WorldWideScience

Sample records for bactrocera tryoni complex

  1. The mating system of the true fruit fly Bactrocera tryoni and its sister species, Bactrocera neohumeralis.

    Science.gov (United States)

    Ekanayake, Wasala M T D; Jayasundara, Mudalige S H; Peek, Thelma; Clarke, Anthony R; Schutze, Mark K

    2017-06-01

    The frugivorous "true" fruit fly, Bactrocera tryoni (Queensland fruit fly), is presumed to have a nonresourced-based lek mating system. This is largely untested, and contrary data exists to suggest Bactrocera tryoni may have a resource-based mating system focused on fruiting host plants. We tested the mating system of Bactrocera tryoni, and its close sibling Bactrocera neohumeralis, in large field cages using laboratory reared flies. We used observational experiments that allowed us to determine if: (i) mating pairs were aggregated or nonaggregated; (ii) mating system was resource or nonresource based; (iii) flies utilized possible landmarks (tall trees over short) as mate-rendezvous sites; and (iv) males called females from male-dominated leks. We recorded nearly 250 Bactrocera tryoni mating pairs across all experiments, revealing that: (i) mating pairs were aggregated; (ii) mating nearly always occurred in tall trees over short; (iii) mating was nonresource based; and (iv) that males and females arrived at the mate-rendezvous site together with no evidence that males preceded females. Bactrocera neohumeralis copulations were much more infrequent (only 30 mating pairs in total), but for those pairs there was a similar preference for tall trees and no evidence of a resource-based mating system. Some aspects of Bactrocera tryoni mating behavior align with theoretical expectations of a lekking system, but others do not. Until evidence for unequivocal female choice can be provided (as predicted under a true lek), the mating system of Bactrocera tryoni is best described as a nonresource based, aggregation system for which we also have evidence that land-marking may be involved. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  2. Barcoding Queensland Fruit Flies (Bactrocera tryoni): impediments and improvements.

    Science.gov (United States)

    Blacket, Mark J; Semeraro, Linda; Malipatil, Mallik B

    2012-05-01

    Identification of adult fruit flies primarily involves microscopic examination of diagnostic morphological characters, while immature stages, such as larvae, can be more problematic. One of the Australia's most serious horticultural pests, the Queensland Fruit Fly (Bactrocera tryoni: Tephritidae), is of particular biosecurity/quarantine concern as the immature life stages occur within food produce and can be difficult to identify using morphological characteristics. DNA barcoding of the mitochondrial Cytochrome Oxidase I (COI) gene could be employed to increase the accuracy of fruit fly species identifications. In our study, we tested the utility of standard DNA barcoding techniques and found them to be problematic for Queensland Fruit Flies, which (i) possess a nuclear copy (a numt pseudogene) of the barcoding region of COI that can be co-amplified; and (ii) as in previous COI phylogenetic analyses closely related B. tryoni complex species appear polyphyletic. We found that the presence of a large deletion in the numt copy of COI allowed an alternative primer to be designed to only amplify the mitochondrial COI locus in tephritid fruit flies. Comparisons of alternative commonly utilized mitochondrial genes, Cytochrome Oxidase II and Cytochrome b, revealed a similar level of variation to COI; however, COI is the most informative for DNA barcoding, given the large number of sequences from other tephritid fruit fly species available for comparison. Adopting DNA barcoding for the identification of problematic fly specimens provides a powerful tool to distinguish serious quarantine fruit fly pests (Tephritidae) from endemic fly species of lesser concern. © 2012 Blackwell Publishing Ltd.

  3. Biosynthesis of the spiroacetal suite in Bactrocera tryoni.

    Science.gov (United States)

    Booth, Yvonne K; Kitching, William; De Voss, James J

    2011-01-03

    In pursuit of a more environmentally benign method of controlling the highly pestiferous Queensland fruit fly, Bactrocera tryoni, the biosynthesis of the minor components in the suite of spiroacetals released by females has been investigated. This follows on the biosynthetic definition of the pathway to the major component, (E,E)-1. The origins of the C(12) and C(13) spiroacetals (E,E)-2 and (E,E)-3, respectively, have been investigated by the administration of over 30 deuterated potential precursors. Analysis of the relative incorporation levels and identification of some of the exceptionally minor spiroacetals that were biosynthesised established that B. tryoni processes fatty acids to 2,6-dioxygenated precursors by a modified β-oxidation pathway, with a suite of putative cytochromes P450 employed in the crucial oxidative steps, prior to cyclisation of the proposed ketodiol.

  4. Parasitoids of Queensland Fruit Fly Bactrocera tryoni in Australia and Prospects for Improved Biological Control

    OpenAIRE

    Zamek, Ashley L.; Spinner, Jennifer E.; Micallef, Jessica L.; Gurr, Geoff M.; Reynolds, Olivia L.

    2012-01-01

    This review draws together available information on the biology, methods for study, and culturing of hymenopteran parasitoids of the Queensland fruit fly, Bactrocera tryoni, and assesses prospects for improving biological control of this serious pest. Augmentative release of the native and naturalised Australian parasitoids, especially the braconid Diachasmimorpha tryoni, may result in better management of B. tryoni in some parts of Australia. Mass releases are an especially attractive option...

  5. Polymorphic microsatellite markers for population analysis of a tephritid pest species, Bactrocera tryoni.

    Science.gov (United States)

    Kinnear, M W; Bariana, H S; Sved, J A; Frommer, M

    1998-11-01

    To obtain a set of microsatellite markers for the Queensland fruit fly Bactrocera tryoni, a genomic library was screened with a number of simple repeat oligonucleotide probes. Sequencing recovered 22 repeat loci. The microsatellite sequences were short, with repeat numbers ranging from five to 11. Of these, 16 polymerase chain reaction (PCR) primer sets yielded amplifiable products, which were tested on 53 flies from five widely separated sites. All loci showed polymorphism in the population sample, with the number of alleles ranging from two to 16. Several dinucleotide repeats showed alleles separated by single-base differences and multiple steps, suggesting a mutation process more complex than the stepwise mutation model.

  6. The likely fate of hybrids of Bactrocera tryoni and Bactrocera neohumeralis.

    Science.gov (United States)

    Pike, N; Wang, W Y S; Meats, A

    2003-05-01

    Bactrocera tryoni (Froggatt) and B. neohumeralis (Hardy) (Diptera: Tephritidae) are sympatric species which hybridise readily in the laboratory yet remain distinct in the field. B. tryoni mates only at dusk and B. neohumeralis mates only during the day, but hybrids can mate at both times. We investigated the inheritance of mating time in successively backcrossed hybrid stocks to establish whether mating with either species is more likely. The progeny of all backcrosses to B. tryoni mated only at dusk. The majority of the progeny of the first and a minority of the progeny of the second backcross to B. neohumeralis also mated at dusk, but the third successive B. neohumeralis backcross produced flies that mated only during the day. This trend towards dominance of the B. tryoni trait was also reflected in a diagnostic morphological character. We discuss the possible genetic background for these phenomena and propose that unidirectional gene flow might explain how the two species remain distinct in the face of natural hybridisation.

  7. The genome of the Queensland fruit fly Bactrocera tryoni contains multiple representatives of the mariner family of transposable elements.

    Science.gov (United States)

    Green, C L; Frommer, M

    2001-08-01

    Representatives of five distinct types of transposable elements of the mariner family were detected in the genomes of the Queensland fruit fly Bactrocera tryoni and its sibling species Bactrocera neohumeralis by phylogenetic analysis of transposase gene fragments. Three mariner types were also found in an additional tephritid, Bactrocera jarvisi. Using genomic library screening and inverse PCR, full-length elements representing the mellifera subfamily (B. tryoni.mar1) and the irritans subfamily (B. tryoni.mar2) were isolated from the B. tryoni genome. Nucleotide consensus sequences for each type were derived from multiple defective copies. Predicted transposase sequences share approximately 23% amino acid identity. B. tryoni.mar1 elements have an estimated copy number of about 900 in the B. tryoni genome, whereas B. tryoni.mar2 element types appear to be present in low copy number.

  8. Genetic and molecular markers of the Queensland fruit fly, Bactrocera tryoni.

    Science.gov (United States)

    Zhao, J T; Frommer, M; Sved, J A; Gillies, C B

    2003-01-01

    Twenty-six microsatellite markers, along with two restriction fragment length polymorphism (RFLP) markers and three morphological markers, have been mapped to five linkage groups, corresponding to the five autosomes of the Queensland fruit fly, Bactrocera tryoni. All these molecular and genetic markers were genotyped in three-generation pedigrees. Eight molecular markers were also localized to the salivary gland polytene chromosomes by in situ hybridization. This provides a substantial starting point for an integrated genetic and physical map of B. tryoni.

  9. Parasitoids of Queensland Fruit Fly Bactrocera tryoni in Australia and Prospects for Improved Biological Control

    Directory of Open Access Journals (Sweden)

    Olivia L. Reynolds

    2012-10-01

    Full Text Available This review draws together available information on the biology, methods for study, and culturing of hymenopteran parasitoids of the Queensland fruit fly, Bactrocera tryoni, and assesses prospects for improving biological control of this serious pest. Augmentative release of the native and naturalised Australian parasitoids, especially the braconid Diachasmimorpha tryoni, may result in better management of B. tryoni in some parts of Australia. Mass releases are an especially attractive option for areas of inland eastern Australia around the Fruit Fly Exclusion Zone that produces B. tryoni-free fruits for export. Diachasmimorpha tryoni has been successful in other locations such as Hawaii for the biological control of other fruit fly species. Biological control could contribute to local eradication of isolated outbreaks and more general suppression and/or eradication of the B. tryoni population in endemic areas. Combining biological control with the use of sterile insect technique offers scope for synergy because the former is most effective at high pest densities and the latter most economical when the pest becomes scarce. Recommendations are made on methods for culturing and study of four B. tryoni parasitoids present in Australia along with research priorities for optimising augmentative biological control of B. tryoni.

  10. Parasitoids of Queensland Fruit Fly Bactrocera tryoni in Australia and Prospects for Improved Biological Control.

    Science.gov (United States)

    Zamek, Ashley L; Spinner, Jennifer E; Micallef, Jessica L; Gurr, Geoff M; Reynolds, Olivia L

    2012-10-22

    This review draws together available information on the biology, methods for study, and culturing of hymenopteran parasitoids of the Queensland fruit fly, Bactrocera tryoni, and assesses prospects for improving biological control of this serious pest. Augmentative release of the native and naturalised Australian parasitoids, especially the braconid Diachasmimorpha tryoni, may result in better management of B. tryoni in some parts of Australia. Mass releases are an especially attractive option for areas of inland eastern Australia around the Fruit Fly Exclusion Zone that produces B. tryoni-free fruits for export. Diachasmimorpha tryoni has been successful in other locations such as Hawaii for the biological control of other fruit fly species. Biological control could contribute to local eradication of isolated outbreaks and more general suppression and/or eradication of the B. tryoni population in endemic areas. Combining biological control with the use of sterile insect technique offers scope for synergy because the former is most effective at high pest densities and the latter most economical when the pest becomes scarce. Recommendations are made on methods for culturing and study of four B. tryoni parasitoids present in Australia along with research priorities for optimising augmentative biological control of B. tryoni.

  11. Raspberry Ketone Trifluoroacetate, a new attractant for the Queensland fruit fly (Bactrocera tryoni (Froggatt))

    Science.gov (United States)

    The Queensland fruit fly (Bactrocera tryoni, Q-fly) is a major agricultural pest in eastern Australia. The deployment of male lures comprises an important component of several control and detection strategies for this pest. A novel fluorinated analog of raspberry ketone, raspberry ketone trifluoroac...

  12. Germ-line transformation of the Queensland fruit fly, Bactrocera tryoni, using a piggyBac vector in the presence of endogenous piggyBac elements.

    Science.gov (United States)

    Raphael, K A; Shearman, D C A; Streamer, K; Morrow, J L; Handler, A M; Frommer, M

    2011-01-01

    We report the heritable germ-line transformation of the Queensland fruit fly, Bactrocera tryoni, using a piggyBac vector marked with either the fluorescent protein DsRed or EGFP. A transformation frequency of 5-10% was obtained. Inheritance of the transgenes has remained stable over more than 15 generations despite the presence of endogenous piggyBac sequences in the B. tryoni genome. The sequence of insertion sites shows the usual canonical pattern of piggyBac integraton into TTAA target sites. An investigation of endogenous piggyBac elements in the B. tryoni genome reveals the presence of sequences almost identical to those reported recently for the B. dorsalis complex of fruit flies and two noctuid moths, suggesting a common origin of piggyBac sequences in these species. The availability of transformation protocols for B. tryoni has the potential to deliver improvements in the performance of the Sterile Insect Technique for this pest species.

  13. A diverse suite of spiroacetals, including a novel branched representative, is released by female Bactrocera tryoni (Queensland fruit fly).

    Science.gov (United States)

    Booth, Yvonne K; Schwartz, Brett D; Fletcher, Mary T; Lambert, Lynette K; Kitching, William; De Voss, James J

    2006-10-14

    A remarkably diverse suite of spiroacetals including a novel member of the rare, branched chain class has been identified in the glandular secretions of Bactrocera tryoni, the most destructive horticultural pest in Australia.

  14. Interspecific hybridization as a source of novel genetic markers for the sterile insect technique in Bactrocera tryoni (Diptera: Tephritidae).

    Science.gov (United States)

    Shearman, D C A; Frommer, M; Morrow, J L; Raphael, K A; Gilchrist, A S

    2010-08-01

    Bactrocera tryoni (Froggatt) (Diptera: Tephritidae) or "Qfly," is the most serious horticultural pest in Australia, with a bioclimatic range that extends from the tropical north to the temperate south. Various Australian horticultural exports depend on certification that they originated from B. tryoni-free areas. To eliminate, rather than suppress, B. tryoni in production areas, a sterile insect technique (SIT) campaign directed at B. tryoni has been in operation in southeastern Australia since 1997. Like many other SIT programs around the world, the B. tryoni SIT program relies on fluorescent dust to mark the sterile insects. However, fluorescent dust marking does not provide 100% accuracy in the identification of sterile insects, as required where the aim is to declare regions completely free of fruit fly. Here, we show that novel mitochondrial markers can be introduced into a strain of B. tryoni by interspecies hybridization between B. tryoni and a related but well-differentiated species, Bactrocera jarvisi (Tryon), followed by backcrossing of the hybrid strain with the parental B. tryoni strain. These novel markers do not affect the viability of the strain as measured by pupation and eclosion rates. A simple polymerase chain reaction-based test is described that distinguishes the marked B. tryoni from wild B. tryoni. As required in practice, the test was shown to work reliably on DNA extracted from dead flies that had remained in field traps for up to two weeks.

  15. Mitotic and polytene chromosome analyses in the Queensland fruit fly, Bactrocera tryoni (Diptera: Tephritidae).

    Science.gov (United States)

    Zhao, J T; Frommer, M; Sved, J A; Zacharopoulou, A

    1998-08-01

    The Queensland fruit fly, Bactrocera tryoni, like the Mediterranean fruit fly, Ceratitis capitata, has a diploid complement of 12 chromosomes, including five pairs of autosomes and a XX/XY sex chromosome pair. Characteristic features of each chromosome are described. Chromosomal homology between B. tryoni and C. capitata has been determined by comparing chromosome banding pattern and in situ hybridisation of cloned genes to polytene chromosomes. Although the evidence indicates that a number of chromosomal inversions have occurred since the separation of the two species, synteny of the chromosomes appears to have been maintained.

  16. The Bactrocera tryoni homologue of the Drosophila melanogaster sex-determination gene doublesex.

    Science.gov (United States)

    Shearman, D C; Frommer, M

    1998-11-01

    A homologue of the bifunctional sex-determining gene, doublesex (dsx), has been identified in the tephritid fruit fly, Bactrocera tryoni, and has been found to be expressed in a sex-specific manner in adult flies. The male- and female-specific cDNAs are identical at their 5' ends but differ at their 3' ends and appear to be the products of alternate splicing. The level of identity of the sex-specific DSX proteins of B. tryoni with the D. melanogaster DSX proteins, across the region corresponding to the DNA binding domain and the oligomerization domains, is greater than 85%. Four sequence motifs which are ten to thirteen bases identical to the TRA/TRA-2 binding sites (thirteen-nucleotide repeat sequences) are present in the female-specific exon of the B. tryoni dsx gene.

  17. Plant-Mediated Female Transcriptomic Changes Post-Mating in a Tephritid Fruit Fly, Bactrocera tryoni

    Science.gov (United States)

    van der Burg, Chloé A; Qin, Yujia; Cameron, Stephen L; Clarke, Anthony R; Prentis, Peter J

    2018-01-01

    Abstract Female post-mating behaviors are regulated by complex factors involving males, females, and the environment. In insects, plant secondary compounds that males actively forage for, may indirectly modify female behaviors by altering male behavior and physiology. In the tephritid fruit fly, Bactrocera tryoni, females mated with males previously fed on plant-derived phenylpropanoids (=“lures” based on usage in tephritid literature), have longer mating refractoriness, greater fecundity, and reduced longevity than females mated with non-lure fed males. This system thus provides a model for studying transcriptional changes associated with those post-mating behaviors, as the genes regulating the phenotypic changes are likely to be expressed at a greater magnitude than in control females. We performed comparative transcriptome analyses using virgin B. tryoni females, females mated with control males (control-mated), and females mated with lure-fed males (lure-mated). We found 331 differentially expressed genes (DEGs) in control-mated females and 80 additional DEGs in lure-mated females. Although DEGs in control-mated females are mostly immune response genes and chorion proteins, as reported in Drosophila species, DEGs in lure-mated females are titin-like muscle proteins, histones, sperm, and testis expressed proteins which have not been previously reported. While transcripts regulating mating (e.g., lingerer) did not show differential expression in either of the mated female classes, the odorant binding protein Obp56a was down-regulated. The exclusively enriched or suppressed genes in lure-mated females, novel transcripts such as titin and histones, and several taxa-specific transcripts reported here can shed more light on post-mating transcriptional changes, and this can help understand factors possibly regulating female post-mating behaviors. PMID:29220418

  18. Plant-Mediated Female Transcriptomic Changes Post-Mating in a Tephritid Fruit Fly, Bactrocera tryoni.

    Science.gov (United States)

    Kumaran, Nagalingam; van der Burg, Chloé A; Qin, Yujia; Cameron, Stephen L; Clarke, Anthony R; Prentis, Peter J

    2018-01-01

    Female post-mating behaviors are regulated by complex factors involving males, females, and the environment. In insects, plant secondary compounds that males actively forage for, may indirectly modify female behaviors by altering male behavior and physiology. In the tephritid fruit fly, Bactrocera tryoni, females mated with males previously fed on plant-derived phenylpropanoids (="lures" based on usage in tephritid literature), have longer mating refractoriness, greater fecundity, and reduced longevity than females mated with non-lure fed males. This system thus provides a model for studying transcriptional changes associated with those post-mating behaviors, as the genes regulating the phenotypic changes are likely to be expressed at a greater magnitude than in control females. We performed comparative transcriptome analyses using virgin B. tryoni females, females mated with control males (control-mated), and females mated with lure-fed males (lure-mated). We found 331 differentially expressed genes (DEGs) in control-mated females and 80 additional DEGs in lure-mated females. Although DEGs in control-mated females are mostly immune response genes and chorion proteins, as reported in Drosophila species, DEGs in lure-mated females are titin-like muscle proteins, histones, sperm, and testis expressed proteins which have not been previously reported. While transcripts regulating mating (e.g., lingerer) did not show differential expression in either of the mated female classes, the odorant binding protein Obp56a was down-regulated. The exclusively enriched or suppressed genes in lure-mated females, novel transcripts such as titin and histones, and several taxa-specific transcripts reported here can shed more light on post-mating transcriptional changes, and this can help understand factors possibly regulating female post-mating behaviors. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  19. The scarlet eye colour gene of the tephritid fruit fly: Bactrocera tryoni and the nature of two eye colour mutations.

    Science.gov (United States)

    Zhao, J T; Bennett, C L; Stewart, G J; Frommer, M; Raphael, K A

    2003-06-01

    A homologue of the Drosophila melanogaster eye-colour gene, scarlet (st), has been isolated from the genome of the tephritid fruit fly, Bactrocera tryoni. The comparison of the B. tryoni and D. melanogaster scarlet gene shows 71.2% and 79.3% sequence identity at the DNA and the derived amino acid level, respectively. Two allelic eye-colour mutations of B. tryoni, orange-eyes and lemon-eyes, have been recovered and found to be colocalized with the st gene. The st gene sequence in the two mutant strains has been examined for DNA sequence changes and expression levels.

  20. The effects of selection for early (day) and late (dusk) mating lines of hybrids of Bactrocera tryoni and Bactrocera neohumeralis.

    Science.gov (United States)

    Meats, A; Pike, N; An, X; Raphael, K; Wang, W Y S

    2003-11-01

    Bactrocera neohumeralis and Bactrocera tryoni are closely related tephritid fruit fly species. B. neohumeralis mates throughout the day (in bright light) and B. tryoni mates at dusk. The two species can also be distinguished by the colour of their calli (prothoracic sclerites) which are brown and yellow, respectively. The F1 hybrids can mate both in bright light just before dusk and during dusk and have calli that are partly brown and partly yellow. The F2 hybrids have a wider range of callus patterns and mating occurs more widely in the day as well as at dusk. We directly selected hybrid stocks for mating time, creating 'early' (day-mating) and 'late' (dusk-mating) lines. As an apparently inadvertent consequence, the two types of line respectively had predominantly brown and predominantly yellow calli and thus came to closely resemble the original two species in both behaviour and appearance. Lines that were evenly selected (half for day and half for dusk) essentially retained the mating pattern of F2 hybrids. Selection for callus colour alone also affected the distribution of mating times in a predictable way. We propose a genetical model to account for the results and discuss them in the light of the apparent maintenance of species integrity in nature.

  1. Semiochemical mediated enhancement of males to complement sterile insect technique in management of the tephritid pest Bactrocera tryoni (Froggatt)

    Science.gov (United States)

    Queensland fruit fly, Bactrocera tryoni (Froggatt), is the most significant pest of Australia’s $9 billion horticulture industry. The sterile insect technique (SIT) and male annihilation technique (MAT) based on traps baited with a synthetic analogue of raspberry ketone (RK) are two of the most effe...

  2. Effect of adult chill treatments on recovery, longevity and flight ability of Queensland fruit fly, Bactrocera tryoni (Froggatt) (Diptera: Tephritidae).

    Science.gov (United States)

    Reynolds, O L; Orchard, B A

    2011-02-01

    Control of Queensland fruit fly, Bactrocera tryoni (Froggatt) (Diptera: Tephritidae), populations or outbreaks may be achieved through the mass-rearing and inundative release of sterile B. tryoni. An alternative release method is to release chilled adult sterile fruit flies to decrease packaging and transport requirements and potentially improve release efficiencies. Two trials were conducted to determine the effect of chilling on the performance of two separate batches of adult B. tryoni, fed either a protein and sucrose diet or sucrose only diet. The first trial compared chill times of 0, 0.5, 2 and 4 h; the second trial compared chill times of 0, 2, 4, 8 and 24 h. Overall, there was little or no affect of chilling on the recovery, longevity and flight ability of B. tryoni chilled at 4°C. Recovery time can take up to 15 min for chilled adult flies. There was no effect of chill time on longevity although females generally had greater longevity on either diet compared with males. Propensity for flight was not adversely affected by chilling at the lower chill times in trial 1; however, in trial 2, adults fed on a protein and sucrose diet had a decreased tendency for flight as the chilling time increased. Fly body size did not affect recovery times although the smaller adult B. tryoni in trial 1 had significantly reduced longevity compared to the larger adults in trial 2. Implications of these findings for B. tryoni SIT are discussed.

  3. Cuelure but not zingerone make the sex pheromone of male Bactrocera tryoni (Tephritidae: Diptera) more attractive to females.

    Science.gov (United States)

    Kumaran, Nagalingam; Hayes, R Andrew; Clarke, Anthony R

    2014-09-01

    In tephritid fruit flies of the genus Bactrocera Macquart, a group of plant derived compounds (sensu amplo 'male lures') enhance the mating success of males that have consumed them. For flies responding to the male lure methyl eugenol, this is due to the accumulation of chemicals derived from the male lure in the male rectal gland (site of pheromone synthesis) and the subsequent release of an attractive pheromone. Cuelure, raspberry ketone and zingerone are a second, related group of male lures to which many Bactrocera species respond. Raspberry ketone and cuelure are both known to accumulate in the rectal gland of males as raspberry ketone, but it is not known if the emitted male pheromone is subsequently altered in complexity or is more attractive to females. Using Bactrocera tryoni as our test insect, and cuelure and zingerone as our test chemicals, we assess: (i) lure accumulation in the rectal gland; (ii) if the lures are released exclusively in association with the male pheromone; and (iii) if the pheromone of lure-fed males is more attractive to females than the pheromone of lure-unfed males. As previously documented, we found cuelure was stored in its hydroxyl form of raspberry ketone, while zingerone was stored largely in an unaltered state. Small but consistent amounts of raspberry ketone and β-(4-hydroxy-3-methoxyphenyl)-propionic acid were also detected in zingerone-fed flies. Males released the ingested lures or their analogues, along with endogenous pheromone chemicals, only during the dusk courtship period. More females responded to squashed rectal glands extracted from flies fed on cuelure than to glands from control flies, while more females responded to the pheromone of calling cuelure-fed males than to control males. The response to zingerone treatments in both cases was not different from the control. The results show that male B. tryoni release ingested lures as part of their pheromone blend and, at least for cuelure, this attracts more

  4. Yeast: An Overlooked Component of Bactrocera tryoni (Diptera: Tephritidae) Larval Gut Microbiota.

    Science.gov (United States)

    Deutscher, Ania T; Reynolds, Olivia L; Chapman, Toni A

    2017-02-01

    Yeasts, often in hydrolyzed form, are key ingredients in the larval and adult diets of tephritid fruit fly colonies. However, very little is known about the presence or role of yeasts in the diets of tephritid fruit flies in nature. Previous studies have identified bacteria but not detected yeasts in the gut of Queensland fruit fly, Bactrocera tryoni (Froggatt), one of Australia's most economically damaging insect pests of horticultural crops and of significant biosecurity concern domestically and internationally. Here we demonstrate that cultivable yeasts are commonly found in the gut of B. tryoni larvae from fruit hosts. Analysis of the ITS1, 5.8S rRNA gene, and ITS2 sequences of randomly selected isolates identified yeasts and yeast-like fungi of the genera Aureobasidium, Candida, Cryptococcus, Hanseniaspora, Pichia, and Starmerella. The prevalence of these yeasts in fruits suggests that larvae consume the yeasts as part of their diet. This work highlights that yeasts should be considered in future tephritid larval gut microbiota studies. Understanding tephritid-microbial symbiont interactions will lead to improvements in artificial diets and the quality of mass-reared tephritids for the sterile insect technique. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Desiccation resistance of wild and mass-reared Bactrocera tryoni (Diptera: Tephritidae).

    Science.gov (United States)

    Weldon, C W; Yap, S; Taylor, P W

    2013-12-01

    In pest management programmes that incorporate the sterile insect technique (SIT), the ability of mass-reared insects to tolerate dry conditions may influence their survival after release in the field. In the present study, desiccation resistance of adult mass-reared Queensland fruit flies, Bactrocera tryoni (Frogatt) (Diptera: Tephritidae), that are routinely released in SIT programmes was compared with that of wild flies at 1, 10 and 20 days after adult eclosion. Under dry conditions without access to food or water, longevity of mass-reared B. tryoni was significantly less than that of their wild counterparts. Desiccation resistance of mass-reared flies declined monotonically with age, but this was not the case for wild flies. The sharp decline in desiccation resistance of mass-reared flies as they aged was likely explained by decreased dehydration tolerance. As in an earlier study, desiccation resistance of females was significantly lower than that of males but this was particularly pronounced in mass-reared females. Female susceptibility to dry conditions corresponded with declining dehydration tolerance with age and associated patterns of reproductive development, which suggests that water content of their oocyte load is not available for survival during periods of water stress.

  6. Optimizing irradiation dose for sterility induction and quality of Bactrocera tryoni.

    Science.gov (United States)

    Collins, S R; Weldon, C W; Banos, C; Taylor, P W

    2009-10-01

    The current study is an important step toward calibrating, validating, and improving irradiation methods used for Bactrocera tryoni (Froggatt) sterile insect technique (SIT). We used routine International Atomic Energy Agency/U.S. Department of Agriculture/Food and Agriculture Organization quality control tests assessing percentage of emergence, flight ability, sex ratio, mortality under stress, reproductive sterility, and sexual competitiveness, as well as a nonstandard test of longevity under nutritional stress to assess the impact of a range of target irradiation doses (60, 65, 70, 75, and 80 Gy) on the product quality of mass reared B. tryoni used in SIT. Sterility induction remained adequate (>99.5%) for sterile male-fertile female crosses, and 100% sterility was achieved in fertile male-sterile female crosses and sterile male-sterile female crosses for each irradiation doses tested. There was significant increase in mortality under stress as irradiation dose increased, and reduced participation in mating by males irradiated at higher doses. The current target-sterilizing dose for SIT of 70-75 Gy is associated with significant reduction in fly product "quality". Our data suggest that adequate sterility and improved fly quality could be achieved through a small reduction in target sterilizing dose.

  7. Genetic consequences of domestication and mass rearing of pest fruit fly Bactrocera tryoni (Diptera: Tephritidae).

    Science.gov (United States)

    Gilchrist, A S; Cameron, E C; Sved, J A; Meats, A W

    2012-06-01

    Tephritid fruit flies, an important pest of horticulture worldwide, are increasingly targeted for control or eradication by large-scale releases of sterile flies of the same species. For each species treated, strains must be domesticated for mass rearing to provide sufficiently large numbers of individuals for releases. Increases in productivity of domesticated tephritid strains are well documented, but there have been few systematic studies of the genetic consequences of domestication in tephritids. Here, we used nine DNA microsatellite markers to monitor changes in genetic diversity during the early generations of domestication in replicated lines of the fruit fly Bactrocera tryoni (Froggatt) (Diptera: Tephritidae). The observed changes in heterozygosity and allelic richness were compared with the expected changes in heterozygosity generated by a stochastic simulation including genetic drift but not selection. The results showed that repeatable genetic bottlenecks occur in the early generations and that selection occurs in the later generations. Furthermore, using the same simulation, we show that there is inadvertent selection for increased productivity for the entire life on a mass-rearing colony, in addition to intentional selection for increased productivity. That additional selection results from the common practice of establishing the next generation of the breeding colony from a small proportion of one day's pupae collection (the pupal raffle). That selection occurs during all generations and acts only on fecundity variation. Practical methods to counter that unavoidable loss of genetic diversity during the domestication process in B. tryoni are discussed.

  8. Bactrocera tryoni and closely related pest tephritids--molecular analysis and prospects for transgenic control strategies.

    Science.gov (United States)

    Raphael, Kathryn A; Whyard, Steven; Shearman, Deborah; An, Xin; Frommer, Marianne

    2004-02-01

    Bactrocera tryoni is a serious pest of horticulture in eastern Australia. Here we review molecular data relevant to pest status and development of a transformation system for this species. The development of transformation vectors for non-drosophilid insects has opened the door to the possibility of improving the sterile insect technique (SIT), by genetically engineering factory strains of pest insects to produce male-only broods. Transposition assays indicate that all five of the vectors currently used for transformation in non-drosophilid species have the potential to be useful as transformation vectors in B. tryoni. Evidence of cross mobilization of hobo by an endogenous Homer element emphasises the necessity to understand the endogenous transposons within a species. The sex-specific doublesex and yolk protein genes have been characterized with a view to engineering a female-specific lethal gene or modifying gene expression through RNA interference (RNAi). Data are presented which indicate the potential of RNAi to modify the sex ratio of resultant broods. An understanding of how pest status is determined and maintained is being addressed through the characterization of genes of the circadian clock that enable the fly to adapt to environmental cues. Such an understanding will be useful in the future to the effective delivery of sophisticated pest control measures.

  9. Efficacy of Chemicals for the Potential Management of the Queensland Fruit Fly Bactrocera tryoni (Froggatt) (Diptera: Tephritidae)

    OpenAIRE

    Reynolds, Olivia L.; Osborne, Terrence J.; Barchia, Idris

    2017-01-01

    This study investigated alternative in-field chemical controls against Bactrocera tryoni (Froggatt). Bioassay 1 tested the mortality of adults exposed to fruit and filter paper dipped in insecticide, and the topical application of insecticide to adults/fruit. Bioassay 2 measured the mortality of adults permitted to oviposit on fruit dipped in insecticide and aged 0, 1, 3, or 5 days, plus the production of offspring. Bioassay 3 tested infested fruit sprayed with insecticide. The field bioassay...

  10. Raspberry Ketone Analogs: Vapour Pressure Measurements and Attractiveness to Queensland Fruit Fly, Bactrocera tryoni (Froggatt) (Diptera: Tephritidae)

    OpenAIRE

    Park, Soo J.; Morelli, Renata; Hanssen, Benjamin L.; Jamie, Joanne F.; Jamie, Ian M.; Siderhurst, Matthew S.; Taylor, Phillip W.

    2016-01-01

    The Queensland fruit fly, Bactrocera tryoni (Froggatt) (Q-fly), is a major horticultural pest in Eastern Australia. Effective monitoring, male annihilation technique (MAT) and mass trapping (MT) are all important for control and require strong lures to attract flies to traps or toxicants. Lure strength is thought to be related in part to volatility, but little vapour pressure data are available for most Q-fly lures. Raspberry ketone (4-(4-hydroxyphenyl)-2-butanone) and analogs that had esters...

  11. Semiochemical mediated enhancement of males to complement sterile insect technique in management of the tephritid pest Bactrocera tryoni (Froggatt)

    OpenAIRE

    Khan, Mohammed Abul Monjur; Manoukis, Nicholas C.; Osborne, Terry; Barchia, Idris M.; Gurr, Geoff M.; Reynolds, Olivia L.

    2017-01-01

    Queensland fruit fly, Bactrocera tryoni (Froggatt), is the most significant pest of Australia’s $9 billion horticulture industry. The sterile insect technique (SIT) and cue-lure (a synthetic analogue of raspberry ketone (RK))-based male annihilation technique (MAT) are two of the most effective management tools against this pest. However, combining these two approaches is considered incompatible as MAT kills sterile and ‘wild’ males indiscriminately. In the present study we tested the effect ...

  12. Raspberry ketone supplement promotes early sexual maturation in male Queensland fruit fly, Bactrocera tryoni (Diptera: Tephritidae).

    Science.gov (United States)

    Akter, Humayra; Mendez, Vivian; Morelli, Renata; Pérez, Jeanneth; Taylor, Phillip W

    2017-08-01

    Raspberry ketone (RK) is highly attractive to sexually mature, but not immature, males of many Bactrocera species, including Queensland fruit fly ('Qfly', Bactrocera tryoni), and acts as a metabolic enhancer in a wide diversity of animals. We considered the possibility that, as a metabolic enhancer, RK in adult diet might accelerate sexual maturation of male Qflies. Recently emerged adult Qfly males (0-24 h old) were exposed to RK-treated food for 48 h and were then provided only sugar and water. Four doses of RK (1.25, 2.5, 3.75 and 5%) along with control (0%) were tested with two types of food: sugar alone and sugar mixed with yeast hydrolysate (3:1). For flies tested when 4-10 days old all RK doses increased mating probability of flies fed sugar mixed with yeast hydrolysate but did not show any effect on mating probability of flies fed only sugar. No effects of RK were found for flies tested when 10-30 days old for either diet group. There was no evidence that RK affected longevity at any of the doses tested. Feeding of RK together with yeast hydrolysate to immature Qfly increases mating propensity at young ages and accordingly shows significant potential as a pre-release supplement that might increase the proportion of released flies that attain sexual maturation in Sterile Insect Technique programmes. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  13. Diet quality mediates activity patterns in adult Queensland fruit fly (Bactrocera tryoni).

    Science.gov (United States)

    Fanson, Benjamin G; Petterson, Ingrid E; Taylor, Phillip W

    2013-07-01

    Studies linking resource acquisition and trait expression have traditionally treated nutritional resources as a single currency, but recent research has shown that trait expression can depend as much on diet quality (nutrient composition) as on diet quantity (calories). Here, we investigate the role of nutrient composition and diet concentration on activity levels of adult Queensland fruit flies (Bactrocera tryoni Froggatt: Tephritidae). Male and female flies were fed diets that varied in the proportion of protein and carbohydrate as well as total amounts of protein and carbohydrate. Daily activity levels were then quantified using locomotor activity monitors during both light and dark phases. During the light phase, both sexes increased the proportion of time spent active and their rate of activity as diets became more carbohydrate-rich and concentrated. In contrast, during the dark phase, nutrient composition and concentration had no effect on the proportion of time spent active for either sex, although when active during the dark phase, activity rates were higher for flies fed more carbohydrate-rich and concentrated diets. Overall, nutritional composition of the diet affected activity levels to a greater extent than the total energetic content of the diet. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Longevity of Mass-Produced Bactrocera tryoni (Diptera: Tephritidae) Held Without Food or Water.

    Science.gov (United States)

    Dominiak, Bernard C; Sundaralingam, Selliah; Jiang, Laura; Nicol, Helen I

    2014-12-01

    The sterile insect technique is used to manage or control fruit flies throughout the world. The technique relies on large scale production before delivery to release managers. As part of the mass production phase, there are many quality control tests to demonstrate and maintain high quality pupae and flies. One highly desirable characteristic is adults with a long life so that these adults can reach sexual maturity and sterile males mate with wild fertile flies in the field and thus produce no viable offspring. Originally longevity was assessed allowing adults to have unlimited access to food and water. As quality and longevity increased, this methodology added significantly to workload and space demands and many facilities moved to testing longevity under stress where no food or water was provided. Here we examined >27,000 Queensland fruit fly Bactrocera tryoni (Froggatt) from 160 weekly production batches from July 2004 to October 2009 where flies were not provided food or water. The mean longevity was 54.4 ± SE hours. Longevity was significantly shorter from August to March, and the longevity was significantly longer in June. Longevity was not related to pupal weight, contrary to expectations. Weights were significantly lower in June and highest in summer. © 2014 Entomological Society of America.

  15. Raspberry Ketone Trifluoroacetate, a New Attractant for the Queensland Fruit Fly, Bactrocera Tryoni (Froggatt).

    Science.gov (United States)

    Siderhurst, Matthew S; Park, Soo J; Buller, Caitlyn N; Jamie, Ian M; Manoukis, Nicholas C; Jang, Eric B; Taylor, Phillip W

    2016-02-01

    Queensland fruit fly, Bactrocera tryoni (Q-fly), is a major pest of horticultural crops in eastern Australia. Lures that attract male Q-fly are important for detection of incursions and outbreaks, monitoring of populations, and control by mass trapping and male annihilation. Cuelure, an analog of naturally occurring raspberry ketone, is the standard Q-fly lure, but it has limited efficacy compared with lures that are available for some other fruit flies such as methyl eugenol for B. dorsalis. Melolure is a more recently developed raspberry ketone analog that has shown better attraction than cuelure in some field studies but not in others. A novel fluorinated analog of raspberry ketone, raspberry ketone trifluoroacetate (RKTA), has been developed as a potential improvement on cuelure and melolure. RKTA placed on laboratory cages containing 2-week-old Q-flies elicited strong behavioral responses from males. Quantification of Q-fly responses in these cages, using digital images to estimate numbers of flies aggregated near different lures, showed RKTA attracted and arrested significantly more flies than did cuelure or melolure. RKTA shows good potential as a new lure for improved surveillance and control of Q-fly.

  16. Alimentary Tract Bacteria Isolated and Identified with API-20E and Molecular Cloning Techniques from Australian Tropical Fruit Flies, Bactrocera cacuminata and B. tryoni

    OpenAIRE

    Thaochan, N.; Drew, R. A. I.; Hughes, J. M.; Vijaysegaran, S.; Chinajariyawong, A.

    2010-01-01

    Bacteria were isolated from the crop and midgut of field collected Bactrocera cacuminata (Hering) and Bactrocera tryoni (Froggatt) (Diptera: Tephritidae). Two methods were used, firstly isolation onto two types of bacteriological culture media (PYEA and TSA) and identification using the API-20E diagnostic kit, and secondly, analysis of samples using the 16S rRNA gene molecular diagnostic method. Using the API-20E method, 10 genera and 17 species of bacteria in the family Enterobacteriaceae we...

  17. Comparative Efficacy of Insecticides on Bactrocera tryoni and Zeugodacus cucumis (Diptera: Tephritidae) in Laboratory and Semifield Trials in Fruiting Vegetables.

    Science.gov (United States)

    Senior, L J; Missenden, B P; Wright, C

    2017-08-01

    In-field management of Bactrocera tryoni (Froggatt) and Zeugodacus cucumis (French) (Diptera: Tephritidae) in fruiting vegetable crops has relied almost exclusively on organophosphate cover sprays. Laboratory and semifield trials were performed to compare a number of alternative insecticides for efficacy against these species. A novel semifield method was used whereby the insecticides were applied to crops as cover sprays under field conditions, and treated plants bearing fruit were transferred to large cages and exposed to fruit flies. Efficacy was assessed in terms of numbers of pupae developing from treated fruit. A laboratory cage method was also used to assess effects on adult mortality and comparative effects of 1- and 3-d-aged residues. The neonicotinoids clothianidin and thiacloprid were very effective against B. tryoni and Z. cucumis. Clothianidin was the only insecticide other than dimethoate to affect adult mortality. The synthetic pyrethroid alpha-cypermethrin was also very effective, particularly in semifield trials, although higher incidence of aphid and whitefly infestation was observed in this treatment compared to others. Cyantraniliprole was effective against B. tryoni, but less effective against Z. cucumis. Imidacloprid, bifenthrin, spinetoram, and abamectin were all relatively less effective, although all demonstrated a suppressive effect. © Commonwealth of Australia, Department of Agriculture and Fisheries, 2017.

  18. Revised Distribution of Bactrocera tryoni in Eastern Australia and Effect on Possible Incursions of Mediterranean Fruit Fly: Development of Australia's Eastern Trading Block.

    Science.gov (United States)

    Dominiak, Bernard C; Mapson, Richard

    2017-12-05

    Bactrocera tryoni (Froggatt) (Diptera: Tephritidae), commonly called 'Queensland fruit fly' in Australia, and Mediterranean fruit fly (Ceratitis capitata Wiedemann) (Diptera: Tephritidae) are the two most economically important fruit fly in Australia with B. tryoni in the east and Mediterranean fruit fly in the west. The two species coexisted for several decades, but it is believed that B. tryoni displaced Mediterranean fruit fly. In southeastern Australia, this was deemed inadequate for export market access, and a large fruit fly free zone (fruit fly exclusion zone) was developed in 1996 where B. tryoni was eradicated by each state department in their portion of the zone. This zone caused an artificial restricted distribution of B. tryoni. When the fruit fly exclusion zone was withdrawn in Victoria and New South Wales in 2013, B. tryoni became endemic once again in this area and the national distribution of B. tryoni changed. For export markets, B. tryoni is now deemed endemic to all eastern Australian states, except for the Greater Sunraysia Pest-Free Area. All regulatory controls have been removed between eastern states, except for some small zones, subject to domestic market access requirements. The eastern Australian states now form a B. tryoni endemic trading group or block. All Australian states and territories maintain legislation to regulate the movement of potentially infested host fruit into their states. In particular, eastern states remain active and regulate the entry of commodities possibly infested with Mediterranean fruit fly. The combination of regulatory controls limits the chances of Mediterranean fruit fly entering eastern states, and if it did, Mediterranean fruit fly is unlikely to establish in the opposition to a well-established B. tryoni population. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Additive and interactive effects of nutrient classes on longevity, reproduction, and diet consumption in the Queensland fruit fly (Bactrocera tryoni).

    Science.gov (United States)

    Fanson, Benjamin G; Taylor, Phillip W

    2012-03-01

    Insect lifespan is often closely linked to diet, and diet manipulations have been central to studies of ageing. Recent research has found that lifespan for some flies is maximised on a very low yeast diet, but once all yeast is removed, lifespan drops precipitously. Although effects of yeast availability on lifespan are commonly interpreted in terms of protein, yeast is a complex mix of nutrients and provides a rich source of vitamins, minerals and sterols. Elucidating which components of yeast are involved in this lifespan drop provides insights into more specific nutritional requirements and also provides a test for the commonplace interpretation of yeast in terms of protein. To this end, we fed Queensland fruit flies (Bactrocera tryoni) one of eight experimental diets that differed in the nutrient group(s) found in yeast that were added to sucrose: none, vitamins, minerals, amino acids, cholesterol, vitamin+mineral+cholesterol (VMC), vitamin+mineral+cholesterol+amino acids (VMCA), and yeast. We measured survival rates and egg production in single sex and mixed sex cages, as well as nutrient intake of individual flies. We found that the addition of minerals increased lifespan of both male and female flies housed in single sex cages by decreasing baseline mortality. The addition of just amino acids decreased lifespan in female flies; however, when combined with other nutrient groups found in yeast, amino acids increased lifespan by decreasing both baseline mortality and age-specific mortality. Flies on the yeast and VMCA diets were the only ones to show significant egg production. We conclude that the drop in lifespan observed when all yeast is removed is explained by missing micronutrients (vitamins, minerals and cholesterol) as well as the absence of protein in females, whereas minerals alone can explain the pattern for males. These results indicate a need for caution when interpreting effects of dietary yeast as effects of protein. Copyright © 2011 Elsevier

  20. Yeast hydrolysate supplementation increases field abundance and persistence of sexually mature sterile Queensland fruit fly, Bactrocera tryoni (Froggatt).

    Science.gov (United States)

    Reynolds, O L; Orchard, B A; Collins, S R; Taylor, P W

    2014-04-01

    The sterile insect technique (SIT) is a non-chemical approach used to control major pests from several insect families, including Tephritidae, and entails the mass-release of sterile insects that reduce fertility of wild populations. For SIT to succeed, released sterile males must mature and compete with wild males to mate with wild females. To reach sexual maturity, the Queensland fruit fly, Bactrocera tryoni (Froggatt) (Diptera: Tephritidae), must obtain adequate nutrition after adult emergence; however, in current SIT programs sterile B. tryoni receive a pre-release diet that lacks key nutrients required to sustain sexual development. The chief objective of this study was to determine whether pre-release yeast hydrolysate (YH) supplements affect the persistence and abundance of sexually mature sterile male B. tryoni under field conditions. Experiments were run in outdoor cages under conditions of low and high environmental stress that differed markedly in temperature and humidity, and in the field. Under low environmental stress conditions, survival of sterile B. tryoni was monitored in cages under three diet treatments: (i) sugar only, (ii) sugar plus YH or (iii) sugar plus YH for 48 h and sugar only thereafter. Under high environmental stress conditions survival of sterile B. tryoni was monitored in cages under four diet treatments: (i) white sugar only, (ii) brown sugar only, (iii) white sugar plus YH and (iv) brown sugar plus YH. In a replicated field study, we released colour-marked sterile B. tryoni from two diet regimes, YH-supplemented or YH-deprived, and monitored abundance of sexually mature males. In the low-stress cage study, there was no effect of diet, although overall females lived longer than males. In the high stress cage study, mortality was lower for YH-fed flies than YH-deprived flies and females lived longer than males. In the field, YH supplementation resulted in higher abundance of sexually mature sterile males, with 1.2 YH-fed flies

  1. The draft genome of the pest tephritid fruit fly Bactrocera tryoni: resources for the genomic analysis of hybridising species.

    Science.gov (United States)

    Gilchrist, Anthony Stuart; Shearman, Deborah C A; Frommer, Marianne; Raphael, Kathryn A; Deshpande, Nandan P; Wilkins, Marc R; Sherwin, William B; Sved, John A

    2014-12-20

    The tephritid fruit flies include a number of economically important pests of horticulture, with a large accumulated body of research on their biology and control. Amongst the Tephritidae, the genus Bactrocera, containing over 400 species, presents various species groups of potential utility for genetic studies of speciation, behaviour or pest control. In Australia, there exists a triad of closely-related, sympatric Bactrocera species which do not mate in the wild but which, despite distinct morphologies and behaviours, can be force-mated in the laboratory to produce fertile hybrid offspring. To exploit the opportunities offered by genomics, such as the efficient identification of genetic loci central to pest behaviour and to the earliest stages of speciation, investigators require genomic resources for future investigations. We produced a draft de novo genome assembly of Australia's major tephritid pest species, Bactrocera tryoni. The male genome (650-700 Mbp) includes approximately 150 Mb of interspersed repetitive DNA sequences and 60 Mb of satellite DNA. Assessment using conserved core eukaryotic sequences indicated 98% completeness. Over 16,000 MAKER-derived gene models showed a large degree of overlap with other Dipteran reference genomes. The sequence of the ribosomal RNA transcribed unit was also determined. Unscaffolded assemblies of B. neohumeralis and B. jarvisi were then produced; comparison with B. tryoni showed that the species are more closely related than any Drosophila species pair. The similarity of the genomes was exploited to identify 4924 potentially diagnostic indels between the species, all of which occur in non-coding regions. This first draft B. tryoni genome resembles other dipteran genomes in terms of size and putative coding sequences. For all three species included in this study, we have identified a comprehensive set of non-redundant repetitive sequences, including the ribosomal RNA unit, and have quantified the major satellite DNA

  2. Olfaction in the Queensland fruit fly, Bactrocera tryoni. I: Identification of olfactory receptor neuron types responding to environmental odors.

    Science.gov (United States)

    Hull, C D; Cribb, B W

    2001-05-01

    The electroantennogram method was used to investigate the number of distinct olfactory receptor neuron types responding to a range of behaviorally active volatile chemicals in gravid Queensland fruit flies, Bactrocera tryoni. Three receptor neuron types were identified. One type responds to methyl butyrate, 2-butanone, farnesene, and carbon dioxide; a second to ethanol; and a third to n-butyric acid and ammonia. The receptor neuron type responding to methyl butyrate, 2-butanone, farnesene, and carbon dioxide consists of three subtypes. The presence of a limited number of receptor neuron types responding to a diverse set of chemicals and the reception of carbon dioxide by a receptor neuron type that responds to other odorants are novel aspects of the peripheral olfactory discrimination process.

  3. The genetic structure of populations of an invading pest fruit fly, Bactrocera tryoni, at the species climatic range limit.

    Science.gov (United States)

    Gilchrist, A S; Meats, A W

    2010-08-01

    Previous population genetic studies of the Queensland fruit fly, Bactrocera tryoni Froggatt (Diptera: Tephritidae), in its central range have shown barely detectable genetic differentiation across distances of almost 3000 km (F(st)=0.003). In this study, we investigated the genetic structuring of southern border populations of B. tryoni, in the region extending from the central population to the recently colonized southern range limit. The expectation was that marginal populations would be small, fragmented population sinks, with local adaptation limited by gene flow or drift. Unexpectedly, we found that the population at the southern extreme of the range was a source population, rather than a sink, for the surrounding region. This was shown by assignment testing of recent outbreaks in an adjoining quarantine area and by indirect migration estimates. Furthermore, populations in the region had formed a latitudinal cline in microsatellite allele frequencies, spanning the region between the central population and the southern range limit. The cline has formed within 250 generations of the initial invasion and appears stable between years. We show that there is restricted gene flow in the region and that effective population sizes are of the order of 10(2)-10(3). Although the cline may result from natural selection, neutral evolutionary processes may also explain our findings.

  4. The Queensland fruit fly, Bactrocera tryoni, contains multiple members of the hAT family of transposable elements.

    Science.gov (United States)

    Pinkerton, A C; Whyard, S; Mende, H A; Coates, C J; O'Brochta, D A; Atkinson, P W

    1999-11-01

    Members of the hAT transposable element family are mobile in non-host insect species and have been used as transformation vectors in some of these species. We report that the Queensland fruit fly, Bactrocera tryoni, contains at least two types of insect hAT elements called Homer and a Homer-like element (HLE). The Homer element is 3789 bp in size and contains 12-bp imperfect inverted terminal repeats. The Homer element contains a long open reading frame (ORF) that encodes a putative transposase. Three different copies of this long ORF were recovered from the B. tryoni genome and, upon transcription and translation in an in vitro system, all produced transposase. The HLE is an incomplete element since no 3' inverted terminal repeat (ITR) was found. Homer and the HLE are as related to one another as either is to the other insect hAT elements such as Hermes, hobo, hermit and hopper. The structure and distribution of these two Homer elements is described.

  5. Semiochemical mediated enhancement of males to complement sterile insect technique in management of the tephritid pest Bactrocera tryoni (Froggatt).

    Science.gov (United States)

    Khan, Mohammed Abul Monjur; Manoukis, Nicholas C; Osborne, Terry; Barchia, Idris M; Gurr, Geoff M; Reynolds, Olivia L

    2017-10-17

    Queensland fruit fly, Bactrocera tryoni (Froggatt), is the most significant pest of Australia's $9 billion horticulture industry. The sterile insect technique (SIT) and cue-lure (a synthetic analogue of raspberry ketone (RK))-based male annihilation technique (MAT) are two of the most effective management tools against this pest. However, combining these two approaches is considered incompatible as MAT kills sterile and 'wild' males indiscriminately. In the present study we tested the effect of pre-release feeding of B. tryoni on RK on their post-release survival and response to MAT in field cages and in a commercial orchard. In both settings, survival was higher for RK supplemented adults compared to control (i.e. RK denied) adults. A lower number of RK supplemented sterile males were recaptured in MAT baited traps in both the field cages and orchard trials compared to RK denied sterile males. The advantage of this novel "male replacement" approach (relatively selective mortality of wild males at lure-baited traps while simultaneously releasing sterile males) is increasing the ratio of sterile to wild males in the field population, with potential for reducing the number of sterile males to be released.

  6. Effect of Body Size, Age, and Premating Experience on Male Mating Success in Bactrocera tryoni (Diptera: Tephritidae).

    Science.gov (United States)

    Ekanayake, E W M T D; Clarke, Anthony R; Schutze, Mark K

    2017-10-01

    Variation in male body size, age, and prior sexual experience may all influence male mating success in tephritid fruit flies. Bactrocera tryoni (Froggatt) is an Australian pest tephritid for which the sterile insect technique (SIT) is being actively pursued, and for which information on what makes males more competitive is urgently needed. Pair-wise competitive mating trials were run using laboratory-reared flies in walk-in field cages, evaluating young, large, and virgin B. tryoni males against old, small, and nonvirgin males, respectively. Analysis of male sexual competitiveness indices revealed that young and large males obtained significantly more copulations compared to old and small males; there was no significant difference between virgin and nonvirgin males in obtaining mates. While SIT programs will always release young males, the results do show that rearing programs which focus on producing larger males, rather than greater numbers of smaller males, will produce more sexually competitive males. After release, virgin SIT males will not be at a competitive disadvantage with sexually experienced males based on prior mating experience. © The Author 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Evaluating irradiation dose for sterility induction and quality control of mass-produced fruit fly Bactrocera tryoni (Diptera: Tephritidae).

    Science.gov (United States)

    Dominiak, B C; Sundaralingam, S; Jiang, L; Fanson, B G; Collins, S R; Banos, C; Davies, J B; Taylor, P W

    2014-06-01

    The sterile insect technique has been routinely used to eradicate fruit fly Bactrocera tryoni (Froggatt) incursions. This study considers whether fly quality in a mass-rearing facility can be improved by reducing irradiation doses, without sacrificing reproductive sterility. Pupae were exposed to one of five target irradiation dose ranges: 0, 40-45, 50-55, 60-65, and 70-75 Gy. Pupae were then assessed using routine quality control measures: flight ability, sex ratio, longevity under nutritional stress, emergence, and reproductive sterility. Irradiation did not have a significant effect on flight ability or sex ratio tests. Longevity under nutritional stress was significantly increased at 70-75 Gy, but no other doses differed from 0 Gy. Emergence was slightly reduced in the 50-55, 60-65, and 70-75 Gy treatments, but 40-45 Gy treatments did not differ from 0 Gy, though confounding temporal factors complicate interpretation. Reproductive sterility remained acceptable (> 99.5%) for all doses--40-45 Gy (99.78%), 50-55 Gy (100%), 60-65 Gy (100%), and 70-75 Gy (99.99%). We recommend that B. tryoni used in sterile insect technique releases be irradiated at a target dose of 50-55 Gy, providing improved quality and undiminished sterility in comparison with the current 70-75 Gy standard while also providing a substantial buffer against risk of under dosing.

  8. Ultrastructure of male reproductive accessory glands and ejaculatory duct in the Queensland fruit fly, Bactrocera tryoni (Diptera: Tephritidae).

    Science.gov (United States)

    Radhakrishnan, Preethi; Marchini, Daniela; Taylor, Phillip W

    2009-05-01

    Ultrastructure of male reproductive accessory glands and ejaculatory duct in the Queensland fruit fly (Q-fly), Bactrocera tryoni, were investigated and compared with those of other tephritid flies. Male accessory glands were found to comprise one pair of mesodermic glands and three pairs of ectodermic glands. The mesodermic accessory glands consist of muscle-lined, binucleate epithelial cells, which are highly microvillated and extrude electron-dense secretions by means of macroapocrine transport into a central lumen. The ectodermic accessory glands consist of muscle-lined epithelial cells which have wide subcuticular cavities, lined with microvilli. The electron-transparent secretions from these glands are first extruded into the cavities and then forced out through small pores of the cuticle into the gland lumen. Secretions from the two types of accessory glands then flow into the ejaculatory duct, which is highly muscular, with epithelial cells rich in rough endoplasmic reticulum and lined with a thick, deeply invaginated cuticle. While there are some notable differences, reproductive accessory glands of male Q-flies generally resemble those of the olive fruitfly, Bactrocera oleae, and to a lesser extent the Mediterranean fruit fly, Ceratitis capitata.

  9. Efficacy of Chemicals for the Potential Management of the Queensland Fruit Fly Bactrocera tryoni (Froggatt (Diptera: Tephritidae

    Directory of Open Access Journals (Sweden)

    Olivia L. Reynolds

    2017-05-01

    Full Text Available This study investigated alternative in-field chemical controls against Bactrocera tryoni (Froggatt. Bioassay 1 tested the mortality of adults exposed to fruit and filter paper dipped in insecticide, and the topical application of insecticide to adults/fruit. Bioassay 2 measured the mortality of adults permitted to oviposit on fruit dipped in insecticide and aged 0, 1, 3, or 5 days, plus the production of offspring. Bioassay 3 tested infested fruit sprayed with insecticide. The field bioassay trialed the mortality of adults exposed to one- and five-day insecticide residues on peaches, and subsequent offspring. Abamectin, alpha-cypermethrin, clothianidin, dimethoate (half-label rate, emamectin benzoate, fenthion (half- and full-label rate, and trichlorfon were the most efficacious in bioassay 1, across 18 tested insecticide treatments. Overall, the LT50 value was lowest for fenthion (full-label rate, clothianidin, and alpha-cypermethrin. Fenthion, emamectin benzoate, and abamectin had the greatest effect on adult mortality and offspring production. Infested fruit treated with acetamiprid, fenthion, and thiacloprid produced no/very few offspring. Alpha-cypermethrin demonstrated good field efficacy against adults (one day post treatment: 97.2% mortality, five day post treatment: 98.8% mortality and subsequent offspring (100% across one and five day post treatments, comparable to that of fenthion (full-label rate (100% mortality for offspring and adults across both post treatments. Alpha-cypermethrin is a possible alternative to fenthion against B. tryoni; as a pyrethroid, it may not be desirable if adjunct biological control is imperative. Thiacloprid and Acetamiprid may be useful as a post-harvest treatment.

  10. Efficacy of Chemicals for the Potential Management of the Queensland Fruit Fly Bactrocera tryoni (Froggatt) (Diptera: Tephritidae).

    Science.gov (United States)

    Reynolds, Olivia L; Osborne, Terrence J; Barchia, Idris

    2017-05-09

    This study investigated alternative in-field chemical controls against Bactrocera tryoni (Froggatt). Bioassay 1 tested the mortality of adults exposed to fruit and filter paper dipped in insecticide, and the topical application of insecticide to adults/fruit. Bioassay 2 measured the mortality of adults permitted to oviposit on fruit dipped in insecticide and aged 0, 1, 3, or 5 days, plus the production of offspring. Bioassay 3 tested infested fruit sprayed with insecticide. The field bioassay trialed the mortality of adults exposed to one- and five-day insecticide residues on peaches, and subsequent offspring. Abamectin, alpha-cypermethrin, clothianidin, dimethoate (half-label rate), emamectin benzoate, fenthion (half- and full-label rate), and trichlorfon were the most efficacious in bioassay 1, across 18 tested insecticide treatments. Overall, the LT50 value was lowest for fenthion (full-label rate), clothianidin, and alpha-cypermethrin. Fenthion, emamectin benzoate, and abamectin had the greatest effect on adult mortality and offspring production. Infested fruit treated with acetamiprid, fenthion, and thiacloprid produced no/very few offspring. Alpha-cypermethrin demonstrated good field efficacy against adults (one day post treatment: 97.2% mortality, five day post treatment: 98.8% mortality) and subsequent offspring (100% across one and five day post treatments), comparable to that of fenthion (full-label rate) (100% mortality for offspring and adults across both post treatments). Alpha-cypermethrin is a possible alternative to fenthion against B. tryoni ; as a pyrethroid, it may not be desirable if adjunct biological control is imperative. Thiacloprid and Acetamiprid may be useful as a post-harvest treatment.

  11. Microsatellite analysis of the Queensland fruit fly Bactrocera tryoni (Diptera: Tephritidae) indicates spatial structuring: implications for population control.

    Science.gov (United States)

    Yu, H; Frommer, M; Robson, M K; Meats, A W; Shearman, D C; Sved, J A

    2001-04-01

    The population structure of a tephritid pest species, the Queensland fruit fly Bactrocera tryoni (Froggatt), has been analysed over a five year period (1994-1998), using six microsatellites. Adult fly samples were collected to cover most regions of eastern and central Australia where the flies are regularly found. Tests for heterogeneity indicated that flies within geographically defined regions were homogeneous. The samples were allocated into five regions, including one very large region, Queensland, which encompasses that portion of the fly's range where breeding can occur year-round. With one exception, the collections from different regions were homogeneous between years, showing a fairly static distribution of the species. However, differences between regions were highly significant. The one case of a change in frequency between years indicated a gradual replacement of flies in a marginal region by flies from the main part of the range. The finding of stability in the distribution of a highly mobile insect is of interest, potentially also for other species which have expanded beyond their native range. It is argued that a contributing reason for this stability may be adaptation to different climatic regimes, and that strategies for control based on this hypothesis afford a reasonable chance of success.

  12. Raspberry Ketone Analogs: Vapour Pressure Measurements and Attractiveness to Queensland Fruit Fly, Bactrocera tryoni (Froggatt) (Diptera: Tephritidae).

    Science.gov (United States)

    Park, Soo J; Morelli, Renata; Hanssen, Benjamin L; Jamie, Joanne F; Jamie, Ian M; Siderhurst, Matthew S; Taylor, Phillip W

    2016-01-01

    The Queensland fruit fly, Bactrocera tryoni (Froggatt) (Q-fly), is a major horticultural pest in Eastern Australia. Effective monitoring, male annihilation technique (MAT) and mass trapping (MT) are all important for control and require strong lures to attract flies to traps or toxicants. Lure strength is thought to be related in part to volatility, but little vapour pressure data are available for most Q-fly lures. Raspberry ketone (4-(4-hydroxyphenyl)-2-butanone) and analogs that had esters (acetyl, difluoroacetyl, trifluoroacetyl, formyl, propionyl) and ethers (methyl ether, trimethylsilyl ether) in replacement of the phenolic group, and in one case also had modification of the 2-butanone side chain, were measured for their vapour pressures by differential scanning calorimetry (DSC), and their attractiveness to Q-fly was assessed in small cage environmentally controlled laboratory bioassays. Maximum response of one category of compounds, containing both 2-butanone side chain and ester group was found to be higher than that of the other group of compounds, of which either of 2-butanone or ester functionality was modified. However, linear relationship between vapour pressure and maximum response was not significant. The results of this study indicate that, while volatility may be a factor in lure effectiveness, molecular structure is the dominating factor for the series of molecules investigated.

  13. Raspberry Ketone Analogs: Vapour Pressure Measurements and Attractiveness to Queensland Fruit Fly, Bactrocera tryoni (Froggatt (Diptera: Tephritidae.

    Directory of Open Access Journals (Sweden)

    Soo J Park

    Full Text Available The Queensland fruit fly, Bactrocera tryoni (Froggatt (Q-fly, is a major horticultural pest in Eastern Australia. Effective monitoring, male annihilation technique (MAT and mass trapping (MT are all important for control and require strong lures to attract flies to traps or toxicants. Lure strength is thought to be related in part to volatility, but little vapour pressure data are available for most Q-fly lures. Raspberry ketone (4-(4-hydroxyphenyl-2-butanone and analogs that had esters (acetyl, difluoroacetyl, trifluoroacetyl, formyl, propionyl and ethers (methyl ether, trimethylsilyl ether in replacement of the phenolic group, and in one case also had modification of the 2-butanone side chain, were measured for their vapour pressures by differential scanning calorimetry (DSC, and their attractiveness to Q-fly was assessed in small cage environmentally controlled laboratory bioassays. Maximum response of one category of compounds, containing both 2-butanone side chain and ester group was found to be higher than that of the other group of compounds, of which either of 2-butanone or ester functionality was modified. However, linear relationship between vapour pressure and maximum response was not significant. The results of this study indicate that, while volatility may be a factor in lure effectiveness, molecular structure is the dominating factor for the series of molecules investigated.

  14. Kinetics of Colonization of Adult Queensland Fruit Flies (Bactrocera tryoni) by Dinitrogen-Fixing Alimentary Tract Bacteria.

    Science.gov (United States)

    Murphy, K M; Teakle, D S; Macrae, I C

    1994-07-01

    The average total population of bacteria remained constant in the alimentary tracts of adult laboratory-raised Queensland fruit flies (Bactrocera tryoni) although the insects had ingested large numbers of live bacteria as part of their diet. The mean number of bacteria (about 13 million) present in the gut of the insects from 12 to 55 days after emergence was not significantly modified when, at 5 days after emergence, the flies were fed antibiotic-resistant bacteria belonging to two species commonly isolated from the gut of field-collected B. tryoni. Flies were fed one marked dinitrogen-fixing strain each of either Klebsiella oxytoca or Enterobacter cloacae, and the gastrointestinal tracts of fed flies were shown to be colonized within 7 days by antibiotic-resistant isolates of K. oxytoca but not E. cloacae. The composition of the microbial population also appeared to be stable in that the distribution and frequency of bacterial taxa among individual flies exhibited similar patterns whether or not the flies had been bacteria fed. Isolates of either E. cloacae or K. oxytoca, constituting 70% of the total numbers, were usually dominant, with oxidative species including pseudomonads forming the balance of the population. Antibiotic-resistant bacteria could be spread from one cage of flies to the adjacent surfaces of a second cage within a few days and had reached a control group several meters distant by 3 weeks. Restriction of marked bacteria to the population of one in five flies sampled from the control group over the next 30 days suggested that the bacterial population in the gut of the insect was susceptible to alteration in the first week after emergence but that thereafter it entered a steady state and was less likely to be perturbed by the introduction of newly encountered strains. All populations sampled, including controls, included at least one isolate of the dinitrogen-fixing family Enterobacteriaceae; many were distinct from the marked strains fed to the

  15. Specialized Pheromone and Lure Application Technology as an Alternative Male Annihilation Technique to Manage Bactrocera tryoni (Diptera: Tephritidae).

    Science.gov (United States)

    Reynolds, O L; Osborne, T; Crisp, P; Barchia, I M

    2016-03-27

    The results of this study suggest that a novel male annihilation technique (specialized pheromone and lure application technology [SPLAT] incorporating cue-lure [CL] plus spinosad) is as effective as industry standard male annihilation controls, and is worth exploring further to manageBactrocera tryoni(Froggatt) populations. Three lures were evaluated in a contact and feeding bioassay and a cage attractancy trial: 1) SPLAT-CL + spinosad; 2) SPLAT-CL without spinosad; and 3) wick-CL + malathion. In a field attraction trial, lures (1) and (3) were evaluated with a third treatment, caneite blocks-CL + malathion. Lures were weathered for 0, 1, 2, 4, or 8 wk, with an additional weathering treatment of 12 wk included in the field trial. In the contact and feeding bioassay, lures with SPLAT-CL + spinosad were >97% effective at 48 h for up to 2 wk weathering; however, wicks-CL + malathion killedB. tryoniwithin 2 h of exposure under all weathering periods. In the cage attractancy trial, SPLAT-CL + spinosad was as effective as, or performed better than, wicks-CL + malathion under all weathering treatments. The field study trap catches were similar for SPLAT-CL + spinosad and blocks-CL + malathion, and both had higher trap catches than wicks-CL + malathion at all weathering periods, except week 12. Overall, SPLAT-CL + spinosad compared favorably with current standard techniques for male annihilation and warrants further research. SPLAT-CL + spinosad may be a reduced-risk alternative for wicks-CL + malathion or blocks-CL + malathion forB. tryoniand other CL-responding fruit flies, such asBactrocera cucurbitaeCoquillett, because it contains a reduced-risk insecticide that poses a lower risk to humans and the environment and does not require labor-intensive handling and placement. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Alimentary tract bacteria isolated and identified with API-20E and molecular cloning techniques from Australian tropical fruit flies, Bactrocera cacuminata and B. tryoni.

    Science.gov (United States)

    Thaochan, N; Drew, R A I; Hughes, J M; Vijaysegaran, S; Chinajariyawong, A

    2010-01-01

    Bacteria were isolated from the crop and midgut of field collected Bactrocera cacuminata (Hering) and Bactrocera tryoni (Froggatt) (Diptera: Tephritidae). Two methods were used, firstly isolation onto two types of bacteriological culture media (PYEA and TSA) and identification using the API-20E diagnostic kit, and secondly, analysis of samples using the 16S rRNA gene molecular diagnostic method. Using the API-20E method, 10 genera and 17 species of bacteria in the family Enterobacteriaceae were identified from cultures growing on the nutrient agar. The dominant species in both the crop and midgut were Citrobacter freundii, Enterobacter cloacae and Klebsiella oxytoca. Providencia rettgeri, Klebsiella pneumoniae ssp ozaenae and Serratia marcescens were isolated from B. tryoni only. Using the molecular cloning technique that is based on 16S rRNA gene sequences, five bacteria classes were dignosed — Alpha-, Beta-, Gamma- and Delta- Proteobacteria and Firmicutes — including five families, Leuconostocaceae, Enterococcaceae, Acetobacteriaceae, Comamonadaceae and Enterobacteriaceae. The bacteria affiliated with Firmicutes were found mainly in the crop while the Gammaproteobacteria, especially the family Enterobacteriaceae, was dominant in the midgut. This paper presents results from the first known application of molecular cloning techniques to study bacteria within tephritid species and the first record of Firmicutes bacteria in these flies.

  17. Nutrients, not caloric restriction, extend lifespan in Queensland fruit flies (Bactrocera tryoni).

    Science.gov (United States)

    Fanson, Benjamin G; Weldon, Christopher W; Pérez-Staples, Diana; Simpson, Stephen J; Taylor, Phillip W

    2009-09-01

    Caloric restriction (CR) has been widely accepted as a mechanism explaining increased lifespan (LS) in organisms subjected to dietary restriction (DR), but recent studies investigating the role of nutrients have challenged the role of CR in extending longevity. Fuelling this debate is the difficulty in experimentally disentangling CR and nutrient effects due to compensatory feeding (CF) behaviour. We quantified CF by measuring the volume of solution imbibed and determined how calories and nutrients influenced LS and fecundity in unmated females of the Queensland fruit fly, Bactocera tryoni (Diptera: Tephritidae). We restricted flies to one of 28 diets varying in carbohydrate:protein (C:P) ratios and concentrations. On imbalanced diets, flies overcame dietary dilutions, consuming similar caloric intakes for most dilutions. The response surface for LS revealed that increasing C:P ratio while keeping calories constant extended LS, with the maximum LS along C:P ratio of 21:1. In general, LS was reduced as caloric intake decreased. Lifetime egg production was maximized at a C:P ratio of 3:1. When given a choice of separate sucrose and yeast solutions, each at one of five concentrations (yielding 25 choice treatments), flies regulated their nutrient intake to match C:P ratio of 3:1. Our results (i) demonstrate that CF can overcome dietary dilutions; (ii) reveal difficulties with methods presenting fixed amounts of liquid diet; (iii) illustrate the need to measure intake to account for CF in DR studies and (iv) highlight nutrients rather than CR as a dominant influence on LS.

  18. The white gene of the tephritid fruit fly Bactrocera tryoni is characterized by a long untranslated 5' leader and a 12kb first intron.

    Science.gov (United States)

    Bennett, C L; Frommer, M

    1997-11-01

    A 300 bp fragment from exon 6 of the white gene of Bactrocera tryoni was used to screen a B. tryoni genomic library. One positive (approximately 14 kb) insert contained exons 2-6 of white by nucleotide and amino acid sequence similarity to the white genes of D. melanogaster (O'Hare et al., 1984; Pepling & Mount, 1990). Lucilia cuprina (Garcia et al., 1996). Ceratitis capitata (Zwiebel et al., 1995) and Anopheles gambiae (Besansky et al., 1995). A white 5' cDNA fragment containing exons 1, 2 and part of exon 3 was amplified, cloned and sequenced. An inverse PCR fragment of genomic DNA was generated, containing the exon 1 coding region plus approximately 2.1 kb of upstream sequence, encompassing the putative promoter of the gene. Exon 1 was found to be 728 bp long, encoding the first twenty-five amino acids. The full length of intron 1 was shown to be 12 kb (amplified using long PCR protocols), up to 3 times the length of the longest white intron 1 isolated to date.

  19. Effect of physiological and experiential state ofBactrocera tryoni flies on intra-tree foraging behavior for food (bacteria) and host fruit.

    Science.gov (United States)

    Prokopy, Ronald J; Drew, Richard A I; Sabine, Bruce N E; Lloyd, Annice C; Hamacek, Edward

    1991-09-01

    Using caged host trees on which we manipulated food and oviposition sites, we investigated the foraging behavior of individually-releasedBactrocera tryoni (Diptera: Tephritidae) females in relation to state of fly hunger for protein, presence or absence of bacteria as a source of protein, degree of prior experience with host fruit, and quality of host fruit for oviposition. One aim was to evaluate whether it is immature or matureB. tryoni females that are responsible for initially inoculating host fruit surfaces with "fruit-fly-type" bacteria, the odor of which is known to attractB. tryoni females. We found that 3-week-old immature females provided with sucrose but deprived of protein from eclosion had a much greater propensity than 3-week-old protein-fed mature females to visit vials containing fruit-fly-type bacteria, irrespective of whether vials were associated with adjacent host fruit or not. In the absence of associated bacteria in vials, immature females had a much lower propensity than mature females to visit host fruit. In the presence of bacteria in vials, however, propensity of immature and mature females to visit fruit was about equal. Mature (but not immature) females were more inclined to visit fruit that ranked higher for oviposition (nectarines) than fruit that ranked lower (sweet oranges). Mature females that attempted oviposition during a single 3-min exposure period to a nectarine prior to release were much more likely to find a nectarine than were mature females naive to fruit or immature females with or without prior contact with fruit. Exposure to a nectarine before release did not affect the propensity of either mature or immature females to alight on an odorless visual model of a nectarine, however. As judged by numbers of leaves visited, protein-deprived immature females were more active than protein-fed mature females, irrespective of the sorts of resources on a tree. Together, our findings lead us to conclude that (1) the firstB. tryoni

  20. Spiroacetal biosynthesis in fruit flies is complex: distinguishable origins of the same major spiroacetal released by different Bactrocera spp.

    Science.gov (United States)

    Schwartz, Brett D; Booth, Yvonne K; Fletcher, Mary T; Kitching, William; De Voss, James J

    2010-03-07

    The major spiroacetal ((E,E)-1) of the pestiferous fruit flies, Bactrocera tryoni and Bactrocera cucumis, is biosynthesised from fatty acids by distinguishable pathways which utilise modified beta-oxidation and C-H hydroxylation, generating a putative ketodiol which cyclises.

  1. The draft genome of the pest tephritid fruit fly Bactrocera tryoni: resources for the genomic analysis of hybridising species

    OpenAIRE

    Gilchrist, Anthony Stuart; Shearman, Deborah CA; Frommer, Marianne; Raphael, Kathryn A; Deshpande, Nandan P; Wilkins, Marc R; Sherwin, William B; Sved, John A

    2014-01-01

    Background The tephritid fruit flies include a number of economically important pests of horticulture, with a large accumulated body of research on their biology and control. Amongst the Tephritidae, the genus Bactrocera, containing over 400 species, presents various species groups of potential utility for genetic studies of speciation, behaviour or pest control. In Australia, there exists a triad of closely-related, sympatric Bactrocera species which do not mate in the wild but which, despit...

  2. Field performance of Lynfield and McPhail traps for monitoring male and female sterile Bactrocera tryoni (Froggatt) and wild Dacus newmani (Perkins).

    Science.gov (United States)

    Dominiak, Bernie C; Nicol, Helen I

    2010-07-01

    McPhail traps, baited with protein food lure, are used worldwide for surveillance of many species of fruit flies. Queensland fruit fly (Qfly) Bactrocera tryoni (Froggatt) (Diptera: Tephritidae) is a native Australian fruit fly and normally monitored using Lynfield traps baited with cuelure. On some occasions, McPhail traps with wet food lures are deployed to detect female flies or to find the incursion epicentre. This paper reviews field results on the merits of Lynfield and McPhail traps for detection of male and female Qfly. Following release of equal numbers of sterile males and females, Lynfield traps baited with cuelure captured more Qfly males than protein autolysate or orange concentrate in McPhail traps. Significantly more male than female Qfly were captured in McPhail traps baited with protein autolysate or orange. There was no significant difference between orange concentrate lure and protein autolysate lure in attracting either males or females. Another Australian native fruit fly, Dacus newmani (Perkins), was attracted to cuelure in Lynfield traps but not to either lure in McPhail traps. The data obtained run counter to the reputation of McPhail traps baited with protein autolysate or orange concentrate as a specialist lure/trap combination for female Qfly. Copyright (c) 2010 Society of Chemical Industry.

  3. Laboratory adaptation of Bactrocera tryoni (Diptera: Tephritidae) decreases mating age and increases protein consumption and number of eggs produced per milligram of protein.

    Science.gov (United States)

    Meats, A; Holmes, H M; Kelly, G L

    2004-12-01

    A significant reduction in age of mating occurred during the first four generations (G1-G4) of laboratory adaptation of wild Bactrocera tryoni (Froggatt) and this was associated with the earlier attainment of peak egg load although no significant differences were detected in the peak egg load itself. A long term laboratory (LTL) strain had a significantly earlier mating age and higher peak egg load than flies of wild origin or those from the first four laboratory generations. The amount of protein consumed by females in the first week of adult life was significantly higher in the LTL strain than in flies of wild origin or G1-G4 but there were no significant changes (or only slight changes) with laboratory adaptation in the amounts of protein consumed up to the ages of mating and peak egg load. Laboratory adaptation resulted in no significant changes in egg size, egg dry weight, puparial fresh weight and the dry weight of newly emerged females. The large increase in fecundity with laboratory adaptation is associated with a 4- to 5-fold increase in the rate of conversion of dietary protein to eggs (i.e. eggs produced per mg of protein consumed).

  4. Olfaction in the Queensland fruit fly, Bactrocera tryoni. II: Response spectra and temporal encoding characteristics of the carbon dioxide receptors.

    Science.gov (United States)

    Hull, C D; Cribb, B W

    2001-05-01

    Single-unit electrophysiology was used to record the nerve impulses from the carbon dioxide receptors of female Queensland fruit flies, Bactroera tryoni. The receptors responded to stimulation in a phasic-tonic manner and also had a period of inhibition of the nerve impulses after the end of stimulation. at high stimulus intensities. The cell responding to carbon dioxide was presented with a range of environmental odorants and found to respond to methyl butyrate and 2-butanone. The coding characteristics of the carbon dioxide cell and the ability to detect other odorants are discussed, with particular reference to the known behavior of the fly.

  5. Bactrocera dorsalis complex and its problem in control

    International Nuclear Information System (INIS)

    Tan, Keng-Hong

    2003-01-01

    Eight species of fifty-two in the Bactrocera dorsalis complex are serious pests in the Asia-Pacific region. Of these, all except one are attracted to methyl eugenol. Four of these pests B. carambolae, B. dorsalis, B. papayae and B. philippinesis are polyphagous species and infest 75, 117, 195 and 18 fruit host species respectively. Common names for B. carambalae and B. papayae (sympatric species) have caused confusion. Both species can interbreed and produce viable offspring; and their natural hybrids have been collected. Bactrocera dorsalis and B. papayae can interbreed readily and produce viable offspring in the laboratory as males produce identical booster sex and aggregation pheromonal components after consuming methyl eugenol. The DNA sequences of one of their respective allelic introns of the actin gene are also identical which suggests that they are not distinct genetic species. Protein bait application and male annihilation techniques have been successful in the management of fruit flies in many cases but they have to compete with natural sources of lures. SIT is amenable for non-methyl engenol species; but for methyl eugenol sensitive species, sterile makes should be allowed to consume methyl eugenol before release to have an equal mating competitiveness with wild males. (author)

  6. Epicuticular chemistry reinforces the new taxonomic classification of the Bactrocera dorsalis species complex (Diptera: Tephritidae, Dacinae.

    Directory of Open Access Journals (Sweden)

    Lucie Vaníčková

    Full Text Available Bactrocera invadens Drew, Tsuruta & White, Bactrocera papayae Drew & Hancock, and Bactrocera philippinensis Drew & Hancock, key pest species within the Bactrocera dorsalis species complex, have been recently synonymized under the name Bactrocera dorsalis (Hendel. The closely related Bactrocera carambolae Drew & Hancock remains as a discrete taxonomic entity. Although the synonymizations have been accepted by most researchers, debate about the species limits remains. Because of the economic importance of this group of taxa, any new information available to support or deny the synonymizations is valuable. We investigated the chemical epicuticle composition of males and females of B. dorsalis, B. invadens, B. papayae, B. philippinensis, and B. carambolae by means of one- and two-dimensional gas chromatography-mass spectrometry, followed by multiple factor analyses and principal component analysis. Clear segregation of complex cuticule profiles of both B. carambolae sexes from B. dorsalis (Hendel was observed. In addition to cuticular hydrocarbons, abundant complex mixtures of sex-specific oxygenated lipids (three fatty acids and 22 fatty acid esters with so far unknown function were identified in epicuticle extracts from females of all species. The data obtained supports both taxonomic synonymization of B. invadens, B. papayae, and B. philippinensis with B. dorsalis, as well as the exclusion of B. carambolae from B. dorsalis.

  7. Epicuticular chemistry reinforces the new taxonomic classification of the Bactrocera dorsalis species complex (Diptera: Tephritidae, Dacinae).

    Science.gov (United States)

    Vaníčková, Lucie; Nagy, Radka; Pompeiano, Antonio; Kalinová, Blanka

    2017-01-01

    Bactrocera invadens Drew, Tsuruta & White, Bactrocera papayae Drew & Hancock, and Bactrocera philippinensis Drew & Hancock, key pest species within the Bactrocera dorsalis species complex, have been recently synonymized under the name Bactrocera dorsalis (Hendel). The closely related Bactrocera carambolae Drew & Hancock remains as a discrete taxonomic entity. Although the synonymizations have been accepted by most researchers, debate about the species limits remains. Because of the economic importance of this group of taxa, any new information available to support or deny the synonymizations is valuable. We investigated the chemical epicuticle composition of males and females of B. dorsalis, B. invadens, B. papayae, B. philippinensis, and B. carambolae by means of one- and two-dimensional gas chromatography-mass spectrometry, followed by multiple factor analyses and principal component analysis. Clear segregation of complex cuticule profiles of both B. carambolae sexes from B. dorsalis (Hendel) was observed. In addition to cuticular hydrocarbons, abundant complex mixtures of sex-specific oxygenated lipids (three fatty acids and 22 fatty acid esters) with so far unknown function were identified in epicuticle extracts from females of all species. The data obtained supports both taxonomic synonymization of B. invadens, B. papayae, and B. philippinensis with B. dorsalis, as well as the exclusion of B. carambolae from B. dorsalis.

  8. Carbohydrate Diet and Reproductive Performance of a Fruit Fly Parasitoid, Diachasmimorpha tryoni

    OpenAIRE

    Zamek, Ashley Louisa; Reynolds, Olivia Louise; Mansfield, Sarah; Micallef, Jessica Louise; Gurr, Geoff Michael

    2013-01-01

    Augmentative releases of parasitoid wasps are often used successfully for biological control of fruit flies in programs worldwide. The development of cheaper and more effective augmentative releases of the parasitoid wasp Diachasmimorpha tryoni (Cameron) (Hymenoptera: Braconidae) may allow its use to be expanded to cover Queensland fruit fly, Bactrocera tryoni (Froggatt) (Diptera: Tephritidae), a serious pest of many vegetables and most fruit production in Australia. This demands a fuller und...

  9. Mating compatibility among four pest members of the Bactrocera dorsalis fruit fly species complex (Diptera: Tephritidae).

    Science.gov (United States)

    Schutze, M K; Jessup, A; Ul-Haq, I; Vreysen, M J B; Wornoayporn, V; Vera, M T; Clarke, A R

    2013-04-01

    Bactrocera dorsalis (Hendel), Bactrocera papayae Drew & Hancock, Bactrocera philippinensis Drew & Hancock, and Bactrocera carambolae Drew & Hancock are pest members within the B. dorsalis species complex of tropical fruit flies. The species status of these taxa is unclear and this confounds quarantine, pest management, and general research. Mating studies carried out under uniform experimental conditions are required as part of resolving their species limits. These four taxa were collected from the wild and established as laboratory cultures for which we subsequently determined levels of prezygotic compatibility, assessed by field cage mating trials for all pair-wise combinations. We demonstrate random mating among all pair-wise combinations involving B. dorsalis, B. papayae, and B. philippinensis. B. carambolae was relatively incompatible with each of these species as evidenced by nonrandom mating for all crosses. Reasons for incompatibility involving B. carambolae remain unclear; however, we observed differences in the location of couples in the field cage for some comparisons. Alongside other factors such as pheromone composition or other courtship signals, this may lead to reduced interspecific mating compatibility with B. carambolae. These data add to evidence that B. dorsalis, B. papayae, and B. philippinensis represent the same biological species, while B. carambolae remains sufficiently different to maintain its current taxonomic identity. This poses significant implications for this group's systematics, impacting on pest management, and international trade.

  10. Historical perspective on the synonymization of the four major pest species belonging to the Bactrocera dorsalis species complex (Diptera, Tephritidae).

    Science.gov (United States)

    Hee, Alvin K W; Wee, Suk-Ling; Nishida, Ritsuo; Ono, Hajime; Hendrichs, Jorge; Haymer, David S; Tan, Keng-Hong

    2015-01-01

    An FAO/IAEA-sponsored coordinated research project on integrative taxonomy, involving close to 50 researchers from at least 20 countries, culminated in a significant breakthrough in the recognition that four major pest species, Bactrocera dorsalis, Bactrocera philippinensis, Bactrocera papayae and Bactrocera invadens, belong to the same biological species, Bactrocera dorsalis. The successful conclusion of this initiative is expected to significantly facilitate global agricultural trade, primarily through the lifting of quarantine restrictions that have long affected many countries, especially those in regions such as Asia and Africa that have large potential for fresh fruit and vegetable commodity exports. This work stems from two taxonomic studies: a revision in 1994 that significantly increased the number of described species in the Bactrocera dorsalis species complex; and the description in 2005 of Bactrocera invadens, then newly incursive in Africa. While taxonomically valid species, many biologists considered that these were different names for one biological species. Many disagreements confounded attempts to develop a solution for resolving this taxonomic issue, before the FAO/IAEA project commenced. Crucial to understanding the success of that initiative is an accounting of the historical events and perspectives leading up to the international, multidisciplinary collaborative efforts that successfully achieved the final synonymization. This review highlights the 21 year journey taken to achieve this outcome.

  11. Comparative sensitivity to methyl eugenol of four putative Bactrocera dorsalis complex sibling species - further evidence that they belong to one and the same species B. dorsalis.

    Science.gov (United States)

    Hee, Alvin K W; Ooi, Yue-Shin; Wee, Suk-Ling; Tan, Keng-Hong

    2015-01-01

    Males of certain species belonging to the Bactrocera dorsalis complex are strongly attracted to, and readily feed on methyl eugenol (ME), a plant secondary compound that is found in over 480 plant species worldwide. Amongst those species is one of the world's most severe fruit pests the Oriental fruit fly, Bactrocera dorsalis s.s., and the former taxonomic species Bactrocera invadens, Bactrocera papayae and Bactrocera philippinensis. The latter species have been recently synonymised with Bactrocera dorsalis based on their very similar morphology, mating compatibility, molecular genetics and identical sex pheromones following consumption of ME. Previous studies have shown that male fruit fly responsiveness to lures is a unique phenomenon that is dose species-specific, besides showing a close correlation to sexual maturity attainment. This led us to use ME sensitivity as a behavioural parameter to test if Bactrocera dorsalis and the three former taxonomic species had similar sensitivity towards odours of ME. Using Probit analysis, we estimated the median dose of ME required to elicit species' positive response in 50% of each population tested (ED50). ED50 values were compared between Bactrocera dorsalis and the former species. Our results showed no significant differences between Bactrocera dorsalis s.s., and the former Bactrocera invadens, Bactrocera papayae and Bactrocera philippinensis in their response to ME. We consider that the Bactrocera males' sensitivity to ME may be a useful behavioural parameter for species delimitation and, in addition to other integrative taxonomic tools used, provides further supportive evidence that the four taxa belong to one and the same biological species, Bactrocera dorsalis.

  12. Niche overlap of congeneric invaders supports a single-species hypothesis and provides insight into future invasion risk: implications for global management of the Bactrocera dorsalis complex.

    Science.gov (United States)

    Hill, Matthew P; Terblanche, John S

    2014-01-01

    The invasive fruit fly, Bactrocera invadens, has expanded its range rapidly over the past 10 years. Here we aimed to determine if the recent range expansion of Bactrocera invadens into southern Africa can be better understood through niche exploration tools, ecological niche models (ENMs), and through incorporating information about Bactrocera dorsalis s.s., a putative conspecific species from Asia. We test for niche overlap of environmental variables between Bactrocera invadens and Bactrocera dorsalis s.s. as well as two other putative conspecific species, Bactrocera philippinensis and B. papayae. We examine overlap and similarity in the geographical expression of each species' realised niche through reciprocal distribution models between Africa and Asia. We explore different geographical backgrounds, environmental variables and model complexity with multiple and single Bactrocera species hypotheses in an attempt to predict the recent range expansion of B. invadens into northern parts of South Africa. Bactrocera invadens has a high degree of niche overlap with B. dorsalis s.s. (and B. philippinensis and B. papayae). Ecological niche models built for Bactrocera dorsalis s.s. have high transferability to describe the range of B. invadens, and B. invadens is able to project to the core range of B. dorsalis s.s. The ENMs of both Bactrocera dorsalis and B. dorsalis combined with B. philipenesis and B. papayae have significantly higher predictive ability to capture the distribution points in South Africa than for B. invadens alone. Consistent with other studies proposing these Bactrocera species as conspecific, niche similarity and overlap between these species is high. Considering these other Bactrocera dorsalis complex species simultaneously better describes the range expansion and invasion potential of B. invadens in South Africa. We suggest that these species should be considered the same-at least functionally-and global quarantine and management strategies applied

  13. Niche Overlap of Congeneric Invaders Supports a Single-Species Hypothesis and Provides Insight into Future Invasion Risk: Implications for Global Management of the Bactrocera dorsalis Complex

    Science.gov (United States)

    Hill, Matthew P.; Terblanche, John S.

    2014-01-01

    Background The invasive fruit fly, Bactrocera invadens, has expanded its range rapidly over the past 10 years. Here we aimed to determine if the recent range expansion of Bactrocera invadens into southern Africa can be better understood through niche exploration tools, ecological niche models (ENMs), and through incorporating information about Bactrocera dorsalis s.s., a putative conspecific species from Asia. We test for niche overlap of environmental variables between Bactrocera invadens and Bactrocera dorsalis s.s. as well as two other putative conspecific species, Bactrocera philippinensis and B. papayae. We examine overlap and similarity in the geographical expression of each species’ realised niche through reciprocal distribution models between Africa and Asia. We explore different geographical backgrounds, environmental variables and model complexity with multiple and single Bactrocera species hypotheses in an attempt to predict the recent range expansion of B. invadens into northern parts of South Africa. Principal Findings Bactrocera invadens has a high degree of niche overlap with B. dorsalis s.s. (and B. philippinensis and B. papayae). Ecological niche models built for Bactrocera dorsalis s.s. have high transferability to describe the range of B. invadens, and B. invadens is able to project to the core range of B. dorsalis s.s. The ENMs of both Bactrocera dorsalis and B. dorsalis combined with B. philipenesis and B. papayae have significantly higher predictive ability to capture the distribution points in South Africa than for B. invadens alone. Conclusions/Significance Consistent with other studies proposing these Bactrocera species as conspecific, niche similarity and overlap between these species is high. Considering these other Bactrocera dorsalis complex species simultaneously better describes the range expansion and invasion potential of B. invadens in South Africa. We suggest that these species should be considered the same–at least

  14. Niche overlap of congeneric invaders supports a single-species hypothesis and provides insight into future invasion risk: implications for global management of the Bactrocera dorsalis complex.

    Directory of Open Access Journals (Sweden)

    Matthew P Hill

    Full Text Available BACKGROUND: The invasive fruit fly, Bactrocera invadens, has expanded its range rapidly over the past 10 years. Here we aimed to determine if the recent range expansion of Bactrocera invadens into southern Africa can be better understood through niche exploration tools, ecological niche models (ENMs, and through incorporating information about Bactrocera dorsalis s.s., a putative conspecific species from Asia. We test for niche overlap of environmental variables between Bactrocera invadens and Bactrocera dorsalis s.s. as well as two other putative conspecific species, Bactrocera philippinensis and B. papayae. We examine overlap and similarity in the geographical expression of each species' realised niche through reciprocal distribution models between Africa and Asia. We explore different geographical backgrounds, environmental variables and model complexity with multiple and single Bactrocera species hypotheses in an attempt to predict the recent range expansion of B. invadens into northern parts of South Africa. PRINCIPAL FINDINGS: Bactrocera invadens has a high degree of niche overlap with B. dorsalis s.s. (and B. philippinensis and B. papayae. Ecological niche models built for Bactrocera dorsalis s.s. have high transferability to describe the range of B. invadens, and B. invadens is able to project to the core range of B. dorsalis s.s. The ENMs of both Bactrocera dorsalis and B. dorsalis combined with B. philipenesis and B. papayae have significantly higher predictive ability to capture the distribution points in South Africa than for B. invadens alone. CONCLUSIONS/SIGNIFICANCE: Consistent with other studies proposing these Bactrocera species as conspecific, niche similarity and overlap between these species is high. Considering these other Bactrocera dorsalis complex species simultaneously better describes the range expansion and invasion potential of B. invadens in South Africa. We suggest that these species should be considered the same

  15. A phylogenetic assessment of the polyphyletic nature and intraspecific color polymorphism in the Bactrocera dorsalis complex (Diptera, Tephritidae)

    Science.gov (United States)

    Leblanc, Luc; San Jose, Michael; Barr, Norman; Rubinoff, Daniel

    2015-01-01

    Abstract The Bactrocera dorsalis complex (Tephritidae) comprises 85 species of fruit flies, including five highly destructive polyphagous fruit pests. Despite significant work on a few key pest species within the complex, little has been published on the majority of non-economic species in the complex, other than basic descriptions and illustrations of single specimens regarded as typical representatives. To elucidate the species relationships within the Bactrocera dorsalis complex, we used 159 sequences from one mitochondrial (COI) and two nuclear (elongation factor-1α and period) genes to construct a phylogeny containing 20 described species from within the complex, four additional species that may be new to science, and 26 other species from Bactrocera and its sister genus Dacus. The resulting concatenated phylogeny revealed that most of the species placed in the complex appear to be unrelated, emerging across numerous clades. This suggests that they were placed in the Bactrocera dorsalis complex based on the similarity of convergent characters, which does not appear to be diagnostic. Variations in scutum and abdomen color patterns within each of the non-economic species are presented and demonstrate that distantly-related, cryptic species overlap greatly in traditional morphological color patterns used to separate them in keys. Some of these species may not be distinguishable with confidence by means other than DNA data. PMID:26798267

  16. MORPHOMETRIC STUDY FOR IDENTIFICATION OF THE BACTROCERA DORSALIS COMPLEX (DIPTERA : TEPHRITIDAE USING WING IMAGE ANALYSIS

    Directory of Open Access Journals (Sweden)

    A. ADSAVAKULCHAI

    1999-01-01

    Full Text Available The Bactrocera dorsalis complex (Diptera: Tephritidae used in this study included B. dorsalis, B. arecae, B. propinqua, B. pyrifoliae, B. verbascifoliae, and three new species complexes are species E, species K and species P. Bactrocera tau was used as an out-group. A total of 424 adults, which emerged from pupae collected from natural populations in Thai land, were prepared for wing measurements. Morphometric analysis was performed on measurements of wing vein characters. Wing images were captured in digital format and taken through digital image processing to calculate the Euclidean distance between wing vein junctions. Discriminant and cluster analyses were used for dichotomy of classification processes. All 424 wing specimens were classified to species in terms of the percentage of "grouped" cases which yielded about 89.6% accurate identificati on compared with the formal description of these species. After clustering, the percentage of "grouped"cases yielded 100.0%, 98.9%, 98.1%, 95.2% and 84.6% accurate identification between the B. dorsalis complex and B. tau; B. arecae and Species E; B. dorsalis and B. verbascifoliae; B. propinqua and B. pyrifoliae; and species K and species P, respectively. This method of numerical taxonomy may be useful for practical identification of other groups of agricultural pests.

  17. From eradication to containment: invasion of French Polynesia by Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) and releases of two natural enemies: a 17-year case study

    Science.gov (United States)

    Oriental fruit fly, Bactrocera dorsalis (Hendel), was discovered on Tahiti Island, French Polynesia, in 1996. Two other economically important Bactrocera species were previously established: B. kirki (Froggatt) in 1928, and B. tryoni (Froggatt), Queensland fruit fly, in 1970. This situation provi...

  18. Identification of Bactrocera invadens (Diptera: Tephritidae) from ...

    African Journals Online (AJOL)

    Bactrocera (Bactrocera) invadens Drew (Diptera: Tephritidae) is a new species of fruit fly in 2005. It belongs to the Bactrocera dorsalis complex, but is difficult to diagnose based on solely morphological identification. It occurs in India, Bhutan and some countries of Africa. In this study, 14 adult samples of fruit flies were ...

  19. Cytogenetic and symbiont analysis of five members of the B. dorsalis complex (Diptera, Tephritidae): no evidence of chromosomal or symbiont-based speciation events.

    Science.gov (United States)

    Augustinos, Antonios A; Drosopoulou, Elena; Gariou-Papalexiou, Aggeliki; Asimakis, Elias D; Cáceres, Carlos; Tsiamis, George; Bourtzis, Kostas; Penelope Mavragani-Tsipidou; Zacharopoulou, Antigone

    2015-01-01

    The Bactrocera dorsalis species complex, currently comprising about 90 entities has received much attention. During the last decades, considerable effort has been devoted to delimiting the species of the complex. This information is of great importance for agriculture and world trade, since the complex harbours several pest species of major economic importance and other species that could evolve into global threats. Speciation in Diptera is usually accompanied by chromosomal rearrangements, particularly inversions that are assumed to reduce/eliminate gene flow. Other candidates currently receiving much attention regarding their possible involvement in speciation are reproductive symbionts, such as Wolbachia, Spiroplasma, Arsenophonus, Rickettsia and Cardinium. Such symbionts tend to spread quickly through natural populations and can cause a variety of phenotypes that promote pre-mating and/or post-mating isolation and, in addition, can affect the biology, physiology, ecology and evolution of their insect hosts in various ways. Considering all these aspects, we present: (a) a summary of the recently gained knowledge on the cytogenetics of five members of the Bactrocera dorsalis complex, namely Bactrocera dorsalis s.s., Bactrocera invadens, Bactrocera philippinensis, Bactrocera papayae and Bactrocera carambolae, supplemented by additional data from a Bactrocera dorsalis s.s. colony from China, as well as by a cytogenetic comparison between the dorsalis complex and the genetically close species, Bactrocera tryoni, and, (b) a reproductive symbiont screening of 18 different colonized populations of these five taxa. Our analysis did not reveal any chromosomal rearrangements that could differentiate among them. Moreover, screening for reproductive symbionts was negative for all colonies derived from different geographic origins and/or hosts. There are many different factors that can lead to speciation, and our data do not support chromosomal and/or symbiotic

  20. Impact of introduction of Bactrocera dorsalis (Diptera: Tephritidae) and classical biological control releases of Fopius arisanus (Hymenoptera: Braconidae) on economically important fruit flies in French Polynesia.

    Science.gov (United States)

    Vargas, Roger I; Leblanc, Luc; Putoa, Rudolph; Eitam, Avi

    2007-06-01

    Oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), was discovered on Tahiti Island in July 1996. Eradication programs were conducted from 1997 to 2001, but failed. From 1998 to 2006, B. dorsalis was recovered from 29 different host fruit from the five Society Islands: Tahiti, Moorea, Raiatea, Tahaa, and Huahine. Analysis of coinfestation patterns by B. dorsalis, Bactrocera tryoni (Froggatt), and Bactrocera kirki (Froggatt) suggested B. dorsalis had displaced these two species and become the most abundant fruit fly in coastal areas. To suppress B. dorsalis populations, a classical biological control program was initiated to introduce the natural enemy Fopius arisanus (Sonan) (Hymenoptera: Braconidae) into French Polynesia from Hawaii. Wasps were released and established on Tahiti, Moorea, Raiatea, Tahaa, and Huahine Islands. In guava, Psidium guajava L., collections for Tahiti, F. arisanus parasitism of fruit flies was 2.1, 31.8, 37.5, and 51.9% for fruit collected for 2003, 2004, 2005 and 2006, respectively. Based on guava collections in 2002 (before releases) and 2006 (after releases), there was a subsequent decrease in numbers of B. dorsalis, B. tryoni, and B. kirki fruit flies emerging (per kilogram of fruit) by 75.6, 79.3, and 97.9%, respectively. These increases in F. arisanus parasitism and decreases in infestation were similar for other host fruit. Establishment of F. arisanus is the most successful example of classical biological control of fruit flies in the Pacific area outside of Hawaii and serves as a model for introduction into South America, Africa, and China where species of the B. dorsalis complex are established.

  1. Carbohydrate diet and reproductive performance of a fruit fly parasitoid, Diachasmimorpha tryoni.

    Science.gov (United States)

    Zamek, Ashley Louisa; Reynolds, Olivia Louise; Mansfield, Sarah; Micallef, Jessica Louise; Gurr, Geoff Michael

    2013-01-01

    Augmentative releases of parasitoid wasps are often used successfully for biological control of fruit flies in programs worldwide. The development of cheaper and more effective augmentative releases of the parasitoid wasp Diachasmimorpha tryoni (Cameron) (Hymenoptera: Braconidae) may allow its use to be expanded to cover Queensland fruit fly, Bactrocera tryoni (Froggatt) (Diptera: Tephritidae), a serious pest of many vegetables and most fruit production in Australia. This demands a fuller understanding of the parasitoid's reproductive biology. In this study, mating status, fecundity, and size of female D. tryoni were determined under laboratory conditions. A range of pre-release diets, 10% concentrations of honey, white sugar, and golden syrup, were also assessed in the laboratory. Mature egg loads and progeny yields of mated and unmated parasitoid females were statistically similar, demonstrating that mating status was not a determinant of parasitoid performance. Female lifespan was not negatively impacted by the act of oviposition, though larger females carried more eggs than smaller individuals, indicating a need to produce large females in mass-rearing facilities to maintain this trait. White sugar gave the highest adult female lifespan, while honey and golden syrup shared similar survivorship curves, all significantly greater compared with water control females. Pre-release feeding of D. tryoni, particularly with white sugar, may enhance the impact of released parasitoids on B. tryoni. These findings are important because honey is currently the standard diet for mass-reared braconids, but white sugar is less than one-third the cost of other foods; however further work is required to assess postrelease performance of the parasitoid.

  2. Interspecific cross of the Bactrocera dorsalis Complex (Diptera: Tephritidae): How did it happen?

    International Nuclear Information System (INIS)

    Wee, Suk-Ling; Tan, Keng-Hong

    2000-01-01

    The Bactrocera dorsalis species complex, which taxonomically resembles the Oriental fruit fly, B. dorsalis (Hendel), comprises at least 52 species. Two closely related members of the complex, namely B. papayae Drew and Hancock and B. carambolae Drew and Hancock, were recently reclassified as new species (Drew and Hancock 1994). Under this taxonomic revision, B. papayae is now regarded as a distinct species from B. carambolae based on the differences of: 1) wing pattern of the costal band at apex R4+5, 2) the presence of a dark spot on the fore femora and, 3) the pattern of the transverse black band on terga III-V. Chemical examination of the volatile components produced by the males of both species also revealed pronounced differences in the chemistry of their rectal gland secretions (Perkins et al. 1990). In Malaysia, B. papayae has a wider distribution and a larger host range compared with B. carambolae. Starfruit (Averrhoa carambola L.) and various species of wax apple (Syzygium spp.) are the preferred hosts of B. carambolae whilst B. papayae attacks over 150 species but preferentially 'attacks' banana (Musa spp.), starfruit, mango (Mangifera indica L.), papaya (Carica papaya L.) and guava (Psidium guajava L.) in decreasing order (Tan 1997). Recently, data from field trapping studies using methyl eugenol (ME) in Penang Island, Malaysia, showed the presence of male flies with intermediate morphological characteristics between B. papayae and B. carambolae. Laboratory testing showed that these two species are able to interbreed and produce viable offspring. The hybrids also possess a variety of intermediate characteristics between the two species (Wee and Tan, unpublished data). Therefore, the question arises as to whether B. papayae and B. carambolae should be categorised as different species, subspecies or even as different strains. And before a satisfactory conclusion can be achieved, there are some key issues that need to be addressed. Firstly, after ME

  3. Relative Tolerance of Six Bactrocera (Diptera: Tephritidae) Species to Phytosanitary Cold Treatment.

    Science.gov (United States)

    Myers, Scott W; Cancio-Martinez, Elena; Hallman, Guy J; Fontenot, Emily A; Vreysen, Marc J B

    2016-12-01

    To compare relative cold treatment tolerance across the economically important tephritid fruit flies (Diptera: Tephritidae), Bactrocera carambolae Drew & Hancock, Bactrocera correcta (Bezzi), Bactrocera cucurbitae (Coquillett), four populations of Bactrocera dorsalis (Hendel), Bactrocera zonata (Saunders), and Bactrocera tryoni (Froggatt), eggs (in vitro), and larvae (in infested fruit or on carrot diet) were cold treated at 2.0 ± 0.2 °C for selected durations. The study was performed to assess whether a single (i.e., generic) cold treatment could be developed that would control the entire group of fruit flies that were tested. Probit regression models showed that the hierarchy of cold resistance was third-instar larvae reared on carrot diet > third-instar larvae reared on orange > eggs test in vitro. Differences in mortality responses of third-instar larvae reared in oranges across populations of B. dorsalis were observed only at subefficacious levels of control. The majority of Bactrocera species responded the same at the high levels of control demanded of phytosanitary treatments, which indicated that cold treatments would be similarly effective across the species and populations tested. B. cucurbitae was found to be the most cold tolerant of all the species tested. Published by Oxford University Press on behalf of Entomological Society of America 2016. This work is written by US Government employees and is in the public domain in the US.

  4. Existence of species complex largely reduced barcoding success for invasive species of Tephritidae: a case study in Bactrocera spp.

    Science.gov (United States)

    Jiang, F; Jin, Q; Liang, L; Zhang, A B; Li, Z H

    2014-11-01

    Fruit flies in the family Tephritidae are the economically important pests that have many species complexes. DNA barcoding has gradually been verified as an effective tool for identifying species in a wide range of taxonomic groups, and there are several publications on rapid and accurate identification of fruit flies based on this technique; however, comprehensive analyses of large and new taxa for the effectiveness of DNA barcoding for fruit flies identification have been rare. In this study, we evaluated the COI barcode sequences for the diagnosis of fruit flies using 1426 sequences for 73 species of Bactrocera distributed worldwide. Tree-based [neighbour-joining (NJ)]; distance-based, such as Best Match (BM), Best Close Match (BCM) and Minimum Distance (MD); and character-based methods were used to evaluate the barcoding success rates obtained with maintaining the species complex in the data set, treating a species complex as a single taxon unit, and removing the species complex. Our results indicate that the average divergence between species was 14.04% (0.00-25.16%), whereas within a species this was 0.81% (0.00-9.71%); the existence of species complexes largely reduced the barcoding success for Tephritidae, for example relatively low success rates (74.4% based on BM and BCM and 84.8% based on MD) were obtained when the sequences from species complexes were included in the analysis, whereas significantly higher success rates were achieved if the species complexes were treated as a single taxon or removed from the data set - BM (98.9%), BCM (98.5%) and MD (97.5%), or BM (98.1%), BCM (97.4%) and MD (98.2%). © 2014 John Wiley & Sons Ltd.

  5. Interbreeding and DNA analysis of sibling species within the Bactrocera dorsalis complex

    International Nuclear Information System (INIS)

    Tan, Keng-Hong

    2003-01-01

    Bactrocera dorsalis and B. papayae interbreed readily and produce viable offspring under laboratory conditions. Under laboratory observation of B. carambolae and B. papayae interbreeding, the average number of eggs laid by hybrid females was lower than that of B. papayae females but higher than that of B. carambolae females of intra-specific crosses. For inter- and intra-specific mating, the copulatory period is dependent on the female species involved - female B. carambolae copulates significantly longer than that of B. papayae female. Aedeagal and aculeus length of hybrids are intermediate between those of their respective parental species. Hybrid males have one to four sex pheromonal components after consumption of methyl eugenol; 2-6% of them possess a combination of endogenous pheromonal components specific to B. carambolae and components derived from methyl eugenol typical of B. papayae. Based on the latter, four wild males captured from different parts of Peninsular Malaysia possessed combination of the sex pheromonal components. DNA analysis using PCR techniques was very useful in differentiating pest species. Using AFLP polymorphism of amplified DNA fragment plus calculated Nei's genetic distance showed that natural hybrid of B. carambolae and B. papayae was closer to B. dorsalis than to the parental species. Using exon primed, intron crossing PCR, one of the three alleles of actin gene intron of B. dorsalis has identical DNA sequence to one of three allelic introns of the same gene in B. papayae which suggests that the two species are not distinct genetic species. A Hobo-like transposon element was detected in a population from Penang Island, while in a population from the mainland of Peninsular Malaysia, a mariner-like transposon element was detected. (author)

  6. Synonymization of key pest species within the Bactrocera dorsalis species complex (Diptera: Tephritidae): taxonomic changes based on a review of 20 years of integrative morphological, molecular, cytogenetic, behavioral, and c

    Science.gov (United States)

    Bactrocera papayae Drew & Hancock, Bactrocera philippinensis Drew & Hancock, Bactrocera carambolae Drew & Hancock, and Bactrocera invadens Drew, Tsuruta & White are four horticultural pest tephritid fruit fly species that are highly morphologically and genetically similar to the destructive pest, th...

  7. Characterization of irritans mariner-like elements in the olive fruit fly Bactrocera oleae (Diptera: Tephritidae): evolutionary implications

    Science.gov (United States)

    Ben Lazhar-Ajroud, Wafa; Caruso, Aurore; Mezghani, Maha; Bouallegue, Maryem; Tastard, Emmanuelle; Denis, Françoise; Rouault, Jacques-Deric; Makni, Hanem; Capy, Pierre; Chénais, Benoît; Makni, Mohamed; Casse, Nathalie

    2016-08-01

    Genomic variation among species is commonly driven by transposable element (TE) invasion; thus, the pattern of TEs in a genome allows drawing an evolutionary history of the studied species. This paper reports in vitro and in silico detection and characterization of irritans mariner-like elements (MLEs) in the genome and transcriptome of Bactrocera oleae (Rossi) (Diptera: Tephritidae). Eleven irritans MLE sequences have been isolated in vitro using terminal inverted repeats (TIRs) as primers, and 215 have been extracted in silico from the sequenced genome of B. oleae. Additionally, the sequenced genomes of Bactrocera tryoni (Froggatt) and Bactrocera cucurbitae (Diptera: Tephritidae) have been explored to identify irritans MLEs. A total of 129 sequences from B. tryoni have been extracted, while the genome of B. cucurbitae appears probably devoid of irritans MLEs. All detected irritans MLEs are defective due to several mutations and are clustered together in a monophyletic group suggesting a common ancestor. The evolutionary history and dynamics of these TEs are discussed in relation with the phylogenetic distribution of their hosts. The knowledge on the structure, distribution, dynamic, and evolution of irritans MLEs in Bactrocera species contributes to the understanding of both their evolutionary history and the invasion history of their hosts. This could also be the basis for genetic control strategies using transposable elements.

  8. The complete nucleotide sequence of the mitochondrial genome of Bactrocera minax (Diptera: Tephritidae).

    Science.gov (United States)

    Zhang, Bin; Nardi, Francesco; Hull-Sanders, Helen; Wan, Xuanwu; Liu, Yinghong

    2014-01-01

    The complete 16,043 bp mitochondrial genome (mitogenome) of Bactrocera minax (Diptera: Tephritidae) has been sequenced. The genome encodes 37 genes usually found in insect mitogenomes. The mitogenome information for B. minax was compared to the homologous sequences of Bactrocera oleae, Bactrocera tryoni, Bactrocera philippinensis, Bactrocera carambolae, Bactrocera papayae, Bactrocera dorsalis, Bactrocera correcta, Bactrocera cucurbitae and Ceratitis capitata. The analysis indicated the structure and organization are typical of, and similar to, the nine closely related species mentioned above, although it contains the lowest genome-wide A+T content (67.3%). Four short intergenic spacers with a high degree of conservation among the nine tephritid species mentioned above and B. minax were observed, which also have clear counterparts in the control regions (CRs). Correlation analysis among these ten tephritid species revealed close positive correlation between the A+T content of zero-fold degenerate sites (P0FD), the ratio of nucleotide substitution frequency at P0FD sites to all degenerate sites (zero-fold degenerate sites, two-fold degenerate sites and four-fold degenerate sites) and amino acid sequence distance (ASD) were found. Further, significant positive correlation was observed between the A+T content of four-fold degenerate sites (P4FD) and the ratio of nucleotide substitution frequency at P4FD sites to all degenerate sites; however, we found significant negative correlation between ASD and the A+T content of P4FD, and the ratio of nucleotide substitution frequency at P4FD sites to all degenerate sites. A higher nucleotide substitution frequency at non-synonymous sites compared to synonymous sites was observed in nad4, the first time that has been observed in an insect mitogenome. A poly(T) stretch at the 5' end of the CR followed by a [TA(A)]n-like stretch was also found. In addition, a highly conserved G+A-rich sequence block was observed in front of the

  9. The complete nucleotide sequence of the mitochondrial genome of Bactrocera minax (Diptera: Tephritidae.

    Directory of Open Access Journals (Sweden)

    Bin Zhang

    Full Text Available The complete 16,043 bp mitochondrial genome (mitogenome of Bactrocera minax (Diptera: Tephritidae has been sequenced. The genome encodes 37 genes usually found in insect mitogenomes. The mitogenome information for B. minax was compared to the homologous sequences of Bactrocera oleae, Bactrocera tryoni, Bactrocera philippinensis, Bactrocera carambolae, Bactrocera papayae, Bactrocera dorsalis, Bactrocera correcta, Bactrocera cucurbitae and Ceratitis capitata. The analysis indicated the structure and organization are typical of, and similar to, the nine closely related species mentioned above, although it contains the lowest genome-wide A+T content (67.3%. Four short intergenic spacers with a high degree of conservation among the nine tephritid species mentioned above and B. minax were observed, which also have clear counterparts in the control regions (CRs. Correlation analysis among these ten tephritid species revealed close positive correlation between the A+T content of zero-fold degenerate sites (P0FD, the ratio of nucleotide substitution frequency at P0FD sites to all degenerate sites (zero-fold degenerate sites, two-fold degenerate sites and four-fold degenerate sites and amino acid sequence distance (ASD were found. Further, significant positive correlation was observed between the A+T content of four-fold degenerate sites (P4FD and the ratio of nucleotide substitution frequency at P4FD sites to all degenerate sites; however, we found significant negative correlation between ASD and the A+T content of P4FD, and the ratio of nucleotide substitution frequency at P4FD sites to all degenerate sites. A higher nucleotide substitution frequency at non-synonymous sites compared to synonymous sites was observed in nad4, the first time that has been observed in an insect mitogenome. A poly(T stretch at the 5' end of the CR followed by a [TA(A]n-like stretch was also found. In addition, a highly conserved G+A-rich sequence block was observed in front

  10. POLA AKTIVITAS HARIAN DAN DINAMIKA POPULASI LALAT BUAH BACTROCERA DORSALIS COMPLEX PADA PERTANAMAN JERUK DI DATARAN TINGGI KABUPATEN KARO PROVINSI SUMATERA UTARA

    Directory of Open Access Journals (Sweden)

    Binari Manurung

    2013-09-01

    Full Text Available The fruit fly Bactrocera dorsalis complex is important pest on citrus plantation at highland Karo district North Sumatera Province. The studies with the aim to find out its daily activity pattern and population dynamic on citrus plantation have been done. Fruit flies were collected by water bottle trap with methyl eugenol attractant. Sampling for daily activity pattern was done per two hours for two months (April to May 2011 from 06.00 a.m until 18.00 p.m. Meanwhile, population dynamic study was conducted on two citrus plantations per four days for nine months (March to November 2011 in the first and third week of each month. The research result showed that B.dorsalis complex was more active during morning at 10.00 to 12.00 a.m. The peak abundance of fruit fly occurred at the end of June until beginning of July. The peak population coincided with the ripening period of fruits, low number of rainy (d and rainfall (mm in June and July periods. There was a significant correlation between number of rainy day and rainfall with fruit flies caught per month (R = 0.79; Y = 289.34+14.23X1-15.93X2; R2 = 0.62; P < 0.05. The pattern of fruit fly fluctuation in two citrus plantations was similar (rs = 0.47; P < 0.05.

  11. Expression patterns of sex-determination genes in single male and female embryos of two Bactrocera fruit fly species during early development.

    Science.gov (United States)

    Morrow, J L; Riegler, M; Frommer, M; Shearman, D C A

    2014-12-01

    In tephritids, the sex-determination pathway follows the sex-specific splicing of transformer (tra) mRNA, and the cooperation of tra and transformer-2 (tra-2) to effect the sex-specific splicing of doublesex (dsx), the genetic double-switch responsible for male or female somatic development. The Dominant Male Determiner (M) is the primary signal that controls this pathway. M, as yet uncharacterized, is Y-chromosome linked, expressed in the zygote and directly or indirectly diminishes active TRA protein in male embryos. Here we first demonstrated the high conservation of tra, tra-2 and dsx in two Australian tephritids, Bactrocera tryoni and Bactrocera jarvisi. We then used quantitative reverse transcription PCR on single, sexed embryos to examine expression of the key sex-determination genes during early embryogenesis. Individual embryos were sexed using molecular markers located on the B. jarvisi Y-chromosome that was also introgressed into a B. tryoni line. In B. jarvisi, sex-specific expression of tra transcripts occurred between 3 to 6 h after egg laying, and the dsx isoform was established by 7 h. These milestones were delayed in B. tryoni lines. The results provide a time frame for transcriptomic analyses to identify M and its direct targets, plus information on genes that may be targeted for the development of male-only lines for pest management. © 2014 The Royal Entomological Society.

  12. Recent trends on sterile insect technique and area-wide integrated pest management. Economic feasibility, control projects, farmer organization and Bactrocera dorsalis complex control study

    International Nuclear Information System (INIS)

    2003-03-01

    We have invited professional papers from over the world, including Okinawa, for compilation of recent trends on Sterile Insect Techniques and Area-Wide Integrated Pest Management to further pursue environment friendly pest insects control measures in agricultural production in the Asia-Pacific region. Pest insects such as the tephritid fruit flies have long been and are still today causing serious damage to agricultural products in the Asia-Pacific region and farmers in the region apply such insecticides that are no longer allowed or being subjected to strict usage control in Japan. This, in return, may endanger the health of the very farmers, food safety and the ecosystem itself. The purpose of this report is, therefore, to clarify keys for technology transfer of so called SIT/AWIPM to potential recipients engaged in agricultural production in the region. This report focused on several topics, which make up important parts for the effective Sterile Insect Technique and Area-Wide Integrated Pest Management: economic feasibility; pest insects control projects; farmers' education; research progress in Bactrocera dorsalis complex issues specific to the Asia-Pacific region. The 12 of the papers are indexed individually. (J.P.N.)

  13. Complete mitochondrial genome of Bactrocera arecae (Insecta: Tephritidae) by next-generation sequencing and molecular phylogeny of Dacini tribe.

    Science.gov (United States)

    Yong, Hoi-Sen; Song, Sze-Looi; Lim, Phaik-Eem; Chan, Kok-Gan; Chow, Wan-Loo; Eamsobhana, Praphathip

    2015-10-16

    The whole mitochondrial genome of the pest fruit fly Bactrocera arecae was obtained from next-generation sequencing of genomic DNA. It had a total length of 15,900 bp, consisting of 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes and a non-coding region (A + T-rich control region). The control region (952 bp) was flanked by rrnS and trnI genes. The start codons included 6 ATG, 3 ATT and 1 each of ATA, ATC, GTG and TCG. Eight TAA, two TAG, one incomplete TA and two incomplete T stop codons were represented in the protein-coding genes. The cloverleaf structure for trnS1 lacked the D-loop, and that of trnN and trnF lacked the TΨC-loop. Molecular phylogeny based on 13 protein-coding genes was concordant with 37 mitochondrial genes, with B. arecae having closest genetic affinity to B. tryoni. The subgenus Bactrocera of Dacini tribe and the Dacinae subfamily (Dacini and Ceratitidini tribes) were monophyletic. The whole mitogenome of B. arecae will serve as a useful dataset for studying the genetics, systematics and phylogenetic relationships of the many species of Bactrocera genus in particular, and tephritid fruit flies in general.

  14. Behaviour and chemical ecology of Bactrocera flies

    International Nuclear Information System (INIS)

    Tan, Keng-Hong

    2000-01-01

    . Semiochemicals are divided into ecomone and para-ecomone, the former is released naturally into the environment, the latter is not. An ecomone with intraspecies activity is known as a pheromone. One with interspecies activity is generally grouped under allelochemicals. It is specifically known as: 1) an allomone when it benefits the releaser with detrimental effect on the receiver, 2) a kairomone when it benefits the receiver with detrimental effect on the releaser, 3) a synomone when it benefits both the releaser and receiver, or 4) an apneumone when released from dead or decaying material caused by microbial action. A para-ecomone may be either a constituent of an organism or a synthetic chemical not released naturally. It should be emphasised that a chemical can be an ecomone and a para-ecomone and, as an ecomone, may act as a pheromone as well as an allomone or a kairomone. The study of an organism's ecomone in relation to the environment, interaction between individuals belonging to the same and/or different species, and how it affects behaviour constitutes the bulk of chemical ecology. Ecomones in applied entomology may be exploited as agents for 1) insect pest surveillance and monitoring, 2) trapping insect in population estimation or as an intervention technique such as the area-wide male annihilation technique, and 3) understanding and disrupting insect communication in a pest control or management programme. This paper presents an update of the behaviour within the context of chemical ecology of Bactrocera flies which is crucial in the understanding the flies' role in the complex communal interrelationships within Malaysian agro- and natural ecosystems as previously presented (Tan 1993)

  15. Pictorial keys for predominant Bactrocera and Dacus fruit flies (Diptera: Tephritidae) of north western Himalaya

    OpenAIRE

    C. S. Prabhakar; Pankaj Sood; P. K. Mehta

    2012-01-01

    A pictorial key for 13 species of fruit flies under 2 genera namely Bactrocera and Dacus of subfamily Dacinae (Diptera: Tephritidae) is presented in this paper based on actual photographs of fruit flies collected from north western Himalaya of India during 2009-2010. Among these, Bactrocera diversa (Coquillett), Bactrocera scutellaris (Bezzi), Bactrocera tau (Walker), Bactrocera cucurbitae (Coquillett), Bactrocera zonata (Saunders), Bactrocera correcta (Bezzi), Bactrocera dorsalis (Hendel), B...

  16. Description of a new species and new country distribution records of Bactrocera (Diptera: Tephritidae: Dacinae) from Cambodia.

    Science.gov (United States)

    Leblanc, Luc; San Jose, Michael; Rubinoff, Daniel

    2015-09-04

    Bactrocera (Bactrocera) kohkongiae Leblanc (Diptera: Tephritidae: Dacinae), from the Koh Kong Province of Cambodia, is described as new. This species belongs to the Oriental fruit fly (B. dorsalis) complex. Genetic sequences (mitochondrial COI and nuclear EF1α and Period) are deposited in GenBank. A haplotype network, based on the COI sequences for 21 specimens, shows high genetic diversity. New country records from Cambodia are included for 22 species.

  17. Synonymization of key pest species within the Bactrocera dorsalis species complex (Diptera: Tephritidae): taxonomic changes based on a review of 20 years of integrative morphological, molecular, cytogenetic, behavioural and chemoecological data

    International Nuclear Information System (INIS)

    Schutze, Mark K.

    2015-01-01

    Bactrocera papayae Drew & Hancock, Bactrocera philippinensis Drew & Hancock, Bactrocera carambolae Drew & Hancock, and Bactrocera invadens Drew, Tsuruta & White are four horticultural pest tephritid fruit fly species that are highly similar, morphologically and genetically, to the destructive pest, the Oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). This similarity has rendered the discovery of reliable diagnostic characters problematic, which, in view of the economic importance of these taxa and the international trade implications, has resulted in ongoing difficulties for many areas of plant protection and food security. Consequently, a major international collaborative and integrated multidisciplinary research effort was initiated in 2009 to build upon existing literature with the specific aim of resolving biological species limits among B. papayae, B. philippinensis, B. carambolae, B. invadens and B. dorsalis to overcome constraints to pest management and international trade. Bactrocera philippinensis has recently been synonymized with B. papayae as a result of this initiative and this review corroborates that finding; however, the other names remain in use. While consistent characters have been found to reliably distinguish B. carambolae from B. dorsalis, B. invadens and B. papayae, no such characters have been found to differentiate the latter three putative species. We conclude that B. carambolae is a valid species and that the remaining taxa, B. dorsalis, B. invadens and B. papayae, represent the same species. Thus, we consider B. dorsalis (Hendel) as the senior synonym of B. papayae Drew and Hancock syn.n. and B. invadens Drew, Tsuruta & White syn.n. A redescription of B. dorsalis is provided. Given the agricultural importance of B. dorsalis, this taxonomic decision will have significant global plant biosecurity implications, affecting pest management, quarantine, international trade, postharvest treatment and basic research

  18. Mating compatibility between Bactrocera invadens and Bactrocera dorsalis (Diptera: Tephritidae).

    Science.gov (United States)

    Bo, W; Ahmad, S; Dammalage, T; Tomas, U Sto; Wornoayporn, V; Ul Haq, I; Cáceres, C; Vreysen, M J B; Schutze, M K

    2014-04-01

    The invasive fruit fly, Bactrocera invadens Drew, Tsuruta & White, is a highly polyphagous fruit pest that occurs predominantly in Africa yet has its origins in the Indian subcontinent. It is extremely morphologically and genetically similar to the Oriental fruit fly, Bactrocera dorsalis (Hendel); as such the specific relationship between these two species is unresolved. We assessed prezygotic compatibility between B. dorsalis and B. invadens using standardized field cage mating tests, which have proven effectiveness in tephritid cryptic species studies. These tests were followed by an assessment of postzygotic compatibility by examining egg viability, larval and pupal survival, and sex ratios of offspring produced from parental and subsequent F1 crosses to examine for hybrid breakdown as predicted under a two-species hypothesis. B. dorsalis was sourced from two countries (Pakistan and China), and each population was compared with B. invadens from its type locality of Kenya. B. invadens mated randomly with B. dorsalis from both localities, and there were generally high levels of hybrid viability and survival resulting from parental and F1 crosses. Furthermore, all but one hybrid cross resulted in equal sex ratios, with the single deviation in favor of males and contrary to expectations under Haldane's rule. These data support the hypothesis that B. dorsalis and B. invadens represent the same biological species, an outcome that poses significant implications for pest management and international trade for sub-Saharan Africa.

  19. First record of the fruit fly Bactrocera (Bactrocera) nigrofemoralis White & Tsuruta(Diptera: Tephritidae) in Bangladesh

    Science.gov (United States)

    The presence of the fruit fly Bactrocera (Bactrocera) nigrofemoralis White & Tsuruta was recorded in Bangladesh for the first time. B.nigrofemoralis was captured in traps baited with sweet orange oil and cue-lure at the Atomic Energy Research Establishment campus, Ganak bari, Savar, Dhaka, Banglades...

  20. Gene flow and genetic structure of Bactrocera carambolae (Diptera, Tephritidae) among geographical differences and sister species, B. dorsalis, inferred from microsatellite DNA data

    Science.gov (United States)

    Aketarawong, Nidchaya; Isasawin, Siriwan; Sojikul, Punchapat; Thanaphum, Sujinda

    2015-01-01

    Abstract The Carambola fruit fly, Bactrocera carambolae, is an invasive pest in Southeast Asia. It has been introduced into areas in South America such as Suriname and Brazil. Bactrocera carambolae belongs to the Bactrocera dorsalis species complex, and seems to be separated from Bactrocera dorsalis based on morphological and multilocus phylogenetic studies. Even though the Carambola fruit fly is an important quarantine species and has an impact on international trade, knowledge of the molecular ecology of Bactrocera carambolae, concerning species status and pest management aspects, is lacking. Seven populations sampled from the known geographical areas of Bactrocera carambolae including Southeast Asia (i.e., Indonesia, Malaysia, Thailand) and South America (i.e., Suriname), were genotyped using eight microsatellite DNA markers. Genetic variation, genetic structure, and genetic network among populations illustrated that the Suriname samples were genetically differentiated from Southeast Asian populations. The genetic network revealed that samples from West Sumatra (Pekanbaru, PK) and Java (Jakarta, JK) were presumably the source populations of Bactrocera carambolae in Suriname, which was congruent with human migration records between the two continents. Additionally, three populations of Bactrocera dorsalis were included to better understand the species boundary. The genetic structure between the two species was significantly separated and approximately 11% of total individuals were detected as admixed (0.100 ≤ Q ≤ 0.900). The genetic network showed connections between Bactrocera carambolae and Bactrocera dorsalis groups throughout Depok (DP), JK, and Nakhon Sri Thammarat (NT) populations. These data supported the hypothesis that the reproductive isolation between the two species may be leaky. Although the morphology and monophyly of nuclear and mitochondrial DNA sequences in previous studies showed discrete entities, the hypothesis of semipermeable boundaries

  1. Identifikasi dan Kelimpahan Lalat Buah Bactrocera pada Berbagai Buah Terserang

    OpenAIRE

    Dyah Rini Indriyanti; Yanuarti Nur Isnaini; Bambang Priyono

    2014-01-01

    Penelitian bertujuan mengidentifikasi spesies dan kelimpahan Bactrocera yang menyerang berbagai buah di Kecamtan Demak dan Dempet Kabupaten Demak. Penelitian menggunakan metode purposive sampling. Penelitian dilakukan dengan mengambil 5 macam buah yang terserang (jambu air, belimbing, jambu biji, melinjo dan mangga), pengambilan data faktor klimatik dilakukan pada saat pengambilan sampel. Buah terserang kemudian dilakukan rearing, Bactrocera spp yang didapat dilakukan identifikasi. Bactrocera...

  2. Isolation and characterization of the Bactrocera oleae genes orthologous to the sex determining Sex-lethal and doublesex genes of Drosophila melanogaster.

    Science.gov (United States)

    Lagos, Dimitrios; Ruiz, M Fernanda; Sánchez, Lucas; Komitopoulou, Katia

    2005-03-28

    Here we report the isolation and characterization of the olive fruit fly Bactrocera oleae genes orthologous to the Drosophila melanogaster sex-determining genes Sex-lethal (Sxl) and doublesex (dsx). Fragments of the Sxl and dsx orthologous were isolated with RT-PCR. Genomic and cDNA clones were then obtained by screening a genomic library and separate male and female cDNA adult libraries using the RT-PCR products as probes in both cases. B. oleae Sxl gene (BoSxl) expresses the same pattern of transcripts which encode for a single common polypeptide in both male and female flies. The gene shares a high degree of similarity in sequence and expression to its Ceratitis capitata orthologous and does not appear to play a key regulatory role in the sex-determining cascade. B. oleae dsx gene (Bodsx) expands in a chromosomal region of more than 50 kb, with 6 exons-5 introns, producing different sex-specific mRNAs, according to the Drosophila model. The cDNA sequences are almost identical to the gene orthologous of Bactrocera tryoni. Four repeat elements identical to the D. melanogaster TRA/TRA-2 binding sites have been found in the untranslated region of the female-specific exon 4, predicting a common regulatory splicing mechanism in all studied species of Diptera.

  3. Pictorial keys for predominant Bactrocera and Dacus fruit flies (Diptera: Tephritidae of north western Himalaya

    Directory of Open Access Journals (Sweden)

    C. S. Prabhakar

    2012-09-01

    Full Text Available A pictorial key for 13 species of fruit flies under 2 genera namely Bactrocera and Dacus of subfamily Dacinae (Diptera: Tephritidae is presented in this paper based on actual photographs of fruit flies collected from north western Himalaya of India during 2009-2010. Among these, Bactrocera diversa (Coquillett, Bactrocera scutellaris (Bezzi, Bactrocera tau (Walker, Bactrocera cucurbitae (Coquillett, Bactrocera zonata (Saunders, Bactrocera correcta (Bezzi, Bactrocera dorsalis (Hendel, Bactrocera latifrons (Hendel and Dacus ciliatus Loew are the pests of agricultural and horticultural ecosystems. Bactrocera latifrons, Bactrocera nigrofemoralis White and Tsuruta, Dacus longicornis Wiedemann and Dacus sphaeroidalis (Bezzi are the new records from the region of which host range has yet to be investigated. The pictorial keysdeveloped for these species will help the researchers for their easy and accurate identification.

  4. Gamma radiation sterilization of Bactrocera invadens (Diptera ...

    African Journals Online (AJOL)

    The African invader fly, Bactrocera invadens, an invasive pest in Africa since 2003, causes damage and poses a threat to the mango and horticultural industry. Its control is therefore needed. Sterilization of males using gamma radiation doses (25, 50 and 75 Gy) as a means of population control was investigated. Irradiation ...

  5. Two new species and a new record of Bactrocera Macquart (Diptera: Tephritidae: Dacinae: Dacini) from India.

    Science.gov (United States)

    David, K J; Ramani, S; Whitmore, Daniel; Ranganath, H R

    2016-04-11

    Two new species of Bactrocera Macquart, namely Bactrocera (Calodacus) harrietensis Ramani & David, sp. nov. and Bactrocera (Calodacus) chettalli David & Ranganath, sp. nov., are described from the Andaman and Nicobar Islands and Karnataka, India, respectively. Bactrocera (Zeugodacus) semongokensis Drew & Romig is recorded for the first time from India.

  6. Host plant records of the Mango Fruit Fly, Bactrocera (Bactrocera) frauenfeldi (Schiner) (Diptera: Tephritidae), version 1.0

    Science.gov (United States)

    Bactrocera (Bactrocera) frauenfeldi (Schiner, 1868), commonly known as the mango fruit fly, is regulated through the Plant Protection Act of 2000 (7 U.S.C. 7701-7772) and relevant Parts and Subparts of the Code of Federal Regulations (7 CFR – Agriculture). Although, to date, the USDA PestID has no i...

  7. Synthesis and absolute configuration of a constitutionally-new [5.6] spiroacetal from B. tryoni (Queensland fruit fly).

    Science.gov (United States)

    Booth, Yvonne K; Hayes, Patricia Y; Moore, Christopher J; Lambert, Lynette K; Kitching, William; De Voss, James J

    2007-04-07

    A novel spiroacetal, (2S,6R,8S)-2-methyl-8-ethyl-1,7-dioxaspiro[5.6]dodecane (1), has been identified from the volatile secretions of female B. tryoni by mass spectral analysis and synthesis of an authentic, enantioenriched sample.

  8. KELIMPAHAN LALAT Bactrocera carambolae DAN Bactrocera umbrosa PADA PERKEBUNAN KAKAO Theobroma cacao L. DI DESA MOJONG KECAMATAN WATTANG SIDENRENG KABUPATEN SIDRAP SULAWESI SELATAN

    OpenAIRE

    Damayanti, Fatmah; Soekendarsih, Eddy; Syahribulan; Ambeng

    2017-01-01

    Research on Abundance of flies Bactrocera carambolae and Bactrocera umbrosa on cocoa plantation Theobroma cacao L. in Mojong Village Wattang Sidenreng Subdistrict Sidrap Regency South Sulawesi. This research aims to know the abundance of Bactrocera carambolae, and Bactrocera umbrosa in cocoa plant Theobroma cacao L. The method used, namely: pheromone trap to catch fruit flies conducted once a week for 4 weeks. The results obtained 2 types of fruit flies that pertolong into 1 genus, with the h...

  9. Genetic and cytogenetic characterization of genetic sexing strains of Bactrocera dorsalis and Bactrocera cucurbitae (Diptera: Tephritidae).

    Science.gov (United States)

    Zacharopoulou, A; Franz, G

    2013-04-01

    In the current study, we performed genetic and cytogenetic analyses of two genetic sexing strains (GSSs), one for Bactrocera dorsalis s.s. and one for melon fly, Bactrocera cucurbitae Coquillett, the first such strains ever constructed in these species. In both strains, the genetic sexing mechanism is based on a pupal color dimorphism (white or brown) and is the result of a reciprocal translocation between the Y chromosome and the autosome bearing the white pupae (wp) locus. Based on genetic analysis and cytological data on mitotic metaphases and larval salivary gland polytene chromosomes, we succeeded in mapping the autosome breakpoints in the two Y-autosome translocations even though the Y chromosome is not visible in polytene nuclei. We show that polytene chromosomes can be used in cytogenetic analyses toward the development of genetic control methods in these pest species. The results of the genetic analysis are in full agreement with the cytological description of the strains.

  10. Towards a male-only release system for SIT with the Queensland fruit fly, Bactrocera tryoni, using a genetic sexing strain with a temperature-sensitive lethal mutation.

    Science.gov (United States)

    Meats, A; Maheswaran, P; Frommer, M; Sved, J

    2002-09-01

    Flies that are homozygous for the recessive autosomal mutation bent wings have a limited ability to fly and are less tolerant of high temperatures than normal flies in both the egg and puparial stages. The differences between the mutant and normal flies were found sufficient to be the basis of a genetic sexing strain. Genetic sexing strains were created using translocations of the autosome bearing the wild-type allele of bent wings (chromosome 2) to the Y chromosome, and crossing male flies carrying the translocation to mutant bent wings females. In the resulting strain, the females were homozygous for the bent wings mutation and the males were phenotypically normal for wing characters. Several translocations were recovered after irradiation, but only one translocation involving chromosome 2 was both stable and expressed in a stock that was vigorous enough for long-term viability. Unfortunately, all stocks containing the translocation showed high levels of temperature-dependent lethality, including, inexplicably, both males and females. Translocation stocks showing this effect included bent wings, another second chromosome mutation, white marks, and an otherwise normal stock. This phenomenon is probably rare, as it has not been reported before. It is likely that bent wings could be suitably used with another translocation.

  11. New species, new records and updated subgeneric key of Bactrocera Macquart (Diptera: Tephritidae: Dacinae: Dacini) from India.

    Science.gov (United States)

    David, K J; Hancock, D L; Singh, Shakti Kumar; Ramani, S; Behere, G T; Salini, S

    2017-05-30

    Two new species of genus Bactrocera Macquart, namely B. (Sinodacus) brevipunctata David and Hancock, sp. nov. and B. (Bactrocera) furcata David and Hancock, sp. nov., are described from India. B. (B.) aethriobasis Hardy, B. (B.) rubigina Wang & Zhao, B. (B.) syzygii Tsuruta & White and B. (B.) tuberculata (Bezzi) are recorded for the first time from India. Updated keys to twelve subgenera of Bactrocera and Indian species of Bactrocera (Bactrocera) are also provided.

  12. Nonhost status of mangosteen to Bactrocera dorsalis and Bactrocera carambolae (Diptera: Tephritidae) in Thailand.

    Science.gov (United States)

    Unahawutti, Udorn; Intarakumheng, Rachada; Oonthonglang, Pitawat; Phankum, Salukjit; Follett, Peter A

    2014-08-01

    Postharvest quarantine treatments (irradiation or vapor heat) are used to control fruit flies and other pests in mangosteen (Garcinia mangostana L) exported to the United States and Japan from Thailand. No-choice tests were conducted in the laboratory to determine whether Thai mangosteen is a host for Bactrocera dorsalis (Hendel) (oriental fruit fly) and Bactrocera carambolae Drew & Hancock (carambola fruit fly). Ripe commercial quality fruit (1 wk after harvest) that were either undamaged or damaged by puncturing or peeling the pericarp were exposed to a high density of gravid flies in screen cages and then held for 10 d and dissected to inspect for immature life stages. Undamaged mangosteen fruit were not infested by B. dorsalis and B. carambolae. Partially damaged fruit with shallow punctures in the pericarp that did not extend to the aril also were not infested. Both fruit flies could infest damaged fruit if the pericarp damage allowed oviposition in the aril. Results suggest that natural infestation of mangosteen by B. dorsalis and B. carambolae can only occur if fruit exhibit physical cracks or mechanical injury. Resistance appears to be due to the pericarp hardness and thickness as well as latex secretion. Nonhost status could be used without additional quarantine measures to achieve quarantine security against B. dorsalis and B. carambolae in mangosteen exported from Thailand.

  13. Host plants of Solanum fruit fly, Bactrocera latifrons(Hendel)(Diptera: Tephritidae); and provisional list of suitable host plants of Bactrocera(Bactrocera)latifrons(Hendel)(Diptera: Tephritidae), Version 1.0

    Science.gov (United States)

    Bactrocera latifrons (Hendel)(Diptera: Tephritidae) infests many solanaceous plant species, some of which are important horticultural crop species. It has also been found to infest a number of cucurbitaceous plant species as well as a few plant species in other plant families. Bactrocera latifrons i...

  14. A review of recorded host plants of Oriental Fruit Fly, Bactrocera (Bactrocera)dorsalis(Hendel)(Diptera: Tephritidae), version 3.0

    Science.gov (United States)

    Bactrocera (Bactrocera) dorsalis (Hendel)(Diptera: Tephritidae), commonly known as the Oriental fruit fly, is regulated through the Plant Protection Act of 2000 (7 U.S.C. 7701-7772) and relevant Parts and Subparts of the Code of Federal Regulations (7 CFR – Agriculture). Presented herein is a compre...

  15. Host plant records of the White Striped Fruit Fly, Bactrocera (Bactrocera) albistrigata(de Meijere,1911)(Diptera: Tephritidae), Version 1.0

    Science.gov (United States)

    Bactrocera (Bactrocera) albistrigata (de Meijere, 1911), commonly known as the white striped fruit fly, is regulated through the Plant Protection Act of 2000 (7 U.S.C. 7701-7772) and relevant Parts and Subparts of the Code of Federal Regulations (7 CFR – Agriculture). While considered an obscure min...

  16. Survival and development of Bactrocera oleae Gmelin (Diptera ...

    African Journals Online (AJOL)

    Bactrocera oleae Gmelin (Diptera:Tephritidae) is the most important and widespread pest in the olive growing countries in the Mediterranean basin. The development and survival of olive fruit fly, B. oleae from egg to adult stage was studied in the laboratory at 16, 22, 27 and 35°C. The objective of the study was to get ...

  17. Combining Cue-Lure and Methyl Eugenol in Traps Significantly Decreases Catches of Most Bactrocera, Zeugodacus and Dacus Species (Diptera: Tephritidae: Dacinae) in Australia and Papua New Guinea.

    Science.gov (United States)

    Royer, Jane E; Mayer, David G

    2018-02-09

    Male fruit fly attractants, cue-lure (CL) and methyl eugenol (ME), are important in the monitoring and control of pest fruit fly species. Species respond to CL or ME but not both, and there are conflicting reports on whether combining CL (or its hydroxy analogue raspberry ketone) and ME decreases their attractiveness to different species. Fruit fly monitoring programs expend significant effort using separate CL and ME traps and avoiding lure cross-contamination, and combining the two lures in one trap would create substantial savings. To determine if combining lures has an inhibitory effect on trap catch, CL and ME wicks placed in the same Steiner trap were field tested in comparison to CL alone and ME alone in Australia and Papua New Guinea (PNG). In Australia, 24 out of 27 species trapped were significantly more attracted to CL or ME alone than the combination ME/CL lure, including the pests Bactrocera bryoniae (Tryon), B. frauenfeldi (Schiner), B. kraussi (Hardy), B. neohumeralis (Hardy), B. tryoni (Froggatt) (CL-responsive), and B. musae (Tryon) (ME-responsive). In PNG, 13 out of 16 species trapped were significantly more attracted to CL or ME alone than the ME/CL combination, including the pests B. bryoniae, B. frauenfeldi, B. neohumeralis, B. trivialis (Drew), Zeugodacus cucurbitae (Coquillett) (CL-responsive) and B. dorsalis (Hendel), B. musae, and B. umbrosa (Fabricius) (ME-responsive). This study shows that combining CL and ME in the one trap in equal parts significantly reduces catches of most species of Dacini fruit flies in Australia and PNG. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. KETERTARIKAN LALAT BUAH BACTROCERA PADA EKSTRAK OLAHAN LIMBAH KAKAO BERPENGAWET

    Directory of Open Access Journals (Sweden)

    Dyah Rini Indriyanti

    2012-09-01

    Full Text Available Lalat buah Bactrocera spp. (Diptera: Tephritidae merupakan salah satu hama pen ting menyerang tanaman buah-buahan dan sayuran. B. carambolae di laboratorium tertarik pada olahan limbah kakao. Hasil uji coba di lapangan belum memuaskan karena olahan limbah kakao mudah rusak. Tujuan penelitian ini mengkaji respon lalat buah Bactrocera yang diberi umpan ekstrak olahan limbah kakao berpenga wet. Pengawet yang digunakan yakni: Natrium klorida (NaCl, Natrium benzoat (C7H5NaO2 dan Potasium sorbat (C6H7KO2. Konsentrasi yang dipakai masing-masing pengawet 0,1%; 0,2% dan 0,3%. Pengamatan dilakukan selama satu ming gu. Hasil pengamatan menunjukkan bahwa daya tahan limbah yang diberi penga wet dan yang tidak dilihat secara secara fisik (warna dan tekstur tidak berbeda nyata, namun ada perbedaan bau. Limbah yang tidak diberi pengawet ada kecen derungan baunya tidak sedap dibanding yang diberi pengawet. Hal ini yang mempengaruhi ketertarikan lalat terhadap olahan limbah kakao. Respon ketertarikan lalat Bactrocera terhadap olahan limbah kakao yang diberi pengawet berbeda antara satu dengan yang lain. Respon ketertarikan tertinggi Bactrocera cenderung pada olahan limbah kakao yang diberi pengawet Natrium klorida 0,3%, Potasium sorbat 0,2% dan Natrium benzoat 0,1%.The fruit fly Bactrocera spp. (Diptera: Tephritidae is one of the important pests attacking crops of fruits and vegetables. In the laboratory, B. carambolae was attracted by the processed cocoa waste. The results of field trials have not been satisfactory yet, because the processed cocoa waste was easily damaged. The purpose of the study wast to examine the response of Bactrocera to the bait made of processed cocoa extract waste containing preservatives. The preservatives used were: Sodium chloride (NaCl, sodium benzoate (C7H5NaO2 and potassium sorbate (C6H7KO2. The concentration of each preservative was 0.1%; 0.2% and 0.3%. A one-week observation was made. The result showed that there was no

  19. Complete Mitochondrial Genome of Three Bactrocera Fruit Flies of Subgenus Bactrocera (Diptera: Tephritidae and Their Phylogenetic Implications.

    Directory of Open Access Journals (Sweden)

    Hoi-Sen Yong

    Full Text Available Bactrocera latifrons is a serious pest of solanaceous fruits and Bactrocera umbrosa is a pest of Artocarpus fruits, while Bactrocera melastomatos infests the fruit of Melastomataceae. They are members of the subgenus Bactrocera. We report here the complete mitochondrial genome of these fruit flies determined by next-generation sequencing and their phylogeny with other taxa of the subgenus Bactrocera. The whole mitogenomes of these three species possessed 37 genes namely, 13 protein-coding genes (PCGs, 2 rRNA and 22 tRNA genes. The mitogenome of B. latifrons (15,977 bp was longer than those of B. melastomatos (15,954 bp and B. umbrosa (15,898 bp. This difference can be attributed to the size of the intergenic spacers (283 bp in B. latifrons, 261 bp in B. melastomatos, and 211 bp in B. umbrosa. Most of the PCGs in the three species have an identical start codon, except for atp8 (adenosine triphosphate synthase protein 8, which had an ATG instead of GTG in B. umbrosa, whilst the nad3 (NADH dehydrogenase subunit 3 and nad6 (NADH dehydrogenase subunit 6 genes were characterized by an ATC instead of ATT in B. melastomatos. The three species had identical stop codon for the respective PCGs. In B. latifrons and B. melastomatos, the TΨC (thymidine-pseudouridine-cytidine-loop was absent in trnF (phenylalanine and DHU (dihydrouracil-loop was absent in trnS1 (serine S1. In B. umbrosa, trnN (asparagine, trnC (cysteine and trnF lacked the TψC-loop, while trnS1 lacked the DHU-stem. Molecular phylogeny based on 13 PCGs was in general concordant with 15 mitochondrial genes (13 PCGs and 2 rRNA genes, with B. latifrons and B. umbrosa forming a sister group basal to the other species of the subgenus Bactrocera which was monophyletic. The whole mitogenomes will serve as a useful dataset for studying the genetics, systematics and phylogenetic relationships of the many species of Bactrocera genus in particular, and tephritid fruit flies in general.

  20. Complete Mitochondrial Genome of Three Bactrocera Fruit Flies of Subgenus Bactrocera (Diptera: Tephritidae) and Their Phylogenetic Implications.

    Science.gov (United States)

    Yong, Hoi-Sen; Song, Sze-Looi; Lim, Phaik-Eem; Eamsobhana, Praphathip; Suana, I Wayan

    2016-01-01

    Bactrocera latifrons is a serious pest of solanaceous fruits and Bactrocera umbrosa is a pest of Artocarpus fruits, while Bactrocera melastomatos infests the fruit of Melastomataceae. They are members of the subgenus Bactrocera. We report here the complete mitochondrial genome of these fruit flies determined by next-generation sequencing and their phylogeny with other taxa of the subgenus Bactrocera. The whole mitogenomes of these three species possessed 37 genes namely, 13 protein-coding genes (PCGs), 2 rRNA and 22 tRNA genes. The mitogenome of B. latifrons (15,977 bp) was longer than those of B. melastomatos (15,954 bp) and B. umbrosa (15,898 bp). This difference can be attributed to the size of the intergenic spacers (283 bp in B. latifrons, 261 bp in B. melastomatos, and 211 bp in B. umbrosa). Most of the PCGs in the three species have an identical start codon, except for atp8 (adenosine triphosphate synthase protein 8), which had an ATG instead of GTG in B. umbrosa, whilst the nad3 (NADH dehydrogenase subunit 3) and nad6 (NADH dehydrogenase subunit 6) genes were characterized by an ATC instead of ATT in B. melastomatos. The three species had identical stop codon for the respective PCGs. In B. latifrons and B. melastomatos, the TΨC (thymidine-pseudouridine-cytidine)-loop was absent in trnF (phenylalanine) and DHU (dihydrouracil)-loop was absent in trnS1 (serine S1). In B. umbrosa, trnN (asparagine), trnC (cysteine) and trnF lacked the TψC-loop, while trnS1 lacked the DHU-stem. Molecular phylogeny based on 13 PCGs was in general concordant with 15 mitochondrial genes (13 PCGs and 2 rRNA genes), with B. latifrons and B. umbrosa forming a sister group basal to the other species of the subgenus Bactrocera which was monophyletic. The whole mitogenomes will serve as a useful dataset for studying the genetics, systematics and phylogenetic relationships of the many species of Bactrocera genus in particular, and tephritid fruit flies in general.

  1. The mitochondrial genome of the peach fruit fly, Bactrocera zonata (Saunders) (Diptera: Tephritidae): Complete DNA sequence, genome organization, and phylogenetic analysis with other tephritids using next generation DNA sequencing.

    Science.gov (United States)

    Choudhary, Jaipal S; Naaz, Naiyar; Prabhakar, Chandra S; Rao, Mathukumalli Srinivasa; Das, Bikash

    2015-09-15

    Mitochondrial genome can provide information for genomic structure as well as for phylogenetic analysis and evolutionary biology. The complete 15,935 bp mitochondrial genome of Bactrocera zonata (Diptera: Tephritidae), is assembled from Illumina MiSeq read data. The mitogenome information for B. zonata was compared to the homologous sequences of other tephritids. Annotation indicated that the structure and orientation of 13 protein coding genes (PCGs), 22 tRNA and 2 rRNA sequences were typical of, and similar to, the ten closely related tephritid species. The nucleotide composition shows heavily biased toward As and Ts accounting 73.34% and exhibits a slightly positive AT skew, which is similar to other known tephritid species. All PCGs are initiated by ATN codons, except for cox1 with TCG and atp8 with GTG. Nine PCGs use a common stop codon of TAA or TAG, whereas the remaining four use an incomplete termination codon T or TA likely to be completed by adenylation. All tRNAs have the typical clover-leaf structure, with an exception for trnS((AGN)). Four short intergenic spacers showed high degree of conservation among B. zonata and other ten tephritids. A poly(T) stretch at the 5' end followed by [TA(A)]n-like stretch and a tandem repeats of 39 bp has been observed in CR. The analysis of gene evolutionary rate revealed that the cox1 and atp6 exhibits lowest and highest gene substitution rates, respectively than other genes. The phylogenetic relationships based on Maximum Likelihood method using all protein-coding genes and two ribosomal RNA genes confirmed that B. zonata is closely related to Bactrocera correcta, Bactrocera carambolae, Bactrocera papayae, and Bactrocera philippinensis and Bactrocera dorsalis belonging to B. dorsalis species complex forms a monophyletic clade, which is in accordance with the traditional morphological classification and recent molecular works. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Annotated world bibliography of host plants of the melon fly, Bactrocera cucurbitae (Cocquillett) (Diptera:Tephritidae)

    Science.gov (United States)

    The melon fly, Bactrocera cucurbitae(Coquillett), is a widespread, economically important tephritid fruit fly (Diptera: Tephritidae) species. Bactrocera cucurbitae infests fruits and vegetables of a number of different plant species, with many host plants in the plant family Cucurbitaceae, but with ...

  3. Etude de la dynamique de Bactrocera dorsalis (Hendel) (Diptera ...

    African Journals Online (AJOL)

    Au Sénégal, la filière mangue contribue à la lutte contre la pauvreté et l'insécurité alimentaire en milieu rural. Toutefois, elle est confrontée à des contraintes phytosanitaires notamment celles liées à Bactrocera dorsalis. La présente étude qui vise à comprendre la dynamique B. dorsalis a consisté à placer dans 4 vergers de ...

  4. Identification of host blends that attract the African invasive fruit fly, Bactrocera invadens.

    Science.gov (United States)

    Biasazin, Tibebe Dejene; Karlsson, Miriam Frida; Hillbur, Ylva; Seyoum, Emiru; Dekker, Teun

    2014-09-01

    Bactrocera invadens, an invasive fruit fly species in the Afro-tropical region belonging to the Bactrocera dorsalis complex, causes considerable damage to fruit production and productivity. We sought to find attractants from hosts of B. invadens that could serve as baits in traps for monitoring and management of this pest. The attractiveness of volatiles from four different fruit species (mango, guava, banana and orange) at two stages of ripeness (ripe or unripe) was tested in an olfactometer assay. All fruits were attractive against a clean air control. Using hexane extracts of volatile collections of fruits, we demonstrated that male flies preferred the volatiles of ripe guava and orange over unripe fruit extracts. There was a slight difference in preference between females and males; females preferred orange to guava and mango, whereas males preferred mango and guava to orange. Gas chromatography/electroantennographic detection (GC/EAD) and GC/mass spectrometry (GC/MS) were used to identify compounds to which B. invadens antennae were sensitive. GC/EAD recordings from distal and medio-central parts of the fly antenna showed responses to a number of compounds from each fruit species, with esters dominating the responses. Synthetic blends were made for each fruit species using the shared antennally active compounds in ratios found in the extracts. In the olfactometer, B. invadens was most attracted to the banana and orange blends, followed by the mango and guava blends. The synthetic banana blend was as attractive as the volatile collection of banana, although both were less attractive than the fruit. The results demonstrate that composing attractive blends from GC/EAD-active constituents shared by host fruits can be effective for formulating attractive synthetic host mimics for generalist fruit fly species, such as B. invadens.

  5. Potensi Penggunaan Parasitoid Dalam Pengendalian Lalat Buah Bactrocera Di Pulau Lombok

    OpenAIRE

    Sukri, Akhmad; Prayitno, Gito Hadi

    2013-01-01

    Penelitian ini bertujuan untuk mendeskripsikan potensi penggunaan parasitoid dalam pengendalian lalat buah Bactrocera di Pulau Lombok. Data atau informasi diperoleh melalui kajian pustaka (studi referensi). Hasil kajian pustaka menunjukkan bahwa di Pulau Lombok telah ditemukan beberapa spesies lalat buah dari genus Bactrocera yang menyerang beberapa jenis buah yaitu mangga, jambu air dan belimbing. Ditemukannya beberapa jenis parasitoid dari lalat buah yaitu Biosteres vandenboschi Fullaway, O...

  6. Description of a new species and record of Bactrocera Macquart (Diptera,Tephritidae) from China.

    Science.gov (United States)

    Zhou, Li-bing; Chen, Xiao-lin; Deng, Yu-liang; Wang, Shao-jun

    2013-01-01

    One new species, Bactrocera (Zeugodacus) anala Chen et Zhou, sp.nov, and one newly recorded species, B. (Z.) armillata (Hering, 1938), from China are described and illustrated. The male of B. (Z.) armillata (Hering) was discovered for the first time and as a result the species is moved from subgenus Bactrocera to subgenus Zeugodacus. In addition, the morphological differences and comparing illustrations of B. (Z.) adusta (Wang et Zhao) and B. (Z.) biguttata (Bezzi), are provided.

  7. Competitive Interactions between Immature Stages of Bactrocera cucurbitae (Coquillett) and Bactrocera tau (Walker) (Diptera: Tephritidae) under Laboratory Conditions.

    Science.gov (United States)

    Shen, K; Hu, J; Wu, B; An, K; Zhang, J; Liu, J; Zhang, R

    2014-08-01

    The melon fly, Bactrocera cucurbitae (Coquillett), and the pumpkin fly, Bactrocera tau (Walker), are economically important pests that attack mainly cucurbitacean fruits. The two fruit fly species have similar natural distributions, host ranges, and population growth capacities. This study was designed to assess the asymmetrical competitions through resource exploitation between the larvae of B. cucurbitae and B. tau at different density levels and temperatures, and on different hosts by comparing the relative effects of interspecific and intraspecific interactions on four life history parameters: survival rate, puparial mass, puparial duration, and developmental duration. Our results showed that intraspecific and interspecific competitions occurred under some laboratory conditions, and B. cucurbitae took advantage over B. tau at the high-density level and at low and high temperatures on pumpkin, bitter gourd, and bottle gourd when interspecific competition took place. Intraspecific and interspecific competitions mainly affected the puparial mass and the survival rate of the two fruit fly species but had no marked effect on the puparial duration or development duration.

  8. Assessment of Navel Oranges, Clementine Tangerines, and Rutaceous Fruits as Hosts of Bactrocera cucurbitae and Bactrocera latifrons (Diptera: Tephritidae)

    Science.gov (United States)

    McQuate, Grant T.; Follett, Peter A.; Liquido, Nicanor J.; Sylva, Charmaine D.

    2015-01-01

    Export of Citrus spp. fruits may require risk mitigation measures if grown in areas with established tephritid fruit fly (Diptera: Tephritidae) populations capable of infesting the fruits. The host status of Citrus spp. fruits is unclear for two tephritid fruit fly species whose geographic ranges have expanded in recent years: melon fly, Bactrocera cucurbitae (Cocquillett), and Bactrocera latifrons (Hendel). In no choice cage infestation studies, B. latifrons oviposited into intact and punctured Washington navel oranges (Citrus sinensis [L.] Osbeck) and Clementine tangerines (C. reticulata L. var. Clementine), but eggs rarely developed to the adult stage. B. cucurbitae readily infested intact and punctured tangerines, and to a lesser extent punctured oranges, but did not infest intact oranges. Limited cage infestation and only a single literature report of field Citrus spp. infestation suggest that risk mitigation of Citrus spp. for B. latifrons is not needed. Risk mitigation options of Citrus spp. for B. cucurbitae, including heat and cold treatments and systems approaches, are discussed. PMID:26816484

  9. Host plants of Carambola fruit fly, Bactrocera carambolae Drew & Hancock(Diptera:Tephritidae);and provisional list of suitable host plants of Carambola fruit fly,(Bactrocera(Bactrocera) carambolae Drew & Hancock(Diptera:Tep

    Science.gov (United States)

    Bactrocera carambolae Drew & Hancock (Diptera: Tephritidae), commonly known as the carambola fruit fly, is native to Southeast Asia, but has extended its geographic range to several countries in South America. As with other tephritid fruit fly species, establishment of B.carambolae in areas where it...

  10. Host plants of Melon Fly, Bactrocera cucurbitae(Coquillett)(Diptera:Tephritidae); and provisional list of suitable host plants of the Melon Fly, Bactrocera(Zeugodacus)cucurbitae(Coquillett)(Diptera:Tephritidae),Version 2.0

    Science.gov (United States)

    The melon fly, Bactrocera cucurbitae (Coquillett), is a widespread, economically important tephritid fruit fly (Diptera: Tephritidae) species. Bactrocera cucurbitae infests fruits and vegetables of a number of different plant species, with many host plants in the plant family Cucurbitaceae, but with...

  11. Capture probability of released males of two Bactrocera species (Diptera: Tephritidae) in detection traps in California.

    Science.gov (United States)

    Shelly, T; Nishimoto, J; Diaz, A; Leathers, J; War, M; Shoemaker, R; Al-Zubaidy, M; Joseph, D

    2010-12-01

    The genus Bactrocera (Diptera: Tephritidae) includes approximately 70 polyphagous species that are major pests of fruit and vegetable crops. Most Bactrocera species have limited geographic distributions, but several species are invasive, and many countries operate continuous trapping programs to detect infestations. In the United States, California maintains approximately 25,000 traps (baited with male lures) specifically for Bactrocera detection distributed over an area of approximately 6,400 km2 (2,500 miles2) in the Los Angeles area. Although prior studies have used male lures to describe movement of Bactrocera males, they do not explicitly relate capture probability with fly distance from lure-baited traps; consequently, they do not address the relative effectiveness of male lures in detecting incipient populations of Bactrocera species. The objective of this study was to measure the distance-dependent capture probability of marked, released males of Bactrocera dorsalis (Hendel) and Bactrocera cucurbitae (Coquillett) (methyl eugenol- and cue lure-responding species, respectively) within the detection trapping grid operating in southern California. These data were then used to compute simple probability estimates for detecting populations of different sizes of the two species. Methyl eugenol was the more powerful attractant, and based on the mark-recapture data, we estimated that B. dorsalis populations with as few as approximately 50 males would always (>99.9%) be detected using the current trap density of five methyl eugenol-baited traps per 2.6 km2 (1 mile2). By contrast, we estimated that certain detection of B. cucurbitae populations would not occur until these contained approximately 350 males. The implications of the results for the California trapping system are discussed, and the findings are compared with mark-release-recapture data obtained for the same two species in Hawaii.

  12. Macrogeographic population structuring in the cosmopolitan agricultural pest Bactrocera cucurbitae (Diptera: Tephritidae).

    Science.gov (United States)

    Virgilio, M; Delatte, H; Backeljau, T; De Meyer, M

    2010-07-01

    The macrogeographic population structure of the agricultural pest Bactrocera cucurbitae (Diptera: Tephritidae) was investigated in order to identify the geographic origin of the species and reconstruct its range expansion. Individuals of B. cucurbitae were collected from 25 worldwide-distributed localities (n = 570) and genotyped at 13 microsatellite loci. The Bayesian clustering reveals that B. cucurbitae can be subdivided into five main groups corresponding to populations from (i) the African continent, (ii) La Réunion, (iii) Central Asia, (iv) East Asia and (v) Hawaii. The proportions of inter-regional assignments and the higher values of genetic diversity in populations from Pakistan, India and Bangladesh suggest that B. cucurbitae originated in Central Asia and expanded its range to East Asia and Hawaii on one hand and to Africa and the islands of the Indian Ocean on the other. A number of outliers (10-19 specimens according to different clustering algorithms) show high levels of admixture (Q > 0.70) with populations from different regions and reveal complex patterns of inter-regional gene flow. Anthropogenic transport is the most plausible promoter of this large-scale dispersal. The introduction of individuals from geographically distant sources did not have a relevant role in the most recent African invasions, which originated from the expansion of local populations. These results could provide a useful background to better evaluate invasion risks and establish priorities for the management of this cosmopolitan agricultural pest.

  13. Effects of Methyl Eugenol Feeding on Mating Compatibility of Asian Population of Bactrocera dorsalis (Diptera: Tephritidae) with African Population and with B. carambolae.

    Science.gov (United States)

    Haq, Ihsan Ul; Vreysen, Marc J B; Schutze, Mark; Hendrichs, Jorge; Shelly, Todd

    2016-02-01

    Males of some species included in the Bactrocera dorsalis complex are strongly attracted to methyl eugenol (ME) (1,2-dimethoxy-4-(2-propenyl) benzene), a natural compound occurring in a variety of plant species. ME feeding of males of the B. dorsalis complex is known to enhance their mating competitiveness. Within B. dorsalis, recent studies show that Asian and African populations of B. dorsalis are sexually compatible, while populations of B. dorsalis and Bactrocera carambolae are relatively incompatible. The objectives of this study were to examine whether ME feeding by males affects mating compatibility between Asian and African populations of B. dorsalis and ME feeding reduces male mating incompatibility between B. dorsalis (Asian population) and B. carambolae. The data confirmed that Asian and African populations of B. dorsalis are sexually compatible for mating and showed that ME feeding only increased the number of matings. Though ME feeding also increased the number of matings of B. dorsalis (Asian population) and B. carambolae males but the sexual incompatibility between both species was not reduced by treatment with ME. These results conform to the efforts resolving the biological species limits among B. dorsalis complex and have implications for fruit fly control programs in fields and horticultural trade. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America.

  14. Genetic characterization of Bactrocera fruit flies (Diptera: Tephritidae) from Northeastern India based on DNA barcodes.

    Science.gov (United States)

    Manger, Arpana; Behere, G T; Firake, D M; Sharma, Bhagawati; Deshmukh, N A; Firake, P D; Azad Thakur, N S; Ngachan, S V

    2017-07-31

    The Northeastern region of India, one of the mega biodiversity hot spots has enormous potential for the production of fruits and vegetables. Fruit flies of the genus Bactrocera Macquart are important pests of fruits and vegetables, and one of the limiting factors in successful production of these commodities. The relationship among some of the species is unclear due to their high molecular and morphological similarities. Moreover, due to the significant morphological resemblance between fruit fly species, reliable identification is very difficult task. We genetically characterized 10 fruit fly species of the genus Bactrocera by using standard DNA barcoding region of COI gene. The characterization and identification of eight species were straight forward. This study was unable to establish the molecular identity of Bactrocera sp. 2. Within the 547 bp region of partial COI gene, there were 157 variable sites of which 110 sites were parsimony informative, 153 were synonymous substitutions and 4 were non-synonymous substitutions. The estimate of genetic divergence among the ten species was in the range of 0-21.9% and the pairwise genetic distance of Bactrocera. (Bactrocera) dorsalis (Hendel) with B. (B.) carambolae was only 0.7%. Phylogenetic analysis formed separate clades for fruit and vegetable infesting fruit flies. B. (B.) aethriobasis Hardy, B. (B.) thailandica and B. (B.) tuberculata (Bezzi) have been reported for the first time from the Northeastern India. The information generated from this study would certainly have implications for pest management, taxonomy, quarantine and trade.

  15. Dampak Konsumsi Metil Egenol terhadap Perilaku dan Keberhasilan Perkawinan Lalat Buah Bactrocera carambolae (Diptera: Tephritidae

    Directory of Open Access Journals (Sweden)

    Suryati Syamsuclin Tati-Subahar

    1999-12-01

    Full Text Available Methyl eugenol (= ME is an insect attractant. It is known that male Bactrocera dorsalis is attracted to ME. The objective of this research is to examine the effects of ME consumption on mating behavior and its success of Bactrocera carambolae. Observations were done daily from 17.00 to 18.00 hours. Mating success was characterized by the occurrence of copulation between male and female flies while mating behavior analysed by their fight intensities and wing vibrations. The results showed that the fighting and wing vibration periods of ME consuming flies were longer than those which did not. Mating success of those flies which fed on ME was relatively higher. It was concluded that ME is a stimulant for enhancing mating success of Bactrocera carambolae.

  16. Assessment of Attractiveness of Plants as Roosting Sites for the Melon Fly, Bactrocera cucurbitae, and Oriental Fruit Fly, Bactrocera dorsalis

    Science.gov (United States)

    McQuate, Grant T.; Vargas, Roger I.

    2007-01-01

    The use of toxic protein bait sprays to suppress melon fly, Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae), populations typically involves application to vegetation bordering agricultural host areas where the adults seek shelter (“roost”). Although bait spray applications for suppression of oriental fruit fly, Bactrocera dorsalis (Hendel), populations have traditionally been applied to the host crop, rather than to crop borders, roosting by oriental fruit flies in borders of some crop species, such as papaya, Carica papaya L. (Brassicales: Caricaceae), suggests that bait spray applications to crop borders could also help in suppression of B. dorsalis populations. In order to develop improved recommendations for application of bait sprays to border plants for suppression of melon fly and oriental fruit fly populations, the relative attractiveness of a range of plant species, in a vegetative (non-flowering) stage, was tested to wild melon fly and oriental fruit fly populations established in a papaya orchard in Hawaii. A total of 20 plant species were evaluated, divided into four categories: 1) border plants, including corn, Zea mays L. (Poales: Poaceae), windbreaks and broad-leaved ornamentals, 7 species; 2) weed plants commonly found in agricultural fields in Hawaii, 6 species; 3) host crop plants, 1 species- zucchini, Cucurbita pepo L. (Violales: Curcurbitaceae), and 4) locally grown fruit trees, 6 species. Plants were established in pots and placed in an open field, in clusters encircling protein bait traps, 20 m away from the papaya orchard. Castor bean, Ricinus communis L. (Euphorbiales: Euphorbiaceae), panax, Polyscias guilfoylei (Bull) Bailey (Apiales: Araliaceae), tiger's claw, Erythnna variegata L. (Fabales: Fabaceae), and guava, Psidium guajava L. (Myrtales: Myrtaceae) were identified as preferred roosting hosts for the melon fly, and tiger's claw, panax, castor bean, Canada cocklebur, Xanthium strumarium L. (Asterales: Asteraceae

  17. Assessment of attractiveness of plants as roosting sites for the melon fly, Bactrocera cucurbitae, and oriental fruit fly, Bactrocera dorsalis.

    Science.gov (United States)

    McQuate, Grant T; Vargas, Roger I

    2007-01-01

    The use of toxic protein bait sprays to suppress melon fly, Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae), populations typically involves application to vegetation bordering agricultural host areas where the adults seek shelter ("roost"). Although bait spray applications for suppression of oriental fruit fly, Bactrocera dorsalis (Hendel), populations have traditionally been applied to the host crop, rather than to crop borders, roosting by oriental fruit flies in borders of some crop species, such as papaya, Carica papaya L. (Brassicales: Caricaceae), suggests that bait spray applications to crop borders could also help in suppression of B. dorsalis populations. In order to develop improved recommendations for application of bait sprays to border plants for suppression of melon fly and oriental fruit fly populations, the relative attractiveness of a range of plant species, in a vegetative (non-flowering) stage, was tested to wild melon fly and oriental fruit fly populations established in a papaya orchard in Hawaii. A total of 20 plant species were evaluated, divided into four categories: 1) border plants, including corn, Zea mays L. (Poales: Poaceae), windbreaks and broad-leaved ornamentals, 7 species; 2) weed plants commonly found in agricultural fields in Hawaii, 6 species; 3) host crop plants, 1 species- zucchini, Cucurbita pepo L. (Violales: Curcurbitaceae), and 4) locally grown fruit trees, 6 species. Plants were established in pots and placed in an open field, in clusters encircling protein bait traps, 20 m away from the papaya orchard. Castor bean, Ricinus communis L. (Euphorbiales: Euphorbiaceae), panax, Polyscias guilfoylei (Bull) Bailey (Apiales: Araliaceae), tiger's claw, Erythnna variegata L. (Fabales: Fabaceae), and guava, Psidium guajava L. (Myrtales: Myrtaceae) were identified as preferred roosting hosts for the melon fly, and tiger's claw, panax, castor bean, Canada cocklebur, Xanthium strumarium L. (Asterales: Asteraceae), Brazilian

  18. Classical olfactory conditioning in the oriental fruit fly, Bactrocera dorsalis.

    Directory of Open Access Journals (Sweden)

    Jia Li Liu

    Full Text Available The oriental fruit fly, Bactrocera dorsalis, is a serious pest of fruits and vegetables. Methyl eugenol (ME, a male attractant, is used to against this fly by mass trapping. Control effect may be influenced by learning, which could modify the olfactory response of the fly to this attractant. To collect the behavioral evidence, studies on the capability of this fly for olfactory learning are necessary. We investigated olfactory learning in male flies with a classical olfactory conditioning procedure using restrained individuals under laboratory conditions. The acquisition of the proboscis extension reflex was used as the criterion for conditioning. A high conditioned response level was found in oriental fruit flies when an odor was presented in paired association with a sucrose reward but not when the odor and sucrose were presented unpaired. We also found that the conditioning performance was influenced by the odor concentration, intertrial interval, and starvation time. A slight sensitization elicited by imbibing sucrose was observed. These results indicate that oriental fruit flies have a high capacity to form an olfactory memory as a result of classical conditioning.

  19. Fecundity and longevity of Bactrocera carambolae Drew & Hancock (Diptera: Tephritidae

    Directory of Open Access Journals (Sweden)

    Cristiane Ramos Jesus-Barros

    2017-12-01

    Full Text Available Bactrocera carambolae Drew & Hancock is an exotic species considered a quarantine pest in Brazil, with distribution limited to the states of Amapá and Roraima. Knowledge of its biology under Brazilian conditions is still limited. The objective of this work was to determine the fecundity and longevity of B. carambolae females, reared on artificial diet, under laboratory conditions. The experiment was carried out at Embrapa Amapá, where 20 newly emerged B. carambolae couples were selected (F3 generation. Each couple was placed in a plastic cage containing feed, distilled water and an artificial oviposition device and stored in an air-conditioned room (26 ± 1°C, 60 ± 10% R. H. and 12-hour photoperiod. The eggs deposited on each device were counted daily. Mean survival was 90.70 ± 9.97 days and the maximum longevity was 150 days. The mean duration of the pre-oviposition period was 25.15 ± 3.54 days and the oviposition period was 62.73 ± 7.84 days. Fecundity was variable over time, with an oviposition peak on the 28th day. The mean number of eggs per female was 1,088.26 ± 167.82. These results suggest that B. carambolae uses high fecundity and longevity as a reproductive strategy.

  20. Development of phytosanitary cold treatments for oranges infested with Bactrocera invadens and Bactrocera zonata (Diptera: Tephritidae) by comparison with existing cold treatment schedules for Ceratitis capitata (Diptera: Tephritidae).

    Science.gov (United States)

    Hallman, Guy J; Myers, Scott W; El-Wakkad, Mokhtar F; Tadrous, Meshil D; Jessup, Andrew J

    2013-08-01

    Phytosanitary cold treatments were tested for Bactrocera invadens Drew, Tsuruta, and White and Bactrocera zonata (Saunders) using comparisons with Ceratitis capitata (Wiedemann). Oranges were infested by puncturing holes in the peel and allowing tephritids to oviposit in the holes. The treatments were initiated when the larvae reached late third instar because previous research had shown that stage to be the most cold tolerant for all three species. Results show that B. invadens is not more cold tolerant than C. capitata and B. zonata at 1.0 +/- 0.1 degrees C and lend support to the use of C. capitata cold treatment schedules for B. invadens. It cannot be concluded that B. zonata is not more cold tolerant than C. capitata.

  1. Methoprene application and diet protein supplementation to male melon fly, Bactrocera cucurbitae, modifies female remating behavior

    Science.gov (United States)

    Methoprene (an analogue of juvenile hormone) application and feeding on a protein diet is known to enhance male melon fly, Bactrocera cucurbitae Coquillett (Diptera: Tephritidae), mating success. In the present study we investigated the effect of these treatments on male B. cucurbitae’s ability to i...

  2. Male Fruit Fly, Bactrocera tau (Diptera; Tephritidae) attractants from Elsholtzia pubescens Bth

    NARCIS (Netherlands)

    Hasyim, A.; Muryati,; Mizu Istianto,; Kogel, de W.J.

    2007-01-01

    Studies on the ability of different plant extracts to attract male fruit flies indicated that an extract of Elsholtzia pubescens attracted male Bactrocera tau fruit flies in Passion fruit orchards in West Sumatra, Indonesia. Analyses of the plant extract showed that the major compound present was

  3. A liquid larval diet for rearing Bactrocera invadens and Ceratitis fasciventris (Diptera:Tephritidae)

    Science.gov (United States)

    Bactrocera invadens Drew, Tsuruta & White and Ceratitis fasciventris (Bezzi) are the major fruit fly pests of fruits and vegetables in Africa. The effects of two types of larval diet, liquid and solid (carrot based), on various quality control parameters (pupal recovery, pupal weight, adult emergenc...

  4. Populations of Bactrocera oleae (Diptera: Tephritidae) and Its Parasitoids in Himalayan Asia

    Science.gov (United States)

    For a biological control program against olive fruit fly, Bactrocera oleae Rossi, olives were collected in the Himalayan foothills (China, Nepal, India, and Pakistan) to discover new natural enemies. Wild olives, Olea europaea ssp. cuspidata (Wall ex. G. Don), were sparsely distributed and fly-infes...

  5. Identification of a carboxylesterase associated with resistance to naled in Bactrocera dorsalis (Hendel)

    Science.gov (United States)

    Compared to other organophosphate-resistant and -susceptible (S) lines of Bactrocera dorsalis, the carboxylesterase (CBE) BdE5 in the naled-resistant(nal-r) line has been found to possess remarkable quantitative elevation. Our study attempts to identify the role of BdE5 in naled resistance, and we d...

  6. Artificial rearing of the peach fruit fly Bactrocera zonata (Diptera:Tephritidae)

    Science.gov (United States)

    Integration of the sterile insect technique (SIT) into the area-wide management of the peach fruit fly Bactrocera zonata (Saunders) is a promising althernative to the localized use of chemical control tactics. Implementation of the SIT requires adequate numbers of sterile male insects that are produ...

  7. Molecular interactions between the olive and the fruit fly Bactrocera oleae

    Directory of Open Access Journals (Sweden)

    Corrado Giandomenico

    2012-06-01

    Full Text Available Abstract Background The fruit fly Bactrocera oleae is the primary biotic stressor of cultivated olives, causing direct and indirect damages that significantly reduce both the yield and the quality of olive oil. To study the olive-B. oleae interaction, we conducted transcriptomic and proteomic investigations of the molecular response of the drupe. The identifications of genes and proteins involved in the fruit response were performed using a Suppression Subtractive Hybridisation technique and a combined bi-dimensional electrophoresis/nanoLC-ESI-LIT-MS/MS approach, respectively. Results We identified 196 ESTs and 26 protein spots as differentially expressed in olives with larval feeding tunnels. A bioinformatic analysis of the identified non-redundant EST and protein collection indicated that different molecular processes were affected, such as stress response, phytohormone signalling, transcriptional control and primary metabolism, and that a considerable proportion of the ESTs could not be classified. The altered expression of 20 transcripts was also analysed by real-time PCR, and the most striking differences were further confirmed in the fruit of a different olive variety. We also cloned the full-length coding sequences of two genes, Oe-chitinase I and Oe-PR27, and showed that these are wound-inducible genes and activated by B. oleae punctures. Conclusions This study represents the first report that reveals the molecular players and signalling pathways involved in the interaction between the olive fruit and its most damaging biotic stressor. Drupe response is complex, involving genes and proteins involved in photosynthesis as well as in the production of ROS, the activation of different stress response pathways and the production of compounds involved in direct defence against phytophagous larvae. Among the latter, trypsin inhibitors should play a major role in drupe resistance reaction.

  8. Molecular interactions between the olive and the fruit fly Bactrocera oleae

    Science.gov (United States)

    2012-01-01

    Background The fruit fly Bactrocera oleae is the primary biotic stressor of cultivated olives, causing direct and indirect damages that significantly reduce both the yield and the quality of olive oil. To study the olive-B. oleae interaction, we conducted transcriptomic and proteomic investigations of the molecular response of the drupe. The identifications of genes and proteins involved in the fruit response were performed using a Suppression Subtractive Hybridisation technique and a combined bi-dimensional electrophoresis/nanoLC-ESI-LIT-MS/MS approach, respectively. Results We identified 196 ESTs and 26 protein spots as differentially expressed in olives with larval feeding tunnels. A bioinformatic analysis of the identified non-redundant EST and protein collection indicated that different molecular processes were affected, such as stress response, phytohormone signalling, transcriptional control and primary metabolism, and that a considerable proportion of the ESTs could not be classified. The altered expression of 20 transcripts was also analysed by real-time PCR, and the most striking differences were further confirmed in the fruit of a different olive variety. We also cloned the full-length coding sequences of two genes, Oe-chitinase I and Oe-PR27, and showed that these are wound-inducible genes and activated by B. oleae punctures. Conclusions This study represents the first report that reveals the molecular players and signalling pathways involved in the interaction between the olive fruit and its most damaging biotic stressor. Drupe response is complex, involving genes and proteins involved in photosynthesis as well as in the production of ROS, the activation of different stress response pathways and the production of compounds involved in direct defence against phytophagous larvae. Among the latter, trypsin inhibitors should play a major role in drupe resistance reaction. PMID:22694925

  9. Multigene Phylogeography of Bactrocera caudata (Insecta: Tephritidae): Distinct Genetic Lineages in Northern and Southern Hemispheres.

    Science.gov (United States)

    Yong, Hoi-Sen; Lim, Phaik-Eem; Tan, Ji; Song, Sze-Looi; Suana, I Wayan; Eamsobhana, Praphathip

    2015-01-01

    Bactrocera caudata is a pest of pumpkin flower. Specimens of B. caudata from the northern hemisphere (mainland Asia) and southern hemisphere (Indonesia) were analysed using the partial DNA sequences of the nuclear 28S rRNA and internal transcribed spacer region 2 (ITS-2) genes, and the mitochondrial cytochrome c oxidase subunit I (COI), cytochrome c oxidase subunit II (COII) and 16S rRNA genes. The COI, COII, 16S rDNA and concatenated COI+COII+16S and COI+COII+16S+28S+ITS-2 nucleotide sequences revealed that B. caudata from the northern hemisphere (Peninsular Malaysia, East Malaysia, Thailand) was distinctly different from the southern hemisphere (Indonesia: Java, Bali and Lombok), without common haplotype between them. Phylogenetic analysis revealed two distinct clades (northern and southern hemispheres), indicating distinct genetic lineage. The uncorrected 'p' distance for the concatenated COI+COII+16S nucleotide sequences between the taxa from the northern and southern hemispheres ('p' = 4.46-4.94%) was several folds higher than the 'p' distance for the taxa in the northern hemisphere ('p' = 0.00-0.77%) and the southern hemisphere ('p' = 0.00%). This distinct difference was also reflected by concatenated COI+COII+16S+28S+ITS-2 nucleotide sequences with an uncorrected 'p' distance of 2.34-2.69% between the taxa of northern and southern hemispheres. In accordance with the type locality the Indonesian taxa belong to the nominal species. Thus the taxa from the northern hemisphere, if they were to constitute a cryptic species of the B. caudata species complex based on molecular data, need to be formally described as a new species. The Thailand and Malaysian B. caudata populations in the northern hemisphere showed distinct genetic structure and phylogeographic pattern.

  10. Influence of modified atmosphere packaging on radiation tolerance in the phytosanitary pest melon fly, Bactrocera cucurbitae (Diptera Tephritidae)

    Science.gov (United States)

    Modified atmosphere packaging (MAP) producing a low oxygen environment to increase produce shelf life may increase the radiation tolerance of insect pests receiving phytosanitary irradiation treatment on traded agricultural commodities. Melon fly, Bactrocera cucurbitae (Diptera: Tephritidae) is an i...

  11. Inter-regional mating compatibility among Bactrocera dorsalis populations in Thailand (Diptera,Tephritidae)

    Science.gov (United States)

    Chinvinijkul, Suksom; Srikachar, Sunyanee; Kumjing, Phatchara; Weera Kimjong; Sukamnouyporn, Weerawan; Polchaimat, Nongon

    2015-01-01

    Abstract Mating compatibility among recently colonized (wildish) populations of Bactrocera dorsalis (Hendel) from different geographic origins in Thailand was assessed through inter-regional mating tests. Outdoor octagonal nylon screen field cages containing single potted mango trees (Mangifera indica L.) were used. Sexual compatibility was determined using the index of sexual isolation (ISI), the male relative performance index (MRPI), and the female relative performance index (FRPI). The ISI values indicated that the northern population of Bactrocera dorsalis from Chiang Mai province was sexually compatible with the southern population of Bactrocera dorsalis (previously Bactrocera papayae) from Nakhon Si Thammarat province. The MRPI values showed that the northern males had a slightly higher tendency to mate than southern males, while the FRPI data reflected that females of both origins participated equally in matings. In all combinations there were no differences between homotypic and heterotypic couples in mating latency. Southern males tended to mate first with southern females, followed by northern males mating with northern females, while the latest matings involved heterotypic couples, in particular northern males mating with southern females. Overall, more couples were collected from higher parts of the field cage and the upper tree canopy, while there were no differences between the origins of flies in terms of elevation of couples within the cage. Laboratory assessments of fecundity showed no differences in the average number of eggs resulting from inter-regional crosses. Development of immature stages was also equal in the two hybrid crosses, with no differences found in the number of pupae produced, percentage pupal recovery, and percent adult emergence. The practical implication of this study is that colony of Bactrocera dorsalis derived from any northern or southern region of Thailand can potentially be used in sterile insect technique programs

  12. Development of allele-specific single-nucleotide polymorphism-based polymerase chain reaction markers in cytochrome oxidase I for the differentiation of Bactrocera papayae and Bactrocera carambolae (Diptera: Tephritidae).

    Science.gov (United States)

    Chua, Tock H; Song, B K; Chong, Y V

    2010-12-01

    Differentiation of Bactrocera papayae Drew & Hancock and Bactrocera carambolae Drew & Hancock (Diptera: Tephritidae) based on morphological characters has often been problematical. We describe here a single-nucleotide polymorphism (SNP)-based polymerase chain reaction (PCR) assay to differentiate between these two species. For detection of SNPs, fragments derived from each species were amplified using two primer pairs, COIF/COIR and UEA7/UEA10, sequenced, and aligned to obtain a contiguous 1,517-bp segment. Two new sets of primers were designed based on the 11 SNPs identified in the region. Results of the SNP-PCR test using any one of these species-specific primer sets indicate that these two species could be differentiated on basis of presence or absence of a band in the gel profile. We also tested the SNP-PCR primers on Bactrocera umbrosa F., Bactrocera cucurbitae Coquillett, Bactrocera latifrons Hendel, and Bactrocera tau (Walker) but did not detect any band in the gel, indicating the likelihood of a false positive for B. papayae is nil. This SNP-PCR method is efficient and useful, especially for immature life stages or when only adult body parts of the two species are available for identification, as encountered often in quarantine work.

  13. Interspecific Competition Between Ceratitis capitata and Two Bactrocera Spp. (Diptera: Tephritidae) Evaluated via Adult Behavioral Interference Under Laboratory Conditions.

    Science.gov (United States)

    Liu, Hui; Zhang, Can; Hou, Bo-Hua; Ou-Yang, Ge-Cheng; Ma, Jun

    2017-06-01

    The Mediterranean fruit fly, Ceratitis capitata (Wiedemann), is considered one of the most invasive tephritid species. It has spread and established populations successfully throughout many of the tropical temperate regions, partially owing to the increase in global trading activity that facilitates diffusion of species. However, C. capitata has never been detected in China, even though some areas of the country have favorable climate and ample food resources. Historically, some researchers have hypothesized that the principal reasons for its absence are the defenses mounted by native Bactrocera species against C. capitata. We evaluated the modes and strengths of interspecific competition between C. capitata and two Bactrocera species (Bactrocera dorsalis Hendel and Bactrocera correcta Bezzi) by conducting experiments on behavioral interference between the adults of these fruit fly species. Under appropriate conditions, the two Bactrocera species showed a distinct advantage in competition for oviposition, noticeably suppressing C. capitata. Although no mating interference between C. capitata and the two Bactrocera species was observed, the role of interference competition in the prevention of C. capitata invasion is still worthy of being discussed. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Sex and aggregation pheromone transport after methyl eugenol consumption in male Bactrocera papayae

    International Nuclear Information System (INIS)

    Hee, Alvin K.W.; Tan, K.H.

    2000-01-01

    Amongst at least 52 sibling species complexes in the Oriental fruit fly, Bactrocera dorsalis Hendel (Diptera: Tephritidae), B. papayae (formerly Mal B) Drew and Hancock (Drew and Hancock 1994) is beginning to emerge as an economically important insect pest which poses a severe threat to the fruit cultivation in both subtropical and tropical countries. In Malaysia, B. papayae is one of the most damaging pests which infests many commercially grown fruits (Tan and Lee 1982). Like the Oriental fruit fly and its sibling species complex, B. carambolae Drew and Hancock, B. papayae is also strongly attracted to, and compulsively feeds on, methyl eugenol (ME) (Tan 1993). Chemical analyses revealed that in B. papayae males, ME is converted to phenylpropanoids which are then selectively accumulated in the rectal gland. Of the three major volatile substances, 2-allyl-4,5-dimethoyphenol (allyl-DMP) was detected in higher quantities relative to the trans-coniferyl alcohol (4-(3-hydroxy-E-propenyl)-2-methoxyphenol) (CF) and cis-3,4-dimethoxycinnamyl alcohol (cis-DMC) (Nishida et al. 1988a, 1988b). Behavioural studies have also shown that allyl-DMP and CF function as male sex and aggregation pheromone in B. papayae (Tan and Nishida 1996, Hee and Tan 1998). Allyl-DMP was found to be the most attractive compound and cis-DMC the least attractive to the males (Tan 1996). Consumption of ME enhances the mating competitiveness of males. This is demonstrated by the strong attraction of females to conspecific ME-fed males in wind tunnel experiments (Hee and Tan 1998). In male-male mating competition for virgin females, males that fed on ME performed significantly better (Shelly and Dewire 1994, Tan and Nishida 1996). Thus it appears that ME-fed males produced signals that were more attractive. However, the characterisation and understanding of the functions of these phenylpropanoids have not been accompanied by studies of their physiological mode of transport in male flies. The current

  15. IDENTIFIKASI SENYAWA VOLATIL DALAM OLAHAN LIMBAH KAKAO SEBAGAI POTENSI ATRAKTAN BACTROCERA CARAMBOLAE (DIPTERA:TEPHRITIDAE

    Directory of Open Access Journals (Sweden)

    Dyah Rini Indriyanti

    2011-02-01

    Full Text Available Limbah kakao cair yang diolah dengan cara pemanasan dan pemberian enzim proteolitik dapat menarik lalat buah Bactrocera carambolae di laboratorium. Olahan limbah kakao menghasilkan senyawa volatil yang menarik B. carambolae. Lalat buah Bactrocera spp. merupakan hama penting tanaman buah dan sayuran. Penelitian bertujuan mengidentifikasi senyawa atraktan olahan limbah kakao. Senyawa volatil tersebut diidentifikasi dengan GC-MS menggunakan pelarut metanol dan diperkuat dengan analisis infra merah. Hasil identifikasi berdasarkan analisis fragmentasi GC-MS menunjukkan bahwa olahan limbah kakao mengandung enam senyawa volatil: etil-2-hidroksi propanoat (5,96%; cis-7-dodesenil asetat (2,28%; senyawa asetami- da (1,36%; 3,5-dihidroksi-2metil-5,6-dihidropiran (16,64%; hidroksimetilfurfurol (52,31%; dan derivat1-undekuna (3,34%. Senyawa ini diperkuat oleh identifikasi beberapa gugus fungsional yang ditunjukkan dalam spektra infra merah olahan limbah kakao.

  16. The complete mitochondrial genome of the pumpkin fruit fly, Bactrocera tau (Diptera: Tephritidae).

    Science.gov (United States)

    Tan, Meihua; Zhang, Rui; Xiang, Caiyu; Zhou, Xin

    2016-07-01

    The pumpkin fruit fly, Bactrocera tau, is an important quarantine pest in many countries because of its mass destructiveness to a variety of vegetable and fruit plants. In this study, we report the complete mitochondrial genome (mitogenome) of B. tau. Its complete mitogenome sequence is 15,687 bp in length, which contains a non-coding control region and all of the 37 genes of bilaterian animals (13 protein-coding genes, 22 tRNA genes and 2 rRNA genes). A phylogenetic tree of the complete mitogenome of all available Tephritidae species was established to approve the accuracy. The base composition of mitogenome sequence and the gene arrangement including directions are rather conservative, compared to other published mitogenomes of Bactrocera species. This first complete mitogenome of B. tau will facilitate the development of new DNA markers for species diagnosis, therefore improving accurate detection of quarantine species.

  17. Male sex pheromonal components derived from methyl eugenol in the hemolymph of the fruit fly Bactrocera papayae.

    Science.gov (United States)

    Hee, Alvin Kah-wei; Tan, Keng-Hong

    2004-11-01

    Pharmacophagy of methyl eugenol (ME)--a highly potent male attractant, by Bactrocera papayae results in the hydroxylation of ME to sex pheromonal components, 2-ally-4,5-dimethoxyphenol (DMP) and (E)-coniferyl alcohol (CF). These compounds, which are also male attractants, are then sequestered and stored in the rectal gland prior to their release during courtship at dusk. Chemical analyses of the digestive tract (excluding the crop and rectal gland) showed the absence of the sex pheromonal components and their precursor, ME. However, B. papayae males were attracted to and fed on the ME-fed male hemolymph extracts but not on hemolymph extracts of ME-deprived males. After thin layer chromatography in a hexane:ethyl acetate solvent system, flies were attracted to and fed on the original point on the TLC plate where the hemolymph extract had been spotted, suggesting that the pheromone components were bound in polar complexes. Chemical analyses of the ME-fed male hemolymph and crop extracts revealed the presence of the sex pheromonal components. The presence of the ME-derived pheromonal components and the absence of ME in the hemolymph suggest that the hemolymph is involved in the transportation of sex pheromonal components from the crop to the rectal gland.

  18. Oviposition site-selection by Bactrocera dorsalis is mediated through an innate recognition template tuned to γ-octalactone.

    Directory of Open Access Journals (Sweden)

    Kamala Jayanthi Pagadala Damodaram

    Full Text Available Innate recognition templates (IRTs in insects are developed through many years of evolution. Here we investigated olfactory cues mediating oviposition behavior in the oriental fruit fly, Bactrocera dorsalis, and their role in triggering an IRT for oviposition site recognition. Behavioral assays with electrophysiologically active compounds from a preferred host, mango, revealed that one of the volatiles tested, γ-octalactone, had a powerful effect in eliciting oviposition by gravid B. dorsalis females. Electrophysiological responses were obtained and flies clearly differentiated between treated and untreated substrates over a wide range of concentrations of γ-octalactone. It triggered an innate response in flies, overriding inputs from other modalities required for oviposition site evaluation. A complex blend of mango volatiles not containing γ-octalactone elicited low levels of oviposition, whereas γ-octalactone alone elicited more oviposition response. Naïve flies with different rearing histories showed similar responses to γ-octalactone. Taken together, these results indicate that oviposition site selection in B. dorsalis is mediated through an IRT tuned to γ-octalactone. Our study provides empirical data on a cue underpinning innate behavior and may also find use in control operations against this invasive horticultural pest.

  19. Species determination of Malaysian Bactrocera pests using PCR-RFLP analyses (Diptera: Tephritidae).

    Science.gov (United States)

    Chua, Tock H; Chong, Yi Vern; Lim, Saw Hoon

    2010-04-01

    Identification of Bactrocera carambolae Drew and Hancock, B. papayae Drew and Hancock, B. tau Walker, B. latifrons Hendel, B. cucurbitae Coquillett, B. umbrosa Fabricius and B. caudata Fabricius would pose a problem if only a body part or an immature stage were available. Analysis of polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) of cytochrome oxidase I (COI) gene using primers COIR, COIF, UEA7 and UEA10 and restriction enzymes (MseI, RsaI and Alu1) was carried out. The banding profiles in the electrophoresis gel were analysed. The COI gene in six Bactrocera spp. was successfully amplified by COIR and COIF, as well as UEA7 and UEA10, while B. caudata was amplified successfully only by UEA primers. Using COI amplified PCR products and restriction enzymes, distinct banding profiles for B. tau, B. latifrons, B. cucurbitae and B. umbrosa were observed, but not for B. carambolae and B. papayae. However, using UEA7, UEA10 and RsaI, B. caudata could be identified, while B. carambolae and B. papayae might possibly be separated from one another. It was also shown that adult body parts or immature life stages of B. carambolae, B. papayae, B. latifrons and B. cucurbitae produced the same banding profiles as the adults. PCR-RFLP analyses are able to identify positively five Bactrocera species, while B. papayae and B. carambolae might possibly be separated from one another, even if immature life stages or adult body parts are used.

  20. Molecular Phylogeny and Identification of the Peach Fruit Fly, Bactrocera zonata, Established in Egypt

    Science.gov (United States)

    Abd-El-Samie, Emtithal M.; El Fiky, Zaki A.

    2011-01-01

    The genetic structure of the Egyptian peach fruit fly (Bactrocera zonata (Saunders) (Diptera: Tephritidae)) population was analyzed using total RNA from adult females. A portion of mitochondrial cytochrome oxidase I (COI), 369 bp was amplified using RT-PCR, and was sequenced and analyzed to clarify the phylogenetic relationship of B. zonata established in Egypt. The data suggested that the gene shared a similarity in sequence compared to Bactrocera COI gene found in GenBank. Molecular phylogenetic analyses were performed based on nucleotide sequences in order to examine the position of the Egyptian population among many other species of fruit flies. The results indicate that four accession numbers of B. zonata (three from New Zealand and one from India) are closely related, while the Egyptian B. zonata are close to the 71 accession numbers of Bactrocera include one B. zonata from New Zealand. These two B. zonata from Egypt and New Zealand showed a close relationship in neighbor—joining analysis using the seven accession numbers of B. zonata. In addition, a theoretical restriction map of the homology portion of the COI gene was constructed using 212 restriction enzymes obtained from the restriction enzyme database to identify the Egyptian and New Zealand B. zonata. PMID:22958094

  1. Captures of Wild Ceratitis capitata, Bactrocera dorsalis, and Bactrocera cucurbitae (Diptera: Tephritidae) in Traps with Improved Multilure TMR Dispensers Weathered in California.

    Science.gov (United States)

    Vargas, Roger I; Souder, Steven K; Morse, Joseph G; Grafton-Cardwell, Elizabeth E; Haviland, David R; Kabashima, John N; Faber, Ben A; Mackey, Bruce; Cook, Peter

    2016-04-01

    During 2012–2013, solid Mallet TMR (trimedlure [TML], methyl eugenol [ME], raspberry ketone [RK]) wafers impregnated with DDVP (2, 2-dichlorovinyl dimethyl phosphate) insecticide were weathered during summer (8 wk) and winter (12 wk) in five California citrus-growing counties (Kern, Ventura, Orange, Tulare, and Riverside). In addition, TMR wafers without DDVP and with a Hercon Vaportape II insecticidal strip were compared with TMR dispensers with DDVP at Exeter and Riverside. Weathered treatments were shipped every week (overnight delivery) to Hawaii and frozen for a later bioassay in a 1,335-ha coffee plantation near Numila, Kauai Island, HI, where Mediterranean fruit fly, Ceratitis capitata (Wiedemann), oriental fruit fly, Bactrocera dorsalis Hendel, and melon fly, Bactrocera cucurbitae Coquillett, were all present. We compared trap captures of the three species, C. capitata, B. dorsalis, and B. cucurbitae, for the five different weathering locations. Captures of C. capitata, B. dorsalis, and B. cucurbitae with Mallet TMR dispensers (with DDVP) were not significantly different for the five locations. Captures with the Mallet TMR dispenser without DDVP and Vaportape were similar to those for Mallet TMR with DDVP, although there were some slight location differences. In conclusion, based on these results, the Mallet TMR dispenser could potentially be used in California habitats where large numbers of detection traps are currently deployed. Use of Vaportape with dispensers would not require them to be registered with US Environmental Protection Agency (EPA). Dispensers for use as Male Annihilation Technique (MAT) devices will be tested further in Hawaii.

  2. Insecticidal activity of basil oil, trans-anethole, estragole, and linalool to adult fruit flies of Ceratitis capitata, Bactrocera dorsalis, and Bactrocera cucurbitae.

    Science.gov (United States)

    Chang, Chiou Ling; Cho, Il Kyu; Li, Qing X

    2009-02-01

    Basil oil and its three major active constituents (trans-anethole, estragole, and linalool) obtained from basil (Oscimum basilicum L.) were tested on three tephritid fruit fly species [Ceratitis capitata (Wiedemann), Bactrocera dorsalis (Hendel), and Bactrocera cucurbitae (Coquillett)] for insecticidal activity. All test chemicals acted fast and showed a steep dose-response relationship. The lethal times for 90% mortality/knockdown (LT90) of the three fly species to 10% of the test chemicals were between 8 and 38 min. The toxic action of basil oil in C. capitata occurred significantly faster than in B. cucurbitae but slightly faster than in B. dorsalis. Estragole acted faster in B. dorsalis than in C. capitata and B. cucurbitae. Linalool action was faster in B. dorsalis and C. capitata than in B. cucurbitae. trans-Anethole action was similar to all three species. Methyl eugenol acted faster in C. capitata and B. cucurbitae than in B. dorsalis. When linalool was mixed with cuelure (attractant to B. cucurbitae male), its potency to the three fly species decreased as the concentration of cuelure increased. This was due to linalool hydrolysis catalyzed by acetic acid from cuelure degradation, which was confirmed by chemical analysis. When methyl eugenol (B. dorsalis male attractant) was mixed with basil oil, trans-anethole, estragole, or linalool, it did not affect the toxicity of basil oil and linalool to B. dorsalis, but it did significantly decrease the toxicity of trans-anethole and estragole. Structural similarity between methyl eugenol and trans-anethole and estragole suggests that methyl eugenol might act at a site similar to that of trans-anethole and estragole and serve as an antagonist if an action site exists. Methyl eugenol also may play a physiological role on the toxicity reduction.

  3. Weathering and Chemical Degradation of Methyl Eugenol and Raspberry Ketone Solid Dispensers for Detection, Monitoring, and Male Annihilation of Bactrocera dorsalis and Bactrocera cucurbitae (Diptera: Tephritidae) in Hawaii.

    Science.gov (United States)

    Vargas, Roger I; Souder, Steven K; Nkomo, Eddie; Cook, Peter J; Mackey, Bruce; Stark, John D

    2015-08-01

    Solid male lure dispensers containing methyl eugenol (ME) and raspberry ketone (RK), or mixtures of the lures (ME + RK), and dimethyl dichloro-vinyl phosphate (DDVP) were evaluated in area-wide pest management bucket or Jackson traps in commercial papaya (Carica papaya L.) orchards where both oriental fruit fly, Bactrocera dorsalis (Hendel), and melon fly, Bactrocera cucurbitae (Coquillett), are pests. Captures of B. dorsalis with fresh wafers in Jackson and bucket traps were significantly higher on the basis of ME concentration (Mallet ME [56%] > Mallet MR [31.2%] > Mallet MC [23.1%]). Captures of B. cucurbitae with fresh wafers in Jackson and bucket traps were not different regardless of concentration of RK (Mallet BR [20.1%] = Mallet MR [18.3%] = Mallet MC [15.9%]). Captures of B. dorsalis with fresh wafers, compared with weathered wafers, were significantly different after week 12; captures of B. cucurbitae were not significantly different after 16 wk. Chemical analyses revealed presence of RK in dispensers in constant amounts throughout the 16-wk trial. Degradation of both ME and DDVP over time was predicted with a high level of confidence by nonlinear asymptotic exponential decay curves. Results provide supportive data to deploy solid ME and RK wafers (with DDVP) in fruit fly traps for detection programs, as is the current practice with solid TML dispensers placed in Jackson traps. Wafers with ME and RK might be used in place of two separate traps for detection of both ME and RK responding fruit flies and could potentially reduce cost of materials and labor by 50%. Published by Oxford University Press on behalf of Entomological Society of America 2015. This work is written by US Government employees and is in the public domain in the US.

  4. PENGARUH PEMBERIAN EKTRAK DAUN KERSEN (Muntingia calabura TERHADAP LALAT BUAH Bactrocera carambolae;THE INFLUENCE TO GIVING LEAF EXTRACT KERSEN (Muntingia calabura AGAINST FRUIT FLIES Bactrocera carambolae

    Directory of Open Access Journals (Sweden)

    Diah Asta Putri

    2016-12-01

    Full Text Available AbstrakLalat buah telah diketahui secara luas sebagai hama utama pada komoditas buah di Indonesia sehingga menyebabkan kerugian ekonomi yang besar. Daun kersen (Muntingia calabura telah diteliti mengandung beberapa senyawa yang berpotensi untuk mengendalikan serangan lalat buah. Penelitian ini bertujuan untuk mengetahui pengaruh ekstrak etanol daun kersen terhadap Bactrocera carambolae, salah satu jenis lalat buah yang menyerang berbagai buah-buahan sebagai inangnya. Ekstrak etanol daun kersen dengan konsentrasi yang berbeda yaitu 0%, 2,5%, 5% dan 7,5% disemprotkan ke permukaan buah jambu biji (Psidium guajava dan diamati pengaruhnya terhadap lalat buah tersebut. Parameter dalam penelitian ini yaitu jumlah pupa dan jumlah lalat dewasa. Data dianalisis menggunakan uji analisis varians (uji F α = 0,05 dilanjutkan dengan uji Beda Nyata Terkecil (BNT. Hasil penelitian menunjukkan semakin tinggi konsentrasi ekstrak yang diuji maka semakin kuat pengaruhnya pada penurunan jumlah pupa dan lalat dewasa. Berdasarkan hasil penelitian ini maka ekstrak etanol daun kersen diharapkan dapat menjadi alternatif untuk pestisida sintetis.Abstract Fruit flies are known as major fruit pest in Indonesia that cause economic losses. Muntingia calabura leaves has been observed to contain compounds that can potentially control the fruit fly. This research aimed to investigate the effect of ethanolic extract of M. calabura leaves againts Bactrocera carambolae, one of fruit flies which has wide range host. Ethanolic extract of M. calabura leaves with different concentrations of 0%, 2.5%, 5% and 7.5% that sprayed onto the surface of guava (Psidium guajava and observed their effect on the fruit fly. Parameters observed are the number of pupae and the number of adult flies. Data were analyzed by analysis of variance (F test α = 0.05 followed by Least Significant Difference (LSD. Results showed that the higher the concentration of extract tested, the stronger its effect on

  5. A Chromosome-scale assemby of the Bactrocera cucurbitae genome provides insight to the genetic basis of white pupae

    Science.gov (United States)

    The melon fly, Bactrocera cucurbitae, is a destructive agricultural pest and is the subject of strict quarantines that are enforced to prevent its establishment outside of its current geographic range. In addition to quarantine efforts, additional control measures are necessary for its eradication i...

  6. Attraction of wild-like and colony-reared Bactrocera cucurbitae (Diptera: Tephritidae) to Cuelure in the field

    Science.gov (United States)

    The attraction of wild tephritids to semiochemical-based lures are the ideal basis for trap network design in detection programs, but in practice, mass-reared colony insects are usually used to determine trap efficiency. For Bactrocera cucurbitae Coquillett, a lower response by wild males compared w...

  7. Reconstructing a comprehensive transcriptome assembly of a white-pupal translocated strain of the pest fruit fly Bactrocera cucurbitae

    Science.gov (United States)

    Background: Bactrocera cucurbitae is an important agricultural pest. Basic genomic information is lacking for this species and this would be useful to inform methods of control, damage mitigation, and eradication efforts. Here, we have sequenced, assembled, and annotated a comprehensive transcriptom...

  8. Oviposition punctures in cucurbit fruits and their economic damage caused by the sterile female melon fly, Bactrocera cucurbitae Coquillett

    International Nuclear Information System (INIS)

    Miyatake, T.; Irabu, T.; Higa, R.

    1993-01-01

    Oviposition punctures caused by sterile females of the tephritid Bactrocera cucurbitae in cucurbit fruits were examined and economic damage was evaluated in Okinawa, Ryukyu Archipelago, Japan. Cage experiments in the field confirmed that sterile females make punctures (sterile stings) on fruits. The features of sterile stings differed depending on fruit species and were classified into 5 types

  9. Response of the pearly eye melon fly Bactrocera cucurbitae (Coquillett)(Diptera:Tephritidae) mutant to host-associated visual cues

    Science.gov (United States)

    We report on a pearly eye mutant (PEM) line generated from a single male Bactrocera cucurbitae collected in Kapoho, Hawaii. Crossing experiments with colony wild-type flies indicate that the locus controlling this trait is autosomal and the mutant allele is recessive. Experiments with females to ass...

  10. Larval x-ray irradiation influences protein expression in pupae of the Oriental fruit fly, Bactrocera Dorsalis

    Science.gov (United States)

    Third instar larvae were exposed to X-ray treatment of the Oriental fruit fly, Bactrocera dorsalis. Irradiated pupae were collected daily. Biological performance parameters of pupae and adults of larvae treated with X-ray irradiation were evaluated. Standard proteomics procedures such as densitometr...

  11. Managing Oriental Fruit Fly, Bactrocera dorsalis (Diptera: Tephritidae), Using Spinosad-Based Protein Bait Sprays in Papaya Orchards in Hawaii

    Science.gov (United States)

    The efficacy of GF-120 Fruit Fly Bait was evaluated as a control of female oriental fruit fly, Bactrocera dorsalis (Hendel) in papaya orchards in Hawaii. Two important components of this study were field sanitation and mass trapping using the male-specific lure methyl eugenol. Three different spray ...

  12. Terminalia larval host fruit reduces the response of Bactrocera dorsalis adults to the male lure methyl eugenol

    Science.gov (United States)

    Methyl eugenol(ME) is a powerful semiochemical attractant to males of the oriental fruit fly, Bactrocera dorsalis, and is the keystone of detection, control, and eradication programs against this polyphagous and highly invasive tephritid pest. Despite its status as a model lure against B.dorsalis, v...

  13. MicroRNAs in the oriental fruit fly, Bactrocera dorsalis: extending Drosophilid miRNA clusters to the Tephritidae

    Science.gov (United States)

    The oriental fruit fly, Bactrocera dorsalis, is an important pest species in the family Tephritidae. It is a phytophagous species with broad host range, and while not established in the mainland United States, is a species of great concern for introduction. Despite of the vast amount of informatio...

  14. Suitability of a liquid larval diet for rearing the Philippines fruit fly Bactrocera philippinensis (Diptera:Tephritidae)

    Science.gov (United States)

    A liquid larval diet as an artificial rearing medium was successfully tested for the Philippines fruit fly Bactrocera philippinensis Drew & Hancock. The biological parameters studied were pupal weight, adult emergence and fliers, sex ratio, fecundity and fertility. The insects performed most satisfa...

  15. Analysis of the olive fruit fly Bactrocera oleae transcriptome and phylogenetic classification of the major detoxification gene families

    NARCIS (Netherlands)

    Pavlidi, N.; Dermauw, W.; Rombauts, S.; Chrisargiris, A.; Van Leeuwen, T.; Vontas, J.

    2013-01-01

    The olive fruit fly Bactrocera oleae has a unique ability to cope with olive flesh, and is the most destructive pest of olives worldwide. Its control has been largely based on the use of chemical insecticides, however, the selection of insecticide resistance against several insecticides has evolved.

  16. Germline transformation of the olive fruit fly, Bactrocera oleae (Rossi)(Diptera:Tephritidae) with a piggyBac transposon vector

    Science.gov (United States)

    The olive fruit fly, Bactrocera oleae, is a highly significant pest in olive growing countries whose control may be enhanced by the use of genetically-modified strains, especially for sterile insect technique programs. To improve and expand this technology, piggyBac-mediated germline transformation ...

  17. Survivorship of male and female Bactrocera dorsalis in the field and the effect of male annihilation technique

    Science.gov (United States)

    Male Annihilation Technique (MAT) is a key component of the Oriental fruit fly Bactrocera dorsalis Hendel (Diptera: Tephritidae) management because of the “strong” attraction of males to the lure methyl eugenol. The optimal application density for MAT has not been investigated for this economically ...

  18. A qPCR-based method for detecting parasitism of Fopius arisanus (Sonan) in oriental fruit flies, Bactrocera dorsalis (Hendel)

    Science.gov (United States)

    BACKGROUND: Parasitism rate detection and parasitoid species identification are necessary in fruit fly biological control. Currently release of mass-reared Fopius arisanus is occurring world-wide, as this species is effective in controlling Bactrocera dorsalis and Ceratitis capitata. While release i...

  19. Phenetic structure of two Bactrocera tau cryptic species (Diptera: Tephritidae) infesting Momordica cochinchinensis (Cucurbitaceae) in Thailand and Laos.

    Science.gov (United States)

    Dujardin, Jean-Pierre; Kitthawee, Sangvorn

    2013-04-01

    Morphometric variation with respect to wing venation patterns was explored for 777 specimens of the Bactrocera tau complex collected in Thailand (nine provinces) and Laos (one locality). Cryptic species B. tau A and C were identified based on their wing shape similarity to published reference images. In Thailand, the B. tau A species was identified in four provinces and the B. tau C species in seven provinces, and both species in one locality of Laos. The objective of the study was to explain the geographic variation of size and shape in two cryptic species collected from the same host (Momordica cochinchinensis). Although collected from the same host, the two species did not show the same morphological variance: it was higher in the B. tau A species, which currently infests a wide range of different fruit species, than in the B. tau C species, which is specific to only one fruit (M. cochinchinensis). Moreover, the two species showed a different population structure. An isolation by distance model was apparent in both sexes of species C, while it was not detected in species A. Thus, the metric differences were in apparent accordance with the known behavior of these species, either as a generalist (species A) or as a specialist (species C), and for each species our data suggested different sources of shape diversity: genetic drift for species C, variety of host plants (and probably also pest-host-relationship) for species A. In addition to these distinctions, the larger species, B. tau C, showed less sexual size and shape dimorphism. The data presented here confirm the previously established wing shape differences between the two cryptic species. Character displacement has been discussed as a possible origin of this interspecific variation. The addition of previously published data on species A from other hosts allowed the testing of the character displacement hypothesis. The hypothesis was rejected for interspecific shape differences, but was maintained for size

  20. Pharmacophagy of methyl eugenol by males enhances sexual selection of Bactrocera carambolae.

    Science.gov (United States)

    Wee, Suk-Ling; Tan, Keng-Hong; Nishida, Ritsuo

    2007-06-01

    After pharmacophagy of methyl eugenol (ME), males of Bactrocera carambolae (Diptera: Tephritidae) produced (E)-coniferyl alcohol (CF) along with its endogenously synthesized pheromonal compounds. CF was shown to be released into the air by the ME-fed males only during the courtship period at dusk and attracted significantly more males and females than the ME-deprived males in wind tunnel assays. However, earlier onset of sexual attraction and a higher mating success were observed only in the wind tunnel and field cage assays on the third day posttreatment of ME. Field cage observations on the male-to-male interaction indicated that the ME-deprived males did not exhibit aggregation behavior, but that ME feeding promoted aggregation behavior in B. carambolae. Field cage observations revealed that the ME-deprived males were not only attracted to the ME-fed males, but also appeared to feed on their anal secretions. The secretions were subsequently confirmed to contain CF along with endogenously produced pheromonal compounds. Results obtained for B. carambolae were compared to those previously obtained from its sibling species, Bactrocera dorsalis, and are discussed in light of species advancement in fruit fly-plant relationships.

  1. The exploration of fruit flies Bactrocera (Diptera:Tephritidae and its parasitoid in Madura Island regions

    Directory of Open Access Journals (Sweden)

    Tjipto Haryono

    2016-07-01

    Full Text Available Madura is enriched by great diversity despite of its infertile natural condition. This condition influences fruit flies existence and diversity. Purpose of this study was to investigate the diversity and distribution of fruit flies with their host in Madura region. Sampling methods in this study were fruit host collection (rearing and trapping using Steiner-type trap that were set in 48 locations in several villages in Bangkalan, Sampang, Pamekasan, and Sumenep regencies. Steiner traps were combined with 2 different attractants, such as methyl eugenol (ME and Cue Lure (CL. There were 5 species of fruit flies obtained from trapping and rearing, namely Bactrocera carambolae, B. papayae, B. umbrosa, B. albistrigata, and B. cucurbitae. Results indicate that the distribution, diversity, and abundance of fruit flies were influenced by the diversity of fruit host, air temperature, and relative air humidity. It is also identified two species of parasitoid imago from rotten fruits collection, namely Biosteres vandenboschi and Fopius arisanus. Keywords: distribution, Bactrocera, parasitoid

  2. Novel toxicity of Bacillus thuringiensis strains against the melon fruit fly, Bactrocera cucurbitae (Diptera: Tephritidae).

    Science.gov (United States)

    Shishir, Md Asaduzzaman; Akter, Asma; Bodiuzzaman, Md; Hossain, M Aftab; Alam, Md Musfiqul; Khan, Shakil Ahmed; Khan, Shakila Nargis; Hoq, M Mozammel

    2015-01-01

    Bactrocera cucurbitae (melon fruit fly) is one of the most detrimental vegetable-damaging pests in Bangladesh. The toxicity of Bacillus thuringiensis (Bt) has been reported against a few genera of Bactrocera in addition to numerous other insect species. Bt strains, harbouring cry1A-type genes were, therefore, assayed in vivo against the 3(rd) instar larvae of B. cucurbitae in this study. The biotype-based prevalence of cry1 and cry1A genes was calculated to be 30.8% and 11.16%, respectively, of the test strains (n=224) while their prevalence was greatest in biotype kurstaki. Though three indigenous Bt strains from biotype kurstaki with close genetic relationship exhibited higher toxicity, maximum mortalities were recorded for Btk HD-73 (96%) and the indigenous Bt JSc1 (93%). LC50 and LC99 values were determined to be 6.81 and 8.32 for Bt JSc1, 7.30 and 7.92 for Bt SSc2, and 6.99 and 7.67 for Btk HD-73, respectively. The cause of toxicity and its variation among the strains was found to be correlated with the synergistic toxic effects of cry1, cry2, cry3 and cry9 gene products, i.e. relevant Cry proteins. The novel toxicity of the B. thuringiensis strains against B. cucurbitae revealed in the present study thus will help in developing efficient and eco-friendly control measures such as Bt biopesticides and transgenic Bt cucurbits.

  3. Using two-sex life tables to determine fitness parameters of four Bactrocera species (Diptera: Tephritidae) reared on a semi-artificial diet.

    Science.gov (United States)

    Jaleel, W; Yin, J; Wang, D; He, Y; Lu, L; Shi, H

    2017-09-25

    Fruit flies in the genus Bactrocera are global, economically important pests of agricultural food crops. However, basic life history information about these pests, which is vital for designing more effective control methods, is currently lacking. Artificial diets can be used as a suitable replacement for natural host plants for rearing fruit flies under laboratory conditions, and this study reports on the two-sex life-table parameters of four Bactrocera species (Bactrocera correcta, Bactrocera dorsalis, Bactrocera cucurbitae, and Bactrocera tau) reared on a semi-artificial diet comprising corn flour, banana, sodium benzoate, yeast, sucrose, winding paper, hydrochloric acid and water. The results indicated that the larval development period of B. correcta (6.81 ± 0.65 days) was significantly longer than those of the other species. The fecundity of B. dorsalis (593.60 eggs female-1) was highest among the four species. There were no differences in intrinsic rate of increase (r) and finite rate of increase (λ) among the four species. The gross reproductive rate (GRR) and net reproductive rate (R 0) of B. dorsalis were higher than those of the other species, and the mean generation time (T) of B. cucurbitae (42.08 ± 1.21 h) was longer than that of the other species. We conclude that the semi-artificial diet was most suitable for rearing B. dorsalis, due to its shorter development time and higher fecundity. These results will be useful for future studies of fruit fly management.

  4. Genetic and cytogenetic analysis of the olive fruit fly Bactrocera oleae (Diptera: Tephritidae).

    Science.gov (United States)

    Mavragani-Tsipidou, P

    2002-09-01

    The genetic and cytogenetic characteristics of one of the major agricultural pests, the olive fruit fly Bactmcera oleae, are presented here. The mitotic metaphase complement of this insect consists of six pairs of chromosomes including one pair of heteromorphic sex chromosomes, with the male being the heterogametic sex. The analysis of the polytene complements of three larval tissues, the fat body, the salivary glands and the Malpighian tubules of this pest has shown (a) a total number of five long chromosomes (10 polytene arms) that correspond to the five autosomes of the mitotic nuclei and a heterochromatic mass corresponding to the sex chromosomes, (b) the constancy of the banding pattern of the three somatic tissues, (c) the absence of a typical chromocenter as an accumulation of heterochromatin, (d) the existence of reverse tandem duplications, and (e) the presence of toroid tips of the chromosome arms. The in situ hybridization of genes or DNA sequences to the salivary gland polytene chromosomes of B. oleae provided molecular markers for all five autosomes and permitted the establishment of chromosomal homologies among B. olea, B. tryoni and Ceratitis capitata. The heat shock response of B. oleae, as revealed by heat-inducible puffing and protein pattern, shows a higher thermotolerance than Drosophila melanogaster.

  5. Epicuticular chemistry reinforces the new taxonomic classification of the Bactrocera dorsalis species complex (Diptera: Tephritidae, Dacinae)

    Czech Academy of Sciences Publication Activity Database

    Vaníčková, L.; Nagy, Radka; Pompeiano, A.; Kalinová, Blanka

    2017-01-01

    Roč. 12, č. 9 (2017), č. článku e0184102. E-ISSN 1932-6203 Institutional support: RVO:61388963 Keywords : cuticular hydrocarbons * fruit fly * Drosophila melanogaster Subject RIV: EG - Zoology OBOR OECD: Entomology Impact factor: 2.806, year: 2016 http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0184102

  6. Development of a genetic sexing strain in Bactrocera carambolae (Diptera: Tephritidae) by introgression of sex sorting components from B. dorsalis, Salaya1 strain.

    Science.gov (United States)

    Isasawin, Siriwan; Aketarawong, Nidchaya; Lertsiri, Sittiwat; Thanaphum, Sujinda

    2014-01-01

    The carambola fruit fly, Bactrocera carambolae Drew & Hancock is a high profile key pest that is widely distributed in the southwestern ASEAN region. In addition, it has trans-continentally invaded Suriname, where it has been expanding east and southward since 1975. This fruit fly belongs to Bactrocera dorsalis species complex. The development and application of a genetic sexing strain (Salaya1) of B. dorsalis sensu stricto (s.s.) (Hendel) for the sterile insect technique (SIT) has improved the fruit fly control. However, matings between B. dorsalis s.s. and B. carambolae are incompatible, which hinder the application of the Salaya1 strain to control the carambola fruit fly. To solve this problem, we introduced genetic sexing components from the Salaya1 strain into the B. carambolae genome by interspecific hybridization. Morphological characteristics, mating competitiveness, male pheromone profiles, and genetic relationships revealed consistencies that helped to distinguish Salaya1 and B. carambolae strains. A Y-autosome translocation linking the dominant wild-type allele of white pupae gene and a free autosome carrying a recessive white pupae homologue from the Salaya1 strain were introgressed into the gene pool of B. carambolae. A panel of Y-pseudo-linked microsatellite loci of the Salaya1 strain served as markers for the introgression experiments. This resulted in a newly derived genetic sexing strain called Salaya5, with morphological characteristics corresponding to B. carambolae. The rectal gland pheromone profile of Salaya5 males also contained a distinctive component of B. carambolae. Microsatellite DNA analyses confirmed the close genetic relationships between the Salaya5 strain and wild B. carambolae populations. Further experiments showed that the sterile males of Salaya5 can compete with wild males for mating with wild females in field cage conditions. Introgression of sex sorting components from the Salaya1 strain to a closely related B. carambolae

  7. Studies on mating competitiveness of sterile oriental fruit fly, Bactrocera dorsalis (Hendel)

    International Nuclear Information System (INIS)

    Limohpasmanee, W.; Segsarnviriya, S.

    1998-01-01

    An essential prerequisite for insect control by the sterile insect technique releasing method is mass rearing and sterilizing that do not have adverse effects on longevity and mating behavior of the released males. But many laboratory studies have shown that males irradiated at the completely sterility dose often could not compete with untreated males in mating. This paper studies the effects of gamma radiation at the sterile dose on mating, sexual and sperm competitiveness of the oriental fruit fly, Bactrocera dorsalis (Hendel) under the laboratory condition. It is found that irradiation at the completely sterility dose (90 Gy) had reduced the mating and sperm competition ability of the males. Though the sexual competition was not

  8. Development of transport technique by chilling for melon fly, Bactrocera cucurbitae Coquillett (Diptela: Dephritidae)

    International Nuclear Information System (INIS)

    Tanahara, A.; Kirihara, S.; Kakinohana, H.

    1994-01-01

    To evaluate the effect of chilling on mass-reared melon fly, Bactrocera cucurbitae COQ., groups of adult flies were exposed to 3, 0.5, -2.2 and -3.5°C for 6, 12, 24 and 48h. The recovery and longevity of adult chilled for less than 24h at about 0.5°C was not adversely affected. A special container for chilled flies, which was able to keep the temperature below 10°C for 4h, was designed for their long-distance transport. The longevities of flies using aerial distribution by helicopter and hand release on the ground using the chilled transport container were compared with direct release from an emergence box without chilling at Miyagi Island in Okinawa Prefecture. There were no significant differences in longevity between the three release methods

  9. Monitoring Resistance to Spinosad in the Melon Fly (Bactrocera cucurbitae in Hawaii and Taiwan

    Directory of Open Access Journals (Sweden)

    Ju-Chun Hsu

    2012-01-01

    Full Text Available Spinosad is a natural insecticide with desirable qualities, and it is widely used as an alternative to organophosphates for control of pests such as the melon fly, Bactrocera cucurbitae (Coquillett. To monitor the potential for development of resistance, information about the current levels of tolerance to spinosad in melon fly populations were established in this study. Spinosad tolerance bioassays were conducted using both topical applications and feeding methods on flies from field populations with extensive exposure to spinosad as well as from collections with little or no prior exposure. Increased levels of resistance were observed in flies from the field populations. Also, higher dosages were generally required to achieve specific levels of mortality using topical applications compared to the feeding method, but these levels were all lower than those used for many organophosphate-based food lures. Our information is important for maintaining effective programs for melon fly management using spinosad.

  10. Susceptibility of olive fruit fly, Bactrocera oleae (Diptera: Tephritidae pupae to entomopathogenic nematodes

    Directory of Open Access Journals (Sweden)

    Torrini Giulia

    2017-09-01

    Full Text Available The olive fruit fly Bactrocera oleae is one of the most serious and economically damaging insects worldwide, affecting the quality and quantity of both olive oil and table olives. Laboratory bioassays were conducted for the first time to evaluate the susceptibility of B. oleae pupae to two entomopathogenic nematodes (EPN species, Steinernema carpocapsae and Heterorhabditis bacteriophora. The nematodes tested caused pupal mortality of 62.5% and 40.6%, respectively. The most noteworthy result was obtained with S. carpocapsae which was able to infect 21.9% of the emerged adults. Since this tephritid fly spent several months in the soil as pupa, the use of EPNs could be a promising method to control this pest.

  11. Complete mitochondrial genome of the guava fruit fly, Bactrocera correcta (Diptera: Tephritidae).

    Science.gov (United States)

    Liu, Jian-Hong; Xu, Jin; Li, Yong-He; Dan, Wenli; Pan, Yongzhi

    2016-11-01

    Bactrocera correcta (Diptera: Tephritidae) is one of the most serious pest insects in south China and surrounding Southeast Asian countries. The family Tephritidae includes over 4257 species distributed worldwide, so the complete mitochondrial genome would be helpful for bio-identification, biogeography and phylogeny. The B. correcta genome consists of 15 936 bp. Annotation indicated that the structure and orientation of 13 protein-coding genes (PCGs), 22 tRNA and 2 rRNA sequences were typical of, and similar to, the ten closely related tephritid species. The nucleotide composition shows heavily biased toward As and Ts accounting 73.2% and exhibits a slightly positive AT skew, which is similar to other known tephritid species and other insects. The phylogenetic tree indicated the presence of three distinct families (Tephritidae, Muscidae, Drosophilidae) in Order Diptera.

  12. Ultrastructure of the Antennal Sensillae of Male and Female Peach Fruit Fly, Bactrocera zonata

    Science.gov (United States)

    Awad, Azza A.; Ali, Nashat A.; Mohamed, Hend O.

    2014-01-01

    Antennal morphology and funicular sensillae of male and female peach fruit flies, Bactrocera zonata (Saunders) (Diptera: Tephritidae), were studied with scanning electron microscopy (SEM). This study focused on the sensillae found on the antennal segments (scape, pedicel, and flagellum or funiculus that bears the arista) of B. zonata. Antennal segments of females tended to be larger than those of the males. The first two antennal segments, scape and pedicel, were heavily covered with microtrichia and bear bristles. Numerous microtrichia as well as trichoid (I, II), basiconic, clavate, and coeloconic sensillae were observed on the funiculus. SEM studies showed some differences in size and also in position of some sensillae on the antennae of the females of B. zonata. The sensillae found on the funiculus, such as trichoid and basiconic sensillae, were significantly larger in females.

  13. PENGARUH KOMBINASI PETRAGENOL DAN EKSTRAK JERUK TERHADAP FEEDING STRATEGY LALAT BUAH Bactrocera dorsalis

    Directory of Open Access Journals (Sweden)

    Ramadhan Sumarmi

    2016-09-01

    Full Text Available Petragenol is an attractant contained methyl-eugenol. It is an insect’s pheromone signaling for mating, made colony, and feeding. The oranges had too an attractants especially for fruit flies. The aim of this research was to know the influence of combination of oranges extract and petragenol to Feeding Strategy of Bactrocera dorsalis flies.      This research used the Y tube method. The 60 fruit flies were used as samples. The 10 flies were placed in start chamber Y tube and in two other tips were placed the bait as a single or combinations of non-matured oranges extract and petragenol (A, matured oranges extract and petragenol (B, decay-oranges extract and petragenol (C, and petragenol as control (D. Feeding Strategy defined by the need of time to reach the bait and the spend of time in the bait with categories as activity of Searching, Grounding, Gathering, and Learning. The data analyzed by Chi-square (X2. The results showed that the fastest searching activity in B, the longest time to gathering activity in A, the longest time to grounding activity in non-matured oranges extract, and the longest time to learning activity in matured oranges extract. It can conlude that the best attractant to teas Bactrocera dorsalis Feeding Strategy are matured oranges extract-petragenol combination for Searching and Learning activity, and combination of non-matured oranges extract  and petragenol to grounding and gathering activity. Key words: petragenol, oranges extract, feeding strategy

  14. Distinct Genetic Lineages of Bactrocera caudata (Insecta: Tephritidae) Revealed by COI and 16S DNA Sequences

    Science.gov (United States)

    Lim, Phaik-Eem; Tan, Ji; Suana, I. Wayan; Eamsobhana, Praphathip; Yong, Hoi Sen

    2012-01-01

    The fruit fly Bactrocera caudata is a pest species of economic importance in Asia. Its larvae feed on the flowers of Cucurbitaceae such as Cucurbita moschata. To-date it is distinguished from related species based on morphological characters. Specimens of B. caudata from Peninsular Malaysia and Indonesia (Bali and Lombok) were analysed using the partial DNA sequences of cytochrome c oxidase subunit I (COI) and 16S rRNA genes. Both gene sequences revealed that B. caudata from Peninsular Malaysia was distinctly different from B. caudata of Bali and Lombok, without common haplotype between them. Phylogenetic analysis revealed two distinct clades, indicating distinct genetic lineage. The uncorrected ‘p’ distance for COI sequences between B. caudata of Malaysia-Thailand-China and B. caudata of Bali-Lombok was 5.65%, for 16S sequences from 2.76 to 2.99%, and for combined COI and 16S sequences 4.45 to 4.46%. The ‘p’ values are distinctly different from intraspecific ‘p’ distance (0–0.23%). Both the B. caudata lineages are distinctly separated from related species in the subgenus Zeugodacus – B. ascita, B. scutellata, B. ishigakiensis, B. diaphora, B. tau, B. cucurbitae, and B. depressa. Molecular phylogenetic analysis indicates that the B. caudata lineages are closely related to B. ascita sp. B, and form a clade with B. scutellata, B. ishigakiensis, B. diaphora and B. ascita sp. A. This study provides additional baseline for the phylogenetic relationships of Bactrocera fruit flies of the subgenus Zeugodacus. Both the COI and 16S genes could be useful markers for the molecular differentiation and phylogenetic analysis of tephritid fruit flies. PMID:22615962

  15. PENGARUH IRADIASI SINAR GAMMA [60Co] TERHADAP BACTROCERA CARAMBOLAE DREW & HANCOCK IN VITRO DAN IN VIVO

    Directory of Open Access Journals (Sweden)

    Endang Sri Ratna

    2015-03-01

    Full Text Available Effect of gamma irradiation [60Co] against Bactrocera carambolae Drew & Hancock in vitro and in vivo. Bactrocera carambolae Drew & Hancock is one of the most important pests on guava fruit. According to a quarantine regulation in export-import commodities, irradiation treatment is a suitable methods for eradicating infested organism, which is relatively safe for the environment. The aim of this research was to determine mortality doses and an effective dose of [60Co] gamma ray irradiation for the eradication purpose, and its implication on the survival of fruit fly B. carambolae. Two irradiation methods of in vitro dan in vivo were carried out, by exposing egg and 3rd instar larvae of B. carambolae obtained from the laboratory reared insect. Eleven doses of gamma ray irradiation of 0, 30, 50, 75, 100, 125, 150, 175, 200, 300, 450, and 600 Gy were applied, respectively. The level of 99% fruit fly mortality was estimated by the value of LD99 using probit analysis and the number of larvae, pupae and adult survival were evaluated by analysis of variance (ANOVA, and the means compared by Tukey’s test, at 5% of significance level. These result showed that the effective lethal dose (LD99 of irradiation that could be successful to eradicate eggs and 3rd instar larvae in vitro were 2225 and 2343 Gy and in vivo were 3165 dan 3177 Gy, respectively. Almost all of the treated larvae survived and developed to pupae, therefore only the minimum irradiation dose of 30 Gy allowed the pupae to develop into adults.

  16. Distinct genetic lineages of Bactrocera caudata (Insecta: Tephritidae revealed by COI and 16S DNA sequences.

    Directory of Open Access Journals (Sweden)

    Phaik-Eem Lim

    Full Text Available The fruit fly Bactrocera caudata is a pest species of economic importance in Asia. Its larvae feed on the flowers of Cucurbitaceae such as Cucurbita moschata. To-date it is distinguished from related species based on morphological characters. Specimens of B. caudata from Peninsular Malaysia and Indonesia (Bali and Lombok were analysed using the partial DNA sequences of cytochrome c oxidase subunit I (COI and 16S rRNA genes. Both gene sequences revealed that B. caudata from Peninsular Malaysia was distinctly different from B. caudata of Bali and Lombok, without common haplotype between them. Phylogenetic analysis revealed two distinct clades, indicating distinct genetic lineage. The uncorrected 'p' distance for COI sequences between B. caudata of Malaysia-Thailand-China and B. caudata of Bali-Lombok was 5.65%, for 16S sequences from 2.76 to 2.99%, and for combined COI and 16S sequences 4.45 to 4.46%. The 'p' values are distinctly different from intraspecific 'p' distance (0-0.23%. Both the B. caudata lineages are distinctly separated from related species in the subgenus Zeugodacus - B. ascita, B. scutellata, B. ishigakiensis, B. diaphora, B. tau, B. cucurbitae, and B. depressa. Molecular phylogenetic analysis indicates that the B. caudata lineages are closely related to B. ascita sp. B, and form a clade with B. scutellata, B. ishigakiensis, B. diaphora and B. ascita sp. A. This study provides additional baseline for the phylogenetic relationships of Bactrocera fruit flies of the subgenus Zeugodacus. Both the COI and 16S genes could be useful markers for the molecular differentiation and phylogenetic analysis of tephritid fruit flies.

  17. Transcriptomic responses of the olive fruit fly Bactrocera oleae and its symbiont Candidatus Erwinia dacicola to olive feeding

    OpenAIRE

    Pavlidi, Nena; Gioti, Anastasia; Wybouw, Nicky; Dermauw, Wannes; Ben-Yosef, Michael; Yuval, Boaz; Jurkevich, Edouard; Kampouraki, Anastasia; Van Leeuwen, Thomas; Vontas, John

    2017-01-01

    The olive fruit fly, Bactrocera oleae, is the most destructive pest of olive orchards worldwide. The monophagous larva has the unique capability of feeding on olive mesocarp, coping with high levels of phenolic compounds and utilizing non-hydrolyzed proteins present, particularly in the unripe, green olives. On the molecular level, the interaction between B. oleae and olives has not been investigated as yet. Nevertheless, it has been associated with the gut obligate symbiotic bacterium Candid...

  18. The Bactrocera oleae genome: localization of nine genes on the polytene chromosomes of the olive fruit fly (Diptera: Tephritidae).

    Science.gov (United States)

    Drosopoulou, Elena; Nakou, Ifigeneia; Mavragani-Tsipidou, Penelope

    2014-10-01

    Four homologous and five heterologous gene-specific sequences have been mapped by in situ hybridization on the salivary gland polytene chromosomes of the olive fruit fly, Bactrocera oleae. The nine genes were dispersed on four of the five autosomal chromosomes, thus enriching the available set of chromosome landmarks for this major agricultural pest. Present data further supports the proposed chromosome homologies among B. oleae, Ceratitis capitata, and Drosophila melanogaster and the idea of the conservation of chromosomal element identity throughout dipteran evolution.

  19. Bioactive fractions containing methyl eugenol-derived sex pheromonal components in haemolymph of the male fruit fly Bactrocera dorsalis (Diptera: Tephritidae).

    Science.gov (United States)

    Hee, A K W; Tan, K H

    2005-12-01

    Sex pheromonal components of the tephritid fruit fly Bactrocera dorsalis (Hendel), 2-allyl-4,5-dimethoxyphenol and (E)-coniferyl alcohol, are biosynthesized from a highly potent male attractant, methyl eugenol, then sequestered and stored in the rectal gland prior to their release during courtship at dusk. These sex pheromonal components have been detected in the haemolymph and crop organ. Hence, attempts were made to separate and identify the haemolymph fractions which contained the sex pheromonal components. Identification of these bioactive fractions in methyl eugenol-fed male flies using gel filtration column chromatography and biodetection using live male flies showed two fractions as highly attractive to conspecific males. These fractions show a significant increase in protein absorbance in the elution profile of haemolymph from methyl eugenol-fed males compared with that from methyl eugenol-deprived males. The molecular mass of these bioactive fractions as determined by using gel filtration was in the peptide range of 3.3 to 5.5 kDa. Subsequent gas chromatography-mass spectrometry analyses further confirmed the presence of the pheromonal components in the bioactive fractions. The presence of these methyl eugenol-derived sex pheromonal components in specific haemolymph fractions suggests the involvement of a sex pheromone binding complex.

  20. Bdor\\Orco is important for oviposition-deterring behavior induced by both the volatile and non-volatile repellents in Bactrocera dorsalis (Diptera: Tephritidae).

    Science.gov (United States)

    Yi, Xin; Zhao, Haiming; Wang, Peidan; Hu, Meiying; Zhong, Guohua

    2014-06-01

    Several studies have shown that the selections of gravid females to potential oviposition sites from a distance were mediated by volatile signals, however, the means by which the sensory cues from non-volatile chemicals affected the insect behavior were still a controversial subject. Chemosensory in insect is a complex process, which is mediated by multigene families of chemoreceptors, including olfactory receptors, olfactory co-receptors, and odorant-binding proteins. To elucidate the chemoreception mechanism of volatile and non-volatile chemicals, the roles of Orco and OBP in oviposition-deterrent activities induced by citronellal and Rhodojaponin-III were investigated. Our results suggested that RNAi-mediated expression inhibition was successfully achieved by feeding dsRNA in Bactrocera dorsalis. High levels of Bdor\\Orco expression were essential for recognizing two chemicals of different physical properties, whereas the expression of Bdor\\OBP was only imperative in perception of volatile chemical. The results suggested that volatile and non-volatile chemicals may evoke distinct molecular basis for chemosensory in the flies, while Orco was essential in the perception of both chemicals. The study highlighted that the central role of Orco in chemical recognition, which enabled it to be the universally applied target of designing new botanical pesticide. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Dicty_cDB: Contig-U11980-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available one) Debaryomyces hansenii chromosome... 75 1e-11 AY155346_1( AY155346 |pid:none) Bactrocera cucurbita... |pid:none) Bactrocera tryoni scarlet gene, co... 52 2e-04 AY055816_1( AY055816 |pid:none) Bactrocera cucu...rbitae ABC membrane... 52 2e-04 CP000497_149( CP000497 |pid:none) Pichia stipitis C

  2. The cryptochrome (cry) Gene and a Mating Isolation Mechanism in Tephritid Fruit Flies

    OpenAIRE

    An, Xin; Tebo, Molly; Song, Sunmi; Frommer, Marianne; Raphael, Kathryn A.

    2004-01-01

    Two sibling species of tephritid fruit fly, Bactrocera tryoni and Bactrocera neohumeralis, are differentiated by their time of mating, which is genetically determined and requires interactions between the endogenous circadian clock and light intensity. The cryptochrome (cry) gene, a light-sensitive component of the circadian clock, was isolated in the two Bactrocera species. The putative amino acid sequence is identical in the two species. In the brain, in situ hybridization showed that cry i...

  3. Australian endemic pest tephritids: genetic, molecular and microbial tools for improved Sterile Insect Technique

    OpenAIRE

    Raphael, Kathryn A; Shearman, Deborah CA; Gilchrist, A Stuart; Sved, John A; Morrow, Jennifer L; Sherwin, William B; Riegler, Markus; Frommer, Marianne

    2014-01-01

    Among Australian endemic tephritid fruit flies, the sibling species Bactrocera tryoni and Bactrocera neohumeralis have been serious horticultural pests since the introduction of horticulture in the nineteenth century. More recently, Bactrocera jarvisi has also been declared a pest in northern Australia. After several decades of genetic research there is now a range of classical and molecular genetic tools that can be used to develop improved Sterile Insect Technique (SIT) strains for control ...

  4. Relative incidence of Bactrocera cucurbitae (Coquillett) and Dacus ciliatus Loew on cucurbitaceous vegetables

    International Nuclear Information System (INIS)

    Kumar, N.K. Krishna; Verghese, Abraham; Shivakumara, B.; Krishnamoorthy, P.N.; Ranganath, H.R.

    2006-01-01

    The melon fly, Bactrocera cucurbitae (Coquillett) is a major pest of cucurbitaceous vegetables and fruits in many parts of the world. Infestation of an another species, the lesser pumpkin fly, Dacus ciliatus Loew is reported on a few cucurbits in the Indian sub-continent and Africa. While extensive work on seasonality, infestation percent, host preference, attraction to para pheromone on B. cucurbitae has been reported, little is known of D. ciliatus. Field experiments were carried out at the Indian Institute of Horticultural Research (IIHR), Bangalore (12058'N; 77035'E) from June 2002- October 2003. Cucumber (Cucumis sativus L), ridge gourd (Luffa acutangula (L.) Roxb), bitter gourd (Momordica charantia L.) and pickling cucumbers [C. sativus L (variety. Ijax)] were raised at monthly interval. Cue lure baited bottle traps were hung to monitor B. cucurbitae and other related species. Bactrocera cucurbitae was present all through the year and maximum number of adults was trapped during August (14.14/trap/week). Dacus ciliatus was trapped only from May to October but in relatively less numbers (∼ 1/week). Maximum fruit fly infestation was 77.03 % on bitter gourd (August 2003), 75.65 % on ridge gourd (Nov. 02), 73.83 % on cucumber (October, 02) and 63.31 % on pickling cucumber (October, 02). Trap catches of B. cucurbitae was significantly and positively correlated with relative humidity. Maximum and minimum temperature, RH (%), rainfall (mm), evaporation (mm) and wind speed (km/h) collectively determined 44 % of B. cucurbitae trap catches. Maximum fruit fly emergence of 494.64/ kg fruit was on bitter gourd (October, 2002) followed by cucumber (431.97, November, 2002), pickling cucumber (307.51, October 2002) and ridge gourd (210.74, October, 2003). Dacus ciliatus formed only 4.5% of the total number of fruit flies on bitter gourd and 0.2% on pickling cucumber. Its infestation was not observed on cucumber and ridge gourd. Parasitism by the larval-pupal parasitoid

  5. Relative incidence of Bactrocera cucurbitae (Coquillett) and Dacus ciliatus Loew on cucurbitaceous vegetables

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, N.K. Krishna; Verghese, Abraham; Shivakumara, B.; Krishnamoorthy, P.N.; Ranganath, H.R. [Indian Institute of Horticultural Research, Bangalore (India). Div. of Entomology and Nematology

    2006-07-01

    The melon fly, Bactrocera cucurbitae (Coquillett) is a major pest of cucurbitaceous vegetables and fruits in many parts of the world. Infestation of an another species, the lesser pumpkin fly, Dacus ciliatus Loew is reported on a few cucurbits in the Indian sub-continent and Africa. While extensive work on seasonality, infestation percent, host preference, attraction to para pheromone on B. cucurbitae has been reported, little is known of D. ciliatus. Field experiments were carried out at the Indian Institute of Horticultural Research (IIHR), Bangalore (12058'N; 77035'E) from June 2002- October 2003. Cucumber (Cucumis sativus L), ridge gourd (Luffa acutangula (L.) Roxb), bitter gourd (Momordica charantia L.) and pickling cucumbers [C. sativus L (variety. Ijax)] were raised at monthly interval. Cue lure baited bottle traps were hung to monitor B. cucurbitae and other related species. Bactrocera cucurbitae was present all through the year and maximum number of adults was trapped during August (14.14/trap/week). Dacus ciliatus was trapped only from May to October but in relatively less numbers ({approx} 1/week). Maximum fruit fly infestation was 77.03 % on bitter gourd (August 2003), 75.65 % on ridge gourd (Nov. 02), 73.83 % on cucumber (October, 02) and 63.31 % on pickling cucumber (October, 02). Trap catches of B. cucurbitae was significantly and positively correlated with relative humidity. Maximum and minimum temperature, RH (%), rainfall (mm), evaporation (mm) and wind speed (km/h) collectively determined 44 % of B. cucurbitae trap catches. Maximum fruit fly emergence of 494.64/ kg fruit was on bitter gourd (October, 2002) followed by cucumber (431.97, November, 2002), pickling cucumber (307.51, October 2002) and ridge gourd (210.74, October, 2003). Dacus ciliatus formed only 4.5% of the total number of fruit flies on bitter gourd and 0.2% on pickling cucumber. Its infestation was not observed on cucumber and ridge gourd. Parasitism by the larval

  6. Abundance of African invader fly, Bactrocera invadens drew, tsuruta and white (diptera: tephritidae) and influence of weather parameters on trap catches in mango in the Volta region of Ghana.

    Science.gov (United States)

    Adzim, Charles Amankwa; Billah, Maxwell Kelvin; Afreh-Nuamah, Kwame

    2016-01-01

    The seasonal abundance of African Invader fly, Bactrocera invadens and the influence of temperature and rainfall on fly catches was determined in two agro ecological zones; moist semi-deciduous forest area and the coastal grassland area of the Volta Region of Ghana for year of mango production. Traps containing methyl eugenol were used in monitoring the abundance of the Africa invader fly, Bactrocera invadens where data on both temperature and rainfall were collected from Meteorological Services of Ghana in Volta region. A total of 49,322 organisms captured, 45,829 were identified as Bactrocera invadens and 3493 were non-fruit fly. There were significant differences (p fly densities of 5.06 F/T/D in moist semi deciduous forest area and 2.38 F/T/D in the coastal grassland zone. The result shows that climatic factors affected Bactrocera invadens differently in different agro ecological area. There was negative correlation and highly significant (p flies and temperature whereas there was negative correlation and high significant (p < 0.01) difference between rainfall in the moist semi deciduous forest area. In the coastal grassland area, there was negative correlation and highly significant (p < 0.001) between Bactrocera invadens for both rainfall and temperature. Bactrocera invadens activities peaked differently during the study period due to favourable climatic conditions. The activities of Bactrocera invadens peaked during weeks 7 and 29 in the moist semi deciduous forest area while their activities peaked during weeks 3 and 24 for the coastal grassland areas. Both agro ecological zones recorded the presence of Bactrocera invadens, their number and proportion varied considerably with associated effects of the weather parameters on their abundance. The effect of weather parameters on the abundance of bactrocera invadens requires the development of degree day models to manage them.

  7. The Divergence in Bacterial Components Associated with Bactrocera dorsalis across Developmental Stages

    Directory of Open Access Journals (Sweden)

    Xiaofeng Zhao

    2018-02-01

    Full Text Available Eco-evolutionary dynamics of microbiotas at the macroscale level are largely driven by ecological variables. The diet and living environment of the oriental fruit fly, Bactrocera dorsalis, diversify during development, providing a natural system to explore convergence, divergence, and repeatability in patterns of microbiota dynamics as a function of the host diet, phylogeny, and environment. Here, we characterized the microbiotas of 47 B. dorsalis individuals from three distinct populations by 16S rRNA amplicon sequencing. A significant deviation was found within the larvae, pupae, and adults of each population. Pupae were characterized by an increased bacterial taxonomic and functional diversity. Principal components analysis showed that the microbiotas of larvae, pupae, and adults clearly separated into three clusters. Acetobacteraceae, Lactobacillaceae, and Enterobacteriaceae were the predominant families in larval and adult samples, and PICRUSt analysis indicated that phosphoglycerate mutases and transketolases were significantly enriched in larvae, while phosphoglycerate mutases, transketolases, and proteases were significantly enriched in adults, which may support the digestive function of the microbiotas in larvae and adults. The abundances of Intrasporangiaceae, Dermabacteraceae (mainly Brachybacterium and Brevibacteriaceae (mainly Brevibacterium were significantly higher in pupae, and the antibiotic transport system ATP-binding protein and antibiotic transport system permease protein pathways were significantly enriched there as well, indicating the defensive function of microbiotas in pupae. Overall, differences in the microbiotas of the larvae, pupae, and adults are likely to contribute to differences in nutrient assimilation and living environments.

  8. The Divergence in Bacterial Components Associated with Bactrocera dorsalis across Developmental Stages

    Science.gov (United States)

    Zhao, Xiaofeng; Zhang, Xiaoyu; Chen, Zhenshi; Wang, Zhen; Lu, Yongyue; Cheng, Daifeng

    2018-01-01

    Eco-evolutionary dynamics of microbiotas at the macroscale level are largely driven by ecological variables. The diet and living environment of the oriental fruit fly, Bactrocera dorsalis, diversify during development, providing a natural system to explore convergence, divergence, and repeatability in patterns of microbiota dynamics as a function of the host diet, phylogeny, and environment. Here, we characterized the microbiotas of 47 B. dorsalis individuals from three distinct populations by 16S rRNA amplicon sequencing. A significant deviation was found within the larvae, pupae, and adults of each population. Pupae were characterized by an increased bacterial taxonomic and functional diversity. Principal components analysis showed that the microbiotas of larvae, pupae, and adults clearly separated into three clusters. Acetobacteraceae, Lactobacillaceae, and Enterobacteriaceae were the predominant families in larval and adult samples, and PICRUSt analysis indicated that phosphoglycerate mutases and transketolases were significantly enriched in larvae, while phosphoglycerate mutases, transketolases, and proteases were significantly enriched in adults, which may support the digestive function of the microbiotas in larvae and adults. The abundances of Intrasporangiaceae, Dermabacteraceae (mainly Brachybacterium) and Brevibacteriaceae (mainly Brevibacterium) were significantly higher in pupae, and the antibiotic transport system ATP-binding protein and antibiotic transport system permease protein pathways were significantly enriched there as well, indicating the defensive function of microbiotas in pupae. Overall, differences in the microbiotas of the larvae, pupae, and adults are likely to contribute to differences in nutrient assimilation and living environments. PMID:29449838

  9. Pre and post harvest IPM for the mango fruit fly, Bactrocera dorsalis (Hendel)

    International Nuclear Information System (INIS)

    Verghese, Abraham; Sreedevi, K.; Nagaraju, D.K.

    2006-01-01

    The fruit fly, Bactrocera dorsalis (Hendel) is a major pest of mango in India. So, investigations were carried out to standardize an Integrated Pest Management (IPM) for fruit fly-free and residue-free mango fruits. The study required orchard and laboratory studies, which were conducted on the commercial variety Banganapalli, at the Indian Institute of Horticultural Research, Hessaraghatta Lake P.O., Bangalore, India, during 2004 and 2005. Results showed that a pre harvest IPM combination of male annihilation technique (MAT) (using methyl eugenol as a lure) + sanitation brought down B. dorsalis infestation to 5.00% from an infestation ranging from 17 to 66% in control in both years. An additional cover spray of Decamethrin 2.8EC 0.5ml/l (which is half the recommended dose) + Azadirachtin (0.03 %) 2ml/l (neem based botanical) gave 100% control in both the years. Post harvest treatments with hot water at 48 degree C for 60 and 75 min resulted in 100% control at both the time regimes in 2004 and 2005. The untreated fruits, which were also exposed to gravid females (but not treated in hot water) showed 30% and 5.5% infestations, respectively, in 2004 and 2005. (author)

  10. Purification of Colocasia esculenta lectin and determination of its anti-insect potential towards Bactrocera cucurbitae.

    Science.gov (United States)

    Thakur, Kshema; Kaur, Manpreet; Kaur, Satwinder; Kaur, Amritpal; Kamboj, Sukhdev Singh; Singh, Jatinder

    2013-01-01

    The present study reports the purification of a lectin from Colocasia esculenta (L.) Schott corms and evaluation of its anti-insect potential towards Bactrocera cucurbitae (Coquilett). The lectin was found to be specific towards N-acetyl-D-lactosamine (LacNac), a disaccharide and asialofetuin, a desialylated serum glycoprotein in hemagglutination inhibition assay. Asialofetuin was used as a ligand to purify Colocasia esculenta agglutinin (CEA) by affinity chromatography. The purity of CEA was ascertained by the presence of a single band in reducing SDS-PAGE at pH 8.3. The affinity purified CEA was employed in artificial diet bioassay of second instar larvae (64-72 hr old) of the B. cucurbitae at concentrations ranging between 10-160 microg ml(-1). The lectin significantly (p < 0.01) decreased the percent pupation and emergence with respect to control. Effect on various enzymes was studied by employing LC50 (51.6 microg ml(-1)) CEA in the artificial diet bioassay of second instar larvae. All the enzymes tested namely esterases, phosphatases (acid and alkaline), superoxide dismutases, catalase and glutathione-S-transferase showed a significant (p < 0.01, p < 0.05) increase in their enzyme and specific activities. These results showed that CEA affected normal growth and development and presented stress to the larvae, activating their detoxification and anti-oxidant systems. Thus, the lectin seems to be a useful candidate for the control measures of B. cucurbitae under the integrated pest management (IPM) system.

  11. Status of Bactrocera invadens (Diptera: Tephritidae) in Mango-Producing Areas of Arba Minch, Southwestern Ethiopia

    Science.gov (United States)

    Massebo, Fekadu; Tefera, Zenebe

    2015-01-01

    Bactrocera invadens, the Asian fruit fly, was first reported in Kenya in 2003, and it spread fast to most tropical countries in Africa. To our knowledge, there is no detailed data on the fruit damage and status of fruit flies in Arba Minch and elsewhere in Ethiopia. Hence, information on the species composition and pest status of the fruit fly species is urgent to plan management strategies in the area. Fruit flies were captured using male parapheromone-baited traps. Matured mango (Mangifera indica) fruits were collected from randomly selected mango trees and incubated individually in cages (15 by 15 by 15 cm) with sandy soil. B. invadens was the predominant (96%; 952 of 992) captured species and the only fruit fly species emerging from mango fruits incubated in the laboratory. The mean number of adult B. invadens emerging per mango fruit was 35.25, indicating that the species is the most devastating mango fruit fly in the area. The loss due to this species would be serious if no management strategies are implemented. PMID:25612742

  12. Blue light-induced immunosuppression in Bactrocera dorsalis adults, as a carryover effect of larval exposure.

    Science.gov (United States)

    Tariq, K; Noor, M; Hori, M; Ali, A; Hussain, A; Peng, W; Chang, C-J; Zhang, H

    2017-12-01

    Detrimental effects of ultraviolet (UV) light on living organisms are well understood, little is known about the effects of blue light irradiation. Although a recent study revealed that blue light caused more harmful effects on insects than UV light and blue light irradiation killed insect pests of various orders including Diptera, the effects of blue light on physiology of insects are still largely unknown. Here we studied the effects of blue light irradiation on cuticular melanin in larval and the immune response in adult stage of Bactrocera dorsalis. We also evaluated the effects of blue light exposure in larval stage on various age and mass at metamorphosis and the mediatory role of cuticular melanin in carryover effects of larval stressors across metamorphosis. We found that larvae exposed to blue light decreased melanin contents in their exoskeleton with smaller mass and delayed metamorphosis than insects reared without blue light exposure. Across metamorphosis, lower melanotic encapsulation response and higher susceptibility to Beauveria bassiana was detected in adults that had been exposed to blue light at their larval stage, thereby constituting the first evidence that blue light impaired adult immune function in B. dorsalis as a carryover effect of larval exposure.

  13. Phenolic profiles of eight olive cultivars from Algeria: effect of Bactrocera oleae attack.

    Science.gov (United States)

    Medjkouh, Lynda; Tamendjari, Abderezak; Alves, Rita C; Laribi, Rahima; Oliveira, M Beatriz P P

    2018-02-21

    Olive fly (Bactrocera oleae R.) is the most harmful pest of olive trees (O. europaea) affecting their fruit development and oil production. Olive fruits have characteristic phenolic compounds, important for plant defense against pathogens and insects, and with many biological activities, they contribute to the high value of this crop. In this study, olives from 8 cultivars (Abani, Aellah, Blanquette de Guelma, Chemlal, Ferkani, Limli, Rougette de Mitidja and Souidi) with different degrees of fly infestation (0%, not attacked; 100%, all attacked; and real attack %) and different maturation indices were sampled and analysed. Qualitative and quantitative analyses of phenolic profiles were performed by colorimetric methodologies and RP-HPLC-DAD. Verbascoside, tyrosol and hydroxytyrosol were the compounds that were most adversely affected by B. oleae infestation. Principal component analysis and hierarchical cluster analysis highlighted different groups, showing different behaviours of olive cultivars to the attack. The results show that phenolic compounds displayed sharp qualitative and quantitative differences among the cultivars. The fly attack was significantly correlated with the weight of the fruits, but not with the phenolic compounds.

  14. Olfactory Plasticity: Variation in the Expression of Chemosensory Receptors in Bactrocera dorsalis in Different Physiological States

    Directory of Open Access Journals (Sweden)

    Sha Jin

    2017-09-01

    Full Text Available Changes in physiological conditions could influence the perception of external odors, which is important for the reproduction and survival of insect. With the alteration of physiological conditions, such as, age, feeding state, circadian rhythm, and mating status, insect can modulate their olfactory systems accordingly. Ionotropic, gustatory, and odorant receptors (IR, GR, and ORs are important elements of the insect chemosensory system, which enable insects to detect various external stimuli. In this study, we investigated the changes in these receptors at the mRNA level in Bactrocera dorsalis in different physiological states. We performed transcriptome analysis to identify chemosensory receptors: 21 IRs, 12 GRs, and 43 ORs were identified from B. dorsalis antennae, including almost all previously known chemoreceptors in B. dorsalis and a few more. Quantitative real-time polymerase chain reaction analysis revealed the effects of feeding state, mating status and time of day on the expression of IR, GR, and OR genes. The results showed that expression of chemosensory receptors changed in response to different physiological states, and these changes were completely different for different types of receptors and between male and female flies. Our study suggests that the expressions of chemosensory receptors change to adapt to different physiological states, which may indicate the significant role of these receptors in such physiological processes.

  15. Transport of methyl eugenol-derived sex pheromonal components in the male fruit fly, Bactrocera dorsalis.

    Science.gov (United States)

    Kah-Wei Hee, Alvin; Tan, Keng-Hong

    2006-08-01

    Males of Bactrocera dorsalis (Diptera: Tephritidae) are attracted strongly to and feed compulsively on methyl eugenol (1,2-dimethoxy- 4 -(2-propenyl)benzene), a highly potent male attractant. Pharmacophagy of methyl eugenol results in the production of phenylpropanoids 2-allyl-4,5-dimethoxyphenol and (E)-coniferyl alcohol that are sequestered and stored in the rectal gland prior to release as sex pheromonal components during mating at dusk. While these pheromonal components have also been detected in the hemolymph and crop of methyl eugenol-fed males, there is currently little information on the transport of these compounds from the crop to rectal gland in male B. dorsalis. Therefore, using physiological techniques such as parabiosis, rectal gland transplantation and hemolymph transfusion coupled with gas chromatography-mass spectrometry (GC-MS) analyses, we were able to ascertain and confirm the role of the hemolymph in the transport of these sex pheromonal components from the crop to the rectal gland. Further, the temporal profile of these methyl eugenol-derived bioactive compounds in the hemolymph also shows an increase with time post-methyl eugenol-feeding, i.e., 2-allyl-4,5-dimethoxyphenol attaining maximum amounts 15 min after ME consumption and decreasing thereafter, while for (E)-coniferyl alcohol-the increase and decrease are more gradual. These results further demonstrate the ability of insect hemolymph to transport many diverse forms of bioactive molecules including attractant-derived sex pheromonal components.

  16. Factors influencing aversive learning in the oriental fruit fly, Bactrocera dorsalis.

    Science.gov (United States)

    Liu, J L; Chen, H L; Chen, X Y; Cui, R K; Guerrero, A; Zeng, X N

    2017-01-01

    Parameters such as the intensity of conditioned and unconditioned stimuli, the inter-trial interval, and starvation time can influence learning. In this study, the parameters that govern aversive learning in the oriental fruit fly, Bactrocera dorsalis, a serious pest of fruits and vegetables, were examined. Male flies were trained to associate the attractive odorant methyl eugenol, a male lure, with a food punishment, sodium chloride solution, and the conditioned suppression of the proboscis-extension response was investigated. We found that high methyl eugenol concentrations support a stronger association. With increasing concentrations of sodium chloride solution, a steady decrease of proboscis-extension response during six training trials was observed. A high level of learning was achieved with an inter-trial interval of 1-10 min. However, extending the inter-trial interval to 15 min led to reduced learning. No effect of physiological status (starvation time) on learning performance was detected, nor was any non-associative learning effect induced by the repeat presentation of odor or punishment alone. The memory formed after six training trials could be retained for at least 3 h. Our results indicate that aversive learning by oriental fruit flies can be affected by odor, punishment concentration and inter-trial interval.

  17. Methyl eugenol aromatherapy enhances the mating competitiveness of male Bactrocera carambolae Drew & Hancock (Diptera: Tephritidae).

    Science.gov (United States)

    Haq, Ihsan; Vreysen, Marc J B; Cacéres, Carlos; Shelly, Todd E; Hendrichs, Jorge

    2014-09-01

    Males of Bactrocera carambolae Drew & Hancock (Diptera: Tephritidae) are strongly attracted to methyl eugenol (ME) (1,2-dimethoxy-4-(2-propenyl)benzene), a natural compound occurring in variety of plant species. ME-feeding is known to enhance male B. carambolae mating competitiveness 3 days after feeding. Enhanced male mating competitiveness due to ME-feeding can increase the effectiveness of sterile insect technique (SIT) manifolds. However, the common methods for emergence and holding fruit flies prior to field releases do not allow the inclusion of any ME feeding treatment after fly emergence. Therefore this study was planned to assess the effects of ME-aromatherapy in comparison with ME feeding on male B. carambolae mating competitiveness as aromatherapy is pragmatic for fruit flies emergence and holding facilities. Effects of ME application by feeding or by aromatherapy for enhanced mating competitiveness were evaluated 3d after treatments in field cages. ME feeding and ME aromatherapy enhanced male mating competitiveness as compared to untreated males. Males treated with ME either by feeding or by aromatherapy showed similar mating success but mating success was significantly higher than that of untreated males. The results are discussed in the context of application of ME by aromatherapy as a pragmatic approach in a mass-rearing facility and its implications for effectiveness of SIT. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Allomonal and hepatotoxic effects following methyl eugenol consumption in Bactrocera papayae male against Gekko monarchus.

    Science.gov (United States)

    Wee, S L; Tan, K H

    2001-05-01

    Methyl eugenol (ME), is converted into two major phenylpropanoids, 2-allyl-4,5-dimethoxyphenol and trans-coniferyl alcohol, following consumption by the male fruit fly Bactrocera papayae. Chemical analysis of wild male B. papayae rectal glands, where the compounds are sequestered, revealed the presence of ME metabolites in varying quantities. These phenylpropanoids are shown to be involved in the fruit fly defense both in no-choice and choice feeding tests against the Malayan spiny gecko, Gekko monarchus. After being acclimatized to feeding on fruit flies, geckos consumed significantly fewer ME-fed male flies than controls that consumed all the ME-deprived male flies offered throughout a two-week period. Diagnosis of dissected livers from geckos that consumed ME-fed male flies revealed various abnormalities. These included discoloration and hardening of liver tissue, whitening of the gallbladder, or presence of tumor-like growths in all geckos that consumed ME-fed male flies. Control geckos fed on ME-deprived male flies had healthy livers. When given an alternative prey, geckos preferred to eat untreated house flies, Musca domestica to avoid preying on ME-fed fruit flies.

  19. Pre and post harvest IPM for the mango fruit fly, Bactrocera dorsalis (Hendel)

    Energy Technology Data Exchange (ETDEWEB)

    Verghese, Abraham; Sreedevi, K.; Nagaraju, D.K., E-mail: avergis@iihr.ernet.i [Indian Institute of Horticultural Research, Bangalore, Karnataka (India)

    2006-07-01

    The fruit fly, Bactrocera dorsalis (Hendel) is a major pest of mango in India. So, investigations were carried out to standardize an Integrated Pest Management (IPM) for fruit fly-free and residue-free mango fruits. The study required orchard and laboratory studies, which were conducted on the commercial variety Banganapalli, at the Indian Institute of Horticultural Research, Hessaraghatta Lake P.O., Bangalore, India, during 2004 and 2005. Results showed that a pre harvest IPM combination of male annihilation technique (MAT) (using methyl eugenol as a lure) + sanitation brought down B. dorsalis infestation to 5.00% from an infestation ranging from 17 to 66% in control in both years. An additional cover spray of Decamethrin 2.8EC 0.5ml/l (which is half the recommended dose) + Azadirachtin (0.03 %) 2ml/l (neem based botanical) gave 100% control in both the years. Post harvest treatments with hot water at 48 degree C for 60 and 75 min resulted in 100% control at both the time regimes in 2004 and 2005. The untreated fruits, which were also exposed to gravid females (but not treated in hot water) showed 30% and 5.5% infestations, respectively, in 2004 and 2005. (author)

  20. Lethal and sublethal effects of cyantraniliprole on Bactrocera dorsalis (Hendel) (Diptera: Tephritidae).

    Science.gov (United States)

    Zhang, Ruimin; Jang, Eric B; He, Shiyu; Chen, Jiahua

    2015-02-01

    The oriental fruit fly, Bactrocera dorsalis (Hendel), is one of the most globally important insect pests. Studies were conducted with the novel anthranilic diamide insecticide cyantraniliprole to determine its lethal and sublethal effects on B. dorsalis. An ingestion toxicity bioassay showed that cyantraniliprole was active against B. dorsalis, and the 72 h feeding LC50 was 3.22 µg g(-1) in adult diet for a susceptible strain. Sublethal doses of cyantraniliprole (1.30 µg g(-1) adult diet) induced a hormesis effect on B. dorsalis. The mating competitiveness of B. dorsalis treated with cyantraniliprole at 3.27 µg g(-1) adult diet was significantly lower when compared with the controls. The lower dose (1.30 µg g(-1) adult diet) of cyantraniliprole improved the total mating times of both mating pairs in treated groups and also the mating competitiveness of the treated males when compared with the higher dose and controls. Cyantraniliprole-treated females of the mated pairs with the lower dose laid more eggs. On the fifth day, female receptivity in the treated group was significantly reduced when compared with the controls. These results indicate that cyantraniliprole is effective against B. dorsalis. The inhibition and stimulation effect of cyantraniliprole on the adult's mating performance at different concentrations was proved. © 2014 Society of Chemical Industry.

  1. Isolation and Molecular Characterization of the Transformer Gene From Bactrocera cucurbitae (Diptera: Tephritidae).

    Science.gov (United States)

    Luo, Ya; Zhao, Santao; Li, Jiahui; Li, Peizheng; Yan, Rihui

    2017-01-01

    transformer (tra) is a switch gene of sex determination in many insects, particularly in Dipterans. However, the sex determination pathway in Bactrocera cucurbitae (Coquillett), a very destructive pest on earth, remains largely uncharacterized. In this study, we have isolated and characterized one female-specific and two male-specific transcripts of the tra gene (Bcutra) of B. cucurbitae. The genomic structure of Bcutra has been determined and the presence of multiple conserved Transformer (TRA)/TRA-2 binding sites in Bcutra has been found. BcuTRA is highly conservative with its homologues in other tephritid fruit flies. Gene expression analysis of Bcutra at different developmental stages demonstrates that the female transcript of Bcutra appears earlier than the male counterparts, indicating that the maternal TRA is inherited in eggs and might play a role in the regulation of TRA expression. The conservation of protein sequence and sex-specific splicing of Bcutra and its expression patterns during development suggest that Bcutra is probably the master gene of sex determination of B. cucurbitae. Isolation of Bcutra will facilitate the development of a genetic sexing strain for its biological control. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  2. Population Susceptibility to Insecticides and the Development of Resistance in Bactrocera cucurbitae (Diptera: Tephritidae).

    Science.gov (United States)

    Jin, Tao; Lin, Yu-Ying; Jin, Qi-An; Wen, Hai-Bo; Peng, Zheng-Qiang

    2016-04-01

    Excessive insecticide applications are commonly used to manage Bactrocera cucurbitae Coquillett in China. Resistance status, resistance development trends, and patterns of cross-resistance to insecticides in B. cucurbitae were investigated. Among 21 populations from Hainan Island, two populations expressed high resistance to beta-cypermethrin; seven, eight, and ten populations expressed intermediate resistance to spinosad, avermectin, and beta-cypermethrin, respectively; four, six, one, five, and four populations expressed low resistance to spinosad, avermectin, trichlorfon, beta-cypermethrin, and fipronil, respectively; and the remaining populations exhibited either minor resistance or remained susceptible. Analysis of the development of resistance showed that resistance levels to spinosad and avermectin were readily developed at 40.68- and 18.42-fold, respectively, and a spinosad-resistant strain also showed relative positive cross-resistance to beta-cypermethrin and avermectin, but relative negative cross-resistance to trichlorfon and fipronil. These data represent the most extensive survey of insecticide resistance conducted in B. cucurbitae to date, and the level of insecticide resistance in populations should be considered when designing control measures and pest management strategies.

  3. Effect of Low-Temperature Phosphine Fumigation on the Survival of Bactrocera correcta (Diptera: Tephritidae).

    Science.gov (United States)

    Liu, Tao; Li, Li; Zhang, Fanhua; Gong, Shaorun; Li, Tianxiu; Zhan, Guoping; Wang, Yuejin

    2015-08-01

    This laboratory-based study examined the effects of low-temperature phosphine fumigation on the survival of the eggs and larvae of the guava fruit fly, Bactrocera correcta (Bezzi). Individual flies at different developmental stages, from 6-h-old eggs to third instars, were exposed to 0.92 mg/liter phosphine for 1-7 d at 5°C. We found that 12-h-old eggs and third instars were the most tolerant to phosphine. Increasing phosphine concentrations from 0.46 to 4.56 mg/liter increased mortality in these two stages. However, increased exposure times were required to achieve equal mortality rates in 12-h-old eggs and third instars when phosphine concentrations were ≥4.56 and ≥3.65 mg/liter, respectively. C(n)t = k expression was obtained at 50, 90, and 99% mortality levels, and the toxicity index (n) ranged from 0.43 to 0.77 for the two stages. The synergistic effects of a controlled atmosphere (CA) with elevated CO(2) levels were also investigated, and we found that a CO(2) concentration between 10% and 15% under CA conditions was optimal for low-temperature phosphine fumigation. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Suitability of Bactrocera dorsalis (Diptera: Tephritidae) Pupae for Spalangia endius (Hymenoptera: Pteromalidae).

    Science.gov (United States)

    Tang, Liang-De; Lu, Yong-Yue; Zhao, Hai-Yan

    2015-06-01

    Spalangia endius (Walker) (Hymenoptera: Pteromalidae) is found to be one of the most important natural enemies of Bactrocera dorsalis Hendel (Diptera: Tephritidae) pupae in China. In this study, the influence of host pupal age on the preference for and suitability of the host by the parasitoid S. endius was determined using choice and nonchoice tests. S. endius females accepted the 1-7 d-old B. dorsalis pupae for oviposition, and their offspring developed successfully. However, the S. endius preferentially parasitized the 2-, 3-, and 4-d-old host pupae. The emergence rate of the adult progeny was not affected by the host pupal age, nor was the male body weight, male longevity, and sex ratio of the parasitoid offspring. However, the shortest development time of both male and female progeny and the greatest size and adult longevity of female progeny were observed in hosts that were ≤4 d old. Females emerged later and lived longer than males, and they weighed more than the males. Host mortality decreased as the age of the host increased for 1-7-d-old hosts. Our findings suggest that 2-, 3-, and 4-d-old B. dorsalis pupae would be the best host ages at which to rear S. endius for effective control in field releases. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Specific and sensitive primers for the detection of predated olive fruit flies, Bactrocera oleae (Diptera: Tephritidae

    Directory of Open Access Journals (Sweden)

    Esther Lantero

    2017-07-01

    Full Text Available Bactrocera oleae, the olive fruit fly, is a major pest of olive (Olea europaea L. trees worldwide. Its presence can cause important losses, with consequences for the economies of countries that produce and export table olives and olive oil. Efforts to control olive fruit fly populations have, however, been insufficient. Now more than ever, environmentally friendly alternatives need to be considered in potential control programs. Generalist predators could provide a way of managing this pest naturally. However, the identification of candidate predator species is essential if such a management system is to be introduced. The present paper describes a set of species-specific primers for detecting the presence of B. oleae DNA in the gut of predatory arthropods. All primers were tested for checking cross-reactive amplification of other fruit fly DNA and evaluated in heterospecific mixes of nucleic acids. All were found to be very sensitive for B. oleae. Subsequent feeding trials were conducted using one of the most abundant species of ground dwelling carabids in olive groves in south-eastern Madrid, Spain. These trials allowed determining that 253F-334R and 334F-253R primer pairs had the highest detection efficiency with an ID50 of around 78 h. These primers therefore provide a very useful tool for screening the gut contents of potential predators of B. oleae, and can thus reveal candidate species for the pest's biological control

  6. Bacterial communities associated with invasive populations of Bactrocera dorsalis (Diptera: Tephritidae) in China.

    Science.gov (United States)

    Liu, L J; Martinez-Sañudo, I; Mazzon, L; Prabhakar, C S; Girolami, V; Deng, Y L; Dai, Y; Li, Z H

    2016-12-01

    The oriental fruit fly Bactrocera dorsalis (Hendel) is a destructive insect pest of a wide range of fruits and vegetables. This pest is an invasive species and is currently distributed in some provinces of China. To recover the symbiotic bacteria of B. dorsalis from different invasion regions in China, we researched the bacterial diversity of this fruit fly among one laboratory colony (Guangdong, China) and 15 wild populations (14 sites in China and one site in Thailand) using DNA-based approaches. The construction of 16S rRNA gene libraries allowed the identification of 24 operational taxonomic units of associated bacteria at the 3% distance level, and these were affiliated with 3 phyla, 5 families, and 13 genera. The higher bacterial diversity was recovered in wild populations compared with the laboratory colony and in samples from early term invasion regions compared with samples from late term invasion regions. Moreover, Klebsiella pneumoniae and Providencia sp. were two of the most frequently recovered bacteria, present in flies collected from three different regions in China where B. dorsalis is invasive. This study for the first time provides a systemic investigation of the symbiotic bacteria of B. dorsalis from different invasion regions in China.

  7. Characterization of Bactrocera dorsalis Serine Proteases and Evidence for Their Indirect Role in Insecticide Tolerance

    Directory of Open Access Journals (Sweden)

    Ming-Zhe Hou

    2014-02-01

    Full Text Available The oriental fruit fly Bactrocera dorsalis (Hendel causes devastating losses to agricultural crops world-wide and is considered to be an economically important pest. Little is known about the digestive enzymes such as serine proteases (SPs in B. dorsalis, which are important both for energy supply and mitigation of fitness cost associated with insecticide tolerance. In this study, we identified five SP genes in the midgut of B. dorsalis, and the alignments of their deduced amino acid sequences revealed the presence of motifs conserved in the SP superfamily. Phylogenetic analyses with known SPs from other insect species suggested that three of them were trypsin-like proteases. Analyses of the expression profiles among the different developmental stages showed that all five genes were most abundant in larvae than in other stages. When larvae were continuously fed on diet containing 0.33 μg/g β-Cypermethrin, expression of all five genes were upregulated in the midgut but the larval development was delayed. Biochemical assays were consistent with the increased protease activity exhibited by SPs in the midgut after treatment with β-Cypermethrin. Taken together, these findings provide evidence for the hypothesis that enhanced SP activity may play an indirect role in relieving the toxicity stress of insecticide in B. dorsalis.

  8. Identification and Characterization of Sex-Biased MicroRNAs in Bactrocera dorsalis (Hendel.

    Directory of Open Access Journals (Sweden)

    Wei Peng

    Full Text Available MicroRNAs (miRNAs are a class of endogenous small non-coding RNAs that regulate various biological processes including sexual dimorphism. The oriental fruit fly Bactrocera dorsalis is one of the most destructive agricultural insect pests in many Asian countries. However, no miRNAs have been identified from the separate sex and gonads to elucidate sex gonad differentiation in B. dorsalis. In this study, we constructed four small RNA libraries from whole body of females, males (except ovaries and testes and ovaries, testes of B. dorsalis for deep sequencing. The data analysis revealed 183 known and 120 novel miRNAs from these libraries. 18 female-biased and 16 male-biased miRNAs that may be involved in sexual differentiation were found by comparing the miRNA expression profiles in the four libraries. Using a bioinformatic approach, we predicted doublesex (dsx as a target gene of the female-biased miR-989-3p which is considered as the key switch gene in the sex determination of tephritid insects. This study reveals the first miRNA profile related to the sex differentiation and gives a first insight into sex differences in miRNA expression of B. dorsalis which could facilitate studies of the reproductive organ specific roles of miRNAs.

  9. Status of Bactrocera invadens (Diptera: Tephritidae) in mango-producing areas of Arba Minch, southwestern Ethiopia.

    Science.gov (United States)

    Massebo, Fekadu; Tefera, Zenebe

    2015-01-01

    Bactrocera invadens, the Asian fruit fly, was first reported in Kenya in 2003, and it spread fast to most tropical countries in Africa. To our knowledge, there is no detailed data on the fruit damage and status of fruit flies in Arba Minch and elsewhere in Ethiopia. Hence, information on the species composition and pest status of the fruit fly species is urgent to plan management strategies in the area. Fruit flies were captured using male parapheromone-baited traps. Matured mango (Mangifera indica) fruits were collected from randomly selected mango trees and incubated individually in cages (15 by 15 by 15 cm) with sandy soil. B. invadens was the predominant (96%; 952 of 992) captured species and the only fruit fly species emerging from mango fruits incubated in the laboratory. The mean number of adult B. invadens emerging per mango fruit was 35.25, indicating that the species is the most devastating mango fruit fly in the area. The loss due to this species would be serious if no management strategies are implemented. © The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America.

  10. Phytosanitary Treatments Against Bactrocera dorsalis (Diptera: Tephritidae): Current Situation and Future Prospects.

    Science.gov (United States)

    Dohino, Toshiyuki; Hallman, Guy J; Grout, Timothy G; Clarke, Anthony R; Follett, Peter A; Cugala, Domingos R; Minh Tu, Duong; Murdita, Wayan; Hernandez, Emilio; Pereira, Rui; Myers, Scott W

    2017-02-01

    Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) is arguably the most important tephritid attacking fruits after Ceratitis capitata (Wiedemann) (Diptera: Tephritidae). In 2003 it was found in Africa and quickly spread to most of the sub-Saharan part of the continent, destroying fruits and creating regulatory barriers to their export. The insect is causing new nutritional and economic losses across Africa, as well as the losses it has caused for decades in infested areas of Asia, New Guinea, and Hawaii. This new panorama represents a challenge for fruit exportation from Africa. Phytosanitary treatments are required to export quarantined commodities out of infested areas to areas where the pest does not exist and could become established. This paper describes current phytosanitary treatments against B. dorsalis and their use throughout the world, the development of new treatments based on existing research, and recommendations for further research to provide phytosanitary solutions to the problem. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Study on Disinfestation of Fruit Fly (Bactrocera dorsalis using Vapor Heat Treatment on Gedong Gincu Mango

    Directory of Open Access Journals (Sweden)

    Rokhani Hasbullah

    2009-04-01

    Full Text Available Since the prohibition of chemical method for insect disinfestations processes such as ethylene dibromide in 1984, heat treatment method was developed as quarantine technology. One of the heat treatment methods is vapor heat treatment (VHT. The objectives of this research were to study mortality of fruit fly (Bactrocera dorsalis and to study the responses of VHT on quality of gedong gincu mango. Fruit fly mortality due to heat has been investigated by immersing fruit fly eggs into heated water at temperatures of 40, 43, 46 and 49OC for 30 minutes immersed, also at temperature of 46OC for 5, 10, 15, 20, 25 and 30 minutes. Gedong gincu mangoes were treated at temperature 46.5OC for 0, 10, 20, and 30 minutes. The results showed that mortality has been achieved 100% at temperature more than and equal to 43OC for 30 minutes and at temperature 46OC for more than and equal to 10 minutes. The VHT has significantly and fungi population although without adversely affecting to the fruit quality and there were no significant change in the fruit weight loss, hardness, color, soluble solid content, water content, vitamin C and organoleptic test. VHT at temperature 46.5OC for 20 up to 30 minutes were effective to kill fruit flies inside mangoes and were able to maintaining mango quality during storage.

  12. Small-Scale Spatio-Temporal Distribution of Bactrocera minax (Enderlein) (Diptera: Tephritidae) Using Probability Kriging.

    Science.gov (United States)

    Wang, S Q; Zhang, H Y; Li, Z L

    2016-10-01

    Understanding spatio-temporal distribution of pest in orchards can provide important information that could be used to design monitoring schemes and establish better means for pest control. In this study, the spatial and temporal distribution of Bactrocera minax (Enderlein) (Diptera: Tephritidae) was assessed, and activity trends were evaluated by using probability kriging. Adults of B. minax were captured in two successive occurrences in a small-scale citrus orchard by using food bait traps, which were placed both inside and outside the orchard. The weekly spatial distribution of B. minax within the orchard and adjacent woods was examined using semivariogram parameters. The edge concentration was discovered during the most weeks in adult occurrence, and the population of the adults aggregated with high probability within a less-than-100-m-wide band on both of the sides of the orchard and the woods. The sequential probability kriged maps showed that the adults were estimated in the marginal zone with higher probability, especially in the early and peak stages. The feeding, ovipositing, and mating behaviors of B. minax are possible explanations for these spatio-temporal patterns. Therefore, spatial arrangement and distance to the forest edge of traps or spraying spot should be considered to enhance pest control on B. minax in small-scale orchards.

  13. Effect of six insecticides on three populations of Bactrocera (Tetradacus) minax (Diptera: Tephritidae).

    Science.gov (United States)

    Liu, Haoqiang; Jiang, Gaofei; Zhang, Yunfei; Chen, Fei; Li, Xiaojiao; Yue, Jiansu; Ran, Chun; Zhao, Zhimo

    2015-01-01

    The Chinese citrus fruit fly, Bactrocera minax is one of the most economically important and aggressive pests threatening the Chinese citrus industry. In order to provide some recommendations for the improvement of integrated pest management of this species, the authors evaluated the toxicity of 6 insecticides on the second stage larvae, fourth stage larvae, and adult flies from multiple geographical B. minax populations. In addition, the influences of each pesticide on pupation and emergence were examined for one population, from Hanzhong. The 6 reagents displayed a wide range of toxicity on various stages of B. minax. Abamectin and Dichlorphos displayed the highest and lowest toxicities, respectively. All of the insecticides had negative effects on pupation and emergence of B. minax from Hanzhong, while Chlorpvrifos had the strongest impact on pupation, and Phoxim had the strongest influence on emergence. Though Phoxim and Chlorpvrifos were both effective, these insecticides belong to the class of organophosphorus pesticides, and their use should be reduced in orchards because of their high toxicity and long residual period.

  14. Biochemical and molecular characterisation of acetylcholinesterase in four field populations of Bactrocera dorsalis (Hendel) (Diptera: Tephritidae).

    Science.gov (United States)

    Shen, Guang-Mao; Wang, Xiao-Na; Dou, Wei; Wang, Jin-Jun

    2012-12-01

    The oriental fruit fly, Bactrocera dorsalis, is a major pest that infects fruits and agricultural products worldwide. The latest resistance monitoring of B. dorsalis from mainland China has identified high levels of resistance to insecticides. In this study, the biochemical and molecular characteristics of acetylcholinesterase (AChE) in four field populations of B. dorsalis are investigated. Among the four populations, the DG population and its purified AChE were found to be the least susceptible to malathion and five inhibitors, whereas the KM population and its purified AChE were the most susceptible. The highest catalytic activity of purified AChE was found for the KM population, and the catalytic activity of the DG population was the lowest. Among developmental stages, the AChE purified from larvae was found to be the most insusceptible to inhibitors, but its catalytic activity was the highest. Sequence analysis of the cDNA encoding AChE showed that some residue differences existed. However, no significant differences in expression levels of the AChE gene among populations and developmental stages were detected. The results suggest that the decrease in susceptibility of B. dorsalis was mainly caused by decrease in AChE activity, and they provide a broad view on the relation between AChE and resistance. Copyright © 2012 Society of Chemical Industry.

  15. Attraction and consumption of methyl eugenol by male Bactrocera umbrosa Fabricius (Diptera: Tephritidae) promotes conspecific sexual communication and mating performance.

    Science.gov (United States)

    Wee, S L; Abdul Munir, M Z; Hee, A K W

    2018-02-01

    The Artocarpus fruit fly, Bactrocera umbrosa (Fabricius) (Diptera: Tephritidae), is an oligophagous fruit pest infesting Moraceae fruits, including jackfruit (Artocarpus heterophyllus Lamarck), a fruit commodity of high value in Malaysia. The scarcity of fundamental biological, physiological and ecological information on this pest, particularly in relation to behavioural response to phytochemical lures, which are instrumental to the success of many area-wide fruit fly control and management programmes, underpins the need for studies on this much-underrated pest. The positive response of B. umbrosa males to methyl eugenol (ME), a highly potent phytochemical lure, which attracts mainly males of many Bactrocera species, was shown to increase with increasing age. As early as 7 days after emergence (DAE), ca. 22% of males had responded to ME and over 50% by 10 DAE, despite no occurrence of matings (i.e. the males were still sexually immature). Male attraction to ME peaked from 10 to 27 DAE, which corresponded with the flies' attainment of sexual maturity. In wind-tunnel assays during the dusk courtship period, ME-fed males exhibited earlier calling activity and attracted a significantly higher percentage of virgin females compared with ME-deprived males. ME-fed males enjoyed a higher mating success than ME-deprived males at 1-day post ME feeding in semi-field assays. ME consumption also promotes aggregation behaviour in B. umbrosa males, as demonstrated in wind-tunnel and semi-field assays. We suggest that ME plays a prominent role in promoting sexual communication and enhancing mating performance of the Artocarpus fruit fly, a finding that is congruent with previous reports on the consequences of ME acquisition by other economically important Bactrocera species.

  16. Development of quality control procedures for mass produced and released Bactrocera Philippinensis (Diptera: Tephritidae) for sterile insect technique programs

    International Nuclear Information System (INIS)

    Resilva, S.; Obra, G.; Zamora, N.; Gaitan, E.

    2007-01-01

    Quality control procedures for Bactrocera philippinensis Drew and Hancock 1994 (Diptera: Tephritidae) used in sterile insect technique (SIT) programs were established in the mass rearing facility at the Philippine Nuclear Research Institute. Basic studies on pupal irradiation, holding/packaging systems, shipping procedures, longevity, sterility studies, and pupal eye color determination in relation to physiological development at different temperature regimes were investigated. These studies will provide baseline data for the development of quality control protocols for an expansion of B. philippinensis field programs with an SIT component in the future. (author) [es

  17. Melon fly, Bactrocera cucurbitae (Diptera: Tephritidae), infestation in host fruits in the Southwestern Islands of Japan before the initiation of Island-wide population suppression

    Science.gov (United States)

    Bactrocera cucurbitae (Coquillett) is a tephritid fruit fly native to the Indo-Malayan region. Its distribution, though, has extended to include Africa, temperate Asia, and a number of Pacific islands. It became established in Japan in 1919 in the Yaeyama Islands and spread north in the Southwestern...

  18. Population fluctuation of adult males of the fruit fly, Bactrocera tau Walker (Diptera: Tephritidae) in passion fruit orchards in relation to abiotic factors and sanitation

    NARCIS (Netherlands)

    Hasyim, A.; Muryati, M.; Kogel, de W.J.

    2008-01-01

    Fruit fly (Bactrocera tau) is the most destructive pest on some fruits in Indonesia. Monitoring of the pest population is essential as one of the procedures in the IPM concept. The study aimed to investigate the seasonal fluctuation of adult males of B. tau and their damage on passion fruits in

  19. Di- and Tri-flourinated analogs of methyl eugenol: attractiveness to and metabolism in the oriental fruit fly, bactrocera dorsalis (hendel)

    Science.gov (United States)

    Oriental fruit fly, Bactrocera dorsalis (Hendel), males are highly 1 attracted to the natural phenylpropanoid methyl eugenol (ME). They compulsively feed on ME and metabolize it to ring and side-chain hydroxylated compounds that have both pheromonal and allomonal properties. Previously, we demonstra...

  20. Characterizing the developmental transcriptome of the oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae) through comparative genomic analysis with Drosophila melanogaster utilizing modENCODE datasets

    Science.gov (United States)

    Background The oriental fruit fly, Bactrocera dorsalis, is an important pest of fruit and vegetable crops throughout Asia, and is considered a high risk pest for establishment in the mainland United States. It is a member of the family Tephritidae, which are the most agriculturally important family ...

  1. Function of the natalisin receptor in mating of the oriental fruit fly, Bactrocera dorsalis (Hendel) and identification of agonists/antagonists

    Science.gov (United States)

    Natalisins (NTLs) are conservative neuropeptides, which are only found in arthropods and have been documented to regulate reproductive behaviors in insect species. In our previous study, we have confirmed NTL regulates the reproductive process in an important agricultural pest, Bactrocera dorsalis ...

  2. Attraction and mortality of Bactrocera dorsalis to STATIC Spinosad ME weathered under operational conditions in California and Florida: A reduced-risk male annihilation treatment

    Science.gov (United States)

    Studies were conducted in 2013 in Hawaii, USA, to quantify attraction, feeding, and mortality of male oriental fruit flies, Bactrocera dorsalis (Hendel)(Diptera: Tephritidae), to a reduced risk male annihilation treatment(MAT)formulation consisting of an amorphous polymer matrix in combination with...

  3. Regional Suppression of Bactrocera Fruit Flies (Diptera: Tephritidae in the Pacific through Biological Control and Prospects for Future Introductions into Other Areas of the World

    Directory of Open Access Journals (Sweden)

    Roger I. Vargas

    2012-08-01

    Full Text Available Bactrocera fruit fly species are economically important throughout the Pacific. The USDA, ARS U.S. Pacific Basin Agricultural Research Center has been a world leader in promoting biological control of Bactrocera spp. that includes classical, augmentative, conservation and IPM approaches. In Hawaii, establishment of Bactrocera cucurbitae (Coquillett in 1895 resulted in the introduction of the most successful parasitoid, Psyttalia fletcheri (Silvestri; similarly, establishment of Bactrocera dorsalis (Hendel in 1945 resulted in the introduction of 32 natural enemies of which Fopius arisanus (Sonan, Diachasmimorpha longicaudata (Ashmead and Fopius vandenboschi (Fullaway were most successful. Hawaii has also been a source of parasitoids for fruit fly control throughout the Pacific region including Australia, Pacific Island Nations, Central and South America, not only for Bactrocera spp. but also for Ceratitis and Anastrepha spp. Most recently, in 2002, F. arisanus was introduced into French Polynesia where B. dorsalis had invaded in 1996. Establishment of D. longicaudata into the new world has been important to augmentative biological control releases against Anastrepha spp. With the rapid expansion of airline travel and global trade there has been an alarming spread of Bactrocera spp. into new areas of the world (i.e., South America and Africa. Results of studies in Hawaii and French Polynesia, support parasitoid introductions into South America and Africa, where B. carambolae and B. invadens, respectively, have become established. In addition, P. fletcheri is a candidate for biological control of B. cucurbitae in Africa. We review past and more

  4. Determination of Opiinae parasitoids (Hymenoptera: Braconidae) associated with crop infesting Bactrocera spp. (Diptera: Tephritidae) using COI and Cyt b sequences

    Science.gov (United States)

    Shariff, Safiah; Yaakop, Salmah; Zain, Badrul Munir Md.

    2013-11-01

    Members of the Opiinae subfamily (Hymenoptera: Braconidae) are well known as important parasitoids of fruit fly larvae (Diptera: Tephritidae). They are widely used as biological control agents of fruit flies, especially the Bactrocera Macquart species that infest fruits. In this study, the larvae of fruit flies were collected from infested crops including star fruit, guava, wax apple and ridge gourd. The parasitized larvae were then reared under laboratory conditions until emergence of the adult parasitoids. Additionally, Malaise trap also was used to collect parasitoid species. The general concept of the multiplex PCR has been performed is to amplify two mitochondrial DNA markers, namely cytochrome oxidase subunit I (COI) and cytochrome b (Cyt b) simultaneously. Therefore, the lengthy process of reaction will be reduced. The status of the fruit fly species has also been confirmed by using COI marker on the early stage of the larvae. Maximum parsimony (MP) and Bayesian Inference (BI) were implemented to help and support the identification of Opiinae species. The result obtained from this study showed three parasitoid genera of the Opiinae viz. Fopius Wharton, Psyttalia Walker and Diachasmimorpha Viereck. Each genus has been determined by clustering together in a similar clade according to their infested crops. Therefore, accurate determination of parasitoids and the fruit fries species was highly useful and necessary for successful biological control of Bactrocera species.

  5. Bacterial communities in the gut and reproductive organs of Bactrocera minax (Diptera: Tephritidae based on 454 pyrosequencing.

    Directory of Open Access Journals (Sweden)

    Ailin Wang

    Full Text Available The citrus fruit fly Bactrocera minax is associated with diverse bacterial communities. We used a 454 pyrosequencing technology to study in depth the microbial communities associated with gut and reproductive organs of Bactrocera minax. Our dataset consisted of 100,749 reads with an average length of 400 bp. The saturated rarefaction curves and species richness indices indicate that the sampling was comprehensive. We found highly diverse bacterial communities, with individual sample containing approximately 361 microbial operational taxonomic units (OTUs. A total of 17 bacterial phyla were obtained from the flies. A phylogenetic analysis of 16S rDNA revealed that Proteobacteria was dominant in all samples (75%-95%. Actinobacteria and Firmicutes were also commonly found in the total clones. Klebsiella, Citrobacter, Enterobacter, and Serratia were the major genera. However, bacterial diversity (Chao1, Shannon and Simpson indices and community structure (PCA analysis varied across samples. Female ovary has the most diverse bacteria, followed by male testis, and the bacteria diversity of reproductive organs is richer than that of the gut. The observed variation can be caused by sex and tissue, possibly to meet the host's physiological demands.

  6. Bacterial communities in the gut and reproductive organs of Bactrocera minax (Diptera: Tephritidae) based on 454 pyrosequencing.

    Science.gov (United States)

    Wang, Ailin; Yao, Zhichao; Zheng, Weiwei; Zhang, Hongyu

    2014-01-01

    The citrus fruit fly Bactrocera minax is associated with diverse bacterial communities. We used a 454 pyrosequencing technology to study in depth the microbial communities associated with gut and reproductive organs of Bactrocera minax. Our dataset consisted of 100,749 reads with an average length of 400 bp. The saturated rarefaction curves and species richness indices indicate that the sampling was comprehensive. We found highly diverse bacterial communities, with individual sample containing approximately 361 microbial operational taxonomic units (OTUs). A total of 17 bacterial phyla were obtained from the flies. A phylogenetic analysis of 16S rDNA revealed that Proteobacteria was dominant in all samples (75%-95%). Actinobacteria and Firmicutes were also commonly found in the total clones. Klebsiella, Citrobacter, Enterobacter, and Serratia were the major genera. However, bacterial diversity (Chao1, Shannon and Simpson indices) and community structure (PCA analysis) varied across samples. Female ovary has the most diverse bacteria, followed by male testis, and the bacteria diversity of reproductive organs is richer than that of the gut. The observed variation can be caused by sex and tissue, possibly to meet the host's physiological demands.

  7. Global Potential Distribution of Bactrocera carambolae and the Risks for Fruit Production in Brazil.

    Science.gov (United States)

    Marchioro, Cesar A

    2016-01-01

    The carambola fruit fly, Bactrocera carambolae, is a tephritid native to Asia that has invaded South America through small-scale trade of fruits from Indonesia. The economic losses associated with biological invasions of other fruit flies around the world and the polyphagous behaviour of B. carambolae have prompted much concern among government agencies and farmers with the potential spread of this pest. Here, ecological niche models were employed to identify suitable environments available to B. carambolae in a global scale and assess the extent of the fruit acreage that may be at risk of attack in Brazil. Overall, 30 MaxEnt models built with different combinations of environmental predictors and settings were evaluated for predicting the potential distribution of the carambola fruit fly. The best model was selected based on threshold-independent and threshold-dependent metrics. Climatically suitable areas were identified in tropical and subtropical regions of Central and South America, Sub-Saharan Africa, west and east coast of India and northern Australia. The suitability map of B. carambola was intersected against maps of fruit acreage in Brazil. The acreage under potential risk of attack varied widely among fruit species, which is expected because the production areas are concentrated in different regions of the country. The production of cashew is the one that is at higher risk, with almost 90% of its acreage within the suitable range of B. carambolae, followed by papaya (78%), tangerine (51%), guava (38%), lemon (30%), orange (29%), mango (24%) and avocado (20%). This study provides an important contribution to the knowledge of the ecology of B. carambolae, and the information generated here can be used by government agencies as a decision-making tool to prevent the carambola fruit fly spread across the world.

  8. Cytoplasmic glutamine synthetase gene expression regulates larval development in Bactrocera dorsalis (Hendel).

    Science.gov (United States)

    Zhang, Meng-Yi; Wei, Dong; Li, Ran; Jia, Hong-Ting; Liu, Yu-Wei; Taning, Clauvis Nji Tizi; Wang, Jin-Jun; Smagghe, Guy

    2018-04-01

    In insects, glutamine synthetase (GS), a key enzyme in the synthesis of glutamine, has been reported to be associated with embryonic development, heat shock response, and fecundity regulation. However, little is known about the influence of GS on postembryonic development. In this study, we demonstrate that blocking the activity of GS in the oriental fruit fly (Bactrocera dorsalis) with use of a GS-specific inhibitor (L-methionine S-sulfoximine), led to a significant delay in larval development, pupal weight loss, and inhibition of pupation. We further identify cloned and characterized two GS genes (BdGS-c and BdGS-m) from B. dorsalis. The two GS genes identified in B. dorsalis were predicted to be located in the cytosol (BdGS-c) and mitochondria (BdGS-m), and homology analysis indicated that both genes were similar to homologs from other Dipterans, such as Drosophila melanogaster and Aedes aegypti. BdGS-c was highly expressed in the larval stages, suggesting that cytosolic GS plays a predominant role in larval development. Furthermore, RNA interference experiments against BdGS-c, to specifically decrease the expression of cytosolic GS, resulted in delay in larval development as well as pupal weight loss. This study presents the prominent role played by BdGS-c in regulating larval development and suggests that the observed effect could have been modulated through ecdysteroid synthesis, agreeing with the reduced expression of the halloween gene spook. Also, the direct effects of BdGS-c silencing on B. dorsalis, such as larval lethality, delayed pupation, and late emergence, can be further exploited as novel insecticide target in the context of pest management. © 2018 Wiley Periodicals, Inc.

  9. Inheritance, Realized Heritability, and Biochemical Mechanisms of Malathion Resistance in Bactrocera dorsalis (Diptera: Tephritidae).

    Science.gov (United States)

    Wang, Luo-Luo; Feng, Zi-Jiao; Li, Ting; Lu, Xue-Ping; Zhao, Jia-Jia; Niu, Jin-Zhi; Smagghe, Guy; Wang, Jin-Jun

    2016-02-01

    To better characterize the resistance development and therefore establish effective pest management strategies, this study was undertaken to investigate the inheritance mode and biochemical mechanisms of malathion resistance in the oriental fruit fly, Bactrocera dorsalis (Hendel), which is one of the most notorious pests in the world. After 22 generations of selection with malathion, the malathion-resistant (MR) strain of B. dorsalis developed a 34-fold resistance compared with a laboratory susceptible strain [malathion-susceptible (MS)]. Bioassay results showed that there was no significant difference between the LD50 values of malathion against the progenies from both reciprocal crosses (F(1)-SR and F(1)-RS). The degree of dominance values (D) was calculated as 0.39 and 0.32 for F(1)-RS and F(1)-SR, respectively. The logarithm dosage-probit mortality lines of the F(2) generation and progeny from the backcross showed no clear plateaus of mortality across a range of doses. In addition, Chi-square analysis revealed significant differences between the mortality data and the theoretical expectations. The realized heritability (h(2)) value was 0.16 in the laboratory-selected resistant strain of B. dorsalis. Enzymatic activities identified significant changes of carboxylesterases, cytochrome P450 (general oxidases), and glutathione S-transferases in MR compared with the MS strain of B. dorsalis. Taken together, this study revealed for the first time that malathion resistance in B. dorsalis follows an autosomal, incompletely dominant, and polygenic mode of inheritance and is closely associated with significantly elevated activities of three major detoxification enzymes. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Monitoring of Bactrocera dorsalis (Diptera: Tephritidae) resistance to cyantraniliprole in the south of China.

    Science.gov (United States)

    Zhang, Ruimin; He, Shiyu; Chen, Jiahua

    2014-06-01

    The oriental fruit fly, Bactrocera dorsalis (Hendel), is a globally important economic insect pest that has evolved resistance to various types of insecticides. Cyantraniliprole (DuPont Cyazypyr) is a new anthranilic diamide insecticide registered to control lepidopteran and sucking insects. The susceptibility of field-collected populations of B. dorsalis to cyantraniliprole was assessed via a diet incorporation bioassay in adults. Based on the obtained LC50 values (ranging from 3.29 to 15.83 microg/g), all the testing populations, including ZZ (Fujian province), HH (Yunnan province), JM (Guangdong province), SY (Hainan province), HZ (Zhejiang province), YL (Guangxi province), SH (Shanghai), WH (Hubei province), and CS (Hunan province), were susceptible to cyantraniliprole, with the samples of WH (Hubei province) being the most tolerant (by 4.80-fold). Two (SY, Hainan province; CS, Hunan province) of the nine field-collected populations of B. dorsalis showed a similar susceptibility to cyantraniliprole, while the remaining populations displayed narrow variations in tolerance compared with the laboratory strain. Synergist assays were performed to determine the potential detoxification mechanisms. Piperonyl butoxide showed significant synergism effects in lab, CS, and resistant strain. S,S,S-tributylphorotrithioate and diethyl maleate also showed obvious synergism effects in resistant strain. A 19.44-fold increase in resistance to cyantraniliprole was observed after 14 generations of selection in the laboratory. The present work clarifies the baseline susceptibility and primary mechanisms of B. dorsalis to cyantraniliprole in the south China and established a cyantraniliprole-resistant strain as well. A sound resistance management strategy is also discussed in relation to the risk of susceptibility.

  11. Gamma Irradiation as a Phytosanitary Treatment of Bactrocera tau (Diptera: Tephritidae) in Pumpkin Fruits.

    Science.gov (United States)

    Guoping, Zhan; Lili, Ren; Ying, Shao; Qiaoling, Wang; Daojian, Yu; Yuejin, Wang; Tianxiu, Li

    2015-02-01

    The fruit fly Bactrocera tau (Walker) is an important quarantine pest that damages fruits and vegetables throughout Asian regions. Host commodities shipped from infested areas should undergo phytosanitary measures to reduce the risk of shipping viable flies. The dose-response tests with 1-d-old eggs and 3-, 5-, 7-, 8-d-old larvae were initiated to determine the most resistant stages in fruits, and the minimum dose for 99.9968% prevention of adult eclosion at 95% confidence level was validated in the confirmatory tests. The results showed that 1) the pupariation rate was not affected by gamma radiation except for eggs and first instars, while the percent of eclosion was reduced significantly in all instars at all radiation dose; 2) the tolerance to radiation increased with increasing age and developmental stage; 3) the estimated dose to 99.9968% preventing adult eclosion from late third instars was 70.9 Gy (95% CL: 65.6-78.2, probit model) and 71.8 Gy (95% CL: 63.0-87.3, logit model); and iv) in total, 107,135 late third instars cage infested in pumpkin fruits were irradiated at the target dose of 70 Gy (62.5-85.0, Gy measured), which resulted in no adult emergence in the two confirmatory tests. Therefore, a minimum dose of 85 and 72 Gy, which could prevent adult emergence at the efficacy of 99.9972 and 99.9938% at the 95% confidence level, respectively, can be recommended as a minimum dose for phytosanitary treatment of B. tau in any host fruits and vegetables under ambient atmospheres. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Spatial distribution pattern and sequential sampling plans for Bactrocera oleae (Gmelin (Dip: Tephritidae in olive orchards

    Directory of Open Access Journals (Sweden)

    A. Arbab

    2016-04-01

    Full Text Available The distribution of adult and larvae Bactrocera oleae (Diptera: Tephritidae, a key pest of olive, was studied in olive orchards. The first objective was to analyze the dispersion of this insect on olive and the second was to develop sampling plans based on fixed levels of precision for estimating B. oleae populations. The Taylor’s power law and Iwao’s patchiness regression models were used to analyze the data. Our results document that Iwao’s patchiness provided a better description between variance and mean density. Taylor’s b and Iwao’s β were both significantly more than 1, indicating that adults and larvae had aggregated spatial distribution. This result was further supported by the calculated common k of 2.17 and 4.76 for adult and larvae, respectively. Iwao’s a for larvae was significantly less than 0, indicating that the basic distribution component of B. oleae is the individual insect. Optimal sample sizes for fixed precision levels of 0.10 and 0.25 were estimated with Iwao’s patchiness coefficients. The optimum sample size for adult and larvae fluctuated throughout the seasons and depended upon the fly density and desired level of precision. For adult, this generally ranged from 2 to 11 and 7 to 15 traps to achieve precision levels of 0.25 and 0.10, respectively. With respect to optimum sample size, the developed fixed-precision sequential sampling plans was suitable for estimating flies density at a precision level of D=0.25. Sampling plans, presented here, should be a tool for research on pest management decisions of B. oleae.

  13. Effect of sweeteners on the survival and behaviour of Bactrocera dorsalis (Hendel) (Diptera: Tephritidae).

    Science.gov (United States)

    Zheng, Chunyan; Zeng, Ling; Xu, Yijuan

    2016-05-01

    The oriental fruit fly Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) causes serious damage that affects fruit production. Chemical insecticides have been widely used for the prevention and control of this destructive pest. However, the resistance of B. dorsalis to these compounds has become a serious problem. This study tested six sweeteners for their toxicity to B. dorsalis. B. dorsalis fed on erythritol, aspartame and saccharin exhibited significantly higher mortality than those fed on sucrose. Flies fed on erythritol died faster than did the control flies (water). However, no dose-dependent effects were observed at the concentrations tested. These three sweeteners decreased the climbing ability of B. dorsalis. Notably, adults fed on saccharin exhibited significantly decreased climbing ability after 12 h compared with those fed on sucrose. Additionally, these three sweeteners had a negative effect on the frequency and duration of the flies' behaviour patterns (flying, walking, grooming and inactivity). Saccharin not only induced a marked reduction in the frequency of flights and walks but also induced decreases in the time spent flying and walking and increases in inactivity compared with sucrose. Erythritol induced a reduction in movement and increased the time spent inactive compared with the control and other treatments. Three sweeteners had significant negative effects on the survival of B. dorsalis. Erythritol was toxic to B. dorsalis. Aspartame and saccharin also decreased the survival and behaviour of adult flies and may be toxic to (or contribute to poor nutrition in) B. dorsalis. These sweeteners could therefore be developed as additive ingredients in baits. © 2015 Society of Chemical Industry.

  14. Global Potential Distribution of Bactrocera carambolae and the Risks for Fruit Production in Brazil.

    Directory of Open Access Journals (Sweden)

    Cesar A Marchioro

    Full Text Available The carambola fruit fly, Bactrocera carambolae, is a tephritid native to Asia that has invaded South America through small-scale trade of fruits from Indonesia. The economic losses associated with biological invasions of other fruit flies around the world and the polyphagous behaviour of B. carambolae have prompted much concern among government agencies and farmers with the potential spread of this pest. Here, ecological niche models were employed to identify suitable environments available to B. carambolae in a global scale and assess the extent of the fruit acreage that may be at risk of attack in Brazil. Overall, 30 MaxEnt models built with different combinations of environmental predictors and settings were evaluated for predicting the potential distribution of the carambola fruit fly. The best model was selected based on threshold-independent and threshold-dependent metrics. Climatically suitable areas were identified in tropical and subtropical regions of Central and South America, Sub-Saharan Africa, west and east coast of India and northern Australia. The suitability map of B. carambola was intersected against maps of fruit acreage in Brazil. The acreage under potential risk of attack varied widely among fruit species, which is expected because the production areas are concentrated in different regions of the country. The production of cashew is the one that is at higher risk, with almost 90% of its acreage within the suitable range of B. carambolae, followed by papaya (78%, tangerine (51%, guava (38%, lemon (30%, orange (29%, mango (24% and avocado (20%. This study provides an important contribution to the knowledge of the ecology of B. carambolae, and the information generated here can be used by government agencies as a decision-making tool to prevent the carambola fruit fly spread across the world.

  15. Including climate change in pest risk assessment: the peach fruit fly, Bactrocera zonata (Diptera: Tephritidae).

    Science.gov (United States)

    Ni, W L; Li, Z H; Chen, H J; Wan, F H; Qu, W W; Zhang, Z; Kriticos, D J

    2012-04-01

    Bactrocera zonata (Saunders) is one of the most harmful species of Tephritidae. It causes extensive damage in Asia and threatens many countries located along or near the Mediterranean Sea. The climate mapping program, CLIMEX 3.0, and the GIS software, ArcGIS 9.3, were used to model the current and future potential geographical distribution of B. zonata. The model predicts that, under current climatic conditions, B. zonata will be able to establish itself throughout much of the tropics and subtropics, including some parts of the USA, southern China, southeastern Australia and northern New Zealand. Climate change scenarios for the 2070s indicate that the potential distribution of B. zonata will expand poleward into areas which are currently too cold. The main factors limiting the pest's range expansion are cold, hot and dry stress. The model's predictions of the numbers of generations produced annually by B. zonata were consistent with values previously recorded for the pest's occurrence in Egypt. The ROC curve and the AUC (an AUC of 0.912) were obtained to evaluate the performance of the CLIMEX model in this study. The analysis of this information indicated a high degree of accuracy for the CLIMEX model. The significant increases in the potential distribution of B. zonata projected under the climate change scenarios considered in this study suggest that biosecurity authorities should consider the effects of climate change when undertaking pest risk assessments. To prevent the introduction and spread of B. zonata, enhanced quarantine and monitoring measures should be implemented in areas that are projected to be suitable for the establishment of the pest under current and future climatic conditions.

  16. Identification and Expression Profile Analysis of Odorant Binding Proteins in the Oriental Fruit Fly Bactrocera dorsalis

    Directory of Open Access Journals (Sweden)

    Hongyu Zhang

    2013-07-01

    Full Text Available Olfaction is crucial in many insects for critical behaviors, including those regulating survival and reproduction. Insect odorant-binding proteins (OBPs function in the first step of the olfactory system and play an essential role in the perception of odorants, such as pheromones and host chemicals. The oriental fruit fly, Bactrocera dorsalis, is a destructive fruit-eating pest, due to its wide host range of up to 250 different types of fruits and vegetables, and this fly causes severe economic damage to the fruit and vegetable industry. However, OBP genes have not been largely identified in B. dorsalis. Based on our previously constructed B. dorsalis cDNA library, ten OBP genes were identified in B. dorsalis for the first time. A phylogenetic tree was generated to show the relationships among the 10 OBPs of B. dorsalis to OBP sequences of two other Dipteran species, including Drosophila melanogaster and the mosquito Anopheles gambiae. The expression profiles of the ten OBPs in different tissues (heads, thoraxes, abdomens, legs, wings, male antennae and female antenna of the mated adults were analyzed by real-time PCR. The results showed that nine of them are highly expressed in the antenna of both sexes, except BdorOBP7. Four OBPs (BdorOBP1, BdorOBP4, BdorOBP8, and BdorOBP10 are also enriched in the abdomen, and BdorOBP7 is specifically expressed in leg, indicating that it may function in other biological processes. This work will provide insight into the roles of OBPs in chemoreception and help develop new pest-control strategies.

  17. The importance of yeasts in the ecology and control of the Queensland fruit fly

    OpenAIRE

    Alexander M Piper

    2017-01-01

    Queensland fruit fly (Bactrocera tryoni) is a major orchard pest in Australia. Adult flies lay their eggs into ripe fruit, resulting in larval infestation and the spread of bacterial and fungal rots. The role of these microbes in fruit fly ecology is only now being elucidated, with much of the emphasis to date focusing on bacterial communities. In our study, we explored the diversity of yeast species associated with B. tryoni adults and larvae. We found larvae were highly assoc...

  18. Effects of Curcuma longa extracts on mortality and fecundity of Bactrocera zonata (Diptera: Tephritidae Efeitos dos extratos de Curcuma longa sobre mortalidade e fecundidade de Bactrocera zonata (Diptera: Tephritidae

    Directory of Open Access Journals (Sweden)

    Abdul Rauf Siddiqi

    2011-12-01

    Full Text Available The peach fruit fly, Bactrocera zonata, is a significant pest of fruit and vegetable crops in South East Asia and Pacific region. Ccontrol strategies of fruit flies, relying chiefly on insecticides, have serious environmental consequences, disturbing the agro-ecosystem as well as eliminating natural enemies. This study was oriented at exploring the potential of turmeric, Curcuma longa, extracts to control the peach fruit fly. Freshly emerged female adults of Bactrocera zonata were continuously fed for 16 days on diet containing 1000, 500 and 250 ppm of acetone extract of Curcuma longa separately in laboratory cages. The extract caused 85.00, 66.67 and 56.67 percent mortality at 1000, 500 and 250 ppm respectively. The surviving females were mated and allowed to reproduce on clean guava fruits in separate cages. The inhibition in pupal progeny was 67.90, 60.74 and 51.96 percent in the flies fed on 1000, 500 and 250 ppm, the inhibition observed in adult progeny was 84.68, 79.03 and 67.74 percent, respectively.A mosca do pêssego, Bactrocera zonata, é uma importante praga das frutas e produtos hortícolas no Sudeste Asiático e Pacífico. As estratégias de controle de moscas-das-frutas, que se baseia principalmente no uso de inseticidas, têm consequências ambientais graves, perturbando o agroecossistema, bem como eliminando os inimigos naturais. Este estudo foi orientado a explorar as potencialidades dos extratos de açafrão Curcuma longa para controle de B. zonata. Após a emergência, adultos de fêmeas de B. zonata foram continuamente alimentados, durante 16 dias, com dieta contendo 1000, 500 e 250 ppm de extrato acetônico de C. longa separadamente em gaiolas no laboratório. O extrato causou 85,00, 66,67 e 56,67 % de mortalidade em 1000, 500 e 250 ppm, respectivamente. As fêmeas foram acasaladas e postas para ovipositar separadamente em goiabas dentro das gaiolas. A inibição na progênie pupal foi 67,90, 60,74 e 51,96 % nos insetos

  19. RNA interference of four genes in adult Bactrocera dorsalis by feeding their dsRNAs.

    Directory of Open Access Journals (Sweden)

    Xiaoxue Li

    Full Text Available BACKGROUND: RNA interference (RNAi is a powerful method to inhibit gene expression in a sequence specific manner. Recently silencing the target gene through feeding has been successfully carried out in many insect species. METHODOLOGY/PRINCIPAL FINDINGS: Escherichia coli strain HT115 was genetically engineered to express dsRNA targeting genes that encode ribosomal protein Rpl19, V type ATPase D subunit, the fatty acid elongase Noa and a small GTPase Rab11. qRT-PCR showed that mRNA level of four target genes was reduced compared to ds-egfp control by feeding either engineered bacteria or dsRNAs. The maximum down-regulation of each gene varied from 35% to 100%. Tissue specific examination indicated that RNAi could be observed not only in midgut but also in other tissues like the ovary, nervous system and fat body. Silencing of rab11 through ingestion of dsRNA killed 20% of adult flies. Egg production was affected through feeding ds-noa and ds-rab11 compared to ds-egfp group. Adult flies were continuously fed with dsRNA and bacteria expressing dsRNA for 14 days and up-regulations of target genes were observed during this process. The transcripts of noa showed up-regulation compared to ds-egfp control group in four tissues on day 7 after continuous feeding either dsRNA or engineered bacteria. The maximum over-expression is 21 times compared to ds-egfp control group. Up-regulation of rab11 mRNA level could be observed in testes on day 7 after continuous bacteria treatment and in midgut on day 2 after ds-rab11 treatment. This phenomenon could also be observed in rpl19 groups. CONCLUSIONS: Our results suggested that it is feasible to silence genes by feeding dsRNA and bacteria expressing dsRNA in Bactrocera dorsalis. Additionally the over-expression of the target gene after continuously feeding dsRNA or bacteria was observed.

  20. The oviposition of the chili fruit fly (Bactrocera latifrons Hendel (Diptera: Tephritidae with reference to reproductive capacity

    Directory of Open Access Journals (Sweden)

    Anothai Wingsanoi

    2012-11-01

    Full Text Available The chili fruit fly, Bactrocera latifrons Hendel, is a serious pest of chili fruit production in Thailand. To determine theeffective control planning of the fly population, the oviposition related to reproductive capacity of the female were observed.The female ovary was daily dissected through the entire life span and the eggs inside the ovary were examined and counted.There were 44.84±19.60 eggs/ovary. The oviposition of female was simultaneously conducted. Eggs inside the ovarypresented on 8th day and the female oviposited on 10th day of the life span. The female laid 4.25±2.28 eggs, which was 12.45±9.56 fold less than the reproductive capacity. The female longevity was 31.1±8.40 days and the oviposition period was 40days.

  1. Evaluation of the synergistic effect of gamma irradiated Steinernema scapterisci and soil depth in controlling Bactrocera zonata Saunders (Diptera: Tephritidae

    Directory of Open Access Journals (Sweden)

    R.M. Sayed

    2018-01-01

    Full Text Available The Peach fruit fly, Bactrocera zonata (Saunders is a serious devastating pest in Egypt. This pest spends in soil from full grown larvae till adult emergence. Therefore, the present study was planned to evaluate the pathogenicity of Steinernema scapterisci against larvae and 1 day old pupae (at different soil depths, and to investigate the effect of gamma radiation on its virulence. The results revealed that adult emergence percentage decrease as the soil depth and S. scapterisci concentration increase. In contrast, the larval mortality increased with S. scapterisci concentration increased. In addition, this study showed that gamma irradiation of S. scapterisci juveniles with 2Gy increased its virulence against both larvae and pupae, which presented by lower LC50 values than unirradiated S. scapterisci. Subsequently, it could be concluded that 2Gy irradiated S. scapterisci can serve as a bio-tolerated control method for B. zonata.

  2. Natural Field Infestation of Mangifera casturi and Mangifera lalijiwa by Oriental Fruit Fly, Bactrocera dorsalis (Diptera: Tephritidae)

    Science.gov (United States)

    McQuate, Grant T; Sylva, Charmaine D; Liquido, Nicanor J

    2017-01-01

    Mango, Mangifera indica (Anacardiaceae), is a crop cultivated pantropically. There are, however, many other Mangifera spp (“mango relatives”) which have much more restricted distributions and are poorly known but have potential to produce mango-like fruits in areas where mangoes do not grow well or could be tapped in mango breeding programs. Because of the restricted distribution of many of the Mangifera spp, there has also been limited data collected on susceptibility of their fruits to infestation by tephritid fruit flies which is important to know for concerns both for quality of production and for quarantine security of fruit exports. Here, we report on natural field infestation by the oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae), of two mango relatives native to Indonesia: Mangifera casturi and Mangifera lalijiwa. Rates of infestation of fruits of these two Mangifera spp by tephritid fruit flies have not previously been reported. PMID:28890657

  3. Humoral immunocompetence shifts in response to developmental stage change and mating access in Bactrocera dorsalis Hendel (Diptera: Tephritidae).

    Science.gov (United States)

    Shi, Z; Lin, Y; Hou, Y; Zhang, H

    2015-04-01

    Because immune defenses are often costly employed, insect immunocompetence cannot be always maintained at its maximum level. Here, the oriental fruit fly, Bactrocera dorsalis (Hendel), was used as a study object to investigate how its immune defenses varied with the developmental stage change and mating access. Our data indicated that both phenoloxidase (PO) activity and antibacterial activity significantly increased from new larvae to pupae but decreased in adults after emergence. Furthermore, both the PO activity and antibacterial activity in the hemolymph of copulated male and female adults were dramatically higher than that of virgin male and female ones, respectively. It provided the evidence that copulation could increase the magnitude of immune defense in hemolymph of B. dorsalis. Together, these results suggest that B. dorsalis possess a flexible investment strategy in immunity to meet its specific needs based on the endo- and exogenous factors, such as their distinct food source and living environments.

  4. Irradiation as a quarantine treatment against the invader fruit fly (Bactrocera Invadens, Drew) in mangoes (Mangifera Indica L,)

    International Nuclear Information System (INIS)

    Odai, B.T.

    2010-06-01

    The detection of the African invader fly, Bactrocera invadens Drew, Tsuruta and White, in Ghana has led to limitations in the export of mango fruits from Ghana to other countries. The limitations ranging from increased control costs to outright rejection of exports has necessitated a study in the area of quarantine treatment. A study was conducted to ascertain the effectiveness of gamma radiation for control of Bactrocera invadens in fruit destined for export. Pupae were obtained from the incubation of mango fruits collected from various locations. Adults were reared and infestation levels were determined after fruits were exposed to 5, 10, 20 females in different cages. Late instar larvae in fruits were irradiated at 15, 25, 35, 45, 50, 60 and 75 Gy to determine an effective dose for B. invadens. The mortality of the fly was determined at the various doses to obtain a probit 9 figure of 68.06 Gy (rounded to 70 Gy). The confirmatory test for 3050 larvae endorsed the effective dose as the probit 9 dose. Non-infested mature green export grade mango fruits were irradiated with 0, 70 and 150 Gy to determine its effect on ascorbic acid and total acidity content, sweetness, colour, juiciness, sourness, aroma and firmness of the mango fruits. Ascorbic acid and total acidity were not irradiation dependent. Varietal differences (p 0.05) by irradiation. Varietal differences did not affect the acceptability of the sweetness, sourness and colour of the fruits (p>0.05). Storage days significantly affected (p<0.05) the acceptability of all the sensory attributes. (au)

  5. Characterization of a β-Adrenergic-Like Octopamine Receptor in the Oriental Fruit Fly, Bactrocera dorsalis (Hendel

    Directory of Open Access Journals (Sweden)

    Hui-Min Li

    2016-09-01

    Full Text Available The biogenic amine octopamine plays a critical role in the regulation of many physiological processes in insects. Octopamine transmits its action through a set of specific G-protein coupled receptors (GPCRs, namely octopamine receptors. Here, we report on a β-adrenergic-like octopamine receptor gene (BdOctβR1 from the oriental fruit fly, Bactrocera dorsalis (Hendel, a destructive agricultural pest that occurs in North America and the Asia-Pacific region. As indicated by RT-qPCR, BdOctβR1 was highly expressed in the central nervous system (CNS and Malpighian tubules (MT in the adult flies, suggesting it may undertake important roles in neural signaling in the CNS as well as physiological functions in the MT of this fly. Furthermore, its ligand specificities were tested in a heterologous expression system where BdOctβR1 was expressed in HEK-293 cells. Based on cyclic AMP response assays, we found that BdOctβR1 could be activated by octopamine in a concentration-dependent manner, confirming that this receptor was functional, while tyramine and dopamine had much less potency than octopamine. Naphazoline possessed the highest agonistic activity among the tested agonists. In antagonistic assays, mianserin had the strongest activity and was followed by phentolamine and chlorpromazine. Furthermore, when the flies were kept under starvation, there was a corresponding increase in the transcript level of BdOctβR1, while high or low temperature stress could not induce significant expression changes. The above results suggest that BdOctβR1 may be involved in the regulation of feeding processes in Bactrocera dorsalis and may provide new potential insecticide leads targeting octopamine receptors.

  6. Diversity of bacterial communities in the midgut of Bactrocera cucurbitae (Diptera: Tephritidae) populations and their potential use as attractants.

    Science.gov (United States)

    Hadapad, Ashok B; Prabhakar, Chandra S; Chandekar, Snehal C; Tripathi, Jyoti; Hire, Ramesh S

    2016-06-01

    The microbiota plays an important role in insect development and fitness. Understanding the gut microbiota composition is essential for the development of pest management strategies. Midgut bacteria were isolated from nine wild B. cucurbitae populations collected from different agroecological zones of India. These isolates were further studied for attractant potential of fruit fly adults, and the chemical constituents in the supernatants of gut bacteria were analysed. Twenty-six bacterial isolates belonging to the families Enterobacteriaceae, Bacillaceae, Micrococcaceae and Staphylococcaceae were isolated and identified on the basis of 16S rRNA gene sequence analysis. The dominant species in the midgut of melon fly were from the genera Enterobacter (34.6%), Klebsiella (19.2%), Citrobacter (7.7%), Bacillus (15.4%) and Providencia (7.7%), and 3.8% each of Micrococcus, Staphylococcus, Leclercia and Exiguobacterium. Bactrocera cucurbitae and B. dorsalis adults were significantly attracted to bacterial whole cell cultures and their supernatants in the fruit fly attraction bioassays. Bacillus cereus, Enterobacter, Klebsiella, Citrobacter and Providencia species attracted both male and females of Bactrocera species. The supernatants of Klebsiella, Citrobacter and Providencia species attracted a significantly greater number of females than males. The most abundant chemical constituents in supernatants of K. oxytoca and C. freundii were 3-methyl-1-butanol, 2-phenylethanol, butyl isocyanatoacetate, 2-methyl-1-propanol and 3-hydroxy-2-butanone, as identified by gas chromatography-mass spectrometry. The bacterial endosymbionts associated with melon fly exhibited attractant potential which could facilitate eco-friendly insect control strategies. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  7. Evaluation of the efficacy of beauveria bassiana for the control of the invasive fruit fly bactrocera invadens (Diptera: Tephritidae)

    International Nuclear Information System (INIS)

    Marri, D.

    2013-07-01

    Mango production plays an important role in Africa’s economy. However, the African invader fly, Bactrocera invadens is causing high yield losses as an important quarantine pest. Suppression of fruit flies for increased mango production will increasingly rely on management methods which exert low negative environmental impact. Beauveria bassiana is an insect pathogenic fungus used as microbial insecticide because it leaves produce to their fresh state, flavor, colour and texture with no change in the chemical composition of the product and is environmentally friendly. Evaluation of the efficacy of Beauveria bassiana for the control of the invasive Fruit Fly, Bactrocera invadens (Diptera: Tephriitidae) was carried out. The fungus B. bassiana (Botanigard® ES) containing 11.3% Beauveria bassiana GHA strain was applied at concentrations of 106, 53.0, 26.5, 13.3 and 6.65(x 10 6 spores/ml). When three developmental stages of the fruit fly (larvae, puparia and adults) were treated with Beauveria bassiana, the severity of the damage caused by the fungus increased with increasing fungal concentration. The results show lethal time (LT 50 ) that ranged from 2.8 to 3.6 days for a dose of 106 x 10 6 spores/ml. Comparing methods of fungal application in the field, the result indicated that applying the fungus in fruit fly traps in mango canopies is the better method for fruit flies control in the field as compared to the soil surface spray method. However, both methods could be employed for better results The study of gamma radiation on the virulence of the fungus showed that the combined effect of the fungus and gamma irradiation gave better result by increasing adult mortality to 100 % within three days at 106 x10 6 spores/ml irradiated at 150 Gy than applying fungal treatment only. (author)

  8. Gut bacterial community structure of two Australian tropical fruit fly species (Diptera: Tephritidae)

    OpenAIRE

    Narit Thaochan; Richard A.I. Drew; Anuchit Chinajariyawong; Anurag Sunpapao; Chaninun Pornsuriya

    2015-01-01

    The community structure of the alimentary tract bacteria of two Australian fruit fly species, Bactrocera cacuminata (Hering) and Bactrocera tryoni (Froggatt), was studied using a molecular cloning method based on the 16S rRNA gene. Differences in the bacterial community structure were shown between the crops and midguts of the two species and sexes of each species. Proteobacteria was the dominant bacterial phylum in the flies, especially bacteria in the order Gammaproteobacteria w...

  9. Do thermal tolerances and rapid thermal responses contribute to the invasion potential of Bactrocera dorsalis (Diptera: Tephritidae)?

    Science.gov (United States)

    Pieterse, Welma; Terblanche, John S; Addison, Pia

    2017-04-01

    Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) has shown remarkable range expansion over the past 10years and invaded several new continents including Africa. Here we report results of a detailed assessment of acute high and low temperature survival ability and the plasticity thereof, to test the hypothesis that traits of the thermal niche have contributed to the species' invasion ability. We also assess life-stage-related variation of thermal tolerances to determine potential stage-related environmental sensitivity. The temperatures at which c. 20% of the population survived of B. dorsalis were determined to be -6.5°C and 42.7°C, respectively, when using 2h exposures. Further, four life stages of B. dorsalis (egg, 3rd instar larvae, pupae and adults) were exposed to high and low discriminating temperatures to compare their thermal survival rates. The egg stage was found to be the most resistant life stage to both high and low temperatures, since 44±2.3% survived the low and 60±4.2% survived the high discriminating temperature treatments respectively. Finally, the potential for adult hardening responses to mediate tolerance of extremes was also considered using a diverse range of acute conditions (using 2h exposures to 15°C, 10°C and 5°C and 30°C, 35°C, 37°C and 39°C as hardening temperatures, and some treatments with and without recovery periods between hardening and discriminating temperature treatment). These showed that although some significant hardening responses could be detected in certain treatments (e.g. after exposure to 37°C and 39°C), the magnitude of this plasticity was generally low compared to two other wide-spread and more geographically-range-restricted con-familial species, Ceratitis capitata and C. rosa. In other words, Bactrocera dorsalis adults were unable to rapidly heat- or cold-harden to the same extent as the other Ceratitis species examined to date. These results suggest a narrower thermal niche in B. dorsalis compared

  10. The Oriental Fruit Fly, Bactrocera dorsalis, in China: Origin and Gradual Inland Range Expansion Associated with Population Growth

    Science.gov (United States)

    Wan, Xuanwu; Nardi, Francesco; Zhang, Bin; Liu, Yinghong

    2011-01-01

    The oriental fruit fly, Bactrocera dorsalis, expanded throughout mainland China in the last century to become one of the most serious pests in the area, yet information on this process are fragmentary. Three mitochondrial genes (nad1, cytb and nad5) were used to infer the genetic diversity, population structure and demographic history of the oriental fruit fly from its entire distribution range in China. High levels of genetic diversity, as well as a significant correspondence between genetic and geographic distances, suggest that the invasion process might have been gradual, with no associated genetic bottlenecks. Three population groups could be identified, nevertheless the overall genetic structure was weak. The effective number of migrants between populations, estimated using the coalescent method, suggested asymmetric gene flow from the costal region of Guangdong to most inland regions. The demographic analysis indicates the oriental fruit fly underwent a recent population expansion in the Central China. We suggest the species originated in the costal region facing the South China Sea and gradually expanded to colonize mainland China, expanding here to high population numbers. PMID:21984907

  11. Optimizing methyl-eugenol aromatherapy to maximize posttreatment effects to enhance mating competitiveness of male Bactrocera carambolae (Diptera: Tephritidae).

    Science.gov (United States)

    Haq, Ihsan ul; Vreysen, Marc J B; Cacéres, Carlos; Shelly, Todd E; Hendrichs, Jorge

    2015-10-01

    Methyl-eugenol (ME) (1,2-dimethoxy-4-(2-propenyl)benzene), a natural phytochemical, did enhance male Bactrocera carambolae Drew & Hancock (Diptera: Tephritidae) mating competitiveness 3 d after ingestion. Enhanced male mating competitiveness can significantly increase the effectiveness of the sterile insect technique (SIT). ME application to mass reared sterile flies by feeding is infeasible. ME application by aromatherapy however, would be a very practical way of ME application in fly emergence and release facilities. This approach was shown to enhance mating competitiveness of B. carambolae 3 d posttreatment (DPT). Despite this added benefit, every additional day of delaying release will reduce sterile fly quality and will add cost to SIT application. The present study was planned to assess the effects of ME-aromatherapy on male B. carambolae mating competitiveness 1DPT and 2DPT. ME aromatherapy 1DPT or 2DPT did enhance mating competitiveness of B. carambolae males whereas ME feeding 1DPT and 2DPT did not. Male mating competitiveness was enhanced by the ME aromatherapy irrespective if they received 1DPT, 2DPT or 3DPT. ME aromatherapy, being a viable approach for its application, did enhance mating competitiveness of male B. carambolae 1 d posttreatment as ME feeding did 3 d after ingestion. ©2014 The Authors Journal compliation © Insititute of Zoology, Chinese Academy of Science.

  12. Bactrocera oleae-induced olive VOCs routing mate searching in Psyttalia concolor males: impact of associative learning.

    Science.gov (United States)

    Giunti, G; Benelli, G; Palmeri, V; Canale, A

    2018-02-01

    Olfaction is a key sense routing foraging behaviour in parasitoids. Preferences for food, mate and host stimuli can be innate in parasitic wasps. Alternatively, learning-mediated mechanisms play a crucial role. Females of the braconid parasitoid Psyttalia concolor exploit olfactory cues arising from tephritid hosts and related microhabitats. However, little is known on the olfactory stimuli routing males searching for mates. In this study, we focused on the attractiveness of Bactrocera oleae-induced olive volatiles towards P. concolor males. Furthermore, we evaluated learning occurrence in virgin males, when trained for selected unattractive volatile organic compounds (VOCs) associated with mate rewards. (E)-β-Ocimene, α-pinene and limonene attracted virgin males in Y-tube bioassays. Unattractive VOCs evoked positive chemotaxis after associative learning training. P. concolor males exposed to VOCs during a successful or unsuccessful mating, showed short-term preference for these VOCs (fast consolidation into protein dependent long-term memory, appearing after 24 h. On the other hand, males experiencing a less valuable training experience (i.e. unsuccessful courtship), did not show consolidated memory after 24 h. Overall, our findings suggest that P. concolor virgin males may exploit VOCs from the host microhabitat to boost their mate searching activity, thus their reproductive success. However, since learning is a costly process, P. concolor males retained durable memories just in presence of a valuable reward, thus avoiding maladaptive behaviours.

  13. The oriental fruit fly, Bactrocera dorsalis, in China: origin and gradual inland range expansion associated with population growth.

    Science.gov (United States)

    Wan, Xuanwu; Nardi, Francesco; Zhang, Bin; Liu, Yinghong

    2011-01-01

    The oriental fruit fly, Bactrocera dorsalis, expanded throughout mainland China in the last century to become one of the most serious pests in the area, yet information on this process are fragmentary. Three mitochondrial genes (nad1, cytb and nad5) were used to infer the genetic diversity, population structure and demographic history of the oriental fruit fly from its entire distribution range in China. High levels of genetic diversity, as well as a significant correspondence between genetic and geographic distances, suggest that the invasion process might have been gradual, with no associated genetic bottlenecks. Three population groups could be identified, nevertheless the overall genetic structure was weak. The effective number of migrants between populations, estimated using the coalescent method, suggested asymmetric gene flow from the costal region of Guangdong to most inland regions. The demographic analysis indicates the oriental fruit fly underwent a recent population expansion in the Central China. We suggest the species originated in the costal region facing the South China Sea and gradually expanded to colonize mainland China, expanding here to high population numbers.

  14. Reconstructing a comprehensive transcriptome assembly of a white-pupal translocated strain of the pest fruit fly Bactrocera cucurbitae.

    Science.gov (United States)

    Sim, Sheina B; Calla, Bernarda; Hall, Brian; DeRego, Theodore; Geib, Scott M

    2015-01-01

    Bactrocera cucurbitae is a serious global agricultural pest. Basic genomic information is lacking for this species, and this would be useful to inform methods of control, damage mitigation, and eradication efforts. Here, we have sequenced, assembled, and annotated a comprehensive transcriptome for a mass-rearing sexing strain of this species. This forms a foundational genomic and transcriptomic resource that can be used to better understand the physiology and biochemistry of this insect as well as being a useful tool for population genetics. A transcriptome assembly was constructed containing 17,654 transcript isoforms derived from 10,425 unigenes. This transcriptome size is similar to reports from other Tephritid species and probably includes about 70-80% of the protein-coding genes in the genome. The dataset is publicly available in NCBI and GigaDB as a resource for researchers. Foundational knowledge on the protein-coding genes in B. cucurbitae will lead to improved resources for this species. Through comparison with a model system such as Drosophila as well as a growing number of related Tephritid transcriptomes, improved strategies can be developed to control this pest.

  15. Use of alpha-ionol + cade oil for detection and monitoring of Bactrocera latifrons (Diptera: Tephritidae) populations

    Energy Technology Data Exchange (ETDEWEB)

    McQuate, Grant T.; Jang, Eric B., E-mail: grant.mcquate@ars.usda.go, E-mail: eric.jang@ars.usda.go [U.S. Department of Agriculture (USDA/ARS), Hilo, HI (United States). Pacific Basin Agricultural Research Center; Bokonon-Ganta, Aime H., E-mail: aimehbg@hawaii.ed [University of Hawaii (CTAHR/PEPS/UH), Honolulu, HI (United States). Coll. of Tropical Agriculture and Human Resources. Dept. of Plant and Environmental Protection Sciences

    2006-07-01

    Bactrocera latifrons (Hendel) is a tephritid fruit fly that primarily infests solanaceous fruits. Although primarily of Asian distribution, it has invaded Hawaii and, more recently, the continent of Africa (Tanzania and Kenya). Male B. latifrons uniquely respond to alpha-ionol + cade oil, rather than to either methyl eugenol or cuelure, to which males of the majority of other Dacine fruit flies respond. Here we present research results detailing the age of male B. latifrons response to alpha-ionol + cade oil, the persistence of wick attractiveness, and the effectiveness of alpha-ionol + cade oil in detecting B. latifrons populations. Based on wind tunnel studies with wild flies, male response steadily increased from 5% at age 2 to 45% at age 28, with male response exceeding 50% of the peak response by Day 7 and exceeding 75% and 90% by days 14 and 21, respectively. The attractiveness of wicks treated with 2.0 ml alpha-ionol and 1.0 ml cade oil (on separate wicks) declined over time, with wick response reduced to about 50% of the fresh catch after 6 1/2 weeks. Based on concurrent alpha-ionol + cade oil based trapping and collections of turkey berry, Solanum torvum (Solanaceae), fruits, the presence of B. latifrons was detected at the time of fruit collection, 75.5 % of the time. (author)

  16. Invasion history of the oriental fruit fly, Bactrocera dorsalis, in the Pacific-Asia region: two main invasion routes.

    Directory of Open Access Journals (Sweden)

    Xuanwu Wan

    Full Text Available The oriental fruit fly, Bactrocera dorsalis, was initially recorded in Taiwan Island in 1912, and has dispersed to many areas in the Pacific-Asia region over the last century. The area of origin of the species may be confidently placed in South-East China. However, routes of range expansion to new areas and underlying population processes remain partially unclear, despite having been the subject of several studies. To explore the invasion history of this species, a partition of the cox1 gene of mitochondrial DNA was used to investigate genetic diversity, haplotype phylogeny and demographic history of 35 populations, covering China and South-East Asia and including marginal populations from Pakistan and Hawaii. Based on neighbor-joining tree analysis and the distribution of haplotypes, two main invasion routes are inferred: one from South-East China to Central China, another from South-East China to South-East Asia, with both routes probably coinciding in Central China. Populations in Taiwan Island and Hainan Island might have originated in South-East China. The marginal populations in Pakistan and Hawaii might have undergone founding events or genetic bottlenecks. Possible strategies for the control of this species are proposed based on the invasion history and reconstructed expansion routes.

  17. Genetic structure and colonization history of the fruit fly Bactrocera tau (Diptera: Tephritidae) in China and Southeast Asia.

    Science.gov (United States)

    Shi, W; Kerdelhué, C; Ye, H

    2014-06-01

    Bactrocera tau (Walker), a major invasive pest worldwide, was first described in Fujian (China) in 1849 and has dispersed to tropical and subtropical Asia and the South Pacific region. Few data are available on its colonization history and expansion processes. This pilot study attempted to reconstruct the colonization history and pathways of this pest in China and neighboring Southeast Asian countries based on mitochondrial DNA. Results of the study showed six genetic groups corresponding to geographical characteristics, although the pattern was relatively weak. Homogeneous genetic patterns were observed within southern and central China, and northern Vietnam. Continuous colonization from the coast of southern China to inland regions of China and northern Vietnam was suggested. Strong genetic structure was observed in western China, Thailand, and Laos. The isolation of four of the six groups was most probably attributable to major topographical barriers of western China. Yunnan acted as a contact zone of B. tau in China and neighboring Southeast Asia. The absence of isolation by distance and the overall low phylogeographic structure of B. tau suggested that long distance dispersal events and human activities could play a major role in the colonization and expansion patterns of B. tau. By analyzing the genetic diversity, gene flow, haplotype phylogeny, and demographic history of 23 fly populations, we hypothesized that B. tau could have been introduced long ago in southern China, from which it further expanded or that southern China could correspond to the native range of this species.

  18. Odorant receptor co-receptor Orco is upregulated by methyl eugenol in male Bactrocera dorsalis (Diptera: Tephritidae).

    Science.gov (United States)

    Zheng, Weiwei; Zhu, Chipan; Peng, Tao; Zhang, Hongyu

    2012-08-01

    Bactrocera dorsalis is a destructive fruit-eating pest that causes severe economic damage to the fruit and vegetable industry. Methyl eugenol (ME) has been widely used as an effective sexual attractant for male fruit flies through olfactory perception. However, the molecular mechanism underlying the olfactory perception of ME remains unknown. Here, we report the characterization and functional analysis of a newly discovered cDNA that encodes a Drosophila melanogaster odorant receptor co-receptor Orco ortholog in B. dorsalis. qRT-PCR analysis revealed that it was abundantly expressed in the antenna of adult B. dorsalis. Notably, Orco was upregulated by ME in the antenna of male flies. Mature males of B. dorsalis showed significant taxis toward ME within 0.5h, and Orco was significantly upregulated in the attracted adults within the same period. Silencing Orco through the ingestion of dsRNA reduced the attractive effects of ME. These data suggest that Orco may play an essential role in ME attraction in the olfactory signal transduction pathway. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Development of new ecological long-lasting dispensers of semiochemicals for the control of Bactrocera oleae (Rossi).

    Science.gov (United States)

    Gil-Ortiz, Ricardo

    2015-12-01

    A new controlled-release pheromone 1,7-dioxaspiro[5,5]undecane dispenser has been developed, which is useful for monitoring the population and controlling Bactrocera oleae (Rossi, 1790) (Diptera: Tephritidae). For this purpose, several kinds of dispensers based on attapulgite were designed and tested in this study. The designed dispensers, together with the commercial-brand olive fruit fly 'Long-Life Lure', which was used as a reference, were evaluated in the field, and in parallel were subjected to an accelerated ageing process in a chamber with a constant temperature and air speed. The residual pheromone content was periodically determined by liquid-gas chromatography in order to obtain the half-life of dispensers and the pheromone release rate. The mesoporous dispenser proved to have the best performance in the field, with a half-life of 5 months and an average emission speed of 0.6 mg day(-1) , parameters very close to those obtained with the commercial dispenser tested. In addition, to evaluate the effectiveness of the different dispensers in the field, a duplicate comparative study of captures was designed, and a colony monitoring study of the olive fruit fly was performed using various food and sex attractants. Although no significant differences in captures were found between the dispensers tested, the highest number of captures was obtained on average with the mesoporous dispensers demonstrating good pheromone emission characteristics. © 2012 Society of Chemical Industry.

  20. Inferences on the population structure and colonization process of the invasive oriental fruit fly, Bactrocera dorsalis (Hendel).

    Science.gov (United States)

    Aketarawong, N; Bonizzoni, M; Thanaphum, S; Gomulski, L M; Gasperi, G; Malacrida, A R; Gugliemino, C R

    2007-09-01

    The phytophagous insects of the Tephritidae family offer different case histories of successful invasions. An example is Bactrocera dorsalis sensu stricto, the oriental fruit fly which has been recognized as a key pest of Asia and the Pacific. It is known to have the potential to establish adventive populations in various tropical and subtropical areas. Despite the economic risk associated with a putative stable presence of this fly, the genetic aspects of its invasion process have remained relatively unexplored. Using microsatellite markers we have investigated the population structure and genetic variability in 14 geographical populations across the four areas of the actual species range: Far East Asia, South Asia, Southeast Asia and the Pacific Area. Results of clustering and admixture, associated with phylogenetic and migration analyses, were used to evaluate the changes in population genetic structure that this species underwent during its invasion process and establishment in the different areas. The colonization process of this fly is associated with a relatively stable population demographic structure, especially in an unfragmented habitat, rich in intensive cultivation such as in Southeast Asia. In this area, the results suggest a lively demographic history, characterized by evolutionary recent demographic expansions and no recent bottlenecks. Cases of genetic isolation attributable to geographical factors, fragmented habitats and/or fruit trade restrictions were observed in Bangladesh, Myanmar and Hawaii. Regarding the pattern of invasion, the overall genetic profile of the considered populations suggests a western orientated migration route from China to the West.

  1. Performance of methyl eugenol + matrix + toxicant combinations under field conditions in Hawaii and California for trapping Bactrocera dorsalis (Diptera: Tephritidae).

    Science.gov (United States)

    Jang, Eric B; Ramsey, Amanda; Carvalho, Lori A

    2013-04-01

    The oriental fruit fly, Bactrocera dorsalis (Hendel) is a major pest of many fruit crops worldwide. Current detection programs by federal and state agencies in the United States use a grid of traps consisting of liquid methyl eugenol (lure) and naled (toxicant) applied to cotton wicks and hung inside the trap. In recent years efforts have been made to incorporate these chemicals into various solid-type matrices that could be individually packaged to reduce human exposure to the chemicals and improve handling. New solid formulations containing methyl eugenol and either naled or dichlorovinyl dimethyl phosphate toxicants were compared with the standard formulations on cotton wicks in large scale field evaluation in Hawaii. Two reduced risk toxicants (spinosad and Rynaxypyr) were also evaluated. In one test the solid lure-toxicant-matrix combinations were sent to California to be weathered under California climate conditions and then sent back to Hawaii for evaluation. The polymer matrices with lure and toxicant were found to be as attractive as baited wicks and have the same longevity of attraction regardless of being weathered in Hawaii or in California. The new ingestible toxicants were also effective, although further testing of these ingestible lure + toxicant + matrix products is necessary.

  2. Pengaruh Cara Aplikasi Minyak Suling Melaleuca bracteata dan Metil Eugenol terhadap Daya Pikat Lalat Buah Bactrocera dorsalis

    Directory of Open Access Journals (Sweden)

    Agus Kardinan

    1998-07-01

    Full Text Available Research has been conducted at farmer’s fruit garden in Cilebut area, Bogor during 1997–1998. The objective is to know the effect of some application techniques of oil distilled from Melaleuca bracteata leaves on trapping fruit fly. Research consisted of three activities, those were the effect of some techniques of application on trapping fruit flies (I weekly, (2 in two weeks and (3 the effects of some concentrations of methyl eugenol (ME on trapping fruit fly. All treatments were hung at the fruit trees as high as 1.5 m. Observations were done in the number and gender of fruit flies trapped weekly and two-weekly. Result revealed that melaleuca distilled oil can be applied either by dropping into water or into cotton ball. Melaleuca leaves distilled oil should be applied once in two weeks, since its effectiveness lasted for two weeks only. The minimum concentration of methyl eugenol which could fruit flies effectively was 57%. Key words: Melaleuca bracteata, Bactrocera dorsalis

  3. Field Estimates of Attraction of Ceratitis capitata to Trimedlure and Bactrocera dorsalis (Diptera: Tephritidae) to Methyl Eugenol in Varying Environments.

    Science.gov (United States)

    Manoukis, Nicholas C; Siderhurst, Matthew; Jang, Eric B

    2015-06-01

    Measuring and modeling the attractiveness of semiochemical-baited traps is of significant importance to detection, delimitation, and control of invasive pests. Here, we describe the results of field mark-release-recapture experiments with Ceratitis capitata (Wiedemann) and Bactrocera dorsalis (Hendel) to estimate the relationship between distance from a trap baited with trimedlure and methyl eugenol, respectively, and probability of capture for a receptive male insect. Experiments were conducted using a grid of traps with a central release point at two sites on Hawaii Island, a Macadamia orchard on the East side of the island and a lava field on the West side. We found that for B. dorsalis and methyl eugenol there is a 65% probability of capture at ∼36 m from a single trap, regardless of habitat. For C. capitata, we found a 65% probability of capture at a distance of ∼14 m from a single trap in the orchard and 7 m in the lava field. We also present results on the spatial and temporal pattern of recaptures. The attraction data are analyzed via a hyperbolic secant-based capture probability model. Published by Oxford University Press on behalf of Entomological Society of America 2015. This work is written by US Government employees and is in the public domain in the US.

  4. Ring-fluorinated analog of methyl eugenol: attractiveness to and metabolism in the oriental fruit fly, Bactrocera dorsalis (Hendel).

    Science.gov (United States)

    Khrimian, Ashot; Siderhurst, Matthew S; Mcquate, Grant T; Liquido, Nicanor J; Nagata, Janice; Carvalho, Lori; Guzman, Filadelfo; Jang, Eric B

    2009-02-01

    Oriental fruit fly, Bactrocera dorsalis (Hendel), males are highly attracted to the natural phenylpropanoid methyl eugenol (ME). They compulsively feed on ME and metabolize it to ring and side-chain hydroxylated compounds that have both pheromonal and allomonal functions. Side-chain metabolic activation of ME leading to (E)-coniferyl alcohol has long been recognized as a primary reason for hepatocarcinogenicity of this compound in rodents. Earlier, we demonstrated that introduction of a fluorine atom at the terminal carbon of the ME side chain significantly depressed metabolism and specifically reduced formation of coniferyl alcohol but had little effect on field attractiveness to B. dorsalis. In the current paper, we demonstrate that fluorination of ME at the 4 position of the aromatic ring blocks metabolic ring-hydroxylation but overall enhances side-chain metabolism by increasing production of fluorinated (E)-coniferyl alcohol. In laboratory experiments, oriental fruit fly males were attracted to and readily consumed 1,2-dimethoxy-4-fluoro-5-(2-propenyl)benzene (I) at rates similar to ME but metabolized it faster. Flies that consumed the fluorine analog were as healthy post feeding as ones fed on methyl eugenol. In field trials, the fluorine analog I was approximately 50% less attractive to male B. dorsalis than ME.

  5. Olive Volatiles from Portuguese Cultivars Cobrancosa, Madural and Verdeal Transmontana: Role in Oviposition Preference of Bactrocera oleae (Rossi (Diptera: Tephritidae.

    Directory of Open Access Journals (Sweden)

    Ricardo Malheiro

    Full Text Available The olive fly, Bactrocera oleae (Rossi, a serious threat to the olive crop worldwide, displays ovipositon preference for some olive cultivars but the causes are still unclear. In the present work, three Portuguese olive cultivars with different susceptibilities to olive fly (Cobrançosa, Madural, and Verdeal Transmontana were studied, aiming to determine if the olive volatiles are implicated in this interaction. Olive volatiles were assessed by SPME-GC-MS in the three cultivars during maturation process to observe possible correlations with olive fly infestation levels. Overall, 34 volatiles were identified in the olives, from 7 chemical classes (alcohols, aldehydes, aromatic hydrocarbons, esters, ketones, sesquiterpenes, and terpenes. Generally, total volatile amounts decrease during maturation but toluene, the main compound, increased in all cultivars, particularly in those with higher susceptibility to olive fly. Sesquiterpenes also raised, mainly α-copaene. Toluene and α-copaene, recognized oviposition promoters to olive fly, were correlated with the infestation level of cvs. Madural and Verdeal Trasnmontana (intermediate and highly susceptible cultivars respectively, while no correlations were established with cv. Cobrançosa (less susceptible. No volatiles with inverse correlation were observed. Volatile composition of olives may be a decisive factor in the olive fly choice to oviposit and this could be the basis for the development of new control strategies for this pest.

  6. Salicylic Acid Induces Changes in Mango Fruit that Affect Oviposition Behavior and Development of the Oriental Fruit Fly, Bactrocera dorsalis.

    Directory of Open Access Journals (Sweden)

    Kamala Jayanthi Pagadala Damodaram

    Full Text Available The Oriental fruit fly, Bactrocera dorsalis (Hendel is an important quarantine pest around the globe. Although measures for its control are implemented worldwide through IPM and male annihilation, there is little effect on their population. Hence, there is a need for new strategies to control this minacious pest. A strategy that has received negligible attention is the induction of 'natural plant defenses' by phytohormones. In this study, we investigated the effect of salicylic acid (SA treatment of mango fruit (cv. Totapuri on oviposition and larval development of B. dorsalis. In oviposition choice assays, gravid females laid significantly less eggs in SA treated compared to untreated fruit. Headspace volatiles collected from SA treated fruit were less attractive to gravid females compared to volatiles from untreated fruit. GC-MS analysis of the headspace volatiles from SA treated and untreated fruit showed noticeable changes in their chemical compositions. Cis-ocimene and 3-carene (attractants to B. dorsalis were reduced in the headspace volatiles of treated fruit. Further, reduced pupae formation and adult emergence was observed in treated fruit compared to control. Increased phenol and flavonoid content was recorded in treated fruit. We also observed differential expression of anti-oxidative enzymes namely catalase (CAT, polyphenoloxidase (PPO and peroxidase (POD. In summary, the results indicate that SA treatment reduced oviposition, larval development and adult emergence of B. dorsalis and suggest a role of SA in enhancing mango tolerance to B. dorsalis.

  7. Feeding preferences and functional responses of Calathus granatensis and Pterostichus globosus (Coleoptera: Carabidae) on pupae of Bactrocera oleae (Diptera: Tephritidae).

    Science.gov (United States)

    Dinis, A M; Pereira, J A; Benhadi-Marín, J; Santos, S A P

    2016-12-01

    Carabid beetles are important predators in agricultural landscapes feeding on a range of prey items. However, their role as predators of the olive fruit fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae), one of the most serious pests of olives, is unknown. In this context, the feeding preferences and the functional responses of two carabid beetle species, Calathus granatensis (Vuillefroy) and Pterostichus globosus (Fabricius), were studied under laboratory conditions. Feeding preference assays involved exposing carabid beetles to different ratios of B. oleae pupae and an alternative prey, the Mediterranean fruit fly, Ceratitis capitata (Wiedemann). Both species fed on B. oleae pupae however, C. granatensis always showed a significant preference for that prey whereas P. globosus switched to C. capitata pupae when the offered ratio was below 0.5. The total prey biomass consumed was significantly higher for P. globosus than for C. granatensis. Functional response curves were estimated based on different densities of B. oleae pupae and both carabid beetle species exhibited a type II functional response using Rogers' random-predator equation. P. globosus showed shorter handling time (1.223 ± 0.118 h) on B. oleae pupae than C. granatensis (3.230 ± 0.627 h). Our results suggest that both species can be important in reducing the densities of B. oleae in olive groves, although P. globosus was more efficient than C. granatensis.

  8. Flight capacity of Bactrocera dorsalis (Diptera: Tephritidae) adult females based on flight mill studies and flight muscle ultrastructure.

    Science.gov (United States)

    Chen, Min; Chen, Peng; Ye, Hui; Yuan, Ruiling; Wang, Xiaowei; Xu, Jin

    2015-01-01

    The oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), is considered a major economic threat in many regions worldwide. To better comprehend flight capacity of B. dorsalis and its physiological basis, a computer-monitored flight mill was used to study flight capacity of B. dorsalis adult females of various ages, and the changes of its flight muscle ultrastructures were studied by transmission electron microscopy. The flight capacity (both speed and distance) changed significantly with age of B. dorsalis female adults, peaking at about 15 d; the myofibril diameter of the flight muscle of test insects at 15-d old was the longest, up to 1.56 µm, the sarcomere length at 15-d old was the shortest, averaging at 1.37 µm, volume content of mitochondria of flight muscle at 15-d old reached the peak, it was 32.64%. This study provides the important scientific data for better revealing long-distance movement mechanism of B. dorsalis. © The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America.

  9. Phenoloxidase and its zymogen are required for the larval-pupal transition in Bactrocera dorsalis (Diptera: Tephritidae).

    Science.gov (United States)

    Bai, Ping-Ping; Xie, Yi-Fei; Shen, Guang-Mao; Wei, Dan-Dan; Wang, Jin-Jun

    2014-12-01

    Phenoloxidases (POs) play a key role in melanin production, are involved in invertebrate immune mechanisms, and are considered important enzymes in the insect development process. In the present study, we report the developmental stage and tissue-specific expression patterns of BdPPO1 and PO activity from Bactrocera dorsalis. The results showed that the activity of PO and its zymogen expression were closely related to the development of B. dorsalis during the larval-pupal transition, particularly in the integument. Additionally, biochemical characterization showed that PO from different developmental stages and tissues all had maximum activity at pH 7.5 and 37°C. After feeding a metal ion-containing artificial diet, the activity of PO and expression of BdPPO1 were significantly increased, indicating that PO was a metalloprotein and it could be activated by Zn2+, Mg2+, Ca2+, and Cu2+. The functional analysis showed that the expression of BdPPO1 could be regulated by 20-hydroxyecdysone (20E) after injection. Furthermore, injection of the double-stranded RNA of BdPPO1 into the 3rd instar larvae significantly reduced mRNA levels after 24 h and 48 h, and resulted in a lower pupation rate and abnormal phenotype. These results expand the understanding of the important role of PO and its zymogen in the growth of B. dorsalis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Transcriptomic responses of the olive fruit fly Bactrocera oleae and its symbiont Candidatus Erwinia dacicola to olive feeding

    Science.gov (United States)

    Pavlidi, Nena; Gioti, Anastasia; Wybouw, Nicky; Dermauw, Wannes; Ben-Yosef, Michael; Yuval, Boaz; Jurkevich, Edouard; Kampouraki, Anastasia; van Leeuwen, Thomas; Vontas, John

    2017-02-01

    The olive fruit fly, Bactrocera oleae, is the most destructive pest of olive orchards worldwide. The monophagous larva has the unique capability of feeding on olive mesocarp, coping with high levels of phenolic compounds and utilizing non-hydrolyzed proteins present, particularly in the unripe, green olives. On the molecular level, the interaction between B. oleae and olives has not been investigated as yet. Nevertheless, it has been associated with the gut obligate symbiotic bacterium Candidatus Erwinia dacicola. Here, we used a B.oleae microarray to analyze the gene expression of larvae during their development in artificial diet, unripe (green) and ripe (black) olives. The expression profiles of Ca. E. dacicola were analyzed in parallel, using the Illumina platform. Several genes were found overexpressed in the olive fly larvae when feeding in green olives. Among these, a number of genes encoding detoxification and digestive enzymes, indicating a potential association with the ability of B. oleae to cope with green olives. In addition, a number of biological processes seem to be activated in Ca. E. dacicola during the development of larvae in olives, with the most notable being the activation of amino-acid metabolism.

  11. Molecular characterization and functional analysis of BdFoxO gene in the oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae).

    Science.gov (United States)

    Wu, Yi-Bei; Yang, Wen-Jia; Xie, Yi-Fei; Xu, Kang-Kang; Tian, Yi; Yuan, Guo-Rui; Wang, Jin-Jun

    2016-03-10

    The forkhead box O transcription factor (FoxO) is an important downstream transcription factor in the well-conserved insulin signaling pathway, which regulates the body size and development of insects. In this study, the FoxO gene (BdFoxO) was identified from the oriental fruit fly, Bactrocera dorsalis (Hendel). The open reading frame of BdFoxO (2732 bp) encoded a 910 amino acid protein, and the sequence was well conserved with other insect species. The BdFoxO was highly expressed in larvae and pupae among different development stages, and the highest tissue-specific expression level was found in the fat bodies compared to the testis, ovary, head, thorax, midgut, and Malpighian tubules of adults. Interestingly, we found BdFoxO expression was also up-regulated by starvation, but down-regulated when re-fed. Moreover, the injection of BdFoxO double-stranded RNAs into third-instar larvae significantly reduced BdFoxO transcript levels, which in turn down-regulated the expression of other four genes in the insulin signaling pathway. The silencing of BdFoxO resulted in delayed pupation, and the insect body weight increased significantly compared with that of the control. These results suggested that BdFoxO plays an important role in body size and development in B. dorsalis. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Release and Establishment of the Parasitoid Diachasmimorpha kraussii Against the Tephritid Fruit Fly Bactrocera latifrons in Hawaii

    Science.gov (United States)

    Bokonon-Ganta, Aimé H.; McQuate, Grant T.; Messing, Russell H.; B. Jang, Eric

    2013-01-01

    Diachasmimorpha kraussii (Fullaway) (Hymenoptera: Braconidae) was first released against Bactrocera latifrons (Hendel) (Diptera: Tephritidae) in Hawaii in March 2003. Over a three month period, eight releases, totaling 7,696 females and 3,968 males, were made in a turkeyberry, Solanum torvum Swartz (Solanales: Solanaceae) patch known to have a well established B. latifrons population. The establishment of D. kraussii was assessed through fruit collections conducted over a three-year period beyond the last release. D. kraussii was recovered 2 weeks, 31 months, and 39 months after the last parasitoid release, with collections not only from the release site, but also from a control site about 5.0 km distance from the release site. Recovery from fruit collections three years after the last parasitoid release confirmed that D. kraussii had become established in Hawaii. Parasitism rates were low, only 1.0–1.4%, compared to rates of 2.8–8.7% for the earlier established egg-larval parasitoid, Fopius arisanus (Sonan). PMID:23879328

  13. Towards understanding temporal and spatial dynamics of Bactrocera oleae (Rossi) infestations using decade-long agrometeorological time series

    Science.gov (United States)

    Marchi, Susanna; Guidotti, Diego; Ricciolini, Massimo; Petacchi, Ruggero

    2016-11-01

    Insect dynamics depend on temperature patterns, and therefore, global warming may lead to increasing frequencies and intensities of insect outbreaks. The aim of this work was to analyze the dynamics of the olive fruit fly, Bactrocera oleae (Rossi), in Tuscany (Italy). We profited from long-term records of insect infestation and weather data available from the regional database and agrometeorological network. We tested whether the analysis of 13 years of monitoring campaigns can be used as basis for prediction models of B. oleae infestation. We related the percentage of infestation observed in the first part of the host-pest interaction and throughout the whole year to agrometeorological indices formulated for different time periods. A two-step approach was adopted to inspect the effect of weather on infestation: generalized linear model with a binomial error distribution and principal component regression to reduce the number of the agrometeorological factors and remove their collinearity. We found a consistent relationship between the degree of infestation and the temperature-based indices calculated for the previous period. The relationship was stronger with the minimum temperature of winter season. Higher infestation was observed in years following warmer winters. The temperature of the previous winter and spring explained 66 % of variance of early-season infestation. The temperature of previous winter and spring, and current summer, explained 72 % of variance of total annual infestation. These results highlight the importance of multiannual monitoring activity to fully understand the dynamics of B. oleae populations at a regional scale.

  14. Functional analysis of five trypsin-like protease genes in the oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae).

    Science.gov (United States)

    Li, Ya-Li; Hou, Ming-Zhe; Shen, Guang-Mao; Lu, Xue-Ping; Wang, Zhe; Jia, Fu-Xian; Wang, Jin-Jun; Dou, Wei

    2017-03-01

    Insect midgut proteases catalyze the release of free amino acids from dietary proteins and are essential for insect normal development. To date, digestive proteases as potential candidates have made great progress in pest control. To clarify the function of trypsin-like protease genes in the digestive system of Bactrocera dorsalis, a serious pest of a wide range of tropical and subtropical fruit and vegetable crops, five trypsin genes (BdTry1, BdTry2, BdTry3, BdTry4 and BdTry5) were identified from transcriptome dataset, and the effects of feeding condition on their expression levels were examined subsequently. RNA interference (RNAi) was applied to further explore their function on the growth of B. dorsalis. The results showed that all the BdTrys in starving midgut expressed at a minimal level but up-regulated upon feeding (except BdTry3). Besides, RNAi by feeding dsRNAs to larvae proved to be an effective method to cause gene silencing and the mixed dsRNAs of the five BdTrys slowed larvae growth of B. dorsalis. The current data suggest that trypsin genes are actively involved in digestion process of B. dorsalis larvae and thereafter play crucial roles in their development. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Genetic delineation of sibling species of the pest fruit fly Bactocera (Diptera: Tephritidae) using microsatellites.

    Science.gov (United States)

    Gilchrist, A S; Wang, Y; Yu, H; Raphael, K; Gilchrist, A S

    2003-08-01

    Using a large set of microsatellites, the genetic relationships between three closely related Australian fruit fly species, Bactrocera tryoni (Froggatt), B. neohumeralis (Hardy) and B. aquilonis(May) were investigated. Bactrocera tryoni and B. neohumeralis are sympatric, while B. aquilonisis allopatric to both. The sympatric species, B. tryoni and B. neohumeralis, were found to be genetically distinct. It is likely that despite differences in mating time between these two species, some gene flow still occurs. In contrast, the sibling species B. tryoni and B. aquilonis were found to be closely related, despite allopatry. The level of genetic divergence was similar to that found within eastern Australian populations of B. tryoni. Consideration of all available genetic data suggests that this similarity is not due to recent (i.e. within the last 30 years) displacement of B. aquilonis by B. tryoni from the B. aquilonis region (north-western Australia). Instead the data suggests that, at least in the areas sampled, asymmetrical hybridization may have occurred over a longer timescale.

  16. Isolation and characterization of microsatellite markers from the olive fly, Bactrocera oleae, and their cross-species amplification in the Tephritidae family

    Directory of Open Access Journals (Sweden)

    Kakani Evdoxia G

    2008-12-01

    Full Text Available Abstract Background The Tephritidae family of insects includes the most important agricultural pests of fruits and vegetables, belonging mainly to four genera (Bactrocera, Ceratitis, Anastrepha and Rhagoletis. The olive fruit fly, Bactrocera oleae, is the major pest of the olive fruit. Currently, its control is based on chemical insecticides. Environmentally friendlier methods have been attempted in the past (Sterile Insect Technique, albeit with limited success. This was mainly attributed to the lack of knowledge on the insect's behaviour, ecology and genetic structure of natural populations. The development of molecular markers could facilitate the access in the genome and contribute to the solution of the aforementioned problems. We chose to focus on microsatellite markers due to their abundance in the genome, high degree of polymorphism and easiness of isolation. Results Fifty-eight microsatellite-containing clones were isolated from the olive fly, Bactrocera oleae, bearing a total of sixty-two discrete microsatellite motifs. Forty-two primer pairs were designed on the unique sequences flanking the microsatellite motif and thirty-one of them amplified a PCR product of the expected size. The level of polymorphism was evaluated against wild and laboratory flies and the majority of the markers (93.5% proved highly polymorphic. Thirteen of them presented a unique position on the olive fly polytene chromosomes by in situ hybridization, which can serve as anchors to correlate future genetic and cytological maps of the species, as well as entry points to the genome. Cross-species amplification of these markers to eleven Tephritidae species and sequencing of thirty-one of the amplified products revealed a varying degree of conservation that declines outside the Bactrocera genus. Conclusion Microsatellite markers are very powerful tools for genetic and population analyses, particularly in species deprived of any other means of genetic analysis. The

  17. Isolation and characterization of microsatellite markers from the olive fly, Bactrocera oleae, and their cross-species amplification in the Tephritidae family

    Science.gov (United States)

    Augustinos, Antonios A; Stratikopoulos, Elias E; Drosopoulou, Eleni; Kakani, Evdoxia G; Mavragani-Tsipidou, Penelope; Zacharopoulou, Antigone; Mathiopoulos, Kostas D

    2008-01-01

    Background The Tephritidae family of insects includes the most important agricultural pests of fruits and vegetables, belonging mainly to four genera (Bactrocera, Ceratitis, Anastrepha and Rhagoletis). The olive fruit fly, Bactrocera oleae, is the major pest of the olive fruit. Currently, its control is based on chemical insecticides. Environmentally friendlier methods have been attempted in the past (Sterile Insect Technique), albeit with limited success. This was mainly attributed to the lack of knowledge on the insect's behaviour, ecology and genetic structure of natural populations. The development of molecular markers could facilitate the access in the genome and contribute to the solution of the aforementioned problems. We chose to focus on microsatellite markers due to their abundance in the genome, high degree of polymorphism and easiness of isolation. Results Fifty-eight microsatellite-containing clones were isolated from the olive fly, Bactrocera oleae, bearing a total of sixty-two discrete microsatellite motifs. Forty-two primer pairs were designed on the unique sequences flanking the microsatellite motif and thirty-one of them amplified a PCR product of the expected size. The level of polymorphism was evaluated against wild and laboratory flies and the majority of the markers (93.5%) proved highly polymorphic. Thirteen of them presented a unique position on the olive fly polytene chromosomes by in situ hybridization, which can serve as anchors to correlate future genetic and cytological maps of the species, as well as entry points to the genome. Cross-species amplification of these markers to eleven Tephritidae species and sequencing of thirty-one of the amplified products revealed a varying degree of conservation that declines outside the Bactrocera genus. Conclusion Microsatellite markers are very powerful tools for genetic and population analyses, particularly in species deprived of any other means of genetic analysis. The presented set of

  18. Field trials of solid triple lure (trimedlure, methyl eugenol, raspberry ketone, and DDVP) dispensers for detection and male annihilation of Ceratitis capitata, Bactrocera dorsalis, and Bactrocera cucurbitae (Diptera: Tephritidae) in Hawaii.

    Science.gov (United States)

    Vargas, Roger I; Souder, Steven K; Mackey, Bruce; Cook, Peter; Morse, Joseph G; Stark, John D

    2012-10-01

    Solid Mallet TMR (trimedlure [TML], methyl eugenol [ME], raspberry ketone [RK]) wafers and Mallet CMR (ceralure, ME, RK, benzyl acetate) wafers impregnated with DDVP (2,2-dichlorovinyl dimethyl phosphate) insecticide were measured in traps as potential detection and male annihilation technique (MAT) devices. Comparisons were made with 1) liquid lure and insecticide formulations, 2) solid cones and plugs with an insecticidal strip, and 3) solid single and double lure wafers with DDVP for captures of Mediterranean fruit fly, Ceratitis capitata (Wiedemann); oriental fruit fly, Bactrocera dorsalis Hendel; and melon fly, B. cucurbitae Coquillett. Bucket and Jackson traps were tested in a coffee plantation near Eleele, Kauai Island, HI (trials at high populations) and avocado orchards near Kona, HI Island, HI (trials at low populations). Captures of all three species with Mallet TMR were not different from Mallet CMR; therefore, subsequent experiments did not include Mallet CMR because of higher production costs. In MAT trials near Eleele, HI captures in AWPM traps with Mallet TMR wafers were equal to any other solid lure (single or double) except the Mallet ME wafer. In survey trials near Kona, captures of C. capitata, B. cucurbitae, and B. dorsalis with Mallet TMR wafers were equal to those for the standard TML, ME, and C-L traps used in FL and CA. A solid Mallet TMR wafer is safer, more convenient to handle, and may be used in place of several individual lure and trap systems, potentially reducing costs of large survey and detection programs in Florida and California, and MAT programs in Hawaii.

  19. Efficacy of locally produced papain enzyme for the production of protein bait for bactrocera invadens (diptera: tephritidae) control in Ghana

    International Nuclear Information System (INIS)

    Aggrey-Korsah, R.

    2014-07-01

    Autolysed brewery yeast waste is currently being used as cost effective protein bait for Bactrocera invadens control the world over to replace commercial protein hydrolysate bait formulations. However, significant reduction in production cost can be achieved when all the production materials are from local sources. This experiment was aimed at assessing the efficacy of locally produced papain extracted from 'Red lady' pawpaw fruit latex and skin peel to be used for protein bait production. Aqueous two-phase extraction of papain from pawpaw fruit latex with 15 % (NH 4 ) 2 SO 4 - 8 % PEG recovered 64.72 ± 2.08 % papain into the supernatant with 7.33 % proteolytic activity yield and a fold purification of 58.11 ± 1.67. Proteolytic activity and protein concentration measured for the aqueous two-phase extracts of pawpaw skin peel were significantly higher (p= 0.00) than crude extracts of skin peel. However, the aqueous two phase extraction of papain from skin peel needs to be optimised further since SDS-PAGE showed no visible bands in the different phase extracts. Gamma irradiation at 10 KGy increased the proteolytic activity of crude papain by 21.69 % of the non-irradiated papain and subsequently increased the specific activity by 18.51 % but the protein concentration was not affected. Protein baits prepared with crude papain extracted from the pawpaw fruit latex and skin peels were evaluated in laboratory bioassays with wild flies reared from field collected infested mangoes. The source of papain did not affect the protein bait recovery, the pH and protein concentration though colour of bait differed for crude fruit latex papain bait (dark brown) and skin peel papain bait (light brown). The bait preparations had equal attractance to male and female B. invadens. Mean attractance to protein baits produced with fruit latex and skin peel papain baits were between 25.00 ± 7.56 % and 47.50 ± 11.09 % respectively for males, 25.00 ± 13.13 % and 32.86 ± 8

  20. Effect of Vapor Heat Treatment on the Mortality of Bactrocera dorsalis (Diptera: Tephritidae and the Quality of Mango cv. Arumanis

    Directory of Open Access Journals (Sweden)

    Tri Wulan Widya Lestari

    2017-07-01

    Full Text Available Arumanis is a superior export variety mango from Indonesia. One inhibiting factor on the production of this fruit variety is the infestation of Bactrocera dorsalis (Diptera: Tephritidae fruit fly. Vapor heat treatment was recommended by ISPM No. 28 of 2007 as an effective treatment in eradicating fruit flies. This research was aimed to find out the optimum temperature and the duration of vapor heat treatment on the mortality of egg and larvae of B. dorsalis. The experiment was conducted in the Laboratory of Vapor Heat Treatment, BBPOPT, Jatisari, from October 2016 to January 2017. The observed parameters were temperature, duration of treatment, mortality of egg and larvae of fruit fly, and fruit quality. The results showed that vapor heat treatment at 47°C for 40 minutes (min was effective to reduce the number of eggs and larvae of B. dorsalis and had no negative impact on the fruit quality.   Intisari Buah mangga varietas Arumanis merupakan varietas mangga ekspor unggulan Indonesia. Salah satu faktor pembatas produksi buah mangga varietas Arumanis adalah lalat buah B. dorsalis (Diptera: Tephritidae. Perlakuan uap panas direkomendasikan oleh ISPM Nomor 28 tahun 2007 sebagai tindakan perlakuan yang efektif dalam mengeradikasi lalat buah. Penelitian ini bertujuan untuk mengetahui suhu dan waktu optimum perlakuan uap panas terhadap mortalitas telur dan larva B. dorsalis pada buah mangga varietas Arumanis tanpa merusak kualitas buah. Penelitian dilaksanakan di Laboratorium Vapor Heat Treatment, BBPOPT, Jatisari, pada Oktober 2016 sampai dengan Januari 2017. Parameter yang diamati adalah suhu, lamanya waktu perlakuan, mortalitas telur dan larva lalat buah, dan kualitas buah. Hasil penelitian menunjukkan bahwa perlakuan uap panas pada suhu 47°C selama 40 menit terbukti efektif membunuh telur dan larva B. dorsalis dan tidak berdampak negatif terhadap kualitas buah.

  1. Behavioral, Morphological, and Gene Expression Changes Induced by 60Co-γ Ray Irradiation in Bactrocera tau (Walker

    Directory of Open Access Journals (Sweden)

    Jun Cai

    2018-02-01

    Full Text Available The sterile insect technique (SIT may reduce pest populations by allowing sufficient amount of irradiation-induced sterile males to mate with wild females whilst maintaining mating ability comparable to wild males. Although the SIT methods are well understood, the optimal sterilizing dose and processing development stage for application vary among species. To ensure effective pest control programs, effects of irradiation on physiology, behavior, and gene function in the target species should be defined, however, little is known about irradiation effects in Bactrocera tau. Here, the effects of irradiation on rates of fecundity, egg hatch, eclosion, mating competitiveness, flight capability, morphology of reproductive organs, and yolk protein (YP gene expression were studied. The results showed that rates of female fecundity and egg hatch decreased significantly (51 ± 19 to 0.06 ± 0.06 and 98.90 ± 1.01 to 0, respectively when pupae were treated with >150 Gy irradiation. Flight capability and mating competitiveness were not significantly influenced at doses <250 Gy. Ovaries and fallopian tubes became smaller after irradiation, but there was no change in testes size. Finally, we found that expression of the YP gene was up-regulated by irradiation at 30 and 45 days post-emergence, but the mechanisms were unclear. Our study provides information on the determination of the optimal irradiation sterilizing dose in B. tau, and the effects of irradiation on physiology, morphology and gene expression that will facilitate an understanding of sub-lethal impacts of the SIT and expand its use to the control of other species.

  2. Olive Fruit Fly (Bactrocera oleae) Population Dynamics in the Eastern Mediterranean: Influence of Exogenous Uncertainty on a Monophagous Frugivorous Insect.

    Science.gov (United States)

    Ordano, Mariano; Engelhard, Izhar; Rempoulakis, Polychronis; Nemny-Lavy, Esther; Blum, Moshe; Yasin, Sami; Lensky, Itamar M; Papadopoulos, Nikos T; Nestel, David

    2015-01-01

    Despite of the economic importance of the olive fly (Bactrocera oleae) and the large amount of biological and ecological studies on the insect, the factors driving its population dynamics (i.e., population persistence and regulation) had not been analytically investigated until the present study. Specifically, our study investigated the autoregressive process of the olive fly populations, and the joint role of intrinsic and extrinsic factors molding the population dynamics of the insect. Accounting for endogenous dynamics and the influences of exogenous factors such as olive grove temperature, the North Atlantic Oscillation and the presence of potential host fruit, we modeled olive fly populations in five locations in the Eastern Mediterranean region. Our models indicate that the rate of population change is mainly shaped by first and higher order non-monotonic, endogenous dynamics (i.e., density-dependent population feedback). The olive grove temperature was the main exogenous driver, while the North Atlantic Oscillation and fruit availability acted as significant exogenous factors in one of the five populations. Seasonal influences were also relevant for three of the populations. In spite of exogenous effects, the rate of population change was fairly stable along time. We propose that a special reproductive mechanism, such as reproductive quiescence, allows populations of monophagous fruit flies such as the olive fly to remain stable. Further, we discuss how weather factors could impinge constraints on the population dynamics at the local level. Particularly, local temperature dynamics could provide forecasting cues for management guidelines. Jointly, our results advocate for establishing monitoring programs and for a major focus of research on the relationship between life history traits and populations dynamics.

  3. A Chromosome-Scale Assembly of theBactrocera cucurbitaeGenome Provides Insight to the Genetic Basis ofwhite pupae.

    Science.gov (United States)

    Sim, Sheina B; Geib, Scott M

    2017-06-07

    Genetic sexing strains (GSS) used in sterile insect technique (SIT) programs are textbook examples of how classical Mendelian genetics can be directly implemented in the management of agricultural insect pests. Although the foundation of traditionally developed GSS are single locus, autosomal recessive traits, their genetic basis are largely unknown. With the advent of modern genomic techniques, the genetic basis of sexing traits in GSS can now be further investigated. This study is the first of its kind to integrate traditional genetic techniques with emerging genomics to characterize a GSS using the tephritid fruit fly pest Bactrocera cucurbitae as a model. These techniques include whole-genome sequencing, the development of a mapping population and linkage map, and quantitative trait analysis. The experiment designed to map the genetic sexing trait in B. cucurbitae , white pupae ( wp ), also enabled the generation of a chromosome-scale genome assembly by integrating the linkage map with the assembly. Quantitative trait loci analysis revealed SNP loci near position 42 MB on chromosome 3 to be tightly linked to wp Gene annotation and synteny analysis show a near perfect relationship between chromosomes in B. cucurbitae and Muller elements A-E in Drosophila melanogaster This chromosome-scale genome assembly is complete, has high contiguity, was generated using a minimal input DNA, and will be used to further characterize the genetic mechanisms underlying wp Knowledge of the genetic basis of genetic sexing traits can be used to improve SIT in this species and expand it to other economically important Diptera. Copyright © 2017 Sim and Geib.

  4. Isolation and identification of host cues from mango, Mangifera indica, that attract gravid female oriental fruit fly, Bactrocera dorsalis.

    Science.gov (United States)

    Jayanthi, Pagadala D Kamala; Woodcock, Christine M; Caulfield, John; Birkett, Michael A; Bruce, Toby J A

    2012-04-01

    The oriental fruit fly, Bactrocera dorsalis, is an economically damaging, polyphagous pest of fruit crops in South-East Asia and Hawaii, and a quarantine pest in other parts of the world. The objective of our study was to identify new attractants for B. dorsalis from overripe mango fruits. Headspace samples of volatiles were collected from two cultivars of mango, 'Alphonso' and 'Chausa', and a strong positive behavioral response was observed when female B. dorsalis were exposed to these volatiles in olfactometer bioassays. Coupled GC-EAG with female B. dorsalis revealed 7 compounds from 'Alphonso' headspace and 15 compounds from 'Chausa' headspace that elicited an EAG response. The EAG-active compounds, from 'Alphonso', were identified, using GC-MS, as heptane, myrcene, (Z)-ocimene, (E)-ocimene, allo-ocimene, (Z)-myroxide, and γ-octalactone, with the two ocimene isomers being the dominant compounds. The EAG-active compounds from 'Chausa' were 3-hydroxy-2-butanone, 3-methyl-1-butanol, ethyl butanoate, ethyl methacrylate, ethyl crotonate, ethyl tiglate, 1-octen-3-ol, ethyl hexanoate, 3-carene, p-cymene, ethyl sorbate, α-terpinolene, phenyl ethyl alcohol, ethyl octanoate, and benzothiazole. Individual compounds were significantly attractive when a standard dose (1 μg on filter paper) was tested in the olfactometer. Furthermore, synthetic blends with the same concentration and ratio of compounds as in the natural headspace samples were highly attractive (P < 0.001), and in a choice test, fruit flies did not show any preference for the natural samples over the synthetic blends. Results are discussed in relation to developing a lure for female B. dorsalis to bait traps with.

  5. Olive Fruit Fly (Bactrocera oleae Population Dynamics in the Eastern Mediterranean: Influence of Exogenous Uncertainty on a Monophagous Frugivorous Insect.

    Directory of Open Access Journals (Sweden)

    Mariano Ordano

    Full Text Available Despite of the economic importance of the olive fly (Bactrocera oleae and the large amount of biological and ecological studies on the insect, the factors driving its population dynamics (i.e., population persistence and regulation had not been analytically investigated until the present study. Specifically, our study investigated the autoregressive process of the olive fly populations, and the joint role of intrinsic and extrinsic factors molding the population dynamics of the insect. Accounting for endogenous dynamics and the influences of exogenous factors such as olive grove temperature, the North Atlantic Oscillation and the presence of potential host fruit, we modeled olive fly populations in five locations in the Eastern Mediterranean region. Our models indicate that the rate of population change is mainly shaped by first and higher order non-monotonic, endogenous dynamics (i.e., density-dependent population feedback. The olive grove temperature was the main exogenous driver, while the North Atlantic Oscillation and fruit availability acted as significant exogenous factors in one of the five populations. Seasonal influences were also relevant for three of the populations. In spite of exogenous effects, the rate of population change was fairly stable along time. We propose that a special reproductive mechanism, such as reproductive quiescence, allows populations of monophagous fruit flies such as the olive fly to remain stable. Further, we discuss how weather factors could impinge constraints on the population dynamics at the local level. Particularly, local temperature dynamics could provide forecasting cues for management guidelines. Jointly, our results advocate for establishing monitoring programs and for a major focus of research on the relationship between life history traits and populations dynamics.

  6. Analysis of the Olive Fruit Fly Bactrocera oleae Transcriptome and Phylogenetic Classification of the Major Detoxification Gene Families.

    Directory of Open Access Journals (Sweden)

    Nena Pavlidi

    Full Text Available The olive fruit fly Bactrocera oleae has a unique ability to cope with olive flesh, and is the most destructive pest of olives worldwide. Its control has been largely based on the use of chemical insecticides, however, the selection of insecticide resistance against several insecticides has evolved. The study of detoxification mechanisms, which allow the olive fruit fly to defend against insecticides, and/or phytotoxins possibly present in the mesocarp, has been hampered by the lack of genomic information in this species. In the NCBI database less than 1,000 nucleotide sequences have been deposited, with less than 10 detoxification gene homologues in total. We used 454 pyrosequencing to produce, for the first time, a large transcriptome dataset for B. oleae. A total of 482,790 reads were assembled into 14,204 contigs. More than 60% of those contigs (8,630 were larger than 500 base pairs, and almost half of them matched with genes of the order of the Diptera. Analysis of the Gene Ontology (GO distribution of unique contigs, suggests that, compared to other insects, the assembly is broadly representative for the B. oleae transcriptome. Furthermore, the transcriptome was found to contain 55 P450, 43 GST-, 15 CCE- and 18 ABC transporter-genes. Several of those detoxification genes, may putatively be involved in the ability of the olive fruit fly to deal with xenobiotics, such as plant phytotoxins and insecticides. In summary, our study has generated new data and genomic resources, which will substantially facilitate molecular studies in B. oleae, including elucidation of detoxification mechanisms of xenobiotic, as well as other important aspects of olive fruit fly biology.

  7. Discovery of genes related to insecticide resistance in Bactrocera dorsalis by functional genomic analysis of a de novo assembled transcriptome.

    Directory of Open Access Journals (Sweden)

    Ju-Chun Hsu

    Full Text Available Insecticide resistance has recently become a critical concern for control of many insect pest species. Genome sequencing and global quantization of gene expression through analysis of the transcriptome can provide useful information relevant to this challenging problem. The oriental fruit fly, Bactrocera dorsalis, is one of the world's most destructive agricultural pests, and recently it has been used as a target for studies of genetic mechanisms related to insecticide resistance. However, prior to this study, the molecular data available for this species was largely limited to genes identified through homology. To provide a broader pool of gene sequences of potential interest with regard to insecticide resistance, this study uses whole transcriptome analysis developed through de novo assembly of short reads generated by next-generation sequencing (NGS. The transcriptome of B. dorsalis was initially constructed using Illumina's Solexa sequencing technology. Qualified reads were assembled into contigs and potential splicing variants (isotigs. A total of 29,067 isotigs have putative homologues in the non-redundant (nr protein database from NCBI, and 11,073 of these correspond to distinct D. melanogaster proteins in the RefSeq database. Approximately 5,546 isotigs contain coding sequences that are at least 80% complete and appear to represent B. dorsalis genes. We observed a strong correlation between the completeness of the assembled sequences and the expression intensity of the transcripts. The assembled sequences were also used to identify large numbers of genes potentially belonging to families related to insecticide resistance. A total of 90 P450-, 42 GST-and 37 COE-related genes, representing three major enzyme families involved in insecticide metabolism and resistance, were identified. In addition, 36 isotigs were discovered to contain target site sequences related to four classes of resistance genes. Identified sequence motifs were also

  8. Identification of Male- and Female-Specific Olfaction Genes in Antennae of the Oriental Fruit Fly (Bactrocera dorsalis.

    Directory of Open Access Journals (Sweden)

    Zhao Liu

    Full Text Available The oriental fruit fly (Bactrocera dorsalis is a species of tephritid fruit fly, endemic to Southeast Asia but also introduced to many regions of the US, and it is one of the major pest species with a broad host range of cultivated and wild fruits. Although males of B. dorsalis respond strongly to methyl eugenol and this is used for monitoring and estimating populations, the molecular mechanism of the oriental fruit fly olfaction has not been elucidated yet. Therefore, in this project, using next generation sequencing technologies, we sequenced the transcriptome of the antennae of male and female adults of B. dorsalis. We identified a total of 20 candidate odorant binding proteins (OBPs, 5 candidate chemosensory proteins (CSPs, 35 candidate odorant receptors (ORs, 12 candidate ionotropic receptors (IRs and 4 candidate sensory neuron membrane proteins (SNMPs. The sex-specific expression of these genes was determined and a subset of 9 OR genes was further characterized by qPCR with male and female antenna, head, thorax, abdomen, leg and wing samples. In the male antennae, 595 genes showed a higher expression, while 128 genes demonstrated a higher expression in the female antennae. Interestingly, 2 ORs (BdorOR13 and BdorOR14 were highly and specifically expressed in the antennae of males, and 4 ORs (BdorOR13, BdorOR16, BdorOR18 and BdorOR35 clustered with DmOR677, suggesting pheromone reception. We believe this study with these antennae-enriched OBPs, CSPs, ORs, IRs and SNMPs can play an important role in the detection of pheromones and general odorants, and so in turn our data improve our current understanding of insect olfaction at the molecular level and provide important information for disrupting the behavior of the oriental fruit fly using chemical communication methods.

  9. Interchromosomal duplications on the Bactrocera oleae Y chromosome imply a distinct evolutionary origin of the sex chromosomes compared to Drosophila.

    Directory of Open Access Journals (Sweden)

    Paolo Gabrieli

    Full Text Available BACKGROUND: Diptera have an extraordinary variety of sex determination mechanisms, and Drosophila melanogaster is the paradigm for this group. However, the Drosophila sex determination pathway is only partially conserved and the family Tephritidae affords an interesting example. The tephritid Y chromosome is postulated to be necessary to determine male development. Characterization of Y sequences, apart from elucidating the nature of the male determining factor, is also important to understand the evolutionary history of sex chromosomes within the Tephritidae. We studied the Y sequences from the olive fly, Bactrocera oleae. Its Y chromosome is minute and highly heterochromatic, and displays high heteromorphism with the X chromosome. METHODOLOGY/PRINCIPAL FINDINGS: A combined Representational Difference Analysis (RDA and fluorescence in-situ hybridization (FISH approach was used to investigate the Y chromosome to derive information on its sequence content. The Y chromosome is strewn with repetitive DNA sequences, the majority of which are also interdispersed in the pericentromeric regions of the autosomes. The Y chromosome appears to have accumulated small and large repetitive interchromosomal duplications. The large interchromosomal duplications harbour an importin-4-like gene fragment. Apart from these importin-4-like sequences, the other Y repetitive sequences are not shared with the X chromosome, suggesting molecular differentiation of these two chromosomes. Moreover, as the identified Y sequences were not detected on the Y chromosomes of closely related tephritids, we can infer divergence in the repetitive nature of their sequence contents. CONCLUSIONS/SIGNIFICANCE: The identification of Y-linked sequences may tell us much about the repetitive nature, the origin and the evolution of Y chromosomes. We hypothesize how these repetitive sequences accumulated and were maintained on the Y chromosome during its evolutionary history. Our data

  10. A Chromosome-Scale Assembly of the Bactrocera cucurbitae Genome Provides Insight to the Genetic Basis of white pupae

    Directory of Open Access Journals (Sweden)

    Sheina B. Sim

    2017-06-01

    Full Text Available Genetic sexing strains (GSS used in sterile insect technique (SIT programs are textbook examples of how classical Mendelian genetics can be directly implemented in the management of agricultural insect pests. Although the foundation of traditionally developed GSS are single locus, autosomal recessive traits, their genetic basis are largely unknown. With the advent of modern genomic techniques, the genetic basis of sexing traits in GSS can now be further investigated. This study is the first of its kind to integrate traditional genetic techniques with emerging genomics to characterize a GSS using the tephritid fruit fly pest Bactrocera cucurbitae as a model. These techniques include whole-genome sequencing, the development of a mapping population and linkage map, and quantitative trait analysis. The experiment designed to map the genetic sexing trait in B. cucurbitae, white pupae (wp, also enabled the generation of a chromosome-scale genome assembly by integrating the linkage map with the assembly. Quantitative trait loci analysis revealed SNP loci near position 42 MB on chromosome 3 to be tightly linked to wp. Gene annotation and synteny analysis show a near perfect relationship between chromosomes in B. cucurbitae and Muller elements A–E in Drosophila melanogaster. This chromosome-scale genome assembly is complete, has high contiguity, was generated using a minimal input DNA, and will be used to further characterize the genetic mechanisms underlying wp. Knowledge of the genetic basis of genetic sexing traits can be used to improve SIT in this species and expand it to other economically important Diptera.

  11. Phenotypes, antioxidant responses, and gene expression changes accompanying a sugar-only diet in Bactrocera dorsalis (Hendel) (Diptera: Tephritidae).

    Science.gov (United States)

    Chen, Er-Hu; Hou, Qiu-Li; Wei, Dan-Dan; Jiang, Hong-Bo; Wang, Jin-Jun

    2017-08-17

    Diet composition (yeast:carbohydrate ratio) is an important determinant of growth, development, and reproduction. Recent studies have shown that decreased yeast intake elicits numerous transcriptomic changes and enhances somatic maintenance and lifespan, which in turn reduces reproduction in various insects. However, our understanding of the responses leading to a decrease in yeast ratio to 0% is limited. In the present study, we investigated the effects of a sugar-only diet (SD) on the gene expression patterns of the oriental fruit fly, Bactrocera dorsalis (Hendel), one of the most economically important pests in the family Tephritidae. RNA sequencing analyses showed that flies reared on an SD induced significant changes in the expression levels of genes associated with specific metabolic as well as cell growth and death pathways. Moreover, the observed upregulated genes in energy production and downregulated genes associated with reproduction suggested that SD affects somatic maintenance and reproduction in B. dorsalis. As expected, we observed that SD altered B. dorsalis phenotypes by significantly increasing stress (starvation and desiccation) resistance, decreasing reproduction, but did not extend lifespan compared to those that received a normal diet (ND) regime. In addition, administration of an SD resulted in a reduction in antioxidant enzyme activities and an increase in MDA concentrations, thereby suggesting that antioxidants cannot keep up with the increase in oxidative damage induced by SD regime. The application of an SD diet induces changes in phenotypes, antioxidant responses, and gene expressions in B. dorsalis. Previous studies have associated extended lifespan with reduced fecundity. The current study did not observe a prolongation of lifespan in B. dorsalis, which instead incurred oxidative damage. The findings of the present study improve our understanding of the molecular, biochemical, and phenotypic response of B. dorsalis to an SD diet.

  12. Interchromosomal Duplications on the Bactrocera oleae Y Chromosome Imply a Distinct Evolutionary Origin of the Sex Chromosomes Compared to Drosophila

    Science.gov (United States)

    Gabrieli, Paolo; Gomulski, Ludvik M.; Bonomi, Angelica; Siciliano, Paolo; Scolari, Francesca; Franz, Gerald; Jessup, Andrew; Malacrida, Anna R.; Gasperi, Giuliano

    2011-01-01

    Background Diptera have an extraordinary variety of sex determination mechanisms, and Drosophila melanogaster is the paradigm for this group. However, the Drosophila sex determination pathway is only partially conserved and the family Tephritidae affords an interesting example. The tephritid Y chromosome is postulated to be necessary to determine male development. Characterization of Y sequences, apart from elucidating the nature of the male determining factor, is also important to understand the evolutionary history of sex chromosomes within the Tephritidae. We studied the Y sequences from the olive fly, Bactrocera oleae. Its Y chromosome is minute and highly heterochromatic, and displays high heteromorphism with the X chromosome. Methodology/Principal Findings A combined Representational Difference Analysis (RDA) and fluorescence in-situ hybridization (FISH) approach was used to investigate the Y chromosome to derive information on its sequence content. The Y chromosome is strewn with repetitive DNA sequences, the majority of which are also interdispersed in the pericentromeric regions of the autosomes. The Y chromosome appears to have accumulated small and large repetitive interchromosomal duplications. The large interchromosomal duplications harbour an importin-4-like gene fragment. Apart from these importin-4-like sequences, the other Y repetitive sequences are not shared with the X chromosome, suggesting molecular differentiation of these two chromosomes. Moreover, as the identified Y sequences were not detected on the Y chromosomes of closely related tephritids, we can infer divergence in the repetitive nature of their sequence contents. Conclusions/Significance The identification of Y-linked sequences may tell us much about the repetitive nature, the origin and the evolution of Y chromosomes. We hypothesize how these repetitive sequences accumulated and were maintained on the Y chromosome during its evolutionary history. Our data reinforce the idea that the

  13. Parasitism, emergence, and development of Spalangia endius (Hymenoptera: Pteromalidae) in pupae of different ages of Bactrocera cucurbitae (Diptera: Tephritidae).

    Science.gov (United States)

    Tang, Liang-De; Ji, Xun-Cong; Han, Yun; Fu, Bu-Li; Liu, Kui

    2015-01-01

    The wasp Spalangia endius Walker (Hymenoptera: Pteromalidae) is a major parasitoid of the pupae of fruit flies, which are a common agricultural pest. An understanding of this intricate host-parasitoid interaction could provide basic information necessary for the sustainable integrated biological control of fruit flies. In this study, we investigated the effect of S. endius on different-aged pupae of the melon fly Bactrocera cucurbitae Coquillett by using choice and nonchoice tests under laboratory conditions. We showed that S. endius females oviposited, and their progeny successfully developed, in different-aged pupae of B. cucurbitae regardless of the method of exposure. There was an oviposition preference for 3-5-d-old pupa. The highest mean percentage parasitism occurred on 4- and 5-d-old hosts, followed by 2- and 3-d-old hosts. The average development time for both males and females was significantly longer in 6-7-d-old hosts than in the younger host stages. Adult females that developed from younger host pupae (2-5-d old) were significantly heavier than those from older host pupae (6-7-d old), and they also lived longer. The sex ratio (proportion of females) of the parasite progeny decreased with an increase in host age. Host mortality also decreased gradually as the pupal age increased. The differences in development time, body weight, and longevity between females and males were significant. These results suggest that S. endius is a good candidate for the biological control of B. cucurbitae. © The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America.

  14. De novo Transcriptome Analysis of Chinese Citrus Fly, Bactrocera minax (Diptera: Tephritidae), by High-Throughput Illumina Sequencing.

    Science.gov (United States)

    Wang, Jia; Xiong, Ke-Cai; Liu, Ying-Hong

    2016-01-01

    The Chinese citrus fly, Bactrocera minax (Enderlein), is one of the most devastating pests of citrus in the temperate areas of Asia. So far, studies involving molecular biology and physiology of B. minax are still scarce, partly because of the lack of genomic information and inability to rear this insect in laboratory. In this study, de novo assembly of a transcriptome was performed using Illumina sequencing technology. A total of 20,928,907 clean reads were obtained and assembled into 33,324 unigenes, with an average length of 908.44 bp. Unigenes were annotated by alignment against NCBI non-redundant protein (Nr), Swiss-Prot, Clusters of Orthologous Groups (COG), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes Pathway (KEGG) database. Genes potentially involved in stress tolerance, including 20 heat shock protein (Hsps) genes, 26 glutathione S-transferases (GSTs) genes, and 2 ferritin subunit genes, were identified. These genes may play roles in stress tolerance in B. minax diapause stage. It has previously been found that 20E application on B. minax pupae could avert diapause, but the underlying mechanisms remain unknown. Thus, genes encoding enzymes in 20E biosynthesis pathway, including Neverland, Spook, Phantom, Disembodied, Shadow, Shade, and Cyp18a1, and genes encoding 20E receptor proteins, ecdysone receptor (EcR) and ultraspiracle (USP), were identified. The expression patterns of 20E-related genes among developmental stages and between 20E-treated and untreated pupae demonstrated their roles in diapause program. In addition, 1,909 simple sequence repeats (SSRs) were detected, which will contribute to molecular marker development. The findings in this study greatly improve our genetic understanding of B. minax, and lay the foundation for future studies on this species.

  15. MicroRNAs in the oriental fruit fly, Bactrocera dorsalis: extending Drosophilid miRNA conservation to the Tephritidae.

    Science.gov (United States)

    Calla, Bernarda; Geib, Scott M

    2015-10-05

    The oriental fruit fly, Bactrocera dorsalis, is an important plant pest species in the family Tephritidae. It is a phytophagous species with broad host range, and while not established in the mainland United States, is a species of great concern for introduction. Despite the vast amount of information available from the closely related model organism Drosophila melanogaster, information at the genome and transcriptome level is still very limited for this species. Small RNAs act as regulatory molecules capable of determining transcript levels in the cells. The most studied small RNAs are micro RNAs, which may impact as much as 30 % of all protein coding genes in animals. We have sequenced small RNAs (sRNAs) from the Tephritid fruit fly, B. dorsalis (oriental fruit fly), specifically sRNAs corresponding to the 17 to 28 nucleotides long fraction of total RNA. Sequencing yielded more than 16 million reads in total. Seventy five miRNAs orthologous to known miRNAs were identified, as well as five additional novel miRNAs that might be specific to the genera, or to the Tephritid family. We constructed a gene expression profile for the identified miRNAs, and used comparative analysis with D. melanogaster to support our expression data. In addition, several miRNA clusters were identified in the genome that show conservancy with D. melanogaster. Potential targets for the identified miRNAs were also searched. The data presented here adds to our growing pool of information concerning the genome structure and characteristics of true fruit flies. It provides a basis for comparative studies with other Dipteran and within Tephritid species, and can be used for applied research such as in the development of new control strategies based on gene silencing and transgenesis.

  16. De novo Transcriptome Analysis of Chinese Citrus Fly, Bactrocera minax (Diptera: Tephritidae, by High-Throughput Illumina Sequencing.

    Directory of Open Access Journals (Sweden)

    Jia Wang

    Full Text Available The Chinese citrus fly, Bactrocera minax (Enderlein, is one of the most devastating pests of citrus in the temperate areas of Asia. So far, studies involving molecular biology and physiology of B. minax are still scarce, partly because of the lack of genomic information and inability to rear this insect in laboratory. In this study, de novo assembly of a transcriptome was performed using Illumina sequencing technology. A total of 20,928,907 clean reads were obtained and assembled into 33,324 unigenes, with an average length of 908.44 bp. Unigenes were annotated by alignment against NCBI non-redundant protein (Nr, Swiss-Prot, Clusters of Orthologous Groups (COG, Gene Ontology (GO, and Kyoto Encyclopedia of Genes and Genomes Pathway (KEGG database. Genes potentially involved in stress tolerance, including 20 heat shock protein (Hsps genes, 26 glutathione S-transferases (GSTs genes, and 2 ferritin subunit genes, were identified. These genes may play roles in stress tolerance in B. minax diapause stage. It has previously been found that 20E application on B. minax pupae could avert diapause, but the underlying mechanisms remain unknown. Thus, genes encoding enzymes in 20E biosynthesis pathway, including Neverland, Spook, Phantom, Disembodied, Shadow, Shade, and Cyp18a1, and genes encoding 20E receptor proteins, ecdysone receptor (EcR and ultraspiracle (USP, were identified. The expression patterns of 20E-related genes among developmental stages and between 20E-treated and untreated pupae demonstrated their roles in diapause program. In addition, 1,909 simple sequence repeats (SSRs were detected, which will contribute to molecular marker development. The findings in this study greatly improve our genetic understanding of B. minax, and lay the foundation for future studies on this species.

  17. Segmentation gene expression patterns in Bactrocera dorsalis and related insects: regulation and shape of blastoderm and larval cuticle.

    Science.gov (United States)

    Suksuwan, Worramin; Cai, Xiaoli; Ngernsiri, Lertluk; Baumgartner, Stefan

    2017-01-01

    The oriental fruit fly, Bactrocera dorsalis, is regarded as a severe pest of fruit production in Asia. Despite its economic importance, only limited information regarding the molecular and developmental biology of this insect is known to date. We provide a detailed analysis of B. dorsalis embryology, as well as the expression patterns of a number of segmentation genes known to act during patterning of Drosophila and compare these to the patterns of other insect families. An anterior shift of the expression of gap genes was detected when compared to Drosophila. This shift was largely restored during the step where the gap genes control expression of the pair-rule genes. We analyzed and compared the shapes of the embryos of insects of different families, B. dorsalis and the blow fly Lucilia sericata with that of the well-characterized Drosophila melanogaster. We found distinct shapes as well as differences in the ratios of the length of the anterior-posterior axis and the dorsal-ventral axis. These features were integrated into a profile of how the expression patterns of the gap gene Krüppel and the pair-rule gene even-skipped were observed along the A-P axis in three insects families. Since significant differences were observed, we discuss how Krüppel controls the even-skipped stripes. Furthermore, we discuss how the position and angles of the segmentation gene stripes differed from other insects. Finally, we analyzed the outcome of the expression patterns of the late acting segment polarity genes in relation to the anlagen of the naked-cuticle and denticle belt area of the B. dorsalis larva.

  18. Evaluation of endogenous references for gene expression profiling in different tissues of the oriental fruit fly Bactrocera dorsalis (Diptera: Tephritidae

    Directory of Open Access Journals (Sweden)

    Wang Jin-Jun

    2010-10-01

    Full Text Available Abstract Background Quantitative real-time reverse transcriptase PCR (RT-qPCR has been widely used for quantification of mRNA as a way to determine key genes involved in different biological processes. For accurate gene quantification analysis, normalization of RT-qPCR data is absolutely essential. To date, normalization is most frequently achieved by the use of internal controls, often referred to as reference genes. However, several studies have shown that the reference genes used for the quantification of mRNA expression can be affected by the experimental set-up or cell type resulting in variation of the expression level of these key genes. Therefore, the evaluation of reference genes is critical for gene expression profiling, which is often neglected in gene expression studies of insects. For this purpose, ten candidate reference genes were investigated in three different tissues (midgut, Malpighian tubules, and fat body of the oriental fruit fly, Bactrocera dorsalis (Hendel. Results Two different programs, geNorm and Normfinder, were used to analyze the data. According to geNorm, α-TUB + ACT5 are the most appropriate reference genes for gene expression profiling across the three different tissues in the female flies, while ACT3 + α-TUB are considered as the best for males. Furthermore, we evaluated the stability of the candidate reference genes to determine the sexual differences in the same tissue. In the midgut and Malpighian tubules, ACT2 + α-TUB are the best choice for both males and females. However, α-TUB + ACT1 are the best pair for fat body. Meanwhile, the results calculated by Normfinder are quite the same as the results with geNorm; α-TUB is always one of the most stable genes in each sample validated by the two programs. Conclusions In this study, we validated the suitable reference genes for gene expression profiling in different tissues of B. dorsalis. Moreover, appropriate reference genes were selected out for gene

  19. Ingestion toxicity of three Lamiaceae essential oils incorporated in protein baits against the olive fruit fly, Bactrocera oleae (Rossi) (Diptera Tephritidae).

    Science.gov (United States)

    Canale, Angelo; Benelli, Giovanni; Conti, Barbara; Lenzi, Gabriele; Flamini, Guido; Francini, Alessandra; Cioni, Pier Luigi

    2013-01-01

    The ingestion toxicity of three Lamiaceae essential oils (EOs) - Hyptis suaveolens, Rosmarinus officinalis and Lavandula angustifolia - incorporated in protein baits was evaluated against Bactrocera oleae, a worldwide pest of olive fruits. In laboratory conditions, all the tested EOs showed dose-dependent toxicity on B. oleae, with mortality rates ranging from 12% (EO concentration: 0.01% w:v) to 100% (EO concentration: 1.75% w:v). Semi-field results highlighted the toxicity of L. angustifolia and H. suaveolens EOs, which exerted more than 60% of flies mortality at a concentration of 1.75% (w:v). Gas Chromatography-Electron Impact Mass Spectrometry analyses of the three EOs showed that H. suaveolens EO was dominated by monoterpene and sesquiterpene hydrocarbons. Oxygenated monoterpenes were the main chemical class in R. officinalis and L. angustifolia EOs. Further research is needed to evaluate the efficacy of these EOs plus food bait against the olive fruit fly in the open field.

  20. Molecular characterization and chromosomal distribution of a species-specific transcribed centromeric satellite repeat from the olive fruit fly, Bactrocera oleae.

    Directory of Open Access Journals (Sweden)

    Konstantina T Tsoumani

    Full Text Available Satellite repetitive sequences that accumulate in the heterochromatin consist a large fraction of a genome and due to their properties are suggested to be implicated in centromere function. Current knowledge of heterochromatic regions of Bactrocera oleae genome, the major pest of the olive tree, is practically nonexistent. In our effort to explore the repetitive DNA portion of B. oleae genome, a novel satellite sequence designated BoR300 was isolated and cloned. The present study describes the genomic organization, abundance and chromosomal distribution of BoR300 which is organized in tandem, forming arrays of 298 bp-long monomers. Sequence analysis showed an AT content of 60.4%, a CENP-B like-motif and a high curvature value based on predictive models. Comparative analysis among randomly selected monomers demonstrated a high degree of sequence homogeneity (88%-97% of BoR300 repeats, which are present at approximately 3,000 copies per haploid genome accounting for about 0.28% of the total genomic DNA, based on two independent qPCR approaches. In addition, expression of the repeat was also confirmed through RT-PCR, by which BoR300 transcripts were detected in both sexes. Fluorescence in situ hybridization (FISH of BoR300 on mitotic metaphases and polytene chromosomes revealed signals to the centromeres of two out of the six chromosomes which indicated a chromosome-specific centromeric localization. Moreover, BoR300 is not conserved in the closely related Bactrocera species tested and it is also absent in other dipterans, but it's rather restricted to the B. oleae genome. This feature of species-specificity attributed to BoR300 satellite makes it a good candidate as an identification probe of the insect among its relatives at early development stages.

  1. Characterizing the developmental transcriptome of the oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae) through comparative genomic analysis with Drosophila melanogaster utilizing modENCODE datasets.

    Science.gov (United States)

    Geib, Scott M; Calla, Bernarda; Hall, Brian; Hou, Shaobin; Manoukis, Nicholas C

    2014-10-28

    The oriental fruit fly, Bactrocera dorsalis, is an important pest of fruit and vegetable crops throughout Asia, and is considered a high risk pest for establishment in the mainland United States. It is a member of the family Tephritidae, which are the most agriculturally important family of flies, and can be considered an out-group to well-studied members of the family Drosophilidae. Despite their importance as pests and their relatedness to Drosophila, little information is present on B. dorsalis transcripts and proteins. The objective of this paper is to comprehensively characterize the transcripts present throughout the life history of B. dorsalis and functionally annotate and analyse these transcripts relative to the presence, expression, and function of orthologous sequences present in Drosophila melanogaster. We present a detailed transcriptome assembly of B. dorsalis from egg through adult stages containing 20,666 transcripts across 10,799 unigene components. Utilizing data available through Flybase and the modENCODE project, we compared expression patterns of these transcripts to putative orthologs in D. melanogaster in terms of timing, abundance, and function. In addition, temporal expression patterns in B. dorsalis were characterized between stages, to establish the constitutive or stage-specific expression patterns of particular transcripts. A fully annotated transcriptome assembly is made available through NCBI, in addition to corresponding expression data. Through characterizing the transcriptome of B. dorsalis through its life history and comparing the transcriptome of B. dorsalis to the model organism D. melanogaster, a database has been developed that can be used as the foundation to functional genomic research in Bactrocera flies and help identify orthologous genes between B. dorsalis and D. melanogaster. This data provides the foundation for future functional genomic research that will focus on improving our understanding of the physiology and

  2. RNA interference of a trehalose-6-phosphate synthase gene reveals its roles during larval-pupal metamorphosis in Bactrocera minax (Diptera: Tephritidae).

    Science.gov (United States)

    Xiong, Ke-Cai; Wang, Jia; Li, Jia-Hao; Deng, Yu-Qing; Pu, Po; Fan, Huan; Liu, Ying-Hong

    2016-01-01

    Trehalose is the major blood sugar in insects, which plays a crucial role as an instant source of energy and the starting substrate for chitin biosynthesis. In insects, trehalose is synthesized by catalysis of an important enzyme, trehalose-6-phosphate synthase (TPS). In the present study, a trehalose-6-phosphate synthase gene from Bactrocera minax (BmTPS) was cloned and characterized. BmTPS contained an open reading frame of 2445 nucleotides encoding a protein of 814 amino acids with a predicted molecular weight of 92.05kDa. BmTPS was detectable in all developmental stages of Bactrocera minax and expressed higher in the final- (third-) instar larvae. Tissue-specific expression patterns of BmTPS showed that it was mainly expressed in the fat body. The 20-hydroxyecdysone (20E) induced the expression of BmTPS and three genes in the chitin biosynthesis pathway. Moreover, injection of double-stranded RNA into third-instar larvae successfully silenced the transcription of BmTPS in B. minax, and thereby decreased the activity of TPS and trehalose content. Additionally, silencing of BmTPS inhibited the expression of three key genes in the chitin biosynthesis pathway and exhibited 52% death and abnormal phenotypes. The findings demonstrate that BmTPS is indispensable for larval-pupal metamorphosis. Besides, the establishment of RNAi experimental system in B. minax would lay a solid foundation for further investigation of molecular biology and physiology of this pest. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Tephritid Integrative Taxonomy: Where We Are Now, with a Focus on the Resolution of Three Tropical Fruit Fly Species Complexes.

    Science.gov (United States)

    Schutze, Mark K; Virgilio, Massimiliano; Norrbom, Allen; Clarke, Anthony R

    2017-01-31

    Accurate species delimitation underpins good taxonomy. Formalization of integrative taxonomy in the past decade has provided a framework for using multidisciplinary data to make species delimitation hypotheses more rigorous. We address the current state of integrative taxonomy by using as a case study an international project targeted at resolving three important tephritid species complexes: Bactrocera dorsalis complex, Anastrepha fraterculus complex, and Ceratitis FAR (C. fasciventris, C. anonae, C. rosa) complex. The integrative taxonomic approach has helped deliver significant advances in resolving these complexes: It has been used to identify some taxa as belonging to the same biological species as well as to confirm hidden cryptic diversity under a single taxonomic name. Nevertheless, the general application of integrative taxonomy has not been without issue, revealing challenges that must be considered when undertaking an integrative taxonomy project. Scrutiny of this international case study provides a unique opportunity to document lessons learned for the benefit of not only tephritid taxonomists, but also the wider taxonomic community.

  4. Sexual selection in true fruit flies (Diptera: Tephritidae): transcriptome and experimental evidences for phytochemicals increasing male competitive ability.

    Science.gov (United States)

    Kumaran, Nagalingam; Prentis, Peter J; Mangalam, Kalimuthu P; Schutze, Mark K; Clarke, Anthony R

    2014-09-01

    In male tephritid fruit flies of the genus Bactrocera, feeding on secondary plant compounds (sensu lato male lures = methyl eugenol, raspberry ketone and zingerone) increases male mating success. Ingested male lures alter the male pheromonal blend, normally making it more attractive to females and this is considered the primary mechanism for the enhanced mating success. However, the male lures raspberry ketone and zingerone are known, across a diverse range of other organisms, to be involved in increasing energy metabolism. If this also occurs in Bactrocera, then this may represent an additional benefit to males as courtship is metabolically expensive and lure feeding may increase a fly's short-term energy. We tested this hypothesis by performing comparative RNA-seq analysis between zingerone-fed and unfed males of Bactrocera tryoni. We also carried out behavioural assays with zingerone- and cuelure-fed males to test whether they became more active. RNA-seq analysis revealed, in zingerone-fed flies, up-regulation of 3183 genes with homologues transcripts to those known to regulate intermale aggression, pheromone synthesis, mating and accessory gland proteins, along with significant enrichment of several energy metabolic pathways and gene ontology terms. Behavioural assays show significant increases in locomotor activity, weight reduction and successful mating after mounting; all direct/indirect measures of increased activity. These results suggest that feeding on lures leads to complex physiological changes, which result in more competitive males. These results do not negate the pheromone effect, but do strongly suggest that the phytochemical-induced sexual selection is governed by both female preference and male competitive mechanisms. © 2014 John Wiley & Sons Ltd.

  5. BdorCSP2 is important for antifeed and oviposition-deterring activities induced by Rhodojaponin-III against Bactrocera dorsalis.

    Directory of Open Access Journals (Sweden)

    Xin Yi

    Full Text Available Rhodojaponin-III is a nonvolatile botanical grayanoid diterpene compound, which has antifeedant and oviposition deterrence effects against many kinds of insects. However, the molecular mechanism of the chemoreception process remains unknown. In this study, the important role of BdorCSP2 in the recognition of Rhodojaponin-III was identified. The full length cDNA encoding BdorCSP2 was cloned from legs of Bactrocera dorsalis. The results of expression pattern revealed that BdorCSP2 was abundantly expressed in the legs of adult B. dorsalis. Moreover, the expression of BdorCSP2 could be up-regulated by Rhodojaponin-III. In order to gain comprehensive understanding of the recognition process, the binding affinity between BdorCSP2 and Rhodojaponin-III was measured by fluorescence binding assay. Silencing the expression of BdorCSP2 through the ingestion of dsRNA could weaken the effect of oviposition deterrence and antifeedant of Rhodojaponin-III. These results suggested that BdorCSP2 of B. dorsalis could be involved in chemoreception of Rhodojaponin-III and played a critical role in antifeedant and oviposition behaviors induced by Rhodojaponin-III.

  6. A review of plant protection against the olive fly (Bactrocera oleae (Rossi, 1790 Gmelin and molecular methods to monitor the insecticide resistance alleles

    Directory of Open Access Journals (Sweden)

    Matjaž Hladnik

    2017-01-01

    Full Text Available Olive fly (Bactrocera oleae (Rossi, 1790 Gmelin is one of the most important olive pests worldwide. Most plant protection measures are based on insecticides, especially organophosphates, pyrethroids, and recently a spinosad. Insecticides are used as cover sprays or in more environmentally friendly methods in which insecticides are used in combination with attractants and pheromones as bait sprays or for mass trapping. However, due to negative impacts of insecticides to environment, new plant protection methods are constantly developing with the aim to lower the consumption of insecticides or even to eliminate them by biological control with entomopathogenic organisms, sterile insect technique (SIT, or transgenic method RIDL (release of insects carrying a dominant lethal. However, these methods need to be improved in order to guarantee adequate protection. Alternative methods than those traditionally used are required due to long term usage causing the development of resistance to the insecticides, ultimately lowering their effectiveness. Molecular methods for monitoring the frequencies of resistant alleles and the current status of resistance alleles in olive growing countries are reviewed here.

  7. Population Dynamics of Pre-Imaginal Stages of Olive Fruit Fly Bactrocera oleae Gmel. (Diptera, Tephritidae in the Region of Bar (Montenegro

    Directory of Open Access Journals (Sweden)

    Tatjana Perović

    2013-01-01

    Full Text Available Olive fruit fly is the most harmful pest of olive fruits and important for oil production.Damage involves yield reduction as a consequence of premature fruit drop, but also areduced quality of olive oil and olive products. There is little available data regarding thebiology of Bactrocera oleae in Montenegro. Knowledge of the pest life cycle and developmentwould improve optimization of insecticide application timing and protection offruits, and reduce adverse effects on the environment.Investigation was conducted on the Žutica variety in an olive grove located in Bar duringa three-year period. Population dynamics of the pre-imaginal stages and level of fruitinfestation were monitored from mid-July until the end of October.The results of this three-year investigation showed that the beginning of infestationwas always at the end of July. It was also found that, depending on environmental conditions,the level of infestation was low until the end of August. In September and October itmultiplied, and reached maximum by the end of October.Regarding infestation structure, eggs and first instar larvae were the dominant developmentalstages of the pest until the middle of September. From mid-September until mid-October all developmental stages (eggs, larvae, pupae were equally present in infestedfruits. Pupae, cocoons and abandoned galleries prevailed until the harvest.

  8. Bactrocera invadens (Diptera: Tephritidae), a new invasive fruit fly pest for the Afrotropical region: host plant range and distribution in West and Central Africa.

    Science.gov (United States)

    Goergen, Georg; Vayssières, Jean-François; Gnanvossou, Désiré; Tindo, Maurice

    2011-08-01

    In 2003, the invasive fruit fly Bactrocera invadens Drew, Tsuruta & White (Diptera: Tephritidae) (Drew et al. 2005), of possible Sri Lankan origin, has been detected in the East and about 1 yr later in West Africa. In regular surveys in Benin and Cameroon covering 4 yr, samples from 117 plant species across 43 families have been obtained. Incubation of field-collected fruits demonstrate that in West and Central Africa (WCA) B. invadens is highly polyphagous, infesting wild and cultivated fruits of at least 46 species from 23 plant families with guava (Psidium spp.), mango (Mangifera spp.), and citrus (spp.), and the wild hosts tropical almond (Terminalia catappa L.), African wild mango (Irvingia gabonensis (Aubry-Lecomte) Baill.), and sheanut (Vitellaria paradoxa C.F.Gaertn.) showing the highest infestation index. B. invadens occurs in 22 countries of WCA with new records for Angola, Central African Republic, the Congo, DR Congo, Equatorial Guinea, Gabon, Gambia, Guinea Bissau, Mali, Mauritania, Niger, and Sierra Leone. Overall, the pest has spread across a North-South distance of ≍5,000 km representing a contiguous area of >8.3 million km(2) within WCA. B. invadens has adapted to a wide range of ecological and climatic conditions extending from low land rainforest to dry savanna. Because of its highly destructive and invasive potential, B. invadens poses a serious threat to horticulture in Africa if left uncontrolled. Moreover, the presence of this quarantine pest causes considerable restrictions on international trade of affected crops.

  9. Female-biased attraction of Oriental fruit fly, bactrocera dorsalis (Hendel), to a blend of host fruit volatiles from Terminalia catappa L.

    Science.gov (United States)

    Siderhurst, Matthew S; Jang, Eric B

    2006-11-01

    Coupled gas chromatography-electroantennogram detection (GC-EAD) analysis of volatiles from tropical almond fruit, Terminalia catappa L., revealed 22 compounds that were detected by antennae of oriental fruit fly females, Bactrocera dorsalis (Hendel). Both solid-phase microextraction (SPME) and Porapak Q were used for sampling odors in fruit headspace, with SPME collections producing larger EAD responses from a greater number of compounds. Geranyl acetate and methyl eugenol elicited the largest EAD responses. A synthetic blend containing SPME collected, EAD stimulatory compounds showed female-biased attraction in laboratory wind tunnel bioassays, but heavily male-biased trap captures in a larger olfactometer arena. A nine-component subset of compounds eliciting relatively small EAD responses (EAD minor) and consisting of equal parts ethanol, ethyl acetate, ethyl hexanoate, hexyl acetate, linalyl acetate, ethyl nonanate, nonyl acetate, ethyl cinnamate, and (E)-beta-farnesene, attracted mainly females. This EAD minor blend was as attractive to females and much less attractive to males when compared to torula yeast in field cage experiments using glass McPhail traps. Similar results were obtained with outdoor rotating olfactometer tests in which the EAD minor blend was almost completely inactive for males.

  10. Role of a tachykinin-related peptide and its receptor in modulating the olfactory sensitivity in the oriental fruit fly, Bactrocera dorsalis (Hendel).

    Science.gov (United States)

    Gui, Shun-Hua; Jiang, Hong-Bo; Xu, Li; Pei, Yu-Xia; Liu, Xiao-Qiang; Smagghe, Guy; Wang, Jin-Jun

    2017-01-01

    Insect tachykinin-related peptide (TRP), an ortholog of tachykinin in vertebrates, has been linked with regulation of diverse physiological processes, such as olfactory perception, locomotion, aggression, lipid metabolism and myotropic activity. In this study, we investigated the function of TRP (BdTRP) and its receptor (BdTRPR) in an important agricultural pest, the oriental fruit fly Bactrocera dorsalis. BdTRPR is a typical G-protein coupled-receptor (GPCR), and it could be activated by the putative BdTRP mature peptides with the effective concentrations (EC 50 ) at the nanomolar range when expressed in Chinese hamster ovary cells. Consistent with its role as a neuromodulator, expression of BdTRP was detected in the central nervous system (CNS) of B. dorsalis, specifically in the local interneurons with cell bodies lateral to the antennal lobe. BdTRPR was found in the CNS, midgut and hindgut, but interestingly also in the antennae. To investigate the role of BdTRP and BdTRPR in olfaction behavior, adult flies were subjected to RNA interference, which led to a reduction in the antennal electrophysiological response and sensitivity to ethyl acetate in the Y-tube assay. Taken together, we demonstrate the impact of TRP/TRPR signaling on the modulation of the olfactory sensitivity in B. dorsalis. The result improve our understanding of olfactory processing in this agriculturally important pest insect. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Co-Infestation and Spatial Distribution of Bactrocera carambolae and Anastrepha spp. (Diptera: Tephritidae) in Common Guava in the Eastern Amazon

    Science.gov (United States)

    Deus, E. G.; Godoy, W. A. C.; Sousa, M. S. M.; Lopes, G. N.; Jesus-Barros, C. R.; Silva, J. G.; Adaime, R.

    2016-01-01

    Field infestation and spatial distribution of introduced Bactrocera carambolae Drew and Hancock and native species of Anastrepha in common guavas [Psidium guajava (L.)] were investigated in the eastern Amazon. Fruit sampling was carried out in the municipalities of Calçoene and Oiapoque in the state of Amapá, Brazil. The frequency distribution of larvae in fruit was fitted to the negative binomial distribution. Anastrepha striata was more abundant in both sampled areas in comparison to Anastrepha fraterculus (Wiedemann) and B. carambolae. The frequency distribution analysis of adults revealed an aggregated pattern for B. carambolae as well as for A. fraterculus and Anastrepha striata Schiner, described by the negative binomial distribution. Although the populations of Anastrepha spp. may have suffered some impact due to the presence of B. carambolae, the results are still not robust enough to indicate effective reduction in the abundance of Anastrepha spp. caused by B. carambolae in a general sense. The high degree of aggregation observed for both species suggests interspecific co-occurrence with the simultaneous presence of both species in the analysed fruit. Moreover, a significant fraction of uninfested guavas also indicated absence of competitive displacement. PMID:27638949

  12. The oriental fruitfly Bactrocera dorsalis s.s. in East Asia: disentangling the different forces promoting the invasion and shaping the genetic make-up of populations.

    Science.gov (United States)

    Aketarawong, N; Guglielmino, C R; Karam, N; Falchetto, M; Manni, M; Scolari, F; Gomulski, L M; Gasperi, G; Malacrida, A R

    2014-06-01

    The Oriental fruit fly, Bactrocera dorsalis sensu stricto, is one of the most economically destructive pests of fruits and vegetables especially in East Asia. Based on its phytophagous life style, this species dispersed with the diffusion and implementation of agriculture, while globalization allowed it to establish adventive populations in different tropical and subtropical areas of the world. We used nine SSR loci over twelve samples collected across East Asia, i.e. an area that, in relatively few years, has become a theatre of intensive agriculture and a lively fruit trade. Our aim is to disentangle the different forces that have affected the invasion pattern and shaped the genetic make-up of populations of this fruit fly. Our data suggest that the considered samples probably represent well established populations in terms of genetic variability and population structuring. The human influence on the genetic shape of populations and diffusion is evident, but factors such as breeding/habitat size and life history traits of the species may have determined the post introduction phases and expansion. In East Asia the origin of diffusion can most probably be allocated in the oriental coastal provinces of China, from where this fruit fly spread into Southeast Asia. The spread of this species deserves attention for the development and implementation of risk assessment and control measures.

  13. ( Z)-9-tricosene identified in rectal gland extracts of Bactrocera oleae males: first evidence of a male-produced female attractant in olive fruit fly

    Science.gov (United States)

    Carpita, Adriano; Canale, Angelo; Raffaelli, Andrea; Saba, Alessandro; Benelli, Giovanni; Raspi, Alfio

    2012-01-01

    It is well-known that Bactrocera oleae (olive fruit fly) females attract conspecific males by using 1,7-dioxaspiro[5,5]undecane ( 1) as the main component of their sex pheromone, and that 1 is produced in the female rectal gland. Although some authors have claimed that B. oleae males also attract females, to date no male-produced female attractants have been found in this species. In this paper, we report the first identification of a substance unique to males and able to attract females. The findings of the study include the following: (1) females responded in a bioassay to hexane extracts obtained from rectal glands of 15-day-old B. oleae males, (2) the presence of ( Z)-9-tricosene ( 2) was consistently and unambiguously identified in these extracts using gas chromatography (GC) and GC-mass spectrometry methods, (3) in preliminary bioactivity tests, low doses (equivalent to a few males) of chemically and stereoisomerically pure synthetic ( Z)-9-tricosene ( 2) attracted olive fruit fly females. Interestingly, compound 2, commonly called muscalure, is also a well-known component of the house fly ( Musca domestica) sex pheromone.

  14. Field evaluation of attractive lures for the fruit fly Bactrocera minax (Diptera: Tephritidae) and their potential use in spot sprays in Hubei Province (China).

    Science.gov (United States)

    Zhou, Xiao-Wei; Niu, Chang-Ying; Han, Peng; Desneux, Nicolas

    2012-08-01

    The Chinese citrus fruit fly, Bactrocera minax (Enderlein) is a univoltine Tephritidae pest that infests Citrus species. Field trials were conducted in 2010 to determine the potential use of a lure based on enzymatical-hydrolyzed beer yeast as liquid bait (hereafter named H-protein bait) for B. minax in the Hubei province, China. In a citrus orchard, we compared the attractiveness among aqueous solutions of H-protein bait, GF-120 fruit fly bait, sugar-vinegar-wine mixture, torula yeast, and Jufeng attractant when used in traps and in spot sprays, that is, lures used in combination with the insecticide trichlorphon. The H-protein bait was the most attractive lure in traps, ensnaring significantly more adults than sugar-vinegar-wine mixture, torula yeast, and Jufeng attractant, in decreasing efficiency order. In spot sprays those with H-protein bait killed significantly more female and male flies within 40 min than those with sugar-vinegar-wine mixture, GF-120, Jufeng attractant, and the control. In addition, the total number of flies killed by H-protein bait during the spot spray duration was higher than other treatments. Our results demonstrated that the H-protein bait may be a useful tool in citrus orchards in China to monitor B. minax populations as well as to manage this pest when used in spot sprays.

  15. De novo cloning and annotation of genes associated with immunity, detoxification and energy metabolism from the fat body of the oriental fruit fly, Bactrocera dorsalis.

    Directory of Open Access Journals (Sweden)

    Wen-Jia Yang

    Full Text Available The oriental fruit fly, Bactrocera dorsalis, is a destructive pest in tropical and subtropical areas. In this study, we performed transcriptome-wide analysis of the fat body of B. dorsalis and obtained more than 59 million sequencing reads, which were assembled into 27,787 unigenes with an average length of 591 bp. Among them, 17,442 (62.8% unigenes matched known proteins in the NCBI database. The assembled sequences were further annotated with gene ontology, cluster of orthologous group terms, and Kyoto encyclopedia of genes and genomes. In depth analysis was performed to identify genes putatively involved in immunity, detoxification, and energy metabolism. Many new genes were identified including serpins, peptidoglycan recognition proteins and defensins, which were potentially linked to immune defense. Many detoxification genes were identified, including cytochrome P450s, glutathione S-transferases and ATP-binding cassette (ABC transporters. Many new transcripts possibly involved in energy metabolism, including fatty acid desaturases, lipases, alpha amylases, and trehalose-6-phosphate synthases, were identified. Moreover, we randomly selected some genes to examine their expression patterns in different tissues by quantitative real-time PCR, which indicated that some genes exhibited fat body-specific expression in B. dorsalis. The identification of a numerous transcripts in the fat body of B. dorsalis laid the foundation for future studies on the functions of these genes.

  16. Transcriptomic and metabolomic profiles of Chinese citrus fly, Bactrocera minax (Diptera: Tephritidae, along with pupal development provide insight into diapause program.

    Directory of Open Access Journals (Sweden)

    Jia Wang

    Full Text Available The Chinese citrus fly, Bactrocera minax (Enderlein, is a devastating citrus pest in Asia. This univoltine insect enters obligatory pupal diapause in each generation, while little is known about the course and the molecular mechanisms of diapause. In this study, the course of diapause was determined by measuring the respiratory rate throughout the pupal stage. In addition, the variation of transcriptomic and metabolomic profiles of pupae at five developmental stages (pre-, early-, middle-, late-, and post-diapause were evaluated by next-generation sequencing technology and 1H nuclear magnetic resonance spectroscopy (NMR, respectively. A total of 4,808 genes were significantly altered in ten pairwise comparisons, representing major shifts in metabolism and signal transduction as well as endocrine system and digestive system. Gene expression profiles were validated by qRT-PCR analysis. In addition, 48 metabolites were identified and quantified by 1H NMR. Nine of which significantly contributed to the variation in the metabolomic profiles, especially proline and trehalose. Moreover, the samples collected within diapause maintenance (early-, middle-, and late-diapause only exhibited marginal transcriptomic and metabolomic variation with each other. These findings greatly improve our understanding of B. minax diapause and lay the foundation for further pertinent studies.

  17. Rectal gland of Bactrocera papayae: ultrastructure, anatomy, and sequestration of autofluorescent compounds upon methyl eugenol consumption by the male fruit fly.

    Science.gov (United States)

    Khoo, Cynthia C H; Tan, Keng Hong

    2005-08-01

    Sexually mature males of Bactrocera papayae are strongly attracted to and consume methyl eugenol (ME). Upon consumption, ME is biotransformed to two phenylpropanoids, 2-allyl-4,5-dimethoxyphenol (DMP) and (E)-coniferyl alcohol (CF), that are transported in the hemolymph, sequestered and stored in the rectal glands, and subsequently released as sex and aggregation pheromones during courtship. To date, very little work on the ultrastructure and anatomy of the rectal gland has been done, and the accumulation of phenylpropanoids in the rectal glands of males has not been observed visually. Our objectives are to describe the anatomy and fine structures of the rectal glands of males and females and to observe the accumulation of autofluorescent compounds in the rectal glands of males. The rectal glands of males and females have four rectal papillae with each papilla attached to a rectal pad. The rectal pads protrude from the rectal gland as the only surfaces of the gland that are not surrounded by muscles. The rectal papillae of ME-fed males had oil droplets and autofluorescent compounds that were absent from those of ME-deprived males. The autofluorescent compounds accumulated in the rectal sac, which is an evagination that is not found in rectal glands of females. The accumulation of these compounds increased with time and reached maximum at a day post-ME feeding and decreased thereafter. This trend is similar to the accumulation pattern of phenylpropanoids, CF and DMP in the rectal gland. (c) 2005 Wiley-Liss, Inc.

  18. Attraction of Bactrocera dorsalis (Diptera: Tephritidae) and nontarget insects to methyl eugenol bucket traps with different preservative fluids on Oahu Island, Hawaiian Islands.

    Science.gov (United States)

    Uchida, Grant K; Mackey, Bruce E; McInnis, Donald O; Vargas, Roger I

    2007-06-01

    Attraction of oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), and nontarget insects to preservative fluids ethylene glycol antifreeze, propylene glycol antifreeze, or mineral oil in bucket traps that contained captured decaying male oriental fruit flies, a male lure (methyl eugenol), and a toxicant (DDVP vapor insecticidal strip) were compared with dry control traps. Significantly (P < 0.05) greater numbers of B. dorsalis were captured in propylene glycol antifreeze traps than in other attractant trap types. Among attractant trap types with lowest negative impacts on nontarget insects, control traps captured significantly lower numbers of three species and one morphospecies of scavenger flies, one species of plant-feeding fly, and one species each of sweet-and lipid-feeding ants. Mineral oil traps captured significantly lower numbers of two species of scavengers flies and one morphospecies of plant-feeding fly, and one species of sweet-feeding ant. Because of the fragile nature of endemic Hawaiian insect fauna, the propylene glycol antifreeze bucket trap is best suited for use in environments (e.g., non-native habitats) where endemic species are known to be absent and mineral oil traps are more suited for minimizing insect captures in environmentally sensitive habitats.

  19. BdorOBP2 plays an indispensable role in the perception of methyl eugenol by mature males of Bactrocera dorsalis (Hendel).

    Science.gov (United States)

    Liu, Huan; Zhao, Xiao-Feng; Fu, Lang; Han, Yi-Ye; Chen, Jin; Lu, Yong-Yue

    2017-11-21

    Bactrocera dorsalis (Hendel) is a fruit-eating pest that causes substantial economic damage to the fresh produce industry in tropical and sub-tropical countries. Methyl eugenol (ME) is a powerful attractant for mature males of B. dorsalis, and has been widely used for detecting, luring and eradicating B. dorsalis populations worldwide. However, the molecular mechanism underlying the olfactory perception of ME remains largely unknown. Here, we analyzed the differential proteomics profiling of the antennae between ME-responsive and ME-non-responsive males by using isobaric tags for relative and absolute quantitation (iTRAQ). In total, 4622 proteins were identified, of which 277 proteins were significant differentially expressed, with 192 up-regulated and 85 down-regulated in responsive male antennae. Quantitative real-time PCR (qRT-PCR) analysis confirmed the authenticity and accuracy of the proteomic analysis. Based on the iTRAQ and qRT-PCR results, we found that the odorant-binding protein 2 (BdorOBP2) was abundantly expressed in responsive male antennae. Moreover, BdorOBP2 was significantly up-regulated by ME in male antennae. Mature males showed significantly greater taxis toward ME than did mature females. Silencing BdorOBP2 reduced mature males' responsiveness to ME. These results indicate that BdorOBP2 may play an essential role in the molecular mechanism underlying B. dorsalis olfactory perception of ME.

  20. De novo Cloning and Annotation of Genes Associated with Immunity, Detoxification and Energy Metabolism from the Fat Body of the Oriental Fruit Fly, Bactrocera dorsalis

    Science.gov (United States)

    Yang, Wen-Jia; Yuan, Guo-Rui; Cong, Lin; Xie, Yi-Fei; Wang, Jin-Jun

    2014-01-01

    The oriental fruit fly, Bactrocera dorsalis, is a destructive pest in tropical and subtropical areas. In this study, we performed transcriptome-wide analysis of the fat body of B. dorsalis and obtained more than 59 million sequencing reads, which were assembled into 27,787 unigenes with an average length of 591 bp. Among them, 17,442 (62.8%) unigenes matched known proteins in the NCBI database. The assembled sequences were further annotated with gene ontology, cluster of orthologous group terms, and Kyoto encyclopedia of genes and genomes. In depth analysis was performed to identify genes putatively involved in immunity, detoxification, and energy metabolism. Many new genes were identified including serpins, peptidoglycan recognition proteins and defensins, which were potentially linked to immune defense. Many detoxification genes were identified, including cytochrome P450s, glutathione S-transferases and ATP-binding cassette (ABC) transporters. Many new transcripts possibly involved in energy metabolism, including fatty acid desaturases, lipases, alpha amylases, and trehalose-6-phosphate synthases, were identified. Moreover, we randomly selected some genes to examine their expression patterns in different tissues by quantitative real-time PCR, which indicated that some genes exhibited fat body-specific expression in B. dorsalis. The identification of a numerous transcripts in the fat body of B. dorsalis laid the foundation for future studies on the functions of these genes. PMID:24710118

  1. Molecular Cloning, Characterization and mRNA Expression of a Chitin Synthase 2 Gene from the Oriental Fruit Fly, Bactrocera dorsalis (Diptera: Tephritidae

    Directory of Open Access Journals (Sweden)

    Kang-Kang Xu

    2013-08-01

    Full Text Available Chitin synthase (CHS, a potential target for eco-friendly insecticides, plays an essential role in chitin formation in insects. In this study, a full-length cDNA encoding chitin synthase 2 (BdCHS2 was cloned and characterized in the oriental fruit fly, Bactrocera dorsalis. The BdCHS2 cDNA had 4417 nucleotides, containing an open reading frame of 4122 nucleotides, which encoded 1373 amino acid residues with a predicted molecular weight of 158.5 kDa. Phylogenetic analysis with other insect CHSs suggested that BdCHS2 belongs to insect CHS2. The BdCHS2 transcript was predominately found in midgut but was detected at low levels in fat body, Malpighian tubules, integument, and trachea. Moreover, BdCHS2 was expressed in all developmental stages, and highly expressed in the feeding stages. There was a positive relationship between BdCHS2 expression and total chitin content during development. Furthermore, both the gene expression and chitin content in midgut decreased when the insect was fed for 24 h, then starved for 24 h, while they increased dramatically and rapidly under the condition of starvation for 24 h then feeding for 24 h. These results suggest that BdCHS2 may play an important role in regulating chitin content of the midgut, and subsequently affect the growth and development of B. dorsalis.

  2. The effect of dietary restriction on longevity, fecundity, and antioxidant responses in the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae).

    Science.gov (United States)

    Chen, Er-Hu; Wei, Dong; Wei, Dan-Dan; Yuan, Guo-Rui; Wang, Jin-Jun

    2013-10-01

    Recent studies in fruit flies have imposed dietary restriction (DR) by diluting yeast and have reported increased lifespan as the yeast-to-sugar ratio decreased. In this study, the effects of DR on the lifespan of Bactrocera dorsalis were investigated using constant-feeding diets with different yeast:sugar ratios and an intermittent-feeding diet in which flies ate every sixth day. Antioxidant enzyme activities and the malondialdehyde concentration were also measured in virgin females under constant-feeding DR protocols to investigate their relationships with lifespan. The results showed that B. dorsalis lifespan was significantly extended by DR, and carbohydrate-enriched diet may be important for lifespan-extension. Female flies lived significantly longer than males at all dietary levels under both feeding regimes, indicating no interaction between diet and sex in determining lifespan. Antioxidant enzyme activities increased with the amount of yeast increased in the diets (0-4.76%) between starvation and DR treatments, indicating that the antioxidants may have influences in determining lifespan in B. dorsalis under starvation and DR treatments. However, antioxidants cannot keep up with increased oxidative damage induced by the high yeast diet (25%). These results revealed that the extension of lifespan by DR is evolutionarily conserved in B. dorsalis and that yeast:sugar ratios significantly modulate lifespan in this species. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Co-Infestation and Spatial Distribution of Bactrocera carambolae and Anastrepha spp. (Diptera: Tephritidae) in Common Guava in the Eastern Amazon.

    Science.gov (United States)

    Deus, E G; Godoy, W A C; Sousa, M S M; Lopes, G N; Jesus-Barros, C R; Silva, J G; Adaime, R

    2016-01-01

    Field infestation and spatial distribution of introduced Bactrocera carambolae Drew and Hancock and native species of Anastrepha in common guavas [Psidium guajava (L.)] were investigated in the eastern Amazon. Fruit sampling was carried out in the municipalities of Calçoene and Oiapoque in the state of Amapá, Brazil. The frequency distribution of larvae in fruit was fitted to the negative binomial distribution. Anastrepha striata was more abundant in both sampled areas in comparison to Anastrepha fraterculus (Wiedemann) and B. carambolae The frequency distribution analysis of adults revealed an aggregated pattern for B. carambolae as well as for A. fraterculus and Anastrepha striata Schiner, described by the negative binomial distribution. Although the populations of Anastrepha spp. may have suffered some impact due to the presence of B. carambolae, the results are still not robust enough to indicate effective reduction in the abundance of Anastrepha spp. caused by B. carambolae in a general sense. The high degree of aggregation observed for both species suggests interspecific co-occurrence with the simultaneous presence of both species in the analysed fruit. Moreover, a significant fraction of uninfested guavas also indicated absence of competitive displacement. © The Author 2016. Published by Oxford University Press on behalf of the Entomological Society of America.

  4. Insecticidal Activity of the Leaf Essential Oil of Peperomia borbonensis Miq. (Piperaceae) and Its Major Components against the Melon Fly Bactrocera cucurbitae (Diptera: Tephritidae).

    Science.gov (United States)

    Dorla, Emmanuelle; Gauvin-Bialecki, Anne; Deuscher, Zoé; Allibert, Agathe; Grondin, Isabelle; Deguine, Jean-Philippe; Laurent, Philippe

    2017-06-01

    The essential oil from the leaves of Peperomia borbonensis from Réunion Island was obtained by hydrodistillation and characterized using GC-FID, GC/MS and NMR. The main components were myristicin (39.5%) and elemicin (26.6%). The essential oil (EO) of Peperomia borbonensis and its major compounds (myristicin and elemicin), pure or in a mixture, were evaluated for their insecticidal activity against Bactrocera cucurbitae (Diptera: Tephritidae) using a filter paper impregnated bioassay. The concentrations necessary to kill 50% (LC 50 ) and 90% (LC 90 ) of the flies in three hours were determined. The LC 50 value was 0.23 ± 0.009 mg/cm 2 and the LC 90 value was 0.34 ± 0.015 mg/cm 2 for the EO. The median lethal time (LT 50 ) was determined to compare the toxicity of EO and the major constituents. The EO was the most potent insecticide (LT 50  = 98 ± 2 min), followed by the mixture of myristicin and elemicin (1.4:1) (LT 50  = 127 ± 2 min) indicating that the efficiency of the EO is potentiated by minor compounds and emphasizing one of the major assets of EOs against pure molecules. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  5. Is bigger better? Male body size affects wing-borne courtship signals and mating success in the olive fruit fly, Bactrocera oleae (Diptera: Tephritidae).

    Science.gov (United States)

    Benelli, Giovanni; Donati, Elisa; Romano, Donato; Ragni, Giacomo; Bonsignori, Gabriella; Stefanini, Cesare; Canale, Angelo

    2016-12-01

    Variations in male body size are known to affect inter- and intrasexual selection outcomes in a wide range of animals. In mating systems involving sexual signaling before mating, body size often acts as a key factor affecting signal strength and mate choice. We evaluated the effect of male size on courtship displays and mating success of the olive fruit fly, Bactrocera oleae (Diptera: Tephritidae). Wing vibrations performed during successful and unsuccessful courtships by large and small males were recorded by high-speed videos and analyzed through frame-by-frame analysis. Mating success of large and small males was investigated. The effect of male-male competition on mating success was evaluated. Male body size affected both male courtship signals and mating outcomes. Successful males showed wing-borne signals with high frequencies and short interpulse intervals. Wing vibrations displayed by successful large males during copulation attempt had higher frequencies over smaller males and unsuccessful large males. In no-competition conditions, large males achieved higher mating success with respect to smaller ones. Allowing large and small males to compete for a female, large males achieve more mating success over smaller ones. Mate choice by females may be based on selection of the larger males, able to produce high-frequency wing vibrations. Such traits may be indicative of "good genes," which under sexual selection could means good social-interaction genes, or a good competitive manipulator of conspecifics. © 2015 Institute of Zoology, Chinese Academy of Sciences.

  6. Ecdysis Triggering Hormone Signaling (ETH/ETHR-A Is Required for the Larva-Larva Ecdysis in Bactrocera dorsalis (Diptera: Tephritidae

    Directory of Open Access Journals (Sweden)

    Yan Shi

    2017-08-01

    Full Text Available Insects must undergo ecdysis for successful development and growth, and the ecdysis triggering hormone (ETH, released by the Inka cells, is a master hormone in this process. In this study, we determined the sequence of the ETH precursor and receptors in an agriculturally important pest insect, the oriental fruit fly Bactrocera dorsalis (Hendel. We identified two functionally distinct splice receptor isoforms: BdETH-R-A and BdETH-R-B, and when expressed in Chinese hamster ovary (CHO-WTA11 cells, they exhibited a high sensitivity to the two mature peptides BdETH1 and BdETH2. The BdETH transcript was detected in the tracheal tissue of the larvae. Inka cells were identified with immunohistochemical antibody staining against Drosophila melanogaster ETH1, and in situ hybridization with specific DNA probes. Selective RNA silencing of BdETH or BdETH-R-A, but not of BdETH-R-B, caused developmental failure at ecdysis. The dsRNA-treated larvae displayed tracheal defects and could not shed the old cuticle followed by death. Our results demonstrated that BdETH, via activation of BdETH-R-A but not ETH-R-B, plays an essential role in regulating the process of larva-larva ecdysis in B. dorsalis.

  7. cDNA CLONING AND TRANSCRIPTIONAL REGULATION OF THE CECROPIN AND ATTACIN FROM THE ORIENTAL FRUIT FLY, Bactrocera dorsalis (DIPTERA: TEPHRITIDAE).

    Science.gov (United States)

    Liao, Yin-Yin; Zuo, Yu-Han; Tsai, Cheng-Lung; Hsu, Chia-Ming; Chen, Mei-Er

    2015-06-01

    We described the cDNA cloning of two antimicrobial peptides (AMPs), cecropin (BdCec), and attacin C (BdAttC), from the oriental fruit fly, Bactrocera dorsalis (Hendel), a serious insect pest of fruit trees. Using rapid amplification of cDNA ends, fragments encompassing the entire open reading frames of BdCec and BdAttC were cloned and sequenced. The complete 425 bp cDNA of BdCec encodes a protein of 64 amino acids with a predicted molecular weight of 6.84 kDa. The 931 bp cDNA of BdAttC encodes a protein of 239 residues with a predicted molecular weight of 24.97 kDa. Real-time quantitative RT-PCR demonstrated that the developmental transcription profiles of BdCec and BdAttC were similar in each larvae, pupae, and adults. The constitutive expression levels of both AMPs were high in the first-instar and late third-instar larvae, suggesting that their antimicrobial activity is active in the newly hatched larvae and just before pupation. The basal expression levels were not significant different in adult fat bodies. The expression of BdCec and BdAttC was upregulated after bacterial challenge in adult fat bodies. The ratio of inducible expression to constitutive expression was lower in males compared to females. © 2015 Wiley Periodicals, Inc.

  8. Functional analysis of a NF-κB transcription factor in the immune defense of Oriental fruit fly, Bactrocera dorsalis Hendel (Diptera: Tephritidae).

    Science.gov (United States)

    Shi, Z; Liang, H; Hou, Y

    2017-04-01

    Although some novel antimicrobial peptides (AMP) have been successfully isolated from Bactrocera dorsalis Hendel, the mechanisms underlying the induction of these peptides are still elusive. The homolog of NF-κB transcription factor Relish, designated as BdRelish, was cloned from B. dorsalis. The full length cDNA of BdRelish is 3954 bp with an open reading frame that encodes 1013 amino acids. Similar to Drosophila Relish and the mammalian p100, it is a compound protein containing a conserved Rel homology domain, an IPT (Ig-like, plexins, transcription factors) domain and an IκB-like domain (four ankyrin repeats), the nuclear localization signal RKRRR is also detected at the residues 449-453, suggesting that it has homology to Relish and it is a member of the Rel family of transcription activator proteins. Reverse transcription quantitative polymerase chain reaction analysis reveals that BdRelish mRNAs are detected in different quantities from various tissues and the highest transcription level of BdRelish is determined in fat body. The injection challenge of Escherichia coli and Staphylococcus aureas significantly upregulated the expression of BdRelish. The injection of BdRelish dsRNA markedly reduced the expression of BdRelish and decreased the transcription magnitude of antimicrobial peptides. Individuals injected BdRelish dsRNA died at a significantly faster rate compared with the control groups. Therefore, BdRelish is vital for the transcription of AMPs to attack the invading bacteria.

  9. Genetic analysis of oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae) populations based on mitochondrial cox1 and nad1 gene sequences from India and other Asian countries.

    Science.gov (United States)

    Choudhary, Jaipal S; Naaz, Naiyar; Prabhakar, Chandra S; Lemtur, Moanaro

    2016-10-01

    The study examined the genetic diversity and demographic history of Bactrocera dorsalis, a destructive and polyphagous insect pest of fruit crops in diverse geographic regions of India. 19 widely dispersed populations of the fly from India and other Asian countries were analysed using partial sequences of mitochondrial cytochrome oxidase I (cox1) and NADH dehydrogenase 1 (nad1) genes to investigate genetic diversity, genetic structure, and demographic history in the region. Genetic diversity indices [number of haplotypes (H), haloptype diversity (Hd), nucleotide diversity (π) and average number of nucleotide difference (k)] of populations revealed that B. dorsalis maintains fairly high level of genetic diversity without isolation by distance among the geographic regions. Demographic analysis showed significant (negative) Tajimas' D and Fu's F S with non significant sum of squared deviations (SSD) values, which indicate the possibility of recent sudden expansion of species and is further supported through distinctively star-like distribution structure of haplotypes among populations. Thus, the results indicate that both ongoing and historical factors have played important role in determining the genetic structure and diversity of the species in India. Consequently, sterile insect technique (SIT) could be a possible management strategy of species in the regions.

  10. Transcriptomic and metabolomic profiles of Chinese citrus fly, Bactrocera minax (Diptera: Tephritidae), along with pupal development provide insight into diapause program.

    Science.gov (United States)

    Wang, Jia; Fan, Huan; Xiong, Ke-Cai; Liu, Ying-Hong

    2017-01-01

    The Chinese citrus fly, Bactrocera minax (Enderlein), is a devastating citrus pest in Asia. This univoltine insect enters obligatory pupal diapause in each generation, while little is known about the course and the molecular mechanisms of diapause. In this study, the course of diapause was determined by measuring the respiratory rate throughout the pupal stage. In addition, the variation of transcriptomic and metabolomic profiles of pupae at five developmental stages (pre-, early-, middle-, late-, and post-diapause) were evaluated by next-generation sequencing technology and 1H nuclear magnetic resonance spectroscopy (NMR), respectively. A total of 4,808 genes were significantly altered in ten pairwise comparisons, representing major shifts in metabolism and signal transduction as well as endocrine system and digestive system. Gene expression profiles were validated by qRT-PCR analysis. In addition, 48 metabolites were identified and quantified by 1H NMR. Nine of which significantly contributed to the variation in the metabolomic profiles, especially proline and trehalose. Moreover, the samples collected within diapause maintenance (early-, middle-, and late-diapause) only exhibited marginal transcriptomic and metabolomic variation with each other. These findings greatly improve our understanding of B. minax diapause and lay the foundation for further pertinent studies.

  11. Olive Volatiles from Portuguese Cultivars Cobrançosa, Madural and Verdeal Transmontana: Role in Oviposition Preference of Bactrocera oleae (Rossi) (Diptera: Tephritidae).

    Science.gov (United States)

    Malheiro, Ricardo; Casal, Susana; Cunha, Sara C; Baptista, Paula; Pereira, José Alberto

    2015-01-01

    The olive fly, Bactrocera oleae (Rossi), a serious threat to the olive crop worldwide, displays ovipositon preference for some olive cultivars but the causes are still unclear. In the present work, three Portuguese olive cultivars with different susceptibilities to olive fly (Cobrançosa, Madural, and Verdeal Transmontana) were studied, aiming to determine if the olive volatiles are implicated in this interaction. Olive volatiles were assessed by SPME-GC-MS in the three cultivars during maturation process to observe possible correlations with olive fly infestation levels. Overall, 34 volatiles were identified in the olives, from 7 chemical classes (alcohols, aldehydes, aromatic hydrocarbons, esters, ketones, sesquiterpenes, and terpenes). Generally, total volatile amounts decrease during maturation but toluene, the main compound, increased in all cultivars, particularly in those with higher susceptibility to olive fly. Sesquiterpenes also raised, mainly α-copaene. Toluene and α-copaene, recognized oviposition promoters to olive fly, were correlated with the infestation level of cvs. Madural and Verdeal Trasnmontana (intermediate and highly susceptible cultivars respectively), while no correlations were established with cv. Cobrançosa (less susceptible). No volatiles with inverse correlation were observed. Volatile composition of olives may be a decisive factor in the olive fly choice to oviposit and this could be the basis for the development of new control strategies for this pest.

  12. Identification of leaf volatiles from olive (Olea europaea) and their possible role in the ovipositional preferences of olive fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae).

    Science.gov (United States)

    Malheiro, Ricardo; Casal, Susana; Cunha, Sara C; Baptista, Paula; Pereira, José Alberto

    2016-01-01

    The olive fly, Bactrocera oleae (Rossi), is a monophagous pest that displays an oviposition preference among cultivars of olive (Olea europaea L.). To clarify the oviposition preference, the olive leaf volatiles of three olive cultivars (Cobrançosa, Madural and Verdeal Transmontana) were assessed by headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC/MS) at six different periods of olive fruit maturation and degrees of infestation. A total of 39 volatiles were identified, mainly esters and alcohols, with a minor percentage of aldehydes, ketones and terpenic compounds, including sesquiterpenes. At sampling dates with higher degrees of infestation, cv. Cobrançosa had, simultaneously, significantly lower infestation degrees and higher volatile amounts than the other two cultivars, with a probable deterrent effect for oviposition. The green leaf volatiles (GLVs) (Z)-3-hexen-1-ol and (Z)-3-hexen-1-ol acetate) were the main compounds identified in all cultivars, together with toluene. The abundance of GLVs decreased significantly throughout maturation, without significant differences among cultivars, while toluene showed a general increase and positive correlation with olive fly infestation levels. The results obtained could broaden our understanding of the roles of various types and amounts of olive volatiles in the environment, especially in olive fly host selection and cultivar preference. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Australian endemic pest tephritids: genetic, molecular and microbial tools for improved Sterile Insect Technique.

    Science.gov (United States)

    Raphael, Kathryn A; Shearman, Deborah C A; Gilchrist, A Stuart; Sved, John A; Morrow, Jennifer L; Sherwin, William B; Riegler, Markus; Frommer, Marianne

    2014-01-01

    Among Australian endemic tephritid fruit flies, the sibling species Bactrocera tryoni and Bactrocera neohumeralis have been serious horticultural pests since the introduction of horticulture in the nineteenth century. More recently, Bactrocera jarvisi has also been declared a pest in northern Australia. After several decades of genetic research there is now a range of classical and molecular genetic tools that can be used to develop improved Sterile Insect Technique (SIT) strains for control of these pests. Four-way crossing strategies have the potential to overcome the problem of inbreeding in mass-reared strains of B. tryoni. The ability to produce hybrids between B. tryoni and the other two species in the laboratory has proved useful for the development of genetically marked strains. The identification of Y-chromosome markers in B. jarvisi means that male and female embryos can be distinguished in any strain that carries a B. jarvisi Y chromosome. This has enabled the study of homologues of the sex-determination genes during development of B jarvisi and B. tryoni, which is necessary for the generation of genetic-sexing strains. Germ-line transformation has been established and a draft genome sequence for B. tryoni released. Transcriptomes from various species, tissues and developmental stages, to aid in identification of manipulation targets for improving SIT, have been assembled and are in the pipeline. Broad analyses of the microbiome have revealed a metagenome that is highly variable within and across species and defined by the environment. More specific analyses detected Wolbachia at low prevalence in the tropics but absent in temperate regions, suggesting a possible role for this endosymbiont in future control strategies.

  14. The period gene in two species of tephritid fruit fly differentiated by mating behaviour.

    Science.gov (United States)

    An, X; Wilkes, K; Bastian, Y; Morrow, J L; Frommer, M; Raphael, K A

    2002-10-01

    The period gene is important for the generation and maintenance of biological rhythms. It served as an ideal candidate for the investigation of the mating time isolation between two sibling Queensland fruit fly species, Bactrocera tryoni and Bactrocera neohumeralis. We have isolated the homologues of the period gene in the two species, and show that their putative amino acid sequences are identical. No length polymorphism was detected in the Thr-Gly repeat region. per mRNA expression, assayed in light-dark diurnal conditions, displayed circadian oscillation in both the head and abdomen of B. tryoni and B. neohumeralis, with the same cycling phase. An alternatively spliced intron was identified in the 3' untranslated region. The effect of temperature on the splicing and mRNA expression was examined.

  15. A benefit cost analysis on management strategies for Queensland Fruit Fly: methods and observations

    OpenAIRE

    Harvey, Sallyann; Fisher, Bill; Larson, Kristoffer; Malcolm, Bill

    2010-01-01

    The Queensland Fruit Fly (QFF) — Bactrocera tryoni — poses a significant threat to horticultural production in Victoria causing losses of fruit and jeopardising access to interstate and international markets. The Victorian Government implements and largely funds an area freedom program to manage QFF. Concern about the record number of outbreaks in 2007-08 and the escalating costs of maintaining the current management regime, led the Victorian Department of Primary Industries to review the pro...

  16. Screening mitochondrial DNA sequence variation as an alternative method for tracking established and outbreak populations of Queensland fruit fly at the species southern range limit

    OpenAIRE

    Blacket, Mark J.; Malipatil, Mali B.; Semeraro, Linda; Gillespie, Peter S.; Dominiak, Bernie C.

    2017-01-01

    Abstract Understanding the relationship between incursions of insect pests and established populations is critical to implementing effective control. Studies of genetic variation can provide powerful tools to examine potential invasion pathways and longevity of individual pest outbreaks. The major fruit fly pest in eastern Australia, Queensland fruit fly Bactrocera tryoni (Froggatt), has been subject to significant long?term quarantine and population reduction control measures in the major ho...

  17. Genomic resources notes accepted 1 December 2013-31 January 2014.

    Science.gov (United States)

    Arthofer, Wolfgang; Clarke, Anthony R; Kumaran, Nagalingam; Prentis, Peter J; Schafellner, Christa; Schlick-Steiner, Birgit C; Steiner, Florian M; Wachter, Gregor A

    2014-05-01

    This article documents the public availability of (i) transcriptome sequence data, assembled and annotated contigs and unigenes, and BLAST hits from the Queensland fruit fly, Bactrocera tryoni; (ii) 75 single-nucleotide variants (SNVs) from 454 sequencing of reduced representation libraries for Phalangiidae harvestmen, Megabunus armatus, Megabunus vignai, Megabunus lesserti, and Rilaena triangularis; and (iii) expressed sequence tags from 454 sequencing of the lepidopterans Lymantria dispar and Lymantria monacha. © 2014 John Wiley & Sons Ltd.

  18. Potential impacts of climate change on habitat suitability for the Queensland fruit fly

    OpenAIRE

    Sultana, Sabira; Baumgartner, John B.; Dominiak, Bernard C.; Royer, Jane E.; Beaumont, Linda J.

    2017-01-01

    Anthropogenic climate change is a major factor driving shifts in the distributions of pests and invasive species. The Queensland fruit fly, Bactrocera tryoni Froggatt (Qfly), is the most economically damaging insect pest of Australia’s horticultural industry, and its management is a key priority for plant protection and biosecurity. Identifying the extent to which climate change may alter the distribution of suitable habitat for Qfly is important for the development and continuation of effect...

  19. Evaluating mating compatibility within fruit fly cryptic species complexes and the potential role of sex pheromones in pre-mating isolation

    Science.gov (United States)

    Juárez, M. Laura; Devescovi, Francisco; Břízová, Radka; Bachmann, Guillermo; Segura, Diego F.; Kalinová, Blanka; Fernández, Patricia; Ruiz, M. Josefina; Yang, Jianquan; Teal, Peter E.A.; Cáceres, Carlos; Vreysen, Marc J.B.; Hendrichs, Jorge; Vera, M. Teresa

    2015-01-01

    Abstract The study of sexual behavior and the identification of the signals involved in mate recognition between con-specifics are key components that can shed some light, as part of an integrative taxonomic approach, in delimitating species within species complexes. In the Tephritidae family several species complexes have received particular attention as they include important agricultural pests such as the Ceratitis fasciventris (Bezzi), Ceratitis anonae (Graham) and Ceratitis rosa Karsch (FAR) complex, the Bactrocera dorsalis (Hendel) complex and the Anastrepha fraterculus (Wiedemann) complex. Here the value and usefulness of a methodology that uses walk-in field cages with host trees to assess, under semi-natural conditions, mating compatibility within these complexes is reviewed, and the same methodology to study the role of chemical communication in pre-mating isolation among Anastrepha fraterculus populations is used. Results showed that under the same experimental conditions it was possible to distinguish an entire range of different outcomes: from full mating compatibility among some populations to complete assortative mating among others. The effectiveness of the methodology in contributing to defining species limits was shown in two species complexes: Anastrepha fraterculus and Bactrocera dorsalis, and in the case of the latter the synonymization of several established species was published. We conclude that walk-in field cages constitute a powerful tool to measure mating compatibility, which is also useful to determine the role of chemical signals in species recognition. Overall, this experimental approach provides a good source of information about reproductive boundaries to delimit species. However, it needs to be applied as part of an integrative taxonomic approach that simultaneously assesses cytogenetic, molecular, physiological and morphological traits in order to reach more robust species delimitations. PMID:26798257

  20. Population structure of Bactrocera dorsalis s.s., B. papayae and B. philippinensis (Diptera: Tephritidae) in southeast Asia: evidence for a single species hypothesis using mitochondrial DNA and wing-shape data.

    Science.gov (United States)

    Schutze, Mark K; Krosch, Matthew N; Armstrong, Karen F; Chapman, Toni A; Englezou, Anna; Chomič, Anastasija; Cameron, Stephen L; Hailstones, Deborah; Clarke, Anthony R

    2012-07-30

    Bactrocera dorsalis s.s. is a pestiferous tephritid fruit fly distributed from Pakistan to the Pacific, with the Thai/Malay peninsula its southern limit. Sister pest taxa, B. papayae and B. philippinensis, occur in the southeast Asian archipelago and the Philippines, respectively. The relationship among these species is unclear due to their high molecular and morphological similarity. This study analysed population structure of these three species within a southeast Asian biogeographical context to assess potential dispersal patterns and the validity of their current taxonomic status. Geometric morphometric results generated from 15 landmarks for wings of 169 flies revealed significant differences in wing shape between almost all sites following canonical variate analysis. For the combined data set there was a greater isolation-by-distance (IBD) effect under a 'non-Euclidean' scenario which used geographical distances within a biogeographical 'Sundaland context' (r(2) = 0.772, P Bactrocera dorsalis s.s., B. papayae and B. philippinensis likely represent one species structured around the South China Sea, having migrated from northern Thailand into the southeast Asian archipelago and across into the Philippines. No migration is apparent between the Philippines and Taiwan. This information has implications for quarantine, trade and pest management.

  1. The neuropeptides and protein hormones of the agricultural pest fruit fly Bactrocera dorsalis: What do we learn from the genome sequencing and tissue-specific transcriptomes?

    Science.gov (United States)

    Gui, Shun-Hua; Jiang, Hong-Bo; Smagghe, Guy; Wang, Jin-Jun

    2017-12-01

    Neuropeptides and protein hormones are very important signaling molecules, and are involved in the regulation and coordination of various physiological processes in invertebrates and vertebrates. Using a bioinformatics approach, we screened the recently sequenced genome and six tissue-specific transcriptome databases (central nervous system, fat body, ovary, testes, male accessory glands, antennae) of the oriental fruit fly (Bactrocera dorsalis) that is economically one of the most important pest insects of tropical and subtropical fruit. Thirty-nine candidate genes were found to encode neuropeptides or protein hormones. These include most of the known insect neuropeptides and protein hormones, with the exception of adipokinetic hormone-corazonin-related peptide, allatropin, diuretic hormone 34, diuretic hormone 45, IMFamide, inotocin, and sex peptide. Our results showed the neuropeptides and protein hormones of Diptera insects appear to have a reduced repertoire compared to some other insects. Moreover, there are also differences between B. dorsalis and the super-model of Drosophila melanogaster. Interesting features of the oriental fruit fly are the absence of genes coding for sex peptide and the presence of neuroparsin and two genes coding neuropeptide F. The majority of the identified neuropeptides and protein hormones is present in the central nervous system, with only a limited number of these in the other tissues. Moreover, we predicted their physiological functions via comparing with data of FlyBase and FlyAtlas. Taken together, owing to the large number of identified peptides, this study can be used as a reference about structure, tissue distribution and physiological functions for comparative studies in other model and important pest insects. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Implementing a spinosad-based local bait station to control Bactrocera cucurbitae (Diptera: Tephritidae) in high rainfall areas of Reunion Island.

    Science.gov (United States)

    Delpoux, Camille; Deguine, Jean-Philippe

    2015-01-01

    Three species of fruit flies cause serious damage to cucurbit crops on Reunion Island: Bactrocera cucurbitae (Diptera: Tephritidae) (Coquillett 1899), Dacus ciliatus (Loew 1901), and Dacus demmerezi (Bezzi 1917). To control them, a program of agroecological management of cucurbit flies has been implemented based on the application of Synéis-appât, especially spot sprays on corn borders. However, the high rainfall on Reunion Island limits the long-term efficiency of the bait; in addition, this method cannot be used for large chayote trellises, because corn borders cannot be planted around them. The aim of this study was to design a bait station adapted to prevailing conditions on Reunion Island. An 'umbrella trap' tested in Taiwan was used as a reference to compare its efficacy with our local bait station. Experiments were conducted in field cages on B. cucurbitae to test different characteristics of bait stations and to construct one using local materials. Results were validated in the field. The attractiveness of the bait station was related mainly to the color of the external surface, yellow being the most attractive color. The efficacy of the bait station with respect to fly mortality was found to be linked to the accessibility of the bait, and direct application of Synéis-appât on the bait station was found to be the most efficient. In the field, B. cucurbitae were more attracted to the local bait station than to the umbrella trap, while the two other fly species displayed equal attraction to both trap types. Our local bait station is a useful alternative to spot sprays of Synéis-appât and is now included in a local pest management program and is well accepted by farmers. © The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America.

  3. Characteristics of hot spots of melon fly, Bactrocera (Dacus) cucurbitae Coquillett (Diptera: Tephritidae) in sterile fly release areas on Okinawa island [Japan

    International Nuclear Information System (INIS)

    Nakamori, H.; Shiga, M.; Kinjo, K.

    1993-01-01

    The spatio-temporal dynamics of populations of the melon fly, Bactrocera (Dacus) cucurbitae COQUILLETT, in the southern part of Okinawa Island where an eradication program using sterile flies has been conducted, were analyzed in relation to the seasonal succession and abundance of wild and cultivated host fruits. The study areas were classified into four major zones according to the seasonal abundance of flies caught by cue-lure traps and the availability of host fruits including Diplocyclos palmatus, Melothria liukiuensis and Momordica charantia var. pevel. Zone-I is characterized by the continuous presence of host fruits and a relatively-high population density of the melon fly indicated by the cue-lure trap catch of more than 1, 000 flies per 1, 000 traps per day throughout the year. Zone-II has a characteristic decline in both number of host fruits and fly density during the fall-winter period with an annual average of less than 1, 000 flies per 1, 000 traps per day. Zone-III includes areas where host fruits and flies (about 1 fly/trap/day) were relatively abundant only during the winter-spring period. Zone-IV is characterized by constantly low availability of host fruits and low fly density throughout the year. Hot spots, which are defined as areas where the ratio of sterile to wild flies hardly increases despite frequent and intensive release of sterile flies, were found in the Zone-I areas. Therefore, the continuous presence and abundance of host fruits appears to hot spots. For effective control of this species, it is essential to locate such areas and release sterile flies

  4. Attraction and mortality of Bactrocera dorsalis (Diptera: Tephritidae) to STATIC Spinosad ME weathered under operational conditions in California and Florida: a reduced-risk male annihilation treatment.

    Science.gov (United States)

    Vargas, Roger I; Souder, Steven K; Hoffman, Kevin; Mercogliano, Juan; Smith, Trevor R; Hammond, Jack; Davis, Bobbie J; Brodie, Matt; Dripps, James E

    2014-08-01

    Studies were conducted in 2013-2014 to quantify attraction, feeding, and mortality of male oriental fruit flies, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), to STATIC Spinosad ME a reduced-risk male annihilation treatment (MAT) formulation consisting of an amorphous polymer matrix in combination with methyl eugenol (ME) and spinosad compared with the standard treatment of Min-U-Gel mixed with ME and naled (Dibrom). Our approach used a behavioral methodology for evaluation of slow-acting reduced-risk insecticides. ME treatments were weathered for 1, 7, 14, 21, and 28 d under operational conditions in California and Florida and shipped to Hawaii for bioassays. In field tests using bucket traps to attract and capture wild males, and in toxicity studies conducted in 1-m(3) cages using released males of controlled ages, STATIC Spinosad ME performed equally as well to the standard formulation of Min-U-Gel ME with naled for material aged up to 28 d in both California and Florida. In laboratory feeding tests in which individual males were exposed for 5 min to the different ME treatments, mortality induced by STATIC Spinosad ME recorded at 24 h did not differ from mortality caused by Min-U-Gel ME with naled at 1, 7, 14, and 21 d in California and was equal to or higher for all weathered time periods in Florida during two trials. Spinosad has low contact toxicity, and when mixed with an attractant and slow release matrix, offers a reduced-risk alternative for eradication of B. dorsalis and related ME attracted species, without many of the potential negative effects to humans and nontargets associated with broad-spectrum contact insecticides such as naled.

  5. RNAi-Mediated Knock-Down of transformer and transformer 2 to Generate Male-Only Progeny in the Oriental Fruit Fly, Bactrocera dorsalis (Hendel)

    Science.gov (United States)

    Li, Jianwei; Zhang, Guifen; Wan, Fanghao

    2015-01-01

    The transformer (tra) gene appears to act as the genetic switch that promotes female development by interaction with the transformer2 (tra-2) gene in several dipteran species including the Medfly, housefly and Drosophila melanogaster. In this study, we describe the isolation, expression and function of tra and tra-2 in the economically important agricultural pest, the oriental fruit fly, Bactrocera dorsalis (Hendel). Bdtra and Bdtra-2 are similar to their homologs from other tephritid species. Bdtra demonstrated sex-specific transcripts: one transcript in females and two transcripts in males. In contrast, Bdtra-2 only had one transcript that was common to males and females, which was transcribed continuously in different adult tissues and developmental stages. Bdtra-2 and the female form of Bdtra were maternally inherited in eggs, whereas the male form of Bdtra was not detectable until embryos of 1 and 2 h after egg laying. Function analyses of Bdtra and Bdtra-2 indicated that both were indispensable for female development, as nearly 100% males were obtained with embryonic RNAi against either Bdtra or Bdtra-2. The fertility of these RNAi-generated males was subsequently tested. More than 80% of RNAi-generated males could mate and the mated females could lay eggs, but only 40-48.6% males gave rise to progeny. In XX-reversed males and intersex individuals, no clear female gonadal morphology was observed after dissection. These results shed light on the development of a genetic sexing system with male-only release for this agricultural pest. PMID:26057559

  6. Evidence of two lineages of the symbiont 'Candidatus Erwinia dacicola' in Italian populations of Bactrocera oleae (Rossi) based on 16S rRNA gene sequences.

    Science.gov (United States)

    Savio, Claudia; Mazzon, Luca; Martinez-Sañudo, Isabel; Simonato, Mauro; Squartini, Andrea; Girolami, Vincenzo

    2012-01-01

    The close association between the olive fly Bactrocera oleae (Rossi) (Diptera: Tephritidae) and bacteria has been known for more than a century. Recently, the presence of a host-specific, hereditary, unculturable symbiotic bacterium, designated 'Candidatus Erwinia dacicola', has been described inside the cephalic organ of the fly, called the oesophageal bulb. In the present study, the 16S rRNA gene sequence variability of 'Ca. E. dacicola' was examined within and between 26 Italian olive fly populations sampled across areas where olive trees occur in the wild and areas where cultivated olive trees have been introduced through history. The bacterial contents of the oesophageal bulbs of 314 olive flies were analysed and a minimum of 781 bp of the 16S rRNA gene was sequenced. The corresponding host fly genotype was assessed by sequencing a 776 bp portion of the mitochondrial genome. Two 'Ca. E. dacicola' haplotypes were found (htA and htB), one being slightly more prevalent than the other (57%). The two haplotypes did not co-exist in the same individuals, as confirmed by cloning. Interestingly, the olive fly populations of the two main Italian islands, Sicily and Sardinia, appeared to be represented exclusively by the htB and htA haplotypes, respectively, while peninsular populations showed both bacterial haplotypes in different proportions. No significant correlation emerged between the two symbiont haplotypes and the 16 host fly haplotypes observed, suggesting evidence for a mixed model of vertical and horizontal transmission of the symbiont during the fly life cycle.

  7. Innate and Learned Responses of the Tephritid Parasitoid Psyttalia concolor (Hymenoptera: Braconidae) to Olive Volatiles Induced by Bactrocera oleae (Diptera: Tephritidae) Infestation.

    Science.gov (United States)

    Giunti, Giulia; Benelli, Giovanni; Flamini, Guido; Michaud, J P; Canale, Angelo

    2016-12-01

    Parasitic wasps can learn cues that alter their behavioral responses and increase their fitness, such as those that improve host location efficiency. Psyttalia concolor (Szépligeti) (Hymenoptera: Braconidae) is a koinobiont endoparasitoid of 14 economically important tephritid species, including the olive fruit fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae). In this research, we investigated the nature of olfactory cues mediating this tritrophic interaction. First, we identified the chemical stimuli emanating from uninfested and B. oleae-infested olive fruits via solid phase microextraction and gas chromatography-mass spectrometry analyses and identified >70 volatile organic compounds (VOCs). Two of these were increased by B. oleae infestation, (E)-β-ocimene and 2-methyl-6-methylene-1,7-octadien-3-one, and four were decreased, α-pinene, β-pine ne, limonene, and β-elemene. Innate positive chemotaxis of mated P. concolor females toward these VOCs was then tested in olfactometer assays. Females were attracted only by (E)-β-ocimene, at both tested dosages, indicating an intrinsic response to this compound as a short-range attractant. Next, we tested whether mated P. concolor females could learn to respond to innately unattractive VOCs if they were first presented with a food reward. Two nonassociative controls were conducted, i.e., "odor only" and "reward only." Following training, females showed positive chemotaxis toward these VOCs in all tested combinations, with the exception of limonene, a VOC commonly produced by flowers. Control females showed no significant preferences, indicating that positive associative learning had occurred. These results clarify how learned cues can fine-tune innate responses to B. oleae-induced VOCs in this generalist parasitoid of tephritid flies. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Implementing a Spinosad-Based Local Bait Station to Control Bactrocera cucurbitae (Diptera: Tephritidae) in High Rainfall Areas of Reunion Island

    Science.gov (United States)

    Delpoux, Camille; Deguine, Jean-Philippe

    2015-01-01

    Three species of fruit flies cause serious damage to cucurbit crops on Reunion Island: Bactrocera cucurbitae (Diptera: Tephritidae) (Coquillett 1899), Dacus ciliatus (Loew 1901), and Dacus demmerezi (Bezzi 1917). To control them, a program of agroecological management of cucurbit flies has been implemented based on the application of Synéis-appât, especially spot sprays on corn borders. However, the high rainfall on Reunion Island limits the long-term efficiency of the bait; in addition, this method cannot be used for large chayote trellises, because corn borders cannot be planted around them. The aim of this study was to design a bait station adapted to prevailing conditions on Reunion Island. An ‘umbrella trap’ tested in Taiwan was used as a reference to compare its efficacy with our local bait station. Experiments were conducted in field cages on B. cucurbitae to test different characteristics of bait stations and to construct one using local materials. Results were validated in the field. The attractiveness of the bait station was related mainly to the color of the external surface, yellow being the most attractive color. The efficacy of the bait station with respect to fly mortality was found to be linked to the accessibility of the bait, and direct application of Synéis-appât on the bait station was found to be the most efficient. In the field, B. cucurbitae were more attracted to the local bait station than to the umbrella trap, while the two other fly species displayed equal attraction to both trap types. Our local bait station is a useful alternative to spot sprays of Synéis-appât and is now included in a local pest management program and is well accepted by farmers. PMID:25688089

  9. Population activity of peach fruit fly Bactrocera zonata (Saunders (Diptera: Tephiritidae at fruits orchards in Kafer El-Shikh Governorate, Egypt

    Directory of Open Access Journals (Sweden)

    Khalil A. Draz

    2016-03-01

    Full Text Available Peach Fruit Fly (PFF Bactrocera zonata (Saunders is one of most dominant and destructive key pest in fruit orchards in different agro-ecosystem in Egypt, so monitoring adults' population fluctuation in orchards, through capturing adults, has been considered as main way to forecasting or management the pest. So current study aimed to assay the efficiency of Jackson traps baited with methyl eugenol (M.E. on male capture, that were distributed in different fruit trees orchards, in different positions and hang levels in one of Egyptian agroecosystem (Kafer El-Shikh Governorate, from (May 2014 to April 2015. Moreover, adults capture in McPhail traps in navel orange orchards intercropping with Guava were exploded to detect abundant and rearing season of the pest studying impact of abiotic factors on population, and estimation number, time and duration of annual generation. Obtained results declared that the pest had 7-8 annually generation. Jackson traps that placed in center of orchard and hanged at 2 m height more efficient than others for male catches. Highest numbers of PFF male attack orchards of Navel orange intercropping with Guava, while the lowest were with Navel orange and Guava. Each of season and kind of orchard or intercropping system had combined and significant effect on mass trapping. In McPhail traps, highest mass trapping of adult was observed in autumn (20.353 adult/ trap/ week, while each of spring, summer and winter season were similar in mass trapping. Only Wind direction as climatic factors had negative significant effect on mass trapping of PFF adults in McPhail traps, while each of maximum and mean temperature of winter season had positive significant effect on mass trapping.

  10. In silico cloning and annotation of genes involved in the digestion, detoxification and RNA interference mechanism in the midgut of Bactrocera dorsalis [Hendel (Diptera: Tephritidae)].

    Science.gov (United States)

    Shen, G-M; Dou, W; Huang, Y; Jiang, X-Z; Smagghe, G; Wang, J-J

    2013-08-01

    As the second largest organ in insects, the insect midgut is the major tissue involved in the digestion of food and detoxification of xenobiotics, such as insecticides, and the first barrier and target for oral RNA interference (RNAi). In this study, we performed a midgut-specific transcriptome analysis in the oriental fruit fly, Bactrocera dorsalis, an economically important worldwide pest, with many populations showing high levels of insecticide resistance. Using high-throughput sequencing, 52 838 060 short reads were generated and assembled to 25 236 unigenes with a mean length of 758 bp. Interestingly, 34 unique sequences encoding digestion enzymes were newly described and these included aminopeptidase and trypsin, genes associated with Bacillus thuringiensis resistance and fitness cost. Second, 41 transcripts were annotated to particular detoxification genes such as glutathione S-transferases, carboxylesterases and cytochrome P450s, and the subsequent phylogenetic analysis indicated homology with tissue-specific and insecticide resistance-related genes of Drosophila melanogaster. Third, we identified the genes involved in the mechanism of RNAi and the uptake of double-stranded RNA. The sequences encoding Dicer-2, R2D2, AGO2, and Eater were confirmed, but SID and SR-CI were absent in the midgut transcriptome. In conclusion, the results provide basic molecular information to better understand the mechanisms of food digestion, insecticide resistance and oral RNAi in this important pest insect in agriculture. Specific genes in these systems can be used in the future as potential targets for pest control, for instance, with RNAi technology. © 2013 Royal Entomological Society.

  11. Rapid diagnosis of the economically important fruit fly, Bactrocera correcta (Diptera: Tephritidae) based on a species-specific barcoding cytochrome oxidase I marker.

    Science.gov (United States)

    Jiang, F; Li, Z H; Deng, Y L; Wu, J J; Liu, R S; Buahom, N

    2013-06-01

    The guava fruit fly, Bactrocera correcta (Bezzi) (Diptera: Tephritidae), is an invasive pest of fruit and vegetable crops that primarily inhabits Southeast Asia and which has the potential to become a major threat within both the Oriental and Australian oceanic regions as well as California and Florida. In light of the threat posed, it is important to develop a rapid, accurate and reliable method to identify B. correcta in quarantine work in order to provide an early warning to prevent its widespread invasion. In the present study, we describe a species-specific polymerase chain reaction assay for the diagnosis of B. correcta using mitochondrial DNA cytochrome oxidase I (mtDNA COI) barcoding genes. A B. correcta-specific primer pair was designed according to variations in the mtDNA COI barcode sequences among 14 fruit fly species. The specificity and sensitivity of the B. correcta-specific primer pair was tested based on the presence or absence of a band in the gel profile. A pair of species-specific B. correcta primers was successfully designed and named BCOR-F/BCOR-R. An ∼280 bp fragment was amplified from specimens belonging to 17 geographical populations and four life stages of B. correcta, while no such diagnostic bands were present in any of the 14 other related fruit fly species examined. Sensitivity test results demonstrated that successful amplification can be obtained with as little as 1 ng μl⁻¹ of template DNA. The species-specific PCR analysis was able to successfully diagnose B. correcta, even in immature life stages, and from adult body parts. This method proved to be a robust single-step molecular technique for the diagnosis of B. correcta with respect to potential plant quarantine.

  12. An assessment of cold hardiness and biochemical adaptations for cold tolerance among different geographic populations of the Bactrocera dorsalis (Diptera: Tephritidae) in China.

    Science.gov (United States)

    Wang, Junhua; Zeng, Ling; Han, Zhaojun

    2014-01-01

    The cold hardiness of larvae, pupae, and adults of the oriental fruit fly, Bactrocera Dorsalis (Hendel) (Diptera: Tephritidae) was characterized first, and then body water, total sugar and glycerol contents, and activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and alcohol dehydrogenase (ADH) of different geographical populations subjected to suitable rearing conditions and under sublethal low-temperature stress were compared. The cold hardiness of different populations was well correlated with the latitudes of distributions. The northern marginal population (31.6° N) had higher cold tolerance than southern populations (23.1° N and 24.3° N). Among different life stages, larvae had the least cold tolerance, whereas pupae had the most tolerance. Under suitable rearing conditions, the marginal population had lower activities of all four tested enzymes than that of the southern populations and also had lower body water and higher total sugar and glycerol contents. The low-temperature stress induced higher SOD, CAT, POD, and ADH activities of all tested life stages and of all tested populations with higher increase intensity in adults and pupae than in larvae. The increase intensity was higher in the marginal population than in the southern populations. Pupae in the marginal population and adults in the southern populations showed the largest activity enhancement, which agreed with the insect's overwinter stages in their respective locations. Lower temperature stress lowered body water and total sugar contents and increased glycerol contents. The results revealed a strong correlation between the cold hardiness of a population and the concentration or activity of various biochemicals and enzymes known to be involved in cold tolerance. The marginal population of B. dorsalis might have evolved a new biotype with better adaption to low temperature. © The Author 2014. Published by Oxford University Press on behalf of the Entomological Society of

  13. Comparison of food-based attractants for Bactrocera invadens (Diptera: Tephritidae) and evaluation of mazoferm-spinosad bait spray for field suppression in mango.

    Science.gov (United States)

    Ekesi, Sunday; Mohamed, Samira; Tanga, Chrysantus M

    2014-02-01

    Catches of Bactrocera invadens Drew, Tsuruta, & White (Diptera: Tephritidae) in Multi-lure traps baited with six commercial food-based attractants, Mazoferm E802, Torula yeast, GF-120, Hymlure, Biolure, and Nulure were compared in mango orchards in Kenya. In 2007, Mazoferm E802 and Torula yeast were the most effective attractants and captured 2.4-2.6 times more females and 3.4-4.0 times more males than the standard Nulure. All attractants captured more females than males (ranging from 63 to 74%). In 2008, Mazoferm E802 was the most effective bait capturing 5.6 and 9.1 times more females and males, respectively, than the standard Nulure. Among all the attractants, in both years, Nulure captured the greatest proportion of females: 74% compared with 51-68% for the other attractants. In 2008, the use of Mazoferm E802 in combination with spinosad as a bait spray in mango orchards reduced B. invadens catches relative to the control by 87% within 4 wk and 90% within 8 wk. At harvest, the proportion of fruit infested was significantly lower in the treated orchards (8%) compared with the control orchards (59%). Estimated mango yield was significantly higher in orchards receiving the bait sprays (12,487 kg/ha) compared with control orchards (3,606 kg/ha). Based on bait spray costs, yield data, and monetary gains, a cost-benefit ratio of 1:9.1 was realized, which is acceptable for growers. In 2009, the experiment was repeated with similar results. We have demonstrated that Mazoferm E802, used alone for monitoring of B. invadens or in conjunction with spinosad for population suppression, shows great promise in Kenya.

  14. Two Chitin Biosynthesis Pathway Genes in Bactrocera dorsalis (Diptera: Tephritidae): Molecular Characteristics, Expression Patterns, and Roles in Larval-Pupal Transition.

    Science.gov (United States)

    Yang, Wen-Jia; Wu, Yi-Bei; Chen, Li; Xu, Kang-Kang; Xie, Yi-Fei; Wang, Jin-Jun

    2015-10-01

    Glucose-6-phosphate isomerase (G6PI) and UDP-N-acetylglucosamine pyrophosphorylase (UAP), two key components in the chitin biosynthesis pathway, are critical for insect growth and metamorphosis. In this study, we identified the genes BdG6PI and BdUAP from the oriental fruit fly, Bactrocera dorsalis (Hendel). The open reading frames (ORFs) of BdG6PI (1,491 bp) and BdUAP (1,677 bp) encoded 496 and 558 amino acid residues, respectively. Multiple sequence alignments showed that BdG6PI and BdUAP had high amino acid sequence identity with other insect homologues. Quantitative real-time polymerase chain reaction (qPCR) analysis indicated that BdG6PI was mainly expressed in the early stages of third-instar larvae and adults, while significantly higher expression of BdUAP was observed in adults. Both transcripts were expressed highly in the Malpighian tubules, but only slightly in the tracheae. The expression of both BdG6PI and BdUAP was significantly up-regulated by 20-hydroxyecdysone exposure and down-regulated by starvation. Moreover, injection of double-stranded RNAs of BdG6PI and BdUAP into third-instar larvae significantly reduced the corresponding gene expressions. Additionally, silencing of BdUAP resulted in 65% death and abnormal phenotypes of larvae, while silencing of BdG6PI had a slight effect on insect molting. These findings provide some data on the roles of BdG6PI and BdUAP in B. dorsalis and demonstrate the potential role for BdUAP in larval-pupal transition. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Demography and Mass-Rearing Harmonia dimidiata (Coleoptera: Coccinellidae) Using Aphis gossypii (Hemiptera: Aphididae) and Eggs of Bactrocera dorsalis (Diptera: Tephritidae).

    Science.gov (United States)

    Yu, Jih-Zu; Chen, Bing Huei; Güncan, Ali; Atlihan, Remzi; Gökçe, Ayhan; Smith, Cecil L; Gümüs, Ebru; Chi, Hsin

    2018-04-02

    We compared rearing Harmonia dimidiata (F.) (Coleoptera: Coccinellidae) on four combinations of Aphis gossypii Glover (Hemiptera: Aphididae), and eggs of Bactrocera dorsalis Hendel (Diptera: Tephritidae), using the age-stage, two-sex life table. The four combinations were: both larvae and adults were reared on aphids; larvae were reared on aphids and adults were reared on fresh fruit fly eggs; larvae were reared on lyophilized fruit fly eggs and adults were reared on aphids; and larvae were reared on lyophilized eggs and adults were reared on fresh eggs. The highest intrinsic rate of increase (r = 0.1125 d-1) and net reproductive rate (R0 = 260.7 offspring) were observed when both larval and adult stages of H. dimidiata were reared on A. gossypii. When B. dorsalis eggs were used as rearing media for larvae, adults, or both, the values of r and R0 were significantly decreased. The lowest values (r = 0.0615 d-1 and R0 = 38.6 offspring) were observed when both larvae and adults were reared entirely on B. dorsalis eggs. Despite the lower r and R0 values, our results showed that B. dorsalis eggs could be considered as an adequate, less expensive alternative diet for rearing H. dimidiata because of the time and labor savings resulting from the ease of preparation and the ability to store the eggs for timely usage. The mass-rearing analysis showed that the most economical rearing system was to rear larvae on A. gossypii and adults on B. dorsalis eggs.

  16. The cryptochrome (cry) gene and a mating isolation mechanism in tephritid fruit flies.

    Science.gov (United States)

    An, Xin; Tebo, Molly; Song, Sunmi; Frommer, Marianne; Raphael, Kathryn A

    2004-12-01

    Two sibling species of tephritid fruit fly, Bactrocera tryoni and Bactrocera neohumeralis, are differentiated by their time of mating, which is genetically determined and requires interactions between the endogenous circadian clock and light intensity. The cryptochrome (cry) gene, a light-sensitive component of the circadian clock, was isolated in the two Bactrocera species. The putative amino acid sequence is identical in the two species. In the brain, in situ hybridization showed that cry is expressed in the lateral and dorsal regions of the central brain where PER immunostaining was also observed and in a peripheral cell cluster of the antennal lobes. Levels of cry mRNA were analyzed in whole head, brain, and antennae. In whole head, cry is abundantly and constantly expressed. However, in brain and antennae the transcript cycles in abundance, with higher levels during the day than at night, and cry transcripts are more abundant in the brain and antennae of B. neohumeralis than in that of B. tryoni. Strikingly, these results are duplicated in hybrid lines, generated by rare mating between B. tryoni and B. neohumeralis and then selected on the basis of mating time, suggesting a role for the cry gene in the mating isolation mechanism that differentiates the species.

  17. Pre-Release Consumption of Methyl Eugenol Increases the Mating Competitiveness of Sterile Males of the Oriental Fruit Fly, Bactrocera dorsalis, in Large Field Enclosures

    Science.gov (United States)

    Shelly, Todd E.; Edu, James; McInnis, Donald

    2010-01-01

    The sterile insect technique may be implemented to control populations of the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), when environmental concerns preclude widespread use of chemical attractants or toxicants. The goal of the present study was to evaluate whether the mating competitiveness of sterile B. dorsalis males could be increased via pre-release feeding on methyl eugenol. Males of the oriental fruit fly are strongly attracted to this plant-borne compound, which they ingest and use in the synthesis of the sex pheromone. Previous studies conducted in the laboratory and small field-cages have shown that males given methyl eugenol produce a more attractive pheromone for females and have a higher mating success rate than males denied methyl eugenol. Here, levels of egg sterility were compared following the release of wild-like flies and either methyl eugenol-fed (treated) or methyl eugenol-deprived (control) sterile males in large field enclosures at four over flooding ratios ranging from 5:1 to 60:1 (sterile: wild-like males). Treated sterile males were fed methyl eugenol for 1–4 h (depending on the over flooding ratio tested) 3 d prior to release. Eggs were dissected from introduced fruits (apples), incubated in the laboratory, and scored for hatch rate. The effect of methyl eugenol was most pronounced at lower over flooding ratios. At the 5:1 and 10:1 over flooding ratios, the level of egg sterility observed for treated, sterile males was significantly greater than that observed for control, sterile males. In addition, the incidence of egg sterility reported for treated sterile males at these lower over flooding ratios was similar to that noted for treated or control sterile males at the 30:1 or 60:1 over flooding ratios. This latter result, in particular, suggests that pre-release feeding on methyl eugenol allows for a reduction in the number of sterile flies that are produced and released, thus increasing the cost

  18. Assessment of Attractiveness of Cassava as a Roosting Plant for the Melon Fly, Bactrocera cucurbitae, and the Oriental Fruit Fly, B. dorsalis

    Science.gov (United States)

    McQuate, Grant T.

    2011-01-01

    Application of bait spray to crop borders is a standard approach for suppression of melon fly, Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae) populations and may also be of value for suppression of oriental fruit fly, B. dorsalis (Hendel) populations. Establishment of preferred roosting hosts as crop borders may help to improve suppression of both fruit fly species by providing sites for bait spray applications. In an area-wide B. cucurbitae suppression trial, the question was raised as to whether cassava, Manihot esculenta Crantz (Euphorbiales: Euphorbiaceae), could be used as a B. cucurbitae roosting host. M. esculenta was of interest as a roosting host because, in contrast to many other identified preferred roosting hosts, it would also be a crop potentially increasing the productivity of the crop production system overall. As a short-lived and shrubby perennial, M. esculenta potentially constitutes a crop with more persistent roosting foliage than an annual crop such as corn, Zea mays L. (Cyperales: Poaceae), that has often been planted as a roosting host for B. cucurbitae control. Using protein-baited traps set amidst potted plants placed adjacent to a papaya Carica papaya L. (Violales: Caricaceae) orchard known to have established populations of B. cucurbitae and B. dorsalis, the effectiveness of M. esculenta as a roosting host was assessed by comparing its attractiveness to that of castor bean, Ricinus communis L (Malpighiales: Euphorbiaceae), previously identified as one of the most attractive roosting hosts for B. cucurbitae, and to corn, a crop which has been planted as a roosting host for help in B. cucurbitae control. The results showed that use of M. esculenta as a roosting host is comparable to use of R. communis by both B. cucurbitae and B. dorsalis. These results provide encouragement to incorporate M. esculenta on a farm as a trap crop (i.e. site for bait spray application). This has the advantage of having the trap crop be a crop on its

  19. Evidence for competitive displacement of Ceratitis cosyra by the invasive fruit fly Bactrocera invadens (Diptera: Tephritidae) on mango and mechanisms contributing to the displacement.

    Science.gov (United States)

    Ekesi, Sunday; Billah, Maxwell K; Nderitu, Peterson W; Lux, Slawomir A; Rwomushana, Ivan

    2009-06-01

    Bactrocera invadens Drew, Tsuruta & White (Diptera: Tephritidae) invaded Kenya in 2003. Before the arrival of B. invadens, the indigenous fruit fly species Ceratitis cosyra (Walker) was the predominant fruit fly pest of mango (Mangifera indica L.). Within 4 yr of invasion, B. invadens has displaced C. cosyra and has become the predominant fruit fly pest of mango, constituting 98 and 88% of the total population in traps and mango fruit at Nguruman, respectively. We tested two possible mechanisms responsible for the displacement namely; resource competition by larvae within mango fruit and aggression between adult flies. Under interspecific competition, larval duration in B. invadens was significantly shorter (6.2 +/- 0.6-7.3 +/- 0.3 d) compared with C. cosyra (8.0 +/- 1.2-9.4 +/- 0.4 d). Pupal mass in C. cosyra was affected by competition and was significantly reduced (7.4 +/- 0.3-9.6 +/- 0.6 mg) under competitive interaction compared with the controls (12.1 +/- 1.5-12.8 +/- 1.1 mg). Interspecific competition also had a significant adverse effect on C. cosyra eclosion, with fewer adults emerging under co-infestation compared with the controls. Interference competition through aggressive behavior showed that fewer C. cosyra (3.1 +/- 0.8) landed on mango dome compared with the controls (14.2 +/- 1.5) when adults were mixed with B. invadens adults in Plexiglas cages. Similarly the number of times C. cosyra was observed ovipositing was significantly lower (0.2 +/- 0.2) under competitive interaction compared with the controls (6.1 +/- 1.8). Aggressive encounters in the form of lunging/ head-butting and chasing off other species from the mango dome was higher for B. invadens compared with C. cosyra. Our results suggest that exploitative competition through larval scrambling for resources and interference competition through aggressive behaviors of the invader are important mechanisms contributing to the displacement of C. cosyra by B. invadens in mango agroecosystems.

  20. POPULATION FLUCTUATION OF ADULT MALES OF THE FRUIT FLY, Bactrocera tau Walker (DIPTERA: TEPHRITIDAE IN PASSION FRUIT ORCHARDS IN RELATION TO ABIOTIC FACTORS AND SANITATION

    Directory of Open Access Journals (Sweden)

    A. Hasyim

    2016-10-01

    Full Text Available Fruit fly (Bactrocera tau is the most destructive pest on some fruits in Indonesia. Monitoring of the pest population is essential as one of the procedures in the IPM concept. The study aimed to investigate the seasonal fluctuation of adult males of B. tau and their damage on passion fruits in relation to abiotic factors. The research was done by a survey method on three plots of passion fruit orchards in Alahan Panjang, West Sumatra, Indonesia from March to December 2005. In plot 1 the farmer practiced sanitation by removing damaged fruits and weeds from the orchard. In the plots 2 and 3 no sanitation was practiced. Each plot was 1 ha in size. The parameters observed were density of adult male B. tau and climatic factors (rainfall per day, number of rainy days, and average day temperature. Empty mineral water bottle traps were used to catch adult males of B. tau. Each plot had 16 traps set up with cue lure as fruit fly attractant. Each trap was baited with 3 ml cue lure on a cotton wick (1 cm diameter. The cotton wick was rebaited at 2-week intervals. The traps were placed on host plants about 1.5 m above the ground. Trapped flies were collected every two weeks and counted. The data were analyzed by correlation analysis. The results revealed that the number of male B. tauin three orchards showed a similar fluctuation during the study period with a major peak in July. The lower numbers of flies captured in plot 1 (with sanitation compared to the two other plots (without sanitation were consistent with a lower percentage of damaged fruits in the plot 1 compared to the other two. The percentage of damaged fruits gradually decreased over time to about 20% in plot 1 which is lower than that in the other twoplots (30-40%. The number of fruit flies captured with cue lure baited traps correlated positively with all three abiotic factors studied. The seasonal fluctuation of the fruit fly population and the damage to the

  1. Di- and tri-fluorinated analogs of methyl eugenol: attraction to and metabolism in the Oriental fruit fly, Bactrocera dorsalis (Hendel).

    Science.gov (United States)

    Jang, Eric B; Khrimian, Ashot; Siderhurst, Matthew S

    2011-06-01

    Oriental fruit fly, Bactrocera dorsalis (Hendel), males are attracted to the natural phenylpropanoid methyl eugenol (ME). They feed compulsively on ME and metabolize it to ring and side-chain hydroxylated compounds that have both pheromonal and allomonal properties. Previously, we demonstrated that mono-fluorination at the terminal carbon of the ME side-chain significantly reduced metabolic side-chain hydroxylation, while mono-fluorination of ME at position 4 of the aromatic ring blocked ring-hydroxylation but surprisingly enhanced side-chain hydroxylation. Here, we demonstrated that the introduction of fluorine atoms on both the ring and side-chain of ME blocks both positions that undergo enzymatic hydroxylation and, in particular, completely inhibits oxidative biotransformation of the allyl group. In laboratory experiments, B. dorsalis males initially were more attracted to both 1-fluoro-4,5-dimethoxy-2-(3,3-difluoro-2-propenyl)benzene (I) and 1-fluoro-4,5-dimethoxy-2-(3-fluoro-2-propenyl)benzene (II) than to ME. However, both I and II were taken up by flies at rates significantly less than that of ME. Flies fed with difluoroanalog II partially metabolized it to 5-fluoro-4-(3-fluoroprop-2-en-1-yl)-2-methoxyphenol (III), and flies fed with trifluoroanalog I produced 4-(3,3-difluoroprop-2-en-1-yl)-5-fluoro-2-methoxyphenol (V), but the rates of metabolism relative to rates of intakes were much lower compared to those of ME. Flies that consumed either the tri- or difluorinated analog showed higher post-feeding mortality than those that fed on methyl eugenol. In field trials, trifluoroanalog I was ∼90% less attractive to male B. dorsalis than ME, while difluoroanalog II was ∼50% less attractive. These results suggest that increasing fluorination can contribute to fly mortality, but the trade off with attractancy makes it unlikely that either a di or trifluorinated ME would be an improvement over ME for detection and/or eradication of this species.

  2. Pre-release consumption of methyl eugenol increases the mating competitiveness of sterile males of the oriental fruit fly, Bactrocera dorsalis, in large field enclosures.

    Science.gov (United States)

    Shelly, Todd E; Edu, James; McInnis, Donald

    2010-01-01

    The sterile insect technique may be implemented to control populations of the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), when environmental concerns preclude widespread use of chemical attractants or toxicants. The goal of the present study was to evaluate whether the mating competitiveness of sterile B. dorsalis males could be increased via pre-release feeding on methyl eugenol. Males of the oriental fruit fly are strongly attracted to this plant-borne compound, which they ingest and use in the synthesis of the sex pheromone. Previous studies conducted in the laboratory and small field-cages have shown that males given methyl eugenol produce a more attractive pheromone for females and have a higher mating success rate than males denied methyl eugenol. Here, levels of egg sterility were compared following the release of wild-like flies and either methyl eugenol-fed (treated) or methyl eugenol-deprived (control) sterile males in large field enclosures at four over flooding ratios ranging from 5:1 to 60:1 (sterile: wild-like males). Treated sterile males were fed methyl eugenol for 1-4 h (depending on the over flooding ratio tested) 3 d prior to release. Eggs were dissected from introduced fruits (apples), incubated in the laboratory, and scored for hatch rate. The effect of methyl eugenol was most pronounced at lower over flooding ratios. At the 5:1 and 10:1 over flooding ratios, the level of egg sterility observed for treated, sterile males was significantly greater than that observed for control, sterile males. In addition, the incidence of egg sterility reported for treated sterile males at these lower over flooding ratios was similar to that noted for treated or control sterile males at the 30:1 or 60:1 over flooding ratios. This latter result, in particular, suggests that pre-release feeding on methyl eugenol allows for a reduction in the number of sterile flies that are produced and released, thus increasing the cost

  3. Molecular characteristics, mRNA expression, and alternative splicing of a ryanodine receptor gene in the oriental fruit fly, Bactrocera dorsalis (Hendel.

    Directory of Open Access Journals (Sweden)

    Guo-Rui Yuan

    Full Text Available Ryanodine receptors (RyRs are a distinct class of ligand-gated channels controlling the release of calcium from intracellular stores. The emergence of diamide insecticides, which selectively target insect RyRs, has promoted the study of insect RyRs. In the present study, the full-length RyR cDNA (BdRyR was cloned and characterized from the oriental fruit fly, Bactrocera dorsalis (Hendel, a serious pest of fruits and vegetables throughout East Asia and the Pacific Rim. The cDNA of BdRyR contains a 15,420-bp open reading frame encoding 5,140 amino acids with a predicted molecular weight of 582.4 kDa and an isoelectric point of 5.38. BdRyR shows a high level of amino acid sequence identity (78 to 97% to other insect RyR isoforms. All common structural features of the RyRs are present in the BdRyR, including a well-conserved C-terminal domain containing consensus calcium-binding EF-hands and six transmembrane domains, and a large N-terminal domain. Quantitative real-time PCR analyses revealed that BdRyR was expressed at the lowest and highest levels in egg and adult, respectively, and that the BdRyR expression levels in the third instar larva, pupa and adult were 166.99-, 157.56- and 808.56-fold higher, respectively, than that in the egg. Among different adult body parts, the highest expression level was observed in the thorax compared with the head and abdomen. In addition, four alternative splice sites were identified in the BdRyR gene, with the first, ASI, being located in the central part of the predicted second spore lysis A/RyR domain. Diagnostic PCR analyses revealed that alternative splice variants were generated not only in a tissue-specific manner but also in a developmentally regulated manner. These results lay the foundation for further understanding the structural and functional properties of BdRyR, and the molecular mechanisms for target site resistance in B. dorsalis.

  4. An Overview of Pest Species of Bactrocera Fruit Flies (Diptera: Tephritidae) and the Integration of Biopesticides with Other Biological Approaches for Their Management with a Focus on the Pacific Region

    Science.gov (United States)

    Vargas, Roger I.; Piñero, Jaime C.; Leblanc, Luc

    2015-01-01

    Fruit flies (Diptera: Tephritidae) are among the most economically important pest species in the world, attacking a wide range of fruits and fleshy vegetables throughout tropical and sub-tropical areas. These species are such devastating crop pests that major control and eradication programs have been developed in various parts of the world to combat them. The array of control methods includes insecticide sprays to foliage and soil, bait-sprays, male annihilation techniques, releases of sterilized flies and parasitoids, and cultural controls. During the twenty first century there has been a trend to move away from control with organophosphate insecticides (e.g., malathion, diazinon, and naled) and towards reduced risk insecticide treatments. In this article we present an overview of 73 pest species in the genus Bactrocera, examine recent developments of reduced risk technologies for their control and explore Integrated Pest Management (IPM) Programs that integrate multiple components to manage these pests in tropical and sub-tropical areas. PMID:26463186

  5. An Overview of Pest Species of Bactrocera Fruit Flies (Diptera: Tephritidae) and the Integration of Biopesticides with Other Biological Approaches for Their Management with a Focus on the Pacific Region.

    Science.gov (United States)

    Vargas, Roger I; Piñero, Jaime C; Leblanc, Luc

    2015-04-03

    Fruit flies (Diptera: Tephritidae) are among the most economically important pest species in the world, attacking a wide range of fruits and fleshy vegetables throughout tropical and sub-tropical areas. These species are such devastating crop pests that major control and eradication programs have been developed in various parts of the world to combat them. The array of control methods includes insecticide sprays to foliage and soil, bait-sprays, male annihilation techniques, releases of sterilized flies and parasitoids, and cultural controls. During the twenty first century there has been a trend to move away from control with organophosphate insecticides (e.g., malathion, diazinon, and naled) and towards reduced risk insecticide treatments. In this article we present an overview of 73 pest species in the genus Bactrocera, examine recent developments of reduced risk technologies for their control and explore Integrated Pest Management (IPM) Programs that integrate multiple components to manage these pests in tropical and sub-tropical areas.

  6. Population structure of Bactrocera dorsalis s.s., B. papayae and B. philippinensis (Diptera: Tephritidae in southeast Asia: evidence for a single species hypothesis using mitochondrial DNA and wing-shape data

    Directory of Open Access Journals (Sweden)

    Schutze Mark K

    2012-07-01

    Full Text Available Abstract Background Bactrocera dorsalis s.s. is a pestiferous tephritid fruit fly distributed from Pakistan to the Pacific, with the Thai/Malay peninsula its southern limit. Sister pest taxa, B. papayae and B. philippinensis, occur in the southeast Asian archipelago and the Philippines, respectively. The relationship among these species is unclear due to their high molecular and morphological similarity. This study analysed population structure of these three species within a southeast Asian biogeographical context to assess potential dispersal patterns and the validity of their current taxonomic status. Results Geometric morphometric results generated from 15 landmarks for wings of 169 flies revealed significant differences in wing shape between almost all sites following canonical variate analysis. For the combined data set there was a greater isolation-by-distance (IBD effect under a ‘non-Euclidean’ scenario which used geographical distances within a biogeographical ‘Sundaland context’ (r2 = 0.772, P r2 = 0.217, P beast analysis provided a root age and location of 540kya in northern Thailand, with migration of B. dorsalis s.l. into Malaysia 470kya and Sumatra 270kya. Two migration events into the Philippines are inferred. Sequence data revealed a weak but significant IBD effect under the ‘non-Euclidean’ scenario (r2 = 0.110, P  Conclusions Bactrocera dorsalis s.s., B. papayae and B. philippinensis likely represent one species structured around the South China Sea, having migrated from northern Thailand into the southeast Asian archipelago and across into the Philippines. No migration is apparent between the Philippines and Taiwan. This information has implications for quarantine, trade and pest management.

  7. Complexity explained

    CERN Document Server

    Erdi, Peter

    2008-01-01

    This book explains why complex systems research is important in understanding the structure, function and dynamics of complex natural and social phenomena. Readers will learn the basic concepts and methods of complex system research.

  8. Complex chemistry

    International Nuclear Information System (INIS)

    Kim, Bong Gon; Kim, Jae Sang; Kim, Jin Eun; Lee, Boo Yeon

    2006-06-01

    This book introduces complex chemistry with ten chapters, which include development of complex chemistry on history coordination theory and Warner's coordination theory and new development of complex chemistry, nomenclature on complex with conception and define, chemical formula on coordination compound, symbol of stereochemistry, stereo structure and isomerism, electron structure and bond theory on complex, structure of complex like NMR and XAFS, balance and reaction on solution, an organo-metallic chemistry, biology inorganic chemistry, material chemistry of complex, design of complex and calculation chemistry.

  9. Complex Narratives

    NARCIS (Netherlands)

    Simons, J.; Buckland, W.

    2014-01-01

    In the opening chapter, "Complex Narratives," Jan Simons brings together narratology, game theory, and complexity theory to untangle the intricate nature of complex narratives in contemporary cinema. He presents an overview of the different concepts - forking path narratives, mind-game films,

  10. phenanthroline complex

    Indian Academy of Sciences (India)

    ABHRANIL DE

    2018-02-28

    Feb 28, 2018 ... complex in a unique binding motif and provide additional stability to the compound in the solid state. This iron(II) complex is able to catalyze the cleavage of aromatic C-C linkage of 2,5-dihydroxybenzoic acid (Gentisic acid,. GA) in oxygen environment. The iron(II) complex in the presence of two equivalent ...

  11. (II) complexes

    African Journals Online (AJOL)

    activities of Schiff base tin (II) complexes. Neelofar1 ... Conclusion: All synthesized Schiff bases and their Tin (II) complexes showed high antimicrobial and ...... Singh HL. Synthesis and characterization of tin (II) complexes of fluorinated Schiff bases derived from amino acids. Spectrochim Acta Part A: Molec Biomolec.

  12. Gut bacterial community structure of two Australian tropical fruit fly species (Diptera: Tephritidae

    Directory of Open Access Journals (Sweden)

    Narit Thaochan

    2015-12-01

    Full Text Available The community structure of the alimentary tract bacteria of two Australian fruit fly species, Bactrocera cacuminata (Hering and Bactrocera tryoni (Froggatt, was studied using a molecular cloning method based on the 16S rRNA gene. Differences in the bacterial community structure were shown between the crops and midguts of the two species and sexes of each species. Proteobacteria was the dominant bacterial phylum in the flies, especially bacteria in the order Gammaproteobacteria which was prominent in all clones. The total bacterial community consisted of Proteobacteria (more than 75% of clones, except in the crop of B. cacuminata where more than 50% of clones belonged to Firmicutes. Firmicutes gave the number of the secondary community structure in the fly’s gut. Four orders, Alpha-, Beta-, Delta- and Gammaproteobacteria and the phyla Firmicutes and Actinobacteria were found in both fruit fly species, while the order Epsilonproteobacteria and the phylum Bacteroidetes were found only in B. tryoni. Two phyla, Actinobacteria and Bacteroidetes, were rare and less frequent in the flies. There was a greater diversity of bacteria in the crop of the two fruit fly species than in the midgut. The midgut of B. tryoni females and the midgut of B. cacuminata males had the lowest bacterial diversity.

  13. Opiine parasitoids (Hymenoptera: Braconidae) of tropical fruit flies (Diptera: Tephritidae) of the Australian and South Pacific region.

    Science.gov (United States)

    Carmichael, A E; Wharton, R A; Clarke, A R

    2005-12-01

    Opiine wasps are parasitoids of dacine fruit flies, the primary horticultural pests of Australia and the South Pacific. A taxonomic synopsis and distribution and host records (44% of which are new) for each of the 15 species of dacine-parasitizing opiine braconids found in the South Pacific is presented. Species dealt with are Diachasmimorpha hageni (Fullaway), D. kraussii (Fullaway), D. longicaudata (Ashmead), D. tryoni (Cameron), Fopius arisanus (Sonan), F. deeralensis (Fullaway), F. ferrari Carmichael & Wharton sp. n., F. illusorius (Fischer) comb. n., F. schlingeri Wharton, Opius froggatti Fullaway, Psyttalia fijiensis (Fullaway), P. muesebecki (Fischer), P. novaguineensis (Szépligeti) and Utetes perkinsi (Fullaway). A potentially undescribed species, which may be a colour morph of F. vandenboschi (Fullaway), is diagnosed but not formally described. Fopius vandenboschi sensu stricto, Diachasmimorpha fullawayi Silvestri, Psyttalia concolor Szépligeti and P. incisi Silvestri have been liberated into the region but are not considered to have established: a brief diagnosis of each is included. Biosteres illusorius Fischer is formally transferred to the genus Fopius. A single opiine specimen reared from a species of Bactrocera (Bulladacus) appears to be Utetes albimanus (Szépligeti), but damage to this specimen and to the holotype (the only previously known specimen) means that this species remains unconfirmed as a fruit fly parasite: a diagnosis of U. cf. albimanus is provided. Psyttalia novaguineensis could not be adequately separated from P. fijiensis using previously published characterizations and further work to resolve this complex is recommended. A key is provided to all taxa.

  14. The evolutionary history of mariner-like elements in Neotropical drosophilids.

    Science.gov (United States)

    Wallau, Gabriel Luz; Hua-Van, Aurelie; Capy, Pierre; Loreto, Elgion L S

    2011-03-01

    The evolutionary history of mariner-like elements (MLEs) in 49 mainly Neotropical drosophilid species is described. So far, the investigations about the distribution of MLEs were performed mainly using hybridization assays with the Mos1 element (the first mariner active element described) in a widely range of drosophilid species and these sequences were found principally in species that arose in Afrotropical and Sino-Indian regions. Our analysis in mainly Neotropical drosophilid species shows that twenty-three species presented MLEs from three different subfamilies in their genomes: eighteen species had MLEs from subfamily mellifera, fifteen from subfamily mauritiana and three from subfamily irritans. Eleven of these species exhibited elements from more than one subfamily in their genome. In two subfamilies, the analyzed coding region was uninterrupted and contained conserved catalytic motifs. This suggests that these sequences were probably derived from active elements. The species with these putative active elements are Drosophila mediopunctata and D. busckii for the mauritiana subfamily, and D. paramediostriata for the mellifera subfamily. The phylogenetic analysis of MLE, shows a complex evolutionary pattern, exhibiting vertical transfer, stochastic loss and putative events of horizontal transmission occurring between different Drosophilidae species, and even those belonging to more distantly related taxa such as Bactrocera tryoni (Tephritidae family), Sphyracephala europaea (Diopsoidea superfamily) and Buenoa sp. (Hemiptera order). Moreover, our data show that the distribution of MLEs is not restricted to Afrotropical and Sino-Indian species. Conversely, these TEs are also widely distributed in drosophilid species arisen in the Neotropical region.

  15. Pest fruit fly (Diptera: Tephritidae) in northwestern Australia: one species or two?

    Science.gov (United States)

    Cameron, E C; Sved, J A; Gilchrist, A S

    2010-04-01

    Since 1985, a new and serious fruit fly pest has been reported in northwestern Australia. It has been unclear whether this pest was the supposedly benign endemic species, Bactrocera aquilonis, or a recent introduction of the morphologically near-identical Queensland fruit fly, B. tryoni. B. tryoni is a major pest throughout eastern Australia but is isolated from the northwest region by an arid zone. In the present study, we sought to clarify the species status of these new pests using an extensive DNA microsatellite survey across the entire northwest region of Australia. Population differentiation tests and clustering analyses revealed a high degree of homogeneity within the northwest samples, suggesting that just one species is present in the region. That northwestern population showed minimal genetic differentiation from B. tryoni from Queensland (FST=0.015). Since 2000, new outbreaks of this pest fruit fly have occurred to the west of the region, and clustering analysis suggested recurrent migration from the northwest region rather than Queensland. Mitochondrial DNA sequencing also showed no evidence for the existence of a distinct species in the northwest region. We conclude that the new pest fruit fly in the northwest is the endemic population of B. aquilonis but that there is no genetic evidence supporting the separation of B. aquilonis and B. tryoni as distinct species.

  16. Complexity Plots

    KAUST Repository

    Thiyagalingam, Jeyarajan

    2013-06-01

    In this paper, we present a novel visualization technique for assisting the observation and analysis of algorithmic complexity. In comparison with conventional line graphs, this new technique is not sensitive to the units of measurement, allowing multivariate data series of different physical qualities (e.g., time, space and energy) to be juxtaposed together conveniently and consistently. It supports multivariate visualization as well as uncertainty visualization. It enables users to focus on algorithm categorization by complexity classes, while reducing visual impact caused by constants and algorithmic components that are insignificant to complexity analysis. It provides an effective means for observing the algorithmic complexity of programs with a mixture of algorithms and black-box software through visualization. Through two case studies, we demonstrate the effectiveness of complexity plots in complexity analysis in research, education and application. © 2013 The Author(s) Computer Graphics Forum © 2013 The Eurographics Association and Blackwell Publishing Ltd.

  17. The utility of microsatellite DNA markers for the evaluation of area-wide integrated pest management using SIT for the fruit fly, Bactrocera dorsalis (Hendel), control programs in Thailand.

    Science.gov (United States)

    Aketarawong, Nidchaya; Chinvinijkul, Suksom; Orankanok, Watchreeporn; Guglielmino, Carmela Rosalba; Franz, Gerald; Malacrida, Anna Rodolfa; Thanaphum, Sujinda

    2011-01-01

    The oriental fruit fly, Bactrocera dorsalis (Hendel), is a key pest that causes reduction of the crop yield within the international fruit market. Fruit flies have been suppressed by two Area-Wide Integrated Pest Management programs in Thailand using Sterile Insect Technique (AW-IPM-SIT) since the late 1980s and the early 2000s. The projects' planning and evaluation usually rely on information from pest status, distribution, and fruit infestation. However, the collected data sometimes does not provide enough detail to answer management queries and public concerns, such as the long term sterilization efficacy of the released fruit fly, skepticism about insect migration or gene flow across the buffer zone, and the re-colonisation possibility of the fruit fly population within the core area. Established microsatellite DNA markers were used to generate population genetic data for the analysis of the fruit fly sampling from several control areas, and non-target areas, as well as the mass-rearing facility. The results suggested limited gene flow (m pests were suppressed to low density and showed weak bottleneck footprints although they still acquired a high degree of genetic variation. Potential pest resurgence from fragmented micro-habitats in mixed fruit orchards rather than pest incursion across the buffer zone has been proposed. Therefore, a suitable pest control effort, such as the SIT program, should concentrate on the hidden refuges within the target area.

  18. Consumption and metabolism of 1,2-dimethoxy-4-(3-fluoro-2-propenyl)benzene, a fluorine analog of methyl eugenol, in the oriental fruit fly Bactrocera dorsalis (Hendel).

    Science.gov (United States)

    Khrimian, Ashot; Jang, Eric B; Nagata, Janice; Carvalho, Lori

    2006-07-01

    Methyl eugenol (ME) is a natural phenylpropanoid highly attractive to oriental fruit fly Bactrocera dorsalis (Hendel) males. The flies eagerly feed on ME and produce hydroxylated metabolites with both pheromonal and allomonal functions. Side-chain metabolic activation of ME has long been recognized as a primary reason for hepatocarcinogenicity of this compound on rodents. In an attempt to develop a safer alternative to ME for fruit fly management, we developed a fluorine analog 1,2-dimethoxy-4-(3-fluoro-2-propenyl)benzene (I), which, in earlier field tests, was as active to the oriental fruit fly as ME. Now we report that B. dorsalis males are not only attracted to, but also eagerly consume (up to approximately 1 mg/insect) compound I, thus recognizing this fluorinated benzene as a close kin of the natural ME. The flies metabolized the fluorine analog I in a similar fashion producing mostly two hydroxylated products, 2-(3-fluoro-2-propenyl)-4,5-dimethoxyphenol (II) and (E)-coniferyl alcohol (III), which they stored in rectal glands. However, the introduction of the fluorine atom at the terminal carbon atom of the double bond favors the ring hydroxylation over a side-chain metabolic oxidation pathway, by which coniferyl alcohol is produced. It also appears that fluorination overall impedes the metabolism: at high feed rate (10 mul per 10 males), the flies consumed in total more fluorine analog I than ME but were unable to metabolize it as efficiently as ME.

  19. An Overview of Pest Species of Bactrocera Fruit Flies (Diptera: Tephritidae and the Integration of Biopesticides with Other Biological Approaches for Their Management with a Focus on the Pacific Region

    Directory of Open Access Journals (Sweden)

    Roger I. Vargas

    2015-04-01

    Full Text Available Fruit flies (Diptera: Tephritidae are among the most economically important pest species in the world, attacking a wide range of fruits and fleshy vegetables throughout tropical and sub-tropical areas. These species are such devastating crop pests that major control and eradication programs have been developed in various parts of the world to combat them. The array of control methods includes insecticide sprays to foliage and soil, bait-sprays, male annihilation techniques, releases of sterilized flies and parasitoids, and cultural controls. During the twenty first century there has been a trend to move away from control with organophosphate insecticides (e.g., malathion, diazinon, and naled and towards reduced risk insecticide treatments. In this article we present an overview of 73 pest species in the genus Bactrocera, examine recent developments of reduced risk technologies for their control and explore Integrated Pest Management (IPM Programs that integrate multiple components to manage these pests in tropical and sub-tropical areas.

  20. Low Diversity Bacterial Community and the Trapping Activity of Metabolites from Cultivable Bacteria Species in the Female Reproductive System of the Oriental Fruit Fly, Bactrocera dorsalis Hendel (Diptera: Tephritidae)

    Science.gov (United States)

    Shi, Zhanghong; Wang, Lili; Zhang, Hongyu

    2012-01-01

    Our goal was to identify the bacteria inhabiting the reproductive system of the female oriental fruit fly, Bactrocera dorsalis (Hendel), and evaluate the chemotaxis of B. dorsalis to the metabolites produced by the bacteria. Based on 16S rRNA-based polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE), 18 operational taxonomic units (OTUs) were assigned to the five bacterial classes Betaproteobacteria, Alphaproteobacteria, Gammaproteobacteria, Bacilli and Actinobacteria. Nine OTUs were assigned to Gammaproteobacteria, which was the most highly represented class. Enterobacteriaceae constituted the dominant family, and within this family, three genera and five species were identified, including Enterobacter sakazakii, Klebsiella oxytoca, Klebsiella pneumoniae, Raoultella terrigena and Enterobacter amnigenus. In this set, the first two species were the dominant components, and the latter three species were the minor ones. Finally, we found that the metabolites produced by R. terrigena, K. oxytoca and K. pneumoniae were attractive to the B. dorsalis adults, and in field studies, B. dorsalis adults were most attracted to K. oxytoca. Collectively, our results suggest that the female reproductive system plays an important role in the transfer of enterobacteria from the gut to fruit. Our data may prompt the development of a female-targeted population control strategy for this fly. PMID:22754363

  1. Complex odontoma.

    Science.gov (United States)

    Preetha, A; Balikai, Bharati S; Sujatha, D; Pai, Anuradha; Ganapathy, K S

    2010-01-01

    Odontomas are hamartomatous lesions or malformations composed of mature enamel, dentin, and pulp. They may be compound or complex, depending on the extent of morphodifferentiation or their resemblance to normal teeth. The etiology of odontoma is unknown, although several theories have been proposed. This article describes a case of a large infected complex odontoma in the residual mandibular ridge, resulting in considerable mandibular expansion.

  2. Complex narratives

    NARCIS (Netherlands)

    Simons, J.

    2008-01-01

    This paper brings together narratology, game theory, and complexity theory to untangle the intricate nature of complex narratives in contemporary cinema. It interrogates the different terms - forking-path narratives, mind-game films, modular narratives, multiple-draft films, database narratives,

  3. Complexity Theory

    Science.gov (United States)

    Lee, William H K.

    2016-01-01

    A complex system consists of many interacting parts, generates new collective behavior through self organization, and adaptively evolves through time. Many theories have been developed to study complex systems, including chaos, fractals, cellular automata, self organization, stochastic processes, turbulence, and genetic algorithms.

  4. Complex variables

    CERN Document Server

    Fisher, Stephen D

    1999-01-01

    The most important topics in the theory and application of complex variables receive a thorough, coherent treatment in this introductory text. Intended for undergraduates or graduate students in science, mathematics, and engineering, this volume features hundreds of solved examples, exercises, and applications designed to foster a complete understanding of complex variables as well as an appreciation of their mathematical beauty and elegance. Prerequisites are minimal; a three-semester course in calculus will suffice to prepare students for discussions of these topics: the complex plane, basic

  5. Managing Complexity

    DEFF Research Database (Denmark)

    Maylath, Bruce; Vandepitte, Sonia; Minacori, Patricia

    2013-01-01

    This article discusses the largest and most complex international learning-by-doing project to date- a project involving translation from Danish and Dutch into English and editing into American English alongside a project involving writing, usability testing, and translation from English into Dutch...... and into French. The complexity of the undertaking proved to be a central element in the students' learning, as the collaboration closely resembles the complexity of international documentation workplaces of language service providers. © Association of Teachers of Technical Writing....

  6. Complex Covariance

    Directory of Open Access Journals (Sweden)

    Frieder Kleefeld

    2013-01-01

    Full Text Available According to some generalized correspondence principle the classical limit of a non-Hermitian quantum theory describing quantum degrees of freedom is expected to be the well known classical mechanics of classical degrees of freedom in the complex phase space, i.e., some phase space spanned by complex-valued space and momentum coordinates. As special relativity was developed by Einstein merely for real-valued space-time and four-momentum, we will try to understand how special relativity and covariance can be extended to complex-valued space-time and four-momentum. Our considerations will lead us not only to some unconventional derivation of Lorentz transformations for complex-valued velocities, but also to the non-Hermitian Klein-Gordon and Dirac equations, which are to lay the foundations of a non-Hermitian quantum theory.

  7. Communication Complexity

    Indian Academy of Sciences (India)

    Jaikumar Radhakrishnan

    Alice and Bob are randomized agents. They exchange messages in order to compute a function f(x, y). We allow a small probability of error. Goal: minimize the total number of bits transmitted. Jaikumar Radhakrishnan. Communication Complexity ...

  8. Complex analysis

    CERN Document Server

    Freitag, Eberhard

    2005-01-01

    The guiding principle of this presentation of ``Classical Complex Analysis'' is to proceed as quickly as possible to the central results while using a small number of notions and concepts from other fields. Thus the prerequisites for understanding this book are minimal; only elementary facts of calculus and algebra are required. The first four chapters cover the essential core of complex analysis: - differentiation in C (including elementary facts about conformal mappings) - integration in C (including complex line integrals, Cauchy's Integral Theorem, and the Integral Formulas) - sequences and series of analytic functions, (isolated) singularities, Laurent series, calculus of residues - construction of analytic functions: the gamma function, Weierstrass' Factorization Theorem, Mittag-Leffler Partial Fraction Decomposition, and -as a particular highlight- the Riemann Mapping Theorem, which characterizes the simply connected domains in C. Further topics included are: - the theory of elliptic functions based on...

  9. Complex Analysis

    CERN Document Server

    Stein, Elias M

    2009-01-01

    With this second volume, we enter the intriguing world of complex analysis. From the first theorems on, the elegance and sweep of the results is evident. The starting point is the simple idea of extending a function initially given for real values of the argument to one that is defined when the argument is complex. From there, one proceeds to the main properties of holomorphic functions, whose proofs are generally short and quite illuminating: the Cauchy theorems, residues, analytic continuation, the argument principle.With this background, the reader is ready to learn a wealth of additional m

  10. Complex manifolds

    CERN Document Server

    Morrow, James

    2006-01-01

    This book, a revision and organization of lectures given by Kodaira at Stanford University in 1965-66, is an excellent, well-written introduction to the study of abstract complex (analytic) manifolds-a subject that began in the late 1940's and early 1950's. It is largely self-contained, except for some standard results about elliptic partial differential equations, for which complete references are given. -D. C. Spencer, MathSciNet The book under review is the faithful reprint of the original edition of one of the most influential textbooks in modern complex analysis and geometry. The classic

  11. Field Evaluation of Melolure, a Formate Analogue of Cuelure, and Reassessment of Fruit Fly Species Trapped in Sydney, New South Wales, Australia.

    Science.gov (United States)

    Dominiak, Bernard C; Campbell, Angus J; Jang, Eric B; Ramsey, Amanda; Fanson, Benjamin G

    2015-06-01

    In Australia, tephritids are usually attracted to either cuelure or methyl eugenol. Methyl eugenol is a very effective lure, but cuelure is less effective likely due to low volatility. A new formate analogue of cuelure, melolure, has increased volatility, resulting in improved efficacy with the melon fruit fly, Bactrocera cucurbitae Coquillett. We tested the efficacy of melolure with fruit fly species in Sydney as part of the National Exotic Fruit Fly Monitoring programme. This monitoring programme has 71 trap sites across Sydney, with each trap site comprising separate Lynfield traps containing either cuelure, methyl eugenol, or capilure lure. In 2008, an additional Lynfield trap with melolure plugs was added to seven sites. In 2009 and 2010, an additional Lynfield trap with melolure wicks was added to 11 trap sites and traps were monitored fortnightly for 2 yr. Capture rates for melolure traps were similar to cuelure traps for Dacus absonifacies (May) and Dacus aequalis (Coquillet), but melolure traps consistently caught fewer Bactrocera tryoni (Froggatt) than cuelure traps. However, trap sites with both a cuelure and melolure traps had increased capture rates for D. absonifacies and D. aequalis, and a marginally significant increase for B. tryoni. Melolure plugs were less effective than melolure wicks, but this effect may be related to lure concentration. The broader Bactrocera group species were attracted more to cuelure than melolure while the Dacus group species were attracted more to melolure than cuelure. There is no benefit in switching from cuelure to melolure to monitor B. tryoni, the most important fruit fly pest in Australia. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Communication Complexity

    Indian Academy of Sciences (India)

    Jaikumar Radhakrishnan

    Communication complexity. Motivation . . . An abstract model to study the communicaiton required for computation. A tool for showing lower bounds in several computational models. The study often requires deep understanding of computation using tools from combinatorics, coding theory, algebra, analysis, etc. Jaikumar ...

  13. Lecithin Complex

    African Journals Online (AJOL)

    1Department of Food Science and Engineering, Xinyang College of Agriculture and Forestry, Xinyang 464000, 2Henan. Economy and Trade ... Methanol of HPLC grade was purchased from Tedia (USA). Other chemicals used were of analytical grade. Preparation of polydatin-lecithin complex. Polydatin (200 mg) and ...

  14. Complex Networks

    CERN Document Server

    Evsukoff, Alexandre; González, Marta

    2013-01-01

    In the last decade we have seen the emergence of a new inter-disciplinary field focusing on the understanding of networks which are dynamic, large, open, and have a structure sometimes called random-biased. The field of Complex Networks is helping us better understand many complex phenomena such as the spread of  deseases, protein interactions, social relationships, to name but a few. Studies in Complex Networks are gaining attention due to some major scientific breakthroughs proposed by network scientists helping us understand and model interactions contained in large datasets. In fact, if we could point to one event leading to the widespread use of complex network analysis is the availability of online databases. Theories of Random Graphs from Erdös and Rényi from the late 1950s led us to believe that most networks had random characteristics. The work on large online datasets told us otherwise. Starting with the work of Barabási and Albert as well as Watts and Strogatz in the late 1990s, we now know th...

  15. Low Diversity Bacterial Community and the Trapping Activity of Metabolites from Cultivable Bacteria Species in the Female Reproductive System of the Oriental Fruit Fly, Bactrocera dorsalis Hendel (Diptera: Tephritidae

    Directory of Open Access Journals (Sweden)

    Hongyu Zhang

    2012-05-01

    Full Text Available Our goal was to identify the bacteria inhabiting the reproductive system of the female oriental fruit fly, Bactrocera dorsalis (Hendel, and evaluate the chemotaxis of B. dorsalis to the metabolites produced by the bacteria. Based on 16S rRNA-based polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE, 18 operational taxonomic units (OTUs were assigned to the five bacterial classes Betaproteobacteria, Alphaproteobacteria, Gammaproteobacteria, Bacilli and Actinobacteria. Nine OTUs were assigned to Gammaproteobacteria, which was the most highly represented class. Enterobacteriaceae constituted the dominant family, and within this family, three genera and five species were identified, including Enterobacter sakazakii, Klebsiella oxytoca, Klebsiella pneumoniae, Raoultella terrigena and Enterobacter amnigenus. In this set, the first two species were the dominant components, and the latter three species were the minor ones. Finally, we found that the metabolites produced by R. terrigena, K. oxytoca and K. pneumoniae were attractive to the B. dorsalis adults, and in field studies, B. dorsalis adults were most attracted to K. oxytoca. Collectively, our results suggest that the female reproductive system plays an important role in the transfer of enterobacteria from the gut to fruit. Our data may prompt the development of a female-targeted population control strategy for this fly.

  16. Complex chemistry with complex compounds

    Directory of Open Access Journals (Sweden)

    Eichler Robert

    2016-01-01

    Full Text Available In recent years gas-phase chemical studies assisted by physical pre-separation allowed for the investigation of fragile single molecular species by gas-phase chromatography. The latest success with the heaviest group 6 transactinide seaborgium is highlighted. The formation of a very volatile hexacarbonyl compound Sg(CO6 was observed similarly to its lighter homologues molybdenum and tungsten. The interactions of these gaseous carbonyl complex compounds with quartz surfaces were investigated by thermochromatography. Second-generation experiments are under way to investigate the intramolecular bond between the central metal atom of the complexes and the ligands addressing the influence of relativistic effects in the heaviest compounds. Our contribution comprises some aspects of the ongoing challenging experiments as well as an outlook towards other interesting compounds related to volatile complex compounds in the gas phase.

  17. Managing Complexity

    Energy Technology Data Exchange (ETDEWEB)

    Chassin, David P.; Posse, Christian; Malard, Joel M.

    2004-08-01

    Physical analogs have shown considerable promise for understanding the behavior of complex adaptive systems, including macroeconomics, biological systems, social networks, and electric power markets. Many of today’s most challenging technical and policy questions can be reduced to a distributed economic control problem. Indeed, economically-based control of large-scale systems is founded on the conjecture that the price-based regulation (e.g., auctions, markets) results in an optimal allocation of resources and emergent optimal system control. This paper explores the state of the art in the use physical analogs for understanding the behavior of some econophysical systems and to deriving stable and robust control strategies for them. In particular we review and discussion applications of some analytic methods based on the thermodynamic metaphor according to which the interplay between system entropy and conservation laws gives rise to intuitive and governing global properties of complex systems that cannot be otherwise understood.

  18. Time complexity and gate complexity

    International Nuclear Information System (INIS)

    Koike, Tatsuhiko; Okudaira, Yosuke

    2010-01-01

    We formulate and investigate the simplest version of time-optimal quantum computation theory (TO-QCT), where the computation time is defined by the physical one and the Hamiltonian contains only one- and two-qubit interactions. This version of TO-QCT is also considered as optimality by sub-Riemannian geodesic length. The work has two aims: One is to develop a TO-QCT itself based on a physically natural concept of time, and the other is to pursue the possibility of using TO-QCT as a tool to estimate the complexity in conventional gate-optimal quantum computation theory (GO-QCT). In particular, we investigate to what extent is true the following statement: Time complexity is polynomial in the number of qubits if and only if gate complexity is also. In the analysis, we relate TO-QCT and optimal control theory (OCT) through fidelity-optimal computation theory (FO-QCT); FO-QCT is equivalent to TO-QCT in the limit of unit optimal fidelity, while it is formally similar to OCT. We then develop an efficient numerical scheme for FO-QCT by modifying Krotov's method in OCT, which has a monotonic convergence property. We implemented the scheme and obtained solutions of FO-QCT and of TO-QCT for the quantum Fourier transform and a unitary operator that does not have an apparent symmetry. The former has a polynomial gate complexity and the latter is expected to have an exponential one which is based on the fact that a series of generic unitary operators has an exponential gate complexity. The time complexity for the former is found to be linear in the number of qubits, which is understood naturally by the existence of an upper bound. The time complexity for the latter is exponential in the number of qubits. Thus, both the targets seem to be examples satisfyng the preceding statement. The typical characteristics of the optimal Hamiltonians are symmetry under time reversal and constancy of one-qubit operation, which are mathematically shown to hold in fairly general situations.

  19. Welding complex

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, V.K.; Kuchuk-Yatsenko, S.I.; Sakharnov, V.A.; Galyan, B.A.; Krivenko, V.G.; Asoyants, G.B.

    1992-10-27

    A welding complex for construction of a continuous underwater pipeline is adapted to be installed aboard a ship. The complex includes a welding machine positionable at a joint of the pipeline with a pipe section to be welded, burr-removing trimmers positionable coaxially with the pipeline for displacement relative to the pipeline in the joint area, and a support device for the end part of the pipeline. A rotatably mounted holding device for setting, holding, and retaining the pipe section to be welded, the welding machine, and the trimmers is axially aligned with the end part of the pipeline. An accumulator is provided for storing and delivering successive pipe sections at a loading position laterally offset from the common axis of the pipeline and of the pipe section to be welded to it. The holding device includes a platform movable along the common axis of the pipeline and of the pipe section to be welded to it by a resistance butt welding machine, and a plate with a means for carrying the pipe section to be welded which is mounted on a pivot carried by the platform for rotation between the loading position and the aligning position. The welding complex of the invention provides for implementing resistance butt welding in construction of continuous underwater pipelines and ensures the accuracy of alignment and permanence of the gap between the edges being welded. The welding complex's structure allows handling of longer pipe sections, thus reducing the overall number of joints to be welded. 7 figs.

  20. Complex variables

    CERN Document Server

    Flanigan, Francis J

    2010-01-01

    A caution to mathematics professors: Complex Variables does not follow conventional outlines of course material. One reviewer noting its originality wrote: ""A standard text is often preferred [to a superior text like this] because the professor knows the order of topics and the problems, and doesn't really have to pay attention to the text. He can go to class without preparation."" Not so here-Dr. Flanigan treats this most important field of contemporary mathematics in a most unusual way. While all the material for an advanced undergraduate or first-year graduate course is covered, discussion

  1. Complex dynamics

    CERN Document Server

    Carleson, Lennart

    1993-01-01

    Complex dynamics is today very much a focus of interest. Though several fine expository articles were available, by P. Blanchard and by M. Yu. Lyubich in particular, until recently there was no single source where students could find the material with proofs. For anyone in our position, gathering and organizing the material required a great deal of work going through preprints and papers and in some cases even finding a proof. We hope that the results of our efforts will be of help to others who plan to learn about complex dynamics and perhaps even lecture. Meanwhile books in the field a. re beginning to appear. The Stony Brook course notes of J. Milnor were particularly welcome and useful. Still we hope that our special emphasis on the analytic side will satisfy a need. This book is a revised and expanded version of notes based on lectures of the first author at UCLA over several \\Vinter Quarters, particularly 1986 and 1990. We owe Chris Bishop a great deal of gratitude for supervising the production of cour...

  2. Complex Systems

    Directory of Open Access Journals (Sweden)

    Yi Zhao

    2012-01-01

    Full Text Available Quantum instanton (QI approximation is recently proposed for the evaluations of the chemical reaction rate constants with use of full dimensional potential energy surfaces. Its strategy is to use the instanton mechanism and to approximate time-dependent quantum dynamics to the imaginary time propagation of the quantities of partition function. It thus incorporates the properties of the instanton idea and the quantum effect of partition function and can be applied to chemical reactions of complex systems. In this paper, we present the QI approach and its applications to several complex systems mainly done by us. The concrete systems include, (1 the reaction of H+CH4→H2+CH3, (2 the reaction of H+SiH4→H2+SiH3, (3 H diffusion on Ni(100 surface; and (4 surface-subsurface transport and interior migration for H/Ni. Available experimental and other theoretical data are also presented for the purpose of comparison.

  3. Cosmic Complexity

    Science.gov (United States)

    Mather, John C.

    2012-01-01

    What explains the extraordinary complexity of the observed universe, on all scales from quarks to the accelerating universe? My favorite explanation (which I certainty did not invent) ls that the fundamental laws of physics produce natural instability, energy flows, and chaos. Some call the result the Life Force, some note that the Earth is a living system itself (Gaia, a "tough bitch" according to Margulis), and some conclude that the observed complexity requires a supernatural explanation (of which we have many). But my dad was a statistician (of dairy cows) and he told me about cells and genes and evolution and chance when I was very small. So a scientist must look for me explanation of how nature's laws and statistics brought us into conscious existence. And how is that seemll"!gly Improbable events are actually happening a!1 the time? Well, the physicists have countless examples of natural instability, in which energy is released to power change from simplicity to complexity. One of the most common to see is that cooling water vapor below the freezing point produces snowflakes, no two alike, and all complex and beautiful. We see it often so we are not amazed. But physlc!sts have observed so many kinds of these changes from one structure to another (we call them phase transitions) that the Nobel Prize in 1992 could be awarded for understanding the mathematics of their common features. Now for a few examples of how the laws of nature produce the instabilities that lead to our own existence. First, the Big Bang (what an insufficient name!) apparently came from an instability, in which the "false vacuum" eventually decayed into the ordinary vacuum we have today, plus the most fundamental particles we know, the quarks and leptons. So the universe as a whole started with an instability. Then, a great expansion and cooling happened, and the loose quarks, finding themselves unstable too, bound themselves together into today's less elementary particles like protons and

  4. Dispersion of fruit flies (Diptera: Tephritidae) at high and low densities and consequences of mismatching dispersions of wild and sterile flies

    International Nuclear Information System (INIS)

    Meats, A.

    2007-01-01

    Both wild and released (sterile) Bactrocera tryoni (Froggatt) (Diptera: Tephritidae) and wild Bactrocera papayae (Drew and Hancock) in Australia had patchy distributions and comparisons with predictions of the negative binomial model indicated that the degree of clumping was sometimes very high, particularly at low densities during eradication. An increase of mean recapture rate of sterile B. tryoni on either of 2 trap arrays was not accompanied by a reduction in its coefficient of variation and when recapture rates were high, the percentage of traps catching zero decreased only slightly with increase in recapture rate, indicating that it is not practicable to decrease the heterogeneity of dispersion of sterile flies by increasing the number released. There was often a mismatch between the dispersion patterns of the wild and sterile flies, and the implications of this for the efficiency of the sterile insect technique (SIT) were investigated with a simulation study with the observed degrees of mismatch obtained from the monitoring data and assuming the overall ratio of sterile to wild flies to be 100:1. The simulation indicated that mismatches could result in the imposed rate of increase of wild flies being up to 3.5 times higher than that intended (i.e., 0.35 instead of 0.1). The effect of a mismatch always reduces the efficiency of SIT. The reason for this asymmetry is discussed and a comparison made with host-parasitoid and other systems. A release strategy to counter this effect is suggested. (author) [es

  5. The Microbiome of Field-Caught and Laboratory-Adapted Australian Tephritid Fruit Fly Species with Different Host Plant Use and Specialisation.

    Science.gov (United States)

    Morrow, J L; Frommer, M; Shearman, D C A; Riegler, M

    2015-08-01

    Tephritid fruit fly species display a diversity of host plant specialisation on a scale from monophagy to polyphagy. Furthermore, while some species prefer ripening fruit, a few are restricted to damaged or rotting fruit. Such a diversity of host plant use may be reflected in the microbial symbiont diversity of tephritids and their grade of dependency on their microbiomes. Here, we investigated the microbiome of six tephritid species from three genera, including species that are polyphagous pests (Bactrocera tryoni, Bactrocera neohumeralis, Bactrocera jarvisi, Ceratitis capitata) and a monophagous specialist (Bactrocera cacuminata). These were compared with the microbiome of a non-pestiferous but polyphagous tephritid species that is restricted to damaged or rotting fruit (Dirioxa pornia). The bacterial community associated with whole fruit flies was analysed by 16S ribosomal DNA (rDNA) amplicon pyrosequencing to detect potential drivers of taxonomic composition. Overall, the dominant bacterial families were Enterobacteriaceae and Acetobacteraceae (both Proteobacteria), and Streptococcaceae and Enterococcaceae (both Firmicutes). Comparisons across species and genera found different microbial composition in the three tephritid genera, but limited consistent differentiation between Bactrocera species. Within Bactrocera species, differentiation of microbial composition seemed to be influenced by the environment, possibly including their diets; beyond this, tephritid species identity or ecology also had an effect. The microbiome of D. pornia was most distinct from the other five species, which may be due to its ecologically different niche of rotting or damaged fruit, as opposed to ripening fruit favoured by the other species. Our study is the first amplicon pyrosequencing study to compare the microbiomes of tephritid species and thus delivers important information about the turnover of microbial diversity within and between fruit fly species and their potential

  6. A Generic Individual-Based Spatially Explicit Model as a Novel Tool for Investigating Insect-Plant Interactions: A Case Study of the Behavioural Ecology of Frugivorous Tephritidae.

    Directory of Open Access Journals (Sweden)

    Ming Wang

    Full Text Available Computational modelling of mechanisms underlying processes in the real world can be of great value in understanding complex biological behaviours. Uptake in general biology and ecology has been rapid. However, it often requires specific data sets that are overly costly in time and resources to collect. The aim of the current study was to test whether a generic behavioural ecology model constructed using published data could give realistic outputs for individual species. An individual-based model was developed using the Pattern-Oriented Modelling (POM strategy and protocol, based on behavioural rules associated with insect movement choices. Frugivorous Tephritidae (fruit flies were chosen because of economic significance in global agriculture and the multiple published data sets available for a range of species. The Queensland fruit fly (Qfly, Bactrocera tryoni, was identified as a suitable individual species for testing. Plant canopies with modified architecture were used to run predictive simulations. A field study was then conducted to validate our model predictions on how plant architecture affects fruit flies' behaviours. Characteristics of plant architecture such as different shapes, e.g., closed-canopy and vase-shaped, affected fly movement patterns and time spent on host fruit. The number of visits to host fruit also differed between the edge and centre in closed-canopy plants. Compared to plant architecture, host fruit has less contribution to effects on flies' movement patterns. The results from this model, combined with our field study and published empirical data suggest that placing fly traps in the upper canopy at the edge should work best. Such a modelling approach allows rapid testing of ideas about organismal interactions with environmental substrates in silico rather than in vivo, to generate new perspectives. Using published data provides a saving in time and resources. Adjustments for specific questions can be achieved by

  7. A Generic Individual-Based Spatially Explicit Model as a Novel Tool for Investigating Insect-Plant Interactions: A Case Study of the Behavioural Ecology of Frugivorous Tephritidae.

    Science.gov (United States)

    Wang, Ming; Cribb, Bronwen; Clarke, Anthony R; Hanan, Jim

    2016-01-01

    Computational modelling of mechanisms underlying processes in the real world can be of great value in understanding complex biological behaviours. Uptake in general biology and ecology has been rapid. However, it often requires specific data sets that are overly costly in time and resources to collect. The aim of the current study was to test whether a generic behavioural ecology model constructed using published data could give realistic outputs for individual species. An individual-based model was developed using the Pattern-Oriented Modelling (POM) strategy and protocol, based on behavioural rules associated with insect movement choices. Frugivorous Tephritidae (fruit flies) were chosen because of economic significance in global agriculture and the multiple published data sets available for a range of species. The Queensland fruit fly (Qfly), Bactrocera tryoni, was identified as a suitable individual species for testing. Plant canopies with modified architecture were used to run predictive simulations. A field study was then conducted to validate our model predictions on how plant architecture affects fruit flies' behaviours. Characteristics of plant architecture such as different shapes, e.g., closed-canopy and vase-shaped, affected fly movement patterns and time spent on host fruit. The number of visits to host fruit also differed between the edge and centre in closed-canopy plants. Compared to plant architecture, host fruit has less contribution to effects on flies' movement patterns. The results from this model, combined with our field study and published empirical data suggest that placing fly traps in the upper canopy at the edge should work best. Such a modelling approach allows rapid testing of ideas about organismal interactions with environmental substrates in silico rather than in vivo, to generate new perspectives. Using published data provides a saving in time and resources. Adjustments for specific questions can be achieved by refinement of

  8. Flight control of fruit flies: dynamic response to optic flow and headwind.

    Science.gov (United States)

    Lawson, Kiaran K K; Srinivasan, Mandyam V

    2017-06-01

    Insects are magnificent fliers that are capable of performing many complex tasks such as speed regulation, smooth landings and collision avoidance, even though their computational abilities are limited by their small brain. To investigate how flying insects respond to changes in wind speed and surrounding optic flow, the open-loop sensorimotor response of female Queensland fruit flies ( Bactrocera tryoni ) was examined. A total of 136 flies were exposed to stimuli comprising sinusoidally varying optic flow and air flow (simulating forward movement) under tethered conditions in a virtual reality arena. Two responses were measured: the thrust and the abdomen pitch. The dynamics of the responses to optic flow and air flow were measured at various frequencies, and modelled as a multicompartment linear system, which accurately captured the behavioural responses of the fruit flies. The results indicate that these two behavioural responses are concurrently sensitive to changes of optic flow as well as wind. The abdomen pitch showed a streamlining response, where the abdomen was raised higher as the magnitude of either stimulus was increased. The thrust, in contrast, exhibited a counter-phase response where maximum thrust occurred when the optic flow or wind flow was at a minimum, indicating that the flies were attempting to maintain an ideal flight speed. When the changes in the wind and optic flow were in phase (i.e. did not contradict each other), the net responses (thrust and abdomen pitch) were well approximated by an equally weighted sum of the responses to the individual stimuli. However, when the optic flow and wind stimuli were presented in counterphase, the flies seemed to respond to only one stimulus or the other, demonstrating a form of 'selective attention'. © 2017. Published by The Company of Biologists Ltd.

  9. Roles of semiochemicals in mating systems: A comparison between Oriental fruit fly and Medfly

    International Nuclear Information System (INIS)

    Nishida, Ritsuo; Shelly, Todd E.; Kaneshiro, Kenneth Y.; Tan, Keng-Hong

    2000-01-01

    Males of tephritid fruit fly species show strong affinity to specific chemicals produced by plants. Amongst the economically important species in the Asian Pacific area, methyl eugenol acts as a potent attractant for males of the Oriental fruit fly, Bactrocera dorsalis (Hendel), and several other species within the dorsalis species complex (e.g., B. papayae Drew and Hancock, B. carambolae Drew and Hancock, etc.), cuelure [4-(4-acetoxyphenyl)-2-butanone] and the naturally occurring deacetyl derivative (raspberry ketone) act as specific attractants for flies such as the melon fly, B. cucurbitae (Coquillett) and the Queensland fruit fly, B. tryoni (Froggatt) (Metcalf 1990). These attractants have been successfully used as baits in mass trapping for monitoring populations during eradication programmes for these pests (Chambers 1977, Koyama et al. 1984). Likewise, trimedlure has been developed as a synthetic attractant for males of the Mediterranean fruit fly (Medfly), Ceratitis capitata (Wied.), while α-copaene has been known to be a naturally occurring attractant for the species. For most tephritids, however, the biological function of male attraction to these natural or artificial compounds remains unclear. Recent studies (Nishida et al. 1988 1997, Nishida and Fukami 1990, Tan 1993, Tan and Nishida 1996) have shown that males of B. dorsalis and related species ingest these compounds from natural sources, selectively incorporate them into the rectal glands, and use them to synthesise the sex pheromone and allomone. It appears that similar chemical compounds, when ingested, may provide pheromonal precursors in the melon fly as well (Nishida et al. 1993, Shelly and Villalobos 1995). In contrast, Medfly males do not feed on the source of chemical attractant. According to our observations, α-copaene strongly affected the courtship behaviour of the Medfly, which suggests that these natural compounds may possibly be involved in the formation of leks and the mating

  10. Complex analysis and geometry

    CERN Document Server

    Silva, Alessandro

    1993-01-01

    The papers in this wide-ranging collection report on the results of investigations from a number of linked disciplines, including complex algebraic geometry, complex analytic geometry of manifolds and spaces, and complex differential geometry.

  11. Complex Systems: An Introduction

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 9. Complex Systems: An Introduction - Anthropic Principle, Terrestrial Complexity, Complex Materials. V K Wadhawan. General Article Volume 14 Issue 9 September 2009 pp 894-906 ...

  12. Identification of Bactrocera invadens (Diptera: Tephritidae) from ...

    African Journals Online (AJOL)

    Jane

    2011-10-12

    Oct 12, 2011 ... (COI gene) are often used for animal identification. (Hebert et al., 2003). Because DNA barcoding meets or exceeds the minimum standards required ..... trapping male adults with methyl eugenol, will be a useful method to heavily diminish their population. Killing pupa with environmental friendly insecticide ...

  13. Identification of Bactrocera invadens (Diptera: Tephritidae) from ...

    African Journals Online (AJOL)

    Jane

    2011-10-12

    Oct 12, 2011 ... (Nei and Kumar, 2000; Hebert et al., 2003). The pair wise genetic distances based on Kimura 2-Parameter were also computed using. MEGA Version 4.0.2. The relationships were inferred based on genetic distances. RESULTS. Morphological characteristics of B. invadens. The stereo optical microscope ...

  14. The Mitochondrial Complex(Ity of Cancer

    Directory of Open Access Journals (Sweden)

    Félix A. Urra

    2017-06-01

    Full Text Available Recent evidence highlights that the cancer cell energy requirements vary greatly from normal cells and that cancer cells exhibit different metabolic phenotypes with variable participation of both glycolysis and oxidative phosphorylation. NADH–ubiquinone oxidoreductase (Complex I is the largest complex of the mitochondrial electron transport chain and contributes about 40% of the proton motive force required for mitochondrial ATP synthesis. In addition, Complex I plays an essential role in biosynthesis and redox control during proliferation, resistance to cell death, and metastasis of cancer cells. Although knowledge about the structure and assembly of Complex I is increasing, information about the role of Complex I subunits in tumorigenesis is scarce and contradictory. Several small molecule inhibitors of Complex I have been described as selective anticancer agents; however, pharmacologic and genetic interventions on Complex I have also shown pro-tumorigenic actions, involving different cellular signaling. Here, we discuss the role of Complex I in tumorigenesis, focusing on the specific participation of Complex I subunits in proliferation and metastasis of cancer cells.

  15. Development of a local baiting system for the control of the Africa invader fly, (Bactrocera invadens) Drew, Tsuruta and White (Diptera: Tephritidae) in mango orchards at Somanya, Eastern Ghana

    International Nuclear Information System (INIS)

    Yeboah, S.

    2012-01-01

    Fruit production plays an important role in Africa's economy. In Ghana, mango is targeted as one of the next non-traditional export crop that is expected to fetch the highest foreign exchange for the country and replace cocoa. Ghana's current production is said to have increased from 6,800 tonnes in 2007 to about 7000 tonnes in 2010. However, the African invader fruit fly, Bactrocera invadens, is causing high yield losses as an important quarantine pest and has brought some setback in the mango trade between Ghana and their exporting destinations. Imported commercial protein hydrolysate bait for controlling the flies constitutes the highest cost component of the control programme, excluding cost of labour. The baits are exhorbitant for local farmers and seldom available. This setback has called for the need to design and implement efficient and cost-effective control regimes for managing this pest. The objective of the study was to explore the development of locally produced, cheap and efficient baiting system using brewery yeast wastes and coloured cylinder traps to attract and control this quarantine pest. A 1 ha study area was selected within DORMEHSCO FARM, a mango orchard at Somanya in the Eastern region of Ghana with the Keith mango variety for the study. Local sources of Guiness, Beer and Pito yeast wastes were collected into Winchester bottles and subjected to pasteurisation. Papain enzyme was added to maximize yeast cell autolysis at 70 degrees celcius for 9 hours. The Micro-Kjeldahl apparatus was used to determine the percentage protein in each waste. Transparent cylinder traps with three different colours of lids (red, yellow and green) and three 3cm diameter round holes referred to as coloured traps were used to dispense the baits. The traps were labelled according to the type of bait and trap colour combination. The trials were conducted in two successive peak fruiting seasons fron October to November, 2011 (minor season and then from April to June

  16. Complex differential geometry

    CERN Document Server

    Zheng, Fangyang

    2002-01-01

    The theory of complex manifolds overlaps with several branches of mathematics, including differential geometry, algebraic geometry, several complex variables, global analysis, topology, algebraic number theory, and mathematical physics. Complex manifolds provide a rich class of geometric objects, for example the (common) zero locus of any generic set of complex polynomials is always a complex manifold. Yet complex manifolds behave differently than generic smooth manifolds; they are more coherent and fragile. The rich yet restrictive character of complex manifolds makes them a special and interesting object of study. This book is a self-contained graduate textbook that discusses the differential geometric aspects of complex manifolds. The first part contains standard materials from general topology, differentiable manifolds, and basic Riemannian geometry. The second part discusses complex manifolds and analytic varieties, sheaves and holomorphic vector bundles, and gives a brief account of the surface classifi...

  17. Radioisotope trithiol complexes

    Science.gov (United States)

    Jurisson, Silvia S.; Cutler, Cathy S.; Degraffenreid, Anthony J.

    2016-08-30

    The present invention is directed to a series of stable radioisotope trithiol complexes that provide a simplified route for the direct complexation of radioisotopes present in low concentrations. In certain embodiments, the complex contains a linking domain configured to conjugate the radioisotope trithiol complex to a targeting vector. The invention is also directed to a novel method of linking the radioisotope to a trithiol compound to form the radioisotope trithiol complex. The inventive radioisotope trithiol complexes may be utilized for a variety of applications, including diagnostics and/or treatment in nuclear medicine.

  18. Complex and symplectic geometry

    CERN Document Server

    Medori, Costantino; Tomassini, Adriano

    2017-01-01

    This book arises from the INdAM Meeting "Complex and Symplectic Geometry", which was held in Cortona in June 2016. Several leading specialists, including young researchers, in the field of complex and symplectic geometry, present the state of the art of their research on topics such as the cohomology of complex manifolds; analytic techniques in Kähler and non-Kähler geometry; almost-complex and symplectic structures; special structures on complex manifolds; and deformations of complex objects. The work is intended for researchers in these areas.

  19. Oligocyclopentadienyl transition metal complexes

    Energy Technology Data Exchange (ETDEWEB)

    de Azevedo, Cristina G.; Vollhardt, K. Peter C.

    2002-01-18

    Synthesis, characterization, and reactivity studies of oligocyclopentadienyl transition metal complexes, namely those of fulvalene, tercyclopentadienyl, quatercyclopentadienyl, and pentacyclopentadienyl(cyclopentadienyl) are the subject of this account. Thermal-, photo-, and redox chemistries of homo- and heteropolynuclear complexes are described.

  20. Mycobacterium Avium Complex (MAC)

    Science.gov (United States)

    ... 30, 2014 Select a Language: Fact Sheet 514 Mycobacterium Avium Complex (MAC) WHAT IS MAC? HOW DO ... INTERACTION PROBLEMS THE BOTTOM LINE WHAT IS MAC? Mycobacterium Avium Complex (MAC) is a serious illness caused ...

  1. Complex sulfides and thiosalts

    International Nuclear Information System (INIS)

    Uehlls, A.

    1987-01-01

    Different types of the structures of complex sulfides, thiosalts of alkali, alkaline earth, rare earth, transition and actinide metals are considered in the review of the papers published before 1980 and devoted to the crystal structure of complex sulfides

  2. Holograms as complex media

    Science.gov (United States)

    Caulfield, H. John

    2005-08-01

    Complex media can be grown, found in nature, or manufactured.. Holography is one way of fabricating such media. Here I review some examples of holographically manufactured complex media and speculate about some that could be made.

  3. The simple complex numbers

    OpenAIRE

    Zalesny, Jaroslaw

    2008-01-01

    A new simple geometrical interpretation of complex numbers is presented. It differs from their usual interpretation as points in the complex plane. From the new point of view the complex numbers are rather operations on vectors than points. Moreover, in this approach the real, imaginary and complex numbers have similar interpretation. They are simply some operations on vectors. The presented interpretation is simpler, more natural, and better adjusted to possible applications in geometry and ...

  4. The Visibility Complex

    NARCIS (Netherlands)

    Pocchiola, Michel; Vegter, Gert

    1993-01-01

    We introduce the visibility complex of a collection O of n pairwise disjoint convex objects in the plane. This 2–dimensional cell complex may be considered as a generalization of the tangent visibility graph of O. Its space complexity k is proportional to the size of the tangent visibility graph. We

  5. Complex fuzzy soft multisets

    Science.gov (United States)

    Alkouri, Abd Ulazeez M.; Salleh, Abdul Razak

    2014-09-01

    In this paper we combine two definitions, namely fuzzy soft multiset and complex fuzzy set to construct the definition of a complex fuzzy soft multiset and study its properties. In other words, we study the extension of a fuzzy soft multiset from real numbers to complex numbers. We also introduce its basic operations, namely complement, union and intersection. Some examples are given.

  6. Complex variables I essentials

    CERN Document Server

    Solomon, Alan D

    2013-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Complex Variables I includes functions of a complex variable, elementary complex functions, integrals of complex functions in the complex plane, sequences and series, and poles and r

  7. Tropical tephritid fruit fly community with high incidence of shared Wolbachia strains as platform for horizontal transmission of endosymbionts.

    Science.gov (United States)

    Morrow, J L; Frommer, M; Shearman, D C A; Riegler, M

    2014-12-01

    Wolbachia are endosymbiotic bacteria that infect 40-65% of arthropod species. They are primarily maternally inherited with occasional horizontal transmission for which limited direct ecological evidence exists. We detected Wolbachia in 8 out of 24 Australian tephritid species. Here, we have used multilocus sequence typing (MLST) to further characterize these Wolbachia strains, plus a novel quantitative polymerase chain reaction method for allele assignment in multiple infections. Based on five MLST loci and the Wolbachia surface protein gene (wsp), five Bactrocera and one Dacus species harboured two identical strains as double infections; furthermore, Bactrocera neohumeralis harboured both of these as single or double infections, and sibling species B. tryoni harboured one. Two Bactrocera species contained Wolbachia pseudogenes, potentially within the fruit fly genomes. A fruit fly parasitoid, Fopius arisanus shared identical alleles with two Wolbachia strains detected in one B. frauenfeldi individual. We report an unprecedented high incidence of four shared Wolbachia strains in eight host species from two trophic levels. This suggests frequent exposure to Wolbachia in this tropical tephritid community that shares host plant and parasitoid species, and also includes species that hybridize. Such insect communities may act as horizontal transmission platforms that contribute to the ubiquity of the otherwise maternally inherited Wolbachia. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  8. Simplicial complexes of graphs

    CERN Document Server

    Jonsson, Jakob

    2008-01-01

    A graph complex is a finite family of graphs closed under deletion of edges. Graph complexes show up naturally in many different areas of mathematics, including commutative algebra, geometry, and knot theory. Identifying each graph with its edge set, one may view a graph complex as a simplicial complex and hence interpret it as a geometric object. This volume examines topological properties of graph complexes, focusing on homotopy type and homology. Many of the proofs are based on Robin Forman's discrete version of Morse theory. As a byproduct, this volume also provides a loosely defined toolbox for attacking problems in topological combinatorics via discrete Morse theory. In terms of simplicity and power, arguably the most efficient tool is Forman's divide and conquer approach via decision trees; it is successfully applied to a large number of graph and digraph complexes.

  9. Measuring static complexity

    Directory of Open Access Journals (Sweden)

    Ben Goertzel

    1992-01-01

    Full Text Available The concept of “pattern” is introduced, formally defined, and used to analyze various measures of the complexity of finite binary sequences and other objects. The standard Kolmogoroff-Chaitin-Solomonoff complexity measure is considered, along with Bennett's ‘logical depth’, Koppel's ‘sophistication'’, and Chaitin's analysis of the complexity of geometric objects. The pattern-theoretic point of view illuminates the shortcomings of these measures and leads to specific improvements, it gives rise to two novel mathematical concepts--“orders” of complexity and “levels” of pattern, and it yields a new measure of complexity, the “structural complexity”, which measures the total amount of structure an entity possesses.

  10. Avoiding Simplicity Is Complex

    Science.gov (United States)

    Allender, Eric

    It is a trivial observation that every decidable set has strings of length n with Kolmogorov complexity logn + O(1) if it has any strings of length n at all. Things become much more interesting when one asks whether a similar property holds when one considers resource-bounded Kolmogorov complexity. This is the question considered here: Can a feasible set A avoid accepting strings of low resource-bounded Kolmogorov complexity, while still accepting some (or many) strings of length n?

  11. Complex Systems and Dependability

    CERN Document Server

    Zamojski, Wojciech; Sugier, Jaroslaw

    2012-01-01

    Typical contemporary complex system is a multifaceted amalgamation of technical, information, organization, software and human (users, administrators and management) resources. Complexity of such a system comes not only from its involved technical and organizational structure but mainly from complexity of information processes that must be implemented in the operational environment (data processing, monitoring, management, etc.). In such case traditional methods of reliability analysis focused mainly on technical level are usually insufficient in performance evaluation and more innovative meth

  12. Cobalt(III) complex

    Indian Academy of Sciences (India)

    Administrator

    e, 40 µM complex, 10 hrs after dissolution, f, 40 µM complex, after irradiation dose 15 Gy. and H-atoms result in reduction of Co(III) to Co. (II). 6. It is interesting to see in complex containing multiple ligands what is the fate of electron adduct species formed by electron addition. Reduction to. Co(II) and intramolecular transfer ...

  13. Conducting metal dithiolate complexes

    DEFF Research Database (Denmark)

    Underhill, A. E.; Ahmad, M. M.; Turner, D. J.

    1985-01-01

    Further work on the chemical composition of the one-dimensional metallic metal dithiolene complex Li-Pt(mnt) is reported. The electrical conduction and thermopower properties of the nickel and palladium complexes are reported and compared with those of the platinum compound......Further work on the chemical composition of the one-dimensional metallic metal dithiolene complex Li-Pt(mnt) is reported. The electrical conduction and thermopower properties of the nickel and palladium complexes are reported and compared with those of the platinum compound...

  14. Nonhost status of mangosteen to Bactrocera dorsalis and Bactrocera carambolae (Diptera:Tephritidae) in Thailand

    Science.gov (United States)

    Postharvest quarantine treatments (irradiation or vapor heat) are used to control fruit flies and other pests in mangosteen (Garcinia mangostana L) exported to the United States and Japan from Thailand. No-choice tests were conducted in the laboratory to determine whether Thai mangosteen is a host f...

  15. The visibility complex

    NARCIS (Netherlands)

    Pocchiola, M; Vegter, G

    We introduce the visibility complex (rr 2-dimensional regular cell complex) of a collection of n pairwise disjoint convex obstacles in the plane. It can be considered as a subdivision of the set of free rays (i.e., rays whose origins lie in free space, the complement of the obstacles). Its cells

  16. complexes of pyrimidine derived

    Indian Academy of Sciences (India)

    Administrator

    HL3, HL4 and HL5) respectively. These ligands are already reported as good donors for Mo(VI) state. The μ-oxo Mo(V) complexes reported here bears a distorted octahedral geometry around each Mo atom with either N2O2Cl or N2O2Br chromophores. Fine variations in the spectroscopic behaviour of the complexes.

  17. Visual Complexity: A Review

    Science.gov (United States)

    Donderi, Don C.

    2006-01-01

    The idea of visual complexity, the history of its measurement, and its implications for behavior are reviewed, starting with structuralism and Gestalt psychology at the beginning of the 20th century and ending with visual complexity theory, perceptual learning theory, and neural circuit theory at the beginning of the 21st. Evidence is drawn from…

  18. Complex Materials and Devices

    Science.gov (United States)

    2013-03-07

    Disruptive Basic Research Areas” – Metamaterials and Plasmonics – Quantum Information Science – Cognitive Neuroscience – Nanoscience and...function Complex Electronics and Fundamental Quantum Processes Complex engineered materials and devices Devices based on quantum phenomena...fundamental quantum processes Quantum Electronic Solids (Weinstock) Photonics and Optoelectronics (Pomrenke) GHz-THz Electronics (Hwang) Natural

  19. Complexity in Picture Books

    Science.gov (United States)

    Sierschynski, Jarek; Louie, Belinda; Pughe, Bronwyn

    2015-01-01

    One of the key requirements of Common Core State Standards (CCSS) in English Language Arts is that students are able to read and access complex texts across all grade levels. The CCSS authors emphasize both the limitations and lack of accuracy in the current CCSS model of text complexity, calling for the development of new frameworks. In response…

  20. Complex conductivity of soils

    NARCIS (Netherlands)

    Revil, A.; Coperey, A.; Shao, Z.; Florsch, N.; Fabricus, I.L.; Deng, Y.; Delsman, J.R.; Pauw, P.S.; Karaoulis, M.; Louw, P.G.B. de; Baaren, E.S. van; Dabekaussen, W.; Menkovic, A.; Gunnink, J.L.

    2017-01-01

    The complex conductivity of soils remains poorly known despite the growing importance of this method in hydrogeophysics. In order to fill this gap of knowledge, we investigate the complex conductivity of 71 soils samples (including four peat samples) and one clean sand in the frequency range 0.1 Hz

  1. Genetics of complex disorders.

    Science.gov (United States)

    Kere, Juha

    2010-05-21

    The success stories of identifying genes in Mendelian disorders have stimulated research that aims at identifying the genetic determinants in complex disorders, in which both genetics, environment and chance affect the pathogenetic processes. This review summarizes the brief history and lessons learned from genetic analysis of complex disorders and outlines some landscapes ahead for medical research. 2010. Published by Elsevier Inc.

  2. Life Complexity and Diversity

    Indian Academy of Sciences (India)

    It is as if the stage is cleared from time to time to make for fresh beginnings, with major bouts of extinction. Humans are amongst the most complex products of evolution having in turn populated the world with ever growing numbers of complex artefacts. These artefacts are now threatening to overwhelm the diversity of life.

  3. Photocytotoxic lanthanide complexes

    Indian Academy of Sciences (India)

    The chemistry of photoactive lanthanide complexes showing biological applications is of recent origin. Photodynamic therapy (PDT) is a non-invasive treatment modality of cancer using a photosensitizer drug and light. This review primarily focuses on different aspects of the chemistry of lanthanide complexes showing ...

  4. complexes of pyrimidine derived

    Indian Academy of Sciences (India)

    Administrator

    complexes are not so common in literature. Because of a tendency of Mo(V) species to form oxo- ... enzymes such as DMSO reductase are common in microbial systems and are mononuclear in nature. 11 ..... ligands with centroid to centroid distances of 3⋅52 Å. 4. Conclusion. Ten new Mo(V) complexes are prepared which ...

  5. Complexity and behavioral economics.

    Science.gov (United States)

    Rosser, J Barkley; Rosser, Marina V

    2015-04-01

    This paper will consider the relationship between complexity economics and behavioral economics. A crucial key to this is to understand that Herbert Simon was both the founder of explicitly modern behavioral economics as well as one of the early developers of complexity theory. Bounded rationality was essentially derived from Simon's view of the impossibility of full rationality on the part of economic agents. Modern complexity theory through such approaches as agent-based modeling offers an approach to understanding behavioral economics by allowing for specific behavioral responses to be assigned to agents who interact within this context, even without full rationality. Other parts of modern complexity theory are considered in terms of their relationships with behavioral economics. Fundamentally, complexity provides an ultimate foundation for bounded rationality and hence the need to use behavioral economics in a broader array of contexts than most economists have thought appropriate.

  6. Leading healthcare in complexity.

    Science.gov (United States)

    Cohn, Jeffrey

    2014-12-01

    Healthcare institutions and providers are in complexity. Networks of interconnections from relationships and technology create conditions in which interdependencies and non-linear dynamics lead to surprising, unpredictable outcomes. Previous effective approaches to leadership, focusing on top-down bureaucratic methods, are no longer effective. Leading in complexity requires leaders to accept the complexity, create an adaptive space in which innovation and creativity can flourish and then integrate the successful practices that emerge into the formal organizational structure. Several methods for doing adaptive space work will be discussed. Readers will be able to contrast traditional leadership approaches with leading in complexity. They will learn new behaviours that are required of complexity leaders, along with challenges they will face, often from other leaders within the organization.

  7. Quantum Entropy and Complexity

    Science.gov (United States)

    Benatti, F.; Oskouei, S. Khabbazi; Abad, A. Shafiei Deh

    We study the relations between the recently proposed machine-independent quantum complexity of P. Gacs [1] and the entropy of classical and quantum systems. On one hand, by restricting Gacs complexity to ergodic classical dynamical systems, we retrieve the equality between the Kolmogorov complexity rate and the Shannon entropy rate derived by A. A. Brudno [2]. On the other hand, using the quantum Shannon-McMillan theorem [3], we show that such an equality holds densely in the case of ergodic quantum spin chains.

  8. Study of complex modes

    International Nuclear Information System (INIS)

    Pastrnak, J.W.

    1986-01-01

    This eighteen-month study has been successful in providing the designer and analyst with qualitative guidelines on the occurrence of complex modes in the dynamics of linear structures, and also in developing computer codes for determining quantitatively which vibration modes are complex and to what degree. The presence of complex modes in a test structure has been verified. Finite element analysis of a structure with non-proportional dumping has been performed. A partial differential equation has been formed to eliminate possible modeling errors

  9. Simulation in Complex Modelling

    DEFF Research Database (Denmark)

    Nicholas, Paul; Ramsgaard Thomsen, Mette; Tamke, Martin

    2017-01-01

    This paper will discuss the role of simulation in extended architectural design modelling. As a framing paper, the aim is to present and discuss the role of integrated design simulation and feedback between design and simulation in a series of projects under the Complex Modelling framework. Complex...... Restraint developed for the research exhibition Complex Modelling, Meldahls Smedie Gallery, Copenhagen in 2016. Where the direct project aims and outcomes have been reported elsewhere, the aim for this paper is to discuss overarching strategies for working with design integrated simulation....

  10. Complexity from the ordinary

    DEFF Research Database (Denmark)

    Ayres, Phil

    2006-01-01

    Herbert Simon proposed that complexity is an emergent property that can result from the interaction of a simple mechanism within a complex environment. The Kielder context exhibits continual variation across many time scales and offers a rich resource for exploring the notions of novelty, variety......, specificity and complexity. By considering the design process as a continual iterative cycle in which the digital and analogue are closely coupled, we might imagine a construct that continually redefines itself in relation to its context, attempting to become increasingly specific to location and purpose over...

  11. Evaluating mating compatibility within fruit fly cryptic species complexes and the potential role of sex pheromones in pre-mating isolation

    Czech Academy of Sciences Publication Activity Database

    Juárez, M. L.; Devescovi, F.; Břízová, Radka; Bachmann, G.; Segura, D. F.; Kalinová, Blanka; Fernández, P.; Ruiz, M. J.; Yang, J.; Teal, P. E. A.; Cáceres, C.; Vreysen, M. J. B.; Hendrichs, J.; Vera, M. T.

    -, č. 540 (2015), s. 125-155 ISSN 1313-2989 R&D Projects: GA MŠk 7AMB13AR018 Institutional support: RVO:61388963 Keywords : species delimitation * field cages * Tephritidae * Anastrepha fraterculus * Bactrocera dorsalis Subject RIV: EG - Zoology Impact factor: 0.938, year: 2015 http://zookeys.pensoft.net/articles.php?id=6133

  12. Complex Flow Workshop Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2012-05-01

    This report documents findings from a workshop on the impacts of complex wind flows in and out of wind turbine environments, the research needs, and the challenges of meteorological and engineering modeling at regional, wind plant, and wind turbine scales.

  13. Low complexity MIMO receivers

    CERN Document Server

    Bai, Lin; Yu, Quan

    2014-01-01

    Multiple-input multiple-output (MIMO) systems can increase the spectral efficiency in wireless communications. However, the interference becomes the major drawback that leads to high computational complexity at both transmitter and receiver. In particular, the complexity of MIMO receivers can be prohibitively high. As an efficient mathematical tool to devise low complexity approaches that mitigate the interference in MIMO systems, lattice reduction (LR) has been widely studied and employed over the last decade. The co-authors of this book are world's leading experts on MIMO receivers, and here they share the key findings of their research over years. They detail a range of key techniques for receiver design as multiple transmitted and received signals are available. The authors first introduce the principle of signal detection and the LR in mathematical aspects. They then move on to discuss the use of LR in low complexity MIMO receiver design with respect to different aspects, including uncoded MIMO detection...

  14. Physical Sciences Complex

    Data.gov (United States)

    Federal Laboratory Consortium — This 88,000 square foot complex is used to investigate basic physical science in support of missile technology development. It incorporates office space, dedicated...

  15. Bitter Sweetness of Complexity

    Science.gov (United States)

    Horst, A. K.; Wagener, C.

    Glycosylation of proteins, lipids and mucins has gained increasing complexity in the course of evolution. Metazoans and mammals exhibit extensively exploited pathways of N-glycan biosynthesis, with unique features that are not found in plants or protozoans.

  16. complexes of Ciprofloxacin

    African Journals Online (AJOL)

    SERVER

    2007-12-17

    2002). Magnesium, Calcium and Barium Percholate complexes of ciprofloxacin and Norfloxacin. Acta. Chim. Slov. 49: 457-466. Akanji MA, Olagoke OA, Oloyede OB (1993). Effects of chronic consumption of metabisulphite on ...

  17. Complex Strategic Choices

    DEFF Research Database (Denmark)

    Leleur, Steen

    . Complex Strategic Choices provides clear principles and methods which can guide and support strategic decision making to face the many current challenges. By considering ways in which planning practices can be renewed and exploring the possibilities for acquiring awareness and tools to add value...... and students in the field of planning and decision analysis as well as practitioners dealing with strategic analysis and decision making. More broadly, Complex Strategic Choices acts as guide for professionals and students involved in complex planning tasks across several fields such as business...... to strategic decision making, Complex Strategic Choices presents a methodology which is further illustrated by a number of case studies and example applications. Dr. Techn. Steen Leleur has adapted previously established research based on feedback and input from various conferences, journals and students...

  18. Indicators: Physical Habitat Complexity

    Science.gov (United States)

    Physical habitat complexity measures the amount and variety of all types of cove at the water’s edge in lakes. In general, dense and varied shoreline habitat is able to support more diverse communities of aquatic life.

  19. Complex Networks IX

    CERN Document Server

    Coronges, Kate; Gonçalves, Bruno; Sinatra, Roberta; Vespignani, Alessandro; Proceedings of the 9th Conference on Complex Networks; CompleNet 2018

    2018-01-01

    This book aims to bring together researchers and practitioners working across domains and research disciplines to measure, model, and visualize complex networks. It collects the works presented at the 9th International Conference on Complex Networks (CompleNet) 2018 in Boston, MA in March, 2018. With roots in physical, information and social science, the study of complex networks provides a formal set of mathematical methods, computational tools and theories to describe prescribe and predict dynamics and behaviors of complex systems. Despite their diversity, whether the systems are made up of physical, technological, informational, or social networks, they share many common organizing principles and thus can be studied with similar approaches. This book provides a view of the state-of-the-art in this dynamic field and covers topics such as group decision-making, brain and cellular connectivity, network controllability and resiliency, online activism, recommendation systems, and cyber security.

  20. Reconstruction Using Witness Complexes

    Science.gov (United States)

    Oudot, Steve Y.

    2010-01-01

    We present a novel reconstruction algorithm that, given an input point set sampled from an object S, builds a one-parameter family of complexes that approximate S at different scales. At a high level, our method is very similar in spirit to Chew’s surface meshing algorithm, with one notable difference though: the restricted Delaunay triangulation is replaced by the witness complex, which makes our algorithm applicable in any metric space. To prove its correctness on curves and surfaces, we highlight the relationship between the witness complex and the restricted Delaunay triangulation in 2d and in 3d. Specifically, we prove that both complexes are equal in 2d and closely related in 3d, under some mild sampling assumptions. PMID:21643440

  1. Complexity for Artificial Substrates (

    NARCIS (Netherlands)

    Loke, L.H.L.; Jachowski, N.R.; Bouma, T.J.; Ladle, R.J.; Todd, P.A.

    2014-01-01

    Physical habitat complexity regulates the structure and function of biological communities, although the mechanisms underlying this relationship remain unclear. Urbanisation, pollution, unsustainable resource exploitation and climate change have resulted in the widespread simplification (and loss)

  2. Thermodynamics of complexity

    DEFF Research Database (Denmark)

    Westerhoff, Hans V.; Jensen, Peter Ruhdal; Snoep, Jacky L.

    1998-01-01

    the thesis that the aforesaid holds a fortiori for the living cell: Much of the essence of the live state depends more on the manner in which the molecules are organised than on the properties of single molecules. This is due to the phenomenon of 'Complexity'. BioComplexity is defined here as the phenomenon...... understanding of this BioComplexity, modem thermodynamic concepts and methods (nonequilibrium thermodynamics, metabolic and hierarchical control analysis) will be needed. We shall propose to redefine nonequilibrium thermodynamics as: The science that aims at understanding the behaviour of nonequilibrium systems...... with metabolic control analysis. Subsequently, the complexity of the control of the energy metabolism of E. coli will be analysed in detail. New control theorems will be derived for newly defined control coefficients. It will become transparent that molecular genetic experimentation will allow one to penetrate...

  3. Complex variable HVPT

    Energy Technology Data Exchange (ETDEWEB)

    Killingbeck, John P [Mathematics Department, University of Hull, Hull HU6 7RX (United Kingdom); Grosjean, Alain [Laboratoire d' Astrophysique de l' Observatoire de Besancon (CNRS, UPRES-A 6091), 41 bis Avenue de l' Observatoire, BP 1615, 25010 Besancon Cedex (France); Jolicard, Georges [Laboratoire d' Astrophysique de l' Observatoire de Besancon (CNRS, UPRES-A 6091), 41 bis Avenue de l' Observatoire, BP 1615, 25010 Besancon Cedex (France)

    2004-08-13

    Complex variable hypervirial perturbation theory is applied to the case of oscillator and Coulomb potentials perturbed by a single term potential of the form Vx{sup n} or Vr{sup n}, respectively. The trial calculations reported show that this approach can produce accurate complex energies for resonant states via a simple and speedy calculation and can also be useful in studies of PT symmetry and tunnelling resonance effects. (addendum)

  4. An erupted complex odontoma.

    Science.gov (United States)

    Tozoglu, Sinan; Yildirim, Umran; Buyukkurt, M Cemil

    2010-01-01

    Odontomas are benign tumors of odontogenic origin. The cause of the odontoma is unknown, but it is believed to be hereditary or due to a disturbance in tooth development triggered by trauma or infection. Odontomas may be either compound or complex. Although these tumors are seen frequently, erupted odontomas are rare. The purpose of this study is to present a rare case of complex odontoma that erupted into the oral cavity.

  5. Complexity and Safety (FAA)

    Science.gov (United States)

    2016-10-27

    Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center sponsored by...their error propagation potentials are Enable use of complexity as an indicator of risk , to be tracked using standard techniques Future research...into “How much can we discount the complexity of a system given that X% has been used before?” can be framed as “ credit for precedence” and ties to

  6. Simulation with complex measures

    International Nuclear Information System (INIS)

    Kieu, T.D.; Griffin, C.J.

    1994-01-01

    The simulation of statistical and quantum systems suffers from the sign problem when the generating function measures are indefinite or are complex, such as lattice quantum chromodynamics with finite temperature and density and chiral gauge theory. A new approach is proposed which yields statistical errors smaller than the crude Monte Carlo using absolute values of the original measures. The one-dimensional complex-coupling Ising model is employed as an illustration. 2 refs., 1 tab., 1 fig

  7. Advances in network complexity

    CERN Document Server

    Dehmer, Matthias; Emmert-Streib, Frank

    2013-01-01

    A well-balanced overview of mathematical approaches to describe complex systems, ranging from chemical reactions to gene regulation networks, from ecological systems to examples from social sciences. Matthias Dehmer and Abbe Mowshowitz, a well-known pioneer in the field, co-edit this volume and are careful to include not only classical but also non-classical approaches so as to ensure topicality. Overall, a valuable addition to the literature and a must-have for anyone dealing with complex systems.

  8. Provability, complexity, grammars

    CERN Document Server

    Beklemishev, Lev; Vereshchagin, Nikolai

    1999-01-01

    The book contains English translations of three outstanding dissertations in mathematical logic and complexity theory. L. Beklemishev proves that all provability logics must belong to one of the four previously known classes. The dissertation of M. Pentus proves the Chomsky conjecture about the equivalence of two approaches to formal languages: the Chomsky hierarchy and the Lambek calculus. The dissertation of N. Vereshchagin describes a general framework for criteria of reversability in complexity theory.

  9. Conversation, coupling and complexity

    DEFF Research Database (Denmark)

    Fusaroli, Riccardo; Abney, Drew; Bahrami, Bahador

    We investigate the linguistic co-construction of interpersonal synergies. By applying a measure of coupling between complex systems to an experimentally elicited corpus of joint decision dialogues, we show that interlocutors’ linguistic behavior displays increasing signature of multi-scale coupling......, known as complexity matching, over the course of interaction. Furthermore, we show that stronger coupling corresponds with more effective interaction, as measured by collective task performance....

  10. Electrospun complexes - functionalised nanofibres

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, T.; Wolf, M.; Dreyer, B.; Unruh, D.; Krüger, C.; Menze, M. [Leibniz University Hannover, Institute of Inorganic Chemistry (Germany); Sindelar, R. [University of Applied Science Hannover, Faculty II (Germany); Klingelhöfer, G. [Gutenberg-University, Institute of Inorganic and Analytic Chemistry (Germany); Renz, F., E-mail: renz@acd.uni-hannover.de [Leibniz University Hannover, Institute of Inorganic Chemistry (Germany)

    2016-12-15

    Here we present a new approach of using iron-complexes in electro-spun fibres. We modify poly(methyl methacrylate) (PMMA) by replacing the methoxy group with Diaminopropane or Ethylenediamine. The complex is bound covalently via an imine-bridge or an amide. The resulting polymer can be used in the electrospinning process without any further modifications in method either as pure reagent or mixed with small amounts of not functionalised polymer resulting in fibres of different qualities (Fig. 1).

  11. Organotin complexes with phosphines

    International Nuclear Information System (INIS)

    Passos, B. de F.T.; Jesus Filho, M.F. de; Filgueiras, C.A.L.; Abras, A.

    1988-01-01

    A series of organotin complexes was prepared involving phosphines bonded to the organotin moiety. The series include derivatives of SnCl x Ph 4-x (where x varied from zero to four with the phosphines Ph 3 P, (Ph 2 P)CH 2 , (Ph 2 P) 2 (CH 2 ) 2 , cis-(Ph 2 P)CH 2 , and CH 3 C(CH 2 PPh 2 ) 3 . A host of new complexes was obtained, showing different stoichiometries, bonding modes, and coordination numbers around the tin atom. These complexes were characterized by several different chemical and physical methods. The 119 Sn Moessbauer parameters varied differently. Whereas isomer shift values did not great variation for each group of complexs with the same organotin parent (SnCl x Ph 4-x ), reflecting a small change in s charge distribution on the Sn atom upon complexation, quadrupole splitting results varied widely, however, when the parent organotin compound was wholly symmetric (SnCl 4 and SnPPh 4 ), the complexes also tended to show quadrupole splitting values approaching zero. (author)

  12. MANAGEMENT OF SPORT COMPLEXES

    Directory of Open Access Journals (Sweden)

    Marian STAN

    2015-07-01

    Full Text Available The actuality of the investigated theme. Nowadays, human evolution, including his intellectual development, proves the fact that especially the creation manpower and the employment was the solution of all life’s ambitions in society. So, the fact is that in reality, man is the most important capital of the society. Also, in an individual’s life, the practice of sport plays a significant role and that’s why the initiation, the launch and the management of sports complexes activity reveal the existence of specific management features that we will identify and explain in the current study. The aim of the research refers to the elaboration of a theoretical base of the management of the sport complexes, to the pointing of the factors that influence the efficient existence and function of a sport complex in our country and to the determination of the responsibilities that have a manager who directs successfully the activity of the sport complexes. The investigation is based on theoretical methods, such as: scientific documentation, analysis, synthesis, comparison and on empirical research methods, like: study of researched literature and observation. The results of the research indicate the fact that the profitability of a sport complex must assure a particular structure to avoid the bankruptcy risk and also, that the administration of the sport complexes activity must keep in view the reliable functions of the contemporaneous management.

  13. Mobility of hobo transposable elements in non-drosophilid insects

    International Nuclear Information System (INIS)

    Atkinson, P.W.; Whyard, S.; Mende, H.A.; Pinkerton, A.C.; Coates, C.J.; Warren, W.D.; Saville, K.J.; O'Brochta, D.A.

    1998-01-01

    We will describe the development and implementation of assays which permit the mobility of hobo elements injected into developing insects embryos to be detected and examined. These assays have enabled us to classify hobo elements as members of a transposable element family which includes the Ac element of maize and the Tam3 element of snapdragon - two plant transposable elements that have wide host ranges. We will present data that show that hobo also has a wide host range in that it can excise and transpose in a number of non-drosophilid insect species. These results have led us to use hobo as a gene vector in the tephritid, Bactrocera tryoni, and we will discuss the progress of these ongoing experiments. (author)

  14. The Orion complex

    International Nuclear Information System (INIS)

    Goudis, C.

    1982-01-01

    This work deals with some of the most typical complexes of interstellar matter and presents a holistic view of the well studied complexes in Orion, built on information derived from various branches of modern astrophysics. A wealth of published data is presented in the form of photographs, contour maps, diagrams and numerous heavily annotated tables. Chapter 1, which is concerned with the large scale view of the Orion region, outlines the morphology of the area and examines in particular the nature of Barnard's Loop and the associated filamentary structure in addition to the origin of the I Orion OB association. Chapter 2 focuses on the Great Orion Nebula (M42 or NGC 1976) and the small H II region to the north (M43 or NGC 1982). Chapter 3 examines the Orion Complex as a whole, i.e. the H II regions M42 and M43, the associated molecular clouds OMC 1 and OMC 2 and their interrelations. Chapter 4 contains a discussion of the empirical models introduced to attempt to explain certain aspects of this very complex region, and chapter 5 investigates the second prominent H II region and molecular cloud complex, NGC 2024 (Orion B, W12). (Auth.)

  15. Algorithmic Relative Complexity

    Directory of Open Access Journals (Sweden)

    Daniele Cerra

    2011-04-01

    Full Text Available Information content and compression are tightly related concepts that can be addressed through both classical and algorithmic information theories, on the basis of Shannon entropy and Kolmogorov complexity, respectively. The definition of several entities in Kolmogorov’s framework relies upon ideas from classical information theory, and these two approaches share many common traits. In this work, we expand the relations between these two frameworks by introducing algorithmic cross-complexity and relative complexity, counterparts of the cross-entropy and relative entropy (or Kullback-Leibler divergence found in Shannon’s framework. We define the cross-complexity of an object x with respect to another object y as the amount of computational resources needed to specify x in terms of y, and the complexity of x related to y as the compression power which is lost when adopting such a description for x, compared to the shortest representation of x. Properties of analogous quantities in classical information theory hold for these new concepts. As these notions are incomputable, a suitable approximation based upon data compression is derived to enable the application to real data, yielding a divergence measure applicable to any pair of strings. Example applications are outlined, involving authorship attribution and satellite image classification, as well as a comparison to similar established techniques.

  16. Complexes and imagination.

    Science.gov (United States)

    Kast, Verena

    2014-11-01

    Fantasies as imaginative activities are seen by Jung as expressions of psychic energy. In the various descriptions of active imagination the observation of the inner image and the dialogue with inner figures, if possible, are important. The model of symbol formation, as Jung describes it, can be experienced in doing active imagination. There is a correspondence between Jung's understanding of complexes and our imaginations: complexes develop a fantasy life. Complex episodes are narratives of difficult dysfunctional relationship episodes that have occurred repeatedly and are internalized with episodic memory. This means that the whole complex episode (the image for the child and the image for the aggressor, connected with emotions) is internalized and can get constellated in everyday relationship. Therefore inner dialogues do not necessarily qualify as active imaginations, often they are the expression of complex-episodes, very similar to fruitless soliloquies. If imaginations of this kind are repeated, new symbols and new possibilities of behaviour are not found. On the contrary, old patterns of behaviour and fantasies are perpetuated and become cemented. Imaginations of this kind need an intervention by the analyst. In clinical examples different kinds of imaginations are discussed. © 2014, The Society of Analytical Psychology.

  17. Two Gut-Associated Yeasts in a Tephritid Fruit Fly have Contrasting Effects on Adult Attraction and Larval Survival.

    Science.gov (United States)

    Piper, Alexander M; Farnier, Kevin; Linder, Tomas; Speight, Robert; Cunningham, John Paul

    2017-09-01

    Yeast-insect interactions have been well characterized in drosophilid flies, but not in tephritid fruit flies, which include many highly polyphagous pest species that attack ripening fruits. Using the Queensland fruit fly (Bactrocera tryoni) as our model tephritid species, we identified yeast species present in the gut of wild-collected larvae and found two genera, Hanseniaspora and Pichia, were the dominant isolates. In behavioural trials using adult female B. tryoni, a fruit-agar substrate inoculated with Pichia kluyveri resulted in odour emissions that increased the attraction of flies, whereas inoculation with Hanseniaspora uvarum, produced odours that strongly deterred flies, and both yeasts led to decreased oviposition. Larval development trials showed that the fruit-agar substrate inoculated with the 'deterrent odour' yeast species, H. uvarum, resulted in significantly faster larval development and a greater number of adult flies, compared to a substrate inoculated with the 'attractive odour' yeast species, P. kluyveri, and a yeast free control substrate. GC-MS analysis of volatiles emitted by H. uvarum and P. kluyveri inoculated substrates revealed significant quantitative differences in ethyl-, isoamyl-, isobutyl-, and phenethyl- acetates, which may be responsible for the yeast-specific olfactory responses of adult flies. We discuss how our seemingly counterintuitive finding that female B. tryoni flies avoid a beneficial yeast fits well with our understanding of female choice of oviposition sites, and how the contrasting behavioural effects of H. uvarum and P. kluyveri raises interesting questions regarding the role of yeast-specific volatiles as cues to insect vectors. A better understanding of yeast-tephritid interactions could assist in the future management of tephritid fruit fly pests through the formulation of new "attract and kill" lures, and the development of probiotics for mass rearing of insects in sterile insect control programs.

  18. Host susceptibility of citrus cultivars to Queensland fruit fly (Diptera: Tephritidae).

    Science.gov (United States)

    Lloyd, A C; Hamacek, E L; Smith, D; Kopittke, R A; Gu, H

    2013-04-01

    Citrus crops are considered to be relatively poor hosts for Queensland fruit fly, Bactrocera tryoni (Froggatt), as for other tephritid species. Australian citrus growers and crop consultants have reported observable differences in susceptibility of different citrus cultivars under commercial growing conditions. In this study we conducted laboratory tests and field surveys to determine susceptibility to B. tryoni of six citrus cultivars [(Eureka lemon (Citrus limon (L.) Osbeck); Navel and Valencia oranges (C. sinensis (L.) Osbeck); and Imperial, Ellendale, and Murcott mandarins (C. reticulata Blanco). The host susceptibility of these citrus cultivars was quantified by a Host Susceptibility Index, which is defined as the number of adult flies produced per gram of fruit infested at a calculated rate of one egg per gram of fruit. The HSI was ranked as Murcott (0.083) > Imperial (0.052) > Navel (0.026) - Ellendale (0.020) > Valencia (0.008) > Eureka (yellow) (0.002) > Eureka (green) (0). Results of the laboratory study were in agreement with the level of field infestation in the four citrus cultivars (Eureka lemon, Imperial, Ellendale, and Murcott mandarins) that were surveyed from commercial orchards under baiting treatments against fruit flies in the Central Burnett district of Queensland. Field surveys of citrus hosts from the habitats not subject to fruit fly management showed that the numbers of fruit flies produced per gram of fruit were much lower, compared with the more susceptible noncitrus hosts, such as guava (Psidium guajava L.), cherry guava (P. littorale Raddi), mulberry (Morus nigra L.), loquat (Eriobotrya japonica (Thunb.) Lindl.), and pear (Pyrus communis L.). Therefore, the major citrus crops commercially cultivated in Australia have a relatively low susceptibility to B. tryoni, with Eureka lemons being a particularly poor host for this tephritid fruit fly.

  19. Modeling Complex Systems

    CERN Document Server

    Boccara, Nino

    2010-01-01

    Modeling Complex Systems, 2nd Edition, explores the process of modeling complex systems, providing examples from such diverse fields as ecology, epidemiology, sociology, seismology, and economics. It illustrates how models of complex systems are built and provides indispensable mathematical tools for studying their dynamics. This vital introductory text is useful for advanced undergraduate students in various scientific disciplines, and serves as an important reference book for graduate students and young researchers. This enhanced second edition includes: . -recent research results and bibliographic references -extra footnotes which provide biographical information on cited scientists who have made significant contributions to the field -new and improved worked-out examples to aid a student’s comprehension of the content -exercises to challenge the reader and complement the material Nino Boccara is also the author of Essentials of Mathematica: With Applications to Mathematics and Physics (Springer, 2007).

  20. Complex Strategic Choices

    DEFF Research Database (Denmark)

    Leleur, Steen

    Effective decision making requires a clear methodology, particularly in a complex world of globalisation. Institutions and companies in all disciplines and sectors are faced with increasingly multi-faceted areas of uncertainty which cannot always be effectively handled by traditional strategies....... Complex Strategic Choices provides clear principles and methods which can guide and support strategic decision making to face the many current challenges. By considering ways in which planning practices can be renewed and exploring the possibilities for acquiring awareness and tools to add value...... to strategic decision making, Complex Strategic Choices presents a methodology which is further illustrated by a number of case studies and example applications. Dr. Techn. Steen Leleur has adapted previously established research based on feedback and input from various conferences, journals and students...