of varied mechanical loading and stresses of a physico-chemical type linked to the environment. Looking at phenomena encountered and facts from current analyses, it will then be advisable to specify a methodology which can be applied to industrial piping used in PWR cooling systems for transporting raw water under pressure. In fact assessment of their service life is at present based on long and costly testing (ASTM D 2992 B standard), the appearance of which is inherited from metal piping testing.. Therefore it appears essential to study substitution test procedures, more composite specific and at the same time which can be conducted in reasonable time. For this purpose, by coherently accelerating and combining them in order not to underestimate their effects, ageing tests shall reproduce mechanisms representative of operating conditions. (author)

  7. Non-destructive Evaluation of Bonds Between Fiberglass Composite and Metal

    Science.gov (United States)

    Zhao, Selina; Sonta, Kestutis; Perey, Daniel F.; Cramer, K. E.; Berger, Libby

    2015-01-01

    To assess the integrity and reliability of an adhesive joint in an automotive composite component, several non-destructive evaluation (NDE) methodologies are correlated to lap shear bond strengths. A glass-fabric-reinforced composite structure was bonded to a metallic structure with a two-part epoxy adhesive. Samples were subsequently cut and tested in shear, and flaws were found in some areas. This study aims to develop a reliable and portable NDE system for service-level adhesive inspection in the automotive industry. The results of the experimental investigation using several NDE methods are presented and discussed. Fiberglass-to-metal bonding is the ideal configuration for NDE via thermography using excitation with induction heating, due to the conductive metal and non-conductive glass-fiber-reinforced composites. Excitation can be either by a research-grade induction heater of highly defined frequency and intensity, or by a service-level heater, such as would be used for sealing windshields in a body shop. The thermographs thus produced can be captured via a high-resolution infrared camera, with principal component analysis and 2D spatial Laplacian processing. Alternatively, the thermographs can be captured by low resolution thermochromic microencapsulated liquid crystal film imaging, which needs no post-processing and can be very inexpensive. These samples were also examined with phased-array ultrasound. The NDE methods are compared to the lap shear values and to each other for approximate cost, accuracy, and time and level of expertise needed.

  8. Tank measurements of scattering from a resin-filled fiberglass spherical shell with internal flaws.

    Science.gov (United States)

    Tesei, Alessandra; Guerrini, Piero; Zampolli, Mario

    2008-08-01

    This paper presents results of acoustic inversion and structural health monitoring achieved by means of low to midfrequency elastic scattering analysis of simple, curved objects, insonified in a water tank. Acoustic elastic scattering measurements were conducted between 15 and 100 kHz on a 60-mm-radius fiberglass spherical shell, filled with a low-shear-speed epoxy resin. Preliminary measurements were conducted also on the void shell before filling, and on a solid sphere of the same material as the filler. These data were used to estimate the constituent material parameters via acoustic inversion. The objects were measured in the backscatter direction, suspended at midwater, and insonified by a broadband directional transducer. From the inspection of the response of the solid-filled shell it was possible to detect and characterize significant inhomogeneities of the interior (air pockets), the presence of which were later confirmed by x-ray CT scan and ultrasound measurements. Elastic wave analysis and a model-data comparison study support the physical interpretation of the measurements.

  9. Simulation and optimization of a slurry-based fiberglass preform manufacturing process

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.W.; Landon, M.D.

    1995-12-01

    As a part of the Partnership for a New Generation of Vehicles (PNGV) program directed by the U.S. Department of Commerce, the U.S. Department of Energy (DOE) is currently supporting various research and development projects identified by representatives of the U.S. Council for Automotive Research (USCAR) as high priority areas deserving special attention. A water-based slurry process for producing chopped fiberglass preforms that can be used in manufacturing structural automotive composites is being developed by researchers at the Idaho National Engineering Laboratory (INEL) and members of the Automotive Composites Consortium (ACC), as part of the U.S. Advanced Manufacturing Partnership (USAMP). The main objective of the project is to achieve a uniform (by mass) distribution of fibers in the preform. To this end, computer modeling and experimental efforts are currently underway at the INEL. The present article reports strategy, progress and current results for the modeling effort. The modeling effort includes computational fluid dynamic simulations of the current process to help visualize process dynamics and computer-based design optimization that automatically adjusts process parameters to find the best design to meet the objective.

  10. High energy, low inductance, high current fiberglass energy storage capacitor for the Atlas Machine Marx modules

    CERN Document Server

    Cooper, R A; Ennis, J B; Cochrane, J C; Reass, W A; Parsons, W M

    1999-01-01

    The Los Alamos National Laboratory's Atlas Marx design team envisioned a double ended plastic case 60 kV, 15 nH, 650 kA, energy storage capacitor. A design specification was established and submitted to various vendors. Maxwell Energy Products drew from its development of large fiberglass case, high voltage, low inductance "FASTCAP" capacitors manufactured for Maxwell Technologies' ACE II, ACE III and ACE IV machines. This paper discusses the LANL specification and Maxwell Energy Products' successful design, Model No. 39232, 34.1 mu F, 60 kV, 13*29*27", the only capacitor qualified by LANL for the 23 Mega Joule Atlas application. Maxwell's past experience in this type of capacitor is covered. The performance data is reviewed and the life test data compared to the original calculated design life. Challenges included Maxwell's "keep it simple " design goal which was maintained to minimize the effort required to create and manufacture a nearly 600 pound capacitor. (1 refs).

  11. ANALISA EKONOMIS PEMBANGUNAN KAPAL IKAN FIBERGLASS KATAMARAN UNTUK NELAYAN DI PERAIRAN PANTAI TELUK PENYU KABUPATEN CILACAP

    Directory of Open Access Journals (Sweden)

    Samuel Samuel

    2013-04-01

    Full Text Available Sumber daya perikanan dapat dipandang sebagai suatu komponen dari ekosistem perikananyang berperan sebagai faktor produksi dan diperlukan untuk menghasilkan suatu output yangbernilai ekonomi masa kini maupun masa mendatang. Kabupaten Cilacap memiliki potensi untukproduksi perikanan, dengan luas sebaran penangkapan 5.200 km2, dan fasilitas sarana pendukungberupa, Pelabuhan perikanan Samudra Cilacap dengan kapasitas 250 kapal. Untuk mengembangkanpotensi ini diperlukan armada penangkap ikan yang ekonomis dan bernilai profit bagi nelayan disekitar Pantai Teluk Penyu Cilacap.Penelitian ini membahas tentang analisa ekonomis kapal ikan fiberglass katamaran diperairan pantai Teluk Penyu Cilacap dengan tujuan untuk mengetahui biaya investasi, biayapengeluaran per trip, pendapatan nelayan per tahun, dan mengetahui payback periode investasi.Dalam melaksanakan penelitian ini dilakukan beberapa tahapan yaitu, meghitung biayapembangunan kapal kemudian menentukan fixed dan variable cost sehingga diketahui pendapatankemudian dilakukan analisa profitabilitas dan payback periode.Berdasarkan hasil analisa dan perhitungan didapatkan nilai investasi kapal sebesar Rp128.384.575,- dan biaya pengeluaran kapal dalam 1 kali trip adalah Rp 1,570,889,-. Pendapatannelayan per tahun sebesar Rp 41.066.163,- dan Payback period terjadi selama 3.1 tahun

  12. Ventilating Air-Conditioner

    Science.gov (United States)

    Dinh, Khanh

    1994-01-01

    Air-conditioner provides ventilation designed to be used alone or incorporated into cooling or heating system operates efficiently only by recirculating stale air within building. Energy needed to operate overall ventilating cooling or heating system slightly greater than operating nonventilating cooling or heating system. Helps to preserve energy efficiency while satisfying need for increased forced ventilation to prevent accumulation of undesired gases like radon and formaldehyde. Provides fresh treated air to variety of confined spaces: hospital surgeries, laboratories, clean rooms, and printing shops and other places where solvents used. In mobile homes and portable classrooms, eliminates irritant chemicals exuded by carpets, panels, and other materials, ensuring healthy indoor environment for occupants.

  13. Diffuse Ceiling Ventilation

    DEFF Research Database (Denmark)

    Zhang, Chen; Yu, Tao; Heiselberg, Per Kvols

    -cooling period and night cooling potential. The investment cost of this ventilation system is about 5-10% lower than the conventional ones, because the acoustic ceiling could be directly applied as air diffuser and the use of plenum to distribute air reduces the cost of ductwork. There is a growing interest...... in applying diffuse ceiling ventilation in offices and other commercial buildings because of the benefits from both thermal comfort and energy efficiency aspects. The design guide introduces the principle and key characteristics of room air distribution with diffuse ceiling ventilation and the design...

  14. Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation Systems

    OpenAIRE

    Sherman, Max H.

    2011-01-01

    Existing ventilation standards, including American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE) Standard 62.2, specify continuous operation of a defined mechanical ventilation system to provide minimum ventilation, with time-based intermittent operation as an option. This requirement ignores several factors and concerns including: other equipment such as household exhaust fans that might incidentally provide ventilation, negative impacts of ventilation when outd...

  15. Why We Ventilate

    Energy Technology Data Exchange (ETDEWEB)

    Logue, Jennifer M.; Sherman, Max H.; Price, Phil N.; Singer, Brett C.

    2011-09-01

    It is widely accepted that ventilation is critical for providing good indoor air quality (IAQ) in homes. However, the definition of"good" IAQ, and the most effective, energy efficient methods for delivering it are still matters of research and debate. This paper presents the results of work done at the Lawrence Berkeley National Lab to identify the air pollutants that drive the need for ventilation as part of a larger effort to develop a health-based ventilation standard. First, we present results of a hazard analysis that identified the pollutants that most commonly reach concentrations in homes that exceed health-based standards or guidelines for chronic or acute exposures. Second, we present results of an impact assessment that identified the air pollutants that cause the most harm to the U.S. population from chronic inhalation in residences. Lastly, we describe the implications of our findings for developing effective ventilation standards.

  16. Diffuse Ceiling Ventilation

    DEFF Research Database (Denmark)

    Zhang, Chen; Heiselberg, Per; Nielsen, Peter V.

    2014-01-01

    As a novel air distribution system, diffuse ceiling ventilation combines the suspended acoustic ceiling with ventilation supply. Due to the low-impulse supply from the large ceiling area, the system does not generate draught when supplying cold air. However, heat sources play an important role...... on thermal comfort in the occupant zone. Another characteristic of this system is its lower pressure drop compared with conventional ventilation systems, which reduces the noise problem and, at the same time, the energy consumption of the fan can be reduced. This review is based on a number of experimental...... and numerical studies on diffuse ceiling ventilation. Performance in terms of thermal comfort, air quality, pressure drop as well as radiant cooling potential are examined. Finally, a discussion on the proper design of the suspended ceiling and plenum to achieve a uniform air distribution and surface...

  17. Fire, safety and ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Hindle, D.

    1999-02-01

    Correct ventilation in tunnel environments is vital for the comfort and safety of the people passing through. This article gives details of products from several manufacturers of safety rescue and fire fighting equipment, fire and fume detection equipment, special fire resistant materials, fire resistant hydraulic oils and fire dampers, and ventilation systems. Company addresses and fax numbers are supplied. 4 refs., 5 tabs., 10 photos.

  18. ANALYSIS OF VAPORS FROM METHYLENE CHLORIDE EXTRACTS OF NUCLEAR GRADE HEPA FILTER FIBERGLASS SAMPLES

    Energy Technology Data Exchange (ETDEWEB)

    FRYE JM; ANASTOS HL; GUTIERREZ FC

    2012-06-07

    While several organic compounds were detected in the vapor samples used in the reenactment of the preparation of mounts from the extracts of nuclear grade high-efficiency particulate air filter fiberglass samples, the most significant species present in the samples were methylene chloride, phenol, phenol-d6, and 2-fluorophenol. These species were all known to be present in the extracts, but were expected to have evaporated during the preparation of the mounts, as the mounts appeared to be dry before any vapor was collected. These species were present at the following percentages of their respective occupational exposure limits: methylene chloride, 2%; phenol, 0.4%; and phenol-d6, 0.6%. However, there is no established limit for 2-fluorophenol. Several other compounds were detected at low levels for which, as in the case of 2-fluorophenol, there are no established permissible exposure limits. These compounds include 2-chlorophenol; N-nitroso-1-propanamine; 2-fluoro-1,1{prime}-biphenyl; 1,2-dihydroacenaphthylene; 2,5-cyclohexadiene-1,4-dione,2,6-bis(1,1-dimethylethyl); trimethyl oxirane; n-propylpropanamine; 2-(Propylamino)ethanol; 4-methoxy-1-butene; 6-methyl-5-hepten-2-one; and 3,4-dimethylpyridine. Some of these were among those added as surrogates or spike standards as part ofthe Advanced Technologies and Laboratories International, Inc. preparation ofthe extract of the HEPA filter media and are indicated as such in the data tables in Section 2, Results; other compounds found were not previously known to be present. The main inorganic species detected (sulfate, sodium, and sulfur) are also consistent with species added in the preparation of the methylene chloride extract of the high-efficiency particulate air sample.

  19. Bond strength values of fiberglass post to flared root canals reinforced with different materials

    Directory of Open Access Journals (Sweden)

    Thaís Emanuelle Bakaus

    2018-03-01

    Full Text Available Abstract The aim of this study was to compare in vitro the bond strength (BS between fiberglass posts and flared root canals reinforced with different materials. The roots of 48 premolars were endodontically treated. After one week, the root canals were prepared to simulate an oversized root canal, except for the positive control group (PCG, which was cemented with a prefabricated fiber post (PFP compatible with the root canal size, simulating an ideal adaptation. The other samples (n=8/group were used to test alternative restorative techniques for filling root canals: negative control group (NCG [PFP with a smaller diameter than of the root canal], composite resin group - CRG, bulkfill group - BFG, self-adhesive cement group - SAG, and glass ionomer group - GIG. The posts were cemented and after 1 week, each root was sectioned transversely into six 1-mm thick discs and the push-out test was done to evaluate the BS. Data were analyzed by two-way repeated measures ANOVA and Tukey's tests (α=0.05. The highest BS value was observed for PCG. The NCG and the GIG groups showed the lowest BS values. Root reinforcement with conventional and bulk-fill composite resins showed the highest BS values; however, the bulk-fill resin was the only treatment able to maintain high BS values in all regions of the root canal. The self-adhesive cement showed intermediate results between CRG and GIG. Root reinforcement with bulk-fill composite resin is an effective option for flared root canals before cementation of a prefabricated fiber post.

  20. Can intra-radicular cleaning protocols increase the retention of fiberglass posts? A systematic review

    Directory of Open Access Journals (Sweden)

    Lilian Vieira OLIVEIRA

    2018-03-01

    Full Text Available Abstract The presence of residues within the root canal after post-space preparation can influence the bond strength between resin cement and root dentin when using fiberglass posts (FGPs. Currently, there is no consensus in the literature regarding what is the best solution for the removal of debris after post-space preparation. This systematic review involved “in vitro” studies to investigate if cleaning methods of the root canal after post-space preparation can increase the retention of FGPs evaluated by the push-out test. Searches were carried out in PubMed (MEDLINE and Scopus databases up to July2017. English language studies published from 2007 to July 2017 were selected. 475 studies were found, and 9 were included in this review. Information from the 9 studies were collected regarding the number of samples, storage method after extraction, root canal preparation, method of post-space preparation, endodontic sealer, resin cement, cleaning methods after post-space and presence of irrigant activation. Five studies presented the best results for the association of sodium hypochlorite (NaOCl and ethylenediamine tetra-acetic acid (EDTA, while in the other 4 studies, the solutions that showed improved retention of FGPs were photon-induced photoacoustic streaming (PIPS, Qmix, Sikko and EDTA. The results showed heterogeneity in all comparisons due to a high variety of information about cleaning methods, different concentrations, application time, type of adhesive system and resin cements used. In conclusion, this review suggests that the use of NaOCl/EDTA results in the retention of FGPs and may thus be recommended as a post-space cleaning method influencing the luting procedure.

  1. Overall Subsurface Ventilation Systems

    International Nuclear Information System (INIS)

    Thomas, Edward G.

    2000-01-01

    The purpose of this analysis is to provide a conceptual design for the Subsurface Ventilation System and address the construction, emplacement, monitoring, backfill, and closure ventilation phases. The design will be based on the recently established program requirements for transitioning to the Site Recommendation (SR) design as outlined by ''Approach to Implementing the Site Recommendation Baseline'' (Stroupe 2000) and the Monitored Geologic Repository Project Description Document (CRWMS M and O 1999d) (MGR). This analysis will summarize the ventilation concepts that have developed from the incorporation of recent changes to the Technical Baseline and describe changes to the conceptual ventilation design that have resulted from the thermal management requirements. Ventilation concepts presented in the Viability Assessment Design (VA Design) that have not changed are identified and included. The objective of this analysis is to provide a basis for the System Description Document (SDD) Section 2 that provides input to the SR Consideration Report. The scope of the analysis includes the following tasks: (1) Determine the number of primary shafts based on the emplacement airflow rate required to meet thermal goals and (2) Determine conceptual airflow networks for major repository phases including: Construction; Emplacement; Monitoring; and Closure. In addition evaluate: (1) Radon mitigation concerns and options; (2) Monitoring and control requirement changes needed to meet current guidelines; and (3) The impact on the ventilation system of a radiological release due to a potential subsurface fire involving a waste package

  2. Demand Controlled Ventilation in a Combined Ventilation and Radiator System

    OpenAIRE

    Hesaraki, Arefeh; Holmberg, Sture

    2013-01-01

    With growing concerns for efficient and sustainable energy treatment in buildings there is a need for balanced and intelligent ventilation solutions. This paper presents a strategy for demand controlled ventilation with ventilation radiators, a combined heating and ventilation system. The ventilation rate was decreased from normal requirements (per floor area) of 0.375 l·s-1·m-2 to 0.100 l·s-1·m-2 when the residence building was un-occupied. The energy saving potential due to decreased ventil...

  3. Comparative research of effectiveness of cellulose and fiberglass porous membrane carriers for bio sampling in veterinary and food industry monitoring

    Science.gov (United States)

    Gusev, Alexander; Vasyukova, Inna; Zakharova, Olga; Altabaeva, Yuliya; Saushkin, Nikolai; Samsonova, Jeanne; Kondakov, Sergey; Osipov, Alexander; Snegin, Eduard

    2017-11-01

    The aim of proposed research is to study the applicability of fiberglass porous membrane materials in a new strip format for dried blood storage in food industry monitoring. A comparative analysis of cellulosic and fiberglass porous membrane materials was carried out to obtain dried samples of serum or blood and the possibility of further species-specific analysis. Blood samples of Sus scrofa were used to study the comparative effectiveness of cellulose and fiberglass porous membrane carriers for long-term biomaterial storage allowing for further DNA detection by real-time polymerase chain reaction (PCR) method. Scanning electron microscopy of various membranes - native and with blood samples - indicate a fundamental difference in the form of dried samples. Membranes based on cellulosic materials sorb the components of the biological fluid on the surface of the fibers of their structure, partially penetrating the cellulose fibers, while in the case of glass fiber membranes the components of the biological fluid dry out as films in the pores of the membrane between the structural filaments. This fundamental difference in the retention mechanisms affects the rate of dissolution of the components of dry samples and contributes to an increase in the efficiency of the desorption process of the sample before subsequent analysis. Detecting of pig DNA in every analyzed sample under the performed Real-time PCR as well as good state of the biomaterial preservation on the glass fiber membranes was clearly demonstrated. Good biomaterials preservation has been revealed on the test cards for 4 days as well as for 1 hour.

  4. Relined fiberglass post: an ex vivo study of the resin cement thickness and dentin-resin interface

    Directory of Open Access Journals (Sweden)

    Niélli Caetano de SOUZA

    Full Text Available Abstract The aim of this study was to evaluate the thickness of resin cements in the root thirds when using conventional fiberglass posts (CP and relined fiberglass posts (RP in weakened roots and to evaluate the morphological characteristics of the dentin-resin interface. Forty human maxillary anterior teeth had the crown sectioned below the cemento-enamel junction. The canals were endodontically treated and weakened with diamond burs. Teeth were divided into four groups (n = 10: Group 1 – CP + RelyX ARC; Group 2 – CP + RelyX U200; Group 3 – RP + RelyX ARC; and Group 4 – RP + RelyX U200. Prior to luting, 0.1% Fluorescein and 0.1% Rhodamine B dyes were added to an adhesive and resin cement, respectively. Slices were obtained from the apical, middle, and cervical thirds of the root. Confocal laser scanning microscopy images were recorded in four areas (buccal, lingual, mesial, distal of each third. In each area, four equidistant measures of the resin cement were made and the mean value was calculated. The interface morphology was observed. The data were submitted to three-way ANOVA and Tukey’s test (α = 0.05. The interaction between fiberglass posts, resin cement, and root thirds was significant (p < 0.0001. The resin cement thicknesses were significantly lower for RP in comparison with CP, except in the apical third. There was no significant difference between the resin cements for RP. There was formation of resin cement tags and adhesive tags along the root for RP. RP favored the formation of thin and uniform resin cement films and resin tags in weakened roots.

  5. Relined fiberglass post: an ex vivo study of the resin cement thickness and dentin-resin interface.

    Science.gov (United States)

    Souza, Niélli Caetano de; Marcondes, Maurem Leitão; Breda, Ricardo Vaz; Weber, João Batista Blessmann; Mota, Eduardo Gonçalves; Spohr, Ana Maria

    2016-08-18

    The aim of this study was to evaluate the thickness of resin cements in the root thirds when using conventional fiberglass posts (CP) and relined fiberglass posts (RP) in weakened roots and to evaluate the morphological characteristics of the dentin-resin interface. Forty human maxillary anterior teeth had the crown sectioned below the cemento-enamel junction. The canals were endodontically treated and weakened with diamond burs. Teeth were divided into four groups (n = 10): Group 1 - CP + RelyX ARC; Group 2 - CP + RelyX U200; Group 3 - RP + RelyX ARC; and Group 4 - RP + RelyX U200. Prior to luting, 0.1% Fluorescein and 0.1% Rhodamine B dyes were added to an adhesive and resin cement, respectively. Slices were obtained from the apical, middle, and cervical thirds of the root. Confocal laser scanning microscopy images were recorded in four areas (buccal, lingual, mesial, distal) of each third. In each area, four equidistant measures of the resin cement were made and the mean value was calculated. The interface morphology was observed. The data were submitted to three-way ANOVA and Tukey's test (α = 0.05). The interaction between fiberglass posts, resin cement, and root thirds was significant (p < 0.0001). The resin cement thicknesses were significantly lower for RP in comparison with CP, except in the apical third. There was no significant difference between the resin cements for RP. There was formation of resin cement tags and adhesive tags along the root for RP. RP favored the formation of thin and uniform resin cement films and resin tags in weakened roots.

  6. Ultimate strength, low stress creep characteristics, and thermal intercept methods for an epoxy fiberglass tension member support

    International Nuclear Information System (INIS)

    Niemann, R.C.; Gonczy, J.D.; Hoffman, J.A.; Mataya, K.F.; Smelser, P.; Young, W.C.

    1979-01-01

    A support system utilizing epoxy fiberglass tension members will be used for the UTSI Superconducting Dipole Magnet. Elements of a support system have a basic member which is a link in which a composite is wound around a mandrel. This element uses the strength of the material fibers in a most advantageous way. The flexural and torsional load imputs to the link at its end must be minimized. A spherical bearing with a cylindrical outer surface functions as the central pin. Experience gained in the application with emphasis on tension member material, ultimate strength, creep, and heat intercepts is presented

  7. Long term characterization of unidirectional fiberglass for ITER pre-compression rings

    International Nuclear Information System (INIS)

    Nardi, Claudio; Bettinali, Livio; Labanti, Martino

    2010-01-01

    In the frame of the development of pre-compression rings for ITER magnet system a unidirectional fiberglass composite has been developed having a ultimate tensile strength (UTS) as high as 2200 MPa at room temperature. During the development of the material a particular grip system has required to be developed, in order to limit the bearing stress on the sample and to obtain a sufficient load to test the sample. To understand the long term creep behaviour room temperature tests have been performed in ENEA Faenza facilities starting in 2007. The long term tests, performed at a constant stress level as high as 80% UTS, showed a behaviour of the material during the test similar to the one of creep tests, although different from the one of metallic materials. In these tests a very low creep strain and very low creep rates, in comparison with the ones of metallic materials, have been recorded, showing a marked dominance of the glass behaviour and a limited influence of the resin on the global behaviour of the composite. From the long term tests, performed at stress levels varying from 63 to 80% of UTS, very different failure times have been recorded for samples loaded at stresses of 75% of UTS and lower and samples loaded at greater stresses. The high stressed samples showed failure times of the order of tenths or hundreds of hours, while the low stresses are all in the order of thousands and more of hours. For the engineering work on the rings the results indicate that at the stress levels considered in the ITER pre-compression rings (50% or less of UTS) the failure time and the deformation of the rings during the ITER operating life are of limited concern. Future activities on this material foresee a set of tests at decreasing stress level (up to 40%), these tests presumably will not lead to an evaluation of the failure time of the material at such a low stress level, however they will give relevant results in order to understand the creep rate of the material at low

  8. Fatigue test of a fiberglass based composite panel. Increasing the lifetime of freight wagon

    Science.gov (United States)

    Sobek, M.; Baier, A.; Grabowski, Ł.; Majzner, M.

    2016-08-01

    In the XXI century transportation of goods plays a key role in the economy. Due to a good logistics the economy is able to grow fluently. Although land transportation is carried out mainly through trucks for the last several years there has been noted an increase in the percentage share of rail transport in the freight transport. The main goods transported by railways are mineral fuels, mining and quarrying products. They constitute the greater part of 70% of total transported goods. Transportation of material of such high weight, high hardness and with different shapes involves increased and accelerated wear and tear of the cargo space of the wagon. This process is also magnified by substances used to prevent overheating or goods theft. Usually they are in the form of chemical compounds powder, eg. Calcium. A very large impact on the wear of the freight wagons hull is made because of mechanical damage. Their source comes mostly from loading cargo with impetus and using heavy machines during unloading. A large number of cycles of loading and unloading during the working period causes abrasion of body and as a result after several years a wagon car qualifies for a major maintenance. Possibility of application composite panels in the process of renovating the wagons body could reduce the weight of whole train and prolong the service life between mandatory technical inspection. The Paper "Fatigue test of a fiberglass based composite panel. Increasing the lifetime of freight wagon" presents the research process and the results of the endurance test of the composite panel samples fixed to a metal plate. As a fixing method a stainless steel rivet nut and a stainless steel button head socket screws were chosen. Cyclic and multiple load were applied to test samples using a pneumatic cylinder. Such a methodology simulated the forces resulting from loading and unloading of the wagon and movement of the cargo during transport. In the study a dedicated stand equipped with a

  9. CFD and Ventilation Research

    DEFF Research Database (Denmark)

    Li, Y.; Nielsen, Peter V.

    2011-01-01

    of scientific research and engineering development of complex air distribution and ventilation systems in buildings. This review discusses the major and specific challenges of CFD in terms of turbulence modelling, numerical approximation, and boundary conditions relevant to building ventilation. We emphasize......There has been a rapid growth of scientific literature on the application of computational fluid dynamics (CFD) in the research of ventilation and indoor air science. With a 1000–10,000 times increase in computer hardware capability in the past 20 years, CFD has become an integral part...... the growing need for CFD verification and validation, suggest on-going needs for analytical and experimental methods to support the numerical solutions, and discuss the growing capacity of CFD in opening up new research areas. We suggest that CFD has not become a replacement for experiment and theoretical...

  10. [Ventilator associated pneumonia].

    Science.gov (United States)

    Bellani, S; Nesci, M; Celotto, S; Lampati, L; Lucchini, A

    2003-04-01

    Ventilator associated pneumonia (VAP) is a nosocomial lower respiratory tract infection that ensues in critically ill patients undergoing mechanical ventilation. The reported incidence of VAP varies between 9% and 68% with a mortality ranging between 33% and 71%. Two key factors are implicated in the pathogenesis of VAP: bacterial colonization of the upper digestive-respiratory tract and aspiration of oral secretions into the trachea. Preventive measurements are advocated to reduce the incidence of VAP, such as selective decontamination of the digestive tract (SDD), supraglottic aspiration and positioning. Prompt recognition and treatment of established VAP has also been demostrated to affect outcome. Therefore, the knowledge of risk factors associated with the development of VAP and the implementation of strategies to prevent, diagnose and treat VAP are mainstems in the nursing of mechanically ventilated patients.

  11. Auxiliary mine ventilation manual

    International Nuclear Information System (INIS)

    Workplace Safety North

    2010-01-01

    An adequate ventilation system is needed for air quality and handling in a mine and is comprised of many different pieces of equipment for removing contaminated air and supplying fresh air and thereby provide a satisfactory working environment. This manual highlights auxiliary ventilation systems made up of small fans, ducts, tubes, air movers, deflectors and additional air flow controls which distribute fresh air delivered by the primary system to all areas. A review of auxiliary ventilation is provided. Design, operation and management issues are discussed and guidelines are furnished. This manual is limited to underground hard rock operations and does not address directly other, specific auxiliary systems, either in underground coal mines or uranium mines.

  12. Behovstyret ventilation til enfamiliehuse

    DEFF Research Database (Denmark)

    Nielsen, Toke Rammer; Drivsholm, Christian; Hansen, Mads Peter Rudolph

    Muligheden for behovsstyret ventilation i enfamiliehuse er undersøgt. To strategier er afprøvet i praksis: En relativ simpel og billig strategi og en relativ avanceret og dyr strategi. Den simple strategi regulerer luftskiftet ensartet for alle rum mellem et lavt eller højt niveau. Den avancerede...... ventilation efter gældende krav. Desuden kræver den simple regulering kun få sensorer og er således væsentlig billigere og enklere at implementere end den avancerede strategi....

  13. Ventilation with heat recovery

    DEFF Research Database (Denmark)

    Tommerup, Henrik M.; Svendsen, Svend

    2005-01-01

    This paper presents the experiences from the use of ventilation with heat recovery in several experimental single-family houses developed and built within the last four years to meet the new Danish energy requirements of 2005. Included are descriptions of the ventilation system components...... and the main functional demands as well as measurements of the thermal efficiency, electricity consumptions and building air tightness. The paper addresses the aspects of minimizing the heat loss from the duct system and the heat recovery unit (when placed in an unheated attic space) in order to obtain...

  14. Diffuse Ceiling Ventilation

    DEFF Research Database (Denmark)

    Zhang, Chen; Yu, Tao; Heiselberg, Per Kvols

    -cooling period and night cooling potential. The investment cost of this ventilation system is about 5-10% lower than the conventional ones, because the acoustic ceiling could be directly applied as air diffuser and the use of plenum to distribute air reduces the cost of ductwork. There is a growing interest...... and manufacturers and the users of diffuse ceiling technology. The design guide introduces the principle and key characteristics of room air distribution with diffuse ceiling ventilation. It provides an overview of potential benefit and limitations of this technology. The benefits include high thermal comfort, high...

  15. Bench performance of ventilators during simulated paediatric ventilation.

    Science.gov (United States)

    Park, M A J; Freebairn, R C; Gomersall, C D

    2013-05-01

    This study compares the accuracy and capabilities of various ventilators using a paediatric acute respiratory distress syndrome lung model. Various compliance settings and respiratory rate settings were used. The study was done in three parts: tidal volume and FiO2 accuracy; pressure control accuracy and positive end-expiratory pressure (PEEP) accuracy. The parameters set on the ventilator were compared with either or both of the measured parameters by the test lung and the ventilator. The results revealed that none of the ventilators could consistently deliver tidal volumes within 1 ml/kg of the set tidal volume, and the discrepancy between the delivered volume and the volume measured by the ventilator varied greatly. The target tidal volume was 8 ml/kg, but delivered tidal volumes ranged from 3.6-11.4 ml/kg and the volumes measured by the ventilator ranged from 4.1-20.6 ml/kg. All the ventilators maintained pressure within 20% of the set pressure, except one ventilator which delivered pressures of up to 27% higher than the set pressure. Two ventilators maintained PEEP within 10% of the prescribed PEEP. The majority of the readings were also within 10%. However, three ventilators delivered, at times, PEEPs over 20% higher. In conclusion, as lung compliance decreases, especially in paediatric patients, some ventilators perform better than others. This study highlights situations where ventilators may not be able to deliver, nor adequately measure, set tidal volumes, pressure, PEEP or FiO2.

  16. Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, Max H.; Walker, Iain S.

    2011-04-01

    Existing ventilation standards, including American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE) Standard 62.2, specify continuous operation of a defined mechanical ventilation system to provide minimum ventilation, with time-based intermittent operation as an option. This requirement ignores several factors and concerns including: other equipment such as household exhaust fans that might incidentally provide ventilation, negative impacts of ventilation when outdoor pollutant levels are high, the importance of minimizing energy use particularly during times of peak electricity demand, and how the energy used to condition air as part of ventilation system operation changes with outdoor conditions. Dynamic control of ventilation systems can provide ventilation equivalent to or better than what is required by standards while minimizing energy costs and can also add value by shifting load during peak times and reducing intake of outdoor air contaminants. This article describes the logic that enables dynamic control of whole-house ventilation systems to meet the intent of ventilation standards and demonstrates the dynamic ventilation system control concept through simulations and field tests of the Residential Integrated Ventilation-Energy Controller (RIVEC).

  17. Noninvasive ventilation in withdrawal from mechanical ventilation.

    Science.gov (United States)

    Ferrer, Miquel; Sellares, Jacobo; Torres, Antoni

    2014-08-01

    Patients with chronic airflow obstruction and difficult or prolonged weaning are at increased risk for prolonged invasive mechanical ventilation (IMV). Several randomized controlled trials mainly conducted in patients who had pre-existing lung disease have shown that the use of noninvasive ventilation (NIV) to advance extubation in patients with difficult and prolonged weaning can result in reduced periods of endotracheal intubation, complication rates, and improved survival. Patients in these studies were hemodynamically stable, with a normal level of consciousness, no fever, and a preserved cough reflex. The use of NIV in the management of mixed populations with respiratory failure after extubation, including small proportions of chronic respiratory patients did not show clinical benefits included. By contrast, NIV immediately after extubation is effective in avoiding respiratory failure after extubation and improving survival in patients at risk for this complication, particularly those with chronic respiratory disorders, cardiac comorbidity, and hypercapnic respiratory failure. Finally, both continuous positive airway pressure and NIV can improve clinical outcomes in patients with postoperative acute respiratory failure, particularly abdominal and thoracic surgery. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  18. Permeability and compression of fibrous porous media generated from dilute suspensions of fiberglass debris during a loss of coolant accident

    International Nuclear Information System (INIS)

    Lee, Saya; Abdulsattar, Suhaeb S.; Vaghetto, Rodolfo; Hassan, Yassin A.

    2015-01-01

    Highlights: • Experimental investigation on fibrous debris buildup was conducted. • Head loss through fibrous media was recorded at different approach velocities. • A head loss model through fibrous media was proposed for high porosity (>0.99). • A compression model of fibrous media was developed. - Abstract: Permeability of fibrous porous media has been studied for decades in various engineering applications, including liquid purifications, air filters, and textiles. In nuclear engineering, fiberglass has been found to be a hazard during a Loss-of-Coolant Accident. The high energy steam jet from a break impinges on surrounding fiberglass insulation materials, producing a large amount of fibrous debris. The fibrous debris is then transported through the reactor containment and reaches the sump strainers. Accumulation of such debris on the surface of the strainers produces a fibrous bed, which is a fibrous porous medium that can undermine reactor core cooling. The present study investigated the buildup of fibrous porous media on two types of perforated plate and the pressure drop through the fibrous porous media without chemical effect. The development of the fibrous bed was visually recorded in order to correlate the pressure drop, the approach velocity, and the thickness of the fibrous porous media. The experimental results were compared to semi-theoretical models and theoretical models proposed by other researchers. Additionally, a compression model was developed to predict the thickness and the local porosity of a fibrous bed as a function of pressure

  19. Demand controlled ventilation; Behovsstyrt ventilasjon

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, Henning Holm

    2006-07-01

    The terms CAV and VAV have been known terms for many years in the ventilation business. The terms are also included in building regulations, but the time is now right to focus on demand controlled ventilation (DCV). The new building regulations and the accompanying energy framework underline the need for a more nuanced thinking when it comes to controlling ventilation systems. Descriptions and further details of the ventilation systems are provided (ml)

  20. Battery life of portable home ventilators: effects of ventilator settings.

    Science.gov (United States)

    Falaize, Line; Leroux, Karl; Prigent, Hélène; Louis, Bruno; Khirani, Sonia; Orlikowski, David; Fauroux, Brigitte; Lofaso, Frédéric

    2014-07-01

    The battery life (BL) of portable home ventilator batteries is reported by manufacturers. The aim of this study was to evaluate the effects of ventilator mode, breathing frequency, PEEP, and leaks on the BL of 5 commercially available portable ventilators. The effects of the ventilator mode (volume controlled-continuous mandatory ventilation [VC-CMV] vs pressure support ventilation [PSV]), PEEP 5 cm H2O, breathing frequency (10, 15, and 20 breaths/min), and leaks during both volume-targeted ventilation and PSV on the BL of 5 ventilators (Elisée 150, Monnal T50, PB560, Vivo 50, and Trilogy 100) were evaluated. Each ventilator was ventilated with a test lung at a tidal volume of 700 ml and an inspiratory time of 1.2 s in the absence of leaks. Switching from PSV to VC-CMV or the addition of PEEP did not significantly change ventilator BL. The increase in breathing frequency from 10 to 20 breaths/min decreased the BL by 18 ± 11% (P = .005). Leaks were associated with an increase in BL during the VC-CMV mode (18 ± 20%, P = .04) but a decrease in BL during the PSV mode (-13 ± 15%, P = .04). The BL of home ventilators depends on the ventilator settings. BL is not affected by the ventilator mode (VC-CMV or PSV) or the addition of PEEP. BL decreases with an increase in breathing frequency and during leaks with a PSV mode, whereas leaks increase the duration of ventilator BL during VC-CMV. Copyright © 2014 by Daedalus Enterprises.

  1. Thermal Plumes in Ventilated Rooms

    DEFF Research Database (Denmark)

    Kofoed, P.; Nielsen, Peter Vilhelm

    The main objective of ventilation is to provide good air quality for the occupants. For this purpose the necessary ventilating air change rate must be determined. Within displacement ventilation the estimation is closely related to the air flow rate in the thermal plumes when an air quality based...

  2. How to Plan Ventilation Systems.

    Science.gov (United States)

    Clarke, John H.

    1963-01-01

    Ventilation systems for factory safety demand careful planning. The increased heat loads and new processes of industry have introduced complex ventilation problems in--(1) ventilation supply, (2) duct work design, (3) space requirements, (4) hood face velocities, (5) discharge stacks, and (6) building eddies. This article describes and diagrams…

  3. Hybrid Ventilation Air Flow Process

    DEFF Research Database (Denmark)

    Heiselberg, Per Kvols

    The scope of this annex is therefore to obtain better knowledge of the use of hybrid ventilation technologies. The annex focus on development of control strategies for hybrid ventilation, on development of methods to predict hybrid ventilation performance in office buildings and on implementation...

  4. The Fate of Mengovirus on Fiberglass Filter of Air Handling Units.

    Science.gov (United States)

    Bandaly, Victor; Joubert, Aurélie; Le Cann, Pierre; Andres, Yves

    2017-12-01

    One of the most important topics that occupy public health problems is the air quality. That is the reason why mechanical ventilation and air handling units (AHU) were imposed by the different governments in the collective or individual buildings. Many buildings create an artificial climate using heating, ventilation, and air-conditioning systems. Among the existing aerosols in the indoor air, we can distinguish the bioaerosol with biological nature such as bacteria, viruses, and fungi. Respiratory viral infections are a major public health issue because they are usually highly infective. We spend about 90% of our time in closed environments such as homes, workplaces, or transport. Some studies have shown that AHU contribute to the spread and transport of viral particles within buildings. The aim of this work is to study the characterization of viral bioaerosols in indoor environments and to understand the fate of mengovirus eukaryote RNA virus on glass fiber filter F7 used in AHU. In this study, a set-up close to reality of AHU system was used. The mengovirus aerosolized was characterized and measured with the electrical low pressure impact and the scanner mobility particle size and detected with RT-qPCR. The results about quantification and the level of infectivity of mengovirus on the filter and in the biosampler showed that mengovirus can pass through the filter and remain infectious upstream and downstream the system. Regarding the virus infectivity on the filter under a constant air flow, mengovirus was remained infectious during 10 h after aerosolization.

  5. 46 CFR 116.610 - Ventilation ducts.

    Science.gov (United States)

    2010-10-01

    ... served by the ventilation duct for shutting off the passage of air through the ventilation duct in the... 46 Shipping 4 2010-10-01 2010-10-01 false Ventilation ducts. 116.610 Section 116.610 Shipping... Ventilation § 116.610 Ventilation ducts. (a) For the purposes of this section, a ventilation duct includes any...

  6. Omnidirectional ventilated acoustic barrier

    Science.gov (United States)

    Zhang, Hai-long; Zhu, Yi-fan; Liang, Bin; Yang, Jing; Yang, Jun; Cheng, Jian-chun

    2017-11-01

    As an important problem in acoustics, sound insulation finds applications in a great variety of situations. In the existing schemes, however, there has always been a trade-off between the thinness of sound-insulating devices and their ventilating capabilities, limiting their potentials in the control of low-frequency sound in high ventilation environments. Here, we design and experimentally implement an omnidirectional acoustic barrier with a planar profile, subwavelength thickness ( 0.18 λ ), yet high ventilation. The proposed mechanism is based on the interference between the resonant scattering of discrete states and the background scattering of continuous states which induces a Fano-like asymmetric transmission profile. Benefitting from the binary-structured design of the coiled unit and hollow pipe, it maximally simplifies the design and fabrication while ensuring the ventilation for all the non-resonant units with open tubes. The simulated and measured results agree well, showing the effectiveness of our proposed mechanism to block low frequency sound coming from various directions while allowing 63% of the air flow to pass. We anticipate our design to open routes to design sound insulators and to enable applications in traditionally unattainable cases such as those calling for noise reduction and cooling simultaneously.

  7. Lavt elforbrug til ventilation

    DEFF Research Database (Denmark)

    Jagemar, L.; Bergsøe, Niels Christian

    Rapporten giver gode råd om mulige energibesparelser og praktiske projekteringshensyn, som er forbundet med udformning af energieffektiv ventilation i ikke blot kontorbygninger, men i alle bygninger med komfortventilationsanlæg. I forbindelse med projektering af ventilationsanlæg har interessen...

  8. Understanding mechanical ventilators.

    Science.gov (United States)

    Chatburn, Robert L

    2010-12-01

    The respiratory care academic community has not yet adopted a standardized system for classifying and describing modes of ventilation. As a result, there is enough confusion that patient care, clinician education and even ventilator sales are all put at risk. This article summarizes a ventilator mode taxonomy that has been extensively published over the last 15 years. Specifically, the classification system has three components: a description of the control variables within breath; a description of the sequence of mandatory and spontaneous breaths; and a specification for the targeting scheme. This three-level specification provides scalability of detail to make the mode description appropriate for the particular need. At the bedside, we need only refer to a mode briefly using the first or perhaps first and second components. To distinguish between similar modes and brand names, we would need to include all components. This taxonomy uses the equation of motion for the respiratory system as the underlying theoretical framework. All terms relevant to describing modes of mechanical ventilation are defined in an extensive appendix.

  9. Mechanical ventilation of mice

    NARCIS (Netherlands)

    Schwarte, L. A.; Zuurbier, C. J.; Ince, C.

    2000-01-01

    Due to growing interest in murine functional genomics research, there is an increasing need for physiological stable in vivo murine models. Of special importance is support and control of ventilation by artificial respiration, which is difficult to execute as a consequence of the small size of the

  10. Passive stack ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, J.; Parkins, L.; Shaw, P.; Watkins, R. [Databuild, Birmingham (United Kingdom)

    1994-12-31

    The adequate ventilation of houses is essential for both the occupants and the building fabric. As air-tightness standards increase, background infiltration levels decrease and extra ventilation has to be designed into the building. Passive stack ventilation has many advantages - particularly when employed in low cost housing schemes -but it is essential that it performs satisfactorily. This paper give the results from monitoring two passive stack ventilation schemes. One scheme was a retrofit into refurbished local authority houses in which a package of energy efficiency measures had been taken and condensation had been a problem. The other series of tests were conducted on a new installation in a Housing Association development. Nine houses were monitored each of which had at least two passive vents. The results show air flow rates by the passive ducts equivalent to approximately 1 room air change per hour. The air flow in the ducts was influenced by both, internal to external temperature difference and wind speed and direction. (author)

  11. Elforbrug til mekanisk ventilation

    DEFF Research Database (Denmark)

    Olufsen, P.

    I Energi 2000 er ventilationsområdet udpeget som et af de områder, hvor der bør tages initiativ til at fremme elbesparelser. I rapporten beskrives og analyseres målinger af elforbruget til ventilation i 12 bygninger, der alle anvendes til administration eller lignende formål. På grundlag af...

  12. Measure Guideline: Ventilation Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Springer, D.; Dakin, B.; German, A.

    2012-04-01

    The purpose of this measure guideline on ventilation cooling is to provide information on a cost-effective solution for reducing cooling system energy and demand in homes located in hot-dry and cold-dry climates. This guideline provides a prescriptive approach that outlines qualification criteria, selection considerations, and design and installation procedures.

  13. Ventil – ochrana stability

    Czech Academy of Sciences Publication Activity Database

    Řípa, Milan

    Červenec (2017) ISSN 2464-7888 Institutional support: RVO:61389021 Keywords : fusion * ITER * tokamak * valve * VAT * gyrotron Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) http://www.3pol.cz/cz/rubriky/jaderna-fyzika-a-energetika/2035-ventil-ochrana-stability

  14. Ventilation of nuclear power plants

    International Nuclear Information System (INIS)

    Madoyan, A.A.; Vlasik, V.F.

    1984-01-01

    Foundations and calculation methods of ventilation of rooms with different degree of heat and gas release with the change of operation mode of NPP main equipment, as well as problems of NPP site and adjoining area aerodynamics, have been presented. Systems of air ventilation and conditioning, cooling equipment, are considered. The main points of designing are described and determination of economic efficiency of the ventilation systems are made. Technical characteristics of the ventilators, conditioners, filters and air heaters used, are presented. Organization of adjustment, tests, operation and maintenance of the ventilation systems of NPP with RBMK and WWER-type reactors, is described

  15. Technological development in mechanical ventilation.

    Science.gov (United States)

    Conti, Giorgio; Costa, Roberta

    2010-02-01

    Innovative modes of mechanical ventilation, mainly based on complex closed loop technologies, have been recently developed and are now available for clinical use. Proportional assist ventilation with load-adjustable gain factors and neurally adjusted ventilatory assist are innovative modes of mechanical ventilation delivering a level of assistance proportional to the patient's effort, thus improving patient-ventilator synchrony and potentially representing a real clinical advantage. Adaptive support ventilation is a ventilatory mode delivering assisted (pressure support ventilation-like) or controlled breathing cycles (pressure-controlled-like), related to a minute ventilation target set by the clinician and on automated measurements of the patient's respiratory mechanics. Noisy pressure support ventilation, finally, is a recently described experimental evolution of pressure support, with some improvement potentials, but no clinical application till now. The recently reported results with proportional assist ventilation with load-adjustable gain factors, neurally adjusted ventilatory assist, and adaptive support ventilation are, till now, mainly based on preliminary physiologic and clinical studies; although they seem to be promising, suggesting that closed loop-based modes could represent a real innovation in the field of mechanical ventilation, further clinical evaluation is needed before their widespread diffusion into clinical practice.

  16. Design Procedure for Hybrid Ventilation

    DEFF Research Database (Denmark)

    Heiselberg, Per; Tjelflaat, Per Olaf

    Mechanical and natural ventilation systems have developed separately during many years. The natural next step in this development is development of ventilation concepts that utilises and combines the best features from each system into a new type of ventilation system - Hybrid Ventilation....... Buildings with hybrid ventilation often include other sustainable technologies and an energy optimisation requires an integrated approach in the design of the building and its mechanical systems. Therefore, the hybrid ventilation design procedure differs from the design procedure for conventional HVAC....... The first ideas on a design procedure for hybrid ventilation is presented and the different types of design methods, that is needed in different phases of the design process, is discussed....

  17. ASHRAE and residential ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, Max H.

    2003-10-01

    In the last quarter of a century, the western world has become increasingly aware of environmental threats to health and safety. During this period, people psychologically retreated away from outdoors hazards such as pesticides, smog, lead, oil spills, and dioxin to the seeming security of their homes. However, the indoor environment may not be healthier than the outdoor environment, as has become more apparent over the past few years with issues such as mold, formaldehyde, and sick-building syndrome. While the built human environment has changed substantially over the past 10,000 years, human biology has not; poor indoor air quality creates health risks and can be uncomfortable. The human race has found, over time, that it is essential to manage the indoor environments of their homes. ASHRAE has long been in the business of ventilation, but most of the focus of that effort has been in the area of commercial and institutional buildings. Residential ventilation was traditionally not a major concern because it was felt that, between operable windows and envelope leakage, people were getting enough outside air in their homes. In the quarter of a century since the first oil shock, houses have gotten much more energy efficient. At the same time, the kinds of materials and functions in houses changed in character in response to people's needs. People became more environmentally conscious and aware not only about the resources they were consuming but about the environment in which they lived. All of these factors contributed to an increasing level of public concern about residential indoor air quality and ventilation. Where once there was an easy feeling about the residential indoor environment, there is now a desire to define levels of acceptability and performance. Many institutions--both public and private--have interests in Indoor Air Quality (IAQ), but ASHRAE, as the professional society that has had ventilation as part of its mission for over 100 years, is the

  18. The Use of Fiberglass and Ceramic Cylinders to Support the Root Pass in C-Steel Welds with a Double-V Groove

    Directory of Open Access Journals (Sweden)

    Ricardo Fernandes Gurgel

    2015-09-01

    Full Text Available Abstract The aim of this work is to evaluate the effectiveness of fiberglass and ceramic fiber cylinders as root-pass weld backing for a double-V groove in 16 mm-thick carbon steel. Three different cylinder diameters were tested: 4.8, 9.5 mm (fiberglass and 6.4 mm (ceramic fiber. The welding process used was GMAW. The welding technique and the following process variables were investigated: root opening, current and travel speed. The results show that cylindrical fiberglass and ceramic fiber backings not only have excellent refractory properties, but also seal the root opening and contain the weld pool sufficiently to produce a root bead free of discontinuities and with a satisfactory shape and geometry. Working points were defined, together with a possible operating range for the welding parameters. It was concluded that cylindrical fiberglass and ceramic fiber weld backings hold great promise for use in root-pass welds in double-V grooves in applications in the naval and metallurgical industry.

  19. Dynamic mechanical analysis and high strain-rate energy absorption characteristics of vertically aligned carbon nanotube reinforced woven fiber-glass composites

    Science.gov (United States)

    The dynamic mechanical behavior and energy absorption characteristics of nano-enhanced functionally graded composites, consisting of 3 layers of vertically aligned carbon nanotube (VACNT) forests grown on woven fiber-glass (FG) layer and embedded within 10 layers of woven FG, with polyester (PE) and...

  20. High Frequency Oscillatory Ventilation

    Directory of Open Access Journals (Sweden)

    AC Bryan

    1996-01-01

    Full Text Available High frequency oscillatory (HFO ventilation using low tidal volume and peak airway pressures is extremely efficient at eliminating carbon dioxide and raising pH in the newborn infant with acute respiratory failure. Improvement in oxygenation requires a strategy of sustained or repetitive inflations to 25 to 30 cm H2O in order to place the lung on the deflation limb of the pressure-volume curve. This strategy has also been shown to decrease the amount of secondary lung injury in animal models. Experience of the use of HFO ventilation as a rescue therapy as well as several published controlled trials have shown improved outcomes and a decrease in the use of extracorporeal membrane oxygenation when it has been used in newborns.

  1. Purge ventilation operability

    International Nuclear Information System (INIS)

    Marella, J.R.

    1995-01-01

    A determination of minimum requirements for purge exhaust ventilation system operability has been performed. HLWE and HLW Regulatory Program personnel have evaluated the various scenarios of equipment conditions and HLWE has developed the requirements for purge exhaust systems. This report is provided to document operability requirements to assist Tank Farm personnel to determine whether a system is operable/inoperable and to define required compensatory actions

  2. Ventilation i industrien

    DEFF Research Database (Denmark)

    Valbjørn, O.

    I en række afsnit belyses problemer med træk, kulde, varme, og luftforurening på industriens arbejdspladser, og hvordan man ved ventilation og bygningsudformning kan bekæmpe disse gener. Hvert afsnit kan i princippet læses for sig, og anvisningen kan derfor bruges som håndbog, både af de der er...

  3. Harnessing natural ventilation benefits.

    Science.gov (United States)

    O'Leary, John

    2013-04-01

    Making sure that a healthcare establishment has a good supply of clean fresh air is an important factor in keeping patients, staff, and visitors, free from the negative effects of CO2 and other contaminants. John O'Leary of Trend Controls, a major international supplier of building energy management solutions (BEMS), examines the growing use of natural ventilation, and the health, energy-saving, and financial benefits, that it offers.

  4. Design of strong wooden box coated with fiberglass reinforced resin for shipping and burial of contaminated glove boxes. Final report

    International Nuclear Information System (INIS)

    1982-01-01

    The project scope of work included the complete decontamination and decommissioning (D and D) of the Westinghouse ARD Fuel Laboratories at the Cheswick Site in the shortest possible time. This has been accomplished in the following four phases: (1) preparation of documents and necessary paperwork; packaging and shipping of all special nuclear materials in an acceptable form to a reprocessing agency; (2) decontamination of all facilities, glove boxes and equipment; loading of generated waste into bins, barrels and strong wooden boxes; (3) shipping of al bins, barrels and boxes containing waste to the designated burial site; removal of all utility services from the laboratories; and (4) final survey of remaining facilities and certification for nonrestricted use; preparation of final report. This attachment contains design of strong wooden box coated with fiberglass reinforced resin for shipping and burial of contaminated glove boxes

  5. Painted Fiberglass-Reinforced Contemporary Sculpture: Investigating Composite Materials, Techniques and Conservation Using a Multi-Analytical Approach.

    Science.gov (United States)

    Salvadori, Barbara; Cantisani, Emma; Colombini, Maria Perla; Tognon, Cecilia Gaia Rachele

    2016-01-01

    A multi-analytical approach was used to study the constituent materials, manufacturing technique, and state of conservation of a contemporary sculpture. This sculpture, entitled Nuredduna, was created by Aligi Sassu in 1995 and is located in the "Bellariva garden" in Florence (Italy). Fourier transform infrared spectroscopy (FT-IR), optical and electronic microscopy (OM and SEM-EDS), X-ray diffraction (XRD), and portable X-ray fluorescence (XRF) highlighted the multi-layered structure of the statue: fiberglass and an overlay of different layers (gel coat) applied with an unsaturated polyester resin added with aggregate materials and bromine compounds. A top-coat in acrylic black varnish, used as a finish, was also found. The combination of these materials with their different compositions, environmental impact, and even vandalism have negatively affected the state of conservation of Nuredduna, causing the loss of strata in its lower parts (legs and feet). © The Author(s) 2015.

  6. Performance evaluation of ventilation radiators

    International Nuclear Information System (INIS)

    Myhren, Jonn Are; Holmberg, Sture

    2013-01-01

    A ventilation radiator is a combined ventilation and heat emission unit currently of interest due to its potential for increasing energy efficiency in exhaust-ventilated buildings with warm water heating. This paper presents results of performance tests of several ventilation radiator models conducted under controlled laboratory conditions. The purpose of the study was to validate results achieved by Computational Fluid Dynamics (CFD) in an earlier study and identify possible improvements in the performance of such systems. The main focus was on heat transfer from internal convection fins, but comfort and health aspects related to ventilation rates and air temperatures were also considered. The general results from the CFD simulations were confirmed; the heat output of ventilation radiators may be improved by at least 20% without sacrificing ventilation efficiency or thermal comfort. Improved thermal efficiency of ventilation radiators allows a lower supply water temperature and energy savings both for heating up and distribution of warm water in heat pumps or district heating systems. A secondary benefit is that a high ventilation rate can be maintained all year around without risk for cold draught. -- Highlights: ► Low temperature heat emitters are currently of interest due to their potential for increasing energy efficiency. ► A ventilation radiator is a combined ventilation and heat emission unit which can be adapted to low temperature heating systems. ► We examine how ventilation radiators can be made to be more efficient in terms of energy consumption and thermal comfort. ► Current work focuses on heat transfer mechanisms and convection fin configuration of ventilation radiators

  7. Human response to ductless personalized ventilation coupled with displacement ventilation

    DEFF Research Database (Denmark)

    Dalewski, Mariusz; Veselý, Michal; Melikov, Arsen K.

    2012-01-01

    A human subject experiment was carried out to investigate the extent to which ductless personalized ventilation (DPV) in conjunction with displacement ventilation can improve perceived air quality (PAQ) and thermal comfort at elevated room air temperature in comparison with displacement ventilation......). During one hour exposure participants answered questionnaires regarding PAQ and thermal comfort. PAQ was significantly better with DPV than without DPV at the same background conditions. Thermal comfort improved when DPV was used. Combining DPV with displacement ventilation showed the potential...... for improving PAQ and thermal comfort when room air temperature is above the comfortable temperature range....

  8. Mechanical ventilation in neurosurgical patients

    Directory of Open Access Journals (Sweden)

    Keshav Goyal

    2013-01-01

    Full Text Available Mechanical ventilation significantly affects cerebral oxygenation and cerebral blood flow through changes in arterial carbon dioxide levels. Neurosurgical patients might require mechanical ventilation for correction and maintenance of changes in the pulmonary system that occur either due to neurosurgical pathology or following surgery during the acute phase. This review discusses the basics of mechanical ventilation relevant to the neurosurgeon in the day-to-day management of neurosurgical patient requiring artificial support of the respiration.

  9. 46 CFR 42.15-45 - Ventilators.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Ventilators. 42.15-45 Section 42.15-45 Shipping COAST... Conditions of Assignment of Freeboard § 42.15-45 Ventilators. (a) Ventilators in position 1 or 2 to spaces... any ventilator exceeds 351/2 inches in height it shall be specially supported. (b) Ventilators passing...

  10. Design Principles for Natural and Hybrid Ventilation

    DEFF Research Database (Denmark)

    Heiselberg, Per

    For many years mechanical and natural ventilation systems have developed separately. Naturally, the next step in this development is the development of ventilation concepts that utilize and combine the best features from each system to create a new type of ventilation system- Hybrid Ventilation....... The hybrid ventilation concepts, design challenges and principles are discussed and illustrated by four building examples....

  11. Monitoring during Mechnical Ventilation

    Directory of Open Access Journals (Sweden)

    Dean Hess

    1996-01-01

    Full Text Available Monitoring is a continuous, or nearly continuous, evaluation of the physiological function of a patient in real time to guide management decisions, including when to make therapeutic interventions and assessment of those interventions. Pulse oximeters pass two wavelengths of light through a pulsating vascular bed and determine oxygen saturation. The accuracy of pulse oximetry is about ±4%. Capnography measures carbon dioxide at the airway and displays a waveform called the capnogram. End-tidal PCO2 represents alveolar PCO2 and is determined by the ventilation-perfusion quotient. Use of end-tidal PCO2 as an indication of arterial PCO2 is often deceiving and incorrect in critically ill patients. Because there is normally very little carbon dioxide in the stomach, a useful application of capnography is the detection of esophageal intubation. Intra-arterial blood gas systems are available, but the clinical impact and cost effectiveness of these is unclear. Mixed venous oxygenation (PvO2 or SvO2 is a global indicator of tissue oxygenation and is affected by arterial oxygen content, oxygen consumption and cardiac output. Indirect calorimetry is the calculation of energy expenditure and respiratory quotient by the measurement of oxygen consumption and carbon dioxide production. A variety of mechanics can be determined in mechanically ventilated patients including resistance, compliance, auto-peak end-expiratory pressure (PEEP and work of breathing. The static pressure-volume curve can be used to identify lower and upper infection points, which can be used to determine the appropriate PEEP setting and to avoid alveolar overdistension. Although some forms of monitoring have become a standard of care during mechanical ventilation (eg, pulse oximetry, there is little evidence that use of any monitor affects patient outcome.

  12. Heating, ventilation and cooling

    CSIR Research Space (South Africa)

    Osburn, L

    2009-02-01

    Full Text Available will be comfortable in the temperature range between 21° an d 26° at a humidity ratio of 0.004. The temperature at which an individual is comfortable is dependant on a large number of different variables including humidity, air speed, outside temperature, as well..., increasing the fresh air ventilation rates is going to directly increase the energy load on the air conditioners as more air is requiring conditioning. SANS 10400-0 requires that 5l/s/person of outside air is provided for office spaces, while Green Star...

  13. Plane Stratified Flow in a Room Ventilated by Displacement Ventilation

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm; Nickel, J.; Baron, D. J. G.

    2004-01-01

    The air movement in the occupied zone of a room ventilated by displacement ventilation exists as a stratified flow along the floor. This flow can be radial or plane according to the number of wall-mounted diffusers and the room geometry. The paper addresses the situations where plane flow...

  14. Radioaerosol ventilation imaging in ventilator-dependent patients. Technical considerations

    International Nuclear Information System (INIS)

    Vezina, W.; Chamberlain, M.; Vinitski, S.; King, M.; Nicholson, R.; Morgan, W.K.

    1985-01-01

    The differentiation of pulmonary embolism (PE) from regional ventilatory abnormalities accompanied by reduced perfusion requires contemporary perfusion and ventilation studies. Distinguishing these conditions in ventilator-dependent patients is aided by administering a Tc-99m aerosol to characterize regional ventilation, and by performing a conventional Tc-99m MAA perfusion study. The technique uses a simple in-house constructed apparatus. Simple photographic techniques suffice, but computer subtraction of perfusion from the combined perfusion-ventilation image renders interpretation easier if aerosol administration follows perfusion imaging. Multiple defects can be examined in a single study. Excluding normal or near-normal perfusion studies, PE was thought to be present in eight of 16 patients after perfusion imaging alone, but in only one of eight after added aerosol imaging. Angiography confirmed the diagnosis in that patient. Of the eight patients who had abnormal perfusion but were thought unlikely to have PE from the perfusion study alone, two had normal ventilation, and subsequently were shown to have PE by angiography. Because angiography was only performed on patients who were thought to have a high probability of PE on sequential perfusion-ventilation imaging, the true incidence of PE may have been higher. Aerosol ventilation imaging is a useful adjunct to perfusion imaging in patients on ventilators. It requires an efficient delivery system, particularly if aerosol administration follows perfusion imaging, as it does in this study

  15. Emplacement ventilation system

    International Nuclear Information System (INIS)

    Vance, Robert W.

    2000-01-01

    This analysis updates design concepts for emplacement ventilation based upon the increased air flow required through the drift in the EDA II design (CRWMS M and O 1999a, Table O-6) and by current thermal modeling results compared to the VA design (DOE 1998, Section 4.2.4). It reviews the air pathway in the emplacement drift, describes three exhaust system options, discusses two air control options, and examines concepts for several system physical components including isolation doors, a portable shadow shield, and a partition in an exhaust main. The air path through the emplacement drift, itself, remains the same as described in the VA and EDA II design; that is, exhaust fans located on the surface pull air through an intake shaft into the subsurface repository. The ventilation air is distributed to the east and west mains by the cross-block drifts. From the mains, the air enters the emplacement drifts and flows to a central exhaust raise. The air then travels down an exhaust raise to the exhaust system

  16. Ventilator-associated pneumonia.

    Science.gov (United States)

    Shaw, Michael Jan

    2005-05-01

    This review summarises some of the notable papers on ventilator-associated pneumonia (VAP) from January 2003 to October 2004. Ventilator-associated pneumonia remains an important drain on hospital resources. All population groups are affected, but patients with VAP are more likely to be older, sicker, and male, with invasive medical devices in situ. Early VAP diagnosis is desirable to reduce VAP mortality and to retard emergence of multidrug-resistant microbes. This may be possible using preliminary culture results or intracellular organism in polymorphonuclear cells. In most intensive care units, Staphylococcus aureus, Pseudomonas aeruginosa, and Acinetobacter baumannii are the commonest organisms isolated in VAP. However, causative organisms vary between and within hospitals. Consequently, individual intensive care units should develop empirical antibiotic policies to target the pathogenic bacteria prevalent in their patient populations. Preventative strategies aimed at reducing aerodigestive tract colonisation by pathogenic organisms, and also their subsequent aspiration, are becoming increasingly important. Educating medical staff about these simple measures is therefore pertinent. To reduce the occurrence of multidrug-resistant organisms, limiting the duration of antibiotic treatment to 8 days and antimicrobial rotation should be contemplated. Empirical therapy with antipseudomonal penicillins plus beta-lactamase inhibitors should be considered. If methicillin-resistant Staphylococcus aureus VAP is a possibility, linezolid may be better than vancomycin. Prevention remains the key to reducing VAP prevalence.

  17. Free Convection Personalized Ventilation (FCPV)

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    Normally we supply fresh air to a room with a diffuser, and this air is distributed in the room according to different principles as: mixing ventilation, displacement ventilation etc. That means we have to supply a very large amount of air to the whole room, although a person in the room totally ...

  18. Thermal plumes in ventilated rooms

    DEFF Research Database (Denmark)

    Kofoed, Peter; Nielsen, Peter V.

    1990-01-01

    The design of a displacement ventilation system involves determination of the flow rate in the thermal plumes. The flow rate in the plumes and the vertical temperature gradient influence each other, and they are influenced by many factors. This paper shows some descriptions of these effects. Free...... to be the only possible approach to obtain the volume flow in: thermal plumes in ventilated rooms....

  19. Inhalation therapy in mechanical ventilation

    Science.gov (United States)

    Maccari, Juçara Gasparetto; Teixeira, Cassiano; Gazzana, Marcelo Basso; Savi, Augusto; Dexheimer-Neto, Felippe Leopoldo; Knorst, Marli Maria

    2015-01-01

    Patients with obstructive lung disease often require ventilatory support via invasive or noninvasive mechanical ventilation, depending on the severity of the exacerbation. The use of inhaled bronchodilators can significantly reduce airway resistance, contributing to the improvement of respiratory mechanics and patient-ventilator synchrony. Although various studies have been published on this topic, little is known about the effectiveness of the bronchodilators routinely prescribed for patients on mechanical ventilation or about the deposition of those drugs throughout the lungs. The inhaled bronchodilators most commonly used in ICUs are beta adrenergic agonists and anticholinergics. Various factors might influence the effect of bronchodilators, including ventilation mode, position of the spacer in the circuit, tube size, formulation, drug dose, severity of the disease, and patient-ventilator synchrony. Knowledge of the pharmacological properties of bronchodilators and the appropriate techniques for their administration is fundamental to optimizing the treatment of these patients. PMID:26578139

  20. Cardiac gated ventilation

    Science.gov (United States)

    Hanson, C. William, III; Hoffman, Eric A.

    1995-05-01

    There are several theoretic advantages to synchronizing positive pressure breaths with the cardiac cycle, including the potential for improving distribution of pulmonary and myocardial blood flow and enhancing cardiac output. We evaluated the effects of synchronizing respiration to the cardiac cycle using a programmable ventilator and electron beam CT (EBCT) scanning. The hearts of anesthetized dogs were imaged during cardiac gated respiration with a 50msec scan aperture. Multislice, short axis, dynamic image data sets spanning the apex to base of the left ventricle were evaluated to determine the volume of the left ventricular chamber at end-diastole and end-systole during apnea, systolic and diastolic cardiac gating. We observed an increase in cardiac output of up to 30% with inspiration gated to the systolic phase of the cardiac cycle in a nonfailing model of the heart.

  1. Solar ventilation and tempering

    Science.gov (United States)

    Adámek, Karel; Pavlů, Miloš; Bandouch, Milan

    2014-08-01

    The paper presents basic information about solar panels, designed, realized and used for solar ventilation of rooms. Used method of numerical flow simulation gives good overview about warming and flowing of the air in several kinds of realized panels (window, facade, chimney). Yearlong measurements give a good base for calculations of economic return of invested capital. The operation of the system in transient period (spring, autumn) prolongs the period without classical heating of the room or building, in winter the classical heating is supported. In the summer period the system, furnished with chimney, can exhaust inner warm air together with necessary cooling of the system by gravity circulation, only. System needs not any invoiced energy source; it is supplied entirely by solar energy. Large building systems are supported by classical electric fan respectively.

  2. Standard practice for acoustic emission examination of pressurized containers made of fiberglass reinforced plastic with balsa wood cores

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This practice covers guidelines for acoustic emission (AE) examinations of pressurized containers made of fiberglass reinforced plastic (FRP) with balsa cores. Containers of this type are commonly used on tank trailers for the transport of hazardous chemicals. 1.2 This practice is limited to cylindrical shape containers, 0.5 m [20 in.] to 3 m [120 in.] in diameter, of sandwich construction with balsa wood core and over 30 % glass (by weight) FRP skins. Reinforcing material may be mat, roving, cloth, unidirectional layers, or a combination thereof. There is no restriction with regard to fabrication technique or method of design. 1.3 This practice is limited to containers that are designed for less than 0.520 MPa [75.4 psi] (gage) above static pressure head due to contents. 1.4 This practice does not specify a time interval between examinations for re-qualification of a pressure container. 1.5 This practice is used to determine if a container is suitable for service or if follow-up NDT is needed before that...

  3. Impacts of the manufacturing process using fiberglass reinforced plastic composite on the environment and occupational health: the automotive industry case

    Directory of Open Access Journals (Sweden)

    Cíntia Madureira Orth

    2012-06-01

    Full Text Available The production of fiberglass reinforced plastic composite parts may cause serious damages to the health of workers and/or the environment, especially due to the generation of process trimmings, noise level and gas emission.  In view of that, this essay aims at assessing the main impacts of the Molding and Finish processes of an automotive plant on the environment and occupational health. It was observed that the open molding method adopted by the studied plant is the main cause of the generation of residues and that the waste of raw materials as trimmings may reach up to 30%. The final destination of those trimmings, which represent 45% of all the residues generated by the factory, is the industrial landfill. It was also observed that, due to the use of open molds, the levels of styrene and fiber dust were above the tolerance limits, presenting risks to the health of the workers.  Therefore, the studied company should consider the possibility of adopting less aggressive technologies, such as that used in closed molds. The reduction of the negative impacts of the productive processes in their source should be part of the company’s policy. Furthermore, the prevention must be continuous and improved every day.

  4. Mechanical ventilation: invasive versus noninvasive.

    Science.gov (United States)

    Brochard, L

    2003-11-01

    Mechanical ventilation is the most widely used supportive technique in intensive care units. Several forms of external support for respiration have long been described to assist the failing ventilatory pump, and access to lower airways through tracheostomy or endotracheal tubes had constituted a major advance in the management of patients with respiratory distress. More recently, however, new "noninvasive" ventilation (NIV) techniques, using patient/ventilator interfaces in the form of facial masks, have been designed. The reasons for promoting NIV include a better understanding of the role of ventilatory pump failure in the indications for mechanical ventilation, the development of ventilatory modalities able to work in synchrony with the patient, and the extensive recognition of complications associated with endotracheal intubation and standard mechanical ventilation. NIV has been used primarily for patients with acute hypercapnic ventilatory failure, and especially for acute exacerbation of chronic obstructive pulmonary disease. In this population, the use of NIV is associated with a marked reduction in the need for endotracheal intubation, a decrease in complication rate, a reduced duration of hospital stay and a substantial reduction in hospital mortality. Similar benefits have also been demonstrated in patients with asphyxic forms of acute cardiogenic pulmonary oedema. In patients with primarily hypoxemic forms of respiratory failure, the level of success of NIV is more variable, but major benefits have also been demonstrated in selected populations with no contraindications such as multiple organ failure, loss of consciousness or haemodynamic instability. One important factor in success seems to be the early delivery of noninvasive ventilation during the course of respiratory failure. Noninvasive ventilation allows many of the complications associated with mechanical ventilation to be avoided, especially the occurrence of nosocomial infections. The current

  5. Subsurface Ventilation System Description Document

    Energy Technology Data Exchange (ETDEWEB)

    Eric Loros

    2001-07-25

    The Subsurface Ventilation System supports the construction and operation of the subsurface repository by providing air for personnel and equipment and temperature control for the underground areas. Although the system is located underground, some equipment and features may be housed or located above ground. The system ventilates the underground by providing ambient air from the surface throughout the subsurface development and emplacement areas. The system provides fresh air for a safe work environment and supports potential retrieval operations by ventilating and cooling emplacement drifts. The system maintains compliance within the limits established for approved air quality standards. The system maintains separate ventilation between the development and waste emplacement areas. The system shall remove a portion of the heat generated by the waste packages during preclosure to support thermal goals. The system provides temperature control by reducing drift temperature to support potential retrieval operations. The ventilation system has the capability to ventilate selected drifts during emplacement and retrieval operations. The Subsurface Facility System is the main interface with the Subsurface Ventilation System. The location of the ducting, seals, filters, fans, emplacement doors, regulators, and electronic controls are within the envelope created by the Ground Control System in the Subsurface Facility System. The Subsurface Ventilation System also interfaces with the Subsurface Electrical System for power, the Monitored Geologic Repository Operations Monitoring and Control System to ensure proper and safe operation, the Safeguards and Security System for access to the emplacement drifts, the Subsurface Fire Protection System for fire safety, the Emplacement Drift System for repository performance, and the Backfill Emplacement and Subsurface Excavation Systems to support ventilation needs.

  6. Subsurface Ventilation System Description Document

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-10-12

    The Subsurface Ventilation System supports the construction and operation of the subsurface repository by providing air for personnel and equipment and temperature control for the underground areas. Although the system is located underground, some equipment and features may be housed or located above ground. The system ventilates the underground by providing ambient air from the surface throughout the subsurface development and emplacement areas. The system provides fresh air for a safe work environment and supports potential retrieval operations by ventilating and cooling emplacement drifts. The system maintains compliance within the limits established for approved air quality standards. The system maintains separate ventilation between the development and waste emplacement areas. The system shall remove a portion of the heat generated by the waste packages during preclosure to support thermal goals. The system provides temperature control by reducing drift temperature to support potential retrieval operations. The ventilation system has the capability to ventilate selected drifts during emplacement and retrieval operations. The Subsurface Facility System is the main interface with the Subsurface Ventilation System. The location of the ducting, seals, filters, fans, emplacement doors, regulators, and electronic controls are within the envelope created by the Ground Control System in the Subsurface Facility System. The Subsurface Ventilation System also interfaces with the Subsurface Electrical System for power, the Monitored Geologic Repository Operations Monitoring and Control System to ensure proper and safe operation, the Safeguards and Security System for access to the emplacement drifts, the Subsurface Fire Protection System for fire safety, the Emplacement Drift System for repository performance, and the Backfill Emplacement and Subsurface Excavation Systems to support ventilation needs.

  7. Computational Fluid Dynamics in Ventilation

    DEFF Research Database (Denmark)

    Nielsen, Peter V.; Allard, Francis; Awbi, Hazim B.

    2008-01-01

    Computational Fluid Dynamics in Ventilation Design is a new title in the is a new title in the REHVA guidebook series. The guidebook is written for people who need to use and discuss results based on CFD predictions, and it gives insight into the subject for those who are not used to work with CFD....... The guidebook is also written for people working with CFD which have to be more aware of how this numerical method is applied in the area of ventilation. The guidebook has, for example, chapters that are very important for CFD quality control in general and for the quality control of ventilation related...

  8. Lecture Notes on Mixing Ventilation

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm

    The main task of the ventilation system or the air-conditioning system is to supply· and remove air and airborne materials and to supply or remove heat from a room. The necessary level of fresh air will be supplied to· a room by a ventilation system, and heat from equipment or solar radiation can...... be removed by an air-conditioning system. An industrial ventilation system may both take care of the occupants' comfort and the industrial processes in the area....

  9. Effectiveness and safety of a nonremovable fiberglass off-bearing cast versus a therapeutic shoe in the treatment of neuropathic foot ulcers: a randomized study.

    Science.gov (United States)

    Caravaggi, C; Faglia, E; De Giglio, R; Mantero, M; Quarantiello, A; Sommariva, E; Gino, M; Pritelli, C; Morabito, A

    2000-12-01

    To evaluate and compare the rate of reduction of the surface area of neuropathic plantar ulcers in diabetic patients treated with nonremovable rigidity-differentiated fiberglass off-bearing casts or a cloth shoe with a rigid sole with unloading alkaform insoles. The secondary aim was to evaluate the side effects and degree of patient acceptance of treatment. Fifty diabetic patients with neuropathic plantar ulcers were consecutively enrolled and randomized to one of two treatment groups. Of the 50 patients, 24 were treated with a specialized cloth shoe with a rigid sole and an unloading alkaform insole (shoe group), and 26 patients were treated with a nonremovable off-bearing fiberglass cast (cast group). All patients in both study groups returned to the clinic for weekly control visits. Their ulcers were treated with a standard dressing. Tracings of the ulcer area using a transparent dressing were performed on the day of entry to the study and after 30 days of treatment. The presence of new ulcerations caused by the use of the pressure-relief apparatus was recorded. Patient acceptance of the treatment was measured using a visual analog scale. At the end of the treatment period, an 8.3% increase of the ulcer area was observed in two patients in the shoe group, whereas in the cast group, no patient presented an increase. The reduction of the ulcer area was statistically more rapid in the cast group (Mann-Whitney test, P = 0.0004). Furthermore, the number of ulcers completely healed at the 30-day time point was 13 (50%) in the cast group and 5 (20.8%) in the shoe group (P = 0.03). In both groups, no side effects were recorded. The average score +/- SD of patient acceptance was 91.15 +/- 9.9 in the shoe group and 88.33 +/- 17.3 (NS) in the cast group. Our study has shown a significant difference in the speed of the reduction of neuropathic plantar ulcers treated with a fiberglass cast compared with a specialized cloth shoe. The use of fiberglass material with variable

  10. 46 CFR 45.131 - Ventilators.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Ventilators. 45.131 Section 45.131 Shipping COAST GUARD....131 Ventilators. (a) Ventilators passing through superstructures other than enclosed superstructures must have coamings of steel or equivalent material at the freeboard deck. (b) Ventilators in position 1...

  11. Climate control of natural ventilated pig houses

    NARCIS (Netherlands)

    Bontsema, J.; Straten, van G.; Salomons, L.; Klooster, van 't C.E.

    1996-01-01

    Ventilation in pig houses is important for maintaining a good climate for the welfare of animals and humans and for an optimal production. Mechanical ventilation has a good performance, since the ventilation rate can easily be controlled, but it is energy demanding, whereas natural ventilation is

  12. Design of Energy Efficient Hybrid Ventilation

    DEFF Research Database (Denmark)

    Heiselberg, Per

    The focus in the development has for both systems been to minimise energy consumption while maintaining a comfortable and healthy indoor environment. The natural next step in this development is to develop ventilation concepts that utilises and combines the best features from each system......[Mechanical and natural ventilation] into a new type of ventilation system- Hybrid Ventilation....

  13. Preoperational test report, vent building ventilation system

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, F.T.

    1997-11-04

    This represents a preoperational test report for Vent Building Ventilation Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system provides Heating, Ventilation, and Air Conditioning (HVAC) for the W-030 Ventilation Building. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  14. Concentration Distribution in a Mixing Ventilated Room

    DEFF Research Database (Denmark)

    Jensen, Rasmus Lund; Pedersen, D.N.; Nielsen, Peter V.

    2001-01-01

    Today there is an increasing focus on the importance of a proper ventilation system to obtain good working conditions in the term of air and thermal quality to ensure high productivity. Different ventilation principles are used, e.g., mixing ventilation and displacement ventilation. In order to e...

  15. Use of Adaptive Support Ventilation (ASV in Ventilator Associated Pneumonia (VAP - A Case Report

    Directory of Open Access Journals (Sweden)

    Bipphy Kath

    2009-01-01

    Full Text Available Prolonged ventilation leads to a higher incidence of ventilator associated pneumonia(VAP resulting in ventilator dependency, increased costs and subsequent weaning failures. Prevention and aggressive treatment of VAP alongwith patient friendly newer modes of ventilation like adaptive support ventilation go a long way in successful management of these cases.

  16. 46 CFR 111.103-1 - Power ventilation systems except machinery space ventilation systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Power ventilation systems except machinery space ventilation systems. 111.103-1 Section 111.103-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... Power ventilation systems except machinery space ventilation systems. Each power ventilation system must...

  17. The role of ventilation. 2 v. Proceedings

    International Nuclear Information System (INIS)

    1994-01-01

    The 78 papers which constitute the proceedings of the conference are presented in two volumes. The papers in the first volume cover sessions dealing with the following broad topics: ventilation strategies; indoor air quality; energy impact of ventilation; building design for optimum ventilation; ventilation and energy. Volume 2 also covers ventilation strategies and ventilation and energy, and in addition: calculation, measurement and design tools; measurement and modelling. Separate abstract have been prepared for 4 papers in Volume 1 which deal with the role of ventilation in mitigating the hazard of radon in buildings. (UK)

  18. Equivalence in Ventilation and Indoor Air Quality

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, Max; Walker, Iain; Logue, Jennifer

    2011-08-01

    We ventilate buildings to provide acceptable indoor air quality (IAQ). Ventilation standards (such as American Society of Heating, Refrigerating, and Air-Conditioning Enginners [ASHRAE] Standard 62) specify minimum ventilation rates without taking into account the impact of those rates on IAQ. Innovative ventilation management is often a desirable element of reducing energy consumption or improving IAQ or comfort. Variable ventilation is one innovative strategy. To use variable ventilation in a way that meets standards, it is necessary to have a method for determining equivalence in terms of either ventilation or indoor air quality. This study develops methods to calculate either equivalent ventilation or equivalent IAQ. We demonstrate that equivalent ventilation can be used as the basis for dynamic ventilation control, reducing peak load and infiltration of outdoor contaminants. We also show that equivalent IAQ could allow some contaminants to exceed current standards if other contaminants are more stringently controlled.

  19. Newer nonconventional modes of mechanical ventilation

    Directory of Open Access Journals (Sweden)

    Preet Mohinder Singh

    2014-01-01

    Full Text Available The conventional modes of ventilation suffer many limitations. Although they are popularly used and are well-understood, often they fail to match the patient-based requirements. Over the years, many small modifications in ventilators have been incorporated to improve patient outcome. The ventilators of newer generation respond to patient′s demands by additional feedback systems. In this review, we discuss the popular newer modes of ventilation that have been accepted in to clinical practice. Various intensive care units over the world have found these modes to improve patient ventilator synchrony, decrease ventilator days and improve patient safety. The various modes discusses in this review are: Dual control modes (volume assured pressure support, volume support, Adaptive support ventilation, proportional assist ventilation, mandatory minute ventilation, Bi-level airway pressure release ventilation, (BiPAP, neurally adjusted ventilatory assist and NeoGanesh. Their working principles with their advantages and clinical limitations are discussed in brief.

  20. ENERGY STAR Certified Ventilating Fans

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 4.0 ENERGY STAR Program Requirements for Ventilating Fans that are effective as of...

  1. Low-energy mechanical ventilation

    DEFF Research Database (Denmark)

    Andersen, Claus Wessel; Hviid, Christian Anker

    2014-01-01

    and with as little energy consumption as 41.1 kWh/m2/year including heating and all building services with no use of renewable energy such as PVcells or solar heating. One of the key means of reaching the objectives was to implement mechanical ventilation with low pressure loss and therefore low energy consumption....... The project consists of two buildings, building one is 6 stories high, and building two is 4 stories high. The buildings have a gross area of 50,500 m2 including underground parking. The ventilation and indoor climate concept was to use mechanical ventilation together with mechanical cooling and fanassisted......, with an average of 1.1 kJ/m3. The yearly mean SFP based on estimated runtime is approx. 0.8 kJ/m3. The case shows the unlocked potential that lies within mechanical ventilation for nearzero energy consuming buildings....

  2. Reverse ventilation--perfusion mismatch

    Energy Technology Data Exchange (ETDEWEB)

    Palmaz, J.C.; Barnett, C.A.; Reich, S.B.; Krumpe, P.E.; Farrer, P.A.

    1984-01-01

    Patients having lobar airway obstruction or consolidation usually have decreases of both ventilation and perfusion on lung scans. We report three patients in whom hypoxic vasoconstriction was apparently incomplete, resulting in a ''reversed'' ventilation-perfusion mismatch. Perfusion of the hypoxic lobe on the radionuclide scan was associated with metabolic alkalosis, pulmonary venous and pulmonary arterial hypertension in these patients.

  3. Ventilation Model and Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    V. Chipman

    2003-07-18

    This model and analysis report develops, validates, and implements a conceptual model for heat transfer in and around a ventilated emplacement drift. This conceptual model includes thermal radiation between the waste package and the drift wall, convection from the waste package and drift wall surfaces into the flowing air, and conduction in the surrounding host rock. These heat transfer processes are coupled and vary both temporally and spatially, so numerical and analytical methods are used to implement the mathematical equations which describe the conceptual model. These numerical and analytical methods predict the transient response of the system, at the drift scale, in terms of spatially varying temperatures and ventilation efficiencies. The ventilation efficiency describes the effectiveness of the ventilation process in removing radionuclide decay heat from the drift environment. An alternative conceptual model is also developed which evaluates the influence of water and water vapor mass transport on the ventilation efficiency. These effects are described using analytical methods which bound the contribution of latent heat to the system, quantify the effects of varying degrees of host rock saturation (and hence host rock thermal conductivity) on the ventilation efficiency, and evaluate the effects of vapor and enhanced vapor diffusion on the host rock thermal conductivity.

  4. Wind Extraction for Natural Ventilation

    Science.gov (United States)

    Fagundes, Tadeu; Yaghoobian, Neda; Kumar, Rajan; Ordonez, Juan

    2017-11-01

    Due to the depletion of energy resources and the environmental impact of pollution and unsustainable energy resources, energy consumption has become one of the main concerns in our rapidly growing world. Natural ventilation, a traditional method to remove anthropogenic and solar heat gains, proved to be a cost-effective, alternative method to mechanical ventilation. However, while natural ventilation is simple in theory, its detailed design can be a challenge, particularly for wind-driven ventilation, which its performance highly involves the buildings' form, surrounding topography, turbulent flow characteristics, and climate. One of the main challenges with wind-driven natural ventilation schemes is due to the turbulent and unpredictable nature of the wind around the building that impose complex pressure loads on the structure. In practice, these challenges have resulted in founding the natural ventilation mainly on buoyancy (rather than the wind), as the primary force. This study is the initial step for investigating the physical principals of wind extraction over building walls and investigating strategies to reduce the dependence of the wind extraction on the incoming flow characteristics and the target building form.

  5. Ventilation Model and Analysis Report

    International Nuclear Information System (INIS)

    Chipman, V.

    2003-01-01

    This model and analysis report develops, validates, and implements a conceptual model for heat transfer in and around a ventilated emplacement drift. This conceptual model includes thermal radiation between the waste package and the drift wall, convection from the waste package and drift wall surfaces into the flowing air, and conduction in the surrounding host rock. These heat transfer processes are coupled and vary both temporally and spatially, so numerical and analytical methods are used to implement the mathematical equations which describe the conceptual model. These numerical and analytical methods predict the transient response of the system, at the drift scale, in terms of spatially varying temperatures and ventilation efficiencies. The ventilation efficiency describes the effectiveness of the ventilation process in removing radionuclide decay heat from the drift environment. An alternative conceptual model is also developed which evaluates the influence of water and water vapor mass transport on the ventilation efficiency. These effects are described using analytical methods which bound the contribution of latent heat to the system, quantify the effects of varying degrees of host rock saturation (and hence host rock thermal conductivity) on the ventilation efficiency, and evaluate the effects of vapor and enhanced vapor diffusion on the host rock thermal conductivity

  6. TS LOOP ALCOVE VENTILATION ANALYSIS

    International Nuclear Information System (INIS)

    T.M. Lahnalampi

    2000-01-01

    The scope of this analysis is to examine the existing, constructor installed, physical ventilation installations located in each of the Exploratory Studies Facility (ESF) Topopah Springs (TS) Loop Alcoves No.1, No.2, No.3, No.4, No.6, and No.7. Alcove No.5 is excluded from the scope of this analysis since it is an A/E design system. Each ventilation installation will be analyzed for the purpose of determining if requirements for acceptance into the A/E design technical baseline have been met. The ventilation installations will be evaluated using Occupational Safety and Health Administration (OSHA) standards and Exploratory Studies Facility Design Requirements (ESFDR) (YMP 1997) requirements. The end product will be a technical analysis that will define ventilation installation compliance issues, any outstanding field changes, and use-as-is design deviations that are required to bring the ventilation installations into compliance with requirements for acceptance into the A/E design technical baseline. The analysis will provide guidance for alcove ventilation component design modifications to be developed to correct any deficient components that do not meet minimum requirements and standards

  7. Impact of Fire Ventilation on General Ventilation in the Building

    Science.gov (United States)

    Zender-Świercz, Ewa; Telejko, Marek

    2017-10-01

    The fire of building is a threat to its users. The biggest threat is generation, during lifetime of fire, hot gases and smoke. The purpose of quick and efficient evacuation from the area covered by the fire, at first step the escape routes have to be secured from smokiness. The smoke ventilation systems are used for this purpose. The proper design and execution of smoke ventilation is important not only because of the safety, but also of the maintenance of comfort in the building at a time when there is no fire. The manuscript presents the effect of incorrectly realized smoke ventilation in the stairwell of the medium building. The analysis shows that the flaps of smoke ventilation located in the stairwell may have a significant impact on the proper functioning of mechanical ventilation in the period when there is no fire. The improperly installed or incorrect insulated components cause perturbation of air flow and they change pressure distribution in the building. The conclusion of the analysis is the need to include the entire technical equipment of the building during the design and realization of its individual elements. The impact of various installations at each other is very important, and the omission of any of them can cause disturbances in the proper work of another.

  8. Influence of Persons' Movements on Ventilation Effectiveness

    DEFF Research Database (Denmark)

    Brohus, Henrik; Hyldig, Mikkel; Kamper, Simon

    2008-01-01

    Most often the ventilation effectiveness of a ventilated room is determined without considering the influence of persons´ movements. Even though the main reason for supplying the ventilation may be to create a healthy and productive environment for the occupants, their own influence...... on the ventilation is usually disregarded. This paper presents results from a systematic investigation of the movements´ influence on the ventilation effectiveness using human subjects combined with tracer gas measurements. Several typical "movements" are defined and carefully repeated to determine the influence...... of different kinds of movement compared with the case of no movements. It is found that mixing ventilation is considerably more robust compared with displacement ventilation. At the same time it is found that displacement ventilation on average is more effective than mixing ventilation when movements prevail...

  9. Trigger performance of mid-level ICU mechanical ventilators during assisted ventilation: a bench study.

    Science.gov (United States)

    Ferreira, Juliana C; Chipman, Daniel W; Kacmarek, Robert M

    2008-09-01

    To compare the triggering performance of mid-level ICU mechanical ventilators with a standard ICU mechanical ventilator. Experimental bench study. The respiratory care laboratory of a university-affiliated teaching hospital. A computerized mechanical lung model, the IngMar ASL5000. Ten mid-level ICU ventilators were compared to an ICU ventilator at two levels of lung model effort, three combinations of respiratory mechanics (normal, COPD and ARDS) and two modes of ventilation, volume and pressure assist/control. A total of 12 conditions were compared. Performance varied widely among ventilators. Mean inspiratory trigger time was ventilators. The mean inspiratory delay time (time from initiation of the breath to return of airway pressure to baseline) was longer than that for the ICU ventilator for all tested ventilators except one. The pressure drop during triggering (Ptrig) was comparable with that of the ICU ventilator for only two ventilators. Expiratory Settling Time (time for pressure to return to baseline) had the greatest variability among ventilators. Triggering differences among these mid-level ICU ventilators and with the ICU ventilator were identified. Some of these ventilators had a much poorer triggering response with high inspiratory effort than the ICU ventilator. These ventilators do not perform as well as ICU ventilators in patients with high ventilatory demand.

  10. Tidal ventilation distribution during pressure-controlled ventilation and pressure support ventilation in post-cardiac surgery patients.

    Science.gov (United States)

    Blankman, P; VAN DER Kreeft, S M; Gommers, D

    2014-09-01

    Inhomogeneous ventilation is an important contributor to ventilator-induced lung injury. Therefore, this study examines homogeneity of lung ventilation by means of electrical impedance tomography (EIT) measurements during pressure-controlled ventilation (PCV) and pressure support ventilation (PSV) using the same ventilation pressures. Twenty mechanically ventilated patients were studied after cardiac surgery. On arrival at the intensive care unit, ventilation distribution was measured with EIT just above the diaphragm for 15 min. After awakening, PCV was switched to PSV and EIT measurements were again recorded. Tidal impedance variation, a measure of tidal volume, increased during PSV compared with PCV, despite using the same ventilation pressures (P = 0.045). The distribution of tidal ventilation to the dependent lung region was more pronounced during PSV compared with PCV, especially during the first half of the inspiration. An even distribution of tidal ventilation between the dependent and non-dependent lung regions was seen during PCV at lower tidal volumes (tidal volumes (≥ 8 ml/kg). In addition, the distribution of tidal ventilation was predominantly distributed to the dependent lung during PSV at low tidal volumes. In post-cardiac surgery patients, PSV showed improved ventilation of the dependent lung region due to the contribution of the diaphragm activity, which is even more pronounced during lower assist levels. © 2014 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  11. Residential ventilation standards scoping study

    Energy Technology Data Exchange (ETDEWEB)

    McKone, Thomas E.; Sherman, Max H.

    2003-10-01

    The goals of this scoping study are to identify research needed to develop improved ventilation standards for California's Title 24 Building Energy Efficiency Standards. The 2008 Title 24 Standards are the primary target for the outcome of this research, but this scoping study is not limited to that timeframe. We prepared this scoping study to provide the California Energy Commission with broad and flexible options for developing a research plan to advance the standards. This document presents the findings of a scoping study commissioned by the Public Interest Energy Research (PIER) program of the California Energy Commission to determine what research is necessary to develop new residential ventilation requirements for California. This study is one of three companion efforts needed to complete the job of determining the ventilation needs of California residences, determining the bases for setting residential ventilation requirements, and determining appropriate ventilation technologies to meet these needs and requirements in an energy efficient manner. Rather than providing research results, this scoping study identifies important research questions along with the level of effort necessary to address these questions and the costs, risks, and benefits of pursuing alternative research questions. In approaching these questions and corresponding levels of effort, feasibility and timing were important considerations. The Commission has specified Summer 2005 as the latest date for completing this research in time to update the 2008 version of California's Energy Code (Title 24).

  12. Air Distribution in a Furnished Room Ventilated by Mixing Ventilation

    DEFF Research Database (Denmark)

    Nielsen, June Richter; Nielsen, Peter V.; Svidt, Kjeld

    Using isothermal full-scale experiments and two-dimensional isothermal CFD simulations it is investigated how normal office furniture influences the air movements in a room with mixing ventilation. Three different set-ups are made in the experiments and different sizes and locations of the furnit......Using isothermal full-scale experiments and two-dimensional isothermal CFD simulations it is investigated how normal office furniture influences the air movements in a room with mixing ventilation. Three different set-ups are made in the experiments and different sizes and locations...

  13. Noninvasive ventilation in immunosuppressed patients.

    Science.gov (United States)

    Namendys-Silva, Silvio A; Hernández-Garay, Marisol; Herrera-Gómez, Angel

    2010-03-01

    In immunosuppressed patients (ISP) with acute respiratory failure (ARF), invasive mechanical ventilation (IMV) is associated with high mortality rate. Noninvasive ventilation (NIV) is a type of mechanical ventilation that does not require an artificial airway. It has seen increasing use in critically ill patients to avoid endotracheal intubation. Acute respiratory failure due to pulmonary infections is an important cause of illness in ISP and their treatment. Immunosuppressive treatments have showed an increase not only in the survival but also in the susceptibility to infection. Several authors have underlined the worst prognosis for neutropenic patients with ARF requiring endotracheal intubation and IMV. The NIV seems to be an interesting alternative in ISP because of the lower risk of complications; it prevents endotracheal intubation and its associated complications with survival benefits in this population.

  14. Neuromuscular disorders and chronic ventilation.

    Science.gov (United States)

    Alexiou, Stamatia; Piccione, Joseph

    2017-08-01

    Morbidity and mortality have decreased in patients with neuromuscular disease due to implementation of therapies to augment cough and improve ventilation. Infants with progressive neuromuscular disease will eventually develop respiratory complications as a result of muscle weakness and their inability to compensate during periods of increased respiratory loads. The finding of nocturnal hypercapnia is often the trigger for initiating non-invasive ventilation and studies have shown that its use not only may improve sleep-disordered breathing, but also that it may have an effect on daytime function, symptoms related to hypercapnia, and partial pressure of CO 2 . It is important to understand the respiratory physiology of this population and to understand the benefits and limitations of assisted ventilation. Copyright © 2017. Published by Elsevier Ltd.

  15. Air ventilation/controlling facility

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Kazuhiro; Kinoshita, Shoichiro

    1997-12-12

    When all electricity supply from the outside of a power plant are lost, a power generator directly connected to an emergency steam turbine which is driven by steams introduced from a nuclear reactor is driven to supply electricity required in the power plant. Cool water prepared by a refrigerator is used as cooling water in an air ventilation/controlling facility of a room equipped with the power generating facility. As the refrigerator, a refrigerator of an existent emergency air cooling water system for an auxiliary air ventilation/controlling equipment is used. This can extend the period of time till the temperature of the room where the power generator is disposed exceeds the temperature range capable of keeping the integrity of the power generator even when all the AC power supply are lost to inactivate the function of the air ventilation/controlling system. (I.S.)

  16. [Pressure support ventilation and proportional assist ventilation during weaning from mechanical ventilation].

    Science.gov (United States)

    Aguirre-Bermeo, H; Bottiroli, M; Italiano, S; Roche-Campo, F; Santos, J A; Alonso, M; Mancebo, J

    2014-01-01

    To compare tolerance, duration of mechanical ventilation (MV) and clinical outcomes during weaning from MV in patients subjected to either pressure support ventilation (PSV) or proportional assist ventilation (PAV). A prospective, observational study was carried out. Intensive Care Unit. A total of 40 consecutive subjects were allocated to either the PSV or the PAV group until each group contained 20 patients. Patients were included in the study when they met the criteria to begin weaning and the attending physician decided to initiate the weaning process. The physician selected the modality and set the ventilatory parameters. None. Demographic data, respiratory mechanics, ventilatory parameters, duration of MV, and clinical outcomes (reintubation, tracheostomy, mortality). Baseline characteristics were similar in both groups. No significant differences were observed between the PSV and PAV groups in terms of the total duration of MV (10 [5-18] vs. 9 [7-19] days; P=.85), reintubation (5 [31%] vs. 3 [19%]; P=.69), or mortality (4 [20%] vs. 5 [25%] deaths; P=1). Eight patients (40%) in the PSV group and 6 patients (30%) in the PAV group (P=.74) required a return to volume assist-control ventilation due to clinical deterioration. Tolerance, duration of MV and clinical outcomes during weaning from mechanical ventilation were similar in PSV and PAV. Copyright © 2013 Elsevier España, S.L. and SEMICYUC. All rights reserved.

  17. Limiting volume with modern ventilators.

    Science.gov (United States)

    Wing, Thomas J; Haan, Lutana; Ashworth, Lonny J; Anderson, Jeff

    2015-06-01

    The acute respiratory distress syndrome (ARDS) network low tidal-volume study comparing tidal volumes of 12 ml/kg versus 6 ml/kg was published in 2000. The study was stopped early as data revealed a 22% relative reduction in mortality rate when using 6 ml/kg tidal volume. The current generation of critical care ventilators allows the tidal volume to be set during volume-targeted, assist/control (volume A/C); however, some ventilators include options that may prevent the tidal volume from being controlled. The purpose of this bench study was to evaluate the delivered tidal volume, when these options are active, in a spontaneously breathing lung model using an electronic breathing simulator. Four ventilators were evaluated: CareFusion AVEA (AVEA), Dräger Evita® XL (Evita XL), Covidien Puritan Bennett® 840(TM) (PB 840), and Maquet SERVO-i (SERVO-i). Each ventilator was connected to the Hans Rudolph Electronic Breathing Simulator at an amplitude of 0 cm H2O and then 10 cm H2O. All four ventilators were set to deliver volume A/C, tidal volume 400 ml, respiratory rate 20 bpm, positive end-expiratory pressure 5 cm H2O, peak flowrate 60 L/min. The displayed tidal volume was recorded for each ventilator at the above settings with additional options OFF and then ON. The AVEA has two options in volume A/C: demand breaths and V-sync. When activated, these options allow the patient to exceed the set tidal volume. When using the Evita XL, the option AutoFlow can be turned ON or OFF, and when this option is ON, the tidal volume may vary. The PB 840 does not have any additional options that affect volume delivery, and it maintains the set tidal volume regardless of patient effort. The SERVO-i's demand valve allows additional flow if the patient's inspiratory flowrate exceeds the set flowrate, increasing the delivered tidal volume; this option can be turned OFF with the latest software upgrade. Modern ventilators have an increasing number of optional settings. These settings may

  18. Human versus Computer Controlled Selection of Ventilator Settings: An Evaluation of Adaptive Support Ventilation and Mid-Frequency Ventilation

    Directory of Open Access Journals (Sweden)

    Eduardo Mireles-Cabodevila

    2012-01-01

    Full Text Available Background. There are modes of mechanical ventilation that can select ventilator settings with computer controlled algorithms (targeting schemes. Two examples are adaptive support ventilation (ASV and mid-frequency ventilation (MFV. We studied how different clinician-chosen ventilator settings are from these computer algorithms under different scenarios. Methods. A survey of critical care clinicians provided reference ventilator settings for a 70 kg paralyzed patient in five clinical/physiological scenarios. The survey-derived values for minute ventilation and minute alveolar ventilation were used as goals for ASV and MFV, respectively. A lung simulator programmed with each scenario’s respiratory system characteristics was ventilated using the clinician, ASV, and MFV settings. Results. Tidal volumes ranged from 6.1 to 8.3 mL/kg for the clinician, 6.7 to 11.9 mL/kg for ASV, and 3.5 to 9.9 mL/kg for MFV. Inspiratory pressures were lower for ASV and MFV. Clinician-selected tidal volumes were similar to the ASV settings for all scenarios except for asthma, in which the tidal volumes were larger for ASV and MFV. MFV delivered the same alveolar minute ventilation with higher end expiratory and lower end inspiratory volumes. Conclusions. There are differences and similarities among initial ventilator settings selected by humans and computers for various clinical scenarios. The ventilation outcomes are the result of the lung physiological characteristics and their interaction with the targeting scheme.

  19. Liquid lung ventilation as an alternative ventilatory support

    NARCIS (Netherlands)

    S.J.C. Verbrugge (Serge); D.A.M.P.J. Gommers (Diederik); B.F. Lachmann (Burkhard)

    1995-01-01

    textabstractThe concept of liquid ventilation has evolved in recent years into the concept of partial liquid ventilation. In this technique, conventional mechanical ventilation is combined with intratracheal perfluorocarbon administration. Partial liquid ventilation is a promising technique for

  20. Ventilation effectiveness : health benefits of heat recovery ventilators

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2010-08-15

    Studies have shown that the installation of a heat recovery ventilator (HRV) in homes in northern Canada could improve indoor air quality and the respiratory health of inhabitants. Low ventilation rates are common in many homes in the North because the climate is severe, homes are smaller and lack basements, and occupancies are higher, leading to unhealthy indoor air quality. Northern communities also have a high rate of respiratory infections. HRVs recover much of the energy used to ventilate, which is desirable in cold regions with high heating costs. For the study, the test sample was divided into two types of houses, notably houses with active HRVs and those with control HRVs that were installed and operated but that did not function. The study results showed that HRVs provided increased ventilation. Complaints by residents about HRV noise, discomfort, or low humidity were common but equally spread between those with active and placebo HRVs. The study showed that the system design needs to be improved to better suit the needs of Inuit families. The nature of northern housing presents installation and maintenance challenges. It is hard to retrofit HRV ducting inside small, existing houses, and building supplies arrive infrequently, so detailed planning and careful take-offs of all supplies and materials must be done well in advance of construction. In addition, contractors are hard to locate and have variable expertise, and there is little technical follow-up. Robust technical support by local contractors and housing authorities is therefore important. 2 refs.

  1. Perioperative lung protective ventilation in obese patients

    NARCIS (Netherlands)

    Fernandez-Bustamante, Ana; Hashimoto, Soshi; Serpa Neto, Ary; Moine, Pierre; Vidal Melo, Marcos F.; Repine, John E.

    2015-01-01

    The perioperative use and relevance of protective ventilation in surgical patients is being increasingly recognized. Obesity poses particular challenges to adequate mechanical ventilation in addition to surgical constraints, primarily by restricted lung mechanics due to excessive adiposity, frequent

  2. Improvements of uranium mine ventilation system

    International Nuclear Information System (INIS)

    Liu Changrong; Zhou Xinghuo; Liu Zehua; Wang Zhiyong

    2007-01-01

    Ventilation has been proved to be a main method to eliminate radon and its daughters in uranium mines. According to the practical rectifications of uranium mine ventilation system, the improved measures are summarized. (authors)

  3. Advanced Illness: Feeding Tubes and Ventilators

    Science.gov (United States)

    ... are here Home Advanced Illness: Feeding Tubes and Ventilators Order this publication Printer-friendly version Introduction Families ... a Family Meeting for additional help. Pneumonia and Ventilators One of the other choices a patient or ...

  4. Probabilistic Analysis Methods for Hybrid Ventilation

    DEFF Research Database (Denmark)

    Brohus, Henrik; Frier, Christian; Heiselberg, Per

    This paper discusses a general approach for the application of probabilistic analysis methods in the design of ventilation systems. The aims and scope of probabilistic versus deterministic methods are addressed with special emphasis on hybrid ventilation systems. A preliminary application...

  5. The School Advanced Ventilation Engineering Software (SAVES)

    Science.gov (United States)

    The School Advanced Ventilation Engineering Software (SAVES) package is a tool to help school designers assess the potential financial payback and indoor humidity control benefits of Energy Recovery Ventilation (ERV) systems for school applications.

  6. Artificial humidification for the mechanically ventilated patient.

    Science.gov (United States)

    Selvaraj, N

    Caring for patients who are mechanically ventilated poses many challenges for critical care nurses. It is important to humidify the patient's airways artificially to prevent complications such as ventilator-associated pneumonia. There is no gold standard to determine which type of humidification is best for patients who are artificially ventilated. This article provides an overview of commonly used artificial humidification for mechanically ventilated patients and discusses nurses' responsibilities in caring for patients receiving artificial humidification.

  7. Artificial humidification for the mechanically ventilated patient

    OpenAIRE

    Selvaraj, Nelson

    2010-01-01

    Caring for patients who are mechanically ventilated poses many\\ud challenges for critical care nurses. It is important to humidify the\\ud patient’s airways artificially to prevent complications such as\\ud ventilator-associated pneumonia. There is no gold standard to\\ud determine which type of humidification is best for patients who\\ud are artificially ventilated. This article provides an overview of\\ud commonly used artificial humidification for mechanically ventilated\\ud patients and discuss...

  8. Building ventilation, state of the art, prospective

    International Nuclear Information System (INIS)

    1995-10-01

    This conference is composed of 21 communications and 21 posters in the domain of building ventilation and indoor air quality; the main themes are: indoor air quality assessment and optimization; performance enhancement and optimization of ventilation systems and equipment; ventilation systems for renovated and rehabilitated buildings; French and European regulations, standardizations and certifications; experimental and numerical simulation studies concerning ventilation systems, air flow, temperature distribution, air quality, radon decontamination, thermal comfort and acoustic levels in buildings

  9. Performance comparison of 15 transport ventilators.

    Science.gov (United States)

    Chipman, Daniel W; Caramez, Maria P; Miyoshi, Eriko; Kratohvil, Joseph P; Kacmarek, Robert M

    2007-06-01

    Numerous mechanical ventilators are designed and marketed for use in patient transport. The complexity of these ventilators differs considerably, but very few data exist to compare their operational capabilities. Using bench and animal models, we studied 15 currently available transport ventilators with regard to their physical characteristics, gas consumption (duration of an E-size oxygen cylinder), battery life, ease of use, need for compressed gas, ability to deliver set ventilation parameters to a test lung under 3 test conditions, and ability to maintain ventilation and oxygenation in normal and lung-injured sheep. Most of the ventilators tested were relatively simple to operate and had clearly marked controls. Oxygen cylinder duration ranged from 30 min to 77 min. Battery life ranged from 70 min to 8 hours. All except 3 of the ventilators were capable of providing various F(IO2) values. Ten of the ventilators had high-pressure and patient-disconnect alarms. Only 6 of the ventilators were able to deliver all settings as specifically set on the ventilator during the bench evaluation. Only 4 of the ventilators were capable of maintaining ventilation, oxygenation, and hemodynamics in both the normal and the lung-injured sheep. Only 2 of the ventilators met all the trial targets in all the bench and animal tests. With many of the ventilators, certain of the set ventilation parameters were inaccurate (differed by > 10% from the values from a cardiopulmonary monitor). The physical characteristics and high gas consumption of some of these ventilators may render them less desirable for patient transport.

  10. Intelligent ventilation in the intensive care unit

    African Journals Online (AJOL)

    Results. During the study period, 1 220 patients were ventilated in the MICU. Most patients (84%) were ventilated with ASV on admission. The median duration of ventilation with ASV was 6 days. The weaning success rate was 81%, and tracheostomy was required in 13%. Sixty-eight patients (6%) with severe hypoxia and ...

  11. Ventilation in Commercial and Residential Buildings

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    A number of areas have to be considered in connection with indoor air quality and ventilation. The selection of ventilation principle and components in the ventilation system will have influence on the indoor air quality and this subject will be discussed on the following pages. The main object o...

  12. 21 CFR 868.5895 - Continuous ventilator.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Continuous ventilator. 868.5895 Section 868.5895...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5895 Continuous ventilator. (a) Identification. A continuous ventilator (respirator) is a device intended to mechanically control or assist...

  13. 14 CFR 252.9 - Ventilation systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Ventilation systems. 252.9 Section 252.9... REGULATIONS SMOKING ABOARD AIRCRAFT § 252.9 Ventilation systems. Air carriers shall prohibit smoking whenever the ventilation system is not fully functioning. Fully functioning for this purpose means operating so...

  14. Decisional responsibility for mechanical ventilation and weaning

    DEFF Research Database (Denmark)

    Rose, Louise; Blackwood, Bronagh; Egerod, Ingrid

    2011-01-01

    Optimal management of mechanical ventilation and weaning requires dynamic and collaborative decision making to minimize complications and avoid delays in the transition to extubation. In the absence of collaboration, ventilation decision making may be fragmented, inconsistent, and delayed. Our...... objective was to describe the professional group with responsibility for key ventilation and weaning decisions and to examine organizational characteristics associated with nurse involvement....

  15. Non-invasive mechanical ventilation

    African Journals Online (AJOL)

    Nicky

    failure may benefit from a trial of NIV. Increased work of breathing, as noted by use of accessory breathing. SAJCC. 10. July 2005, V ol. 21, No. 1. University of Manitoba and Manitoba Institute of Child Health, Winnipeg, Canada. B Louise Giles, MD, FRCPC. Non-invasive ventilation (NIV) is a modality of providing airway and ...

  16. Thermal Plumes in Ventilated Rooms

    DEFF Research Database (Denmark)

    Kofoed, Peter; Nielsen, Peter V.

    Ventilation systems with vertical displacement flow have been used in industrial areas with extensive heat loads for many years. Hot and contaminant air is carried directly from the occupied zone towards the ceiling by hot processes and other activities which create a natural convection flow....

  17. Computational Fluid Dynamics in Ventilation

    DEFF Research Database (Denmark)

    Nielsen, Peter V.; Allard, Francis; Awbi, Hazim B.

    2008-01-01

    Computational Fluid Dynamics in Ventilation Design is a new title in the is a new title in the REHVA guidebook series. The guidebook is written for people who need to use and discuss results based on CFD predictions, and it gives insight into the subject for those who are not used to work with CFD...

  18. ENERGY STAR Certified Ventilating Fans

    Science.gov (United States)

    Certified models meet all ENERGY STAR requirements as listed in the Version 4.0 ENERGY STAR Program Requirements for Ventilating Fans that are effective as of October 1, 2015. A detailed listing of key efficiency criteria are available at http://www.energystar.gov/index.cfm?c=vent_fans.pr_crit_vent_fans

  19. Displacement Ventilation in Hospital Environments

    DEFF Research Database (Denmark)

    Li, Yuguo; Nielsen, Peter V.; Sandberg, Mats

    2011-01-01

    Hospital differ from conventional buildings in terms of ventilation needs. Exhaled infectious droplets or droplet nuclei of an infected patient need to be removed in general wards, waiting areas and isolation rooms to minimize transmission to health-care workers, other patients and visitors...

  20. International Ventilation Cooling Application Database

    DEFF Research Database (Denmark)

    Holzer, Peter; Psomas, Theofanis Ch.; OSullivan, Paul

    2016-01-01

    The currently running International Energy Agency, Energy and Conservation in Buildings, Annex 62 Ventilative Cooling (VC) project, is coordinating research towards extended use of VC. Within this Annex 62 the joint research activity of International VC Application Database has been carried out, ...

  1. Cardiogenic oscillation induced ventilator autotriggering

    Directory of Open Access Journals (Sweden)

    Narender Kaloria

    2015-01-01

    Full Text Available Cardiogenic oscillation during mechanical ventilation can auto-trigger the ventilator resembling patient initiated breadth. This gives a false sense of intact respiratory drive and determination brain death, even if other tests are positive, is not appropriate in such a situation. It will prolong the ICU stay and confound the brain-death determination. In this case report, we describe a 35 year old man who was brought to the hospital after many hours of critical delay following multiple gun shot injuries. The patient suffered a cardiac arrest while on the way from another hospital. After an emergency laparotomy, patient was shifted to Intensive Care Unit (ICU with Glasgow Coma Scale (GCS score of E1VTM1 and was mechanically ventilated. Despite absence of brainstem reflexes, the ventilator continued to be triggered on continuous positive airway pressure (CPAP mode and the patient maintained normal oxygen saturation and acceptable levels of carbon dioxide. An apnoea test confirmed absent respiratory drive. Ventilatory waveform graph analysis, revealed cardiogenic oscillation as the cause for autotrigerring.

  2. Ventilator-induced lung injury.

    Science.gov (United States)

    Ricard, J D; Dreyfuss, D; Saumon, G

    2003-08-01

    During mechanical ventilation, high end-inspiratory lung volume (whether it be because of large tidal volume (VT) and/or high levels of positive end-expiratory pressure) results in a permeability type pulmonary oedema, called ventilator-induced lung injury (VILI). Previous injury sensitises lung to mechanical ventilation. This experimental concept has recently received a resounding clinical illustration after a 22% reduction of mortality was observed in acute respiratory distress syndrome patients whose VT had been reduced. In addition, it has been suggested that repetitive opening and closing of distal units at low lung volume could induce lung injury but this notion has been challenged both conceptually and clinically after the negative results of the Acute Respiratory Distress Syndrome clinical Network Assessment of Low tidal Volume and Elevated end-expiratory volume to Obviate Lung Injury (ARDSNet ALVEOLI) study. Experimentally and clinically, involvement of inflammatory cytokines in VILI has not been unequivocally demonstrated. Cellular response to mechanical stretch has been increasingly investigated, both on the epithelial and the endothelial side. Lipid membrane trafficking has been thought to be a means by which cells respond to stress failure. Alterations in the respiratory system pressure/volume curve during ventilator-induced lung injury that include decrease in compliance and position of the upper inflection point are due to distal obstruction of airways that reduce aerated lung volume. Information from this curve could help avoid potentially harmful excessive tidal volume reduction.

  3. Thermal Plumes in Ventilated Rooms

    DEFF Research Database (Denmark)

    Kofoed, Peter; Nielsen, Peter V.

    The design of a displacement ventilation system involves determination of the flow rate in the thermal plumes. The flow rate in the plumes and the vertical temperature gradient influence each other, and they are influenced by many factors. This paper shows some descriptions of these effects....

  4. Pulmonary ventilation/perfusion scan

    Science.gov (United States)

    ... to stop eating (fast), be on a special diet, or take any medicines before the test. A chest x-ray is usually done before or after a ventilation and perfusion scan. You wear a hospital gown or comfortable clothing that does not have ...

  5. Analyze of Ventilator Associated Pneumonia

    Directory of Open Access Journals (Sweden)

    Aysel Sunnetcioglu

    2014-03-01

    Full Text Available Aim: Ventilator-associated pneumonia (VAP is the infection that is an important cause of morbidity and mortality developed in patients whom the invasive mechanical ventilation (MV were performed in intensive care units (ICU. In this study, the factors of VAP developing in patients whom the mechanical ventilation of ICU performed, antibiotic susceptibility to these factors and determining the risk factors were aimed. Material and Method: Between January 2009 and March 2013, 79 cases, followed with the mechanical ventilation for at least for 48 hours and developed VAP, were retrospectively reviewed at Anesthesiology and Intensive Care Unit of Reanimation at Faculty of Medicine at Yuzuncu Yil University, performing endotracheal intubation. The cases were evaluated in terms of microorganisms, antibiotic susceptibility and risk factors. Results: The rate of our VAP speed was calculated to be 19.68 on the day of 1000 ventilator. While a single microorganism could be isolated in 81.1% of the 74 VAP cases whose the active pathogen could be isolated, two or more than two microorganisms were isolated in 18.9% of them.While 83 of the strains (90.2% were gram-negative bacteria, 7 of them (7.6% were gram-positive bacteria. Acinetobacter spp. (40.2% was most commonly isolated as a gram-negative factor, but methicillin-resistant S. aureus (4.3% was isolated as a gram-positive factor. It was determined that the isolated factors in VAP cases were significantly resistant to the broad-spectrum antibiotics. Discussion: As a result, in patients with high-risk factors for the development of VAP, early and appropriate empirical antibiotic treatment should be started according to the results of the sensitivity of the unit and for the multi-drug-resistant microorganisms with common and high mortality.

  6. Volume-Targeted Ventilation in the Neonate: Benchmarking Ventilators on an Active Lung Model.

    Science.gov (United States)

    Krieger, Tobias J; Wald, Martin

    2017-03-01

    Mechanically ventilated neonates have been observed to receive substantially different ventilation after switching ventilator models, despite identical ventilator settings. This study aims at establishing the range of output variability among 10 neonatal ventilators under various breathing conditions. Relative benchmarking test of 10 neonatal ventilators on an active neonatal lung model. Neonatal ICU. Ten current neonatal ventilators. Ventilators were set identically to flow-triggered, synchronized, volume-targeted, pressure-controlled, continuous mandatory ventilation and connected to a neonatal lung model. The latter was configured to simulate three patients (500, 1,500, and 3,500 g) in three breathing modes each (passive breathing, constant active breathing, and variable active breathing). Averaged across all weight conditions, the included ventilators delivered between 86% and 110% of the target tidal volume in the passive mode, between 88% and 126% during constant active breathing, and between 86% and 120% under variable active breathing. The largest relative deviation occurred during the 500 g constant active condition, where the highest output machine produced 147% of the tidal volume of the lowest output machine. All machines deviate significantly in volume output and ventilation regulation. These differences depend on ventilation type, respiratory force, and patient behavior, preventing the creation of a simple conversion table between ventilator models. Universal neonatal tidal volume targets for mechanical ventilation cannot be transferred from one ventilator to another without considering necessary adjustments.

  7. Short-term airing by natural ventilation

    DEFF Research Database (Denmark)

    Perino, Marco; Heiselberg, Per

    2009-01-01

    The need to improve the energy efficiency of buildings requires new and more efficient ventilation systems. It has been demonstrated that innovative operating concepts that make use of natural ventilation seem to be more appreciated by occupants. This kind of system frequently integrates...... that was aimed at developing and validating numerical models for the analysis of buoyancy driven single-sided natural ventilation systems. Once validated, these models can be used to optimize control strategies in order to achieve satisfactory indoor comfort conditions and IAQ....... traditional mechanical ventilation components with natural ventilation devices, such as motorized windows and louvers. Among the various ventilation strategies that are currently available, buoyancy driven single-sided natural ventilation has proved to be very effective and can provide high air change rates...

  8. Minute Ventilation Limitations of Two Field Transport Ventilators.

    Science.gov (United States)

    Szpisjak, Dale F; Horn, Gregory; Shalov, Samuel; Abes, Alvin Angelo; Van Decar, Lauren

    2017-01-01

    Knowledge of transport ventilator performance impacts patient safety. This study compared minute ventilation (V E ) of the MOVES and Uni-Vent 731 when ventilating the VentAid Training Test Lung with compliance (C) ranging from 0.02 to 0.10 L/cm H 2 O and three different airway resistances (R) (none, Rp5, or Rp20). Tidal volume (V T ) was 800 ± 25 mL. Respiratory rate was increased to ventilator's maximum or until auto-PEEP > 5 cm H 2 O. Respiratory parameters were recorded with the RSS 100HR Research Pneumotach. Data were reported as median (interquartile range). Peak inspiratory pressure (PIP) of the Uni-Vent and MOVES ranged from 22.3 (22.2-22.5) to 82.6 (82.2-83.2) and 20.8 (20.6-20.9) to 50.6 (50.2-50.9) cm H 2 O, respectively. V E of the Uni-Vent and MOVES ranged from 17.7 (17.7-17.7) to 31.5 (31.5-31.5) and 11.3 (10.5-11.3) to 20.2 (19.7-20.5) L/min, respectively. Linear regression demonstrated strong, negative correlation of V E with PIP for the MOVES (V E [L/min] = 26 - 0.31 × PIP [cm H 2 O], r = -0.97) but weak, positive correlation for the Uni-Vent (r = 0.05). Uni-Vent V E exceeded MOVES V E under each test condition (p = 0.0002). If patient V E requirements exceed those predicted by the MOVES regression equation, then using the Uni-Vent should be considered. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.

  9. Summary of human responses to ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Seppanen, Olli A.; Fisk, William J.

    2004-06-01

    The effects of ventilation on indoor air quality and health is a complex issue. It is known that ventilation is necessary to remove indoor generated pollutants from indoor air or dilute their concentration to acceptable levels. But, as the limit values of all pollutants are not known, the exact determination of required ventilation rates based on pollutant concentrations and associated risks is seldom possible. The selection of ventilation rates has to be based also on epidemiological research (e.g. Seppanen et al., 1999), laboratory and field experiments (e.g. CEN 1996, Wargocki et al., 2002a) and experience (e.g. ECA 2003). Ventilation may also have harmful effects on indoor air quality and climate if not properly designed, installed, maintained and operated as summarized by Seppdnen (2003). Ventilation may bring indoors harmful substances that deteriorate the indoor environment. Ventilation also affects air and moisture flow through the building envelope and may lead to moisture problems that deteriorate the structures of the building. Ventilation changes the pressure differences over the structures of building and may cause or prevent the infiltration of pollutants from structures or adjacent spaces. Ventilation is also in many cases used to control the thermal environment or humidity in buildings. Ventilation can be implemented with various methods which may also affect health (e.g. Seppdnen and Fisk, 2002, Wargocki et al., 2002a). In non residential buildings and hot climates, ventilation is often integrated with air-conditioning which makes the operation of ventilation system more complex. As ventilation is used for many purposes its health effects are also various and complex. This paper summarizes the current knowledge on positive and negative effects of ventilation on health and other human responses. The focus of the paper is on office-type working environment and residential buildings. In the industrial premises the problems of air quality are usually

  10. Benefits of non invasive ventilation.

    Science.gov (United States)

    Millar, D; Kirpalani, H

    2004-10-01

    Mechanical ventilation of the newborn infant has increased neonatal survival. However, this increased survival has come at the expense of increased morbidity, in the form of bronchopulmonary dysplasia, and at the cost of an expensive technology. Continuous positive airway pressure (CPAP) is accepted as conferring clinical benefit in supporting the recently extubated preterm infant and in the management of apnea of prematurity. Attention is now being drawn to physiologic and clinical evidence to support CPAP use, with or without early surfactant, as a primary treatment of hyaline membrane disease. The purpose of this review is to explore these proposed benefits of non invasive ventilation and place them in the context of current clinical evidence.

  11. Stockpiling Ventilators for Influenza Pandemics.

    Science.gov (United States)

    Huang, Hsin-Chan; Araz, Ozgur M; Morton, David P; Johnson, Gregory P; Damien, Paul; Clements, Bruce; Meyers, Lauren Ancel

    2017-06-01

    In preparing for influenza pandemics, public health agencies stockpile critical medical resources. Determining appropriate quantities and locations for such resources can be challenging, given the considerable uncertainty in the timing and severity of future pandemics. We introduce a method for optimizing stockpiles of mechanical ventilators, which are critical for treating hospitalized influenza patients in respiratory failure. As a case study, we consider the US state of Texas during mild, moderate, and severe pandemics. Optimal allocations prioritize local over central storage, even though the latter can be deployed adaptively, on the basis of real-time needs. This prioritization stems from high geographic correlations and the slightly lower treatment success assumed for centrally stockpiled ventilators. We developed our model and analysis in collaboration with academic researchers and a state public health agency and incorporated it into a Web-based decision-support tool for pandemic preparedness and response.

  12. Stockpiling Ventilators for Influenza Pandemics

    OpenAIRE

    Huang, Hsin-Chan; Araz, Ozgur M.; Morton, David P.; Johnson, Gregory P.; Damien, Paul; Clements, Bruce; Meyers, Lauren Ancel

    2017-01-01

    In preparing for influenza pandemics, public health agencies stockpile critical medical resources. Determining appropriate quantities and locations for such resources can be challenging, given the considerable uncertainty in the timing and severity of future pandemics. We introduce a method for optimizing stockpiles of mechanical ventilators, which are critical for treating hospitalized influenza patients in respiratory failure. As a case study, we consider the US state of Texas during mild, ...

  13. Development of a Residential Integrated Ventilation Controller

    Energy Technology Data Exchange (ETDEWEB)

    Staff Scientist; Walker, Iain; Sherman, Max; Dickerhoff, Darryl

    2011-12-01

    The goal of this study was to develop a Residential Integrated Ventilation Controller (RIVEC) to reduce the energy impact of required mechanical ventilation by 20percent, maintain or improve indoor air quality and provide demand response benefits. This represents potential energy savings of about 140 GWh of electricity and 83 million therms of natural gas as well as proportional peak savings in California. The RIVEC controller is intended to meet the 2008 Title 24 requirements for residential ventilation as well as taking into account the issues of outdoor conditions, other ventilation devices (including economizers), peak demand concerns and occupant preferences. The controller is designed to manage all the residential ventilation systems that are currently available. A key innovation in this controller is the ability to implement the concept of efficacy and intermittent ventilation which allows time shifting of ventilation. Using this approach ventilation can be shifted away from times of high cost or high outdoor pollution towards times when it is cheaper and more effective. Simulations, based on the ones used to develop the new residential ventilation requirements for the California Buildings Energy code, were used to further define the specific criteria and strategies needed for the controller. These simulations provide estimates of the energy, peak power and contaminant improvement possible for different California climates for the various ventilation systems. Results from a field test of the prototype controller corroborate the predicted performance.

  14. Mechanical ventilators in US acute care hospitals.

    Science.gov (United States)

    Rubinson, Lewis; Vaughn, Frances; Nelson, Steve; Giordano, Sam; Kallstrom, Tom; Buckley, Tim; Burney, Tabinda; Hupert, Nathaniel; Mutter, Ryan; Handrigan, Michael; Yeskey, Kevin; Lurie, Nicole; Branson, Richard

    2010-10-01

    The supply and distribution of mechanical ventilation capacity is of profound importance for planning for severe public health emergencies. However, the capability of US health systems to provide mechanical ventilation for children and adults remains poorly quantified. The objective of this study was to determine the quantity of adult and pediatric mechanical ventilators at US acute care hospitals. A total of 5,752 US acute care hospitals included in the 2007 American Hospital Association database were surveyed. We measured the quantities of mechanical ventilators and their features. Responding to the survey were 4305 (74.8%) hospitals, which accounted for 83.8% of US intensive care unit beds. Of the 52,118 full-feature mechanical ventilators owned by respondent hospitals, 24,204 (46.4%) are pediatric/neonatal capable. Accounting for nonrespondents, we estimate that there are 62,188 full-feature mechanical ventilators owned by US acute care hospitals. The median number of full-feature mechanical ventilators per 100,000 population for individual states is 19.7 (interquartile ratio 17.2-23.1), ranging from 11.9 to 77.6. The median number of pediatric-capable device full-feature mechanical ventilators per 100,000 population younger than 14 years old is 52.3 (interquartile ratio 43.1-63.9) and the range across states is 22.1 to 206.2. In addition, respondent hospitals reported owning 82,755 ventilators other than full-feature mechanical ventilators; we estimate that there are 98,738 devices other than full-feature ventilators at all of the US acute care hospitals. The number of mechanical ventilators per US population exceeds those reported by other developed countries, but there is wide variation across states in the population-adjusted supply. There are considerably more pediatric-capable ventilators than there are for adults only on a population-adjusted basis.

  15. Temperature of gas delivered from ventilators.

    Science.gov (United States)

    Chikata, Yusuke; Onodera, Mutsuo; Imanaka, Hideaki; Nishimura, Masaji

    2013-01-01

    Although heated humidifiers (HHs) are the most efficient humidifying device for mechanical ventilation, some HHs do not provide sufficient humidification when the inlet temperature to the water chamber is high. Because portable and home-care ventilators use turbines, blowers, pistons, or compressors to inhale in ambient air, they may have higher gas temperature than ventilators with piping systems. We carried out a bench study to investigate the temperature of gas delivered from portable and home-care ventilators, including the effects of distance from ventilator outlet, fraction of inspiratory oxygen (FIO2), and minute volume (MV). We evaluated five ventilators equipped with turbine, blower, piston, or compressor system. Ambient air temperature was adjusted to 24°C ± 0.5°C, and ventilation was set at FIO2 0.21, 0.6, and 1.0, at MV 5 and 10 L/min. We analyzed gas temperature at 0, 40, 80, and 120 cm from ventilator outlet and altered ventilator settings. While temperature varied according to ventilators, the outlet gas temperature of ventilators became stable after, at the most, 5 h. Gas temperature was 34.3°C ± 3.9°C at the ventilator outlet, 29.5°C ± 2.2°C after 40 cm, 25.4°C ± 1.2°C after 80 cm and 25.1°C ± 1.2°C after 120 cm (P < 0.01). FIO2 and MV did not affect gas temperature. Gas delivered from portable and home-care ventilator was not too hot to induce heated humidifier malfunctioning. Gas soon declined when passing through the limb.

  16. Particle deposition in ventilation ducts

    Energy Technology Data Exchange (ETDEWEB)

    Sippola, Mark Raymond [Univ. of California, Berkeley, CA (United States)

    2002-09-01

    Exposure to airborne particles is detrimental to human health and indoor exposures dominate total exposures for most people. The accidental or intentional release of aerosolized chemical and biological agents within or near a building can lead to exposures of building occupants to hazardous agents and costly building remediation. Particle deposition in heating, ventilation and air-conditioning (HVAC) systems may significantly influence exposures to particles indoors, diminish HVAC performance and lead to secondary pollutant release within buildings. This dissertation advances the understanding of particle behavior in HVAC systems and the fates of indoor particles by means of experiments and modeling. Laboratory experiments were conducted to quantify particle deposition rates in horizontal ventilation ducts using real HVAC materials. Particle deposition experiments were conducted in steel and internally insulated ducts at air speeds typically found in ventilation ducts, 2-9 m/s. Behaviors of monodisperse particles with diameters in the size range 1-16 μm were investigated. Deposition rates were measured in straight ducts with a fully developed turbulent flow profile, straight ducts with a developing turbulent flow profile, in duct bends and at S-connector pieces located at duct junctions. In straight ducts with fully developed turbulence, experiments showed deposition rates to be highest at duct floors, intermediate at duct walls, and lowest at duct ceilings. Deposition rates to a given surface increased with an increase in particle size or air speed. Deposition was much higher in internally insulated ducts than in uninsulated steel ducts. In most cases, deposition in straight ducts with developing turbulence, in duct bends and at S-connectors at duct junctions was higher than in straight ducts with fully developed turbulence. Measured deposition rates were generally higher than predicted by published models. A model incorporating empirical equations based on the

  17. Effect of body position on ventilation distribution in ventilated preterm infants.

    Science.gov (United States)

    Hough, Judith L; Johnston, Leanne; Brauer, Sandy; Woodgate, Paul; Schibler, Andreas

    2013-02-01

    Positioning is considered vital to the maintenance of good lung ventilation by optimizing oxygen transport and gas exchange in ventilated premature infants. Previous studies suggest that the prone position is advantageous; however, no data exist on regional ventilation distribution for this age group. To investigate the effect of body position on regional ventilation distribution in ventilated and nonventilated preterm infants using electrical impedance tomography. Randomized crossover study design. Neonatal ICU. A total of 24 ventilated preterm infants were compared with six spontaneously breathing preterm infants. Random assignment of the order of the positions supine, prone, and quarter prone. Ventilation distribution was measured with regional impedance amplitudes and global inhomogeneity indices using electrical impedance tomography. In the spontaneously breathing infants, regional impedance amplitudes were increased in the posterior compared with the anterior lung (p < 0.01) and in the right compared with the left lung (p = 0.03). No differences were found in the ventilated infants. Ventilation was more inhomogeneous in the ventilated compared with the healthy infants (p < 0.01). Assessment of temporal regional lung filling showed that the posterior lung filled earlier than the anterior lung in the spontaneously breathing infants (p < 0.02) whereas in the in the ventilated infants the right lung filled before the left lung (p < 0.01). In contrast to previous studies showing that ventilation is distributed to the nondependent lung in infants and children, this study shows that gravity has little effect on regional ventilation distribution.

  18. Application of CPM procedures in mine ventilation

    International Nuclear Information System (INIS)

    Wang, Y.J.; Mutmansky, J.M.

    1982-01-01

    Mine ventilation analysis is an engineering discipline that can be considered a branch of the body of science known as network analysis. Likewise, the group of engineering procedures known as the critical path method (CPM) is considered a branch of network analysis. It is therefore not surprising that mine ventilation network analysis and CPM have many similarities. These similarities are useful in analyzing several types of mine ventilation problems and will be utilized in this paper. The analogy between the free split in a ventilation circuit and the critical path in a scheduling network has been recognized by Owili-Eger (1973). While this was recognized as a property of a general ventilation network, many important applications to controlled-splitting problems also exist. The mathematical procedures necessary to apply CPM and network methods have previously been presented (Wang, 1981; Wang, 1982). This paper will illustrate the implementation of these methods by application to mine ventilation networks

  19. Comparative performances analysis of neonatal ventilators.

    Science.gov (United States)

    Baldoli, Ilaria; Tognarelli, Selene; Scaramuzzo, Rosa T; Ciantelli, Massimiliano; Cecchi, Francesca; Gentile, Marzia; Sigali, Emilio; Ghirri, Paolo; Boldrini, Antonio; Menciassi, Arianna; Laschi, Cecilia; Cuttano, Armando

    2015-02-08

    Mechanical ventilation is a therapeutic action for newborns with respiratory diseases but may have side effects. Correct equipment knowledge and training may limit human errors. We aimed to test different neonatal mechanical ventilators' performances by an acquisition module (a commercial pressure sensor plus an isolated chamber and a dedicated software). The differences (ΔP) between peak pressure values and end-expiration pressure were investigated for each ventilator. We focused on discrepancies among measured and imposed pressure data. A statistical analysis was performed. We investigated the measured/imposed ΔP relation. The ΔP do not reveal univocal trends related to ventilation setting parameters and the data distributions were non-Gaussian. Measured ΔP represent a significant parameter in newborns' ventilation, due to the typical small volumes. The investigated ventilators showed different tendencies. Therefore, a deep specific knowledge of the intensive care devices is mandatory for caregivers to correctly exploit their operating principles.

  20. Demand controlled ventilation in a bathroom

    DEFF Research Database (Denmark)

    Mortensen, Dorthe Kragsig; Nielsen, Toke Rammer; Topp, Claus

    2008-01-01

    consumption during periods where the demand for ventilation is low and poor indoor climate during periods where the demand for ventilation is high. Controlling the ventilation rate by demand can improve the energy performance of the ventilation system and the indoor climate. This paper compares the indoor...... climate and energy consumption of a Constant Air Volume (CAV) system and a Demand Controlled Ventilation (DCV) system for two different bathroom designs. The air change rate of the CAV system corresponded to 0.5h-1. The ventilation rate of the DCV system was controlled by occupancy and by the relative....... The indoor climate and the energy consumption were estimated based on a simplified calculation of the variation of the water content within the bathroom during a day. The results showed that the DCV system controlled by occupancy and relative humidity had an improved energy performance and an improved indoor...

  1. Prevention of ventilator-associated pneumonia

    OpenAIRE

    J. Oliveira; C. Zagalo; P. Cavaco-Silva

    2014-01-01

    Invasive mechanical ventilation (IMV) represents a risk factor for the development of ventilator-associated pneumonia (VAP), which develops at least 48 h after admission in patients ventilated through tracheostomy or endotracheal intubation. VAP is the most frequent intensive-care-unit (ICU)-acquired infection among patients receiving IMV. It contributes to an increase in hospital mortality, duration of MV and ICU and length of hospital stay. Therefore, it worsens the condition of the critica...

  2. Mechanical ventilation during extracorporeal membrane oxygenation

    OpenAIRE

    Schmidt, Matthieu; Pellegrino, Vincent; Combes, Alain; Scheinkestel, Carlos; Cooper, D Jamie; Hodgson, Carol

    2014-01-01

    The timing of extracorporeal membrane oxygenation (ECMO) initiation and its outcome in the management of respiratory and cardiac failure have received considerable attention, but very little attention has been given to mechanical ventilation during ECMO. Mechanical ventilation settings in non-ECMO studies have been shown to have an effect on survival and may also have contributed to a treatment effect in ECMO trials. Protective lung ventilation strategies established for non-ECMO-supported re...

  3. Statins STAT for (over)ventilated patients?

    OpenAIRE

    Kuebler, Wolfgang M

    2010-01-01

    A decade after the introduction of lung-protective ventilation strategies with low tidal volumes, the adverse effects of mechanical ventilation remain a scientific and clinical challenge. This situation has fueled the search for adjuvant pharmacological strategies to advance the benefit of protective ventilation in an additive or synergistic manner. In a recent issue of Critical Care, M?ller and coworkers demonstrate convincingly that the initiation of high-dose simvastatin treatment prior to...

  4. Implementation of ventilation in existing schools

    DEFF Research Database (Denmark)

    Hviid, Christian Anker; Petersen, Steffen

    Present paper analyses the best-practice solutions for classrooms’ ventilation that fit the objective of quick and inexpensive implementation. The paper decomposes the relations between ventilation and building into manageable elements and analyzes them. The analyses are performed qualitatively......; they evaluate both scientific and practical implementation The analyses lead to a list of criteria associated with the implementation of ventilation in existing schools. Generic retrofitting scenarios which prioritize energy savings, indoor climate and building/facade integration are assembled and illustrated...

  5. 46 CFR 153.312 - Ventilation system standards.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Ventilation system standards. 153.312 Section 153.312... Handling Space Ventilation § 153.312 Ventilation system standards. A cargo handling space ventilation system must meet the following: (a) A ventilation system exhaust duct must discharge no less than 10 m...

  6. A NEW EXHAUST VENTILATION SYSTEM DESIGN SOFTWARE

    Directory of Open Access Journals (Sweden)

    H. Asilian Mahabady

    2007-09-01

    Full Text Available A Microsoft Windows based ventilation software package is developed to reduce time-consuming and boring procedure of exhaust ventilation system design. This program Assure accurate and reliable air pollution control related calculations. Herein, package is tentatively named Exhaust Ventilation Design Software which is developed in VB6 programming environment. Most important features of Exhaust Ventilation Design Software that are ignored in formerly developed packages are Collector design and fan dimension data calculations. Automatic system balance is another feature of this package. Exhaust Ventilation Design Software algorithm for design is based on two methods: Balance by design (Static pressure balance and design by Blast gate. The most important section of software is a spreadsheet that is designed based on American Conference of Governmental Industrial Hygienists calculation sheets. Exhaust Ventilation Design Software is developed so that engineers familiar with American Conference of Governmental Industrial Hygienists datasheet can easily employ it for ventilation systems design. Other sections include Collector design section (settling chamber, cyclone, and packed tower, fan geometry and dimension data section, a unit converter section (that helps engineers to deal with units, a hood design section and a Persian HTML help. Psychometric correction is also considered in Exhaust Ventilation Design Software. In Exhaust Ventilation Design Software design process, efforts are focused on improving GUI (graphical user interface and use of programming standards in software design. Reliability of software has been evaluated and results show acceptable accuracy.

  7. [VENTILOP survey. Survey in peroperative mechanical ventilation].

    Science.gov (United States)

    Fischer, F; Collange, O; Mahoudeau, G; Simon, M; Moussa, H; Thibaud, A; Steib, A; Pottecher, T; Mertes, M

    2014-06-01

    Mechanical ventilation can initiate ventilator-associated lung injury and postoperative pulmonary complications. The aim of this study was to evaluate (1) how mechanical ventilation was comprehended by anaesthetists (physician and nurses) and (2) the need for educational programs. A computing questionnary was sent by electronic-mail to the entire anaesthetist from Alsace region in France (297 physicians), and to a pool of 99 nurse anaesthetists. Mechanical ventilation during anaesthesia was considered as optimized when low tidal volume (6-8mL) of ideal body weight was associated with positive end expiratory pressure, FiO2 less than 50%, I/E adjustment and recruitment maneuvers. The participation rate was 50.5% (172 professionals). Only 2.3% of professionals used the five parameters for optimized ventilation. Majority of professionals considered that mechanical ventilation adjustment influenced the patients' postoperative outcome. Majority of the professionals asked for a specific educational program in the field of mechanical ventilation. Only 2.3% of professionals optimized mechanical ventilation during anaesthesia. Guidelines and specific educational programs in the field of mechanical ventilation are widely expected. Copyright © 2014 Société française d’anesthésie et de réanimation (Sfar). Published by Elsevier SAS. All rights reserved.

  8. Concentration Distribution in a Mixing Ventilated Room

    DEFF Research Database (Denmark)

    Jensen, Rasmus Lund; Pedersen, D. N.; Nielsen, Peter Vilhelm

    2001-01-01

    Today there is an increasing focus on the importance of a proper ventilation system to obtain good working conditions in the term of air and thermal quality to ensure high productivity. Different ventilation principles are used, e.g., mixing ventilation and displacement ventilation. In order...... that the air is fully mixed. The objective of this work is to determine the influence of the location of a pollutant, temperature differences and whether the room is furnished or not. It is also investigated if it is sufficient to determine the mean concentration in the room to determine the personal exposure...

  9. Boundary conditions for the use of personal ventilation over mixing ventilation in open plan offices

    DEFF Research Database (Denmark)

    Petersen, Steffen; Hviid, Christian Anker

    2013-01-01

    This paper investigates the boundary conditions for choosing a combined Personal Ventilation (PV) and Mixing Ventilation (MV) over conventional mixing ventilation in an office with multiple workers. A simplified procedure for annual performance assessment of PV/MV systems in terms of air quality,...

  10. Performances of domiciliary ventilators compared by using a parametric procedure

    Directory of Open Access Journals (Sweden)

    Fresnel Emeline

    2016-12-01

    Performances of domiciliary ventilators strongly depend not only on the breathing dynamics but also on the ventilator strategy. One given ventilator may be more adequate than another one for a given patient.

  11. Hypercapnia attenuates ventilator-induced diaphragm atrophy and modulates dysfunction

    NARCIS (Netherlands)

    Schellekens, W.J.M.; Hees, H.W.H. van; Kox, M.; Linkels, M.; Acuna, G.L.; Dekhuijzen, P.N.R.; Scheffer, G.J.; Hoeven, J.G. van der; Heunks, L.M.A.

    2014-01-01

    INTRODUCTION: Diaphragm weakness induced by prolonged mechanical ventilation may contribute to difficult weaning from the ventilator. Hypercapnia is an accepted side effect of low tidal volume mechanical ventilation, but the effects of hypercapnia on respiratory muscle function are largely unknown.

  12. Frequently Asked Questions about Ventilator-Associated Pneumonia

    Science.gov (United States)

    ... Vaccine Safety Frequently Asked Questions about Ventilator-associated Pneumonia Recommend on Facebook Tweet Share Compartir What is a Ventilator-associated Pneumonia (VAP)? Ventilator-associated pneumonia (VAP) is a lung ...

  13. Neuromuscular paralysis for newborn infants receiving mechanical ventilation

    NARCIS (Netherlands)

    Cools, F.; Offringa, M.

    2005-01-01

    BACKGROUND: Ventilated newborn infants breathing in asynchrony with the ventilator are at risk for complications during mechanical ventilation, such as pneumothorax or intraventricular hemorrhage, and are exposed to more severe barotrauma, which consequently could impair their clinical outcome.

  14. Lung ventilation imaging with TECHNEGAS

    International Nuclear Information System (INIS)

    Bunko, Hisashi; Seto, Mikito; Kuji, Ichiei; Miyauchi, Tsutomu; Hisada, Kinichi

    1991-01-01

    In order to optimize inhalation method for lung ventilation imaging with Tc-99m-gas (TECHNEGAS), relation between lung deposition of TECHNEGAS and inhalation method was evaluated. Submaximal inhalation with breath-holding (BH), continuous submaximal inhalation (C) and tidal inhalation (TV) were compared in 35 patients (36 studies) with various lung diseases. Mean lung deposition of TECHNEGAS was 6.6-7.4%/LD in BH group and was significantly higher than other groups of inhalation method (p<0.05-0.001). Lung deposition increased according to the times of inhalation in C group. TV group resulted in the lowest lung deposition which was the same as 5 times of inhalation in C group. Lung/filter ratio (L/F) was highest in BH group. Image quality of TECHNEGAS was significantly better in BH group. Hot spot in central airway was seen in 15% of patients. All of them was in TV or C groups. In order to improve lung deposition and image quality of the TECHNEGAS, sufficient breath-holding was important. L/F seemed to be the index of effective inhalation of the TECHNEGAS. TV was suitable for poorly cooperative or dyspneic patients. TECHNEGAS was useful for evaluation of lung ventilation to provide good quality image with safety and simplicity. (author)

  15. Dynamic Behaviour of Ventilated Hydrofoils.

    Science.gov (United States)

    Kjeldsen, Morten; Arndt, Roger; Wosnik, Martin

    2006-11-01

    In certain types of pumping applications oscillations are induced by operation with liquids containing a free gas load. In order to understand the physics of this process, a series of tests with a ventilated A 2D NACA 0015 hydrofoil were performed in the water tunnel at the St. Anthony Falls Laboratory of the University of Minnesota. The special bubble removal feature of the water tunnel allowed continuous ventilation without experiencing visible bubbles upstream the hydrofoil. These studies build on previous work on cavitation-induced oscillations. Gas injection studies were made over a range of gas flow rates and test section pressure. The results clearly show that lift oscillations increase in intensity when the gas load is increased. The point of maximum unsteadiness is also associated the rapid decline of the foil performance as measured as average lift. Further increase of the gas injection load gives a steady behaviour with almost no lift. These experiments are compared with traditional cavitation experiments. The similarities between gas injection- and cavitation induced unsteadiness on the hydrofoil are many, but the amplitude of lift oscillations found on the foil with gas injection corresponds to about 50% of that found for cavitating hydrofoils. The fact that the oscillations are periodic leads to the consideration of both passive and active control.

  16. Trends in mechanical ventilation: are we ventilating our patients in the best possible way?

    Directory of Open Access Journals (Sweden)

    Raffaele L. Dellaca’

    2017-06-01

    To learn how mechanical ventilation developed in recent decades and to provide a better understanding of the actual technology and practice. To learn how and why interdisciplinary research and competences are necessary for providing the best ventilation treatment to patients. To understand which are the most relevant technical limitations in modern mechanical ventilators that can affect their performance in delivery of the treatment. To better understand and classify ventilation modes. To learn the classification, benefits, drawbacks and future perspectives of automatic ventilation tailoring algorithms.

  17. Thermal comfort of seated occupants in rooms with personalized ventilation combined with mixing or displacement ventilation

    DEFF Research Database (Denmark)

    Forejt, L.; Melikov, Arsen Krikor; Cermak, Radim

    2004-01-01

    The performance of two personalized ventilation systems combined with mixing or displacement ventilation was studied under different conditions in regard to thermal comfort of seated occupants. The cooling performance of personalized ventilation was found to be independent of room air distribution....... Differences between the personalized air terminal devices were identified in terms of the cooling distribution over the manikin¿s body. The personalized ventilation supplying air from the front towards the face provided a more uniform cooling of the body than the personalized ventilation supplying air from...

  18. History of Mechanical Ventilation. From Vesalius to Ventilator-induced Lung Injury.

    Science.gov (United States)

    Slutsky, Arthur S

    2015-05-15

    Mechanical ventilation is a life-saving therapy that catalyzed the development of modern intensive care units. The origins of modern mechanical ventilation can be traced back about five centuries to the seminal work of Andreas Vesalius. This article is a short history of mechanical ventilation, tracing its origins over the centuries to the present day. One of the great advances in ventilatory support over the past few decades has been the development of lung-protective ventilatory strategies, based on our understanding of the iatrogenic consequences of mechanical ventilation such as ventilator-induced lung injury. These strategies have markedly improved clinical outcomes in patients with respiratory failure.

  19. Healthcare Technology Management (HTM) of mechanical ventilators by clinical engineers.

    Science.gov (United States)

    Yoshioka, Jun; Nakane, Masaki; Kawamae, Kaneyuki

    2014-01-01

    Mechanical ventilator failures expose patients to unacceptable risks, and maintaining mechanical ventilator safety is an important issue. We examined the usefulness of maintaining mechanical ventilators by clinical engineers (CEs) using a specialized calibrator. These evaluations and the ability to make in-house repairs proved useful for obviating the need to rent ventilators which, in turn, might prove faulty themselves. The CEs' involvement in maintaining mechanical ventilators is desirable, ensures prompt service, and, most importantly, enhances safe management of mechanical ventilators.

  20. New evidence in one-lung ventilation.

    Science.gov (United States)

    Meleiro, H; Correia, I; Charco Mora, P

    2018-03-01

    Mechanical ventilation in thoracic surgery has undergone significant changes in recent years due to the implementation of the protective ventilation. This review will analyze recent ventilatory strategies in one-lung ventilation. A MEDLINE research was performed using Mesh term "One-Lung Ventilation" including randomized clinical trials, metanalysis, reviews and systematic reviews published in the last 6 years. Search was performed on 21st March 2017. A total of 75 articles were initially found. After title and abstract review 14 articles were included. Protective ventilation is not simply synonymous of low tidal volume ventilation, but it also includes routine use of PEEP and alveolar recruitment maneuver. New techniques are still in discussion namely PEEP adjustment, ratio inspiration:expiration, ideal type of anesthesia during one-lung ventilation and hypercapnic ventilation. Copyright © 2017 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  1. Lung-protective ventilation in neonatology

    NARCIS (Netherlands)

    van Kaam, Anton

    2011-01-01

    Ventilator-induced lung injury (VILI) is considered an important risk factor in the development of bronchopulmonary dysplasia (BPD) and is primarily caused by overdistension (volutrauma) and repetitive opening and collapse (atelectrauma) of terminal lung units. Lung-protective ventilation should

  2. Preoperational test report, primary ventilation system

    International Nuclear Information System (INIS)

    Clifton, F.T.

    1997-01-01

    This represents a preoperational test report for Primary Ventilation Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system provides vapor space filtered venting of tanks AY101, AY102, AZ101, AZ102. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System

  3. Carbon dioxide production during mechanical ventilation

    DEFF Research Database (Denmark)

    Henneberg, S; Söderberg, D; Groth, T

    1987-01-01

    studied CO2 production (VCO2) and oxygen consumption (VO2) in mechanically ventilated ICU patients, where CO2 stores were altered by: a) changing minute ventilation by 15%, b) reducing body temperature, and c) changing the level of sedation. Expired gases went through a mixing chamber and were analyzed...

  4. YMP Engineered Barrier Systems Scaled Ventilation Testing

    Energy Technology Data Exchange (ETDEWEB)

    S.D. Dunn; B. Lowry; B. Walsh; J.D. Mar; C. Howard; R. Johnston; T. Williams

    2002-11-22

    Yucca Mountain, approximately 100 miles northwest of Las Vegas, Nevada, has been selected as the site for the nation's first geologic repository for high level nuclear waste. The Yucca Mountain Project (YMP) is currently developing the design for the underground facilities. Ventilation is a key component of the design as a way to maintain the desired thermal conditions in the emplacement drifts prior to closure. As a means of determining the effects of continuous ventilation on heat removal from the emplacement drifts two series of scaled ventilation tests have been performed. Both test series were performed in the DOE/North Las Vegas Atlas facility. The tests provided scaled (nominally 25% of the full scale emplacement drift design) thermal and flow process data that will be used to validate YMP heat and mass transport codes. The Phase I Ventilation Test series evaluated the ability of ambient ventilation air to remove energy under varying flow and input power conditions. The Phase II Ventilation Test series evaluated the ability of pre-conditioned ventilation air to remove energy under varying flow, input temperature and moisture content, and simulated waste package input power conditions. Twenty-two distinct ventilation tests were run.

  5. Preoperational test report, primary ventilation system

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, F.T.

    1997-11-04

    This represents a preoperational test report for Primary Ventilation Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system provides vapor space filtered venting of tanks AY101, AY102, AZ101, AZ102. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  6. Ventilation in low energy housing retrofits

    NARCIS (Netherlands)

    Mlecnik, E.

    2008-01-01

    According to the definition, passive houses in Europe meet a target energy demand for heating of less than 15 kWh per square meter and per year. This low level for the heating demand is based on heating by a small post-heater in the hygienic ventilation system at 52 °C maximum, while the ventilation

  7. Evaporation Controlled Emission in Ventilated Rooms

    DEFF Research Database (Denmark)

    Topp, Claus; Nielsen, Peter V.; Heiselberg, Per

    -scale ventilated room when the emission is fully or partly evaporation controlled. The objective of the present research work has been to investigate the change of emission rates from small-scale experiments to full-scale ventilated rooms and to investigate the influence of the local air velocity field near...

  8. Ventilation of gloveboxes and containment shells

    International Nuclear Information System (INIS)

    Guetron, R.

    1984-01-01

    In this paper are defined fundamental principles for the ventilation of containment enclosures and gloveboxes, and examined criteria required to maintain containment in normal or accidental conditions. Dimensioning of ventilation network and associated equipment (adjustement and filtering devices). Some examples are given [fr

  9. Hybrid ventilation systems and high performance buildings

    Energy Technology Data Exchange (ETDEWEB)

    Utzinger, D.M. [Wisconsin Univ., Milwaukee, WI (United States). School of Architecture and Urban Planning

    2009-07-01

    This paper described hybrid ventilation design strategies and their impact on 3 high performance buildings located in southern Wisconsin. The Hybrid ventilation systems combined occupant controlled natural ventilation with mechanical ventilation systems. Natural ventilation was shown to provide adequate ventilation when appropriately designed. Proper control integration of natural ventilation into hybrid systems was shown to reduce energy consumption in high performance buildings. This paper also described the lessons learned from the 3 buildings. The author served as energy consultant on all three projects and had the responsibility of designing and integrating the natural ventilation systems into the HVAC control strategy. A post occupancy evaluation of building energy performance has provided learning material for architecture students. The 3 buildings included the Schlitz Audubon Nature Center completed in 2003; the Urban Ecology Center completed in 2004; and the Aldo Leopold Legacy Center completed in 2007. This paper included the size, measured energy utilization intensity and percentage of energy supplied by renewable solar power and bio-fuels on site for each building. 6 refs., 2 tabs., 6 figs.

  10. Echocardiographic evaluation during weaning from mechanical ventilation

    Directory of Open Access Journals (Sweden)

    Luciele Medianeira Schifelbain

    2011-01-01

    Full Text Available INTRODUCTION: Echocardiographic, electrocardiographic and other cardiorespiratory variables can change during weaning from mechanical ventilation. OBJECTIVES: To analyze changes in cardiac function, using Doppler echocardiogram, in critical patients during weaning from mechanical ventilation, using two different weaning methods: pressure support ventilation and T-tube; and comparing patient subgroups: success vs. failure in weaning. METHODS: Randomized crossover clinical trial including patients under mechanical ventilation for more than 48 h and considered ready for weaning. Cardiorespiratory variables, oxygenation, electrocardiogram and Doppler echocardiogram findings were analyzed at baseline and after 30 min in pressure support ventilation and T-tube. Pressure support ventilation vs. T-tube and weaning success vs. failure were compared using ANOVA and Student's t-test. The level of significance was p<0.05. RESULTS: Twenty-four adult patients were evaluated. Seven patients failed at the first weaning attempt. No echocardiographic or electrocardiographic differences were observed between pressure support ventilation and T-tube. Weaning failure patients presented increases in left atrium, intraventricular septum thickness, posterior wall thickness and diameter of left ventricle and shorter isovolumetric relaxation time. Successfully weaned patients had higher levels of oxygenation. CONCLUSION: No differences were observed between Doppler echocardiographic variables and electrocardiographic and other cardiorespiratory variables during pressure support ventilation and T-tube. However cardiac structures were smaller, isovolumetric relaxation time was larger, and oxygenation level was greater in successfully weaned patients

  11. Weaning newborn infants from mechanical ventilation

    OpenAIRE

    Paolo Biban; Marcella Gaffuri; Stefania Spaggiari; Davide Silvagni; Federico Zaglia; Pierantonio Santuz

    2013-01-01

    Invasive mechanical ventilation is a life-saving procedure which is largely used in neonatal intensive care units, particularly in very premature newborn infants. However, this essential treatment may increase mortality and cause substantial morbidity, including lung or airway injuries, unplanned extubations, adverse hemodynamic effects, analgosedative dependency and severe infectious complications, such as ventilator-associated pneumonia. Therefore, limiting the duration of airway intubation...

  12. Methodology for ventilation/perfusion SPECT

    DEFF Research Database (Denmark)

    Bajc, Marika; Neilly, Brian; Miniati, Massimo

    2010-01-01

    Ventilation/perfusion single-photon emission computed tomography (V/Q SPECT) is the scintigraphic technique of choice for the diagnosis of pulmonary embolism and many other disorders that affect lung function. Data from recent ventilation studies show that the theoretic advantages of Technegas ov...

  13. Ventilation During Bronchoscopy: the Oxygen Injector Technique ...

    African Journals Online (AJOL)

    Ventilation During Bronchoscopy: the Oxygen Injector Technique. HMC Kean. Abstract. The Sanders oxygen injector technique of bronchoscopic ventilation is discussed and the principle underlying the method is explained. A short study confirmed the effectiveness and safety of the technique, and the advantages over other ...

  14. New modes of assisted mechanical ventilation.

    Science.gov (United States)

    Suarez-Sipmann, F

    2014-05-01

    Recent major advances in mechanical ventilation have resulted in new exciting modes of assisted ventilation. Compared to traditional ventilation modes such as assisted-controlled ventilation or pressure support ventilation, these new modes offer a number of physiological advantages derived from the improved patient control over the ventilator. By implementing advanced closed-loop control systems and using information on lung mechanics, respiratory muscle function and respiratory drive, these modes are specifically designed to improve patient-ventilator synchrony and reduce the work of breathing. Depending on their specific operational characteristics, these modes can assist spontaneous breathing efforts synchronically in time and magnitude, adapt to changing patient demands, implement automated weaning protocols, and introduce a more physiological variability in the breathing pattern. Clinicians have now the possibility to individualize and optimize ventilatory assistance during the complex transition from fully controlled to spontaneous assisted ventilation. The growing evidence of the physiological and clinical benefits of these new modes is favoring their progressive introduction into clinical practice. Future clinical trials should improve our understanding of these modes and help determine whether the claimed benefits result in better outcomes. Copyright © 2013 Elsevier España, S.L. and SEMICYUC. All rights reserved.

  15. Energy Analysis of the Ductless Personalized Ventilation

    DEFF Research Database (Denmark)

    Lelong, Cyril; Dalewski, Mariusz; Melikov, Arsen Krikor

    2013-01-01

    This study explores the impact of different occupancy profiles on the potential energy savings due to using ductless personalized ventilation (DPV) combined with displacement ventilation. Energy simulations were performed with the dynamic simulation software IDA-ICE in order to investigate optimal...

  16. Standardization of pulmonary ventilation technique using volume-controlled ventilators in rats with congenital diaphragmatic hernia

    Directory of Open Access Journals (Sweden)

    Rodrigo Melo Gallindo

    Full Text Available OBJECTIVE: To standardize a technique for ventilating rat fetuses with Congenital Diaphragmatic Hernia (CDH using a volume-controlled ventilator. METHODS: Pregnant rats were divided into the following groups: a control (C; b exposed to nitrofen with CDH (CDH; and c exposed to nitrofen without CDH (N-. Fetuses of the three groups were randomly divided into the subgroups ventilated (V and non-ventilated (N-V. Fetuses were collected on day 21.5 of gestation, weighed and ventilated for 30 minutes using a volume-controlled ventilator. Then the lungs were collected for histological study. We evaluated: body weight (BW, total lung weight (TLW, left lung weight (LLW, ratios TLW / BW and LLW / BW, morphological histology of the airways and causes of failures of ventilation. RESULTS: BW, TLW, LLW, TLW / BW and LLW / BW were higher in C compared with N- (p 0.05. The morphology of the pulmonary airways showed hypoplasia in groups N- and CDH, with no difference between V and N-V (p <0.05. The C and N- groups could be successfully ventilated using a tidal volume of 75 ìl, but the failure of ventilation in the CDH group decreased only when ventilated with 50 ìl. CONCLUSION: Volume ventilation is possible in rats with CDH for a short period and does not alter fetal or lung morphology.

  17. Assisted Ventilation in Patients with Acute Respiratory Distress Syndrome: Lung-distending Pressure and Patient-Ventilator Interaction

    NARCIS (Netherlands)

    Doorduin, J.; Sinderby, C.A.; Beck, J.; Hoeven, J.G. van der; Heunks, L.M.

    2015-01-01

    BACKGROUND: In patients with acute respiratory distress syndrome (ARDS), the use of assisted mechanical ventilation is a subject of debate. Assisted ventilation has benefits over controlled ventilation, such as preserved diaphragm function and improved oxygenation. Therefore, higher level of

  18. Performance of ductless personalized ventilation in conjunction with displacement ventilation

    DEFF Research Database (Denmark)

    Dalewski, Mariusz; Melikov, Arsen Krikor; Vesely, Michal

    2014-01-01

    perception of the environment. The subjects could control the position of the DPV supply diffuser and the personalized air flow (air velocity). The use of DPV improved perceived air quality and thermal comfort compared to displacement ventilation alone. At 26 °C and 29 °C the percentage dissatisfied with air......, increased eye dryness sensation was reported by 30% of subjects. The personalized air flow selected by nearly 80% of the subjects at 26 °C was between 10 and 20 l/s corresponding to the target air velocity of 1.2–1.7 m/s. At 29 °C almost 90% of subjects chose a personalized air flow between 15 and 20 l/s (1...

  19. Modelling and Simulation of Volume Controlled Mechanical Ventilation System

    Directory of Open Access Journals (Sweden)

    Yan Shi

    2014-01-01

    Full Text Available Volume controlled mechanical ventilation system is a typical time-delay system, which is applied to ventilate patients who cannot breathe adequately on their own. To illustrate the influences of key parameters of the ventilator on the dynamics of the ventilated respiratory system, this paper firstly derived a new mathematical model of the ventilation system; secondly, simulation and experimental results are compared to verify the mathematical model; lastly, the influences of key parameters of ventilator on the dynamics of the ventilated respiratory system are carried out. This study can be helpful in the VCV ventilation treatment and respiratory diagnostics.

  20. An intelligent control system for ventilators.

    Science.gov (United States)

    Wang, C S; Shaw, D; Jih, K S

    1998-10-01

    This study reports on a ventilator system that consists of several intelligent modules for controlling ventilator operation. These modules are software programs in two controllers. One controller is a personal computer used for diagnoses, determining settings and checking the effects of settings. The other controller is a single-chip microprocessor in a ventilator that controls the ventilator's settings in accordance with the computer settings. After setting up the system, an artificial lung model simulating a patient's lung is used to test the system. The result of test run indicated that it always responds to a patient's lung condition in a stable manner. Thus, the proposed system with its intelligent modules may assist clinicians in caring for patients and managing ventilator operation.

  1. Functionality of Ventilated Facades: Protection of Insulation

    Directory of Open Access Journals (Sweden)

    Petrichenko Mikhail

    2016-01-01

    Full Text Available This article discusses about methods of construction of the ventilated facades. The ventilated facade is not only the element of facing, it is the supporting structure. Their main objective - creation of air ventilating space between a facade and an external wall of the building. Moving of air in this gap protects a heater from destruction, interfering with a moisture congestion. In addition, the ventilated facade protect the building from aggressive influence of external environment, have a sound and thermal insulation properties. There are several problems of systems of the ventilated facades connected with an application of a heater. For more effective using it is necessary to minimize contact of a heater with environment.

  2. Mechanisms of natural ventilation in livestock buildings

    DEFF Research Database (Denmark)

    Rong, Li; Bjerg, Bjarne Schmidt; Batzanas, Thomas

    2016-01-01

    Studies on the mechanisms of natural ventilation in livestock buildings are reviewed and influences on discharge and pressure coefficients are discussed. Compared to studies conducted on buildings for human occupation and industrial buildings which focus on thermal comfort, ventilation systems......, indoor air quality, building physics and energy etc., our understanding of the mechanisms involved in natural ventilation of livestock buildings are still limited to the application of the orifice equation. It has been observed that the assumptions made for application of the orifice equation...... are not valid for wind-induced cross ventilation through large openings. This review identifies that the power balance model, the concept of stream tube and the local dynamic similarity model has helped in the fundamental understanding of wind-induced natural ventilation in buildings for human occupation...

  3. Mechanical Ventilation: State of the Art.

    Science.gov (United States)

    Pham, Tài; Brochard, Laurent J; Slutsky, Arthur S

    2017-09-01

    Mechanical ventilation is the most used short-term life support technique worldwide and is applied daily for a diverse spectrum of indications, from scheduled surgical procedures to acute organ failure. This state-of-the-art review provides an update on the basic physiology of respiratory mechanics, the working principles, and the main ventilatory settings, as well as the potential complications of mechanical ventilation. Specific ventilatory approaches in particular situations such as acute respiratory distress syndrome and chronic obstructive pulmonary disease are detailed along with protective ventilation in patients with normal lungs. We also highlight recent data on patient-ventilator dyssynchrony, humidified high-flow oxygen through nasal cannula, extracorporeal life support, and the weaning phase. Finally, we discuss the future of mechanical ventilation, addressing avenues for improvement. Copyright © 2017 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  4. Methodology for ventilation/perfusion SPECT

    DEFF Research Database (Denmark)

    Bajc, Marika; Neilly, Brian; Miniati, Massimo

    2010-01-01

    radiolabeled liquid aerosols are not restricted to the presence of obstructive lung disease. Radiolabeled macroaggregated human albumin is the imaging agent of choice for perfusion scintigraphy. An optimal combination of nuclide activities and acquisition times for ventilation and perfusion, collimators......Ventilation/perfusion single-photon emission computed tomography (V/Q SPECT) is the scintigraphic technique of choice for the diagnosis of pulmonary embolism and many other disorders that affect lung function. Data from recent ventilation studies show that the theoretic advantages of Technegas over......, and imaging matrix yields an adequate V/Q SPECT study in approximately 20 minutes of imaging time. The recommended protocol based on the patient remaining in an unchanged position during the initial ventilation study and the perfusion study allows presentation of matching ventilation and perfusion slices...

  5. A computerized aid in ventilating neonates

    DEFF Research Database (Denmark)

    Arrøe, M

    1991-01-01

    A computer program for ventilating neonates using a volume controlled ventilator is presented. The program proposes directions for changes of ventilator settings decided from the actual arterial blood gas samples and ventilator settings. The program deals with up to six babies at the same time...... and contains a continuous evaluation of the last six values of pCO2 and pO2 resulting in statements and warnings in potentially harmful situations. The program is consistent with the written instructions of the department. The ventilator treatment of 30 premature babies is evaluated retrospectively using...... the program, showing a total agreement of 37.5%, lowest among the babies who died in respiratory insufficiency. The advantage of the use of the program is discussed....

  6. Bilevel vs ICU ventilators providing noninvasive ventilation: effect of system leaks: a COPD lung model comparison.

    Science.gov (United States)

    Ferreira, Juliana C; Chipman, Daniel W; Hill, Nicholas S; Kacmarek, Robert M

    2009-08-01

    Noninvasive positive-pressure ventilation (NPPV) modes are currently available on bilevel and ICU ventilators. However, little data comparing the performance of the NPPV modes on these ventilators are available. In an experimental bench study, the ability of nine ICU ventilators to function in the presence of leaks was compared with a bilevel ventilator using the IngMar ASL5000 lung simulator (IngMar Medical; Pittsburgh, PA) set at a compliance of 60 mL/cm H(2)O, an inspiratory resistance of 10 cm H(2)O/L/s, an expiratory resistance of 20 cm H(2)O/ L/s, and a respiratory rate of 15 breaths/min. All of the ventilators were set at 12 cm H(2)O pressure support and 5 cm H(2)O positive end-expiratory pressure. The data were collected at baseline and at three customized leaks. At baseline, all of the ventilators were able to deliver adequate tidal volumes, to maintain airway pressure, and to synchronize with the simulator, without missed efforts or auto-triggering. As the leak was increased, all of the ventilators (except the Vision [Respironics; Murrysville, PA] and Servo I [Maquet; Solna, Sweden]) needed adjustment of sensitivity or cycling criteria to maintain adequate ventilation, and some transitioned to backup ventilation. Significant differences in triggering and cycling were observed between the Servo I and the Vision ventilators. The Vision and Servo I were the only ventilators that required no adjustments as they adapted to increasing leaks. There were differences in performance between these two ventilators, although the clinical significance of these differences is unclear. Clinicians should be aware that in the presence of leaks, most ICU ventilators require adjustments to maintain an adequate tidal volume.

  7. Mechanical ventilation during extracorporeal membrane oxygenation.

    Science.gov (United States)

    Schmidt, Matthieu; Pellegrino, Vincent; Combes, Alain; Scheinkestel, Carlos; Cooper, D Jamie; Hodgson, Carol

    2014-01-21

    The timing of extracorporeal membrane oxygenation (ECMO) initiation and its outcome in the management of respiratory and cardiac failure have received considerable attention, but very little attention has been given to mechanical ventilation during ECMO. Mechanical ventilation settings in non-ECMO studies have been shown to have an effect on survival and may also have contributed to a treatment effect in ECMO trials. Protective lung ventilation strategies established for non-ECMO-supported respiratory failure patients may not be optimal for more severe forms of respiratory failure requiring ECMO support. The influence of positive end-expiratory pressure on the reduction of the left ventricular compliance may be a matter of concern for patients receiving ECMO support for cardiac failure. The objectives of this review were to describe potential mechanisms for lung injury during ECMO for respiratory or cardiac failure, to assess the possible benefits from the use of ultra-protective lung ventilation strategies and to review published guidelines and expert opinions available on mechanical ventilation-specific management of patients requiring ECMO, including mode and ventilator settings. Articles were identified through a detailed search of PubMed, Ovid, Cochrane databases and Google Scholar. Additional references were retrieved from the selected studies. Growing evidence suggests that mechanical ventilation settings are important in ECMO patients to minimize further lung damage and improve outcomes. An ultra-protective ventilation strategy may be optimal for mechanical ventilation during ECMO for respiratory failure. The effects of airway pressure on right and left ventricular afterload should be considered during venoarterial ECMO support of cardiac failure. Future studies are needed to better understand the potential impact of invasive mechanical ventilation modes and settings on outcomes.

  8. Thermal plumes in ventilated rooms

    DEFF Research Database (Denmark)

    Kofoed, Peter; Nielsen, Peter V.

    1990-01-01

    The design of a displacement ventilation system involves determination of the flow rate in the thermal plumes. The flow rate in the plumes and the vertical temperature gradient influence each other, and they are influenced by many factors. This paper shows some descriptions of these effects. Free...... into account and the temperature excess and the velocity distribution are calculated by use of an extrapolation method. In the case with a concentrated heat source (dia 50mm, 343W) and nearly uniform surroundings the model of a plume above a point heat source is verified. It represents a borderline case...... with the smallest entrainment factor and the smallest angle of spread. Due to the measuring method and data processing the velocity and temperature excess profiles are observed more narrowly than those reported by previous authors. In the case with an extensive heat source (dia 400mm, lOOW) the model of a plume...

  9. General design guide for ventilation systems for fuel reprocessing plants, September 1975

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    General safety, occupied area ventilation systems, process area ventilation systems, exhaust ventilation and filtration systems, ventilation system construction and layout ventilation system testing and monitoring, and the quality assurance program are discussed

  10. Education on Patient-Ventilator Synchrony, Clinicians' Knowledge Level, and Duration of Mechanical Ventilation.

    Science.gov (United States)

    Lynch-Smith, Donna; Thompson, Carol Lynn; Pickering, Rexann G; Wan, Jim Y

    2016-11-01

    Improved recognition of patient-ventilator asynchrony may reduce duration of mechanical ventilation. To evaluate the effects of education about patient-ventilator synchrony on clinicians' level of knowledge and patients' mean duration of mechanical ventilation. A quasi-experimental 1-group pretest-posttest study was performed in a 16-bed intensive care unit. Analysis included 33 clinicians and 97 ventilator patients. The intervention consisted of PowerPoint lectures on patient-ventilator synchrony. Data included test scores before and after the education, scores on the Acute Physiology and Chronic Health Evaluation II, and mean duration of mechanical ventilation. Differences in scores before and after education, mean duration of mechanical ventilation, and mean health evaluation scores before and after education were determined by using t tests. Of the 33 clinicians, 17 were registered nurses and 16 were respiratory therapists. Posttest scores were 63% higher than pretest scores (P mechanical ventilation of 5.4 (SD, 4.6) days. After the lecture, 50 patients had a mean health evaluation score of 24.6 (SD, 8.2) and mean duration of mechanical ventilation of 4.8 (SD, 4.3) days. Mean health evaluation score was marginally higher after the lecture (P = .054). Mean duration of mechanical ventilation did not differ (P = .54). Clinicians' test scores increased significantly after patient-ventilator synchrony lectures. Mean duration of mechanical ventilation decreased by 0.6 days and health evaluation scores were marginally higher after the lectures. ©2016 American Association of Critical-Care Nurses.

  11. Oral mask ventilation is more effective than face mask ventilation after nasal surgery.

    Science.gov (United States)

    Yazicioğlu, Dilek; Baran, Ilkay; Uzumcugil, Filiz; Ozturk, Ibrahim; Utebey, Gulten; Sayın, M Murat

    2016-06-01

    To evaluate and compare the face mask (FM) and oral mask (OM) ventilation techniques during anesthesia emergence regarding tidal volume, leak volume, and difficult mask ventilation (DMV) incidence. Prospective, randomized, crossover study. Operating room, training and research hospital. American Society of Anesthesiologists physical status I and II adult patients scheduled for nasal surgery. Patients in group FM-OM received FM ventilation first, followed by OM ventilation, and patients in group OM-FM received OM ventilation first, followed by FM ventilation, with spontaneous ventilation after deep extubation. The FM ventilation was applied with the 1-handed EC-clamp technique. The OM was placed only over the mouth, and the 1-handed EC-clamp technique was used again. A child's size FM was used for the OM ventilation technique, the mask was rotated, and the inferior part of the mask was placed toward the nose. The leak volume (MVleak), mean airway pressure (Pmean), and expired tidal volume (TVe) were assessed with each mask technique for 3 consecutive breaths. A mask ventilation grade ≥3 was considered DMV. DMV occurred more frequently during FM ventilation (75% with FM vs 8% with OM). In the FM-first sequence, the mean TVe was 249±61mL with the FM and 455±35mL with the OM (P=.0001), whereas in the OM-first sequence, it was 276±81mL with the FM and 409±37mL with the OM (P=.0001). Regardless of the order used, the OM technique significantly decreased the MVleak and increased the TVe when compared to the FM technique. During anesthesia emergence after nasal surgery the OM may offer an effective ventilation method as it decreases the incidence of DMV and the gas leak around the mask and provides higher tidal volume delivery compared with FM ventilation. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Optimization on Emergency Longitudinal Ventilation Design

    Science.gov (United States)

    Se, Camby M. K.; Yuen, Richard K. K.; Cheung, Sherman C. P.; Tu, Jiyuan

    2010-05-01

    Emergency ventilation design in longitudinally ventilated vehicular tunnels is vital to provide safe egress route for tunnel user under fire situations. In this study, the influences of the location of active fan groups on the upstream velocity are investigated using Computational Fluid Dynamics (CFD) techniques. The numeric model was firstly validated again the experimental data from Memorial Tunnel Fire Ventilation Test Program (MTFVTP). Based on the validated model, parametric studies were then preformed attempting to establish a semi-empirical correlation between the location of fan groups and the upstream velocity. In the presence of solid fire, it was found that the buoyant force by the fire source and inertial force by the fans interact with each other and resulted in a "leveling-off" characteristic when the inertial force is no longer dominating. Such interaction re-distributed the ventilation flow direction and sequentially reduces the magnitude of the upstream velocity. In other word, the industrial practice of activating furthest fan group may not be able to prevent the backlayering as a consequence of solid fires. Fans closer to the fire source are recommended to be activated for preventing the hazard of backlayering. Furthermore, through the parametric study, location of ventilation fans is found to have significant effect on the upstream velocity. Such finding suggests that other geometrical parameters could also impose adverse effects to the ventilation system. Existing empirical equation could be insufficient to cover all possible ventilation design scenarios.

  13. Variation in Definition of Prolonged Mechanical Ventilation.

    Science.gov (United States)

    Rose, Louise; McGinlay, Michael; Amin, Reshma; Burns, Karen Ea; Connolly, Bronwen; Hart, Nicholas; Jouvet, Philippe; Katz, Sherri; Leasa, David; Mawdsley, Cathy; McAuley, Danny F; Schultz, Marcus J; Blackwood, Bronagh

    2017-10-01

    Consistency of definitional criteria for terminology applied to describe subject cohorts receiving mechanical ventilation within ICU and post-acute care settings is important for understanding prevalence, risk stratification, effectiveness of interventions, and projections for resource allocation. Our objective was to quantify the application and definition of terms for prolonged mechanical ventilation. We conducted a scoping review of studies (all designs except single-case study) reporting a study population (adult and pediatric) using the term prolonged mechanical ventilation or a synonym. We screened 5,331 references, reviewed 539 full-text references, and excluded 120. Of the 419 studies (representing 38 countries) meeting inclusion criteria, 297 (71%) reported data on a heterogeneous subject cohort, and 66 (16%) included surgical subjects only (46 of those 66, 70% cardiac surgery). Other studies described COPD (16, 4%), trauma (22, 5%), neuromuscular (17, 4%), and sepsis (1, 0.2%) cohorts. A total of 741 terms were used to refer to the 419 study cohorts. The most common terms were: prolonged mechanical ventilation (253, 60%), admission to specialized unit (107, 26%), and long-term mechanical ventilation (79, 19%). Some authors (282, 67%) defined their cohorts based on duration of mechanical ventilation, with 154 studies (55%) using this as the sole criterion. We identified 37 different durations of ventilation ranging from 5 h to 1 y, with > 21 d being the most common (28 of 282, 7%). For studies describing a surgical cohort, minimum ventilation duration required for inclusion was ≥ 24 h for 20 of 66 studies (30%). More than half of all studies (237, 57%) did not provide a reason/rationale for definitional criteria used, with only 28 studies (7%) referring to a consensus definition. We conclude that substantial variation exists in the terminology and definitional criteria for cohorts of subjects receiving prolonged mechanical ventilation. Standardization of

  14. Weaning newborn infants from mechanical ventilation

    Directory of Open Access Journals (Sweden)

    Paolo Biban

    2013-06-01

    Full Text Available Invasive mechanical ventilation is a life-saving procedure which is largely used in neonatal intensive care units, particularly in very premature newborn infants. However, this essential treatment may increase mortality and cause substantial morbidity, including lung or airway injuries, unplanned extubations, adverse hemodynamic effects, analgosedative dependency and severe infectious complications, such as ventilator-associated pneumonia. Therefore, limiting the duration of airway intubation and mechanical ventilator support is crucial for the neonatologist, who should aim to a shorter process of discontinuing mechanical ventilation as well as an earlier appreciation of readiness for spontaneous breathing trials. Unfortunately, there is scarce information about the best ways to perform an effective weaning process in infants undergoing mechanical ventilation, thus in most cases the weaning course is still based upon the individual judgment of the attending clinician. Nonetheless, some evidence indicate that volume targeted ventilation modes are more effective in reducing the duration of mechanical ventilation than traditional pressure limited ventilation modes, particularly in very preterm babies. Weaning and extubation directly from high frequency ventilation could be another option, even though its effectiveness, when compared to switching and subsequent weaning and extubating from conventional ventilation, is yet to be adequately investigated. Some data suggest the use of weaning protocols could reduce the weaning time and duration of mechanical ventilation, but better designed prospective studies are still needed to confirm these preliminary observations. Finally, the implementation of short spontaneous breathing tests in preterm infants has been shown to be beneficial in some centres, favoring an earlier extubation at higher ventilatory settings compared with historical controls, without worsening the extubation failure rate. Further

  15. Potential of Natural Ventilation in Shopping Centres

    DEFF Research Database (Denmark)

    Diederichsen, Alice; Friis, Kristina; Brohus, Henrik

    2008-01-01

    ) in shopping centres with focus on both the achieved IEQ and energy consumptions for air movement. By thermal building simulations it is found that there exists an interesting potential for hybrid ventilation of shopping centres, which can lead to great savings in the electrical energy consumptions......The indoor environmental quality (IEQ) is a fundamental requirement for a well performing shopping centre. This paper contains a pilot study of the potential of using hybrid ventilation (a combination of automatically controlled natural and mechanical ventilation - respectively NV and MV...

  16. Preoperational test report, primary ventilation condensate system

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, F.T.

    1997-01-29

    Preoperational test report for Primary Ventilation Condensate System, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system provides a collection point for condensate generated by the W-030 primary vent offgas cooling system serving tanks AYIOI, AY102, AZIOI, AZI02. The system is located inside a shielded ventilation equipment cell and consists of a condensate seal pot, sampling features, a drain line to existing Catch Tank 241-AZ-151, and a cell sump jet pump. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  17. Secretion management in the mechanically ventilated patient.

    Science.gov (United States)

    Branson, Richard D

    2007-10-01

    Secretion management in the mechanically ventilated patient includes routine methods for maintaining mucociliary function, as well as techniques for secretion removal. Humidification, mobilization of the patient, and airway suctioning are all routine procedures for managing secretions in the ventilated patient. Early ambulation of the post-surgical patient and routine turning of the ventilated patient are common secretion-management techniques that have little supporting evidence of efficacy. Humidification is a standard of care and a requisite for secretion management. Both active and passive humidification can be used. The humidifier selected and the level of humidification required depend on the patient's condition and the expected duration of intubation. In patients with thick, copious secretions, heated humidification is superior to a heat and moisture exchanger. Airway suctioning is the most important secretion removal technique. Open-circuit and closed-circuit suctioning have similar efficacy. Instilling saline prior to suctioning, to thin the secretions or stimulate a cough, is not supported by the literature. Adequate humidification and as-needed suctioning are the foundation of secretion management in the mechanically ventilated patient. Intermittent therapy for secretion removal includes techniques either to simulate a cough, to mechanically loosen secretions, or both. Patient positioning for secretion drainage is also widely used. Percussion and postural drainage have been widely employed for mechanically ventilated patients but have not been shown to reduce ventilator-associated pneumonia or atelectasis. Manual hyperinflation and insufflation-exsufflation, which attempt to improve secretion removal by simulating a cough, have been described in mechanically ventilated patients, but neither has been studied sufficiently to support routine use. Continuous lateral rotation with a specialized bed reduces atelectasis in some patients, but has not been shown

  18. Special Considerations in Neonatal Mechanical Ventilation.

    Science.gov (United States)

    Dalgleish, Stacey; Kostecky, Linda; Charania, Irina

    2016-12-01

    Care of infants supported with mechanical ventilation is complex, time intensive, and requires constant vigilance by an expertly prepared health care team. Current evidence must guide nursing practice regarding ventilated neonates. This article highlights the importance of common language to establish a shared mental model and enhance clear communication among the interprofessional team. Knowledge regarding the underpinnings of an open lung strategy and the interplay between the pathophysiology and individual infant's response to a specific ventilator strategy is most likely to result in a positive clinical outcome. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Do new anesthesia ventilators deliver small tidal volumes accurately during volume-controlled ventilation?

    Science.gov (United States)

    Bachiller, Patricia R; McDonough, Joseph M; Feldman, Jeffrey M

    2008-05-01

    During mechanical ventilation of infants and neonates, small changes in tidal volume may lead to hypo- or hyperventilation, barotrauma, or volutrauma. Partly because breathing circuit compliance and fresh gas flow affect tidal volume delivery by traditional anesthesia ventilators in volume-controlled ventilation (VCV) mode, pressure-controlled ventilation (PCV) using a circle breathing system has become a common approach to minimizing the risk of mechanical ventilation for small patients, although delivered tidal volume is not assured during PCV. A new generation of anesthesia machine ventilators addresses the problems of VCV by adjusting for fresh gas flow and for the compliance of the breathing circuit. In this study, we evaluated the accuracy of new anesthesia ventilators to deliver small tidal volumes. Four anesthesia ventilator systems were evaluated to determine the accuracy of volume delivery to the airway during VCV at tidal volume settings of 100, 200, and 500 mL under different conditions of breathing circuit compliance (fully extended and fully contracted circuits) and lung compliance. A mechanical test lung (adult and infant) was used to simulate lung compliances ranging from 0.0025 to 0.03 L/cm H(2)O. Volumes and pressures were measured using a calibrated screen pneumotachograph and custom software. We tested the Smartvent 7900, Avance, and Aisys anesthesia ventilator systems (GE Healthcare, Madison, WI) and the Apollo anesthesia ventilator (Draeger Medical, Telford, PA). The Smartvent 7900 and Avance ventilators use inspiratory flow sensors to control the volume delivered, whereas the Aisys and Apollo ventilators compensate for the compliance of the circuit. We found that the anesthesia ventilators that use compliance compensation (Aisys and Apollo) accurately delivered both large and small tidal volumes to the airway of the test lung under conditions of normal and low lung compliance during VCV (ranging from 95.5% to 106.2% of the set tidal volume

  20. Synthesis on the durability of composite fiberglass/epoxy resin structures; Synthese sur la durabilite des structures composites en fibres de verre/resine epoxide

    Energy Technology Data Exchange (ETDEWEB)

    Thevenin, P. [Electricite de France (EDF), Direction des Etudes et Recherches, 92 - Clamart (France)

    1997-12-31

    The purpose of this paper is to collect together in a systematic way information and results relating to the durability of composite fiberglass/ epoxy resin structures. First it is a matter of assessing the average level of understanding the long term behaviour of these structures which change under the combined effects of varied mechanical loading and stresses of a physico-chemical type linked to the environment. Looking at phenomena encountered and facts from current analyses, it will then be advisable to specify a methodology which can be applied to industrial piping used in PWR cooling systems for transporting raw water under pressure. In fact assessment of their service life is at present based on long and costly testing (ASTM D 2992 B standard), the appearance of which is inherited from metal piping testing.. Therefore it appears essential to study substitution test procedures, more composite specific and at the same time which can be conducted in reasonable time. For this purpose, by coherently accelerating and combining them in order not to underestimate their effects, ageing tests shall reproduce mechanisms representative of operating conditions. (author). 113 refs.

  1. Effects of different rhizosphere ventilation treatment on water and ...

    African Journals Online (AJOL)

    user

    2011-02-07

    Feb 7, 2011 ... ventilation can promote photosynthesis, metabolites and accumulation of ... artificial ventilation, thereby setting different ventilation frequency .... light conditions. Effects of different rhizosphere ventilation treatment on plant height. Effects of different irrigation on plant height, in conditions of a certain ...

  2. Effects of different rhizosphere ventilation treatment on water and ...

    African Journals Online (AJOL)

    The objective of this study was to explore the effects of different rhizosphere ventilation treatment on water and nutrients absorption of maize. The pot experiment was conducted using three methods: no ventilation, two day ventilation and four day ventilation, under conditions of the different levels of irrigation methods.

  3. 33 CFR 183.610 - Powered ventilation system.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Powered ventilation system. 183... (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Ventilation § 183.610 Powered ventilation system... must: (1) Be open to the atmosphere, or (2) Be ventilated by an exhaust blower system. (b) Each exhaust...

  4. 46 CFR 153.310 - Ventilation system type.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Ventilation system type. 153.310 Section 153.310... Handling Space Ventilation § 153.310 Ventilation system type. A cargo handling space must have a permanent forced ventilation system of the exhaust type. ...

  5. 33 CFR 183.620 - Natural ventilation system.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Natural ventilation system. 183... (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Ventilation § 183.620 Natural ventilation system. (a) Except for compartments open to the atmosphere, a natural ventilation system that meets the...

  6. Can mechanical ventilation strategies reduce chronic lung disease?

    Science.gov (United States)

    Donn, Steven M; Sinha, Sunil K

    2003-12-01

    Chronic lung disease (CLD) continues to be a significant complication in newborn infants undergoing mechanical ventilation for respiratory failure. Although the aetiology of CLD is multifactorial, specific factors related to mechanical ventilation, including barotrauma, volutrauma and atelectrauma, have been implicated as important aetiologic mechanisms. This article discusses the ways in which these factors might be manipulated by various mechanical ventilatory strategies to reduce ventilator-induced lung injury. These include continuous positive airway pressure, permissive hypercapnia, patient-triggered ventilation, volume-targeted ventilation, proportional assist ventilation, high-frequency ventilation and real-time monitoring.

  7. Discussion for management of ventilation system in uranium mines

    International Nuclear Information System (INIS)

    Li Xianjie; Ren Jianjun; Hu Penghua

    2014-01-01

    Radon exhaustion and ventilation are surely regarded as key links for safety production and radiation protection in underground uranium mines, and the crucial point to achieve safety production goals lies in timely and accurately adjusting and controlling of ventilation technical measures and ventilation system management with the changing operation conditions of mines. This paper proposes corresponding countermeasures based on the respectively systematical analysis of daily ventilation management, ventilation facilities and structures management, and ventilation system information management in uranium mines. Furthermore, standardized management approaches and suggestions are put forward to realize standardization of uranium mines' ventilation management and radon exhaustion technique. (authors)

  8. Using a Ventilation Controller to Optimize Residential Passive Ventilation For Energy and Indoor Air Quality

    Energy Technology Data Exchange (ETDEWEB)

    Turner, William [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Walker, Iain [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-08-01

    One way to reduce the energy impact of providing residential ventilation is to use passive and hybrid systems. However, these passive and hybrid (sometimes called mixed-mode) systems must still meet chronic and acute health standards for ventilation. This study uses a computer simulation approach to examine the energy and indoor air quality (IAQ) implications of passive and hybrid ventilation systems, in 16 California climate zones. Both uncontrolled and flow controlled passive stacks are assessed. A new hybrid ventilation system is outlined that uses an intelligent ventilation controller to minimise energy use, while ensuring chronic and acute IAQ standards are met. ASHRAE Standard 62.2-2010 – the United States standard for residential ventilation - is used as the chronic standard, and exposure limits for PM2.5, formaldehyde and NO2 are used as the acute standards.The results show that controlled passive ventilation and hybrid ventilation can be used in homes to provide equivalent IAQ to continuous mechanical ventilation, for less use of energy.

  9. 46 CFR 194.20-5 - Ventilation.

    Science.gov (United States)

    2010-10-01

    ... CONTROL OF EXPLOSIVES AND OTHER HAZARDOUS MATERIALS Chemical Stores and/or Storerooms § 194.20-5... expected. Ventilation exhaust outlets shall terminate more than 6 feet from any opening to the interior...

  10. Adaptive Intelligent Ventilation Noise Control, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — To address the NASA need for quiet on-orbit crew quarters (CQ), Physical Optics Corporation (POC) proposes to develop a new Adaptive Intelligent Ventilation Noise...

  11. Adaptive Intelligent Ventilation Noise Control, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — To address NASA needs for quiet crew volumes in a space habitat, Physical Optics Corporation (POC) proposes to develop a new Adaptive Intelligent Ventilation Noise...

  12. Ventilation Guidance for Spray Polyurethane Foam Application

    Science.gov (United States)

    Properly designed ventilation can reduce airborne levels of aerosols, mists, and vapors generated during spray application and can help protect SPF applicators, helpers, and others who may be working in adjacent areas.

  13. Modelling of Natural and Hybrid Ventilation

    DEFF Research Database (Denmark)

    Heiselberg, Per

    The effectiveness of natural ventilation, i.e. its ability to ensure indoor air quality and passive cooling in a building, depends greatly on the design process. Mechanical ventilation systems can be designed separately from the design of the building in which they are installed. They can also...... be installed in existing buildings after a few modifications. In contrast, ventilation systems using only natural forces such as wind and thermal buoyancy need to be designed together with the building, since the building itself and its components are the elements that can reduce or increase air movement...... as well as influence the air content (dust, pollution etc.). Architects and engineers need to acquire qualitative and quantitative information about the interactions between building characteristics and natural ventilation in order to design buildings and systems consistent with a passive low...

  14. Design of Natural and Hybrid Ventilation

    DEFF Research Database (Denmark)

    Heiselberg, Per

    The effectiveness of natural ventilation, i.e. its ability to ensure indoor air quality and passive cooling in a building, depends greatly on the design process. Mechanical ventilation systems can be designed separately from the design of the building in which they are installed. They can also...... be installed in existing buildings after a few modifications. In contrast, ventilation systems using only natural forces such as wind and thermal buoyancy need to be designed together with the building, since the building itself and its components are the elements that can reduce or increase air movement...... as well as influence the air content (dust, pollution etc.). Architects and engineers need to acquire qualitative and quantitative information about the interactions between building characteristics and natural ventilation in order to design buildings and systems consistent with a passive low...

  15. Performance of displacement ventilation in practice

    DEFF Research Database (Denmark)

    Naidenov, K.; Pitchurov, G.; Langkilde, Gunnar

    2002-01-01

    This paper presents results of a field study in offices with displacement ventilation. It comprises detailed physical measurements of the thermal environment and collection of occupants´ response at 227 workplaces. The results, both physical measurements and human response, identified draught as ...... ventilation principle. This will ensure proper and efficient operation of the system and occupants´ satisfaction.......This paper presents results of a field study in offices with displacement ventilation. It comprises detailed physical measurements of the thermal environment and collection of occupants´ response at 227 workplaces. The results, both physical measurements and human response, identified draught...... as the major local discomfort in the rooms with displacement ventilation. Twenty-three percent of the occupants were daily bothered by draught. In some buildings the maintenance personnel tried to improve occupants´ thermal comfort by raising the supply air temperature or office workers themselves blocked...

  16. Carbon dioxide production during mechanical ventilation

    DEFF Research Database (Denmark)

    Henneberg, S; Söderberg, D; Groth, T

    1987-01-01

    studied CO2 production (VCO2) and oxygen consumption (VO2) in mechanically ventilated ICU patients, where CO2 stores were altered by: a) changing minute ventilation by 15%, b) reducing body temperature, and c) changing the level of sedation. Expired gases went through a mixing chamber and were analyzed...... continuously by a mass spectrometer. Signals from this instrument, together with gas-volume signals from the ventilator, were fed to a computer for calculation of VO2 and VCO2. Twenty to 120 min were required to reach a stable level, depending on the patient's size and circulatory response. Similar results...... were obtained by computer simulation using a five-compartment model of CO2 stores. These experiments indicate that measuring VO2 (for calculation of metabolic respiratory quotient [RQ]) in ventilated patients should occur after the patients maintain a 60-min period of stable body temperature...

  17. Comfort parameters - Ventilation of a subway wagon

    Science.gov (United States)

    Petr, Pavlíček; Ladislav, Tříska

    2017-09-01

    Research and development of a ventilation system is being carried out as a part of project TA04030774 of the Technology Agency of the Czech Republic. Name of the project is "Research and Development of Mass-optimized Components for Rail Vehicles". Problems being solved are development and testing of a new concept for ventilation systems for public transport vehicles. The main improvements should be a reduction of the mass of the whole system, easy installation and reduction of the noise of the ventilation system. This article is focused on the comfort parameters in a subway wagon (measurement and evaluation carried out on a function sample in accordance with the regulations). The input to the project is a ventilator hybrid casing for a subway wagon, which was manufactured and tested during the Ministry of Industry and Trade project TIP FR-TI3/449.

  18. Mechanical ventilation and mobilization: comparison between genders.

    Science.gov (United States)

    Daniel, Christiane Riedi; Alessandra de Matos, Carla; Barbosa de Meneses, Jessica; Bucoski, Suzane Chaves Machado; Fréz, Andersom Ricardo; Mora, Cintia Teixeira Rossato; Ruaro, João Afonso

    2015-04-01

    [Purpose] To investigate the impact of gender on mobilization and mechanical ventilation in hospitalized patients in an intensive care unit. [Subjects and Methods] A retrospective cross-sectional study was conducted of the medical records of 105 patients admitted to a general intensive care unit. The length of mechanical ventilation, length of intensive care unit stay, weaning, time to sitting out of bed, time to performing active exercises, and withdrawal of sedation exercises were evaluated in addition to the characteristics of individuals, reasons for admission and risk scores. [Results] Women had significantly lower values APACHE II scores, duration of mechanical ventilation, time to withdrawal of sedation and time to onset of active exercises. [Conclusion] Women have a better functional response when admitted to the intensive care unit, spending less time ventilated and performing active exercises earlier.

  19. 46 CFR 111.15-10 - Ventilation.

    Science.gov (United States)

    2010-10-01

    .... (3) Each blower must have a non-sparking fan. (4) The power ventilation system must be interlocked... vertical; and (iv) That has no appliances, such as flame arresters, that impede free passage of air or gas...

  20. Humidification of inspired gases during mechanical ventilation.

    Science.gov (United States)

    Gross, J L; Park, G R

    2012-04-01

    Humidification of inspired gas is mandatory for all mechanically ventilated patients to prevent secretion retention, tracheal tube blockage and adverse changes occurring to the respiratory tract epithelium. However, the debate over "ideal" humidification continues. Several devices are available that include active and passive heat and moisture exchangers and hot water humidifiers Each have their advantages and disadvantages in mechanically ventilated patients. This review explores each device in turn and defines their role in clinical practice.

  1. Ventilation-perfused studies using SPECT

    International Nuclear Information System (INIS)

    Zwijnenburg, A.

    1989-01-01

    A method for the quantitative analysis of ventilation-perfusion SPECT studies is decribed and an effort is made to evaluate its usefullness. The technical details of the emthod are described. In the the transaxial reconstructions of the tomographic studies the contour of the lungs is detected and regional values of lung volume, ventilation, perfusion and ventilation-perfusion ratios are calculated. The method is operator independent. The lung volume calculations from the SPECT studies are validated by comparing them with lung volume measurements using the helium dilution technique. A good correlation (r=0.91) was found between the two volumes. SPECT volume was greater than the volume measured with helium dilution, which was attributed to non-gas-containing structures in the. lungs. The use of ventilation-perfusion ratio SPECT is described to evaluate the effect of ionizing radiation on the lungs in patients treated with mantle field irradiation for Hodgkin's disease. Perfusion changes appear as early as 2 months after the start of irradiation. Ventilation changes appear later and relatively minor. No changes are seen outside the radiation portals. The ventilation-perfusion inequality in pulmonary sarcoidosis is treated. It is suggested that the decrease D LCO in these patients may be partly due to an even distribution of ventilation perfusion ratios. An effort is made to establish the properties of a new tracer used for the assessment of the metabolic function of the pulmonary endothelium. The lung uptake of I-123 IMP mimics the distribution of a perfusion tracer and it is suggested that this tracer may be useful for the early detection of pulmonary vascular damage, even when blood flow is still intact. Some aspects of the use of Kr-81m as a ventilation tracer are discussed as well as the effect of noise on Kr-81m SPECT reconstructions. (author). 146 refs.; 39 figs.; 8 tabs

  2. Ventilation and filtration of active buildings

    International Nuclear Information System (INIS)

    Nixon, J.D.; Chapman, E.J.

    1976-01-01

    Over the last twenty years considerable experience has accumulated on the ventilation of buildings handling radioactive materials. It has been recognized that there is a need to establish a UKAEA code of practice in the light of this experience for the future use of designers and operators in this field. This report attempts a lay down some of the principles governing the design of ventilation systems and, from the existing background data, to establish some of the basic design criteria. (author)

  3. Sensor-based demand controlled ventilation

    Energy Technology Data Exchange (ETDEWEB)

    De Almeida, A.T. [Universidade de Coimbra (Portugal). Dep. Eng. Electrotecnica; Fisk, W.J. [Lawrence Berkeley National Lab., CA (United States)

    1997-07-01

    In most buildings, occupancy and indoor pollutant emission rates vary with time. With sensor-based demand-controlled ventilation (SBDCV), the rate of ventilation (i.e., rate of outside air supply) also varies with time to compensate for the changes in pollutant generation. In other words, SBDCV involves the application of sensing, feedback and control to modulate ventilation. Compared to ventilation without feedback, SBDCV offers two potential advantages: (1) better control of indoor pollutant concentrations; and (2) lower energy use and peak energy demand. SBDCV has the potential to improve indoor air quality by increasing the rate of ventilation when indoor pollutant generation rates are high and occupants are present. SBDCV can also save energy by decreasing the rate of ventilation when indoor pollutant generation rates are low or occupants are absent. After providing background information on indoor air quality and ventilation, this report provides a relatively comprehensive discussion of SBDCV. Topics covered in the report include basic principles of SBDCV, sensor technologies, technologies for controlling air flow rates, case studies of SBDCV, application of SBDCV to laboratory buildings, and research needs. SBDCV appears to be an increasingly attractive technology option. Based on the review of literature and theoretical considerations, the application of SBDCV has the potential to be cost-effective in applications with the following characteristics: (a) a single or small number of dominant pollutants, so that ventilation sufficient to control the concentration of the dominant pollutants provides effective control of all other pollutants; (b) large buildings or rooms with unpredictable temporally variable occupancy or pollutant emission; and (c) climates with high heating or cooling loads or locations with expensive energy.

  4. Computer codes for ventilation in nuclear facilities

    International Nuclear Information System (INIS)

    Mulcey, P.

    1987-01-01

    In this paper the authors present some computer codes, developed in the last years, for ventilation and radioprotection. These codes are used for safety analysis in the conception, exploitation and dismantlement of nuclear facilities. The authors present particularly: DACC1 code used for aerosol deposit in sampling circuit of radiation monitors; PIAF code used for modelization of complex ventilation system; CLIMAT 6 code used for optimization of air conditioning system [fr

  5. Perioperative lung protective ventilation in obese patients

    OpenAIRE

    Fernandez-Bustamante, Ana; Hashimoto, Soshi; Serpa Neto, Ary; Moine, Pierre; Vidal Melo, Marcos F; Repine, John E

    2015-01-01

    The perioperative use and relevance of protective ventilation in surgical patients is being increasingly recognized. Obesity poses particular challenges to adequate mechanical ventilation in addition to surgical constraints, primarily by restricted lung mechanics due to excessive adiposity, frequent respiratory comorbidities (i.e. sleep apnea, asthma), and concerns of postoperative respiratory depression and other pulmonary complications. The number of surgical patients with obesity is increa...

  6. Weaning a patient from mechanical ventilation.

    Science.gov (United States)

    Weilitz, P B

    1993-08-01

    The process of weaning a patient from mechanical ventilation is complex. Assessment of respiratory mechanics, oxygenation and ventilation, medical problems, nutrition, physical therapy and psychologic needs are important prior to developing the weaning plan. The weaning technique should be individualized to the patient and may be combined with other techniques for optimal outcome. Successful weaning depends on the nurse's attention to detail, careful assessment of patient responses to weaning trials, and coordination of and collaboration with other healthcare team members.

  7. Healthcare Technology Management (HTM) of mechanical ventilators by clinical engineers

    OpenAIRE

    Yoshioka, Jun; Nakane, Masaki; Kawamae, Kaneyuki

    2014-01-01

    Mechanical ventilator failures expose patients to unacceptable risks, and maintaining mechanical ventilator safety is an important issue. We examined the usefulness of maintaining mechanical ventilators by clinical engineers (CEs) using a specialized calibrator. These evaluations and the ability to make in-house repairs proved useful for obviating the need to rent ventilators which, in turn, might prove faulty themselves. The CEs' involvement in maintaining mechanical ventilators is desirable...

  8. Liquid lung ventilation as an alternative ventilatory support

    OpenAIRE

    Verbrugge, Serge; Gommers, Diederik; Lachmann, Burkhard

    1995-01-01

    textabstractThe concept of liquid ventilation has evolved in recent years into the concept of partial liquid ventilation. In this technique, conventional mechanical ventilation is combined with intratracheal perfluorocarbon administration. Partial liquid ventilation is a promising technique for improving gas exchange during mechanical ventilation in neonatal and acute respiratory distress syndrome. The initial data showed no adverse effects on the cardiovascular system, and histological studi...

  9. Non-invasive ventilation for cystic fibrosis.

    Science.gov (United States)

    Moran, Fidelma; Bradley, Judy M; Piper, Amanda J

    2017-02-20

    Non-invasive ventilation may be a means to temporarily reverse or slow the progression of respiratory failure in cystic fibrosis by providing ventilatory support and avoiding tracheal intubation. Using non-invasive ventilation, in the appropriate situation or individuals, can improve lung mechanics through increasing airflow and gas exchange and decreasing the work of breathing. Non-invasive ventilation thus acts as an external respiratory muscle. This is an update of a previously published review. To compare the effect of non-invasive ventilation versus no non-invasive ventilation in people with cystic fibrosis for airway clearance, during sleep and during exercise. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Register comprising references identified from comprehensive electronic database searches, handsearching relevant journals and abstract books of conference proceedings. We searched the reference lists of each trial for additional publications possibly containing other trials.Most recent search: 08 August 2016. Randomised controlled trials comparing a form of pressure preset or volume preset non-invasive ventilation to no non-invasive ventilation used for airway clearance or during sleep or exercise in people with acute or chronic respiratory failure in cystic fibrosis. Three reviewers independently assessed trials for inclusion criteria and methodological quality, and extracted data. Ten trials met the inclusion criteria with a total of 191 participants. Seven trials evaluated single treatment sessions, one evaluated a two-week intervention, one evaluated a six-week intervention and one a three-month intervention. It is only possible to blind trials of airway clearance and overnight ventilatory support to the outcome assessors. In most of the trials we judged there was an unclear risk of bias with regards to blinding due to inadequate descriptions. The six-week trial was the only one judged to have a low risk of bias for all

  10. Natural ventilation of interconnected boxes

    Science.gov (United States)

    Flynn, Morris R.; Caulfield, Colm P.

    2005-11-01

    We examine the natural ventilation flow which occurs when a source of buoyancy is confined within a forced room with three vents: one low level exterior vent; and high and low level vents to an unforced room, which in turn has a high level exterior vent. This generalizes toward more realistic building planforms the classic single room flow considered by Linden et al. (1990). The steady state flow in the forced room is very similar to the single room case, with a well-mixed buoyant layer whose relative depth is determined purely by the vent geometry. However, it is essential to consider the system's time history to identify even the steady state properties of the flow in the unforced room. The development of a vertically stratified buoyant layer in the unforced room is inevitable; its depth depends in a non-trivial way on the cross-sectional areas of not only all the vents, but also the two rooms. We compare the predictions of a hierarchy of numerical models with the results of analogue laboratory experiments, demonstrating the critical role played by the developing vertical stratification in the unforced room.

  11. Daily Goals Formulation and Enhanced Visualization of Mechanical Ventilation Variance Improves Mechanical Ventilation Score.

    Science.gov (United States)

    Walsh, Brian K; Smallwood, Craig; Rettig, Jordan; Kacmarek, Robert M; Thompson, John; Arnold, John H

    2017-03-01

    The systematic implementation of evidence-based practice through the use of guidelines, checklists, and protocols mitigates the risks associated with mechanical ventilation, yet variation in practice remains prevalent. Recent advances in software and hardware have allowed for the development and deployment of an enhanced visualization tool that identifies mechanical ventilation goal variance. Our aim was to assess the utility of daily goal establishment and a computer-aided visualization of variance. This study was composed of 3 phases: a retrospective observational phase (baseline) followed by 2 prospective sequential interventions. Phase I intervention comprised daily goal establishment of mechanical ventilation. Phase II intervention was the setting and monitoring of daily goals of mechanical ventilation with a web-based data visualization system (T3). A single score of mechanical ventilation was developed to evaluate the outcome. The baseline phase evaluated 130 subjects, phase I enrolled 31 subjects, and phase II enrolled 36 subjects. There were no differences in demographic characteristics between cohorts. A total of 171 verbalizations of goals of mechanical ventilation were completed in phase I. The use of T3 increased by 87% from phase I. Mechanical ventilation score improved by 8.4% in phase I and 11.3% in phase II from baseline ( P = .032). The largest effect was in the low risk V T category, with a 40.3% improvement from baseline in phase I, which was maintained at 39% improvement from baseline in phase II ( P = .01). mechanical ventilation score was 9% higher on average in those who survived. Daily goal formation and computer-enhanced visualization of mechanical ventilation variance were associated with an improvement in goal attainment by evidence of an improved mechanical ventilation score. Further research is needed to determine whether improvements in mechanical ventilation score through a targeted, process-oriented intervention will lead to

  12. Accuracy of tidal volume delivered by home mechanical ventilation during mouthpiece ventilation

    Science.gov (United States)

    Prigent, Helene; Falaize, Line; Leroux, Karl; Santos, Dante; Vaugier, Isabelle; Orlikowski, David; Lofaso, Frederic

    2016-01-01

    The aim of our study was to evaluate efficacy and reliability of currently available ventilators for mouthpiece ventilation (MPV). Five life-support home ventilators were assessed in a bench test using different settings simulating the specificities of MPV, such as intermittent circuit disconnection and presence of continuous leaks. The intermittent disconnection of the circuit caused relevant swings in the delivered tidal volume (VT), showing a VT overshoot during the disconnection periods and a VT decrease when the interface was reconnected to the test lung. The five ventilators showed substantial differences in the number of respiratory cycles necessary to reach a stable VT in the volume-controlled setting, ranging from 1.3 ± 0.6 to 7.3 ± 1.2 cycles. These differences were less accentuated in the volume-assisted setting (MPV-dedicated mode, when available). Our data show large differences in the capacity of the different ventilators to deal with the rapidly changing respiratory load features that characterize MPV, which can be further accentuated according to the used ventilator setting. The dedicated MPV modes allow improvement in the performance of ventilators only in some defined situations. This has practical consequences for the choice of the ventilator to be used for MPV in a specific patient. PMID:27146811

  13. Analysis on ventilation pressure of fire area in longitudinal ventilation of underground tunnel

    Science.gov (United States)

    Li, Jiaxin; Li, Yanfeng; Feng, Xiao; Li, Junmei

    2018-03-01

    In order to solve the problem of ventilation pressure loss in the fire area under the fire condition, the wind pressure loss model of the fire area is established based on the thermodynamic equilibrium relation. The semi-empirical calculation formula is obtained by using the model experiment and CFD simulation. The validity of the formula is verified. The results show that the ventilation pressure loss in the fire zone is proportional to the convective heat release rate at the critical velocity, which is inversely proportional to the upstream ventilation velocity and the tunnel cross-sectional area. The proposed formula is consistent with the law of the tunnel fire test fitting formula that results are close, in contrast, the advantage lies in a clear theoretical basis and ventilation velocity values. The resistance of road tunnel ventilation system is calculated accurately and reliably, and then an effective emergency ventilation operation program is developed. It is necessary to consider the fire zone ventilation pressure loss. The proposed ventilation pressure loss formula can be used for design calculation after thorough verification.

  14. Recommendations for mechanical ventilation of critically ill children from the Paediatric Mechanical Ventilation Consensus Conference (PEMVECC).

    Science.gov (United States)

    Kneyber, Martin C J; de Luca, Daniele; Calderini, Edoardo; Jarreau, Pierre-Henri; Javouhey, Etienne; Lopez-Herce, Jesus; Hammer, Jürg; Macrae, Duncan; Markhorst, Dick G; Medina, Alberto; Pons-Odena, Marti; Racca, Fabrizio; Wolf, Gerhard; Biban, Paolo; Brierley, Joe; Rimensberger, Peter C

    2017-12-01

    Much of the common practice in paediatric mechanical ventilation is based on personal experiences and what paediatric critical care practitioners have adopted from adult and neonatal experience. This presents a barrier to planning and interpretation of clinical trials on the use of specific and targeted interventions. We aim to establish a European consensus guideline on mechanical ventilation of critically children. The European Society for Paediatric and Neonatal Intensive Care initiated a consensus conference of international European experts in paediatric mechanical ventilation to provide recommendations using the Research and Development/University of California, Los Angeles, appropriateness method. An electronic literature search in PubMed and EMBASE was performed using a combination of medical subject heading terms and text words related to mechanical ventilation and disease-specific terms. The Paediatric Mechanical Ventilation Consensus Conference (PEMVECC) consisted of a panel of 15 experts who developed and voted on 152 recommendations related to the following topics: (1) general recommendations, (2) monitoring, (3) targets of oxygenation and ventilation, (4) supportive measures, (5) weaning and extubation readiness, (6) normal lungs, (7) obstructive diseases, (8) restrictive diseases, (9) mixed diseases, (10) chronically ventilated patients, (11) cardiac patients and (12) lung hypoplasia syndromes. There were 142 (93.4%) recommendations with "strong agreement". The final iteration of the recommendations had none with equipoise or disagreement. These recommendations should help to harmonise the approach to paediatric mechanical ventilation and can be proposed as a standard-of-care applicable in daily clinical practice and clinical research.

  15. Hydrostatic Hyperbaric Chamber Ventilation System

    Science.gov (United States)

    Sarguisingh, Miriam J.

    2012-01-01

    The hydrostatic hyperbaric chamber (HHC) represents the merger of several technologies in development for NASA aerospace applications, harnessed to directly benefit global health. NASA has significant experience developing composite hyperbaric chambers for a variety of applications. NASA also has researched the application of water-filled vessels to increase tolerance of acceleration forces. The combination of these two applications has resulted in the hydrostatic chamber, which has been conceived as a safe, affordable means of making hyperbaric oxygen therapy (HBOT) available in the developing world for the treatment of a variety of medical conditions. Specifically, HBOT is highly-desired as a possibly curative treatment for Buruli Ulcer, an infectious condition that afflicts children in sub-Saharan Africa. HBOT is simply too expensive and too dangerous to implement in the developing world using standard equipment. The HHC technology changes the paradigm. The HHC differs from standard hyperbaric chambers in that the majority of its volume is filled with water which is pressurized by oxygen being supplied in the portion of the chamber containing the patient s head. This greatly reduces the amount of oxygen required to sustain a hyperbaric atmosphere, thereby making the system more safe and economical to operate. An effort was taken to develop an HHC system to apply HBOT to children that is simple and robust enough to support transport, assembly, maintenance and operation in developing countries. This paper details the concept for an HHC ventilation and pressurization system to provide controlled pressurization and adequate washout of carbon dioxide while the subject is enclosed in the confined space during the administration of the medical treatment. The concept took into consideration operational complexity, safety to the patient and operating personnel, and physiological considerations. The simple schematic, comprised of easily acquired commercial hardware

  16. Regenerative Blower for EVA Suit Ventilation Fan

    Science.gov (United States)

    Izenson, Michael G.; Chen, Weibo; Paul, Heather L.

    2010-01-01

    Portable life support systems in future space suits will include a ventilation subsystem driven by a dedicated fan. This ventilation fan must meet challenging requirements for pressure rise, flow rate, efficiency, size, safety, and reliability. This paper describes research and development that showed the feasibility of a regenerative blower that is uniquely suited to meet these requirements. We proved feasibility through component tests, blower tests, and design analysis. Based on the requirements for the Constellation Space Suit Element (CSSE) Portable Life Support System (PLSS) ventilation fan, we designed the critical elements of the blower. We measured the effects of key design parameters on blower performance using separate effects tests, and used the results of these tests to design a regenerative blower that will meet the ventilation fan requirements. We assembled a proof-of-concept blower and measured its performance at sub-atmospheric pressures that simulate a PLSS ventilation loop environment. Head/flow performance and maximum efficiency point data were used to specify the design and operating conditions for the ventilation fan. We identified materials for the blower that will enhance safety for operation in a lunar environment, and produced a solid model that illustrates the final design. The proof-of-concept blower produced the flow rate and pressure rise needed for the CSSE ventilation subsystem while running at 5400 rpm, consuming only 9 W of electric power using a non-optimized, commercial motor and controller and inefficient bearings. Scaling the test results to a complete design shows that a lightweight, compact, reliable, and low power regenerative blower can meet the performance requirements for future space suit life support systems.

  17. Fires in large scale ventilation systems

    International Nuclear Information System (INIS)

    Gregory, W.S.; Martin, R.A.; White, B.W.; Nichols, B.D.; Smith, P.R.; Leslie, I.H.; Fenton, D.L.; Gunaji, M.V.; Blythe, J.P.

    1991-01-01

    This paper summarizes the experience gained simulating fires in large scale ventilation systems patterned after ventilation systems found in nuclear fuel cycle facilities. The series of experiments discussed included: (1) combustion aerosol loading of 0.61x0.61 m HEPA filters with the combustion products of two organic fuels, polystyrene and polymethylemethacrylate; (2) gas dynamic and heat transport through a large scale ventilation system consisting of a 0.61x0.61 m duct 90 m in length, with dampers, HEPA filters, blowers, etc.; (3) gas dynamic and simultaneous transport of heat and solid particulate (consisting of glass beads with a mean aerodynamic diameter of 10μ) through the large scale ventilation system; and (4) the transport of heat and soot, generated by kerosene pool fires, through the large scale ventilation system. The FIRAC computer code, designed to predict fire-induced transients in nuclear fuel cycle facility ventilation systems, was used to predict the results of experiments (2) through (4). In general, the results of the predictions were satisfactory. The code predictions for the gas dynamics, heat transport, and particulate transport and deposition were within 10% of the experimentally measured values. However, the code was less successful in predicting the amount of soot generation from kerosene pool fires, probably due to the fire module of the code being a one-dimensional zone model. The experiments revealed a complicated three-dimensional combustion pattern within the fire room of the ventilation system. Further refinement of the fire module within FIRAC is needed. (orig.)

  18. Computer program for sizing residential energy recovery ventilator

    International Nuclear Information System (INIS)

    Koontz, M.D.; Lee, S.M.; Spears, J.W.; Kesselring, J.P.

    1991-01-01

    Energy recovery ventilators offer the prospect of tighter control over residential ventilation rates than manual methods, such as opening windows, with a lesser energy penalty. However, the appropriate size of such a ventilator is not readily apparent in most situations. Sizing of energy recovery ventilation software was developed to calculate the size of ventilator necessary to satisfy ASHRAE Standard 62-1989, Ventilation for Acceptable Air Quality, or a user-specified air exchange rate. Inputs to the software include house location, structural characteristics, house operations and energy costs, ventilation characteristics, and HVAC system COP/efficiency. Based on these inputs, the program estimates the existing air exchange rate for the house, the ventilation rate required to meet the ASHRAE standard or user-specified air exchange rate, the size of the ventilator needed to meet the requirement, and the expected changes in indoor air quality and energy consumption. In this paper an illustrative application of the software is provided

  19. A Porcine Model for Initial Surge Mechanical Ventilator Assessment and Evaluation of Two Limited Function Ventilators

    Science.gov (United States)

    Dickson, Robert P; Hotchkin, David L; Lamm, Wayne JE; Hinkson, Carl; Pierson, David J; Glenny, Robb W; Rubinson, Lewis

    2013-01-01

    Objective To adapt an animal model of acute lung injury for use as a standard protocol for a screening, initial evaluation of limited function, or “surge,” ventilators for use in mass casualty scenarios. Design Prospective, experimental animal study. Setting University research laboratory. Subjects 12 adult pigs. Interventions 12 spontaneously breathing pigs (6 in each group) were subjected to acute lung injury/acute respiratory distress syndrome (ALI/ARDS) via pulmonary artery infusion of oleic acid. Following development of respiratory failure, animals were mechanically ventilated with a limited function ventilator (Simplified Automatic Ventilator [SAVe] I or II; Automedx) for one hour or until the ventilator could not support the animal. The limited function ventilator was then exchanged for a full function ventilator (Servo 900C; Siemens). Measurements and Main Results Reliable and reproducible levels of ALI/ARDS were induced. The SAVe I was unable to adequately oxygenate 5 animals, with PaO2 (52.0 ± 11.1 torr) compared to the Servo (106.0 ± 25.6 torr; p=0.002). The SAVe II was able to oxygenate and ventilate all 6 animals for one hour with no difference in PaO2 (141.8 ± 169.3 torr) compared to the Servo (158.3 ± 167.7 torr). Conclusions We describe a novel in vivo model of ALI/ARDS that can be used to initially screen limited function ventilators considered for mass respiratory failure stockpiles, and is intended to be combined with additional studies to defintively assess appropriateness for mass respiratory failure. Specifically, during this study we demonstrate that the SAVe I ventilator is unable to provide sufficient gas exchange, while the SAVe II, with several more functions, was able to support the same level of hypoxemic respiratory failure secondary to ALI/ARDS for one hour. PMID:21187747

  20. [A comparison of leak compensation in six acute care ventilators during non-invasive ventilation].

    Science.gov (United States)

    Hu, X S; Wang, Y; Wang, Z T; Yan, P; Zhang, X G; Zhao, S F; Xie, F; Gu, H J; Xie, L X

    2017-02-12

    Objective: To compare the ability of leak compensation in 6 medical ventilators during non-invasive ventilation. Methods: Six medical ventilators were selected, including 3 non-invasive ventilators (V60, Flexo and Stellar150), and 3 invasive ventilators(Avea, Servo I and BellaVist). Using a lung simulator, the ability of leak compensation was evaluated during triggering and cycling in 2 respiratory mechanics conditions (high airway resistance condition and high elastance resistance condition), and each condition was performed under 2 PEEP levels (4, and 8 cmH(2)O, 1 mmHg=0.098 kPa) at 4 air leak level conditions (L0: 2-3 L/min, L1: 8-10 L/min, L2: 22-27 L/min, L3: 35-40 L/min). Results: In the high elastance resistance condition (L2, L3)with different leak levels, the number of auto-triggering and miss-triggering of the non-invasive ventilator Flexo was significantly less than those of the others (L2: 1, 1; L3: 1.67, 1.33, P ventilators ( P ventilators (1, 0.67, 0, P ventilators in both high airway resistance and high elastance resistance conditions with L0 and L1 leak levels and PEEP levels [ARDS, PEEP=4: (109.8±1.8) ms, (112.0±0.6) ms; ARDS, PEEP=8: (103.1±0.7) ms, (109.7±0.7) ms; COPD, PEEP=4: (207.3±1.1) ms, (220.8±1.1) ms; COPD, PEEP=8: (195.6±6.7) ms, (200.0±1.2) ms , P ventilators could be synchronized, among which V60, Stellar150 and Flexo presented a good performance features in specific conditions.

  1. WASTE HANDLING BUILDING VENTILATION SYSTEM DESCRIPTION DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    P.A. Kumar

    2000-06-21

    The Waste Handling Building Ventilation System provides heating, ventilation, and air conditioning (HVAC) for the contaminated, potentially contaminated, and uncontaminated areas of the Monitored Geologic Repository's (MGR) Waste Handling Building (WHB). In the uncontaminated areas, the non-confinement area ventilation system maintains the proper environmental conditions for equipment operation and personnel comfort. In the contaminated and potentially contaminated areas, in addition to maintaining the proper environmental conditions for equipment operation and personnel comfort, the contamination confinement area ventilation system directs potentially contaminated air away from personnel in the WHB and confines the contamination within high-efficiency particulate air (HEPA) filtration units. The contamination confinement areas ventilation system creates airflow paths and pressure zones to minimize the potential for spreading contamination within the building. The contamination confinement ventilation system also protects the environment and the public by limiting airborne releases of radioactive or other hazardous contaminants from the WHB. The Waste Handling Building Ventilation System is designed to perform its safety functions under accident conditions and other Design Basis Events (DBEs) (such as earthquakes, tornadoes, fires, and loss of the primary electric power). Additional system design features (such as compartmentalization with independent subsystems) limit the potential for cross-contamination within the WHB. The system provides status of important system parameters and equipment operation, and provides audible and/or visual indication of off-normal conditions and equipment failures. The Waste Handling Building Ventilation System confines the radioactive and hazardous material within the building such that the release rates comply with regulatory limits. The system design, operations, and maintenance activities incorporate ALARA (as low as is

  2. Ventilation system for 99Mo production apparatus

    International Nuclear Information System (INIS)

    Izumo, Mishiroku; Okane, Shougo; Sorita, Takami; Aoyama, Saburou

    1978-04-01

    In production of 20 Ci 99 Mo from 235 U fission, about 120 Ci of radioiodine ( 131 I, 132 I, and 133 I) is involved. To remove airborne radioiodine from the exhaust air from production apparatus and minimize radioiodine release to the atmosphere, the ventilation system is equipped with 2 units of Model-FD charcoal filter (KI 3 -Impregnated charcoal 2 inch thick of Barnebey-Cheney Co.). From September 1976 to December 1977, 21 runs of 99 Mo production involving airborne radioiodine were carried out. The ventilation system was operated continuously for the whole 15 months period; variation in removal efficiency of airborne radioiodine from the exhaust air stream was observed. In the runs valuable experiences were gained in operation and maintenance of the ventilation system including activated charcoal filter and health-physics management of such facility. Following are the results: (1) Airborne radioiodine from 99 Mo production apparatus is reduced to 10 -3 % of the original quantity. (2) When the ventilation system is operated at a maximum air flow rate through the filter, the average efficiency during 15 months is over 98%. (3) Airborne radioiodine released from 99 Mo production apparatus to the ventilation system is less than 5% particulate iodine and alkyl iodines and more than 95% inorganic iodine. (4) Airborne radioiodine released from the stack is less than 28 μCi/run, which is below the limit in regulations on Radioisotope Production Laboratory. (auth.)

  3. Underground ventilation remote monitoring and control system

    International Nuclear Information System (INIS)

    Strever, M.T.; Wallace, K.G. Jr.; McDaniel, K.H.

    1995-01-01

    This paper presents the design and installation of an underground ventilation remote monitoring and control system at the Waste Isolation Pilot Plant. This facility is designed to demonstrate safe underground disposal of U.S. defense generated transuranic nuclear waste. To improve the operability of the ventilation system, an underground remote monitoring and control system was designed and installed. The system consists of 15 air velocity sensors and 8 differential pressure sensors strategically located throughout the underground facility providing real-time data regarding the status of the ventilation system. In addition, a control system was installed on the main underground air regulators. The regulator control system gives indication of the regulator position and can be controlled either locally or remotely. The sensor output is displayed locally and at a central surface location through the site-wide Central Monitoring System (CMS). The CMS operator can review all sensor data and can remotely operate the main underground regulators. Furthermore, the Virtual Address Extension (VAX) network allows the ventilation engineer to retrieve real-time ventilation data on his personal computer located in his workstation. This paper describes the types of sensors selected, the installation of the instrumentation, and the initial operation of the remote monitoring system

  4. Optimized mine ventilation on demand (OMVOD)

    International Nuclear Information System (INIS)

    Anderson, M.

    2009-01-01

    This paper provided an overview of the Optimized Mine Ventilation on Demand (OMVOD) system that is being installed at Xstrata Nickel Rim South Project and at Vale Inco's Totten Mine in Sudbury. The OMVOD system is designed to dynamically monitor and control air quality and quantity in real time and dilute and remove hazardous substances including diesel particulate matter (DPM), carbon monoxide (CO) and nitrous oxide (NO 2 ). It is also designed to control the thermal environment and provide ventilation for humans as well as mobile equipment engine combustion according to regulatory standards. The paper highlighted the OMVOD system optimization of energy, air quality measurement and control and production management of the mines through real time dynamic automation. Topics of discussion included real-time tracking and monitoring of diesel equipment; real-time tracking of underground miners; real-time evaluation of mine ventilation networks; and real-time control and optimization of ventilation equipment. ABB and Simsmart Technologies have joined forces to provide underground mining customers with a ventilation optimization solution. Simsmart's OMVOD provides proven real time/dynamic automation technology to significantly reduce energy costs, provide health and safety benefits as well as major capital cost savings while realizing an increase in production.

  5. Computational fluid dynamics in ventilation: Practical approach

    Science.gov (United States)

    Fontaine, J. R.

    The potential of computation fluid dynamics (CFD) for conceiving ventilation systems is shown through the simulation of five practical cases. The following examples are considered: capture of pollutants on a surface treating tank equipped with a unilateral suction slot in the presence of a disturbing air draft opposed to suction; dispersion of solid aerosols inside fume cupboards; performances comparison of two general ventilation systems in a silkscreen printing workshop; ventilation of a large open painting area; and oil fog removal inside a mechanical engineering workshop. Whereas the two first problems are analyzed through two dimensional numerical simulations, the three other cases require three dimensional modeling. For the surface treating tank case, numerical results are compared to laboratory experiment data. All simulations are carried out using EOL, a CFD software specially devised to deal with air quality problems in industrial ventilated premises. It contains many analysis tools to interpret the results in terms familiar to the industrial hygienist. Much experimental work has been engaged to validate the predictions of EOL for ventilation flows.

  6. Control strategies for demand controlled ventilation in dwellings

    DEFF Research Database (Denmark)

    Nielsen, Toke Rammer; Drivsholm, Christian

    2011-01-01

    Ventilation of Danish and many other European dwellings has in the past mainly been achieved by natural ventilation or mechanical exhaust systems. Requirements for energy efficiency is changing this picture and mechanical ventilation with balanced exhaust and supply, efficient heat recovery...... high. Too low ventilation rate results in poor air quality for the occupants and moisture risk. Too high ventilation rate results in unnecessary energy consumption. This paper presents results from a study where demand controlled ventilation was installed in an existing single family house...

  7. Increasing ventilator surge capacity in disasters: ventilation of four adult-human-sized sheep on a single ventilator with a modified circuit.

    Science.gov (United States)

    Paladino, Lorenzo; Silverberg, Mark; Charchaflieh, Jean G; Eason, Julie K; Wright, Brian J; Palamidessi, Nicholas; Arquilla, Bonnie; Sinert, Richard; Manoach, Seth

    2008-04-01

    Recent manmade and natural disasters have focused attention on the need to provide care to large groups of patients. Clinicians, ethicists, and public health officials have been particularly concerned about mechanical ventilator surge capacity and have suggested stock-piling ventilators, rationing, and providing manual ventilation. These possible solutions are complex and variously limited by legal, monetary, physical, and human capital restraints. We conducted a study to determine if a single mechanical ventilator can adequately ventilate four adult-human-sized sheep for 12h. We utilized a four-limbed ventilator circuit connected in parallel. Four 70-kg sheep were intubated, sedated, administered neuromuscular blockade and placed on a single ventilator for 12h. The initial ventilator settings were: synchronized intermittent mandatory ventilation with 100% oxygen at 16 breaths/min and tidal volume of 6 ml/kg combined sheep weight. Arterial blood gas, heart rate, and mean arterial pressure measurements were obtained from all four sheep at time zero and at pre-determined times over the course of 12h. The ventilator and modified circuit successfully oxygenated and ventilated the four sheep for 12h. All sheep remained hemodynamically stable. It is possible to ventilate four adult-human-sized sheep on a single ventilator for at least 12h. This technique has the potential to improve disaster preparedness by expanding local ventilator surge capacity until emergency supplies can be delivered from central stockpiles. Further research should be conducted on ventilating individuals with different lung compliances and on potential microbial cross-contamination.

  8. [Methodology in non-invasive ventilation].

    Science.gov (United States)

    Gómez Grande, M L; Abdel-Hadi Alvarez, H; Martínez Migallón, M; Del Campo Tejedor, R

    2008-01-01

    Objective during the application of noninvasive ventilation (NIV) in acute respiratory failure is, as occurs in conventional mechanical ventilation, to improve gas exchange. Expiratory pressure is applied to favour recruitment of collapsed alveoli, improving oxygenation. Inspiratory pressure use on airway aids respiratory muscle rest and decrease respiratory work, which has a direct repercussion in decreasing oxygen consumption. The NIV preserves defence mechanisms of the patients airway intact, which noticeably decreases appearance of mechanical ventilation associated pneumonia, with subsequent benefit in health care cost, stay and morbidity-mortality. We have reviewed the literature available regarding respiratory modes used in NIV, patient monitoring, humidification, and inhaled drug administration. However, the benefits of NIV are obtained when success of the technique is reached; this is depending on patients' collaboration, adequate indication, underlying disease, material resources available, and mainly, training and dedication of the personnel applying the respiratory support.

  9. Carbon dioxide production during mechanical ventilation

    DEFF Research Database (Denmark)

    Henneberg, S; Söderberg, D; Groth, T

    1987-01-01

    studied CO2 production (VCO2) and oxygen consumption (VO2) in mechanically ventilated ICU patients, where CO2 stores were altered by: a) changing minute ventilation by 15%, b) reducing body temperature, and c) changing the level of sedation. Expired gases went through a mixing chamber and were analyzed......Because of large stores of CO2 in different body tissues, metabolic change cannot be detected by measuring gas exchange until the CO2 stores have adapted to the new situation. Similarly, changes in the CO2 stores not due to metabolic alterations, may lead to error in gas exchange measurements. We...... were obtained by computer simulation using a five-compartment model of CO2 stores. These experiments indicate that measuring VO2 (for calculation of metabolic respiratory quotient [RQ]) in ventilated patients should occur after the patients maintain a 60-min period of stable body temperature...

  10. Optimized ventilation-on-demand (VOD)

    Energy Technology Data Exchange (ETDEWEB)

    Masse, M. [Simsmart Technologies Inc., Brossard, PQ (Canada); Cervinka, A. [Newtrax Technologies Inc., Montreal, PQ (Canada)

    2008-07-01

    This presentation described how the combination of 2 innovative technologies can help optimize mine ventilation. Newtrax Technologies has developed a self-contained battery-powered wireless electronic system designed to operate in harsh industrial environments, including underground mines. Simsmart Technologies has created an advanced process and control simulation based design tool used in industrial applications, including mine ventilation systems. This presentation described the system components and how they work. These included the wireless mesh network designed for dynamic diesel machinery tracking and operating status monitoring; the real-time ventilation model and fan speed optimizer; the OPC server for information interchange; the OPC linkage to existing control infrastructure; a human machine interface that provide data archiving capability; live MS-Excel to interrogate the simulation, controls and optimizer; and, the battery-powered network mesh that provides SCADA functionality to route optimized setpoints. Details of the user interface were also provided. 1 tab., 20 figs.

  11. Ventilation safety of facilities comprising nuclear reactors

    International Nuclear Information System (INIS)

    Guirlet, J.

    1982-01-01

    The reliability of the ventilation is one of the most important aspects in the prevention of the nuisances that a nuclear installation can provide, since the ventilation is located at the last barrier. A certain number of essential points have been recalled here. But it is necessary to bear in mind other requirements such as the limitation in the number of crossovers, the answers to be found should the system fail, the need to show that ventilation systems do not in themselves bring other nuisances such as noise, irradiation or contamination hazards, likelyhood of recycling the contamination, vibrations, fire. Finally, it is absolutely essential, right from the project stage, that the design ensures that very good accessibility, very easy dismantling and handling, as well as all the facilities needed to make sure of the initial and periodic tests, are guaranteed [fr

  12. Improving comfort and health with personalized ventilation

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor

    2004-01-01

    microenvironment. Furthermore, HVAC systems should be designed to protect occupants from airborne transmission of infectious agents that may be present in exhaled air. Personalized ventilation is a new development in the field of HVAC and has the potential to fulfil the above requirements. This paper reviews......The thermal environment and air quality in buildings affects occupants¿ health, comfort and performance. The heating, ventilating and air-conditioning (HVAC) of buildings today is designed to provide a uniform room environment. However, large individual differences exist between occupants in regard...... existing knowledge on performance of personalized ventilation (PV) and on human response to it. The airflow interaction in the vicinity of the human body is analysed and its impact on thermal comfort and inhaled air quality is discussed together with control strategies and the application of PV in practice...

  13. Personal Exposure in Displacement Ventilated Rooms

    DEFF Research Database (Denmark)

    Brohus, Henrik; Nielsen, Peter Vilhelm

    1996-01-01

    Personal exposure in a displacement ventilated room is examined. The stratified flow and the considerable concentration gradients necessitate an improvement of the widely used fully mixing compartmental approach. The exposure of a seated and a standing person in proportion to the stratification...... height is examined by means of full-scale measurements. A breathing thermal manikin is used to simulate a person. It is found that the flow in the boundary layer around a person is able to a great extent to entrain and transport air from below the breathing zone. In the case of non-passive, heated...... in the lower part of the room close to the occupant. A personal exposure model for displacement ventilated rooms is proposed. The model takes the influence of gradients and the human thermal boundary layer into account. Two new quantities describing the interaction between a person and the ventilation...

  14. Cellular phone interference with the operation of mechanical ventilators.

    Science.gov (United States)

    Shaw, Cheryl I; Kacmarek, Robert M; Hampton, Rickey L; Riggi, Vincent; El Masry, Ashraf; Cooper, Jeffrey B; Hurford, William E

    2004-04-01

    To determine whether a cellular phone would interfere with the operation of mechanical ventilators. Laboratory study. University medical center. Fourteen mechanical ventilators. We evaluated change in operation and malfunction of the mechanical ventilators. The cellular phone (Nokia 6120i) was computer controlled, operating at 828.750 MHz analog modulation. It was operated at 16, 40, 100, 250, and 600 mW, 30 cm from the floor and 30, 15, and ventilator. Six of the 14 ventilators tested malfunctioned when a cellular phone at maximum power output was placed ventilating when the cellular phone at maximum power output was placed ventilator. One ventilator doubled the ventilatory rate and another increased the displayed tidal volume from 350 to 1033 mL. In one of the infant ventilators, displayed tidal volume increased from 21 to 100 mL. In another ventilator, the high respiratory rate alarm sounded but the rate had not changed. In a controlled laboratory setting, cellular phones placed in close proximity to some commercially available intensive care ventilators can cause malfunctions, including irrecoverable cessation of ventilation. This is most likely to occur if the cellular phone is or =3 feet from all medical devices. The current electromagnetic compatibility standards for mechanical ventilators are inadequate to prevent malfunction. Manufacturers should ensure that their products are not affected by wireless technology even when placed immediately next to the device.

  15. A regulator for pressure-controlled total-liquid ventilation.

    Science.gov (United States)

    Robert, Raymond; Micheau, Philippe; Avoine, Olivier; Beaudry, Benoit; Beaulieu, Alexandre; Walti, Hervé

    2010-09-01

    Total-liquid ventilation (TLV) is an innovative experimental method of mechanical-assisted ventilation in which lungs are totally filled and then ventilated with a tidal volume of perfluorochemical liquid by using a dedicated liquid ventilator. Such a novel medical device must resemble other conventional ventilators: it must be able to conduct controlled-pressure ventilation. The objective was to design a robust controller to perform pressure-regulated expiratory flow and to implement it on our latest liquid-ventilator prototype (Inolivent-4). Numerical simulations, in vitro experiments, and in vivo experiments in five healthy term newborn lambs have demonstrated that it was efficient to generate expiratory flows while avoiding collapses. Moreover, the in vivo results have demonstrated that our liquid ventilator can maintain adequate gas exchange, normal acid-base equilibrium, and achieve greater minute ventilation, better oxygenation and CO2 extraction, while nearing flow limits. Hence, it is our suggestion to perform pressure-controlled ventilation during expiration with minute ventilation equal or superior to 140 mL x min(-1) x kg(-1) in order to ensure PaCO2 below 55 mmHg. From a clinician's point of view, pressure-controlled ventilation greatly simplifies the use of the liquid ventilator, which will certainly facilitate its introduction in intensive care units for clinical applications.

  16. Factors Predicting Ventilator Dependence in Patients with Ventilator-Associated Pneumonia

    Directory of Open Access Journals (Sweden)

    Chia-Cheng Tseng

    2012-01-01

    Full Text Available Objectives. To determine risk factors associated with ventilator dependence in patients with ventilator-associated pneumonia (VAP. Study Design. A retrospective study was conducted at Chang Gung Memorial Hospital, Kaohsiung, from January 1, 2007 to January 31, 2008. Methods. This study evaluated 163 adult patients (aged ≥18 years. Eligibility was evaluated according to the criterion for VAP, Sequential Organ Failure Assessment (SOFA score, Acute Physiological Assessment and Chronic Health Evaluation II (APACHE II score. Oxygenation index, underlying comorbidities, septic shock status, previous tracheostomy status, and factors related to pneumonia were collected for analysis. Results. Of the 163 VAP patients in the study, 90 patients survived, yielding a mortality rate of 44.8%. Among the 90 surviving patients, only 36 (40% had been weaned off ventilators at the time of discharge. Multivariate logistic regression analysis was used to identify underlying factors such as congestive cardiac failure (P=0.009, initial high oxygenation index value (P=0.04, increased SOFA scores (P=0.01, and increased APACHE II scores (P=0.02 as independent predictors of ventilator dependence. Results from the Kaplan-Meier method indicate that initial therapy with antibiotics could increase the ventilator weaning rate (log Rank test, P<0.001. Conclusions. Preexisting cardiopulmonary function, high APACHE II and SOFA scores, and high oxygenation index were the strongest predictors of ventilator dependence. Initial empiric antibiotic treatment can improve ventilator weaning rates at the time of discharge.

  17. Toothbrushing may reduce ventilator-associated pneumonia.

    Science.gov (United States)

    Yusuf, Huda

    2013-09-01

    The databases Embase, Medline, CINAHL, the Cochrane Central Register of Controlled Trials, the Cochrane Database of Systematic Reviews, clinical trials.gov and controlled-trials.com were searched. Reference lists of reviewed articles and eligible trials were also searched, and toothpaste and toothbrush manufactures were contacted. Randomised controlled trials in adults over 18 years receiving mechanical ventilation were included where any kind of oral care involving toothbrushing was compared with any other kind of oral care or control with or without toothbrushing. Data were extracted in duplicate and quality assessed using the Cochrane risk of bias tool. The results were combined using a random effects model. The main outcome was VAP. Six trials involving a total of 1408 patients were included. The risk of bias was high in four trials, low in one and unclear in the other. In four trials, there was a trend toward lower ventilator-associated pneumonia rates (risk ratio, 0.77; 95% confidence interval, 0.50-1.21; p = 0.26). The only trial with low risk of bias suggested that toothbrushing significantly reduced ventilator-associated pneumonia (risk ratio, 0.26; 95% confidence interval, 0.10-0.67; p = 0.006). Use of chlorhexidine antisepsis seems to attenuate the effect of toothbrushing on ventilator-associated pneumonia (p for the interaction = 0.02). One trial comparing electric vs. manual toothbrushing showed no difference in ventilator-associated pneumonia rates (risk ratio, 0.96; 95% confidence interval, 0.47-1.96; p = 0.91). Toothbrushing did not impact on length of ICU stay, or ICU or hospital mortality. In summary, randomised trials to date show that toothbrushing is associated with a trend toward lower rates of VAP in intubated, mechanically ventilated critically ill patients. There is no clear difference between electric and manual toothbrushing. Toothbrushing has no effect on ICU mortality, hospital mortality, or ICU length of stay.

  18. Noninvasive ventilation in acute respiratory failure

    Directory of Open Access Journals (Sweden)

    Mas A

    2014-08-01

    Full Text Available Arantxa Mas, Josep MasipCritical Care Department, Consorci Sanitari Integral (CSI, Hospital Sant Joan Despí Moisès Broggi and Hospital General de l’Hospitalet, University of Barcelona, Barcelona, SpainAbstract: After the institution of positive-pressure ventilation, the use of noninvasive ventilation (NIV through an interface substantially increased. The first technique was continuous positive airway pressure; but, after the introduction of pressure support ventilation at the end of the 20th century, this became the main modality. Both techniques, and some others that have been recently introduced and which integrate some technological innovations, have extensively demonstrated a faster improvement of acute respiratory failure in different patient populations, avoiding endotracheal intubation and facilitating the release of conventional invasive mechanical ventilation. In acute settings, NIV is currently the first-line treatment for moderate-to-severe chronic obstructive pulmonary disease exacerbation as well as for acute cardiogenic pulmonary edema and should be considered in immunocompromised patients with acute respiratory insufficiency, in difficult weaning, and in the prevention of postextubation failure. Alternatively, it can also be used in the postoperative period and in cases of pneumonia and asthma or as a palliative treatment. NIV is currently used in a wide range of acute settings, such as critical care and emergency departments, hospital wards, palliative or pediatric units, and in pre-hospital care. It is also used as a home care therapy in patients with chronic pulmonary or sleep disorders. The appropriate selection of patients and the adaptation to the technique are the keys to success. This review essentially analyzes the evidence of benefits of NIV in different populations with acute respiratory failure and describes the main modalities, new devices, and some practical aspects of the use of this technique. Keywords

  19. Advanced design of local ventilation systems

    Energy Technology Data Exchange (ETDEWEB)

    Kulmala, I. [VTT Manufacturing Technology, Espoo (Finland). Safety Technology

    1997-12-31

    Local ventilation is widely used in industry for controlling airborne contaminants. However, the present design practices of local ventilation systems are mainly based on empirical equations and do not take quantitatively into account the various factors affecting the performance of these systems. The aim of this study was to determine the applicability and limitations of more advanced fluid mechanical methods to the design and development of local ventilation systems. The most important factors affecting the performance of local ventilation systems were determined and their effect was studied in a systematic manner. The numerical calculations were made with the FLUENT computer code and they were verified by laboratory experiments, previous measurements or analytical solutions. The results proved that the numerical calculations can provide a realistic simulation of exhaust openings, effects of ambient air flows and wake regions. The experiences with the low-velocity local supply air showed that these systems can also be modelled fairly well. The results were used to improve the efficiency and thermal comfort of a local ventilation unit and to increase the effective control range of exhaust hoods. In the simulation of the interaction of a hot buoyant source and local exhaust, the predicted capture efficiencies were clearly higher than those observed experimentally. The deviations between measurements and non-isothermal flow calculations may have partly been caused by the inability to achieve grid independent solutions. CFD simulations is an advanced and flexible tool for designing and developing local ventilation. The simulations can provide insight into the time-averaged flow field which may assist us in understanding the observed phenomena and to explain experimental results. However, for successful calculations the applicability and limitations of the models must be known. (orig.) 78 refs.

  20. Ventilation-perfusion distribution in normal subjects.

    Science.gov (United States)

    Beck, Kenneth C; Johnson, Bruce D; Olson, Thomas P; Wilson, Theodore A

    2012-09-01

    Functional values of LogSD of the ventilation distribution (σ(V)) have been reported previously, but functional values of LogSD of the perfusion distribution (σ(q)) and the coefficient of correlation between ventilation and perfusion (ρ) have not been measured in humans. Here, we report values for σ(V), σ(q), and ρ obtained from wash-in data for three gases, helium and two soluble gases, acetylene and dimethyl ether. Normal subjects inspired gas containing the test gases, and the concentrations of the gases at end-expiration during the first 10 breaths were measured with the subjects at rest and at increasing levels of exercise. The regional distribution of ventilation and perfusion was described by a bivariate log-normal distribution with parameters σ(V), σ(q), and ρ, and these parameters were evaluated by matching the values of expired gas concentrations calculated for this distribution to the measured values. Values of cardiac output and LogSD ventilation/perfusion (Va/Q) were obtained. At rest, σ(q) is high (1.08 ± 0.12). With the onset of ventilation, σ(q) decreases to 0.85 ± 0.09 but remains higher than σ(V) (0.43 ± 0.09) at all exercise levels. Rho increases to 0.87 ± 0.07, and the value of LogSD Va/Q for light and moderate exercise is primarily the result of the difference between the magnitudes of σ(q) and σ(V). With known values for the parameters, the bivariate distribution describes the comprehensive distribution of ventilation and perfusion that underlies the distribution of the Va/Q ratio.

  1. The growing role of noninvasive ventilation in patients requiring prolonged mechanical ventilation.

    Science.gov (United States)

    Hess, Dean R

    2012-06-01

    For many patients with chronic respiratory failure requiring ventilator support, noninvasive ventilation (NIV) is preferable to invasive support by tracheostomy. Currently available evidence does not support the use of nocturnal NIV in unselected patients with stable COPD. Several European studies have reported benefit for high intensity NIV, in which setting of inspiratory pressure and respiratory rate are selected to achieve normocapnia. There have also been studies reporting benefit for the use of NIV as an adjunct to exercise training. NIV may be useful as an adjunct to airway clearance techniques in patients with cystic fibrosis. Accumulating evidence supports the use of NIV in patients with obesity hypoventilation syndrome. There is considerable observational evidence supporting the use of NIV in patients with chronic respiratory failure related to neuromuscular disease, and one randomized controlled trial reported that the use of NIV was life-prolonging in patients with amyotrophic lateral sclerosis. A variety of interfaces can be used to provide NIV in patients with stable chronic respiratory failure. The mouthpiece is an interface that is unique in this patient population, and has been used with success in patients with neuromuscular disease. Bi-level pressure ventilators are commonly used for NIV, although there are now a new generation of intermediate ventilators that are portable, have a long battery life, and can be used for NIV and invasive applications. Pressure support ventilation, pressure controlled ventilation, and volume controlled ventilation have been used successfully for chronic applications of NIV. New modes have recently become available, but their benefits await evidence to support their widespread use. The success of NIV in a given patient population depends on selection of an appropriate patient, selection of an appropriate interface, selection of an appropriate ventilator and ventilator settings, the skills of the clinician, the

  2. Determinants of Receiving Palliative Care and Ventilator Withdrawal Among Patients With Prolonged Mechanical Ventilation.

    Science.gov (United States)

    Chen, Yang-Ching; Fan, Hsien-Yu; Curtis, J Randall; Lee, Oscar Kuang-Sheng; Liu, Chih-Kuang; Huang, Sheng-Jean

    2017-10-01

    Increasing numbers of patients with prolonged mechanical ventilation generates a tremendous strain on healthcare systems. Patients with prolonged mechanical ventilation suffer from long-term poor quality of life. However, no study has ever explored the willingness to receive palliative care or terminal withdrawal and the factors influencing willingness. Cross-sectional study. Five different hospitals of Taipei City Hospital system. Adult patients with ventilatory support for more than 60 days. None. We identified the family members of 145 consecutive patients with prolonged mechanical ventilation in five hospitals of Taipei City Hospital system and enrolled family members for 106 patients (73.1%). We collected information from patient families' regarding concepts (knowledge, attitude, and experiences) of palliative care, caregiver burden, family function, patient quality of life, and physician-family communications. From the medical record, we obtained duration of hospitalization, consciousness level, disease severity, medical cost, and the presence of do-not-resuscitate orders. The vast majority of family members agreed with the concept of palliative care (90.4%) with 17.3% of the family members agreeing to ventilator withdrawal currently and 67.5% terminally in anticipation of death. Approximately half of the family members regretted having chosen prolonged mechanical ventilation (56.7%). Reduced patient quality of life and increased family understanding of palliative care significantly associated with increased caregiver willingness to endorse palliative care and withdraw life-sustaining agents in anticipation of death. Longer duration of ventilator usage and hospitalization was associated with increased feelings of regret about choosing prolonged mechanical ventilation. During prolonged mechanical ventilation, physicians should thoroughly discuss its benefits and burdens. Families should be given the opportunity to discuss the circumstances under which they

  3. Preoperational test report, recirculation ventilation systems

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, F.T.

    1997-11-11

    This represents a preoperational test report for Recirculation Ventilation Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system provides vapor space cooling of tanks AY1O1, AY102, AZ1O1, AZ102 and supports the ability to exhaust air from each tank. Each system consists of a valved piping loop, a fan, condenser, and moisture separator; equipment is located inside each respective tank farm in its own hardened building. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  4. Sedation and analgesia to facilitate mechanical ventilation.

    Science.gov (United States)

    Nemergut, Michael E; Yaster, Myron; Colby, Christopher E

    2013-09-01

    Regardless of age, health care professionals have a professional and ethical obligation to provide safe and effective analgesia to patients undergoing painful procedures. Historically, newborns, particularly premature and sick infants, have been undertreated for pain. Intubation of the trachea and mechanical ventilation are ubiquitous painful procedures in the neonatal intensive care unit that are poorly assessed and treated. The authors review the use of sedation and analgesia to facilitate endotracheal tube placement and mechanical ventilation. Controversies regarding possible adverse neurodevelopmental outcomes after sedative and anesthetic exposure and in the failure to treat pain is also discussed. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Short Term Airing by Natural Ventilation

    DEFF Research Database (Denmark)

    Heiselberg, Per; Perino, M.

    2010-01-01

    principles is necessary. The present study analyses and presents the results of an experimental evaluation of airing performance in terms of ventilation characteristics, IAQ and thermal comfort. It includes investigations of the consequences of opening time, opening frequency, opening area and expected...... airflow rate, ventilation efficiency, thermal comfort and dynamic temperature conditions. A suitable laboratory test rig was developed to perform extensive experimental analyses of the phenomenon under controlled and repeatable conditions. The results showed that short-term window airing is very effective...... and can provide both acceptable IAQ and thermal comfort conditions in buildings....

  6. No-sedation during mechanical ventilation

    DEFF Research Database (Denmark)

    Laerkner, Eva; Stroem, Thomas; Toft, Palle

    2016-01-01

    patients with daily wake up, and also to estimate economic consequences of a no-sedation strategy. DESIGN AND METHODS: Data were collected during a prospective trial of 140 mechanically ventilated patients randomized to either no-sedation or to sedation with daily wake up. From day 1 to 7 in the intensive......BACKGROUND: Evidence is growing that less or no-sedation is possible and beneficial for patients during mechanical ventilation. AIM: To investigate if there was a difference in patient consciousness and nursing workload comparing a group of patients receiving no-sedation with a group of sedated...

  7. Efficient ventilation in school buildings. Design guidebook; Ventilation performante dans les ecoles. Guide de conception

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This guidebook aims at giving practical advices for the design of ventilation systems for school buildings in order to maintain air quality levels and energy consumptions conformable with the real needs: 1 - the specific problem of schools (various types of rooms, particular indoor pollutions); 2 - main criteria to consider (air quality and hygiene, hygro-thermal comfort, ventilation efficiency, acoustic comfort, energy mastery); 3 - main existing solutions (simple-flux blow-off or blow-in mechanical ventilation systems, dual-flux systems, air conditioning systems); 4 - choice of an adapted solution (selection criteria, global solution for the school); setting-up and follow-up (rules, training, maintenance). (J.S.)

  8. Dimensionless study on dynamics of pressure controlled mechanical ventilation system

    International Nuclear Information System (INIS)

    Shi, Yan; Niu, Jinglong; Cai, Maolin; Xu, Weiqing

    2015-01-01

    Dynamics of mechanical ventilation system can be referred in pulmonary diagnostics and treatments. In this paper, to conveniently grasp the essential characteristics of mechanical ventilation system, a dimensionless model of mechanical ventilation system is presented. For the validation of the mathematical model, a prototype mechanical ventilation system of a lung simulator is proposed. Through the simulation and experimental studies on the dimensionless dynamics of the mechanical ventilation system, firstly, the mathematical model is proved to be authentic and reliable. Secondly, the dimensionless dynamics of the mechanical ventilation system are obtained. Last, the influences of key parameters on the dimensionless dynamics of the mechanical ventilation system are illustrated. The study provides a novel method to study the dynamic of mechanical ventilation system, which can be referred in the respiratory diagnostics and treatment.

  9. Hypoxia in a neonate caused by intermittent positive pressure ventilation.

    OpenAIRE

    Beddis, I R; Silverman, M

    1980-01-01

    A newborn baby receiving mechanical ventilation was noted to have an extremely variable degree of hypoxia, despite the administration of 100% oxygen. The hypoxia was relieved rapidly when mechanical ventilation was withdrawn.

  10. Lung Transplantation for Ventilator-Dependent Respiratory Failure

    NARCIS (Netherlands)

    Vermeijden, J. Wytze; Zijlstra, Jan G.; Erasmus, Michiel E.; van der Bij, Wim; Verschuuren, Erik A.

    Introduction: Lung transplantation of patients on mechanical ventilation is controversial, but successful transplantation of these patients has been reported. This report describes our institutional experience with lung transplantation of mechanically Ventilated patients since 2003. Methods: A

  11. 46 CFR 153.316 - Special cargo pumproom ventilation rate.

    Science.gov (United States)

    2010-10-01

    ... CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Handling Space Ventilation § 153.316 Special cargo pumproom ventilation rate. When Table 1...

  12. Ventilation systems in houses. Special issue; Woonhuisventilatie. Special

    Energy Technology Data Exchange (ETDEWEB)

    Op ' t Veld, P.; Van der Aa, A. [Cauberg-Huygen Raadgevend Ingenieurs, Rotterdam (Netherlands); Verschoor, M.J.E. [Afdeling Koudetechniek en Warmtepompen, TNO Milieu, Energie en Procesinnovatie TNO-MEP, Apeldoorn (Netherlands); Van Gulik, L.H. [Itho, Scheidam (Netherlands); Van der Mark, K.; Overman, P. [AGPO, Breda (Netherlands); Roemer, J.C.; Schuitema, R. [ECN Duurzame Energie in de Gebouwde Omgeving DEGO, Petten (Netherlands); Weterings, M. [GGD voor Rotterdam e.o., Rotterdam (Netherlands); Rosenmai, T.; Rasmussen, S. [Copenhagen Business School, Copenhagen (Denmark); Vollebregt, R. [Bureau Kent, Utrecht (Netherlands); Smeets, L.J.M. [Nederlandse onderneming voor energie en milieu Novem, Utrecht (Netherlands)

    2001-06-01

    In 10 articles attention is paid to several aspects with respect to ventilation of houses. This issue includes an overview of suppliers of high-efficiency heat recovering balanced ventilation systems.

  13. A comparison of leak compensation in acute care ventilators during noninvasive and invasive ventilation: a lung model study.

    Science.gov (United States)

    Oto, Jun; Chenelle, Christopher T; Marchese, Andrew D; Kacmarek, Robert M

    2013-12-01

    Although leak compensation has been widely introduced to acute care ventilators to improve patient-ventilator synchronization in the presence of system leaks, there are no data on these ventilators' ability to prevent triggering and cycling asynchrony. The goal of this study was to evaluate the ability of leak compensation in acute care ventilators during invasive and noninvasive ventilation (NIV). Using a lung simulator, the impact of system leaks was compared on 7 ICU ventilators and 1 dedicated NIV ventilator during triggering and cycling at 2 respiratory mechanics (COPD and ARDS models) settings, various modes of ventilation (NIV mode [pressure support ventilation], and invasive mode [pressure support and continuous mandatory ventilation]), and 2 PEEP levels (5 and 10 cm H(2)O). Leak levels used were up to 35-36 L/min in NIV mode and 26-27 L/min in invasive mode. Although all of the ventilators were able to synchronize with the simulator at baseline, only 4 of the 8 ventilators synchronized to all leaks in NIV mode, and 2 of the 8 ventilators in invasive mode. The number of breaths to synchronization was higher during increasing than during decreasing leak. In the COPD model, miss-triggering occurred more frequently and required a longer time to stabilize tidal volume than in the ARDS model. The PB840 required fewer breaths to synchronize in both invasive and noninvasive modes, compared with the other ventilators (P ventilators. The PB840 and the V60 were the only ventilators to acclimate to all leaks, but there were differences in performance between these 2 ventilators. It is not clear if these differences have clinical importance.

  14. Comparison of two modes of ventilation after fast-track cardiac surgery: Adaptive support ventilation versus synchronized intermittent mandatory ventilation

    International Nuclear Information System (INIS)

    Aghadavoudi, O.

    2012-01-01

    Objective: There is substantial debate regarding the appropriate protocol for ventilatory management in fast-track cardiac anesthesia (FTCA). This study was carried out to assess and compare the risks and benefits of respiratory weaning based on adaptive support ventilation (ASV) and synchronized intermittent mandatory ventilation (SIMV) after uncomplicated cardiac surgery. Methodology: In a randomized clinical trial, after receiving approval of the Department Research Committee and informed consent from study subjects, 100 patients undergoing elective coronary artery bypass graft (CABG) surgery with cardiopulmonary bypass (CPB) were enrolled during a 4-month period at a university-based hospital. After surgery and admission to the intensive care unit (ICU), patients were randomized to ASV and SIMV groups. Arterial blood gas (ABG) and hemodynamic variables, respiratory and ventilator characteristics including lung compliance, rapid shallow breathing index (RSBI), tidal volume (TV), respiratory rate (RR), peak inspiratory pressure (P peak), mean airway pressure (p mean), Pao2/FIo2, duration of mechanical ventilation and tracheal intubation, and length of ICU stay were recorded and compared between the two groups. The data were analyzed in 82 patients after considering the exclusion criteria. Results: There were no differences between ASV and SIMV groups in demographics and preoperative characteristics. The duration of tracheal intubation and the length of ICU stay were similar in both groups. There were no statistically and clinically relevant differences between the two groups in ABG, hemodynamic changes, and respiratory and ventilator characteristics during ICU stay. Conclusion: Although ASV may facilitate postoperative respiratory management in FTCA, both ASV and SIMV provide similarly safe and practicable respiratory weaning in the cardiac ICU. The evaluation of potential advantages in patient outcomes and resource utilization of respiratory weaning based on ASV

  15. Ventilator induced lung injury (VILI) in acute respiratory distress ...

    African Journals Online (AJOL)

    The lung protective ventilation strategy- Low tidal volume ventilation has shown some reduction in mortality in patients with ARDS but mortality is still high in patient with severe ARDS secondary to Pneumocystis jiroveci pneumonia (PJP) despite of lung protective ventilation strategy. In patients with Severe ARDS due to PJP ...

  16. Experimental Analysis and Model Validation of an Opaque Ventilated Facade

    DEFF Research Database (Denmark)

    López, F. Peci; Jensen, Rasmus Lund; Heiselberg, Per

    2012-01-01

    Natural ventilation is a convenient way of reducing energy consumption in buildings. In this study an experimental module of an opaque ventilated façade (OVF) was built and tested for assessing its potential of supplying free ventilation and air preheating for the building. A numerical model was ...

  17. 21 CFR 868.5935 - External negative pressure ventilator.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false External negative pressure ventilator. 868.5935 Section 868.5935 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... ventilator. (a) Identification. An external negative pressure ventilator (e.g., iron lung, cuirass) is a...

  18. 21 CFR 868.5915 - Manual emergency ventilator.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Manual emergency ventilator. 868.5915 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5915 Manual emergency ventilator. (a) Identification. A manual emergency ventilator is a device, usually incorporating a bag and valve, intended to...

  19. Effect of repository underground ventilation on emplacement drift temperature control

    International Nuclear Information System (INIS)

    Yang, H.; Sun, Y.; McKenzie, D.G.; Bhattacharyya, K.K.

    1996-01-01

    The repository advanced conceptual design (ACD) is being conducted by the Civilian Radioactive Waste Management System, Management ampersand Operating Contractor. Underground ventilation analyses during ACD have resulted in preliminary ventilation concepts and design methodologies. This paper discusses one of the recent evaluations -- effects of ventilation on emplacement drift temperature management

  20. 46 CFR 171.118 - Automatic ventilators and side ports.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Automatic ventilators and side ports. 171.118 Section 171.118 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY... Bulkhead or Weather Deck § 171.118 Automatic ventilators and side ports. (a) An automatic ventilator must...

  1. 21 CFR 868.5925 - Powered emergency ventilator.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Powered emergency ventilator. 868.5925 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5925 Powered emergency ventilator. (a) Identification. A powered emergency ventilator is a demand valve or inhalator intended to provide emergency...

  2. Study on the applicability of the desk displacement ventilation concept

    NARCIS (Netherlands)

    Loomans, Marcel G.L.C.

    1999-01-01

    This paper summarizes an experimental and numerical study into a ventilation concept that combines displacement ventilation with task conditioning, the so-called desk displacement ventilation (DDV) concept. The study uses steady-state and transient results to discuss the applicability of the DDV

  3. Study on the applicability of the desk replacement ventilation concept

    NARCIS (Netherlands)

    Loomans, M.G.L.C.

    1999-01-01

    This paper summarizes an experimental and numerical study into a ventilation concept that combines displacement ventilation with task conditioning, the so-called desk displace-ment ventilation (DDV) concept. The study uses steady-state and transient results to discuss the applicability of the DDV

  4. Analysis on present radon ventilation situation of Chinese uranium mines

    International Nuclear Information System (INIS)

    Li Xianjie; Hu Penghua

    2010-01-01

    Mine Ventilation is the most important way in lowering radon of uranium mines. At present, radon and radon daughter concentration of underground air is 3∼5 times higher than any other air concentration of foreign uranium mines, as the same input for Protective Ventilation between Chinese uranium mines with compaction methodology and international advanced uranium mines. In this passage, through the analysis of Ventilation Radon Reduction status in Chinese uranium mines and the comparison of advantages and shortcomings between variety of ventilation and radon reduction, it illuminated the reasons of higher radon and radon daughter concentration in Chinese uranium mines and put forward some problems in three aspects, which are Ventilation Radon Reduction Theory, Ventilation Radon Reduction Measures and Ventilation Management. And to above problems, this passage put forward some proposals and measures about some aspects, such as strengthen examination and verification and monitoring practical situation, making clear ventilation plan, in according to mining sequence strictly, training Ventilation technician forcefully, enhance Ventilation System management, development of Ventilation Radon Reduction technology research in uranium mines and carrying out ventilation equipments as soon as possible in further and so on. (authors)

  5. 46 CFR 38.20-10 - Ventilation-T/ALL.

    Science.gov (United States)

    2010-10-01

    ... Ventilation § 38.20-10 Ventilation—T/ALL. (a) A power ventilation system shall be provided for compartments containing pumps, compressors, pipes, control spaces, etc. connected with the cargo handling facilities... the ventilation system associated with the compartment. Inlets to exhaust ducts shall be provided and...

  6. 46 CFR 58.01-45 - Machinery space, ventilation.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Machinery space, ventilation. 58.01-45 Section 58.01-45 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS General Requirements § 58.01-45 Machinery space, ventilation. Each machinery space must be ventilated to ensure tha...

  7. Control of Airborne Infectious Diseases in Ventilated Spaces

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    2009-01-01

    We protect ourselves from airborne cross-infection in the indoor environment by supplying fresh air to a room by natural or mechanical ventilation. The air is distributed in the room according to different principles: mixing ventilation, displacement ventilation, etc. A large amount of air is sup...

  8. 46 CFR 154.1200 - Mechanical ventilation system: General.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Mechanical ventilation system: General. 154.1200 Section... CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Area: Mechanical Ventilation System § 154.1200 Mechanical ventilation system: General. (a...

  9. 46 CFR 154.1205 - Mechanical ventilation system: Standards.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Mechanical ventilation system: Standards. 154.1205... CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Area: Mechanical Ventilation System § 154.1205 Mechanical ventilation system: Standards. (a...

  10. Perceived Air Quality in a Displacement Ventilated Room

    DEFF Research Database (Denmark)

    Brohus, Henrik; Knudsen, Henrik Nellemose; Nielsen, Peter V.

    in a displacement ventilated room was determined directly by asking humans about how they perceived the air quality. A trained sensory panel comprising 12 subjects assessed the perceived air quality immediately after entering a climate chamber. The experiments showed that the perceived air quality...... in the displacement ventilated chamber was substantially better than in the case of mixing ventilation....

  11. Intensive care unit ventilation for the non-intensivist

    African Journals Online (AJOL)

    called volume support modes simply automate the adjustment of the supporting pressure to achieve a set tidal volume. Spontaneous effort is only of benefit if the patient effort is synchronous with the ventilator. If patients “fight” the ventilator, inadequate ventilation, barotrauma, and the need for excessive sedation occur.

  12. Ventilation measurements as an adjunct to radon measurements in buildings

    International Nuclear Information System (INIS)

    Knutson, E.O.; Franklin, H.

    1977-01-01

    The concentration of radon in a building is a function of the radon sources within the building and of the building's ventilation characteristics. To complement its radon measurement program, HASL is currently assessing apparatus and procedures for measuring building ventilation. Results are reported from ventilation measurements made in the laboratory and in a residential building

  13. Air Distribution and Ventilation Effectiveness in a room with Floor/Ceiling Heating and Mixing/Displacement Ventilation

    DEFF Research Database (Denmark)

    Wu, Xiaozhou; Fang, Lei; Olesen, Bjarne W.

    2014-01-01

    vertical air temperature differences and air velocities for different hybrid systems are less than 3 C and 0.2 m/s when supply air temperature is 19 C, air change rate is 4.2 h-1, and heated surface temperature of floor/ceiling heating system is 25 C. Ventilation effectiveness of mixing ventilation system...... combined with floor/ceiling heating systems is approximately equal to 1.0, and ventilation effectiveness of displacement ventilation system combined with floor/ceiling heating systems ranges from 1.0 to 1.2. The floor/ceiling heating systems combined with mixing ventilation system have more uniform indoor...... air distribution but smaller ventilation effectiveness compared with the floor/ceiling heating systems combined with displacement ventilation system. With regard to the building heat loss increased by non-uniform indoor air distribution and small ventilation effectiveness, there should be an optimal...

  14. Thermal comfort and ventilation effectiveness in an office room with radiant floor cooling and displacement ventilation

    DEFF Research Database (Denmark)

    Krajcik, Michal; Tomasi, Roberta; Simone, Angela

    2016-01-01

    conditions, varying the nominal air change rate from 4.5h-1 down to 1.5h-1. Contaminant removal and mean-age-of-air measurements were performed to characterize the ventilation effectiveness and air velocity; air and operative temperature profiles were measured, together with thermal manikin equivalent...... temperatures, to evaluate the thermal environment. The combined system was able to achieve good ventilation effectiveness close to a heat source, so that in the occupant's breathing zone the ventilation effectiveness was significantly better than for ideal mixing, even at a nominal air change rate as low as 1......% at the highest nominal air change rate of 4.5h-1, even for an occupant sitting 1 meter in front of the supply diffuser, the local thermal discomfort occasioned by the excessive vertical temperature differences gives chilled ceilings the advantage over chilled floors for use with displacement ventilation....

  15. Numerical simulation and comparison of two ventilation methods for a restaurant - displacement vs mixed flow ventilation

    Science.gov (United States)

    Chitaru, George; Berville, Charles; Dogeanu, Angel

    2018-02-01

    This paper presents a comparison between a displacement ventilation method and a mixed flow ventilation method using computational fluid dynamics (CFD) approach. The paper analyses different aspects of the two systems, like the draft effect in certain areas, the air temperatureand velocity distribution in the occupied zone. The results highlighted that the displacement ventilation system presents an advantage for the current scenario, due to the increased buoyancy driven flows caused by the interior heat sources. For the displacement ventilation case the draft effect was less prone to appear in the occupied zone but the high heat emissions from the interior sources have increased the temperature gradient in the occupied zone. Both systems have been studied in similar conditions, concentrating only on the flow patterns for each case.

  16. Biphasic cuirass ventilation is better than bag-valve mask ventilation for resuscitation following organophosphate poisoning

    Directory of Open Access Journals (Sweden)

    Ilan Gur

    2015-01-01

    Conclusions: The noninvasive, easy-to-operate Biphasic Cuirass Ventilation device was effective in reducing OP-induced mortality and might be advantageous in an organophosphate mass casualty event. This finding should be validated in further investigations.

  17. Carbon dioxide production during mechanical ventilation

    DEFF Research Database (Denmark)

    Henneberg, S; Söderberg, D; Groth, T

    1987-01-01

    continuously by a mass spectrometer. Signals from this instrument, together with gas-volume signals from the ventilator, were fed to a computer for calculation of VO2 and VCO2. Twenty to 120 min were required to reach a stable level, depending on the patient's size and circulatory response. Similar results...

  18. 14 CFR 25.831 - Ventilation.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Ventilation. 25.831 Section 25.831 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... temperature must not exceed the values shown in the following graph after any improbable failure condition...

  19. Methodology for ventilation/perfusion SPECT

    DEFF Research Database (Denmark)

    Bajc, Marika; Neilly, Brian; Miniati, Massimo

    2010-01-01

    in all projections as well as in rotating volume images based upon maximum intensity projections. Probabilistic interpretation of V/Q SPECT should be replaced by a holistic interpretation strategy on the basis of all relevant information about the patient and all ventilation/perfusion patterns. PE...

  20. Project Design Concept - Primary Ventilation System

    International Nuclear Information System (INIS)

    MCGREW, D.L.

    2000-01-01

    Tank Farm Restoration and Safe Operation (TFRSO), Project W-3 14 was established to provide upgrades that would improve the reliability and extend the system life of portions of the waste transfer, electrical, ventilation, instrumentation and control systems for the Hanford Site Tank Farms. An assessment of the tank farm system was conducted and the results are documented in system assessment reports. Based on the deficiencies identified in the tank farm system assessment reports, and additional requirements analysis performed in support of the River Protection Project (RPP), an approved scope for the TFRSO effort was developed and documented in the Upgrade Scope Summary Report (USSR), WHC-SD-W314-RPT-003, Rev. 4. The USSR establishes the need for the upgrades and identifies the specific equipment to be addressed by this project. This Project Design Concept (PDC) is in support of the Phase 2 upgrades and provides an overall description of the operations concept for the W-314 Primary Ventilation Systems. Actual specifications, test requirements, and procedures are not included in this PDC. The PDC is a ''living'' document, which will be updated throughout the design development process to provide a progressively more detailed description of the W-314 Primary Ventilation Systems design. The Phase 2 upgrades to the Primary Ventilation Systems shall ensure that the applicable current requirements are met for: Regulatory Compliance; Safety; Mission Requirements; Reliability; and Operational Requirements

  1. Simulation of forced-ventilation fires

    International Nuclear Information System (INIS)

    Krause, F.R.; Gregory, W.S.

    1982-01-01

    Fire hazard descriptions and compartment fire models are assessed as input to airflow network analysis methods that simulate the exposure of ventilation system components to fire products. The assessment considered the availability of hazard descriptions and models for predicting simultaneous heat and mass release at special compartment openings that are characterized by a one-dimensional and controllable volumetric flux

  2. Computational Fluid Dynamics in Ventilation Design

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    2008-01-01

    This paper is based on the new REHVA Guidebook Computational Fluid  Dynamics in Ventilation Design (Nielsen et al. 2007) written by Peter V. Nielsen, Francis(Nielsen 2007) written by Peter V. Nielsen, Francis Allard, Hazim B. Awbi, Lars Davidson and Alois Schälin. The guidebook is made for people...

  3. Buoyancy Driven Natural Ventilation through Horizontal Openings

    DEFF Research Database (Denmark)

    Heiselberg, Per

    2009-01-01

    An experimental study of the phenomenon of buoyancy driven natural ventilation through single-sided horizontal openings was performed in a full-scale laboratory test rig. The measurements were made for opening ratios L/D ranging from 0.027 to 4.455, where L and D are the length of the opening and...

  4. Teaching Alveolar Ventilation with Simple, Inexpensive Models

    Science.gov (United States)

    DiCarlo, Stephen E.

    2008-01-01

    When teaching and learning about alveolar ventilation with our class of 300 first-year medical students, we use four simple, inexpensive "models." The models, which encourage research-oriented learning and help our students to understand complex ideas, are distributed to the students before class. The students anticipate something new every day,…

  5. A Novel Model for Sewer Ventilation

    DEFF Research Database (Denmark)

    Fuglsang, Emil Dietz; Nielsen, Asbjørn Haaning; Vollertsen, Jes

    2013-01-01

    Based on the naturally occurring gas CO2 the dynamics of natural ventilation and gas flow was studied in an intercepting sewer receiving wastewater from a pressure main. A deterministic physiochemical model including description of release of CO2 into the sewer gas phase was built and validated...

  6. Including Children Dependent on Ventilators in School.

    Science.gov (United States)

    Levine, Jack M.

    1996-01-01

    Guidelines for including ventilator-dependent children in school are offered, based on experience with six such students at a New York State school. Guidelines stress adherence to the medical management plan, the school-family partnership, roles of the social worker and psychologist, orientation, transportation, classroom issues, and steps toward…

  7. Improving underground ventilation conditions in coal mines

    CSIR Research Space (South Africa)

    Meyer, CF

    1993-11-01

    Full Text Available The aim of this project was to establish the needs of the industry with regard to bord and pillar ventilation requirements. In addition, the aim was to establish whether sufficient research has already been done by the mining industry and if further...

  8. Ventilators in ICU: A boon or burden

    Directory of Open Access Journals (Sweden)

    Man Mohan Mehndiratta

    2016-01-01

    Full Text Available Background and Aims: Ventilator-associated pneumonia (VAP is a major challenge in intensive care units (ICUs. This challenge is even more discernible in a neurological setting owing to the predispositions of patients. Data on VAP in the neurology and neurosurgery ICUs (NNICUs are scanty in developing countries. This study was conducted to find out the occurrence of VAP, its risk factors, microbiological profile, and antibiotic resistance in patients admitted to the NNICU of a tertiary care institute in India. Materials and Methods: Endotracheal aspirate and blood samples were collected from 100 patients admitted to the NNICU. Complete blood count, microscopic examination, culture and sensitivity testing of aspirate were done. Chest x-ray was also performed to aid in the diagnosis of VAP. Results: Incidence rate of VAP was found to be 24%. Acinetobacter baumannii was the most common pathogen (24.3% isolated from patients with VAP, and all of these isolates were sensitive to meropenem. Duration of mechanical ventilation (P < 0.0001 and associated comorbid illness (P = 0.005 were found to be significantly associated with VAP, and the duration of mechanical ventilation was found to be the only independent risk factor (P < 0.0001. Conclusions: This study highlights the risks and microbiological perspective of ventilator use among neurology patients so that adequate preventive strategies can be adopted on time.

  9. VRML Programs for Room Ventilation Applications

    DEFF Research Database (Denmark)

    Nielsen, Anker

    Cheap 3D models for visualization of room ventilation applications are now available. VRML (Virtu~l Reality Modelling Language) is found to be a good format to describe buildings, rooms and furniture. A 3D model in VRML can be placed on a World Wide Web (www) page and others can see the model...

  10. Sensory source strength of used ventilation filters

    DEFF Research Database (Denmark)

    Clausen, Geo; Alm, Ole Martin; Fanger, Povl Ole

    2002-01-01

    A two-year-old filter was placed in a ventilation system recirculating the air in an experimental space. Via glass tubes supplied with a small fan it was possible to extract air upstream and downstream of the filter to an adjacent room. A panel could thus perform sensory assessments of the air from...

  11. A Medical Student Workshop in Mechanical Ventilation.

    Science.gov (United States)

    And Others; Kushins, Lawrence G.

    1980-01-01

    In order to teach applied respiratory physiology to medical students, the anesthesiology faculty at the University of Florida College of Medicine has designed and implemented a course that includes a laboratory workshop in mechanical ventilation of an animal model that allows students to apply and expand their knowledge. (JMD)

  12. Aerosol delivery in intubated, mechanically ventilated patients

    International Nuclear Information System (INIS)

    MacIntyre, N.R.; Silver, R.M.; Miller, C.W.; Schuler, F.; Coleman, R.E.

    1985-01-01

    To study the effects of respiratory failure and mechanical ventilation on aerosol delivery to the lungs, nuclear scans were performed after aerosolization of 5 to 9 mCi of Tc-99m diethylenetriamine pentaacetic acid in seven stable, intubated, and mechanically ventilated patients. The radioactivity reaching the lungs was 2.9 +/- .7% (mean +/- SD) of the administered dose, an amount significantly less than that in three healthy nonintubated subjects and also less than what would be expected in nonintubated subjects from other published reports. A subsequent study was performed in 15 additional mechanically ventilated patients who were receiving aerosolized bronchodilators through their endotracheal tube. In these patients, heart rate and lung mechanical function values before and after treatment were not significantly different. It is concluded from these studies that aerosol delivery in mechanically ventilated patients is significantly reduced and that this is probably due to a combination of suboptimal breathing pattern, intrinsic airway disease, and the endotracheal tube functioning as both a site for aerosol deposition through impaction as well as a barrier to gastrointestinal absorption

  13. Ductless personalized ventilation with local air cleaning

    DEFF Research Database (Denmark)

    Dalewski, Mariusz; Vesely, Michal; Melikov, Arsen Krikor

    2012-01-01

    An experiment with 28 human subjects was performed to examine effects of using a local air cleaning device combined with ductless personalized ventilation (DPV) on perceived air quality. Experiments were performed in a test room with displacement ventilation. The DPV at one of two desks was equip......An experiment with 28 human subjects was performed to examine effects of using a local air cleaning device combined with ductless personalized ventilation (DPV) on perceived air quality. Experiments were performed in a test room with displacement ventilation. The DPV at one of two desks...... was equipped with an activated carbon filter installed at the air intake, while the DPV at the second desk was without such a filter. The air temperature in the occupied zone (1.1 m above the floor) was 29 °C. The pollution load in the room was simulated by PVC floor covering. The subjects assessed...... acceptability of air quality, odour intensity and air freshness at both desks in random order. Lower odour intensity and higher air freshness was reported at the desk with DPV with the activated carbon filter. The results suggest that using local air cleaning devices integrated with DPV may improve perceived...

  14. Diaphragm Dysfunction in Mechanically Ventilated Patients.

    Science.gov (United States)

    Dot, Irene; Pérez-Teran, Purificación; Samper, Manuel-Andrés; Masclans, Joan-Ramon

    2017-03-01

    Muscle involvement is found in most critical patients admitted to the intensive care unit (ICU). Diaphragmatic muscle alteration, initially included in this category, has been differentiated in recent years, and a specific type of muscular dysfunction has been shown to occur in patients undergoing mechanical ventilation. We found this muscle dysfunction to appear in this subgroup of patients shortly after the start of mechanical ventilation, observing it to be mainly associated with certain control modes, and also with sepsis and/or multi-organ failure. Although the specific etiology of process is unknown, the muscle presents oxidative stress and mitochondrial changes. These cause changes in protein turnover, resulting in atrophy and impaired contractility, and leading to impaired functionality. The term 'ventilator-induced diaphragm dysfunction' was first coined by Vassilakopoulos et al. in 2004, and this phenomenon, along with injury cause by over-distention of the lung and barotrauma, represents a challenge in the daily life of ventilated patients. Diaphragmatic dysfunction affects prognosis by delaying extubation, prolonging hospital stay, and impairing the quality of life of these patients in the years following hospital discharge. Ultrasound, a non-invasive technique that is readily available in most ICUs, could be used to diagnose this condition promptly, thus preventing delays in starting rehabilitation and positively influencing prognosis in these patients. Copyright © 2016 SEPAR. Publicado por Elsevier España, S.L.U. All rights reserved.

  15. Ventilator associated pneumonia and infection control

    NARCIS (Netherlands)

    Alp, E.; Voss, A.

    2006-01-01

    Ventilator associated pneumonia (VAP) is the leading cause of morbidity and mortality in intensive care units. The incidence of VAP varies from 7% to 70% in different studies and the mortality rates are 20-75% according to the study population. Aspiration of colonized pathogenic microorganisms on

  16. Survival after Pneumocystis jirovecii pneumonia requiring ventilation ...

    African Journals Online (AJOL)

    Pneumocystis pneumonia (PCP) in patients with the human immunodeficiency virus (HIV) is associated with a high mortality rate, which increases substantially with the need for mechanical ventilation. Local experience of patients with PCP admitted to the intensive care unit has revealed mortality rates close to 100%.

  17. Achieving Natural and Hybrid Ventilation in Practice

    DEFF Research Database (Denmark)

    Liddament, Martin; Axley, James; Heiselberg, Per

    2006-01-01

    Case studies provide essential evidence about the performance of buildings. They also illustrate the methods by which a technology can be implemented as well as highlighting problems. Various case study buildings (both new and retrofit) that incorporate mixed mode, natural ventilation and low ene...

  18. Interfaces and ventilator settings for long-term noninvasive ventilation in COPD patients

    Directory of Open Access Journals (Sweden)

    Callegari J

    2017-06-01

    Full Text Available Jens Callegari,1 Friederike Sophie Magnet,1 Steven Taubner,1 Melanie Berger,2 Sarah Bettina Schwarz,1 Wolfram Windisch,1 Jan Hendrik Storre3,4 1Department of Pneumology, Cologne-Merheim Hospital, Kliniken der Stadt Koeln, Witten/Herdecke University Hospital, 2Department of Pneumology, Malteser Hospital St Hildegardis, Cologne, 3Department of Pneumology, University Medical Hospital, Freiburg, 4Department of Intensive Care, Sleep Medicine and Mechanical Ventilation, Asklepios Fachkliniken Munich-Gauting, Gauting, Germany Introduction: The establishment of high-intensity (HI noninvasive ventilation (NIV that targets elevated PaCO2 has led to an increase in the use of long-term NIV to treat patients with chronic hypercapnic COPD. However, the role of the ventilation interface, especially in more aggressive ventilation strategies, has not been systematically assessed.Methods: Ventilator settings and NIV compliance were assessed in this prospective cross-sectional monocentric cohort study of COPD patients with pre-existing NIV. Daytime ­arterialized blood gas analyses and lung function testing were also performed. The primary end point was the distribution among study patients of interfaces (full-face masks [FFMs] vs nasal masks [NMs] in a real-life setting.Results: The majority of the 123 patients studied used an FFM (77%, while 23% used an NM. Ventilation settings were as follows: mean ± standard deviation (SD inspiratory positive airway pressure (IPAP was 23.2±4.6 mbar and mean ± SD breathing rate was 16.7±2.4/minute. Pressure support ventilation (PSV mode was used in 52.8% of patients, while assisted pressure-controlled ventilation (aPCV was used in 47.2% of patients. Higher IPAP levels were associated with an increased use of FFMs (IPAP <21 mbar: 73% vs IPAP >25 mbar: 84%. Mean compliance was 6.5 hours/day, with no differences between FFM (6.4 hours/day and NM (6.7 hours/day users. PaCO2 assessment of ventilation quality revealed

  19. Evaluation of 4 new generation portable ventilators.

    Science.gov (United States)

    Blakeman, Thomas C; Branson, Richard D

    2013-02-01

    Portable ventilators are increasingly utilized in the intra- and inter-hospital transport of patients. We evaluated 4 portable ventilators, Impact EMV, CareFusion LTV 1200, Newport HT70, and Hamilton T1, in terms of triggering, delivered tidal volume (V(T)) accuracy, battery duration, delivered F(IO(2)) accuracy, and gas consumption. Triggering was tested using a microprocessor controlled breathing simulator that simulated a weak, normal, and aggressive inspiratory effort using muscle pressures of -2, -4, and -8 cm H2O respectively. Delivered V(T) and F(IO(2)) accuracy were evaluated across a range of operation. To determine gas consumption, the ventilators were attached to an E type oxygen cylinder and operated at an F(IO(2)) of 1.0 until the tank was depleted. Battery duration was tested by operating each ventilator at an F(IO(2)) of 0.21 until the device ceased to operate. Differences remain among devices in several aspects of the testing protocol. Gas consumption ranged from 9.2 to 16 L/min. Battery duration ranged from 101 to 640 min. Triggering performance varied among devices but was consistent breath to breath within the same device, using the fastest and slowest rise time settings. F(IO(2)) accuracy varied at the low range on the 50 mL V(T) setting with one device, and at the high range on both the 50 mL and 500 mL V(T) settings with another. Manufacturers continue to improve the performance of portable ventilators. All the ventilators we tested performed well on V(T) delivery across a range of settings, using both the internal drive mechanism (F(IO(2)) 0.21) and compressed oxygen (F(IO(2)) 1.0). Two of the ventilators were unable to deliver accurate F(IO(2)) across the range of V(T). None of the devices was clearly superior to the others in all aspects of our evaluation. © 2013 Daedalus Enterprises.

  20. Fire protection in ventilation systems and in case of fire operating ventilation systems

    International Nuclear Information System (INIS)

    Zitzelsberger, J.

    1983-01-01

    The fire risks in ventilation systems are discussed. It follows a survey of regulations on fire prevention and fire protection in ventilation systems and smoke and heat exhaust systems applicable to nuclear installations in the Federal Republic of Germany. Fire protection concepts for normal systems and for systems operating also in case of fire will be given. Several structural elements for fire protection in those systems will be illustrated with regard to recent research findings

  1. Monitoring of noninvasive ventilation by built-in software of home bilevel ventilators: a bench study.

    Science.gov (United States)

    Contal, Olivier; Vignaux, Laurence; Combescure, Christophe; Pepin, Jean-Louis; Jolliet, Philippe; Janssens, Jean-Paul

    2012-02-01

    Current bilevel positive-pressure ventilators for home noninvasive ventilation (NIV) provide physicians with software that records items important for patient monitoring, such as compliance, tidal volume (Vt), and leaks. However, to our knowledge, the validity of this information has not yet been independently assessed. Testing was done for seven home ventilators on a bench model adapted to simulate NIV and generate unintentional leaks (ie, other than of the mask exhalation valve). Five levels of leaks were simulated using a computer-driven solenoid valve (0-60 L/min) at different levels of inspiratory pressure (15 and 25 cm H(2)O) and at a fixed expiratory pressure (5 cm H(2)O), for a total of 10 conditions. Bench data were compared with results retrieved from ventilator software for leaks and Vt. For assessing leaks, three of the devices tested were highly reliable, with a small bias (0.3-0.9 L/min), narrow limits of agreement (LA), and high correlations (R(2), 0.993-0.997) when comparing ventilator software and bench results; conversely, for four ventilators, bias ranged from -6.0 L/min to -25.9 L/min, exceeding -10 L/min for two devices, with wide LA and lower correlations (R(2), 0.70-0.98). Bias for leaks increased markedly with the importance of leaks in three devices. Vt was underestimated by all devices, and bias (range, 66-236 mL) increased with higher insufflation pressures. Only two devices had a bias ventilation must be aware of differences in the estimation of leaks and Vt by ventilator software. Also, leaks are reported in different ways according to the device used.

  2. Mechanical ventilation in the newborn; a simplified approach. Part 2: High-frequency ventilation.

    Science.gov (United States)

    Muhlethaler, Vincent; Malcolm, Girvan

    2014-10-01

    High frequency oscillatory ventilation (HFOV) is becoming an increasingly popular intervention in the neonatal intensive care unit. This article will attempt to explain the principles of HFOV. It is inherently more difficult to become skilled in this technique than in other forms of mechanical ventilation, so caution is warranted. © 2010 The Author. Journal of Paediatrics and Child Health © 2010 Paediatrics and Child Health Division (Royal Australasian College of Physicians).

  3. A hybrid energy efficient building ventilation system

    International Nuclear Information System (INIS)

    Calay, Rajnish Kaur; Wang, Wen Chung

    2013-01-01

    The present paper presents a high performance cooling/heating ventilation system using a rotary heat exchanger (RHE), together with a reverse-cycle heat pump (RCHP) that can be integrated with various heat sources. Energy consumption in the building sector is largely dominated by the energy consumed in maintaining comfortable conditions indoors. For example in many developed countries the building heating, ventilation and air conditioning (HVAC) systems consume up to 50% of the total energy consumed in buildings. Therefore energy efficient HVAC solutions in buildings are critical for realising CO 2 targets at local and global level. There are many heating/cooling concepts that rely upon renewable energy sources and/or use natural low temperature heat sources in the winter and heat sinks in the summer. In the proposed system, waste energy from the exhaust air stream is used to precondition the outdoor air before it is supplied into the building. The hybrid system provides heating in the winter and cooling in the summer without any need for additional heating or cooling devices as required in conventional systems. Its performance is better than a typical reheat or air conditioning system in providing the same indoor air quality (IAQ) levels. It is shown that an energy saving up to 60% (heat energy) is achieved by using the proposed hybrid system in building ventilation applications. -- Highlights: • Hybrid ventilation system: the hybrid ventilation system uses a rotating regenerator and a reversible heat pump. • Heat recovery: heat recovery from exhaust air stream by rotary wheel type heat exchanger. • Reversible cycle heat pump (RCHP): additional heating or cooling of the supply air is provided by the RCHP. • Energy efficiency: energy savings of up to 60% using the proposed system are achievable

  4. Investigation of the ventilation performance of an integrated day lighting natural ventilation system

    International Nuclear Information System (INIS)

    Ahmed, S.; Abdul Rahman, S.; Ahmed, A.Z.

    2006-01-01

    Natural ventilation and daylighting are two passive strategies that can improve the indoor performance as well as reduce energy consumption in buildings. Both strategies when used appropriately, increase indoor quality and comport. In terms of energy costs, daylighting can significantly reduce artificial lighting as well as heat dissipated from the resulting fixtures while natural ventilation can minimize the need for air-conditioning. A study is currently being conducted to develop a system that integrates these two passive strategies, to be used specifically for buildings in Malaysia. The initial proposed integrated models are based on similar studies already conducted but with appropriate modifications for tropical climates. This paper will present some results of the ventilation performance of the proposed integrated system model, particularly the airflow distribution patterns and air speed, inside a naturally ventilated room. A CFD simulation software was used to investigate the optimum size of the integrated model with regards to interior ventilation performance. The simulations also included single sided and cross ventilated openings

  5. Fungal volatiles associated with moldy grain in ventilated and non-ventilated bin-stored wheat.

    Science.gov (United States)

    Sinha, R N; Tuma, D; Abramson, D; Muir, W E

    1988-01-01

    The fungal odor compounds 3-methyl-1-butanol, 1-octen-3-ol and 3-octanone were monitored in nine experimental bins in Winnipeg, Manitoba containing a hard red spring wheat during the autumn, winter and summer seasons of 1984-85. Quality changes were associated with seed-borne microflora and moisture content in both ventilated and non-ventilated bins containing wheat of 15.6 and 18.2% initial moisture content. All three odor compounds occurred in considerably greater amounts in bulk wheat in non-ventilated than in ventilated bins, particularly in those with wheat having 18.2% moisture content. The presence of these compounds usually coincided with infection of the seeds by the fungi Alternaria alternata (Fr.) Keissler, Aspergillus repens DeBarry, A. versicolor (Vuill.) Tiraboschi, Penicillium crustosum Thom, P. oxalicum Currie and Thom, P. aurantiogriesum Dierckx, and P. citrinum Thom. High production of all three odor compounds in damp wheat stored in non-ventilated bins was associated with heavy fungal infection of the seeds and reduction in seed germinability. High initial moisture content of the harvested grain accelerated the production of all three fungal volatiles in non-ventilated bins.

  6. The impact of a ventilator bundle on preventing ventilator-associated pneumonia: a multicenter study.

    Science.gov (United States)

    Eom, Joong Sik; Lee, Mi-Suk; Chun, Hee-Kyung; Choi, Hee Jung; Jung, Sun-Young; Kim, Yeon-Sook; Yoon, Seon Jin; Kwak, Yee Gyung; Oh, Gang-Bok; Jeon, Min-Hyok; Park, Sun-Young; Koo, Hyun-Sook; Ju, Young-Su; Lee, Jin Seo

    2014-01-01

    For prevention of ventilator-associated pneumonia (VAP), a bundle approach was applied to patients receiving mechanical ventilation in intensive care units. The incidence of VAP and the preventive efficacy of the VAP bundle were investigated. A quasi-experimental study was conducted in adult intensive care units of 6 university hospitals with similar VAP rates. We implemented the VAP bundle between March 2011 and June 2011, then compared the rate of VAP after implementation of the VAP bundle with the rate in the previous 8 months. Our ventilator bundle included head of bed elevation, peptic ulcer disease prophylaxis, deep venous thrombosis prophylaxis, and oral decontamination with chlorhexidine 0.12%. Continuous aspiration of subglottic secretions was an option. Implementation of the VAP bundle reduced the VAP rate from a mean of 4.08 cases per 1,000 ventilator-days to 1.16 cases per 1,000 ventilator-days. The incidence density ratio (rate) was 0.28 (95% confidence interval, 0.275-0.292). Implementing the appropriate VAP bundle significantly decreased the incidence of VAP in patients with mechanical ventilation. Copyright © 2014 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  7. SY Tank Farm ventilation isolation option risk assessment report

    Energy Technology Data Exchange (ETDEWEB)

    Powers, T.B.; Morales, S.D.

    1994-03-01

    The safety of the 241-SY Tank Farm ventilation system has been under extensive scrutiny due to safety concerns associated with tank 101-SY. Hydrogen and other gases are generated and trapped in the waste below the liquid surface. Periodically, these gases are released into the dome space and vented through the exhaust system. This attention to the ventilation system has resulted in the development of several alternative ventilation system designs. The ventilation system provides the primary means of mitigation of accidents associated with flammable gases. This report provides an assessment of various alternatives ventilation system designs.

  8. Use of noninvasive and invasive mechanical ventilation in cardiogenic shock

    DEFF Research Database (Denmark)

    Hongisto, Mari; Lassus, Johan; Tarvasmaki, Tuukka

    2017-01-01

    BACKGROUND: Despite scarce data, invasive mechanical ventilation (MV) is widely recommended over non-invasive ventilation (NIV) for ventilatory support in cardiogenic shock (CS). We assessed the real-life use of different ventilation strategies in CS and their influence on outcome focusing...... baseline PaO2 were independent predictors of mortality, whereas ventilation strategy did not have any influence on outcome. CONCLUSIONS: Although MV is generally recommended mode of ventilatory support in CS, a fair number of patients were successfully treated with NIV. Moreover, ventilation strategy...

  9. Assessment of natural ventilation for Canadian residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Reardon, J.T. [National Research Council of Canada, Ottawa, ON (Canada)

    2007-08-13

    There are generally two types of ventilation in houses, notably natural infiltration produced by stack and wind pressures, and mechanical ventilation by exhaust or intake fans operating across the house envelope. This research paper utilized historical data collected in Ottawa to establish those periods of low natural ventilation, when stack and wind pressures become so low that sufficient natural ventilation does not occur. Modelling and weather data was used to extend the analysis to other locations in Canada. This paper described the research project including its objectives and work plan. Each of the tasks in the study were explained. These included establishing a definition of adequate residential ventilation; establishing typical characteristics of Canadian dwellings; selecting a suitable air infiltration/natural ventilation model for houses; identifying measured data sets suitable for analysis; and reviewing selected data to determine periods of inadequate natural ventilation. Conclusions and future work were also presented. It was concluded that natural ventilation, at least due to air filtration, cannot be relied upon to provide all the ventilation needs in Canadian houses. Mechanical ventilation is needed in most Canadian houses to supplement natural ventilation during mild weather. 73 refs., 74 tabs., 7 figs., 3 appendices.

  10. Comparison of airway pressure release ventilation to conventional mechanical ventilation in the early management of smoke inhalation injury in swine.

    Science.gov (United States)

    Batchinsky, Andriy I; Burkett, Samuel E; Zanders, Thomas B; Chung, Kevin K; Regn, Dara D; Jordan, Bryan S; Necsoiu, Corina; Nguyen, Ruth; Hanson, Margaret A; Morris, Michael J; Cancio, Leopoldo C

    2011-10-01

    The role of airway pressure release ventilation in the management of early smoke inhalation injury has not been studied. We compared the effects of airway pressure release ventilation and conventional mechanical ventilation on oxygenation in a porcine model of acute respiratory distress syndrome induced by wood smoke inhalation. Prospective animal study. Government laboratory animal intensive care unit. Thirty-three Yorkshire pigs. Smoke inhalation injury. Anesthetized female Yorkshire pigs (n = 33) inhaled room-temperature pine-bark smoke. Before injury, the pigs were randomized to receive conventional mechanical ventilation (n = 15) or airway pressure release ventilation (n = 12) for 48 hrs after smoke inhalation. As acute respiratory distress syndrome developed (PaO2/Fio2 ratio conventional mechanical ventilation for 48 hrs and served as time controls. Changes in PaO2/Fio2 ratio, tidal volume, respiratory rate, mean airway pressure, plateau pressure, and hemodynamic variables were recorded. Survival was assessed using Kaplan-Meier analysis. PaO2/Fio2 ratio was lower in airway pressure release ventilation vs. conventional mechanical ventilation pigs at 12, 18, and 24 hrs (p conventional mechanical ventilation animals between 30 and 48 hrs post injury (p animals between 6 and 48 hrs (p conventional mechanical ventilation and airway pressure release ventilation pigs. In this model of acute respiratory distress syndrome caused by severe smoke inhalation in swine, airway pressure release ventilation-treated animals developed acute respiratory distress syndrome faster than conventional mechanical ventilation-treated animals, showing a lower PaO2/Fio2 ratio at 12, 18, and 24 hrs after injury. At other time points, PaO2/Fio2 ratio was not different between conventional mechanical ventilation and airway pressure release ventilation.

  11. Investigation of Ventilation Strategies for the Day-Care Institutions

    DEFF Research Database (Denmark)

    Larsen, Olena Kalyanova; Afshari, Alireza; Heiselberg, Per

    2011-01-01

    Two existing nursery buildings, a mechanically and a naturally ventilated one, were chosen for investigations of energy saving potential and IAQ, using the different from present ventilation strategies and their control principles. These investigations are carried out applying a dynamic building ...... in assumptions for building operation on the design stage and actual building operation. Finally, it is not argued in favour to one or another ventilation principle, but in favour of demand controlled ventilation.......Two existing nursery buildings, a mechanically and a naturally ventilated one, were chosen for investigations of energy saving potential and IAQ, using the different from present ventilation strategies and their control principles. These investigations are carried out applying a dynamic building...... simulation tool BSim. Each building is modelled separately and each of these models is “calibrated” using the detailed experimental data. Calibrated models are then used to evaluate different ventilation strategies for these particular buildings. This paper is aimed to illustrate the differences...

  12. Conservative fluid management prevents age-associated ventilator induced mortality.

    Science.gov (United States)

    Herbert, Joseph A; Valentine, Michael S; Saravanan, Nivi; Schneck, Matthew B; Pidaparti, Ramana; Fowler, Alpha A; Reynolds, Angela M; Heise, Rebecca L

    2016-08-01

    Approximately 800 thousand patients require mechanical ventilation in the United States annually with an in-hospital mortality rate of over 30%. The majority of patients requiring mechanical ventilation are over the age of 65 and advanced age is known to increase the severity of ventilator-induced lung injury (VILI) and in-hospital mortality rates. However, the mechanisms which predispose aging ventilator patients to increased mortality rates are not fully understood. Ventilation with conservative fluid management decreases mortality rates in acute respiratory distress patients, but to date there has been no investigation of the effect of conservative fluid management on VILI and ventilator associated mortality rates. We hypothesized that age-associated increases in susceptibility and incidence of pulmonary edema strongly promote age-related increases in ventilator associated mortality. 2month old and 20month old male C57BL6 mice were mechanically ventilated with either high tidal volume (HVT) or low tidal volume (LVT) for up to 4h with either liberal or conservative fluid support. During ventilation, lung compliance, total lung capacity, and hysteresis curves were quantified. Following ventilation, bronchoalveolar lavage fluid was analyzed for total protein content and inflammatory cell infiltration. Wet to dry ratios were used to directly measure edema in excised lungs. Lung histology was performed to quantify alveolar barrier damage/destruction. Age matched non-ventilated mice were used as controls. At 4h, both advanced age and HVT ventilation significantly increased markers of inflammation and injury, degraded pulmonary mechanics, and decreased survival rates. Conservative fluid support significantly diminished pulmonary edema and improved pulmonary mechanics by 1h in advanced age HVT subjects. In 4h ventilations, conservative fluid support significantly diminished pulmonary edema, improved lung mechanics, and resulted in significantly lower mortality rates in

  13. Academic Emergency Medicine Physicians’ Knowledge of Mechanical Ventilation

    Directory of Open Access Journals (Sweden)

    Susan R. Wilcox

    2016-05-01

    Full Text Available Introduction: Although emergency physicians frequently intubate patients, management of mechanical ventilation has not been emphasized in emergency medicine (EM education or clinical practice. The objective of this study was to quantify EM attendings’ education, experience, and knowledge regarding mechanical ventilation in the emergency department. Methods: We developed a survey of academic EM attendings’ educational experiences with ventilators and a knowledge assessment tool with nine clinical questions. EM attendings at key teaching hospitals for seven EM residency training programs in the northeastern United States were invited to participate in this survey study. We performed correlation and regression analyses to evaluate the relationship between attendings’ scores on the assessment instrument and their training, education, and comfort with ventilation. Results: Of 394 EM attendings surveyed, 211 responded (53.6%. Of respondents, 74.5% reported receiving three or fewer hours of ventilation-related education from EM sources over the past year and 98 (46% reported receiving between 0-1 hour of education. The overall correct response rate for the assessment tool was 73.4%, with a standard deviation of 19.9. The factors associated with a higher score were completion of an EM residency, prior emphasis on mechanical ventilation during one’s own residency, working in a setting where an emergency physician bears primary responsibility for ventilator management, and level of comfort with managing ventilated patients. Physicians’ comfort was associated with the frequency of ventilator changes and EM management of ventilation, as well as hours of education. Conclusion: EM attendings report caring for mechanically ventilated patients frequently, but most receive fewer than three educational hours a year on mechanical ventilation, and nearly half receive 0-1 hour. Physicians’ performance on an assessment tool for mechanical ventilation is

  14. Lung-protective mechanical ventilation does not protect against acute kidney injury in patients without lung injury at onset of mechanical ventilation

    NARCIS (Netherlands)

    Cortjens, Bart; Royakkers, Annick A. N. M.; Determann, Rogier M.; van Suijlen, Jeroen D. E.; Kamphuis, Stephan S.; Foppen, Jannetje; de Boer, Anita; Wieland, Cathrien W.; Spronk, Peter E.; Schultz, Marcus J.; Bouman, Catherine S. C.

    2012-01-01

    Introduction: Preclinical and clinical studies suggest that mechanical ventilation contributes to the development of acute kidney injury (AKI), particularly in the setting of lung-injurious ventilator strategies. Objective: To determine whether ventilator settings in critically ill patients without

  15. Inhaled Antibiotics for Ventilator-Associated Infections.

    Science.gov (United States)

    Palmer, Lucy B

    2017-09-01

    Multidrug-resistant organisms are creating a challenge for physicians treating the critically ill. As new antibiotics lag behind the emergence of worsening resistance, intensivists in countries with high rates of extensively drug-resistant bacteria are turning to inhaled antibiotics as adjunctive therapy. These drugs can provide high concentrations of drug in the lung that could not be achieved with intravenous antibiotics without significant systemic toxicity. This article summarizes current evidence describing the use of inhaled antibiotics for the treatment of bacterial ventilator-associated pneumonia and ventilator-associated tracheobronchitis. Preliminary data suggest aerosolized antimicrobials may effectively treat resistant pathogens with high minimum inhibitory concentrations. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Indirect Calorimetry in Mechanically Ventilated Patients

    DEFF Research Database (Denmark)

    Allingstrup, Matilde Jo; Kondrup, Jens; Perner, Anders

    2017-01-01

    Background and Aims: The 2 currently available indirect calorimeters, CCM Express Indirect Calorimeter (MedGraphics, St Paul, MN) and Quark RMR ICU Indirect Calorimeter (COSMED, Rome, Italy), have not been validated against a gold standard in mechanically ventilated patients. Our aim was to do so...... presented.) O2) and resting energy expenditure (REE) in a randomized, sequential, crossover design with double determination of each device. Results: Compared with the modified Tissot bell-spirometer, the CCM Express Indirect Calorimeter demonstrated a mean Δ-REE of +361 kcal/d, corresponding to a 31...... of 77 (167) with limits of agreement −249 to 404 kcal/d. Conclusions: The QUARK RMR ICU Indirect Calorimeter compared better with the gold standard for values of (Formula presented.) O2 and REE than did the CCM Express Indirect Calorimeter in mechanically ventilated patients who were circulatory...

  17. Ventilator associated pneumonia and infection control

    Directory of Open Access Journals (Sweden)

    Alp Emine

    2006-04-01

    Full Text Available Abstract Ventilator associated pneumonia (VAP is the leading cause of morbidity and mortality in intensive care units. The incidence of VAP varies from 7% to 70% in different studies and the mortality rates are 20–75% according to the study population. Aspiration of colonized pathogenic microorganisms on the oropharynx and gastrointestinal tract is the main route for the development of VAP. On the other hand, the major risk factor for VAP is intubation and the duration of mechanical ventilation. Diagnosis remains difficult, and studies showed the importance of early initiation of appropriate antibiotic for prognosis. VAP causes extra length of stay in hospital and intensive care units and increases hospital cost. Consequently, infection control policies are more rational and will save money.

  18. CANISTER HANDLING FACILITY - VENTILATION AIR CALCULATION

    International Nuclear Information System (INIS)

    K.D. Draper

    2005-01-01

    The purpose of this analysis is to establish the preliminary Ventilation Confinement Zone for the Canister Handling Facility (CHF). The results of this document will be used to determine the air quantities for each VCZ that will eventually be reflected in the development of the Ventilation Flow Diagrams. The analyses contained in this document are developed by D and E/Mechanical HVAC and are intended solely for the use of the D and E/Mechanical HVAC in its work regarding Confinement Zoning Analysis for the Canister Handling Facility. Yucca Mountain Project personnel from D and E/Mechanical HVAC should be consulted before use of the analyses for purposes other than those stated herein or used by individuals other than authorized personnel in D and E/Mechanical HVAC

  19. Pulmonary ventilation in children digital subtraction study

    International Nuclear Information System (INIS)

    Schmit, P.; Faure, C.; Sardet, A.; Bacques, O.

    1985-01-01

    Digital technique such as used in digital angiography can be used to study areas which lucency varies with time. A TID technique (time interval difference) has been used to study the lucency variation of the lung in children. This method has been used in 130 children with a mean age of 2 years and 8 months. In 85 children, the TID was normal: 5 false negative studies were found in this group. In the other 47 cases, the anomaly of the TID was due to a perfusion or a ventilation anomaly or both. No false positive are found. In 13 patients, comparison between the TID findings and the perfusion and ventilation nuclear scan was possible. In 9 patients, the correlation was excellent, the TID giving more some informations about the pulmonary mixic [fr

  20. Adult ICU ventilators to provide neonatal ventilation: a lung simulator study.

    Science.gov (United States)

    Marchese, Andrew D; Chipman, Daniel; de la Oliva, Pedro; Kacmarek, Robert M

    2009-04-01

    Traditionally, specific ventilators have been manufactured to only provide neonatal mechanical ventilation. However, many of the current generation of ICU ventilators also include a neonatal mode. Using the IngMar ASL5000 lung simulator the Puritan Bennett 840, the Maquet Servo i, the Viasys AVEA, the GE Engström, the Drager Evita XL and Babylog 8000 Plus were evaluated during assisted ventilation in the pressure assist/control mode. Three lung mechanics were set: resistance 50 cmH(2)O/L/s, compliance 2 mL/cmH(2)O; resistance 100 cmH(2)O/L/s, compliance 1 mL/cmH(2)O; and resistance 150 cmH(2)O/L/s, compliance 0.5 mL/cmH(2)O. A maximum negative pressure drop of 4 and 7 cmH(2)O was achieved during simulated inspirations. Each ventilator was evaluated with PEEP 5 cmH(2)O, peak pressure 20 cmH(2)O and inspiratory time 0.3 s and with PEEP 10 cmH(2)O, peak pressure 30 cmH(2)O and inspiratory time 0.4 s. Each ventilator setting was then repeated with a leak of 0.3 L/min at a constant pressure of 5 cmH(2)O. Overall each of the 5 ICU ventilators responded faster or greater than the Babylog with respect to: pressure to trigger (except the Servo i), time to trigger (except the Evita XL), time between trigger and return of pressure to baseline, time from start of breath to 90% of peak pressure (except the Avea) and pressure time product of breath activation. Expiratory tidal volume was also greater with all ICU ventilators except the Avea. Variation in mechanics, leak, PEEP and muscular effort had little effect on these differences. All ICU ventilators tested were able to at least equal the performance of the Babylog 8000 Plus on all variables evaluated.

  1. Noninvasive ventilation in acute respiratory failure.

    Science.gov (United States)

    Mas, Arantxa; Masip, Josep

    2014-01-01

    After the institution of positive-pressure ventilation, the use of noninvasive ventilation (NIV) through an interface substantially increased. The first technique was continuous positive airway pressure; but, after the introduction of pressure support ventilation at the end of the 20th century, this became the main modality. Both techniques, and some others that have been recently introduced and which integrate some technological innovations, have extensively demonstrated a faster improvement of acute respiratory failure in different patient populations, avoiding endotracheal intubation and facilitating the release of conventional invasive mechanical ventilation. In acute settings, NIV is currently the first-line treatment for moderate-to-severe chronic obstructive pulmonary disease exacerbation as well as for acute cardiogenic pulmonary edema and should be considered in immunocompromised patients with acute respiratory insufficiency, in difficult weaning, and in the prevention of postextubation failure. Alternatively, it can also be used in the postoperative period and in cases of pneumonia and asthma or as a palliative treatment. NIV is currently used in a wide range of acute settings, such as critical care and emergency departments, hospital wards, palliative or pediatric units, and in pre-hospital care. It is also used as a home care therapy in patients with chronic pulmonary or sleep disorders. The appropriate selection of patients and the adaptation to the technique are the keys to success. This review essentially analyzes the evidence of benefits of NIV in different populations with acute respiratory failure and describes the main modalities, new devices, and some practical aspects of the use of this technique.

  2. Fractal ventilation enhances respiratory sinus arrhythmia

    Directory of Open Access Journals (Sweden)

    Girling Linda G

    2005-05-01

    Full Text Available Abstract Background Programming a mechanical ventilator with a biologically variable or fractal breathing pattern (an example of 1/f noise improves gas exchange and respiratory mechanics. Here we show that fractal ventilation increases respiratory sinus arrhythmia (RSA – a mechanism known to improve ventilation/perfusion matching. Methods Pigs were anaesthetised with propofol/ketamine, paralysed with doxacurium, and ventilated in either control mode (CV or in fractal mode (FV at baseline and then following infusion of oleic acid to result in lung injury. Results Mean RSA and mean positive RSA were nearly double with FV, both at baseline and following oleic acid. At baseline, mean RSA = 18.6 msec with CV and 36.8 msec with FV (n = 10; p = 0.043; post oleic acid, mean RSA = 11.1 msec with CV and 21.8 msec with FV (n = 9, p = 0.028; at baseline, mean positive RSA = 20.8 msec with CV and 38.1 msec with FV (p = 0.047; post oleic acid, mean positive RSA = 13.2 msec with CV and 24.4 msec with FV (p = 0.026. Heart rate variability was also greater with FV. At baseline the coefficient of variation for heart rate was 2.2% during CV and 4.0% during FV. Following oleic acid the variation was 2.1 vs. 5.6% respectively. Conclusion These findings suggest FV enhances physiological entrainment between respiratory, brain stem and cardiac nonlinear oscillators, further supporting the concept that RSA itself reflects cardiorespiratory interaction. In addition, these results provide another mechanism whereby FV may be superior to conventional CV.

  3. CLASSIFICATION OF THE MGR SUBSURFACE VENTILATION SYSTEM

    International Nuclear Information System (INIS)

    R.J. Garrett

    1999-01-01

    The purpose of this analysis is to document the Quality Assurance (QA) classification of the Monitored Geologic Repository (MGR) subsurface ventilation system structures, systems and components (SSCs) performed by the MGR Safety Assurance Department. This analysis also provides the basis for revision of YMP/90-55Q, Q-List (YMP 1998). The Q-List identifies those MGR SSCs subject to the requirements of DOE/RW-0333P7 ''Quality Assurance Requirements and Description'' (QARD) (DOE 1998)

  4. Ventilation in the Hospital Operating Room.

    Science.gov (United States)

    1984-10-01

    Force Design Manual - Criteria and Standards for Air Force Cojistruction" and APM 88-50, "Criteria for Design and Construction of Air Force Helth ...Institute of Technology investigated the need for operating room ventilation in the Bureau of Health Services Research Report 73-34, "Air Treatment for...Institute of Technology found that two fresh air changes per hour are sufficient to dilute the odors so that they are not objectionable to operating room

  5. Ventilator associated pneumonia and infection control

    OpenAIRE

    Alp, Emine; Voss, Andreas

    2006-01-01

    Abstract Ventilator associated pneumonia (VAP) is the leading cause of morbidity and mortality in intensive care units. The incidence of VAP varies from 7% to 70% in different studies and the mortality rates are 20–75% according to the study population. Aspiration of colonized pathogenic microorganisms on the oropharynx and gastrointestinal tract is the main route for the development of VAP. On the other hand, the major risk factor for VAP is intubation and the duration of mechanical ventilat...

  6. Comparison of 4-Dimensional Computed Tomography Ventilation With Nuclear Medicine Ventilation-Perfusion Imaging: A Clinical Validation Study

    International Nuclear Information System (INIS)

    Vinogradskiy, Yevgeniy; Koo, Phillip J.; Castillo, Richard; Castillo, Edward; Guerrero, Thomas; Gaspar, Laurie E.; Miften, Moyed; Kavanagh, Brian D.

    2014-01-01

    Purpose: Four-dimensional computed tomography (4DCT) ventilation imaging provides lung function information for lung cancer patients undergoing radiation therapy. Before 4DCT-ventilation can be implemented clinically it needs to be validated against an established imaging modality. The purpose of this work was to compare 4DCT-ventilation to nuclear medicine ventilation, using clinically relevant global metrics and radiologist observations. Methods and Materials: Fifteen lung cancer patients with 16 sets of 4DCT and nuclear medicine ventilation-perfusion (VQ) images were used for the study. The VQ-ventilation images were acquired in planar mode using Tc-99m-labeled diethylenetriamine-pentaacetic acid aerosol inhalation. 4DCT data, spatial registration, and a density-change-based model were used to compute a 4DCT-based ventilation map for each patient. The percent ventilation was calculated in each lung and each lung third for both the 4DCT and VQ-ventilation scans. A nuclear medicine radiologist assessed the VQ and 4DCT scans for the presence of ventilation defects. The VQ and 4DCT-based images were compared using regional percent ventilation and radiologist clinical observations. Results: Individual patient examples demonstrate good qualitative agreement between the 4DCT and VQ-ventilation scans. The correlation coefficients were 0.68 and 0.45, using the percent ventilation in each individual lung and lung third, respectively. Using radiologist-noted presence of ventilation defects and receiver operating characteristic analysis, the sensitivity, specificity, and accuracy of the 4DCT-ventilation were 90%, 64%, and 81%, respectively. Conclusions: The current work compared 4DCT with VQ-based ventilation using clinically relevant global metrics and radiologist observations. We found good agreement between the radiologist's assessment of the 4DCT and VQ-ventilation images as well as the percent ventilation in each lung. The agreement lessened when the data were

  7. Bench test evaluation of volume delivered by modern ICU ventilators during volume-controlled ventilation.

    Science.gov (United States)

    Lyazidi, Aissam; Thille, Arnaud W; Carteaux, Guillaume; Galia, Fabrice; Brochard, Laurent; Richard, Jean-Christophe M

    2010-12-01

    During volume-controlled ventilation, part of the volume delivered is compressed into the circuit. To correct for this phenomenon, modern ventilators use compensation algorithms. Humidity and temperature also influence the delivered volume. In a bench study at a research laboratory in a university hospital, we compared nine ICU ventilators equipped with compensation algorithms, one with a proximal pneumotachograph and one without compensation. Each ventilator was evaluated under normal, obstructive, and restrictive conditions of respiratory mechanics. For each condition, three tidal volumes (V (T)) were set (300, 500, and 800 ml), with and without an inspiratory pause. The insufflated volume and the volume delivered at the Y-piece were measured independently, without a humidification device, under ambient temperature and pressure and dry gas conditions. We computed the actually delivered V (T) to the lung under body temperature and pressure and saturated water vapour conditions (BTPS). For target V (T) values of 300, 500, and 800 ml, actually delivered V (T) under BTPS conditions ranged from 261 to 396 ml (-13 to +32%), from 437 to 622 ml (-13 to +24%), and from 681 to 953 ml (-15 to +19%), respectively (p ventilators.

  8. Avoiding invasive mechanical ventilation by extracorporeal carbon dioxide removal in patients failing noninvasive ventilation.

    Science.gov (United States)

    Kluge, Stefan; Braune, Stephan A; Engel, Markus; Nierhaus, Axel; Frings, Daniel; Ebelt, Henning; Uhrig, Alexander; Metschke, Maria; Wegscheider, Karl; Suttorp, Norbert; Rousseau, Simone

    2012-10-01

    To evaluate whether extracorporeal carbon dioxide removal by means of a pumpless extracorporeal lung-assist (PECLA) device could be an effective and safe alternative to invasive mechanical ventilation in patients with chronic pulmonary disease and acute hypercapnic ventilatory failure not responding to noninvasive ventilation (NIV). In this multicentre, retrospective study, 21 PECLA patients were compared with respect to survival and procedural outcomes to 21 matched controls with conventional invasive mechanical ventilation. Matching criteria were underlying diagnosis, age, Simplified Acute Physiology Score II and pH at ICU admission. Of the 21 patients treated with PECLA, 19 (90 %) did not require intubation. Median PaCO(2) levels and pH in arterial blood prior to PECLA were 84.0 mmHg (54.2-131.0) and 7.28 (7.10-7.41), respectively. Within 24 h, median PaCO(2) levels and pH had significantly improved to 52.1 (33.0-70.1; p carbon dioxide removal allowed avoiding intubation and invasive mechanical ventilation in the majority of patients with acute on chronic respiratory failure not responding to NIV. Compared to conventional invasive ventilation, short- and long-term survivals were similar.

  9. Noninvasive mechanical ventilation for post acute care.

    Science.gov (United States)

    Hill, N

    2001-03-01

    The increasing use of NPPV in both acute and chronic settings has added to ventilator options in the post acute setting. Some patients start NPPV during their acute presentation and continue use during their post acute stay. Others are difficult to wean from invasive mechanical ventilation, and, if selected carefully, can be extubated and weaned using NPPV. Still others may initiate NPPV in the post acute setting with the anticipation of long-term use. In any care settings, principles of patient selection and management in monitoring practices overlap considerably. Noninvasive ventilation has been shown to reduce morbidity, mortality, and hospital stay in the acute setting for selected patients, and almost certainly prolongs survival for patients with restrictive thoracic disorders in the chronic setting. Although efficacy studies have not been performed in the post acute setting, it is reasonable to anticipate that appropriate use of NPPV will yield similar benefits. Accordingly, clinicians working in the post acute setting must acquire skill and experience in the proper application of NPPV to optimally manage the increasing number of patients treated with NPPV in this expanding arena.

  10. Collective fluid mechanics of honeybee nest ventilation

    Science.gov (United States)

    Gravish, Nick; Combes, Stacey; Wood, Robert J.; Peters, Jacob

    2014-11-01

    Honeybees thermoregulate their brood in the warm summer months by collectively fanning their wings and creating air flow through the nest. During nest ventilation workers flap their wings in close proximity in which wings continuously operate in unsteady oncoming flows (i.e. the wake of neighboring worker bees) and near the ground. The fluid mechanics of this collective aerodynamic phenomena are unstudied and may play an important role in the physiology of colony life. We have performed field and laboratory observations of the nest ventilation wing kinematics and air flow generated by individuals and groups of honeybee workers. Inspired from these field observations we describe here a robotic model system to study collective flapping wing aerodynamics. We microfabricate arrays of 1.4 cm long flapping wings and observe the air flow generated by arrays of two or more fanning robotic wings. We vary phase, frequency, and separation distance among wings and find that net output flow is enhanced when wings operate at the appropriate phase-distance relationship to catch shed vortices from neighboring wings. These results suggest that by varying position within the fanning array honeybee workers may benefit from collective aerodynamic interactions during nest ventilation.

  11. Respiratory mechanics in mechanically ventilated patients.

    Science.gov (United States)

    Hess, Dean R

    2014-11-01

    Respiratory mechanics refers to the expression of lung function through measures of pressure and flow. From these measurements, a variety of derived indices can be determined, such as volume, compliance, resistance, and work of breathing. Plateau pressure is a measure of end-inspiratory distending pressure. It has become increasingly appreciated that end-inspiratory transpulmonary pressure (stress) might be a better indicator of the potential for lung injury than plateau pressure alone. This has resulted in a resurgence of interest in the use of esophageal manometry in mechanically ventilated patients. End-expiratory transpulmonary pressure might also be useful to guide the setting of PEEP to counterbalance the collapsing effects of the chest wall. The shape of the pressure-time curve might also be useful to guide the setting of PEEP (stress index). This has focused interest in the roles of stress and strain to assess the potential for lung injury during mechanical ventilation. This paper covers both basic and advanced respiratory mechanics during mechanical ventilation. Copyright © 2014 by Daedalus Enterprises.

  12. Why we ventilate our houses - An historical look

    Energy Technology Data Exchange (ETDEWEB)

    Matson, Nance E.; Sherman, Max H.

    2004-05-14

    The knowledge of how to ventilate buildings, and how much ventilation is necessary for human health and comfort, has evolved over centuries of trial and error. Humans and animals have developed successful solutions to the problems of regulating temperature and removing air pollutants through the use of ventilation. These solutions include ingenious construction methods, such as engineered passive ventilation (termite mounds and passive stacks), mechanical means (wing-powered, fans), and an evolving effort to identify problems and develop solutions. Ventilation can do more than help prevent building occupants from getting sick; it can provide an improved indoor environment. Codes and standards provide minimum legal requirements for ventilation, but the need for ventilation goes beyond code minima. In this paper we will look at indoor air pollutant sources over time, the evolution of ventilation strategies, current residential ventilation codes and standards (e.g., recently approved ASHRAE Standard 62.2), and briefly discuss ways in which we can go beyond the standards to optimize residential ventilation, reduce indoor air quality problems, and provide corresponding social and economic benefit.

  13. Ventilation therapy for patients suffering from obstructive lung diseases.

    Science.gov (United States)

    Jungblut, Sven A; Heidelmann, Lena M; Westerfeld, Andreas; Frickmann, Hagen; Körber, Mareike K; Zautner, Andreas E

    2014-01-01

    Severe bronchial obstruction due to one of the major pulmonary diseases: asthma, COPD, or emphysema often requires mechanical ventilation support. Otherwise, patients are at risk of severe hypooxygenation with consecutive overloading and dilatation of the right cardiac ventricle with subsequent failure. This review focuses on how to manage a calculated ventilation therapy of patients suffering from bronchial obstruction and relevant patents. Options and pitfalls of invasive and non-invasive ventilation in the intensive care setting regarding clinical improvement and final outcome are discussed. The non-invasive ventilation is very efficient in treating acute or chronic respiratory failure in COPD patients and is capable of shortening the duration of hospitalization. Further non-invasive ventilation can successfully support the weaning after a long-lasting ventilation therapy and improve the prognosis of COPD patients. "Permissive hypercapnia" is unequivocally established in invasive ventilation therapy of severe bronchial obstruction in situations of limited ventilation. When intrinsic positive end-expiratory pressure (PEEP) and elevated airways resistance are present PEEP may be useful although external-PEEP application relieves over-inflation only in selected patients with airway obstruction during controlled mechanical ventilation. Upper limit of airways peak pressure used in "protective ventilation" of adult respiratory distress syndrome (ARDS) patients can be exceeded under certain circumstances.

  14. Advanced Controls for Residential Whole-House Ventilation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Turner, William [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Walker, Iain [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sherman, Max [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-08-01

    Whole-house ventilation systems are becoming commonplace in new construction, remodeling/renovation, and weatherization projects, driven by combinations of specific requirements for indoor air quality (IAQ), health and compliance with standards, such as ASHRAE 62.2. Ventilation systems incur an energy penalty on the home via fan power used to drive the airflow, and the additional space-conditioning load associated with heating or cooling the ventilation air. Finding a balance between IAQ and energy use is important if homes are to be adequately ventilated while not increasing the energy burden. This study used computer simulations to examine RIVEC the Residential Integrated Ventilation Controller - a prototype ventilation controller that aims to deliver whole-house ventilation rates that comply with ventilation standards, for the minimum use of energy. Four different whole-house ventilation systems were simulated, both with and without RIVEC, so that the energy and IAQ results could be compared. Simulations were conducted for 13 US climate zones, three house designs, and three envelope leakage values. The results showed that the RIVEC controller could typically return ventilation energy savings greater than 40percent without compromising long-term chronic or short-term acute exposures to relevant indoor contaminants. Critical and average peak power loads were also reduced as a consequence of using RIVEC.

  15. Mobile communication devices causing interference in invasive and noninvasive ventilators.

    Science.gov (United States)

    Dang, Bao P; Nel, Pierre R; Gjevre, John A

    2007-06-01

    The aim of this study was to assess if common mobile communication systems would cause significant interference on mechanical ventilation devices and at what distances would such interference occur. We tested all the invasive and noninvasive ventilatory devices used within our region. This consisted of 2 adult mechanical ventilators, 1 portable ventilator, 2 pediatric ventilators, and 2 noninvasive positive pressure ventilatory devices. We operated the mobile devices from the 2 cellular communication systems (digital) and 1 2-way radio system used in our province at varying distances from the ventilators and looked at any interference they created. We tested the 2-way radio system, which had a fixed operation power output of 3.0 watts, the Global Systems for Mobile Communication cellular system, which had a maximum power output of 2.0 watts and the Time Division Multiple Access cellular system, which had a maximum power output of 0.2 watts on our ventilators. The ventilators were ventilating a plastic lung at fixed settings. The mobile communication devices were tested at varying distances starting at zero meter from the ventilator and in all operation modes. The 2-way radio caused the most interference on some of the ventilators, but the maximum distance of interference was 1.0 m. The Global Systems for Mobile Communication system caused significant interference only at 0 m and minor interference at 0.5 m on only 1 ventilator. The Time Division Multiple Access system caused no interference at all. Significant interference consisted of a dramatic rise and fluctuation of the respiratory rate, pressure, and positive end-expiratory pressure of the ventilators with no normalization when the mobile device was removed. From our experiment on our ventilators with the communication systems used in our province, we conclude that mobile communication devices such as cellular phones and 2-way radios are safe and cause no interference unless operated at very close distances of

  16. Duration of Mechanical Ventilation in the Emergency Department

    Directory of Open Access Journals (Sweden)

    Lauren B. Angotti

    2017-07-01

    Full Text Available Introduction: Due to hospital crowding, mechanically ventilated patients are increasingly spending hours boarding in emergency departments (ED before intensive care unit (ICU admission. This study aims to evaluate the association between time ventilated in the ED and in-hospital mortality, duration of mechanical ventilation, ICU and hospital length of stay (LOS. Methods: This was a multi-center, prospective, observational study of patients ventilated in the ED, conducted at three academic Level I Trauma Centers from July 2011 to March 2013. All consecutive adult patients on invasive mechanical ventilation were eligible for enrollment. We performed a Cox regression to assess for a mortality effect for mechanically ventilated patients with each hour of increasing LOS in the ED and multivariable regression analyses to assess for independently significant contributors to in-hospital mortality. Our primary outcome was in-hospital mortality, with secondary outcomes of ventilator days, ICU LOS and hospital LOS. We further commented on use of lung protective ventilation and frequency of ventilator changes made in this cohort. Results: We enrolled 535 patients, of whom 525 met all inclusion criteria. Altered mental status without respiratory pathology was the most common reason for intubation, followed by trauma and respiratory failure. Using iterated Cox regression, a mortality effect occurred at ED time of mechanical ventilation > 7 hours, and the longer ED stay was also associated with a longer total duration of intubation. However, adjusted multivariable regression analysis demonstrated only older age and admission to the neurosciences ICU as independently associated with increased mortality. Of interest, only 23.8% of patients ventilated in the ED for over seven hours had changes made to their ventilator. Conclusion: In a prospective observational study of patients mechanically ventilated in the ED, there was a significant mortality benefit to

  17. Prevention of ventilator-associated pneumonia

    Directory of Open Access Journals (Sweden)

    J. Oliveira

    2014-05-01

    Full Text Available Invasive mechanical ventilation (IMV represents a risk factor for the development of ventilator-associated pneumonia (VAP, which develops at least 48 h after admission in patients ventilated through tracheostomy or endotracheal intubation. VAP is the most frequent intensive-care-unit (ICU-acquired infection among patients receiving IMV. It contributes to an increase in hospital mortality, duration of MV and ICU and length of hospital stay. Therefore, it worsens the condition of the critical patient and increases the total cost of hospitalization. The introduction of preventive measures has become imperative, to ensure control and to reduce the incidence of VAP. Preventive measures focus on modifiable risk factors, mediated by non-pharmacological and pharmacological evidence based strategies recommended by guidelines. These measures are intended to reduce the risk associated with endotracheal intubation and to prevent microaspiration of pathogens to the lower airways. Resumo: A ventilação mecânica invasiva representa um fator de risco para o desenvolvimento da pneumonia associada ao ventilador (PAV, que se desenvolve 48 horas ou mais após a admissão hospitalar, em doentes ventilados através de traqueostomia ou intubação endotraqueal. A PAV é a infeção adquirida na unidade de cuidados intensivos (UCI mais frequente entre os doentes submetidos a ventilação mecânica invasiva. Contribui para o aumento da mortalidade hospitalar, da duração da ventilação mecânica e do tempo de internamento na UCI e no hospital. Por conseguinte, agrava o estado de saúde do doente crítico e aumenta o custo total da hospitalização. A adoção de medidas preventivas é imprescindível, de modo a garantir o controlo e a diminuição da incidência da PAV. As medidas preventivas incidem sobre os fatores de risco modificáveis, sendo aplicadas estratégias não farmacológicas e farmacológicas baseadas na evidência e recomendadas por guidelines. As

  18. Ventilation of high-speed flows, an alternating methodology for the ventilator design

    International Nuclear Information System (INIS)

    Saldarriaga V, Juan G.; Navarrete, J.; Galeano B, Luis A.

    1996-01-01

    This article is about a research developed at Universidad de los Andes on the ventilation of high velocity flows as prevention against cavitations erosion. The research was a consequence of the results found in the physical model of the Guavio River Hydroelectric Project near Bogota and was based in a general model study of a spillway with ventilation system, which did not represent a particular prototype. In the Guavio study one conclusion was obtained:in every ventilation system there are three unknowns which are the air discharge injected to the water flow (design object variable), the sub pressure under the water jet and the jump length of that jet. In the research those three variables were studied using dimensional analysis and multivariable regressions in order to find a set of three equations that allow the design of this type of structures. The new equations are more general than those reported in technical literature

  19. Effects of Multiple Ventilation Courses and Duration of Mechanical Ventilation on Respiratory Outcomes in Extremely Low-Birth-Weight Infants.

    Science.gov (United States)

    Jensen, Erik A; DeMauro, Sara B; Kornhauser, Michael; Aghai, Zubair H; Greenspan, Jay S; Dysart, Kevin C

    2015-11-01

    Extubation failure is common in extremely preterm infants. The current paucity of data on the adverse long-term respiratory outcomes associated with reinitiation of mechanical ventilation prevents assessment of the risks and benefits of a trial of extubation in this population. To evaluate whether exposure to multiple courses of mechanical ventilation increases the risk of adverse respiratory outcomes before and after adjustment for the cumulative duration of mechanical ventilation. We performed a retrospective cohort study of extremely low-birth-weight (ELBW; birth weight mechanical ventilation. Analysis was conducted between November 2014 and February 2015. Data were obtained from the Alere Neonatal Database. The primary study exposures were the cumulative duration of mechanical ventilation and the number of ventilation courses. The primary outcome was bronchopulmonary dysplasia (BPD) among survivors. Secondary outcomes were death, use of supplemental oxygen at discharge, and tracheostomy. We identified 3343 ELBW infants, of whom 2867 (85.8%) survived to discharge. Among the survivors, 1695 (59.1%) were diagnosed as having BPD, 856 (29.9%) received supplemental oxygen at discharge, and 31 (1.1%) underwent tracheostomy. Exposure to a greater number of mechanical ventilation courses was associated with a progressive increase in the risk of BPD and use of supplemental oxygen at discharge. Compared with a single ventilation course, the adjusted odds ratios for BPD ranged from 1.88 (95% CI, 1.54-2.31) among infants with 2 ventilation courses to 3.81 (95% CI, 2.88-5.04) among those with 4 or more courses. After adjustment for the cumulative duration of mechanical ventilation, the odds of BPD were only increased among infants exposed to 4 or more ventilation courses (adjusted odds ratio, 1.44; 95% CI, 1.04-2.01). The number of ventilation courses was not associated with increased risk of supplemental oxygen use at discharge after adjustment for the length of ventilation

  20. Delivery of tidal volume from four anaesthesia ventilators during volume-controlled ventilation: a bench study.

    Science.gov (United States)

    Wallon, G; Bonnet, A; Guérin, C

    2013-06-01

    Tidal volume (V(T)) must be accurately delivered by anaesthesia ventilators in the volume-controlled ventilation mode in order for lung protective ventilation to be effective. However, the impact of fresh gas flow (FGF) and lung mechanics on delivery of V(T) by the newest anaesthesia ventilators has not been reported. We measured delivered V(T) (V(TI)) from four anaesthesia ventilators (Aisys™, Flow-i™, Primus™, and Zeus™) on a pneumatic test lung set with three combinations of lung compliance (C, ml cm H2O(-1)) and resistance (R, cm H2O litre(-1) s(-2)): C60R5, C30R5, C60R20. For each CR, three FGF rates (0.5, 3, 10 litre min(-1)) were investigated at three set V(T)s (300, 500, 800 ml) and two values of PEEP (0 and 10 cm H2O). The volume error = [(V(TI) - V(Tset))/V(Tset)] ×100 was computed in body temperature and pressure-saturated conditions and compared using analysis of variance. For each CR and each set V(T), the absolute value of the volume error significantly declined from Aisys™ to Flow-i™, Zeus™, and Primus™. For C60R5, these values were 12.5% for Aisys™, 5% for Flow-i™ and Zeus™, and 0% for Primus™. With an increase in FGF, absolute values of the volume error increased only for Aisys™ and Zeus™. However, in C30R5, the volume error was minimal at mid-FGF for Aisys™. The results were similar at PEEP 10 cm H2O. Under experimental conditions, the volume error differed significantly between the four new anaesthesia ventilators tested and was influenced by FGF, although this effect may not be clinically relevant.

  1. [Evaluation of tidal volume delivered by ventilators during volume-controlled ventilation].

    Science.gov (United States)

    Zhou, Juan; Yan, Yong; Cao, Desen

    2014-12-01

    To study the ways which ensure the delivery of enough tidal volume to patients under various conditions close to the demand of the physician. The volume control ventilation model was chosen, and the simulation lung type was active servo lung ASL 5000 or Michigan lung 1601. The air resistance, air compliance and lung type in simulation lungs were set. The tidal volume was obtained from flow analyzer PF 300. At the same tidal volume, the displaying values of tidal volume of E5, Servo i, Evital 4, and Evital XL ventilators with different lung types of patient, compliance of gas piping, leakage, gas types, etc. were evaluated. With the same setting tidal volume of a same ventilator, the tidal volume delivered to patients was different with different lung types of patient, compliance of gas piping, leakage, gas types, etc. Reducing compliance and increasing resistance of the patient lungs caused high peak airway pressure, the tidal volume was lost in gas piping, and the tidal volume be delivered to the patient lungs was decreased. If the ventilator did not compensate to leakage, the tidal volume delivered to the patient lungs was decreased. When the setting gas type of ventilator did not coincide with that applying to the patient, the tidal volume be delivered to the patient lungs might be different with the setting tidal volume of ventilator. To ensure the delivery of enough tidal volume to patients close to the demand of the physician, containable factors such as the compliance of gas piping, leakage, and gas types should be controlled.

  2. Comparison of actual tidal volume in neonatal lung model volume control ventilation using three ventilators.

    Science.gov (United States)

    Toyama, H; Endo, Y; Ejima, Y; Matsubara, M; Kurosawa, S

    2011-07-01

    In neonates, small changes in tidal volumes (V(T)) may lead to complications. Previous studies have shown a significant difference between ventilator-measured tidal volume and tidal volume delivered (actual V(T)). We evaluated the accuracy of three different ventilators to deliver small V(T) during volume-controlled ventilation. We tested Servo 300, 840 ventilator and Evita 4 Neoflow ventilators with lung models simulating normal and injured neonatal lung compliance models. Gas volume delivered from the ventilator into the test circuit (V(TV)) and actual V(T) to the test lung were measured using Ventrak respiration monitors at set V(T) (30 ml). The gas volume increase of the breathing circuit was then calculated. Tidal volumes of the SV300 and PB840 in both lung models were similar to the set V(T) and the actual tidal volumes in the injured model (20.7 ml and 19.8 ml, respectively) were significantly less than that in the normal model (27.4 ml and 23.4 ml). PB840 with circuit compliance compensation could not improve the actual V(T). V(TV) of the EV4N in the normal and the injured models (37.8 ml and 46.6 ml) were markedly increased compared with set V(T), and actual V(T) were similar to set V(T) in the normal and injured model (30.2 ml and 31.9 ml, respectively). EV4N measuring V(T) close to the lung could match actual V(T) to almost the same value as the set V(T) however the gas volume of the breathing circuit was increased. If an accurate value for the patient's actual V(T) is needed, this V(T) must be measured by a sensor located between the Y-piece and the tracheal tube.

  3. Effect of a ventilator-focused intervention on the rate of Acinetobacter baumannii infection among ventilated patients.

    Science.gov (United States)

    Cohen, Regev; Shimoni, Zvi; Ghara, Riad; Ram, Ron; Ben-Ami, Ronen

    2014-09-01

    Acinetobacter baumannii is a leading cause of ventilator-associated pneumonia, often as a result of ventilator equipment contamination. Evidence-based guidance on optimal care of ventilator equipment to prevent infection is lacking. Here, we report on a significant and persistent reduction in A baumannii infection rates achieved by introducing a strict policy on ventilator care. We implemented an institution-wide ventilator care policy that included routine exchange of breathing circuits and external bacterial filters (every 7-14 days) and replacement followed by routine sterilization of internal bacterial filters (every 4-8 weeks). We analyzed sputum cultures and patient outcomes among ventilated patients before and after the intervention. Between January 2012 and March 2013, 321 patients ventilated for more than 3 days comprised the study cohort. Health care-associated A baumannii acquisition was significantly reduced during the postintervention period (33% vs 16%; odds ratio, 0.39; 95% confidence interval, 0.23-0.67; P = .0008). Additionally, the median time to A baumannii acquisition was significantly longer postintervention (59 vs 21 days; P < .0001). A baumannii ventilator-associated pneumonia risk was also reduced postintervention (odds ratio, 0.39; P = .005). Implementing a stricter standard of ventilator care than that currently defined in published guidelines can significantly decrease health care-associated A baumannii acquisition and related adverse outcomes among ventilated patients. Copyright © 2014 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  4. Aerosol ventilation scintigraphy in mechanically ventilated patients in the intensive care unit

    International Nuclear Information System (INIS)

    Chamberlain, M.J.; King, M.E.; Vezina, W.C.; Vinitski, S.

    1982-01-01

    A simple economical apparatus was constructed to permit 99m technetium aerosol lung scanning in intubated patients requiring mechanical ventilation. A study was then undertaken which showed the technique to be feasible, reliable and to provide information leading to changes in diagnosis and management in patients in the Intensive Care Unit (ICU). The technique can identify pure ventilatory abnormalities particularly endobronchial obstruction. The technique does not require computer manipulation of images and allows the ready acquisition of ventilation scans in multiple projections which is a distinct advantage over radio xenon scanning

  5. Personal exposure between people in a room ventilated by textile terminals - with and without personalized ventilation

    DEFF Research Database (Denmark)

    Nielsen, P. V.; Hyldgaard, C.E.; Melikov, Arsen Krikor

    2005-01-01

    The investigation is made in a room ventilated by an air distribution system based on a textile terminal. The air distribution in the room is mainly controlled by buoyancy forces from the heat sources, although the flow from the textile terminal can be characterized as a passive displacement flow....... In general it is found that when the air is supplied from the textile terminal alone, the flow in the room is fully mixed with a limited protection of the occupants. It is shown that the personalized ventilation improves the protection of occupants by increasing the personal exposure index....

  6. Hybrid Ventilation with Innovative Heat Recovery—A System Analysis

    Directory of Open Access Journals (Sweden)

    Bengt Hellström

    2013-02-01

    Full Text Available One of the most important factors when low energy houses are built is to have good heat recovery on the ventilation system. However, standard ventilation units use a considerable amount of electricity. This article discusses the consequences on a system level of using hybrid ventilation with heat recovery. The simulation program TRNSYS was used in order to investigate a ventilation system with heat recovery. The system also includes a ground source storage and waste water heat recovery system. The result of the analysis shows that the annual energy gain from ground source storage is limited. However, this is partly a consequence of the fact that the well functioning hybrid ventilation system leaves little room for improvements. The analysis shows that the hybrid ventilation system has potential to be an attractive solution for low energy buildings with a very low need for electrical energy.

  7. Magnetic Resonance Imaging of Ventilation and Perfusion in the Lung

    Science.gov (United States)

    Prisk, Gordon Kim (Inventor); Hopkins, Susan Roberta (Inventor); Buxton, Richard Bruce (Inventor); Pereira De Sa, Rui Carlos (Inventor); Theilmann, Rebecca Jean (Inventor); Cronin, Matthew Vincent (Inventor)

    2017-01-01

    Methods, devices, and systems are disclosed for implementing a fully quantitative non-injectable contrast proton MRI technique to measure spatial ventilation-perfusion (VA/Q) matching and spatial distribution of ventilation and perfusion. In one aspect, a method using MRI to characterize ventilation and perfusion in a lung includes acquiring an MR image of the lung having MR data in a voxel and obtaining a breathing frequency parameter, determining a water density value, a specific ventilation value, and a perfusion value in at least one voxel of the MR image based on the MR data and using the water density value to determine an air content value, and determining a ventilation-perfusion ratio value that is the product of the specific ventilation value, the air content value, the inverse of the perfusion value, and the breathing frequency.

  8. Technology for noninvasive mechanical ventilation: looking into the black box

    Directory of Open Access Journals (Sweden)

    Ramon Farré

    2016-03-01

    Full Text Available Current devices for providing noninvasive respiratory support contain sensors and built-in intelligence for automatically modifying ventilation according to the patient's needs. These devices, including automatic continuous positive airway pressure devices and noninvasive ventilators, are technologically complex and offer a considerable number of different modes of ventilation and setting options, the details of which are sometimes difficult to capture by the user. Therefore, better predicting and interpreting the actual performance of these ventilation devices in clinical application requires understanding their functioning principles and assessing their performance under well controlled bench test conditions with simulated patients. This concise review presents an updated perspective of the theoretical basis of intelligent continuous positive airway pressure and noninvasive ventilation devices, and of the tools available for assessing how these devices respond under specific ventilation phenotypes in patients requiring breathing support.

  9. Performance potential of mechanical ventilation systems with minimized pressure loss

    DEFF Research Database (Denmark)

    Terkildsen, Søren; Svendsen, Svend

    2013-01-01

    In many locations mechanical ventilation has been the most widely used principle of ventilation over the last 50 years but the conventional system design must be revised to comply with future energy requirements. This paper examines the options and describes a concept for the design of mechanical....... This corresponds to 10-15% of the power consumption for conventional mechanical ventilation systems thus enabling the system to fulfil future energy requirements in buildings....... ventilation systems with minimal pressure loss and minimal energy use. This can provide comfort ventilation and avoid overheating through increased ventilation and night cooling. Based on this concept, a test system was designed for a fictive office building and its performance was documented using building...

  10. Tracer gas evaluations of push-pull ventilation system performance.

    Science.gov (United States)

    Ojima, Jun

    2009-01-01

    A push-pull ventilation system is effective for hazardous material exhaustion. Although a push-pull ventilation system has advantages over a local exhaust hood, some laborious adjustments are required. The pertinence of the adjustments is uncertain because it is difficult to evaluate the performance of a push-pull ventilation system quantitatively. In this study, a measurement of the capture efficiency of a push-pull ventilation system was carried out by means of a tracer gas method. The capture efficiency decreased to 39.3-78.5% when blockage material, a dummy worker and a cross draft, were set in the ventilation zone, but the efficiency was 95.1-97.9% when the cross draft was stopped. The results suggest that the uniform flow of a push-pull ventilation system will detour a blockage and the performance of the system will not be reduced unless a cross draft disturbs the uniform flow.

  11. Polyester matrix composite reinforced by fiberglass: how far can have contact with oil; Composito de matriz poliester e reforco de fibra de vidro: ate onde pode ter contato com petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Dantas, C.M.; Masieiro, F.R.S.; Felipe, R.C.T.S.; Felipe, R.N.B.; Medeiros, G.G. [Centro Federal de Educacao Tecnologica (CEFET), Natal, RN (Brazil)], e-mail: k1000_rn@hotmail.com

    2008-07-01

    The use of reinforced plastics (PR) in the petroleum industry is very incipient when compared to conventional materials such as steel, for example. PR are already being used in floorings and handrails, but still there is not studies about the behavior of these materials when they come into contact with oil. In this context, this work aims to obtain a composite using a matrix of polyester resin, and the fiberglass (E Glass) as material of reinforcement. After the obtention of the composite, proof bodies will be made for the determination of the mechanical properties related to the traction and bending. Some of these proof bodies will be immersed in oil for a period of 120 days. At the end of this period, they will be tested. Thus, the traction and bending of the proof bodies which was immersed will be compared to the other ones, seeking to verify the influence of this immersion on the mechanical properties of the material. (author)

  12. 46 CFR 97.37-50 - Ventilation alarm failure.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Ventilation alarm failure. 97.37-50 Section 97.37-50... OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 97.37-50 Ventilation alarm failure. (a) The...-inch letters “VENTILATION FAILURE IN VEHICULAR SPACE.” (b) [Reserved] [CGFR 66-33, 31 FR 15286, Dec. 6...

  13. Recommended Ventilation Strategies for Energy-Efficient Production Homes

    Energy Technology Data Exchange (ETDEWEB)

    Roberson, J.; Brown, R.; Koomey, J.; Warner, J.; Greenberg, S.

    1998-12-01

    This report evaluates residential ventilation systems for the U.S. Environmental Protection Agency's (EPA's) ENERGY STAR{reg_sign} Homes program and recommends mechanical ventilation strategies for new, low-infiltration, energy-efficient, single-family, ENERGY STAR production (site-built tract) homes in four climates: cold, mixed (cold and hot), hot humid, and hot arid. Our group in the Energy Analysis Department at Lawrence Berkeley National Lab compared residential ventilation strategies in four climates according to three criteria: total annualized costs (the sum of annualized capital cost and annual operating cost), predominant indoor pressure induced by the ventilation system, and distribution of ventilation air within the home. The mechanical ventilation systems modeled deliver 0.35 air changes per hour continuously, regardless of actual infiltration or occupant window-opening behavior. Based on the assumptions and analysis described in this report, we recommend independently ducted multi-port supply ventilation in all climates except cold because this strategy provides the safety and health benefits of positive indoor pressure as well as the ability to dehumidify and filter ventilation air. In cold climates, we recommend that multi-port supply ventilation be balanced by a single-port exhaust ventilation fan, and that builders offer balanced heat-recovery ventilation to buyers as an optional upgrade. For builders who continue to install forced-air integrated supply ventilation, we recommend ensuring ducts are airtight or in conditioned space, installing a control that automatically operates the forced-air fan 15-20 minutes during each hour that the fan does not operate for heating or cooling, and offering ICM forced-air fans to home buyers as an upgrade.

  14. Appropriate Ventilation Solutions for the Iconographic Buildings from the Fifties

    DEFF Research Database (Denmark)

    Vestergaard, Inge; Blyt, Henrik

    2016-01-01

    will show a development to the introduction of mechanical ventilation in the building stock with a particular focus on decentralized ventilation systems. To evaluate the retrofitting initiatives a cross-disciplinary corporation between the professions of architecture and engineering are required....... The paper concludes that interdisciplinary ways of working will improve both architecture and preservation and comfort, and that higher value hereby is created. Furthermore the new initiatives from the industry are shown, which indicates a movement towards innovation of decentralized ventilation solutions....

  15. Multifaceted bench comparative evaluation of latest intensive care unit ventilators.

    Science.gov (United States)

    Garnier, M; Quesnel, C; Fulgencio, J-P; Degrain, M; Carteaux, G; Bonnet, F; Similowski, T; Demoule, A

    2015-07-01

    Independent bench studies using specific ventilation scenarios allow testing of the performance of ventilators in conditions similar to clinical settings. The aims of this study were to determine the accuracy of the latest generation ventilators to deliver chosen parameters in various typical conditions and to provide clinicians with a comprehensive report on their performance. Thirteen modern intensive care unit ventilators were evaluated on the ASL5000 test lung with and without leakage for: (i) accuracy to deliver exact tidal volume (VT) and PEEP in assist-control ventilation (ACV); (ii) performance of trigger and pressurization in pressure support ventilation (PSV); and (iii) quality of non-invasive ventilation algorithms. In ACV, only six ventilators delivered an accurate VT and nine an accurate PEEP. Eleven devices failed to compensate VT and four the PEEP in leakage conditions. Inspiratory delays differed significantly among ventilators in invasive PSV (range 75-149 ms, P=0.03) and non-invasive PSV (range 78-165 ms, Pventilation algorithms efficiently prevented the decrease in pressurization capacities and PEEP levels induced by leaks in, respectively, 10 and 12 out of the 13 ventilators. We observed real heterogeneity of performance amongst the latest generation of intensive care unit ventilators. Although non-invasive ventilation algorithms appear to maintain adequate pressurization efficiently in the case of leakage, basic functions, such as delivered VT in ACV and pressurization in PSV, are often less reliable than the values displayed by the device suggest. © The Author 2015. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Mechanical Ventilation-induced Diaphragm Atrophy Strongly Impacts Clinical Outcomes.

    Science.gov (United States)

    Goligher, Ewan C; Dres, Martin; Fan, Eddy; Rubenfeld, Gordon D; Scales, Damon C; Herridge, Margaret S; Vorona, Stefannie; Sklar, Michael C; Rittayamai, Nuttapol; Lanys, Ashley; Murray, Alistair; Brace, Deborah; Urrea, Cristian; Reid, W Darlene; Tomlinson, George; Slutsky, Arthur S; Kavanagh, Brian P; Brochard, Laurent J; Ferguson, Niall D

    2018-01-15

    Diaphragm dysfunction worsens outcomes in mechanically ventilated patients, but the clinical impact of potentially preventable changes in diaphragm structure and function caused by mechanical ventilation is unknown. To determine whether diaphragm atrophy developing during mechanical ventilation leads to prolonged ventilation. Diaphragm thickness was measured daily by ultrasound in adults requiring invasive mechanical ventilation; inspiratory effort was assessed by thickening fraction. The primary outcome was time to liberation from ventilation. Secondary outcomes included complications (reintubation, tracheostomy, prolonged ventilation, or death). Associations were adjusted for age, severity of illness, sepsis, sedation, neuromuscular blockade, and comorbidity. Of 211 patients enrolled, 191 had two or more diaphragm thickness measurements. Thickness decreased more than 10% in 78 patients (41%) by median Day 4 (interquartile range, 3-5). Development of decreased thickness was associated with a lower daily probability of liberation from ventilation (adjusted hazard ratio, 0.69; 95% confidence interval [CI], 0.54-0.87; per 10% decrease), prolonged ICU admission (adjusted duration ratio, 1.71; 95% CI, 1.29-2.27), and a higher risk of complications (adjusted odds ratio, 3.00; 95% CI, 1.34-6.72). Development of increased thickness (n = 47; 24%) also predicted prolonged ventilation (adjusted duration ratio, 1.38; 95% CI, 1.00-1.90). Decreasing thickness was related to abnormally low inspiratory effort; increasing thickness was related to excessive effort. Patients with thickening fraction between 15% and 30% (similar to breathing at rest) during the first 3 days had the shortest duration of ventilation. Diaphragm atrophy developing during mechanical ventilation strongly impacts clinical outcomes. Targeting an inspiratory effort level similar to that of healthy subjects at rest might accelerate liberation from ventilation.

  17. Twenty-Four Hour Noninvasive Ventilation in Duchenne Muscular Dystrophy: A Safe Alternative to Tracheostomy

    Directory of Open Access Journals (Sweden)

    Douglas A McKim

    2013-01-01

    Full Text Available BACKGROUND: Almost all patients with Duchenne muscular dystrophy (DMD eventually develop respiratory failure. Once 24 h ventilation is required, either due to incomplete effectiveness of nocturnal noninvasive ventilation (NIV or bulbar weakness, it is common practice to recommend invasive tracheostomy ventilation; however, noninvasive daytime mouthpiece ventilation (MPV as an addition to nocturnal mask ventilation is also an alternative.

  18. Neonatal and adult ICU ventilators to provide ventilation in neonates, infants, and children: a bench model study.

    Science.gov (United States)

    Vignaux, Laurence; Piquilloud, Lise; Tourneux, Pierre; Jolliet, Philippe; Rimensberger, Peter C

    2014-10-01

    Using a bench test model, we investigated the hypothesis that neonatal and/or adult ventilators equipped with neonatal/pediatric modes currently do not reliably administer pressure support (PS) in neonatal or pediatric patient groups in either the absence or presence of air leaks. PS was evaluated in 4 neonatal and 6 adult ventilators using a bench model to evaluate triggering, pressurization, and cycling in both the absence and presence of leaks. Delivered tidal volumes were also assessed. Three patients were simulated: a preterm infant (resistance 100 cm H2O/L/s, compliance 2 mL/cm H2O, inspiratory time of the patient [TI] 400 ms, inspiratory effort 1 and 2 cm H2O), a full-term infant (resistance 50 cm H2O/L/s, compliance 5 mL/cm H2O, TI 500 ms, inspiratory effort 2 and 4 cm H2O), and a child (resistance 30 cm H2O/L/s, compliance 10 mL/cm H2O, TI 600 ms, inspiratory effort 5 and 10 cm H2O). Two PS levels were tested (10 and 15 cm H2O) with and without leaks and with and without the leak compensation algorithm activated. Without leaks, only 2 neonatal ventilators and one adult ventilator had trigger delays under a given predefined acceptable limit (1/8 TI). Pressurization showed high variability between ventilators. Most ventilators showed TI in excess high enough to seriously impair patient-ventilator synchronization (> 50% of the TI of the subject). In some ventilators, leaks led to autotriggering and impairment of ventilation performance, but the influence of leaks was generally lower in neonatal ventilators. When a noninvasive ventilation algorithm was available, this was partially corrected. In general, tidal volume was calculated too low by the ventilators in the presence of leaks; the noninvasive ventilation algorithm was able to correct this difference in only 2 adult ventilators. No ventilator performed equally well under all tested conditions for all explored parameters. However, neonatal ventilators tended to perform better in the presence of leaks

  19. Humidification during invasive and noninvasive mechanical ventilation: 2012.

    Science.gov (United States)

    Restrepo, Ruben D; Walsh, Brian K

    2012-05-01

    We searched the MEDLINE, CINAHL, and Cochrane Library databases for articles published between January 1990 and December 2011. The update of this clinical practice guideline is based on 184 clinical trials and systematic reviews, and 10 articles investigating humidification during invasive and noninvasive mechanical ventilation. The following recommendations are made following the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) scoring system: 1. Humidification is recommended on every patient receiving invasive mechanical ventilation. 2. Active humidification is suggested for noninvasive mechanical ventilation, as it may improve adherence and comfort. 3. When providing active humidification to patients who are invasively ventilated, it is suggested that the device provide a humidity level between 33 mg H(2)O/L and 44 mg H(2)O/L and gas temperature between 34°C and 41°C at the circuit Y-piece, with a relative humidity of 100%. 4. When providing passive humidification to patients undergoing invasive mechanical ventilation, it is suggested that the HME provide a minimum of 30 mg H(2)O/L. 5. Passive humidification is not recommended for noninvasive mechanical ventilation. 6. When providing humidification to patients with low tidal volumes, such as when lung-protective ventilation strategies are used, HMEs are not recommended because they contribute additional dead space, which can increase the ventilation requirement and P(aCO(2)). 7. It is suggested that HMEs are not used as a prevention strategy for ventilator-associated pneumonia.

  20. Non-invasive ventilation of the preterm infant.

    Science.gov (United States)

    Bancalari, Eduardo; Claure, Nelson

    2008-12-01

    Non-invasive ventilation (NIV) is increasingly being used in preterm infants with the purpose of reducing the risk of adverse pulmonary outcome associated with invasive mechanical ventilation. This review analyzes the evidence from physiologic and clinical studies on the use of NIV in the preterm infant. Physiologic data indicate advantages of NIV with regard to ventilation, gas exchange, breathing effort and thoraco-abdominal distortion. Data from clinical trials have consistently shown facilitation of weaning from mechanical ventilation and potential benefits in infants with RDS and apnoea. Long term improvements in respiratory outcome have also been reported but need to be confirmed in larger trials.

  1. Energy and IAQ Implications of Residential Ventilation Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Turner, William [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Walker, Iain [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-08-01

    This study evaluates the energy, humidity and indoor air quality (IAQ) implications of residential ventilation cooling in all U.S. IECC climate zones. A computer modeling approach was adopted, using an advanced residential building simulation tool with airflow, energy and humidity models. An economizer (large supply fan) was simulated to provide ventilation cooling while outdoor air temperatures were lower than indoor air temperatures (typically at night). The simulations were performed for a full year using one-minute time steps to allow for scheduling of ventilation systems and to account for interactions between ventilation and heating/cooling systems.

  2. Numerical simulation research on gas migration with Y type ventilation

    Science.gov (United States)

    Gou, Yanan; Han, Xuezheng

    2018-01-01

    The ventilation way of the working face has a great influence to goaf flow field and gas migration, the existing U-shaped ventilation face wind serious overrun, Y type ventilation mode is put forward, and the mathematic control equation of the gas moving rule is established. Put the Gaozhuang coal mine west five mining area as the model, set up calculation model. And the gas concentration is simulated, the simulation results show that the Y type ventilation ways can intercept goaf gas into the corner on the working plane and return air lane, effectively avoid the work of top corner gas accumulation.

  3. Ventilation and perfusion display in a single image

    International Nuclear Information System (INIS)

    Lima, J.J.P. de; Botelho, M.F.R.; Pereira, A.M.S.; Rafael, J.A.S.; Pinto, A.J.; Marques, M.A.T.; Pereira, M.C.; Baganha, M.F.; Godinho, F.

    1991-01-01

    A new method of ventilation and perfusion display onto a single image is presented. From the data on regions of interest of the lungs, three-dimensional histograms are created, containing as parameters X and Y for the position of the pixels, Z for the perfusion and colour for local ventilation. The perfusion value is supplied by sets of curves having Z proportional to the local perfusion count rate. Ventilation modulates colour. Four perspective views of the histogram are simultaneously displayed to allow visualization of the entire organ. Information about the normal ranges for both ventilation and perfusion is also provided in the histograms. (orig.)

  4. Position paper -- Tank ventilation system design air flow rates

    International Nuclear Information System (INIS)

    Goolsby, G.K.

    1995-01-01

    The purpose of this paper is to document a project position on required ventilation system design air flow rates for the waste storage tanks currently being designed by project W-236A, the Multi-Function Waste Tank Facility (MWTF). The Title 1 design primary tank heat removal system consists of two systems: a primary tank vapor space ventilation system; and an annulus ventilation system. At the conclusion of Title 1 design, air flow rates for the primary and annulus ventilation systems were 960 scfm and 4,400 scfm, respectively, per tank. These design flow rates were capable of removing 1,250,000 Btu/hr from each tank. However, recently completed and ongoing studies have resulted in a design change to reduce the extreme case heat load to 700,000 Btu/hr. This revision of the extreme case heat load, coupled with results of scale model evaporative testing performed by WHC Thermal Hydraulics, allow for a reduction of the design air flow rates for both primary and annulus ventilation systems. Based on the preceding discussion, ICF Kaiser Hanford Co. concludes that the design should incorporate the following design air flow rates: Primary ventilation system--500 scfm maximum and Annulus ventilation system--1,100 scfm maximum. In addition, the minimum air flow rates in the primary and annulus ventilation systems will be investigated during Title 2 design. The results of the Title 2 investigation will determine the range of available temperature control using variable air flows to both ventilation systems

  5. Flammable gas cloud build up in a ventilated enclosure

    International Nuclear Information System (INIS)

    Ivings, M.J.; Gant, S.E.; Saunders, C.J.; Pocock, D.J.

    2010-01-01

    Ventilation is frequently used as a means for preventing the build up of flammable or toxic gases in enclosed spaces. The effectiveness of the ventilation often has to be considered as part of a safety case or risk assessment. In this paper methods for assessing ventilation effectiveness for hazardous area classification are examined. The analysis uses data produced from Computational Fluid Dynamics (CFD) simulations of low-pressure jet releases of flammable gas in a ventilated enclosure. The CFD model is validated against experimental measurements of gas releases in a ventilation-controlled test chamber. Good agreement is found between the model predictions and the experimental data. Analysis of the CFD results shows that the flammable gas cloud volume resulting from a leak is largely dependent on the mass release rate of flammable gas and the ventilation rate of the enclosure. The effectiveness of the ventilation for preventing the build up of flammable gas can therefore be assessed by considering the average gas concentration at the enclosure outlet(s). It is found that the ventilation rate of the enclosure provides a more useful measure of ventilation effectiveness than considering the enclosure air change rate.

  6. Mechanical ventilation in the acute respiratory distress syndrome.

    Science.gov (United States)

    Epelbaum, Oleg; Aronow, Wilbert S

    2017-08-01

    The management of the acute respiratory distress syndrome (ARDS) patient is fundamental to the field of intensive care medicine, and it presents unique challenges owing to the specialized mechanical ventilation techniques that such patients require. ARDS is a highly lethal disease, and there is compelling evidence that mechanical ventilation itself, if applied in an injurious fashion, can be a contributor to ARDS mortality. Therefore, it is imperative for any clinician central to the care of ARDS patients to understand the fundamental framework that underpins the approach to mechanical ventilation in this special scenario. The current review summarizes the major components of the mechanical ventilation strategy as it applies to ARDS.

  7. Imaging of ventilation/perfusion ratio by gated regional spirometry

    International Nuclear Information System (INIS)

    Touya, J.J.; Jones, J.P.; Price, R.R.; Patton, J.A.; Erickson, J.J.; Rollo, F.D.

    1981-01-01

    Gated 133 Xe images of patients rebreathing into a closed system can provide images of the distribution of lung volumes, ventilation and specific ventilation. These have been shown to be accurate, precise, and do not require unusually sophisticated equipment or skills. A mathematical transformation is used to correct the images for lung movement, which does not alter the total number of counts in the image. Perfusion images are gated to remove motion blurring but not transformed. Ventilation/perfusion images showing the distribution of V/Q ratio are then generated from the individual ventilation and perfusion images. (author)

  8. Survey execution to build a ventilation model, Australian style

    Energy Technology Data Exchange (ETDEWEB)

    Rowland, J.A. [Dallas Mining Services Pty Ltd., Wollongong, NSW (Australia)

    2010-07-01

    Ventilation surveys and the development of a properly tuned ventilation model are important components of a modern underground mine safety management system to ensure the safety of miners. Such systems in Australia revolve around the routine application of risk based logic. However, assessing the risk in ventilation systems always changes. Designers of ventilation circuits therefore use ventilation modeling software as a key tool to facilitate the structured process. This paper emphasized the importance of measuring the underground circuit and replicating the measurements in a working model. The most commonly used modeling program in Australia is the Ventsim software which is available as a fully graphical 3D configuration as well as a 2D version. The value of the mine ventilation survey lies in the ability of the data to be accurately replicated on a mine ventilation model. As such, much thought must be given to the ventilation survey scope of work and overall process. The surveys must satisfy operational needs and must delineate the circuit to a level that will allow a model be to accurately assembled in order to determine when minor or major ventilation circuit adjustments are needed. 1 ref., 10 figs.

  9. Flammable gas cloud build up in a ventilated enclosure.

    Science.gov (United States)

    Ivings, M J; Gant, S E; Saunders, C J; Pocock, D J

    2010-12-15

    Ventilation is frequently used as a means for preventing the build up of flammable or toxic gases in enclosed spaces. The effectiveness of the ventilation often has to be considered as part of a safety case or risk assessment. In this paper methods for assessing ventilation effectiveness for hazardous area classification are examined. The analysis uses data produced from Computational Fluid Dynamics (CFD) simulations of low-pressure jet releases of flammable gas in a ventilated enclosure. The CFD model is validated against experimental measurements of gas releases in a ventilation-controlled test chamber. Good agreement is found between the model predictions and the experimental data. Analysis of the CFD results shows that the flammable gas cloud volume resulting from a leak is largely dependent on the mass release rate of flammable gas and the ventilation rate of the enclosure. The effectiveness of the ventilation for preventing the build up of flammable gas can therefore be assessed by considering the average gas concentration at the enclosure outlet(s). It is found that the ventilation rate of the enclosure provides a more useful measure of ventilation effectiveness than considering the enclosure air change rate. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  10. Incidence and predictors of difficult mask ventilation and intubation

    Directory of Open Access Journals (Sweden)

    Prerana N Shah

    2012-01-01

    Conclusions: The predictive score may lead to a better anticipation of difficult airway management, potentially deceasing the morbidity and mortality resulting from hypoxia or anoxia with failed ventilation.

  11. Early mobilization of LVAD recipients who require prolonged mechanical ventilation.

    Science.gov (United States)

    Perme, Christiane S; Southard, Robert E; Joyce, David L; Noon, George P; Loebe, Matthias

    2006-01-01

    Early mobilization and aggressive physical therapy are essential in patients who receive left ventricular assist devices (LVADs) due to long-term, end-stage heart failure. Some of these patients remain ventilator dependent for quite some time after device implantation. We report our regimen of mobilization with the aid of a portable ventilator, in patients with cardiac cachexia and LVAD implantation. Further, we describe the specific physical therapy interventions used in an LVAD patient who required prolonged mechanical ventilation after device implantation. The patient was critically ill for 5 weeks before the surgery and was ventilator dependent for 48 days postoperatively. There were significant functional gains during the period of prolonged mechanical ventilation. The patient was able to walk up to 600 feet by the time he was weaned from the ventilator and transferred out of the intensive care unit. He underwent successful heart transplantation 6 weeks after being weaned from the ventilator We believe that improving the mobility of LVAD patients who require mechanical ventilation has the potential both to facilitate ventilator weaning and to improve the outcomes of transplantation.

  12. Inspired gas temperature in ventilated neonates.

    Science.gov (United States)

    Davies, Mark William; Dunster, Kimble Robert; Cartwright, David William

    2004-07-01

    The warming and humidification of inspired gases for ventilated neonates are routine. There are no data on the temperature of the gas at the airway opening in ventilated neonates. Is the inspired gas temperature at the airway opening, as expected and set on the humidifier, around 37 degrees C? We aimed to measure temperature at the airway opening and compare this with the circuit temperature. This was an observational study in a neonatal intensive care unit. Twenty-five mechanically ventilated infants were studied. All had humidifiers with chamber temperature set at 36 degrees C and the circuit temperature set at 37 degrees C. Two temperature probes were inserted and rested at the circuit-exit and at the airway opening, and temperatures were measured for 2 min in each infant. At this time, the circuit temperature was also noted. The mean (SD) temperature at the airway opening in infants nursed in incubators was 34.9 (1.2) degrees C, compared with radiant warmers where the mean (SD) was 33.1 (0.5) degrees C. The mean (SD) difference in temperature from the circuit temperature probe to the airway opening was greater under radiant warmers, with a mean (SD) drop of 3.9 (0.6) degrees C compared with a mean (SD) drop of 2.0 (1.3) degrees C in the incubators. In conclusion, the temperature at the circuit temperature probe does not reflect the temperature at the airway opening. Inspired gas temperatures are lower than the expected 37 degrees C with the normal circuits and usual humidifier settings. Copyright 2004 Wiley-Liss, Inc.

  13. Performance of portable ventilators at altitude.

    Science.gov (United States)

    Blakeman, Thomas; Britton, Tyler; Rodriquez, Dario; Branson, Richard

    2014-09-01

    Aeromedical transport of critically ill patients requires continued, accurate performance of equipment at altitude. Changes in barometric pressure can affect the performance of mechanical ventilators calibrated for operation at sea level. Deploying ventilators that can maintain a consistent tidal volume (VT) delivery at various altitudes is imperative for lung protection when transporting wounded war fighters to each echelon of care. Three ventilators (Impact 731, Hamilton T1, and CareFusion Revel) were tested at pediatric (50 and 100 mL) and adult (250-750 mL) tidal VTs at 0 and 20 cm H₂O positive end expiratory pressure and at inspired oxygen of 0.21 and 1.0. Airway pressure, volume, and flow were measured at sea level as well as at 8,000, 16,000, and 22,000 ft (corresponding to barometric pressures of 760, 564, 412, and 321 mm Hg) using a calibrated pneumotachograph connected to a training test lung in an altitude chamber. Set VT and delivered VT as well as changes in VT at each altitude were compared by t test. The T1 delivered VT within 10% of set VT at 8,000 ft. The mean VT was less than set VT at sea level as a result of circuit compressible volume with the Revel and the 731. Changes in VT varied widely among the devices at sea level and at altitude. Increasing altitudes resulted in larger VT than set for the Revel and the T1. The 731 compensated for changes in altitude delivered VT within 10% at the adult settings at all altitudes. Altitude compensation is an active software algorithm. Only the 731 actively accounts for changes in barometric pressure to maintain the set VT at all tested altitudes.

  14. Ventilation-perfusion matching during exercise

    Science.gov (United States)

    Wagner, P. D.

    1992-01-01

    In normal subjects, exercise widens the alveolar-arterial PO2 difference (P[A-a]O2) despite a more uniform topographic distribution of ventilation-perfusion (VA/Q) ratios. While part of the increase in P(A-a)O2 (especially during heavy exercise) is due to diffusion limitation, a considerable amount is caused by an increase in VA/Q mismatch as detected by the multiple inert gas elimination technique. Why this occurs is unknown, but circumstantial evidence suggests it may be related to interstitial pulmonary edema rather than to factors dependent on ventilation, airway gas mixing, airway muscle tone, or pulmonary vascular tone. In patients with lung disease, the gas exchange consequences of exercise are variable. Thus, arterial PO2 may increase, remain the same, or fall. In general, patients with advanced chronic obstructive pulmonary disease (COPD) or interstitial fibrosis who exercise show a fall in PO2. This is usually not due to worsening VA/Q relationships but mostly to the well-known fall in mixed venous PO2, which itself results from a relatively smaller increase in cardiac output than VO2. However, in interstitial fibrosis (but not COPD), there is good evidence that a part of the fall in PO2 on exercise is caused by alveolar-capillary diffusion limitation of O2 transport; in COPD (but not interstitial fibrosis), a frequent additional contributing factor to the hypoxemia of exercise is an inadequate ventilatory response, such that minute ventilation does not rise as much as does CO2 production or O2 uptake, causing arterial PCO2 to increase and PO2 to fall.

  15. Ventilator-associated pneumonia: a review.

    Science.gov (United States)

    Ashraf, Madiha; Ostrosky-Zeichner, Luis

    2012-02-01

    Ventilator-associated pneumonia (VAP) is the most common infection seen in intensive care units (ICUs); it accounts for one-fourth of the infections occurring in critically ill patients and is the reason for half of antibiotic prescriptions in mechanically ventilated patients. In addition to being a financial burden on ICUs, it continues to contribute significantly to the morbidity and mortality of ICU patients, with an estimated attributable mortality rate of 8% to 15%. While the pathophysiology of VAP remains relatively unchanged, diagnostic techniques and preventive measures are constantly evolving. The focus of this article is on recent trends in VAP epidemiology, modifiable risk factors, diagnostic techniques, challenges in management, and current data on the prevention of VAP. Important messages that the reader should take away include: 1) There is no gold standard for the diagnosis of VAP; whenever VAP is suspected, if feasible, a quantitative culture should be obtained by invasive or noninvasive methods (whichever is more readily available before initiation of antibiotics); 2) Suspicion based on clinical features should prompt the initiation of a broad spectrum of antibiotics depending on suspected pathogens; 3) Close attention should be paid to de-escalation of antibiotics once microbiological results become available or as the patient starts responding clinically; the ideal duration of treatment should be 8 days instead of the conventional 10 to 14 days, except in situations where Pseudomonas may be suspected or the patient's comorbidities dictate otherwise; and 4) Prevention remains the key to reducing the burden of VAP. We promote the proven preventive measures of using noninvasive ventilation when possible, semirecumbent patient positioning, continuous aspiration of subglottic secretions, and oral chlorhexidine washes along with stress ulcer prophylaxis only after careful assessment of the risks versus benefits.

  16. Microbiological pattern of ventilator associated pneumonia

    International Nuclear Information System (INIS)

    Ali, S.; Wahid, K.; Iqbal, Z.

    2015-01-01

    Ventilator associated pneumonia (VAP) is an important and common complication of mechanically ventilated patients. It is the leading cause of morbidity and mortality in Intensive Care Units (ICU) worldwide. The aim of study was to determine the pattern of bacteria involved in VAP in intensive care unit of Jinnah hospital Lahore. Methods: It was descriptive case series study, conducted over a period of one year on mechanically ventilated 50 patients. American Thoracic Society (ATS) guidelines recommend quantitative/semi-quantitative culture of endotracheal aspirates (ETA) or bronchoscopic aspirates/washing from the infected lung segments for the diagnosis of VAP. Hence this study was conducted to identify the types of bacteria involved in VAP in our ICU. Patients enrolled were clinically and radiologically suspected VAP, admitted in the ICU of Jinnah Hospital/Allama Iqbal Medical College (AIMC) Lahore. Bronchial washings were taken with the help of Fiber optic bronchoscope. Wherever bronchoscopy was not possible, subglottic secretions were collected with the help of sterilized catheter and sucker. Collected samples were sent to the Pathology laboratory of AIMC for aerobic culture and sensitivity. Results: Major pathogenic bacteria isolated were Gram negative (74%). Among this group E. coli, Pseudomonas, Klebsiella and Acinetobacter were the commonest organisms. Gram positive bacteria were 20%, Staphylococcus aureus (MRSA) and haemolyticus streptococci were the major isolate. In 4% cases mixed growth and in 2% cases no growth was reported. Conclusion: Major pathogenic organisms of VAP in our ICU are Gram negative bacteria. The Bacteriological culture of endobroncheal aspirates is helpful in the diagnosis and management of VAP. Emperic antibiotic therapy for VAP should cover Gram negative organisms. (author)

  17. Noninvasive mechanical ventilation may be useful in treating patients who fail weaning from invasive mechanical ventilation: a randomized clinical trial

    OpenAIRE

    Trevisan, Cristiane E; Vieira, Silvia R

    2008-01-01

    Introduction The use of noninvasive positive-pressure mechanical ventilation (NPPV) has been investigated in several acute respiratory failure situations. Questions remain about its benefits when used in weaning patients from invasive mechanical ventilation (IMV). The objective of this study was to evaluate the use of bi-level NPPV for patients who fail weaning from IMV. Methods This experimental randomized clinical trial followed up patients undergoing IMV weaning, under ventilation for more...

  18. Protective ventilation of preterm lambs exposed to acute chorioamnionitis does not reduce ventilation-induced lung or brain injury.

    Directory of Open Access Journals (Sweden)

    Samantha K Barton

    Full Text Available The onset of mechanical ventilation is a critical time for the initiation of cerebral white matter (WM injury in preterm neonates, particularly if they are inadvertently exposed to high tidal volumes (VT in the delivery room. Protective ventilation strategies at birth reduce ventilation-induced lung and brain inflammation and injury, however its efficacy in a compromised newborn is not known. Chorioamnionitis is a common antecedent of preterm birth, and increases the risk and severity of WM injury. We investigated the effects of high VT ventilation, after chorioamnionitis, on preterm lung and WM inflammation and injury, and whether a protective ventilation strategy could mitigate the response.Pregnant ewes (n = 18 received intra-amniotic lipopolysaccharide (LPS 2 days before delivery, instrumentation and ventilation at 127±1 days gestation. Lambs were either immediately euthanased and used as unventilated controls (LPSUVC; n = 6, or were ventilated using an injurious high VT strategy (LPSINJ; n = 5 or a protective ventilation strategy (LPSPROT; n = 7 for a total of 90 min. Mean arterial pressure, heart rate and cerebral haemodynamics and oxygenation were measured continuously. Lungs and brains underwent molecular and histological assessment of inflammation and injury.LPSINJ lambs had poorer oxygenation than LPSPROT lambs. Ventilation requirements and cardiopulmonary and systemic haemodynamics were not different between ventilation strategies. Compared to unventilated lambs, LPSINJ and LPSPROT lambs had increases in pro-inflammatory cytokine expression within the lungs and brain, and increased astrogliosis (p<0.02 and cell death (p<0.05 in the WM, which were equivalent in magnitude between groups.Ventilation after acute chorioamnionitis, irrespective of strategy used, increases haemodynamic instability and lung and cerebral inflammation and injury. Mechanical ventilation is a potential contributor to WM injury in infants exposed

  19. Protective Ventilation of Preterm Lambs Exposed to Acute Chorioamnionitis Does Not Reduce Ventilation-Induced Lung or Brain Injury

    Science.gov (United States)

    Barton, Samantha K.; Moss, Timothy J. M.; Hooper, Stuart B.; Crossley, Kelly J.; Gill, Andrew W.; Kluckow, Martin; Zahra, Valerie; Wong, Flora Y.; Pichler, Gerhard; Galinsky, Robert; Miller, Suzanne L.

    2014-01-01

    Background The onset of mechanical ventilation is a critical time for the initiation of cerebral white matter (WM) injury in preterm neonates, particularly if they are inadvertently exposed to high tidal volumes (VT) in the delivery room. Protective ventilation strategies at birth reduce ventilation-induced lung and brain inflammation and injury, however its efficacy in a compromised newborn is not known. Chorioamnionitis is a common antecedent of preterm birth, and increases the risk and severity of WM injury. We investigated the effects of high VT ventilation, after chorioamnionitis, on preterm lung and WM inflammation and injury, and whether a protective ventilation strategy could mitigate the response. Methods Pregnant ewes (n = 18) received intra-amniotic lipopolysaccharide (LPS) 2 days before delivery, instrumentation and ventilation at 127±1 days gestation. Lambs were either immediately euthanased and used as unventilated controls (LPSUVC; n = 6), or were ventilated using an injurious high VT strategy (LPSINJ; n = 5) or a protective ventilation strategy (LPSPROT; n = 7) for a total of 90 min. Mean arterial pressure, heart rate and cerebral haemodynamics and oxygenation were measured continuously. Lungs and brains underwent molecular and histological assessment of inflammation and injury. Results LPSINJ lambs had poorer oxygenation than LPSPROT lambs. Ventilation requirements and cardiopulmonary and systemic haemodynamics were not different between ventilation strategies. Compared to unventilated lambs, LPSINJ and LPSPROT lambs had increases in pro-inflammatory cytokine expression within the lungs and brain, and increased astrogliosis (p<0.02) and cell death (p<0.05) in the WM, which were equivalent in magnitude between groups. Conclusions Ventilation after acute chorioamnionitis, irrespective of strategy used, increases haemodynamic instability and lung and cerebral inflammation and injury. Mechanical ventilation is a potential contributor

  20. Influences of Duration of Inspiratory Effort, Respiratory Mechanics, and Ventilator Type on Asynchrony With Pressure Support and Proportional Assist Ventilation.

    Science.gov (United States)

    Vasconcelos, Renata S; Sales, Raquel P; Melo, Luíz H de P; Marinho, Liégina S; Bastos, Vasco Pd; Nogueira, Andréa da Nc; Ferreira, Juliana C; Holanda, Marcelo A

    2017-05-01

    Pressure support ventilation (PSV) is often associated with patient-ventilator asynchrony. Proportional assist ventilation (PAV) offers inspiratory assistance proportional to patient effort, minimizing patient-ventilator asynchrony. The objective of this study was to evaluate the influence of respiratory mechanics and patient effort on patient-ventilator asynchrony during PSV and PAV plus (PAV+). We used a mechanical lung simulator and studied 3 respiratory mechanics profiles (normal, obstructive, and restrictive), with variations in the duration of inspiratory effort: 0.5, 1.0, 1.5, and 2.0 s. The Auto-Trak system was studied in ventilators when available. Outcome measures included inspiratory trigger delay, expiratory trigger asynchrony, and tidal volume (V T ). Inspiratory trigger delay was greater in the obstructive respiratory mechanics profile and greatest with a effort of 2.0 s (160 ms); cycling asynchrony, particularly delayed cycling, was common in the obstructive profile, whereas the restrictive profile was associated with premature cycling. In comparison with PSV, PAV+ improved patient-ventilator synchrony, with a shorter triggering delay (28 ms vs 116 ms) and no cycling asynchrony in the restrictive profile. V T was lower with PAV+ than with PSV (630 mL vs 837 mL), as it was with the single-limb circuit ventilator (570 mL vs 837 mL). PAV+ mode was associated with longer cycling delays than were the other ventilation modes, especially for the obstructive profile and higher effort values. Auto-Trak eliminated automatic triggering. Mechanical ventilation asynchrony was influenced by effort, respiratory mechanics, ventilator type, and ventilation mode. In PSV mode, delayed cycling was associated with shorter effort in obstructive respiratory mechanics profiles, whereas premature cycling was more common with longer effort and a restrictive profile. PAV+ prevented premature cycling but not delayed cycling, especially in obstructive respiratory mechanics