WorldWideScience

Sample records for bacteroides fragilisphage atcc

  1. Genome sequence of the Bacteroides fragilis phage ATCC 51477-B1

    Directory of Open Access Journals (Sweden)

    Hawkins Shawn A

    2008-08-01

    Full Text Available Abstract The genome of a fecal pollution indicator phage, Bacteroides fragilis ATCC 51477-B1, was sequenced and consisted of 44,929 bases with a G+C content of 38.7%. Forty-six putative open reading frames were identified and genes were organized into functional clusters for host specificity, lysis, replication and regulation, and packaging and structural proteins.

  2. Expression of arsenic resistance genes in the obligate anaerobe Bacteroides vulgatus ATCC 8482, a gut microbiome bacterium

    OpenAIRE

    Li, Jiaojiao; Mandal, Goutam; Rosen, Barry P.

    2016-01-01

    The response of the obligate anaerobe Bacteroides vulgatus ATCC 8482, a common human gut microbiota, to arsenic was determined. B. vulgatus ATCC 8482 is highly resistant to pentavalent As(V) and methylarsenate (MAs(V)). It is somewhat more sensitive to trivalent inorganic As(III) but 100-fold more sensitive to methylarsenite (MAs(III)) than to As(III). B. vulgatus ATCC 8482 has eight continuous genes in its genome that we demonstrate form an arsenical-inducible transcriptional unit. The first...

  3. Expression of arsenic resistance genes in the obligate anaerobe Bacteroides vulgatus ATCC 8482, a gut microbiome bacterium.

    Science.gov (United States)

    Li, Jiaojiao; Mandal, Goutam; Rosen, Barry P

    2016-06-01

    The response of the obligate anaerobe Bacteroides vulgatus ATCC 8482, a common human gut microbiota, to arsenic was determined. B. vulgatus ATCC 8482 is highly resistant to pentavalent As(V) and methylarsenate (MAs(V)). It is somewhat more sensitive to trivalent inorganic As(III) but 100-fold more sensitive to methylarsenite (MAs(III)) than to As(III). B. vulgatus ATCC 8482 has eight continuous genes in its genome that we demonstrate form an arsenical-inducible transcriptional unit. The first gene of this ars operon, arsR, encodes a putative ArsR As(III)-responsive transcriptional repressor. The next three genes encode proteins of unknown function. The remaining genes, arsDABC, have well-characterized roles in detoxification of inorganic arsenic, but there are no known genes for MAs(III) resistance. Expression of each gene after exposure to trivalent and pentavalent inorganic and methylarsenicals was analyzed. MAs(III) was the most effective inducer. The arsD gene was the most highly expressed of the ars operon genes. These results demonstrate that this anaerobic microbiome bacterium has arsenic-responsive genes that confer resistance to inorganic arsenic and may be responsible for the organism's ability to maintain its prevalence in the gut following dietary exposure to inorganic arsenic. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Extensive Mobilome-Driven Genome Diversification in Mouse Gut-Associated Bacteroides vulgatus mpk.

    Science.gov (United States)

    Lange, Anna; Beier, Sina; Steimle, Alex; Autenrieth, Ingo B; Huson, Daniel H; Frick, Julia-Stefanie

    2016-04-25

    Like many other Bacteroides species, Bacteroides vulgatus strain mpk, a mouse fecal isolate which was shown to promote intestinal homeostasis, utilizes a variety of mobile elements for genome evolution. Based on sequences collected by Pacific Biosciences SMRT sequencing technology, we discuss the challenges of assembling and studying a bacterial genome of high plasticity. Additionally, we conducted comparative genomics comparing this commensal strain with the B. vulgatus type strain ATCC 8482 as well as multiple other Bacteroides and Parabacteroides strains to reveal the most important differences and identify the unique features of B. vulgatus mpk. The genome of B. vulgatus mpk harbors a large and diverse set of mobile element proteins compared with other sequenced Bacteroides strains. We found evidence of a number of different horizontal gene transfer events and a genome landscape that has been extensively altered by different mobilization events. A CRISPR/Cas system could be identified that provides a possible mechanism for preventing the integration of invading external DNA. We propose that the high genome plasticity and the introduced genome instabilities of B. vulgatus mpk arising from the various mobilization events might play an important role not only in its adaptation to the challenging intestinal environment in general, but also in its ability to interact with the gut microbiota. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  5. Species differentiation of Bacteroides dorei from Bacteroides vulgatus and Bacteroides ovatus from Bacteroides xylanisolvens - Back to basics

    DEFF Research Database (Denmark)

    Micha Pedersen, Rune; Marmolin, Ea Sofie; Justesen, Ulrik S

    2013-01-01

    We present the results from 16S sequencing and phenotypic tests for differentiation of Bacteroides dorei from Bacteroides vulgatus and Bacteroides ovatus from Bacteroides xylanisolvens, which was not possible with MALDI-TOF MS. Testing with β-glucosidase could differentiate B. dorei from B. vulga....... vulgatus and a negative catalase reaction could identify B. xylanisolvens....

  6. Cellulase producing microorganism ATCC 55702

    Science.gov (United States)

    Dees, H. Craig

    1997-01-01

    Bacteria which produce large amounts of cellulase--containing cell-free fermentate have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase producing bacterium (ATCC 55702), which was identified through replicate plating. ATCC 55702 has improved characteristics and qualifies for the degradation of cellulosic waste materials for fuel production, food processing, textile processing, and other industrial applications. ATCC 55702 is an improved bacterial host for genetic manipulations using recombinant DNA techniques, and is less likely to destroy genetic manipulations using standard mutagenesis techniques.

  7. Stimulation of lymphocytes in vitro by Bacteroides intermedius and Bacteroides (Porphyromonas) gingivalis sonicates

    NARCIS (Netherlands)

    Raber-Durlacher, J. E.; Zeijlemaker, W. P.; Meinesz, A. A.; Abraham-Inpijn, L.

    1990-01-01

    The present study was designed to assess whether the in vitro stimulation of lymphocytes by sonicates of Bacteroides intermedius and Bacteroides (Porphyromonas) gingivalis is antigen specific or non-specific. In addition, the role of T and B lymphocytes in these responses was assessed. Peripheral

  8. Defining the bacteroides ribosomal binding site.

    Science.gov (United States)

    Wegmann, Udo; Horn, Nikki; Carding, Simon R

    2013-03-01

    The human gastrointestinal tract, in particular the colon, hosts a vast number of commensal microorganisms. Representatives of the genus Bacteroides are among the most abundant bacterial species in the human colon. Bacteroidetes diverged from the common line of eubacterial descent before other eubacterial groups. As a result, they employ unique transcription initiation signals and, because of this uniqueness, they require specific genetic tools. Although some tools exist, they are not optimal for studying the roles and functions of these bacteria in the human gastrointestinal tract. Focusing on translation initiation signals in Bacteroides, we created a series of expression vectors allowing for different levels of protein expression in this genus, and we describe the use of pepI from Lactobacillus delbrueckii subsp. lactis as a novel reporter gene for Bacteroides. Furthermore, we report the identification of the 3' end of the 16S rRNA of Bacteroides ovatus and analyze in detail its ribosomal binding site, thus defining a core region necessary for efficient translation, which we have incorporated into the design of our expression vectors. Based on the sequence logo information from the 5' untranslated region of other Bacteroidales ribosomal protein genes, we conclude that our findings are relevant to all members of this order.

  9. Digestion of proteoglycan by Bacteroides thetaiotaomicron.

    OpenAIRE

    Kuritza, A P; Salyers, A A

    1983-01-01

    It has been shown previously that Bacteroides thetaiotaomicron, a human colonic anaerobe, can utilize the tissue mucopolysaccharide chondroitin sulfate as a source of carbon and energy and that the enzymes involved in this utilization are all cell associated (A. A. Salyers and M. B. O'Brien, J. Bacteriol. 143:772-780, 1980). Since chondroitin sulfate does not generally occur in isolated form in tissue, but rather is bound covalently in proteoglycan, we investigated the extent to which chondro...

  10. Phylogeny of Bacteroides, Prevotella, and Porphyromonas spp. and related bacteria.

    Science.gov (United States)

    Paster, B J; Dewhirst, F E; Olsen, I; Fraser, G J

    1994-01-01

    The phylogenetic structure of the bacteroides subgroup of the cytophaga-flavobacter-bacteroides (CFB) phylum was examined by 16S rRNA sequence comparative analysis. Approximately 95% of the 16S rRNA sequence was determined for 36 representative strains of species of Prevotella, Bacteroides, and Porphyromonas and related species by a modified Sanger sequencing method. A phylogenetic tree was constructed from a corrected distance matrix by the neighbor-joining method, and the reliability of tree branching was established by bootstrap analysis. The bacteroides subgroup was divided primarily into three major phylogenetic clusters which contained most of the species examined. The first cluster, termed the prevotella cluster, was composed of 16 species of Prevotella, including P. melaninogenica, P. intermedia, P. nigrescens, and the ruminal species P. ruminicola. Two oral species, P. zoogleoformans and P. heparinolytica, which had been recently placed in the genus Prevotella, did not fall within the prevotella cluster. These two species and six species of Bacteroides, including the type species B. fragilis, formed the second cluster, termed the bacteroides cluster. The third cluster, termed the porphyromonas cluster, was divided into two subclusters. The first contained Porphyromonas gingivalis, P. endodontalis, P. asaccharolytica, P. circumdentaria, P. salivosa, [Bacteroides] levii (the brackets around genus are used to indicate that the species does not belong to the genus by the sensu stricto definition), and [Bacteroides] macacae, and the second subcluster contained [Bacteroides] forsythus and [Bacteroides] distasonis. [Bacteroides] splanchnicus fell just outside the three major clusters but still belonged within the bacteroides subgroup. With few exceptions, the 16 S rRNA data were in overall agreement with previously proposed reclassifications of species of Bacteroides, Prevotella, and Porphyromonas. Suggestions are made to accommodate those species which do not

  11. Molecular genetic studies of bacteroides fragilis

    International Nuclear Information System (INIS)

    Southern, J.A.

    1986-03-01

    This study aimed at providing a means for probing the molecular genetic organization of B.fragilis, particularly those strains where the DNA repair mechanisms had been described. The following routes of investigation were followed: the bacteriocin of B.fragilis BF-1; the investigation of any plasmids which might be discovered, with the aim of constructing a hybrid plasmid which might replicate in both E.coli and B.fragilis; and the preparation of a genetic library which could be screened for Bacteroides genes which might function in E.coli. Should any genes be isolated by screening the library they were to be studied with regard to their expression and regulation in E.coli. The above assays make use of radioactive markers such as 14 C, 35 S, 32 P, and 3 H in the labelling of RNA, plasmids and probes

  12. Evaluation of Lactobacillus sanfransicencis (ATCC 14917)and ...

    African Journals Online (AJOL)

    The effect of sourdoughs, produced with Lactobacillus sanfransicencis (ATCC 14917) and Lactobacillus plantarum (ATCC 43332) at different fermentation time, fermentation temperature and type of starter culture on the staling and microbiological shelf life of Iranian Barbari wheat bread was studied. For statistical analysis a ...

  13. Taxonomy, virulence and epidemiology of black-pigmented Bacteroides species in relation to oral infections.

    Science.gov (United States)

    van Steenbergen, T J; van Winkelhoff, A J; van der Velden, U; de Graaff, J

    1989-01-01

    Black-pigmented Bacteroides species are recognized as suspected pathogens of oral infections. Developments in the taxonomy of this group include description of a new asaccharolytic species, Bacteroides salivosus, and proposal for the reclassification of the asaccharolytic species into a separate genus, Porphyromonas. Studies on the pathogenicity and virulence of black-pigmented Bacteroides species have identified Bacteroides gingivalis as the most virulent species. B. gingivalis and Bacteroides intermedius have been associated with periodontal diseases; Bacteroides endodontalis is isolated specifically from infections in the oral cavity, and other black-pigmented Bacteroides species are recovered from oral mucous sites. DNA restriction endonuclease analysis was adapted for typing of B. gingivalis and B. intermedius.

  14. CRISPR-Cas Systems in Bacteroides fragilis, an Important Pathobiont in the Human Gut Microbiome

    OpenAIRE

    Tajkarimi, Mehrdad; Wexler, Hannah M.

    2017-01-01

    Background: While CRISPR-Cas systems have been identified in bacteria from a wide variety of ecological niches, there are no studies to describe CRISPR-Cas elements in Bacteroides species, the most prevalent anaerobic bacteria in the lower intestinal tract. Microbes of the genus Bacteroides make up ~25% of the total gut microbiome. Bacteroides fragilis comprises only 2% of the total Bacteroides in the gut, yet causes of >70% of Bacteroides infections. The factors causing it to transition from...

  15. Bacteremia with Bacteroides pyogenes after a cat bite

    DEFF Research Database (Denmark)

    Madsen, Ida Ringsborg; Justesen, Ulrik Stenz

    2011-01-01

    Animal bite wounds are often infected with bacteria from the animal's oral flora. We report what we believe to be the first case of bacteremia with Bacteroides pyogenes resulting from an infected cat bite.......Animal bite wounds are often infected with bacteria from the animal's oral flora. We report what we believe to be the first case of bacteremia with Bacteroides pyogenes resulting from an infected cat bite....

  16. Selective medium for the isolation of Bacteroides gingivalis.

    OpenAIRE

    Hunt, D E; Jones, J V; Dowell, V R

    1986-01-01

    Bacteroides gingivalis has been implicated in various forms of periodontal disease and may be responsible for other diseases in humans. The role of B. gingivalis in disease has been difficult to assess, because it is inhibited by most selective media commonly used by clinical laboratories to aid in isolating gram-negative, nonsporeforming anaerobes. We have developed a new medium, Bacteroides gingivalis agar, which contains bacitracin, colistin, and nalidixic acid as selective agents. This me...

  17. Monoclonal antibody against a serotype antigen of Porphyromonas (Bacteroides) endodontalis and characteristics of the antigen.

    Science.gov (United States)

    Hanazawa, S; Sagiya, T; Amano, S; Nishikawa, H; Kitano, S

    1990-01-01

    Recent studies have demonstrated the presence of three serotypes (O1K1, O1K2, and O1K-) of Porphyromonas (Bacteroides) endodontalis. In the present study, a hybridoma cell line producing monoclonal antibody (BEE11) specific for serotype O1K1 of P. endodontalis was established. The specificity of the antibody was evaluated by enzyme-linked immunosorbent assay and immunoslot blot analysis. BEE11 antibody reacted with strains ATCC 35406, HG 400, and HG 421 of the bacterium. However, it did not react with HG 422 or HG 948. Also, the antibody did not react with any of the black-pigmented Bacteroides strains tested. Although the antibody reacted with total cell envelope and capsule materials, it did not do so with lipopolysaccharide. The antibody reacted with antigen material having a molecular mass of 110 kilodaltons (kDa), as judged from fractionation by Superose 12 prep gel chromatography. When the peak fraction from the Superose 12 column was subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot (immunoblot) analysis, the reactivity was detected as a single band at an apparent molecular mass of about 52 kDa. The antigen material purified partially by high-performance liquid chromatography was sensitive to trypsin, V8 protease, and heating to 80 degrees C but not to neuraminidase. Therefore, the present study shows that BEE11 antibody recognizes a serotype antigen of P. endodontalis which may be a dimer consisting of monomers having molecular masses of approximately 52 kDa and sensitivity to proteases and heat. Images PMID:2370106

  18. Bacteroides gingivalis and Bacteroides intermedius recognize different sites on human fibrinogen

    International Nuclear Information System (INIS)

    Lantz, M.S.; Allen, R.D.; Bounelis, P.; Switalski, L.M.; Hook, M.

    1990-01-01

    Bacteroides (Porphyromonas) gingivalis and Bacteroides (Porphyromonas) intermedius have been implicated in the etiology of human periodontal diseases. These organisms are able to bind and degrade human fibrinogen, and these interactions may play a role in the pathogenesis of periodontal disease. In attempts to map the bacterial binding sites along the fibrinogen molecule, we have found that strains of B. gingivalis and B. intermedius, respectively, recognize spatially distant and distinct sites on the fibrinogen molecule. Isolated reduced and alkylated alpha-, beta-, and gamma-fibrinogen chains inhibited binding of 125I-fibrinogen to both Bacteroides species in a concentration-dependent manner. Plasmin fragments D and to some extent fragment E, however, produced a concentration-dependent inhibition of 125I-fibrinogen binding to B. intermedius strains but did not affect binding of 125I-fibrinogen to B. gingivalis strains. Radiolabeled fibrinogen chains and fragments were compared with 125I-fibrinogen with respect to specificity and reversibility of binding to bacteria. According to these criteria, gamma chain most closely resembled the native fibrinogen molecule in behavior toward B. gingivalis strains and fragments D most closely resembled fibrinogen in behavior toward B. intermedius strains. The ability of anti-human fibrinogen immunoglobulin G (IgG) to inhibit binding of 125I-fibrinogen to B. intermedius strains was greatly reduced by absorbing the IgG with fragments D. Absorbing the IgG with fragments D had no effect on the ability of the antibody to inhibit binding of 125I-fibrinogen to B. gingivalis strains. A purified staphylococcal fibrinogen-binding protein blocked binding of 125I-fibrinogen to B. intermedius strains but not to B. gingivalis strains

  19. Bacteroides gingivalis and Bacteroides intermedius recognize different sites on human fibrinogen

    Energy Technology Data Exchange (ETDEWEB)

    Lantz, M.S.; Allen, R.D.; Bounelis, P.; Switalski, L.M.; Hook, M. (Univ. of Alabama, Birmingham (USA))

    1990-02-01

    Bacteroides (Porphyromonas) gingivalis and Bacteroides (Porphyromonas) intermedius have been implicated in the etiology of human periodontal diseases. These organisms are able to bind and degrade human fibrinogen, and these interactions may play a role in the pathogenesis of periodontal disease. In attempts to map the bacterial binding sites along the fibrinogen molecule, we have found that strains of B. gingivalis and B. intermedius, respectively, recognize spatially distant and distinct sites on the fibrinogen molecule. Isolated reduced and alkylated alpha-, beta-, and gamma-fibrinogen chains inhibited binding of 125I-fibrinogen to both Bacteroides species in a concentration-dependent manner. Plasmin fragments D and to some extent fragment E, however, produced a concentration-dependent inhibition of 125I-fibrinogen binding to B. intermedius strains but did not affect binding of 125I-fibrinogen to B. gingivalis strains. Radiolabeled fibrinogen chains and fragments were compared with 125I-fibrinogen with respect to specificity and reversibility of binding to bacteria. According to these criteria, gamma chain most closely resembled the native fibrinogen molecule in behavior toward B. gingivalis strains and fragments D most closely resembled fibrinogen in behavior toward B. intermedius strains. The ability of anti-human fibrinogen immunoglobulin G (IgG) to inhibit binding of 125I-fibrinogen to B. intermedius strains was greatly reduced by absorbing the IgG with fragments D. Absorbing the IgG with fragments D had no effect on the ability of the antibody to inhibit binding of 125I-fibrinogen to B. gingivalis strains. A purified staphylococcal fibrinogen-binding protein blocked binding of 125I-fibrinogen to B. intermedius strains but not to B. gingivalis strains.

  20. Black-pigmented Bacteroides spp. in human apical periodontitis.

    Science.gov (United States)

    Haapasalo, M; Ranta, H; Ranta, K; Shah, H

    1986-07-01

    The incidence of black-pigmented (BP) Bacteroides spp. in 62 human dental root canal infections (35 acute and 27 clinically asymptomatic cases of apical periodontitis) in 57 adults was studied. Altogether 37 strains of BP Bacteroides were found in 31 infections, always in mixed anaerobic infections. Two different BP Bacteroides species were present in six infections. B. intermedius was most frequently isolated (15 of 62 canals; 24%) followed by B. denticola which was present in 12 cases. Asaccharolytic BP Bacteroides species, B. gingivalis and B. endodontalis, were found in eight cases. BP Bacteroides species were found both from symptomatic and asymptomatic infections, but there were also several symptomatic cases from which BP Bacteroides species were not isolated. B. gingivalis and B. endodontalis were present only in acute infections, B. intermedius was found both in symptomatic and asymptomatic infections, and B. denticola occurred mostly in asymptomatic infections. BP Bacteroides species were isolated initially from 9 of the 11 teeth with symptoms at 1 week, but only from 22 of the 51 teeth that were symptomless at 1 week. Two strains of B. denticola were resistant to penicillin G at a concentration of 2.4 micrograms/ml, but the MIC of penicillin G for all other strains was 0.6 micrograms/ml or lower. Forty-two randomly selected patients received penicillin V (oral administration, 650 mg, three times daily) during the first week of endodontic therapy. Penicillin had no effect on the occurrence of symptoms after 1 week compared with the control group (20 patients).

  1. Selective medium for the isolation of Bacteroides gingivalis.

    Science.gov (United States)

    Hunt, D E; Jones, J V; Dowell, V R

    1986-03-01

    Bacteroides gingivalis has been implicated in various forms of periodontal disease and may be responsible for other diseases in humans. The role of B. gingivalis in disease has been difficult to assess, because it is inhibited by most selective media commonly used by clinical laboratories to aid in isolating gram-negative, nonsporeforming anaerobes. We have developed a new medium, Bacteroides gingivalis agar, which contains bacitracin, colistin, and nalidixic acid as selective agents. This medium allowed B. gingivalis to be isolated from oral specimens with little difficulty and also allowed B. gingivalis to be isolated from phenotypically similar Bacteroides species, such as B. asaccharolyticus and B. endodontalis, with which it can easily be confused.

  2. Immunomodulatory effects of Bacteroides products on in vitro human lymphocyte functions.

    Science.gov (United States)

    Shenker, B J; Slots, J

    1989-03-01

    Bacteroides spp. have been implicated in the pathogenesis of several diseases, including periodontal diseases. In this study sonic extracts of 6 Bacteroides spp. were examined for their abilities to alter human lymphocyte function. We found that soluble extracts from Bacteroides intermedius, Bacteroides endodontalis, Bacteroides asaccharolyticus, Bacteroides melaninogenicus, and to a lesser degree Bacteroides loescheii, caused dose-dependent inhibition of human lymphocyte responsiveness to both mitogens and antigens. Suppression involved altered DNA, RNA and protein synthesis as well as immunoglobulin production. In contrast, Bacteroides gingivalis did not suppress these responses; instead, it stimulated lymphocyte proliferation and enhanced immunoglobulin production. It has been proposed that impaired host defense may play a pivotal role in the pathogenesis of many infections. The data presented in this paper suggest that microbial mediated immunosuppression may conceivably alter the nature and consequences of host-parasite interactions in periodontal disease.

  3. Bacteroides cutis,’ a new bacterial species isolated from human skin

    Directory of Open Access Journals (Sweden)

    S. Belkacemi

    2018-03-01

    Full Text Available We report the main characteristics of ‘Bacteroides cutis’ sp. nov., strain Marseille-P4118T (= CSUR P4118, a new species within the genus Bacteroides. This strain was isolated from a skin sample of a 75-year-old man from Marseille. Keywords: Bacteroides cutis, culturomics, intensive care unit patient, skin microbiota, taxonogenomics

  4. Uptake and metabolism of carbohydrates by Bradyrhizobium japonicum bacteroids

    International Nuclear Information System (INIS)

    Salminen, S.O.; Streeter, J.G.

    1987-01-01

    Bradyrhizobium japonicum bacteroids were isolated anaerobically and were supplied with 14 C-labeled trehalose, sucrose, UDP-glucose, glucose, or fructose under low O 2 (2% in the gas phase). Uptake and conversion of 14 C to CO 2 were measured at intervals up to 90 minutes. Of the five compounds studied, UDP-glucose was most rapidly absorbed but it was very slowly metabolized. Trehalose was the sugar most rapidly converted to CO 2 , and fructose was respired at a rate of at least double that of glucose. Sucrose and glucose were converted to CO 2 at a very low but measurable rate ( 2 at a rate 30 times greater than the conversion of carbon Number 6 to CO 2 , indicating high activity of the pentose phosphate pathway. Enzymes of the Entner-Doudoroff pathway were not detected in bacteroids, but very low activities of sucrose synthase and phosphofructokinase were demonstrated. Although metabolism of sugars by B. japonicum bacteroids was clearly demonstrated, the rate of sugar uptake was only 1/30 to 1/50 the rate of succinate uptake. The overall results support the view that, although bacteroids metabolize sugars, the rates are very low and are inadequate to support nitrogenase

  5. Genome sequence of Lactobacillus rhamnosus ATCC 8530.

    Science.gov (United States)

    Pittet, Vanessa; Ewen, Emily; Bushell, Barry R; Ziola, Barry

    2012-02-01

    Lactobacillus rhamnosus is found in the human gastrointestinal tract and is important for probiotics. We became interested in L. rhamnosus isolate ATCC 8530 in relation to beer spoilage and hops resistance. We report here the genome sequence of this isolate, along with a brief comparison to other available L. rhamnosus genome sequences.

  6. Genome Sequence of Lactobacillus rhamnosus ATCC 8530

    OpenAIRE

    Pittet, Vanessa; Ewen, Emily; Bushell, Barry R.; Ziola, Barry

    2012-01-01

    Lactobacillus rhamnosus is found in the human gastrointestinal tract and is important for probiotics. We became interested in L. rhamnosus isolate ATCC 8530 in relation to beer spoilage and hops resistance. We report here the genome sequence of this isolate, along with a brief comparison to other available L. rhamnosus genome sequences.

  7. Synthetic Peptides Derived from Bovine Lactoferricin Exhibit Antimicrobial Activity against E. coli ATCC 11775, S. maltophilia ATCC 13636 and S. enteritidis ATCC 13076

    Directory of Open Access Journals (Sweden)

    Nataly De Jesús Huertas Méndez

    2017-03-01

    Full Text Available Linear, dimeric, tetrameric, and cyclic peptides derived from lactoferricin B–containing non-natural amino acids and the RWQWR motif were synthesized, purified, and characterized using RP-HPLC, MALDI-TOF mass spectrometry, and circular dichroism. The antibacterial activity of peptides against Escherichia coli ATCC 11775, Stenotrophomonas maltophilia ATCC 13636, and Salmonella enteritidis ATCC 13076 was evaluated. The minimum inhibitory concentration (MIC and minimum bactericidal concentration (MBC were determined. The synthetic bovine lactoferricin exhibited antibacterial activity against E. coli ATCC 11775 and S. enteritidis ATCC 13076. The dimeric peptide (RRWQWR2K-Ahx exhibited the highest antibacterial activity against the tested bacterial strain. The monomeric, cyclic, tetrameric, and palindromic peptides containing the RWQWR motif exhibited high and specific activity against E. coli ATCC 11775. The results suggest that short peptides derived from lactoferricin B could be considered as potential candidates for the development of antibacterial agents against infections caused by E. coli.

  8. Synthetic Peptides Derived from Bovine Lactoferricin Exhibit Antimicrobial Activity against E. coli ATCC 11775, S. maltophilia ATCC 13636 and S. enteritidis ATCC 13076.

    Science.gov (United States)

    Huertas Méndez, Nataly De Jesús; Vargas Casanova, Yerly; Gómez Chimbi, Anyelith Katherine; Hernández, Edith; Leal Castro, Aura Lucia; Melo Diaz, Javier Mauricio; Rivera Monroy, Zuly Jenny; García Castañeda, Javier Eduardo

    2017-03-12

    Linear, dimeric, tetrameric, and cyclic peptides derived from lactoferricin B-containing non-natural amino acids and the RWQWR motif were synthesized, purified, and characterized using RP-HPLC, MALDI-TOF mass spectrometry, and circular dichroism. The antibacterial activity of peptides against Escherichia coli ATCC 11775, Stenotrophomonas maltophilia ATCC 13636, and Salmonella enteritidis ATCC 13076 was evaluated. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined. The synthetic bovine lactoferricin exhibited antibacterial activity against E. coli ATCC 11775 and S. enteritidis ATCC 13076. The dimeric peptide (RRWQWR)₂K-Ahx exhibited the highest antibacterial activity against the tested bacterial strain. The monomeric, cyclic, tetrameric, and palindromic peptides containing the RWQWR motif exhibited high and specific activity against E. coli ATCC 11775. The results suggest that short peptides derived from lactoferricin B could be considered as potential candidates for the development of antibacterial agents against infections caused by E. coli .

  9. Bacteroides species produce Vibrio harveyi autoinducer 2-related molecules.

    Science.gov (United States)

    Antunes, Luis Caetano Martha; Ferreira, Lívia Queiroz; Ferreira, Eliane Oliveira; Miranda, Karla Rodrigues; Avelar, Kátia Eliane Santos; Domingues, Regina Maria Cavalcanti Pilotto; Ferreira, Maria Candida de Souza

    2005-10-01

    Quorum sensing is a density-dependent gene regulation mechanism that has been described in many bacterial species in the last decades. Bacteria that use quorum sensing as part of their gene regulation circuits produce molecules called autoinducers that accumulate in the environment and activate target genes in a quorum-dependent way. Some specific clues led us to hypothesize that Bacteroides species can produce autoinducers and possess a quorum sensing system. First, Bacteroides are anaerobic bacteria that are frequently involved in polymicrobial infections. These infections often involve Pseudomonas aeruginosa and Staphylococcus aureus, two of the best understood examples of bacteria that employ quorum sensing systems as part of their pathogenesis. Also, studies have detected the presence of a quorum sensing gene involved in the production of autoinducers in Porphyromonas gingivalis, a species closely related to the Bacteroides genus. These and other evidences prompted us to investigate if Bacteroides strains could produce autoinducer molecules that could be detected by a Vibrio harveyi reporter system. In this paper, we show that supernatants of B. fragilis, B. vulgatus and B. distasonis strains are able to stimulate the V. harveyi quorum sensing system 2. Also, we were able to demonstrate that the stimulation detected is due to the production of autoinducer molecules and not the growth of reporter strains after addition of supernatant. Moreover, the phenomenon observed does not seem to represent the degradation of repressors possibly present in the culture medium used. We could also amplify bands from some of the strains tested using primers designed to the luxS gene of Escherichia coli. Altogether, our results show that B. fragilis, B. vulgatus and B. distasonis (but possibly some other species) can produce V. harveyi autoinducer 2-related molecules. However, the role of such molecules in the biology of these organisms remains unknown.

  10. Exploratory Investigation of Bacteroides fragilis Transcriptional Response during In vitro Exposure to Subinhibitory Concentration of Metronidazole

    Science.gov (United States)

    de Freitas, Michele C. R.; Resende, Juliana A.; Ferreira-Machado, Alessandra B.; Saji, Guadalupe D. R. Q.; de Vasconcelos, Ana T. R.; da Silva, Vânia L.; Nicolás, Marisa F.; Diniz, Cláudio G.

    2016-01-01

    Bacteroides fragilis, member from commensal gut microbiota, is an important pathogen associated to endogenous infections and metronidazole remains a valuable antibiotic for the treatment of these infections, although bacterial resistance is widely reported. Considering the need of a better understanding on the global mechanisms by which B. fragilis survive upon metronidazole exposure, we performed a RNA-seq transcriptomic approach with validation of gene expression results by qPCR. Bacteria strains were selected after in vitro subcultures with subinhibitory concentration (SIC) of the drug. From a wild type B. fragilis ATCC 43859 four derivative strains were selected: first and fourth subcultures under metronidazole exposure and first and fourth subcultures after drug removal. According to global gene expression analysis, 2,146 protein coding genes were identified, of which a total of 1,618 (77%) were assigned to a Gene Ontology term (GO), indicating that most known cellular functions were taken. Among these 2,146 protein coding genes, 377 were shared among all strains, suggesting that they are critical for B. fragilis survival. In order to identify distinct expression patterns, we also performed a K-means clustering analysis set to 15 groups. This analysis allowed us to detect the major activated or repressed genes encoding for enzymes which act in several metabolic pathways involved in metronidazole response such as drug activation, defense mechanisms against superoxide ions, high expression level of multidrug efflux pumps, and DNA repair. The strains collected after metronidazole removal were functionally more similar to those cultured under drug pressure, reinforcing that drug-exposure lead to drastic persistent changes in the B. fragilis gene expression patterns. These results may help to elucidate B. fragilis response during metronidazole exposure, mainly at SIC, contributing with information about bacterial survival strategies under stress conditions in their

  11. Dietary pectic glycans are degraded by coordinated enzyme pathways in human colonic Bacteroides

    DEFF Research Database (Denmark)

    Luis, Ana S.; Briggs, Jonathon; Zhang, Xiaoyang

    2018-01-01

    The major nutrients available to human colonic Bacteroides species are glycans, exemplified by pectins, a network of covalently linked plant cell wall polysaccharides containing galacturonic acid (GalA). Metabolism of complex carbohydrates by the Bacteroides genus is orchestrated by polysaccharid...... PULs ensuring a continuous supply of inducing molecules throughout growth. The contribution of Bacteroides spp. to metabolism of the pectic network is illustrated by cross-feeding between organisms....

  12. Comparison of proteins involved in chondroitin sulfate utilization by three colonic Bacteroides species.

    OpenAIRE

    Lipeski, L; Guthrie, E P; O'Brien, M; Kotarski, S F; Salyers, A A

    1986-01-01

    Three species of colonic bacteria can ferment the mucopolysaccharide chondroitin sulfate: Bacteroides ovatus, Bacteroides sp. strain 3452A (an unnamed DNA homology group), and B. thetaiotaomicron. Proteins associated with the utilization of chondroitin sulfate by B. thetaiotaomicron have been characterized previously. In this report we compare chondroitin lyases and chondroitin sulfate-associated outer membrane polypeptides of B. ovatus and Bacteroides sp. strain 3452A with those of B. thetai...

  13. Proteomic Analysis of the Secretome of Cellulomonas fimi ATCC 484 and Cellulomonas flavigena ATCC 482.

    Directory of Open Access Journals (Sweden)

    Warren W Wakarchuk

    Full Text Available The bacteria in the genus Cellulomonas are known for their ability to degrade plant cell wall biomass. Cellulomonas fimi ATCC 484 and C. flavigena ATCC 482 have been the subject of much research into secreted cellulases and hemicellulases. Recently the genome sequences of both C. fimi ATCC 484 and C. flavigena ATCC 482 were published, and a genome comparison has revealed their full spectrum of possible carbohydrate-active enzymes (CAZymes. Using mass spectrometry, we have compared the proteins secreted by C. fimi and C. flavigena during growth on the soluble cellulose substrate, carboxymethylcellulose (CMC, as well as a soluble xylan fraction. Many known C. fimi CAZymes were detected, which validated our analysis, as were a number of new CAZymes and other proteins that, though identified in the genome, have not previously been observed in the secretome of either organism. Our data also shows that many of these are co-expressed on growth of either CMC or xylan. This analysis provides a new perspective on Cellulomonas enzymes and provides many new CAZyme targets for characterization.

  14. Draft Genome Sequence of Type Strain Streptococcus gordonii ATCC 10558

    DEFF Research Database (Denmark)

    Rasmussen, Louise Hesselbjerg; Dargis, Rimtas; Christensen, Jens Jørgen Elmer

    2016-01-01

    Streptococcus gordonii ATCC 10558T was isolated from a patient with infective endocarditis in 1946 and announced as a type strain in 1989. Here, we report the 2,154,510-bp draft genome sequence of S. gordonii ATCC 10558T. This sequence will contribute to knowledge about the pathogenesis of infect......Streptococcus gordonii ATCC 10558T was isolated from a patient with infective endocarditis in 1946 and announced as a type strain in 1989. Here, we report the 2,154,510-bp draft genome sequence of S. gordonii ATCC 10558T. This sequence will contribute to knowledge about the pathogenesis...

  15. Draft Genome Sequence of Escherichia coli K-12 (ATCC 10798)

    OpenAIRE

    Dimitrova, Daniela; Engelbrecht, Kathleen C.; Putonti, Catherine; Koenig, David W.; Wolfe, Alan J.

    2017-01-01

    ABSTRACT Here, we present the draft genome sequence of Escherichia coli ATCC 10798. E.?coli ATCC 10798 is a K-12 strain, one of the most well-studied model microorganisms. The size of the genome was 4,685,496?bp, with a G+C content of 50.70%. This assembly consists of 62 contigs and the F plasmid.

  16. Persistence of Bacteroides ovatus under simulated sunlight irradiation

    KAUST Repository

    Dong, Shengkun

    2014-07-04

    Background: Bacteroides ovatus, a member of the genus Bacteroides, is considered for use in molecular-based methods as a general fecal indicator. However, knowledge on its fate and persistence after a fecal contamination event remains limited. In this study, the persistence of B. ovatus was evaluated under simulated sunlight exposure and in conditions similar to freshwater and seawater. By combining propidium monoazide (PMA) treatment and quantitative polymerase chain reaction (qPCR) detection, the decay rates of B. ovatus were determined in the presence and absence of exogenous photosensitizers and in salinity up to 39.5 parts per thousand at 27°C. Results: UVB was found to be important for B. ovatus decay, averaging a 4 log10 of decay over 6 h of exposure without the presence of extracellular photosensitizers. The addition of NaNO2, an exogenous sensitizer producing hydroxyl radicals, did not significantly change the decay rate of B. ovatus in both low and high salinity water, while the exogenous sensitizer algae organic matter (AOM) slowed down the decay of B. ovatus in low salinity water. At seawater salinity, the decay rate of B. ovatus was slower than that in low salinity water, except when both NaNO2 and AOM were present. Conclusion: The results of laboratory experiments suggest that if B. ovatus is released into either freshwater or seawater environment in the evening, 50% of it may be intact by the next morning; if it is released at noon, only 50% may be intact after a mere 5 min of full spectrum irradiation on a clear day. This study provides a mechanistic understanding to some of the important environmental relevant factors that influenced the inactivation kinetics of B. ovatus in the presence of sunlight irradiation, and would facilitate the use of B. ovatus to indicate the occurrence of fecal contamination.

  17. 5S ribosomal ribonucleic acid sequences in Bacteroides and Fusobacterium: evolutionary relationships within these genera and among eubacteria in general

    Science.gov (United States)

    Van den Eynde, H.; De Baere, R.; Shah, H. N.; Gharbia, S. E.; Fox, G. E.; Michalik, J.; Van de Peer, Y.; De Wachter, R.

    1989-01-01

    The 5S ribosomal ribonucleic acid (rRNA) sequences were determined for Bacteroides fragilis, Bacteroides thetaiotaomicron, Bacteroides capillosus, Bacteroides veroralis, Porphyromonas gingivalis, Anaerorhabdus furcosus, Fusobacterium nucleatum, Fusobacterium mortiferum, and Fusobacterium varium. A dendrogram constructed by a clustering algorithm from these sequences, which were aligned with all other hitherto known eubacterial 5S rRNA sequences, showed differences as well as similarities with respect to results derived from 16S rRNA analyses. In the 5S rRNA dendrogram, Bacteroides clustered together with Cytophaga and Fusobacterium, as in 16S rRNA analyses. Intraphylum relationships deduced from 5S rRNAs suggested that Bacteroides is specifically related to Cytophaga rather than to Fusobacterium, as was suggested by 16S rRNA analyses. Previous taxonomic considerations concerning the genus Bacteroides, based on biochemical and physiological data, were confirmed by the 5S rRNA sequence analysis.

  18. Bacteroides in the Infant Gut Consume Milk Oligosaccharides via Mucus-Utilization Pathways

    OpenAIRE

    Marcobal, Angela; Barboza, Mariana; Sonnenburg, Erica D.; Pudlo, Nicholas; Martens, Eric C.; Desai, Prerak; Lebrilla, Carlito B.; Weimer, Bart C.; Mills, David A.; German, J. Bruce; Sonnenburg, Justin L.

    2011-01-01

    Newborns are colonized with an intestinal microbiota shortly after birth but the factors governing the retention and abundance of specific microbial lineages are unknown. Nursing infants consume human milk oligosaccharides (HMOs) that pass undigested to the distal gut where they may be digested by microbes. We determined that the prominent neonate gut residents, Bacteroides thetaiotaomicron and Bacteroides fragilis, induce the same genes during HMO consumption that are used to harvest host mu...

  19. Evaluation of Ellagic acid on the activities of oral bacteria with the ...

    African Journals Online (AJOL)

    Streptococcus mutans ATCC 25175, Streptococcus sanguis ATCC 10556, Streptococcus salivarius ATCC 25975, Actinomyces naeslundii ATCC 12104, Actinomyces viscosus ATCC 15987, Lactobacillus rhamnosus ATCC 53103, Porphyromonas gingivalis ATCC 33277 and Bacteroides forsythus ATCC 43037 were the ...

  20. Draft Genome Sequence of Escherichia coli K-12 (ATCC 10798).

    Science.gov (United States)

    Dimitrova, Daniela; Engelbrecht, Kathleen C; Putonti, Catherine; Koenig, David W; Wolfe, Alan J

    2017-07-06

    Here, we present the draft genome sequence of Escherichia coli ATCC 10798. E. coli ATCC 10798 is a K-12 strain, one of the most well-studied model microorganisms. The size of the genome was 4,685,496 bp, with a G+C content of 50.70%. This assembly consists of 62 contigs and the F plasmid. Copyright © 2017 Dimitrova et al.

  1. Evidence for free-living Bacteroides in Cladophora along the shores of the Great Lakes

    Science.gov (United States)

    Whitman, Richard L.; Byappanahalli, Muruleedhara; Spoljaric, Ashley; Przybyla-Kelly, Katarzyna; Shively, Dawn A.; Nevers, Meredith

    2014-01-01

    Bacteroides is assumed to be restricted to the alimentary canal of animals and humans and is considered to be non-viable in ambient environments. We hypothesized that Bacteroides could persist and replicate within beach-stranded Cladophora glomerata mats in southern Lake Michigan, USA. Mean Bacteroides concentration (per GenBac3 Taqman quantitative PCR assay) during summer 2012 at Jeorse Park Beach was 5.2 log calibrator cell equivalents (CCE) g-1 dry weight (dw), ranging from 3.7 to 6.7. We monitored a single beach-stranded mat for 3 wk; bacterial concentrations increased by 1.6 log CCE g-1 dw and correlated significantly with ambient temperature (p = 0.003). Clonal growth was evident, as observed by >99% nucleotide sequence similarity among clones. In in vitro studies, Bacteroides concentrations increased by 5.5 log CCE g-1 after 7 d (27°C) in fresh Cladophora collected from rocks. Partial sequencing of the 16S rRNA gene of 36 clones from the incubation experiment showed highly similar genotypes (≥97% sequence overlap). The closest enteric Bacteroides spp. from the National Center for Biotechnology Information database were only 87 to 91% similar. Genomic similarity, clonality, growth, and persistence collectively suggest that putative, free-living Bacteroides inhabit Cladophora mats of southern Lake Michigan. These findings may have important biological, medical, regulatory, microbial source tracking, and public health implications.

  2. Probiotic Lactobacillus reuteri strains ATCC PTA 5289 and ATCC 55730 differ in their cariogenic properties in vitro.

    Science.gov (United States)

    Jalasvuori, Heli; Haukioja, Anna; Tenovuo, Jorma

    2012-12-01

    The effects of probiotics on cariogenic biofilms remain controversial. Our aim was to characterise two probiotic Lactobacillus reuteri strains, ATCC PTA 5289 and ATCC 55730 from a cariogenic standpoint in vitro. These strains are used in commercial products designed for oral health purposes. The adhesion and biofilm formation were studied on saliva-coated hydroxyapatite. The effects of glucose or sucrose on the biofilm formation were also tested. Arginine metabolism was assessed by measuring the pH in the presence of glucose and arginine. The degradation of hydroxyapatite was measured in three different growth media. Streptococcus mutans strains Ingbritt and MT 8148 were used as positive controls for bacterial adhesion and degradation of hydroxyapatite. Strain ATCC PTA 5289 adhered on saliva-coated hydroxyapatite and formed detectable biofilm, but strain ATCC 55730 was poor in both adhesion and biofilm formation. Both strains were arginolytic and raised the pH in the presence of arginine. The amount of dissolved calcium from hydroxyapatite correlated with bacterial growth rate and the final pH of the growth medium. L. reuteri strains ATCC PTA 5289 and ATCC 55730 differed in their adhesion, biofilm formation and arginine metabolism in vitro. Thus, these probiotic lactobacilli are likely to differ in their behaviour and cariogenic potential also in an oral environment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Rapid synthesis and metabolism of glutamate in N2-fixing bacteroids

    International Nuclear Information System (INIS)

    Salminen, S.O.; Streeter, J.G.

    1987-01-01

    Symbiotic nodule bacteroids are thought to support N 2 fixation mainly by metabolizing dicarboxylic acids to CO 2 , generating reductant and ATP required by nitrogenase. Bradyrhizobium japonicum bacteroids were isolated anaerobically and incubated at 2% O 2 with 14 C-labeled succinate, malate, glutamate, or aspartate. 14 CO 2 was collected, and the bacteroid contents separated into neutral, organic acid, and amino acid fractions. The respiration of substrates, relative to their uptake, was malate > glutamate > succinate > aspartate. Analysis of the fractions revealed that will all substrates the radioactivity was found mostly in the amino acid fraction. The labeling of the neutral fraction was negligible and only a small amount of label was found in the organic acid fraction indicating a small pool size. TLC of the amino acid fraction showed the label to be principally in glutamate. Glutamate contained 67, 80, 97, and 88% of the 14 C in the amino acid fraction in bacteroids fed with succinate, malate, glutamate and aspartate, respectively. The data suggest that glutamate may play an important role in the bacteroid function

  4. Fermentation of mucin and plant polysaccharides by strains of Bacteroides from the human colon.

    Science.gov (United States)

    Salyers, A A; Vercellotti, J R; West, S E; Wilkins, T D

    1977-01-01

    Ten Bacteroides species found in the human colon were surveyed for their ability to ferment mucins and plant polysaccharides ("dietary fiber"). A number of strains fermented mucopolysaccharides (heparin, hyaluronate, and chondroitin sulfate) and ovomucoid. Only 3 of the 188 strains tested fermented beef submaxillary mucin, and none fermented porcine gastric mucin. Many of the Bacteroides strains tested were also able to ferment a variety of plant polysaccharides, including amylose, dextran, pectin, gum tragacanth, gum guar, larch arabinogalactan, alginate, and laminarin. Some plant polysaccharides such as gum arabic, gum karaya, gum ghatti and fucoidan, were not utilized by any of the strains tested. The ability to utilize mucins and plant polysaccharides varied considerably among the Bacteroides species tested. PMID:848954

  5. Products of Dark CO2 Fixation in Pea Root Nodules Support Bacteroid Metabolism 1

    Science.gov (United States)

    Rosendahl, Lis; Vance, Carroll P.; Pedersen, Walther B.

    1990-01-01

    Products of the nodule cytosol in vivo dark [14C]CO2 fixation were detected in the plant cytosol as well as in the bacteroids of pea (Pisum sativum L. cv “Bodil”) nodules. The distribution of the metabolites of the dark CO2 fixation products was compared in effective (fix+) nodules infected by a wild-type Rhizobium leguminosarum (MNF 300), and ineffective (fix−) nodules of the R. leguminosarum mutant MNF 3080. The latter has a defect in the dicarboxylic acid transport system of the bacterial membrane. The 14C incorporation from [14C]CO2 was about threefold greater in the wild-type nodules than in the mutant nodules. Similarly, in wild-type nodules the in vitro phosphoenolpyruvate carboxylase activity was substantially greater than that of the mutant. Almost 90% of the 14C label in the cytosol was found in organic acids in both symbioses. Malate comprised about half of the total cytosol organic acid content on a molar basis, and more than 70% of the cytosol radioactivity in the organic acid fraction was detected in malate in both symbioses. Most of the remaining 14C was contained in the amino acid fraction of the cytosol in both symbioses. More than 70% of the 14C label found in the amino acids of the cytosol was incorporated in aspartate, which on a molar basis comprised only about 1% of the total amino acid pool in the cytosol. The extensive 14C labeling of malate and aspartate from nodule dark [14C]CO2 fixation is consistent with the role of phosphoenolpyruvate carboxlase in nodule dark CO2 fixation. Bacteroids from the effective wild-type symbiosis accumulated sevenfold more 14C than did the dicarboxylic acid transport defective bacteroids. The bacteroids of the effective MNF 300 symbiosis contained the largest proportion of the incorporated 14C in the organic acids, whereas ineffective MNF 3080 bacteroids mainly contained 14C in the amino acid fraction. In both symbioses a larger proportion of the bacteroid 14C label was detected in malate and aspartate

  6. [Effect of indolylacetic acid on formation of bacteroid forms of Rhizobium leguminosarum].

    Science.gov (United States)

    Lobanok, E V; Bakanchikova, T I

    1979-01-01

    The purpose of this work was to study the effect of indolylacetic acid (IAA) on the strains of Rhizobium leguminosarum, effective and noneffective with respect to symbiotic nitrogen fixation (L4 and 245a, and 14--73, respectively). IAA at a concentration of 50 mcg/ml and higher inhibited the growth of the bacterium, temporarily delayed celular division, and induced intensive formation of elongated bacteroid-like cells, predominantly Y-shaped or having a clavate shape. Many bacteroid-like cells were capable of division after a certain delay.

  7. Characterization of germination receptors of Bacillus cereus ATCC 14579

    NARCIS (Netherlands)

    Hornstra, L.M.; Vries, de Y.P.; Wells-Bennik, M.H.J.; Vos, de W.M.; Abee, T.

    2006-01-01

    Specific amino acids, purine ribonucleosides, or a combination of the two is required for efficient germination of endospores of Bacillus cereus ATCC 14579. A survey including 20 different amino acids showed that L-alanine, L-cysteine, L-threonine, and L-glutamine are capable of initiating the

  8. Magnetic response in cultures of Streptococcus mutans ATCC-27607.

    Science.gov (United States)

    Adamkiewicz, V W; Bassous, C; Morency, D; Lorrain, P; Lepage, J L

    1987-01-01

    Streptococcus mutans ATCC-27607 produces exopolysaccharides that adhere to glass. In the normal geomagnetic field about 50% more polysaccharide adhere preferentially to glass surfaces facing North as compared to South facing surfaces. Reversal of the direction of the magnetic field by 180 degrees produces a similar reversal in the direction of the preferential accumulation. Reduction of the field by 90% abolishes the preferential accumulation.

  9. Complete Genome Sequence of Mycobacterium vaccae Type Strain ATCC 25954

    KAUST Repository

    Ho, Y. S.; Adroub, S. A.; Abadi, Maram; Al Alwan, B.; Alkhateeb, R.; Gao, G.; Ragab, A.; Ali, Shahjahan; van Soolingen, D.; Bitter, W.; Pain, Arnab; Abdallah, A. M.

    2012-01-01

    Mycobacterium vaccae is a rapidly growing, nontuberculous Mycobacterium species that is generally not considered a human pathogen and is of major pharmaceutical interest as an immunotherapeutic agent. We report here the annotated genome sequence of the M. vaccae type strain, ATCC 25954.

  10. Complete Genome Sequence of Mycobacterium vaccae Type Strain ATCC 25954

    KAUST Repository

    Ho, Y. S.

    2012-10-26

    Mycobacterium vaccae is a rapidly growing, nontuberculous Mycobacterium species that is generally not considered a human pathogen and is of major pharmaceutical interest as an immunotherapeutic agent. We report here the annotated genome sequence of the M. vaccae type strain, ATCC 25954.

  11. Highly hydrolytic reuteransucrase from probiotic Lactobacillus reuteri strain ATCC 55730

    NARCIS (Netherlands)

    Kralj, S.; Stripling, E.; Sanders, P.; Geel-Schutten, G.H. van; Dijkhuizen, L.

    2005-01-01

    Lactobacillus reuteri strain ATCC 55730 (LB BIO) was isolated as a pure culture from a Reuteri tablet purchased from the BioGaia company. This probiotic strain produces a soluble glucan (reuteran), in which the majority of the linkages are of the α-(1→4) glucosidic type (∼70%). This reuteran also

  12. Metabolism of amino acid amides in Pseudomonas putida ATCC 12633

    NARCIS (Netherlands)

    Hermes, H.F.M.; Croes, L.M.; Peeters, W.P.H.; Peters, P.J.H.; Dijkhuizen, L.

    1993-01-01

    The metabolism of the natural amino acid L-valine, the unnatural amino acids D-valine, and D-, L-phenylglycine (D-, L-PG), and the unnatural amino acid amides D-, L-phenylglycine amide (D, L-PG-NH2) and L-valine amide (L-Val-NH2) was studied in Pseudomonas putida ATCC 12633. The organism possessed

  13. Efeitos das cepas probioticas de Lactobacillus acidophilus ATCC 4356, Lactobacillus rhamnosus ATCC 1465 e ATCC 7469 sobre o crescimento planctonico e formação de biofilme de Streptococcus mutans UA 159

    OpenAIRE

    Carneiro, Tamara Rodrigues de Andrade [UNESP

    2015-01-01

    Most probiotic bacteria used in commercial products belong to the genus Lactobacillus. However, the effects of Lactobacillus probiotic strains in the oral health need to be further investigated. The objective of this study is to evaluate the effects of probiotic Lactobacillus strains, on Streptococcus mutans. Lactobacillus strains acidophilus ATCC 4356, Lactobacillus rhamnosus ATCC 1465, Lactobacillus rhamnosus ATCC 7469 were tested on planktonic and biofilm growth of Streptococcus mutans (UA...

  14. Inactivation of Bacteria S. aureus ATCC 25923 and S. Thyphimurium ATCC 14 028 Influence of UV-HPEF

    Science.gov (United States)

    Bakri, A.; Hariono, B.; Utami, M. M. D.; Sutrisno

    2018-01-01

    The research was objected to study the performance of the UV unit - HPEF in inactivating bacteria population of Gram-positive (S aureus ATCC 25923) and Gram-negative (S Thyphimurium ATCC 14028) inoculated in sterilized goat’s milk. UV pasteurization instrument employed three reactors constructed in series UV-C system at 10 W, 253.7 nm wavelength made in Kada (USA) Inc. with 1.8 J/cm2 dose per reactor. HPEF instrument used high pulsed electric field at 31.67 kV/cm, 15 Hz and goat’s milk rate at 4:32 ± 0.71 cc/second. Pathogenic bacteria was observed According to Indonesian National Standard 01-2782-1998. Inactivation rate of pathogenic bacteria ie S Thyphimurium ATCC 14028 and S. aureus ATCC 25923 was 0.28 and 0.19 log cycle or 6.35 and 4.34 log cfu/ml/hour, respectively; D value was 0.16 and 0.23 hour with k value was 14.62 and 10 hour-1 respectively.

  15. 40 CFR 180.1205 - Beauveria bassiana ATCC #74040; exemption from the requirements of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Beauveria bassiana ATCC #74040... RESIDUES IN FOOD Exemptions From Tolerances § 180.1205 Beauveria bassiana ATCC #74040; exemption from the... the insecticide Beauveria bassiana (ATCC #74040) in or on all food commodities when applied or used as...

  16. Growth inhibitory effects of endotoxins from Bacteroides gingivalis and intermedius on human gingival fibroblasts in vitro

    International Nuclear Information System (INIS)

    Layman, D.L.; Diedrich, D.L.

    1987-01-01

    Purified endotoxin or lipopolysaccharide from Bacteroides gingivalis and Bacteroides intermedius caused a similar dose-dependent inhibition of growth of cultured human gingival fibroblasts as determined by 3 H-thymidine incorporation and direct cell count. Approximately 200 micrograms/ml endotoxin caused a 50% reduction in 3 H-thymidine uptake of logarithmically growing cells. Inhibition of growth was similar in cultures of fibroblasts derived from either healthy or diseased human gingiva. When examining the change in cell number with time of exposure in culture, the rate of proliferation was significantly suppressed during the logarithmic phase of growth. However, the cells recovered so that the rate of proliferation, although reduced, was sufficient to produce a cell density similar to the control cells with prolonged culture. The endotoxins were characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The profiles of the Bacteroides endotoxins were different. B. gingivalis endotoxin showed a wide range of distinct bands indicating a heterogeneous distribution of molecular species. Endotoxin from B. intermedius exhibited a few discrete low molecular weight bands, but the majority of the lipopolysaccharides electrophoresed as a diffuse band of high molecular weight material. The apparent heterogeneity of the two Bacteroides endotoxins and the similarity in growth inhibitory capacity suggest that growth inhibitory effects of these substances cannot be attributed to any polysaccharide species of endotoxin

  17. Multidrug-Resistant Bacteroides fragilis Bacteremia in a US Resident: An Emerging Challenge

    Directory of Open Access Journals (Sweden)

    Cristian Merchan

    2016-01-01

    Full Text Available We describe a case of Bacteroides fragilis bacteremia associated with paraspinal and psoas abscesses in the United States. Resistance to b-lactam/b-lactamase inhibitors, carbapenems, and metronidazole was encountered despite having a recent travel history to India as the only possible risk factor for multidrug resistance. Microbiological cure was achieved with linezolid, moxifloxacin, and cefoxitin.

  18. Elastolytic activity of Bacteroides nodosus isolated from sheep and goats with foot rot.

    OpenAIRE

    Piriz, S; Valle, J; Hurtado, M A; Mateos, E M; Vadillo, S

    1991-01-01

    The elastolytic activities of 82 Bacteroides nodosus strains were studied. Two substrates, insoluble elastin and soluble elastin, were used for this purpose. Roughly 15% of the strains which did not digest insoluble elastin were elastolytic with soluble elastin, the latter providing greater sensitivity, speed, and objectivity than its insoluble counterpart.

  19. Energy supply for dinitrogen fixation by Azotobacter vinelandii and by bacteroids of Rhizobium leguminosarum

    NARCIS (Netherlands)

    Laane, N.C.M.

    1980-01-01

    The central issue of this thesis is how obligate aerobes, such as Rhizobium leguminosarum bacteroids and Azotobacter vinelandii, generate and regulate the energy supply (in the form of ATP and reducing equivalents) for nitrogenase.
    In an effective

  20. The role of black-pigmented Bacteroides in human oral infections.

    Science.gov (United States)

    van Winkelhoff, A J; van Steenbergen, T J; de Graaff, J

    1988-03-01

    Today, 10 black-pigmented Bacteroides (BPB) species are recognized. The majority of these species can be isolated from the oral cavity. BPB species are involved in anaerobic infections of oral and non-oral sites. In the oral cavity, BPB species are associated with gingivitis, periodontitis, endodontal infections and odontogenic abscesses. Cultural studies suggest a specific role of the various BPB species in the different types of infection. Bacteroides gingivalis is closely correlated with destructive periodontitis in adults as well as in juveniles. Bacteroides intermedius seems to be less specific since it is found in gingivitis, periodontitis, endodontal infections and odontogenic abscesses. The recently described Bacteroides endodontalis is closely associated with endodontal infections and odontogenic abscesses of endodontal origin. There are indications that these periodontopathic BPB species are only present in the oral cavity of subjects suffering from periodontal breakdown, being absent on the mucosal surfaces of subjects without periodontal breakdown. BPB species associated with healthy oral conditions are Bacteroides melaninogenicus, Bacteroides denticola and Bacteroides loescheii. There are indications that these BPB species are part of the normal indigenous oral microflora. Many studies in the past have documented the pathogenic potential and virulence of BPB species. This virulence can be explained by the large numbers of virulence factors demonstrated in this group of micro-organisms. Among others, the proteolytic activity seems to be one of the most important features. Several artificial substrates as well as numerous biological proteins are degraded. These include anti-inflammatory proteins such as alpha-2-macroglobulin, alpha-1-antitrypsin, C3 and C5 complement factors and immunoglobulins. B. gingivalis is by far the most proteolytic species, followed by B. endodontalis. Like other bacteria, the lipopolysaccharide of B. gingivalis has shown to be

  1. Transcriptomic dissection of Bradyrhizobium sp. strain ORS285 in symbiosis with Aeschynomene spp. inducing different bacteroid morphotypes with contrasted symbiotic efficiency.

    Science.gov (United States)

    Lamouche, Florian; Gully, Djamel; Chaumeret, Anaïs; Nouwen, Nico; Verly, Camille; Pierre, Olivier; Sciallano, Coline; Fardoux, Joël; Jeudy, Christian; Szücs, Attila; Mondy, Samuel; Salon, Christophe; Nagy, István; Kereszt, Attila; Dessaux, Yves; Giraud, Eric; Mergaert, Peter; Alunni, Benoit

    2018-06-19

    To circumvent the paucity of nitrogen sources in the soil legume plants establish a symbiotic interaction with nitrogen-fixing soil bacteria called rhizobia. During symbiosis, the plants form root organs called nodules, where bacteria are housed intracellularly and become active nitrogen fixers known as bacteroids. Depending on their host plant, bacteroids can adopt different morphotypes, being either unmodified (U), elongated (E) or spherical (S). E- and S-type bacteroids undergo a terminal differentiation leading to irreversible morphological changes and DNA endoreduplication. Previous studies suggest that differentiated bacteroids display an increased symbiotic efficiency (E>U and S>U). In this study, we used a combination of Aeschynomene species inducing E- or S-type bacteroids in symbiosis with Bradyrhizobium sp. ORS285 to show that S-type bacteroids present a better symbiotic efficiency than E-type bacteroids. We performed a transcriptomic analysis on E- and S-type bacteroids formed by Aeschynomene afraspera and Aeschynomene indica nodules and identified the bacterial functions activated in bacteroids and specific to each bacteroid type. Extending the expression analysis in E- and S-type bacteroids in other Aeschynomene species by qRT-PCR on selected genes from the transcriptome analysis narrowed down the set of bacteroid morphotype-specific genes. Functional analysis of a selected subset of 31 bacteroid-induced or morphotype-specific genes revealed no symbiotic phenotypes in the mutants. This highlights the robustness of the symbiotic program but could also indicate that the bacterial response to the plant environment is partially anticipatory or even maladaptive. Our analysis confirms the correlation between differentiation and efficiency of the bacteroids and provides a framework for the identification of bacterial functions that affect the efficiency of bacteroids. This article is protected by copyright. All rights reserved. © 2018 Society for Applied

  2. Lactobacillus rhamnosus GG (ATCC 53103) and platelet aggregation in vitro.

    Science.gov (United States)

    Korpela, R; Moilanen, E; Saxelin, M; Vapaatalo, H

    1997-06-17

    Lactobacillus rhamnosus GG is an experimentally and clinically well documented probiotic used in different dairy products. The present study aimed to investigate the safety aspects of Lactobacillus rhamnosus GG, particularly with respect to platelet aggregation, the initiating event in thrombosis. Platelet rich plasma was separated from the blood of healthy volunteers, and the effects of Lactobacillus rhamnosus GG (ATCC 53103), Lactobacillus rhamnosus (ATCC 7469) and Enterococcus faecium T2L6 in different dilutions on spontaneous, ADP- and adrenaline-induced aggregation were tested. The bacteria did not influence spontaneous aggregation. Only Enterococcus faecium T2L6 enhanced the adrenaline-induced aggregation, with a less clear effect on ADP-induced aggregation.

  3. Inducible transport of citrate in Lactobacillus rhamnosus ATCC 7469.

    Science.gov (United States)

    de Figueroa, R M; Benito de Cárdenas, I L; Sesma, F; Alvarez, F; de Ruiz Holgado, A P; Oliver, G

    1996-10-01

    Lactobacillus rhamnosus ATCC 7469 exhibited diauxie when grown in a medium containing both glucose and citrate as energy source. Glucose was used as the primary energy source during the glucose-citrate diauxie. Uptake of citrate was carried out by an inducible citrate transport system. The induction of citrate uptake system was repressed in the presence of glucose. This repression was reversible and mediated by cAMP.

  4. Spectrophotometric evaluation of selenium binding by Saccharomyces cerevisiae ATCC MYA-2200 and Candida utilis ATCC 9950 yeast.

    Science.gov (United States)

    Kieliszek, Marek; Błażejak, Stanisław; Płaczek, Maciej

    2016-05-01

    In this study, the ability of selenium binding the biomas of Saccharomyces cerevisiae ATCC MYA-2200 and Candida utilis ATCC 9950 was investigated. Sodium selenite(IV) salts were added to the experimental media at concentrations of 10, 20, 40, and 60 mg Se(4+) L(-1). In the tested concentration range, one concentration reported a significant reduction in the biomass yield of both yeast strains. Intense growth was observed for C. utilis yeast, which reached the highest biomass yield of 15 gd.w.L(-1) after 24h cultivation in the presence of 10mg Se(4+) L(-1). Based on the use of spectrophotometric method for the determination of selenium content by using Variamine Blue as a chromogenic agent, efficient accumulation of this element in the biomass of the investigated yeast was observed. The highest amount of selenium, that is, 5.64 mg Se(4+)gd.w.(-1), was bound from the environment by S. cerevisiae ATCC MYA-2200 cultured in the presence of 60 mg Se(4+) L(-1) medium 72h Slightly less amount, 5.47 mg Se(4+) gd.w.(-1), was absorbed by C. utilis ATCC 9950 during similar cultural conditions. Based on the results of the biomass yield and the use of selenium from the medium, it can be observed that yeasts of the genus Candida are more efficient in binding this element, and this property finds practical application in the production of selenium-enriched yeast. Copyright © 2016 Elsevier GmbH. All rights reserved.

  5. Multidrug-resistant Bacteroides fragilis group on the rise in Europe?

    DEFF Research Database (Denmark)

    Hartmeyer, G N; Sóki, J; Nagy, E

    2012-01-01

    We report a case of multidrug-resistance (MDR) in a strain of Bacteroides fragilis from a blood culture and abdominal fluid in a Danish patient. The patient had not been travelling for several years and had not received antibiotics prior to the present case. We also summarize the cases that have...... been reported to date of MDR B. fragilis group in Europe. As far as we know, a case like this with MDR B. fragilis has not been described in Scandinavia before....

  6. The treatment of irradiated mice with polymicrobial infection caused by Bacteroides fragilis and Escherichia coli

    International Nuclear Information System (INIS)

    Brook, Itzhak; Ledney, G.D.

    1994-01-01

    The effects on the faecal flora and the efficacies of various antibiotic regimens administered as treatment for a mixed infection caused by Bacteroides fragilis and Escherichia coli in the irradiated host were investigated in a subcutaneous abscess model with C 3 H/HeN mice which had been exposed to 60 Co. The regimens used included imipenem, ofloxacin, metronidazole and the combination of ofloxacin and metronidazole. (author)

  7. The treatment of irradiated mice with polymicrobial infection caused by Bacteroides fragilis and Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Brook, Itzhak (Naval Medical Research Inst., Bethesda, MD (United States)); Ledney, G.D. (Armed Forces Radiobiology Research Inst., Bethesda, MD (United States))

    1994-02-01

    The effects on the faecal flora and the efficacies of various antibiotic regimens administered as treatment for a mixed infection caused by Bacteroides fragilis and Escherichia coli in the irradiated host were investigated in a subcutaneous abscess model with C[sub 3]H/HeN mice which had been exposed to [sup 60]Co. The regimens used included imipenem, ofloxacin, metronidazole and the combination of ofloxacin and metronidazole. (author).

  8. A Novel Tightly Regulated Gene Expression System for the Human Intestinal Symbiont Bacteroides thetaiotaomicron

    Directory of Open Access Journals (Sweden)

    Regis Stentz

    2016-07-01

    Full Text Available There is considerable interest in studying the function of Bacteroides species resident in the human gastrointestinal (GI-tract and the contribution they make to host health. Reverse genetics and protein expression techniques, such as those developed for well-characterised Escherichia coli cannot be applied to Bacteroides species as they and other members of the Bacteriodetes phylum have unique promoter structures. The availability of useful Bacteroides-specific genetic tools is therefore limited. Here we describe the development of an effective mannan-controlled gene expression system for Bacteroides thetaiotaomicron containing the mannan-inducible promoter–region of an α-1,2-mannosidase gene (BT_3784, a ribosomal binding site designed to modulate expression, a multiple cloning site to facilitate the cloning of genes of interest, and a transcriptional terminator. Using the Lactobacillus pepI as a reporter gene, mannan induction resulted in an increase of reporter activity in a time- and concentration-dependent manner with a wide range of activity. The endogenous BtcepA cephalosporinase gene was used to demonstrate the suitability of this novel expression system, enabling the isolation of a His-tagged version of BtCepA. We have also shown with experiments performed in mice that the system can be induced in vivo in the presence of an exogenous source of mannan. By enabling the controlled expression of endogenous and exogenous genes in B. thetaiotaomicron this novel inducer-dependent expression system will aid in defining the physiological role of individual genes and the functional analyses of their products.

  9. Marsh soils as potential sinks for Bacteroides fecal indicator bacteria, Waccamaw National Wildlife Refuge, Georgetown, SC, USA

    Science.gov (United States)

    Drexler, Judith Z.; Johnson, Heather E.; Duris, Joseph W.; Krauss, Ken W.

    2014-01-01

    A soil core collected in a tidal freshwater marsh in the Waccamaw National Wildlife Refuge (Georgetown, SC) exuded a particularly strong odor of cow manure upon extrusion. In order to test for manure and determine its provenance, we carried out microbial source tracking using DNA markers for Bacteroides, a noncoliform, anaerobic bacterial group that represents a broad group of the fecal population. Three core sections from 0-3 cm, 9-12 cm and 30-33 were analyzed for the presence of Bacteroides. The ages of core sediments were estimated using 210Pb and 137Cs dating. All three core sections tested positive for Bacteroides DNA markers related to cow or deer feces. Because cow manure is stockpiled, used as fertilizer, and a source of direct contamination in the Great Pee Dee River/Winyah Bay watershed, it is very likely the source of the Bacteroides that was deposited on the marsh. The mid-points of the core sections were dated as follows: 0-3 cm: 2009; 9-12 cm: 1999, and 30-33 cm: 1961. The presence of Bacteroides at different depths/ages in the soil profile indicates that soils in tidal freshwater marshes are, at the least, capable of being short-term sinks for Bacteroides and, may have the potential to be long-term sinks of stable, naturalized populations.

  10. CRISPR-Cas Systems in Bacteroides fragilis, an Important Pathobiont in the Human Gut Microbiome

    Science.gov (United States)

    Tajkarimi, Mehrdad; Wexler, Hannah M.

    2017-01-01

    Background: While CRISPR-Cas systems have been identified in bacteria from a wide variety of ecological niches, there are no studies to describe CRISPR-Cas elements in Bacteroides species, the most prevalent anaerobic bacteria in the lower intestinal tract. Microbes of the genus Bacteroides make up ~25% of the total gut microbiome. Bacteroides fragilis comprises only 2% of the total Bacteroides in the gut, yet causes of >70% of Bacteroides infections. The factors causing it to transition from benign resident of the gut microbiome to virulent pathogen are not well understood, but a combination of horizontal gene transfer (HGT) of virulence genes and differential transcription of endogenous genes are clearly involved. The CRISPR-Cas system is a multi-functional system described in prokaryotes that may be involved in control both of HGT and of gene regulation. Results: Clustered regularly interspaced short palindromic repeats (CRISPR) elements in all strains of B. fragilis (n = 109) with publically available genomes were identified. Three different CRISPR-Cas types, corresponding most closely to Type IB, Type IIIB, and Type IIC, were identified. Thirty-five strains had two CRISPR-Cas types, and three strains included all three CRISPR-Cas types in their respective genomes. The cas1 gene in the Type IIIB system encoded a reverse-transcriptase/Cas1 fusion protein rarely found in prokaryotes. We identified a short CRISPR (3 DR) with no associated cas genes present in most of the isolates; these CRISPRs were found immediately upstream of a hipA/hipB operon and we speculate that this element may be involved in regulation of this operon related to formation of persister cells during antimicrobial exposure. Also, blood isolates of B. fragilis did not have Type IIC CRISPR-Cas systems and had atypical Type IIIB CRISPR-Cas systems that were lacking adjacent cas genes. Conclusions: This is the first systematic report of CRISPR-Cas systems in a wide range of B. fragilis strains

  11. CRISPR-Cas Systems in Bacteroides fragilis, an Important Pathobiont in the Human Gut Microbiome

    Directory of Open Access Journals (Sweden)

    Mehrdad Tajkarimi

    2017-11-01

    Full Text Available Background: While CRISPR-Cas systems have been identified in bacteria from a wide variety of ecological niches, there are no studies to describe CRISPR-Cas elements in Bacteroides species, the most prevalent anaerobic bacteria in the lower intestinal tract. Microbes of the genus Bacteroides make up ~25% of the total gut microbiome. Bacteroides fragilis comprises only 2% of the total Bacteroides in the gut, yet causes of >70% of Bacteroides infections. The factors causing it to transition from benign resident of the gut microbiome to virulent pathogen are not well understood, but a combination of horizontal gene transfer (HGT of virulence genes and differential transcription of endogenous genes are clearly involved. The CRISPR-Cas system is a multi-functional system described in prokaryotes that may be involved in control both of HGT and of gene regulation.Results: Clustered regularly interspaced short palindromic repeats (CRISPR elements in all strains of B. fragilis (n = 109 with publically available genomes were identified. Three different CRISPR-Cas types, corresponding most closely to Type IB, Type IIIB, and Type IIC, were identified. Thirty-five strains had two CRISPR-Cas types, and three strains included all three CRISPR-Cas types in their respective genomes. The cas1 gene in the Type IIIB system encoded a reverse-transcriptase/Cas1 fusion protein rarely found in prokaryotes. We identified a short CRISPR (3 DR with no associated cas genes present in most of the isolates; these CRISPRs were found immediately upstream of a hipA/hipB operon and we speculate that this element may be involved in regulation of this operon related to formation of persister cells during antimicrobial exposure. Also, blood isolates of B. fragilis did not have Type IIC CRISPR-Cas systems and had atypical Type IIIB CRISPR-Cas systems that were lacking adjacent cas genes.Conclusions: This is the first systematic report of CRISPR-Cas systems in a wide range of B

  12. In Vitro Evaluation of the Activity of Imipenem-Relebactam against 451 Recent Clinical Isolates of Bacteroides Group and Related Species.

    Science.gov (United States)

    Snydman, David R; Jacobus, Nilda V; McDermott, Laura A

    2016-10-01

    We evaluated the in vitro activity of imipenem-relebactam (imipenem-MK7655) against 451 recent clinical isolates within the Bacteroides group and related species. Relebactam did not enhance or inhibit the activity of imipenem against Bacteroides fragilis or other Bacteroides species. No synergistic or antagonistic effect was observed. The MICs of imipenem-relebactam were equal to or within one dilution of the MICs of these isolates to imipenem. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  13. Lactobacillus fermentum ATCC 23271 Displays In vitro Inhibitory Activities against Candida spp.

    Science.gov (United States)

    do Carmo, Monique S.; Noronha, Francisca M. F.; Arruda, Mariana O.; Costa, Ênnio P. da Silva; Bomfim, Maria R. Q.; Monteiro, Andrea S.; Ferro, Thiago A. F.; Fernandes, Elizabeth S.; Girón, Jorge A.; Monteiro-Neto, Valério

    2016-01-01

    Lactobacilli are involved in the microbial homeostasis in the female genital tract. Due to the high prevalence of many bacterial diseases of the female genital tract and the resistance of microorganisms to various antimicrobial agents, alternative means to control these infections are necessary. Thus, this study aimed to evaluate the probiotic properties of well-characterized Lactobacillus species, including L. acidophilus (ATCC 4356), L. brevis (ATCC 367), L. delbrueckii ssp. delbrueckii (ATCC 9645), L. fermentum (ATCC 23271), L. paracasei (ATCC 335), L. plantarum (ATCC 8014), and L. rhamnosus (ATCC 9595), against Candida albicans (ATCC 18804), Neisseria gonorrhoeae (ATCC 9826), and Streptococcus agalactiae (ATCC 13813). The probiotic potential was investigated by using the following criteria: (i) adhesion to host epithelial cells and mucus, (ii) biofilm formation, (iii) co-aggregation with bacterial pathogens, (iv) inhibition of pathogen adhesion to mucus and HeLa cells, and (v) antimicrobial activity. Tested lactobacilli adhered to mucin, co-aggregated with all genital microorganisms, and displayed antimicrobial activity. With the exception of L. acidophilus and L. paracasei, they adhered to HeLa cells. However, only L. fermentum produced a moderate biofilm and a higher level of co-aggregation and mucin binding. The displacement assay demonstrated that all Lactobacillus strains inhibit C. albicans binding to mucin (p < 0.001), likely due to the production of substances with antimicrobial activity. Clinical isolates belonging to the most common Candida species associated to vaginal candidiasis were inhibited by L. fermentum. Collectively, our data suggest that L. fermentum ATCC 23271 is a potential probiotic candidate, particularly to complement candidiasis treatment, since presented with the best probiotic profile in comparison with the other tested lactobacilli strains. PMID:27833605

  14. Lactobacillus fermentum ATCC 23271 displays in vitro inhibitory activities against Candida spp.

    Directory of Open Access Journals (Sweden)

    Monique Santos Carmo

    2016-10-01

    Full Text Available Lactobacilli are involved in the microbial homeostasis in the female genital tract. Due to the high prevalence of many bacterial diseases of the female genital tract and the resistance of microorganisms to various antimicrobial agents, alternative means to control these infections are necessary. Thus, this study aimed to evaluate the probiotic properties of well-characterized Lactobacillus species, including L. acidophilus (ATCC 4356, L. brevis (ATCC 367, L. delbrueckii ssp. delbrueckii (ATCC 9645, L. fermentum (ATCC 23271, L. paracasei (ATCC 335, L. plantarum (ATCC 8014, and L. rhamnosus (ATCC 9595, against Candida albicans (ATCC 18804, Neisseria gonorrhoeae (ATCC 9826, and Streptococcus agalactiae (ATCC 13813. The probiotic potential was investigated by using the following criteria: i adhesion to host epithelial cells and mucus, ii biofilm formation, iii co-aggregation with bacterial pathogens, iv inhibition of pathogen adhesion to mucus and HeLa cells, and v antimicrobial activity. Tested lactobacilli adhered to mucin, co-aggregated with all genital microorganisms, and displayed antimicrobial activity. With the exception of L. acidophilus and L. paracasei, they adhered to HeLa cells. However, only L. fermentum produced a moderate biofilm and a higher level of co-aggregation and mucin binding. The displacement assay demonstrated that all Lactobacillus strains inhibit C. albicans binding to mucin (p < 0.001, likely due to the production of substances with antimicrobial activity. Clinical isolates belonging to the most common Candida species associated to vaginal candidosis were inhibited by L. fermentum. Collectively, our data suggest that L. fermentum ATCC 23271 is a potential probiotic candidate, particularly to complement candidosis treatment, since presented with the best probiotic profile in comparison with the other tested lactobacilli strains.

  15. Antibacterial activity of synthetic peptides derived from lactoferricin against Escherichia coli ATCC 25922 and Enterococcus faecalis ATCC 29212.

    Science.gov (United States)

    León-Calvijo, María A; Leal-Castro, Aura L; Almanzar-Reina, Giovanni A; Rosas-Pérez, Jaiver E; García-Castañeda, Javier E; Rivera-Monroy, Zuly J

    2015-01-01

    Peptides derived from human and bovine lactoferricin were designed, synthesized, purified, and characterized using RP-HPLC and MALDI-TOF-MS. Specific changes in the sequences were designed as (i) the incorporation of unnatural amino acids in the sequence, the (ii) reduction or (iii) elongation of the peptide chain length, and (iv) synthesis of molecules with different number of branches containing the same sequence. For each peptide, the antibacterial activity against Escherichia coli ATCC 25922 and Enterococcus faecalis ATCC 29212 was evaluated. Our results showed that Peptides I.2 (RWQWRWQWR) and I.4 ((RRWQWR)4K2Ahx2C2) exhibit bigger or similar activity against E. coli (MIC 4-33 μM) and E. faecalis (MIC 10-33 μM) when they were compared with lactoferricin protein (LF) and some of its derivate peptides as II.1 (FKCRRWQWRMKKLGA) and IV.1 (FKCRRWQWRMKKLGAPSITCVRRAE). It should be pointed out that Peptides I.2 and I.4, containing the RWQWR motif, are short and easy to synthesize; our results demonstrate that it is possible to design and obtain synthetic peptides that exhibit enhanced antibacterial activity using a methodology that is fast and low-cost and that allows obtaining products with a high degree of purity and high yield.

  16. Antibacterial Activity of Synthetic Peptides Derived from Lactoferricin against Escherichia coli ATCC 25922 and Enterococcus faecalis ATCC 29212

    Directory of Open Access Journals (Sweden)

    María A. León-Calvijo

    2015-01-01

    Full Text Available Peptides derived from human and bovine lactoferricin were designed, synthesized, purified, and characterized using RP-HPLC and MALDI-TOF-MS. Specific changes in the sequences were designed as (i the incorporation of unnatural amino acids in the sequence, the (ii reduction or (iii elongation of the peptide chain length, and (iv synthesis of molecules with different number of branches containing the same sequence. For each peptide, the antibacterial activity against Escherichia coli ATCC 25922 and Enterococcus faecalis ATCC 29212 was evaluated. Our results showed that Peptides I.2 (RWQWRWQWR and I.4 ((RRWQWR4K2Ahx2C2 exhibit bigger or similar activity against E. coli (MIC 4–33 μM and E. faecalis (MIC 10–33 μM when they were compared with lactoferricin protein (LF and some of its derivate peptides as II.1 (FKCRRWQWRMKKLGA and IV.1 (FKCRRWQWRMKKLGAPSITCVRRAE. It should be pointed out that Peptides I.2 and I.4, containing the RWQWR motif, are short and easy to synthesize; our results demonstrate that it is possible to design and obtain synthetic peptides that exhibit enhanced antibacterial activity using a methodology that is fast and low-cost and that allows obtaining products with a high degree of purity and high yield.

  17. Isolation and characterization of Bacteroides host strain HB-73 used to detect sewage specific phages in Hawaii.

    Science.gov (United States)

    Vijayavel, Kannappan; Fujioka, Roger; Ebdon, James; Taylor, Huw

    2010-06-01

    Previous studies have shown that Escherichia coli and enterococci are unreliable indicators of fecal contamination in Hawaii because of their ability to multiply in environmental soils. In this study, the method of detecting Bacteroides phages as specific markers of sewage contamination in Hawaii's recreational waters was evaluated because these sewage specific phages cannot multiply under environmental conditions. Bacteroides hosts (GB-124, GA-17), were recovered from sewage samples in Europe and were reported to be effective in detecting phages from sewage samples obtained in certain geographical areas. However, GB-124 and GA-17 hosts were ineffective in detecting phages from sewage samples obtained in Hawaii. Bacteroides host HB-73 was isolated from a sewage sample in Hawaii, confirmed as a Bacteroides sp. and shown to recover phages from multiple sources of sewage produced in Hawaii at high concentrations (5.2-7.3 x 10(5) PFU/100 mL). These Bacteroides phages were considered as potential markers of sewage because they also survived for three days in fresh stream water and two days in marine water. Water samples from Hawaii's coastal swimming beaches and harbors, which were known to be contaminated with discharges from streams, were shown to contain moderate (20-187 CFU/100 mL) to elevated (173-816 CFU/100 mL) concentrations of enterococci. These same samples contained undetectable levels (Hawaii and the most likely source of these enterococci is from environmental soil rather than from sewage. 2010 Elsevier Ltd. All rights reserved.

  18. Comparative transcriptome analysis of biofilm and planktonic cells of Bacillus cereus ATCC 14579

    NARCIS (Netherlands)

    Wijman, Janneke; Mols, M.; Tempelaars, Marcel; Abee, Tjakko

    2015-01-01

    Planktonic and biofilm cells of Bacillus cereus ATCC 14579 and ATCC 10987 were studied using microscopy and transcriptome analysis. By microscopy, clear differences could be observed between biofilm and planktonic cells as well as between the two strains. By using hierarchical clustering of the

  19. Comparative transcriptome analysis of biofilm and planktonic cells of Bacillus cereus ATCC 10987

    NARCIS (Netherlands)

    Wijman, Janneke; Mols, M.; Tempelaars, Marcel; Abee, Tjakko

    2015-01-01

    Planktonic and biofilm cells of Bacillus cereus ATCC 14579 and ATCC 10987 were studied using microscopy and transcriptome analysis. By microscopy, clear differences could be observed between biofilm and planktonic cells as well as between the two strains. By using hierarchical clustering of the

  20. The Glycolytic Versatility of Bacteroides uniformis CECT 7771 and Its Genome Response to Oligo and Polysaccharides

    Directory of Open Access Journals (Sweden)

    Alfonso Benítez-Páez

    2017-08-01

    Full Text Available Bacteroides spp. are dominant components of the phylum Bacteroidetes in the gut microbiota and prosper in glycan enriched environments. However, knowledge of the machinery of specific species isolated from humans (like Bacteroides uniformis contributing to the utilization of dietary and endogenous sources of glycans and their byproducts is limited. We have used the cutting-edge nanopore-based technology to sequence the genome of B. uniformis CECT 7771, a human symbiont with a proven pre-clinical efficacy on metabolic and immune dysfunctions in obesity animal models. We have also used massive sequencing approaches to distinguish the genome expression patterns in response to carbon sources of different complexity during growth. At genome-wide level, our analyses globally demonstrate that B. uniformis strains exhibit an expanded glycolytic capability when compared with other Bacteroides species. Moreover, by studying the growth and whole-genome expression of B. uniformis CECT 7771 in response to different carbon sources, we detected a differential growth fitness and expression patterns across the genome depending on the carbon source of the culture media. The dietary fibers used exerted different effects on B. uniformis CECT 7771 activating different molecular pathways and, therefore, allowing the production of different metabolite types with potential impact on gut health. The genome and transcriptome analysis of B. uniformis CECT 7771, in response to different carbon sources, shows its high versatility to utilize both dietary and endogenous glycans along with the production of potentially beneficial end products for both the bacterium and the host, pointing to a mechanistic basis of a mutualistic relationship.

  1. Suppression of colorectal tumorigenesis by recombinant Bacteroides fragilis enterotoxin-2 in vivo

    OpenAIRE

    Lv, You; Ye, Tao; Wang, Hui-Peng; Zhao, Jia-Ying; Chen, Wen-Jie; Wang, Xin; Shen, Chen-Xia; Wu, Yi-Bin; Cai, Yuan-Kun

    2017-01-01

    AIM To evaluate the impact of recombinant Bacteroides fragilis enterotoxin-2 (BFT-2, or Fragilysin) on colorectal tumorigenesis in mice induced by azoxymethane/dextran sulfate sodium (AOM/DSS). METHODS Recombinant proBFT-2 was expressed in Escherichia coli strain Rosetta (DE3) and BFT-2 was obtained and tested for its biological activity via colorectal adenocarcinoma cell strains SW-480. Seventy C57BL/6J mice were randomly divided into a blank (BC; n = 10), model (AD; n = 20), model + low-dos...

  2. Cloning of Bacteroides fragilis plasmid genes affecting metronidazole resistance and ultraviolet survival in Escherichia coli

    International Nuclear Information System (INIS)

    Wehnert, G.U.; Abratt, V.R.; Goodman, H.J.; Woods, D.R.

    1990-01-01

    Since reduced metronidazole causes DNA damage, resistance to metronidazole was used as a selection method for the cloning of Bacteroides fragilis genes affecting DNA repair mechanisms in Escherichia coli. Genes from B. fragilis Bf-2 were cloned on a recombinant plasmid pMT100 which made E. coli AB1157 and uvrA, B, and C mutant strains more resistant to metronidazole, but more sensitive to far uv irradiation under aerobic conditions. The loci affecting metronidazole resistance and uv sensitivity were linked and located on a 5-kb DNA fragment which originated from the small 6-kb cryptic plasmid pBFC1 present in B. fragilis Bf-2 cells

  3. Thioredoxins in Redox Maintenance and Survival during Oxidative Stress of Bacteroides fragilis▿ †

    OpenAIRE

    Reott, Michael A.; Parker, Anita C.; Rocha, Edson R.; Smith, C. Jeffrey

    2009-01-01

    The anaerobe Bacteroides fragilis is a gram-negative, opportunistic pathogen that is highly aerotolerant and can persist in aerobic environments for extended periods. In this study, the six B. fragilis thioredoxins (Trxs) were investigated to determine their role during oxidative stress. Phylogenetic analyses of Trx protein sequences indicated that four of the six Trxs (TrxA, TrxC, TrxD, and TrxF) belong to the M-type Trx class but were associated with two different M-type lineages. TrxE and ...

  4. Molecular characterization of a heme-binding protein of Bacteroides fragilis BE1.

    OpenAIRE

    Otto, B R; Kusters, J G; Luirink, J; de Graaf, F K; Oudega, B

    1996-01-01

    An iron-repressible 44-kDa outer membrane protein plays a crucial role in the acquisition of heme by the anaerobic bacterium Bacteroides fragilis. The DNA sequence of the gene encoding the 44-kDa protein (hupA) was determined. The hupA gene encodes a protein of 431 amino acid residues with a calculated molecular mass of 48,189 Da. The hupA gene is preceded by an open reading frame of 480 bp that probably encodes a protein with a calculated molecular mass of 18,073 Da. hupA and this open readi...

  5. Bacteroides in the infant gut consume milk oligosaccharides via mucus-utilization pathways.

    Science.gov (United States)

    Marcobal, Angela; Barboza, Mariana; Sonnenburg, Erica D; Pudlo, Nicholas; Martens, Eric C; Desai, Prerak; Lebrilla, Carlito B; Weimer, Bart C; Mills, David A; German, J Bruce; Sonnenburg, Justin L

    2011-11-17

    Newborns are colonized with an intestinal microbiota shortly after birth, but the factors governing the retention and abundance of specific microbial lineages are unknown. Nursing infants consume human milk oligosaccharides (HMOs) that pass undigested to the distal gut, where they may be digested by microbes. We determined that the prominent neonate gut residents, Bacteroides thetaiotaomicron and Bacteroides fragilis, induce the same genes during HMO consumption that are used to harvest host mucus glycans, which are structurally similar to HMOs. Lacto-N-neotetraose, a specific HMO component, selects for HMO-adapted species such as Bifidobacterium infantis, which cannot use mucus, and provides a selective advantage to B. infantis in vivo when biassociated with B. thetaiotaomicron in the gnotobiotic mouse gut. This indicates that the complex oligosaccharide mixture within HMOs attracts both mutualistic mucus-adapted species and HMO-adapted bifidobacteria to the infant intestine that likely facilitate both milk and future solid food digestion. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Different metabolic features of Bacteroides fragilis growing in the presence of glucose and exopolysaccharides of bifidobacteria

    Directory of Open Access Journals (Sweden)

    David eRios-Covian

    2015-08-01

    Full Text Available Bacteroides is among the most abundant microorganism inhabiting the human intestine. They are saccharolytic bacteria able to use dietary or host-derived glycans as energy sources. Some Bacteroides fragilis strains contribute to the maturation of the immune system but it is also an opportunistic pathogen. The intestine is the habitat of most Bifidobacterium species, some of whose strains are considered probiotics. Bifidobacteria can synthesize exopolysaccharides (EPS, which are complex carbohydrates that may be available in the intestinal environment. We studied the metabolism of B. fragilis when an EPS preparation from bifidobacteria was added to the growth medium compared to its behavior with added glucose. 2D-DIGE coupled with the identification by MALDI-TOF/TOF evidenced proteins that were differentially produced when EPS was added. The results were supported by RT-qPCR gene expression analysis. The intracellular and extracellular pattern of certain amino acids, the redox balance and the α-glucosidase activity were differently affected in EPS with respect to glucose. These results allowed us to hypothesize that three general main events, namely the activation of amino acids catabolism, enhancement of the transketolase reaction from the pentose-phosphate cycle, and activation of the succinate-propionate pathway, promote a shift of bacterial metabolism rendering more reducing power and optimizing the

  7. Antimicrobial resistance in the Bacteroides fragilis group in faecal microbiota from healthy Danish children

    DEFF Research Database (Denmark)

    Sydenham, Thomas Vognbjerg; Jensen, Betina Hebbelstrup; Petersen, Andreas Munk

    2017-01-01

    The Bacteroides fragilis group constitute a significant portion of the human gut microbiota and comprise a major proportion of anaerobic bacteria isolated in human infections. We established a baseline of antimicrobial susceptibility rates in the B. fragilis group in the intestinal tract of relat......The Bacteroides fragilis group constitute a significant portion of the human gut microbiota and comprise a major proportion of anaerobic bacteria isolated in human infections. We established a baseline of antimicrobial susceptibility rates in the B. fragilis group in the intestinal tract...... of relatively antibiotic-naive healthy Danish children. From 174 faecal samples collected from children attending day care, 359 non-duplicate isolates were screened for antimicrobial susceptibility. Of these, 0.0%, 1.9%, 5.0% and 21.2% of isolates were intermediate-susceptible or resistant to metronidazole......, meropenem, piperacillin/tazobactam and clindamycin, respectively. Eighteen additional studies reporting susceptibility rates in the B. fragilis group bacteria were identified by conducting a literature search. Heterogeneity among results from studies of B. fragilis group antimicrobial susceptibility rates...

  8. Inactivation of a single gene enables microaerobic growth of the obligate anaerobe Bacteroides fragilis.

    Science.gov (United States)

    Meehan, Brian M; Baughn, Anthony D; Gallegos, Rene; Malamy, Michael H

    2012-07-24

    Bacteroides fragilis can replicate in atmospheres containing ≤0.05% oxygen, but higher concentrations arrest growth by an unknown mechanism. Here we show that inactivation of a single gene, oxe (i.e., oxygen enabled) in B. fragilis allows for growth in concentrations as high as 2% oxygen while increasing the tolerance of this organism to room air. Known components of the oxidative stress response including the ahpC, kat, batA-E, and tpx genes were not individually important for microaerobic growth. However, a Δoxe strain scavenged H(2)O(2) at a faster rate than WT, indicating that reactive oxygen species may play a critical role in limiting growth of this organism to low-oxygen environments. Clinical isolates of B. fragilis displayed a greater capacity for growth under microaerobic conditions than fecal isolates, with some encoding polymorphisms in oxe. Additionally, isolation of oxygen-enabled mutants of Bacteroides thetaiotaomicron suggests that Oxe may mediate growth arrest of other anaerobes in oxygenated environments.

  9. Identification and strain differentiation of 'Bacteroides fragilis group' species and Prevotella bivia by PCR fingerprinting.

    Science.gov (United States)

    Claros, M; Schönian, G; Gräser, Y; Montag, T; Rodloff, A C; Citron, D M; Goldstein, E J

    1995-08-01

    Using single consensus primers of genomic nucleotide sequences, PCR-generated fingerprints were used for identification and differentiation of the Bacteroides fragilis group (B. fragilis, B. thetaiotaomicron, B. ovatus, B. distasonis, B. vulgatus) and Prevotella bivia (B. bivius) by comparing the DNA profiles with those of reference strains from the American Type Culture Collection and German Culture Collection. When primed by a single primer phage M13 core sequence, intra-species specific differences and species-specific bands were detected. Using primers derived from the evolutionarily conserved tRNA gene sequence, species-specific patterns were produced. A computer program, GelManager, was used to analyze the profiles and generate dendrograms. The correlation coefficients determined from the DNA fingerprint profiles of the clinical isolates (using the M13 core primer) fell within a narrow range, reflecting a high level of homology within the species. Based on the dendrograms, strains of one species were clearly differentiated from strains of other species. For comparison, SDS-PAGE analysis of whole cell extracts was also performed to obtain protein band patterns of various strains. Because of the simplicity of the PCR fingerprinting method and the ease of performance of computerized evaluation of data, this technique is a useful method for both species and strain differentiation, as well as for characterization of Bacteroides species and Prevotella bivia.

  10. A genomic island provides Acidithiobacillus ferrooxidans ATCC 53993 additional copper resistance: a possible competitive advantage.

    Science.gov (United States)

    Orellana, Luis H; Jerez, Carlos A

    2011-11-01

    There is great interest in understanding how extremophilic biomining bacteria adapt to exceptionally high copper concentrations in their environment. Acidithiobacillus ferrooxidans ATCC 53993 genome possesses the same copper resistance determinants as strain ATCC 23270. However, the former strain contains in its genome a 160-kb genomic island (GI), which is absent in ATCC 23270. This GI contains, amongst other genes, several genes coding for an additional putative copper ATPase and a Cus system. A. ferrooxidans ATCC 53993 showed a much higher resistance to CuSO(4) (>100 mM) than that of strain ATCC 23270 (<25 mM). When a similar number of bacteria from each strain were mixed and allowed to grow in the absence of copper, their respective final numbers remained approximately equal. However, in the presence of copper, there was a clear overgrowth of strain ATCC 53993 compared to ATCC 23270. This behavior is most likely explained by the presence of the additional copper-resistance genes in the GI of strain ATCC 53993. As determined by qRT-PCR, it was demonstrated that these genes are upregulated when A. ferrooxidans ATCC 53993 is grown in the presence of copper and were shown to be functional when expressed in copper-sensitive Escherichia coli mutants. Thus, the reason for resistance to copper of two strains of the same acidophilic microorganism could be determined by slight differences in their genomes, which may not only lead to changes in their capacities to adapt to their environment, but may also help to select the more fit microorganisms for industrial biomining operations. © Springer-Verlag 2011

  11. Stability Comparison of Free and Encapsulated Lactobacilus casei ATCC 393 in Yoghurt for Long Time Storage

    Directory of Open Access Journals (Sweden)

    Oana Lelia POP

    2016-11-01

    Full Text Available An innovative method of L. casei ATCC 393 encapsulation has been reported in the present study using pectin combined with alginate. The aim of this study was to investigate the effect of encapsulation on the survival of L. casei ATCC 393 in yoghurt during long time storage, free or encapsulated in alginate and alginate pectin microspheres, and influence over yoghurt properties, particularly acidification. Over 35 days of storage in yoghurt, the encapsulated probiotic cells proved a higher viability compared with free probiotic cells. An even higher viability and stability was observed for the samples where pectin was used. Pectin acts as prebiotic during encapsulation of L. casei ATCC 393.

  12. Comparison of bacteroides-prevotella 16S rRNA genetic markers for fecal samples from different animal species.

    Science.gov (United States)

    Fogarty, Lisa R; Voytek, Mary A

    2005-10-01

    To effectively manage surface and ground waters it is necessary to improve our ability to detect and identify sources of fecal contamination. We evaluated the use of the anaerobic bacterial group Bacteroides-Prevotella as a potential fecal indicator. Terminal restriction length polymorphism (T-RFLP) of the 16S rRNA genes from this group was used to determine differences in populations and to identify any unique populations in chickens, cows, deer, dogs, geese, horses, humans, pigs, and seagulls. The group appears to be a good potential fecal indicator in all groups tested except for avians. Cluster analysis of Bacteroides-Prevotella community T-RFLP profiles indicates that Bacteroides-Prevotella populations from samples of the same host species are much more similar to each other than to samples from different source species. We were unable to identify unique peaks that were exclusive to any source species; however, for most host species, at least one T-RFLP peak was identified to be more commonly found in that species, and a combination of peaks could be used to identify the source. T-RFLP profiles obtained from water spiked with known-source feces contained the expected diagnostic peaks from the source. These results indicate that the approach of identifying Bacteroides-Prevotella molecular markers associated with host species might be useful in identifying sources of fecal contamination in the environment.

  13. L-Lactic Acid Production by Lactobacillus rhamnosus ATCC 10863

    Directory of Open Access Journals (Sweden)

    Ana Lívia Chemeli Senedese

    2015-01-01

    Full Text Available Lactic acid has been shown to have the most promising application in biomaterials as poly(lactic acid. L. rhamnosus ATCC 10863 that produces L-lactic acid was used to perform the fermentation and molasses was used as substrate. A solution containing 27.6 g/L of sucrose (main composition of molasses and 3.0 g/L of yeast extract was prepared, considering the final volume of 3,571 mL (14.0% (v/v inoculum. Batch and fed batch fermentations were performed with temperature of 43.4°C and pH of 5.0. At the fed batch, three molasses feed were applied at 12, 24, and 36 hours. Samples were taken every two hours and the amounts of lactic acid, sucrose, glucose, and fructose were determined by HPLC. The sucrose was barely consumed at both processes; otherwise the glucose and fructose were almost entirely consumed. 16.5 g/L of lactic acid was produced at batch and 22.0 g/L at fed batch. Considering that lactic acid was produced due to the low concentration of the well consumed sugars, the final amount was considerable. The cell growth was checked and no substrate inhibition was observed. A sucrose molasses hydrolysis is suggested to better avail the molasses fermentation with this strain, surely increasing the L-lactic acid.

  14. Studies of linear Gramicidin synthesis in Bacillus brevis ATCC 8185

    International Nuclear Information System (INIS)

    Kubota, Kou; Kagawa, Kenichi

    1976-01-01

    Bacillus brevis ATCC 8185 was grown in polypepton and Ehrlich's meat extract medium, and this strain produced two kinds of peptide antibiotics, Tyrocidine and linear Gramicidin. A simple chromatographic method was developed for the isolation of linear Gramicidin from mixture Tyrothricin, applied on the column. Trimethoprim, an inhibitor of dihydrofolate reductase, inhibits the synthesis of both peptides in the growing culture with slight inhibition to cell growth. Serine- 14 C is incorporated in the Gramicidin, and recovered as ethanol amine and glycine by the hydrolysis of 14 C-labeled Gramicidin, but deoxypyridoxine-HCl, B 6 antagonist, has no effect on the production of antibiotics in the culture. Linear Gramicidin gives two spots on the thin layer chromatogram (TLC) developed by ethyl acetate-pyridine-water system of 16:4:2, and by chloroform-methanol-water system of 17:3:0.3. The incorporations of constitutive 14 C-labeled amino acids, ethanol amine, and sodium formate into linear Gramicidin were studied by growing cells. These labeled specimens were identified to correspond to authentic specimens which migrated on TLC. Cells were hydrolysed with Lysozyme, and the crude extract was prepared between 0.33 and 0.45 saturation of ammonium sulfate. It activated constituent amino acids including D-leucine by ATP- 32 PPi exchange reaction, but hardly activated L-serine, D-valine, and formyl L-valine. (Kobatake, H.)

  15. Characterisation of the nitrile biocatalytic activity of rhodococcus rhodochrous ATCC BAA-870

    CSIR Research Space (South Africa)

    Frederick, J

    2006-10-01

    Full Text Available rhodochrous ATCC BAA-870, was explored. The biocatalyst expressed a two enzyme system with sequential nitrile-converting activity: nitrile hydratase and amidase. This biocatalytic nitrile hydrolysis affords valuable applications in industry, including...

  16. Bacteroides fragilis induce necrosis on mice peritoneal macrophages: In vitro and in vivo assays

    International Nuclear Information System (INIS)

    Vieira, J.M.B.D.; Seabra, S.H.; Vallim, D.C.; Americo, M.A.; Fracallanza, S.E.L.; Vommaro, R.C.; Domingues, R.M.C.P.

    2009-01-01

    Bacteroides fragilis is an anaerobic bacteria component of human intestinal microbiota and agent of infections. In the host B. fragilis interacts with macrophages, which produces toxic radicals like NO. The interaction of activated mice peritoneal macrophages with four strains of B. fragilis was evaluated on this study. Previously was shown that such strains could cause metabolic and morphologic alterations related to macrophage death. In this work propidium iodide staining showed the strains inducing macrophage necrosis in that the labeling was evident. Besides nitroblue tetrazolium test showed that B. fragilis stimulates macrophage to produce oxygen radicals. In vivo assays performed in BalbC mice have results similar to those for in vitro tests as well as scanning electron microscopy, which showed the same surface pore-like structures observed in vitro before. The results revealed that B. fragilis strains studied lead to macrophage death by a process similar to necrosis.

  17. Bacteroides fragilis interferes with iNOS activity and leads to pore formation in macrophage surface

    International Nuclear Information System (INIS)

    Vieira, Jessica Manya B.D.; Vallim, Deyse C.; Ferreira, Eliane O.; Seabra, Sergio H.; Vommaro, Rossiane C.; Avelar, Katia E.S.; De Souza, Wanderley; Ferreira, Maria Ca-hat ndida S.; Domingues, Regina M.C.P.

    2005-01-01

    Bacteroides fragilis is the anaerobe most commonly recoverable from clinical specimens. The wide genetic diversity of this bacterium related with virulence potential is still an open question. In this study, we analyzed the morphological aspects and microbicide action of MO during interactions with B. fragilis. A filamentous cytoplasm content release and a different actin organization colocalized with iNOS were detected. It was also possible to observe the reduction of NO production in the same conditions. The scanning electron microscopy showed the formation of pore-like structures in the surface of macrophages in the bacterial presence and by transmission electron microscopy we could observe the extrusion of cytoplasm contents as well as the condensation of chromatin in the nucleus periphery. These data suggest the existence of an inhibitory mechanism developed by B. fragilis strains for one of the macrophage microbicide actions

  18. Susceptibility of clinical isolates of Bacteroides fragilis group strains to cefoxitin, cefoperazone and ticarcillin/clavulanate

    Directory of Open Access Journals (Sweden)

    PEIXOTO JÚNIOR Arnaldo Aires

    2000-01-01

    Full Text Available A total of 40 strains of the B. fragilis group was isolated from clinical specimens in two hospital centers in Fortaleza from 1993 to 1997. The most frequently isolated species was Bacteroides fragilis (19 strains and most isolates came from intra-abdominal and wound infections. The susceptibility profile was traced for cefoxitin, cefoperazone and ticarcillin-clavulanate by using the agar dilution reference method. All isolates were susceptible to ticarcillin-clavulanate (128/2mug/ml. Resistance rates of 15 and 70% were detected to cefoxitin (64mug/ml and cefoperazone (64mug/ml, respectively. Such regional results permit a better orientation in choosing this group of antibiotics for prophylaxis and therapy especially in relation to cefoxitin, which is frequently used in the hospital centers studied.

  19. The role of efflux pumps in Bacteroides fragilis resistance to antibiotics.

    Science.gov (United States)

    Ghotaslou, Reza; Yekani, Mina; Memar, Mohammad Yousef

    2018-05-01

    The resistance of Bacteroides fragilis to the most antimicrobial agents has been reported in the world. Identification of the microbial resistance mechanisms can play an important role in controlling these resistances. Currently, B. fragilis is resistant to most antibiotics. The multi-drug efflux pumps have been shown to underlie the antimicrobial resistance in B. fragilis strains. Two types of these efflux pumps including RND and MATE can be regarded as main structures responsible for antibiotic resistance. Therefore, the strategy for suppressing of this efflux system may be useful in the treatment and control of the multidrug-resistant B. fragilis. The purpose of this study is to review the B. fragilis efflux pumps and their functions in the resistance to antibiotics. Copyright © 2018 Elsevier GmbH. All rights reserved.

  20. Bacteroides fragilis induce necrosis on mice peritoneal macrophages: In vitro and in vivo assays

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, J.M.B.D., E-mail: jmanya@terra.com.br [Laboratorio de Tecnologia em Cultura de Celulas, UEZO, Rio de Janeiro (Brazil); Laboratorio de Biologia de Anaerobios, IMPPG, UFRJ, Rio de Janeiro (Brazil); Seabra, S.H. [Laboratorio de Tecnologia em Cultura de Celulas, UEZO, Rio de Janeiro (Brazil); Vallim, D.C. [Instituto Oswaldo Cruz, Rio de Janeiro (Brazil); Americo, M.A.; Fracallanza, S.E.L. [Laboratorio de Bacteriologia Medica, IMPPG, UFRJ, Rio de Janeiro (Brazil); Vommaro, R.C. [Laboratorio de Ultra-estrutura Celular Hertha Meyer, IBCCF, UFRJ (Brazil); Domingues, R.M.C.P. [Laboratorio de Biologia de Anaerobios, IMPPG, UFRJ, Rio de Janeiro (Brazil)

    2009-10-02

    Bacteroides fragilis is an anaerobic bacteria component of human intestinal microbiota and agent of infections. In the host B. fragilis interacts with macrophages, which produces toxic radicals like NO. The interaction of activated mice peritoneal macrophages with four strains of B. fragilis was evaluated on this study. Previously was shown that such strains could cause metabolic and morphologic alterations related to macrophage death. In this work propidium iodide staining showed the strains inducing macrophage necrosis in that the labeling was evident. Besides nitroblue tetrazolium test showed that B. fragilis stimulates macrophage to produce oxygen radicals. In vivo assays performed in BalbC mice have results similar to those for in vitro tests as well as scanning electron microscopy, which showed the same surface pore-like structures observed in vitro before. The results revealed that B. fragilis strains studied lead to macrophage death by a process similar to necrosis.

  1. Luciferase genes cloned from the unculturable luminous bacteroid symbiont of the Caribbean flashlight fish, Kryptophanaron alfredi.

    Science.gov (United States)

    Haygood, M G; Cohn, D H

    1986-01-01

    Light organs of anomalopid (flashlight) fish contain luminous bacteroids that have never been cultured and, consequently, have been difficult to study. We have characterized the luciferase (lux) region of DNA extracted from light organs of the Caribbean flashlight fish Kryptophanaron alfredi by hybridization of cloned Vibrio harveyi lux genes to restriction-endonuclease-digested, light organ DNA. Comparison of the hybridization pattern of light organ DNA with that of DNA of a putative symbiotic isolate provides a method for identifying the authentic luminous symbiont regardless of its luminescence, and was used to reject one such isolate. Light organ DNA was further used to construct a cosmid clone bank and the luciferase genes were isolated. Unlike other bacterial luciferase genes, the genes were not expressed in Escherichia coli. When placed under the control of the E. coli trp promoter, the genes were transcribed but no luciferase was detected, suggesting a posttranscriptional block to expression.

  2. Bacteroides gingivalis-Actinomyces viscosus cohesive interactions as measured by a quantitative binding assay

    International Nuclear Information System (INIS)

    Schwarz, S.; Ellen, R.P.; Grove, D.A.

    1987-01-01

    There is limited evidence, mostly indirect, to suggest that the adherence of Bacteroides gingivalis to teeth may be enhanced by the presence of gram-positive dental plaque bacteria like Actinomyces viscosus. The purpose of this study was to carry out direct quantitative assessments of the cohesion of B gingivalis and A. viscosus by using an in vitro assay modeled on the natural sequence in which these two species colonize the teeth. The assay allowed comparisons to be made of the adherence of 3 H-labeled B. gingivalis 2561 and 381 to saliva-coated hydroxyapatite beads (S-HA) and A. viscosus WVU627- or T14V-coated S-HA (actinobeads) in equilibrium and kinetics binding studies. A series of preliminary binding studies with 3H-labeled A. viscosus and parallel studies by scanning electron microscopy with unlabeled A. viscosus were conducted to establish a protocol by which actinobeads suitable for subsequent Bacteroides adherence experiments could be prepared. By scanning electron microscopy, the actinobeads had only small gaps of exposed S-HA between essentially irreversibly bound A. viscosus cells. Furthermore, B. gingivalis cells appeared to bind preferentially to the Actinomyces cells instead of the exposed S-HA. B. gingivalis binding to both S-HA and actinobeads was saturable with at least 2 X 10(9) to 3 X 10(9) cells per ml, and equilibrium with saturating concentrations was reached within 10 to 20 min. B. gingivalis always bound in greater numbers to the actinobeads than to S-HA. These findings provide direct measurements supporting the concept that cohesion with dental plaque bacteria like A. viscosus may foster the establishment of B. gingivalis on teeth by enhancing its adherence

  3. Effects of macro nutrient concentration on biological N2 fixation by Azotobacter vinelandii ATCC 12837

    International Nuclear Information System (INIS)

    Liew Pauline Woan Ying; Nazalan Najimudin; Jong Bor Chyan; Latiffah Noordin; Khairuddin Abdul Rahim; Amir Hamzah Ahmad Ghazali

    2010-01-01

    The dynamic changes of biological N 2 fixation by Azotobacter vinelandii ATCC 12837 under the influence of various macro nutrients, specifically phosphorus (P) and potassium (K), was investigated. In this attempt, Oryza sativa L. var. MR 219 was used as the model plant. Results obtained showed changes in the biological N 2 fixation activities with different macro nutrient(s) manipulations. The research activity enables optimisation of macro nutrients concentration for optimal/ enhanced biological N 2 fixation by A. vinelandii ATCC 12837. (author)

  4. Susceptibility trends of Bacteroides fragilis group isolates from Buenos Aires, Argentina Tendencias en el perfil de sensibilidad de aislamientos del grupo Bacteroides fragilis obtenidos en Buenos Aires, Argentina

    Directory of Open Access Journals (Sweden)

    L. Fernández Canigia

    2007-09-01

    Full Text Available The aim of this study was to analyze the susceptibility trends to seven antibiotics of Bacteroides fragilis group isolates based on three survey studies performed by the Committee of Anaerobic Bacteria between 1989 and 2002. Fifty three, 82 and 65 B. fragilis group isolates were collected during each period. The antimicrobial agents included were: ampicillin, ampicillin-sulbactam (2:1, cefoxitin, piperacillin, imipenem, clindamycin, and metronidazole. Minimal inhibitory concentrations (MICs were determined according to the reference agar dilution method described by the Clinical and Laboratory Standards Institute (CLSI, formerly NCCLS. The most active antibiotics for B. fragilis and non- B. fragilis species throughout the three periods were: imipenem with 99.1 and 100% of activity, respectively, and metronidazole with 100% of activity. The susceptibility to ampicillin-sulbactam showed a decrease, from 100% to 90.3% and to 82.4 % in the last period, for both B. fragilis and non-B. fragilis species, respectively. The overall susceptibility rates for cefoxitin, piperacillin, and clindamycin were significantly different between B. fragilis and non-B. fragilis species (84.2% vs. 56.5%; 85.9% vs. 66.7% and 88.8% vs. 64.7%, respectively, pEl objetivo de este estudio fue evaluar las variaciones en el perfil de sensibilidad frente a siete antimicrobianos de aislamientos del grupo Bacteroides fragilis, mediante el análisis de tres relevamientos realizados por la Subcomisión de Bacterias Anaerobias de la Asociación Argentina de Microbiología (años 1989-1991, 1996-1998 y 1999-2002. En los citados períodos se recolectaron 53, 82 y 65 aislamientos del grupo B. fragilis. Se evaluó la actividad de: ampicilina, ampicilina-sulbactama (2:1, cefoxitina, piperacilina, imipenem, clindamicina y metronidazol. La concentración inhibitoria mínima (CIM se determinó utilizando el método de dilución en agar, según las normas del Clinical and Laboratory

  5. Antimicrobial activity of lactic acid bacteria isolated from bekasam against staphylococcus aureus ATCC 25923, escherichia coli ATCC 25922, and salmonella sp

    Science.gov (United States)

    Sari, Melia; Suryanto, Dwi; Yurnaliza

    2018-03-01

    Bekasam is an Indonesian fermented food made of fish. As a fermented food, this food may contain some beneficial bacteria like lactic acid bacteria (LAB), which usually have antimicrobial properties such as organic acid, hydrogen peroxide, and a bacteriocin. A study on antimicrobial activity of LAB isolated from bekasam against some pathogenic bacteria has been conducted. The purpose of this study was to know the ability of crude bacteriocin produced LAB of bekasam against Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, and Salmonella sp. Bekasam sample was taken from South Sumatera. LAB isolation was done using de Man Rogosa and Sharpe agar. A bacterial colony with clear zone was selected and purified to get a single colony. The antagonistic assay of the LAB was conducted in Muller-Hinton agar Selected isolates with higher clearing zone were assayed for antibacterial effect of their crude bacteriocin of different culture incubation time of 6, 9, and 12 hours. The results showed that the crude extract bacteriocin of isolate MS2 of 9 hours culture incubation time inhibited more in Staphylococcus aureus ATCC 25923 with inhibition zone of 13.1 mm, whereas isolate MS9 of 9 hours culture incubation time inhibited more in Escherichia coli ATCC 25922 and Salmonella sp. with inhibition zone of 12.7 and 7.3 mm, respectively.

  6. Antimicrobial Activity of Truncated and Polyvalent Peptides Derived from the FKCRRQWQWRMKKGLA Sequence against Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923

    Directory of Open Access Journals (Sweden)

    Nataly de Jesús Huertas

    2017-06-01

    Full Text Available Peptides derived from LfcinB were designed and synthesized, and their antibacterial activity was tested against Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923. Specifically, a peptide library was constructed by systemically removing the flanking residues (N or C-terminal of Lfcin 17–31 (17FKCRRWQWRMKKLGA31, maintaining in all peptides the 20RRWQWR25 sequence that corresponds to the minimal antimicrobial motif. For this research, also included were (i a peptide containing an Ala instead of Cys ([Ala19]-LfcinB 17–31 and (ii polyvalent peptides containing the RRWQWR sequence and a non-natural amino acid (aminocaproic acid. We established that the lineal peptides LfcinB 17–25 and LfcinB 17–26 exhibited the greatest activity against E. coli ATCC 25922 and S. aureus ATCC 25923, respectively. On the other hand, polyvalent peptides, a dimer and a tetramer, exhibited the greatest antibacterial activity, indicating that multiple copies of the sequence increase the activity. Our results suggest that the dimeric and tetrameric sequence forms potentiate the antibacterial activity of lineal sequences that have exhibited moderate antibacterial activity.

  7. Effects of far-ultraviolet radiation and oxygen on macromolecular synthesis and protein induction in Bacteroides fragilis BF-2

    International Nuclear Information System (INIS)

    Schumann, J.P.

    1983-11-01

    The study deals with the effects of far-UV radiation, oxygen and hydrogen peroxide on macromolecular synthesis and viability in the obligate anaerobe, Bacteroides fragilis, as well as the specific proteins induced in this organism by these different DNA damaging agents. Irradiation of Bacteroides fragilis cells with far-UV light (254 nm) under anaerobic conditions resulted in the immediate, rapid and extensive degradation of DNA which continued for 40 to 60 min after irradiation. DNA degradation after irradiation was inhibited by chloramphenicol and caffeine. RNA and protein synthesis were decreased by UV irradiation and the degree of inhibition was proportional to the UV dose. Colony formation was not affected immediately by UV irradiation and continued for a dose-dependent period prior to inhibition. The relationship between the DNA damage-induced proteins, macromolecular synthesis in damaged B. fragilis cells and the observed physiological responses and inducible repair phenomena after the different DNA damaging treatments in this anaerobe are discussed

  8. A Closer Look at Bacteroides: Phylogenetic Relationship and Genomic Implications of a Life in the Human Gut

    DEFF Research Database (Denmark)

    Karlsson, Fredrik H.; Ussery, David; Nielsen, Jens

    2011-01-01

    The human gut is extremely densely inhabited by bacteria mainly from two phyla, Bacteroidetes and Firmicutes, and there is a great interest in analyzing whole-genome sequences for these species because of their relation to human health and disease. Here, we do whole-genome comparison of 105...... of extracytoplasmic function σ factors (ECF σ factors) and two component systems for extracellular signal transduction compared to other Bacteroidetes/Chlorobi species. A whole-genome phylogenetic analysis shows a very little difference between the Parabacteroides and Bacteroides genera. Further analysis shows...... of members of the Bacteroidetes/Chlorobi phylum by whole genome comparison. Gut living Bacteroides have an enriched set of glycan, vitamin, and cofactor enzymes important for diet digestion....

  9. Developing a Bacteroides System for Function-Based Screening of DNA from the Human Gut Microbiome.

    Science.gov (United States)

    Lam, Kathy N; Martens, Eric C; Charles, Trevor C

    2018-01-01

    Functional metagenomics is a powerful method that allows the isolation of genes whose role may not have been predicted from DNA sequence. In this approach, first, environmental DNA is cloned to generate metagenomic libraries that are maintained in Escherichia coli, and second, the cloned DNA is screened for activities of interest. Typically, functional screens are carried out using E. coli as a surrogate host, although there likely exist barriers to gene expression, such as lack of recognition of native promoters. Here, we describe efforts to develop Bacteroides thetaiotaomicron as a surrogate host for screening metagenomic DNA from the human gut. We construct a B. thetaiotaomicron-compatible fosmid cloning vector, generate a fosmid clone library using DNA from the human gut, and show successful functional complementation of a B. thetaiotaomicron glycan utilization mutant. Though we were unable to retrieve the physical fosmid after complementation, we used genome sequencing to identify the complementing genes derived from the human gut microbiome. Our results demonstrate that the use of B. thetaiotaomicron to express metagenomic DNA is promising, but they also exemplify the challenges that can be encountered in the development of new surrogate hosts for functional screening. IMPORTANCE Human gut microbiome research has been supported by advances in DNA sequencing that make it possible to obtain gigabases of sequence data from metagenomes but is limited by a lack of knowledge of gene function that leads to incomplete annotation of these data sets. There is a need for the development of methods that can provide experimental data regarding microbial gene function. Functional metagenomics is one such method, but functional screens are often carried out using hosts that may not be able to express the bulk of the environmental DNA being screened. We expand the range of current screening hosts and demonstrate that human gut-derived metagenomic libraries can be

  10. Identification of antimicrobial resistance genes in multidrug-resistant clinical Bacteroides fragilis isolates by whole genome shotgun sequencing

    DEFF Research Database (Denmark)

    Sydenham, Thomas Vognbjerg; Sóki, József; Hasman, Henrik

    2015-01-01

    Bacteroides fragilis constitutes the most frequent anaerobic bacterium causing bacteremia in humans. The genetic background for antimicrobial resistance in B. fragilis is diverse with some genes requiring insertion sequence (IS) elements inserted upstream for increased expression. To evaluate whole...... genome shotgun sequencing as a method for predicting antimicrobial resistance properties, one meropenem resistant and five multidrug-resistant blood culture isolates were sequenced and antimicrobial resistance genes and IS elements identified using ResFinder 2.1 (http...

  11. Morphology, antigenicity, and nucleic acid content of the Bacteroides sp. used in the culture of Entamoeba histolytica.

    Science.gov (United States)

    Albach, R A; Shaffer, J G; Watson, R H

    1965-10-01

    Albach, Richard A. (Lutheran General Hospital, Park Ridge, Ill.), James G. Shaffer, and Robert H. Watson. Morphology, antigenicity, and nucleic acid content of the Bacteroides sp. used in the culture of Entamoeba histolytica. J. Bacteriol. 90:1045-1053. 1965.-Certain changes in morphology, antigenicity, and nucleic acid content that occur in a culture of Bacteroides sp. in the presence of penicillin G in CLG medium are described. This "variant" is one of seven recovered in several laboratories, all of which are descendants of the original Bacteroides isolated by Shaffer and Frye. Penicillin-inhibited cells of this culture are currently being used in the routine propagation of Entamoeba histolytica in CLG medium. Evidence is presented for the loss of ability to react with antibody in these penicillin-inhibited bacteria in CLG medium, when studied by fluorescent-antibody techniques. The implications of the antigenic changes observed as they pertain to similar antigenic studies of the amoebas are discussed. A pronounced reduction in the ribonucleic acid (RNA) content of such penicillin-inhibited cells was also observed. The potential importance of the changes that occur in the RNA of these cells with respect to considerations of the growth requirements of the amoebas is also discussed.

  12. Two new xylanases with different substrate specificities from the human gut bacterium Bacteroides intestinalis DSM 17393.

    Science.gov (United States)

    Hong, Pei-Ying; Iakiviak, Michael; Dodd, Dylan; Zhang, Meiling; Mackie, Roderick I; Cann, Isaac

    2014-04-01

    Xylan is an abundant plant cell wall polysaccharide and is a dominant component of dietary fiber. Bacteria in the distal human gastrointestinal tract produce xylanase enzymes to initiate the degradation of this complex heteropolymer. These xylanases typically derive from glycoside hydrolase (GH) families 10 and 11; however, analysis of the genome sequence of the xylan-degrading human gut bacterium Bacteroides intestinalis DSM 17393 revealed the presence of two putative GH8 xylanases. In the current study, we demonstrate that the two genes encode enzymes that differ in activity. The xyn8A gene encodes an endoxylanase (Xyn8A), and rex8A encodes a reducing-end xylose-releasing exo-oligoxylanase (Rex8A). Xyn8A hydrolyzed both xylopentaose (X5) and xylohexaose (X6) to a mixture of xylobiose (X2) and xylotriose (X3), while Rex8A hydrolyzed X3 through X6 to a mixture of xylose (X1) and X2. Moreover, rex8A is located downstream of a GH3 gene (xyl3A) that was demonstrated to exhibit β-xylosidase activity and would be able to further hydrolyze X2 to X1. Mutational analyses of putative active site residues of both Xyn8A and Rex8A confirm their importance in catalysis by these enzymes. Recent genome sequences of gut bacteria reveal an increase in GH8 Rex enzymes, especially among the Bacteroidetes, indicating that these genes contribute to xylan utilization in the human gut.

  13. Two New Xylanases with Different Substrate Specificities from the Human Gut Bacterium Bacteroides intestinalis DSM 17393

    KAUST Repository

    Hong, Pei-Ying

    2014-01-24

    Xylan is an abundant plant cell wall polysaccharide and is a dominant component of dietary fiber. Bacteria in the distal human gastrointestinal tract produce xylanase enzymes to initiate the degradation of this complex heteropolymer. These xylanases typically derive from glycoside hydrolase (GH) families 10 and 11; however, analysis of the genome sequence of the xylan-degrading human gut bacterium Bacteroides intestinalis DSM 17393 revealed the presence of two putative GH8 xylanases. In the current study, we demonstrate that the two genes encode enzymes that differ in activity. The xyn8A gene encodes an endoxylanase (Xyn8A), and rex8A encodes a reducing-end xylose-releasing exo-oligoxylanase (Rex8A). Xyn8A hydrolyzed both xylopentaose (X5) and xylohexaose (X6) to a mixture of xylobiose (X2) and xylotriose (X3), while Rex8A hydrolyzed X3 through X6 to a mixture of xylose (X1) and X2. Moreover, rex8A is located downstream of a GH3 gene (xyl3A) that was demonstrated to exhibit β-xylosidase activity and would be able to further hydrolyze X2 to X1. Mutational analyses of putative active site residues of both Xyn8A and Rex8A confirm their importance in catalysis by these enzymes. Recent genome sequences of gut bacteria reveal an increase in GH8 Rex enzymes, especially among the Bacteroidetes, indicating that these genes contribute to xylan utilization in the human gut.

  14. Prevalence and characterization of enterotoxigenic Bacteroides fragilis and toxigenic Clostridium difficile in a Taipei emergency department.

    Science.gov (United States)

    Ji, Dar-Der; Huang, I-Hsiu; Lai, Chao-Chih; Wu, Fang-Tzy; Jiang, Donald Dah-Shyong; Hsu, Bing-Mu; Lin, Wei-Chen

    2017-02-01

    Enterotoxigenic Bacteroides fragilis (ETBF) and toxin-encoding Clostridium difficile (TXCD) are associated with gastroenteritis. Routine anaerobic blood culture for recovery of these anaerobic pathogens is not used for the detection of their toxins, especially for toxin-variant TXCD. The aim of this study was to investigate the prevalence and risk factors of the genotypes of these anaerobes in patients with acute diarrheal illnesses. The data and samples of 513 patients with gastroenteritis were collected in a Taipei emergency department from March 1, 2006 to December 31, 2009. Nonenterotoxigenic B. fragilis (NTBF) and ETBF and the toxin genotypes of TXCD were detected by molecular methods. The prevalence rates of NTBF, ETBF, and TXCD infections were 33.14%, 1.56%, and 2.34%, respectively. ETBF infections often occurred in the elderly (average age = 67.13 years) and during the cold, dry winters. TXCD infections were widely distributed in age and often occurred in the warm, wet springs and summers. The symptoms of ETBF-infected patients were significantly more severe than those of NTBF-infected patients. This study identified and analyzed the prevalence, risk factors, and clinical presentations of these anaerobic infections. Future epidemiologic and clinical studies are needed to understand the role of ETBF and TXCD in human gastroenteritis. Copyright © 2015. Published by Elsevier B.V.

  15. Studies of antibiotic resistant mutants of Bacteroides fragilis obtained by Cs-137 ionizing radiation

    International Nuclear Information System (INIS)

    Azghani, A.O.

    1986-01-01

    The genus Bacteroides is an obligate anaerobic bacillus normally found in the upper respiratory tract, the colon, and the genitourinary system. The project reported here was undertaken because of the high frequency of hospital infections attributed to B. fragilis, and the increased resistance of the bacteria to commonly used antibiotics. Cs-137 gamma irradiation was used to induce antibiotic resistant mutants in B. fragilis in the presence of Escherichia coli B/r membrane fragments, employed as reducing agent. Based on a dose-survival curve, an effective radiation dose of 1.54 x 10 4 R (3.99 C/Kg) was used to induce mutations to rifampicin and tetracycline resistance in the test organism. The antibiotic resistant mutants of B. fragilis were utilized to reveal the mechanism by which this group of organisms becomes resistant to select chemotherapeutic agents. Studies on tetracycline resistant mutants of B. fragilis isolated after irradiation, suggest that the resistance to this antibiotic is associated with the outer membrane permeability. The difference in inhibitory action of rifampicin on RNA polymerase activity, from rifampicin sensitive and resistant strains of B. fragilis, reveals that this enzyme is a possible suitable target for inhibition of bacterial growth in anaerobes by rifampicin

  16. The dissemination of C10 cysteine protease genes in Bacteroides fragilis by mobile genetic elements

    LENUS (Irish Health Repository)

    Thornton, Roibeard F

    2010-04-23

    Abstract Background The C10 family of cysteine proteases includes enzymes that contribute to the virulence of bacterial pathogens, such as SpeB in Streptococcus pyogenes. The presence of homologues of cysteine protease genes in human commensal organisms has not been examined. Bacteroides fragilis is a member of the dominant Bacteroidetes phylum of the human intestinal microbiota, and is a significant opportunistic pathogen. Results Four homologues of the streptococcal virulence factor SpeB were identified in the B. fragilis genome. These four protease genes, two were directly contiguous to open reading frames predicted to encode staphostatin-like inhibitors, with which the protease genes were co-transcribed. Two of these protease genes are unique to B. fragilis 638R and are associated with two large genomic insertions. Gene annotation indicated that one of these insertions was a conjugative Tn-like element and the other was a prophage-like element, which was shown to be capable of excision. Homologues of the B. fragilis C10 protease genes were present in a panel of clinical isolates, and in DNA extracted from normal human faecal microbiota. Conclusions This study suggests a mechanism for the evolution and dissemination of an important class of protease in major members of the normal human microbiota.

  17. Enterotoxigenic and non-enterotoxigenic Bacteroides fragilis from fecal microbiota of children

    Directory of Open Access Journals (Sweden)

    Aline Ignacio

    2015-01-01

    Full Text Available Enterotoxigenic Bacteroides fragilis (ETBF is an important part of the human and animal intestinal microbiota and is commonly associated with diarrhea. ETBF strains produce an enterotoxin encoded by the bft gene located in the B. fragilispathogenicity island (BfPAI. Non-enterotoxigenic B. fragilis(NTBF strains lack the BfPAI and usually show two different genetic patterns, II and III, based on the absence or presence of a BfPAI-flanking region, respectively. The incidence of ETBF and NTBF strains in fecal samples isolated from children without acute diarrhea or any other intestinal disorders was determined. All 84 fecal samples evaluated were B. fragilis-positive by PCR, four of them harbored the bft gene, 27 contained the NTBF pattern III DNA sequence, and 52 were considered to be NTBF pattern II samples. One sample was positive for both ETBF and NTBF pattern III DNA sequences. All 19 B. fragilis strains isolated by the culture method were bft-negative, 9 belonged to pattern III and 10 to pattern II. We present an updated overview of the ETBF and NTBF incidence in the fecal microbiota of children from Sao Paulo City, Brazil.

  18. [Association between Bacteroides forsythus in the infected root canals and clinical symptoms of chronic apical periodontitis].

    Science.gov (United States)

    Huang, Ding-ming; Fu, Chun-hua; Zhou, Xue-dong

    2005-01-01

    To investigate the distribution of Bacteroides forsythus in root canals with chronic apical periodontitis and to determine its associations with clinical symptoms. Thirty-eight tooth root canals from 31 subjects were studied with a 16S rDNA-directed polymerase chain reaction (PCR). These teeth were classified into symptomatic and asymptomatic groups according to the clinical symptoms and signs, including spontaneous pain, percussion pain, sinus tract and swelling, respectively. Ten of the 38 root canal samples were positive for B. forsythus. The prevalence of B. forsythus was 26.3% for 38 root canals, 45.5% for spontaneous pain group, 39.1% for percussion pain group, 29.4% for sinus tract group, 42.9% for swelling group, respectively. Significant positive associations were observed between B. forsythus in infected root canals and the spontaneous pain, percussion pain, and swelling of apical periodontitis, respectively (OR=infinity, 9, 12; Papical periodontitis (OR=1.33). B. forsythus colonized in the infected root canals. It is the putative pathogen of apical periodontitis.

  19. An anaerobic bacterium, Bacteroides thetaiotaomicron, uses a consortium of enzymes to scavenge hydrogen peroxide

    Science.gov (United States)

    Mishra, Surabhi; Imlay, James A.

    2013-01-01

    Summary Obligate anaerobes are periodically exposed to oxygen, and it has been conjectured that on such occasions their low-potential biochemistry will predispose them to rapid ROS formation. We sought to identify scavenging enzymes that might protect the anaerobe Bacteroides thetaiotaomicron from the H2O2 that would be formed. Genetic analysis of eight candidate enzymes revealed that four of these scavenge H2O2 in vivo: rubrerythrins 1 and 2, AhpCF, and catalase E. The rubrerythrins served as key peroxidases under anoxic conditions. However, they quickly lost activity upon aeration, and AhpCF and catalase were induced to compensate. The AhpCF is an NADH peroxidase that effectively degraded low micromolar levels of H2O2, while the catalytic cycle of catalase enabled it to quickly degrade higher concentrations that might arise from exogenous sources. Using a non-scavenging mutant we verified that endogenous H2O2 formation was much higher in aerated B. thetaiotaomicron than in Escherichia coli. Indeed, the OxyR stress response to H2O2 was induced when B. thetaiotaomicron was aerated, and in that circumstance this response was necessary to forestall cell death. Thus aeration is a serious threat for this obligate anaerobe, and to cope it employs a set of defenses that includes a repertoire of complementary scavenging enzymes. PMID:24164536

  20. Effect of low fluencies of near-ultraviolet radiation on Bacteroides fragilis survival

    International Nuclear Information System (INIS)

    Slade, H.J.K.; Jones, D.T.; Woods, D.R.

    1982-01-01

    Bacteroides fragilis is a convenient obligate anaerobe for an investigation on the effect of near-UV irradiation since the authors have shown that it can be maintained in aerobic solutions for at least 6 h without loss in viability. Furthermore, they recently demonstrated that B. fragilis differs from other bacteria in that it is more sensitive to far-UV (254 nm) radiation in the presence of oxygen. The role of oxygen on near-UV survival in B. fragilis, was investigated. The effect of chloramphenicol was also studied. Survival curves are presented. B. fragilis Bf-2 cells irradiated with increasing fluencies of near-UV light under anaerobic conditions showed no loss in viability. A 'V'-shaped survival curve was obtained when cells were irradiated aerobically. After the initial reduction in viability with fluencies up to 1.5 kJ/m 2 further irradiation resulted in the recovery of colony-forming ability which was maximal at 2.6 kJ/m 2 and remained at this level up to fluencies of 4 kJ/m 2 . (Auth.)

  1. The dissemination of C10 cysteine protease genes in Bacteroides fragilis by mobile genetic elements

    Directory of Open Access Journals (Sweden)

    Kagawa Todd F

    2010-04-01

    Full Text Available Abstract Background The C10 family of cysteine proteases includes enzymes that contribute to the virulence of bacterial pathogens, such as SpeB in Streptococcus pyogenes. The presence of homologues of cysteine protease genes in human commensal organisms has not been examined. Bacteroides fragilis is a member of the dominant Bacteroidetes phylum of the human intestinal microbiota, and is a significant opportunistic pathogen. Results Four homologues of the streptococcal virulence factor SpeB were identified in the B. fragilis genome. These four protease genes, two were directly contiguous to open reading frames predicted to encode staphostatin-like inhibitors, with which the protease genes were co-transcribed. Two of these protease genes are unique to B. fragilis 638R and are associated with two large genomic insertions. Gene annotation indicated that one of these insertions was a conjugative Tn-like element and the other was a prophage-like element, which was shown to be capable of excision. Homologues of the B. fragilis C10 protease genes were present in a panel of clinical isolates, and in DNA extracted from normal human faecal microbiota. Conclusions This study suggests a mechanism for the evolution and dissemination of an important class of protease in major members of the normal human microbiota.

  2. Two New Xylanases with Different Substrate Specificities from the Human Gut Bacterium Bacteroides intestinalis DSM 17393

    KAUST Repository

    Hong, Pei-Ying; Iakiviak, M.; Dodd, D.; Zhang, M.; Mackie, R. I.; Cann, I.

    2014-01-01

    Xylan is an abundant plant cell wall polysaccharide and is a dominant component of dietary fiber. Bacteria in the distal human gastrointestinal tract produce xylanase enzymes to initiate the degradation of this complex heteropolymer. These xylanases typically derive from glycoside hydrolase (GH) families 10 and 11; however, analysis of the genome sequence of the xylan-degrading human gut bacterium Bacteroides intestinalis DSM 17393 revealed the presence of two putative GH8 xylanases. In the current study, we demonstrate that the two genes encode enzymes that differ in activity. The xyn8A gene encodes an endoxylanase (Xyn8A), and rex8A encodes a reducing-end xylose-releasing exo-oligoxylanase (Rex8A). Xyn8A hydrolyzed both xylopentaose (X5) and xylohexaose (X6) to a mixture of xylobiose (X2) and xylotriose (X3), while Rex8A hydrolyzed X3 through X6 to a mixture of xylose (X1) and X2. Moreover, rex8A is located downstream of a GH3 gene (xyl3A) that was demonstrated to exhibit β-xylosidase activity and would be able to further hydrolyze X2 to X1. Mutational analyses of putative active site residues of both Xyn8A and Rex8A confirm their importance in catalysis by these enzymes. Recent genome sequences of gut bacteria reveal an increase in GH8 Rex enzymes, especially among the Bacteroidetes, indicating that these genes contribute to xylan utilization in the human gut.

  3. Draft Genome Sequences of Sanguibacteroides justesenii, gen. nov., sp. nov., Strains OUH 308042T (= ATCC BAA-2681T) and OUH 334697 (= ATCC BAA-2682), Isolated from Blood Cultures from Two Different Patients

    DEFF Research Database (Denmark)

    Sydenham, Thomas Vognbjerg; Hasman, Henrik; Justesen, Ulrik Stenz

    2015-01-01

    We announce here the draft genome sequences of Sanguibacteroides justesenii, gen. nov., sp. nov., strains OUH 308042T (= DSM 28342T = ATCC BAA-2681T) and OUH 334697 (= DSM 28341 = ATCC BAA-2682), isolated from blood cultures from two different patients and composed of 51 and 39 contigs for totals...

  4. Draft Genome Sequence of the Microbispora sp. Strain ATCC-PTA-5024, Producing the Lantibiotic NAI-107

    DEFF Research Database (Denmark)

    Sosio, M.; Gallo, G.; Pozzi, R.

    2014-01-01

    We report the draft genome sequence of Microbispora sp. strain ATCC-PTA-5024, a soil isolate that produces NAI-107, a new lantibiotic with the potential to treat life-threatening infections caused by multidrug-resistant Gram-positive pathogens. The draft genome of strain Microbispora sp. ATCC...

  5. Monitoring the ethanol stress response of a sigM deletion strain of B. cereus ATCC 14579.

    NARCIS (Netherlands)

    Voort, van der M.

    2008-01-01

    Here, the role of σM and its regulon in stress response and survival of B. cereus ATCC 14579 was assessed by comparative transciptome and phenotypic analysis of this strain and its sigM deletion strain. Exposure of B. cereus ATCC 14579 to a wide range of stresses revealed expression of sigM,

  6. Suppression of colorectal tumorigenesis by recombinant Bacteroides fragilis enterotoxin-2 in vivo.

    Science.gov (United States)

    Lv, You; Ye, Tao; Wang, Hui-Peng; Zhao, Jia-Ying; Chen, Wen-Jie; Wang, Xin; Shen, Chen-Xia; Wu, Yi-Bin; Cai, Yuan-Kun

    2017-01-28

    To evaluate the impact of recombinant Bacteroides fragilis enterotoxin-2 (BFT-2, or Fragilysin) on colorectal tumorigenesis in mice induced by azoxymethane/dextran sulfate sodium (AOM/DSS). Recombinant proBFT-2 was expressed in Escherichia coli strain Rosetta (DE3) and BFT-2 was obtained and tested for its biological activity via colorectal adenocarcinoma cell strains SW-480. Seventy C57BL/6J mice were randomly divided into a blank (BC; n = 10), model (AD; n = 20), model + low-dose toxin (ADLT; n = 20, 10 μg), and a model + high-dose toxin (ADHT; n = 20, 20 μg) group. Mice weight, tumor formation and pathology were analyzed. Immunohistochemistry determined Ki-67 and Caspase-3 expression in normal and tumor tissues of colorectal mucosa. Recombinant BFT-2 was successfully obtained, along with its biological activity. The most obvious weight loss occurred in the AD group compared with the ADLT group (21.82 ± 0.68 vs 23.23 ± 0.91, P ADHT group (21.82 ± 0.68 vs 23.57 ± 1.06, P ADHT groups (19.75 ± 3.30 vs 6.50 ± 1.73, P ADHT group. The incidence of colorectal adenocarcinoma in both the ADHT group and the ADHT group was reduced compared to that in the AD group ( P ADHT group was 50% and 40%, respectively, both of which were lower than that found in the AD group (94.44%, P ADHT group was 45% and 55%, both of which were higher than that found in the BC group (16.67%, P < 0.05, P < 0.05). Oral administration with lower-dose biologically active recombinant BFT-2 inhibited colorectal tumorigenesis in mice.

  7. Bacteroides gingivalis antigens and bone resorbing activity in root surface fractions of periodontally involved teeth

    International Nuclear Information System (INIS)

    Patters, M.R.; Landsberg, R.L.; Johansson, L.-A.; Trummel, C.L.; Robertson, P.R.

    1982-01-01

    Bone resorbing activity and the presence of antigens of Bacteroides gingivalis were assessed in plaque, calculus, cementum, and dentin obtained from roots of teeth previously exposed to periodontitis. Each fraction was obtained by scaling the root surface. The fraction were extracted by stirring and sonication, and the soluble centrifuged, sterilized, dialyzed, and adjusted to equivalent protein concentrations. Cementum and dentin extracts from impacted teeth were prepared similarly and served as controls. Stimulation of bone resorption by each extract was assessed in organ cultures of fetal rat bones by measurement of release of previously-incorporated 45 Ca from the bone into the medium. In some groups of teeth, calculus and cementum were treated with acid prior to scaling. Citric acid washes were recovered and dialyzed. An enzyme-linked immunosorbent assay (ELISA) was used to assess the extracts for the presence of antigens reactive with an antiserum to B. gingivalis. Significant stimulation of bone resorption was found in all calculus and periodontally-involved cementum preparations. ELISA showed significant levels of B.gingivalis antigens in plaque, calculus, and cementum of periodontally-involved teeth, but not in involved dentin nor in cementum or dentin of impact teeth. Treatment with citric acid removed essentially all B.gingivalis antigens from cementum but not calculus. The results suggest that substances which stimulate bone resorption and substances which react with B. gingivalis antiserum are present in surface plaque, calculus, and cementum or periodontally-involved teeth. These substances are not present in cementum and dentin of impacted teeth nor in dentin of periodontally-involved teeth. Treatment by both scaling and citric demineralization will remove most of these substances from cementum of teeth previously exposed to periodontitis. (author)

  8. Bacteroides fragilis lipopolysaccharide and inflammatory signaling in Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Walter J. Lukiw

    2016-09-01

    Full Text Available The human microbiome consists of ~3.8x1013 symbiotic microorganisms that form a highly complex and dynamic ecosystem: the gastrointestinal (GI tract constitutes the largest repository of the human microbiome by far, and its impact on human neurological health and disease is becoming increasingly appreciated. Bacteroidetes, the largest phylum of gram-negative bacteria in the GI tract microbiome, while generally beneficial to the host when confined to the GI tract, have potential to secrete a remarkably complex array of pro-inflammatory neurotoxins that include surface lipopolysaccharides (LPSs and toxic proteolytic species. The deleterious effects of these bacterial exudates appear to become more important as GI tract and blood-brain barriers alter or increase their permeability with aging and disease. For example, presence of the unique LPSs of the abundant Bacteroidetes species Bacteroides fragilis (BF-LPS in the serum represents a major contributing factor to systemic inflammation. BF-LPS is further recognized by TLR2, TLR4 and/or CD14 microglial cell receptors as are the pro-inflammatory 42 amino acid amyloid-beta (Aβ42 peptides that characterize Alzheimer’s disease (AD brain. Here we provide the first evidence that BF-LPS exposure to human primary brain cells is an exceptionally potent inducer of the pro-inflammatory transcription factor NF-kB (p50/p65 complex, a known trigger in the expression of pathogenic pathways involved in inflammatory neurodegeneration. This ‘Perspectives communication’ will in addition highlight work from recent studies that advance novel and emerging concepts on the potential contribution of microbiome-generated factors, such as BF-LPS, in driving pro-inflammatory degenerative neuropathology in the AD brain.

  9. Specific cell components of Bacteroides gingivalis mediate binding and degradation of human fibrinogen

    International Nuclear Information System (INIS)

    Lantz, M.S.; Allen, R.D.; Vail, T.A.; Switalski, L.M.; Hook, M.

    1991-01-01

    Bacteroides (Porphyromonas) gingivalis, which has been implicated as an etiologic agent in human periodontal diseases, has been shown to bind and degrade human fibrinogen. B. gingivalis strains bind fibrinogen reversibly and with high affinity and bind to a specific region of the fibrinogen molecule that appears to be located between the D and E domains. The authors now report that human fibrinogen is bound and then degraded by specific B. gingivalis components that appear to be localized at the cell surface. Fibrinogen binding to bacterial cells occurred at 4, 22, and 37 degree C. A functional fibrinogen-binding component (M r , 150 000) was identified when sodium dodecyl sulfate-solubilized bacteria were fractionated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, transferred to nitrocellulose membranes, and probed with 125 I-fibrinogen. Fibrinogen degradation did not occur at 4 degree C but did occur at 22 and 37 degree C. When bacteria and iodinated fibrinogen were incubated at 37 degree C, two major fibrinogen fragments (M r , 97 000 and 50 000) accumulated in incubation mixture supernatant fractions. Two major fibrinogen-degrading components (M r , 120 000 and 150 000) have been identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis in substrate-containing gels. Fibrinogen degradation by the M r -120 000 and -150 000 proteases was enhanced by reducing agents, completely inhibited by N-α-p-tosyl-L-lysyl chloromethyl ketone, and partially inhibited by n-ethyl maleimide, suggesting that these enzymes are thiol-dependent proteases with trypsinlike substrate specificity. The fibrinogen-binding component could be separated from the fibrinogen-degrading components by selective solubilization of bacteria in sodium deoxycholate

  10. Specific cell components of Bacteroides gingivalis mediate binding and degradation of human fibrinogen

    Energy Technology Data Exchange (ETDEWEB)

    Lantz, M.S.; Allen, R.D.; Vail, T.A.; Switalski, L.M.; Hook, M. (Univ. of Alabama at Birmingham (USA))

    1991-01-01

    Bacteroides (Porphyromonas) gingivalis, which has been implicated as an etiologic agent in human periodontal diseases, has been shown to bind and degrade human fibrinogen. B. gingivalis strains bind fibrinogen reversibly and with high affinity and bind to a specific region of the fibrinogen molecule that appears to be located between the D and E domains. The authors now report that human fibrinogen is bound and then degraded by specific B. gingivalis components that appear to be localized at the cell surface. Fibrinogen binding to bacterial cells occurred at 4, 22, and 37{degree}C. A functional fibrinogen-binding component (M{sub r}, 150 000) was identified when sodium dodecyl sulfate-solubilized bacteria were fractionated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, transferred to nitrocellulose membranes, and probed with {sup 125}I-fibrinogen. Fibrinogen degradation did not occur at 4{degree}C but did occur at 22 and 37{degree}C. When bacteria and iodinated fibrinogen were incubated at 37{degree}C, two major fibrinogen fragments (M{sub r}, 97 000 and 50 000) accumulated in incubation mixture supernatant fractions. Two major fibrinogen-degrading components (M{sub r}, 120 000 and 150 000) have been identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis in substrate-containing gels. Fibrinogen degradation by the M{sub r}-120 000 and -150 000 proteases was enhanced by reducing agents, completely inhibited by N-{alpha}-p-tosyl-L-lysyl chloromethyl ketone, and partially inhibited by n-ethyl maleimide, suggesting that these enzymes are thiol-dependent proteases with trypsinlike substrate specificity. The fibrinogen-binding component could be separated from the fibrinogen-degrading components by selective solubilization of bacteria in sodium deoxycholate.

  11. Bacteroides gingivalis antigens and bone resorbing activity in root surface fractions of periodontally involved teeth

    Energy Technology Data Exchange (ETDEWEB)

    Patters, M R; Landsberg, R L; Johansson, L A; Trummel, C L; Robertson, P R [Department of Periodontology, University of Connecticut, School of Dental Medicine, Farmington, Connecticut, U.S.A.

    1982-01-01

    Bone resorbing activity and the presence of antigens of Bacteroides gingivalis were assessed in plaque, calculus, cementum, and dentin obtained from roots of teeth previously exposed to periodontitis. Each fraction was obtained by scaling the root surface. The fraction were extracted by stirring and sonication, and the soluble centrifuged, sterilized, dialyzed, and adjusted to equivalent protein concentrations. Cementum and dentin extracts from impacted teeth were prepared similarly and served as controls. Stimulation of bone resorption by each extract was assessed in organ cultures of fetal rat bones by measurement of release of previously-incorporated /sup 45/Ca from the bone into the medium. In some groups of teeth, calculus and cementum were treated with acid prior to scaling. Citric acid washes were recovered and dialyzed. An enzyme-linked immunosorbent assay (ELISA) was used to assess the extracts for the presence of antigens reactive with an antiserum to B. gingivalis. Significant stimulation of bone resorption was found in all calculus and periodontally-involved cementum preparations. ELISA showed significant levels of B.gingivalis antigens in plaque, calculus, and cementum of periodontally-involved teeth, but not in involved dentin nor in cementum or dentin of impact teeth. Treatment with citric acid removed essentially all B.gingivalis antigens from cementum but not calculus. The results suggest that substances which stimulate bone resorption and substances which react with B. gingivalis antiserum are present in surface plaque, calculus, and cementum or periodontally-involved teeth. These substances are not present in cementum and dentin of impacted teeth nor in dentin of periodontally-involved teeth. Treatment by both scaling and citric demineralization will remove most of these substances from cementum of teeth previously exposed to periodontitis.

  12. Comparative transcriptome and phenotype analysis of acid-stressed Bacillus cereus strain ATCC 14579

    NARCIS (Netherlands)

    Mols, J.M.; Kranenburg, van Richard; Melis, van Clint; Moezelaar, Roy; Abee, Tjakko

    2009-01-01

    The food-borne human pathogen Bacillus cereus is found in environments that often have a low pH, such as food and soil. The physiological response upon exposure to several levels of acidity were investigated of B. cereus model strain ATCC 14579, to elucidate the response of B. cereus to acid stress.

  13. Comparative transcriptome and phenotype analysis of acid-stressed Bacillus cereus strain ATCC 10987

    NARCIS (Netherlands)

    Mols, J.M.; Kranenburg, van Richard; Melis, van Clint; Moezelaar, Roy; Abee, Tjakko

    2009-01-01

    The food-borne human pathogen Bacillus cereus is found in environments that often have a low pH, such as food and soil. The physiological response upon exposure to several levels of acidity were investigated of B. cereus model strain ATCC 10987, to elucidate the response of B. cereus to acid stress.

  14. Optimization of the medium composition for production of antimicrobial substances by bacillus subtilis ATCC 6633

    Directory of Open Access Journals (Sweden)

    Rončević Zorana Z.

    2017-01-01

    Full Text Available In the effort to overcome the increase in antimicrobial resistance of different pathogens, natural products from microbial sources appear to be the most favorable alternative to current antibiotics. Production of antimicrobial compounds is highly dependent on the nutritional conditions. Hence, in order to achieve high product yields, selection of the media constituents and optimization of their concentrations are required. In this research, the possibility of antimicrobial substances production using Bacillus subtilis ATCC 6633 was investigated. Also, optimization of the cultivation medium composition in terms of contents of glycerol, sodium nitrite and phosphates was done. Response surface methodology and the method of desirability function were applied for determination of optimal values of the examined factors. The developed model predicts that the maximum inhibition zone diameters for Bacillus cereus ATCC 10876 (33.50 mm and Pseudomonas aeruginosa ATCC 27853 (12.00 mm are achieved when the initial contents of glycerol, sodium nitrite and phosphates were 43.72 g/L, 1.93 g/L and 5.64 g/L, respectively. The results of these experiments suggest that further research should include the utilization of crude glycerol as a carbon source and optimization of composition of such media and cultivation conditions in order to improve production of antimicrobial substances using Bacillus subtilis ATCC 6633.

  15. Antimicrobial mechanism of flavonoids against Escherichia coli ATCC 25922 by model membrane study

    International Nuclear Information System (INIS)

    He, Mengying; Wu, Ting; Pan, Siyi; Xu, Xiaoyun

    2014-01-01

    Antimicrobial mechanism of four flavonoids (kaempferol, hesperitin, (+)-catechin hydrate, biochanin A) against Escherichia coli ATCC 25922 was investigated through cell membranes and a liposome model. The release of bacterial protein and images from transmission electron microscopy demonstrated damage to the E. coli ATCC 25922 membrane. A liposome model with dipalmitoylphosphatidylethanolamine (DPPE) (0.6 molar ratio) and dipalmitoylphosphatidylglycerol (DPPG) (0.4 molar ratio), representative of the phospholipid membrane of E. coli ATCC 25922, was used to specify the mode of action of four selected flavonoids through Raman spectroscopy and differential scanning calorimetry. It is suggested that for flavonoids, to be effective antimicrobials, interaction with the polar head-group of the model membrane followed by penetration into the hydrophobic regions must occur. The antimicrobial efficacies of the flavonoids were consistent with liposome interaction activities, kaempferol > hesperitin > (+)-catechin hydrate > biochanin A. This study provides a liposome model capable of mimicking the cell membrane of E. coli ATCC 25922. The findings are important in understanding the antibacterial mechanism on cell membranes.

  16. Identification of proteins involved in the heat stress response of Bacillus cereus ATCC 14579

    NARCIS (Netherlands)

    Periago, P.M.; Schaik, van W.; Abee, T.; Wouters, J.A.

    2002-01-01

    To monitor the ability of the food-borne opportunistic pathogen Bacillus cereus to survive during minimal processing of food products, we determined its heat-adaptive response. During pre-exposure to 42°C, B. cereus ATCC 14579 adapts to heat exposure at the lethal temperature of 50°C (maximum

  17. Genome Sequence of Streptomyces viridosporus Strain T7A ATCC 39115, a Lignin-Degrading Actinomycete

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Jennifer R. [Brown University; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Teshima, Hazuki [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Han, Cliff [Los Alamos National Laboratory (LANL); Huntemann, Marcel [U.S. Department of Energy, Joint Genome Institute; Wei, Chia-Lin [Los Alamos National Laboratory (LANL); Han, James [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Szeto, Ernest [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Peters, Lin [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Sello, Jason K. [Brown University

    2013-01-01

    We announce the availability of the genome sequence of Streptomyces viridosporus strain T7A ATCC 39115, a plant biomass- degrading actinomycete. This bacterium is of special interest because of its capacity to degrade lignin, an underutilized compo- nent of plants in the context of bioenergy. It has a full complement of genes for plant biomass catabolism.

  18. Antimicrobial mechanism of flavonoids against Escherichia coli ATCC 25922 by model membrane study

    Energy Technology Data Exchange (ETDEWEB)

    He, Mengying; Wu, Ting; Pan, Siyi; Xu, Xiaoyun, E-mail: xiaoyunxu88@gmail.com

    2014-06-01

    Antimicrobial mechanism of four flavonoids (kaempferol, hesperitin, (+)-catechin hydrate, biochanin A) against Escherichia coli ATCC 25922 was investigated through cell membranes and a liposome model. The release of bacterial protein and images from transmission electron microscopy demonstrated damage to the E. coli ATCC 25922 membrane. A liposome model with dipalmitoylphosphatidylethanolamine (DPPE) (0.6 molar ratio) and dipalmitoylphosphatidylglycerol (DPPG) (0.4 molar ratio), representative of the phospholipid membrane of E. coli ATCC 25922, was used to specify the mode of action of four selected flavonoids through Raman spectroscopy and differential scanning calorimetry. It is suggested that for flavonoids, to be effective antimicrobials, interaction with the polar head-group of the model membrane followed by penetration into the hydrophobic regions must occur. The antimicrobial efficacies of the flavonoids were consistent with liposome interaction activities, kaempferol > hesperitin > (+)-catechin hydrate > biochanin A. This study provides a liposome model capable of mimicking the cell membrane of E. coli ATCC 25922. The findings are important in understanding the antibacterial mechanism on cell membranes.

  19. Complete Genome Sequence of the Quality Control Strain Staphylococcus aureus subsp. aureus ATCC 25923.

    Science.gov (United States)

    Treangen, Todd J; Maybank, Rosslyn A; Enke, Sana; Friss, Mary Beth; Diviak, Lynn F; Karaolis, David K R; Koren, Sergey; Ondov, Brian; Phillippy, Adam M; Bergman, Nicholas H; Rosovitz, M J

    2014-11-06

    Staphylococcus aureus subsp. aureus ATCC 25923 is commonly used as a control strain for susceptibility testing to antibiotics and as a quality control strain for commercial products. We present the completed genome sequence for the strain, consisting of the chromosome and a 27.5-kb plasmid. Copyright © 2014 Treangen et al.

  20. Selection of lactose-fermenting yeast for ethanol production from whey. [Candida pseudotropicalis ATCC 8619

    Energy Technology Data Exchange (ETDEWEB)

    Izaguirre, M E; Castillo, F J

    1982-01-01

    Candida pseudotropicalis ATCC 8619 was selected from among 9 strains of lactose-fermenting yeasts on the basis of its ability to ferment concentrated whey. In 28% deproteinized whey solutions it produced an average of 12.4% EtOH. This yeast could be used in a process for whey treatment.

  1. Improvement of endophytic Azospirillum colonization by co-inoculation with Cellulomonas Uda ATCC 491

    Directory of Open Access Journals (Sweden)

    Mohammad Javad Mehdipour Moghaddam

    2014-04-01

    Full Text Available Introduction: Most of the plant growth promoting rhizobacteria (PGPR such as Azopirillum if accompanied with strong cellulase producing bacteria such as Cellulomonas, their colonization may be increased and their host plants growth improved. Materials and methods: Six endophytic Azospirilla which isolated from three rice and three wheat cultivars and also one strain from commercial biofertilizer (Green Biotech Co., identified by biochemical tests and 16S rDNA analysis and were studied on the basis of cellulase, pectinase and auxin production and also their chemotaxis toward rice and wheat cultivars exudates was investigated. Two cellulase positive (A5 and A6 and two negative (A2 and A3 strains were selected and their interaction with C. uda ATCC 491 on auxin production and colonization on roots were compared. Results: This study showed that none of the strains had pectinase activity, but the strain isolated from rice had more Carboxy methyl cellulase (CMCase activity. Selected isolates and C. uda ATCC 491 showed chemotaxis toward roots exudates. In most of the isolates, rate of auxin production increased by coculture with C. uda ATCC 491. Also, it was determined that C. uda ATCC 491 promoted the colonization of Azospirillum without or with cellulase activity on rice and wheat roots, respectively. Discussion and conclusion: Co-inoculation Azospirillum with C. uda ATCC 491 improves plant root system due to stimulation or additive effect of auxin production and cellulase activity, followed by more uptakes of water and minerals by roots. Also, it raises the number of colonization niches for useful bacteria such as Azospirillum and finally quantitative and qualitative plant parameters.

  2. Human Bacteroides and total coliforms as indicators of recent combined sewer overflows and rain events in urban creeks

    Science.gov (United States)

    McGinnis, Shannon; Spencer, Susan K.; Firnstahl, Aaron; Stokdyk, Joel; Borchardt, Mark A.; McCarthy, David; Murphy, Heather

    2018-01-01

    Combined sewer overflows (CSOs) are a known source of human fecal pollution and human pathogens in urban water bodies, which may present a significant public health threat. To monitor human fecal contamination in water, bacterial fecal indicator organisms (FIOs) are traditionally used. However, because FIOs are not specific to human sources and do not correlate with human pathogens, alternative fecal indicators detected using qPCR are becoming of interest to policymakers. For this reason, this study measured correlations between the number and duration of CSOs and mm of rainfall, concentrations of traditional FIOs and alternative indicators, and the presence of human pathogens in two urban creeks. Samples were collected May–July 2016 and analyzed for concentrations of FIOs (total coliforms and E. coli) using membrane filtration as well as for three alternative fecal indicators (human Bacteroides HF183 marker, human polyomavirus (HPoV), pepper mild mottle virus (PMMoV)) and nine human pathogens using qPCR. Four of the nine pathogens analyzed were detected at these sites including adenovirus, Enterohemorrhagic E. coli, norovirus, and Salmonella. Among all indicators studied, human Bacteroides and total coliforms were significantly correlated with recent CSO and rainfall events, while E. coli, PMMoV, and HPoV did not show consistent significant correlations. Further, human Bacteroides were a more specific indicator, while total coliforms were a more sensitive indicator of CSO and rainfall events. Results may have implications for the use and interpretation of these indicators in future policy or monitoring programs.

  3. Human Bacteroides and total coliforms as indicators of recent combined sewer overflows and rain events in urban creeks.

    Science.gov (United States)

    McGinnis, Shannon; Spencer, Susan; Firnstahl, Aaron; Stokdyk, Joel; Borchardt, Mark; McCarthy, David T; Murphy, Heather M

    2018-07-15

    Combined sewer overflows (CSOs) are a known source of human fecal pollution and human pathogens in urban water bodies, which may present a significant public health threat. To monitor human fecal contamination in water, bacterial fecal indicator organisms (FIOs) are traditionally used. However, because FIOs are not specific to human sources and do not correlate with human pathogens, alternative fecal indicators detected using qPCR are becoming of interest to policymakers. For this reason, this study measured correlations between the number and duration of CSOs and mm of rainfall, concentrations of traditional FIOs and alternative indicators, and the presence of human pathogens in two urban creeks. Samples were collected May-July 2016 and analyzed for concentrations of FIOs (total coliforms and E. coli) using membrane filtration as well as for three alternative fecal indicators (human Bacteroides HF183 marker, human polyomavirus (HPoV), pepper mild mottle virus (PMMoV)) and nine human pathogens using qPCR. Four of the nine pathogens analyzed were detected at these sites including adenovirus, Enterohemorrhagic E. coli, norovirus, and Salmonella. Among all indicators studied, human Bacteroides and total coliforms were significantly correlated with recent CSO and rainfall events, while E. coli, PMMoV, and HPoV did not show consistent significant correlations. Further, human Bacteroides were a more specific indicator, while total coliforms were a more sensitive indicator of CSO and rainfall events. Results may have implications for the use and interpretation of these indicators in future policy or monitoring programs. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Metabolism of poly-β-hydroxybutyric acid in bacteroids of Rhizobium lupini in connection with nitrogen fixation and photosynthesis

    International Nuclear Information System (INIS)

    Romanov, V.I.; Fedulova, N.G.; Tchermenskaya, I.E.; Shramko, V.I.; Molchanov, M.I.; Kretovich, W.L.

    1980-01-01

    The darkening of lupin plants grown in a sand culture on a nitrogen-free medium at a stage of initial flowering led to a sharply decreased nitrogen fixation intensity which eventually ceased. Decreased intensity of nitrogen fixation in bacteroids was accompanied by an accumulation of poly-β-hydroxybutyric acid (PHB): in the course of 10-20 h (depending upon temperature) its content increased by 2.5-3.0 times. If, following darkening, the plants were once again exposed to light, an abrupt increase of nitrogen fixation intensity was observed and a simultaneous decrease of PHB content. It has been shown that lupin's exposure to light in 14 CO 2 atmosphere lasting 19 h resulted in the latter's incorporation into PHB, bacteroids and into the entire nodule; these processes developed almost in parallel. During the early period of vegetation growth prior to flowering, the PHB content of bacteroids decreased from 13 14 to 3.4% of dry weight, whereas the intensity of nitrogen fixation was raised. Concurrently increase of the activity of some enzymes connected with the PHB metabolism (aceto-acetyl-CoA-reductase, acetyl-CoA acetyl transferase PHB-depolymerase, (CoA-transferase, of 3-ketoacids) occured. The plants' subsequent ageing and reduction of nitrogen fixation intensity led to a noticeable increase of PHB content and a decrease of the above mentioned enzymes' activity. The specific activity of β-hydroxybutyric dehydrogenase involved with PHB catabolism was high and was maintained at a constant level throughout the entire vegetative period. (orig.)

  5. Comparative genome and transcriptome analysis reveals distinctive surface characteristics and unique physiological potentials of Pseudomonas aeruginosa ATCC 27853

    KAUST Repository

    Cao, Huiluo

    2017-06-12

    Pseudomonas aeruginosa ATCC 27853 was isolated from a hospital blood specimen in 1971 and has been widely used as a model strain to survey antibiotics susceptibilities, biofilm development, and metabolic activities of Pseudomonas spp.. Although four draft genomes of P. aeruginosa ATCC 27853 have been sequenced, the complete genome of this strain is still lacking, hindering a comprehensive understanding of its physiology and functional genome.Here we sequenced and assembled the complete genome of P. aeruginosa ATCC 27853 using the Pacific Biosciences SMRT (PacBio) technology and Illumina sequencing platform. We found that accessory genes of ATCC 27853 including prophages and genomic islands (GIs) mainly contribute to the difference between P. aeruginosa ATCC 27853 and other P. aeruginosa strains. Seven prophages were identified within the genome of P. aeruginosa ATCC 27853. Of the predicted 25 GIs, three contain genes that encode monoxoygenases, dioxygenases and hydrolases that could be involved in the metabolism of aromatic compounds. Surveying virulence-related genes revealed that a series of genes that encode the B-band O-antigen of LPS are lacking in ATCC 27853. Distinctive SNPs in genes of cellular adhesion proteins such as type IV pili and flagella biosynthesis were also observed in this strain. Colony morphology analysis confirmed an enhanced biofilm formation capability of ATCC 27853 on solid agar surface compared to Pseudomonas aeruginosa PAO1. We then performed transcriptome analysis of ATCC 27853 and PAO1 using RNA-seq and compared the expression of orthologous genes to understand the functional genome and the genomic details underlying the distinctive colony morphogenesis. These analyses revealed an increased expression of genes involved in cellular adhesion and biofilm maturation such as type IV pili, exopolysaccharide and electron transport chain components in ATCC 27853 compared with PAO1. In addition, distinctive expression profiles of the

  6. Posible papel de Bacteroides fragilis enterotoxigénico en la etiología de la vaginitis infecciosa

    OpenAIRE

    Polanco, Nina; Manzi, Lorna; Carmona, Oswaldo

    2012-01-01

    La vaginitis es un trastorno ginecológico frecuente producido por distintas causas, algunas de las cuales permanecen desconocidas. Bacteroides fragilis es el anaerobio más importante en bacteriología clínica. Algunas cepas son enterotoxigénicas y se asocian con síndromes intestinales y extraintestinales. Recientemente han sido aisladas de pacientes con vaginitis. En este trabajo se planteó investigar la posible asociación de B. fragilis enterotoxigénico con la vaginitis infecciosa. Fueron pro...

  7. Reclassification of the Specialized Metabolite Producer Pseudomonas mesoacidophila ATCC 31433 as a Member of the Burkholderia cepacia Complex.

    Science.gov (United States)

    Loveridge, E Joel; Jones, Cerith; Bull, Matthew J; Moody, Suzy C; Kahl, Małgorzata W; Khan, Zainab; Neilson, Louis; Tomeva, Marina; Adams, Sarah E; Wood, Andrew C; Rodriguez-Martin, Daniel; Pinel, Ingrid; Parkhill, Julian; Mahenthiralingam, Eshwar; Crosby, John

    2017-07-01

    Pseudomonas mesoacidophila ATCC 31433 is a Gram-negative bacterium, first isolated from Japanese soil samples, that produces the monobactam isosulfazecin and the β-lactam-potentiating bulgecins. To characterize the biosynthetic potential of P. mesoacidophila ATCC 31433, its complete genome was determined using single-molecule real-time DNA sequence analysis. The 7.8-Mb genome comprised four replicons, three chromosomal (each encoding rRNA) and one plasmid. Phylogenetic analysis demonstrated that P. mesoacidophila ATCC 31433 was misclassified at the time of its deposition and is a member of the Burkholderia cepacia complex, most closely related to Burkholderia ubonensis The sequenced genome shows considerable additional biosynthetic potential; known gene clusters for malleilactone, ornibactin, isosulfazecin, alkylhydroxyquinoline, and pyrrolnitrin biosynthesis and several uncharacterized biosynthetic gene clusters for polyketides, nonribosomal peptides, and other metabolites were identified. Furthermore, P. mesoacidophila ATCC 31433 harbors many genes associated with environmental resilience and antibiotic resistance and was resistant to a range of antibiotics and metal ions. In summary, this bioactive strain should be designated B. cepacia complex strain ATCC 31433, pending further detailed taxonomic characterization. IMPORTANCE This work reports the complete genome sequence of Pseudomonas mesoacidophila ATCC 31433, a known producer of bioactive compounds. Large numbers of both known and novel biosynthetic gene clusters were identified, indicating that P. mesoacidophila ATCC 31433 is an untapped resource for discovery of novel bioactive compounds. Phylogenetic analysis demonstrated that P. mesoacidophila ATCC 31433 is in fact a member of the Burkholderia cepacia complex, most closely related to the species Burkholderia ubonensis Further investigation of the classification and biosynthetic potential of P. mesoacidophila ATCC 31433 is warranted. Copyright © 2017

  8. Stability of free and encapsulated Lactobacillus acidophilus ATCC 4356 in yogurt and in an artificial human gastric digestion system.

    Science.gov (United States)

    Ortakci, F; Sert, S

    2012-12-01

    The objective of this study was to determine the effect of encapsulation on survival of probiotic Lactobacillus acidophilus ATCC 4356 (ATCC 4356) in yogurt and during artificial gastric digestion. Strain ATCC 4356 was added to yogurt either encapsulated in calcium alginate or in free form (unencapsulated) at levels of 8.26 and 9.47 log cfu/g, respectively, and the influence of alginate capsules (1.5 to 2.5mm) on the sensorial characteristics of yogurts was investigated. The ATCC 4356 strain was introduced into an artificial gastric solution consisting of 0.08 N HCl (pH 1.5) containing 0.2% NaCl or into artificial bile juice consisting of 1.2% bile salts in de Man, Rogosa, and Sharpe broth to determine the stability of the probiotic bacteria. When incubated for 2h in artificial gastric juice, the free ATCC 4356 did not survive (reduction of >7 log cfu/g). We observed, however, greater survival of encapsulated ATCC 4356, with a reduction of only 3 log cfu/g. Incubation in artificial bile juice (6 h) did not significantly affect the viability of free or encapsulated ATCC 4356. Moreover, statistically significant reductions (~1 log cfu/g) of both free and encapsulated ATCC 4356 were observed during 4-wk refrigerated storage of yogurts. The addition of probiotic cultures in free or alginate-encapsulated form did not significantly affect appearance/color or flavor/odor of the yogurts. However, significant deficiencies were found in body/texture of yogurts containing encapsulated ATCC 4356. We concluded that incorporation of free and encapsulated probiotic bacteria did not substantially change the overall sensory properties of yogurts, and encapsulation in alginate using the extrusion method greatly enhanced the survival of probiotic bacteria against an artificial human gastric digestive system. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. Bacteroides intestinalis DSM 17393, a member of the human colonic microbiome, upregulates multiple endoxylanases during growth on xylan.

    Science.gov (United States)

    Wang, Kui; Pereira, Gabriel V; Cavalcante, Janaina J V; Zhang, Meiling; Mackie, Roderick; Cann, Isaac

    2016-09-29

    Many human diets contain arabinoxylan, and the ease of genome sequencing coupled with reduced cost have led to unraveling the arsenal of genes utilized by the colonic Bacteroidetes to depolymerize this polysaccharide. The colonic Bacteroidetes with potential to ferment arabinoxylans include Bacteroides intestinalis. In this study, we analyzed the hydrolytic activities of members of a xylan degradation cluster encoded on the genome of Bacteroides intestinalis DSM 17393. Here, it is demonstrated that a cocktail of the xylanolytic enzymes completely hydrolyze arabinoxylans found in human diets. We show that this bacterium and relatives have evolved and secrete a unique bifunctional endoxylanase/arabinofuranosidase in the same polypeptide. The bifunctional enzyme and other secreted enzymes attack the polysaccharides extracellularly to remove the side-chains, exposing the xylan backbone for cleavage to xylo-oligosaccharides and xylose. These end products are transported into the cell where a β-xylosidase cleaves the oligosaccharides to fermentable sugars. While our experiments focused on B. intestinalis, it is likely that the extracellular enzymes also release nutrients to members of the colonic microbial community that practice cross-feeding. The presence of the genes characterized in this study in other colonic Bacteroidetes suggests a conserved strategy for energy acquisition from arabinoxylan, a component of human diets.

  10. Flavin mononucleotide (FMN)-based fluorescent protein (FbFP) as reporter for gene expression in the anaerobe Bacteroides fragilis.

    Science.gov (United States)

    Lobo, Leandro A; Smith, Charles J; Rocha, Edson R

    2011-04-01

    In this study, we show the expression of flavin mononucleotide-based fluorescent protein (FbFP) BS2 as a marker for gene expression in the opportunistic human anaerobic pathogen Bacteroides fragilis. Bacteroides fragilis 638R strain carrying osu∷bs2 constructs showed inducible fluorescence following addition of maltose anaerobically compared with nonfluorescent cells under glucose-repressed conditions. Bacteria carrying ahpC∷bs2 or dps∷bs2 constructs were fluorescent following induction by oxygen compared with nonfluorescent cells from the anaerobic control cultures. In addition, when these transcriptional fusion constructs were mobilized into B. fragilis IB263, a constitutive peroxide response strain, fluorescent BS2, was detected in both anaerobic and aerobic cultures, confirming the unique properties of the FbFP BS2 to yield fluorescent signal in B. fragilis in the presence and in the absence of oxygen. Moreover, intracellular expression of BS2 was also detected when cell culture monolayers of J774.1 macrophages were incubated with B. fragilis ahpC∷bs2 or dps∷bs2 strains within an anaerobic chamber. This suggests that ahpC and dps are induced following internalization by macrophages. Thus, we show that BS2 is a suitable tool for the detection of gene expression in obligate anaerobic bacteria in in vivo studies. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  11. Bio desulfurization of a system containing synthetic fuel by rhodococcus erythropolis ATCC 4277; Remocao de compostos sulfurosos de sitema bifasico contendo combustivel sintetico por Rhodococcus erythropolis ATCC 4277

    Energy Technology Data Exchange (ETDEWEB)

    Maass, Danielle; Souza, Antonio Augusto Ulson de; Souza, Selene Maria de Arruda Guelli Ulson de [Universidade Federal de Santa Catarina (UFSC), SC (Brazil)

    2012-07-01

    For decades the burning of fossil fuels released a lot of pollutants in the atmosphere. Among the most harmful is sulfur dioxide (SO{sub 2}), which reacts with the moisture in the air and turns into sulfuric acid, being the main cause of acid rain. Acid rain is very harmful to animal and plant kingdoms; accelerates the corrosion's processes of buildings and monuments, and causes serious health problems for humans. As a result, many countries have reformed their legislation to require the sale of fuels with very low sulfur content. The existing processes of desulfurization are not capable of removing sulfur so low. Therefore, there has developed a new process called bio desulfurization. In this process, the degradation of sulfur occurs through the action of microorganisms that act as catalysts. The bacterium Rhodococcus erythropolis has emerged as one of the most promising for bio desulfurization because it removes the sulfur without breaking the benzene rings, thereby maintaining the potential energy of the same. Using dibenzothiophene as a model of sulfur compounds, the products of the bio desulfurization process are 2- hydroxybiphenyl and sulfate. In this study we sought to examine the desulfurizing capacity of national Rhodococcus erythropolis strain ATCC4277 in a batch reactor using concentrations of organic phase (n-dodecane) of 20 and 80% (v/v). Rhodococcus erythropolis ATCC4277 was capable of degrading DBT in 93.3 and 98.0% in the presence of 20 and 80% (v/v) of synthetic fuel, respectively. (author)

  12. Characterization of the binding of Actinomyces naeslundii (ATCC 12104) and Actinomyces viscosus (ATCC 19246) to glycosphingolipids, using a solid-phase overlay approach

    International Nuclear Information System (INIS)

    Stroemberg, N.K.; Karlsson, K.A.

    1990-01-01

    Actinomyces naeslundii (ATCC 12104) and Actinomyces viscosus (ATCC 19246) were radiolabeled externally (125I) or metabolically (35S) and analyzed for their ability to bind glycosphingolipids separated on thin layer chromatograms or coated in microtiter wells. Two binding properties were found and characterized in detail. (i) Both bacteria showed binding to lactosylceramide (LacCer) in a fashion similar to bacteria characterized earlier. The activity of free LacCer was dependent on the ceramide structure; species with 2-hydroxy fatty acid and/or a trihydroxy base were positive, while species with nonhydroxy fatty acid and a dihydroxy base were negative binders. Several glycolipids with internal lactose were active but only gangliotriaosylceramide and gangliotetraosylceramide were as active as free LacCer. The binding to these three species was half-maximal at about 200 ng of glycolipid and was not blocked by preincubation of bacteria with free lactose or lactose-bovine serum albumin. (ii) A. naeslundii, unlike A. viscosus, showed a superimposed binding concluded to be to terminal or internal GalNAc beta and equivalent to a lactose-inhibitable specificity previously analyzed by other workers. Terminal Gal beta was not recognized in several glycolipids, although free Gal and lactose were active as soluble inhibitors. The binding was half-maximal at about 10 ng of glycolipid. A glycolipid mixture prepared from a scraping of human buccal epithelium contained an active glycolipid with sites for both binding specificities

  13. Mesosomes are a definite event in antibiotic-treated Staphylococcus aureus ATCC 25923.

    Science.gov (United States)

    Santhana Raj, L; Hing, H L; Baharudin, Omar; Teh Hamidah, Z; Aida Suhana, R; Nor Asiha, C P; Vimala, B; Paramsarvaran, S; Sumarni, G; Hanjeet, K

    2007-06-01

    Mesosomes of Staphylococcus aureus ATCC 25923 treated with antibiotics were examined morphologically under the electron microscope. The Transmission Electron Microscope Rapid Method was used to eliminate the artifacts due to sample processing. Mesosomes were seen in all the antibiotic treated bacteria and not in the control group. The main factor that contributes to the formation of mesosomes in the bacteria was the mode of action of the antibiotics. The continuous cytoplasmic membrane with infolding (mesosomes) as in the S. aureus ATCC 25923 is therefore confirmed as a definite pattern of membrane organization in gram positive bacteria assaulted by amikacin, gentamicin, ciprofloxacin, vancomycin and oxacillin antibiotics. Our preliminary results show oxacillin and vancomycin treated bacteria seemed to have deeper and more mesosomes than those treated with amikacin, gentamicin and ciprofloxacin. Further research is needed to ascertain whether the deep invagination and the number of mesosomes formed is associated with the types of antibiotic used.

  14. Glycerol metabolism of Lactobacillus rhamnosus ATCC 7469: cloning and expression of two glycerol kinase genes.

    Science.gov (United States)

    Alvarez, María de Fátima; Medina, Roxana; Pasteris, Sergio E; Strasser de Saad, Ana M; Sesma, Fernando

    2004-01-01

    Lactobacillus rhamnosus ATCC 7469 was able to grow in glycerol as the sole source of energy in aerobic conditions, producing lactate, acetate, and diacetyl. A biphasic growth was observed in the presence of glucose. In this condition, glycerol consumption began after glucose was exhausted from the culture medium. Glycerol kinase activity was detected in L. rhamnosus ATCC 7469, a characteristic of microorganisms which catabolize glycerol in aerobic conditions. Genetic analysis revealed that this strain possesses two glycerol kinase genes: gykA and glpK, that encode for two different glycerol kinases GykA and GlpK, respectively. The glpK geneis associated in an operon with alpha-glycerophosphate oxidase (glpO) and glycerol facilitator (glpF) genes. Transcriptional analysis revealed that only glpK is expressed when L. rhamnosus was grown on glycerol. Copyright 2004 S. Karger AG, Basel

  15. Effect of nitrogen source on curdlan production by Alcaligenes faecalis ATCC 31749.

    Science.gov (United States)

    Jiang, Longfa

    2013-01-01

    This study aims to investigate the effect of nitrogen source on curdlan production by Alcaligenes faecalis ATCC 31749. Curdlan production fell when excess nitrogen source was present, while biomass accumulation increased as the level of nitrogen source raised. Curdlan production and biomass accumulation were greater with urea compared with those with other nitrogen sources. The highest production of curdlan and biomass accumulation by A. faecalis ATCC 31749 was 28.16 g L(-1) and 9.58 g L(-1), respectively, with urea, whereas those with NH(4)Cl were 15.17 g L(-1) and 6.25 g L(-1), respectively. The optimum fermentation time for curdlan production was also affected by the nitrogen source in the medium. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Improvement in citric acid production of Aspergillus niger ATCC 11414 by radiation

    International Nuclear Information System (INIS)

    Pewlong, Wachiraporn; Sansakorn, Sujittra; Puntharakratchadej, Chanin

    2003-10-01

    Ultraviolet and gamma irradiation were used to induce mutation of Aspergillus niger ATCC 11414 in order to increase ability of citric acid production. Five mutants of high-producing citric acid were 7UV-18, A2-14, 9UV-2, 9UV-27 and 8UV-10. The yields of citric acid were 2.0 to 3.84 fold higher than that of the wild type strain

  17. Metabolic Engineering of the Actinomycete Amycolatopsis sp. Strain ATCC 39116 towards Enhanced Production of Natural Vanillin

    OpenAIRE

    Fleige, Christian; Meyer, Florian; Steinbüchel, Alexander

    2016-01-01

    The Gram-positive bacterium Amycolatopsis sp. ATCC 39116 is used for the fermentative production of natural vanillin from ferulic acid on an industrial scale. The strain is known for its outstanding tolerance to this toxic product. In order to improve the productivity of the fermentation process, the strain's metabolism was engineered for higher final concentrations and molar yields. Degradation of vanillin could be decreased by more than 90% through deletion of the vdh gene, which codes for ...

  18. Rare 1,2’-binaphthyls Produced by Nodulisporium hinnuleum Smith (ATCC 36102

    Directory of Open Access Journals (Sweden)

    Gerhard Schlingman

    2011-01-01

    Full Text Available In the course of processing extracts from fermentations with Nodulisporium hinnuleum Smith (ATCC 36102 to obtain demethoxyvirdin, we noticed that this fungus produced several other secondary metabolites as well. In an effort to identify these components, four new, related natural products designated hinnulin A-D (1-4 were isolated and characterized. Structure elucidation of the hinnulins, primarily by NMR spectroscopy, revealed that these belong to the rare class of 1,2’-binaphthyl natural products.

  19. Degradation of the Phosphonate Herbicide Glyphosate by Arthrobacter atrocyaneus ATCC 13752

    OpenAIRE

    Pipke, Rüdiger; Amrhein, Nikolaus

    1988-01-01

    Of nine authentic Arthrobacter strains tested, only A. atrocyaneus ATCC 13752 was capable of using the herbicide glyphosate [N-(phosphonomethyl)glycine] as its sole source of phosphorus. Contrary to the previously isolated Arthrobacter sp. strain GLP-1, which degrades glyphosate via sarcosine, A. atrocyaneus metabolized glyphosate to aminomethylphosphonic acid. The carbon of aminomethylphosphonic acid was entirely converted to CO2. This is the first report on glyphosate degradation by a bacte...

  20. Murein Hydrolase Activity in the Surface Layer of Lactobacillus acidophilus ATCC 4356▿

    OpenAIRE

    Prado Acosta, Mariano; Palomino, María Mercedes; Allievi, Mariana C.; Rivas, Carmen Sanchez; Ruzal, Sandra M.

    2008-01-01

    We describe a new enzymatic functionality for the surface layer (S-layer) of Lactobacillus acidophilus ATCC 4356, namely, an endopeptidase activity against the cell wall of Salmonella enterica serovar Newport, assayed via zymograms and identified by Western blotting. Based on amino acid sequence comparisons, the hydrolase activity was predicted to be located at the C terminus. Subsequent cloning and expression of the C-terminal domain in Bacillus subtilis resulted in the functional verificati...

  1. A hydrogen-producing, hydrogenase-free mutant strain of Nostoc punctiforme ATCC 29133

    Energy Technology Data Exchange (ETDEWEB)

    Lindberg, P.; Lindblad, P. [Uppsala Univ. (Sweden). Dept. of Physiological Botany; Schuetz, K.; Happe, T. [Universitaet Bonn (Germany). Botanisches Inst.

    2002-12-01

    The hupL gene, encoding the uptake hydrogenase large subunit, in Nostoc sp. strain ATCC 29133, a strain lacking a bidirectional hydrogenase, was inactivated by insertional mutagenesis. Recombinant strains were isolated and analysed, and one hupL{sup -} strain, NHM5, was selected for further study. Cultures of NHM5 were grown under nitrogen-fixing conditions and H{sub 2} evolution under air was observed using an H{sub 2} electrode. (Author)

  2. Effects of phosphoenolpyruvate carboxylase desensitization on glutamic acid production in Corynebacterium glutamicum ATCC 13032.

    Science.gov (United States)

    Wada, Masaru; Sawada, Kazunori; Ogura, Kotaro; Shimono, Yuta; Hagiwara, Takuya; Sugimoto, Masakazu; Onuki, Akiko; Yokota, Atsushi

    2016-02-01

    Phosphoenolpyruvate carboxylase (PEPC) in Corynebacterium glutamicum ATCC13032, a glutamic-acid producing actinobacterium, is subject to feedback inhibition by metabolic intermediates such as aspartic acid and 2-oxoglutaric acid, which implies the importance of PEPC in replenishing oxaloacetic acid into the TCA cycle. Here, we investigated the effects of feedback-insensitive PEPC on glutamic acid production. A single amino-acid substitution in PEPC, D299N, was found to relieve the feedback control by aspartic acid, but not by 2-oxoglutaric acid. A simple mutant, strain R1, having the D299N substitution in PEPC was constructed from ATCC 13032 using the double-crossover chromosome replacement technique. Strain R1 produced glutamic acid at a concentration of 31.0 g/L from 100 g/L glucose in a jar fermentor culture under biotin-limited conditions, which was significantly higher than that of the parent, 26.0 g/L (1.19-fold), indicative of the positive effect of desensitized PEPC on glutamic acid production. Another mutant, strain DR1, having both desensitized PEPC and PYK-gene deleted mutations, was constructed in a similar manner using strain D1 with a PYK-gene deleted mutation as the parent. This mutation had been shown to enhance glutamic acid production in our previous study. Although marginal, strain D1 produced higher glutamic acid, 28.8 g/L, than ATCC13032 (1.11-fold). In contrast, glutamic acid production by strain DR-1 was elevated up to 36.9 g/L, which was 1.42-fold higher than ATCC13032 and significantly higher than the other three strains. The results showed a synergistic effect of these two mutations on glutamic acid production in C. glutamicum. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. The production of lactic acid on liquid distillery stillage by Lactobacillus rhamnosus ATCC 7469

    OpenAIRE

    Đukić-Vuković, Aleksandra; Mojović, Ljiljana; Pejin, Dušanka; Vukašinović-Sekulić, Maja; Rakin, Marica; Nikolić, Svetlana; Pejin, Jelena

    2011-01-01

    The production of lactic acid on a liquid distillery stillage remaining after the bioethanol production on a mixture of waste bread and waste water from the production of wheat gluten was studied in this work. The lactic acid fermentation was performed with a probiotic lactic acid bacteria Lactobacillus rhamnosus ATCC 7469. During the fermentation, parameters such as the concentration of lactic acid (according to Taylor method), the concentration of reducing sugars (spectrophotometric method ...

  4. Transcriptomic Analysis of (Group I) Clostridium botulinum ATCC 3502 Cold Shock Response

    OpenAIRE

    Dahlsten, Elias; Isokallio, Marita; Somervuo, Panu; Lindström, Miia; Korkeala, Hannu

    2014-01-01

    Profound understanding of the mechanisms foodborne pathogenic bacteria utilize in adaptation to the environmental stress they encounter during food processing and storage is of paramount importance in design of control measures. Chill temperature is a central control measure applied in minimally processed foods; however, data on the mechanisms the foodborne pathogen Clostridium botulinum activates upon cold stress are scarce. Transcriptomic analysis on the C. botulinum ATCC 3502 strain upon t...

  5. Characterization of the Phthalate Permease OphD from Burkholderia cepacia ATCC 17616†

    OpenAIRE

    Chang, Hung-Kuang; Zylstra, Gerben J.

    1999-01-01

    The ophD gene, encoding a permease for phthalate transport, was cloned from Burkholderia cepacia ATCC 17616. Expression of the gene in Escherichia coli results in the ability to transport phthalate rapidly into the cell. Uptake inhibition experiments show that 4-hydroxyphthalate, 4-chlorophthalate, 4-methylphthalate, and cinchomeronate compete for the phthalate permease. An ophD knockout mutant of 17616 grows slightly more slowly on phthalate but is still able to take up phthalate at rates eq...

  6. [Influence of cross-protection on the survival of Lactobacillus casei ATCC 393].

    Science.gov (United States)

    Xue, Feng; Zhang, Juan; Du, Guocheng; Chen, Jian

    2010-04-01

    In this study, we investigated the cross-protection of Lactobacillus casei ATCC 393 under multi-stress conditions. Cells pre-adapted to mild conditions (heat, H2O2, acid or bile salts) were then treated at lethal temperature (> 60 degrees C) or hydrogen peroxide stress (> 5 mmol/L). Furthermore, the changes of survival rate intracellular pH and membrane fatty acid under lethal conditions with or without acid adaption were compared. The cross-protection in Lactobacillus casei ATCC 393 were affected by different stress conditions. Acid pre-adaption, especially hydrochloride treatment, would increase the resistance of cells to lethal heat and peroxide stresses significantly, with the survival rate of 305-fold and 173-fold, respectively. Further study suggested that the effect of acid pre-adaption might be related to the regulation on intracellular pH and the saturation of cell membrane. Hydrochloride adaption was the best inducer for the cross-protection of Lactobacillus casei ATCC 393 to maintain relatively stable physiological status of cells. The results supplied a novel way to investigate the relationship between different protective mechanisms in L. casei under different kinds of stresses.

  7. Genome-scale reconstruction of metabolic networks of Lactobacillus casei ATCC 334 and 12A.

    Directory of Open Access Journals (Sweden)

    Elena Vinay-Lara

    Full Text Available Lactobacillus casei strains are widely used in industry and the utility of this organism in these industrial applications is strain dependent. Hence, tools capable of predicting strain specific phenotypes would have utility in the selection of strains for specific industrial processes. Genome-scale metabolic models can be utilized to better understand genotype-phenotype relationships and to compare different organisms. To assist in the selection and development of strains with enhanced industrial utility, genome-scale models for L. casei ATCC 334, a well characterized strain, and strain 12A, a corn silage isolate, were constructed. Draft models were generated from RAST genome annotations using the Model SEED database and refined by evaluating ATP generating cycles, mass-and-charge-balances of reactions, and growth phenotypes. After the validation process was finished, we compared the metabolic networks of these two strains to identify metabolic, genetic and ortholog differences that may lead to different phenotypic behaviors. We conclude that the metabolic capabilities of the two networks are highly similar. The L. casei ATCC 334 model accounts for 1,040 reactions, 959 metabolites and 548 genes, while the L. casei 12A model accounts for 1,076 reactions, 979 metabolites and 640 genes. The developed L. casei ATCC 334 and 12A metabolic models will enable better understanding of the physiology of these organisms and be valuable tools in the development and selection of strains with enhanced utility in a variety of industrial applications.

  8. Influence of controlled atmosphere on thermal inactivation of Escherichia coli ATCC 25922 in almond powder.

    Science.gov (United States)

    Cheng, Teng; Li, Rui; Kou, Xiaoxi; Wang, Shaojin

    2017-06-01

    Heat controlled atmosphere (CA) treatments hold potential to pasteurize Salmonella enteritidis PT 30 in almonds. Nonpathogenic Escherichia coli ATCC 25922 was used as a surrogate species of pathogenic Salmonella for validation of thermal pasteurization to meet critical safety requirements. A controlled atmosphere/heating block system (CA-HBS) was used to rapidly determine thermal inactivation of E. coli ATCC 25922. D- and z-values of E. coli ATCC 25922 inoculated in almond powder were determined at four temperatures between 65 °C and 80 °C under different gas concentrations and heating rates. The results showed that D- and z-values of E. coli under CA treatment were significantly (P < 0.05) lower than those under regular atmosphere (RA) treatment at 4 given temperatures. Relatively higher CO 2 concentrations (20%) and lower O 2 concentrations (2%) were more effective to reduce thermal inactivation time. There were no significant differences in D-values of E. coli when heating rates were above 1 °C/min both in RA and CA treatments. But D-values significantly (P < 0.05) increased under RA treatment and decreased under CA treatment at lower heating rates. Combination of rapid heat and CA treatments could be a promising method for thermal inactivation of S. enteritidis PT 30 in almond powder. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Comparative genome and transcriptome analysis reveals distinctive surface characteristics and unique physiological potentials of Pseudomonas aeruginosa ATCC 27853

    KAUST Repository

    Cao, Huiluo; Lai, Yong; Bougouffa, Salim; Xu, Zeling; Yan, Aixin

    2017-01-01

    Pseudomonas aeruginosa ATCC 27853 was isolated from a hospital blood specimen in 1971 and has been widely used as a model strain to survey antibiotics susceptibilities, biofilm development, and metabolic activities of Pseudomonas spp.. Although four

  10. Current Status of Marker Genes of Bacteroides and Related Taxa for Identifying Sewage Pollution in Environmental Waters

    Directory of Open Access Journals (Sweden)

    Warish Ahmed

    2016-05-01

    Full Text Available Microbial source tracking (MST endeavors to determine sources of fecal pollution in environmental waters by capitalizing on the association of certain microorganisms with the gastrointestinal tract and feces of specific animal groups. Several decades of research have shown that bacteria belonging to the gut-associated order Bacteroidales, and particularly the genus Bacteroides, tend to co-evolve with the host, and are, therefore, particularly suitable candidates for MST applications. This review summarizes the current research on MST methods that employ genes belonging to Bacteroidales/Bacteroides as tracers or “markers” of sewage pollution, including known advantages and deficiencies of the many polymerase chain reaction (PCR-based methods that have been published since 2000. Host specificity is a paramount criterion for confidence that detection of a marker is a true indicator of the target host. Host sensitivity, or the prevalence of the marker in feces/waste from the target host, is necessary for confidence that absence of the marker is indicative of the absence of the pollution source. Each of these parameters can vary widely depending on the type of waste assessed and the geographic location. Differential decay characteristics of bacterial targets and their associated DNA contribute to challenges in interpreting MST results in the context of human health risks. The HF183 marker, derived from the 16S rRNA gene of Bacteroides dorei and closely related taxa, has been used for almost two decades in MST studies, and is well characterized regarding host sensitivity and specificity, and in prevalence and concentration in sewage in many countries. Other markers such as HumM2 and HumM3 show promise, but require further performance testing to demonstrate their widespread utility. An important limitation of the one-marker-one-assay approach commonly used for MST is that given the complexities of microbial persistence in environmental waters, and

  11. First report of metronidazole resistant, nimD-positive, Bacteroides stercoris isolated from an abdominal abscess in a 70-year-old woman

    DEFF Research Database (Denmark)

    Otte, Erik; Nielsen, Hans Linde; Hasman, Henrik

    2017-01-01

    We here present the first case of a metronidazole resistant nimD positive Bacteroides stercoris. The isolate originated from a polymicrobial intra-abdominal abscess in a 70-year-old woman. The nimD gene was detected by use of whole-genome shotgun sequencing and the subsequent use of the ResFinder 2...

  12. Probabilistic analysis showing that a combination of bacteroides and methanobrevibacter source tracking markers is effective for identifying waters contaminated by human fecal pollution

    Science.gov (United States)

    Johnston, Christopher; Byappanahalli, Muruleedhara N.; Gibson, Jacqueline MacDonald; Ufnar, Jennifer A.; Whitman, Richard L.; Stewart, Jill R.

    2013-01-01

    Microbial source tracking assays to identify sources of waterborne contamination typically target genetic markers of host-specific microorganisms. However, no bacterial marker has been shown to be 100% host-specific, and cross-reactivity has been noted in studies evaluating known source samples. Using 485 challenge samples from 20 different human and animal fecal sources, this study evaluated microbial source tracking markers including the Bacteroides HF183 16S rRNA, M. smithii nifH, and Enterococcus esp gene targets that have been proposed as potential indicators of human fecal contamination. Bayes' Theorem was used to calculate the conditional probability that these markers or a combination of markers can correctly identify human sources of fecal pollution. All three human-associated markers were detected in 100% of the sewage samples analyzed. Bacteroides HF183 was the most effective marker for determining whether contamination was specifically from a human source, and greater than 98% certainty that contamination was from a human source was shown when both Bacteroides HF183 and M. smithii nifH markers were present. A high degree of certainty was attained even in cases where the prior probability of human fecal contamination was as low as 8.5%. The combination of Bacteroides HF183 and M. smithii nifH source tracking markers can help identify surface waters impacted by human fecal contamination, information useful for prioritizing restoration activities or assessing health risks from exposure to contaminated waters.

  13. Outer membrane protein changes during bacteroid development are independent of nitrogen fixation and differ between indeterminate and determinate nodulating host plants of Rhizobium leguminosarum

    NARCIS (Netherlands)

    Roest, H.P.; Goosen-de Roo, L.; Wijffelman, C.A.; Maagd, de R.A.; Lugtenberg, B.J.J.

    1995-01-01

    The outer membrane of bacteroids contains largely decreased levels of protein antigen groups II and III in comparison with that of free-living rhizobia (R. A. de Maagd, R. de Rijk, I. H. M. Mulders, and B. J, J. Lugtenberg, J.Bacteriol, 171:1136-1142, 1989). Since we intend to study the molecular

  14. In-vitro activity of ciprofloxacin combined with flomoxef against Bacteroides fragilis, compared with that of ciprofloxacin combined with clindamycin.

    Science.gov (United States)

    Kato, Komei; Iwai, Shigetomi; Sato, Takeshi; Harada, Tomohide; Nakagawa, Yoshiteru; Iwanaga, Hitomi; Ito, Yumiko; Takayama, Tadatoshi

    2002-06-01

    Using checkerboard and time-kill assays, the in-vitro activity of ciprofloxacin alone and in combination with flomoxef against clinical Bacteroides fragilis strains was evaluated. In addition, the microbiological efficacy of this combination was compared with that of ciprofloxacin plus clindamycin. In 88% of the 25 strains tested, the combination of ciprofloxacin plus flomoxef exhibited a synergistic or an additive effect, whereas only 56% of the 25 strains ( Pflomoxef was observed in all 7 strains. In conclusion, the combination of ciprofloxacin plus flomoxef is very active against B. fragilis, suggesting that this combination may be very useful in the treatment of aerobic and B. fragilis mixed infections, because ciprofloxacin has an expanded spectrum against aerobes.

  15. Antimicrobial resistance in the Bacteroides fragilis group in faecal samples from patients receiving broad-spectrum antibiotics

    DEFF Research Database (Denmark)

    Møller Hansen, Kia Cirkeline; Ferløv-Schwensen, Simon Andreas; Henriksen, Daniel Pilsgaard

    2017-01-01

    Members of the Bacteroides fragilis group are opportunistic pathogens and cause severe infections including bacteraemia. As increased levels of antimicrobial resistance in B. fragilis group bacteria can be detected years after administration of specific antibiotics, monitoring antimicrobial...... susceptibility in the gut microbiota could be important. The objectives of this study were to 1) investigate the distribution of species and the occurrence of reduced antimicrobial susceptibility in the B. fragilis group from patients treated at departments with a high level of antibiotic use, 2) to determine...... the prevalence of the carbapenem resistance gene cfiA in B. fragilis in this patient group, and 3) to determine the association between previous antibiotic treatment and reduced susceptibility to clindamycin, meropenem, metronidazole, and piperacillin-tazobactam. Consecutive faecal samples (n = 197) were...

  16. The structure of BVU2987 from Bacteroides vulgatus reveals a superfamily of bacterial periplasmic proteins with possible inhibitory function

    International Nuclear Information System (INIS)

    Das, Debanu; Finn, Robert D.; Carlton, Dennis; Miller, Mitchell D.; Abdubek, Polat; Astakhova, Tamara; Axelrod, Herbert L.; Bakolitsa, Constantina; Chen, Connie; Chiu, Hsiu-Ju; Chiu, Michelle; Clayton, Thomas; Deller, Marc C.; Duan, Lian; Ellrott, Kyle; Ernst, Dustin; Farr, Carol L.; Feuerhelm, Julie; Grant, Joanna C.; Grzechnik, Anna; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K.; Klock, Heath E.; Knuth, Mark W.; Kozbial, Piotr; Krishna, S. Sri; Kumar, Abhinav; Marciano, David; McMullan, Daniel; Morse, Andrew T.; Nigoghossian, Edward; Nopakun, Amanda; Okach, Linda; Puckett, Christina; Reyes, Ron; Rife, Christopher L.; Sefcovic, Natasha; Tien, Henry J.; Trame, Christine B.; Bedem, Henry van den; Weekes, Dana; Wooten, Tiffany; Xu, Qingping; Hodgson, Keith O.; Wooley, John; Elsliger, Marc-André; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A.

    2010-01-01

    The crystal structure of the BVU2987 gene product from B. vulgatus (UniProt A6L4L1) reveals that members of the new Pfam family PF11396 (domain of unknown function; DUF2874) are similar to β-lactamase inhibitor protein and YpmB. Proteins that contain the DUF2874 domain constitute a new Pfam family PF11396. Members of this family have predominantly been identified in microbes found in the human gut and oral cavity. The crystal structure of one member of this family, BVU2987 from Bacteroides vulgatus, has been determined, revealing a β-lactamase inhibitor protein-like structure with a tandem repeat of domains. Sequence analysis and structural comparisons reveal that BVU2987 and other DUF2874 proteins are related to β-lactamase inhibitor protein, PepSY and SmpA-OmlA proteins and hence are likely to function as inhibitory proteins

  17. Investigation of the Amycolatopsis sp. strain ATCC 39116 vanillin dehydrogenase and its impact on the biotechnical production of vanillin.

    Science.gov (United States)

    Fleige, Christian; Hansen, Gunda; Kroll, Jens; Steinbüchel, Alexander

    2013-01-01

    The actinomycete Amycolatopsis sp. strain ATCC 39116 is capable of synthesizing large amounts of vanillin from ferulic acid, which is a natural cell wall component of higher plants. The desired intermediate vanillin is subject to undesired catabolism caused by the metabolic activity of a hitherto unknown vanillin dehydrogenase (VDH(ATCC 39116)). In order to prevent the oxidation of vanillin to vanillic acid and thereby to obtain higher yields and concentrations of vanillin, the responsible vanillin dehydrogenase in Amycolatopsis sp. ATCC 39116 was investigated for the first time by using data from our genome sequence analysis and further bioinformatic approaches. The vdh gene was heterologously expressed in Escherichia coli, and the encoded vanillin dehydrogenase was characterized in detail. VDH(ATCC 39116) was purified to apparent electrophoretic homogeneity and exhibited NAD(+)-dependent activity toward vanillin, coniferylaldehyde, cinnamaldehyde, and benzaldehyde. The enzyme showed its highest level of activity toward vanillin at pH 8.0 and at a temperature of 44°C. In a next step, a precise vdh deletion mutant of Amycolatopsis sp. ATCC 39116 was generated. The mutant lost its ability to grow on vanillin and did not show vanillin dehydrogenase activity. A 2.3-times-higher vanillin concentration and a substantially reduced amount of vanillic acid occurred with the Amycolatopsis sp. ATCC 39116 Δvdh::Km(r) mutant when ferulic acid was provided for biotransformation in a cultivation experiment on a 2-liter-bioreactor scale. Based on these results and taking further metabolic engineering into account, the Amycolatopsis sp. ATCC 39116 Δvdh::Km(r) mutant represents an optimized and industrially applicable platform for the biotechnological production of natural vanillin.

  18. Enhancing fructooligosaccharides production by genetic improvement of the industrial fungus Aspergillus niger ATCC 20611.

    Science.gov (United States)

    Zhang, Jing; Liu, Caixia; Xie, Yijia; Li, Ning; Ning, Zhanguo; Du, Na; Huang, Xirong; Zhong, Yaohua

    2017-05-10

    Aspergillus niger ATCC20611 is one of the most potent filamentous fungi used commercially for production of fructooligosaccharides (FOS), which are prospective components of functional food by stimulating probiotic bacteria in the human gut. However, current strategies for improving FOS yield still rely on production process development. The genetic engineering approach hasn't been applied in industrial strains to increase FOS production level. Here, an optimized polyethylene glycol (PEG)-mediated protoplast transformation system was established in A. niger ATCC 20611 and used for further strain improvement. The pyrithiamine resistance gene (ptrA) was selected as a dominant marker and protoplasts were prepared with high concentration (up to 10 8 g -1 wet weight mycelium) by using mixed cell wall-lysing enzymes. The transformation frequency with ptrA can reach 30-50 transformants per μg of DNA. In addition, the efficiency of co-transformation with the EGFP reporter gene (egfp) was high (approx. 82%). Furthermore, an activity-improved variant of β-fructofuranosidase, FopA(A178P), was successfully overexpressed in A. niger ATCC 20611 by using the transformation system. The transformant, CM6, exhibited a 58% increase in specific β-fructofuranosidase activity (up to 507U/g), compared to the parental strain (320U/g), and effectively reduced the time needed for completion of FOS synthesis. These results illustrate the feasibility of strain improvement through genetic engineering for further enhancement of FOS production level. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Identification of lactose phosphotransferase systems in Lactobacillus gasseri ATCC 33323 required for lactose utilization.

    Science.gov (United States)

    Francl, Alyssa L; Hoeflinger, Jennifer L; Miller, Michael J

    2012-04-01

    Improving the annotation of sugar catabolism-related genes requires functional characterization. Our objective was to identify the genes necessary for lactose utilization by Lactobacillus gasseri ATCC 33323 (NCK334). The mechanism of lactose transport in many lactobacilli is a lactose/galactose-specific permease, yet no orthologue was found in NCK334. Characterization of an EI knockout strain [EI (enzyme I) is required for phosphotransferase system transporter (PTS) function] demonstrated that L. gasseri requires PTS(s) to utilize lactose. In order to determine which PTS(s) were necessary for lactose utilization, we compared transcript expression profiles in response to lactose for the 15 complete PTSs identified in the NCK334 genome. PTS 6CB (LGAS_343) and PTS 8C (LGAS_497) were induced in the presence of lactose 107- and 53-fold, respectively. However, L. gasseri ATCC 33323 PTS 6CB, PTS 8C had a growth rate similar to that of the wild-type on semisynthetic deMan, Rogosa, Sharpe (MRS) medium with lactose. Expression profiles of L. gasseri ATCC 33323 PTS 6CB, PTS 8C in response to lactose identified PTS 9BC (LGAS_501) as 373-fold induced, whereas PTS 9BC was not induced in NCK334. Elimination of growth on lactose required the inactivation of both PTS 6CB and PTS 9BC. Among the six candidate phospho-β-galactosidase genes present in the NCK334 genome, LGAS_344 was found to be induced 156-fold in the presence of lactose. In conclusion, we have determined that: (1) NCK334 uses a PTS to import lactose; (2) PTS 6CB and PTS 8C gene expression is strongly induced by lactose; and (3) elimination of PTS 6CB and PTS 9BC is required to prevent growth on lactose.

  20. Reducing the Bitterness of Tuna (Euthynnus pelamis) Dark Meat with Lactobacillus casei subsp. casei ATCC 393

    OpenAIRE

    Ernani S. Sant’Anna; Luiz H. Beirão; Fabiano Cleber Bertoldi

    2004-01-01

    During the process of canning tuna fish, considerable amounts of dark tuna meat are left over because of its bitterness, which are then used in the production of animal food. Fermentation with Lactobacillus casei subsp. casei ATCC 393 was used as an alternative to reduce this bitter taste. Samples of meat were prepared, vacuum packed and then stored at –18 °C. The frozen dark meat was used immediately after defrosting and the experiment was carried out with 2 and 4 % of NaCl with the addition...

  1. INFLUENCE OF HIGH LIGHT INTENSITY ON THE CELLS OF CYANOBACTERIA ANABAENA VARIABILIS SP. ATCC 29413

    Directory of Open Access Journals (Sweden)

    OPRIŞ SANDA

    2012-12-01

    Full Text Available In this article is presented the result of research regardind the effect of high light intensity on the cells of Anabaena variabilis sp. ATCC 29413, the main objective is to study the adaptation of photosynthetic apparatus to light stress. Samples were analyzed in the present of herbicide diuron (DCMU which blocks electron flow from photosystem II and without diuron. During treatment maximum fluorescence and photosystems efficiency are significantly reduced, reaching very low values compared with the blank, as a result of photoinhibition installation. Also by this treatment is shown the importance of the mechanisms by which cells detect the presence of light stress and react accordingly.

  2. Oxygen-Inducible Conversion of Lactate to Acetate in Heterofermentative Lactobacillus brevis ATCC 367.

    Science.gov (United States)

    Guo, Tingting; Zhang, Li; Xin, Yongping; Xu, ZhenShang; He, Huiying; Kong, Jian

    2017-11-01

    Lactobacillus brevis is an obligatory heterofermentative lactic acid bacterium that produces high levels of acetate, which improve the aerobic stability of silages against deterioration caused by yeasts and molds. However, the mechanism involved in acetate accumulation has yet to be elucidated. Here, experimental evidence indicated that aerobiosis resulted in the conversion of lactate to acetate after glucose exhaustion in L. brevis ATCC 367 (GenBank accession number NC_008497). To elucidate the conversion pathway, in silico analysis showed that lactate was first converted to pyruvate by the reverse catalytic reaction of lactate dehydrogenase (LDH); subsequently, pyruvate conversion to acetate might be mediated by pyruvate dehydrogenase (PDH) or pyruvate oxidase (POX). Transcriptional analysis indicated that the pdh and pox genes of L. brevis ATCC 367 were upregulated 37.92- and 18.32-fold, respectively, by oxygen and glucose exhaustion, corresponding to 5.32- and 2.35-fold increases in the respective enzyme activities. Compared with the wild-type strain, the transcription and enzymatic activity of PDH remained stable in the Δ pox mutant, while those of POX increased significantly in the Δ pdh mutant. More lactate but less acetate was produced in the Δ pdh mutant than in the wild-type and Δ pox mutant strains, and more H 2 O 2 (a product of the POX pathway) was produced in the Δ pdh mutant. We speculated that the high levels of aerobic acetate accumulation in L. brevis ATCC 367 originated mainly from the reuse of lactate to produce pyruvate, which was further converted to acetate by the predominant and secondary functions of PDH and POX, respectively. IMPORTANCE PDH and POX are two possible key enzymes involved in aerobic acetate accumulation in lactic acid bacteria (LAB). It is currently thought that POX plays the major role in aerobic growth in homofermentative LAB and some heterofermentative LAB, while the impact of PDH remains unclear. In this study, we

  3. Pathway analysis for intracellular Porphyromonas gingivalis using a strain ATCC 33277 specific database

    Directory of Open Access Journals (Sweden)

    Wang Tiansong

    2009-09-01

    Full Text Available Abstract Background Porphyromonas gingivalis is a Gram-negative intracellular pathogen associated with periodontal disease. We have previously reported on whole-cell quantitative proteomic analyses to investigate the differential expression of virulence factors as the organism transitions from an extracellular to intracellular lifestyle. The original results with the invasive strain P. gingivalis ATCC 33277 were obtained using the genome sequence available at the time, strain W83 [GenBank: AE015924]. We present here a re-processed dataset using the recently published genome annotation specific for strain ATCC 33277 [GenBank: AP009380] and an analysis of differential abundance based on metabolic pathways rather than individual proteins. Results Qualitative detection was observed for 1266 proteins using the strain ATCC 33277 annotation for 18 hour internalized P. gingivalis within human gingival epithelial cells and controls exposed to gingival cell culture medium, an improvement of 7% over the W83 annotation. Internalized cells showed increased abundance of proteins in the energy pathway from asparagine/aspartate amino acids to ATP. The pathway producing one short chain fatty acid, propionate, showed increased abundance, while that of another, butyrate, trended towards decreased abundance. The translational machinery, including ribosomal proteins and tRNA synthetases, showed a significant increase in protein relative abundance, as did proteins responsible for transcription. Conclusion Use of the ATCC 33277 specific genome annotation resulted in improved proteome coverage with respect to the number of proteins observed both qualitatively in terms of protein identifications and quantitatively in terms of the number of calculated abundance ratios. Pathway analysis showed a significant increase in overall protein synthetic and transcriptional machinery in the absence of significant growth. These results suggest that the interior of host cells

  4. Fed-batch production of concentrated fructose syrup and ethanol using Saccharomyces cerevisiae ATCC 36859

    Energy Technology Data Exchange (ETDEWEB)

    Koren, D W [CANMET, Ottawa, ON (Canada); Duvnjak, Z [Univ. of Ottawa, ON (Canada). Dept. of Chemical Engineering

    1992-01-01

    A fed-batch process is used for the production of concentrated pure fructose syrup and ethanol from various glucose/fructose mixtures by S.cerevisiae ATCC 36859. Applying this technique, glucose-free fructose syrups with over 250 g/l of this sugar were obtained using High Fructose Corn Syrup and hydrolyzed Jerusalem artichoke juice. Bey encouraging ethanol evaporation from the reactor and condensing it, a separate ethanol product with a concentration of up to 350 g/l was also produced. The rates of glucose consumption and ethanol production were higher than in classical batch ethanol fermentation processes. (orig.).

  5. Purification and Characterization of an Extracellular Proteinase from Brevibacterium-Linens ATCC-9174

    DEFF Research Database (Denmark)

    Rattray, F P; Bockelmann, W; Fox, P F

    1995-01-01

    An extracellular serine proteinase from Brevibacterium linens ATCC 9174 was purified to homogeneity. pH and temperature optima were 8,5 and 50 degrees C, respectively. The results for the molecular mass of the proteinase were 56 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis...... and 126 kDa by gel filtration, indicating that the native enzyme exists as a dimer. Mg2+ and Ca2+ activated the proteinase, as did NaCl; however, Hg2+ Fe2+, and Zn2+ caused strong inhibition. The sequence of the first 20 N-terminal amino acids was NH2-Ala-Lys- Asn...

  6. The role of filamentous hemagglutinin adhesin in adherence and biofilm formation in Acinetobacter baumannii ATCC19606(T).

    Science.gov (United States)

    Darvish Alipour Astaneh, Shakiba; Rasooli, Iraj; Mousavi Gargari, Seyed Latif

    2014-09-01

    Filamentous hemagglutinin adhesins (FHA) are key factors for bacterial attachment and subsequent cell accumulation on substrates. Here an FHA-like Outer membrane (OM) adhesin of Acinetobacter baumannii ATCC19606(T) was displayed on Escherichia coli. The candidate autotransporter (AT) genes were identified in A. baumannii ATCC19606(T) genome. The exoprotein (FhaB1) and transporter (FhaC1) were produced independently within the same cell (FhaB1C1). The fhaC1 was mutated. In vitro adherence to epithelial cells of the recombinant FhaB1C1 and the mutant strains were compared with A. baumanni ATCC19606(T). A bivalent chimeric protein (K) composed of immunologically important portions of fhaB1 (B) and fhaC1 (C) was constructed. The mice vaccinated with chimeric protein were challenged with A. baumannii ATCC19606(T) and FhaB1C1 producing recombinant E. coli. Mutations in the fhaC1 resulted in the absence of FhaB1 in the OM. Expression of FhaB1C1 enhanced the adherence of recombinant bacteria to A546 bronchial cell line. The results revealed association of FhaB1 with bacterial adhesion and biofilm formation. Immunization with a combination of recombinant B and K proteins proved protective against A. baumanni ATCC19606(T). The findings may be applied in active and passive immunization strategies against A. baumannii. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Effect of nitrogen source concentration on curdlan production by Agrobacterium sp. ATCC 31749 grown on prairie cordgrass hydrolysates.

    Science.gov (United States)

    West, Thomas P

    2016-01-01

    The effect of nitrogen source concentration on the production of the polysaccharide curdlan by the bacterium Agrobacterium sp. ATCC 31749 from hydrolysates of prairie cordgrass was examined. The highest curdlan concentrations were produced by ATCC 31749 when grown on a medium containing a solids-only hydrolysate and the nitrogen source ammonium phosphate (2.2 mM) or on a medium containing a complete hydrolysate and 3.3 mM ammonium phosphate. The latter medium sustained a higher level of bacterial curdlan production than the former medium after 144 hr. Biomass production by ATCC 31749 was highest after 144 hr when grown on a medium containing a solids-only hydrolysate and 2.2 or 8.7 mM ammonium phosphate. On the medium containing the complete hydrolysate, biomass production by ATCC 31749 was highest after 144 hr when 3.3 mM ammonium phosphate was present. Bacterial biomass production after 144 hr was greater on the complete hydrolysate medium compared to the solids-only hydrolysate medium. Curdlan yield produced by ATCC 31749 after 144 hr from the complete hydrolysate medium containing 3.3 mM ammonium phosphate was higher than from the solids-only hydrolysate medium containing 2.2 mM ammonium phosphate.

  8. [Proteomic analysis of curdlan-producing Agrobacterium sp. ATCC 31749 in response to dissolved oxygen].

    Science.gov (United States)

    Dai, Xiaomeng; Yang, Libo; Zheng, Zhiyong; Chen, Haiqin; Zhan, Xiaobei

    2015-08-04

    Curdlan is produced by Agrobacterium sp. ATCC 31749 under nitrogen limiting condition. The biosynthesis of crudlan is a typical aerobic bioprocess, and the production of curdlan would be severely restricted under micro-aerobic and anoxic conditions. Proteomic analysis of Agrobacterium sp. was conducted to investigate the effect of dissolved oxygen on the crucial enzymes involved in curdlan biosynthesis. Two-dimensional gel electrophoresis was performed to separate and visualize the differential expression of the intracellular proteins extracted from Agrobacterium sp. ATCC 31749 cultured under various dissolved oxygen levels (75%, 50%, 25% and 5%). In addition, a comparative proteomic analysis of the intracellular proteins expression level under various dissolved oxygen levels was done. Significant differently expressed proteins were identified by MALDI-TOF/TOF. Finally, we identified 15 differently expressed proteins involved in polysaccharide synthesis, fatty acid synthesis, amino acid synthesis pathway. Among these proteins, phosphoglucomutase and orotidine 5-phosphate decarboxylase were the key metabolic enzymes directing curdlan biosynthesis. Oxygen could affect the expression of the proteins taking charge of curdlan synthesis significantly.

  9. Cloning and characterization of genes involved in nostoxanthin biosynthesis of Sphingomonas elodea ATCC 31461.

    Directory of Open Access Journals (Sweden)

    Liang Zhu

    Full Text Available Most Sphingomonas species synthesize the yellow carotenoid nostoxanthin. However, the carotenoid biosynthetic pathway of these species remains unclear. In this study, we cloned and characterized a carotenoid biosynthesis gene cluster containing four carotenogenic genes (crtG, crtY, crtI and crtB and a β-carotene hydroxylase gene (crtZ located outside the cluster, from the gellan-gum producing bacterium Sphingomonas elodea ATCC 31461. Each of these genes was inactivated, and the biochemical function of each gene was confirmed based on chromatographic and spectroscopic analysis of the intermediates accumulated in the knockout mutants. Moreover, the crtG gene encoding the 2,2'-β-hydroxylase and the crtZ gene encoding the β-carotene hydroxylase, both responsible for hydroxylation of β-carotene, were confirmed by complementation studies using Escherichia coli producing different carotenoids. Expression of crtG in zeaxanthin and β-carotene accumulating E. coli cells resulted in the formation of nostoxanthin and 2,2'-dihydroxy-β-carotene, respectively. Based on these results, a biochemical pathway for synthesis of nostoxanthin in S. elodea ATCC 31461 is proposed.

  10. Cloning and characterization of genes involved in nostoxanthin biosynthesis of Sphingomonas elodea ATCC 31461.

    Science.gov (United States)

    Zhu, Liang; Wu, Xuechang; Li, Ou; Qian, Chaodong; Gao, Haichun

    2012-01-01

    Most Sphingomonas species synthesize the yellow carotenoid nostoxanthin. However, the carotenoid biosynthetic pathway of these species remains unclear. In this study, we cloned and characterized a carotenoid biosynthesis gene cluster containing four carotenogenic genes (crtG, crtY, crtI and crtB) and a β-carotene hydroxylase gene (crtZ) located outside the cluster, from the gellan-gum producing bacterium Sphingomonas elodea ATCC 31461. Each of these genes was inactivated, and the biochemical function of each gene was confirmed based on chromatographic and spectroscopic analysis of the intermediates accumulated in the knockout mutants. Moreover, the crtG gene encoding the 2,2'-β-hydroxylase and the crtZ gene encoding the β-carotene hydroxylase, both responsible for hydroxylation of β-carotene, were confirmed by complementation studies using Escherichia coli producing different carotenoids. Expression of crtG in zeaxanthin and β-carotene accumulating E. coli cells resulted in the formation of nostoxanthin and 2,2'-dihydroxy-β-carotene, respectively. Based on these results, a biochemical pathway for synthesis of nostoxanthin in S. elodea ATCC 31461 is proposed.

  11. Different nitrogen sources change the transcriptome of welan gum-producing strain Sphingomonas sp. ATCC 31555.

    Science.gov (United States)

    Xu, Xiaopeng; Nie, Zuoming; Zheng, Zhiyong; Zhu, Li; Zhang, Hongtao; Zhan, Xiaobei

    2017-09-01

    To reveal effects of different nitrogen sources on the expressions and functions of genes in Sphingomonas sp. ATCC 31555, it was cultivated in medium containing inorganic nitrogen (IN), organic nitrogen (ON), or inorganic-organic combined nitrogen (CN). Welan gum production and bacterial biomass were determined, and RNA sequencing (RNA-seq) was performed. Differentially expressed genes (DEGs) between the different ATCC 31555 groups were identified, and their functions were analyzed. Welan gum production and bacterial biomass were significantly higher in the ON and CN groups compared with those in the IN group. RNA-seq produced 660 unigenes, among which 488, 731, and 844 DEGs were identified between the IN vs. ON, IN vs. CN, and ON vs. CN groups, respectively. All the DEGs were related significantly to metabolic process and signal transduction. DEGs between the IN vs. CN and ON vs. CN groups were potentially associated with bacterial chemotaxis. Real-time PCR confirmed the expressions of selected DEGs. Organic nitrogen led to higher bacterial biomass and welan gum production than inorganic nitrogen, which might reflect differences in gene expression associated with metabolic process, signal transduction, and bacterial chemotaxis induced by different nitrogen sources.

  12. Transcriptomic analysis of (group I Clostridium botulinum ATCC 3502 cold shock response.

    Directory of Open Access Journals (Sweden)

    Elias Dahlsten

    Full Text Available Profound understanding of the mechanisms foodborne pathogenic bacteria utilize in adaptation to the environmental stress they encounter during food processing and storage is of paramount importance in design of control measures. Chill temperature is a central control measure applied in minimally processed foods; however, data on the mechanisms the foodborne pathogen Clostridium botulinum activates upon cold stress are scarce. Transcriptomic analysis on the C. botulinum ATCC 3502 strain upon temperature downshift from 37°C to 15°C was performed to identify the cold-responsive gene set of this organism. Significant up- or down-regulation of 16 and 11 genes, respectively, was observed 1 h after the cold shock. At 5 h after the temperature downshift, 199 and 210 genes were up- or down-regulated, respectively. Thus, the relatively small gene set affected initially indicated a targeted acute response to cold shock, whereas extensive metabolic remodeling appeared to take place after prolonged exposure to cold. Genes related to fatty acid biosynthesis, oxidative stress response, and iron uptake and storage were induced, in addition to mechanisms previously characterized as cold-tolerance related in bacteria. Furthermore, several uncharacterized DNA-binding transcriptional regulator-encoding genes were induced, suggesting involvement of novel regulatory mechanisms in the cold shock response of C. botulinum. The role of such regulators, CBO0477 and CBO0558A, in cold tolerance of C. botulinum ATCC 3502 was demonstrated by deteriorated growth of related mutants at 17°C.

  13. Production of L-lactic acid from metabolically engineered strain of Enterobacter aerogenes ATCC 29007.

    Science.gov (United States)

    Thapa, Laxmi Prasad; Lee, Sang Jun; Park, Chulhwan; Kim, Seung Wook

    2017-07-01

    In this study, L-lactic acid production was investigated from metabolically engineered strain of E. aerogenes ATCC 29007. The engineered strain E. aerogenes SUMI01 (Δpta) was generated by the deletion of phosphate acetyltransferase (pta) gene from the chromosome of E. aerogenes ATCC 29007 and deletion was confirmed by colony PCR. Under the optimized fermentation conditions, at 37°C and pH 6 for 84h, the L-lactic acid produced by engineered strain E. aerogenes SUMI01 (Δpta) in flask fermentation using 100g/L mannitol as the carbon source was 40.05g/L as compared to that of the wild type counterpart 20.70g/L. At the end of the batch fermentation in bioreactor the production of L-lactic acid reached to 46.02g/L and yield was 0.41g/g by utilizing 112.32g/L mannitol. This is the first report regarding the production of L-lactic acid from Enterobacter species. We believe that this result may provide valuable guidelines for further engineering Enterobacter strain for the improvement of L-lactic acid production. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Antibacterial effect of four endodontic cements against Enterococcus faecalis ATCC 29212. An in vitro study.

    Directory of Open Access Journals (Sweden)

    Marcos J. Carruitero

    2017-12-01

    Full Text Available Objective: To compare the in vitro antibacterial effect of the root canal cements Endobalsam®, Top Seal®, Apexit® and Endofill® against Enterococcus faecalis ATCC 29212. Materials and method: Eighty-five applications of cements on Enterococcus faecalis, cultured in vitro on solid media in Petri dishes, were analyzed. Five groups were evaluated: four for each cement, and the fifth for the positive control (amoxicillin. The antibacterial effect was measured by the diameters of the bacterial inhibition halos at 24 hours, 48 hours, and seven days. Student´s t-test, ANOVA and the Tukey test were used for the statistical analysis. Results: No statistically significant differences were found at 24 hours (p>0.05; at 48 hours and seven days, Endofill® and Apexit® had the greatest effect (p0.05. Conclusion: Enterococcus faecalis ATCC 29212 was susceptible to all cements. Endofill® had greater in vitro antibacterial effect than Apexit®, Top Seal® and Endobalsam®.

  15. GAMMA Radiation Effect On Staphylococcus aureus (ATCC 19095) in Cheese MINAS FRESCALIRRADIATED

    International Nuclear Information System (INIS)

    Amaral Gurgel, M.S.C.C. DO; Spoto, M.H.F.; Domarco, R.E.

    1999-01-01

    Milk is an excellent medium of culture for development of Staphylococcus aureus. Gamma radiation can be an alternative method to guarantee the safety of the contaminated cheeses. The objective of this research was determine the effects of the gamma radiation on the resistance of S.aureus (ATCC 19095) in cheese M inas Frescal i rradiated. The cheeses elaborated in the Laboratory of Food Irradiation of CENA/USP, were contaminated during their production with 10 6 CFU/mL of culture of S.aureus (ATCC 19095). The cheeses were irradiated with 0; 1; 2; 3 and 4 kGy, maintained under refrigeration condition (5 0C ) and analyzed at 1, 7 and 14 days of storage. The evaluation microbiology was made through the S.aureus survival analysis using Baird Parker selective medium and confirmative test of coagulase, catalase and fermentation aerobics of the manitol. The capacity of enterotoxins production by irradiated S.aureus was detected by the method of Passive Reverse Agglutination Latex. Results showed that 3 kGy is enough to destroy the S.aureus and 2 kGy to inhibited its toxins production

  16. An overview of the metabolic differences between Bradyrhizobium japonicum 110 bacteria and differentiated bacteroids from soybean (Glycine max) root nodules: an in vitro 13C- and 31P-nuclear magnetic resonance spectroscopy study

    International Nuclear Information System (INIS)

    Vauclare, Pierre; Bligny, Richard; Gout, Elisabeth; Widmer, Francois

    2013-01-01

    Bradyrhizobium japonicum is a symbiotic nitrogen-fixing soil bacteria that induce root nodules formation in legume soybean (Glycine max.). Using 13 C- and 31 P-nuclear magnetic resonance (NMR) spectroscopy, we have analysed the metabolite profiles of cultivated B. japonicum cells and bacteroids isolated from soybean nodules. Our results revealed some quantitative and qualitative differences between the metabolite profiles of bacteroids and their vegetative state. This includes in bacteroids a huge accumulation of soluble carbohydrates such as trehalose, glutamate, myo-inositol and homo-spermidine as well as Pi, nucleotide pools and intermediates of the primary carbon metabolism. Using this novel approach, these data show that most of the compounds detected in bacteroids reflect the metabolic adaptation of rhizobia to the surrounding microenvironment with its host plant cells. (authors)

  17. Scientific Opinion on the safety of ‘heat-treated milk products fermented with Bacteroides xylanisolvens DSM 23964’ as a novel food

    DEFF Research Database (Denmark)

    Tetens, Inge; Poulsen, Morten

    2015-01-01

    Following a request from the European Commission, the EFSA NDA Panel was asked to carry out the additional assessment for ‘pasteurised milk products fermented with Bacteroides xylanisolvens DSM 23964’ as a novel food (NF) in the context of Regulation (EC) No 258/97. Pasteurised or ultra-high-temp......Following a request from the European Commission, the EFSA NDA Panel was asked to carry out the additional assessment for ‘pasteurised milk products fermented with Bacteroides xylanisolvens DSM 23964’ as a novel food (NF) in the context of Regulation (EC) No 258/97. Pasteurised or ultra......-high-temperature-treated milk is used for the fermentation process with B. xylanisolvens DSM 23964. After fermentation the product is heat treated for one hour at 75 °C to ensure the absence of viable B. xylanisolvens DSM 23964. The Panel considers the information provided on the identity and characterisation of B...

  18. Characterisation of a multidrug-resistant Bacteroides fragilis isolate recovered from blood of a patient in Denmark using whole-genome sequencing

    DEFF Research Database (Denmark)

    Ank, Nina; Sydenham, Thomas V; Iversen, Lene H

    2015-01-01

    Here we describe a patient undergoing extensive abdominal surgery and hyperthermic intraperitoneal chemotherapy due to primary adenocarcinoma in the sigmoid colon with peritoneal carcinomatosis. During hospitalisation the patient suffered from bacteraemia with a multidrug-resistant Bacteroides fr...... fragilis isolate. Whole-genome sequencing of the isolate resulted in identification of nimE, cfiA and ermF genes corresponding to metronidazole, carbapenem and clindamycin resistance....

  19. Suppurative otitis and ascending meningoencephalitis associated with Bacteroides tectus and Porphyromonas gulae in a captive Parma wallaby (Macropus parma) with toxoplasmosis.

    Science.gov (United States)

    Giannitti, Federico; Schapira, Andrea; Anderson, Mark; Clothier, Kristin

    2014-09-01

    A 6-year-old female Parma wallaby (Macropus parma) at a zoo in California developed acute ataxia and left-sided circling. Despite intensive care, clinical signs progressed to incoordination and prostration, and the animal was euthanized. At necropsy, the left tympanic cavity was filled with homogeneous suppurative exudate that extended into the cranium expanding the meninges and neuroparenchyma in the lateral and ventral aspect of the caudal ipsilateral brainstem and medulla oblongata. Microscopically, the brainstem showed regional severe suppurative meningoencephalitis with large numbers of neutrophils, fewer macrophages, and lymphocytes admixed with fibrin, necrotic cellular debris, hemorrhage, and mineralization, with numerous intralesional Gram-negative bacilli. Bacteroides spp. and Porphyromonas spp. were isolated on anaerobic culture from the meninges, and the bacteria were further characterized by partial 16S ribosomal RNA gene sequencing as Bacteroides tectus and Porphyromonas gulae. Bacterial aerobic culture from the meninges yielded very low numbers of mixed flora and Proteus spp., which were considered contaminants. Culture of Mycoplasma spp. from middle ear and meninges was negative. Additionally, Toxoplasma gondii cysts were detected by immunohistochemistry in the heart and brain, and anti-Toxoplasma antibodies were detected in serum. The genera Bacteroides and Porphyromonas have been associated with oral disease in marsupials; but not with otitis and meningoencephalitis. The results of the present work highlight the importance of performing anaerobic cultures in the diagnostic investigation of cases of suppurative otitis and meningoencephalitis in macropods. © 2014 The Author(s).

  20. Medicago truncatula DNF2 is a PI-PLC-XD-containing protein required for bacteroid persistence and prevention of nodule early senescence and defense-like reactions.

    Science.gov (United States)

    Bourcy, Marie; Brocard, Lysiane; Pislariu, Catalina I; Cosson, Viviane; Mergaert, Peter; Tadege, Millon; Mysore, Kirankumar S; Udvardi, Michael K; Gourion, Benjamin; Ratet, Pascal

    2013-03-01

    Medicago truncatula and Sinorhizobium meliloti form a symbiotic association resulting in the formation of nitrogen-fixing nodules. Nodule cells contain large numbers of bacteroids which are differentiated, nitrogen-fixing forms of the symbiotic bacteria. In the nodules, symbiotic plant cells home and maintain hundreds of viable bacteria. In order to better understand the molecular mechanism sustaining the phenomenon, we searched for new plant genes required for effective symbiosis. We used a combination of forward and reverse genetics approaches to identify a gene required for nitrogen fixation, and we used cell and molecular biology to characterize the mutant phenotype and to gain an insight into gene function. The symbiotic gene DNF2 encodes a putative phosphatidylinositol phospholipase C-like protein. Nodules formed by the mutant contain a zone of infected cells reduced to a few cell layers. In this zone, bacteria do not differentiate properly into bacteroids. Furthermore, mutant nodules senesce rapidly and exhibit defense-like reactions. This atypical phenotype amongst Fix(-) mutants unravels dnf2 as a new actor of bacteroid persistence inside symbiotic plant cells. © 2012 CNRS. New Phytologist © 2012 New Phytologist Trust.

  1. CrdR function in a curdlan-producing Agrobacterium sp. ATCC31749 strain.

    Science.gov (United States)

    Yu, Xiaoqin; Zhang, Chao; Yang, Liping; Zhao, Lamei; Lin, Chun; Liu, Zhengjie; Mao, Zichao

    2015-02-10

    Agrobacterium sp. ATCC31749 is an efficient curdlan producer at low pH and under nitrogen starvation. The helix-turn-helix transcriptional regulatory protein (crdR) essential for curdlan production has been analyzed, but whether crdR directly acts to cause expression of the curdlan biosynthesis operon (crdASC) is uncertain. To elucidate the molecular function of crdR in curdlan biosynthesis, we constructed a crdR knockout mutant along with pBQcrdR and pBQNcrdR vectors with crdR expression driven by a T5 promoter and crdR native promoter, respectively. Also, we constructed a pAG with the green fluorescent protein (GFP) gene driven by a curdlan biosynthetic operon promoter (crdP) to measure the effects of crdR expression on curdlan biosynthesis. Compared with wild-type (WT) strain biomass production, the biomass of the crdR knockout mutant was not significantly different in either exponential or stationary phases of growth. Mutant cells were non-capsulated and planktonic and produced significantly less curdlan. WT cells were curdlan-capsulated and aggregated in the stationery phase. pBQcrdR transformed to the WT strain had a 38% greater curdlan yield and pBQcrdR and pBQNcrdR transformed to the crdR mutant strain recovered 18% and 105% curdlan titers of the WT ATCC31749 strain, respectively. Consistent with its function of promoting curdlan biosynthesis, curdlan biosynthetic operon promoter (crdP) controlled GFP expression caused the transgenic strain to have higher GFP relative fluorescence in the WT strain, and no color change was observed with low GFP relative fluorescence in the crdR mutant strain as evidenced by fluorescent microscopy and spectrometric assay. q-RT-PCR revealed that crdR expression in the stationary phase was greater than in the exponential phase, and crdR overexpression in the WT strain increased crdA, crdS, and crdC expression. We also confirmed that purified crdR protein can specifically bind to the crd operon promoter region, and we inferred

  2. Commensal Bacteroides species induce colitis in host-genotype-specific fashion in a mouse model of inflammatory bowel disease.

    Science.gov (United States)

    Bloom, Seth M; Bijanki, Vinieth N; Nava, Gerardo M; Sun, Lulu; Malvin, Nicole P; Donermeyer, David L; Dunne, W Michael; Allen, Paul M; Stappenbeck, Thaddeus S

    2011-05-19

    The intestinal microbiota is important for induction of inflammatory bowel disease (IBD). IBD is associated with complex shifts in microbiota composition, but it is unclear whether specific bacterial subsets induce IBD and, if so, whether their proportions in the microbiota are altered during disease. Here, we fulfilled Koch's postulates in host-genotype-specific fashion using a mouse model of IBD with human-relevant disease-susceptibility mutations. From screening experiments we isolated common commensal Bacteroides species, introduced them into antibiotic-pretreated mice, and quantitatively reisolated them in culture. The bacteria colonized IBD-susceptible and -nonsusceptible mice equivalently, but induced disease exclusively in susceptible animals. Conversely, commensal Enterobacteriaceae were >100-fold enriched during spontaneous disease, but an Enterobacteriaceae isolate failed to induce disease in antibiotic-pretreated mice despite robust colonization. We thus demonstrate that IBD-associated microbiota alterations do not necessarily reflect underlying disease etiology. These findings establish important experimental criteria and a conceptual framework for understanding microbial contributions to IBD. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Structure of a membrane-attack complex/perforin (MACPF) family protein from the human gut symbiont Bacteroides thetaiotaomicron

    International Nuclear Information System (INIS)

    Xu, Qingping; Abdubek, Polat; Astakhova, Tamara; Axelrod, Herbert L.; Bakolitsa, Constantina; Cai, Xiaohui; Carlton, Dennis; Chen, Connie; Chiu, Hsiu-Ju; Clayton, Thomas; Das, Debanu; Deller, Marc C.; Duan, Lian; Ellrott, Kyle; Farr, Carol L.; Feuerhelm, Julie; Grant, Joanna C.; Grzechnik, Anna; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K.; Klock, Heath E.; Knuth, Mark W.; Kozbial, Piotr; Krishna, S. Sri; Kumar, Abhinav; Lam, Winnie W.; Marciano, David; Miller, Mitchell D.; Morse, Andrew T.; Nigoghossian, Edward; Nopakun, Amanda; Okach, Linda; Puckett, Christina; Reyes, Ron; Tien, Henry J.; Trame, Christine B.; Bedem, Henry van den; Weekes, Dana; Wooten, Tiffany; Yeh, Andrew; Zhou, Jiadong; Hodgson, Keith O.; Wooley, John; Elsliger, Marc-André; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A.

    2010-01-01

    The crystal structure of a novel MACPF protein, which may play a role in the adaptation of commensal bacteria to host environments in the human gut, was determined and analyzed. Membrane-attack complex/perforin (MACPF) proteins are transmembrane pore-forming proteins that are important in both human immunity and the virulence of pathogens. Bacterial MACPFs are found in diverse bacterial species, including most human gut-associated Bacteroides species. The crystal structure of a bacterial MACPF-domain-containing protein BT-3439 (Bth-MACPF) from B. thetaiotaomicron, a predominant member of the mammalian intestinal microbiota, has been determined. Bth-MACPF contains a membrane-attack complex/perforin (MACPF) domain and two novel C-terminal domains that resemble ribonuclease H and interleukin 8, respectively. The entire protein adopts a flat crescent shape, characteristic of other MACPF proteins, that may be important for oligomerization. This Bth-MACPF structure provides new features and insights not observed in two previous MACPF structures. Genomic context analysis infers that Bth-MACPF may be involved in a novel protein-transport or nutrient-uptake system, suggesting an important role for these MACPF proteins, which were likely to have been inherited from eukaryotes via horizontal gene transfer, in the adaptation of commensal bacteria to the host environment

  4. Gut metagenomes of type 2 diabetic patients have characteristic single-nucleotide polymorphism distribution in Bacteroides coprocola.

    Science.gov (United States)

    Chen, Yaowen; Li, Zongcheng; Hu, Shuofeng; Zhang, Jian; Wu, Jiaqi; Shao, Ningsheng; Bo, Xiaochen; Ni, Ming; Ying, Xiaomin

    2017-02-01

    Gut microbes play a critical role in human health and disease, and researchers have begun to characterize their genomes, the so-called gut metagenome. Thus far, metagenomics studies have focused on genus- or species-level composition and microbial gene sets, while strain-level composition and single-nucleotide polymorphism (SNP) have been overlooked. The gut metagenomes of type 2 diabetes (T2D) patients have been found to be enriched with butyrate-producing bacteria and sulfate reduction functions. However, it is not known whether the gut metagenomes of T2D patients have characteristic strain patterns or SNP distributions. We downloaded public gut metagenome datasets from 170 T2D patients and 174 healthy controls and performed a systematic comparative analysis of their metagenome SNPs. We found that Bacteroides coprocola, whose relative abundance did not differ between the groups, had a characteristic distribution of SNPs in the T2D patient group. We identified 65 genes, all in B. coprocola, that had remarkably different enrichment of SNPs. The first and sixth ranked genes encode glycosyl hydrolases (GenBank accession EDU99824.1 and EDV02301.1). Interestingly, alpha-glucosidase, which is also a glycosyl hydrolase located in the intestine, is an important drug target of T2D. These results suggest that different strains of B. coprocola may have different roles in human gut and a specific set of B. coprocola strains are correlated with T2D.

  5. Analysis of the outer membrane proteome and secretome of Bacteroides fragilis reveals a multiplicity of secretion mechanisms.

    Directory of Open Access Journals (Sweden)

    Marlena M Wilson

    Full Text Available Bacteroides fragilis is a widely distributed member of the human gut microbiome and an opportunistic pathogen. Cell surface molecules produced by this organism likely play important roles in colonization, communication with other microbes, and pathogenicity, but the protein composition of the outer membrane (OM and the mechanisms used to transport polypeptides into the extracellular space are poorly characterized. Here we used LC-MS/MS to analyze the OM proteome and secretome of B. fragilis NCTC 9343 grown under laboratory conditions. Of the 229 OM proteins that we identified, 108 are predicted to be lipoproteins, and 61 are predicted to be TonB-dependent transporters. Based on their proximity to genes encoding TonB-dependent transporters, many of the lipoprotein genes likely encode proteins involved in nutrient or small molecule uptake. Interestingly, protease accessibility and biotinylation experiments indicated that an unusually large fraction of the lipoproteins are cell-surface exposed. We also identified three proteins that are members of a novel family of autotransporters, multiple potential type I protein secretion systems, and proteins that appear to be components of a type VI secretion apparatus. The secretome consisted of lipoproteins and other proteins that might be substrates of the putative type I or type VI secretion systems. Our proteomic studies show that B. fragilis differs considerably from well-studied Gram-negative bacteria such as Escherichia coli in both the spectrum of OM proteins that it produces and the range of secretion strategies that it utilizes.

  6. Monoclonal antibody against Porphyromonas (Bacteroides) endodontalis lipopolysaccharide and application of the antibody for direct identification of the species.

    Science.gov (United States)

    Hanazawa, S; Sagiya, T; Kitami, H; Ohta, K; Nishikawa, H; Kitano, S

    1991-01-01

    The aim of the present study was to develop a monoclonal antibody that recognizes the shared antigen of Porphyromonas endodontalis so that we could use the antibody in direct identification and detection of P. endodontalis in infectious material from apical periodontal patients. We established a hybridoma cell line producing monoclonal antibody (BEB5) specific for P. endodontalis. BEB5 antibody reacted with all of the P. endodontalis strains tested, but not with any of the other black-pigmented Porphyromonas and Bacteroides spp. The antibody reacted specifically with the lipopolysaccharide (LPS) of three P. endodontalis strains of different serotypes (O1K1, O1K2, and O1K-). Western blotting (immunoblotting) analysis confirmed the specificity of the antibody to these LPSs, because the antibody recognized the typical "repetitive ladder" pattern characteristic of LPS on sodium dodecyl sulfate-polyacrylamide electrophoretic gels. These observations demonstrate that P. endodontalis LPS is the shared antigen of this species. The antibody can specifically identify P. endodontalis on nitrocellulose membrane blots of bacterial colonies grown on agar. The antibody is also capable of directly detecting the presence of P. endodontalis in infectious material by immunoslot blot assay. These results indicate that LPS is the shared antigen of P. endodontalis and that BEB5 antibody against LPS is a useful one for direct identification and detection of the organisms in samples from apical periodontal patients. Images PMID:1774262

  7. Commensal Bacteroides species induce colitis in host-genotype-specific fashion in a mouse model of inflammatory bowel disease

    Science.gov (United States)

    Bloom, Seth M.; Bijanki, Vinieth N.; Nava, Gerardo M.; Sun, Lulu; Malvin, Nicole P.; Donermeyer, David L.; Dunne, W. Michael; Allen, Paul M.; Stappenbeck, Thaddeus S.

    2011-01-01

    SUMMARY The intestinal microbiota is important for induction of inflammatory bowel disease (IBD). IBD is associated with complex shifts in microbiota composition, but it is unclear whether specific bacterial subsets induce IBD and, if so, whether their proportions in the microbiota are altered during disease. Here we fulfilled Koch’s postulates in host-genotype-specific fashion using a mouse model of IBD with human-relevant disease-susceptibility mutations. From screening experiments we isolated common commensal Bacteroides species, introduced them into antibiotic-pretreated mice, and quantitatively re-isolated them in culture. The bacteria colonized IBD-susceptible and non-susceptible mice equivalently, but induced disease exclusively in susceptible animals. Conversely, commensal Enterobacteriaceae were >100-fold enriched during spontaneous disease but an Enterobacteriaceae isolate failed to induce disease in antibiotic-pretreated mice despite robust colonization. We thus demonstrate that IBD-associated microbiota alterations do not necessarily reflect underlying disease etiology. These findings establish important experimental criteria and a conceptual framework for understanding microbial contributions to IBD. PMID:21575910

  8. 40 CFR 180.1102 - Trichoderma harzianum KRL-AG2 (ATCC #20847) strain T-22; exemption from requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Trichoderma harzianum KRL-AG2 (ATCC... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1102 Trichoderma harzianum KRL-AG2... of a tolerance is established for residues of the biofungicide Trichoderma harzianum KRL-AG2 (ATCC...

  9. Isolation and partial characterization of protease from Pseudomonas aeruginosa ATCC 27853

    Directory of Open Access Journals (Sweden)

    LIDIJA IZRAEL-ŽIVKOVIĆ

    2010-08-01

    Full Text Available Enzymatic characteristics of a protease from a medically important, referent strain of Pseudomonas aeruginosa ATCC 27853 were determined. According to sodium dodecyl sulfate polyacrylamide gel electrophoresis, SDS-PAGE, and gel filtration, it was estimated that the molecular mass of the purified enzyme was about 15 kDa. Other enzymatic properties were found to be: pH optimum 7.1, pH stability between 6.5 and 10; temperature optimum around 60 °C while the enzyme was stable at 60 °C for 30 min. Inhibition of the enzyme was observed with metal chelators, such as EDTA and 1,10-phenanthroline, suggesting that the protease is a metalloenzyme. Furthermore, the enzyme contains one mole of zinc ion per mole of enzyme. The protease was stable in the presence of different organic solvents, which enables its potential use for the synthesis of peptides.

  10. Long-term kinetics of Salmonella Typhimurium ATCC 14028 survival on peanuts and peanut confectionery products.

    Directory of Open Access Journals (Sweden)

    Maristela S Nascimento

    Full Text Available Due to recent large outbreaks, peanuts have been considered a product of potential risk for Salmonella. Usually, peanut products show a low water activity (aw and high fat content, which contribute to increasing the thermal resistance and survival of Salmonella. This study evaluated the long-term kinetics of Salmonella survival on different peanut products under storage at 28°C for 420 days. Samples of raw in-shell peanuts (aw = 0.29, roasted peanuts (aw = 0.39, unblanched peanut kernel (aw = 0.54, peanut brittle (aw = 0.30, paçoca (aw = 0.40 and pé-de-moça (aw = 0.68 were inoculated with Salmonella Typhimurium ATCC 14028 at two inoculum levels (3 and 6 log cfu/ g. The Salmonella behavior was influenced (p420 days, especially in products with aw around 0.40.

  11. Crude glycerol from biodiesel industry as substrate for biosurfactant production by Bacillus subtilis ATCC 6633

    Directory of Open Access Journals (Sweden)

    Marylane de Sousa

    2014-04-01

    Full Text Available Glycerol, a co-product of the biodiesel industry, may be a suitable raw material for the production of high added-value compounds by the microorganisms. This study aimed to use the glycerol obtained from the biodiesel production process as the main carbon source for biosurfactant production by Bacillus subtilis ATCC 6633. Results indicated that the strain lowered the surface tension of the cell-free fermented broth to 31.5 ± 1.6 mN/m, indicating the production of biosurfactant. The critical micelle concentration (CMC = 33.6 mN/m obtained was similar to the previously reported for biossurfactants isolated from other Bacillus. The produced biosurfactant was able to emulsify n-hexadecane and soybean oil.

  12. Influence of temperature on flavour compound production from citrate by Lactobacillus rhamnosus ATCC 7469.

    Science.gov (United States)

    De Figueroa, R M; Oliver, G; Benito de Cárdenas, I L

    2001-03-01

    The citrate utilization by Lactobacillus rhamnosus ATCC 7469 was found to be temperature-dependent. The maximum citrate utilization and incorporation of [1,5-14C]citrate rate were observed at 37 degreesC. At this temperature, maximum citrate lyase activity and specific diacetyl and acetoin production (Y(DA%)) were observed. The high levels of alpha-acetolactate synthase and low levels of diacetyl reductase, acetoin reductase and L-lactate dehydrogenase found at 37 degreesC led to an accumulation of diacetyl and acetoin. Optimum lactic acid production was observed at 45 degreesC, according to the high lactate dehydrogenase activity. The NADH oxidase activity increased with increasing culture temperature from 22 degreesC to 37 degreesC. Thus there are greater quantities of pyruvate available for the production of alpha-acetolactate, diacetyl and aceotin, and less diacetyl and acetoin are reduced.

  13. Microbial conversion of ethylbenzene to 1-phenethanol and acetophenone by Nocardia tartaricans ATCC 31190.

    Science.gov (United States)

    Cox, D P; Goldsmith, C D

    1979-09-01

    A culture of Nocardia tartaricans ATCC 31190 was capable of catalyzing the conversion of ethylbenzene to 1-phenethanol and acetophenone while growing in a shake flask culture with hexadecane as the source of carbon and energy. This subterminal oxidative reaction with ethylbenzene appears not to have been previously reported for Nocardia species. When N. tartaricans was grown on glucose as its source of carbon and energy and ethylbenzene was added, no subsequent production of 1-phenethanol or acetophenone was observed. The mechanisms of 1-phenethanol and acetophenone production from ethylbenzene are thought to involve a subterminal oxidation of the alpha-carbon of the alkyl group to 1-phenethanol followed by biological oxidation of the latter to acetophenone.

  14. Response of Lactobacillus acidophilus ATCC 4356 to low-shear modeled microgravity

    Science.gov (United States)

    Castro-Wallace, Sarah; Stahl, Sarah; Voorhies, Alexander; Lorenzi, Hernan; Douglas, Grace L.

    2017-10-01

    The introduction of probiotic microbes into the spaceflight food system has the potential for use as a safe, non-invasive, daily countermeasure to crew microbiome and immune dysregulation. However, the microgravity effects on the stress tolerances and gene expression of probiotic bacteria must be investigated to confirm that benefits of selected strains will still be conveyed under microgravity conditions. The goal of this study was to evaluate the characteristics of the probiotic bacteria Lactobacillus acidophilus ATCC 4356 in a microgravity analog environment. L. acidophilus was cultured anaerobically under modeled microgravity conditions and assessed for differences in growth, survival through stress challenge, and gene expression compared to control cultures. No significant differences were observed between the modeled microgravity and control grown L. acidophilus, suggesting that this strain will behave similarly in spaceflight.

  15. Microencapsulation of Clostridium acetobutylicum ATCC 824 spores in gellan gum microspheres for the production of biobutanol.

    Science.gov (United States)

    Rathore, Sweta; Wan Sia Heng, Paul; Chan, Lai Wah

    2015-01-01

    The purpose of the present study was to provide further insights on the applicability of microencapsulation using emulsification method, to immobilise Clostridium acetobutylicum ATCC 824 spores, for biobutanol production. The encapsulated spores were revived using heat shock treatment and the fermentation efficiency of the resultant encapsulated cells was compared with that of the free (non-encapsulated) cells. The microspheres were easily recovered from the fermentation medium by filtration and reused up to five cycles of fermentation. In contrast, the free (non-encapsulated) cells could be reused for two cycles only. The microspheres remained intact throughout repeated use. Although significant cell leakage was observed during the course of fermentation, the microspheres could be reused with relatively high butanol yield, demonstrating their role as microbial cell nurseries. Both encapsulated and liberated cells contributed to butanol production.

  16. Involvement of Clostridium botulinum ATCC 3502 sigma factor K in early-stage sporulation.

    Science.gov (United States)

    Kirk, David G; Dahlsten, Elias; Zhang, Zhen; Korkeala, Hannu; Lindström, Miia

    2012-07-01

    A key survival mechanism of Clostridium botulinum, the notorious neurotoxic food pathogen, is the ability to form heat-resistant spores. While the genetic mechanisms of sporulation are well understood in the model organism Bacillus subtilis, nothing is known about these mechanisms in C. botulinum. Using the ClosTron gene-knockout tool, sigK, encoding late-stage (stage IV) sporulation sigma factor K in B. subtilis, was disrupted in C. botulinum ATCC 3502 to produce two different mutants with distinct insertion sites and orientations. Both mutants were unable to form spores, and their elongated cell morphology suggested that the sporulation pathway was blocked at an early stage. In contrast, sigK-complemented mutants sporulated successfully. Quantitative real-time PCR analysis of sigK in the parent strain revealed expression at the late log growth phase in the parent strain. Analysis of spo0A, encoding the sporulation master switch, in the sigK mutant and the parent showed significantly reduced relative levels of spo0A expression in the sigK mutant compared to the parent strain. Similarly, sigF showed significantly lower relative transcription levels in the sigK mutant than the parent strain, suggesting that the sporulation pathway was blocked in the sigK mutant at an early stage. We conclude that σ(K) is essential for early-stage sporulation in C. botulinum ATCC 3502, rather than being involved in late-stage sporulation, as reported for the sporulation model organism B. subtilis. Understanding the sporulation mechanism of C. botulinum provides keys to control the public health risks that the spores of this dangerous pathogen cause through foods.

  17. Influence of glutamate on growth, sporulation, and spore properties of Bacillus cereus ATCC 14579 in defined medium

    NARCIS (Netherlands)

    Vries, de Y.P.; Atmadja, R.D.; Hornstra, L.M.; Vos, de W.M.; Abee, T.

    2005-01-01

    A chemically defined medium in combination with an airlift fermentor system was used to study the growth and sporulation of Bacillus cereus ATCC 14579. The medium contained six amino acids and lactate as the main carbon sources. The amino acids were depleted during exponential growth, while lactate

  18. Construction of expression vectors for metabolic engineering of the vanillin-producing actinomycete Amycolatopsis sp. ATCC 39116.

    Science.gov (United States)

    Fleige, Christian; Steinbüchel, Alexander

    2014-01-01

    Amycolatopsis sp. ATCC 39116 is able to synthesize the important flavoring agent vanillin from cheap natural substrates. The bacterium is therefore of great interest for the industry and used for the fermentative production of vanillin. In order to improve the production of natural vanillin with Amycolatopsis sp. ATCC 39116, the strain has been genetically engineered to optimize the metabolic flux towards the desired product. Extensive metabolic engineering was hitherto hampered, due to the lack of genetic tools like functional promoters and expression vectors. In this study, we report the establishment of a plasmid-based gene expression system for Amycolatopsis sp. ATCC 39116 that allows a further manipulation of the genotype. Four new Escherichia coli-Amycolatopsis shuttle vectors harboring different promoter elements were constructed, and the functionality of these regulatory elements was proven by the expression of the reporter gene gusA, encoding a β-glucuronidase. Glucuronidase activity was detected in all plasmid-harboring strains, and remarkable differences in the expression strength of the reporter gene depending on the used promoter were observed. The new expression vectors will promote the further genetic engineering of Amycolatopsis sp. ATCC 39116 to get insight into the metabolic network and to improve the strain for a more efficient industrial use.

  19. Growth and sporulation of Bacillus cereus ATCC 14579 under defined conditions: temporal expression of genes for key sigma factors

    NARCIS (Netherlands)

    Vries, de Y.P.; Hornstra, L.M.; Vos, de W.M.; Abee, T.

    2004-01-01

    An airlift fermentor system allowing precise regulation of pH and aeration combined with a chemically defined medium was used to study growth and sporulation of Bacillus cereus ATCC 14579. Sporulation was complete and synchronous. Expression of sigA, sigB, sigF, and sigG was monitored with real-time

  20. Formation and conversion of oxygen metabolites by Lactococcus lactis subsp lactis ATCC 19435 under different growth conditions

    NARCIS (Netherlands)

    Niel, van E.W.J.; Hofvendahl, K.; Hahn Hagerdal, B.

    2002-01-01

    A semidefined medium based on Casamino Acids allowed Lactococcus lactis ATCC 19435 to grow in the presence of oxygen at a slow rate (0.015 h-1). Accumulation of H2O2 in the culture prevented a higher growth rate. Addition of asparagine to the medium increased the growth rate, whereby H2O2

  1. Direct-Imaging-Based Quantification of Bacillus cereus ATCC 14579 Population Heterogeneity at a Low Incubation Temperature

    NARCIS (Netherlands)

    Besten, den H.M.W.; Garcia, D.; Moezelaar, R.; Zwietering, M.H.; Abee, T.

    2010-01-01

    Bacillus cereus ATCC 14579 was cultured in microcolonies on Anopore strips near its minimum growth temperature to directly image and quantify its population heterogeneity at an abusive refrigeration temperature. Eleven percent of the microcolonies failed to grow during low-temperature incubation,

  2. Distinct substrate specificities of three glycoside hydrolase family 42 β-galactosidases from Bifidobacterium longum subsp. infantis ATCC 15697

    DEFF Research Database (Denmark)

    Viborg, Alexander Holm; Katayama, Takane; Abou Hachem, Maher

    2014-01-01

    resembling various milk and plant galactooligosaccharides distinguishes the three GH42 members, Bga42A, Bga42B and Bga42C, encoded by the probiotic B. longum subsp. infantis ATCC 15697 and revealed the glycosyl residue at subsite +1 and its linkage to the terminal Gal at subsite −1 to be key specificity...

  3. Draft genome sequences of four uropathogenic escherichia coli 04:H5 isolates (ATCC 700414,700415,700416 and 700417)

    Science.gov (United States)

    Uropathogenic Escherichia coli O4: H5 isolates ATCC 700414, 700415, 700416, and 700417 were recovered from women with first-time urinary tract infections. Here, we report the draft genome sequences for these four E. coli isolates, which are currently being used to validate food safety processing tec...

  4. Lactobacillus reuteri ATCC 55730 and L22 display probiotic potential in vitro and protect against Salmonella-induced pullorum disease in a chick model of infection.

    Science.gov (United States)

    Zhang, Dexian; Li, Rui; Li, Jichang

    2012-08-01

    Lactobacillus reuteri ATCC 55730 (L. reuteri ATCC 55730) and L. reuteri L22 were studied for their probiotic potential. These two strains were able to produce an antimicrobial substance, termed reuterin, the maximum production of reuterin by these two strains was detected in the late logarithmic growth phase (16 h in MRS and 20 h in LB broths). These two strains could significantly reduce the growth of Salmonella pullorum ATCC 9120 in MRS broth, L. reuteri ATCC 55730 with a reduction of 48.2±4.15% (in 5 log) and 89.7±2.59% (in 4 log) respectively, at the same time, L. reuteri L22 was 69.4±3.48% (in 5 log) and 80.4±3.22% respectively. L. reuteri ATCC 55730 was active against the majority of the pathogenic species, including S. pullorum ATCC 9120 and Escherichia coli O(78), while L. reuteri L22 was not as effective as L. reuteri ATCC 55730. The two potential strains were found to survive variably at pH 2.5 and were unaffected by bile salts, while neither of the strains was haemolytic. Moreover, L. reuteri ATCC 55730 exhibited variable susceptibility towards commonly used antibiotics; but L. reuteri L22 showed resistant to most antibiotics in this study. L. reuteri ATCC 55730 consequently was found to significantly increase survival rate in a Salmonella-induced pullorum disease model in chick. To conclude, strain L. reuteri ATCC 55730 possesses desirable probiotic properties, such as antimicrobial activity and immunomodulation in vitro, which were confirmed in vivo by the use of animal models. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Meta-analysis: Lactobacillus reuteri strain DSM 17938 (and the original strain ATCC 55730) for treating acute gastroenteritis in children.

    Science.gov (United States)

    Szajewska, H; Urbańska, M; Chmielewska, A; Weizman, Z; Shamir, R

    2014-09-01

    Lactobacillus reuteri ATCC 55730 has been shown to provide a moderate clinical effect in the treatment of acute gastroenteritis (AGE) in children. However, as the L. reuteri ATCC 55730 strain was found to carry potentially transferable resistance traits for tetracycline and lincomycin, it was replaced by a new strain, L. reuteri DSM 17938, without unwanted plasmid-borne antibiotic resistance. Bioequivalence of the two strains has been suggested. We aimed to systematically evaluate data on the effectiveness of L. reuteri DSM 17938 and the original strain, L. reuteri ATCC 55730, in the treatment of AGE in children. The Cochrane Library, MEDLINE, and EMBASE databases, reference lists, and abstract books of major scientific meetings were searched in August 2013, with no language restrictions, for relevant randomised controlled trials (RCTs). Two RCTs (n=196) that evaluated L. reuteri DSM 17938 and three RCTs (n=156) that evaluated L. reuteri ATCC 55730, which involved hospitalised children aged 3 to 60 months, met the inclusion criteria. Compared with placebo or no treatment, DSM 17938 significantly reduced the duration of diarrhoea (mean difference -32 h, 95% confidence interval (CI): -41 to -24) and increased the chance of cure on day 3 (relative risk: 3.5, 95% CI: 1.2 to 10.8, random effects model). Similar results were obtained with the original strain, L. reuteri ATCC 55730. In conclusion, in hospitalised children, use of both strains of L. reuteri reduced the duration of diarrhoea, and more children were cured within 3 days. Data from outpatients and countryspecific cost-effectiveness analyses are needed. Given the limited data and the methodological limitations of the included trials, the evidence should be viewed with caution.

  6. In situ hydrogen, acetone, butanol, ethanol and microdiesel production by Clostridium acetobutylicum ATCC 824 from oleaginous fungal biomass.

    Science.gov (United States)

    Hassan, Elhagag Ahmed; Abd-Alla, Mohamed Hemida; Bagy, Magdy Mohamed Khalil; Morsy, Fatthy Mohamed

    2015-08-01

    An in situ batch fermentation technique was employed for biohydrogen, acetone, butanol, ethanol and microdiesel production from oleaginous fungal biomass using the anaerobic fermentative bacterium Clostridium acetobutylicum ATCC 824. Oleaginous fungal Cunninghamella echinulata biomass which has ability to accumulate up to 71% cellular lipid was used as the substrate carbon source. The maximum cumulative hydrogen by C. acetobutylicum ATCC 824 from crude C. echinulata biomass was 260 ml H2 l(-1), hydrogen production efficiency was 0.32 mol H2 mole(-1) glucose and the hydrogen production rate was 5.2 ml H2 h(-1). Subsequently, the produced acids (acetic and butyric acids) during acidogenesis phase are re-utilized by ABE-producing clostridia and converted into acetone, butanol, and ethanol. The total ABE produced by C. acetobutylicum ATCC 824 during batch fermentation was 3.6 g l(-1) from crude fungal biomass including acetone (1.05 g l(-1)), butanol (2.19 g l(-1)) and ethanol (0.36 g l(-1)). C. acetobutylicum ATCC 824 has ability to produce lipolytic enzymes with a specific activity 5.59 U/mg protein to hydrolyze ester containing substrates. The lipolytic potential of C. acetobutylicum ATCC 824 was used as a biocatalyst for a lipase transesterification process using the produced ethanol from ABE fermentation for microdiesel production. The fatty acid ethyl esters (microdiesel) generated from the lipase transesterification of crude C. echinulata dry mass was analyzed by GC/MS as 15.4% of total FAEEs. The gross energy content of biohydrogen, acetone, butanol, ethanol and biodiesel generated through C. acetobutylicum fermentation from crude C. echinulata dry mass was 3113.14 kJ mol(-1). These results suggest a possibility of integrating biohydrogen, acetone, butanol and ethanol production technology by C. acetobutylicum with microdiesel production from crude C. echinulata dry mass and therefore improve the feasibility and commercialization of bioenergy production

  7. [Expression of enterotoxigenic Bacteroides fragilis and polyketide synthase gene-expressing Escherichia coli in colorectal adenoma patients].

    Science.gov (United States)

    Xie, L L; Wu, N; Zhu, Y M; Qiu, X Y; Chen, G D; Zhang, L M; Liu, Y L

    2016-03-29

    To investigate the distribution of various bacteria in adenoma tissue of colorectal adenoma (T/CRA), normal colonic mucosa tissue adjacent to the adenoma (N/CRA), and healthy colonic mucosa tissue (N/H) by comparing the number of total bacteria, Bacteroides fragilis (BF), enterotoxigenic Bacteroides fragilis (ETBF), polyketide synthase (pks) gene-expressing Escherichia coli(E.coli)(pks(+) E. coli)among the above 3 types of tissues. A total of 36 patients diagnosed with colorectal adenoma by colonoscopy and pathology in Department of Gastroenterology, Peking University People's Hospital from September 2011 to September 2013 were selected into this study. T/CRA and N/CRA tissues from the 36 patients and N/H tissues from 18 healthy controls were collected for DNA extraction. The number of total bacteria, BF, ETBF, pks(+) E. coli was detected by quantitative real time PCR, and their correlation with colorectal adenoma was analyzed. (1) The number of total bacteria decreased gradually from N/H, N/CRA, to T/CRA, with the median values being 3.18×10(8,) 1.57×10(8,) and 7.91×10(7) copies/g, respectively, and with significant difference among the three groups and between each two groups (all PCRA, to T/CRA, the median values being 6.03×10(5,) 4.28×10(4,) and 5.48×10(3) copies/g, respectively, and with significant difference among the three groups and between each two groups (all PCRA, to T/CRA, the relative expression being 1.73±0.30, 6.15±1.52, and 8.54±1.80, respectively. Significant difference was found between the T/CRA and N/H tissue (P=0.003), but not between any other two groups. (4) The expression of clbB in pks(+) E.coli was highest in T/CRA colonic tissue (2.96±0.28), followed by the N/CRA (2.79±0.19) and N/H tissue (1.06±0.08). Significant difference was found between T/CRA and N/H tissues, as well as between N/CRA and N/H tissues (both PCRA and N/CRA tissues. The number of total bacteria is markedly reduced in the colonic mucosa of CRA patients

  8. Biochemical and Structural Analyses of Two Cryptic Esterases in Bacteroides intestinalis and their Synergistic Activities with Cognate Xylanases.

    Science.gov (United States)

    Wefers, Daniel; Cavalcante, Janaina J V; Schendel, Rachel R; Deveryshetty, Jaigeeth; Wang, Kui; Wawrzak, Zdzislaw; Mackie, Roderick I; Koropatkin, Nicole M; Cann, Isaac

    2017-08-04

    Arabinoxylans are constituents of the human diet. Although not utilizable by the human host, they can be fermented by colonic bacteria. The arabinoxylan backbone is decorated with arabinose side chains that may be substituted with ferulic acid, thus limiting depolymerization to fermentable sugars. We investigated the polypeptides encoded by two genes upregulated during growth of the colonic bacterium Bacteroides intestinalis on wheat arabinoxylan. The recombinant proteins, designated BiFae1A and BiFae1B, were functionally assigned esterase activities. Both enzymes were active on acetylated substrates, although each showed a higher ferulic acid esterase activity on methyl-ferulate. BiFae1A showed a catalytic efficiency of 12mM s -1 on para-nitrophenyl-acetate, and on methyl-ferulate, the value was 27 times higher. BiFae1B showed low catalytic efficiencies for both substrates. Furthermore, the two enzymes released ferulic acid from various structural elements, and NMR spectroscopy indicated complete de-esterification of arabinoxylan oligosaccharides from wheat bran. BiFae1A is a tetramer based on the crystal structure, whereas BiFae1B is a dimer in solution based on size exclusion chromatography. The structure of BiFae1A was solved to 1.98Å resolution, and two tetramers were observed in the asymmetric unit. A flexible loop that may act as a hinge over the active site and likely coordinates critical interactions with the substrate was prominent in BiFae1A. Sequence alignments of the esterase domains in BiFae1B with the feruloyl esterase from Clostridium thermocellum suggest that both domains lack the flexible hinge in BiFae1A, an observation that may partly provide a molecular basis for the differences in activities in the two esterases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Degradation of fructans and production of propionic acid by Bacteroides thetaiotaomicron are enhanced by shortage of amino acids

    Directory of Open Access Journals (Sweden)

    Signe eAdamberg

    2014-12-01

    Full Text Available Bacteroides thetaiotaomicron is commonly found in the human colon and stabilizes its ecosystem by the catabolism of various polysaccharides. A model of cross-talk between the metabolism of amino acids and fructans in B. thetaiotaomicron was proposed. The growth of B. thetaiotaomicron DSM 2079 in two defined media containing mineral salts and vitamins, and supplemented with either 20 or 2 amino acids, was studied in an isothermal microcalorimeter. The polyfructans inulin (from chicory and levan (synthesized using levansucrase from Pseudomonas syringae, two fructooligosaccharide preparations with different composition, sucrose and fructose were tested as substrates. The calorimetric power-time curves were substrate specific and typically multiauxic. A surplus of amino acids reduced the consumption of longer oligosaccharides (DP > 3. Bacterial growth was not detected either in the carbohydrate free medium containing amino acids or in the medium with inulin as a sole carbohydrate. In amino acid-restricted medium, fermentation leading to acetic acid formation was dominant at the beginning of growth (up to 24 h, followed by increased lactic acid production, and mainly propionic and succinic acids were produced at the end of fermentation. In the medium supplemented with 20 amino acids, the highest production of D-lactate (82 ± 33 mmol/gDW occurred in parallel with extensive consumption (up to 17 mmol/gDW of amino acids, especially Ser, Thr and Asp. The production of Ala and Glu was observed at growth on all substrates, and the production was enhanced under amino acid deficiency. The study revealed the influence of amino acids on fructan metabolism in B. thetaiotaomicron and showed that defined growth media are invaluable in elucidating quantitative metabolic profiles of the bacteria. Levan was shown to act as an easily degradable substrate for B. thetaiotaomicron. The effect of levan on balancing or modifying colon microbiota will be studied in

  10. Determination of thermodynamic parameters of benzylpenicillin hydrolysis by metallo-β-lactamase CcrA from Bacteroides fragilis

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Le; Zhou, Li-Sheng; Liu, Cheng-Cheng; Shi, Ying; Zhou, Ya-Jun [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069 (China); Yang, Ke-Wu, E-mail: kwyang@nwu.edu.cn [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069 (China)

    2013-03-20

    Highlights: ► First report the thermokinetic parameters of benzylpenicillin hydrolysis with CcrA. ► The hydrolysis is a spontaneous and exothermic reaction with order of 1.4. ► Summarized that CcrA prefer to hydrolyze penicillins among β-lactam antibiotics. - Abstract: One of the most common way that bacteria become resistant to antibiotics is by the production of metallo-β-lactamases (MβLs) to hydrolyze the β-lactam-containing antibiotics. In this paper, the thermodynamic parameters of benzylpenicillin hydrolysis with B1 subclasses MβL CcrA (carbapenem and cephamycin resistance) from Bacteroides fragilis were determined by microcalorimetry. The activation free energy ΔG{sub ≠}{sup θ} is 87.90 ± 0.03, 88.99 ± 0.01, 89.93 ± 0.04 and 90.93 ± 0.05 kJ mol{sup −1} at 293.15, 298.15, 303.15 and 308.15 K, activation enthalpy ΔH{sub ≠}{sup θ} is 29.21 ± 0.03 kJ mol{sup −1}, activation entropy ΔS{sub ≠}{sup θ} is −200.34 ± 0.08 J mol{sup −1} K{sup −1}, the reaction order is 1.4, and the apparent activation energy E is 31.71 kJ mol{sup −1}. The thermodynamic characterization indicated that CcrA prefer to hydrolyze penicillins among three kinds of β-lactam-containing antibiotics.

  11. Determination of thermodynamic parameters of benzylpenicillin hydrolysis by metallo-β-lactamase CcrA from Bacteroides fragilis

    International Nuclear Information System (INIS)

    Zhai, Le; Zhou, Li-Sheng; Liu, Cheng-Cheng; Shi, Ying; Zhou, Ya-Jun; Yang, Ke-Wu

    2013-01-01

    Highlights: ► First report the thermokinetic parameters of benzylpenicillin hydrolysis with CcrA. ► The hydrolysis is a spontaneous and exothermic reaction with order of 1.4. ► Summarized that CcrA prefer to hydrolyze penicillins among β-lactam antibiotics. - Abstract: One of the most common way that bacteria become resistant to antibiotics is by the production of metallo-β-lactamases (MβLs) to hydrolyze the β-lactam-containing antibiotics. In this paper, the thermodynamic parameters of benzylpenicillin hydrolysis with B1 subclasses MβL CcrA (carbapenem and cephamycin resistance) from Bacteroides fragilis were determined by microcalorimetry. The activation free energy ΔG ≠ θ is 87.90 ± 0.03, 88.99 ± 0.01, 89.93 ± 0.04 and 90.93 ± 0.05 kJ mol −1 at 293.15, 298.15, 303.15 and 308.15 K, activation enthalpy ΔH ≠ θ is 29.21 ± 0.03 kJ mol −1 , activation entropy ΔS ≠ θ is −200.34 ± 0.08 J mol −1 K −1 , the reaction order is 1.4, and the apparent activation energy E is 31.71 kJ mol −1 . The thermodynamic characterization indicated that CcrA prefer to hydrolyze penicillins among three kinds of β-lactam-containing antibiotics

  12. Structure of the GH76 α-mannanase homolog, BT2949, from the gut symbiont Bacteroides thetaiotaomicron

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Andrew J. [University of York, Heslington, York YO10 5DD (United Kingdom); Cuskin, Fiona [Newcastle University, Newcastle upon Tyne NE2 4HH (United Kingdom); Spears, Richard J.; Dabin, Jerome; Turkenburg, Johan P. [University of York, Heslington, York YO10 5DD (United Kingdom); Gilbert, Harry J., E-mail: harry.gilbert@newcastle.ac.uk [Newcastle University, Newcastle upon Tyne NE2 4HH (United Kingdom); Davies, Gideon J., E-mail: harry.gilbert@newcastle.ac.uk [University of York, Heslington, York YO10 5DD (United Kingdom)

    2015-02-01

    A high-resolution structure of a noncanonical α-mannanase relevant to human health and nutrition has been solved via heavy-atom phasing of a selenomethionine derivative. The large bowel microbiota, a complex ecosystem resident within the gastrointestinal tract of all human beings and large mammals, functions as an essential, nonsomatic metabolic organ, hydrolysing complex dietary polysaccharides and modulating the host immune system to adequately tolerate ingested antigens. A significant member of this community, Bacteroides thetaiotaomicron, has evolved a complex system for sensing and processing a wide variety of natural glycoproducts in such a way as to provide maximum benefit to itself, the wider microbial community and the host. The immense ability of B. thetaiotaomicron as a ‘glycan specialist’ resides in its enormous array of carbohydrate-active enzymes, many of which are arranged into polysaccharide-utilization loci (PULs) that are able to degrade sugar polymers that are often inaccessible to other gut residents, notably α-mannan. The B. thetaiotaomicron genome encodes ten putative α-mannanases spread across various PULs; however, little is known about the activity of these enzymes or the wider implications of α-mannan metabolism for the health of both the microbiota and the host. In this study, SAD phasing of a selenomethionine derivative has been used to investigate the structure of one such B. thetaiotaomicron enzyme, BT2949, which belongs to the GH76 family of α-mannanases. BT2949 presents a classical (α/α){sub 6}-barrel structure comprising a large extended surface cleft common to other GH76 family members. Analysis of the structure in conjunction with sequence alignments reveals the likely location of the catalytic active site of this noncanonical GH76.

  13. Structure of the GH76 α-mannanase homolog, BT2949, from the gut symbiont Bacteroides thetaiotaomicron

    International Nuclear Information System (INIS)

    Thompson, Andrew J.; Cuskin, Fiona; Spears, Richard J.; Dabin, Jerome; Turkenburg, Johan P.; Gilbert, Harry J.; Davies, Gideon J.

    2015-01-01

    A high-resolution structure of a noncanonical α-mannanase relevant to human health and nutrition has been solved via heavy-atom phasing of a selenomethionine derivative. The large bowel microbiota, a complex ecosystem resident within the gastrointestinal tract of all human beings and large mammals, functions as an essential, nonsomatic metabolic organ, hydrolysing complex dietary polysaccharides and modulating the host immune system to adequately tolerate ingested antigens. A significant member of this community, Bacteroides thetaiotaomicron, has evolved a complex system for sensing and processing a wide variety of natural glycoproducts in such a way as to provide maximum benefit to itself, the wider microbial community and the host. The immense ability of B. thetaiotaomicron as a ‘glycan specialist’ resides in its enormous array of carbohydrate-active enzymes, many of which are arranged into polysaccharide-utilization loci (PULs) that are able to degrade sugar polymers that are often inaccessible to other gut residents, notably α-mannan. The B. thetaiotaomicron genome encodes ten putative α-mannanases spread across various PULs; however, little is known about the activity of these enzymes or the wider implications of α-mannan metabolism for the health of both the microbiota and the host. In this study, SAD phasing of a selenomethionine derivative has been used to investigate the structure of one such B. thetaiotaomicron enzyme, BT2949, which belongs to the GH76 family of α-mannanases. BT2949 presents a classical (α/α) 6 -barrel structure comprising a large extended surface cleft common to other GH76 family members. Analysis of the structure in conjunction with sequence alignments reveals the likely location of the catalytic active site of this noncanonical GH76

  14. Metabolic Engineering of the Actinomycete Amycolatopsis sp. Strain ATCC 39116 towards Enhanced Production of Natural Vanillin.

    Science.gov (United States)

    Fleige, Christian; Meyer, Florian; Steinbüchel, Alexander

    2016-06-01

    The Gram-positive bacterium Amycolatopsis sp. ATCC 39116 is used for the fermentative production of natural vanillin from ferulic acid on an industrial scale. The strain is known for its outstanding tolerance to this toxic product. In order to improve the productivity of the fermentation process, the strain's metabolism was engineered for higher final concentrations and molar yields. Degradation of vanillin could be decreased by more than 90% through deletion of the vdh gene, which codes for the central vanillin catabolism enzyme, vanillin dehydrogenase. This mutation resulted in improvement of the final concentration of vanillin by more than 2.2 g/liter, with a molar yield of 80.9%. Further improvement was achieved with constitutive expression of the vanillin anabolism genes ech and fcs, coding for the enzymes feruloyl-coenzyme A (CoA) synthetase (fcs) and enoyl-CoA hydratase/aldolase (ech). The transcription of both genes was shown to be induced by ferulic acid, which explains the unwanted adaptation phase in the fermentation process before vanillin was efficiently produced by the wild-type cells. Through the constitutive and enhanced expression of the two genes, the adaptation phase was eliminated and a final vanillin concentration of 19.3 g/liter, with a molar yield of 94.9%, was obtained. Moreover, an even higher final vanillin concentration of 22.3 g/liter was achieved, at the expense of a lower molar yield, by using an improved feeding strategy. This is the highest reported vanillin concentration reached in microbial fermentation processes without extraction of the product. Furthermore, the vanillin was produced almost without by-products, with a molar yield that nearly approached the theoretical maximum. Much effort has been put into optimization of the biotechnological production of natural vanillin. The demand for this compound is growing due to increased consumer concerns regarding chemically produced food additives. Since this compound is toxic to most

  15. Structural analysis of Clostridium acetobutylicum ATCC 824 glycoside hydrolase from CAZy family GH105

    International Nuclear Information System (INIS)

    Germane, Katherine L.; Servinsky, Matthew D.; Gerlach, Elliot S.; Sund, Christian J.; Hurley, Margaret M.

    2015-01-01

    The crystal structure of the protein product of the C. acetobutylicum ATCC 824 gene CA-C0359 is structurally similar to YteR, an unsaturated rhamnogalacturonyl hydrolase from B. subtilis strain 168. Substrate modeling and electrostatic studies of the active site of the structure of CA-C0359 suggests that the protein can now be considered to be part of CAZy glycoside hydrolase family 105. Clostridium acetobutylicum ATCC 824 gene CA-C0359 encodes a putative unsaturated rhamnogalacturonyl hydrolase (URH) with distant amino-acid sequence homology to YteR of Bacillus subtilis strain 168. YteR, like other URHs, has core structural homology to unsaturated glucuronyl hydrolases, but hydrolyzes the unsaturated disaccharide derivative of rhamnogalacturonan I. The crystal structure of the recombinant CA-C0359 protein was solved to 1.6 Å resolution by molecular replacement using the phase information of the previously reported structure of YteR (PDB entry (http://scripts.iucr.org/cgi-bin/cr.cgi?rm)) from Bacillus subtilis strain 168. The YteR-like protein is a six-α-hairpin barrel with two β-sheet strands and a small helix overlaying the end of the hairpins next to the active site. The protein has low primary protein sequence identity to YteR but is structurally similar. The two tertiary structures align with a root-mean-square deviation of 1.4 Å and contain a highly conserved active pocket. There is a conserved aspartic acid residue in both structures, which has been shown to be important for hydration of the C=C bond during the release of unsaturated galacturonic acid by YteR. A surface electrostatic potential comparison of CA-C0359 and proteins from CAZy families GH88 and GH105 reveals the make-up of the active site to be a combination of the unsaturated rhamnogalacturonyl hydrolase and the unsaturated glucuronyl hydrolase from Bacillus subtilis strain 168. Structural and electrostatic comparisons suggests that the protein may have a slightly different substrate

  16. Structural analysis of Clostridium acetobutylicum ATCC 824 glycoside hydrolase from CAZy family GH105

    Energy Technology Data Exchange (ETDEWEB)

    Germane, Katherine L., E-mail: katherine.germane.civ@mail.mil [Oak Ridge Associated Universities, 4692 Millennium Drive, Suite 101, Belcamp, MD 21017 (United States); Servinsky, Matthew D. [US Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783 (United States); Gerlach, Elliot S. [Federal Staffing Resources, 2200 Somerville Road, Annapolis, MD 21401 (United States); Sund, Christian J. [US Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783 (United States); Hurley, Margaret M., E-mail: katherine.germane.civ@mail.mil [US Army Research Laboratory, 4600 Deer Creek Loop, Aberdeen Proving Ground, MD 21005 (United States); Oak Ridge Associated Universities, 4692 Millennium Drive, Suite 101, Belcamp, MD 21017 (United States)

    2015-07-29

    The crystal structure of the protein product of the C. acetobutylicum ATCC 824 gene CA-C0359 is structurally similar to YteR, an unsaturated rhamnogalacturonyl hydrolase from B. subtilis strain 168. Substrate modeling and electrostatic studies of the active site of the structure of CA-C0359 suggests that the protein can now be considered to be part of CAZy glycoside hydrolase family 105. Clostridium acetobutylicum ATCC 824 gene CA-C0359 encodes a putative unsaturated rhamnogalacturonyl hydrolase (URH) with distant amino-acid sequence homology to YteR of Bacillus subtilis strain 168. YteR, like other URHs, has core structural homology to unsaturated glucuronyl hydrolases, but hydrolyzes the unsaturated disaccharide derivative of rhamnogalacturonan I. The crystal structure of the recombinant CA-C0359 protein was solved to 1.6 Å resolution by molecular replacement using the phase information of the previously reported structure of YteR (PDB entry (http://scripts.iucr.org/cgi-bin/cr.cgi?rm)) from Bacillus subtilis strain 168. The YteR-like protein is a six-α-hairpin barrel with two β-sheet strands and a small helix overlaying the end of the hairpins next to the active site. The protein has low primary protein sequence identity to YteR but is structurally similar. The two tertiary structures align with a root-mean-square deviation of 1.4 Å and contain a highly conserved active pocket. There is a conserved aspartic acid residue in both structures, which has been shown to be important for hydration of the C=C bond during the release of unsaturated galacturonic acid by YteR. A surface electrostatic potential comparison of CA-C0359 and proteins from CAZy families GH88 and GH105 reveals the make-up of the active site to be a combination of the unsaturated rhamnogalacturonyl hydrolase and the unsaturated glucuronyl hydrolase from Bacillus subtilis strain 168. Structural and electrostatic comparisons suggests that the protein may have a slightly different substrate

  17. Dinitrogenase-Driven Photobiological Hydrogen Production Combats Oxidative Stress in Cyanothece sp. Strain ATCC 51142

    Energy Technology Data Exchange (ETDEWEB)

    Sadler, Natalie C.; Bernstein, Hans C.; Melnicki, Matthew R.; Charania, Moiz A.; Hill, Eric A.; Anderson, Lindsey N.; Monroe, Matthew E.; Smith, Richard D.; Beliaev, Alexander S.; Wright, Aaron T.; Nojiri, H.

    2016-10-14

    ABSTRACT

    Photobiologically synthesized hydrogen (H2) gas is carbon neutral to produce and clean to combust, making it an ideal biofuel.Cyanothecesp. strain ATCC 51142 is a cyanobacterium capable of performing simultaneous oxygenic photosynthesis and H2production, a highly perplexing phenomenon because H2evolving enzymes are O2sensitive. We employed a system-levelin vivochemoproteomic profiling approach to explore the cellular dynamics of protein thiol redox and how thiol redox mediates the function of the dinitrogenase NifHDK, an enzyme complex capable of aerobic hydrogenase activity. We found that NifHDK responds to intracellular redox conditions and may act as an emergency electron valve to prevent harmful reactive oxygen species formation in concert with other cell strategies for maintaining redox homeostasis. These results provide new insight into cellular redox dynamics useful for advancing photolytic bioenergy technology and reveal a new understanding for the biological function of NifHDK.

    IMPORTANCEHere, we demonstrate that high levels of hydrogen synthesis can be induced as a protection mechanism against oxidative stress via the dinitrogenase enzyme complex inCyanothecesp. strain ATCC 51142. This is a previously unknown feature of cyanobacterial dinitrogenase, and we anticipate that it may represent a strategy to exploit cyanobacteria for efficient and scalable hydrogen production. We utilized a chemoproteomic approach to capture thein situdynamics of reductant partitioning within the cell, revealing proteins and reactive thiols that may be involved in redox sensing and signaling. Additionally, this method is widely applicable across biological systems to achieve a greater understanding of how cells

  18. Analysis of Poly-β-Hydroxybutyrate in Rhizobium japonicum Bacteroids by Ion-Exclusion High-Pressure Liquid Chromatography and UV Detection †

    Science.gov (United States)

    Karr, Dale B.; Waters, James K.; Emerich, David W.

    1983-01-01

    Ion-exclusion high-pressure liquid chromatography (HPLC) was used to measure poly-β-hydroxybutyrate (PHB) in Rhizobium japonicum bacteroids. The products in the acid digest of PHB-containing material were fractionated by HPLC on Aminex HPX-87H ion-exclusion resin for organic acid analysis. Crotonic acid formed from PHB during acid digestion was detected by its intense absorbance at 210 nm. The Aminex-HPLC method provides a rapid and simple chromatographic technique for routine analysis of organic acids. Results of PHB analysis by Aminex-HPLC were confirmed by gas chromatography and spectrophotometric analysis. PMID:16346443

  19. Detection of Increased Plasma Interleukin-6 Levels and Prevalence of Prevotella copri and Bacteroides vulgatus in the Feces of Type 2 Diabetes Patients

    Directory of Open Access Journals (Sweden)

    Aline Zazeri Leite

    2017-09-01

    Full Text Available Intestinal dysbiosis and metabolic endotoxemia have been associated with metabolic disorders, such as obesity, insulin resistance, and type 2 diabetes (T2D. The main goal of the present study was to evaluate the intestinal dysbiosis in Brazilian T2D patients and correlate these data with inflammatory cytokines and lipopolysaccharides (LPS plasma concentrations. This study was approved by the Ethics Committees from Barretos Cancer Hospital and all individuals signed the informed consent form. Stool samples were required for DNA extraction, and the V3/V4 regions of bacterial 16S were sequenced using an Illumina platform. Peripheral blood was used to quantify inflammatory cytokines and plasma LPS concentrations, by CBA flex and ELISA, respectively. Statistical analyses were performed using Mann–Whitney and Spearman’s tests. Analysis of variance, diversity indexes, and analysis of alpha- and beta-diversity were conducted using an annotated Operational Taxonomic Unit table. This study included 20 patients and 22 controls. We observed significant differences (P < 0.01 in the microbiota composition (beta-diversity between patients and controls, suggesting intestinal dysbiosis in Brazilian T2D patients. The prevalent species found in patients’ feces were the Gram-negatives Prevotella copri, Bacteroides vulgatus, Bacteroides rodentium, and Bacteroides xylanisolvens. The proinflammatory interleukin-6 (IL-6 was significantly increased (P < 0.05 in patients’ plasma and LPS levels were decreased. We find correlations between the proinflammatory interferon-gamma with Gram-negatives Bacteroides and Prevotella species, and a positive correlation between the LPS levels and P. copri reads. The P. copri and B. vulgatus species were associated with insulin resistance in previous studies. In this study, we suggested that the prevalence of Gram-negative species in the gut and the increased plasma IL-6 in patients could be linked to low

  20. Independent and Combined Effects of Lactitol, Polydextrose, and Bacteroides thetaiotaomicron on Postprandial Metabolism and Body Weight in Rats Fed a High-Fat Diet

    OpenAIRE

    Olli, Kaisa; Saarinen, Markku T.; Forssten, Sofia D.; Madetoja, Mari; Herzig, Karl-Heinz; Tiihonen, Kirsti

    2016-01-01

    Obesity is related to the consumption of energy-dense foods in addition to changes in the microbiome where a higher abundance of gut Bacteroidetes can be found in lean subjects or after weight loss. Lactitol, a sweet-tasting sugar alcohol, is a common sugar-replacement in foods. Polydextrose (PDX), a highly branched glucose polymer, is known to reduce energy intake. Here, we test if the combined effects of lactitol or PDX in combination with Bacteroides species will have a beneficial metaboli...

  1. Physiological and transcriptional response of Lactobacillus casei ATCC 334 to acid stress.

    Science.gov (United States)

    Broadbent, Jeff R; Larsen, Rebecca L; Deibel, Virginia; Steele, James L

    2010-05-01

    This study investigated features of the acid tolerance response (ATR) in Lactobacillus casei ATCC 334. To optimize ATR induction, cells were acid adapted for 10 or 20 min at different pH values (range, 3.0 to 5.0) and then acid challenged at pH 2.0. Adaptation over a broad range of pHs improved acid tolerance, but the highest survival was noted in cells acid adapted for 10 or 20 min at pH 4.5. Analysis of cytoplasmic membrane fatty acids (CMFAs) in acid-adapted cells showed that they had significantly (P L. casei survival at pH 2.5 was improved at least 100-fold by chemical induction of the stringent response or by the addition of 30 mM malate or 30 mM histidine to the acid challenge medium. To our knowledge, this is the first report that intracellular histidine accumulation may be involved in bacterial acid resistance.

  2. Detecting protein-protein interactions in the intact cell of Bacillus subtilis (ATCC 6633).

    Science.gov (United States)

    Winters, Michael S; Day, R A

    2003-07-01

    The salt bridge, paired group-specific reagent cyanogen (ethanedinitrile; C(2)N(2)) converts naturally occurring pairs of functional groups into covalently linked products. Cyanogen readily permeates cell walls and membranes. When the paired groups are shared between associated proteins, isolation of the covalently linked proteins allows their identity to be assigned. Examination of organisms of known genome sequence permits identification of the linked proteins by mass spectrometric techniques applied to peptides derived from them. The cyanogen-linked proteins were isolated by polyacrylamide gel electrophoresis. Digestion of the isolated proteins with proteases of known specificity afforded sets of peptides that could be analyzed by mass spectrometry. These data were compared with those derived theoretically from the Swiss Protein Database by computer-based comparisons (Protein Prospector; http://prospector.ucsf.edu). Identification of associated proteins in the ribosome of Bacillus subtilis strain ATCC 6633 showed that there is an association homology with the association patterns of the ribosomal proteins of Haloarcula marismortui and Thermus thermophilus. In addition, other proteins involved in protein biosynthesis were shown to be associated with ribosomal proteins.

  3. Bioconversion of mixed volatile fatty acids into microbial lipids by Cryptococcus curvatus ATCC 20509.

    Science.gov (United States)

    Liu, Jia; Yuan, Ming; Liu, Jia-Nan; Huang, Xiang-Feng

    2017-10-01

    The oleaginous yeast Cryptococcus curvatus ATCC 20509 can use 5-40g/L of acetic, propionic, or butyric acid as sole carbon source to produce lipids. High concentrations (30g/L) of mixed volatile fatty acids (VFAs) were used to cultivate C. curvatus to explore the effects of different ratios of mixed VFAs on lipid production and composition. When mixed VFAs (VFA ratio was 15:5:10) were used as carbon sources, the highest cell mass and lipid concentration were 8.68g/L and 4.93g/L, respectively, which were significantly higher than those when 30g/L of acetic acid was used as sole carbon source. The highest content and yield of odd-numbered fatty acids were 45.1% (VFA ratio was 0:15:15) and 1.62g/L (VFA ratio was 5:15:10), respectively. These results indicate that adjusting the composition ratios of mixed VFAs effectively improves microbial lipid synthesis and the yield of odd-numbered fatty acids. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Reducing the Bitterness of Tuna (Euthynnus pelamis Dark Meat with Lactobacillus casei subsp. casei ATCC 393

    Directory of Open Access Journals (Sweden)

    Ernani S. Sant’Anna

    2004-01-01

    Full Text Available During the process of canning tuna fish, considerable amounts of dark tuna meat are left over because of its bitterness, which are then used in the production of animal food. Fermentation with Lactobacillus casei subsp. casei ATCC 393 was used as an alternative to reduce this bitter taste. Samples of meat were prepared, vacuum packed and then stored at –18 °C. The frozen dark meat was used immediately after defrosting and the experiment was carried out with 2 and 4 % of NaCl with the addition of 2 and 4 % of glucose, respectively. The dark tuna meat was inoculated with lactic acid bacteria (LAB and fermented at 10 °C for 30 days. The fermentation process was monitored through bacteriological and chemical analyses, when an increase of acidity and the corresponding decrease of pH were observed due to the prevalence of LAB. Sensorial analysis, using a test of multiple comparison, was carried out with pastes of fermented dark tuna meat and presented a significant difference when compared to the paste control, indicating the reduction of bitter taste.

  5. Genome-guided exploration of metabolic features of Streptomyces peucetius ATCC 27952: past, current, and prospect.

    Science.gov (United States)

    Thuan, Nguyen Huy; Dhakal, Dipesh; Pokhrel, Anaya Raj; Chu, Luan Luong; Van Pham, Thi Thuy; Shrestha, Anil; Sohng, Jae Kyung

    2018-05-01

    Streptomyces peucetius ATCC 27952 produces two major anthracyclines, doxorubicin (DXR) and daunorubicin (DNR), which are potent chemotherapeutic agents for the treatment of several cancers. In order to gain detailed insight on genetics and biochemistry of the strain, the complete genome was determined and analyzed. The result showed that its complete sequence contains 7187 protein coding genes in a total of 8,023,114 bp, whereas 87% of the genome contributed to the protein coding region. The genomic sequence included 18 rRNA, 66 tRNAs, and 3 non-coding RNAs. In silico studies predicted ~ 68 biosynthetic gene clusters (BCGs) encoding diverse classes of secondary metabolites, including non-ribosomal polyketide synthase (NRPS), polyketide synthase (PKS I, II, and III), terpenes, and others. Detailed analysis of the genome sequence revealed versatile biocatalytic enzymes such as cytochrome P450 (CYP), electron transfer systems (ETS) genes, methyltransferase (MT), glycosyltransferase (GT). In addition, numerous functional genes (transporter gene, SOD, etc.) and regulatory genes (afsR-sp, metK-sp, etc.) involved in the regulation of secondary metabolites were found. This minireview summarizes the genome-based genome mining (GM) of diverse BCGs and genome exploration (GE) of versatile biocatalytic enzymes, and other enzymes involved in maintenance and regulation of metabolism of S. peucetius. The detailed analysis of genome sequence provides critically important knowledge useful in the bioengineering of the strain or harboring catalytically efficient enzymes for biotechnological applications.

  6. Production of sorbitol and ethanol from Jerusalem artichokes by Saccharomyces cerevisiae ATCC 36859

    Energy Technology Data Exchange (ETDEWEB)

    Duvnjak, Z.; Duan, Z.D. (Ottawa Univ., ON (Canada). Dept. of Chemical Engineering); Turcotte, G. (Acadia Univ., Wolfville, NS (Canada). Dept. of Food Science)

    1991-09-01

    This study shows the possible use of Jerusalem artichokes for the production of sorbitol and ethanol by Saccharomyces cerevisiae ATCC 36859. Ethanol was produced from the beginning of the process, while sorbitol production started after glucose had been entirely consumed from Jerusalem artichoke (J.a.) juice. The importance of yeast extract and inoculum concentrations on the production of sorbitol from the above raw material was demonstrated. With a low initial biomass concentration sorbitol was not produced in pure J.a. juice. When the juice was supplemented with 3% yeast extract, the concentration of sorbitol was 4.6%. The sorbitol, ethanol and biomass yields (gram of product produced per gram of sugars consumed) were 0.259, 0.160 and 0.071 at the end of the process respectively. Adding glucose to increase its concentration to about 9% in the J.a. juice with 3% yeast extract had a positive effect on the production of ethanol, while commencement of the production of sorbitol was delayed and its final concentration was less than 50% of its concentration in the medium without added glucose. The effect of glucose was much stronger when it was added during the process than when added at the beginning of the process. (orig.).

  7. CRECIMIENTO DE Lactobacillus casei ssp casei ATCC 393 EN SUERO CLARIFICADO

    Directory of Open Access Journals (Sweden)

    JOHN ALEXANDER VELASQUEZ-TELLEZ

    Full Text Available En este trabajo se evaluó el efecto del pH y la temperatura sobre el crecimiento de Lactobacillus casei ssp casei ATCC 393, cultivado en suero de leche clarificado en fermentación por lotes. Se observó el efecto de los factores sobre la velocidad específica de crecimiento y la producción de biomasa, utilizando para cada parámetro evaluado la metodología de superficie de respuesta, empleando un diseño central compuesto rotable 22. Los resultados obtenidos del modelo para maximizar la velocidad de crecimiento especifica a 0,061h-1 el proceso debe ser realizado a pH cercano de 7,1 y temperatura de 36,9°C, y para maximizar la producción de biomasa a 11,58 g/L debe realizarse a pH de 7,0 y temperatura de 35,7°C, estos resultados ratifican el efecto del pH y la temperatura sobre el crecimiento de Lactobacillus casei

  8. Degradation of waste waters from olive oil mills by Yarrowia lipolytica ATCC 20255 and Pseudomonas putida

    Energy Technology Data Exchange (ETDEWEB)

    De Felice, B.; Pontecorvo, G.; Carfagna, M. [Univ. of Naples, Caserta (Italy). Inst. of Biology

    1997-12-31

    Waste water from olive oil processing may cause severe pollution in the Mediterranean area, since they have a high level of chemical oxygen demand (COD) (100-200 g/l) and contain other organic and inorganic compounds. In all olive oil producing countries, the reduction of pollution in olive oil mill waste waters at reasonable costs and using techniques suitable for most industrial applications is an unsolved problem. For this paper, the yeast Yarrowia lipolytica ATCC 20255 was grown on waste waters from an olive oil mill in a 3.5 l fermenter under batch culture conditions. The results showed that the yeast was capable of reducing the COD value by 80% in 24 h. In this way, a useful biomass of 22.45 g/l as single cell protein (SCP) and enzyme lipase were produced. During this process, most of the organic and inorganic substances were consumed, only aromatic pollutants were still present in the fermentation effluents. Therefore, we used a phenol degrader, namely Pseudomonas putida, to reduce phenolic compounds in the fermentation effluents after removing Yarrowia lipolytica cells. P. putida was effective in reducing phenols in only 12 h. (orig.)

  9. Clavulanic acid production by the MMS 150 mutant obtained from wild type Streptomyces clavuligerus ATCC 27064

    Directory of Open Access Journals (Sweden)

    Eliton da Silva Vasconcelos

    2013-12-01

    Full Text Available Clavulanic acid (CA is a powerful inhibitor of the beta-lactamases, enzymes produced by bacteria resistants to penicillin and cefalosporin. This molecule is produced industrially by strains of Streptomyces clavuligerus in complex media which carbon and nitrogen resources are supplied by inexpensive compounds still providing high productivity. The genetic production improvement using physical and chemical mutagenic agents is an important strategy in programs of industrial production development of bioactive metabolites. However, parental strains are susceptible to loss of their original productivity due genetic instability phenomenona. In this work, some S. clavuligerus mutant strains obtained by treatment with UV light and with MMS are compared with the wild type (Streptomyces clavuligerus ATCC 27064. The results indicated that the random mutations originated some strains with different phenotypes, most divergent demonstrated by the mutants strains named AC116, MMS 150 and MMS 54, that exhibited lack of pigmentation in their mature spores. Also, the strain MMS 150 presented a larger production of CA when cultivated in semi-synthetics media. Using other media, the wild type strain obtained a larger CA production. Besides, using the modifed complex media the MMS 150 strain showed changes in its lipolitic activity and a larger production of CA. The studies also allowed finding the best conditions for a lipase activity exhibited by wild type S. clavuligerus and the MMS150 mutant.

  10. Bactericidal Activity of TiO2 on Cells of Pseudomonas aeruginosa ATCC 27853

    Directory of Open Access Journals (Sweden)

    J. L. Aguilar Salinas

    2013-01-01

    Full Text Available The photocatalytic activity of semiconductors is increasingly being used to disinfect water, air, soils, and surfaces. Titanium dioxide (TiO2 is widely used as a photocatalyst in thin films, powder, and in mixtures with other semiconductors or metals. This work presents the antibacterial effects of TiO2 and light exposure (at 365 nm on Pseudomonas aeruginosa ATCC 27853. TiO2 powder was prepared from a mixture of titanium isopropoxide, ethanol, and nitric acid using a green and short time sol-gel technique. The obtained gel annealed at 450°C was characterized by X-ray diffraction, Raman spectroscopy, ultraviolet-visible spectroscopy, diffuse reflectance, scanning electron microscopy, and transmission electron microscopy. The nanocomposite effectively catalyzed the inactivation of Pseudomonas aeruginosa. Following 90 minutes exposure to TiO2 and UV light, logarithm of cell density was reduced from 6 to 3. These results were confirmed by a factorial design incorporating two experimental replicates and two independent factors.

  11. Agroindustrial Byproducts For The Production Of Hyaluronic Acid By Streptococcus Zooepidemicus ATCC 39920

    Directory of Open Access Journals (Sweden)

    Nicole Caldas Pan

    2015-04-01

    Full Text Available Abstract Agroindustrial derivatives are alternative nutritional sources employed in bioprocesses that reduce costs and corroborate with social sustainability. In this study alternative carbon sugarcane juice sugarcane molasses and soy molasses and nitrogen sources corn steep liquor soy protein and whey protein were evaluated for hyaluronic acid production by Streptococcus zooepidemicus ATCC 39920. The medium containing sugarcane molasses archived high yield of hyaluronic acid 0.066 g.g-1 when compared to the medium composed of glucose or sucrose. The replacement of yeast extract by soy protein was also effective for the production of the polymer resulting in 0.219 g.L-1. In general the organic acids production was also evaluated and the results showed that the main metabolic products were lactate. In contrast the acetate synthesis was detected only in the medium containing yeast extract. This study showed that sugarcane molasses is a promising carbon source for the hyaluronic acid production. This is the first study in which a culture media containing sugarcane molasses a cheap substrate extensively produced in Brazil has been successfully used for the microbial hyaluronic acid production.

  12. Uso do açafrão (Curcuma longa L. na redução da Escherichia coli (ATCC 25922 e Enterobacter aerogenes (ATCC 13048 em ricota The use of turmeric in the reduction of Escherichia coli (ATCC 25922 and Enterobacter aerogenes (ATCC 13048 in ricotta

    Directory of Open Access Journals (Sweden)

    Sandra Ribeiro Maia

    2004-04-01

    Full Text Available Considerando o envolvimento de queijos como veículo de microrganismos patogênicos, foi avaliada a eficiência do extrato alcoólico de cúrcuma adicionado à ricota, na redução de Escherichia coli e Enterobacter aerogenes. Foram fabricados três lotes de ricota cremosa e inoculados com 104 UFC/mL de Escherichia coli (ATCC 25922 e 105 UFC/mL de Enterobacter aerogenes (ATCC 13048. Às ricotas, foram adicionados 0,4% de NaCl e extrato alcoólico de Curcuma longa L., em concentrações que variaram de 0,0% a 2,0%. As ricotas foram avaliadas físico-química e microbiologicamente em 0, 1, 7, 14 e 21 dias de armazenamento refrigerado. O percentual de umidade das ricotas foi, em média, de 73%. O pH médio observado foi de 5,4 e o percentual de gordura de 3%. Pelos resultados, evidenciou-se, após 21 dias, uma redução do número de Escherichia coli de aproximadamente dois ciclos logaritmicos nos tratamentos utilizados de 0,5%, 1,0%, 1,5% e 2,0% de cúrcuma. Já para Enterobacter aerogenes, a redução foi menor, de aproximadamente um ciclo logaritmico, de 105 UFC/mL para 104 UFC/mL, também nos tratamentos utilizados de 0,5%, 1,0%, 1,5% e 2,0% de cúrcuma. Apesar de os resultados evidenciarem uma redução do número de células viáveis dos microrganismos avaliados, a cúrcuma não deverá ser o único meio preservativo, considerando uma contaminação inicial de 104 UFC/mL de Escherichia coli e 105 UFC/mL de Enterobacter aerogenes, pois não atenderia à legislação vigente quanto aos requisitos microbiológicos para queijos.Considering the cheese involvement as a vehicle of pathogenic microorganisms it was evaluated the eficciency of the ethanolic turmeric extract added to ricotta, in the reduction of Escherichia coli and Enterobacter aerogenes. Three lots of creamy ricotta were manufacturated and inoculated with 104 UFC/mL of Escherichia coli (ATCC 25922 and 105 UFC/mL of Enterobacter aerogenes (ATCC 13048. It was added 0,4% of NaCl and

  13. Sophorolipids Production by Candida bombicola ATCC 22214 and its Potential Application in Microbial Enhanced Oil Recovery.

    Science.gov (United States)

    Elshafie, Abdulkadir E; Joshi, Sanket J; Al-Wahaibi, Yahya M; Al-Bemani, Ali S; Al-Bahry, Saif N; Al-Maqbali, Dua'a; Banat, Ibrahim M

    2015-01-01

    Biosurfactant production using Candida bombicola ATCC 22214, its characterization and potential applications in enhancing oil recovery were studied at laboratory scale. The seed media and the production media were standardized for optimal growth and biosurfactant production. The production media were tested with different carbon sources: glucose (2%w/v) and corn oil (10%v/v) added separately or concurrently. The samples were collected at 24 h interval up to 120 h and checked for growth (OD660), and biosurfactant production [surface tension (ST) and interfacial tension (IFT)]. The medium with both glucose and corn oil gave better biosurfactant production and reduced both ST and IFT to 28.56 + 0.42mN/m and 2.13 + 0.09mN/m, respectively within 72 h. The produced biosurfactant was quite stable at 13-15% salinity, pH range of 2-12, and at temperature up to 100°C. It also produced stable emulsions (%E24) with different hydrocarbons (pentane, hexane, heptane, tridecane, tetradecane, hexadecane, 1-methylnaphthalene, 2,2,4,4,6,8-heptamethylnonane, light and heavy crude oil). The produced biosurfactant was extracted using ethyl acetate and characterized as a mixture of sophorolipids (SPLs). The potential of SPLs in enhancing oil recovery was tested using core-flooding experiments under reservoir conditions, where additional 27.27% of residual oil (Sor) was recovered. This confirmed the potential of SPLs for applications in microbial enhanced oil recovery.

  14. Xanthan biosynthesis by Xanthomonas campestris ATCC 13951 on wastewaters from white grape processing

    Directory of Open Access Journals (Sweden)

    Rončević Zorana

    2017-01-01

    Full Text Available Wastewaters from grape processing in wineries are characterized by large seasonal fluctuations in volume and composition, and are often discarded into environment with little or no treatment. The biotechnological production of valuable products is the most promising alternative for reducing the negative environmental impact and recycling these effluents. Results from previous study show that mixed winery wastewaters, after additional optimization of the medium preparation, may be a suitable raw material for industrial xanthan production. Therefore, the aim of this work was to examine the possibility of xanthan production by Xanthomonas campestris ATCC 13951 on mixed wastewaters from different stages of white grape processing in winery with initial sugars content of 20 g/L. In addition to the media characteristics and indicators of biopolymer quality, raw xanthan yield and degree of sugars conversion into product were determined in order to examine the success of performed bioprocess. The results for biopolymer yield (14.66 g/L and sugars conversion into desired product (70.21% obtained in applied experimental conditions confirm that wastewaters from white grape processing have a great potential to be used as a substrate for xanthan biosynthesis.

  15. Clavulanic acid production by the MMS 150 mutant obtained from wild type Streptomyces clavuligerus ATCC 27064.

    Science.gov (United States)

    da Silva Vasconcelos, Eliton; de Lima, Vanderlei Aparecido; Goto, Leandro Seiji; Cruz-Hernández, Isara Lourdes; Hokka, Carlos Osamu

    2013-12-01

    Clavulanic acid (CA) is a powerful inhibitor of the beta-lactamases, enzymes produced by bacteria resistants to penicillin and cefalosporin. This molecule is produced industrially by strains of Streptomyces clavuligerus in complex media which carbon and nitrogen resources are supplied by inexpensive compounds still providing high productivity. The genetic production improvement using physical and chemical mutagenic agents is an important strategy in programs of industrial production development of bioactive metabolites. However, parental strains are susceptible to loss of their original productivity due genetic instability phenomenona. In this work, some S. clavuligerus mutant strains obtained by treatment with UV light and with MMS are compared with the wild type (Streptomyces clavuligerus ATCC 27064). The results indicated that the random mutations originated some strains with different phenotypes, most divergent demonstrated by the mutants strains named AC116, MMS 150 and MMS 54, that exhibited lack of pigmentation in their mature spores. Also, the strain MMS 150 presented a larger production of CA when cultivated in semi-synthetics media. Using other media, the wild type strain obtained a larger CA production. Besides, using the modifed complex media the MMS 150 strain showed changes in its lipolitic activity and a larger production of CA. The studies also allowed finding the best conditions for a lipase activity exhibited by wild type S. clavuligerus and the MMS150 mutant.

  16. Isolation and Purification of Complex II from Proteus Mirabilis Strain ATCC 29245

    Science.gov (United States)

    Shabbiri, Khadija; Ahmad, Waqar; Syed, Quratulain; Adnan, Ahmad

    2010-01-01

    A respiratory complex was isolated from plasma membrane of pathogenic Proteus mirabilis strain ATCC 29245. It was identified as complex II consisting of succinate:quinone oxidoreductase (EC 1.3.5.1) containing single heme b. The complex II was purified by ion-exchange chromatography and gel filtration. The molecular weight of purified complex was 116.5 kDa and it was composed of three subunits with molecular weights of 19 kDa, 29 kDa and 68.5 kDa. The complex II contained 9.5 nmoles of cytochrome b per mg protein. Heme staining indicated that the 19 kDa subunit was cytochrome b. Its reduced form showed absorptions peaks at 557.0, 524.8 and 424.4 nm. The α-band was shifted from 557.0 nm to 556.8 nm in pyridine ferrohemochrome spectrum. The succinate: quinone oxidoreductase activity was found to be high in this microorganism. PMID:24031557

  17. Effect of Low Shear Modeled Microgravity (LSMMG) on the Probiotic Lactobacillus Acidophilus ATCC 4356

    Science.gov (United States)

    Stahl, S.; Voorhies, A.; Lorenzi, H.; Castro-Wallace, S.; Douglas, G.

    2016-01-01

    The introduction of generally recognized as safe (GRAS) probiotic microbes into the spaceflight food system has the potential for use as a safe, non-invasive, daily countermeasure to crew microbiome and immune dysregulation. However, the microgravity effects on the stress tolerances and genetic expression of probiotic bacteria must be determined to confirm translation of strain benefits and to identify potential for optimization of growth, survival, and strain selection for spaceflight. The work presented here demonstrates the translation of characteristics of a GRAS probiotic bacteria to a microgravity analog environment. Lactobacillus acidophilus ATCC 4356 was grown in the low shear modeled microgravity (LSMMG) orientation and the control orientation in the rotating wall vessel (RWV) to determine the effect of LSMMG on the growth, survival through stress challenge, and gene expression of the strain. No differences were observed between the LSMMG and control grown L. acidophilus, suggesting that the strain will behave similarly in spaceflight and may be expected to confer Earth-based benefits.

  18. Biosurfactant Production by Cultivation of Bacillus atrophaeus ATCC 9372 in Semidefined Glucose/Casein-Based Media

    Science.gov (United States)

    Das Neves, Luiz Carlos Martins; de Oliveira, Kátia Silva; Kobayashi, Márcio Junji; Vessoni Penna, Thereza Christina; Converti, Attilio

    Biosurfactants are proteins with detergent, emulsifier, and antimicrobial actions that have potential application in environmental applications such as the treatment of organic pollutants and oil recovery. Bacillus atrophaeus strains are nonpathogenic and are suitable source of biosurfactants, among which is surfactin. The aim of this work is to establish a culture medium composition able to stimulate biosurfactants production by B. atrophaeus ATCC 9372. Batch cultivations were carried out in a rotary shaker at 150 rpm and 35°C for 24 h on glucose- and/or casein-based semidefined culture media also containing sodium chloride, dibasic sodium phosphate, and soy flour. The addition of 14.0 g/L glucose in a culture medium containing 10.0 g/L of casein resulted in 17 times higher biosurfactant production (B max=635.0 mg/L). Besides, the simultaneous presence of digested casein (10.0 g/L), digested soy flour (3.0 g/L), and glucose (18.0 g/L) in the medium was responsible for a diauxic effect during cell growth. Once the diauxie started, the average biosurfactants concentration was 16.8% less than that observed before this phenomenon. The capability of B. atrophaeus strain to adapt its own metabolism to use several nutrients as energy sources and to preserve high levels of biosurfactants in the medium during the stationary phase is a promising feature for its possible application in biological treatments.

  19. Isolation, characterization, and investigation of surface and hemolytic activities of a lipopeptide biosurfactant produced by Bacillus subtilis ATCC 6633.

    Science.gov (United States)

    Dehghan-Noude, Gholamreza; Housaindokht, Mohammadreza; Bazzaz, Bibi Sedigeh Fazly

    2005-06-01

    Bacillus subtilis ATCC 6633 was grown in BHIB medium supplemented with Mn2+ for 96 h at 37 degrees C in a shaker incubator. After removing the microbial biomass, a lipopeptide biosurfactant was extracted from the supernatant. Its structure was established by chemical and spectroscopy methods. The structure was confirmed by physical properties, such as Hydrophile-Lipophile Balance (HLB), surface activity and erythrocyte hemolytic capacity. The critical micelle concentration (cmc) and erythrocyte hemolytic capacity of the biosurfactant were compared to those of surfactants such as SDS, BC (benzalkonium chloride), TTAB (tetradecyltrimethylammonium bromide) and HTAB (hexadecyltrimethylammonium bromide). The maximum hemolytic effect for all surfactants mentioned was observed at concentrations above cmc. The maximum hemolytic effect of synthetic surfactants was more than that of the biosurfactant produced by B. subtilis ATCC 6633. Therefore, biosurfactant would be considered a suitable surface-active agent due to low toxicity to the membrane.

  20. [Effect of glucose and lactose on the utilization of citrate by Lactobacillus casei subsp. rhamnosus ATCC 7469].

    Science.gov (United States)

    Benito de Cárdenas, I L; Medina, R; Oliver, G

    1992-01-01

    The utilization of citrate by Lactobacillus casei subsp. rhamnosus ATCC 7469 in a complex medium containing glucose, lactose or citrate was investigated, as an approach to the question of the transport of this acid and the possible relationship with the production of flavour compounds (diacetyl and acetoin). This lactobacillus uses citrate as an energy source in the absence of carbohydrates. External pH and growth increases when citrate is added to complex medium. The presence of citrate does not affect glucose uptake. L. casei ATCC 7469 possibly uses a transport system for citrate utilization, and citrate uptake seems to be under glucose or lactose control. Lactose only inhibits the entrance of citrate at high concentration while the utilization of this acid was negatively regulated by low glucose concentration.

  1. Complete Genome Sequence of Mycoplasma hominis Strain Sprott (ATCC 33131), Isolated from a Patient with Nongonococcal Urethritis.

    Science.gov (United States)

    Calcutt, Michael J; Foecking, Mark F

    2015-07-09

    Presented here is the complete and annotated genome sequence of Mycoplasma hominis Sprott (ATCC 33131). The chromosome comprises 695,214 bp, which is approximately 30 kb larger than the syntenic genome of M. hominis PG21(T). Tetracycline resistance of strain Sprott is most probably conferred by the tetM determinant, harbored on a mosaic transposon-like structure. Copyright © 2015 Calcutt and Foecking.

  2. Investigation of the Amycolatopsis sp. Strain ATCC 39116 Vanillin Dehydrogenase and Its Impact on the Biotechnical Production of Vanillin

    OpenAIRE

    Fleige, Christian; Hansen, Gunda; Kroll, Jens; Steinbüchel, Alexander

    2013-01-01

    The actinomycete Amycolatopsis sp. strain ATCC 39116 is capable of synthesizing large amounts of vanillin from ferulic acid, which is a natural cell wall component of higher plants. The desired intermediate vanillin is subject to undesired catabolism caused by the metabolic activity of a hitherto unknown vanillin dehydrogenase (VDHATCC 39116). In order to prevent the oxidation of vanillin to vanillic acid and thereby to obtain higher yields and concentrations of vanillin, the responsible vani...

  3. Microbial Corrosion of API 5L X-70 Carbon Steel by ATCC 7757 and Consortium of Sulfate-Reducing Bacteria

    OpenAIRE

    Abdullah, Arman; Yahaya, Nordin; Md Noor, Norhazilan; Mohd Rasol, Rosilawati

    2014-01-01

    Various cases of accidents involving microbiology influenced corrosion (MIC) were reported by the oil and gas industry. Sulfate reducing bacteria (SRB) have always been linked to MIC mechanisms as one of the major causes of localized corrosion problems. In this study, SRB colonies were isolated from the soil in suspected areas near the natural gas transmission pipeline in Malaysia. The effects of ATCC 7757 and consortium of isolated SRB upon corrosion on API 5L X-70 carbon steel coupon were i...

  4. Quality-control ranges for antimicrobial susceptibility testing by broth dilution of the Brachyspira hyodysenteriae type strain (ATCC 27164(T))

    DEFF Research Database (Denmark)

    Pringle, M.; Aarestrup, Frank Møller; Bergsjø, B.

    2006-01-01

    There are no approved standards for antimicrobial susceptibility testing of the fastidious spirochete Brachyspira hyodysenteriae. An interlaboratory study was performed to establish MIC quality control ranges for six antimicrobial agents for the type strain of B. hyodysenteriae using broth diluti....... The results showed that B. hyodysenteriae B78(T) ATCC 27164(T) is a suitable quality control strain. This is a first step toward standardization of methods regarding this anaerobe....

  5. Efecto antibacteriano in vitro del colutorio a base de matricaria chamomilla (manzanilla) sobre el fusobacterium nucleatum ATCC 25586

    OpenAIRE

    Delgado Asmat, Edith Esther

    2015-01-01

    This research study was to determine the in vitro antibacterial mouthwash based Matricaria chamomilla (chamomile) Fusobacterium nucleatum against ATCC 25586. The study was conducted in laboratory environments Farmaconogsia of the National University of Trujillo and microbiology laboratories of the Faculty of Medicine of the National University of Trujillo. The sample consisted of 16 discs broadcast, divided into 5 groups; that is, a group with Chlorhexidine samples, chamomile three groups...

  6. The Redox-Sensitive Transcriptional Activator OxyR Regulates the Peroxide Response Regulon in the Obligate Anaerobe Bacteroides fragilis

    Science.gov (United States)

    Rocha, Edson R.; Owens, Gary; Smith, C. Jeffrey

    2000-01-01

    The peroxide response-inducible genes ahpCF, dps, and katB in the obligate anaerobe Bacteroides fragilis are controlled by the redox-sensitive transcriptional activator OxyR. This is the first functional oxidative stress regulator identified and characterized in anaerobic bacteria. oxyR and dps were found to be divergently transcribed, with an overlap in their respective promoter regulatory regions. B. fragilis OxyR and Dps proteins showed high identity to homologues from a closely related anaerobe, Porphyromonas gingivalis. Northern blot analysis revealed that oxyR was expressed as a monocistronic 1-kb mRNA and that dps mRNA was approximately 500 bases in length. dps mRNA was induced over 500-fold by oxidative stress in the parent strain and was constitutively induced in the peroxide-resistant mutant IB263. The constitutive peroxide response in strain IB263 was shown to have resulted from a missense mutation at codon 202 (GAT to GGT) of the oxyR gene [oxyR(Con)] with a predicted D202G substitution in the OxyR protein. Transcriptional fusion analysis revealed that deletion of oxyR abolished the induction of ahpC and katB following treatment with hydrogen peroxide or oxygen exposure. However, dps expression was induced approximately fourfold by oxygen exposure in ΔoxyR strains but not by hydrogen peroxide. This indicates that dps expression is also under the control of an oxygen-dependent OxyR-independent mechanism. Complementation of ΔoxyR mutant strains with wild-type oxyR and oxyR(Con) restored the inducible peroxide response and the constitutive response of the ahpCF, katB, and dps genes, respectively. However, overexpression of OxyR abolished the catalase activity but not katB expression, suggesting that higher levels of intracellular OxyR may be involved in other physiological processes. Analysis of oxyR expression in the parents and in ΔoxyR and overexpressing oxyR strains by Northern blotting and oxyR′::xylB fusions revealed that B. fragilis OxyR does

  7. Distribution and Abundance of Human Specific Bacteroides and Relation to Traditional Indicators in an Urban Tropical Catchment

    Science.gov (United States)

    Nshimyimana, J.; Shanahan, P.; Thompson, J. R.; Ekklesia, E.; Chua Hock Chye, L.

    2012-12-01

    The Singapore government through its Public Utilities Board is interested in opening Kranji Reservoir to recreational use. However, water courses within the Kranji Reservoir catchment contain human fecal indicator bacteria above recreational water quality criteria; their sources and distribution are unknown. The primary goals of this study were to determine the distribution of fecal indicator bacteria in drainages and water bodies in the Kranji reservoir catchment area. Total coliforms, E. coli, and the DNA-based HF marker (targeting a human specific strain of Bacteroides) were quantified in 27 samples collected in January 2009 and 54 samples collected in July 2009. Correlation of HF marker cell equivalents (CE) and E. coli abundance (colony forming units (CFU) or Most Probable Number (MPN)) to different land-use categories revealed potential sources of fecal contamination to the Kranji reservoir. Notably, areas designated as farming/agricultural were associated with the highest levels of E. coli (geometric mean 30,500 CFU/100 ml) and HF marker (1.23±1.13x106 CE/100 ml ± S.D.) while in general lower HF marker and E. coli levels were observed in residential areas, undeveloped areas, and within the Kranji reservoir (i.e. Kranji Reservoir had 2 to 17 MPN/100 ml of E. coli and 103 to 105 HF marker CE/100 ml). A partial survey of potential point sources for fecal contamination within the farming area revealed a wastewater effluent stream with HF marker levels exceeding 107 CE/100ml. As observed in previous studies, total coliforms and E. coli levels were weakly (Robligate anaerobe that is not expected to grow in aerated surface waters. In contrast, numerous studies have demonstrated that total coliforms, including E. coli, are able to grow well under some tropical conditions, limiting their utility as neutral tracers of fecal contamination in tropical environments. Phylogenetic analysis of cloned HF marker sequences from Kranji reservoir and catchment samples

  8. Microbial Corrosion of API 5L X-70 Carbon Steel by ATCC 7757 and Consortium of Sulfate-Reducing Bacteria

    Directory of Open Access Journals (Sweden)

    Arman Abdullah

    2014-01-01

    Full Text Available Various cases of accidents involving microbiology influenced corrosion (MIC were reported by the oil and gas industry. Sulfate reducing bacteria (SRB have always been linked to MIC mechanisms as one of the major causes of localized corrosion problems. In this study, SRB colonies were isolated from the soil in suspected areas near the natural gas transmission pipeline in Malaysia. The effects of ATCC 7757 and consortium of isolated SRB upon corrosion on API 5L X-70 carbon steel coupon were investigated using a weight loss method, an open circuit potential method (OCP, and a potentiodynamic polarization curves method in anaerobic conditions. Scanning electron microscopy (SEM and energy dispersive X-ray spectroscopy (EDS were then used to determine the corrosion morphology in verifying the SRB activity and corrosion products formation. Results from the study show that the corrosion rate (CR of weight loss method for the isolated SRB is recorded as 0.2017 mm/yr compared to 0.2530 mm/yr for ATCC 7757. The Tafel plot recorded the corrosion rate of 0.3290 mm/yr for Sg. Ular SRB and 0.2500 mm/yr for Desulfovibrio vulgaris. The results showed that the consortia of isolated SRB were of comparable effects and features with the single ATCC 7757 strain.

  9. Selection of the Strain Lactobacillus acidophilus ATCC 43121 and Its Application to Brewers' Spent Grain Conversion into Lactic Acid

    Science.gov (United States)

    Liguori, Rossana; Soccol, Carlos Ricardo; Vandenberghe, Luciana Porto de Souza; Woiciechowski, Adenise Lorenci; Ionata, Elena; Marcolongo, Loredana; Faraco, Vincenza

    2015-01-01

    Six Lactobacillus strains were analyzed to select a bacterium for conversion of brewers' spent grain (BSG) into lactic acid. Among the investigated strains, L. acidophilus ATCC 43121 showed the highest yield of lactic acid production (16.1 g/L after 48 hours) when grown in a synthetic medium. It was then analyzed for its ability to grow on the hydrolysates obtained from BSG after acid-alkaline (AAT) or aqueous ammonia soaking (AAS) pretreatment. The lactic acid production by L. acidophilus ATCC 43121 through fermentation of the hydrolysate from AAS treated BSG was 96% higher than that from the AAT treated one, although similar yields of lactic acid per consumed glucose were achieved due to a higher (46%) glucose consumption by L. acidophilus ATCC 43121 in the AAS BSG hydrolysate. It is worth noting that adding yeast extract to the BSG hydrolysates increased both the yield of lactic acid per substrate consumed and the volumetric productivity. The best results were obtained by fermentation of AAS BSG hydrolysate supplemented by yeast extract, in which the strain produced 22.16 g/L of lactic acid (yield of 0.61 g/g), 27% higher than the value (17.49 g/L) obtained in the absence of a nitrogen source. PMID:26640784

  10. Suitability of Lactococcus lactis subsp lactis ATCC 11454 as a protective culture for lightly preserved fish products

    DEFF Research Database (Denmark)

    Wessels, Stephen Wallace; Huss, Hans Henrik

    1996-01-01

    This study is part of strategy to control the human pathogen Listeria monocytogenes in lightly preserved fish products by using food-grade lactic acid bacteria. When the nisin-producing Lactococcus lactis subsp lactis ATCC 11454 was cultured in the same vessel as L-monocytogenes Scott A in brain......-heart infusion broth (BHI) at 30-degrees C, the pathogen declined from 5x10(5) to fewer than 5 cfu ml(-1) within 31 h. The effect was not due to lactic acid inhibition. Growth and nisin production by L- lactis ATCC 11454 were investigated under the conditions of temperature and salt used for light preservation...... and no detectable nisin. On slices of commercial cold-smoked salmon at 10-degrees C, no net propagation pf L-lactis ATCC 11454 could be detected within 21 days. However, when salmon slices were inoculated with L- mycocytogenes at 10(4) cfu g(-1) and a 300-fold excess of washed lactococcus cells, the pathogen...

  11. Production and Rheological Properties of Welan Gum Produced by Sphingomonas sp. ATCC 31555 with Different Nitrogen Sources.

    Science.gov (United States)

    Xu, Xiaopeng; Nie, Zuoming; Zheng, Zhiyong; Zhu, Li; Zhan, Xiaobei

    2017-01-01

    This study aimed to investigate the effect of nitrogen sources on the production and rheological properties of welan gum produced by Sphingomonas sp. ATCC 31555. Six different nitrogen sources were used for ATCC 31555 fermentation, and 2 of these were further analyzed due to their more positive influence on welan gum production and bacterial biomass. Bacterial biomass, welan gum yield, welan viscosity, molecular weight, monosaccharide composition, acyl content, and welan structure were analyzed. Welan gum production and the biomass concentration of ATCC 31555 were higher in media containing NaNO3 and beef extract. Welan viscosity decreased at higher temperatures of 30-90°C, and it increased with a higher welan concentration. In the media containing NaNO3 (3 g·L-1), welan viscosity was higher at 30-70°C and a welan solution concentration of 6-10 g·L-1. With a reduced NaNO3 concentration, the molecular weight of welan gum and the molar ratio of mannose decreased, but the molar ratio of glucuronic acid increased. With different nitrogen sources, the acetyl content of welan gum differed but its structure was similar. NaNO3 and beef extract facilitated welan production. A reduced NaNO3 concentration promoted welan viscosity. © 2017 S. Karger AG, Basel.

  12. Functional characterization of a cadmium resistance operon in Staphylococcus aureus ATCC12600: CadC does not function as a repressor.

    Science.gov (United States)

    Hoogewerf, Arlene J; Dyk, Lisa A Van; Buit, Tyler S; Roukema, David; Resseguie, Emily; Plaisier, Christina; Le, Nga; Heeringa, Lee; Griend, Douglas A Vander

    2015-02-01

    Sequencing of a cadmium resistance operon from a Staphylococcus aureus ATCC12600 plasmid revealed that it is identical to a cadCA operon found in MRSA strains. Compared to plasmid-cured and cadC-mutant strains, cadC-positive ATCC12600 cells had increased resistance to cadmium (1 mg ml(-1) cadmium sulfate) and zinc (4 mg ml(-1) zinc sulfate), but not to other metal ions. After growth in media containing 20 µg ml(-1) cadmium sulfate, cadC-mutant cells contained more intracellular cadmium than cadC-positive ATCC12600 cells, suggesting that cadC absence results in impaired cadmium efflux. Electrophoretic mobility shift assays were performed with CadC proteins encoded by the S. aureus ATCC12600 plasmid and by the cadC gene of pI258, which is known to act as a transcriptional repressor and shares only 47% protein sequence identity with ATCC12600 CadC. Mobility shifts occurred when pI258 CadC protein was incubated with the promoter DNA-regions from the pI258 and S. aureus ATCC12600 cadCA operons, but did not occur with S. aureus ATCC12600 CadC protein, indicating that the ATCC12600 CadC protein does not interact with promoter region DNA. This cadCA operon, found in MRSA strains and previously functionally uncharacterized, increases resistance to cadmium and zinc by an efflux mechanism, and CadC does not function as a transcriptional repressor. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Antibacterial activity of antagonistic bacterium Bacillus subtilis DJM-51 against phytopathogenic Clavibacter michiganense subsp. michiganense ATCC 7429 in vitro.

    Science.gov (United States)

    Jung, W J; Mabood, F; Souleimanov, A; Whyte, L G; Niederberger, T D; Smith, D L

    2014-12-01

    To investigate antibacterial activity against the tomato pathogen Clavibacter michiganense subsp. michiganense ATCC 7429 (Cmm ATCC 7429), Bacillus subtilis DJM-51 was isolated from rhizosphere soil. For isolation of bacteria, samples were taken from rhizosphere soil. The isolate, DJA-51, had strong antagonistic ability against Tomato pathogen Cmm ATCC 7429 on nutrient-broth yeast extract agar (NBYA) as indicated by inhibition zones around colonies. On the basis of the nucleotide sequence of a conserved segment of the 16S rRNA gene, the bacterium has been identified as B. subtilis DJM-51. The growth of Cmm ATCC 7429 on NBYA plates was inhibited by culture broth of B. subtilis DJM-51 including cells, by the supernatant of culture broth of B. subtilis DJM-51, and by the liquid material resulting from butanol extract of bacterial cultures. The OD value in co-culture mixture was lower than the control throughout the entire incubation period. Antibiotics obtained from B. subtilis DJM-51 inhibited the growth of Tomato pathogen Cmm ATCC 7429. These results provide potentially information about the protection of tomato from pathogen Cmm ATCC 7429 under greenhouse conditions in Quebec. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Metabolic flux analysis of Cyanothece sp. ATCC 51142 under mixotrophic conditions.

    Science.gov (United States)

    Alagesan, Swathi; Gaudana, Sandeep B; Sinha, Avinash; Wangikar, Pramod P

    2013-11-01

    Cyanobacteria are a group of photosynthetic prokaryotes capable of utilizing solar energy to fix atmospheric carbon dioxide to biomass. Despite several "proof of principle" studies, low product yield is an impediment in commercialization of cyanobacteria-derived biofuels. Estimation of intracellular reaction rates by (13)C metabolic flux analysis ((13)C-MFA) would be a step toward enhancing biofuel yield via metabolic engineering. We report (13)C-MFA for Cyanothece sp. ATCC 51142, a unicellular nitrogen-fixing cyanobacterium, known for enhanced hydrogen yield under mixotrophic conditions. Rates of reactions in the central carbon metabolism under nitrogen-fixing and -non-fixing conditions were estimated by monitoring the competitive incorporation of (12)C and (13)C from unlabeled CO2 and uniformly labeled glycerol, respectively, into terminal metabolites such as amino acids. The observed labeling patterns suggest mixotrophic growth under both the conditions, with a larger fraction of unlabeled carbon in nitrate-sufficient cultures asserting a greater contribution of carbon fixation by photosynthesis and an anaplerotic pathway. Indeed, flux analysis complements the higher growth observed under nitrate-sufficient conditions. On the other hand, the flux through the oxidative pentose phosphate pathway and tricarboxylic acid cycle was greater in nitrate-deficient conditions, possibly to supply the precursors and reducing equivalents needed for nitrogen fixation. In addition, an enhanced flux through fructose-6-phosphate phosphoketolase possibly suggests the organism's preferred mode under nitrogen-fixing conditions. The (13)C-MFA results complement the reported predictions by flux balance analysis and provide quantitative insight into the organism's distinct metabolic features under nitrogen-fixing and -non-fixing conditions.

  15. Induction of secondary metabolism of Aspergillus terreus ATCC 20542 in the batch bioreactor cultures.

    Science.gov (United States)

    Boruta, Tomasz; Bizukojc, Marcin

    2016-04-01

    Cultivation of Aspergillus terreus ATCC 20542 in a stirred tank bioreactor was performed to induce the biosynthesis of secondary metabolites and provide the bioprocess-related insights into the metabolic capabilities of the investigated strain. The activation of biosynthetic routes was attempted by the diversification of process conditions and growth media. Several strategies were tested, including the addition of rapeseed oil or inulin, changing the concentration of nitrogen source, reduction of chlorine supply, cultivation under saline conditions, and using various aeration schemes. Fifteen secondary metabolites were identified in the course of the study by using ultra-high performance liquid chromatography coupled with mass spectrometry, namely mevinolinic acid, 4a,5-dihydromevinolinic acid, 3α-hydroxy-3,5-dihydromonacolin L acid, terrein, aspulvinone E, dihydroisoflavipucine, (+)-geodin, (+)-bisdechlorogeodin, (+)-erdin, asterric acid, butyrolactone I, desmethylsulochrin, questin, sulochrin, and demethylasterric acid. The study also presents the collection of mass spectra that can serve as a resource for future experiments. The growth in a salt-rich environment turned out to be strongly inhibitory for secondary metabolism and the formation of dense and compact pellets was observed. Generally, the addition of inulin, reducing the oxygen supply, and increasing the content of nitrogen source did not enhance the production of examined molecules. The most successful strategy involved the addition of rapeseed oil to the chlorine-deficient medium. Under these conditions, the highest levels of butyrolactone I, asterric acid, and mevinolinic acid were achieved and the presence of desmethylsulochrin and (+)-bisdechlorogeodin was detected in the broth. The constant and relatively high aeration rate in the idiophase was shown to be beneficial for terrein and (+)-geodin biosynthesis.

  16. Characterization of the hupSL promoter activity in Nostoc punctiforme ATCC 29133

    Science.gov (United States)

    2009-01-01

    Background In cyanobacteria three enzymes are directly involved in the hydrogen metabolism; a nitrogenase that produces molecular hydrogen, H2, as a by-product of nitrogen fixation, an uptake hydrogenase that recaptures H2 and oxidize it, and a bidirectional hydrogenase that can both oxidize and produce H2.Nostoc punctiforme ATCC 29133 is a filamentous dinitrogen fixing cyanobacterium containing a nitrogenase and an uptake hydrogenase but no bidirectional hydrogenase. Generally, little is known about the transcriptional regulation of the cyanobacterial uptake hydrogenases. In this study gel shift assays showed that NtcA has a specific affinity to a region of the hupSL promoter containing a predicted NtcA binding site. The predicted NtcA binding site is centred at 258.5 bp upstream the transcription start point (tsp). To further investigate the hupSL promoter, truncated versions of the hupSL promoter were fused to either gfp or luxAB, encoding the reporter proteins Green Fluorescent Protein and Luciferase, respectively. Results Interestingly, all hupsSL promoter deletion constructs showed heterocyst specific expression. Unexpectedly the shortest promoter fragment, a fragment covering 57 bp upstream and 258 bp downstream the tsp, exhibited the highest promoter activity. Deletion of the NtcA binding site neither affected the expression to any larger extent nor the heterocyst specificity. Conclusion Obtained data suggest that the hupSL promoter in N. punctiforme is not strictly dependent on the upstream NtcA cis element and that the shortest promoter fragment (-57 to tsp) is enough for a high and heterocyst specific expression of hupSL. This is highly interesting because it indicates that the information that determines heterocyst specific gene expression might be confined to this short sequence or in the downstream untranslated leader sequence. PMID:19284581

  17. Mutational studies of putative biosynthetic genes for the cyanobacterial sunscreen scytonemin in Nostoc punctiforme ATCC 29133

    Directory of Open Access Journals (Sweden)

    Daniela eFerreira

    2016-05-01

    Full Text Available The heterocyclic indole-alkaloid scytonemin is a sunscreen found exclusively among cyanobacteria. An 18-gene cluster is responsible for scytonemin production in Nostoc punctiforme ATCC 29133. The upstream genes scyABCDEF in the cluster are proposed to be responsible for scytonemin biosynthesis from aromatic amino acid substrates. In vitro studies of ScyA, ScyB and ScyC proved that these enzymes indeed catalyze initial pathway reactions. Here we characterize the role of ScyD, ScyE and ScyF, which were logically predicted to be responsible for late biosynthetic steps, in the biological context of N. punctiforme. In-frame deletion mutants of each were constructed (∆scyD, ∆scyE and ∆scyF and their phenotypes studied. Expectedly, ∆scyE presents a scytoneminless phenotype, but no accumulation of the predicted intermediaries. Surprisingly, ∆scyD retains scytonemin production, implying that it is not required for biosynthesis. Indeed, scyD presents an interesting evolutionary paradox: it likely originated in a duplication event from scyE, and unlike other genes in the operon, it has not been subjected to purifying selection. This would suggest that it is a pseudogene, and yet scyD is highly conserved in the scytonemin operon of cyanobacteria. ∆scyF also retains scytonemin production, albeit exhibiting a reduction of the production yield compared with the wild-type. This indicates that ScyF is not essential but may play an adjuvant role for scytonemin synthesis. Altogether, our findings suggest that these downstream genes are not responsible, as expected, for the late steps of scytonemin synthesis and we must look for those functions elsewhere. These findings are particularly important for biotechnological production of this sunscreen through heterologous expression of its genes in more tractable organisms.

  18. Characterization of the hupSL promoter activity in Nostoc punctiforme ATCC 29133

    Directory of Open Access Journals (Sweden)

    Lindberg Pia

    2009-03-01

    Full Text Available Abstract Background In cyanobacteria three enzymes are directly involved in the hydrogen metabolism; a nitrogenase that produces molecular hydrogen, H2, as a by-product of nitrogen fixation, an uptake hydrogenase that recaptures H2 and oxidize it, and a bidirectional hydrogenase that can both oxidize and produce H2.Nostoc punctiforme ATCC 29133 is a filamentous dinitrogen fixing cyanobacterium containing a nitrogenase and an uptake hydrogenase but no bidirectional hydrogenase. Generally, little is known about the transcriptional regulation of the cyanobacterial uptake hydrogenases. In this study gel shift assays showed that NtcA has a specific affinity to a region of the hupSL promoter containing a predicted NtcA binding site. The predicted NtcA binding site is centred at 258.5 bp upstream the transcription start point (tsp. To further investigate the hupSL promoter, truncated versions of the hupSL promoter were fused to either gfp or luxAB, encoding the reporter proteins Green Fluorescent Protein and Luciferase, respectively. Results Interestingly, all hupsSL promoter deletion constructs showed heterocyst specific expression. Unexpectedly the shortest promoter fragment, a fragment covering 57 bp upstream and 258 bp downstream the tsp, exhibited the highest promoter activity. Deletion of the NtcA binding site neither affected the expression to any larger extent nor the heterocyst specificity. Conclusion Obtained data suggest that the hupSL promoter in N. punctiforme is not strictly dependent on the upstream NtcA cis element and that the shortest promoter fragment (-57 to tsp is enough for a high and heterocyst specific expression of hupSL. This is highly interesting because it indicates that the information that determines heterocyst specific gene expression might be confined to this short sequence or in the downstream untranslated leader sequence.

  19. Response of Bacillus cereus ATCC 14579 to challenges with sublethal concentrations of enterocin AS-48

    Directory of Open Access Journals (Sweden)

    Gálvez Antonio

    2009-10-01

    Full Text Available Abstract Background Enterocin AS-48 is produced by Enterococcus faecalis S48 to compete with other bacteria in their environment. Due to its activity against various Gram positive and some Gram negative bacteria it has clear potential for use as a food preservative. Here, we studied the effect of enterocin AS-48 challenges on vegetative cells of Bacillus cereus ATCC 14579 by use of transcriptome analysis. Results Of the 5200 genes analysed, expression of 24 genes was found to change significantly after a 30 min treatment with a subinhibitory bacteriocin concentration of 0.5 μg/ml. Most of up-regulated genes encode membrane-associated or secreted proteins with putative transmembrane segments or signal sequences, respectively. One operon involved in arginine metabolism was significantly downregulated. The BC4206-BC4207 operon was found to be the most upregulated target in our experiments. BC4206 codes for a PadR type transcriptional regulator, while BC4207 codes for a hypothetical membrane protein. The operon structure and genes are conserved in B. cereus and B. thuringiensis species, but are not present in B. anthracis and B. subtilis. Using real-time qPCR, we show that these genes are upregulated when we treated the cells with AS-48, but not upon nisin treatment. Upon overexpression of BC4207 in B. cereus, we observed an increased resistance against AS-48. Expression of BC4207 in B. subtilis 168, which lacks this operon also showed increased resistance against AS-48. Conclusion BC4207 membrane protein is involved in the resistance mechanism of B. cereus cells against AS-48.

  20. Binding and Conversion of Selenium in Candida utilis ATCC 9950 Yeasts in Bioreactor Culture

    Directory of Open Access Journals (Sweden)

    Marek Kieliszek

    2017-02-01

    Full Text Available Selenium is considered an essential component of all living organisms. The use of yeasts as a selenium supplement in human nutrition has gained much interest over the last decade. The accumulation and biochemical transformation of selenium in yeast cells is particularly interesting to many researchers. In this article, we present the results of the determination of selenium and selenomethionine content in the biomass of feed yeast Candida utilis ATCC 9950 obtained from the culture grown in a bioreactor. The results indicated that C. utilis cells performed the biotransformation of inorganic selenium(IV to organic derivatives (e.g., selenomethionine. Selenium introduced (20–30 mg Se4+∙L−1 to the experimental media in the form of sodium(IV selenite (Na2SeO3 salt caused a significant increase in selenium content in the biomass of C. utilis,irrespective of the concentration. The highest amount of selenium (1841 μg∙gd.w.−1 was obtained after a 48-h culture in media containing 30 mg Se4+∙L−1. The highest content of selenomethionine (238.8 μg∙gd.w.−1 was found after 48-h culture from the experimental medium that was supplemented with selenium at a concentration of 20 mg Se4+∙L−1. Biomass cell in the cultures supplemented with selenium ranged from 1.5 to 14.1 g∙L−1. The results of this study indicate that yeast cell biomass of C. utilis enriched mainly with the organic forms of selenium can be a valuable source of protein. It creates the possibility of obtaining selenium biocomplexes that can be used in the production of protein-selenium dietary supplements for animals and humans

  1. In-vitro GIT Tolerance of Microencapsulated Bifidobacterium bifidum ATCC 35914 Using Polysaccharide-Protein Matrix.

    Science.gov (United States)

    Iqbal, Rabia; Zahoor, Tahir; Huma, Nuzhat; Jamil, Amer; Ünlü, Gülhan

    2018-03-12

    Longevity of probiotic is the main concern for getting maximum benefits when added in food product. Bifidobacterium, a probiotic, tends to lose its viability during gastrointestinal track (GIT) transit and storage of food. Their viability can be enhanced through microencapsulation technology. In this study, Bifidobacterium bifidum (B. bifidum) ATCC 35914 was encapsulated by using two experimental plans. In the first plan, chitosan (CH) at 0.6, 0.8, and 1.0% and sodium alginate (SA) at 4, 5, and 6% were used. Based on encapsulation efficiency, 6% sodium alginate and 0.8% chitosan were selected for single coating of the bacteria, and the resulting micro beads were double coated with different concentrations (5, 7.5, and 10%) of whey protein concentrate (WPC) in the second plan. Encapsulation efficiency and GIT tolerance were determined by incubating the micro beads in simulated gastrointestinal juices (SIJ) at variable pH and exposure times, and their release (liberation of bacterial cells) profile was also observed in SIJ. The microencapsulated bacterial cells showed significantly (P < 0.01) higher viability as compared to the unencapsulated (free) cells during GIT assay. The double-coated micro beads SA 6%-WPC 5% and CH 0.8%-WPC 5% were proven to have the higher survival at pH 3.0 after 90 min of incubation time and at pH 7.0 after 3-h exposure in comparison to free cells in simulated conditions of the stomach and intestine, respectively. Moreover, double coating with whey protein concentrate played a significant role in the targeted (10 6-9  CFU/mL) delivery under simulated intestinal conditions.

  2. Antibiofilm activity of Streptomyces toxytricini Fz94 against Candida albicans ATCC 10231

    Directory of Open Access Journals (Sweden)

    Sheir DH

    2017-06-01

    Full Text Available Candida albicans is a significant cause of morbidity and mortality in immunocompromised patients worldwide. Biofilm formation by Candida species is a significant virulence factor for disease pathogenesis. Keeping in view the importance of Streptomyces' metabolites, the present study was initiated during the bioprospecting programme of Egyptian Streptomyces carried by the authors since 2013. Native Streptomyces isolates were recovered from soil samples collected from different governorates. Antifungal activity of forty isolates of Streptomyces were performed against planktonic (free cells of C. albicans ATCC 10231 and resistant clinical Candida isolates. Streptomyces isolates showed high inhibition activity against free cells of Candida were further assayed against biofilm of C. albicans reference strain. The most active Streptomyces sp. (no.6 was identified phenotypically, biochemically and by using 16S rRNA. The 16S rRNA sequences obtained were compared with those deposited in the GenBank Database and registered with accession number KM052378 as S. toxytricini Fz94. Screening of S. toxytricini Fz94 extract capability in prevention and destruction of C. albicans reference strain biolfilm was assessed by resazurin dye adopted technique. In the pre-exposure scheme, the lowest concentration of 5 gL-1 showed biofilm viability inhibition of 92% after 120 min, while Ketoconazole® gave 90 % inhibition at concentration of 2 gL-1. In post exposure, the concentration of S. toxytricini Fz94 extract 7gL-1 caused 82 % inhibition of biofilms viability after 120 min, while Ketoconazole did not show any destruction capability. The cytotoxicity of S. toxytricini Fz94 crude extract results showed that it was nontoxic at 10 gL-1. S. toxytricini Fz94 is maintained in the Fungarium of Arab Society for Fungal Conservation (ASFC with accession number FSCU-2017-1110.

  3. Xylan degradation by the human gut Bacteroides xylanisolvens XB1A(T) involves two distinct gene clusters that are linked at the transcriptional level.

    Science.gov (United States)

    Despres, Jordane; Forano, Evelyne; Lepercq, Pascale; Comtet-Marre, Sophie; Jubelin, Gregory; Chambon, Christophe; Yeoman, Carl J; Berg Miller, Margaret E; Fields, Christopher J; Martens, Eric; Terrapon, Nicolas; Henrissat, Bernard; White, Bryan A; Mosoni, Pascale

    2016-05-04

    Plant cell wall (PCW) polysaccharides and especially xylans constitute an important part of human diet. Xylans are not degraded by human digestive enzymes in the upper digestive tract and therefore reach the colon where they are subjected to extensive degradation by some members of the symbiotic microbiota. Xylanolytic bacteria are the first degraders of these complex polysaccharides and they release breakdown products that can have beneficial effects on human health. In order to understand better how these bacteria metabolize xylans in the colon, this study was undertaken to investigate xylan breakdown by the prominent human gut symbiont Bacteroides xylanisolvens XB1A(T). Transcriptomic analyses of B. xylanisolvens XB1A(T) grown on insoluble oat-spelt xylan (OSX) at mid- and late-log phases highlighted genes in a polysaccharide utilization locus (PUL), hereafter called PUL 43, and genes in a fragmentary remnant of another PUL, hereafter referred to as rPUL 70, which were highly overexpressed on OSX relative to glucose. Proteomic analyses supported the up-regulation of several genes belonging to PUL 43 and showed the important over-production of a CBM4-containing GH10 endo-xylanase. We also show that PUL 43 is organized in two operons and that the knockout of the PUL 43 sensor/regulator HTCS gene blocked the growth of the mutant on insoluble OSX and soluble wheat arabinoxylan (WAX). The mutation not only repressed gene expression in the PUL 43 operons but also repressed gene expression in rPUL 70. This study shows that xylan degradation by B. xylanisolvens XB1A(T) is orchestrated by one PUL and one PUL remnant that are linked at the transcriptional level. Coupled to studies on other xylanolytic Bacteroides species, our data emphasize the importance of one peculiar CBM4-containing GH10 endo-xylanase in xylan breakdown and that this modular enzyme may be used as a functional marker of xylan degradation in the human gut. Our results also suggest that B. xylanisolvens

  4. [Tracing the Fecal Contamination Sources Based on Bacteroides 16S rRNA PCR- DGGE in Karst Groundwater: Taking Laolongdong Underground River System, Nanshan, Chongqing as an Example].

    Science.gov (United States)

    Zhang, Hong; Jiang, Yong-jun; Zhang, Yuan-zhu; Duan, Yi-fan; Lü, Xian-fu; He, Qiu-fang

    2016-05-15

    Microbial contamination in karst groundwater continually increases and tracing the source researches has become a hot topic for international researchers. In this study, Laolongdong underground river at Nanshan, Chongqing was chosen as an example to adopt filter membrane methods to monitor the fecal microbial contaminations including the total bacterial concentration (TB), the total E. coli concentration (TE), the total fecal coliform (FC) and the total fecal Streptocoocci (FS). Bacteriodes was used as an indicator and PCR-DGGE analysis was used to trace fecal contamination sources in karst groundwater. The results suggested that groundwater in this area was seriously polluted by microbes from feces. The concentrations of microbial parameters exceeded limited levels greatly and the total bacterial amounts ranged 10-2.9 x 10⁷ CFU · mL⁻¹, the concentrations of E. coli were between 4.3-4.0 x 10⁵ CFU · mL⁻¹, the max concentration of FC was 1.1 x 10⁶ CFU · (100 mL)⁻¹ and the max concentration of FS was 1.1 x 10⁵ CFU · (100 mL)⁻¹. The FC/FS ratios were mostly over 2 which suggested that the main fecal source in groundwater was human feces. In addition, PCR-DGGE contrastive analysis of Bacteroides communities showed that the similarities between groundwater samples and human feces were in range of 7. 1% -69. 1% , and the similarity of the groundwater sample from Laolongdong underground river outlet was 69.1% . Bacteroides community similarities between groundwater samples and swine feces were in range of 1.1%-53.4%, and the similarity of Laolongdong underground river outlet was merely 1.5%. The similarity data implied that groundwater contamination resulted mainly from human feces, swine feces contamination composed part of animals' fecal contamination, and other animals' feces participated too. Furthermore, sequencing results of PCR-DGGE products revealed that most Bacteroides in groundwater originated from human intestinal tract and human feces.

  5. Phenotypic detection of the cfiA metallo-β-lactamase in Bacteroides fragilis with the meropenem-EDTA double-ended Etest and the ROSCO KPC/MBL Confirm Kit

    DEFF Research Database (Denmark)

    Ferløv-Schwensen, Simon Andreas; Acar, Ziyap; Sydenham, Thomas V

    2017-01-01

    OBJECTIVES: To investigate the performance of the meropenem and imipenem double-ended Etest ± EDTA and the tablet-based (meropenem and meropenem + dipicolinic acid) KPC/MBL Confirm Kit to detect cfiA metallo-β-lactamase (MBL) in Bacteroides fragilis. METHODS: Well-characterized B. fragilis isolates...

  6. Degradation of Dextran Produced by Leuconostoc mesenteroides ATCC 13146 using Electron Beam Radiation

    International Nuclear Information System (INIS)

    Hong, Jun Tack; Yoo, Sun Kyun; Kang, Hyun Suk; Lee, Byung Cheol

    2010-01-01

    Dextrans make up a family of glucans that have contiguous alpha-1.6 glucose linkages. Differences in the different dextrans in volve the types, amount, length, and arrangements of the arrangements of the branch chains. The principle type of branch linkages found are alpha-1.3, but alpha-1.2 and-1.4 branch linkages have been also observed. In recent days. dextrans have been investigated as potential macromolecular carriers for delivery of drugs and proteins, primarily to increase the longeveity of therapeutic agents in the circulation. In most previous researches, linear type of dextrans with molecular weigh of Μ w 10,000 to 100,000 have been applied for development of new type of drug delivery agent. Such a size of dextrans have been manufactured by acid hydrolysis, of which processes are multi-steps and time-consumed. Therefore, this objective of this research is to evaluate the characterization of branched degraded by a electron beam radiation. L. mesenteroides ATCC 13146 was cultured on te agar slant medium with the composition of 3.0 g K 2 HPO 4 , 0.01 g FeSO 4 . H 2 O, 0.01 g MnSO 4 . 7H 2 O, 0.01 g NaCl, 0.05 g CaCl 2 , 0.5g yeast extract, 15 g agar and 30 g sucrose per liter deionized water. Medium pH was adjusted to 6.0 prior to sterilization. Dextran production was conducted in a fermentor a working volume of 5 1 by using 18% sucrose under optimum pH condition. The inoculum was 2% of the working volume. Fermentation conditions are 28 C, 100 rpm agitation, and 1 vvm of aeration. The fermentation process continued until sucrose was consumed completely. The branch degree of dextran was evaluated using dextranase and analyzed by TLC. The air-dry dextran and solution dextran was irradiated at room temperature using a electrostatic accelerator. The irradiation doses ranged between 30 kGy to 80 kGy. After irradiation, processed dextran showed still a large of branched form. The degradation degree was increased as radiation intensity. The average molecular weight

  7. Interaction of Wild Strains of Aspergilla with Aspergillus parasiticus ATCC15517 and Aflatoxin Production †

    Science.gov (United States)

    Martins, H. Marina; Almeida, Inês; Marques, Marta; Bernardo, Fernando

    2008-01-01

    Aflatoxins are secondary metabolites produced by some competent mould strains of Aspergillus flavus, A. parasiticus and A. nomius. These compounds have been extensively studied with regards to their toxicity for animals and humans; they are able to induce liver cancer and may cause a wide range of adverse effects in living organisms. Aflatoxins are found as natural contaminants of food and feed; the main line of the strategy to control them is based on the prevention of the mould growth in raw vegetable or during its storage and monitoring of each crop batch. Mould growth is conditioned by many ecological factors, including biotic ones. Hazard characterization models for aflatoxins in crops must take into consideration biotic interactions between moulds and their potential effects on growth development. The aim of this work is to study the effect of the biotic interaction of 14 different wild strains of Aspergilla (different species), with a competent strain (Aspergillus parasiticus ATCC 15517) using an in vitro production model. The laboratory model used was a natural matrix (humidified cracked corn), on which each wild strain challenged the aflatoxin production of a producer strain. Cultures were incubated at 28°C for 12 days and sampled at the 8th and 12th. Aflatoxin detection and quantification was performed by HPLC using a procedure with a MRPL = 1 μg/kg. Results of those interactive cultures revealed both synergic and antagonistic effects on aflatoxin biosynthesis. Productivity increases were particularly evident on the 8th day of incubation with wild strains of A. flavipes (+ 70.4 %), A. versicolor (+ 54.9 %) and A. flavus 3 (+ 62.6 %). Antagonistic effects were found with A. niger (− 69.5%), A. fumigatus (− 47.6 %) and A. terreus (− 47.6 %) on the 12th day. The increased effects were more evident on the 8th of incubation and the decreases were more patent on the 12th day. Results show that the development of Aspergilla strains concomitantly with

  8. Comparative genomics of citric-acid producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, Mikael R.; Salazar, Margarita; Schaap, Peter; van de Vondervoort, Peter; Culley, David E.; Thykaer, Jette; Frisvad, Jens C.; Nielsen, Kristian F.; Albang, Richard; Albermann, Kaj; Berka, Randy; Braus, Gerhard; Braus-Stromeyer, Susanna A.; Corrochano, Luis; Dai, Ziyu; van Dijck, Piet; Hofmann, Gerald; Lasure, Linda L.; Magnuson, Jon K.; Menke, Hildegard; Meijer, Martin; Meijer, Susan; Nielsen, Jakob B.; Nielsen, Michael L.; van Ooyen, Albert; Pel, Herman J.; Poulsen, Lars; Samson, Rob; Stam, Hein; Tsang, Adrian; van den Brink, Johannes M.; ATkins, Alex; Aerts, Andrea; Shapiro, Harris; Pangilinan, Jasmyn; Salamov, Asaf; Lou, Yigong; Lindquist, Erika; Lucas, Susan; Grimwood, Jane; Grigoriev, Igor V.; Kubicek, Christian P.; Martinez, Diego; van Peij, Noel; Roubos, Johannes A.; Nielsen, Jens B.; Baker, Scott E.

    2011-06-01

    The filamentous fungus Aspergillus niger exhibits great diversity in its phenotype. It is found globally, both as marine and terrestrial strains, produces both organic acids and hydrolytic enzymes in high amounts, and some isolates exhibit pathogenicity. Although the genome of an industrial enzyme-producing A. niger strain (CBS 513.88) has already been sequenced, the versatility and diversity of this species compels additional exploration. We therefore undertook whole genome sequencing of the acidogenic A. niger wild type strain (ATCC 1015), and produced a genome sequence of very high quality. Only 15 gaps are present in the sequence and half the telomeric regions have been elucidated. Moreover, sequence information from ATCC 1015 was utilized to improve the genome sequence of CBS 513.88. Chromosome-level comparisons uncovered several genome rearrangements, deletions, a clear case of strain-specific horizontal gene transfer, and identification of 0.8 megabase of novel sequence. Single nucleotide polymorphisms per kilobase (SNPs/kb) between the two strains were found to be exceptionally high (average: 7.8, maximum: 160 SNPs/kb). High variation within the species was confirmed with exo-metabolite profiling and phylogenetics. Detailed lists of alleles were generated, and genotypic differences were observed to accumulate in metabolic pathways essential to acid production and protein synthesis. A transcriptome analysis revealed up-regulation of the electron transport chain, specifically the alternative oxidative pathway in ATCC 1015, while CBS 513.88 showed significant up regulation of genes associated with biosynthesis of amino acids that are abundant in glucoamylase A, tRNA-synthases and protein transporters.

  9. Statistical Optimization of Medium Compositions for High Cell Mass and Exopolysaccharide Production by Lactobacillus plantarum ATCC 8014

    Directory of Open Access Journals (Sweden)

    Nor Zalina Othman

    2018-03-01

    Full Text Available Background and Objective: Lactobacillus plantarum ATCC 8014 is known as a good producer of water soluble exopolysaccharide. Therefore, the aim of this study is to optimize the medium composition concurrently for high cell mass and exopolysaccharide production by Lactobacillus plantarum ATCC 8014. Since both are useful for food and pharmaceutical application and where most studies typically focus on one outcome only, the optimization process was carried out by using molasses as cheaper carbon source.Material and Methods: The main medium component which is known significantly give high effect on the cell mass and EPS production was selected as variables and statistically optimized based on Box-Behnken design in shake flask levels. The optimal medium for cell mass and exopolysaccharide production was composed of (in g l -1: molasses, 40; yeast extract, 16.8; phosphate, 2.72; sodium acetate, 3.98. The model was found to be significant and subsequently validated through the growth kinetics studies in un-optimized and optimized medium in the shake flask cultivation.Results and Conclusion: The maximum cell mass and exopolysaccharide in the new optimized medium was 4.40 g l-1 and 4.37 g l-1 respectively after 44 h of the cultivation. As a result, cell mass and exopolysaccharide production increased up to 4.5 and 16.5 times respectively, and the maximal exopolysaccharide yield of 1.19 per gram of cells was obtained when molasses was used as the carbon source. In conclusion, molasses has the potential to be a cheap carbon source for the cultivation of Lactobacillus plantarum ATCC 8014 concurrently for high cell mass and exopolysaccharide production.Conflict of interest: The authors declare no conflict of interest.

  10. Comparative genomics of citric-acid-producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88

    DEFF Research Database (Denmark)

    Andersen, Mikael Rørdam; Salazar, Margarita Pena; Schaap, Peter J.

    2011-01-01

    The filamentous fungus Aspergillus niger exhibits great diversity in its phenotype. It is found globally, both as marine and terrestrial strains, produces both organic acids and hydrolytic enzymes in high amounts, and some isolates exhibit pathogenicity. Although the genome of an industrial enzyme......-producing A. niger strain (CBS 513.88) has already been sequenced, the versatility and diversity of this species compel additional exploration. We therefore undertook whole-genome sequencing of the acidogenic A. niger wild-type strain (ATCC 1015) and produced a genome sequence of very high quality. Only 15...

  11. Inhibition of Listeria monocytogenes ATCC 19115 on ham steak by tea bioactive compounds incorporated into chitosan-coated plastic films

    Directory of Open Access Journals (Sweden)

    Vodnar Dan C

    2012-07-01

    Full Text Available Abstract Background The consumer demands for better quality and safety of food products have given rise to the development and implementation of edible films. The use of antimicrobial films can be a promising tool for controlling L. monocytogenes on ready to eat products. The aim of this study was to develop effective antimicrobial films incorporating bioactive compounds from green and black teas into chitosan, for controlling L. monocytogenes ATCC 19115 on vacuum-packaged ham steak. The effectiveness of these antimicrobial films was evaluated at room temperature (20°C for 10 days and at refrigerated temperature (4°C for 8 weeks. Results The HPLC results clearly show that relative concentrations of catechins and caffeine in green tea ranked EGCG>EGC>CAF>ECG>EC>C while in black tea extracts ranked CAF>EGCG>ECG>EGC>EC>C. The chitosan-coated plastic films incorporating green tea and black tea extracts shows specific markers identified by FTIR. Incorporating natural extracts into chitosan showed that the growth of L monocytogenes ATCC 19115 was inhibited. The efficacy of antimicrobial effect of tea extracts incorporated into chitosan-coated plastic film was dose dependent. However, chitosan-coated films without addition of tea extracts did not inhibit the growth of L. monocytogenes ATCC 19115. Chitosan-coated plastic films incorporating 4% Green tea extract was the most effective antimicrobial, reducing the initial counts from 3.2 to 2.65 log CFU/cm2 during room temperature storage and from 3.2 to 1–1.5 log CFU/cm2 during refrigerated storage. Conclusions Incorporation of tea extracts into the chitosan-coated films considerably enhanced their effectiveness against L. monocytogenes ATCC 19115. 4% Green tea incorporated into chitosan-coated plastic film had a better antilisterial effect than 2% green tea or 2% and 4% black tea. Data from this study would provide new formulation options for developing antimicrobial packaging films using tea

  12. Comparative genomics of citric-acid producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor V.; Baker, Scott E.; Andersen, Mikael R.; Salazar, Margarita P.; Schaap, Peter J.; Vondervoot, Peter J.I. van de; Culley, David; Thykaer, Jette; Frisvad, Jens C.; Nielsen, Kristen F.; Albang, Richard; Albermann, Kaj; Berka, Randy M.; Braus, Gerhard H.; Braus-Stromeyer, Susanna A.; Corrochano, Luis M.; Dai, Ziyu; Dijck, Piet W.M. van; Hofmann, Gerald; Lasure, Linda L.; Magnusson, Jon K.; Meijer, Susan L.; Nielsen, Jakob B.; Nielsen, Michael L.; Ooyen, Albert J.J. van; Panther, Kathyrn S.; Pel, Herman J.; Poulsen, Lars; Samson, Rob A.; Stam, Hen; Tsang, Adrian; Brink, Johannes M. van den; Atkins, Alex; Aerts, Andrea; Shapiro, Harris; Pangilinan, Jasmyn; Salamov, Asaf; Lou, Yigong; Lindquist, Erika; Lucas, Susan; Grimwood, Jane; Kubicek, Christian P.; Martinez, Diego; Peij, Noel N.M.E. van; Roubos, Johannes A.; Nielsen, Jens

    2011-04-28

    The filamentous fungus Aspergillus niger exhibits great diversity in its phenotype. It is found globally, both as marine and terrestrial strains, produces both organic acids and hydrolytic enzymes in high amounts, and some isolates exhibit pathogenicity. Although the genome of an industrial enzyme-producing A. niger strain (CBS 513.88) has already been sequenced, the versatility and diversity of this species compels additional exploration. We therefore undertook whole genome sequencing of the acidogenic A. niger wild type strain (ATCC 1015), and produced a genome sequence of very high quality. Only 15 gaps are present in the sequence and half the telomeric regions have been elucidated. Moreover, sequence information from ATCC 1015 was utilized to improve the genome sequence of CBS 513.88. Chromosome-level comparisons uncovered several genome rearrangements, deletions, a clear case of strain-specific horizontal gene transfer, and identification of 0.8 megabase of novel sequence. Single nucleotide polymorphisms per kilobase (SNPs/kb) between the two strains were found to be exceptionally high (average: 7.8, maximum: 160 SNPs/kb). High variation within the species was confirmed with exo-metabolite profiling and phylogenetics. Detailed lists of alleles were generated, and genotypic differences were observed to accumulate in metabolic pathways essential to acid production and protein synthesis. A transcriptome analysis revealed up-regulation of the electron transport chain, specifically the alternative oxidative pathway in ATCC 1015, while CBS 513.88 showed significant up-regulation of genes relevant to glucoamylase A production, such as tRNA-synthases and protein transporters. Our results and datasets from this integrative systems biology analysis resulted in a snapshot of fungal evolution and will support further optimization of cell factories based on filamentous fungi.[Supplemental materials (10 figures, three text documents and 16 tables) have been made available

  13. Pre-treatment microbial Prevotella-to-Bacteroides ratio, determines body fat loss success during a 6-month randomized controlled diet intervention

    DEFF Research Database (Denmark)

    Hjorth, M F; Roager, Henrik Munch; Larsen, T. M.

    2017-01-01

    Based on the abundance of specific bacterial genera, the human gut microbiota can be divided into two relatively stable groups that might play a role in personalized nutrition. We studied these simplified enterotypes as prognostic markers for successful body fat loss on two different diets. A total....... divided by Bacteroides spp. (P/B ratio) obtained by quantitative PCR analysis. Modifications of dietary effects of pre-treatment P/B group were examined by linear mixed models. Among individuals with high P/B the NND resulted in a 3.15 kg (95%CI 1.55;4.76, Pfat loss compared to ADD...... to lose body fat on diets high in fiber and wholegrain than subjects with a low P/B-ratio....

  14. Prebiotic effects of wheat arabinoxylan related to the increase in bifidobacteria, Roseburia and Bacteroides/Prevotella in diet-induced obese mice.

    Science.gov (United States)

    Neyrinck, Audrey M; Possemiers, Sam; Druart, Céline; Van de Wiele, Tom; De Backer, Fabienne; Cani, Patrice D; Larondelle, Yvan; Delzenne, Nathalie M

    2011-01-01

    Alterations in the composition of gut microbiota--known as dysbiosis--has been proposed to contribute to the development of obesity, thereby supporting the potential interest of nutrients targeting the gut with beneficial effect for host adiposity. We test the ability of a specific concentrate of water-extractable high molecular weight arabinoxylans (AX) from wheat to modulate both the gut microbiota and lipid metabolism in high-fat (HF) diet-induced obese mice. Mice were fed either a control diet (CT) or a HF diet, or a HF diet supplemented with AX (10% w/w) during 4 weeks. AX supplementation restored the number of bacteria that were decreased upon HF feeding, i.e. Bacteroides-Prevotella spp. and Roseburia spp. Importantly, AX treatment markedly increased caecal bifidobacteria content, in particular Bifidobacterium animalis lactis. This effect was accompanied by improvement of gut barrier function and by a lower circulating inflammatory marker. Interestingly, rumenic acid (C18:2 c9,t11) was increased in white adipose tissue due to AX treatment, suggesting the influence of gut bacterial metabolism on host tissue. In parallel, AX treatment decreased adipocyte size and HF diet-induced expression of genes mediating differentiation, fatty acid uptake, fatty acid oxidation and inflammation, and decreased a key lipogenic enzyme activity in the subcutaneous adipose tissue. Furthermore, AX treatment significantly decreased HF-induced adiposity, body weight gain, serum and hepatic cholesterol accumulation and insulin resistance. Correlation analysis reveals that Roseburia spp. and Bacteroides/Prevotella levels inversely correlate with these host metabolic parameters. Supplementation of a concentrate of water-extractable high molecular weight AX in the diet counteracted HF-induced gut dysbiosis together with an improvement of obesity and lipid-lowering effects. We postulate that hypocholesterolemic, anti-inflammatory and anti-obesity effects are related to changes in gut

  15. Component identification of electron transport chains in curdlan-producing Agrobacterium sp. ATCC 31749 and its genome-specific prediction using comparative genome and phylogenetic trees analysis.

    Science.gov (United States)

    Zhang, Hongtao; Setubal, Joao Carlos; Zhan, Xiaobei; Zheng, Zhiyong; Yu, Lijun; Wu, Jianrong; Chen, Dingqiang

    2011-06-01

    Agrobacterium sp. ATCC 31749 (formerly named Alcaligenes faecalis var. myxogenes) is a non-pathogenic aerobic soil bacterium used in large scale biotechnological production of curdlan. However, little is known about its genomic information. DNA partial sequence of electron transport chains (ETCs) protein genes were obtained in order to understand the components of ETC and genomic-specificity in Agrobacterium sp. ATCC 31749. Degenerate primers were designed according to ETC conserved sequences in other reported species. DNA partial sequences of ETC genes in Agrobacterium sp. ATCC 31749 were cloned by the PCR method using degenerate primers. Based on comparative genomic analysis, nine electron transport elements were ascertained, including NADH ubiquinone oxidoreductase, succinate dehydrogenase complex II, complex III, cytochrome c, ubiquinone biosynthesis protein ubiB, cytochrome d terminal oxidase, cytochrome bo terminal oxidase, cytochrome cbb (3)-type terminal oxidase and cytochrome caa (3)-type terminal oxidase. Similarity and phylogenetic analyses of these genes revealed that among fully sequenced Agrobacterium species, Agrobacterium sp. ATCC 31749 is closest to Agrobacterium tumefaciens C58. Based on these results a comprehensive ETC model for Agrobacterium sp. ATCC 31749 is proposed.

  16. Antagonistic activity of isolated lactic acid bacteria from Pliek U against gram-negative bacteria Escherichia coli ATCC 25922

    Science.gov (United States)

    Kiti, A. A.; Jamilah, I.; Rusmarilin, H.

    2017-09-01

    Lactic acid bacteria (LAB) is one group of microbes that has many benefits, notably in food and health industries sector. LAB plays an important role in food fermentation and it has bacteriostatic effect against the growth of pathogenic microorganisms. The research related LAB continued to be done to increase the diversity of potential isolates derived from nature which is indigenous bacteria for biotechnological purposes. This study was aimed to isolate and characterize LAB derived from pliek u sample and to examine the potency to inhibits Escherichia coli ATCC 25922 bacteria growth. A total of 5 isolates were isolated and based on morphological and physiological characteristics of the fifth bacteria, they are allegedly belonging to the genus Bacillus. Result of antagonistic test showed that the five isolates could inhibits the growth of E. coli ATCC 25922. The highest inhibition zone is 8.5 mm was shown by isolates NQ2, while the lowest inhibition is 1.5 mm was shown by isolates NQ3.

  17. Supplementation of Carbohydrate to Enhance the α-amylase Production by Bacillus licheniformis ATCC 6346 in Presence of Seed Cakes

    Directory of Open Access Journals (Sweden)

    Vengadaramana, A.

    2012-01-01

    Full Text Available Aims: The effect of carbohydrate and amino acids on the production of a-amylase by Bacillus licheniformis ATCC 6346 was investigated. Methodology and results: To find out the influence of carbohydrate the total carbohydrate content of the medium containing different concentration (2-18 g/L of defatted seed cake powder of sesamum and mustard containing medium was kept constant by the addition of soluble starch separately. The highest a-amylase activity obtained in the medium containing 18g/L mustard (59.11+b1.48 U/mL and sesamum seed cake powder (55.23+b1.55 U/mL. The results indicated that under these conditions the carbohydrate content had no effect on the production of a-amylase. Effect of amino acids (0.2g/L of glycine, methionine, proline, lysine, leucine, threonine, serine, arginine, alanine, glutamic acid, tryptophan, glutamine, asparagine, histidine, valine, phenylalanine, isoleucine and mixture of amino acids on the production of a-amylase in fermentation medium was investigated. Among the different amino acids supplemented, eight amino acids improved the a-amylase production but casaminoacids slightly inhibited the enzyme production. In presence of tryptophan highest enzyme activity was obtained than control. Conclusion, significance and impact of study: In these study amino acids especially tryptophan takes part in a particular role rather than carbohydrate in the production of a-amylase from B. licheniformis ATCC 6346.

  18. Complete structure of the cell surface polysaccharide of Streptococcus oralis ATCC 10557: A receptor for lectin-mediated interbacterial adherence

    International Nuclear Information System (INIS)

    Abeygunawardana, C.; Bush, C.A.; Cisar, J.O.

    1991-01-01

    Lectin-carbohydrate binding is known to play an important role in a number of different cell-cell interactions including those between certain species of oral streptococci and actinomyces that colonize teeth. The cell wall polysaccharides of Streptococcus oralis ATCC 10557, S. oralis 34, and Streptococcus mitis J22, although not identical antigenically, each function as a receptor molecule for the galactose and N-acetylgalactosamine reactive fimbrial lectins of Actinomyces viscosus and Actinomyces naeslundii. Carbohydrate analysis of the receptor polysaccharide isolated from S. oralis ATCC 10557 shows galactose (3 mol), glucose (1 mol), GalNAc (1 mol), and rhamnose (1 mol). 1 H NMR spectra of the polysaccharide show that is partially O-acetylated. Analysis of the 1 H NMR spectrum of the de-O-acetylated polysaccharide shows that it is composed of repeating subunits containing six monosaccharides and that the subunits are joined by a phosphodiester linkage. The 1 H and 13 C NMR spectra were completely assigned by two-dimensional homonuclear correlation methods and by 1 H-detected heteronuclear multiple-quantum correlation ( 1 H[ 13 C]HMQC). The complete 1 H and 13 C assignment of the native polysaccharide was carried out by the same techniques augmented by a 13 C-coupled hybrid HMQC-COSY method, which is shown to be especially useful for carbohydrates in which strong coupling and overlapping peaks in the 1 H spectrum pose difficulties

  19. Efficient Simultaneous Saccharification and Fermentation of Inulin to 2,3-Butanediol by Thermophilic Bacillus licheniformis ATCC 14580

    Science.gov (United States)

    Li, Lixiang; Chen, Chao; Li, Kun; Wang, Yu; Gao, Chao; Ma, Cuiqing

    2014-01-01

    2,3-Butanediol (2,3-BD) is an important starting material for the manufacture of bulk chemicals. For efficient and large-scale production of 2,3-BD through fermentation, low-cost substrates are required. One such substrate, inulin, is a polydisperse fructan found in a wide variety of plants. In this study, a levanase with high inulinase activity and high pH and temperature stability was identified in Bacillus licheniformis strain ATCC 14580. B. licheniformis strain ATCC 14580 was found to efficiently produce 2,3-BD from fructose at 50°C. Then, the levanase was used for simultaneous saccharification and fermentation (SSF) of inulin to 2,3-BD. A fed-batch SSF yielded 103.0 g/liter 2,3-BD in 30 h, with a high productivity of 3.4 g/liter · h. The results suggest that the SSF process developed with the thermophilic B. licheniformis strain used might be a promising alternative for efficient 2,3-BD production from the favorable substrate inulin. PMID:25107977

  20. EFEITO DE Ilex paraguariensis St. Hil. e Coffea arabica L. SOBRE O CRESCIMENTO DE Fonsecaea pedrosoi ATCC 46428

    Directory of Open Access Journals (Sweden)

    Maria Lucia Scroferneker

    2007-12-01

    Full Text Available Este trabalho avaliou o efeito de extratos aquosos de Ilex paraguariensis (erva-mate e Coffea arabica (café em ágar Sabouraud dextrose no crescimento de Fonsecaea pedrosoi ATCC 46428. F. pedrosoi foi cultivada em placas de Petri contendo ágar Sabouraud dextrose suplementado com extratos aquosos derivados de 0,5; 1; 2; 3; 4 e 5g de pó de erva-mate ou de café fervidos em 100ml de água destilada por 30 min. Os diâmetros das colônias do fungo foram determinados após 7 dias. A incorporação dos extratos de erva-mate ou café no meio de crescimento não causou diferenças significativas no crescimento radial de F. pedrosoi ATCC 46428 comparado ao controle. Entretanto, estudos sobre o requerimento nutricional são importantes na sistematização do perfil bioquímico, o que pode contribuir na elucidação da bioquímica funcional do microrganismo.

  1. Oscillating behavior of carbohydrate granule formation and dinitrogen fixation in the cyanobacterium Cyanothece sp. strain ATCC 51142

    Science.gov (United States)

    Schneegurt, M. A.; Sherman, D. M.; Nayar, S.; Sherman, L. A.; Mitchell, C. A. (Principal Investigator)

    1994-01-01

    It has been shown that some aerobic, unicellular, diazotrophic cyanobacteria temporally separate photosynthetic O2 evolution and oxygen-sensitive N2 fixation. Cyanothece sp. ATCC strain 51142 is an aerobic, unicellular, diazotrophic cyanobacterium that fixes N2 during discrete periods of its cell cycle. When the bacteria are maintained under diurnal light-dark cycles, N2 fixation occurs in the dark. Similar cycling is observed in continuous light, implicating a circadian rhythm. Under N2-fixing conditions, large inclusion granules form between the thylakoid membranes. Maximum granulation, as observed by electron microscopy, occurs before the onset of N2 fixation, and the granules decrease in number during the period of N2 fixation. The granules can be purified from cell homogenates by differential centrifugation. Biochemical analyses of the granules indicate that these structures are primarily carbohydrate, with some protein. Further analyses of the carbohydrate have shown that it is a glucose polymer with some characteristics of glycogen. It is proposed that N2 fixation is driven by energy and reducing power stored in these inclusion granules. Cyanothece sp. strain ATCC 51142 represents an excellent experimental organism for the study of the protective mechanisms of nitrogenase, metabolic events in cyanobacteria under normal and stress conditions, the partitioning of resources between growth and storage, and biological rhythms.

  2. Production and characterization of thermostable alkaline protease of Bacillus subtilis (ATCC 6633) from optimized solid-state fermentation.

    Science.gov (United States)

    Chatterjee, Joyee; Giri, Sudipta; Maity, Sujan; Sinha, Ankan; Ranjan, Ashish; Rajshekhar; Gupta, Suvroma

    2015-01-01

    Proteases are the most important group of enzymes utilized commercially in various arenas of industries, such as food, detergent, leather, dairy, pharmaceutical, diagnostics, and waste management, accounting for nearly 20% of the world enzyme market. Microorganisms of specially Bacillus genera serve as a vast repository of diverse set of industrially important enzymes and utilized for the large-scale enzyme production using a fermentation technology. Approximately 30%-40% of the cost of industrial enzymes originates from the cost of the growth medium. This study is attempted to produce protease from Bacillus subtilis (ATCC 6633) after optimization of various process parameters with the aid of solid-state fermentation using a cheap nutrient source such as wheat bran. B. subtilis (ATCC 6633) produces proteases of molecular weight 36 and 20 kDa, respectively, in the fermented medium as evident from SDS zymogram. Alkaline protease activity has been detected with optimum temperature at 50 °C and is insensitive to ethylenediaminetetraacetic acid. This thermostable alkaline protease exhibits dual pH optimum at 7 and 10 with moderate pH stability at alkaline pH range. It preserves its activity in the presence of detergent such as SDS, Tween 20, and Triton X-100 and may be considered as an effective additive to detergent formulation with some industrial importance. © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  3. The Small Protein HemP Is a Transcriptional Activator for the Hemin Uptake Operon in Burkholderia multivorans ATCC 17616.

    Science.gov (United States)

    Sato, Takuya; Nonoyama, Shouta; Kimura, Akane; Nagata, Yuji; Ohtsubo, Yoshiyuki; Tsuda, Masataka

    2017-08-15

    Iron and heme play very important roles in various metabolic functions in bacteria, and their intracellular homeostasis is maintained because high concentrations of free forms of these molecules greatly facilitate the Fenton reaction-mediated production of large amounts of reactive oxygen species that severely damage various biomolecules. The ferric uptake regulator (Fur) from Burkholderia multivorans ATCC 17616 is an iron-responsive global transcriptional regulator, and its fur deletant exhibits pleiotropic phenotypes. In this study, we found that the phenotypes of the fur deletant were suppressed by an additional mutation in hemP The transcription of hemP was negatively regulated by Fur under iron-replete conditions and was constitutive in the fur deletant. Growth of a hemP deletant was severely impaired in a medium containing hemin as the sole iron source, demonstrating the important role of HemP in hemin utilization. HemP was required as a transcriptional activator that specifically binds the promoter-containing region upstream of a Fur-repressive hmuRSTUV operon, which encodes the proteins for hemin uptake. A hmuR deletant was still able to grow using hemin as the sole iron source, albeit at a rate clearly lower than that of the wild-type strain. These results strongly suggested (i) the involvement of HmuR in hemin uptake and (ii) the presence in ATCC 17616 of at least part of other unknown hemin uptake systems whose expression depends on the HemP function. Our in vitro analysis also indicated high-affinity binding of HemP to hemin, and such a property might modulate transcriptional activation of the hmu operon. IMPORTANCE Although the hmuRSTUV genes for the utilization of hemin as a sole iron source have been identified in a few Burkholderia strains, the regulatory expression of these genes has remained unknown. Our analysis in this study using B. multivorans ATCC 17616 showed that its HemP protein is required for expression of the hmuRSTUV operon, and the

  4. Supporting data for comparative proteomic analysis of Listeria monocytogenes ATCC 7644 exposed to a sublethal concentration of nisin

    Directory of Open Access Journals (Sweden)

    Kendi Nishino Miyamoto

    2015-06-01

    Full Text Available Here we provide the LC–MS/MS data from a comparative analysis of Listeria monocytogenes ATCC 7644 treated and non-treated with a sublethal concentration of nisin (10−3 mg/mL. Protein samples were analyzed by multidimensional protein identification technology (MudPIT approach, in an off-line configuration. The raw MS/MS data allowed the detection of 49,591 spectra which resulted in 576 protein identifications. After Scaffold validation, 179 proteins were identified with high confidence. A label-free quantitative analysis based of normalized spectral abundance factor (NSAF was used and 13 proteins were found differentially expressed between nisin-treated and non-treated cells. Gene ontology analysis of differentially expressed proteins revealed that most of them are correlated to metabolic process, oxidative stress response mechanisms and molecular binding. A detailed analysis and discussion of these data may be found in Miyamoto et al. [1].

  5. Succinate, iron chelation, and monovalent cations affect the transformation efficiency of Acinetobacter baylyi ATCC 33305 during growth in complex media.

    Science.gov (United States)

    Leong, Colleen G; Boyd, Caroline M; Roush, Kaleb S; Tenente, Ricardo; Lang, Kristine M; Lostroh, C Phoebe

    2017-10-01

    Natural transformation is the acquisition of new genetic material via the uptake of exogenous DNA by competent bacteria. Acinetobacter baylyi is model for natural transformation. Here we focus on the natural transformation of A. baylyi ATCC 33305 grown in complex media and seek environmental conditions that appreciably affect transformation efficiency. We find that the transformation efficiency for A. baylyi is a resilient characteristic that remains high under most conditions tested. We do find several distinct conditions that alter natural transformation efficiency including addition of succinate, Fe 2+ (ferrous) iron chelation, and substitution of sodium ions with potassium ones. These distinct conditions could be useful to fine tune transformation efficiency for researchers using A. baylyi as a model organism to study natural transformation.

  6. A Refined Model for the Structure of Acireductone Dioxygenase from Klebsiella ATCC 8724 Incorporating Residual Dipolar Couplings

    Energy Technology Data Exchange (ETDEWEB)

    Pochapsky, Thomas C., E-mail: pochapsk@brandeis.edu; Pochapsky, Susan S.; Ju Tingting [Brandeis University, Department of Chemistry (United States); Hoefler, Chris [Brandeis University, Department of Biochemistry (United States); Liang Jue [Brandeis University, Department of Chemistry (United States)

    2006-02-15

    Acireductone dioxygenase (ARD) from Klebsiella ATCC 8724 is a metalloenzyme that is capable of catalyzing different reactions with the same substrates (acireductone and O{sub 2}) depending upon the metal bound in the active site. A model for the solution structure of the paramagnetic Ni{sup 2+}-containing ARD has been refined using residual dipolar couplings (RDCs) measured in two media. Additional dihedral restraints based on chemical shift (TALOS) were included in the refinement, and backbone structure in the vicinity of the active site was modeled from a crystallographic structure of the mouse homolog of ARD. The incorporation of residual dipolar couplings into the structural refinement alters the relative orientations of several structural features significantly, and improves local secondary structure determination. Comparisons between the solution structures obtained with and without RDCs are made, and structural similarities and differences between mouse and bacterial enzymes are described. Finally, the biological significance of these differences is considered.

  7. Producão de goma xantana por X. Campestris ATCC 13951 utilizando soro de queijo desproteinado

    Directory of Open Access Journals (Sweden)

    Jenny Sobenes G.

    2015-12-01

    Full Text Available A goma xantana é um biopolímero microbiano producido pela bactéria Xanthomonas. O presente trabalho teve como objetivo estudar a produção de goma xantana por processo fermentativo utilizando a linhagem X. campestris ATCC 13951 e como fonte de carbono: soro de queijo desproteinado suplementado com extrato de levedura e sulfato de amônia como fontes de nitrogênio; soro de queijo desproteinado suplementado só com extrato de levedura como fonte de nitrogênio e só soro de queijo desproteinado sem suplementos, tempo de fermentação de 72h para os três meios. Dos meios em análise aquele constituido apenas por soro de queijo desproteinado, atingiu o maior rendimento com valor de 58% e a melhor qualidade de goma.

  8. Erythromycin and azithromycin transport into Haemophilus influenzae ATCC 19418 under conditions of depressed proton motive force (delta mu H)

    Energy Technology Data Exchange (ETDEWEB)

    Capobianco, J.O.; Goldman, R.C. (Abbott Laboratories, IL (USA))

    1990-09-01

    The effect of collapsing the electrochemical proton gradient (delta mu H) on ({sup 3}H)erythromycin and ({sup 14}C)azithromycin transport in Haemophilus influenzae ATCC 19418 was studied. The proton gradient and membrane potential were determined from the distribution of (2-{sup 14}C)dimethadione and rubidium-86, respectively. delta mu H was reduced from 124 to 3 mV in EDTA-valinomycin-treated cells at 22{degrees}C with 150 mM KCl and 0.1 mM carbonyl cyanide m-chlorophenylhydrazone. During the collapse of delta mu H, macrolide uptake increased. Erythromycin efflux studies strongly suggested that this increase was not due to an energy-dependent efflux pump but was likely due to increased outer membrane permeability. These data indicated that macrolide entry was not a delta mu H-driven active transport process but rather a passive diffusion process.

  9. Expression, purification, crystallization and preliminary X-ray diffraction analysis of carbonyl reductase from Candida parapsilosis ATCC 7330

    International Nuclear Information System (INIS)

    Aggarwal, Nidhi; Mandal, P. K.; Gautham, Namasivayam; Chadha, Anju

    2013-01-01

    The expression, purification, crystallization, preliminary X-ray diffraction and molecular-replacement studies on C. parapsilosis carbonyl reductase are reported. The NAD(P)H-dependent carbonyl reductase from Candida parapsilosis ATCC 7330 catalyses the asymmetric reduction of ethyl 4-phenyl-2-oxobutanoate to ethyl (R)-4-phenyl-2-hydroxybutanoate, a precursor of angiotensin-converting enzyme inhibitors such as Cilazapril and Benazepril. The carbonyl reductase was expressed in Escherichia coli and purified by GST-affinity and size-exclusion chromatography. Crystals were obtained by the hanging-drop vapour-diffusion method and diffracted to 1.86 Å resolution. The asymmetric unit contained two molecules of carbonyl reductase, with a solvent content of 48%. The structure was solved by molecular replacement using cinnamyl alcohol dehydrogenase from Saccharomyces cerevisiae as a search model

  10. Elucidating the molecular physiology of lantibiotic NAI-107 production in Microbispora ATCC-PTA-5024

    DEFF Research Database (Denmark)

    Gallo, Giuseppe; Renzone, Giovanni; Palazzotto, Emilia

    2016-01-01

    by a complex regulatory and metabolic network that may be elucidated by the integration of genomic, proteomic and bioinformatic tools. Accordingly, an extensive evaluation of the proteomic changes associated with NAI-107 production was performed on Microbispora ATCC-PTA-5024 by combining two......; ii) during three time-points (117, 140, and 162 h) at D stage characterized by different profiles of NAI-107 yield accumulation (117 and 140 h) and decrement (162 h). Regulatory, metabolic and unknown-function proteins, were identified and functionally clustered, revealing that nutritional signals......, regulatory cascades and primary metabolism shift-down trigger the accumulation of protein components involved in nitrogen and phosphate metabolism, cell wall biosynthesis/maturation, lipid metabolism, osmotic stress response, multi-drug resistance, and NAI-107 transport. The stimulating role on physiological...

  11. Genetic Variation of the SusC/SusD Homologs from a Polysaccharide Utilization Locus Underlies Divergent Fructan Specificities and Functional Adaptation in Bacteroides thetaiotaomicron Strains.

    Science.gov (United States)

    Joglekar, Payal; Sonnenburg, Erica D; Higginbottom, Steven K; Earle, Kristen A; Morland, Carl; Shapiro-Ward, Sarah; Bolam, David N; Sonnenburg, Justin L

    2018-01-01

    Genomic differences between gut-resident bacterial strains likely underlie significant interindividual variation in microbiome function. Traditional methods of determining community composition, such as 16S rRNA gene amplicon sequencing, fail to capture this functional diversity. Metagenomic approaches are a significant step forward in identifying strain-level sequence variants; however, given the current paucity of biochemical information, they too are limited to mainly low-resolution and incomplete functional predictions. Using genomic, biochemical, and molecular approaches, we identified differences in the fructan utilization profiles of two closely related Bacteroides thetaiotaomicron strains. B. thetaiotaomicron 8736 ( Bt-8736 ) contains a fructan polysaccharide utilization locus (PUL) with a divergent susC / susD homolog gene pair that enables it to utilize inulin, differentiating this strain from other characterized Bt strains. Transfer of the distinct pair of susC / susD genes from Bt-8736 into the noninulin using type strain B. thetaiotaomicron VPI-5482 resulted in inulin use by the recipient strain, Bt ( 8736-2 ). The presence of the divergent susC / susD gene pair alone enabled the hybrid Bt ( 8736-2 ) strain to outcompete the wild-type strain in vivo in mice fed an inulin diet. Further, we discovered that the susC / susD homolog gene pair facilitated import of inulin into the periplasm without surface predigestion by an endo-acting enzyme, possibly due to the short average chain length of inulin compared to many other polysaccharides. Our data builds upon recent reports of dietary polysaccharide utilization mechanisms found in members of the Bacteroides genus and demonstrates how the acquisition of two genes can alter the functionality and success of a strain within the gut. IMPORTANCE Dietary polysaccharides play a dominant role in shaping the composition and functionality of our gut microbiota. Dietary interventions using these m icrobiota- a

  12. Comparative genomics of citric-acid-producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88

    Science.gov (United States)

    Andersen, Mikael R.; Salazar, Margarita P.; Schaap, Peter J.; van de Vondervoort, Peter J.I.; Culley, David; Thykaer, Jette; Frisvad, Jens C.; Nielsen, Kristian F.; Albang, Richard; Albermann, Kaj; Berka, Randy M.; Braus, Gerhard H.; Braus-Stromeyer, Susanna A.; Corrochano, Luis M.; Dai, Ziyu; van Dijck, Piet W.M.; Hofmann, Gerald; Lasure, Linda L.; Magnuson, Jon K.; Menke, Hildegard; Meijer, Martin; Meijer, Susan L.; Nielsen, Jakob B.; Nielsen, Michael L.; van Ooyen, Albert J.J.; Pel, Herman J.; Poulsen, Lars; Samson, Rob A.; Stam, Hein; Tsang, Adrian; van den Brink, Johannes M.; Atkins, Alex; Aerts, Andrea; Shapiro, Harris; Pangilinan, Jasmyn; Salamov, Asaf; Lou, Yigong; Lindquist, Erika; Lucas, Susan; Grimwood, Jane; Grigoriev, Igor V.; Kubicek, Christian P.; Martinez, Diego; van Peij, Noël N.M.E.; Roubos, Johannes A.; Nielsen, Jens; Baker, Scott E.

    2011-01-01

    The filamentous fungus Aspergillus niger exhibits great diversity in its phenotype. It is found globally, both as marine and terrestrial strains, produces both organic acids and hydrolytic enzymes in high amounts, and some isolates exhibit pathogenicity. Although the genome of an industrial enzyme-producing A. niger strain (CBS 513.88) has already been sequenced, the versatility and diversity of this species compel additional exploration. We therefore undertook whole-genome sequencing of the acidogenic A. niger wild-type strain (ATCC 1015) and produced a genome sequence of very high quality. Only 15 gaps are present in the sequence, and half the telomeric regions have been elucidated. Moreover, sequence information from ATCC 1015 was used to improve the genome sequence of CBS 513.88. Chromosome-level comparisons uncovered several genome rearrangements, deletions, a clear case of strain-specific horizontal gene transfer, and identification of 0.8 Mb of novel sequence. Single nucleotide polymorphisms per kilobase (SNPs/kb) between the two strains were found to be exceptionally high (average: 7.8, maximum: 160 SNPs/kb). High variation within the species was confirmed with exo-metabolite profiling and phylogenetics. Detailed lists of alleles were generated, and genotypic differences were observed to accumulate in metabolic pathways essential to acid production and protein synthesis. A transcriptome analysis supported up-regulation of genes associated with biosynthesis of amino acids that are abundant in glucoamylase A, tRNA-synthases, and protein transporters in the protein producing CBS 513.88 strain. Our results and data sets from this integrative systems biology analysis resulted in a snapshot of fungal evolution and will support further optimization of cell factories based on filamentous fungi. PMID:21543515

  13. Structural and functional analysis of the S-layer protein crystallisation domain of Lactobacillus acidophilus ATCC 4356 : evidence for protein : protein interaction of two subdomains

    NARCIS (Netherlands)

    Smit, E.; Jager, D.; Martinez, B.; Tielen, F.J.; Pouwels, P.H.

    2002-01-01

    The structure of the crystallisation domain, SAN, of the S A-protein of Lactobacillus acidophilus ATCC 4356 was analysed by insertion and deletion mutagenesis, and by proteolytic treatment. Mutant S A-protein synthesised in Escherichia coli with 7-13 amino acid insertions near the N terminus or

  14. Genome sequences of three tunicamycin-producing Streptomyces strains; S. chartreusis NRRL 12338, S. chartreusis NRRL 3882, and S. lysosuperificus ATCC 31396

    Science.gov (United States)

    S. chartreusis strains NRRL 12338 and NRRL 3882, S. clavuligerus NRRL 3585, and S. lysosuperificus ATCC 31396, are known producers of tunicamycins, and also of charteusins, clavulinate, cephalosporins, holomycins, and calcimycin. Here we announce the sequencing of the S. lysosuperificus and the two...

  15. Comparative genomics and transcriptome analysis of Lactobacillus rhamnosus ATCC 11443 and the mutant strain SCT-10-10-60 with enhanced L-lactic acid production capacity.

    Science.gov (United States)

    Sun, Liang; Lu, Zhilong; Li, Jianxiu; Sun, Feifei; Huang, Ribo

    2018-02-01

    Mechanisms for high L-lactic acid production remain unclear in many bacteria. Lactobacillus rhamnosus SCT-10-10-60 was previously obtained from L. rhamnosus ATCC 11443 via mutagenesis and showed improved L-lactic acid production. In this study, the genomes of strains SCT-10-10-60 and ATCC 11443 were sequenced. Both genomes are a circular chromosome, 2.99 Mb in length with a GC content of approximately 46.8%. Eight split genes were identified in strain SCT-10-10-60, including two LytR family transcriptional regulators, two Rex redox-sensing transcriptional repressors, and four ABC transporters. In total, 60 significantly up-regulated genes (log 2 fold-change ≥ 2) and 39 significantly down-regulated genes (log 2 fold-change ≤ - 2) were identified by a transcriptome comparison between strains SCT-10-10-60 and ATCC 11443. KEGG pathway enrichment analysis revealed that "pyruvate metabolism" was significantly different (P < 0.05) between the two strains. The split genes and the differentially expressed genes involved in the "pyruvate metabolism" pathway are probably responsible for the increased L-lactic acid production by SCT-10-10-60. The genome and transcriptome sequencing information and comparison of SCT-10-10-60 with ATCC 11443 provide insights into the anabolism of L-lactic acid and a reference for improving L-lactic acid production using genetic engineering.

  16. No evidence of harms of probiotic Lactobacillus rhamnosus GG ATCC 53103 in healthy elderly-a Phase I Open Label Study to assess safety, tolerability and cytokine responses

    Science.gov (United States)

    Although Lactobacillus rhamnosus GG ATCC 53103 (LGG) has been consumed since the mid 1990s by between 2 and 5 million people daily, the scientific literature lacks rigorous clinical trials that describe the potential harms of LGG, particularly in the elderly. The primary objective of this open label...

  17. Expression of cbsA encoding the collagen-binding S-protein of Lactobacillus crispatus JCM5810 in Lactobacillus casei ATCC 393T

    NARCIS (Netherlands)

    Martínez, B.; Sillanpää, J.; Smit, E.; Korhonen, T.K.; Pouwels, P.H.

    2000-01-01

    The cbsA gene encoding the collagen-binding S-layer protein of Lactobacillus crispatus JCM5810 was expressed in L. casei ATCC 393T. The S-protein was not retained on the surface of the recombinant bacteria but was secreted into the medium. By translational fusion of CbsA to the cell wall sorting

  18. Design of mineral medium for growth of Actinomadura sp.ATCC 39727, producer of the glycopeptide A40926: effects of calcium ions and nitrogen sources

    Czech Academy of Sciences Publication Activity Database

    Dobrová, Zuzana; Damiano, F.; Tredici, S. M.; Vigliotta, G.; Di Summa, R.; Palese, L.; Abbrescia, A.; Labonia, N.; Gnoni, G. V.; Alifano, P.

    2004-01-01

    Roč. 65, - (2004), s. 671-677 ISSN 0175-7598 Grant - others:IT(CZ) Progetto MIUR 488 Aventis Bulk S.P.A.; Italy "Nuovetecnologie per lo studio di microorganismy altoproduttoridi antibiotici"(CZ) - Keywords : actinomadura * atcc Subject RIV: EE - Microbiology, Virology Impact factor: 2.358, year: 2004

  19. Difference in cellular damage and cell death in thermal death time disks and high hydrostatic pressure treated Salmonella Enteritidis (ATCC13076) in liquid whole egg

    Science.gov (United States)

    Differences in membrane damage including leakage of intracellular UV-materials and loss of viability of Salmonella Enteritidis (ATCC13076) in liquid whole egg (LWE) following thermal-death-time (TDT) disk and high hydrostatic pressure treatments were examined. Salmonella enteritidis was inoculated ...

  20. Complete Genome Sequence of Spiroplasma floricola 23-6T (ATCC 29989), a Bacterium Isolated from a Tulip Tree (Liriodendron tulipifera L.).

    Science.gov (United States)

    Tsai, Yi-Ming; Wu, Pei-Shan; Lo, Wen-Sui; Kuo, Chih-Horng

    2018-04-19

    Spiroplasma floricola 23-6 T (ATCC 29989) was isolated from the flower surface of a tulip tree ( Liriodendron tulipifera L.). Here, we report the complete genome sequence of this bacterium to facilitate the investigation of its biology and the comparative genomics among Spiroplasma species. Copyright © 2018 Tsai et al.

  1. Distribution, detection of enterotoxigenic strains and antimicrobial drug susceptibility patterns of Bacteroides fragilis group in diarrheic and non-diarrheic feces from Brazilian infants

    Directory of Open Access Journals (Sweden)

    Débora Paula Ferreira

    2010-10-01

    Full Text Available Despite the importance of gastrointestinal diseases and their global distribution, affecting millions of individuals around the world, the role and antimicrobial susceptibility patterns of anaerobic bacteria such as those in the Bacteroides fragilis group (BFG are still unclear in young children. This study investigated the occurrence and distribution of species in the BFG and enterotoxigenic strains in the fecal microbiota of children and their antimicrobial susceptibility patterns. Diarrheic (n=110 and non-diarrheic (n=65 fecal samples from children aged 0-5 years old were evaluated. BFG strains were isolated and identified by conventional biochemical, physiological and molecular approaches. Alternatively, bacteria and enterotoxigenic strains were detected directly from feces by molecular biology. Antimicrobial drug susceptibility patterns were determined by the agar dilution method according to the guidelines for isolated bacteria. BFG was detected in 64.3% of the fecal samples (55% diarrheic and 80.4% non-diarrheic, and 4.6% were enterotoxigenic. Antimicrobial resistance was observed against ampicillin, ampicillin/sulbactam, piperacillin/tazobactam, meropenem, ceftriaxone, clindamycin and chloramphenicol. The data show that these bacteria are prevalent in fecal microbiota at higher levels in healthy children. The molecular methodology was more effective in identifying the B. fragilis group when compared to the biochemical and physiological techniques. The observation of high resistance levels stimulates thoughts about the indiscriminate use of antimicrobial drugs in early infancy. Further quantitative studies are needed to gain a better understanding of the role of these bacteria in acute diarrhea in children.

  2. Propolis from Different Geographic Origins Suppress Intestinal Inflammation in a Model of DSS-Induced Colitis is Associated with Decreased Bacteroides spp. in the Gut.

    Science.gov (United States)

    Wang, Kai; Jin, Xiaolu; Li, Qiangqiang; Sawaya, Alexandra Christine Helena Frankland; Leu, Richard K Le; Conlon, Michael A; Wu, Liming; Hu, Fuliang

    2018-06-11

    Dietary supplementation with polyphenol-rich propolis can protect against experimentally-induced colitis. We examined whether different polyphenol compositions of Chinese propolis (CP) and Brazilian propolis (BP) influences their ability to protect against dextran sulfate sodium (DSS)-induced colitis in rats. HPLC-DAD/Q-TOF-MS analysis confirmed that polyphenol compositions of CP and BP were dissimilar. Rats were given CP or BP by gavage (300 mg/kg body weight) throughout the study, starting 1 week prior to DSS treatment for 1 week followed by 3 d without DSS. CP and BP significantly reduced the colitis disease activity index relative to controls not receiving propolis, prevented significant DSS-induced colonic tissue damage and increased resistance to DSS-induced colonic oxidative stress as shown by reduced malonaldehyde levels and increased T-AOC levels. CP and BP significantly reduced DSS-induced colonic apoptosis. Colonic inflammatory markers IL-1β, IL-6 and MCP-1 were suppressed by CP and BP, whereas only BP induced expression of TGF-β. CP, not BP, increased the diversity and richness of gut microbiota populations. Both forms of propolis significantly reduced populations of Bacteroides spp. Despite the dissimilar polyphenol compositions of CP and BP, their ability to protect against DSS-induced colitis is similar. Nevertheless, some different physiological impacts were observed. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  3. The Dysregulation of Polyamine Metabolism in Colorectal Cancer Is Associated with Overexpression of c-Myc and C/EBPβ rather than Enterotoxigenic Bacteroides fragilis Infection

    Directory of Open Access Journals (Sweden)

    Anastasiya V. Snezhkina

    2016-01-01

    Full Text Available Colorectal cancer is one of the most common cancers in the world. It is well known that the chronic inflammation can promote the progression of colorectal cancer (CRC. Recently, a number of studies revealed a potential association between colorectal inflammation, cancer progression, and infection caused by enterotoxigenic Bacteroides fragilis (ETBF. Bacterial enterotoxin activates spermine oxidase (SMO, which produces spermidine and H2O2 as byproducts of polyamine catabolism, which, in turn, enhances inflammation and tissue injury. Using qPCR analysis, we estimated the expression of SMOX gene and ETBF colonization in CRC patients. We found no statistically significant associations between them. Then we selected genes involved in polyamine metabolism, metabolic reprogramming, and inflammation regulation and estimated their expression in CRC. We observed overexpression of SMOX, ODC1, SRM, SMS, MTAP, c-Myc, C/EBPβ (CREBP, and other genes. We found that two mediators of metabolic reprogramming, inflammation, and cell proliferation c-Myc and C/EBPβ may serve as regulators of polyamine metabolism genes (SMOX, AZIN1, MTAP, SRM, ODC1, AMD1, and AGMAT as they are overexpressed in tumors, have binding site according to ENCODE ChIP-Seq data, and demonstrate strong coexpression with their targets. Thus, increased polyamine metabolism in CRC could be driven by c-Myc and C/EBPβ rather than ETBF infection.

  4. Instant screening and verification of carbapenemase activity in Bacteroides fragilis in positive blood culture, using matrix-assisted laser desorption ionization--time of flight mass spectrometry.

    Science.gov (United States)

    Johansson, Åsa; Nagy, Elisabeth; Sóki, József

    2014-08-01

    Rapid identification of isolates in positive blood cultures are of great importance to secure correct treatment of septicaemic patients. As antimicrobial resistance is increasing, rapid detection of resistance is crucial. Carbapenem resistance in Bacteroides fragilis associated with cfiA-encoded class B metallo-beta-lactamase is emerging. In our study we spiked blood culture bottles with 26 B. fragilis strains with various cfiA-status and ertapenem MICs. By using main spectra specific for cfiA-positive and cfiA-negative B. fragilis strains, isolates could be screened for resistance. To verify strains that were positive in the screening, a carbapenemase assay was performed where the specific peaks of intact and hydrolysed ertapenem were analysed with matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). We show here that it is possible to correctly identify B. fragilis and to screen for enzymic carbapenem resistance directly from the pellet of positive blood cultures. The carbapenemase assay to verify the presence of the enzyme was successfully performed on the pellet from the direct identification despite the presence of blood components. The result of the procedure was achieved in 3 h. Also the Bruker mass spectrometric β-lactamase assay (MSBL assay) prototype software was proven not only to be based on an algorithm that correlated with the manual inspection of the spectra, but also to improve the interpretation by showing the variation in the dataset. © 2014 The Authors.

  5. The Fumarate Reductase of Bacteroides thetaiotaomicron, unlike That of Escherichia coli, Is Configured so that It Does Not Generate Reactive Oxygen Species

    Directory of Open Access Journals (Sweden)

    Zheng Lu

    2017-01-01

    Full Text Available The impact of oxidative stress upon organismal fitness is most apparent in the phenomenon of obligate anaerobiosis. The root cause may be multifaceted, but the intracellular generation of reactive oxygen species (ROS likely plays a key role. ROS are formed when redox enzymes accidentally transfer electrons to oxygen rather than to their physiological substrates. In this study, we confirm that the predominant intestinal anaerobe Bacteroides thetaiotaomicron generates intracellular ROS at a very high rate when it is aerated. Fumarate reductase (Frd is a prominent enzyme in the anaerobic metabolism of many bacteria, including B. thetaiotaomicron, and prior studies of Escherichia coli Frd showed that the enzyme is unusually prone to ROS generation. Surprisingly, in this study biochemical analysis demonstrated that the B. thetaiotaomicron Frd does not react with oxygen at all: neither superoxide nor hydrogen peroxide is formed. Subunit-swapping experiments indicated that this difference does not derive from the flavoprotein subunit at which ROS normally arise. Experiments with the related enzyme succinate dehydrogenase discouraged the hypothesis that heme moieties are responsible. Thus, resistance to oxidation may reflect a shift of electron density away from the flavin moiety toward the iron-sulfur clusters. This study shows that the autoxidizability of a redox enzyme can be suppressed by subtle modifications that do not compromise its physiological function. One implication is that selective pressures might enhance the oxygen tolerance of an organism by manipulating the electronic properties of its redox enzymes so they do not generate ROS.

  6. Hydrophobicities of human polymorphonuclear leukocytes and oral Bacteroides and Porphyromonas spp., Wolinella recta, and Eubacterium yurii with special reference to bacterial surface structures.

    Science.gov (United States)

    Haapasalo, M; Kerosuo, E; Lounatmaa, K

    1990-12-01

    The hydrophobicities of human polymorphonuclear leukocytes (PMNLs) and Bacteroides buccae, B. oris, B. oralis, B. veroralis, B. buccalis, B. heparinolyticus, B. intermedius, B. denticola, B. loescheii, B. melaninogenicus, Porphyromonas gingivalis, P. endodontalis, Wolinella recta, and Eubacterium yurii were studied by the hexadecane method. The majority of the strains were equally or less hydrophobic than the PMNLs. Only in the case of E. yurii and the only strain of B. buccalis were all strains more hydrophobic than the PMNLs. However, some strains of B. intermedius, B. oris, B. denticola, and P. gingivalis were also more hydrophobic than the PMNLs. With the exception of B. intermedius and species with a crystalline surface protein layer (S-layer), the strains of all other species with a thick capsule were more hydrophilic than the strains with little or no extracellular polymeric material. All strains of the S-layer species were either quite hydrophilic or hydrophobic depending on the species, totally irrespective of the presence of the capsule. The results suggest that the S-layers of oral anaerobic bacteria may be important determinants of cell surface hydrophobicity.

  7. (ATCC 14917) and Lactobacillus plantarum (ATCC 43332)

    African Journals Online (AJOL)

    STORAGESEVER

    2008-09-17

    Sep 17, 2008 ... culture on the staling and microbiological shelf life of Iranian Barbari wheat bread was studied. For ... between lactobacilli and yeasts had significant effects on ... Commercial sourdough processes do not rely on fortui-.

  8. [Pharmacokinetics/pharmacodinamic (PK/PD) evaluation of a short course of oral administration of metronidazole for the management of infections caused by Bacteroides fragilis].

    Science.gov (United States)

    Morales-León, Felipe; von Plessing-Rossel, Carlos; Villa-Zapata, Lorenzo; Fernández-Rocca, Pola; Sanhueza-Sanhueza, Cindy; Bello-Toledo, Helia; Mella-Montecinos, Sergio

    2015-04-01

    Metronidazole is the antibiotic of choice for the management of infections caused by anaerobes. Its administration requires multiple daily doses causing increased medication errors. Due to its high post-antibiotic effect and rapid concentration-dependent bactericidal activity, administration of this antibiotic in an extended dosing interval would achieve PK/PD parameters effectively. To assess the probability of achieving effective PK/PD relationship with the administration of 1,000 mg every 24 hours of metronidazole for Bacteroides fragilis infections. A clinical trial was conducted in a group of volunteers who received a single oral dose of 500 or 1,000 mg of metronidazole. Determinations of values of Cmax, t max, and AUCC0-24 h. determined using the trapezoidal method, were obtained for a Markov simulation that would allow for determining the likelihood of achieving a AUC0-24 h/MIC ratio above 70 for infections caused by susceptible B. fragilis. Cmax (24,03 ± 6,89 mg/L) and t max (1,20 ± 0.80 hrs) and the value of AUC0-24 h (241.91 ± 48.14 mg * h/L) were determined. The probability of obtaining a AUC0-24 h/MIC ratio greater than 70 was greater than 99%. From a pharmacokinetic perspective, with the administration of a daily dose of 1,000 mg of metronidazole, it is possible to achieve a therapeutic goal of AUC0-24 h/MIC ratio above 70 for the treatment of anaerobic infections.

  9. Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome.

    Directory of Open Access Journals (Sweden)

    Nathan P McNulty

    Full Text Available The human gut microbiota is an important metabolic organ, yet little is known about how its individual species interact, establish dominant positions, and respond to changes in environmental factors such as diet. In this study, gnotobiotic mice were colonized with an artificial microbiota comprising 12 sequenced human gut bacterial species and fed oscillating diets of disparate composition. Rapid, reproducible, and reversible changes in the structure of this assemblage were observed. Time-series microbial RNA-Seq analyses revealed staggered functional responses to diet shifts throughout the assemblage that were heavily focused on carbohydrate and amino acid metabolism. High-resolution shotgun metaproteomics confirmed many of these responses at a protein level. One member, Bacteroides cellulosilyticus WH2, proved exceptionally fit regardless of diet. Its genome encoded more carbohydrate active enzymes than any previously sequenced member of the Bacteroidetes. Transcriptional profiling indicated that B. cellulosilyticus WH2 is an adaptive forager that tailors its versatile carbohydrate utilization strategy to available dietary polysaccharides, with a strong emphasis on plant-derived xylans abundant in dietary staples like cereal grains. Two highly expressed, diet-specific polysaccharide utilization loci (PULs in B. cellulosilyticus WH2 were identified, one with characteristics of xylan utilization systems. Introduction of a B. cellulosilyticus WH2 library comprising >90,000 isogenic transposon mutants into gnotobiotic mice, along with the other artificial community members, confirmed that these loci represent critical diet-specific fitness determinants. Carbohydrates that trigger dramatic increases in expression of these two loci and many of the organism's 111 other predicted PULs were identified by RNA-Seq during in vitro growth on 31 distinct carbohydrate substrates, allowing us to better interpret in vivo RNA-Seq and proteomics data. These

  10. A Review of the Effective Factors for Lovastatin Production by Aspergillus Terreus Atcc 20542 in Liquid Submerged Fermentation

    Directory of Open Access Journals (Sweden)

    F Jaberi Ansari

    2016-12-01

    Full Text Available BACKGROUND AND OBJECTIVE: Deposition of cholesterol in the arteries is the one of the main causes of cardiovascular disease. Lovastatin is a blood cholesterol-lowering drug that inhibits 3-Hydroxy 3-methyl glutaryl-CoA reductase (HMG-CoA reductase enzyme. The aim of this study was to evaluate the effective factors for lovastatin production by Aspergillus terreus ATCC 20542. METHODS: This study is a literature review, In order to gather information, articles containing one of the words in their text, including: Cardiovascular disease, Lovastatin, HMG-CoA reductase, Liquid submerged fermentation, Aspergillus terreus were searched between 1960 and 2016 in PUBMED, NATURE, SCIENCE DIRECT and WHO databases. FINDINGS: A total of 180 papers found that of these, 70 were diagnosed article suitable for this study. According to the results, lactose as the best carbon source, soya been and yeast extract as the nitrogen source, C/N ratio of 41.3, the 107 spores/ml, the pH equal to 6.5, Fe, Zn, Mn as mineral elements and inducer such as linoleic acid at a optimum concentration causes the highest amount of lovastatin. CONCLUSION: The study shows, the source of carbon and nitrogen, the C/N, the amount and type of inoculation, pH, minerals and inducer are the most important factors affecting the morphology and oxygen uptake by the, Aspergillus terreus and hence also affect the production of lovastatin

  11. The effect of viscosity, friction, and sonication on the morphology and metabolite production from Aspergillus terreus ATCC 20542.

    Science.gov (United States)

    Rahim, Muhamad Hafiz Abd; Hasan, Hanan; Harith, Hanis H; Abbas, Ali

    2017-12-01

    This study investigates the effects of viscosity, friction, and sonication on the morphology and the production of lovastatin, (+)-geodin, and sulochrin by Aspergillus terreus ATCC 20542. Sodium alginate and gelatine were used to protect the fungal pellet from mechanical force by increasing the media viscosity. Sodium alginate stimulated the production of lovastatin by up to 329.0% and sulochrin by 128.7%, with inhibitory effect on (+)-geodin production at all concentrations used. However, the use of gelatine to increase viscosity significantly suppressed lovastatin, (+)-geodin, and sulochrin's production (maximum reduction at day 9 of 42.7, 60.8, and 68.3%, respectively), which indicated that the types of chemical play a major role in metabolite production. Higher viscosity increased both pellet biomass and size in all conditions. Friction significantly increased (+)-geodin's titre by 1527.5%, lovastatin by 511.1%, and sulochrin by 784.4% while reducing pellet biomass and size. Conversely, sonication produced disperse filamentous morphology with significantly lower metabolites. Sodium alginate-induced lovastatin and sulochrin production suggest that these metabolites are not affected by viscosity; rather, their production is affected by the specific action of certain chemicals. In contrast, low viscosity adversely affected (+)-geodin's production, while pellet disintegration can cause a significant production of (+)-geodin.

  12. Alterations in Aspergillus brasiliensis (niger) ATCC 9642 membranes associated to metabolism modifications during application of low-intensity electric current.

    Science.gov (United States)

    Velasco-Alvarez, Nancy; Gutiérrez-Rojas, Mariano; González, Ignacio

    2017-12-01

    The effects of electric current on membranes associated with metabolism modifications in Aspergillus brasiliensis (niger) ATCC 9642 were studied. A 450-mL electrochemical cell with titanium ruthenium-oxide coated electrodes and packed with 15g of perlite, as inert support, was inoculated with A. brasiliensis spores and incubated in a solid inert-substrate culture (12 d; 30°C). Then, 4.5days after starting the culture, a current of 0.42mAcm -2 was applied for 24h. The application of low-intensity electric current increased the molecular oxygen consumption rate in the mitochondrial respiratory chain, resulting in high concentrations of reactive oxygen species, promoting high lipoperoxidation levels, according to measured malondialdehyde, and consequent alterations in membrane permeability explained the high n-hexadecane (HXD) degradation rates observed here (4.7-fold higher than cultures without current). Finally, cell differentiation and spore production were strongly stimulated. The study contributes to the understanding of the effect of current on the cell membrane and its association with HXD metabolism. Copyright © 2017. Published by Elsevier B.V.

  13. Severely Heat Injured Survivors of E. coli O157:H7 ATCC 43888 Display Variable and Heterogeneous Stress Resistance Behavior

    Science.gov (United States)

    Gayán, Elisa; Govers, Sander K.; Michiels, Chris W.; Aertsen, Abram

    2016-01-01

    Although minimal food processing strategies aim to eliminate foodborne pathogens and spoilage microorganisms through a combination of mild preservation techniques, little is actually known on the resistance behavior of the small fraction of microorganisms surviving an inimical treatment. In this study, the conduct of severely heat stressed survivors of E. coli O157:H7 ATCC 43888, as an indicator for the low infectious dose foodborne enterohemorrhagic strains, was examined throughout their resuscitation and outgrowth. Despite the fact that these survivors were initially sublethally injured, they were only marginally more sensitive to a subsequent heat treatment and actually much more resistant to a subsequent high hydrostatic pressure (HHP) shock in comparison with unstressed control cells. Throughout further resuscitation, however, their initial HHP resistance rapidly faded out, while their heat resistance increased and surpassed the initial heat resistance of unstressed control cells. Results also indicated that the population eventually emerging from the severely heat stressed survivors heterogeneously consisted of both growing and non-growing cells. Together, these observations provide deeper insights into the particular behavior and heterogeneity of stressed foodborne pathogens in the context of food preservation. PMID:27917163

  14. Severely heat injured survivors of E. coli O157:H7 ATCC 43888 display variable and heterogeneous stress resistance behavior

    Directory of Open Access Journals (Sweden)

    Elisa Gayán

    2016-11-01

    Full Text Available Although minimal food processing strategies aim to eliminate foodborne pathogens and spoilage microorganisms through a combination of mild preservation techniques, little is actually known on the resistance behavior of the small fraction of microorganisms surviving an inimical treatment. In this study, the conduct of severely heat stressed survivors of E. coli O157:H7 ATCC 43888, as an indicator for the low infectious dose foodborne enterohaemorrhagic strains, was examined throughout their resuscitation and outgrowth. Despite the fact that these survivors were initially sublethally injured, they were only marginally more sensitive to a subsequent heat treatment and actually much more resistant to a subsequent high hydrostatic pressure (HHP shock in comparison with unstressed control cells. Throughout further resuscitation, however, their initial HHP resistance rapidly faded out, while their heat resistance increased and surpassed the initial heat resistance of unstressed control cells. Results also indicated that the population eventually emerging from the severely heat stressed survivors heterogeneously consisted of both growing and non-growing persister-like cells. Together, these observations provide deeper insights into the particular behavior and heterogeneity of stressed foodborne pathogens in the context of food preservation.

  15. EFFECT OF CULTURE MEDIUM ON BACTERIOCIN PRODUCTION BY LACTOBACILLUS RHAMNOSUS HN001 AND LACTOBACILLUS REUTERI ATCC 53608

    Directory of Open Access Journals (Sweden)

    Aguilar-Uscanga B. R.

    2013-06-01

    Full Text Available The aim of this study was to evaluate the effect of media on bacteriocin production by Lactobacillus rhamnosus HN001 and Lactobacillus reuteri ATCC 53608 using three different media: YPM, YPF and MRS supplemented with glucose and K2HPO4. The optimum temperature was 37°C and initial pH 6.5. Bacteriocin-like substances produced by tested bacteria in MRS medium supplemented with glucose and K2HPO4 exhibited a broad antimicrobial spectrum determined by well diffusion assay against indicator bacteria Listeria monocytogenes, Lactobacillus sakei, Enterococcus faecium, Lactobacillus delbrueckii, Lactobacillus acidophilus, but no antimicrobial spectrum against E. coli O157:H7, Salmonella typhimurium, Staphylococcus aureus, Bacillus cereus was detected. Bacteriocin was sensitive to protease IV, trypsin, pepsin and -amylases, but resistant to lipase. It was also resistant to detergents such as Tween 80, Triton-X and SDS. This bacteriocin was thermo-stable (resistant at 60°C, 90°C and 100°C for 30 min. Tested bacteria showed the best antimicrobial (bacteriocin-like activity after growth in MRS medium. Bacteriocin substances produced by tested bacteria showed promising thermo-stable technological properties.

  16. Overcoming hydrolysis of raw corn starch under industrial conditions with Bacillus licheniformis ATCC 9945a α-amylase.

    Science.gov (United States)

    Šokarda Slavić, Marinela; Pešić, Milja; Vujčić, Zoran; Božić, Nataša

    2016-03-01

    α-Amylase from Bacillus licheniformis ATCC 9945a (BliAmy) was proven to be very efficient in hydrolysis of granular starch below the temperature of gelatinization. By applying two-stage feeding strategy to achieve high-cell-density cultivation of Escherichia coli and extracellular production of BliAmy, total of 250.5 U/mL (i.e. 0.7 g/L) of enzyme was obtained. Thermostability of amylase was exploited to simplify purification. The hydrolysis of concentrated raw starch was optimized using response surface methodology. Regardless of raw starch concentration tested (20, 25, 30 %), BliAmy was very effective, achieving the final hydrolysis degree of 91 % for the hydrolysis of 30 % starch suspension after 24 h. The major A-type crystalline structure and amorphous domains of the starch granule were degraded at the same rates, while amylose-lipid complexes were not degraded. BliAmy presents interesting performances on highly concentrated solid starch and could be of value for starch-consuming industries while response surface methodology (RSM) could be efficiently applied for the optimization of the hydrolysis.

  17. Reconstruction and comparison of the metabolic potential of cyanobacteria Cyanothece sp. ATCC 51142 and Synechocystis sp. PCC 6803.

    Directory of Open Access Journals (Sweden)

    Rajib Saha

    Full Text Available Cyanobacteria are an important group of photoautotrophic organisms that can synthesize valuable bio-products by harnessing solar energy. They are endowed with high photosynthetic efficiencies and diverse metabolic capabilities that confer the ability to convert solar energy into a variety of biofuels and their precursors. However, less well studied are the similarities and differences in metabolism of different species of cyanobacteria as they pertain to their suitability as microbial production chassis. Here we assemble, update and compare genome-scale models (iCyt773 and iSyn731 for two phylogenetically related cyanobacterial species, namely Cyanothece sp. ATCC 51142 and Synechocystis sp. PCC 6803. All reactions are elementally and charge balanced and localized into four different intracellular compartments (i.e., periplasm, cytosol, carboxysome and thylakoid lumen and biomass descriptions are derived based on experimental measurements. Newly added reactions absent in earlier models (266 and 322, respectively span most metabolic pathways with an emphasis on lipid biosynthesis. All thermodynamically infeasible loops are identified and eliminated from both models. Comparisons of model predictions against gene essentiality data reveal a specificity of 0.94 (94/100 and a sensitivity of 1 (19/19 for the Synechocystis iSyn731 model. The diurnal rhythm of Cyanothece 51142 metabolism is modeled by constructing separate (light/dark biomass equations and introducing regulatory restrictions over light and dark phases. Specific metabolic pathway differences between the two cyanobacteria alluding to different bio-production potentials are reflected in both models.

  18. Investigating the influence of pH, temperature and agitation speed on yellow pigment production by Penicillium aculeatum ATCC 10409.

    Science.gov (United States)

    Afshari, Majid; Shahidi, Fakhri; Mortazavi, Seyed Ali; Tabatabai, Farideh; Es'haghi, Zarin

    2015-01-01

    In this study, the combined effect of pH, temperature and agitation speed on yellow pigment production and mycelial growth of Penicillium aculeatum ATCC 10409 was investigated in whey media. Different pH levels (5, 6.5 and 8), temperatures (25, 30 and 35°C) and agitation speed levels (100 and 150 rpm) were tested to determine the best conditions to produce a fungal yellow pigment under submerged fermentation. The best production of yellow pigment (1.38 g/L) was obtained with a pH value of 6.5, a temperature of 30°C and an agitation speed of 150 rpm. In contrast, the maximal biomass concentration (11.12 g/L) was obtained at pH value of 8, a temperature of 30°C and an agitation speed of 100 rpm. These results demonstrated that biomass and yellow pigment production were not directly associated. The identification of the structure of unknown P. aculeatum yellow pigment was detected using UV absorption spectrum and FT-IR spectroscopy.

  19. Acridine orange as an alternative to optical density to study growth kinetics of Lactobacillus bulgaricus ATCC 7517.

    Science.gov (United States)

    Pak, Dolar; Koo, Ok Kyung; Story, Robert S; O'Bryan, Corliss A; Crandall, Philip G; Lee, Sun-Ok; Ricke, Steven C

    2013-01-01

    In this study we assessed the use of acridine orange as an alternative to optical density to quantify the growth of Lactobacillus bulgaricus ATCC 7517. The growth of bacteria in Lactobacillus de Man Rogosa Sharpe (MRS) medium was measured by both acridine orange (AO) and optical density (OD) measurements for 24 h. The relationship between both methods was compared via correlation analysis. The doubling time of bacteria based on the values of OD600 and AO obtained during 24 h growth were also calculated. The result shows strong correlation of cell growth between OD600 and AO during the first 10 hours of growth, but the correlation was less strong when analyzing the data from 0 to 24 hours. Growth rates, generation time and lag time were also similar. This study indicates that AO could be used in place of OD to prepare growth curves of Lactobacillus bulgaricus during the exponential phase of growth, and to compare growth rates, generation times or lag times.

  20. Replacement of Soybean Meal with Animal Origin Protein Meals Improved Ramoplanin A2 Production by Actinoplanes sp. ATCC 33076.

    Science.gov (United States)

    Erkan, Deniz; Kayali, Hulya Ayar

    2016-09-01

    Ramoplanin A2 is the last resort antibiotic for treatment of many high morbidity- and mortality-rated hospital infections, and it is expected to be marketed in the forthcoming years. Therefore, high-yield production of ramoplanin A2 gains importance. In this study, meat-bone meal, poultry meal, and fish meal were used instead of soybean meal for ramoplanin A2 production by Actinoplanes sp. ATCC 33076. All animal origin nitrogen sources stimulated specific productivity. Ramoplanin A2 levels were determined as 406.805 mg L(-1) in fish meal medium and 374.218 mg L(-1) in poultry meal medium. These levels were 4.25- and 4.09-fold of basal medium, respectively. However, the total yield of poultry meal was higher than that of fish meal, which is also low-priced. In addition, the variations in pH levels, protein levels, reducing sugar levels, extracellular protease, amylase and lipase activities, and intracellular free amino acid levels were monitored during the incubation period. The correlations between ramoplanin production and these variables with respect to the incubation period were determined. The intracellular levels of L-Phe, D-Orn, and L-Leu were found critical for ramoplanin A2 production. The strategy of using animal origin nitrogen sources can be applied for large-scale ramoplanin A2 production.

  1. Gene expression of a two-component regulatory system associated with sunscreen biosynthesis in the cyanobacterium Nostoc punctiforme ATCC 29133.

    Science.gov (United States)

    Janssen, Jacob; Soule, Tanya

    2016-01-01

    Long-wavelength ultraviolet radiation (UVA) can damage cells through photooxidative stress, leading to harmful photosensitized proteins and pigments in cyanobacteria. To mitigate damage, some cyanobacteria secrete the UVA-absorbing pigment scytonemin into their extracellular sheath. Comparative genomic analyses suggest that scytonemin biosynthesis is regulated by the two-component regulatory system (TCRS) proteins encoded by Npun_F1277 and Npun_F1278 in the cyanobacterium Nostoc punctiforme ATCC 29133. To understand the dynamics of these genes, their expression was measured following exposure to UVA, UVB, high visible (VIS) irradiance and oxidative stress for 20, 40 and 60 min. Overall, both genes had statistically similar patterns of expression for all four conditions and were generally upregulated, except for those exposed to UVB by 60 min and for the cells under oxidative stress. The greatest UVA response was an upregulation by 20 min, while the response to UVB was the most dramatic and persisted through 40 min. High VIS irradiance resulted in a modest upregulation, while oxidative stress caused a slight downregulation. Both genes were also found to occur on the same transcript. These results demonstrate that these genes are positively responding to several light-associated conditions, which suggests that this TCRS may regulate more than just scytonemin biosynthesis under UVA stress. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. The global response of Nostoc punctiforme ATCC 29133 to UVA stress, assessed in a temporal DNA microarray study.

    Science.gov (United States)

    Soule, Tanya; Gao, Qunjie; Stout, Valerie; Garcia-Pichel, Ferran

    2013-01-01

    Cyanobacteria in nature are exposed not only to the visible spectrum of sunlight but also to its harmful ultraviolet components (UVA and UVB). We used Nostoc punctiforme ATCC 29133 as a model to study the UVA response by analyzing global gene expression patterns using genomic microarrays. UVA exposure resulted in the statistically detectable differential expression of 573 genes of the 6903 that were probed, compared with that of the control cultures. Of those genes, 473 were up-regulated, while only 100 were down-regulated. Many of the down-regulated genes were involved in photosynthetic pigment biosynthesis, indicating a significant shift in this metabolism. As expected, we detected the up-regulation of genes encoding antioxidant enzymes and the sunscreen, scytonemin. However, a majority of the up-regulated genes, 47%, were unassignable bioinformatically to known functional categories, suggesting that the UVA stress response is not well understood. Interestingly, the most dramatic up-regulation involved several contiguous genes of unassigned metabolism on plasmid A. This is the first global UVA stress response analysis of any phototrophic microorganism and the differential expression of 8% of the genes of the Nostoc genome indicates that adaptation to UVA in Nostoc has been an evolutionary force of significance. © 2012 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2012 The American Society of Photobiology.

  3. An indigoidine biosynthetic gene cluster from Streptomyces chromofuscus ATCC 49982 contains an unusual IndB homologue.

    Science.gov (United States)

    Yu, Dayu; Xu, Fuchao; Valiente, Jonathan; Wang, Siyuan; Zhan, Jixun

    2013-01-01

    A putative indigoidine biosynthetic gene cluster was located in the genome of Streptomyces chromofuscus ATCC 49982. The silent 9.4-kb gene cluster consists of five open reading frames, named orf1, Sc-indC, Sc-indA, Sc-indB, and orf2, respectively. Sc-IndC was functionally characterized as an indigoidine synthase through heterologous expression of the enzyme in both Streptomyces coelicolor CH999 and Escherichia coli BAP1. The yield of indigoidine in E. coli BAP1 reached 2.78 g/l under the optimized conditions. The predicted protein product of Sc-indB is unusual and much larger than any other reported IndB-like protein. The N-terminal portion of this enzyme resembles IdgB and the C-terminal portion is a hypothetical protein. Sc-IndA and/or Sc-IndB were co-expressed with Sc-IndC in E. coli BAP1, which demonstrated the involvement of Sc-IndB, but not Sc-IndA, in the biosynthetic pathway of indigoidine. The yield of indigoidine was dramatically increased by 41.4 % (3.93 g/l) when Sc-IndB was co-expressed with Sc-IndC in E. coli BAP1. Indigoidine is more stable at low temperatures.

  4. Live and Heat-Killed Lactobacillus rhamnosus ATCC 7469 May Induce Modulatory Cytokines Profiles on Macrophages RAW 264.7.

    Science.gov (United States)

    Jorjão, Adeline Lacerda; de Oliveira, Felipe Eduardo; Leão, Mariella Vieira Pereira; Carvalho, Cláudio Antonio Talge; Jorge, Antonio Olavo Cardoso; de Oliveira, Luciane Dias

    2015-01-01

    This study aimed to evaluate the capacity of Lactobacillus rhamnosus and/or its products to induce the synthesis of cytokines (TNF-α, IL-1β, IL-4, IL-6, IL-10, and IL-12) by mouse macrophages (RAW 264.7). Three microorganism preparations were used: live L. rhamnosus (LLR) suspension, heat-killed L. rhamnosus (HKLR) suspension, and the supernatant of a heat-killed L. rhamnosus (SHKLR) suspension, which were cultured with macrophages (37°C, 5% CO2) for 2 h and 30 min. After that, cells were cultured for 16 h. The supernatants were used for the quantitation of cytokines, by ELISA. The results were compared with the synthesis induced by lipopolysaccharide (LPS) and analysed, using ANOVA and Tukey test, 5%. LLR and HKLR groups were able to significantly increase the production of TNF-α, IL-6, and IL-10 (P 0.05). All the L. rhamnosus suspensions were not able to produce detectable levels of IL-1β or significant levels of IL-4 and IL-12 (P > 0.05). In conclusion, live and heat-killed L. rhamnosus suspensions were able to induce the synthesis of different cytokines with proinflammatory (TNF-α and IL-6) or regulatory (IL-10) functions, suggesting the role of strain L. rhamnosus ATCC 7469 in the modulation or in the stimulation of immune responses.

  5. Live and Heat-Killed Lactobacillus rhamnosus ATCC 7469 May Induce Modulatory Cytokines Profiles on Macrophages RAW 264.7

    Directory of Open Access Journals (Sweden)

    Adeline Lacerda Jorjão

    2015-01-01

    Full Text Available This study aimed to evaluate the capacity of Lactobacillus rhamnosus and/or its products to induce the synthesis of cytokines (TNF-α, IL-1β, IL-4, IL-6, IL-10, and IL-12 by mouse macrophages (RAW 264.7. Three microorganism preparations were used: live L. rhamnosus (LLR suspension, heat-killed L. rhamnosus (HKLR suspension, and the supernatant of a heat-killed L. rhamnosus (SHKLR suspension, which were cultured with macrophages (37°C, 5% CO2 for 2 h and 30 min. After that, cells were cultured for 16 h. The supernatants were used for the quantitation of cytokines, by ELISA. The results were compared with the synthesis induced by lipopolysaccharide (LPS and analysed, using ANOVA and Tukey test, 5%. LLR and HKLR groups were able to significantly increase the production of TNF-α, IL-6, and IL-10 (P0.05. All the L. rhamnosus suspensions were not able to produce detectable levels of IL-1β or significant levels of IL-4 and IL-12 (P>0.05. In conclusion, live and heat-killed L. rhamnosus suspensions were able to induce the synthesis of different cytokines with proinflammatory (TNF-α and IL-6 or regulatory (IL-10 functions, suggesting the role of strain L. rhamnosus ATCC 7469 in the modulation or in the stimulation of immune responses.

  6. Canonical Analysis Technique as an Approach to Determine Optimal Conditions for Lactic Acid Production by Lactobacillus helveticus ATCC 15009

    Directory of Open Access Journals (Sweden)

    Marcelo Teixeira Leite

    2012-01-01

    Full Text Available The response surface methodology and canonical analysis were employed to find the most suitable conditions for Lactobacillus helveticus to produce lactic acid from cheese whey in batch fermentation. The analyzed variables were temperature, pH, and the concentrations of lactose and yeast extract. The experiments were carried out according to a central composite design with three center points. An empiric equation that correlated the concentration of lactic acid with the independent variables was proposed. The optimal conditions determined by the canonical analysis of the fitted model were 40°C, pH 6.8, 82 g/L of lactose, and 23.36 g/L of yeast extract. At this point, the lactic acid concentration reached 59.38 g/L. A subsequent fermentation, carried out under optimal conditions, confirmed the product concentration predicted by the adjusted model. This concentration of lactic acid is the highest ever reported for Lactobacillus helveticus ATCC 15009 in batch process using cheese whey as substrate.

  7. Ethanol production from sunflower meal biomass by simultaneous saccharification and fermentation (SSF) with Kluyveromyces marxianus ATCC 36907.

    Science.gov (United States)

    Camargo, Danielle; Gomes, Simone D; Sene, Luciane

    2014-11-01

    The lignocellulosic materials are considered promising renewable resources for ethanol production, but improvements in the processes should be studied to reduce operating costs. Thus, the appropriate enzyme loading for cellulose saccharification is critical for process economics. This study aimed at evaluating the concentration of cellulase and β-glucosidase in the production of bioethanol by simultaneous saccharification and fermentation (SSF) of sunflower meal biomass. The sunflower biomass was pretreated with 6% H2SO4 (w/v), at 121 °C, for 20 min, for hemicellulose removal and delignificated with 1% NaOH. SSF was performed with Kluyveromyces marxianus ATCC 36907, at 38 °C, 150 rpm, for 72 h, with different enzyme concentrations (Cellulase Complex NS22086-10, 15 and 20 FPU/gsubstrate and β-Glucosidase NS22118, with a cellulase to β-glucosidase ratio of 1.5:1; 2:1 and 3:1). The best condition for ethanol production was cellulase 20 FPU/gsubstrate and β-glucosidase 13.3 CBU/gsubstrate, resulting in 27.88 g/L ethanol, yield of 0.47 g/g and productivity of 0.38 g/L h. Under this condition the highest enzymatic conversion of cellulose to glucose was attained (87.06%).

  8. Statistical Optimization for Biobutanol Production by Clostridium acetobutylicum ATCC 824 from Oil Palm Frond (OPF Juice Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Muhamad Nasrah Nur Syazana

    2017-01-01

    Full Text Available The interaction between incubation temperature, yeast extract concentration and inoculum size was investigated to optimize critical environmental parameters for production of biobutanol from oil palm frond (OPF juice by Clostridium acetobutylicum ATCC 824 using response surface methodology (RSM. A central composite design (CCD was applied as the experimental design and a polynomial regression model with quadratic term was used to analyse the experimental data using analysis of variance (ANOVA. ANOVA analysis showed that the model was very significant (p < 0.0001 for the biobutanol production. The incubation temperature, yeast extract concentration and inoculum size showed significant value at p < 0.005. The results of optimization process showed that a maximum biobutanol production was obtained under the condition of temperature 37 °C, yeast extract concentration 5.5 g/L and inoculum size 10%. Under these optimized conditions, the highest biobutanol yield was 0.3054 g/g after 144 hours of incubation period. The model was validated by applying the optimized conditions and 0.2992 g/g biobutanol yield was obtained. These experimental findings were in close agreement with the model prediction, with a difference of only 9.76%.

  9. Quantitative proteomics revealed partial fungistatic mechanism of ammonia against conidial germination of nematode-trapping fungus Arthrobotrys oligospora ATCC24927.

    Science.gov (United States)

    Liu, Tong; Tian, Dong-Wei; Zou, Li-Juan; Liu, Fang-Yu; Can, Qi-Yan; Yang, Jin-Kui; Xu, Jian-Ping; Huang, Xiao-Wei; Xi, Jia-Qin; Zhu, Ming-Liang; Mo, Ming-He; Zhang, Ke-Qin

    2018-05-01

    Ammonia is one of the fungistatic factors in soil that can suppress conidial germination, but the molecular mechanism underlying the suppression is unknown. In this study, the proteomes of fungistatic conidia, fresh conidia and germinated conidia of Arthrobotrys oligospora ATCC24927 were determined and quantified. The protein expression profile of fungistatic conidia was significantly different from those in the other two conditions. 281 proteins were down expressed in fungistatic conidia and characterized by GO annotation. Gene transcription analysis and inhibition of puromycin (a protein translation inhibitor) on conidial germination suggested that down expression of 33 protein translation related proteins might well result in repression of protein synthesis and inhibition of conidial germination. In addition, 16 down-expressed proteins were mapped to the Ras/mitogen-activated protein (Ras/MAP) regulatory networks which regulate conidial DNA synthesis. The conidial DNA synthesis was found to be definitely inhibited under by ammonia, and function studies of two Ras/MAP proteins by using knock-out strains provided partial evidence that Ras/MAP pathway regulate the conidial germination. These results suggested that down-expression of Ras/MAP related proteins might result in inhibition of DNA synthesis and finally result in inhibition conidial germination. This study revealed partial fungistatic mechanism of ammonia against conidial germination. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Characterization and chromosomal organization of the murD-murC-ftsQ region of Corynebacterium glutamicum ATCC 13869.

    Science.gov (United States)

    Ramos, Angelina; Honrubia, Maria P; Vega, Daniel; Ayala, Juan A; Bouhss, Ahmed; Mengin-Lecreulx, Dominique; Gil, José A

    2004-04-01

    The sequence of a 4.6-kb region of DNA from Corynebacterium glutamicum ATCC 13869 lying upstream from the ftsQ-ftsZ region has been determined. The region contains four genes with high similarity to the murD, ftsW, murG, and murC genes from different microorganisms. The products of these mur genes probably catalyse several steps in the formation of the precursors for peptidoglycan synthesis in C. glutamicum, whereas ftsW might play also a role in the stabilisation of the FtsZ ring during cell division. The murC gene product was purified to near homogeneity and its UDP-N-acetylmuramate: L-alanine adding activity was demonstrated. Northern analysis indicated that ftsW, murG and ftsQ are poorly expressed in C. glutamicum whereas murC and ftsZ are expressed at higher levels at the beginning of the exponential phase. Dicistronic (ftsQ-ftsZ) and monocistronic (murC and ftsZ) transcripts can be detected using specific probes and are in agreement with the lack of transcriptional terminators in the partially analysed dcw cluster. Disruption experiments performed in C. glutamicum using internal fragments of the ftsW, murG and murC genes allowed us to conclude that FtsW, MurG, and MurC are essential gene products in C. glutamicum.

  11. ANTIMICROBIAL PROPERTIES OF HYDROXYAPATITE COATINGS CONTAINING OF CHITOSAN AND SILVER ON TITANIUM SUBSTRATES IN RELATION TO MICROORGANISMS E.COLI ATCC 25922

    Directory of Open Access Journals (Sweden)

    Sukhodub LB

    2013-03-01

    Full Text Available In this work it was studied the antibacterial properties of coatings based on HA, with Chitosan and silver ions additions, produced by substrates termodeposition method from aqueous solutions with varying concentrations of Chitosan (0.025 and 0.1 g/l and silver (1 mg/l as the antimicrobial components as well as three-part cover, consisting of a film of Chitosan, HA and silver. Study on antibacterial properties of composite coatings on the pathogen E.coli ATCC 25922 was held by Spectrophotometric measurement and analysis of optical density of suspensions, containing samples. 3 series of measurements data were averaged. The results showed that the concentration of antimicrobial components have indicated a bacteriostatic effect of coatings on the culture of E. coli AS ATCC 25922 in physiological solution at a temperature of 37 °C. The most effective was the three-part cover consisting of a film of chitosan, HA and silver.

  12. Antimicrobial activity optimization of nisin, ascorbic acid and ethylenediamine tetraacetic acid disodium salt (EDTA against Salmonella Enteritidis ATCC 13076 using response surface methodology

    Directory of Open Access Journals (Sweden)

    Nongpanga Sangcharoen

    2017-10-01

    Full Text Available Nisin is a commercial bacteriocin produced by Lactococcus lactis subsp. lactis and widely used as a natural preservative in the food industry. However, while nisin alone cannot inhibit the growth of Gram-negative bacteria, it can in combination with a chelating agent or organic acid. This study combined nisin with some chelating agents, weak organic acids and their salts to inhibit Salmonella Enteritidis ATCC 13076. The combinations of nisin (2000 parts per million; ppm and ascorbic acid (2000 ppm or ethylenediamine tetraacetic acid disodium salt (EDTA; 7400 ppm showed significant inhibitory effects on the target strain. Due to regulatory limits, the second part of the study reduced the concentrations of nisin, ascorbic acid and EDTA to 500 ppm, 2000 ppm and 250 ppm, respectively. The mixture of nisin, ascorbic acid and EDTA showed the highest inhibitory effect with a reduction number of 3.41 log colony forming units (p < 0.05. To minimize the growth of S. Enteritidis ATCC 13076, central composite design and response surface methodology were applied to investigate the combined effect of nisin (0–500 ppm, ascorbic acid (0–2000 ppm, and EDTA (0–250 ppm on the target strain growth. Among the three factors, nisin had a higher antimicrobial effect than ascorbic acid or EDTA, while an increase in nisin resulted in a decrease in S. Enteritidis ATCC 13076 growth. The optimum concentration was 500 ppm nisin with 1515 ppm ascorbic acid and 250 ppm EDTA. Under these conditions, the growth of S. Enteritidis ATCC 13076 predicted by the model was 24.99%. Keywords: Antimicrobial activity, Ascorbic acid, Ethylenediamine tetraacetic acid disodium salt (EDTA, Nisin, Salmonella enteritidis

  13. Resistance to pentamidine is mediated by AdeAB, regulated by AdeRS, and influenced by growth conditions in Acinetobacter baumannii ATCC 17978.

    Science.gov (United States)

    Adams, Felise G; Stroeher, Uwe H; Hassan, Karl A; Marri, Shashikanth; Brown, Melissa H

    2018-01-01

    In recent years, effective treatment of infections caused by Acinetobacter baumannii has become challenging due to the ability of the bacterium to acquire or up-regulate antimicrobial resistance determinants. Two component signal transduction systems are known to regulate expression of virulence factors including multidrug efflux pumps. Here, we investigated the role of the AdeRS two component signal transduction system in regulating the AdeAB efflux system, determined whether AdeA and/or AdeB can individually confer antimicrobial resistance, and explored the interplay between pentamidine resistance and growth conditions in A. baumannii ATCC 17978. Results identified that deletion of adeRS affected resistance towards chlorhexidine and 4',6-diamidino-2-phenylindole dihydrochloride, two previously defined AdeABC substrates, and also identified an 8-fold decrease in resistance to pentamidine. Examination of ΔadeA, ΔadeB and ΔadeAB cells augmented results seen for ΔadeRS and identified a set of dicationic AdeAB substrates. RNA-sequencing of ΔadeRS revealed transcription of 290 genes were ≥2-fold altered compared to the wildtype. Pentamidine shock significantly increased adeA expression in the wildtype, but decreased it in ΔadeRS, implying that AdeRS activates adeAB transcription in ATCC 17978. Investigation under multiple growth conditions, including the use of Biolog phenotypic microarrays, revealed resistance to pentamidine in ATCC 17978 and mutants could be altered by bioavailability of iron or utilization of different carbon sources. In conclusion, the results of this study provide evidence that AdeAB in ATCC 17978 can confer intrinsic resistance to a subset of dicationic compounds and in particular, resistance to pentamidine can be significantly altered depending on the growth conditions.

  14. Effect of probiotic-fermented milk administration on gastrointestinal survival of Lactobacillus casei ATCC 393 and modulation of intestinal microbial flora.

    Science.gov (United States)

    Sidira, Marianthi; Galanis, Alex; Ypsilantis, Petros; Karapetsas, Athanasios; Progaki, Zoi; Simopoulos, Constantinos; Kourkoutas, Yiannis

    2010-01-01

    The aim of the present study was to assess the survival of free and immobilized Lactobacillus casei ATCC 393 on apple pieces, contained in probiotic-fermented milk, after gastrointestinal (GI) transit and to investigate the potential regulation of intestinal microbial flora in a rat model. In in vitro GI stress tolerance tests, immobilized L. casei ATCC 393 exhibited significantly higher survival rates compared to free cells. At a second stage, probiotic-fermented milk produced by either free or immobilized cells was administered orally at a single dose or daily for 9 days in Wistar rats. By 12 h after single-dose administration, both free and immobilized cells were detected by microbiological and molecular analysis at levels ≥6 logCFU/g of feces. Moreover, daily administration led to significant reduction of staphylococci, enterobacteria, coliforms and streptococci counts. In conclusion, L. casei ATCC 393 contained in fermented milk survived GI transit and modulated intestinal microbiota. Copyright © 2010 S. Karger AG, Basel.

  15. Cloning, expression, purification, crystallization and preliminary crystallographic studies of UgdG, an UDP-glucose dehydrogenase from Sphingomonas elodea ATCC 31461

    International Nuclear Information System (INIS)

    Rocha, Joana; Granja, Ana Teresa; Sá-Correia, Isabel; Fialho, Arsénio; Frazão, Carlos

    2009-01-01

    Crystals of S. elodea ATCC 31461 UDP-glucose dehydrogenase (EC 1.1.1.22) were obtained in space groups P622 and P4 3 2 1 2 and diffracted to 2.4 and 3.4 Å resolution, respectively. Gellan gum, a commercial gelling agent produced by Sphingomonas elodea ATCC 31461, is a high-value microbial exopolysaccharide. UDP-glucose dehydrogenase (UGD; EC 1.1.1.22) is responsible for the NAD-dependent twofold oxidation of UDP-glucose to UDP-glucuronic acid, one of the key components for gellan biosynthesis. S. elodea ATCC 31461 UGD, termed UgdG, was cloned, expressed, purified and crystallized in native and SeMet-derivatized forms in hexagonal and tetragonal space groups, respectively; the crystals diffracted X-rays to 2.40 and 3.40 Å resolution, respectively. Experimental phases were obtained for the tetragonal SeMet-derivatized crystal form by a single-wavelength anomalous dispersion experiment. This structure was successfully used as a molecular-replacement probe for the hexagonal crystal form of the native protein

  16. Modeling the Combined Effects of Temperature, pH, and Sodium Chloride and Sodium Lactate Concentrations on the Growth Rate of Lactobacillus plantarum ATCC 8014

    Directory of Open Access Journals (Sweden)

    Francieli Dalcanton

    2018-01-01

    Full Text Available Nowadays, microorganisms with probiotic or antimicrobial properties are receiving major attention as alternative resources for food preservation. Lactic acid bacteria are able to synthetize compounds with antimicrobial activity against pathogenic and spoilage flora. Among them, Lactobacillus plantarum ATCC 8014 has exhibited this capacity, and further studies reveal that the microorganism is able to produce bacteriocins. An assessment of the growth of L. plantarum ATCC 8014 at different conditions becomes crucial to predict its development in foods. A response surface model of the growth rate of L. plantarum was built in this study as a function of temperature (4, 7, 10, 13, and 16°C, pH (5.5, 6.0, 6.5, 7.0, and 7.5, and sodium chloride (0, 1.5, 3.0, 4.5, and 6.0% and sodium lactate (0, 1, 2, 3, and 4% concentrations. All the factors were statistically significant at a confidence level of 90%  (p<0.10. When temperature and pH increased, there was a corresponding increase in the growth rate, while a negative relationship was observed between NaCl and Na-lactate concentrations and the growth parameter. A mathematical validation was carried out with additional conditions, demonstrating an excellent performance of the model. The developed model could be useful for designing foods with L. plantarum ATCC 8014 added as a probiotic.

  17. Crystal Structure of the Zorbamycin-Binding Protein ZbmA, the Primary Self-Resistance Element in Streptomyces flavoviridis ATCC21892

    Energy Technology Data Exchange (ETDEWEB)

    Rudolf, Jeffrey D. [Scripps Research Inst., Jupiter, FL (United States); Bigelow, Lance [Argonne National Lab. (ANL), Argonne, IL (United States); Chang, Changsoo [Argonne National Lab. (ANL), Argonne, IL (United States); Cuff, Marianne E. [Argonne National Lab. (ANL), Argonne, IL (United States); Lohman, Jeremy R. [Scripps Research Inst., Jupiter, FL (United States); Chang, Chin-Yuan [Scripps Research Inst., Jupiter, FL (United States); Ma, Ming [Scripps Research Inst., Jupiter, FL (United States); Yang, Dong [Scripps Research Inst., Jupiter, FL (United States); Clancy, Shonda [Argonne National Lab. (ANL), Argonne, IL (United States); Babnigg, Gyorgy [Argonne National Lab. (ANL), Argonne, IL (United States); Joachimiak, Andrzej [Argonne National Lab. (ANL), Argonne, IL (United States); Phillips, George N. [Rice Univ., Houston, TX (United States); Shen, Ben [Scripps Research Inst., Jupiter, FL (United States)

    2015-11-17

    The bleomycins (BLMs), tallysomycins (TLMs), phleomycin, and zorbamycin (ZBM) are members of the BLM family of glycopeptide-derived antitumor antibiotics. The BLM-producing Streptomyces verticillus ATCC15003 and the TLM-producing Streptoalloteichus hindustanus E465-94 ATCC31158 both possess at least two self-resistance elements, an N-acetyltransferase and a binding protein. The N-acetyltransferase provides resistance by disrupting the metal-binding domain of the antibiotic that is required for activity, while the binding protein confers resistance by sequestering the metal-bound antibiotic and preventing drug activation via molecular oxygen. We recently established that the ZBM producer, Streptomyces flavoviridis ATCC21892, lacks the N-acetyltransferase resistance gene and that the ZBM-binding protein, ZbmA, is sufficient to confer resistance in the producing strain. To investigate the resistance mechanism attributed to ZbmA, we determined the crystal structures of apo and Cu(II)-ZBM-bound ZbmA at high resolutions of 1.90 and 1.65 angstrom, respectively. A comparison and contrast with other structurally characterized members of the BLM-binding protein family revealed key differences in the protein ligand binding environment that fine-tunes the ability of ZbmA to sequester metal-bound ZBM and supports drug sequestration as the primary resistance mechanism in the producing organisms of the BLM family of antitumor antibiotics.

  18. Generation of a rabbit single-chain fragment variable (scFv) antibody for specific detection of Bradyrhizobium sp. DOA9 in both free-living and bacteroid forms.

    Science.gov (United States)

    Vu, Nguyen Xuan; Pruksametanan, Natcha; Srila, Witsanu; Yuttavanichakul, Watcharin; Teamtisong, Kamonluck; Teaumroong, Neung; Boonkerd, Nantakorn; Tittabutr, Panlada; Yamabhai, Montarop

    2017-01-01

    A simple and reliable method for the detection of specific nitrogen-fixing bacteria in both free-living and bacteroid forms is essential for the development and application of biofertilizer. Traditionally, a polyclonal antibody generated from an immunized rabbit was used for detection. However, the disadvantages of using a polyclonal antibody include limited supply and cross-reactivity to related bacterial strains. This is the first report on the application of phage display technology for the generation of a rabbit recombinant monoclonal antibody for specific detection and monitoring of nitrogen-fixing bacteria in both free-living form and in plant nodules. Bradyrhizobium sp. DOA9, a broad host range soil bacteria, originally isolated from the root nodules of Aeschynomene americana in Thailand was used as a model in this study. A recombinant single-chain fragment variable (scFv) antibody library was constructed from the spleen of a rabbit immunized with DOA9. After three rounds of biopanning, one specific phage-displayed scFv antibody, designated bDOA9rb8, was identified. Specific binding of this antibody was confirmed by phage enzyme-linked immunosorbent assay (phage ELISA). The phage antibody could bind specifically to DOA9 in both free-living cells (pure culture) and bacteroids inside plant nodules. In addition to phage ELISA, specific and robust immunofluorescence staining of both free-living and bacteroid forms could also be observed by confocal-immunofluorescence imaging, without cross-reactivity with other tested bradyrhizobial strains. Moreover, specific binding of free scFv to DOA9 was also demonstrated by ELISA. This recombinant antibody can also be used for the study of the molecular mechanism of plant-microbe interactions in the future.

  19. Regulation of Botulinum Neurotoxin Synthesis and Toxin Complex Formation by Arginine and Glucose in Clostridium botulinum ATCC 3502.

    Science.gov (United States)

    Fredrick, Chase M; Lin, Guangyun; Johnson, Eric A

    2017-07-01

    Botulinum neurotoxin (BoNT), produced by neurotoxigenic clostridia, is the most potent biological toxin known and the causative agent of the paralytic disease botulism. The nutritional, environmental, and genetic regulation of BoNT synthesis, activation, stability, and toxin complex (TC) formation is not well studied. Previous studies indicated that growth and BoNT formation were affected by arginine and glucose in Clostridium botulinum types A and B. In the present study, C. botulinum ATCC 3502 was grown in toxin production medium (TPM) with different levels of arginine and glucose and of three products of arginine metabolism, citrulline, proline, and ornithine. Cultures were analyzed for growth (optical density at 600 nm [OD 600 ]), spore formation, and BoNT and TC formation by Western blotting and immunoprecipitation and for BoNT activity by mouse bioassay. A high level of arginine (20 g/liter) repressed BoNT production approximately 1,000-fold, enhanced growth, slowed lysis, and reduced endospore production by greater than 1,000-fold. Similar effects on toxin production were seen with equivalent levels of citrulline but not ornithine or proline. In TPM lacking glucose, levels of formation of BoNT/A1 and TC were significantly decreased, and extracellular BoNT and TC proteins were partially inactivated after the first day of culture. An understanding of the regulation of C. botulinum growth and BoNT and TC formation should be valuable in defining requirements for BoNT formation in foods and clinical samples, improving the quality of BoNT for pharmaceutical preparations, and elucidating the biological functions of BoNTs for the bacterium. IMPORTANCE Botulinum neurotoxin (BoNT) is a major food safety and bioterrorism concern and is also an important pharmaceutical, and yet the regulation of its synthesis, activation, and stability in culture media, foods, and clinical samples is not well understood. This paper provides insights into the effects of critical

  20. Growth inhibitory response and ultrastructural modification of oral-associated candidal reference strains (ATCC) by Piper betle L. extract.

    Science.gov (United States)

    Nordin, Mohd-Al-Faisal; Wan Harun, Wan Himratul-Aznita; Abdul Razak, Fathilah; Musa, Md Yusoff

    2014-03-01

    Candida species have been associated with the emergence of strains resistant to selected antifungal agents. Plant products have been used traditionally as alternative medicine to ease mucosal fungal infections. This study aimed to investigate the effects of Piper betle extract on the growth profile and the ultrastructure of commonly isolated oral candidal cells. The major component of P. betle was identified using liquid chromatography-mass spectrophotometry (LC-MS/MS). Seven ATCC control strains of Candida species were cultured in yeast peptone dextrose broth under four different growth environments: (i) in the absence of P. betle extract; and in the presence of P. betle extract at respective concentrations of (ii) 1 mg⋅mL(-1); (iii) 3 mg⋅mL(-1); and (iv) 6 mg⋅mL(-1). The growth inhibitory responses of the candidal cells were determined based on changes in the specific growth rates (µ). Scanning electron microscopy (SEM) was used to observe any ultrastructural alterations in the candida colonies. LC-MS/MS was performed to validate the presence of bioactive compounds in the extract. Following treatment, it was observed that the µ-values of the treated cells were significantly different than those of the untreated cells (Pbetle extract. The candidal population was also reduced from an average of 13.44×10(6) to 1.78×10(6) viable cell counts (CFU)⋅mL(-1). SEM examination exhibited physical damage and considerable morphological alterations of the treated cells. The compound profile from LC-MS/MS indicated the presence of hydroxybenzoic acid, chavibetol and hydroxychavicol in P. betle extract. The effects of P. betle on candida cells could potentiate its antifungal activity.

  1. Inactivation of Listeria monocytogenes ATCC 7644 on tomatoes using sodium docecyl sulphate, levulinic acid and sodium hypochlorite solution

    Directory of Open Access Journals (Sweden)

    E. Mnyandu

    2015-06-01

    Full Text Available The human pathogen Listeria monocytogenes poses a serious threat to public health. A study was carried out to evaluate the effectiveness of four sanitizers, used individually or combined, against L. monocytogenes ATCC 7644. The contact times for bacteria and sanitizer were varied to 1, 3 and 5 minutes. Levulinic acid, sodium dodecyl sulphate (SDS, sodium hypochlorite solution (chlorine and a combination of SDS and levulinic acid (mixture were tested. Results revealed that 0.5% levulinic acid, when used individually, is capable of reducing the surviving colonies by 3.63 log CFU/mL, 4.05 log CFU/mL, 6.71 log CFU/mL after exposure for 1, 3 and 5 minutes respectively.SDS resulted in an 8 log CFU/mL reduction after 1, 3 and 5 minutes. A combination of 0.5% levulinic acid and 0.05% SDS caused a 3.69 log CFU /mL reduction, 4.4 log CFU/mL reduction, 7.97 log CFU/mL reduction for 1, 3 and 5 minutes respectively. Chlorine was the least effective with 2.93 log CFU/mL reduction, 3.16 log CFU/ mL reduction and 4.53 log CFU/ mL reduction respectively. When stored for up to 72 hours at 4°C, the surviving colonies remained viable and decreased in number significantly P < 0.05 = 0.001. The titratable acidity of samples treated with levulinic acid and samples treated with SDS/Lev mixture was lowered significantly compared to the control sample. No significant differences were noted in these same parameters for samples treated with chlorine or SDS. The application of SDS in the fresh produce industry as a sanitizing agent may be successful in eradicating or reducing the viability of L. monocytogenes on fresh produce, thereby replacing the routine chlorine washing.

  2. Transcriptional analysis of the unicellular, diazotrophic cyanobacterium Cyanothece sp. ATCC 51142 grown under short day/night cycles

    Energy Technology Data Exchange (ETDEWEB)

    Toepel, Jorg; McDermott, Jason E.; Summerfield, Tina; Sherman, Louis A.

    2009-06-01

    Cyanothece sp. strain ATCC 51142 is a unicellular, diazotrophic cyanobacterium that demonstrates extensive metabolic periodicities of photosynthesis, respiration and nitrogen fixation when grown under N2-fixing conditions. We have performed a global transcription analysis of this organism using 6 h light/dark cycles in order to determine the response of the cell to these conditions and to differentiate between diurnal and circadian regulated genes. In addition, we used a context-likelihood of relatedness (CLR) analysis with this data and those from two-day light/dark and light-dark plus continuous light experiments to better differentiate between diurnal and circadian regulated genes. Cyanothece sp. adapted in several ways to growth under short light/dark conditions. Nitrogen was fixed in every second dark period and only once in each 24 h period. Nitrogen fixation was strongly correlated to the energy status of the cells and glycogen breakdown and high respiration rates were necessary to provide appropriate energy and anoxic conditions for this process. We conclude that glycogen breakdown is a key regulatory step within these complex processes. Our results demonstrated that the main metabolic genes involved in photosynthesis, respiration, nitrogen fixation and central carbohydrate metabolism have strong (or total) circadian-regulated components. The short light/dark cycles enable us to identify transcriptional differences among the family of psbA genes, as well as the differing patterns of the hup genes, which follow the same pattern as nitrogenase genes, relative to the hox genes which displayed a diurnal, dark-dependent gene expression.

  3. Role of Fimbriae, Flagella and Cellulose on the Attachment of Salmonella Typhimurium ATCC 14028 to Plant Cell Wall Models.

    Directory of Open Access Journals (Sweden)

    Michelle S F Tan

    Full Text Available Cases of foodborne disease caused by Salmonella are frequently associated with the consumption of minimally processed produce. Bacterial cell surface components are known to be important for the attachment of bacterial pathogens to fresh produce. The role of these extracellular structures in Salmonella attachment to plant cell walls has not been investigated in detail. We investigated the role of flagella, fimbriae and cellulose on the attachment of Salmonella Typhimurium ATCC 14028 and a range of isogenic deletion mutants (ΔfliC fljB, ΔbcsA, ΔcsgA, ΔcsgA bcsA and ΔcsgD to bacterial cellulose (BC-based plant cell wall models [BC-Pectin (BCP, BC-Xyloglucan (BCX and BC-Pectin-Xyloglucan (BCPX] after growth at different temperatures (28°C and 37°C. We found that all three cell surface components were produced at 28°C but only the flagella was produced at 37°C. Flagella appeared to be most important for attachment (reduction of up to 1.5 log CFU/cm2 although both cellulose and fimbriae also aided in attachment. The csgD deletion mutant, which lacks both cellulose and fimbriae, showed significantly higher attachment as compared to wild type cells at 37°C. This may be due to the increased expression of flagella-related genes which are also indirectly regulated by the csgD gene. Our study suggests that bacterial attachment to plant cell walls is a complex process involving many factors. Although flagella, cellulose and fimbriae all aid in attachment, these structures are not the only mechanism as no strain was completely defective in its attachment.

  4. Overproduction of individual gas vesicle proteins perturbs flotation, antibiotic production and cell division in the enterobacterium Serratia sp. ATCC 39006.

    Science.gov (United States)

    Monson, Rita E; Tashiro, Yosuke; Salmond, George P C

    2016-09-01

    Gas vesicles are intracellular proteinaceous organelles that facilitate bacterial colonization of static water columns. In the enterobacterium Serratia sp. ATCC 39006, gas vesicle formation requires the proteins GvpA1, GvpF1, GvpG, GvpA2, GvpK, GvpA3, GvpF2 and GvpF3 and the three gas vesicle regulatory proteins GvrA, GvrB and GvrC. Deletion of gvpC alters gas vesicle robustness and deletion of gvpN or gvpV results in small bicone vesicles. In this work, we assessed the impacts on gas vesicle formation when each of these 14 essential proteins was overexpressed. Overproduction of GvpF1, GvpF2, GvrA, GvrB or GvrC all resulted in significantly reduced gas vesicle synthesis. Perturbations in gas vesicle formation were also observed when GvpV and GvpA3 were in excess. In addition to impacts on gas vesicle formation, overproduction of GvrA or GvrB led to elevated biosynthesis of the tripyrrole pigment, prodigiosin, a secondary metabolite of increasing medical interest due to its antimalarial and anticancer properties. Finally, when GvpG was overexpressed, gas vesicles were still produced, but the cells exhibited a growth defect. Further analysis showed that induction of GvpG arrested cell growth and caused a drop in viable count, suggesting a possible physiological role for this protein linking gas vesicle biogenesis and binary fission. These combined results demonstrate that the stoichiometry of individual gas vesicle proteins is crucially important for controlled organelle morphogenesis and flotation and provides evidence for the first link between gas vesicle assembly and cell division, to our knowledge.

  5. A quantitative metabolomics study of high sodium response in Clostridium acetobutylicum ATCC 824 acetone-butanol-ethanol (ABE) fermentation

    Science.gov (United States)

    Zhao, Xinhe; Condruz, Stefan; Chen, Jingkui; Jolicoeur, Mario

    2016-01-01

    Hemicellulose hydrolysates, sugar-rich feedstocks used in biobutanol refinery, are normally obtained by adding sodium hydroxide in the hydrolyze process. However, the resulting high sodium concentration in the hydrolysate inhibits ABE (acetone-butanol-ethanol) fermentation, and thus limits the use of these low-cost feedstocks. We have thus studied the effect of high sodium on the metabolic behavior of Clostridium acetobutyricum ATCC 824, with xylose as the carbon source. At a threshold sodium concentration of 200 mM, a decrease of the maximum cell dry weight (−19.50 ± 0.85%) and of ABE yield (−35.14 ± 3.50% acetone, −33.37 ± 0.74% butanol, −22.95 ± 1.81% ethanol) were observed compared to control culture. However, solvents specific productivities were not affected by supplementing sodium. The main effects of high sodium on cell metabolism were observed in acidogenesis, during which we observed the accumulation of ATP and NADH, and the inhibition of the pentose phosphate (PPP) and the glycolytic pathways with up to 80.73 ± 1.47% and 68.84 ± 3.42% decrease of the associated metabolic intermediates, respectively. However, the NADP+-to-NADPH ratio was constant for the whole culture duration, a phenomenon explaining the robustness of solvents specific productivities. Therefore, high sodium, which inhibited biomass growth through coordinated metabolic effects, interestingly triggered cell robustness on solvents specific productivity. PMID:27321153

  6. Effect of Organic Solvent on the Characteristics of Free and Immobilized Inulinase from Kluyveromyces marxianus ATCC 16045

    Directory of Open Access Journals (Sweden)

    Fernanda V. A. Risso

    2010-01-01

    Full Text Available The aim of this work is to evaluate the effects of the butyl acetate concentration on the characteristics of free and immobilized inulinase from Kluyveromyces marxianus ATCC 16045. The mass fractions of organic solvent (OS in sodium acetate buffer (0.1 M were studied in the range from 25 to 70 %. The characteristics of both free and immobilized enzymes were not significantly affected by the OS mass fraction. The optimal temperature for the free enzyme was 55 °C at all OS mass fractions studied, whereas for the immobilized enzyme the optimum was 55 °C at 70 % of butyl acetate, and in the range from 50 to 60 °C at 25 and 50 % of OS. The optimum pH values, at all OS mass fractions, were 4.8 and 4.4 for the free and immobilized enzymes, respectively. The immobilized enzyme showed more stability at 50 °C and pH=4.8 for the whole range of OS mass fractions, since its stability was improved about 3 times. The kinetics parameters were calculated using Lineweaver-Burk plots. For the free enzyme, the vmax values were 12.5, 58.5 and 37.6 U/mL and the Km values 17.5, 280.7 and 210.4 mM at butyl acetate mass fractions of 25, 50 and 70 %, respectively. Similarly, for the immobilized enzyme, the vmax values were 38.9, 59.5 and 72.5 U/mL and the Km values 3.1, 5.4 and 14.0 mM at the same butyl acetate mass fractions, respectively.

  7. Growth and acid production of Lactobacillus delbrueckii ssp. bulgaricus ATCC 11842 in the fermentation of algal carcass.

    Science.gov (United States)

    Li, C; Zhang, G F; Mao, X; Wang, J Y; Duan, C Y; Wang, Z J; Liu, L B

    2016-06-01

    Algal carcass is a low-value byproduct of algae after its conversion to biodiesel. Dried algal carcass is rich in protein, carbohydrate, and multiple amino acids, and it is typically well suited for growth and acid production of lactic acid bacteria. In this study, Lactobacillus delbrueckii ssp. bulgaricus ATCC 11842 was used to ferment different algal carcass media (ACM), including 2% ACM, 2% ACM with 1.9% glucose (ACM-G), and 2% ACM with 1.9% glucose and 2g/L amino acid mixture (ACM-GA). Concentrations of organic acids (lactic acid and acetic acid), acetyl-CoA, and ATP were analyzed by HPLC, and activities of lactate dehydrogenase (LDH), acetokinase (ACK), pyruvate kinase (PK), and phosphofructokinase (PFK) were determined by using a chemical approach. The growth of L. bulgaricus cells in ACM-GA was close to that in the control medium (de Man, Rogosa, and Sharpe). Lactic acid and acetic acid contents were greatly reduced when L. bulgaricus cells were grown in ACM compared with the control medium. Acetyl-CoA content varied with organic acid content and was increased in cells grown in different ACM compared with the control medium. The ATP content of L. bulgaricus cells in ACM was reduced compared with that of cells grown in the control medium. Activities of PFK and ACK of L. bulgaricus cells grown in ACM were higher and those of PK and LDH were lower compared with the control. Thus, ACM rich in nutrients may serve as an excellent substrate for growth by lactic acid bacteria, and addition of appropriate amounts of glucose and amino acids can improve growth and acid production. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Heat shock and prolonged heat stress attenuate neurotoxin and sporulation gene expression in group I Clostridium botulinum strain ATCC 3502.

    Science.gov (United States)

    Selby, Katja; Mascher, Gerald; Somervuo, Panu; Lindström, Miia; Korkeala, Hannu

    2017-01-01

    Foodborne pathogenic bacteria are exposed to a number of environmental stresses during food processing, storage, and preparation, and in the human body. In order to improve the safety of food, the understanding of molecular stress response mechanisms foodborne pathogens employ is essential. Many response mechanisms that are activated during heat shock may cross-protect bacteria against other environmental stresses. To better understand the molecular mechanisms Clostridium botulinum, the causative agent of botulism, utilizes during acute heat stress and during adaptation to stressfully high temperature, the C. botulinum Group I strain ATCC 3502 was grown in continuous culture at 39°C and exposed to heat shock at 45°C, followed by prolonged heat stress at 45°C to allow adaptation of the culture to the high temperature. Growth in continuous culture was performed to exclude secondary growth phase effects or other environmental impacts on bacterial gene transcription. Changes in global gene expression profiles were studied using DNA microarray hybridization. During acute heat stress, Class I and III heat shock genes as well as members of the SOS regulon were activated. The neurotoxin gene botA and genes encoding the neurotoxin-associated proteins were suppressed throughout the study. Prolonged heat stress led to suppression of the sporulation machinery whereas genes related to chemotaxis and motility were activated. Induced expression of a large proportion of prophage genes was detected, suggesting an important role of acquired genes in the stress resistance of C. botulinum. Finally, changes in the expression of a large number of genes related to carbohydrate and amino acid metabolism indicated remodeling of the cellular metabolism.

  9. Cytotoxic Potential of Bacillus cereus Strains ATCC 11778 and 14579 Against Human Lung Epithelial Cells Under Microaerobic Growth Conditions

    Directory of Open Access Journals (Sweden)

    Kathleen eKilcullen

    2016-02-01

    Full Text Available Bacillus cereus, a food poisoning bacterium closely related to Bacillus anthracis, secretes a multitude of virulence factors including enterotoxins, hemolysins, and phospholipases. However, the majority of the in vitro experiments evaluating the cytotoxic potential of B. cereus were carried out in the conditions of aeration, and the impact of the oxygen limitation in conditions encountered by the microbe in natural environment such as gastrointestinal tract remains poorly understood. This research reports comparative analysis of ATCC strains 11778 (BC1 and 14579 (BC2 in aerated and microaerobic (static cultures with regard to their toxicity for human lung epithelial cells. We showed that BC1 increased its toxicity upon oxygen limitation while BC2 was highly cytotoxic in both growth conditions. The combined effect of the pore-forming, cholesterol-dependent hemolysin, cereolysin O (CLO, and metabolic product(s such as succinate produced in microaerobic conditions provided substantial contribution to the toxicity of BC1 but not BC2 which relied mainly on other toxins. This mechanism is shared between CB1 and B. anthracis. It involves the permeabilization of the cell membrane which facilitates transport of toxic bacterial metabolites into the cell. The toxicity of BC1was potentiated in the presence of bovine serum albumin which appeared to serve as reservoir for bacteria-derived nitric oxide participating in the downstream production of reactive oxidizing species with the properties of peroxynitrite. In agreement with this the BC1cultures demonstrated the increased oxidation of the indicator dye Amplex Red catalyzed by peroxidase as well as the increased toxicity in the presence of externally added ascorbic acid.

  10. Radiosensibilisation of bacteria on beef minced by essential oils with special reference to the spores of Bacillus cereus ATCC 7004

    International Nuclear Information System (INIS)

    Ayari, Samia

    2007-01-01

    The radiosensitization of Bacillus Cereus ATCC 7004 spores was evaluated in the presence of thymol, thyme, D-L menthol, trans-cinnamaldehyde and eugenol in ground beef. Meat cattle minced (5 % fat) was inoculated with spores of Bacillus Cereus (10 5 - 10 6 CFU / g), and each compound was added separately at various concentrations. The antimicrobial potential was evaluated in unirradiated meat by determining the MIC in percentage (wt / wt) after 24 h of storage at 4± 1C. Results showed that the best antimicrobial compound was the trans-cinnamaldehyde with MIC of 1.47%, wt/wt. In presence of cinnamaldehyde, the addition of sodium pyrophosphate decahydrate (0.1%, wt/wt) increased significantly (p < 0.05) the relative sensitivity of Bacillus Cereus spores 2 times. However, the presence of ascorbic acid in the media reduced significantly (p < 0.05) the radiosensitivity of bacteria. The combined effect of gamma irradiation in presence of cinnamaldehyde, added with ascorbic acid or sodium pyrophosphate decahydrate, on the microbiological and physico-chemical characteristic of meat samples was evaluated at 2 kGy under air. The use of the active compounds with the irradiation reduced significantly (p < 0.05) the count of total bacteria with a concomitant effect in the extension periods of shelf life. The addition of the cinnamaldehyde induced a significant reduction (p < 0.05) in TVN and free amino acids of irradiated samples. In presence of ascorbic acid the thiobarbituric acid-reactive substances (TBARS) concentration was significantly reduced (P...0.05). A significant reduction (p < 0.05) of a* and C* of color values and a significant increase (p < 0.05 ) of b* value were obtained for the samples treated by the cinnamaldehyde. The application of bioactive films for the immobilization of the essential oils is a good alternate to check their stability during storage time. (Author). 155 refs

  11. Hymenobacter roseosalivarius gen. nov., sp. nov. from continental Antartica soils and sandstone: bacteria of the Cytophaga/Flavobacterium/Bacteroides line of phylogenetic descent.

    Science.gov (United States)

    Hirsch, P; Ludwig, W; Hethke, C; Sittig, M; Hoffmann, B; Gallikowski, C A

    1998-08-01

    Aseptically collected sandstone and soil samples from the antarctic Dry Valleys were inoculated into oligotrophic media and incubated under low light intensities. A total of 41 Gram-negative isolates were obtained with reddish colonies spreading on agar. A sandstone isolate and four soil strains were characterized further. They were nearly identical in morphological, physiological, biochemical and chemotaxonomic properties. They produced large amounts of extracellular polymer and utilized for growth: glucose, saccharose, mannitol, sorbitol, L-aspartate, malate and acetate, but not D-ribose, adonitol, DL-alanine, glutamate, glycolate, lactate or succinate. All strains hydrolyzed gelatin, starch, casein, xylan, Tweens 80 or 60 and dead or living yeast cells, but not cellulose or pectin. Nitrate was not reduced, ethanol was not oxidized and acid was not produced from maltose, mannitol or dulcitol. Ammonia was not produced from peptone. They were strictly aerobic. Major fatty acids were n 16:1 d 9, n 16:1 d 11, n 17:1 d 11, and i 15:0. The strains contained the quinone MK-7 and phosphatidylethanolamine as the main phospholipid. The base ratio ranged from 55 to 61 mol% G+C. A 16S rRNA sequence analysis of strains AA-688 and AA-718 showed these to be identical and to represent a special phylogenetic group within the Cytophaga/Flavobacterium/Bacteroides major line of descent. Three soil strains labeled "Taxeobacter" Txc1, Txg1, and Txo1 (Reichenbach, 1992) belonged to the same group but had lower sequence similarities (<95%). Some of their characteristics were different from those of the antarctic strains: the utilization of C-compounds, hydrolysis of polymers, temperature tolerances, major fatty acids and base ratios. Txc1 and Txg1 may later have to be considered as members of this group, possibly on the species level, while Txo1 could represent a different related genus. It is concluded that the five antarctic strains represent a new genus and species for which the name

  12. Presensitization of microorganisms by essential oils treatments to low dose gamma irradiation with special reference to Bacillus cereus ATCC 7004

    International Nuclear Information System (INIS)

    Ayari, Samia; Jerbi, Taieb; Hamdi, M.; Lacroix, M.

    2008-01-01

    The radiosensitization of B.cereus ATCC 7004 spores was evaluated in the presence of thymol, thyme, D-L menthol, trans-cinnamaldehyde and eugenol in ground beef. Cattle minced meat (5% fat) was inoculated with spores of B.cereus (10 5 - 10 6 CFU/g), and each compound was added separately at various concentrations. The antimicrobial potential was evaluated in unirradiated meat by determining the MIC in percentage (wt/wt) after 24 h of storage at 4 ± 1 C. Results showed that the best antimicrobial compound was the trans-cinnamaldehyde with MIC of 1.47%, wt/wt. In presence of cinnamaldehyde, the addition of sodium pyrophosphate decahydrate (0.1% wt/wt) increased significantly (P < 0.05) the relative sensitivity of B.cereus spores 2 times. However, the presence of ascorbic acid in the media reduced significantly (p<0.05) the radiosensitivity of bacteria. The combined effect of gamma irradiation in presence of cinnamaldehyde, added with ascorbic acid or sodium pyrophosphate decahydrate, on the microbiological and physicochemical characteristic of meat samples was evaluated at 2kGy under air. The use of the active compounds with the irradiation reduced significantly (p<0.05) the count of total bacteria with a concomitant effect in the extension periods of shelf life. The addition of the cinnamaldehyde induced a significant reduction (p<0.05) in TVN and free amino acids of irradiated samples. In presence of ascorbic acid the thiobarbituric acid-reactive amino acids of irradiated samples. In presence of ascorbic acid the thiobarbiturate acid-reactive substances (TBARS) concentration was significantly reduced (p<0.05). A significant reduction (p<0.05) of a* and c* of color values and a significant increase (p<0.05) of b* value were obtained for the samples treated by the cinnamaldehyde. The application of bioactive films for the immobilization of the essential oils is a good alternate to check their stability during storage time

  13. Efecto del sistema glucosa oxidasa/glucosa sobre el crecimiento de Escherichia coli ATCC 25922 en leche

    Directory of Open Access Journals (Sweden)

    Nirza Noguera

    2014-06-01

    Full Text Available La leche es uno de los alimentos de mayor importancia por ser rico en nutrientes y porque constituye la materia prima para la elaboración de una amplia gama de productos. Se ha demostrado que en leches pasteurizadas de marcas comerciales, pueden ocurrir contaminaciones postproceso, lo que representa un riesgo para la salud pública. Es por ello que en las últimas décadas, ha ganado importancia el uso de aditivos sintéticos u orgánicos como técnica complementaria durante el procesamiento de alimentos. La enzima glucosa oxidasa (GOX tiene amplio uso en la industria de alimentos gracias a sus propiedades antioxidante y antimicrobiana. Adicionalmente, se ha demostrado su capacidad de inhibir el crecimiento de diferentes enterobacterias. Por tal motivo, en el presente trabajo se planteó adicionar la enzima GOX en la leche y evaluar su efecto sobre el crecimiento de una cepa deEscherichia coli ATCC 25922. Se estandarizó la concentración de GOX y glucosa que ocasionaba la inhibición del crecimiento bacteriano en medio Luria-Bertani y en función de los resultados, se decidió utilizar la combinación de 2 U de GOX y 2,0 % de glucosa para agregarlos como aditivos en la leche y se establecieron dos sistemas: GOX/G sin pasteurizar y GOX/G pasteurizado. El crecimiento fue monitoreado por la técnica de contaje de colonias en placa-agar, a partir de 1 mL de cultivo a las 4, 6 y 24 h de incubación. Se encontró que los sistemas con GOX hasta las 6 horas presentaron efectos similares, inhibiendo significativamente el crecimiento de la bacteria, mientras que a las 24 h ya no se observó dicha inhibición, pero sí que el sistema con GOX pasteurizada exhibió una población menor que el sistema GOX sin pasteurizar. Estos hallazgos proyectan a la enzima GOX como una alternativa para la conservación de la leche, tanto cruda como pasteurizada.

  14. Efecto del sistema glucosa oxidasa/glucosa sobre el crecimiento de Escherichia coli ATCC 25922 en leche

    Directory of Open Access Journals (Sweden)

    Nirza Noguera

    2014-07-01

    Full Text Available La leche es uno de los alimentos de mayor importancia por ser rico en nutrientes y porque constituye la materia prima para la elaboración de una amplia gama de productos. Se ha demostrado que en leches pasteurizadas de marcas comerciales, pueden ocurrir contaminaciones postproceso, lo que representa un riesgo para la salud pública. Es por ello que en las últimas décadas, ha ganado importancia el uso de aditivos sintéticos u orgánicos como técnica complementaria durante el procesamiento de alimentos. La enzima glucosa oxidasa (GOX tiene amplio uso en la industria de alimentos gracias a sus propiedades antioxidante y antimicrobiana. Adicionalmente, se ha demostrado su capacidad de inhibir el crecimiento de diferentes enterobacterias. Por tal motivo, en el presente trabajo se planteó adicionar la enzima GOX en la leche y evaluar su efecto sobre el crecimiento de una cepa de Escherichia coli ATCC 25922. Se estandarizó la concentración de GOX y glucosa que ocasionaba la inhibición del crecimiento bacteriano en medio Luria-Bertani y en función de los resultados, se decidió utilizar la combinación de 2 U de GOX y 2,0 % de glucosa para agregarlos como aditivos en la leche y se establecieron dos sistemas: GOX/G sin pasteurizar y GOX/G pasteurizado. El crecimiento fue monitoreado por la técnica de contaje de colonias en placa-agar, a partir de 1 mL de cultivo a las 4, 6 y 24 h de incubación. Se encontró que los sistemas con GOX hasta las 6 horas presentaron efectos similares, inhibiendo significativamente el crecimiento de la bacteria, mientras que a las 24 h ya no se observó dicha inhibición, pero sí que el sistema con GOX pasteurizada exhibió una población menor que el sistema GOX sin pasteurizar. Estos hallazgos proyectan a la enzima GOX como una alternativa para la conservación de la leche, tanto cruda como pasteurizada.

  15. [Sequencing and analysis of the resistome of Streptomyces fradiae ATCC19609 in order to develop a test system for screening of new antimicrobial agents].

    Science.gov (United States)

    Vatlin, A A; Bekker, O B; Lysenkova, L N; Korolev, A M; Shchekotikhin, A E; Danilenko, V N

    2016-06-01

    The paper provides the annotation and data on sequencing the antibiotic resistance genes in Streptomyces fradiae strain ATCC19609, highly sensitive to different antibiotics. Genome analysis revealed four groups of genes that determined the resistome of the tested strain. These included classical antibiotic resistance genes (nine aminoglycoside phosphotransferase genes, two beta-lactamase genes, and the genes of puromycin N-acetyltransferase, phosphinothricin N-acetyltransferase, and aminoglycoside acetyltransferase); the genes of ATP-dependent ABC transporters, involved in the efflux of antibiotics from the cell (MacB-2, BcrA, two-subunit MDR1); the genes of positive and negative regulation of transcription (whiB and padR families); and the genes of post-translational modification (serine-threonine protein kinases). A comparative characteristic of aminoglycoside phosphotransferase genes in S. fradiae ATCC19609, S. lividans TK24, and S. albus J1074, the causative agent of actinomycosis, is provided. The possibility of using the S. fradiae strain ATCC19609 as the test system for selection of the macrolide antibiotic oligomycin A derivatives with different levels of activity is demonstrated. Analysis of more than 20 semisynthetic oligomycin A derivatives made it possible to divide them into three groups according to the level of activity: inactive (>1 nmol/disk), 10 substances; with medium activity level (0.05–1 nmol/disk), 12 substances; and more active (0.01–0.05 nmol/disk), 2 substances. Important for the activity of semisynthetic derivatives is the change in the position of the 33rd carbon atom in the oligomycin A molecule.

  16. Characterization of the extracellular polysaccharide produced by a marine cyanobacterium, Cyanothece sp. ATCC 51142, and its exploitation toward metal removal from solutions.

    Science.gov (United States)

    Shah, V; Ray, A; Garg, N; Madamwar, D

    2000-04-01

    Cyanobacterium, Cyanothece sp. ATCC 51142 produces an exopolysaccharide at a high level. Physical analysis of the exopolysaccharide (EPS), such as nuclear magnetic resonance, infrared spectrum, were done to determine its possible structure. Thermal gravimetric analysis, differential scanning calorimeter, and differential thermal analysis of the polymer were done to find out the thermal behavior. Calcium content within the sample was found out. Some of the physicochemical properties, such as relative viscosity, specific viscosity, and intrinsic viscosity of the EPS were studied under different conditions. The phenomenon of gel formation by the EPS was investigated for its potential application in metal removal from solutions.

  17. 2,3-butanediol production from Jerusalem artichoke, Helianthus tuberosus, by Bacillus polymyxa ATCC 12321. Optimization of k/sub L/ a profile

    Energy Technology Data Exchange (ETDEWEB)

    Fages, J.; Mulard, D.; Rouquet, J.J.; Wilhelm, J.L.

    1986-12-01

    Optimization of D-(-)-2,3-butanediol production from the Jerusalem artichoke, Helianthus tuberosus, by Bacillus polymyxa ATCC 12 321 is described. The effects of initial sugar concentration and oxygen transfer rate were examined. The latter appears to be the most important parameter affecting the kinetics of the process. The best results (44 g.l/sup -1/ 2,3-butanediol, productivity of 0.79 g.l/sup -1/.h/sup -1/) were obtained by setting an optimal k/sub L/a profile during batch culture.

  18. Pseudomonas fluorescens ATCC 13525 Containing an Artificial Oxalate Operon and Vitreoscilla Hemoglobin Secretes Oxalic Acid and Solubilizes Rock Phosphate in Acidic Alfisols

    OpenAIRE

    Yadav, Kavita; Kumar, Chanchal; Archana, G.; Naresh Kumar, G.

    2014-01-01

    Oxalate secretion was achieved in Pseudomonas fluorescens ATCC 13525 by incorporation of genes encoding Aspergillus niger oxaloacetate acetyl hydrolase (oah), Fomitopsis plaustris oxalate transporter (FpOAR) and Vitreoscilla hemoglobin (vgb) in various combinations. Pf (pKCN2) transformant containing oah alone accumulated 19 mM oxalic acid intracellularly but secreted 1.2 mM. However, in the presence of an artificial oxalate operon containing oah and FpOAR genes in plasmid pKCN4, Pf (pKCN4) s...

  19. Alternative Sigma Factors SigF, SigE, and SigG Are Essential for Sporulation in Clostridium botulinum ATCC 3502

    OpenAIRE

    Kirk, David G.; Zhang, Zhen; Korkeala, Hannu; Lindström, Miia

    2014-01-01

    Clostridium botulinum produces heat-resistant endospores that may germinate and outgrow into neurotoxic cultures in foods. Sporulation is regulated by the transcription factor Spo0A and the alternative sigma factors SigF, SigE, SigG, and SigK in most spore formers studied to date. We constructed mutants of sigF, sigE, and sigG in C. botulinum ATCC 3502 and used quantitative reverse transcriptase PCR and electron microscopy to assess their expression of the sporulation pathway on transcription...

  20. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on the substantiation of health claims related to Lactobacillus rhamnosus ATCC 53103 (LGG) and “gastro-intestinal health” (ID 906) and maintenance of tooth mineralisation (ID 3018) pursuant to Article 13

    DEFF Research Database (Denmark)

    Tetens, Inge

    claims in relation to Lactobacillus rhamnosus ATCC 53103 (LGG) and “gastrointestinal health” and maintenance of tooth mineralisation. The scientific substantiation is based on the information provided by the Member States in the consolidated list of Article 13 health claims and references that EFSA has...... received from Member States or directly from stakeholders. The food constituent that is the subject of the health claims is L. rhamnosus ATCC 53103 (LGG). The Panel considers that L. rhamnosus ATCC 53103 (LGG) is sufficiently characterised....

  1. Effect of bioconversion conditions on vanillin production by Amycolatopsis sp. ATCC 39116 through an analysis of competing by-product formation.

    Science.gov (United States)

    Ma, Xiao-kui; Daugulis, Andrew J

    2014-05-01

    This study investigated the effects of transformation conditions such as initial pH, the initial concentration of glucose and yeast extract in the medium, and the separate addition of ferulic acid and vanillic acid, on the production of vanillin through an analysis of competing by-product formation by Amycolatopsis sp. ATCC 39116. The extent and nature of by-product formation and vanillin yield were affected by initial pH and different initial concentrations of glucose and yeast extract in the medium, with a high yield of vanillin and high cell density obtained at pH 8.0, 10 g/l glucose, and 8 g/l yeast extract. High concentrations of ferulic acid were found to negatively affect cell density. Additional supplementation of 100 mg/l vanillic acid, a metabolically linked by-product, was found to result in a high concentration of vanillin and guaiacol, an intermediate of vanillin. Via an analysis of the effect of these transformation conditions on competing by-product formation, high concentrations of ferulic acid were transformed with a molar yield to vanillin of 96.1 and 95.2 %, by Amycolatopsis sp. ATCC 39116 and Streptomyces V1, respectively, together with a minor accumulation of by-products. These are among the highest performance values reported in the literature to date for Streptomyces in batch cultures.

  2. AÇÃO DA TERAPIA FOTODINÂMICA EM Klebsiella pneumoniae (ATCC 4352 UTILIZANDO MODELO DE INFECÇÃO Galleria mellonella

    Directory of Open Access Journals (Sweden)

    Raquel Teles de Menezes

    2017-05-01

    Full Text Available Klebsiella pneumoniae é um dos patógenos que possui grande resistência a vários antimicrobianos. A Terapia Fotodinâmica Antimicrobiana (PDT vem sendo estudada como novo recurso no combate à resistência bacteriana. Objetivo: Avaliar a ação antimicrobiana da PDT em K. pneumoniae utilizando como modelo de infecção in vivo Galleria mellonella. Métodos: Foram inoculados 10µL da suspensão padronizada de K. pneumoniae ATCC 4352 na última proleg esquerda de cada larva selecionada de G. mellonella. Decorridos 30 minutos, as larvas foram submetidas a PDT, com o uso do fotossensibilizador Azul de metileno e Laser de Arseneto de Gálio Alumínio. Passadas 24h, por sete dias o número de lagartas mortas foi anotado para a realização da curva de sobrevivência. Resultados: A PDT contribuiu para melhora da sobrevida das larvas, porém sem apresentar diferença estatística significante. Conclusão: A PDT apresentou atividade antimicrobiana contra a cepa de K. pneumoniae ATCC 4352.

  3. Sequence and transcriptional analysis of the genes responsible for curdlan biosynthesis in Agrobacterium sp. ATCC 31749 under simulated dissolved oxygen gradients conditions.

    Science.gov (United States)

    Zhang, Hong-Tao; Zhan, Xiao-Bei; Zheng, Zhi-Yong; Wu, Jian-Rong; Yu, Xiao-Bin; Jiang, Yun; Lin, Chi-Chung

    2011-07-01

    Expression at the mRNA level of ten selected genes in Agrobacterium sp. ATCC 31749 under various dissolved oxygen (DO) levels during curdlan fermentation related to electron transfer chain (ETC), tricarboxylic acid (TCA) cycle, peptidoglycan/lipopolysaccharide biosynthesis, and uridine diphosphate (UDP)-glucose biosynthesis were determined by qRT-PCR. Experiments were performed at DO levels of 30%, 50%, and 75%, as well as under low-oxygen conditions. The effect of high cell density on transcriptional response of the above genes under low oxygen was also studied. Besides cytochrome d (cyd A), the transcription levels of all the other genes were increased at higher DO and reached maximum at 50% DO. Under 75% DO, the transcriptional levels of all the genes were repressed. In addition, transcription levels of icd, sdh, cyo A, and fix N genes did not exhibit significant fluctuation with high cell density culture under low oxygen. These results suggested a mechanism for DO regulation of curdlan synthesis through regulation of transcriptional levels of ETCs, TCA, and UDP-glucose synthesis genes during curdlan fermentation. To our knowledge, this is the first report that DO concentration apparently regulates curdlan biosynthesis in Agrobacterium sp. ATCC 31749 providing essential lead for the optimization of the fermentation at the industrial scale.

  4. Sonication reduces the attachment of Salmonella Typhimurium ATCC 14028 cells to bacterial cellulose-based plant cell wall models and cut plant material.

    Science.gov (United States)

    Tan, Michelle S F; Rahman, Sadequr; Dykes, Gary A

    2017-04-01

    This study investigated the removal of bacterial surface structures, particularly flagella, using sonication, and examined its effect on the attachment of Salmonella Typhimurium ATCC 14028 cells to plant cell walls. S. Typhimurium ATCC 14028 cells were subjected to sonication at 20 kHz to remove surface structures without affecting cell viability. Effective removal of flagella was determined by staining flagella of sonicated cells with Ryu's stain and enumerating the flagella remaining by direct microscopic counting. The attachment of sonicated S. Typhimurium cells to bacterial cellulose-based plant cell wall models and cut plant material (potato, apple, lettuce) was then evaluated. Varying concentrations of pectin and/or xyloglucan were used to produce a range of bacterial cellulose-based plant cell wall models. As compared to the non-sonicated controls, sonicated S. Typhimurium cells attached in significantly lower numbers (between 0.5 and 1.0 log CFU/cm 2 ) to all surfaces except to the bacterial cellulose-only composite without pectin and xyloglucan. Since attachment of S. Typhimurium to the bacterial cellulose-only composite was not affected by sonication, this suggests that bacterial surface structures, particularly flagella, could have specific interactions with pectin and xyloglucan. This study indicates that sonication may have potential applications for reducing Salmonella attachment during the processing of fresh produce. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Application of the Response Surface Methodology to Optimize the Fermentation Parameters for Enhanced Docosahexaenoic Acid (DHA) Production by Thraustochytrium sp. ATCC 26185.

    Science.gov (United States)

    Wu, Kang; Ding, Lijian; Zhu, Peng; Li, Shuang; He, Shan

    2018-04-22

    The aim of this study was to determine the cumulative effect of fermentation parameters and enhance the production of docosahexaenoic acid (DHA) by Thraustochytrium sp. ATCC 26185 using response surface methodology (RSM). Among the eight variables screened for effects of fermentation parameters on DHA production by Plackett-Burman design (PBD), the initial pH, inoculum volume, and fermentation volume were found to be most significant. The Box-Behnken design was applied to derive a statistical model for optimizing these three fermentation parameters for DHA production. The optimal parameters for maximum DHA production were initial pH: 6.89, inoculum volume: 4.16%, and fermentation volume: 140.47 mL, respectively. The maximum yield of DHA production was 1.68 g/L, which was in agreement with predicted values. An increase in DHA production was achieved by optimizing the initial pH, fermentation, and inoculum volume parameters. This optimization strategy led to a significant increase in the amount of DHA produced, from 1.16 g/L to 1.68 g/L. Thraustochytrium sp. ATCC 26185 is a promising resource for microbial DHA production due to the high-level yield of DHA that it produces, and the capacity for large-scale fermentation of this organism.

  6. The extracellular phage-host interactions involved in the bacteriophage LL-H infection of Lactobacillus delbrueckii ssp. lactis ATCC 15808.

    Science.gov (United States)

    Munsch-Alatossava, Patricia; Alatossava, Tapani

    2013-12-24

    The complete genome sequence of Lactobacillus bacteriophage LL-H was determined in 1996. Accordingly, LL-H has been used as a model phage for the infection of dairy Lactobacillus, specifically for thermophilic Lactobacillus delbrueckii ssp. lactis host strains, such as ATCC 15808. One of the major goals of phage LL-H research consisted of the characterization of the first phage-host interactions at the level of phage adsorption and phage DNA injection steps to determine effective and practical methods to minimize the risks associated with the appearance and attack of phages in the manufacture of yogurt, and Swiss or Italian hard type cheeses, which typically use thermophilic lactic acid bacteria starter cultures containing L. delbrueckii strains among others. This mini review article summarizes the present data concerning (i) the special features, particle structure, and components of phage LL-H and (ii) the structure and properties of lipoteichoic acids (LTAs), which are the phage LL-H receptor components of L. delbrueckii ssp. lactis host strains. Moreover, a model of the first, extracellular, phage-host interactions for the infection of L. delbrueckii ssp. lactis ATCC 15808 by phage LL-H is presented and further discussed.

  7. The extracellular phage-host interactions involved in the bacteriophage LL-H infection of Lactobacillus delbrueckii ssp. lactis ATCC 15808

    Directory of Open Access Journals (Sweden)

    Patricia eMunsch-Alatossava

    2013-12-01

    Full Text Available The complete genome sequence of Lactobacillus bacteriophage LL-H was determined in 1996. Accordingly, LL-H has been used as a model phage for the infection of dairy Lactobacillus, specifically for thermophilic Lb. delbrueckii ssp. lactis host strains, such as ATCC 15808. One of the major goals of phage LL-H research consisted of the characterization of the the first phage-host interactions at the level of phage adsorption and phage DNA injection steps to determine effective and practical methods to minimise the risks associated with the appearance and attack of phages in the manufacture of yoghurt, and Swiss or Italian type hard cheeses, which typically use thermophilic LAB starter cultures containing Lb. delbrueckii strains among others. This mini review article summarises the present data concerning (i the special features, particle structure and components of phage LL-H and (ii the structure and properties of lipoteichoic acids (LTAs, which are the phage LL-H receptor components of Lb. delbrueckii ssp. lactis host strains. Moreover, a model of the first, extracellular, phage-host interactions for the infection of Lb. delbrueckii ssp. lactis ATCC 15808 by phage LL-H is presented and further discussed.

  8. Gentamicin-Containing Peptone-Yeast Extract Medium for Cocultivation of Hartmannella vermiformis ATCC 50256 and Virulent Strains of Legionella pneumophila.

    Science.gov (United States)

    Wadowsky, R M; Wang, L; Laus, S; Dowling, J N; Kuchta, J M; States, S J; Yee, R B

    1995-12-01

    We evaluated the use of peptone-yeast extract (PY) medium, different strains of Hartmannella vermiformis, and gentamicin in a coculture system to improve the discrimination of virulent and avirulent strains of Legionella pneumophila. H. vermiformis ATCC 50256 was unique among four strains of H. vermiformis, in that it multiplied equally well in Medium 1034 and PY medium (Medium 1034 without fetal calf serum, folic acid, hemin, and yeast nucleic acid and with a 50% reduction of peptone). However, both a virulent strain of L. pneumophila and its avirulent derivative strain multiplied in cocultures when PY medium was used. The multiplication of this avirulent strain was greatly reduced by incorporating gentamicin (1 (mu)g/ml) into the cocultivation system. Five virulent-avirulent sets of L. pneumophila strains were then tested for multiplication in cocultures with H. vermiformis ATCC 50256 and the gentamicin-containing PY medium. Only the virulent strains multiplied. The modified cocultivation system can discriminate between virulent and avirulent strains of L. pneumophila.

  9. Random mutagenesis in Corynebacterium glutamicum ATCC 13032 using an IS6100-based transposon vector identified the last unknown gene in the histidine biosynthesis pathway

    Directory of Open Access Journals (Sweden)

    Gaigalat Lars

    2006-08-01

    Full Text Available Abstract Background Corynebacterium glutamicum, a Gram-positive bacterium of the class Actinobacteria, is an industrially relevant producer of amino acids. Several methods for the targeted genetic manipulation of this organism and rational strain improvement have been developed. An efficient transposon mutagenesis system for the completely sequenced type strain ATCC 13032 would significantly advance functional genome analysis in this bacterium. Results A comprehensive transposon mutant library comprising 10,080 independent clones was constructed by electrotransformation of the restriction-deficient derivative of strain ATCC 13032, C. glutamicum RES167, with an IS6100-containing non-replicative plasmid. Transposon mutants had stable cointegrates between the transposon vector and the chromosome. Altogether 172 transposon integration sites have been determined by sequencing of the chromosomal inserts, revealing that each integration occurred at a different locus. Statistical target site analyses revealed an apparent absence of a target site preference. From the library, auxotrophic mutants were obtained with a frequency of 2.9%. By auxanography analyses nearly two thirds of the auxotrophs were further characterized, including mutants with single, double and alternative nutritional requirements. In most cases the nutritional requirement observed could be correlated to the annotation of the mutated gene involved in the biosynthesis of an amino acid, a nucleotide or a vitamin. One notable exception was a clone mutagenized by transposition into the gene cg0910, which exhibited an auxotrophy for histidine. The protein sequence deduced from cg0910 showed high sequence similarities to inositol-1(or 4-monophosphatases (EC 3.1.3.25. Subsequent genetic deletion of cg0910 delivered the same histidine-auxotrophic phenotype. Genetic complementation of the mutants as well as supplementation by histidinol suggests that cg0910 encodes the hitherto unknown

  10. Mario Aguilera Peña, coordinador. El orden desarmado. La resistencia de la Asociación de Trabajadores Campesinos del Carare (ATCC

    Directory of Open Access Journals (Sweden)

    Leidy Carolina Navarro Antolínez

    2013-01-01

    Full Text Available Esta investigación representa el doceavo informe del Grupo de Memoria Histórica de la Comisión Nacional de Reparación y Reconciliación (CNRR, que hasta la fecha ha publicado diecinueve investigaciones. El proyecto surgió con la Ley de Justicia y Paz, del año 2005, con el propósito de "presentar informes sobre el origen y evolución de los grupos armados ilegales" (artículo 51. En este informe, el historiador y abogado Mario Aguilera Pena presenta una investigación que, como su titulo lo advierte, tiene por objeto reconstruir la historia de un orden social desarmado, como programa y proceso liderado por la Asociación de Trabajadores y Campesinos del Carare (ATCC, creada en 1987, en el corregimiento de La India, Santander.

  11. Transcriptome Sequence and Plasmid Copy Number Analysis of the Brewery Isolate Pediococcus claussenii ATCC BAA-344T during Growth in Beer

    Science.gov (United States)

    Pittet, Vanessa; Phister, Trevor G.; Ziola, Barry

    2013-01-01

    Growth of specific lactic acid bacteria in beer leads to spoiled product and economic loss for the brewing industry. Microbial growth is typically inhibited by the combined stresses found in beer (e.g., ethanol, hops, low pH, minimal nutrients); however, certain bacteria have adapted to grow in this harsh environment. Considering little is known about the mechanisms used by bacteria to grow in and spoil beer, transcriptome sequencing was performed on a variant of the beer-spoilage organism Pediococcus claussenii ATCC BAA-344T (Pc344-358). Illumina sequencing was used to compare the transcript levels in Pc344-358 growing mid-exponentially in beer to those in nutrient-rich MRS broth. Various operons demonstrated high gene expression in beer, several of which are involved in nutrient acquisition and overcoming the inhibitory effects of hop compounds. As well, genes functioning in cell membrane modification and biosynthesis demonstrated significantly higher transcript levels in Pc344-358 growing in beer. Three plasmids had the majority of their genes showing increased transcript levels in beer, whereas the two cryptic plasmids showed slightly decreased gene expression. Follow-up analysis of plasmid copy number in both growth environments revealed similar trends, where more copies of the three non-cryptic plasmids were found in Pc344-358 growing in beer. Transcriptome sequencing also enabled the addition of several genes to the P . claussenii ATCC BAA-344T genome annotation, some of which are putatively transcribed as non-coding RNAs. The sequencing results not only provide the first transcriptome description of a beer-spoilage organism while growing in beer, but they also highlight several targets for future exploration, including genes that may have a role in the general stress response of lactic acid bacteria. PMID:24040005

  12. Organization and characterization of genetic regions in Bacillus subtilis subsp. krictiensis ATCC55079 associated with the biosynthesis of iturin and surfactin compounds.

    Directory of Open Access Journals (Sweden)

    Young Tae Kim

    Full Text Available Bacillus subtilis subsp. krictiensis ATCC55079 produces the cyclic lipopeptide antibiotics iturin A-F as well as several surfactins. Here, we analyzed and characterized the biosynthetic genes associated with iturin and surfactin production in this strain. We aligned the sequences of each iturin and surfactin synthetase ORF obtained from a genomic library screen and next generation sequencing. The resulting 37,249-bp and 37,645-bp sequences associated with iturin and surfactin production, respectively, contained several ORFs that are predicted to encode proteins involved in iturin and surfactin biosynthesis. These ORFs showed higher sequence homologies with the respective iturin and surfactin synthetase genes of B. methylotrophicus CAU B946 than with those of B. subtilis RB14 and B. subtilis ATCC6633. Moreover, comparative analysis of the secondary metabolites produced by the wild-type and surfactin-less mutant (with a spectinomycin resistance cassette inserted into the srfAB gene within the putative surfactin gene region strains demonstrated that the mutant strain showed significantly higher antifungal activity against Fusarium oxysporum than the wild-type strain. In addition, the wild-type strain-specific surfactin high performance liquid chromatography (HPLC peaks were not observed in the surfactin-less mutant strain. In contrast, the iturin A peak detected by HPLC and liquid chromatography-mass spectrometry (LC/MS in the surfactin-less mutant strain was 30% greater than that in the wild-type strain. These results suggested that the gene cluster we identified is involved in surfactin biosynthesis, and the biosynthetic pathways for iturin and surfactin in Bacillus strains producing both iturin and surfactin may utilize a common pathway.

  13. Branched chain amino acids maintain the molecular weight of poly(γ-glutamic acid) of Bacillus licheniformis ATCC 9945 during the fermentation.

    Science.gov (United States)

    Mitsunaga, Hitoshi; Meissner, Lena; Büchs, Jochen; Fukusaki, Eiichiro

    2016-10-01

    Poly(γ-glutamic acid) mainly produced by Bacillus spp. is an industrially important compound due to several useful features. Among them, molecular weight is an important characteristic affecting on the physical properties such as viscosities and negative charge densities. However, it is difficult to control the molecular size of PGA since it decreases during fermentation. Previous study reported that PGA produced in the media containing different carbon sources such as glucose and glycerol showed differences in molecular weight. Therefore in this study, the effect of carbon source on the PGA molecular weight was examined; with the aim of developing a strategy to maintain the high molecular weight of PGA during fermentation. Our result showed that the weight average molecular weight (Mw) of PGA of Bacillus licheniformis ATCC 9945 cultivated in the media containing PTS-sugars were higher than the medium containing glycerol (non-PTS). The result of metabolome analysis indicated the possibility of CodY (a global regulator protein) activation in the cells cultivated in the media containing PTS-sugars. To mimic this effect, branched-chain amino acids (BCAAs), which are activators of CodY, were added to a medium containing glycerol. As the result, the Mw of PGA in the BCAAs-supplemented media were maintained and high during the early production phase compared to the non BCAAs-supplemented medium. These results indicate that BCAAs can repress the PGA molecular weight reduction during fermentation in B. licheniformis ATCC 9945. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Influence of polysorbate 80 and cyclopropane fatty acid synthase activity on lactic acid production by Lactobacillus casei ATCC 334 at low pH.

    Science.gov (United States)

    Broadbent, J R; Oberg, T S; Hughes, J E; Ward, R E; Brighton, C; Welker, D L; Steele, J L

    2014-03-01

    Lactic acid is an important industrial chemical commonly produced through microbial fermentation. The efficiency of acid extraction is increased at or below the acid's pKa (pH 3.86), so there is interest in factors that allow for a reduced fermentation pH. We explored the role of cyclopropane synthase (Cfa) and polysorbate (Tween) 80 on acid production and membrane lipid composition in Lactobacillus casei ATCC 334 at low pH. Cells from wild-type and an ATCC 334 cfa knockout mutant were incubated in APT broth medium containing 3 % glucose plus 0.02 or 0.2 % Tween 80. The cultures were allowed to acidify the medium until it reached a target pH (4.5, 4.0, or 3.8), and then the pH was maintained by automatic addition of NH₄OH. Cells were collected at the midpoint of the fermentation for membrane lipid analysis, and media samples were analyzed for lactic and acetic acids when acid production had ceased. There were no significant differences in the quantity of lactic acid produced at different pH values by wild-type or mutant cells grown in APT, but the rate of acid production was reduced as pH declined. APT supplementation with 0.2 % Tween 80 significantly increased the amount of lactic acid produced by wild-type cells at pH 3.8, and the rate of acid production was modestly improved. This effect was not observed with the cfa mutant, which indicated Cfa activity and Tween 80 supplementation were each involved in the significant increase in lactic acid yield observed with wild-type L. casei at pH 3.8.

  15. Lactobacillus rhamnosus ATCC 7469 exopolysaccharides synergizes with low level ionizing radiation to modulate signaling molecular targets in colorectal carcinogenesis in rats.

    Science.gov (United States)

    Zahran, Walid E; Elsonbaty, Sawsan M; Moawed, Fatma S M

    2017-08-01

    Combination therapy that targets cellular signaling pathway represents an alternative therapy for the treatment of colon cancer (CRC). The present study was therefore aimed to investigate the probable interaction of Lactobacillus rhamnosus ATCC 7469 exopolysaccharides (EPS) with low level ionizing γ radiation (γ-R) exposure against dimethylhydrazine (DMH)- induced colorectal carcinogenesis in rats. Colon cancer was induced with 20mg DMH/kg BW. Rats received daily by gastric gavage 100mg EPS/Kg BW concomitant with 1Gy γ-R over two months. Colonic oxidative and inflammatory stresses were assessed. The change in the expression of p-p38 MAPK, p-STAT3, β-catenin, NF-kB, COX-2 and iNOS was evaluated by western blotting and q-PCR. It was found that DMH treatment significantly induced colon oxidative injury accompanied by inflammatory disturbance along with increased protein expression of the targeted signaling factors p-p38 MAPK, p-STAT3 and β-catenin. The mRNA gene expression of NF-kB, COX-2 and iNOS was significantly higher in DMH-treated animals. It's worthy to note that colon tissues with DMH treatment showed significant dysplasia and anaplasia of the glandular mucosal lining epithelium with loses of goblet cells formation, pleomorphism in the cells and hyperchromachia in nuclei. Interestingly, EPS treatment with γ-R exposure showed statistically significant amelioration of the oxidative and inflammatory biomarkers with modulated signaling molecular factors accompanied by improved histological structure against DMH-induced CRC. In conclusion, our findings showed that Lactobacillus rhamnosus ATCC 7469 EPS with low level γ-R in synergistic interaction are efficacious control against CRC progression throughout the modulation of key signaling growth factors associated with inflammation via antioxidant mediated anti-inflammatory and anti-proliferative activities. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. Effect of a probiotic beverage consumption (Enterococcus faecium CRL 183 and Bifidobacterium longum ATCC 15707 in rats with chemically induced colitis.

    Directory of Open Access Journals (Sweden)

    Larissa Sbaglia Celiberto

    Full Text Available Some probiotic strains have the potential to assist in relieving the symptoms of inflammatory bowel disease. The impact of daily ingestion of a soy-based product fermented by Enterococcus faecium CRL 183 and Lactobacillus helveticus 416 with the addition of Bifidobacterium longum ATCC 15707 on chemically induced colitis has been investigated thereof within a period of 30 days.Colitis was induced by dextran sulfate sodium. The animals were randomly assigned into five groups: Group C: negative control; Group CL: positive control; Group CLF: DSS with the fermented product; Group CLP: DSS with the non-fermented product (placebo; Group CLS: DSS with sulfasalazine. The following parameters were monitored: disease activity index, fecal microbial analyses, gastrointestinal survival of probiotic microorganisms and short-chain fatty acids concentration in the feces. At the end of the protocol the animals' colons were removed so as to conduct a macroscopical and histopathological analysis, cytokines and nitrite quantification.Animals belonging to the CLF group showed fewer symptoms of colitis during the induction period and a lower degree of inflammation and ulceration in their colon compared to the CL, CLS and CLP groups (p<0.05. The colon of the animals in groups CL and CLS presented severe crypt damage, which was absent in CLF and CLP groups. A significant increase in the population of Lactobacillus spp. and Bifidobacterium spp. at the end of the protocol was verified only in the CLF animals (p<0.05. This group also showed an increase in short-chain fatty acids (propionate and acetate. Furthermore, the intestinal survival of E. faecium CRL 183 and B. longum ATCC 15707 in the CLF group has been confirmed by biochemical and molecular analyzes.The obtained results suggest that a regular intake of the probiotic product, and placebo to a lesser extent, can reduce the severity of DSS-induced colitis on rats.

  17. No evidence of harms of probiotic Lactobacillus rhamnosus GG ATCC 53103 in healthy elderly-a phase I open label study to assess safety, tolerability and cytokine responses.

    Directory of Open Access Journals (Sweden)

    Patricia L Hibberd

    Full Text Available Although Lactobacillus rhamnosus GG ATCC 53103 (LGG has been consumed by 2 to 5 million people daily since the mid 1990s, there are few clinical trials describing potential harms of LGG, particularly in the elderly.The primary objective of this open label clinical trial is to assess the safety and tolerability of 1×1010 colony forming units (CFU of LGG administered orally twice daily to elderly volunteers for 28 days. The secondary objectives were to evaluate the effects of LGG on the gastrointestinal microbiome, host immune response and plasma cytokines.Fifteen elderly volunteers, aged 66-80 years received LGG capsules containing 1×1010 CFU, twice daily for 28 days and were followed through day 56. Volunteers completed a daily diary, a telephone call on study days 3, 7 and 14 and study visits in the Clinical Research Center at baseline, day 28 and day 56 to determine whether adverse events had occurred. Assessments included prompted and open-ended questions.There were no serious adverse events. The 15 volunteers had a total of 47 events (range 1-7 per volunteer, 39 (83% of which were rated as mild and 40% of which were considered related to consuming LGG. Thirty-one (70% of the events were expected, prompted symptoms while 16 were unexpected events. The most common adverse events were gastrointestinal (bloating, gas, and nausea, 27 rated as mild and 3 rated as moderate. In the exploratory analysis, the pro-inflammatory cytokine interleukin 8 decreased during LGG consumption, returning towards baseline one month after discontinuing LGG (p = 0.038 while there was no difference in other pro- or anti-inflammatory plasma cytokines.Lactobacillus rhamnosus GG ATCC 53103 is safe and well tolerated in healthy adults aged 65 years and older.ClinicalTrials.gov NCT 01274598.

  18. Organization and characterization of genetic regions in Bacillus subtilis subsp. krictiensis ATCC55079 associated with the biosynthesis of iturin and surfactin compounds

    Science.gov (United States)

    Kim, Sung Eun; Lee, Won Jung; Moon, Jae Sun; Cho, Min Seop; Park, Ho-Yong; Hwang, Ingyu

    2017-01-01

    Bacillus subtilis subsp. krictiensis ATCC55079 produces the cyclic lipopeptide antibiotics iturin A–F as well as several surfactins. Here, we analyzed and characterized the biosynthetic genes associated with iturin and surfactin production in this strain. We aligned the sequences of each iturin and surfactin synthetase ORF obtained from a genomic library screen and next generation sequencing. The resulting 37,249-bp and 37,645-bp sequences associated with iturin and surfactin production, respectively, contained several ORFs that are predicted to encode proteins involved in iturin and surfactin biosynthesis. These ORFs showed higher sequence homologies with the respective iturin and surfactin synthetase genes of B. methylotrophicus CAU B946 than with those of B. subtilis RB14 and B. subtilis ATCC6633. Moreover, comparative analysis of the secondary metabolites produced by the wild-type and surfactin-less mutant (with a spectinomycin resistance cassette inserted into the srfAB gene within the putative surfactin gene region) strains demonstrated that the mutant strain showed significantly higher antifungal activity against Fusarium oxysporum than the wild-type strain. In addition, the wild-type strain-specific surfactin high performance liquid chromatography (HPLC) peaks were not observed in the surfactin-less mutant strain. In contrast, the iturin A peak detected by HPLC and liquid chromatography-mass spectrometry (LC/MS) in the surfactin-less mutant strain was 30% greater than that in the wild-type strain. These results suggested that the gene cluster we identified is involved in surfactin biosynthesis, and the biosynthetic pathways for iturin and surfactin in Bacillus strains producing both iturin and surfactin may utilize a common pathway. PMID:29267290

  19. Homologous stress adaptation, antibiotic resistance, and biofilm forming ability of Salmonella enterica serovar Heidelberg (ATCC8326) on different food-contact surfaces following exposure to sub-lethal chlorine concentrations

    Science.gov (United States)

    Salmonella enterica serovar Heidelberg (American Type Culture Collection; ATCC 8326) was examined for the ability to adapt to the homologous stress of chlorine through exposure to increasing chlorine concentrations (25 ppm daily increments) in tryptic soy broth (TSB). The tested strain exhibited an ...

  20. Diversity and transcription of proteases involved in the maturation of hydrogenases in Nostoc punctiforme ATCC 29133 and Nostoc sp. strain PCC 7120

    Science.gov (United States)

    2009-01-01

    Background The last step in the maturation process of the large subunit of [NiFe]-hydrogenases is a proteolytic cleavage of the C-terminal by a hydrogenase specific protease. Contrary to other accessory proteins these hydrogenase proteases are believed to be specific whereby one type of hydrogenases specific protease only cleaves one type of hydrogenase. In cyanobacteria this is achieved by the gene product of either hupW or hoxW, specific for the uptake or the bidirectional hydrogenase respectively. The filamentous cyanobacteria Nostoc punctiforme ATCC 29133 and Nostoc sp strain PCC 7120 may contain a single uptake hydrogenase or both an uptake and a bidirectional hydrogenase respectively. Results In order to examine these proteases in cyanobacteria, transcriptional analyses were performed of hupW in Nostoc punctiforme ATCC 29133 and hupW and hoxW in Nostoc sp. strain PCC 7120. These studies revealed numerous transcriptional start points together with putative binding sites for NtcA (hupW) and LexA (hoxW). In order to investigate the diversity and specificity among hydrogeanse specific proteases we constructed a phylogenetic tree which revealed several subgroups that showed a striking resemblance to the subgroups previously described for [NiFe]-hydrogenases. Additionally the proteases specificity was also addressed by amino acid sequence analysis and protein-protein docking experiments with 3D-models derived from bioinformatic studies. These studies revealed a so called "HOXBOX"; an amino acid sequence specific for protease of Hox-type which might be involved in docking with the large subunit of the hydrogenase. Conclusion Our findings suggest that the hydrogenase specific proteases are under similar regulatory control as the hydrogenases they cleave. The result from the phylogenetic study also indicates that the hydrogenase and the protease have co-evolved since ancient time and suggests that at least one major horizontal gene transfer has occurred. This co

  1. Diversity and transcription of proteases involved in the maturation of hydrogenases in Nostoc punctiforme ATCC 29133 and Nostoc sp. strain PCC 7120

    Directory of Open Access Journals (Sweden)

    Lindblad Peter

    2009-03-01

    Full Text Available Abstract Background The last step in the maturation process of the large subunit of [NiFe]-hydrogenases is a proteolytic cleavage of the C-terminal by a hydrogenase specific protease. Contrary to other accessory proteins these hydrogenase proteases are believed to be specific whereby one type of hydrogenases specific protease only cleaves one type of hydrogenase. In cyanobacteria this is achieved by the gene product of either hupW or hoxW, specific for the uptake or the bidirectional hydrogenase respectively. The filamentous cyanobacteria Nostoc punctiforme ATCC 29133 and Nostoc sp strain PCC 7120 may contain a single uptake hydrogenase or both an uptake and a bidirectional hydrogenase respectively. Results In order to examine these proteases in cyanobacteria, transcriptional analyses were performed of hupW in Nostoc punctiforme ATCC 29133 and hupW and hoxW in Nostoc sp. strain PCC 7120. These studies revealed numerous transcriptional start points together with putative binding sites for NtcA (hupW and LexA (hoxW. In order to investigate the diversity and specificity among hydrogeanse specific proteases we constructed a phylogenetic tree which revealed several subgroups that showed a striking resemblance to the subgroups previously described for [NiFe]-hydrogenases. Additionally the proteases specificity was also addressed by amino acid sequence analysis and protein-protein docking experiments with 3D-models derived from bioinformatic studies. These studies revealed a so called "HOXBOX"; an amino acid sequence specific for protease of Hox-type which might be involved in docking with the large subunit of the hydrogenase. Conclusion Our findings suggest that the hydrogenase specific proteases are under similar regulatory control as the hydrogenases they cleave. The result from the phylogenetic study also indicates that the hydrogenase and the protease have co-evolved since ancient time and suggests that at least one major horizontal gene transfer

  2. Structure of Bacteroides thetaiotaomicron BT2081 at 2.05 Å resolution: the first structural representative of a new protein family that may play a role in carbohydrate metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Andrew P. [Joint Center for Structural Genomics, http://www.jcsg.org (United States); Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Abdubek, Polat [Joint Center for Structural Genomics, http://www.jcsg.org (United States); Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA (United States); Astakhova, Tamara [Joint Center for Structural Genomics, http://www.jcsg.org (United States); Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA (United States); Axelrod, Herbert L. [Joint Center for Structural Genomics, http://www.jcsg.org (United States); Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Bakolitsa, Constantina [Joint Center for Structural Genomics, http://www.jcsg.org (United States); Program on Bioinformatics and Systems Biology, Sanford-Burnham Medical Research Institute, La Jolla, CA (United States); Cai, Xiaohui [Joint Center for Structural Genomics, http://www.jcsg.org (United States); Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA (United States); Carlton, Dennis [Joint Center for Structural Genomics, http://www.jcsg.org (United States); Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA (United States); Chen, Connie [Joint Center for Structural Genomics, http://www.jcsg.org (United States); Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA (United States); Chiu, Hsiu-Ju [Joint Center for Structural Genomics, http://www.jcsg.org (United States); Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Chiu, Michelle [Joint Center for Structural Genomics, http://www.jcsg.org (United States); Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA (United States); Clayton, Thomas [Joint Center for Structural Genomics, http://www.jcsg.org (United States); Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA (United States); Das, Debanu [Joint Center for Structural Genomics, http://www.jcsg.org (United States); Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Deller, Marc C. [Joint Center for Structural Genomics, http://www.jcsg.org (United States); Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA (United States); Duan, Lian; Ellrott, Kyle [Joint Center for Structural Genomics, http://www.jcsg.org (United States); Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA (United States); Farr, Carol L. [Joint Center for Structural Genomics, http://www.jcsg.org (United States); Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA (United States); Feuerhelm, Julie; Grant, Joanna C. [Joint Center for Structural Genomics, http://www.jcsg.org (United States); Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA (United States); Grzechnik, Anna; Han, Gye Won [Joint Center for Structural Genomics, http://www.jcsg.org (United States); Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA (United States); Jaroszewski, Lukasz [Joint Center for Structural Genomics, http://www.jcsg.org (United States); Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA (United States); Program on Bioinformatics and Systems Biology, Sanford-Burnham Medical Research Institute, La Jolla, CA (United States); Jin, Kevin K. [Joint Center for Structural Genomics, http://www.jcsg.org (United States); Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Klock, Heath E.; Knuth, Mark W. [Joint Center for Structural Genomics, http://www.jcsg.org (United States); Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA (United States); Kozbial, Piotr [Joint Center for Structural Genomics, http://www.jcsg.org (United States); Program on Bioinformatics and Systems Biology, Sanford-Burnham Medical Research Institute, La Jolla, CA (United States); Krishna, S. Sri [Joint Center for Structural Genomics, http://www.jcsg.org (United States); Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA (United States); Program on Bioinformatics and Systems Biology, Sanford-Burnham Medical Research Institute, La Jolla, CA (United States); Kumar, Abhinav; Lam, Winnie W. [Joint Center for Structural Genomics, http://www.jcsg.org (United States); Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Marciano, David [Joint Center for Structural Genomics, http://www.jcsg.org (US); Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA (US); McMullan, Daniel [Joint Center for Structural Genomics, http://www.jcsg.org (US); Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA (US); Miller, Mitchell D. [Joint Center for Structural Genomics, http://www.jcsg.org (US); Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA (US); Morse, Andrew T. [Joint Center for Structural Genomics, http://www.jcsg.org (US); Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA (US); Nigoghossian, Edward [Joint Center for Structural Genomics, http://www.jcsg.org (US); Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA (US); Nopakun, Amanda [Joint Center for Structural Genomics, http://www.jcsg.org (US); Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA (US); Okach, Linda; Puckett, Christina [Joint Center for Structural Genomics, http://www.jcsg.org (US); Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA (US); Reyes, Ron [Joint Center for Structural Genomics, http://www.jcsg.org (US); Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA (US); Tien, Henry J. [Joint Center for Structural Genomics, http://www.jcsg.org (US); Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA (US); Trame, Christine B.; Bedem, Henry van den [Joint Center for Structural Genomics, http://www.jcsg.org (US); Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA (US); Weekes, Dana [Joint Center for Structural Genomics, http://www.jcsg.org (US); Program on Bioinformatics and Systems Biology, Sanford-Burnham Medical Research Institute, La Jolla, CA (US); Wooten, Tiffany [Joint Center for Structural Genomics, http://www.jcsg.org (US); Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA (US); Xu, Qingping [Joint Center for Structural Genomics, http://www.jcsg.org (US); Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA (US); Hodgson, Keith O. [Joint Center for Structural Genomics, http://www.jcsg.org (US); Photon Science, SLAC National Accelerator Laboratory, Menlo Park, CA (US); Wooley, John [Joint Center for Structural Genomics, http://www.jcsg.org (US); Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA (US); Elsliger, Marc-André [Joint Center for Structural Genomics, http://www.jcsg.org (US); Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA (US); Deacon, Ashley M. [Joint Center for Structural Genomics, http://www.jcsg.org (US); Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA (US); Godzik, Adam [Joint Center for Structural Genomics, http://www.jcsg.org (US); Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA (US); Program on Bioinformatics and Systems Biology, Sanford-Burnham Medical Research Institute, La Jolla, CA (US); Lesley, Scott A. [Joint Center for Structural Genomics, http://www.jcsg.org (US); Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA (US); Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA (US); Wilson, Ian A., E-mail: wilson@scripps.edu [Joint Center for Structural Genomics, http://www.jcsg.org (US); Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA (US)

    2010-10-01

    The crystal structure of BT2081 from B. thetaiotaomicron reveals a two-domain protein with a putative carbohydrate-binding site in the C-terminal domain. BT2081 from Bacteroides thetaiotaomicron (GenBank accession code NP-810994.1) is a member of a novel protein family consisting of over 160 members, most of which are found in the different classes of Bacteroidetes. Genome-context analysis lends support to the involvement of this family in carbohydrate metabolism, which plays a key role in B. thetaiotaomicron as a predominant bacterial symbiont in the human distal gut microbiome. The crystal structure of BT2081 at 2.05 Å resolution represents the first structure from this new protein family. BT2081 consists of an N-terminal domain, which adopts a β-sandwich immunoglobulin-like fold, and a larger C-terminal domain with a β-sandwich jelly-roll fold. Structural analyses reveal that both domains are similar to those found in various carbohydrate-active enzymes. The C-terminal β-jelly-roll domain contains a potential carbohydrate-binding site that is highly conserved among BT2081 homologs and is situated in the same location as the carbohydrate-binding sites that are found in structurally similar glycoside hydrolases (GHs). However, in BT2081 this site is partially occluded by surrounding loops, which results in a deep solvent-accessible pocket rather than a shallower solvent-exposed cleft.

  3. Structure of Bacteroides thetaiotaomicron BT2081 at 2.05 Å resolution: the first structural representative of a new protein family that may play a role in carbohydrate metabolism

    International Nuclear Information System (INIS)

    Yeh, Andrew P.; Abdubek, Polat; Astakhova, Tamara; Axelrod, Herbert L.; Bakolitsa, Constantina; Cai, Xiaohui; Carlton, Dennis; Chen, Connie; Chiu, Hsiu-Ju; Chiu, Michelle; Clayton, Thomas; Das, Debanu; Deller, Marc C.; Duan, Lian; Ellrott, Kyle; Farr, Carol L.; Feuerhelm, Julie; Grant, Joanna C.; Grzechnik, Anna; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K.; Klock, Heath E.; Knuth, Mark W.; Kozbial, Piotr; Krishna, S. Sri; Kumar, Abhinav; Lam, Winnie W.; Marciano, David; McMullan, Daniel; Miller, Mitchell D.; Morse, Andrew T.; Nigoghossian, Edward; Nopakun, Amanda; Okach, Linda; Puckett, Christina; Reyes, Ron; Tien, Henry J.; Trame, Christine B.; Bedem, Henry van den; Weekes, Dana; Wooten, Tiffany; Xu, Qingping; Hodgson, Keith O.; Wooley, John; Elsliger, Marc-André; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A.

    2010-01-01

    The crystal structure of BT2081 from B. thetaiotaomicron reveals a two-domain protein with a putative carbohydrate-binding site in the C-terminal domain. BT2081 from Bacteroides thetaiotaomicron (GenBank accession code NP-810994.1) is a member of a novel protein family consisting of over 160 members, most of which are found in the different classes of Bacteroidetes. Genome-context analysis lends support to the involvement of this family in carbohydrate metabolism, which plays a key role in B. thetaiotaomicron as a predominant bacterial symbiont in the human distal gut microbiome. The crystal structure of BT2081 at 2.05 Å resolution represents the first structure from this new protein family. BT2081 consists of an N-terminal domain, which adopts a β-sandwich immunoglobulin-like fold, and a larger C-terminal domain with a β-sandwich jelly-roll fold. Structural analyses reveal that both domains are similar to those found in various carbohydrate-active enzymes. The C-terminal β-jelly-roll domain contains a potential carbohydrate-binding site that is highly conserved among BT2081 homologs and is situated in the same location as the carbohydrate-binding sites that are found in structurally similar glycoside hydrolases (GHs). However, in BT2081 this site is partially occluded by surrounding loops, which results in a deep solvent-accessible pocket rather than a shallower solvent-exposed cleft

  4. Bacteroides fragilis Enterotoxin Induces Formation of Autophagosomes in Endothelial Cells but Interferes with Fusion with Lysosomes for Complete Autophagic Flux through a Mitogen-Activated Protein Kinase-, AP-1-, and C/EBP Homologous Protein-Dependent Pathway.

    Science.gov (United States)

    Ko, Su Hyuk; Jeon, Jong Ik; Myung, Hyun Soo; Kim, Young-Jeon; Kim, Jung Mogg

    2017-10-01

    Bacteroides fragilis enterotoxin (BFT), a virulence factor of enterotoxigenic B. fragilis (ETBF), plays an essential role in mucosal inflammation. Although autophagy contributes to the pathogenesis of diverse infectious diseases, little is known about autophagy in ETBF infection. This study was conducted to investigate the role of BFT in the autophagic process in endothelial cells (ECs). Stimulation of human umbilical vein ECs (HUVECs) with BFT increased light chain 3 protein II (LC3-II) conversion from LC3-I and protein expression of p62, Atg5, and Atg12. In addition, BFT-exposed ECs showed increased indices of autophagosomal fusion with lysosomes such as LC3-lysosome-associated protein 2 (LAMP2) colocalization and the percentage of red vesicles monitored by the expression of dual-tagged LC3B. BFT also upregulated expression of C/EBP homologous protein (CHOP), and inhibition of CHOP significantly increased indices of autophagosomal fusion with lysosomes. BFT activated an AP-1 transcription factor, in which suppression of AP-1 activity significantly downregulated CHOP and augmented autophagosomal fusion with lysosomes. Furthermore, suppression of Jun N-terminal protein kinase (JNK) mitogen-activated protein kinase (MAPK) significantly inhibited the AP-1 and CHOP signals, leading to an increase in autophagosomal fusion with lysosomes in BFT-stimulated ECs. These results suggest that BFT induced accumulation of autophagosomes in ECs, but activation of a signaling pathway involving JNK, AP-1, and CHOP may interfere with complete autophagy. Copyright © 2017 American Society for Microbiology.

  5. A novel non prophage(-like) gene-intervening element within gerE that is reconstituted during sporulation in Bacillus cereus ATCC10987.

    Science.gov (United States)

    Abe, Kimihiro; Shimizu, Shin-Ya; Tsuda, Shuhei; Sato, Tsutomu

    2017-09-12

    Gene rearrangement is a widely-shared phenomenon in spore forming bacteria, in which prophage(-like) elements interrupting sporulation-specific genes are excised from the host genome to reconstitute the intact gene. Here, we report a novel class of gene-intervening elements, named gin, inserted in the 225 bp gerE-coding region of the B. cereus ATCC10987 genome, which generates a sporulation-specific rearrangement. gin has no phage-related genes and possesses three site-specific recombinase genes; girA, girB, and girC. We demonstrated that the gerE rearrangement occurs at the middle stage of sporulation, in which site-specific DNA recombination took place within the 9 bp consensus sequence flanking the disrupted gerE segments. Deletion analysis of gin uncovered that GirC and an additional factor, GirX, are responsible for gerE reconstitution. Involvement of GirC and GirX in DNA recombination was confirmed by an in vitro recombination assay. These results broaden the definition of the sporulation-specific gene rearrangement phenomenon: gene-intervening elements are not limited to phage DNA but may include non-viral genetic elements that carry a developmentally-regulated site-specific recombination system.

  6. Optimizing culture conditions for production of intra and extracellular inulinase and invertase from Aspergillus niger ATCC 20611 by response surface methodology (RSM).

    Science.gov (United States)

    Dinarvand, Mojdeh; Rezaee, Malahat; Foroughi, Majid

    The aim of this study was obtain a model that maximizes growth and production of inulinase and invertase by Aspergillus niger ATCC 20611, employing response surface methodology (RSM). The RSM with a five-variable and three-level central composite design (CCD) was employed to optimize the medium composition. Results showed that the experimental data could be appropriately fitted into a second-order polynomial model with a coefficient of determination (R 2 ) more than 0.90 for all responses. This model adequately explained the data variation and represented the actual relationships between the parameters and responses. The pH and temperature value of the cultivation medium were the most significant variables and the effects of inoculum size and agitation speed were slightly lower. The intra-extracellular inulinase, invertase production and biomass content increased 10-32 fold in the optimized medium condition (pH 6.5, temperature 30°C, 6% (v/v), inoculum size and 150rpm agitation speed) by RSM compared with medium optimized through the one-factor-at-a-time method. The process development and intensification for simultaneous production of intra-extracellular inulinase (exo and endo inulinase) and invertase from A. niger could be used for industrial applications. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  7. Metabolome analysis reveals the effect of carbon catabolite control on the poly(γ-glutamic acid) biosynthesis of Bacillus licheniformis ATCC 9945.

    Science.gov (United States)

    Mitsunaga, Hitoshi; Meissner, Lena; Palmen, Thomas; Bamba, Takeshi; Büchs, Jochen; Fukusaki, Eiichiro

    2016-04-01

    Poly(γ-glutamic acid) (PGA) is a polymer composed of L- and/or D-glutamic acids that is produced by Bacillus sp. Because the polymer has various features as water soluble, edible, non-toxic and so on, it has attracted attention as a candidate for many applications such as foods, cosmetics and so on. However, although it is well known that the intracellular metabolism of Bacillus sp. is mainly regulated by catabolite control, the effect of the catabolite control on the PGA producing Bacillus sp. is largely unknown. This study is the first report of metabolome analysis on the PGA producing Bacillus sp. that reveals the effect of carbon catabolite control on the metabolism of PGA producing Bacillus licheniformis ATCC 9945. Results showed that the cells cultivated in glycerol-containing medium showed higher PGA production than the cells in glucose-containing medium. Furthermore, metabolome analysis revealed that the activators of CcpA and CodY, global regulatory proteins of the intracellular metabolism, accumulated in the cells cultivated in glycerol-containing and glucose-containing medium, respectively, with CodY apparently inhibiting PGA production. Moreover, the cells seemed to produce glutamate from citrate and ammonium using glutamine synthetase/glutamate synthase. Pulsed addition of di-ammonium hydrogen citrate, as suggested by the metabolome result, was able to achieve the highest value so far for PGA production in B. licheniformis. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  8. Phosphate Favors the Biosynthesis of CdS Quantum Dots in Acidithiobacillus thiooxidans ATCC 19703 by Improving Metal Uptake and Tolerance

    Directory of Open Access Journals (Sweden)

    Giovanni Ulloa

    2018-02-01

    Full Text Available Recently, we reported the production of Cadmium sulfide (CdS fluorescent semiconductor nanoparticles (quantum dots, QDs by acidophilic bacteria of the Acidithiobacillus genus. Here, we report that the addition of inorganic phosphate to Acidithiobacillus thiooxidans ATCC 19703 cultures favors the biosynthesis of CdS QDs at acidic conditions (pH 3.5. The effect of pH, phosphate and cadmium concentrations on QDs biosynthesis was studied by using Response Surface Methodology (RSM, a multivariate technique for analytical optimization scarcely used in microbiological studies to date. To address how phosphate affects intracellular biosynthesis of CdS QDs, the effect of inorganic phosphate on bacterial cadmium-uptake was evaluated. By measuring intracellular levels of cadmium we determined that phosphate influences the capacity of cells to incorporate this metal. A relation between cadmium tolerance and phosphate concentrations was also determined, suggesting that phosphate participates in the adaptation of bacteria to toxic levels of this metal. In addition, QDs-biosynthesis was also favored by the degradation of intracellular polyphosphates. Altogether, our results indicate that phosphate contributes to A. thiooxidans CdS QDs biosynthesis by influencing cadmium uptake and cadmium tolerance. These QDs may also be acting as a nucleation point for QDs formation at acidic pH. This is the first study reporting the effect of phosphates on QDs biosynthesis and describes a new cadmium-response pathway present in A. thiooxidans and most probably in other bacterial species.

  9. Genome mining of the sordarin biosynthetic gene cluster from Sordaria araneosa Cain ATCC 36386: characterization of cycloaraneosene synthase and GDP-6-deoxyaltrose transferase.

    Science.gov (United States)

    Kudo, Fumitaka; Matsuura, Yasunori; Hayashi, Takaaki; Fukushima, Masayuki; Eguchi, Tadashi

    2016-07-01

    Sordarin is a glycoside antibiotic with a unique tetracyclic diterpene aglycone structure called sordaricin. To understand its intriguing biosynthetic pathway that may include a Diels-Alder-type [4+2]cycloaddition, genome mining of the gene cluster from the draft genome sequence of the producer strain, Sordaria araneosa Cain ATCC 36386, was carried out. A contiguous 67 kb gene cluster consisting of 20 open reading frames encoding a putative diterpene cyclase, a glycosyltransferase, a type I polyketide synthase, and six cytochrome P450 monooxygenases were identified. In vitro enzymatic analysis of the putative diterpene cyclase SdnA showed that it catalyzes the transformation of geranylgeranyl diphosphate to cycloaraneosene, a known biosynthetic intermediate of sordarin. Furthermore, a putative glycosyltransferase SdnJ was found to catalyze the glycosylation of sordaricin in the presence of GDP-6-deoxy-d-altrose to give 4'-O-demethylsordarin. These results suggest that the identified sdn gene cluster is responsible for the biosynthesis of sordarin. Based on the isolated potential biosynthetic intermediates and bioinformatics analysis, a plausible biosynthetic pathway for sordarin is proposed.

  10. A dynamic metabolic flux analysis of ABE (acetone-butanol-ethanol) fermentation by Clostridium acetobutylicum ATCC 824, with riboflavin as a by-product.

    Science.gov (United States)

    Zhao, Xinhe; Kasbi, Mayssa; Chen, Jingkui; Peres, Sabine; Jolicoeur, Mario

    2017-12-01

    The present study reveals that supplementing sodium acetate (NaAc) strongly stimulates riboflavin production in acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum ATCC 824 with xylose as carbon source. Riboflavin production increased from undetectable concentrations to ∼0.2 g L -1 (0.53 mM) when supplementing 60 mM NaAc. Of interest, solvents production and biomass yield were also promoted with fivefold acetone, 2.6-fold butanol, and 2.4-fold biomass adding NaAc. A kinetic metabolic model, developed to simulate ABE biosystem, with riboflavin production, revealed from a dynamic metabolic flux analysis (dMFA) simultaneous increase of riboflavin (ribA) and GTP (precursor of riboflavin) (PurM) synthesis flux rates under NaAc supplementation. The model includes 23 fluxes, 24 metabolites, and 72 kinetic parameters. It also suggested that NaAc condition has first stimulated the accumulation of intracellular metabolite intermediates during the acidogenic phase, which have then fed the solventogenic phase leading to increased ABE production. In addition, NaAc resulted in higher intracellular levels of NADH during the whole culture. Moreover, lower GTP-to-adenosine phosphates (ATP, ADP, AMP) ratio under NaAc supplemented condition suggests that GTP may have a minor role in the cell energetic metabolism compared to its contribution to riboflavin synthesis. © 2017 Wiley Periodicals, Inc.

  11. Determination of the folate content in cladodes of nopal (Opuntia ficus indica) by microbiological assay utilizing Lactobacillus casei (ATCC 7469) and enzyme-linked immunosorbent assay.

    Science.gov (United States)

    Ortiz-Escobar, Tania Breshkovskaya; Valverde-González, Maria Elena; Paredes-López, Octavio

    2010-05-26

    Prickly pear cactus has been an important food source in Mexico since ancient times due to its economical and ecological benefits and potential nutraceutical value. Nevertheless, studies on the nutritional aspects and health benefits have been scarce. The purpose of this study was to assess, apparently for the first time, the folate contents of cladodes of nopal by a microbiological assay, using Lactobacillus casei (ATCC 7469) in extracts that were enzymatically treated to release the bound vitamin, employing single, dual, and trienzymatic procedures, and using the enzyme-linked immunosorbent assay (ELISA). We used Opuntia cladodes of different length sizes. The microbiological assay showed some differences among enzyme treatments and sizes of nopal; the trienzyme treatment (alpha-amylase-protease-conjugase) was more efficient in determining the folate content in nopal, giving 5.0 ng/g in the small size cladodes at 54 h of testing time, while ELISA showed no significant differences in the folate content among sizes of cladodes (5.5-5.62 ng/g at 0 min testing time). Both techniques may be used for the assessment of folate content in cladodes, but ELISA is more rapid and reliable.

  12. In vitro production of secondary metabolite using Atropa komarovii Bline&Shal (Solanaceae hairy root culture via Agrobacterium rhizogenes ATCC15834

    Directory of Open Access Journals (Sweden)

    Ofelia Banihashemi

    2017-07-01

    Full Text Available Background & Aim:A new sustainable tissue-based system is presented by plant hairy roots, preserving all of the several specialized types of cell with critical roles in allowing bioactive secondary molecules to be synthesized more consistently as usual. The system is also essential for studying the production of alkaloid in culture. Experimental: The Atropa komarovii leaves were wounded and infected with soil gram-negative bacterium Agrobacterium rhizogenes ATCC15834. After three weeks, the transformation roots and control roots without infection, appeared, and for confirming that T-DNA Ri plasmid fragments were transformed and integrated to plant genome, the rolB gene region, was amplified using PCR. HPLC method was then used for assaying how two tropane alkaloids such as atropine (hyosciamine and scopolamine (hyoscine were produced in hairy roots,control roots, leaves and roots of plantlet. Results: The data indicated that diagnostic 500bp rol B product amplification was exhibited to be present by all the transformed hairy roots. Scopolamine content in hairy roots was considerably greater than that in control roots but greatest (Hyoscyamine atropine content was observed in control roots. Analysis of DW, FW and root length showed that fresh and dry root weight increased in hairy roots compared with that in non transformed root. Recommended applications/industries: The present study demonstrated that secondary metabolite production using medicinal plants concerns many researchers worldwide today and hairy root culture is a useful method for producing tropane alkaloids in solanaceae.

  13. Molecular Cloning and Biochemical Characterization of the Iron Superoxide Dismutase from the Cyanobacterium Nostoc punctiforme ATCC 29133 and Its Response to Methyl Viologen-Induced Oxidative Stress.

    Science.gov (United States)

    Moirangthem, Lakshmipyari Devi; Ibrahim, Kalibulla Syed; Vanlalsangi, Rebecca; Stensjö, Karin; Lindblad, Peter; Bhattacharya, Jyotirmoy

    2015-12-01

    Superoxide dismutase (SOD) detoxifies cell-toxic superoxide radicals and constitutes an important component of antioxidant machinery in aerobic organisms, including cyanobacteria. The iron-containing SOD (SodB) is one of the most abundant soluble proteins in the cytosol of the nitrogen-fixing cyanobacterium Nostoc punctiforme ATCC 29133, and therefore, we investigated its biochemical properties and response to oxidative stress. The putative SodB-encoding open reading frame Npun_R6491 was cloned and overexpressed in Escherichia coli as a C-terminally hexahistidine-tagged protein. The purified recombinant protein had a SodB specific activity of 2560 ± 48 U/mg protein at pH 7.8 and was highly thermostable. The presence of a characteristic iron absorption peak at 350 nm, and its sensitivity to H2O2 and azide, confirmed that the SodB is an iron-containing SOD. Transcript level of SodB in nitrogen-fixing cultures of N. punctiforme decreased considerably (threefold) after exposure to an oxidative stress-generating herbicide methyl viologen for 4 h. Furthermore, in-gel SOD activity analysis of such cultures grown at increasing concentrations of methyl viologen also showed a loss of SodB activity. These results suggest that SodB is not the primary scavenger of superoxide radicals induced by methyl viologen in N. punctiforme.

  14. Enhancement of stability of L-tryptophan dehydrogenase from Nostoc punctiforme ATCC29133 and its application to L-tryptophan assay.

    Science.gov (United States)

    Matsui, Daisuke; Okazaki, Seiji; Matsuda, Motoki; Asano, Yasuhisa

    2015-02-20

    Microbial NAD(+)-dependent L-tryptophan dehydrogenase (TrpDH, EC1.4.1.19), which catalyzes the reversible oxidative deamination and the reductive amination between L-tryptophan and indole-3-pyruvic acid, was found in the scytonemin biosynthetic pathway of Nostoc punctiforme ATCC29133. The TrpDH exhibited high specificity toward L-tryptophan, but its instability was a drawback for L-tryptophan determination. The mutant enzyme TrpDH L59F/D168G/A234D/I296N with thermal stability was obtained by screening of Escherichia coli transformants harboring various mutant genes, which were generated by error-prone PCR using complementation in an L-tryptophan auxotroph of E. coli. The specific activity and stability of this mutant enzyme were higher than those of the wild type enzyme. We also revealed here that in these four mutation points, the two amino acid residues Asp168 and Ile296 contributed to increase the enzyme stability, and the Leu59, Ala234 residues to increase its specific activity. Growth of the strain harboring the gene of above 4 point mutated enzyme was accelerated by the enhanced performance. In the present study, we demonstrated that TrpDH L59F/D168G/A234D/I296N was available for determination of L-tryptophan in human plasma. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. A high constitutive catalase activity confers resistance to methyl viologen-promoted oxidative stress in a mutant of the cyanobacterium Nostoc punctiforme ATCC 29133.

    Science.gov (United States)

    Moirangthem, Lakshmipyari Devi; Bhattacharya, Sudeshna; Stensjö, Karin; Lindblad, Peter; Bhattacharya, Jyotirmoy

    2014-04-01

    A spontaneous methyl viologen (MV)-resistant mutant of the nitrogen-fixing cyanobacterium Nostoc punctiforme ATCC 29133 was isolated and the major enzymatic antioxidants involved in combating MV-induced oxidative stress were evaluated. The mutant displayed a high constitutive catalase activity as a consequence of which, the intracellular level of reactive oxygen species in the mutant was lower than the wild type (N. punctiforme) in the presence of MV. The superoxide dismutase (SOD) activity that consisted of a SodA (manganese-SOD) and a SodB (iron-SOD) was not suppressed in the mutant following MV treatment. The mutant was, however, characterised by a lower peroxidase activity compared with its wild type, and its improved tolerance to externally added H₂O₂ could only be attributed to enhanced catalase activity. Furthermore, MV-induced toxic effects on the wild type such as (1) loss of photosynthetic performance assessed as maximal quantum yield of photosystem II, (2) nitrogenase inactivation, and (3) filament fragmentation and cell lysis were not observed in the mutant. These findings highlight the importance of catalase in preventing MV-promoted oxidative damage and cell death in the cyanobacterium N. punctiforme. Such oxidative stress resistant mutants of cyanobacteria are likely to be a better source of biofertilisers, as they can grow and fix nitrogen in an unhindered manner in agricultural fields that are often contaminated with the herbicide MV, also commonly known as paraquat.

  16. Myo-inositol hexakisphosphate degradation by Bifidobacterium pseudocatenulatum ATCC 27919 improves mineral availability of high fibre rye-wheat sour bread.

    Science.gov (United States)

    García-Mantrana, Izaskun; Monedero, Vicente; Haros, Monika

    2015-07-01

    The goal of this investigation was to develop baking products using Bifidobacterium pseudocatenulatum ATCC27919, a phytase producer, as a starter in sourdough for the production of whole rye-wheat mixed bread. This Bifidobacterium strain contributed to myo-inositol hexakisphosphate (phytate) hydrolysis, resulting in breads with higher mineral availability as was predicted by the phytate/mineral molar ratios, which remained below the inhibitory threshold values for Ca and Zn intestinal absorption. The products with sourdough showed similar technological quality as their homologous without sourdough, with levels of acetic and d/l lactic acids in dough and bread baking significantly higher with the use of sourdough. The overall acceptability scores showed that breads with 25% of whole rye flour were highly accepted regardless of the inclusion of sourdough. This work emphasises that the in situ production of phytase during fermentation by GRAS/QPS microorganisms constitutes a strategy which is particularly appropriate for reducing the phytate contents in products for human consumption. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Effect of C/N Ratio and Media Optimization through Response Surface Methodology on Simultaneous Productions of Intra- and Extracellular Inulinase and Invertase from Aspergillus niger ATCC 20611

    Science.gov (United States)

    Dinarvand, Mojdeh; Rezaee, Malahat; Masomian, Malihe; Jazayeri, Seyed Davoud; Zareian, Mohsen; Abbasi, Sahar; Ariff, Arbakariya B.

    2013-01-01

    The study is to identify the extraction of intracellular inulinase (exo- and endoinulinase) and invertase as well as optimization medium composition for maximum productions of intra- and extracellular enzymes from Aspergillus niger ATCC 20611. From two different methods for extraction of intracellular enzymes, ultrasonic method was found more effective. Response surface methodology (RSM) with a five-variable and three-level central composite design (CCD) was employed to optimize the medium composition. The effect of five main reaction parameters including sucrose, yeast extract, NaNO3, Zn+2, and Triton X-100 on the production of enzymes was analyzed. A modified quadratic model was fitted to the data with a coefficient of determination (R 2) more than 0.90 for all responses. The intra-extracellular inulinase and invertase productions increased in the range from 16 to 8.4 times in the optimized medium (10% (w/v) sucrose, 2.5% (w/v) yeast extract, 2% (w/v) NaNO3, 1.5 mM (v/v) Zn+2, and 1% (v/v) Triton X-100) by RSM and from around 1.2 to 1.3 times greater than in the medium optimized by one-factor-at-a-time, respectively. The results of bioprocesses optimization can be useful in the scale-up fermentation and food industry. PMID:24151605

  18. Effect of C/N Ratio and Media Optimization through Response Surface Methodology on Simultaneous Productions of Intra- and Extracellular Inulinase and Invertase from Aspergillus niger ATCC 20611

    Directory of Open Access Journals (Sweden)

    Mojdeh Dinarvand

    2013-01-01

    Full Text Available The study is to identify the extraction of intracellular inulinase (exo- and endoinulinase and invertase as well as optimization medium composition for maximum productions of intra- and extracellular enzymes from Aspergillus niger ATCC 20611. From two different methods for extraction of intracellular enzymes, ultrasonic method was found more effective. Response surface methodology (RSM with a five-variable and three-level central composite design (CCD was employed to optimize the medium composition. The effect of five main reaction parameters including sucrose, yeast extract, NaNO3, Zn+2, and Triton X-100 on the production of enzymes was analyzed. A modified quadratic model was fitted to the data with a coefficient of determination (R2 more than 0.90 for all responses. The intra-extracellular inulinase and invertase productions increased in the range from 16 to 8.4 times in the optimized medium (10% (w/v sucrose, 2.5% (w/v yeast extract, 2% (w/v NaNO3, 1.5 mM (v/v Zn+2, and 1% (v/v Triton X-100 by RSM and from around 1.2 to 1.3 times greater than in the medium optimized by one-factor-at-a-time, respectively. The results of bioprocesses optimization can be useful in the scale-up fermentation and food industry.

  19. Novel α-L-arabinofuranosidase from Cellulomonas fimi ATCC 484 and its substrate-specificity analysis with the aid of computer.

    Science.gov (United States)

    Yang, Ying; Zhang, Lujia; Guo, Mingrong; Sun, Jiaqi; Matsukawa, Shingo; Xie, Jingli; Wei, Dongzhi

    2015-04-15

    In the process of gene mining for novel α-L-arabinofuranosidases (AFs), the gene Celf_3321 from Cellulomonas fimi ATCC 484 encodes an AF, termed as AbfCelf, with potent activity, 19.4 U/mg under the optimum condition, pH 6.0 and 40 °C. AbfCelf can hydrolyze α-1,5-linked oligosaccharides, sugar beet arabinan, linear 1,5-α-arabinan, and wheat flour arabinoxylan, which is partly different from some previously well-characterized GH 51 AFs. The traditional substrate-specificity analysis for AFs is labor-consuming and money costing, because the substrates include over 30 kinds of various 4-nitrophenol (PNP)-glycosides, oligosaccharides, and polysaccharides. Hence, a preliminary structure and mechanism based method was applied for substrate-specificity analysis. The binding energy (ΔG, kcal/mol) obtained by docking suggested the reaction possibility and coincided with the experimental results. AbfA crystal 1QW9 was used to test the rationality of docking method in simulating the interaction between enzyme and substrate, as well the credibility of the substrate-specificity analysis method in silico.

  20. Inhibition of H9N2 virus invasion into dendritic cells by the S-layer protein from L. acidophilus ATCC 4356

    Directory of Open Access Journals (Sweden)

    Xue Gao

    2016-10-01

    Full Text Available Probiotics are essential for the prevention of virus invasion and the maintenance of the immune balance. However, the mechanism of competition between probiotics and virus are unknown. The objectives of this study were to isolate the surface layer (S-layer protein from L. acidophilus ATCC 4356 as a new antiviral material, to evaluate the stimulatory effects of the S-layer protein on mouse dendritic cells (DCs and to verify its ability to inhibit the invasion of H9N2 avian influenza virus (AIV in DCs. We found that the S-layer protein induced DCs activation and up-regulated the IL-10 secretion. The invasion and replication of the H9N2 virus in mouse DCs was successfully demonstrated. However, the invasion of H9N2 virus into DCs could be inhibited by treatment with the S-layer protein prior to infection, which was verified by the reduced hemagglutinin (HA and neuraminidase (NA mRNA expression, and nucleoprotein (NP protein expression in the DCs. Furthermore, treatment with the S-layer protein increases the Mx1, Isg15, and Ddx58 mRNA expressions, and remits the inflammatory process to inhibit H9N2 AIV infection. In conclusion, the S-layer protein stimulates the activation of mouse DCs, inhibits H9N2 virus invasion of DCs, and stimulates the IFN-I signalling pathway. Thus, the S-layer protein from Lactobacillus is a promising biological antiviral material for AIV prevention.

  1. Selective oxidation of trimethylolpropane to 2,2-bis(hydroxymethyl)butyric acid using growing cells of Corynebacterium sp. ATCC 21245.

    Science.gov (United States)

    Sayed, Mahmoud; Dishisha, Tarek; Sayed, Waiel F; Salem, Wesam M; Temerk, Hanan A; Pyo, Sang-Hyun

    2016-03-10

    Multifunctional chemicals including hydroxycarboxylic acids are gaining increasing interest due to their growing applications in the polymer industry. One approach for their production is a biological selective oxidation of polyols, which is difficult to achieve by conventional chemical catalysis. In the present study, trimethylolpropane (TMP), a trihydric alcohol, was subjected to selective oxidation using growing cells of Corynebacterium sp. ATCC 21245 as a biocatalyst and yielding the dihydroxy-monocarboxylic acid, 2,2-bis(hydroxymethyl)butyric acid (BHMB). The study revealed that co-substrates are crucial for this reaction. Among the different evaluated co-substrates, a mixture of glucose, xylose and acetate at a ratio of 5:5:2 was found optimum. The optimal conditions for biotransformation were pH 8, 1v/v/m airflow and 500rpm stirring speed. In batch mode of operation, 70.6% of 5g/l TMP was converted to BHMB in 10 days. For recovery of the product the adsorption pattern of BHMB to the anion exchange resin, Ambersep(®) 900 (OH(-)), was investigated in batch and column experiments giving maximum static and dynamic binding capacities of 135 and 144mg/g resin, respectively. BHMB was separated with 89.7% of recovery yield from the fermentation broth. The approach is applicable for selective oxidation of other highly branched polyols by biotransformation. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. The stationary phase sigma factor, RpoS, regulates the production of a carbapenem antibiotic, a bioactive prodigiosin and virulence in the enterobacterial pathogen Serratia sp. ATCC 39006.

    Science.gov (United States)

    Wilf, Nabil M; Salmond, George P C

    2012-03-01

    Serratia sp. ATCC 39006 (S39006) is a Gram-negative bacterium that is virulent in plant (potato) and invertebrate animal (Caenorhabditis elegans) models. It produces two secondary metabolite antibiotics, a prodigiosin and a carbapenem, and the exoenzymes pectate lyase and cellulase. We showed previously that deletion of the RNA chaperone Hfq abolished antibiotic production and attenuated virulence in both animal and plant hosts. Hfq and dependent small RNAs (sRNAs) are known to regulate the post-transcriptional expression of rpoS, which encodes σ(S), the stationary phase sigma factor subunit of RNA polymerase. An S39006 hfq deletion mutant showed decreased transcript levels of rpoS. Therefore, in this study we investigated whether the phenotypes regulated by Hfq were mediated through its control of rpoS. Whereas loss of Hfq abolished prodigiosin and carbapenem production and attenuated virulence in both C. elegans and potato, characterization of an S39006 rpoS mutant showed unexpectedly elevated prodigiosin and carbapenem production. Furthermore, the rpoS mutant exhibited attenuated animal pathogenesis, but not plant pathogenesis. Additionally, a homologue of the Hfq-dependent sRNA, RprA, was identified and shown to regulate prodigiosin production in a manner consistent with its role in positively regulating translation of rpoS mRNA. Combined, these results demonstrate that Hfq regulation of secondary metabolism and plant pathogenesis is independent of RpoS and establishes RpoS and RprA as regulators of antibiotic production.

  3. Phosphate Favors the Biosynthesis of CdS Quantum Dots in Acidithiobacillus thiooxidans ATCC 19703 by Improving Metal Uptake and Tolerance

    Science.gov (United States)

    Ulloa, Giovanni; Quezada, Carolina P.; Araneda, Mabel; Escobar, Blanca; Fuentes, Edwar; Álvarez, Sergio A.; Castro, Matías; Bruna, Nicolás; Espinoza-González, Rodrigo; Bravo, Denisse; Pérez-Donoso, José M.

    2018-01-01

    Recently, we reported the production of Cadmium sulfide (CdS) fluorescent semiconductor nanoparticles (quantum dots, QDs) by acidophilic bacteria of the Acidithiobacillus genus. Here, we report that the addition of inorganic phosphate to Acidithiobacillus thiooxidans ATCC 19703 cultures favors the biosynthesis of CdS QDs at acidic conditions (pH 3.5). The effect of pH, phosphate and cadmium concentrations on QDs biosynthesis was studied by using Response Surface Methodology (RSM), a multivariate technique for analytical optimization scarcely used in microbiological studies to date. To address how phosphate affects intracellular biosynthesis of CdS QDs, the effect of inorganic phosphate on bacterial cadmium-uptake was evaluated. By measuring intracellular levels of cadmium we determined that phosphate influences the capacity of cells to incorporate this metal. A relation between cadmium tolerance and phosphate concentrations was also determined, suggesting that phosphate participates in the adaptation of bacteria to toxic levels of this metal. In addition, QDs-biosynthesis was also favored by the degradation of intracellular polyphosphates. Altogether, our results indicate that phosphate contributes to A. thiooxidans CdS QDs biosynthesis by influencing cadmium uptake and cadmium tolerance. These QDs may also be acting as a nucleation point for QDs formation at acidic pH. This is the first study reporting the effect of phosphates on QDs biosynthesis and describes a new cadmium-response pathway present in A. thiooxidans and most probably in other bacterial species. PMID:29515535

  4. Sequence Analysis of Inducible Prophage phIS3501 Integrated into the Haemolysin II Gene of Bacillus thuringiensis var israelensis ATCC35646

    Directory of Open Access Journals (Sweden)

    Bouziane Moumen

    2012-01-01

    Full Text Available Diarrheic food poisoning by bacteria of the Bacillus cereus group is mostly due to several toxins encoded in the genomes. One of them, cytotoxin K, was recently identified as responsible for severe necrotic syndromes. Cytotoxin K is similar to a class of proteins encoded by genes usually annotated as haemolysin II (hlyII in the majority of genomes of the B. cereus group. The partially sequenced genome of Bacillus thuringiensis var israelensis ATCC35646 contains several potentially induced prophages, one of them integrated into the hlyII gene. We determined the complete sequence and established the genomic organization of this prophage-designated phIS3501. During induction of excision of this prophage with mitomycin C, intact hlyII gene is formed, thus providing to cells a genetic ability to synthesize the active toxin. Therefore, this prophage, upon its excision, can be implicated in the regulation of synthesis of the active toxin and thus in the virulence of bacterial host. A generality of selection for such systems in bacterial pathogens is indicated by the similarity of this genetic arrangement to that of Staphylococcus aureus  β-haemolysin.

  5. Tamarind seed powder and palm kernel cake: two novel agro residues for the production of tannase under solid state fermentation by Aspergillus niger ATCC 16620.

    Science.gov (United States)

    Sabu, A; Pandey, A; Daud, M Jaafar; Szakacs, G

    2005-07-01

    Palm kernel cake (PKC), the residue obtained after extraction of palm oil from oil palm seeds and tamarind seed powder (TSP) obtained after removing the fruit pulp from tamarind fruit pod were tested for the production of tannase under solid-state fermentation (SSF) using Aspergillus niger ATCC 16620. The fungal strain was grown on the substrates without any pretreatment. In PKC medium, a maximum enzyme yield of 13.03 IU/g dry substrate (gds) was obtained when SSF was carried out at 30 degrees C, 53.5% initial substrate moisture, 33 x 10(9) spores/5 g substrate inoculum size and 5% tannic acid as additional carbon source after 96 h of fermentation. In TSP medium, maximum tannase yield of 6.44 IU/gds was obtained at 30 degrees C, 65.75% initial substrate moisture, 11 x 10(9) spores/5 g substrate inoculum, 1% glycerol as additional carbon source and 1% potassium nitrate as additional nitrogen source after 120 h of fermentation. Results from the study are promising for the economic utilization and value addition of these important agro residues, which are abundantly available in many tropical and subtropical countries.

  6. The RNA chaperone, Hfq, controls two luxR-type regulators and plays a key role in pathogenesis and production of antibiotics in Serratia sp. ATCC 39006.

    Science.gov (United States)

    Wilf, Nabil M; Williamson, Neil R; Ramsay, Joshua P; Poulter, Simon; Bandyra, Kasia J; Salmond, George P C

    2011-10-01

    Serratia sp. ATCC 39006 (S39006) is a Gram-negative bacterium that is virulent in plant (potato) and animal (Caenorhabditis elegans) models. It produces two secondary metabolite antibiotics, a prodigiosin and a carbapenem, and the exoenzymes, pectate lyase and cellulase. A complex regulatory network that includes quorum sensing (QS) controls production of prodigiosin. While many aspects of the regulation of the metabolites and exoenzymes are well understood, the potential role in this network of the RNA chaperone Hfq and dependent small regulatory RNAs has not been characterized. Hfq is an RNA chaperone involved in post-transcriptional regulation that plays a key role in stress response and virulence in diverse bacterial species. To explore whether Hfq-dependent processes might contribute to the regulation of antibiotic production we constructed an S39006 Δhfq mutant. Production of prodigiosin and carbapenem was abolished in this mutant strain, while production of the QS signalling molecule, butanoyl homoserine lactone (BHL), was unaffected. Using transcriptional fusions, we found that Hfq regulates the QS response regulators, SmaR and CarR. Additionally, exoenzyme production and swimming motility were decreased in a Δhfq mutant, and virulence was attenuated in potato and C. elegans models. These results suggest that an Hfq-dependent pathway is involved in the regulation of virulence and secondary metabolite production in S39006. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  7. Effect of ultrasonic treatment on reduction of Esherichia coli ATCC 25922 and egg quality parameters in experimentally contaminated hens' shell eggs.

    Science.gov (United States)

    Sert, Durmus; Aygun, Ali; Torlak, Emrah; Mercan, Emin

    2013-09-01

    In this study, hen eggs which were experimentally contaminated with Esherichia coli ATCC 25922 were used. Contaminated eggs were washed statically (S5 to S30; 0 kHz) and by ultrasonic waves (U5 to U30; 35 kHz) for given applications of time (5, 15 and 30 min), then the eggs were stored at 22°C for 14 days. Depending on the time of ultrasonic application, a significant increase in egg shell strength (P eggs which were washed by ultrasonic waves. Yolk width values of ultrasonic washed eggs diminished. E. coli was completely removed by 30 min of ultrasonic application. During storage E. coli growth was not detected on the eggs which were washed by ultrasonic waves except the eggs in U5 group (2.04 log CFU eggshell⁻¹) on the first day of storage. Depending on the time of ultrasonic application a significant increase in egg quality parameters (shell strength, albumen height, Haugh units, and yolk height) were observed. The application of ultrasound led to a significant reduction in E. coli numbers on egg shells. © 2013 Society of Chemical Industry.

  8. Comparison between the univariate and multivariate analysis on the partial characterization of the endoglucanase produced in the solid state fermentation by Aspergillus oryzae ATCC 10124.

    Science.gov (United States)

    de Brito, Aila Riany; Santos Reis, Nadabe Dos; Silva, Tatielle Pereira; Ferreira Bonomo, Renata Cristina; Trovatti Uetanabaro, Ana Paula; de Assis, Sandra Aparecida; da Silva, Erik Galvão Paranhos; Aguiar-Oliveira, Elizama; Oliveira, Julieta Rangel; Franco, Marcelo

    2017-11-26

    Endoglucanase production by Aspergillus oryzae ATCC 10124 cultivated in rice husks or peanut shells was optimized by experimental design as a function of humidity, time, and temperature. The optimum temperature for the endoglucanase activity was estimated by a univariate analysis (one factor at the time) as 50°C (rice husks) and 60°C (peanut shells), however, by a multivariate analysis (synergism of factors), it was determined a different temperature (56°C) for endoglucanase from peanut shells. For the optimum pH, values determined by univariate and multivariate analysis were 5 and 5.2 (rice husk) and 5 and 7.6 (peanut shells). In addition, the best half-lives were observed at 50°C as 22.8 hr (rice husks) and 7.3 hr (peanut shells), also, 80% of residual activities was obtained between 30 and 50°C for both substrates, and the pH stability was improved at 5-7 (rice hulls) and 6-9 (peanut shells). Both endoglucanases obtained presented different characteristics as a result of the versatility of fungi in different substrates.

  9. Mixed heterolobosean and novel gregarine lineage genes from culture ATCC 50646: Long-branch artefacts, not lateral gene transfer, distort α-tubulin phylogeny.

    Science.gov (United States)

    Cavalier-Smith, Thomas

    2015-04-01

    Contradictory and confusing results can arise if sequenced 'monoprotist' samples really contain DNA of very different species. Eukaryote-wide phylogenetic analyses using five genes from the amoeboflagellate culture ATCC 50646 previously implied it was an undescribed percolozoan related to percolatean flagellates (Stephanopogon, Percolomonas). Contrastingly, three phylogenetic analyses of 18S rRNA alone, did not place it within Percolozoa, but as an isolated deep-branching excavate. I resolve that contradiction by sequence phylogenies for all five genes individually, using up to 652 taxa. Its 18S rRNA sequence (GQ377652) is near-identical to one from stained-glass windows, somewhat more distant from one from cooling-tower water, all three related to terrestrial actinocephalid gregarines Hoplorhynchus and Pyxinia. All four protein-gene sequences (Hsp90; α-tubulin; β-tubulin; actin) are from an amoeboflagellate heterolobosean percolozoan, not especially deeply branching. Contrary to previous conclusions from trees combining protein and rRNA sequences or rDNA trees including Eozoa only, this culture does not represent a major novel deep-branching eukaryote lineage distinct from Heterolobosea, and thus lacks special significance for deep eukaryote phylogeny, though the rDNA sequence is important for gregarine phylogeny. α-Tubulin trees for over 250 eukaryotes refute earlier suggestions of lateral gene transfer within eukaryotes, being largely congruent with morphology and other gene trees. Copyright © 2015. Published by Elsevier GmbH.

  10. Efeito e modo de ação das bacteriocinas produzidas por Lactococcus lactis subsp. lactis ITAL 383, ATCC 11454 e CNRZ 150 contra Listeria innocua LIN 11 Effect and mode of action of the bacterioncin produced by Lactococcus. lactis subsp. lactis ITAL 383, ATCC 11454 e CNRZ 150 against Listeria innocua LIN 11

    Directory of Open Access Journals (Sweden)

    Izildinha MORENO

    1999-01-01

    Full Text Available O efeito e o modo de ação das bacteriocinas produzidas por L. lactis subsp. lactis ITAL 383 e CNRZ 150 são similares à nisina de L. lactis subsp. lactis ATCC 11454. Estas bacteriocinas apresentaram um modo de ação bactericida, causando a lise de células de L. innocua LIN 11, associada ao decréscimo da absorbância e da viabilidade celular. O efeito letal foi maior para células em fase exponencial comparativamente à fase estacionária de crescimento. A adsorção dessas bacteriocinas às células de L. innocua LIN 11 foi muito rápida e influenciada pelo pH do meio de suspensão; adsorção máxima foi verificada a pH 6,0 e logo após o contato inicial. Perda completa de adsorção ocorreu em pH 2,0.The effect and mode of action of the bacteriocin produced by L. lactis subsp. lactis ITAL 383 and CNRZ 150 are similar to the nisin produced by L. lactis subsp. lactis ATCC 11454. It was clearly bactericidal, and caused lysis of a strain of L. innocua LIN 11 detected by the decrease of absorbance values and the cell viability. Their lethal effect was considerably higher during the logarithmic growth when compared to the stationary phase. Adsorption developed rapidly and was influenced by the pH value of the suspension medium. Maximum adsorption was observed at pH 6,0 and immediately after initial contact and loss at pH 2,0.

  11. Prevotella-to-Bacteroides ratio predicts body weight and fat loss success on 24-week diets varying in macronutrient composition and dietary fiber: results from a post-hoc analysis.

    Science.gov (United States)

    Hjorth, Mads F; Blædel, Trine; Bendtsen, Line Q; Lorenzen, Janne K; Holm, Jacob B; Kiilerich, Pia; Roager, Henrik M; Kristiansen, Karsten; Larsen, Lesli H; Astrup, Arne

    2018-05-17

    Individuals with high pre-treatment bacterial Prevotella-to-Bacteroides (P/B) ratio have been reported to lose more body weight on diets high in fiber than subjects with a low P/B ratio. Therefore, the aim of the present study was to examine potential differences in dietary weight loss responses between participants with low and high P/B. Eighty overweight participants were randomized (52 completed) to a 500 kcal/d energy deficit diet with a macronutrient composition of 30 energy percentage (E%) fat, 52 E% carbohydrate and 18 E% protein either high (≈1500 mg calcium/day) or low ( ≤ 600 mg calcium/day) in dairy products for 24 weeks. Body weight, body fat, and dietary intake (by 7-day dietary records) were determined. Individuals were dichotomized according to their pre-treatment P/B ratio derived from 16S rRNA gene sequencing of collected fecal samples to test the potential modification of dietary effects using linear mixed models. Independent of the randomized diets, individuals with high P/B lost 3.8 kg (95%CI, 1.8,5.8; P ratio lost 8.3 kg (95% CI, 5.8;10.9, P ratio [Mean difference: 5.1 kg (95% CI, 1.7;8.6, P = 0.003)]. Partial correlation coefficients between fiber intake and weight change was 0.90 (P ratio and 0.25 (P = 0.29) among individuals with low P/B ratio. Individuals with high P/B lost more body weight and body fat compared to individuals with low P/B, confirming that individuals with a high P/B are more susceptible to weight loss on a diet rich in fiber.

  12. A transposon mutant library of Bacillus cereus ATCC 10987 reveals novel genes required for biofilm formation and implicates motility as an important factor for pellicle-biofilm formation.

    Science.gov (United States)

    Okshevsky, Mira; Louw, Matilde Greve; Lamela, Elena Otero; Nilsson, Martin; Tolker-Nielsen, Tim; Meyer, Rikke Louise

    2018-04-01

    Bacillus cereus is one of the most common opportunistic pathogens causing foodborne illness, as well as a common source of contamination in the dairy industry. B. cereus can form robust biofilms on food processing surfaces, resulting in food contamination due to shedding of cells and spores. Despite the medical and industrial relevance of this species, the genetic basis of biofilm formation in B. cereus is not well studied. In order to identify genes required for biofilm formation in this bacterium, we created a library of 5000 +  transposon mutants of the biofilm-forming strain B. cereusATCC 10987, using an unbiased mariner transposon approach. The mutant library was screened for the ability to form a pellicle biofilm at the air-media interface, as well as a submerged biofilm at the solid-media interface. A total of 91 genes were identified as essential for biofilm formation. These genes encode functions such as chemotaxis, amino acid metabolism and cellular repair mechanisms, and include numerous genes not previously known to be required for biofilm formation. Although the majority of disrupted genes are not directly responsible for motility, further investigations revealed that the vast majority of the biofilm-deficient mutants were also motility impaired. This observation implicates motility as a pivotal factor in the formation of a biofilm by B. cereus. These results expand our knowledge of the fundamental molecular mechanisms of biofilm formation by B. cereus. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  13. Daya Antibakteri Filtrat Asam Laktat dan Bakteriosin Lactobacillus bulgaricus KS1 dalam Menghambat Pertumbuhan Klebsiella pneumoniae Strain ATCC 700603, CT1538, dan S941

    Directory of Open Access Journals (Sweden)

    Prima Nanda Fauziah

    2015-03-01

    Full Text Available Lactobacillus bulgaricus produces lactic acid and bacteriocin which have been reported to have various pharmacologic properties, including their role an antibacterial agent. Klebsiella pneumoniae, as an agent of pneumonia, remains a public health problem in tropical countries. This study was aimed to observe the antibacterial activities of lactic acid filtrate and bacteriocins of L. bulgaricus toward againsts K. pneumoniae strains by in vitro experiment. The experiment took place in Microbiology Laboratory, Teaching Hospital, Padjadjaran University, Bandung, August–October 2012. In vitro laboratory analytic study has been conducted on lactic acid filtrate and bacteriocins of L. bulgaricus against the K. pneumoniae strains. The study used agar pour plate and agar disk diffusion method and analyzed by ANAVA followed by Duncan’s multiple range test (DMRT. The 30% lactic acid filtrate and 20% bacteriocins filtrate concentrations of L. bulgaricus showed bactericidal characteristics againts the growth of K. pneumoniae strains. Greater concentration of lactic acid filtrate and bacteriocins of L. bulgaricus led toincreasing effect of growth inhibition zones of K. pneumoniae strains. Statistical analysis of variance (ANOVA showed that the greatest concentration effect of L. bulgaricus filtratefor inhibiting K. pneumoniae strains was achieved in 90% lactic acid filtrate concentration treatment, whereas the greatest inhibition zones for K. pneumoniae ATCC 700603 was obtaubed in 90% bacteriocins filtrate concentration, amounting 16.667 mm. In conclusion, lactic acid filtrate and bacteriocins L. bulgaricus have antibacterial effects on K. pneumoniae. The level of antibacterial effect of L. bulgaricus against the growth of K. pneumoniae strains depends on the type of filtrate, L. bulgaricus filtrate concentration, and K. pneumoniae strain.

  14. Identification and Analysis of a Novel Gene Cluster Involves in Fe2+ Oxidation in Acidithiobacillus ferrooxidans ATCC 23270, a Typical Biomining Acidophile.

    Science.gov (United States)

    Ai, Chenbing; Liang, Yuting; Miao, Bo; Chen, Miao; Zeng, Weimin; Qiu, Guanzhou

    2018-07-01

    Iron-oxidizing Acidithiobacillus spp. are applied worldwide in biomining industry to extract metals from sulfide minerals. They derive energy for survival through Fe 2+ oxidation and generate Fe 3+ for the dissolution of sulfide minerals. However, molecular mechanisms of their iron oxidation still remain elusive. A novel two-cytochrome-encoding gene cluster (named tce gene cluster) encoding a high-molecular-weight cytochrome c (AFE_1428) and a c 4 -type cytochrome c 552 (AFE_1429) in A. ferrooxidans ATCC 23270 was first identified in this study. Bioinformatic analysis together with transcriptional study showed that AFE_1428 and AFE_1429 were the corresponding paralog of Cyc2 (AFE_3153) and Cyc1 (AFE_3152) which were encoded by the extensively studied rus operon and had been proven involving in ferrous iron oxidation. Both AFE_1428 and AFE_1429 contained signal peptide and the classic heme-binding motif(s) as their corresponding paralog. The modeled structure of AFE_1429 showed high resemblance to Cyc1. AFE_1428 and AFE_1429 were preferentially transcribed as their corresponding paralogs in the presence of ferrous iron as sole energy source as compared with sulfur. The tce gene cluster is highly conserved in the genomes of four phylogenetic-related A. ferrooxidans strains that were originally isolated from different sites separated with huge geographical distance, which further implies the importance of this gene cluster. Collectively, AFE_1428 and AFE_1429 involve in Fe 2+ oxidation like their corresponding paralog by integrating with the metalloproteins encoded by rus operon. This study provides novel insights into the Fe 2+ oxidation mechanism in Fe 2+ -oxidizing A. ferrooxidans ssp.

  15. Pseudomonas fluorescens ATCC 13525 Containing an Artificial Oxalate Operon and Vitreoscilla Hemoglobin Secretes Oxalic Acid and Solubilizes Rock Phosphate in Acidic Alfisols

    Science.gov (United States)

    Archana, G.; Naresh Kumar, G.

    2014-01-01

    Oxalate secretion was achieved in Pseudomonas fluorescens ATCC 13525 by incorporation of genes encoding Aspergillus niger oxaloacetate acetyl hydrolase (oah), Fomitopsis plaustris oxalate transporter (FpOAR) and Vitreoscilla hemoglobin (vgb) in various combinations. Pf (pKCN2) transformant containing oah alone accumulated 19 mM oxalic acid intracellularly but secreted 1.2 mM. However, in the presence of an artificial oxalate operon containing oah and FpOAR genes in plasmid pKCN4, Pf (pKCN4) secreted 13.6 mM oxalate in the medium while 3.6 mM remained inside. This transformant solubilized 509 μM of phosphorus from rock phosphate in alfisol which is 4.5 fold higher than the Pf (pKCN2) transformant. Genomic integrants of P. fluorescens (Pf int1 and Pf int2) containing artificial oxalate operon (plac-FpOAR-oah) and artificial oxalate gene cluster (plac-FpOAR-oah, vgb, egfp) secreted 4.8 mM and 5.4 mM oxalic acid, released 329 μM and 351 μM P, respectively, in alfisol. The integrants showed enhanced root colonization, improved growth and increased P content of Vigna radiata plants. This study demonstrates oxalic acid secretion in P. fluorescens by incorporation of an artificial operon constituted of genes for oxalate synthesis and transport, which imparts mineral phosphate solubilizing ability to the organism leading to enhanced growth and P content of V. radiata in alfisol soil. PMID:24705024

  16. Pseudomonas fluorescens ATCC 13525 containing an artificial oxalate operon and Vitreoscilla hemoglobin secretes oxalic acid and solubilizes rock phosphate in acidic alfisols.

    Directory of Open Access Journals (Sweden)

    Kavita Yadav

    Full Text Available Oxalate secretion was achieved in Pseudomonas fluorescens ATCC 13525 by incorporation of genes encoding Aspergillus niger oxaloacetate acetyl hydrolase (oah, Fomitopsis plaustris oxalate transporter (FpOAR and Vitreoscilla hemoglobin (vgb in various combinations. Pf (pKCN2 transformant containing oah alone accumulated 19 mM oxalic acid intracellularly but secreted 1.2 mM. However, in the presence of an artificial oxalate operon containing oah and FpOAR genes in plasmid pKCN4, Pf (pKCN4 secreted 13.6 mM oxalate in the medium while 3.6 mM remained inside. This transformant solubilized 509 μM of phosphorus from rock phosphate in alfisol which is 4.5 fold higher than the Pf (pKCN2 transformant. Genomic integrants of P. fluorescens (Pf int1 and Pf int2 containing artificial oxalate operon (plac-FpOAR-oah and artificial oxalate gene cluster (plac-FpOAR-oah, vgb, egfp secreted 4.8 mM and 5.4 mM oxalic acid, released 329 μM and 351 μM P, respectively, in alfisol. The integrants showed enhanced root colonization, improved growth and increased P content of Vigna radiata plants. This study demonstrates oxalic acid secretion in P. fluorescens by incorporation of an artificial operon constituted of genes for oxalate synthesis and transport, which imparts mineral phosphate solubilizing ability to the organism leading to enhanced growth and P content of V. radiata in alfisol soil.

  17. Inactivation of heat adapted and chlorine adapted Listeria monocytogenes ATCC 7644 on tomatoes using sodium dodecyl sulphate, levulinic acid and sodium hypochlorite solution

    Directory of Open Access Journals (Sweden)

    Oluwatosin Ademola Ijabadeniyi

    2017-04-01

    Full Text Available The effectiveness of sodium dodecyl sulphate (SDS, sodium hypochlorite solution and levulinic acid in reducing the survival of heat adapted and chlorine adapted Listeria monocytogenes ATCC 7644 was evaluated. The results against heat adapted L. monocytognes revealed that sodium hypochlorite solution was the least effective, achieving log reduction of 2.75, 2.94 and 3.97 log colony forming unit (CFU/mL for 1, 3 and 5 minutes, respectively. SDS was able to achieve 8 log reduction for both heat adapted and chlorine adapted bacteria. When used against chlorine adapted L. monocytogenes sodium hypochlorite solution achieved log reduction of 2.76, 2.93 and 3.65 log CFU/mL for 1, 3 and 5 minutes, respectively. Using levulinic acid on heat adapted bacteria achieved log reduction of 3.07, 2.78 and 4.97 log CFU/mL for 1, 3, 5 minutes, respectively. On chlorine adapted bacteria levulinic acid achieved log reduction of 2.77, 3.07 and 5.21 log CFU/mL for 1, 3 and 5 minutes, respectively. Using a mixture of 0.05% SDS and 0.5% levulinic acid on heat adapted bacteria achieved log reduction of 3.13, 3.32 and 4.79 log CFU/mL for 1, 3 and 5 minutes while on chlorine adapted bacteria it achieved 3.20, 3.33 and 5.66 log CFU/mL, respectively. Increasing contact time also increased log reduction for both test pathogens. A storage period of up to 72 hours resulted in progressive log reduction for both test pathogens. Results also revealed that there was a significant difference (P≤0.05 among contact times, storage times and sanitizers. Findings from this study can be used to select suitable sanitizers and contact times for heat and chlorine adapted L. monocytogenes in the fresh produce industry.

  18. Effect of salinity on the quantity and quality of carotenoids accumulated by Dunaliella salina (strain CONC-007 and Dunaliella bardawil (strain ATCC 30861 Chlorophyta

    Directory of Open Access Journals (Sweden)

    PATRICIA I GÓMEZ

    2003-01-01

    Full Text Available Dunaliella salina and D. bardawil are well-known microalgae accumulating high levels of b-carotene under growth-limiting conditions. In both taxa, this pigment is primarily composed of the isomers 9-cis and all-trans. The 9-cis b-carotene occurs only in natural sources and is the most attractive from a commercial point of view. The conditions that enhance the preferred accumulation of 9-cis b-carotene in D. salina are controversial and they have not been well established yet. This study examined the effect of salinity on the quantity and quality of total carotenoids and b-carotene isomers accumulated by D. salina (strain CONC-007 and D. bardawil (strain ATCC 30861 grown in two media with different nutritional compositions (PES and ART and at salt concentrations of 1M, 2M and 3M NaCl. Total carotenoids were determined by spectrophotometry and b-carotene isomers, by HPLC. The highest carotenoid contents per cell were obtained at 2M NaCl in both taxa. In both media, an increase of the 9-cis/all-trans b-carotene ratio was observed in D. bardawil when the salt concentration increased, with a maximum value of 2.6 (in ART medium at 3M NaCl. In D. salina this ratio did not exhibit the same pattern, and the salt concentrations for maximal ratios were different in both media. The highest ratio obtained for this strain was 4.3 (in ART medium at 2M NaCl.

  19. Thermal death rate of ascospores of Neosartorya fischeri ATCC 200957 in the presence of organic acids and preservatives in fruit juices.

    Science.gov (United States)

    Rajashekhara, E; Suresh, E R; Ethiraj, S

    1998-10-01

    Heat-resistant molds, including Neosartorya fischeri, are known to spoil thermally processed fruit products. The control measures required for such problems must not cause an appreciable loss of the organoleptic qualities of the final products. In the present study we determined the thermal death rates of ascospores of N. fischeri ATCC 200957 in fruit juices containing organic acids and preservatives. The ascospores were able to survive for more than 6 h of heating at 75 degrees C, 5 h at 80 degrees C, and 3 to 4 h at 85 degrees C in mango or grape juice. Of the four organic acids tested, citric acid exhibited the maximal destruction of ascospores in mango juice at 85 degrees C (1/k = 27.22 min), and tartaric acid the least (1/k = 61.73 min). The effect of common preservatives on the thermal death rates of ascospores at .85 degrees C in mango and grape juices was studied. Almost similar effects on thermal inactivation of ascospores were noted when potassium sorbate (1/k = 29.38 min) or sodium benzoate (1/k = 27.64 min) or the combination of both (1/k = 27.53 min) was used in mango juice. In grape juice, potassium sorbate (1/k = 25.07 min) was more effective than sodium benzoate (1/k = 50.08 min) or the combination of both (1/k = 40.79 min) in inactivation of ascospores of the mold. The thermal death rate (1/k) values in mango and grape juices in the absence of any preservative were 63.51 and 69.27 min respectively.

  20. Characterization of C-S lyase from Lactobacillus delbrueckii subsp. bulgaricus ATCC BAA-365 and its potential role in food flavour applications.

    Science.gov (United States)

    Allegrini, Alessandra; Astegno, Alessandra; La Verde, Valentina; Dominici, Paola

    2017-04-01

    Volatile thiols have substantial impact on the aroma of many beverages and foods. Thus, the control of their formation, which has been linked to C-S lyase enzymatic activities, is of great significance in industrial applications involving food flavours. Herein, we have carried out a spectroscopic and functional characterization of a putative pyridoxal 5'-phosphate (PLP)-dependent C-S lyase from the lactic acid bacterium Lactobacillus delbrueckii subsp. bulgaricus ATCC BAA-365 (LDB C-S lyase). Recombinant LDB C-S lyase exists as a tetramer in solution and shows spectral properties of enzymes containing PLP as cofactor. The enzyme has a broad substrate specificity toward sulphur-containing amino acids with aminoethyl-L-cysteine and L-cystine being the most effective substrates over L-cysteine and L-cystathionine. Notably, the protein also reveals cysteine-S-conjugate β-lyase activity in vitro, and is able to cleave a cysteinylated substrate precursor into the corresponding flavour-contributing thiol, with a catalytic efficiency higher than L-cystathionine. Contrary to similar enzymes of other lactic acid bacteria however, LDB C-S lyase is not capable of α,γ-elimination activity towards L-methionine to produce methanethiol, which is a significant compound in flavour development. Based on our results, future developments can be expected regarding the flavour-forming potential of Lactobacillus C-S lyase and its use in enhancing food flavours. © The Authors 2017. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  1. in C. glutamicum ATCC 21799

    African Journals Online (AJOL)

    HP

    Rastegari et al. Trop J Pharm Res, ... Conclusion: A two-fold increase in lysine production was observed by cloning of the ASK gene in C. ..... Cambridge University Press 2006; Chapter 14: ... Cremer J, Eggeling L, Sahm H. Control of the lysine.

  2. Quantifying the Effects of Water Temperature, Soap Volume, Lather Time, and Antimicrobial Soap as Variables in the Removal of Escherichia coli ATCC 11229 from Hands.

    Science.gov (United States)

    Jensen, Dane A; Macinga, David R; Shumaker, David J; Bellino, Roberto; Arbogast, James W; Schaffner, Donald W

    2017-06-01

    The literature on hand washing, while extensive, often contains conflicting data, and key variables are only superficially studied or not studied at all. Some hand washing recommendations are made without scientific support, and agreement between recommendations is limited. The influence of key variables such as soap volume, lather time, water temperature, and product formulation on hand washing efficacy was investigated in the present study. Baseline conditions were 1 mL of a bland (nonantimicrobial) soap, a 5-s lather time, and 38°C (100°F) water temperature. A nonpathogenic strain of Escherichia coli (ATCC 11229) was the challenge microorganism. Twenty volunteers (10 men and 10 women) participated in the study, and each test condition had 20 replicates. An antimicrobial soap formulation (1% chloroxylenol) was not significantly more effective than the bland soap for removing E. coli under a variety of test conditions. Overall, the mean reduction was 1.94 log CFU (range, 1.83 to 2.10 log CFU) with the antimicrobial soap and 2.22 log CFU (range, 1.91 to 2.54 log CFU) with the bland soap. Overall, lather time significantly influenced efficacy in one scenario, in which a 0.5-log greater reduction was observed after 20 s with bland soap compared with the baseline wash (P = 0.020). Water temperature as high as 38°C (100°F) and as low as 15°C (60°F) did not have a significant effect on the reduction of bacteria during hand washing; however, the energy usage differed between these temperatures. No significant differences were observed in mean log reductions experienced by men and women (both 2.08 log CFU; P = 0.988). A large part of the variability in the data was associated with the behaviors of the volunteers. Understanding what behaviors and human factors most influence hand washing may help researchers find techniques to optimize the effectiveness of hand washing.

  3. Validation of Baking To Control Salmonella Serovars in Hamburger Bun Manufacturing, and Evaluation of Enterococcus faecium ATCC 8459 and Saccharomyces cerevisiae as Nonpathogenic Surrogate Indicators.

    Science.gov (United States)

    Channaiah, Lakshmikantha H; Holmgren, Elizabeth S; Michael, Minto; Sevart, Nicholas J; Milke, Donka; Schwan, Carla L; Krug, Matthew; Wilder, Amanda; Phebus, Randall K; Thippareddi, Harshavardhan; Milliken, George

    2016-04-01

    This study was conducted to validate a simulated commercial baking process for hamburger buns to destroy Salmonella serovars and to determine the appropriateness of using nonpathogenic surrogates (Enterococcus faecium ATCC 8459 or Saccharomyces cerevisiae) for in-plant process validation studies. Wheat flour was inoculated (∼6 log CFU/g) with three Salmonella serovars (Typhimurium, Newport, or Senftenberg 775W) or with E. faecium. Dough was formed, proofed, and baked to mimic commercial manufacturing conditions. Buns were baked for up to 13 min in a conventional oven (218.3°C), with internal crumb temperature increasing to ∼100°C during the first 8 min of baking and remaining at this temperature until removal from the oven. Salmonella and E. faecium populations were undetectable by enrichment (>6-log CFU/g reductions) after 9.0 and 11.5 min of baking, respectively, and ≥5-log-cycle reductions were achieved by 6.0 and 7.75 min, respectively. D-values of Salmonella (three-serovar cocktail) and E. faecium 8459 in dough were 28.64 and 133.33, 7.61 and 55.67, and 3.14 and 14.72 min at 55, 58, and 61°C, respectively, whereas D-values of S. cerevisiae were 18.73, 5.67, and 1.03 min at 52, 55, and 58°C, respectivly. The z-values of Salmonella, E. faecium, and S. cerevisiae were 6.58, 6.25, and 4.74°C, respectively. A high level of thermal lethality was observed for baking of typical hamburger bun dough, resulting in rapid elimination of high levels of the three-strain Salmonella cocktail; however, the lethality and microbial destruction kinetics should not be extrapolated to other bakery products without further research. E. faecium demonstrated greater thermal resistance compared with Salmonella during bun baking and could serve as a conservative surrogate to validate thermal process lethality in commercial bun baking operations. Low thermal tolerance of S. cerevisiae relative to Salmonella serovars limits its usefulness as a surrogate for process validations.

  4. The CodY-dependent clhAB2 operon is involved in cell shape, chaining and autolysis in Bacillus cereus ATCC 14579.

    Science.gov (United States)

    Huillet, Eugénie; Bridoux, Ludovic; Wanapaisan, Pagakrong; Rejasse, Agnès; Peng, Qi; Panbangred, Watanalai; Lereclus, Didier

    2017-01-01

    The Gram-positive pathogen Bacillus cereus is able to grow in chains of rod-shaped cells, but the regulation of chaining remains largely unknown. Here, we observe that glucose-grown cells of B. cereus ATCC 14579 form longer chains than those grown in the absence of glucose during the late exponential and transition growth phases, and identify that the clhAB2 operon is required for this chain lengthening phenotype. The clhAB2 operon is specific to the B. cereus group (i.e., B. thuringiensis, B. anthracis and B. cereus) and encodes two membrane proteins of unknown function, which are homologous to the Staphylococcus aureus CidA and CidB proteins involved in cell death control within glucose-grown cells. A deletion mutant (ΔclhAB2) was constructed and our quantitative image analyses show that ΔclhAB2 cells formed abnormal short chains regardless of the presence of glucose. We also found that glucose-grown cells of ΔclhAB2 were significantly wider than wild-type cells (1.47 μm ±CI95% 0.04 vs 1.19 μm ±CI95% 0.03, respectively), suggesting an alteration of the bacterial cell wall. Remarkably, ΔclhAB2 cells showed accelerated autolysis under autolysis-inducing conditions, compared to wild-type cells. Overall, our data suggest that the B. cereus clhAB2 operon modulates peptidoglycan hydrolase activity, which is required for proper cell shape and chain length during cell growth, and down-regulates autolysin activity. Lastly, we studied the transcription of clhAB2 using a lacZ transcriptional reporter in wild-type, ccpA and codY deletion-mutant strains. We found that the global transcriptional regulatory protein CodY is required for the basal level of clhAB2 expression under all conditions tested, including the transition growth phase while CcpA, the major global carbon regulator, is needed for the high-level expression of clhAB2 in glucose-grown cells.

  5. RNA-seq reveals the RNA binding proteins, Hfq and RsmA, play various roles in virulence, antibiotic production and genomic flux in Serratia sp. ATCC 39006.

    Science.gov (United States)

    Wilf, Nabil M; Reid, Adam J; Ramsay, Joshua P; Williamson, Neil R; Croucher, Nicholas J; Gatto, Laurent; Hester, Svenja S; Goulding, David; Barquist, Lars; Lilley, Kathryn S; Kingsley, Robert A; Dougan, Gordon; Salmond, George Pc

    2013-11-22

    Serratia sp. ATCC 39006 (S39006) is a Gram-negative enterobacterium that is virulent in plant and animal models. It produces a red-pigmented trypyrrole secondary metabolite, prodigiosin (Pig), and a carbapenem antibiotic (Car), as well as the exoenzymes, pectate lyase and cellulase. Secondary metabolite production in this strain is controlled by a complex regulatory network involving quorum sensing (QS). Hfq and RsmA (two RNA binding proteins and major post-transcriptional regulators of gene expression) play opposing roles in the regulation of several key phenotypes within S39006. Prodigiosin and carbapenem production was abolished, and virulence attenuated, in an S39006 ∆hfq mutant, while the converse was observed in an S39006 rsmA transposon insertion mutant. In order to define the complete regulon of Hfq and RsmA, deep sequencing of cDNA libraries (RNA-seq) was used to analyse the whole transcriptome of S39006 ∆hfq and rsmA::Tn mutants. Moreover, we investigated global changes in the proteome using an LC-MS/MS approach. Analysis of differential gene expression showed that Hfq and RsmA directly or indirectly regulate (at the level of RNA) 4% and 19% of the genome, respectively, with some correlation between RNA and protein expression. Pathways affected include those involved in antibiotic regulation, virulence, flagella synthesis, and surfactant production. Although Hfq and RsmA are reported to activate flagellum production in E. coli and an adherent-invasive E. coli hfq mutant was shown to have no flagella by electron microscopy, we found that flagellar production was increased in the S39006 rsmA and hfq mutants. Additionally, deletion of rsmA resulted in greater genomic flux with increased activity of two mobile genetic elements. This was confirmed by qPCR and analysis of rsmA culture supernatant revealed the presence of prophage DNA and phage particles. Finally, expression of a hypothetical protein containing DUF364 increased prodigiosin production and was

  6. Helicobacter pylori ATCC 43629/NCTC 11639 Outer Membrane Vesicles (OMVs) from Biofilm and Planktonic Phase Associated with Extracellular DNA (eDNA)

    Science.gov (United States)

    Grande, Rossella; Di Marcantonio, Maria C.; Robuffo, Iole; Pompilio, Arianna; Celia, Christian; Di Marzio, Luisa; Paolino, Donatella; Codagnone, Marilina; Muraro, Raffaella; Stoodley, Paul; Hall-Stoodley, Luanne; Mincione, Gabriella

    2015-01-01

    Helicobacter pylori persistence is associated with its capacity to develop biofilms as a response to changing environmental conditions and stress. Extracellular DNA (eDNA) is a component of H. pylori biofilm matrix but the lack of DNase I activity supports the hypothesis that eDNA might be protected by other extracellular polymeric substances (EPS) and/or Outer Membrane Vesicles (OMVs), which bleb from the bacteria surface during growth. The aim of the present study was to both identify the eDNA presence on OMVs segregated from H. pylori ATCC 43629/NCTC 11639 biofilm (bOMVs) and its planktonic phase (pOMVs) and to characterize the physical-chemical properties of the OMVs. The presence of eDNA in bOMVs and pOMVs was initially carried out using DNase I-gold complex labeling and Transmission Electron Microscope analysis (TEM). bOMVs and pOMVs were further isolated and physical-chemical characterization carried out using dynamic light scattering (DLS) analysis. eDNA associated with OMVs was detected and quantified using a PicoGreen spectrophotometer assay, while its extraction was performed with a DNA Kit. TEM images showed that eDNA was mainly associated with the OMV membrane surfaces; while PicoGreen staining showed a four-fold increase of dsDNA in bOMVs compared with pOMVs. The eDNA extracted from OMVs was visualized using gel electrophoresis. DLS analysis indicated that both planktonic and biofilm H. pylori phenotypes generated vesicles, with a broad distribution of sizes on the nanometer scale. The DLS aggregation assay suggested that eDNA may play a role in the aggregation of OMVs, in the biofilm phenotype. Moreover, the eDNA associated with vesicle membrane may impede DNase I activity on H. pylori biofilms. These results suggest that OMVs derived from the H. pylori biofilm phenotype may play a structural role by preventing eDNA degradation by nucleases, providing a bridging function between eDNA strands on OMV surfaces and promoting aggregation. PMID:26733944

  7. Complete genome sequence and lifestyle of black-pigmented Corynebacterium aurimucosum ATCC 700975 (formerly C. nigricans CN-1 isolated from a vaginal swab of a woman with spontaneous abortion

    Directory of Open Access Journals (Sweden)

    Gartemann Karl-Heinz

    2010-02-01

    Full Text Available Abstract Background Corynebacterium aurimucosum is a slightly yellowish, non-lipophilic, facultative anaerobic member of the genus Corynebacterium and predominantly isolated from human clinical specimens. Unusual black-pigmented variants of C. aurimucosum (originally named as C. nigricans continue to be recovered from the female urogenital tract and they are associated with complications during pregnancy. C. aurimucosum ATCC 700975 (C. nigricans CN-1 was originally isolated from a vaginal swab of a 34-year-old woman who experienced a spontaneous abortion during month six of pregnancy. For a better understanding of the physiology and lifestyle of this potential urogenital pathogen, the complete genome sequence of C. aurimucosum ATCC 700975 was determined. Results Sequencing and assembly of the C. aurimucosum ATCC 700975 genome yielded a circular chromosome of 2,790,189 bp in size and the 29,037-bp plasmid pET44827. Specific gene sets associated with the central metabolism of C. aurimucosum apparently provide enhanced metabolic flexibility and adaptability in aerobic, anaerobic and low-pH environments, including gene clusters for the uptake and degradation of aromatic amines, L-histidine and L-tartrate as well as a gene region for the formation of selenocysteine and its incorporation into formate dehydrogenase. Plasmid pET44827 codes for a non-ribosomal peptide synthetase that plays the pivotal role in the synthesis of the characteristic black pigment of C. aurimucosum ATCC 700975. Conclusions The data obtained by the genome project suggest that C. aurimucosum could be both a resident of the human gut and possibly a pathogen in the female genital tract causing complications during pregnancy. Since hitherto all black-pigmented C. aurimucosum strains have been recovered from female genital source, biosynthesis of the pigment is apparently required for colonization by protecting the bacterial cells against the high hydrogen peroxide concentration in

  8. Quantitative analysis of UV-A shock and short term stress using iTRAQ, pseudo selective reaction monitoring (pSRM) and GC-MS based metabolite analysis of the cyanobacterium Nostoc punctiforme ATCC 29133.

    Science.gov (United States)

    Wase, Nishikant; Pham, Trong Khoa; Ow, Saw Yen; Wright, Phillip C

    2014-09-23

    A quantitative proteomics and metabolomics analysis was performed using iTRAQ, HPLC and GC-MS in the filamentous cyanobacterium Nostoc punctiforme ATCC 29133 to understand the effect of short and long term UV-A exposure. Changes in the proteome were measured for short-term stress (4-24h) using iTRAQ. Changes in the photosynthetic pigments and intracellular metabolites were observed at exposures of up to 7days (pigments) and up to 11days (intracellular metabolites). To assess iTRAQ measurement quality, pseudo selected reaction monitoring (pSRM) was used, with this confirming underestimation of protein abundance levels by iTRAQ. Our results suggest that short term UV-A radiation lowers the abundance of PS-I and PS-II proteins. We also observed an increase in abundance of intracellular redox homeostasis proteins and plastocyanin. Additionally, we observed statistically significant changes in scytonemin, Chlorophyll A, astaxanthin, zeaxanthin, and β-carotene. Assessment of intracellular metabolites showed significant changes in several, suggesting their potential role in the Nostoc's stress mitigation strategy. Cyanobacteria under UV-A radiation have reduced growth due to intensive damage to essential functions, but the organism shows a defense response by remodeling bioenergetics pathway, induction of the UV protection compound scytonemin and increased levels of proline and tyrosine as a mitigation response. The effect of UV-A radiation on the proteome and intracellular metabolites of N. punctiforme ATCC 29133 including photosynthetic pigments has been described. We also verify the expression of 13 iTRAQ quantified protein using LC-pSRM. Overall we observed that UV-A radiation has a drastic effect on the photosynthetic machinery, photosynthetic pigments and intracellular amino acids. As a mitigation strategy against UV-A radiation, proline, glycine, and tyrosine were accumulated. Copyright © 2014. Published by Elsevier B.V.

  9. Survival of Salmonella typhimurium ATCC 14028 on the surface of chicken legs or in mechanically deboned chicken meat gamma irradiated in air or vacuum at temperatures of -20 to +20 C

    International Nuclear Information System (INIS)

    Thayer, D.W.; Boyd, G.

    1991-01-01

    Response-surface methodology was used to develop predictive equations for the response of Salmonella typhimurium ATCC 14028 on the surface of chicken legs or within mechanically deboned chicken meat (MDCM) to the effects of γ radiation doses of 0 to 3.60 kGy (100 krad = 1 kGy) at temperatures of -20 to +20 C in air or vacuum. A streptomycin-resistant mutant was used in these studies to allow accurate estimations of the surviving salmonellae in the presence of residual normal flora. This strain has been demonstrated to have no significant shift in its biological properties nor in its resistance to ionizing radiation. The response of S. typhimurium to gamma radiation was similar on both chicken legs and MDCM. The radiation was significantly more lethal to the bacterial cells at temperatures above freezing. The response-surface equations developed from the studies predict that the number of viable cells per gram of MDCM or per square centimeter of the surface of chicken legs would be reduced approximately 2.8 to 5.1 log units at 0 C by radiation doses within the range of 1.5 to 3.0 kGy. The results of the present studies are similar to those obtained previously with sterile mechanically deboned chicken meat

  10. Análisis de la producción de biobutanol en la fermentación acetobutílica conclostridium saccharoperbutylacetonicum N1-4 ATCC13564

    Directory of Open Access Journals (Sweden)

    Juan Jacobo Jaramillo Obando

    2011-01-01

    Full Text Available Se estudiaron las condiciones y características de la producción de biobutanol en la fermentación ABE. Se usó un modelo cinético de crecimiento celular estructurado siguiendo la vía metabólica propuesta por Embden-Meyerhof- Parnas (EMP para el Clostridium saccharoperbutylacetonicum N1-4 ATCC13564 en un esquema de reacción de fl ujo continuo y tanque agitado. Se realizó un análisis de sensibilidad y una optimización con base en las variables de decisión de productividad de butanol, rendimiento de glucosa a butanol y conversión global de glucosa para diferentes concentraciones de alimentación y tasa de dilución resultando en valores de productividad de 27,46 mM h-1, rendimiento de 0,65 mmol de butanol por mmol de glucosa y conversión de 95,38% fi nales a una concentración de alimentación óptima de 295 mM y tasa de dilución fi nal de 0,15 h-1.

  11. PigZ, a TetR/AcrR family repressor, modulates secondary metabolism via the expression of a putative four-component resistance-nodulation-cell-division efflux pump, ZrpADBC, in Serratia sp. ATCC 39006.

    Science.gov (United States)

    Gristwood, Tamzin; Fineran, Peter C; Everson, Lee; Salmond, George P C

    2008-07-01

    The Gram-negative enterobacterium, Serratia sp. ATCC 39006 synthesizes several secondary metabolites, including prodigiosin (Pig) and a carbapenem antibiotic (Car). A complex hierarchical network of regulatory proteins control Pig and Car production. In this study we characterize a TetR family regulator, PigZ, which represses transcription of a divergently transcribed putative resistance-nodulation-cell-division (RND) efflux pump, encoded by zrp (PigZ repressed pump) ADBC, via direct binding to the zrpA-pigZ intergenic region. Unusually, this putative RND pump contains two predicted membrane fusion proteins (MFPs), ZrpA and ZrpD. A mutation in pigZ resulted in multiple phenotypic changes, including exoenzyme production, motility and differential regulation of Pig and Car production. A polar suppressor mutation, within zrpA, restored all tested phenotypes to parental strain levels, indicating that the changes observed are due to the increase in expression of ZrpADBC in the absence of the repressor, PigZ. Genomic deletions of zrpA and zrpD indicate that the MFP ZrpD, but not ZrpA, is essential for activity of the putative pump. Bioinformatic analysis revealed that putative RND efflux pumps encoding two MFP components are not uncommon, particularly among plant-associated, Gram-negative bacteria. In addition, based on phylogenetic analysis, we propose that these pairs of MFPs consist of two distinct subtypes.

  12. EFEITO DO TEOR DE GORDURA, VÁCUO E DOSE DE RADIAÇÃO GAMA NA SOBREVIVÊNCIA DE Salmonella TYPHIMURIUM ATCC 14028 EM CARNE BOVINA MOÍDA RESFRIADA

    Directory of Open Access Journals (Sweden)

    C. S. COSTA

    2008-09-01

    Full Text Available

    O trabalho avaliou a sobrevivência de Salmonella Typhimurium ATCC 14028 em carnes bovinas, moída crua e resfriada (2 ºC, através do tratamento com radiação gama (Co60, utilizando doses de 0; 1,5; 2,5 e 3,5 kGy. Além do fator dose de radiação foram avaliadas as influências do emprego de vácuo e de dois teores de gordura da carne bovina moída: baixo (2-4% e alto (11-13%, bem como a interação dos fatores, na redução ou eliminação da bactéria patogênica inoculada. Os resultados demonstraram que os teores de gordura da carne e o emprego de vácuo não influenciaram significativamente a sobrevivência da Salmonella. A dose de radiação gama influenciou a inativação de Salmonella de forma dose dependente até 2,5 kGy, com reduções de 4 ciclos logarítmicos. A dose de 2,5 kGy é suficiente para exercer um controle efetivo de Salmonella em carne bovina moída independentemente do seu teor de gordura e da presença de oxigênio.

  13. The Effect of Lactobacillus plantarum ATCC 8014 and Lactobacillus acidophilus NCFM Fermentation on Antioxidant Properties of Selected in Vitro Sprout Culture of Orthosiphon aristatus (Java Tea as a Model Study

    Directory of Open Access Journals (Sweden)

    Dase Hunaefi

    2012-09-01

    Full Text Available High rosmarinic acid (RA productivity has been achieved by applying jasmonic acid and yeast extract elicitors to the in vitro sprout culture of Orthosiphon aritatus (IOSC. The highest RA accumulation from three solvents was detected in IOSC after treatment with yeast extract (5 g/L. HPLC analysis clearly confirmed a drastic increase in RA subjected to yeast extract elicitation. Therefore, this yeast extract elicited IOSC was chosen for a lactic acid bacteria (LAB fermentation study as a model system. This selected IOSC was subjected to different types of LAB fermentations (Lactobacillus plantarum ATCC 8014 and Lactobacillus acidophilus NCFM for different periods of time 24, 48 and 72 h. The LAB fermentations consisted of solid state fermentations (SSF and liquid state fermentations (LSF in a Digital Control Unit (DCU fermenter system. The aim was to determine the effect of fermentation on the antioxidant properties of the plant extract. Results indicated that all types of LAB fermentation decreased the level of RA and total phenolics, however, a slight increase in total flavonoids and flavonols was observed in SSF samples. HPLC results confirmed that the longer the fermentation, the greater the reduction in RA content. The highest reduction was obtained in the sample of LSF inoculated with L. plantarum for a period of 72 h. The temperature of fermentation (37 °C was predicted as contributing to the declining level in RA content. The loss in RA was concomitant with a loss of total antioxidant activity (1,1-diphenyl-2-picrylhydrazyl (DPPH scavenging activity, Trolox Equivalent Antioxidant Capacity (TEAC, and Superoxide Dismutase (SOD-like activity. These results indicate that RA is the major contributor to the antioxidant activity of this plant.

  14. Biosíntesis de dextranos de alto peso molecular mediante la inoculación con Leuconostoc Mesenteroides, var. Mesenteroides (atcc 10830 de jugos residuales de la agroindustria de la piña: síntesis y caracterización de hierro-dextranos

    Directory of Open Access Journals (Sweden)

    José Roberto Vega Baudrit

    2013-01-01

    Full Text Available En este trabajo se muestran los estudios realizados para obtener dextranos a partir de desechos de la agroindustria de piña. La fermentación se llevó a cabo en un biorreactor (10 L, se inoculó con un cultivo de Leuconostoc mesenteroides, var. mesenteroides (ATCC 10830. Se centrifugó y se precipitó y purificó con etanol. Fue caracterizado por medio de viscosidad, peso molecular y grupos funcionales por espectroscopía infrarroja. Este dextrano fue tratado con el fin de obtener hierro-dextranos.

  15. Effect of hyperbaric air on endotoxin from Bacteroides fragilis strains

    Czech Academy of Sciences Publication Activity Database

    Chmelař, D.; Kašíková, A.; Martineková, P.; Hájek, M.; Rozložník, M.; Brabec, Marek; Janečková, J.; Vobejdová, J.; Čižnár, I.

    2018-01-01

    Roč. 63, č. 3 (2018), s. 283-290 ISSN 0015-5632 Institutional support: RVO:67985807 Keywords : endotoxin * hyperbaric condition Subject RIV: EE - Microbiology, Virology Impact factor: 1.521, year: 2016

  16. Detection of Bacteroides forsythus and Porphyromonas gingivalis in ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-05-18

    May 18, 2009 ... African Journal of Biotechnology Vol. 8 (10), pp. ... Full Length Research Paper. Detection of ... Bacterial strains in the root canals were not easy to be identified by the traditional .... Plaque and calculus were removed from the.

  17. Persistence of Bacteroides ovatus under simulated sunlight irradiation

    KAUST Repository

    Dong, Shengkun; Hong, Pei-Ying; Nguyen, Thanh H

    2014-01-01

    sensitizer algae organic matter (AOM) slowed down the decay of B. ovatus in low salinity water. At seawater salinity, the decay rate of B. ovatus was slower than that in low salinity water, except when both NaNO2 and AOM were present. Conclusion: The results

  18. Activity of endodontic antibacterial agents against selected anaerobic bacteria

    Directory of Open Access Journals (Sweden)

    Ferreira Cláudio Maniglia

    2002-01-01

    Full Text Available The antimicrobial activity of substances used as antibacterial agents (solutions of 10% calcium hydroxide, camphorated paramonochlorophenol - PMCC, 2% chlorhexidine digluconate and 10% castor oil plant detergent on anaerobic bacteria (Fusobacterium nucleatum ATCC 25586, Prevotella nigrescens ATCC 33563, Clostridium perfringens ATCC 13124 and Bacteroides fragilis ATCC 25285, using a broth dilution technique, was evaluated in vitro. For determination of minimum inhibitory and minimum bactericide concentrations (MIC and MBC, two culture broths, Reinforced Clostridial Medium (RCM and supplemented Brucella, standardized inoculum and serially diluted solutions were used. All antibacterial agents presented antimicrobial activity that varied for different bacteria. There were no differences in the performance of the two broths. Chlorhexidine digluconate was the most effective, with the lowest MICs, followed by castor oil detergent, PMCC and calcium hydroxide. C. perfringens and B. fragilis were the most resistant bacteria to all agents.

  19. Transformasi α-Pinena dengan Bakteri Pseudomonas aeruginosa ATCC 25923

    Directory of Open Access Journals (Sweden)

    Nanik Wijayati

    2014-03-01

    Full Text Available Indonesia adalah Negara utama yang memproduksi minyak atsiri di dunia. Minyak terpentin adalah minyak atsiri yang dihasilkan dari destilasi getah pinus Pinus merkusi J ungh. Et. De. Vr. Tujuan penelitian ini adalah untuk meningkatkan nilai minyak terpentin dengan mengubah kandungan utamanya, α-pinena menjadi senyawa baru menggunakan P. Aeruginosa dalam metode mikrobiologi. Minyak terpentin diambil dari Perhutani Laboratorium Jawa Tengah, dibuat dengan seri konsentrasi 0,5%, 1%, 2%, dan 4%. Minyak terpentin diinokulasi dalam suspensi P. areuginosa selama 48 jam pada suhu kamar (25-28oC. Hasilnya diekstraksi menggunakan dietil eter. Filtrat Terpentin dianalisis menggunakan GCdan IR. Hasil analisis GC menunjukkan puncak baru di konsentrasi 0,5%, 1%, dan 2%, tetapi dalam konsentrasi 4% tidak menunjukkan puncak baru. Hasil IR menunjukkan hidroksil (OH- dan C-O alkohol. Berdasarkan penelitian ini, dapat disimpulkan bahwa minyak terpentin dapat ditransformasi untuk menjadi senyawa yang mengandung gugus-OH melalui metode mikrobiologi dengan menggunakan bakteri P. aeruginosa. Indonesia is the main producer of essential oil in the world. Turpentine oil is an essential oil which is obtained from pine resin distillation of Pinus merkusi Jungh. et. De.Vr. The aim of this experiment was to increase the value of turpentine oil by changing its main content, i.e. α-pinene, into a new compound using P. aeruginosa in microbiological method. Turpentine oil was collected from Perhutani Central Java Laboratory, and was made into 0.5%; 1%; 2%; and 4% concentrations and it was inoculated in P. areuginosa suspension for 48 hours in room temperature (25°C-280C. The result was extracted using diethylether. The filtrate of turpentine was analyzed using GC and IR. The GC analysis result showed a new peak in 0.5%; 1%; and 2% concentrations, but in the 4% concentration didn’t show a new peak. The IR result showed alcohol with hydroxyl (-OH and –C–O groups. This experiment concluded that turpentine oil may be transformed using P. aeruginosa in a microbiological method to become a substance containing –OH group.

  20. Chromosome and cell wall segregation in Streptococcus faecium ATCC 9790

    International Nuclear Information System (INIS)

    Higgins, M.L.; Glaser, D.; Dicker, D.T.; Zito, E.T.

    1989-01-01

    Segregation was studied by measuring the positions of autoradiographic grain clusters in chains formed from single cells containing on average less than one radiolabeled chromosome strand. The degree to which chromosomal and cell wall material cosegregated was quantified by using the methods of S. Cooper and M. Weinberger, dividing the number of chains labeled at the middle. This analysis indicated that in contrast to chromosomal segregation in Escherichia coli and, in some studies, to that in gram-positive rods, chromosomal segregation in Streptococcus faecium was slightly nonrandom and did not vary with growth rate. Results were not significantly affected by strand exchange. In contrast, labeled cell wall segregated predominantly nonrandomly

  1. POTENSI ANTIMIKROBIA KRIM EKSTRAK RANTING PATAH TULANG (Euphorbia tirucalli Linn. TERHADAP Propionibacterium acnes ATCC 11827 DAN Candida albicans ATCC 24433

    Directory of Open Access Journals (Sweden)

    Melina Scandinovita Setiorini

    2016-04-01

    extracts with cream for testing Candida albicans.The final results were 10% test extract had MIC to Propionibacterium acnes and 6% test extract had MIC in cream to Candida albicans. Keywords: Euphorbia tirucalli L., DMSO, Thymol, antimicrobial potency, cream (o/w, Propionibacterium acnes, Candida albicans

  2. Bacteroides forsythus: sensibilidade a antimicrobianos em amostras de pacientes portadores de periodontite Bacteroides forsythus: sensitivity to antimicrobial agents in samples from patients with periodontitis

    Directory of Open Access Journals (Sweden)

    Roberto Fraga Moreira LOTUFO

    2001-03-01

    Full Text Available Os autores realizaram teste de sensibilidade antimicrobiana in vitro (técnica de diluição em ágar para 105 cepas de B. forsythus obtidas de pacientes portadores de periodontite. De acordo com o teste realizado, o microrganismo demonstrou ser sensível ao metronidazol (100% das cepas testadas e à amoxicilina (94% das cepas testadas, enquanto 72% e 65% das cepas foram susceptíveis à tetraciclina e ciprofloxacina, respectivamente. O metronidazol e a amoxicilina parecem ser os antimicrobianos indicados para o tratamento de infecções periodontais nas quais B. forsythus seja o patógeno predominante.An in vitro antimicrobial sensitivity test (technique of agar dilution was carried out for 105 clinical isolates of B. forsythus from patients with periodontitis. Metronidazole and amoxicillin were the most efficient drugs and, thus, are indicated for the treatment of periodontal infections in which this microorganism is the most prevalent pathogen.

  3. Effects of ultraviolet radiation on the survival and metabolic end products of Bacteroides melaninogenicus

    International Nuclear Information System (INIS)

    Smith-Kappus, S.D.

    1987-01-01

    In experiments investigating DNA repair, it was shown that B. melaninogenicus does not repair UV light induced damage via photoreactivation. Survival curves constructed for the organism after exposure to UV light at 254 nm and 365 nm under aerobic and anaerobic conditions while the organisms were in exponential or stationary growth phase, revealed that the cells were most sensitive to UV induced damage when exposed to radiation while in the exponential growth phase under aerobic conditions at either wavelength. B. melaninogenicus exposed to UV light under anaerobic conditions while the cells were in stationary growth phase were much more sensitive to UV induced damage at 254 nm than cells irradiated under the same conditions at 365 nm UV. Survival studies of B. melaninogenicus after co-insult with UV light and subinhibitory concentrations of chloramphenicol, metronidazole, caffeine, or fluoroacetate, at 254 nm UV or 365 nm UV, under aerobic and anaerobic atmospheric conditions illustrated a decreased shoulder region on the curves, particularly after 365 nm UV exposure, when compared to UV irradiation applied without subsequent chemical treatment

  4. Porphyromonas gingivalis, Bacteroides forsythus and other putative periodontal pathogens in subjects with and without periodontal destruction

    NARCIS (Netherlands)

    van Winkelhoff, AJ; Loos, BG; van der Reijden, WA; van der Velden, U

    Background and aims: Bacteria play an essential role in the pathogenesis of destructive periodontal disease. It has been suggested that not all bacteria associated with periodontitis may be normal inhabitants of a periodontally healthy dentition. In particular, Porphyromonas gingivalis and

  5. Bacteroides Fragilis OmpA: Utility as a Live Vaccine Vector for Biodefense Agents

    Science.gov (United States)

    2009-01-01

    prominent pathogen in adult periodontal diseases 62 (Mineoka et al., 2008). OmpA proteins are among the most conserved of all OMPs in bacteria and consist...only involves growing the modified bacteria . We have met these goals and using recent and novel advances in cloning techniques, designed several...seen a precipitous rise in the percentages of multi- antimicrobial resistant bacteria . Over the past 15 years, scientists have developed experimental

  6. Levan Enhances Associated Growth of Bacteroides, Escherichia, Streptococcus and Faecalibacterium in Fecal Microbiota

    DEFF Research Database (Denmark)

    Adamberg, Kaarel; Tomson, Katrin; Talve, Tiina

    2015-01-01

    The role of dietary fiber in supporting healthy gut microbiota and overall well-being of the host has been revealed in several studies. Here, we show the effect of a bacterial polyfructan levan on the growth dynamics and metabolism of fecal microbiota in vitro by using isothermal microcalorimetry....... Eleven fecal samples from healthy donors were incubated in phosphate-buffered defined medium with or without levan supplementation and varying presence of amino acids. The generation of heat, changes in pH and microbiota composition, concentrations of produced and consumed metabolites during the growth...

  7. Prebiotic galactooligosaccharides activate mucin and pectic galactan utilization pathways in the human gut symbiont Bacteroides thetaiotaomicron

    NARCIS (Netherlands)

    Lammerts van Bueren, Alicia; Mulder, Marieke; Leeuwen, Sander van; Dijkhuizen, Lubbert

    2017-01-01

    Galactooligosaccharides (GOS) are prebiotic carbohydrates that impart changes in the gut bacterial composition of formula-fed infants to more closely resemble that of breast-fed infants. Consuming human milk oligosaccharides (HMOs) provides specific bacterial strains with an advantage for colonizing

  8. Rizoremediação de pentaclorofenol em um solo argiloso por sphingomonas chlorophenolica ATCC 39723 Pentachlorophenol rhizoremediation in a loamy soil by sphingomonas chlorophenolica ATCC 39723

    Directory of Open Access Journals (Sweden)

    Rosemeri I. Dams

    2007-12-01

    Full Text Available O principal objetivo deste trabalho foi estudar a degradação de PCP por Sphingomonas chlorophenolicaem solo argiloso na presença e ausência de trigo. As concentrações de PCP foram determinadas através de Análises de Alta Performance de Cromatografia Líquida. Os efeitos tóxicos de PCP foram estudados através do monitoramento do crescimento das plantas. A biodegradação de PCP por S. chlorophenolica foi acompanhada por testes de bioluminescência de Escherichia coli HB101 pUCD607 e contagens bacterianas no solo e nas raízes. A degradação de PCP ocorreu de forma mais rápida no solo plantado e inoculado quando comparada ao solo sem plantas. Houve um aumento significativo nas populações dos organismos testados nas raízes quando comparadas com as populações presentes no solo. O monitoramento do crescimento da planta mostrou o papel protetor exercido pela S.chlorophenolica contra a toxicidade do PCP.The main objective of this study was study the PCP degradation by Sphingomonas chlorophenolica in a loamy soil in the presence and absence of plants (Winter wheat. Measurements of PCP concentrations were carried out in a laboratory basis using High performance liquid chromatography analysis (HPLC. The toxic effect of PCP on plants was studied through the monitoring of the plant growth. The biodegradation of PCP by S. chlorophenolica in soil was assessed with a bioluminescence assay of Escherichia coli HB101 pUCD607 and bacterial analyses in roots and soil. The planted and inoculated soil showed a faster degradation when compared to the inoculated soil without plants. There was a significative increase in the populations of the organisms tested in the roots when compared to the soil. The monitoring of the plant growth showed a protective role of S. chlorophenolica against the toxicity of PCP in the loamy soil.

  9. Influence of Sterilized Human Fecal Extract on the Sensitivity of Salmonella enterica ATCC 13076 and Listeria monocytogenes ATCC 15313 to Enrofloxacin.

    Science.gov (United States)

    Ahn, Youngbeom; Stuckey, Ryan; Sung, Kidon; Rafii, Fatemeh; Cerniglia, Carl E

    2013-12-02

    There is much debate on whether continuous exposure of commensal bacteria and potential pathogens residing in the human intestinal tract to low levels of antimicrobial agents from treated food animals pose a public health concern. To investigate antimicrobial effects on bacteria under colonic conditions, we studied resistance development in Salmonella enterica and Listeria monocytogenes exposed to enrofloxacin in the presence of fecal extract. The bacteria were incubated at 37 °C in Mueller-Hinton broth, with and without 0.01~0.5 μg/mL enrofloxacin, in the presence and absence of sucrose, and with 1% or 2.5% filter-sterilized fecal extract, for three passages. In the second and third passages, only the bacteria incubated in the media containing sterilized fecal extract grew in 0.5 μg/mL of enrofloxacin. Fecal extract (1% and 2.5%) decreased the sensitivity of S. enterica to enrofloxacin in the medium containing the efflux pump inhibitors reserpine and carbonyl cyanide-m-chlorophenylhydrazone (CCCP) and affected the accumulation of ethidium bromide (EtBr) in this bacterium. Enrofloxacin (0.06 µg/mL) and fecal extract altered the composition of fatty acids in S. enterica and L. monocytogenes. We conclude that fecal extract decreased the susceptibilities of S. enterica and L. monocytogenes to concentrations of enrofloxacin higher than the MIC and resulted in rapid resistance selection.

  10. Osmoresistant yeast Zygosaccharomyces rouxii: the two most studied wild-type strains (ATCC 2623 and ATCC 42981) differ in osmotolerance and glycerol metabolism

    Czech Academy of Sciences Publication Activity Database

    Přibylová, Lenka; de Montigny, J.; Sychrová, Hana

    2007-01-01

    Roč. 24, č. 3 (2007), s. 171-180 ISSN 0749-503X R&D Projects: GA ČR(CZ) GD204/03/H066; GA ČR(CZ) GA204/05/0028 Institutional research plan: CEZ:AV0Z50110509 Keywords : Zygosaccharomyces rouxii * osmotolerance * karyotype Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.619, year: 2007

  11. Prevalence of antimicrobial resistance and the cfiA resistance gene in Danish Bacteroides fragilis group isolates since 1973

    DEFF Research Database (Denmark)

    Ferløv-Schwensen, Simon Andreas; Sydenham, Thomas Vognbjerg; Hansen, Kia Cirkeline Møller

    2017-01-01

    Desorption/Ionization Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) on the Biotyper platform. Antimicrobial resistance was determined using a disk diffusion screening method and commercial antibiotic gradient strips. Division I (cfiA-negative) and division II (cfiA-positive) B. fragilis strains were...... differentiated using MALDI-TOF MS and real-time polymerase chain reaction (PCR). RESULTS: From 1973-1980 to 2010-2015 the prevalence of antimicrobial resistance rose from 0% to 21.2%, 2.5%, and 1% for clindamycin, meropenem, and metronidazole, respectively. MALDI-TOF MS and real-time PCR identified 16 of 266 (6...... established in the recent decades in Europe. Resistance to meropenem, facilitated by expression of the cfiA resistance gene, seems to be increasing; therefore, it is imperative to monitor the occurrence of this gene, e.g. using MALDI-TOF MS....

  12. Twenty-eight divergent polysaccharide loci specifying within and amongst strain capsule diversity in three strains of Bacteroides fragilis

    DEFF Research Database (Denmark)

    Patrick, S.; Blakely, G.W.; Houston, S.

    2010-01-01

    including a putative Wzx flippase and Wzy polymerase, was confirmed in all three strains, despite a lack of cross-reactivity between NCTC 9343 and 638R surface polysaccharide-specific antibodies by immunolabelling and microscopy. Genomic comparisons revealed an exceptional level of polysaccharide...... biosynthesis locus diversity. Of the 10 divergent polysaccharide associated loci apparent in each strain, none are similar between NCTC9343 and 638R. YCH46 shares one locus with NCTC9343, confirmed by MAb labelling, and a second different locus with 638R, making a total of 28 divergent polysaccharide...... restriction and modification systems that act to prevent acquisition of foreign DNA. The level of amongst strain diversity in polysaccharide biosynthesis loci is unprecedented....

  13. Development of EUCAST disk diffusion method for susceptibility testing of the Bacteroides fragilis group isolates

    DEFF Research Database (Denmark)

    Nagy, Elisabeth; Justesen, Ulrik Stenz; Eitel, Zsuzsa

    2015-01-01

    -clavulanic acid, cefoxitin, clindamycin, imipenem, metronidazole, moxifloxacin, piperacillin/tazobactam, tigecycline by agar dilution method previously. The inhibition zones of the same antibiotics including meropenem disc were determined by the disc diffusion on Brucella blood agar supplemented with haemin...

  14. Medicago truncatula ENOD40-1 and ENOD40-2 are both involved in nodule initiation and bacteroid development

    NARCIS (Netherlands)

    Wan, X.; Hontelez, J.; Lillo, A.; Guarnerio, C.; Peut, van de D.; Fedorova, E.; Bisseling, T.; Franssen, H.

    2007-01-01

    The establishment of a nitrogen-fixing root nodule on legumes requires the induction of mitotic activity of cortical cells leading to the formation of the nodule primordium and the infection process by which the bacteria enter this primordium. Several genes are up-regulated during these processes,

  15. Relationships and trends of E. Coli, human-associated Bacteroides, and pathogens in the Proctor Creek Watershed

    Science.gov (United States)

    Urban surface waters can be impacted by anthropogenic sources such as impervious surfaces, sanitary and storm sewers, and failing infrastructure. Fecal indicator bacteria (FIB) and microbial source tracking (MST) markers are common gauges of stream water quality, however, little...

  16. The gut bacterium Bacteroides thetaiotaomicron influences the virulence potential of the enterohemorrhagic Escherichia coli O103:H25.

    Directory of Open Access Journals (Sweden)

    Hildegunn Iversen

    Full Text Available Enterohemorrhagic E. coli (EHEC is associated with severe gastrointestinal disease. Upon entering the gastrointestinal tract, EHEC is exposed to a fluctuating environment and a myriad of other bacterial species. To establish an infection, EHEC strains have to modulate their gene expression according to the GI tract environment. In order to explore the interspecies interactions between EHEC and an human intestinal commensal, the global gene expression profile was determined of EHEC O103:H25 (EHEC NIPH-11060424 co-cultured with B. thetaiotaomicron (CCUG 10774 or grown in the presence of spent medium from B. thetaiotaomicron. Microarray analysis revealed that approximately 1% of the EHEC NIPH-11060424 genes were significantly up-regulated both in co-culture (30 genes and in the presence of spent medium (44 genes, and that the affected genes differed between the two conditions. In co-culture, genes encoding structural components of the type three secretion system were among the most affected genes with an almost 4-fold up-regulation, while the most affected genes in spent medium were involved in chemotaxis and were more than 3-fold up-regulated. The operons for type three secretion system (TTSS are located on the Locus of enterocyte effacement (LEE pathogenicity island, and qPCR showed that genes of all five operons (LEE1-LEE5 were up-regulated. Moreover, an increased adherence to HeLa cells was observed in EHEC NIPH-11060424 exposed to B. thetaiotaomicron. Expression of stx2 genes, encoding the main virulence factor of EHEC, was down-regulated in both conditions (co-culture/spent medium. These results show that expression of EHEC genes involved in colonization and virulence is modulated in response to direct interspecies contact between cells, or to diffusible factors released from B. thetaiotaomicron. Such interspecies interactions could allow the pathogen to recognize its predilection site and modulate its behaviour accordingly, thus increasing the efficiency of colonization of the colon mucosa, facilitating its persistence and increasing its virulence potential.

  17. Monoclonal antibody against Porphyromonas (Bacteroides) endodontalis lipopolysaccharide and application of the antibody for direct identification of the species.

    OpenAIRE

    Hanazawa, S; Sagiya, T; Kitami, H; Ohta, K; Nishikawa, H; Kitano, S

    1991-01-01

    The aim of the present study was to develop a monoclonal antibody that recognizes the shared antigen of Porphyromonas endodontalis so that we could use the antibody in direct identification and detection of P. endodontalis in infectious material from apical periodontal patients. We established a hybridoma cell line producing monoclonal antibody (BEB5) specific for P. endodontalis. BEB5 antibody reacted with all of the P. endodontalis strains tested, but not with any of the other black-pigment...

  18. Relationships and trends of E. Coli, human-associated bacteroides, and pathogens in the Proctor Creek watershed (GWRC 2017)

    Science.gov (United States)

    Urban surface waters can be impacted by anthropogenic sources such as impervious surfaces, sani-tary and storm sewers, and failing infrastructure. Fecal indicator bacteria (FIB) and microbial source tracking (MST) markers are common gauges of stream water qual-ity, however, litt...

  19. Iron effect on the fermentative metabolism of Clostridium acetobutylicum ATCC 824 using cheese whey as substrate

    Directory of Open Access Journals (Sweden)

    Victoria Rosalía Durán-Padilla

    2014-12-01

    Full Text Available Butanol is considered a superior liquid fuel that can replace gasoline in internal combustion engines. It is produced by acetone-butanol-ethanol (ABE fermentation using various species of solventogenic clostridia. Performance of ABE fermentation process is severely limited mostly by high cost of substrate, substrate inhibition and low solvent tolerance; leading to low product concentrations, low productivity, low yield, and difficulty in controlling culture metabolism. In order to decrease the cost per substrate and exploit a waste generated by dairy industry, this study proposes using cheese whey as substrate for ABE fermentation. It was observed that the addition of an iron source was strictly necessary for the cheese whey to be a viable substrate because this metal is needed to produce ferredoxin, a key protein in the fermentative metabolism of Clostridium acetobutylicum serving as a temporary electron acceptor. Lack of iron in the cheese whey impedes ferredoxin synthesis and therefore, restricts pyruvate-ferredoxin oxidoreductase activity leading to the production of lactic acid instead of acetone, butanol and ethanol. Moreover, the addition of FeSO4 notably improved ABE production performance by increasing butanol content (7.13 ± 1.53 g/L by 65% compared to that of FeCl3 (4.32 ± 0.94 g/L under the same fermentation conditions.

  20. Metabolic engineering of Agrobacterium sp. ATCC31749 for curdlan production from cellobiose.

    Science.gov (United States)

    Shin, Hyun-Dong; Liu, Long; Kim, Mi-Kyoung; Park, Yong-Il; Chen, Rachel

    2016-09-01

    Curdlan is a commercial polysaccharide made by fermentation of Agrobacterium sp. Its anticipated expansion to larger volume markets demands improvement in its production efficiency. Metabolic engineering for strain improvement has so far been limited due to the lack of genetic tools. This research aimed to identify strong promoters and to engineer a strain that converts cellobiose efficiently to curdlan. Three strong promoters were identified and were used to install an energy-efficient cellobiose phosphorolysis mechanism in a curdlan-producing strain. The engineered strains were shown with enhanced ability to utilize cellobiose, resulting in a 2.5-fold increase in titer. The availability of metabolically engineered strain capable of producing β-glucan from cellobiose paves the way for its production from cellulose. The identified native promoters from Agrobacterium open up opportunities for further metabolic engineering for improved production of curdlan and other products. The success shown here marks the first such metabolic engineering effort in this microbe.

  1. Identification and Functional Validation of Autolysis—Associated Genes in Lactobacillus bulgaricus ATCC BAA-365

    Science.gov (United States)

    Pang, Xiaoyang; Zhang, Shuwen; Lu, Jing; Liu, Lu; Ma, Changlu; Yang, Yang; Ti, Panpan; Gao, Weihua; Lv, Jiaping

    2017-01-01

    Lactic acid bacteria (LAB) are important organisms in food production. Indeed, LAB autolysis is very critical in dairy processing. For example, it influences the development of cheese flavor by releasing intracellular enzymes, and controls cell growth in yogurts and probiotic products. Two component systems (TCS) constitute essential environmental sensors and effectors of signal transduction in most bacteria. In the present work, mutants of one TCS (LBUL_RS00115/LBUL_RS00110) were generated to assess the relationship between TCS and cell autolysis. The mutants displayed decreased autolysis in comparison with wild type; meanwhile, complementation reversed this effect. The interaction between LBUL_RS00115 and LBUL_RS00110 was confirmed by yeast two-hybrid analysis. These observations suggested that the TCS (LBUL_RS00115/LBUL_RS00110) was involved in autolysis in Lactobacillus delbrueckii subsp. bulgaricus. PMID:28769917

  2. Identification and Functional Validation of Autolysis-Associated Genes in Lactobacillus bulgaricus ATCC BAA-365.

    Science.gov (United States)

    Pang, Xiaoyang; Zhang, Shuwen; Lu, Jing; Liu, Lu; Ma, Changlu; Yang, Yang; Ti, Panpan; Gao, Weihua; Lv, Jiaping

    2017-01-01

    Lactic acid bacteria (LAB) are important organisms in food production. Indeed, LAB autolysis is very critical in dairy processing. For example, it influences the development of cheese flavor by releasing intracellular enzymes, and controls cell growth in yogurts and probiotic products. Two component systems (TCS) constitute essential environmental sensors and effectors of signal transduction in most bacteria. In the present work, mutants of one TCS (LBUL_RS00115/LBUL_RS00110) were generated to assess the relationship between TCS and cell autolysis. The mutants displayed decreased autolysis in comparison with wild type; meanwhile, complementation reversed this effect. The interaction between LBUL_RS00115 and LBUL_RS00110 was confirmed by yeast two-hybrid analysis. These observations suggested that the TCS (LBUL_RS00115/LBUL_RS00110) was involved in autolysis in Lactobacillus delbrueckii subsp. bulgaricus .

  3. Enhanced butanol production and reduced autolysin activity after chloramphenicol treatment of Clostridium acetobutylicum ATCC 824

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Xiangdong; Traxler, R.W. (Rhode Island Univ., Kingston, RI (United States). Dept. of Food Science and Nutrition)

    1992-06-01

    Release of autolysin during the late exponential growth phase of Clostridium acetobutylicum resulted in early lysis of the culture and reduction of solvent formation. A simple and effective way of reducing autolysin activity and increasing solvent production is partial inhibition of protein synthesis with chloramphenicol (CAP). The extracellular autolytic activity in the culture, determined by following loss of turbidity of washed clostridial cells in 0.04 M sodium phosphate buffer at 37deg C, was decreased by 40% after CAP treatment. This caused an extension of cell viability by 12 h and an increase in butanol production by 30%. The optimal time of CAP addition was 12 h of incubation, and the optimal antibiotic concentration was 120 {mu}g/ml. The effects of CAP on the fermentation are due to the inhibition of protein synthesis leading to a decrease in autolysin level in the culture. The results obtained provide economic advantages for industrial production of solvents by minimizing autolysin activity and maximizing solvent yield during the critical solvent-producing phase. (orig.).

  4. Detecting Protein-Protein Interactions in the Intact Cell of Bacillus subtilis (ATCC 6633)

    OpenAIRE

    Winters, Michael S.; Day, R. A.

    2003-01-01

    The salt bridge, paired group-specific reagent cyanogen (ethanedinitrile; C2N2) converts naturally occurring pairs of functional groups into covalently linked products. Cyanogen readily permeates cell walls and membranes. When the paired groups are shared between associated proteins, isolation of the covalently linked proteins allows their identity to be assigned. Examination of organisms of known genome sequence permits identification of the linked proteins by mass spectrometric techniques a...

  5. Purification and Characterization of Tannin Acyl Hydrolase from Aspergillus niger ATCC 16620

    Directory of Open Access Journals (Sweden)

    Abdulhameed Sabu

    2005-01-01

    Full Text Available Tannin acyl hydrolase produced extracellularly by the fungal strain Aspergillus niger ATTC 16620 in solid state fermentation was purified from the cell free culture broth by ammonium sulphate fractionation followed by DEAE–Sephadex A-50 chromatography. SDS-PAGE analysis indicated that the enzyme protein molecular mass was 168 kDa. Enzyme activity was stable up to the temperature of 40 °C and the enzyme activity was optimal at pH=6. Tannase activity was maximal at 0.01 M concentration of the substrate. The addition of metal ions like Zn2+, Mn2+, Cu2+, Ca2+, Mg2+and Fe2+ inhibited the enzyme activity. Only K+ ions enhanced tannase activity, and an activity of 4.31 U/mL was reported here. Enzyme activity was maximal after 15–20 min of incubation time, with an activity of 3.9 U/mL. Km was found to be 1.03 mM and Vmax=4.25 mmol/min. Since the enzyme is active over a wide range of pH and temperature it could find potential use in the food-processing industry.

  6. Nitrilase from rhodococcus rhodochrous ATCC BAA-870: fibre formation over time

    CSIR Research Space (South Africa)

    Frederick, J

    2008-07-01

    Full Text Available of a nitrile into its corresponding carboxylic acid and ammonia, and have become important industrial enzymes as a result of the products they afford. Successful commercial examples of nitrile bioconversion include production of nicotinic acid...

  7. Metabolic Rhythms of the Cyanobacterium Cyanothece sp ATCC 51142 Correlate with Modeled Dynamics of Circadian Clock

    Czech Academy of Sciences Publication Activity Database

    Červený, Jan; Nedbal, Ladislav

    2009-01-01

    Roč. 4, č. 24 (2009), s. 295-303 ISSN 0748-7304 R&D Projects: GA ČR(CZ) GA206/09/1284 Institutional research plan: CEZ:AV0Z60870520 Keywords : circadian clock * cyanobacteria * model * photosynthesis * respiration Subject RIV: CE - Biochemistry Impact factor: 4.418, year: 2009

  8. Optimization of lysine production in Corynebacteriumglutamicum ATCC15032 by Response surface methodology

    Directory of Open Access Journals (Sweden)

    Mehrnaz Haghi

    2017-03-01

    Discussion and conclusion: According to the results, the proposed culture media by response surface methodology causes 1400 times increase in the lysine production compared with M9 culture media and methionine had an important role in the production of lysine, probably by inhibiting the other metabolic pathway which has common metabolic precursor with lysine production metabolic pathway.

  9. Scanning electron microscopic study of Piper betle L. leaves extract effect against Streptococcus mutans ATCC 25175.

    Science.gov (United States)

    Rahim, Zubaidah Haji Abdul; Thurairajah, Nalina

    2011-04-01

    Previous studies have shown that Piper betle L. leaves extract inhibits the adherence of Streptococcus mutans to glass surface, suggesting its potential role in controlling dental plaque development. In this study, the effect of the Piper betle L. extract towards S. mutans (with/without sucrose) using scanning electron microscopy (SEM) and on partially purified cell-associated glucosyltransferase activity were determined. S. mutans were allowed to adhere to glass beads suspended in 6 different Brain Heart Infusion broths [without sucrose; with sucrose; without sucrose containing the extract (2 mg mL(-1) and 4 mg mL(-1)); with sucrose containing the extract (2 mg mL(-1) and 4 mg mL(-1))]. Positive control was 0.12% chlorhexidine. The glass beads were later processed for SEM viewing. Cell surface area and appearance and, cell population of S. mutans adhering to the glass beads were determined upon viewing using the SEM. The glucosyltransferase activity (with/without extract) was also determined. One- and two-way ANOVA were used accordingly. It was found that sucrose increased adherence and cell surface area of S. mutans (pPiper betle L. leaves extract. It was also found that the extract inhibited glucosyltransferase activity and its inhibition at 2.5 mg mL(-1) corresponded to that of 0.12% chlorhexidine. At 4 mg mL(-1) of the extract, the glucosyltransferase activity was undetectable and despite that, bacterial cells still demonstrated adherence capacity. The SEM analysis confirmed the inhibitory effects of the Piper betle L. leaves extract towards cell adherence, cell growth and extracellular polysaccharide formation of S. mutans visually. In bacterial cell adherence, other factors besides glucosyltransferase are involved.

  10. Mining the Proteome of subsp. ATCC 25586 for Potential Therapeutics Discovery: An Approach

    Directory of Open Access Journals (Sweden)

    Abdul Musaweer Habib

    2016-12-01

    Full Text Available The plethora of genome sequence information of bacteria in recent times has ushered in many novel strategies for antibacterial drug discovery and facilitated medical science to take up the challenge of the increasing resistance of pathogenic bacteria to current antibiotics. In this study, we adopted subtractive genomics approach to analyze the whole genome sequence of the Fusobacterium nucleatum, a human oral pathogen having association with colorectal cancer. Our study divulged 1,499 proteins of F. nucleatum, which have no homolog's in human genome. These proteins were subjected to screening further by using the Database of Essential Genes (DEG that resulted in the identification of 32 vitally important proteins for the bacterium. Subsequent analysis of the identified pivotal proteins, using the Kyoto Encyclopedia of Genes and Genomes (KEGG Automated Annotation Server (KAAS resulted in sorting 3 key enzymes of F. nucleatum that may be good candidates as potential drug targets, since they are unique for the bacterium and absent in humans. In addition, we have demonstrated the three dimensional structure of these three proteins. Finally, determination of ligand binding sites of the 2 key proteins as well as screening for functional inhibitors that best fitted with the ligands sites were conducted to discover effective novel therapeutic compounds against F. nucleatum.

  11. Cryo-electron tomography analysis of membrane vesicles from Acinetobacter baumannii ATCC19606(T)

    NARCIS (Netherlands)

    Koning, Roman I.; de Breij, Anna; Oostergetel, Gert T.; Nibbering, Peter H.; Koster, Abraham J.; Dijkshoorn, Lenie

    Acinetobacter baumannii is an important nosocomial pathogen responsible for colonization and infection of critically ill patients. Its virulence attributes together with the condition of the host determine the pathogenicity of A. baumannii. These virulence factors may be delivered to host cells by

  12. Haemophilus parainfluenzae Strain ATCC 33392 Forms Biofilms In Vitro and during Experimental Otitis Media Infections.

    Science.gov (United States)

    Pang, Bing; Swords, W Edward

    2017-09-01

    Haemophilus parainfluenzae is a nutritionally fastidious, Gram-negative bacterium with an oropharyngeal/nasopharyngeal carriage niche that is associated with a range of opportunistic infections, including infectious endocarditis and otitis media (OM). These infections are often chronic/recurrent in nature and typically involve bacterial persistence within biofilm communities that are highly resistant to host clearance. This study addresses the primary hypothesis that H. parainfluenzae forms biofilm communities that are important determinants of persistence in vivo The results from in vitro biofilm studies confirmed that H. parainfluenzae formed biofilm communities within which the polymeric matrix was mainly composed of extracellular DNA and proteins. Using a chinchilla OM infection model, we demonstrated that H. parainfluenzae formed surface-associated biofilm communities containing bacterial and host components that included neutrophil extracellular trap (NET) structures and that the bacteria mainly persisted in these biofilm communities. We also used this model to examine the possible interaction between H. parainfluenzae and its close relative Haemophilus influenzae , which is also commonly carried within the same host environments and can cause OM. The results showed that coinfection with H. influenzae promoted clearance of H. parainfluenzae from biofilm communities during OM infection. The underlying mechanisms for bacterial persistence and biofilm formation by H. parainfluenzae and knowledge about the survival defects of H. parainfluenzae during coinfection with H. influenzae are topics for future work. Copyright © 2017 American Society for Microbiology.

  13. Biotransformation of furfural and 5-hydroxymethyl furfural (HMF) by Clostridium acetobutylicum ATCC 824 during butanol fermentation.

    Science.gov (United States)

    Zhang, Yan; Han, Bei; Ezeji, Thaddeus Chukwuemeka

    2012-02-15

    The ability of fermenting microorganisms to tolerate furan aldehyde inhibitors (furfural and 5-hydroxymethyl furfural (HMF)) will enhance efficient bioconversion of lignocellulosic biomass hydrolysates to fuels and chemicals. The effect of furfural and HMF on butanol production by Clostridium acetobutylicum 824 was investigated. Whereas specific growth rates, μ, of C. acetobutylicum in the presence of furfural and HMF were in the range of 15-85% and 23-78%, respectively, of the uninhibited Control, μ increased by 8-15% and 23-38% following exhaustion of furfural and HMF in the bioreactor. Using high performance liquid chromatography and spectrophotometric assays, batch fermentations revealed that furfural and HMF were converted to furfuryl alcohol and 2,5-bis-hydroxymethylfuran, respectively, with specific conversion rates of 2.13g furfural and 0.50g HMF per g (biomass) per hour, by exponentially growing C. acetobutylicum. Biotransformation of these furans to lesser inhibitory compounds by C. acetobutylicum will probably enhance overall fermentation of lignocellulosic hydrolysates to butanol. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Ultradian metabolic rhythm in the diazotrophic cyanobacterium Cyanothece sp. ATCC 51142

    Czech Academy of Sciences Publication Activity Database

    Červený, Jan; Sinětova, Maria A.; Valledor, Luis; Sherman, L. A.; Nedbal, Ladislav

    2013-01-01

    Roč. 110, č. 32 (2013), s. 13210-13215 ISSN 0027-8424 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073; GA MŠk(CZ) EE2.3.20.0256; GA ČR GA206/09/1284 Institutional support: RVO:67179843 Keywords : cyanobacteria * diurnal * metabolism * oscillation Subject RIV: EH - Ecology, Behaviour Impact factor: 9.809, year: 2013

  15. Response of Bacillus cereus ATCC 14579 to challenges with sublethal concentrations of enterocin AS-48

    NARCIS (Netherlands)

    Grande Burgos, M.J.; Kovács, Á.T.; Miro?czuk, A.M.; Abriouel, H.; Gálvez, A.; Kuipers, O.P.

    2009-01-01

    Background: Enterocin AS-48 is produced by Enterococcus faecalis S48 to compete with other bacteria in their environment. Due to its activity against various Gram positive and some Gram negative bacteria it has clear potential for use as a food preservative. Here, we studied the effect of enterocin

  16. Clostridium thermocellum ATCC27405 transcriptomic, metabolomic and proteomic profiles after ethanol stress

    Directory of Open Access Journals (Sweden)

    Yang Shihui

    2012-07-01

    Full Text Available Abstract Background Clostridium thermocellum is a candidate consolidated bioprocessing biocatalyst, which is a microorganism that expresses enzymes for both cellulose hydrolysis and its fermentation to produce fuels such as lignocellulosic ethanol. However, C. thermocellum is relatively sensitive to ethanol compared to ethanologenic microorganisms such as yeast and Zymomonas mobilis that are used in industrial fermentations but do not possess native enzymes for industrial cellulose hydrolysis. Results In this study, C. thermocellum was grown to mid-exponential phase and then treated with ethanol to a final concentration of 3.9 g/L to investigate its physiological and regulatory responses to ethanol stress. Samples were taken pre-shock and 2, 12, 30, 60, 120, and 240 min post-shock, and from untreated control fermentations for systems biology analyses. Cell growth was arrested by ethanol supplementation with intracellular accumulation of carbon sources such as cellobiose, and sugar phosphates, including fructose-6-phosphate and glucose-6-phosphate. The largest response of C. thermocellum to ethanol shock treatment was in genes and proteins related to nitrogen uptake and metabolism, which is likely important for redirecting the cells physiology to overcome inhibition and allow growth to resume. Conclusion This study suggests possible avenues for metabolic engineering and provides comprehensive, integrated systems biology datasets that will be useful for future metabolic modeling and strain development endeavors.

  17. Characterization of plasma membrane respiratory chain and ATPase on the actinomycete Nonomuraea sp. ATCC 39727

    Czech Academy of Sciences Publication Activity Database

    Palese, L.; Gaballo, A.; Dobrová, Zuzana; Labonia, N.; Abbrescia, A.; Scacco, S.; Micelli, L.; Papa, S.

    2003-01-01

    Roč. 228, č. 2 (2003), s. 233-239 ISSN 0378-1097 Institutional research plan: CEZ:AV0Z5020903 Keywords : cytochrome * respiration * oxidase Subject RIV: EE - Microbiology, Virology Impact factor: 1.932, year: 2003

  18. Identification and Functional Validation of Autolysis—Associated Genes in Lactobacillus bulgaricus ATCC BAA-365

    Directory of Open Access Journals (Sweden)

    Xiaoyang Pang

    2017-07-01

    Full Text Available Lactic acid bacteria (LAB are important organisms in food production. Indeed, LAB autolysis is very critical in dairy processing. For example, it influences the development of cheese flavor by releasing intracellular enzymes, and controls cell growth in yogurts and probiotic products. Two component systems (TCS constitute essential environmental sensors and effectors of signal transduction in most bacteria. In the present work, mutants of one TCS (LBUL_RS00115/LBUL_RS00110 were generated to assess the relationship between TCS and cell autolysis. The mutants displayed decreased autolysis in comparison with wild type; meanwhile, complementation reversed this effect. The interaction between LBUL_RS00115 and LBUL_RS00110 was confirmed by yeast two-hybrid analysis. These observations suggested that the TCS (LBUL_RS00115/LBUL_RS00110 was involved in autolysis in Lactobacillus delbrueckii subsp. bulgaricus.

  19. Production of Viscous Dextran-Containing Whey-Sucrose Broths by Leuconostoc mesenteroides ATCC 14935

    OpenAIRE

    Schwartz, Robert D.; Bodie, Elizabeth A.

    1984-01-01

    Viscous broths were produced by growing Leuconostoc mesenteroides on a medium containing whey supplemented with sucrose. When combined with similarly produced xanthan-containing broths, a synergistic increase in viscosity was observed.

  20. Microbial Protein Production from Candida tropicalis ATCC13803 in a Submerged Batch Fermentation Process

    Directory of Open Access Journals (Sweden)

    Sahar Golaghaiee

    2017-01-01

    Full Text Available Background and Objective: Microbial protein production can resolve one of the major world challenges, i.e. lack of protein sources. Candida tropicalis growth was investigated to specify a medium to reach the highest cell proliferation and protein production.Material and Methods: Fractional factorial design and the index of signal to noise ratio were applied for optimization of microbial protein production. Optimization process was conducted based on the experimental results of Taguchi approach designs. Fermentationwas performed at 25oC and the agitation speed of 300 rpm for 70 h. Ammonium sulfate, iron sulfate, glycine and glucose concentrations were considered as process variables. Optimization of the culture medium composition was conducted in order to obtain the highest cell biomass concentration and protein content. Experiment design was performed based on the Taguchi approach and L-16 orthogonal arrays using Qualitek-4 software.Results and Conclusion: Maximum biomass of 8.72 log (CFU ml-1 was obtained using the optimized medium with 0.3, 0.15, 2 and 80 g l-1 of ammonium sulfate, iron sulfate, glycine and glucose, respectively. Iron sulfate and ammonium sulfate with 41.76% (w w-1 and 35.27% (w w-1 contributions, respectively, were recognized as the main components for cell growth. Glucose and glycine with 17.12% and 5.86% (w w-1 contributions,respectively, also affected cell production. The highest interaction severity index of +54.16% was observed between glycine and glucose while the least one of +0.43% was recorded for ammonium sulfate and glycine. A deviation of 7% between the highestpredicted cell numbers and the experimented count confirms the suitability of the applied statistical method. High protein content of 52.16% (w w-1 as well as low fat and nucleic acids content suggest that Candida tropicalis is a suitable case for commercial processes.Conflict of interest: The authors declare that there is no conflict of interest.